Research on Reasons for Repeated Falling of Tiles in Internal Walls of Construction
NASA Astrophysics Data System (ADS)
Xu, LiBin; Chen, Shangwei; He, Xinzhou; Zhu, Guoliang
2018-03-01
In view of the quality problem of repeated falling of facing tiles in some construction, the essay had a comparative trial in laboratory on cement mortar which is often used to paste tiles, special tile mortar and dry-hang glue, and measured durability of tile adhesive mortar through freezing and thawing tests. The test results indicated that ordinary cement mortar cannot meet standards due to reasons like big shrinkage and low adhesive. In addition, the ten times of freezing and thawing tests indicated that ordinary cement mortar would directly shell and do not have an adhesive force, and moreover, adhesive force of special tile mortar would reduce. Thus, for tiles of large size which are used for walls, dry-hang techniques are recommended to be used.
Solid state NMR and LVSEM studies on the hardening of latex modified tile mortar systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rottstegge, J.; Arnold, M.; Herschke, L.
Construction mortars contain a broad variety of both inorganic and organic additives beside the cement powder. Here we present a study of tile mortar systems based on portland cement, quartz, methyl cellulose and different latex additives. As known, the methyl cellulose stabilizes the freshly prepared cement paste, the latex additive enhances final hydrophobicity, flexibility and adhesion. Measurements were performed by solid state nuclear magnetic resonance (NMR) and low voltage scanning electron microscopy (LVSEM) to probe the influence of the latex additives on the hydration, hardening and the final tile mortar properties. While solid state NMR enables monitoring of the bulkmore » composition, scanning electron microscopy affords visualization of particles and textures with respect to their shape and the distribution of the different phases. Within the alkaline cement paste, the poly(vinyl acetate) (VAc)-based latex dispersions stabilized by poly(vinyl alcohol) (PVA) were found to be relatively stable against hydrolysis. The influence of the combined organic additives methyl cellulose, poly(vinyl alcohol) and latexes stabilized by poly(vinyl alcohol) on the final silicate structure of the cement hydration products is small. But even small amounts of additives result in an increased ratio of ettringite to monosulfate within the final hydrated tile mortar as monitored by {sup 27}Al NMR. The latex was found to be adsorbed to the inorganic surfaces, acting as glue to the inorganic components. For similar latex water interfaces built up by poly(vinyl alcohol), a variation in the latex polymer composition results in modified organic textures. In addition to the networks of the inorganic cement and of the latex, there is a weak network build up by thin polymer fibers, most probably originating from poly(vinyl alcohol). Besides the weak network, polymer fibers form well-ordered textures covering inorganic crystals such as portlandite.« less
Schoenen, D; Thofern, E
1981-12-01
The observation of a microbial growth in form of macrocolonies upon the joints of a tiled drinking water reservoir caused the microbiological testing of different pure mineral and some plastic containing cement mortar. Besides the conditions allowing the growth of macrocolonies on tiled plates with a construction like in a reservoir were examined.
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. National Center for Research in Vocational Education.
This course, for individualized or group instruction on ceramic tile setting, was developed from military sources for use in vocational education. The course provides students with skills in mortar preparation, surface preparation, tile layout planning, tile setting, tile cutting, and the grouting of tile joints. Both theory and shop assignments…
Chang, Chih-Yuan
2017-05-08
Incidents of injuries caused by tiles falling from building exterior walls are frequently reported in Taiwan. Humidity is an influential factor in tile deterioration but it is more difficult to measure the humidity inside a building structure than the humidity in an indoor environment. Therefore, a separable microsensor was developed in this study to measure the humidity of the cement mortar layer with a thickness of 1.5-2 cm inside the external wall of a building. 3D printing technology is used to produce an encapsulation box that can protect the sensor from damage caused by the concrete and cement mortar. The sensor is proven in this study to be capable of measuring temperature and humidity simultaneously and the measurement results are then used to analyze the influence of humidity on external wall tile deterioration.
Chang, Chih-Yuan
2017-01-01
Incidents of injuries caused by tiles falling from building exterior walls are frequently reported in Taiwan. Humidity is an influential factor in tile deterioration but it is more difficult to measure the humidity inside a building structure than the humidity in an indoor environment. Therefore, a separable microsensor was developed in this study to measure the humidity of the cement mortar layer with a thickness of 1.5–2 cm inside the external wall of a building. 3D printing technology is used to produce an encapsulation box that can protect the sensor from damage caused by the concrete and cement mortar. The sensor is proven in this study to be capable of measuring temperature and humidity simultaneously and the measurement results are then used to analyze the influence of humidity on external wall tile deterioration. PMID:28481300
Recycling of porcelain tile polishing residue in portland cement: hydration efficiency.
Pelisser, Fernando; Steiner, Luiz Renato; Bernardin, Adriano Michael
2012-02-21
Ceramic tiles are widely used by the construction industry, and the manufacturing process of ceramic tiles generates as a major residue mud derived from the polishing step. This residue is too impure to be reused in the ceramic process and is usually discarded as waste in landfills. But the analysis of the particle size and concentration of silica of this residue shows a potential use in the manufacture of building materials based on portland cement. Tests were conducted on cement pastes and mortars using the addition of 10% and 20% (mass) of the residue. The results of compressive strength in mortars made up to 56 days showed a significant increase in compressive strength greater than 50%. The result of thermogravimetry shows that portlandite is consumed by the cement formed by the silica present in the residue in order to form calcium silicate hydrate and featuring a pozzolanic reaction. This effect improves the performance of cement, contributes to research and application of supplementary cementitious materials, and optimizes the use of portland cement, reducing the environmental impacts of carbon dioxide emissions from its production.
8. Detail, west corner, showing entrance fenestration, carved rafters supporting ...
8. Detail, west corner, showing entrance fenestration, carved rafters supporting metal-tiled pent roofs, tinted mortar; view to east. - Larco Building, 214 State Street, Santa Barbara, Santa Barbara County, CA
1987-01-19
and, as a ’ result, was not collected. %_% Iodern historic materials such as ceramic drain tile and broken bottle glass were found eroding out of the...spike fragment; six pieces of aluminum foil; one cinder; two mortar fragments; one black rubber fragment; seven unglazed red ceramic tile fragments...meas.,e atB’We,~isconsin. 4.~~~ p~ hs vst ~:z artial v itil~ilis the oo.igations o4 the Cor~s Enginee-s :orps: regarding cultjural resources, as set
Technology Evaluation Report: Non-destructive ...
Technology Evaluation Report HSRP is working to develop tools and information that will help detect the intentional introduction of chemical or biological contaminants in buildings or water systems, the containment of these contaminants, the decontamination of buildings and/or water systems, and the management of wastes generated from decontamination and cleanup operations. Evaluation of the performance of CBI Polymers’ DeconGelTM 1108, Environmental Alternatives, Inc.’s (EAI’s) Rad-Release II (RRII), Environmental Alternatives, Inc.’s SuperGel, and Intek Technologies’ LH-21. The objective of evaluating these technologies was to test their ability to remove radioactive cesium (Cs)-137 from the mixed building material coupons of brick with mortar, tile with grout, granite with mortar, all mortar and all grout coupons.
Application of natural seaweed modified mortar for sustainable concrete production
NASA Astrophysics Data System (ADS)
Siddique, M. N. I.; Zularisam, A. W.
2018-04-01
The effect of seaweed such as Eucheuma Cottonii (gel) and Gracilaria Sp. modified mortar on the properties of sustainable concrete was investigated. Pre-experiment and main-experiment was conducted to carry out this study. Pre-experiment was conducted to study the compressive strength of the sustainable concrete. The main-experiment studied the compressive and splitting strength. Results showed that seaweed modified mortar yielded satisfactory compressive and splitting strength of 30 MPa and 5 MPa at 28 days.
Li, Mengmeng; Zhu, Xuejiao; Mukherjee, Abhijit; Huang, Minsheng; Achal, Varenyam
2017-05-05
The role of industrial byproduct as supplementary cementitious material to partially replace cement has greatly contributed to sustainable environment. Metakaolin (MK), one of such byproduct, is widely used to partial replacement of cement; however, during cement replacement at high percentage, it may not be a good choice to improve the strength of concrete. Thus, in the present study, biocement, a product of microbially induced carbonate precipitation is utilized in MK-modified cement mortars to improve its compressive strength. Despite of cement replacement with MK as high as 50%, the presented technology improved compressive strength of mortars by 27%, which was still comparable to those mortars with 100% cement. The results proved that biomineralization could be effectively used in reducing cement content without compromising compressive strength of mortars. Biocementation also reduced the porosity of mortars at all ages. The process was characterized by SEM-EDS to observe bacterially-induced carbonate crystals and FTIR spectroscopy to predict responsible bonding in the formation of calcium carbonate. Further, XRD analysis identified bio/minerals formed in the MK-modified mortars. The study also encourages combining biological role in construction engineering to solve hazardous nature of cement and at same time solve the disposal problem of industrial waste for sustainable environment. Copyright © 2017 Elsevier B.V. All rights reserved.
Properties of Cement Mortar Produced from Mixed Waste Materials with Pozzolanic Characteristics.
Yen, Chi-Liang; Tseng, Dyi-Hwa; Wu, Yue-Ze
2012-07-01
Waste materials with pozzolanic characteristics, such as sewage sludge ash (SSA), coal combustion fly ash (FA), and granulated blast furnace slag (GBS), were reused as partial cement replacements for making cement mortar in this study. Experimental results revealed that with dual replacement of cement by SSA and GBS and triple replacement by SSA, FA, and GBS at 50% of total cement replacement, the compressive strength (Sc) of the blended cement mortars at 56 days was 93.7% and 92.9% of the control cement mortar, respectively. GBS had the highest strength activity index value and could produce large amounts of CaO to enhance the pozzolanic activity of SSA/FA and form calcium silicate hydrate gels to fill the capillary pores of the cement mortar. Consequently, the Sc development of cement mortar with GBS replacement was better than that without GBS, and the total pore volume of blended cement mortars with GBS/SSA replacement was less than that with FA/SSA replacement. In the cement mortar with modified SSA and GBS at 70% of total cement replacement, the Sc at 56 days was 92.4% of the control mortar. Modifying the content of calcium in SSA also increased its pozzolanic reaction. CaCl(2) accelerated the pozzolanic activity of SSA better than lime did. Moreover, blending cement mortars with GBS/SSA replacement could generate more monosulfoaluminate to fill capillary pores.
Properties of Cement Mortar Produced from Mixed Waste Materials with Pozzolanic Characteristics
Yen, Chi-Liang; Tseng, Dyi-Hwa; Wu, Yue-Ze
2012-01-01
Abstract Waste materials with pozzolanic characteristics, such as sewage sludge ash (SSA), coal combustion fly ash (FA), and granulated blast furnace slag (GBS), were reused as partial cement replacements for making cement mortar in this study. Experimental results revealed that with dual replacement of cement by SSA and GBS and triple replacement by SSA, FA, and GBS at 50% of total cement replacement, the compressive strength (Sc) of the blended cement mortars at 56 days was 93.7% and 92.9% of the control cement mortar, respectively. GBS had the highest strength activity index value and could produce large amounts of CaO to enhance the pozzolanic activity of SSA/FA and form calcium silicate hydrate gels to fill the capillary pores of the cement mortar. Consequently, the Sc development of cement mortar with GBS replacement was better than that without GBS, and the total pore volume of blended cement mortars with GBS/SSA replacement was less than that with FA/SSA replacement. In the cement mortar with modified SSA and GBS at 70% of total cement replacement, the Sc at 56 days was 92.4% of the control mortar. Modifying the content of calcium in SSA also increased its pozzolanic reaction. CaCl2 accelerated the pozzolanic activity of SSA better than lime did. Moreover, blending cement mortars with GBS/SSA replacement could generate more monosulfoaluminate to fill capillary pores. PMID:22783062
NASA Astrophysics Data System (ADS)
Rahman, R.; Nemmang, M. S.; Hazurina, Nor; Shahidan, S.; Khairul Tajuddin Jemain, Raden; Abdullah, M. E.; Hassan, M. F.
2017-11-01
The main issue related to this research was to examine the feasibility of natural rubber SMR 20 in the manufacturing of cement mortar for sub-base layer construction. Subbase layers have certain functions that need to be fulfilled in order to assure strong and adequate permeability of pavement performance. In a pavement structure, sub-base is below the base and serves as the foundation for the overall pavement structure, transmitting traffic loads to the sub-grade and providing drainage. Based on this research, the natural rubber, SMR 20 was with the percentages of 0%, 5%, 10% and 15% to mix with sand in the manufacture of the cement mortar. This research describes some of the properties and cost of the materials for the natural rubber and sand in cement mortar manufacturing by laboratory testing. Effects of the natural rubber replacement on mechanical properties of mortar were investigated by laboratory testing such as compressive strength test and density. This study obtained the 5% of natural rubber replaced in sand can achieved the strength of normal mortar after 7 days and 28 days. The strength of cement mortar depends on the density of cement mortar. According to the cost of both materials, sand shows the lower cost in material for the cement mortar manufacturing than the uses of natural rubber. Thus, the convectional cement mortar which used sand need lower cost than the modified rubber cement mortar and the most economical to apply in industrial. As conclusion, the percentage of 5% natural rubber in the cement mortar would have the same with normal cement mortar in terms of the strength. However, in terms of the cost of the construction, it will increase higher than cost of normal cement mortar production. So that, this modified cement mortar is not economical for the road sub-base construction.
Recovery of hazardous semiconductor-industry sludge as a useful resource.
Lee, Tzen-Chin; Liu, Feng-Jiin
2009-06-15
Sludge, a solid waste recovered from wastewater of semiconductor-industries composes of agglomerates of nano-particles like SiO(2) and CaF(2). This sludge deflocculates in acidic and alkaline aqueous solutions into nano-particles smaller than 100 nm. Thus, this sludge is potentially hazardous to water resources when improperly dumped. It can cause considerable air-pollution when fed into rotary-kilns as a raw material for cement production. In this study, dried and pulverized sludge was used to replace 5-20 wt.% Portland cement in cement mortar. The compressive strength of the modified mortar was higher than that of plain cement mortar after curing for 3 days and more. In particular, the strength of mortar with 10 wt.% substitution improved by 25-35% after curing for 7-90 days. TCLP studies reveal no detectable release of heavy metals. Preliminary studies showed that nano-particles deflocculated from the sludge, when cured for up to 3 days retain in the modified mortar their nano-size, which become large-sized hydration compounds that contribute to the final mortar strength. Semiconductor sludge can thus be utilized as a useful resource to replace portion of cement in cement mortar, thereby avoiding their potential hazard on the environment.
Stress-Strain Behavior of Cementitious Materials with Different Sizes
Zhou, Jikai; Qian, Pingping; Chen, Xudong
2014-01-01
The size dependence of flexural properties of cement mortar and concrete beams is investigated. Bazant's size effect law and modified size effect law by Kim and Eo give a very good fit to the flexural strength of both cement mortar and concrete. As observed in the test results, a strong size effect in flexural strength is found in cement mortar than in concrete. A modification has been suggested to Li's equation for describing the stress-strain curve of cement mortar and concrete by incorporating two different correction factors, the factors contained in the modified equation being established empirically as a function of specimen size. A comparison of the predictions of this equation with test data generated in this study shows good agreement. PMID:24744688
Influence of viscosity modifying admixtures on the rheological behavior of cement and mortar pastes
NASA Astrophysics Data System (ADS)
Bouras, R.; Kaci, A.; Chaouche, M.
2012-03-01
The influence of Viscosity-modifying admixtures (VMA) dosage rate on the steady state rheological properties, including the yield stress, fluid consistency index and flow behaviour index, of cementitious materials is considered experimentally. The investigation is undertaken both at cement paste and mortar scales. It is found that the rheological behaviour of the material is in general dependent upon shear-rate interval considered. At sufficiently low shear-rates the materials exhibit shear-thinning. This behaviour is attributed to flow-induced defloculation of the solid particles and VMA polymer disentanglement and alignment. At relatively high shear-rates the pastes becomes shear-thickening, due to repulsive interactions among the solid particles. There is a qualitative difference between the influence of VMA dosage at cement and mortar scales: at cement scale we obtain a monotonic increase of the yield stress, while at mortar scale there exists an optimum VMA dosage for which the yield stress is a minimum. The flow behaviour index exhibit a maximum in the case of cement pastes and monotonically decreases in the case of mortars. On the other hand, the fluid consistency index presents a minimum for both cement pastes and mortars.
The increase of compressive strength of natural polymer modified concrete with Moringa oleifera
NASA Astrophysics Data System (ADS)
Susilorini, Rr. M. I. Retno; Santosa, Budi; Rejeki, V. G. Sri; Riangsari, M. F. Devita; Hananta, Yan's. Dianaga
2017-03-01
Polymer modified concrete is one of some concrete technology innovations to meet the need of strong and durable concrete. Previous research found that Moringa oleifera can be applied as natural polymer modifiers into mortars. Natural polymer modified mortar using Moringa oleifera is proven to increase their compressive strength significantly. In this resesearch, Moringa oleifera seeds have been grinded and added into concrete mix for natural polymer modified concrete, based on the optimum composition of previous research. The research investigated the increase of compressive strength of polymer modified concrete with Moringa oleifera as natural polymer modifiers. There were 3 compositions of natural polymer modified concrete with Moringa oleifera referred to previous research optimum compositions. Several cylinder of 10 cm x 20 cm specimens were produced and tested for compressive strength at age 7, 14, and, 28 days. The research meets conclusions: (1) Natural polymer modified concrete with Moringa oleifera, with and without skin, has higher compressive strength compared to natural polymer modified mortar with Moringa oleifera and also control specimens; (2) Natural polymer modified concrete with Moringa oleifera without skin is achieved by specimens contains Moringa oleifera that is 0.2% of cement weight; and (3) The compressive strength increase of natural polymer modified concrete with Moringa oleifera without skin is about 168.11-221.29% compared to control specimens
NASA Astrophysics Data System (ADS)
Dalla, P. T.; Alafogianni, P.; Tragazikis, I. K.; Exarchos, D. A.; Dassios, K.; Barkoula, N.-M.; Matikas, T. E.
2015-03-01
Cement-based materials have in general low electrical conductivity. Electrical conductivity is the measure of the ability of the material to resist the passage of electrical current. The addition of a conductive admixture such as Multi-Walled Carbon Nanotubes (MWCNTs) in a cement-based material increases the conductivity of the structure. This research aims to characterize nano-modified cement mortars with MWCNT reinforcements. Such nano-composites would possess smartness and multi-functionality. Multifunctional properties include electrical, thermal and piezo-electric characteristics. One of these properties, the electrical conductivity, was measured using a custom made apparatus that allows application of known D.C. voltage on the nano-composite. In this study, the influence of different surfactants/plasticizers on CNT nano-modified cement mortar specimens with various concentrations of CNTs (0.2% wt. cement CNTs - 0.8% wt. cement CNTs) on the electrical conductivity is assessed.
Effect of chitosan ethers on fresh state properties of lime mortars
NASA Astrophysics Data System (ADS)
Vyšvařil, M.; Žižlavský, T.
2017-10-01
The fresh state properties of mortars are eminently important since determine the material workability and also have a great influence on its hardened state characteristics. In this paper, the behaviour of fresh lime mortars modified by etherified derivatives of chitosan (hydroxypropylchitosan (HPCH) and carboxymethylchitosan (CMCH)) is assessed with the purpose of exploring a new application of such derivatives as lime mortar admixtures. The rheological parameters (relative yield stress, consistency coefficient and fluidity index) and viscoelastic properties were correlated with flow table tests, relative density measurements, water retention abilities of mortars and air content in mortars. Results were seen to be strongly dependent on substituents of the chitosan. Non-ionic derivative (HPCH) had a plasticizing influence on the mortars; the ionic CMCH showed the thickening effect. The effect of chitosan ethers was found to be dosage-dependent. CMCH had low impact on water retention, while HPCH displayed high water retention capability. It was concluded, that the ionic derivative (CMCH) is very similar by its viscosity enhancing effect to starch ether.
NASA Technical Reports Server (NTRS)
Ko, William L.; Gong, Leslie; Quinn, Robert D.
2004-01-01
This report deals with hypothetical reentry thermostructural performance of the Space Shuttle orbiter with missing or eroded thermal protection system (TPS) tiles. The original STS-5 heating (normal transition at 1100 sec) and the modified STS-5 heating (premature transition at 800 sec) were used as reentry heat inputs. The TPS missing or eroded site is assumed to be located at the center or corner (spar-rib juncture) of the lower surface of wing midspan bay 3. For cases of missing TPS tiles, under the original STS-5 heating, the orbiter can afford to lose only one TPS tile at the center or two TPS tiles at the corner (spar-rib juncture) of the lower surface of wing midspan bay 3. Under modified STS-5 heating, the orbiter cannot afford to lose even one TPS tile at the center or at the corner of the lower surface of wing midspan bay 3. For cases of eroded TPS tiles, the aluminum skin temperature rises relatively slowly with the decreasing thickness of the eroded central or corner TPS tile until most of the TPS tile is eroded away, and then increases exponentially toward the missing tile case.
Modeling and numerical simulation of interior ballistic processes in a 120mm mortar system
NASA Astrophysics Data System (ADS)
Acharya, Ragini
Numerical Simulation of interior ballistic processes in gun and mortar systems is a very difficult and interesting problem. The mathematical model for the physical processes in the mortar systems consists of a system of non-linear coupled partial differential equations, which also contain non-homogeneity in form of the source terms. This work includes the development of a three-dimensional mortar interior ballistic (3D-MIB) code for a 120mm mortar system and its stage-wise validation with multiple sets of experimental data. The 120mm mortar system consists of a flash tube contained within an ignition cartridge, tail-boom, fin region, charge increments containing granular propellants, and a projectile payload. The ignition cartridge discharges hot gas-phase products and unburned granular propellants into the mortar tube through vent-holes on its surface. In view of the complexity of interior ballistic processes in the mortar propulsion system, the overall problem was solved in a modular fashion, i.e., simulating each physical component of the mortar propulsion system separately. These modules were coupled together with appropriate initial and boundary conditions. The ignition cartridge and mortar tube contain nitrocellulose-based ball propellants. Therefore, the gas dynamical processes in the 120mm mortar system are two-phase, which were simulated by considering both phases as an interpenetrating continuum. Mass and energy fluxes from the flash tube into the granular bed of ignition cartridge were determined from a semi-empirical technique. For the tail-boom section, a transient one-dimensional two-phase compressible flow solver based on method of characteristics was developed. The mathematical model for the interior ballistic processes in the mortar tube posed an initial value problem with discontinuous initial conditions with the characteristics of the Riemann problem due to the discontinuity of the initial conditions. Therefore, the mortar tube model was solved by using a high-resolution Godunov-type shock-capturing approach was used where the discretization is done directly on the integral formulation of the conservation laws. A linearized approximate Riemann Solver was modified in this work for the two-phase flows to compute fully non-linear wave interactions and to directly provide upwinding properties in the scheme. An entropy fix based on Harten-Heyman method was used with van Leer flux limiter for total variation diminishing. The three dimensional effects were simulated by incorporating an unsplit multi-dimensional wave propagation method, which accounted for discontinuities traveling in both normal and oblique coordinate directions. For each component, the predicted pressure-time traces showed significant pressure wave phenomena, which closely simulated the measured pressure-time traces obtained at PSU. The pressure-time traces at the breech-end of the mortar tube were obtained at Aberdeen Test Center with 0, 2, and 4 charge increments. The 3D-MIB code was also used to simulate the effect of flash tube vent-hole pattern on the pressure-wave phenomenon in the ignition cartridge. A comparison of the pressure difference between primer-end and projectile-end locations of the original and modified ignition cartridges with each other showed that the early-phase pressure-wave phenomenon can be significantly reduced with the modified pattern. The flow property distributions predicted by the 3D-MIB for 0, 2, and 4 charge increment cases as well the projectile dynamics predictions provided adequate validation of theory by experiments.
Padilla, Jennifer E.; Liu, Wenyan; Seeman, Nadrian C.
2012-01-01
We introduce a hierarchical self assembly algorithm that produces the quasiperiodic patterns found in the Robinson tilings and suggest a practical implementation of this algorithm using DNA origami tiles. We modify the abstract Tile Assembly Model, (aTAM), to include active signaling and glue activation in response to signals to coordinate the hierarchical assembly of Robinson patterns of arbitrary size from a small set of tiles according to the tile substitution algorithm that generates them. Enabling coordinated hierarchical assembly in the aTAM makes possible the efficient encoding of the recursive process of tile substitution. PMID:23226722
Padilla, Jennifer E; Liu, Wenyan; Seeman, Nadrian C
2012-06-01
We introduce a hierarchical self assembly algorithm that produces the quasiperiodic patterns found in the Robinson tilings and suggest a practical implementation of this algorithm using DNA origami tiles. We modify the abstract Tile Assembly Model, (aTAM), to include active signaling and glue activation in response to signals to coordinate the hierarchical assembly of Robinson patterns of arbitrary size from a small set of tiles according to the tile substitution algorithm that generates them. Enabling coordinated hierarchical assembly in the aTAM makes possible the efficient encoding of the recursive process of tile substitution.
NASA Astrophysics Data System (ADS)
Debska, Bernardeta; Licholai, Lech
2017-12-01
The results of the article are part of an extensive research on new building materials including cement-free polymer composites where the binder is epoxy resin modified with glycolyzates obtained from poly (ethylene terephthalate) waste (PET). The investigation conducted con-firmed that there is a possibility of using waste materials in the production of mortar. Since they have always been an environmental problem, their utilization will help to apply the principles of sustainable development in the processes of obtaining new materials. The article discusses the results of a study of flexural strength of polymer mortars. Mortar specimens modified with propylene glycol and PET waste based glycolyzate were exposed to a 10% NaCl solution and their strength parameters were then examined after one month, six months and twelve months of immersion in this aggressive medium. The same characteristics were also determined for specimens that were not exposed to the NaCl solution. The results were presented as the trend function. The sections of the curve corresponding to the particular periods of exposure in aggressive medium vary in shape. Due to this, an attempt was made to adjust the spline function to the experimental data. The composites obtained show a deterioration in their strength properties which grows with the extension of their exposure to a corrosive medium. However, the chemical corrosion resistance of the mortars under investigation can be considered very good as it is still much higher than that of conventional cement mortars. Even after a year exposure to a corrosive substance, the mortars obtained still show high mean flexural strength values which equal about 30 MPa.
Misuse and modification of fireworks with fatal injury.
Fulcher, James; Luttrell, Harrison; Harvey, Whit; Ward, Michael
2015-06-01
Fireworks deaths are a rare event in the United States with minor injuries comprising most adverse events. We report the case of misuse and modification of a large "mortar" firework with fatal results. In this case, the firework charge was modified with additional fuses and placed into the launcher upside down. The decedent then held the mortar base closely to his chest and lit the modified fuse. The resulting explosion caused severe blunt force trauma with significant hydrostatic shock damage to the heart and liver. This cause highlights the dangers of fireworks, particularly when misused.
Pore size distribution of OPC and SRPC mortars in presence of chlorides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suryavanshi, A.K.; Scantlebury, J.D.; Lyon, S.B.
1995-07-01
The pore structure of chloride-free ordinary portland cement (OPC) and sulphate resistant portland cement (SRPC) mortars are compared with the corresponding mortars with NaCl and CaCl{sub 2} added during mixing. In both OPC and SRPC mortars the addition of chlorides reduced the total accessible pore volumes compared to the corresponding chloride-free mortars. Also, in the presence of chlorides, the number of coarse pores were increased. These changes in the pore structure are believed to be due to dense calcium silicate hydrate (C-S-H) gel morphology formed in the presence of chlorides. The SRPC showed greater changes in pore structures than themore » OPC with equivalent amounts of chlorides added. This may be due to the lower chloride binding capacity of the SRPC and hence the higher availability of free chlorides to modify the gel morphology.« less
Mixing In a Compounding Pharmacy in the 21st Century.
Standridge, Rob
2015-01-01
When it comes to combining ingredients for topical preparations, compounding pharmacists utilize either the manual methods such as a spatula and pill tile or a mortar and pestle, typically an electronic mortar and pestle. If a topical preparation must be pre-ground or requires trituration, or any level of particle-size reduction, historically the manual method of combining ingredients in such a preparation would include the initial use of a mortar and pestle; however with micronized substances this is not as much a concern today as in the past. There is, of course, the concern of a lack of reproducibility, knowing that each compounder might utilize the equipment differently, would mix for varying times, and would also mix with varying amounts of physical pressure applied to the pestle. If the discipline of uniform usage is great enough in the lab, this method could probably produce consistent results, but, because of the preparation and cleanup time and the fact that newer technology is available, this method is not recommended as the common compounding method in a compounding pharmacy that does more than a handful of compounded topical preparations per week. This article is not meant to say these methods are not appropriate, but, rather, to point out that newer technology is available and might be preferable in order to provide a cleaner, more efficient, and more reproducible lab environment.
NASA Astrophysics Data System (ADS)
Bartz, Wojciech; Martusewicz, Jacek
2017-12-01
Samples of historical terrazzo floor from the Jewish Historical Institute in Warsaw, dated back to the thirties of the twentieth century, have been analysed. Investigations by polarised optical microscopy, scanning microscopy, powder X-ray diffraction and simultaneous thermal analysis were preformed. Based on the results obtained, it was concluded that terrazzo tiles were prepared on the basis of ordinary Portland cement and aggregate, dominated with crushed stone (marble, serpentinite, limestone and marl), accompanied by sparse quartz sand grains. The binding mass was colourised with the use of pigments containing iron ions. The occurrence of altered serpentinite and marble grains, the latter clouded and partly replaced with micrite, the presence of portlandite, indicate the terrazzo tiles were subjected to thermal impact. This is related to the fire that took place at the beginning of World War II. Based on this study, repair mortars were formulated, on one hand compatible with the authentic ones, on the other retaining traces of fire.
NMR relaxometry study of plaster mortar with polymer additives
NASA Astrophysics Data System (ADS)
Jumate, E.; Moldovan, D.; Fechete, R.; Manea, D.
2013-11-01
The cement mixed with water forms a plastic paste or slurry which stiffness in time and finally hardens into a resistant stone. The addition of sand aggregates, polymers (Walocel) and/or calcium carbonate will modify dramatically the final mortar mechanic and thermal properties. The hydration processes can be observed using the 1D NMR measurements of transverse T2 relaxation times distributions analysed by a Laplace inversion algorithm. These distributions were obtained for mortar pasta measured at 2 hours after preparation then at 3, 7 and 28 days after preparation. Multiple components are identified in the T2 distributions. These can be associated with the proton bounded chemical or physical to the mortar minerals characterized by a short T2 relaxation time and to water protons in pores with three different pore sizes as observed from SEM images. The evaporation process is faster in the first hours after preparation, while the mortar hydration (bonding of water molecules to mortar minerals) can be still observed after days or months from preparation. Finally, the mechanic resistance was correlated with the transverse T2 relaxation rates corresponding to the bound water.
NASA Astrophysics Data System (ADS)
Zou, Z.; Scott, M. A.; Borden, M. J.; Thomas, D. C.; Dornisch, W.; Brivadis, E.
2018-05-01
In this paper we develop the isogeometric B\\'ezier dual mortar method. It is based on B\\'ezier extraction and projection and is applicable to any spline space which can be represented in B\\'ezier form (i.e., NURBS, T-splines, LR-splines, etc.). The approach weakly enforces the continuity of the solution at patch interfaces and the error can be adaptively controlled by leveraging the refineability of the underlying dual spline basis without introducing any additional degrees of freedom. We also develop weakly continuous geometry as a particular application of isogeometric B\\'ezier dual mortaring. Weakly continuous geometry is a geometry description where the weak continuity constraints are built into properly modified B\\'ezier extraction operators. As a result, multi-patch models can be processed in a solver directly without having to employ a mortaring solution strategy. We demonstrate the utility of the approach on several challenging benchmark problems. Keywords: Mortar methods, Isogeometric analysis, B\\'ezier extraction, B\\'ezier projection
Alternative design of pipe sleeve for liquid removal mechanism in mortar slab layer
NASA Astrophysics Data System (ADS)
Nazri, W. M. H. Wan; Anting, N.; Lim, A. J. M. S.; Prasetijo, J.; Shahidan, S.; Din, M. F. Md; Anuar, M. A. Mohd
2017-11-01
Porosity is one of the mortar’s characteristics that can cause problems, especially in the room space that used high amount of water, such as bathrooms. Waterproofing is one of the technology that normally used to minimize this problem which is preventing deep penetration of liquid water or moisture into underlying concrete layers. However, without the proper mechanism to remove liquid water and moisture from mortar system, waterproofing layer tends to be damaged after a long period of time by the static formation of liquid water and moisture at mortar layer. Thus, a solution has been proposed to drain out water that penetrated into the mortar layer. This paper introduces a new solution using a Modified Pipe Sleeve (MPS) that installed at the mortar layer. The MPS has been designed considering the percentage surface area of the pipe sleeve that having contact with mortar layer (2%, 4%, 6%, 8% and 10%) with angle of holes of 60°. Infiltration test and flow rate test have been conducted to identify the effectiveness of the MPS in order to drain out liquid water or moisture from the mortar layer. In this study shows that, MPS surface area 10%, angled 60°, function effectively as a water removal compared to other design.
Repair and Rehabilitation of Dams: Case Studies
1999-09-01
with fiber - reinforced , acrylic- polymer modi- fied concrete (FRAPMC) and eliminating leakage into the trunnion recesses. FRAPMC consists of mortar...coarse aggregate, and reinforcement fibers . It is mixed in a mortar mixer as a two-component system consisting of a liquid polymer emulsion of...seat was removed and replaced with fiber - reinforced , acrylic- polymer modified concrete (FRAPMC). New bridge seats were installed, allowing for more
Projectile Impact Effects on Aircraft Wire Harnesses
1986-01-08
circuits Aircraft wire harnesses Modified ETFE Projectile damage and fires 19 ABSTRACT (Continue on reverse if necessary and identit) by block number...Tile Firifinr~ari~ne An overview of tile test fiririý raný,e is shown in Figure b. In tile for-eyrouria is tre rifle, witzh stock removed, utor iuyo e
NMR relaxometry study of plaster mortar with polymer additives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jumate, E.; Manea, D.; Moldovan, D.
2013-11-13
The cement mixed with water forms a plastic paste or slurry which stiffness in time and finally hardens into a resistant stone. The addition of sand aggregates, polymers (Walocel) and/or calcium carbonate will modify dramatically the final mortar mechanic and thermal properties. The hydration processes can be observed using the 1D NMR measurements of transverse T{sub 2} relaxation times distributions analysed by a Laplace inversion algorithm. These distributions were obtained for mortar pasta measured at 2 hours after preparation then at 3, 7 and 28 days after preparation. Multiple components are identified in the T{sub 2} distributions. These can bemore » associated with the proton bounded chemical or physical to the mortar minerals characterized by a short T{sub 2} relaxation time and to water protons in pores with three different pore sizes as observed from SEM images. The evaporation process is faster in the first hours after preparation, while the mortar hydration (bonding of water molecules to mortar minerals) can be still observed after days or months from preparation. Finally, the mechanic resistance was correlated with the transverse T{sub 2} relaxation rates corresponding to the bound water.« less
Micro- and meso-scale pore structure in mortar in relation to aggregate content
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Yun, E-mail: yun.gao@ugent.be; De Schutter, Geert; Ye, Guang
2013-10-15
Mortar is often viewed as a three-phase composite consisting of aggregate, bulk paste, and an interfacial transition zone (ITZ). However, this description is inconsistent with experimental findings because of the basic assumption that larger pores are only present within the ITZ. In this paper, we use backscattered electron (BSE) imaging to investigate the micro- and meso-scale structure of mortar with varying aggregate content. The results indicate that larger pores are present not only within the ITZ but also within areas far from aggregates. This phenomenon is discussed in detail based on a series of analytical calculations, such as the effectivemore » water binder ratio and the inter-aggregate spacing. We developed a modified computer model that includes a two-phase structure for bulk paste. This model interprets previous mercury intrusion porosimetry data very well. -- Highlights: •Based on BSE, we examine the HCSS model. •We develop the HCSS-DBLB model. •We use the modified model to interpret the MIP data.« less
Lactose-modified DNA tile nanostructures as drug carriers.
Akkus Sut, Pinar; Tunc, Cansu Umran; Culha, Mustafa
2016-09-01
DNA hybridization allows the preparation of nanoscale DNA structures with desired shape and size. DNA structures using simple base pairing can be used for the delivery of drug molecules into the cells. Since DNA carries multiple negative charges, their cellular uptake efficiency is low. Thus, the modification of the DNA structures with molecules that may enhance the cellular internalization may be an option. The objective of this study is to construct DNA-based nanocarrier system and to investigate the cellular uptake of DNA tile with/without lactose modification. Doxorubicin was intercalated to DNA tile and cellular uptake of drug-loaded DNA-based carrier with/without lactose modification was investigated in vitro. HeLa, BT-474, and MDA-MB-231 cancer cells were used for cellular uptake studies and cytotoxicity assays. Using fluorescence spectroscopy, flow cytometry, and confocal microscopy, cellular uptake behavior of DNA tile was investigated. The cytotoxicity of DNA tile structures was determined with WST-1 assay. The results show that modification with lactose effectively increases the intracellular uptake of doxorubicin loaded DNA tile structure by cancer cells compared with the unmodified DNA tile. The findings of this study suggest that DNA-based nanostructures modified with carbohydrates can be used as suitable multifunctional nanocarriers with simple chemical modifications.
NASA Astrophysics Data System (ADS)
Ivanovna Loganina, Valentina; Vladimirovna Zhegera, Christina
2017-10-01
In the article given information on the possibility of using amorphous aluminosilicates as a modifying additive in the offered tile cement adhesive. In the article, the data on the preparation of an additive based on amorphous aluminosilicates, on its microstructure and chemical composition. Presented information on the change in the porosity of cement stone when introduced of amorphous aluminosilicates in the his composition. The formulation of a dry building mix on a cement base is proposed with use of an additive based on amorphous aluminosilicates as a modifying additive. Recipe of dry adhesive mixes include Portland cement M400, mineral aggregate in proportion fraction 0.63-0.315:0.315-0.14 respectively 80:20 (%) and filling density of 1538.2 kg/m3, a plasticizer Kratasol, redispersible powder Neolith P4400 and amorphous alumnosilicates. The developed formulation can be used as a tile adhesive for finishing walls of buildings and structure with tiles. Presented results of the evaluation of frost resistance of adhesives based on cement with using of amorphous aluminosilicates as a modifying additive. Installed the mark on the frost resistance of tile glue and frost resistance of the contact zone of adhesive. Established, that the adhesive layer based on developed formulation dry mixture is crack-resistant and frost-resistant for conditions city Penza and dry humidity zone - zone 3 and climatic subarea IIB (accordance with Building codes and regulations 23-01-99Ȋ) cities Russia’s.
Latex modified Portland cement overlays : an analysis of samples removed from a bridge deck.
DOT National Transportation Integrated Search
1975-01-01
This report describes an evaluation of the latex modified mortar overlay the Route 85 (NBL) bridge over the Roanoke River. While the performance of the overlay has been generally satisfactory, corings and chloride analyses indicate the possibility of...
NASA Astrophysics Data System (ADS)
Özcan, Selçuk; Açıkbaş, Gökhan; Çalış Açıkbaş, Nurcan
2018-04-01
Hydrophobic surfaces are also known to have antimicrobial effect by restricting the adherence of microorganisms. However, ceramic products are produced by high temperature processes resulting in a hydrophilic surface. In this study, an industrial ceramic wall tile glaze composition was modified by the inclusion of metallic zinc powder in the glaze suspension applied on the pre-sintered wall tile bodies by spraying. The glazed tiles were gloss fired at industrially applicable peak temperatures ranging from 980 °C to 1100 °C. The fired tile surfaces were coated with a commercial fluoropolymer avoiding water absorption. The surfaces were characterized with SEM, EDS, XRD techniques, roughness, sessile water drop contact angle, surface energy measurements, and standard antimicrobial tests. The surface hydrophobicity and the antimicrobial activity results were compared with that of unmodified, uncoated gloss fired wall tiles. A superhydrophobic contact angle of 150° was achieved at 1000 °C peak temperature due to the formation of micro-structured nanocrystalline zinc oxide granules providing a specific surface topography. At higher peak temperatures the hydrophobicity was lost as the specific granular surface topography deteriorated with the conversion of zinc oxide granules to the ubiquitous willemite crystals embedded in the glassy matrix. The antimicrobial efficacy also correlated with the hydrophobic character.
Study of ancient mortars from the Roman Villa of Pollio Felice in Sorrento (Naples)
NASA Astrophysics Data System (ADS)
Benedetti, D.; Valetti, S.; Bontempi, E.; Piccioli, C.; Depero, L. E.
The study of ancient mortars is an important aspect of building conservation: the choice of the materials has varied according to historical period, regional habits, and their specific function in the structure. Ancient mortars are composites, comprising hydraulic or aerial binding materials, and aggregates, passive or active, which may react with binding material. Moreover, they were modified during setting, hardening, and aging, according to processes not yet well known. In this paper, we present a study of ancient mortars from the Villa of Pollio Felice of Sorrento (Naples). The analysis has been performed by conventional techniques (grain-size distribution, lime-percentage analysis, optical and electron microscopy, and X-ray diffraction) and by means of a laboratory X-ray microdiffractometer equipped with an image plate detector. This system, applied for the first time to archaeological studies, can reach a spatial resolution of a few tenths of microns and it allows us to obtain separate phase identification of binder and filler particles.
Optimisation of nano-silica modified self-compacting high-Volume fly ash mortar
NASA Astrophysics Data System (ADS)
Achara, Bitrus Emmanuel; Mohammed, Bashar S.; Fadhil Nuruddin, Muhd
2017-05-01
Evaluation of the effects of nano-silica amount and superplasticizer (SP) dosage on the compressive strength, porosity and slump flow on high-volume fly ash self-consolidating mortar was investigated. Multiobjective optimisation technique using Design-Expert software was applied to obtain solution based on desirability function that simultaneously optimises the variables and the responses. A desirability function of 0.811 gives the optimised solution. The experimental and predicted results showed minimal errors in all the measured responses.
Nguyen, Tuan Anh; Nguyen, The Huyen; Pham, Thi Lua; Dinh, Thi Mai Thanh Dinh; Thai, Hoang; Shi, Xianming
2017-01-01
The effect of incorporating nanoparticles on the corrosion resistance of epoxy-coated steel in salt contaminated mortars was investigated using potentiodynamic polarization and electrochemical impedance spectroscopy. Researchers conducted electrochemical monitoring of the coated steel embedded in mortar over 100 days of immersion in 0.1 M NaOH solutions. The chloride permeability and microstructure of Portland cement mortar with admixed nano-materials (at 1% by weight of cement) were examined using an electromigration test and field emission scanning electron microscopy (FESEM). Electrochemical monitoring showed that nano Fe₂O₃ improved the corrosion resistance of the coated rebar. The incorporation of a small amount of nano Fe₂O₃ (1% by total weight of resin and hardener) into the epoxy coating reduced the corrosion current of the epoxy-coated steel in chloride-contaminated mortar (0.3% chloride by weight of cement). After 100 days of immersion, the nanoparticles reduced the corrosion current of epoxy-coated steel by a factor of 6. The FESEM test revealed that admixing of nano-materials not only led to denser cement mortar but also changed the morphology of cement hydration products. The test results of compressive strength showed that nanoparticles increased the strength of cement mortar. The electromigration test showed that the incorporation of nanoparticles improved the chloride penetration resistance of the mortar, as indicated by the reduced apparent diffusion coefficients of the chloride anion. When nano-SiO₂ and nano-Fe₂O₃ were admixed into fresh cement mortar at 1% by weight of cement, the value of D(Cl−) was decreased by 83%, from 7.35×10(−11) m²/s (control specimen) to 1.21×10(−11) m²/s and 1.36×10(−11) m²/s, respectively.
Modified APEX model for Simulating Macropore Phosphorus Contributions to Tile Drains.
Ford, William I; King, Kevin W; Williams, Mark R; Confesor, Remegio B
2017-11-01
The contribution of macropore flow to phosphorus (P) loadings in tile-drained agricultural landscapes remains poorly understood at the field scale, despite the recognized deleterious impacts of contaminant transport via macropore pathways. A new subroutine that couples existing matrix-excess and matrix-desiccation macropore flow theory and a modified P routine is implemented in the Agricultural Policy Environmental eXtender (APEX) model. The original and modified formulation were applied and evaluated for a case study in a poorly drained field in Western Ohio with 31 months of surface and subsurface monitoring data. Results highlighted that a macropore subroutine in APEX improved edge-of-field discharge calibration and validation for both tile and total discharge from satisfactory and good, respectively, to very good and improved dissolved reactive P load calibration and validation statistics for tile P loads from unsatisfactory to very good. Output from the calibrated macropore simulations suggested median annual matrix-desiccation macropore flow contributions of 48% and P load contributions of 43%, with the majority of loading occurring in winter and spring. While somewhat counterintuitive, the prominence of matrix-desiccation macropore flow during seasons with less cracking reflects the importance of coupled development of macropore pathways and adequate supply of the macropore flow source. The innovative features of the model allow for assessments of annual macropore P contributions to tile drainage and has the potential to inform P site assessment tools. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Pérez-Nicolás, María; Alvarez, José Ignacio
2017-01-01
Mortars with two different binders (Portland cement (PC) and high alumina cement (HAC)) were modified upon the bulk incorporation of nano-structured photocatalytic additives (bare TiO2, and TiO2 doped with either iron (Fe-TiO2) or vanadium (V-TiO2)). Plastic and hardened state properties of these mortars were assessed in order to study the influence of these nano-additives. Water demand was increased, slightly by bare TiO2 and Fe-TiO2, and strongly by V-TiO2, in agreement with the reduction of the particle size and the tendency to agglomerate. Isothermal calorimetry showed that hydration of the cementitious matrices was accelerated due to additional nucleation sites offered by the nano-additives. TiO2 and doped TiO2 did not show pozzolanic reactivity in the binding systems. Changes in the pore size distribution, mainly the filler effect of the nano-additives, accounted for the increase in compressive strengths measured for HAC mortars. A complex microstructure was seen in calcium aluminate cement mortars, strongly dependent on the curing conditions. Fe-TiO2 was found to be homogeneously distributed whereas the tendency of V-TiO2 to agglomerate was evidenced by elemental distribution maps. Water absorption capacity was not affected by the nano-additive incorporation in HAC mortars, which is a favourable feature for the application of these mortars. PMID:29036917
The use of sulphur as a rigid binder and for the impregnation of concrete : state of the art.
DOT National Transportation Integrated Search
1982-01-01
Recent research has led to the development of durable modified-sulphur mortars, concretes, and coatings. All of the methods of using sulphur as a binder for rigid concrete rely on the reaction of one or more modifiers to stabilize, in the hardened st...
Characteristics of Ceramic Fiber Modified Asphalt Mortar
Wan, Jiuming; Wu, Shaopeng; Xiao, Yue; Liu, Quantao; Schlangen, Erik
2016-01-01
Ceramic fiber, with a major composition of Al2O3 and SiO2, has advantages of stability at relatively high temperature, big specific surface area and resistance to external mechanical vibration. It has the potential contribution of improving the rutting resistance and temperature sensitivity of modified asphalt binder by proper modification design. In this research, ceramic fiber was introduced into both pen 60/80 and pen 80/100 asphalt binder by different weight ratios. An asphalt penetration test, softening point test, ductility test and dynamic viscoelastic behavior were conducted to characterize and predict the ceramic fiber modified asphalt mortar (CFAM). Research results indicated that the ceramic fiber has a great effect on reinforcement of asphalt, which makes the asphalt stiffer so that the asphalt can only undertake less strain under the same stress. The heat insulation effect of the ceramic fiber will improve the temperature stability. Complex modulus and phase angle results indicate that the ceramic fiber can significantly enhance the high temperature resistance of soft binder. PMID:28773908
Characteristics of Ceramic Fiber Modified Asphalt Mortar.
Wan, Jiuming; Wu, Shaopeng; Xiao, Yue; Liu, Quantao; Schlangen, Erik
2016-09-21
Ceramic fiber, with a major composition of Al₂O₃ and SiO₂, has advantages of stability at relatively high temperature, big specific surface area and resistance to external mechanical vibration. It has the potential contribution of improving the rutting resistance and temperature sensitivity of modified asphalt binder by proper modification design. In this research, ceramic fiber was introduced into both pen 60/80 and pen 80/100 asphalt binder by different weight ratios. An asphalt penetration test, softening point test, ductility test and dynamic viscoelastic behavior were conducted to characterize and predict the ceramic fiber modified asphalt mortar (CFAM). Research results indicated that the ceramic fiber has a great effect on reinforcement of asphalt, which makes the asphalt stiffer so that the asphalt can only undertake less strain under the same stress. The heat insulation effect of the ceramic fiber will improve the temperature stability. Complex modulus and phase angle results indicate that the ceramic fiber can significantly enhance the high temperature resistance of soft binder.
Environmental Factors Affecting the Strength Characteristics of Modified Resin Mortars
NASA Astrophysics Data System (ADS)
Debska, Bernardeta; Licholai, Lech
2017-12-01
Resin concretes are composites in which a cement binder has been completely replaced by a synthetic resin. These materials are a good choice for the construction industry, especially in solutions requiring high strength, fast curing and durability. Polymer mortars are mainly used for the manufacture of industrial floors and prefabricated products such as tanks for aggressive chemicals, sewage pipes, or road and bridge drainage systems, as well as for the repair of damaged concrete structures. In all these applications, the strength and high chemical resistance of the applied material solutions are of key importance. It is particularly crucial to obtain information on how resin composites behave when exposed to aggressive agents over extended periods of time. It is also very important to use waste materials in order to obtain resin composites, as these activities are very well inscribed in the idea of environmental protection and meet the criteria of sustainable construction. The mortars described in this article meet the above principles. The article presents how the compressive strength of glycolyzate-modified epoxy mortars, obtained with the use of poly(ethylene terephthalate), changes after they are immersed in 10% sodium chloride solution. Sodium chloride solution was chosen due to the prospective applicability of the tested composites as repair materials used for e.g. bridges or overpasses that are exposed to this salt solution in wintertime. Changes in the properties of the composite samples were monitored over the period of one year. Statistical analysis of the test results was carried out with the use of Statistica programme. The module available in the mentioned program called Nonparametric Statistics - Comparing multiple independent samples made it possible to check the monitoring times during which the compressive strength values differed significantly. The obtained results allowed for determining the equation of the function approximating the course of changes in mortar properties. The designated parameters of regression equations can be used to project the properties of composites.
Feng, Wei; Xu, Jinxia; Jiang, Linhua; Song, Yingbin; Cao, Yalong; Tan, Qiping
2018-01-01
To improve the repair effect of electrochemical chloride extraction, a modified electrode configuration is applied in this investigation. In this configuration, two auxiliary electrodes placed in the anodic and cathodic electrolytes were used as the anode and cathode, respectively. Besides this, the steel in the mortar was grounded to protect it from corrosion. By a comparative experiment, the potential evolution, various ions concentrations (Cl−, OH−, Na+, and K+) in different mortar depths, the corrosion potential, and the current density of the steel were measured. The results indicate that compared to electrochemical chloride extraction with the traditional electrode configuration, this electrochemical chloride extraction method with a modified electrode configuration has a similar chloride removal ratio. Besides this, potential of steel is just about 800 mV for a saturated calomel electrode (SCE) during the treatment, which did not reach the hydrogen evolution potential. The phenomenon of the accumulation of OH−, Na+, and K+ did not occur when the modified electrode configuration is applied. Additionally, higher corrosion potentials and lower corrosion current rates were measured after performing electrochemical chloride extraction with the modified electrode configuration. Additionally, it is a short period of time for the steel to go from activation to passivation. On this basis, the modified electrode configuration may overcome the drawbacks of electrochemical chloride extraction. PMID:29389855
USDA-ARS?s Scientific Manuscript database
Recently, the Soil and Water Assessment Tool (SWAT) was revised to improve the partitioning of runoff and tile drainage in poorly drained soils by modifying the algorithm for computing the soil moisture retention parameter. In this study, the revised SWAT model was used to evaluate the sensitivity a...
Wu, Xiao-Tian; Chen, Nong; Pan, Fu-Gen; Liu, Zuo-Qing; He, Xiao-Jian
2017-03-25
To investigate the feasibility and therapeutic effect of subcutaneous pedicle screw-rod system with modified placement in treatment of Tile B pelvic fractures. From June 2014 to August 2015, 14 patients with Tile B pelvic fractures were treated by subcutaneous pedicle screw-rod system with modified placement in the anterior inferior iliac spine and pubic tubercle. There were 8 males and 6 females, aged from 23 to 65 years with an average of 42 years. Operative time, intraoperative blood loss, fracture healing and postoperative complication were observed and clinical effects were evaluated by Matta reduction standard and Majeed score. All patients were followed up from 8 to 15 months with an average of 10.5 months. Operative time was 25 to 45 min with an average of 32 min;intraoperative blood loss was 10 to 35 ml with an average of 18 ml. All fractures got primary healing and healed time was 9 to 14 weeks with an average of 12.5 weeks. No postoperative incision infection, internal fixation failure and ectopic ossification were found, 4 cases occurred unilateral lateral femoral cutaneous nerve injury and 1 case occurred unilateral femoral nerve paralysis, but all restored finally. According to Matta criteria, reduction was excellent in 7 cases, good in 5 cases, fair in 2 case. According to Majeed score system, the functional evaluation at last follow-up was excellent in 5 cases, good in 7 cases, fair in 2 cases with the average score of 81.50±8.05. Subcutaneous pedicle screw-rod system with modified placement in the anterior inferior iliac spine and pubic tubercle have advantages of strong reduction, less trauma and complications, and is a promising surgical method in the treatment of Tile B pelvic fractures.
NASA Astrophysics Data System (ADS)
Guo, Tian; Gitau, Margaret; Merwade, Venkatesh; Arnold, Jeffrey; Srinivasan, Raghavan; Hirschi, Michael; Engel, Bernard
2018-01-01
Subsurface tile drainage systems are widely used in agricultural watersheds in the Midwestern US and enable the Midwest area to become highly productive agricultural lands, but can also create environmental problems, for example nitrate-N contamination associated with drainage waters. The Soil and Water Assessment Tool (SWAT) has been used to model watersheds with tile drainage. SWAT2012 revisions 615 and 645 provide new tile drainage routines. However, few studies have used these revisions to study tile drainage impacts at both field and watershed scales. Moreover, SWAT2012 revision 645 improved the soil moisture based curve number calculation method, which has not been fully tested. This study used long-term (1991-2003) field site and river station data from the Little Vermilion River (LVR) watershed to evaluate performance of tile drainage routines in SWAT2009 revision 528 (the old routine) and SWAT2012 revisions 615 and 645 (the new routine). Both the old and new routines provided reasonable but unsatisfactory (NSE < 0.5) uncalibrated flow and nitrate loss results for a mildly sloped watershed with low runoff. The calibrated monthly tile flow, surface flow, nitrate-N in tile and surface flow, sediment and annual corn and soybean yield results from SWAT with the old and new tile drainage routines were compared with observed values. Generally, the new routine provided acceptable simulated tile flow (NSE = 0.48-0.65) and nitrate in tile flow (NSE = 0.48-0.68) for field sites with random pattern tile and constant tile spacing, while the old routine simulated tile flow and nitrate in tile flow results for the field site with constant tile spacing were unacceptable (NSE = 0.00-0.32 and -0.29-0.06, respectively). The new modified curve number calculation method in revision 645 (NSE = 0.50-0.81) better simulated surface runoff than revision 615 (NSE = -0.11-0.49). The calibration provided reasonable parameter sets for the old and new routines in the LVR watershed, and the validation results showed that the new routine has the potential to accurately simulate hydrologic processes in mildly sloped watersheds.
Gnapareddy, Bramaramba; Ahn, Sang Jung; Dugasani, Sreekantha Reddy; Kim, Jang Ah; Amin, Rashid; Mitta, Sekhar Babu; Vellampatti, Srivithya; Kim, Byeonghoon; Kulkarni, Atul; Kim, Taesung; Yun, Kyusik; LaBean, Thomas H; Park, Sung Ha
2015-11-01
We present two free-solution annealed DNA nanostructures consisting of either cross-tile CT1 or CT2. The proposed nanostructures exhibit two distinct structural morphologies, with one-dimensional (1D) nanotubes for CT1 and 2D nanolattices for CT2. When we perform mica-assisted growth annealing with CT1, a dramatic dimensional change occurs where the 1D nanotubes transform into 2D nanolattices due to the presence of the substrate. We assessed the coverage percentage of the 2D nanolattices grown on the mica substrate with CT1 and CT2 as a function of the concentration of the DNA monomer. Furthermore, we fabricated a scaffold cross-tile (SCT), which is a new design of a modified cross-tile that consists of four four-arm junctions with a square aspect ratio. For SCT, eight oligonucleotides are designed in such a way that adjacent strands with sticky ends can produce continuous arms in both the horizontal and vertical directions. The SCT was fabricated via free-solution annealing, and self-assembled SCT produces 2D nanolattices with periodic square cavities. All structures were observed via atomic force microscopy. Finally, we fabricated divalent nickel ion (Ni(2+))- and trivalent dysprosium ion (Dy(3+))-modified 2D nanolattices constructed with CT2 on a quartz substrate, and the ion coordinations were examined via Raman spectroscopy. Copyright © 2015 Elsevier B.V. All rights reserved.
Modification of Lime Mortars with Synthesized Aluminosilicates
NASA Astrophysics Data System (ADS)
Loganina, Valentina I.; Sadovnikova, Marija E.; Jezierski, Walery; Małaszkiewicz, Dorota
2017-10-01
The increasing attention for restoration of buildings of historical and architectural importance has increased the interest for lime-based binders, which could be applied for manufacturing repair mortars and plasters compatible with historical heritage. Different additives, admixtures or fibers may be incorporated to improve mechanical and thermal features of such materials. In this study synthesized aluminosilicates (SA) were applied as an additive for lime mortar. The technology of synthesis consisted in the deposition of aluminosilicates from a sodium liquid glass by the aluminum sulphate Al2(SO4)3. The goal of this investigation was developing a new method of aluminosilicates synthesis from a sodium liquid glass and using this new material as a component for a lime mortar. Aluminosilicates were precipitated from the solution of aluminum sulphate Al2(SO)3 and sodium silicate. SA were then used as an additive to calcareous compositions and their influence was tested. Mortars were prepared with commercial air lime and siliceous river sand. Air lime binder was replaced by 5 and 10 wt.% of SA. Calcareous composition specimens were formed at water/lime ratio 1.0. The following analyses were made: grain size distribution of SA, X-ray diffraction analysis (XRD), sorption properties, plastic strength and compressive strength of lime mortars. XRD pattern of the SA shows the presence of thenardite, gibbsite and amorphous phase represented by aggregate of nano-size cristobalite-like crystallites. Application of SA leads to increase of compressive strength after 90 days of hardening by 28% and 53% at SA content 5 and 10% respectively comparing to specimens without this additive. Contents of chemically bound lime in the reference specimens after 28 days of hardening in air-dry conditions was 46.5%, while in specimens modified with SA contained 50.0-55.3% of bound lime depending on filtrate pH. This testifies to high activity of calcareous composition. The new blended lime mortar was developed based on SA. SA in lime composites turned out to be effective as structure-forming additive, both plastic and compressive strength increased after addition of SA.
NASA Astrophysics Data System (ADS)
Bauwe, Andreas; Eckhardt, Kai-Uwe; Lennartz, Bernd
2017-04-01
Eutrophication is still one of the main environmental problems in the Baltic Sea. Currently, agricultural diffuse sources constitute the major portion of phosphorus (P) fluxes to the Baltic Sea and have to be reduced to achieve the HELCOM targets and improve the ecological status. Eco-hydrological models are suitable tools to identify sources of nutrients and possible measures aiming at reducing nutrient loads into surface waters. In this study, the Soil and Water Assessment Tool (SWAT) was applied to the Warnow river basin (3300 km2), the second largest watershed in Germany discharging into the Baltic Sea. The Warnow river basin is located in northeastern Germany and characterized by lowlands with a high proportion of artificially drained areas. The aim of this study were (i) to estimate P loadings for individual flow fractions (point sources, surface runoff, tile flow, groundwater flow), spatially distributed on sub-basin scale. Since the official version of SWAT does not allow for the modeling of P in tile drains, we tested (ii) two different approaches of simulating P in tile drains by changing the SWAT source code. The SWAT source code was modified so that (i) the soluble P concentration of the groundwater was transferred to the tile water and (ii) the soluble P in the soil was transferred to the tiles. The SWAT model was first calibrated (2002-2011) and validated (1992-2001) for stream flow at 7 headwater catchments at a daily time scale. Based on this, the stream flow at the outlet of the Warnow river basin was simulated. Performance statistics indicated at least satisfactory model results for each sub-basin. Breaking down the discharge into flow constituents, it becomes visible that stream flow is mainly governed by groundwater and tile flow. Due to the topographic situation with gentle slopes, surface runoff played only a minor role. Results further indicate that the prediction of soluble P loads was improved by the modified SWAT versions. Major sources of P in rivers are groundwater and tile flow. P was also released by surface runoff during large storm events when sediment was eroded into the rivers. The contributions of point sources in terms of waste water treatment plants to the overall P loading were low. The modifications made in the SWAT source code should be considered as a starting point to simulate P loads in artificially drained landscapes more precisely. Further testing and development of the code is required.
Steady internal flow and aerodynamic loads analysis of shuttle thermal protection system
NASA Technical Reports Server (NTRS)
Petley, D. H.; Alexander, W., Jr.; Ivey, G. W., Jr.; Kerr, P. A.
1984-01-01
An analytical model for calculation of ascent steady state tile loading was developed and validated with wind tunnel data. The analytical model is described and results are given. Results are given for loading due to shocks and skin friction. The analysis included calculation of internal flow (porous media flow and channel flow) to obtain pressures and integration of the pressures to obtain forces and moments on an insulation tile. A heat transfer program was modified by using analogies between heat transfer and fluid flow so that it could be used for internal flow calculation. The type of insulation tile considered was undensified reusable surface insulation (RSI) without gap fillers, and the location studied was the lower surface of the orbiter. Force and moment results are reported for parameter variations on surface pressure distribution, gap sizes, insulation permeability, and tile thickness.
An investigation on the use of shredded waste PET bottles as aggregate in lightweight concrete.
Akçaözoğlu, Semiha; Atiş, Cengiz Duran; Akçaözoğlu, Kubilay
2010-02-01
In this work, the utilization of shredded waste Poly-ethylene Terephthalate (PET) bottle granules as a lightweight aggregate in mortar was investigated. Investigation was carried out on two groups of mortar samples, one made with only PET aggregates and, second made with PET and sand aggregates together. Additionally, blast-furnace slag was also used as the replacement of cement on mass basis at the replacement ratio of 50% to reduce the amount of cement used and provide savings. The water-binder (w/b) ratio and PET-binder (PET/b) ratio used in the mixtures were 0.45 and 0.50, respectively. The size of shredded PET granules used in the preparation of mortar mixtures were between 0 and 4 mm. The results of the laboratory study and testing carried out showed that mortar containing only PET aggregate, mortar containing PET and sand aggregate, and mortars modified with slag as cement replacement can be drop into structural lightweight concrete category in terms of unit weight and strength properties. Therefore, it was concluded that there is a potential for the use of shredded waste PET granules as aggregate in the production of structural lightweight concrete. The use of shredded waste PET granules due to its low unit weight reduces the unit weight of concrete which results in a reduction in the death weight of a structural concrete member of a building. Reduction in the death weight of a building will help to reduce the seismic risk of the building since the earthquake forces linearly dependent on the dead-weight. Furthermore, it was also concluded that the use of industrial wastes such as PET granules and blast-furnace slag in concrete provides some advantages, i.e., reduction in the use of natural resources, disposal of wastes, prevention of environmental pollution, and energy saving.
An investigation on the use of shredded waste PET bottles as aggregate in lightweight concrete
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akcaoezoglu, Semiha, E-mail: sakcaozoglu@nigde.edu.t; Atis, Cengiz Duran; Akcaoezoglu, Kubilay
2010-02-15
In this work, the utilization of shredded waste Poly-ethylene Terephthalate (PET) bottle granules as a lightweight aggregate in mortar was investigated. Investigation was carried out on two groups of mortar samples, one made with only PET aggregates and, second made with PET and sand aggregates together. Additionally, blast-furnace slag was also used as the replacement of cement on mass basis at the replacement ratio of 50% to reduce the amount of cement used and provide savings. The water-binder (w/b) ratio and PET-binder (PET/b) ratio used in the mixtures were 0.45 and 0.50, respectively. The size of shredded PET granules usedmore » in the preparation of mortar mixtures were between 0 and 4 mm. The results of the laboratory study and testing carried out showed that mortar containing only PET aggregate, mortar containing PET and sand aggregate, and mortars modified with slag as cement replacement can be drop into structural lightweight concrete category in terms of unit weight and strength properties. Therefore, it was concluded that there is a potential for the use of shredded waste PET granules as aggregate in the production of structural lightweight concrete. The use of shredded waste PET granules due to its low unit weight reduces the unit weight of concrete which results in a reduction in the death weight of a structural concrete member of a building. Reduction in the death weight of a building will help to reduce the seismic risk of the building since the earthquake forces linearly dependant on the dead-weight. Furthermore, it was also concluded that the use of industrial wastes such as PET granules and blast-furnace slag in concrete provides some advantages, i.e., reduction in the use of natural resources, disposal of wastes, prevention of environmental pollution, and energy saving.« less
Application of antifungal CFB to increase the durability of cement mortar.
Park, Jong-Myong; Park, Sung-Jin; Kim, Wha-Jung; Ghim, Sa-Youl
2012-07-01
Antifungal cement mortar or microbiological calcium carbonate precipitation on cement surface has been investigated as functional concrete research. However, these research concepts have never been fused with each other. In this study, we introduced the antifungal calciteforming bacteria (CFB) Bacillus aryabhattai KNUC205, isolated from an urban tunnel (Daegu, South Korea). The major fungal deteriogens in urban tunnel, Cladosporium sphaerospermum KNUC253, was used as a sensitive fungal strain. B. aryabhattai KNUC205 showed CaCO3 precipitation on B4 medium. Cracked cement mortar pastes were made and neutralized by modified methods. Subsequently, the mixture of B. aryabhattai KNUC205, conidiospore of C. sphaerospermum KNUC253, and B4 agar was applied to cement cracks and incubated at 18 degrees C for 16 days. B. aryabhattai KNUC205 showed fungal growth inhibition against C. sphaerospermum. Furthermore, B. aryabhattai KNUC205 showed crack remediation ability and water permeability reduction of cement mortar pastes. Taken together, these results suggest that the CaCO3 precipitation and antifungal properties of B. aryabhattai KNUC205 could be used as an effective sealing or coating material that can also prevent deteriorative fungal growth. This study is the first application and evaluation research that incorporates calcite formation with antifungal capabilities of microorganisms for an environment-friendly and more effective protection of cement materials. In this research, the conception of microbial construction materials was expanded.
NASA Technical Reports Server (NTRS)
Eckstrom, Clinton V.
1970-01-01
A 40-foot-nominal-diameter (12.2-meter) modified ringsail parachute was flight tested as part of the NASA Supersonic High Altitude Parachute Experiment (SHAPE) program. The 41-pound (18.6-kg) test parachute system was deployed from a 239.5-pound (108.6-kg) instrumented payload by means of a deployment mortar when the payload was at an altitude of 171,400 feet (52.3 km), a Mach number of 2.95, and a free-stream dynamic pressure of 9.2 lb/sq ft (440 N/m(exp 2)). The parachute deployed properly, suspension line stretch occurring 0.54 second after mortar firing with a resulting snatch-force loading of 932 pounds (4146 newtons). The maximum loading due to parachute opening was 5162 pounds (22 962 newtons) at 1.29 seconds after mortar firing. The first near full inflation of the canopy at 1.25 seconds after mortar firing was followed immediately by a partial collapse and subsequent oscillations of frontal area until the system had decelerated to a Mach number of about 1.5. The parachute then attained a shape that provided full drag area. During the supersonic part of the test, the average axial-force coefficient varied from a minimum of about 0.24 at a Mach number of 2.7 to a maximum of 0.54 at a Mach number of 1.1. During descent under subsonic conditions, the average effective drag coefficient was 0.62 and parachute-payload oscillation angles averaged about &loo with excursions to +/-20 degrees. The recovered parachute was found to have slight damage in the vent area caused by the attached deployment bag and mortar lid.
NASA Astrophysics Data System (ADS)
Carmona-Quiroga, Paula María; Panas, Itai; Svensson, Jan-Erik; Johansson, Lars-Gunnar; Blanco-Varela, María Teresa; Martínez-Ramírez, Sagrario
2010-11-01
Specific strategies for protection are being developed to counter both the staining and corrosive effects of polluted air in cities, as well as to allow for efficient removal of unwanted graffiti paintings. These protection strategies employ molecules with tailored functionalities, e.g. being hydrophobic, while maintaining porosity for molecular water vapour permeation. The present study employs SO 2 and water to probe the behaviors of two anti-graffiti treatments, a water-base fluoroalkylsiloxane ("Protectosil Antigraffiti" marketed by Degussa) and an organically modified silicate (Ormosil) synthesized from a polymer chain (polydimethyl siloxane, PDMS) and two network forming alkoxides (Zr propoxide and methyl triethoxy silane, MTES) dissolved in n-propanol, on five building materials, comprising limestone, aged lime mortar, hydrated cement mortar, granite, and brick material. The materials were exposed to a synthetic atmosphere for 20 h in a climate chamber, 0.78 ± 0.03 ppm of SO 2 and 95% RH. Diffuse reflectance Fourier transform infrared (DR-FTIR) spectra were registered before and after exposure in the climate chamber in the cases of both treated and untreated samples. DR-FTIR, scanning electron microscope (SEM) images and energy dispersive X-ray (EDX) analyses, suggest the anti-graffiti Ormosil to suppress formation of calcium sulfite hemihydrate (the primary initial product of the reaction of calcium compounds with SO 2 and water) on carbonate materials (limestone and lime mortar). In case of the granite, brick and cement mortar, Ormosil has a negligible influence on the SO 2 capture. While no sulfite formation was detected by DR-FTIR, gypsum is inferred to form due to metal oxides and minority compounds catalysed oxidation of sulfite to sulfate. In case of brick, this understanding finds support from SEM images as well as EDX. A priori presence of gypsum in hydrated cement mortars prevents positive identification by SEM. However, support for sulfur accumulation in hydrated cement mortar is provided by means of EDX. In case of a second anti-graffiti considered, Protectosil, no influence of the anti-graffiti treatment on the SO 2 uptake of any of the building materials was observed.
Using Mortar Mixing Pump for Magnesia Mortars Preparing and Transporting
NASA Astrophysics Data System (ADS)
Kiyanets, A. V.
2017-11-01
The article is devoted to the problem of preparation and transportation of magnesia mortars with the help of screw mortar mixing pumps. The urgency of the wide use of mortars on magnesia binders (Sorel’s cement) in construction is substantiated due to their high characteristics: strength, hardening speed, wear resistance, possibility of using organic and mineral aggregates, ecological purity and economic efficiency. The necessity for the development of a technique for calculating the main parameters of a mortar mixing pump for its application in the technology of preparation and transportation of magnesia mortars is demonstrated. The analysis of various types of modern mortar mixing pumps is given. The conclusions are drawn about the advantages and disadvantages of standard schemes. The description of the experiment for determination of the productivity of a mortar mixing pump is described depending on the plasticity (mobility) of the used magnesia mortar. The graph and description of the mathematical dependency of the productivity of the mortar mixing pump on the magnesia mortar plasticity are given. On the basis of the obtained dependency, as well as the already known formulas given in the article, a new method is proposed for calculating the main parameters of the screw mortar mixing pump in preparation and transportation of magnesia mortar: productivity, feed range, supply pressure, drive power.
[The Analysis of Traditional Lime Mortars from Zhejiang Province, China].
Liu, Xiao-bin; Cui, Biao; Zhang, Bing-jian
2016-01-01
The components of ancient mortars have always been an important research field in historic building conservation. It has been well known that using traditional mortars in conservation projects have many advantages, such as compatibility and stability. So, developing new binding materials based on traditional mortar has become an international study hotspot. With China's economic development, the protection of ancient buildings also began to put on the agenda, but the understanding on Chinese traditional mortar is limited, and rare literatures are reported. In the present work, the authors investigate seven ancient city wall sites in Zhejiang Province in situ, and subsequently laboratory analysis were carried out on collected mortar samples. The characterizations of mortar samples were made by multi-density gauge, XRD, FTIR, TG-DSC and wet chemical analysis. The experimental results showed that: the main component of masonry mortars is calcium carbonate, the content between 75% - 90%, and they should be made from relatively pure lime mortar. The raw materials of mortar samples were mainly calcareous quick lime, and sample from Taizhou city also contained magnesium quick lime. There are four city walls were built by sticky-rice mortars. It suggests that the technology of adding the sticky rice soup into mortar was universal in the Ming Dynasties. These mortars have lower density between 1.2 and 1.9 g x cm(-3); this outcome should be the result of long-term natural erosion. We have also analyzed other chemical and physical characteristics of these masonry mortars. The results can afford the basic data for the future repairmen programs, development of new protective materials, and comparative study of mortars.
Study of sticky rice-lime mortar technology for the restoration of historical masonry construction.
Yang, Fuwei; Zhang, Bingjian; Ma, Qinglin
2010-06-15
Replacing or repairing masonry mortar is usually necessary in the restoration of historical constructions, but the selection of a proper mortar is often problematic. An inappropriate choice can lead to failure of the restoration work, and perhaps even further damage. Thus, a thorough understanding of the original mortar technology and the fabrication of appropriate replacement materials are important research goals. Many kinds of materials have been used over the years in masonry mortars, and the technology has gradually evolved from the single-component mortar of ancient times to hybrid versions containing several ingredients. Beginning in 2450 BCE, lime was used as masonry mortar in Europe. In the Roman era, ground volcanic ash, brick powder, and ceramic chip were added to lime mortar, greatly improving performance. Because of its superior properties, the use of this hydraulic (that is, capable of setting underwater) mortar spread, and it was adopted throughout Europe and western Asia. Perhaps because of the absence of natural materials such as volcanic ash, hydraulic mortar technology was not developed in ancient China. However, a special inorganic-organic composite building material, sticky rice-lime mortar, was developed. This technology was extensively used in important buildings, such as tombs, in urban constructions, and even in water conservancy facilities. It may be the first widespread inorganic-organic composite mortar technology in China, or even in the world. In this Account, we discuss the origins, analysis, performance, and utility in historic preservation of sticky rice-lime mortar. Mortar samples from ancient constructions were analyzed by both chemical methods (including the iodine starch test and the acid attack experiment) and instrumental methods (including thermogravimetric differential scanning calorimetry, X-ray diffraction, Fourier transform infrared, and scanning electron microscopy). These analytical results show that the ancient masonry mortar is a special organic-inorganic composite material. The inorganic component is calcium carbonate, and the organic component is amylopectin, which is presumably derived from the sticky rice soup added to the mortar. A systematic study of sticky rice-lime mortar technology was conducted to help determine the proper courses of action in restoring ancient buildings. Lime mortars with varying sticky rice content were prepared and tested. The physical properties, mechanical strength, and compatibility of lime mortar were found to be significantly improved by the introduction of sticky rice, suggesting that sticky rice-lime mortar is a suitable material for repairing mortar in ancient masonry. Moreover, the amylopectin in the lime mortar was found to act as an inhibitor; the growth of the calcium carbonate crystals is controlled by its presence, and a compact structure results, which may explain the enhanced performance of this organic-inorganic composite compared to single-component lime mortar.
Detrimental effects of cement mortar and fly ash mortar on asthma progression.
Cho, Ara; Jang, Hong-Seok; Roh, Yoon Seok; Park, Hee Jin; Talha, A F S M; So, Seung-Young; Lim, Chae Woong; Kim, Bumseok
2013-11-01
Currently, concrete additive materials are used worldwide to improve properties of concrete production and to reduce the total cost of the materials used in the concrete. However, the effects of exposure to various gases emitted from mortar mixed with additive materials are poorly understood. To evaluate the pattern of gas emission from cement mortar and additives, the emission levels of gas including ammonia (NH3) and volatile organic compounds (VOCs) were measured from two different mortar types, Ordinary Portland Cement (OPC), and OPC with fly ash on various time points after manufacture. On days 1, 3, 10 and 30 after manufacture, moderate concentrations of NH3 (4, 9, 12 and 5 ppm) were measured in OPC mortar (24h, 150 mm × 150 mm × 50 mm), whereas higher concentrations of NH3 (73, 55, 20 and 5 ppm) were measured in OPC mortar with fly ash (24h, 150 mm × 150 mm × 50 mm). Furthermore, the concentration of VOCs was more than 10 ppm on 1, 3, and 10 days of age in OPC and OPC with fly ash mortars. To examine the mortars' allergic effects on the respiratory system, mice were sensitized with ovalbumin (OVA) and divided into four groups: normal, asthma control, OPC mortar and OPC mortar with fly ash. The mice were housed in corresponding group cage for 10 days with OVA challenges to induce asthma. Histopathologically, increased infiltration of lymphocytes was observed in the lung perivascular area of mice housed in OPC mortar and OPC mortar with fly ash cages compared to lungs of asthma control mice. Moreover, severe bronchial lumen obstruction and increased hypertrophy of bronchial epithelial cells (p<0.05) were observed in the OPC mortar with fly ash group compared to OPC mortar or asthma control groups. Lungs of the two mortar groups generally expressed higher levels of genes related with asthma, including IL-4, eotaxin and epidermal growth factor (EGF) compared to lungs of asthma control mice. Additionally, the OPC mortar with fly ash group showed higher expression of IL-5, 13 and monocyte chemoattractant protein-1 (MCP-1) compared to the asthma control group. These results indicate that OPC mortar and OPC mortar with fly ash might exacerbate asthma. Copyright © 2013 Elsevier B.V. All rights reserved.
Negim, El-Sayed; Kozhamzharova, Latipa; Gulzhakhan, Yeligbayeva; Khatib, Jamal; Bekbayeva, Lyazzat; Williams, Craig
2014-01-01
This paper investigates the physicomechanical properties of mortar containing high volume of fly ash (FA) as partial replacement of cement in presence of copolymer latexes. Portland cement (PC) was partially replaced with 0, 10, 20, 30 50, and 60% FA. Copolymer latexes were used based on 2-hydroxyethyl acrylate (2-HEA) and 2-hydroxymethylacrylate (2-HEMA). Testing included workability, setting time, absorption, chemically combined water content, compressive strength, and scanning electron microscopy (SEM). The addition of FA to mortar as replacement of PC affected the physicomechanical properties of mortar. As the content of FA in the concrete increased, the setting times (initial and final) were elongated. The results obtained at 28 days of curing indicate that the maximum properties of mortar occur at around 30% FA. Beyond 30% FA the properties of mortar reduce and at 60% FA the properties of mortar are lower than those of the reference mortar without FA. However, the addition of polymer latexes into mortar containing FA improved most of the physicomechanical properties of mortar at all curing times. Compressive strength, combined water, and workability of mortar containing FA premixed with latexes are higher than those of mortar containing FA without latexes.
Kozhamzharova, Latipa; Gulzhakhan, Yeligbayeva; Bekbayeva, Lyazzat; Williams, Craig
2014-01-01
This paper investigates the physicomechanical properties of mortar containing high volume of fly ash (FA) as partial replacement of cement in presence of copolymer latexes. Portland cement (PC) was partially replaced with 0, 10, 20, 30 50, and 60% FA. Copolymer latexes were used based on 2-hydroxyethyl acrylate (2-HEA) and 2-hydroxymethylacrylate (2-HEMA). Testing included workability, setting time, absorption, chemically combined water content, compressive strength, and scanning electron microscopy (SEM). The addition of FA to mortar as replacement of PC affected the physicomechanical properties of mortar. As the content of FA in the concrete increased, the setting times (initial and final) were elongated. The results obtained at 28 days of curing indicate that the maximum properties of mortar occur at around 30% FA. Beyond 30% FA the properties of mortar reduce and at 60% FA the properties of mortar are lower than those of the reference mortar without FA. However, the addition of polymer latexes into mortar containing FA improved most of the physicomechanical properties of mortar at all curing times. Compressive strength, combined water, and workability of mortar containing FA premixed with latexes are higher than those of mortar containing FA without latexes. PMID:25254256
Gao, Hui; Zhao, Chunyan
2018-01-01
Chromatin immunoprecipitation (ChIP) has become the most effective and widely used tool to study the interactions between specific proteins or modified forms of proteins and a genomic DNA region. Combined with genome-wide profiling technologies, such as microarray hybridization (ChIP-on-chip) or massively parallel sequencing (ChIP-seq), ChIP could provide a genome-wide mapping of in vivo protein-DNA interactions in various organisms. Here, we describe a protocol of ChIP-on-chip that uses tiling microarray to obtain a genome-wide profiling of ChIPed DNA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rozario, T; Bereg, S; Chiu, T
Purpose: In order to locate lung tumors on projection images without internal markers, digitally reconstructed radiograph (DRR) is created and compared with projection images. Since lung tumors always move and their locations change on projection images while they are static on DRRs, a special DRR (background DRR) is generated based on modified anatomy from which lung tumors are removed. In addition, global discrepancies exist between DRRs and projections due to their different image originations, scattering, and noises. This adversely affects comparison accuracy. A simple but efficient comparison algorithm is reported. Methods: This method divides global images into a matrix ofmore » small tiles and similarities will be evaluated by calculating normalized cross correlation (NCC) between corresponding tiles on projections and DRRs. The tile configuration (tile locations) will be automatically optimized to keep the tumor within a single tile which has bad matching with the corresponding DRR tile. A pixel based linear transformation will be determined by linear interpolations of tile transformation results obtained during tile matching. The DRR will be transformed to the projection image level and subtracted from it. The resulting subtracted image now contains only the tumor. A DRR of the tumor is registered to the subtracted image to locate the tumor. Results: This method has been successfully applied to kV fluoro images (about 1000 images) acquired on a Vero (Brainlab) for dynamic tumor tracking on phantom studies. Radiation opaque markers are implanted and used as ground truth for tumor positions. Although, other organs and bony structures introduce strong signals superimposed on tumors at some angles, this method accurately locates tumors on every projection over 12 gantry angles. The maximum error is less than 2.6 mm while the total average error is 1.0 mm. Conclusion: This algorithm is capable of detecting tumor without markers despite strong background signals.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kramar, Sabina, E-mail: sabina.kramar@rescen.si; Zalar, Vesna; Urosevic, Maja
This study deals with the characterization of mortars collected from bath complex of the Roman villa rustica from an archeological site near Mosnje (Slovenia). The mortar layers of the mosaics, wall paintings and mortar floors were investigated. A special aggregate consisting of brick fragments was present in the mortars studied. The mineralogical and petrographic compositions of the mortars were determined by means of optical microscopy, X-ray powder diffraction and FTIR spectroscopy. Analysis of aggregate-binder interfaces using SEM-EDS revealed various types of reactivity rims. In order to assess the hydraulic characteristics of the mortars, the acid-soluble fractions were determined by ICP-OES.more » Furthermore, the results of Hg-porosimetry and gas sorption isotherms showed that mortars with a higher content of brick fragments particles exhibited a higher porosity and a greater BET surface area but a lower average pore diameter compared to mortars lacking this special aggregate. - Highlights: {yields} Mineral and microstructural characterizations of brick-lime mortars. {yields} Hydraulic character of mortars in Roman baths complex. {yields} Reaction rims were observed around brick fragments and dolomitic grains. {yields} Higher content of brick particles yielded a higher BET surface area. {yields} Addition of brick particles increased porosity and diminished pore size diameter.« less
Tanner, Chris C; Sukias, James P S
2011-01-01
Subsurface tile drain flows can be a major s ource of nurient loss from agricultural landscapes. This study quantifies flows and nitrogen and phosphorus yields from tile drains at three intensively grazed dairy pasture sites over 3- to 5-yr periods and evaluates the capacity of constructed wetlands occupying 0.66 to 1.6% of the drained catchments too reduce nutrient loads. Continuous flow records are combined with automated flow-proportional sampling of nutrient concentrations to calculate tile drain nutrient yields and wetland mass removal rates. Annual drainage water yields rangedfrom 193 to 564 mm (16-51% of rainfall) at two rain-fed sites and from 827 to 853 mm (43-51% of rainfall + irrigation) at an irrigated site. Annually, the tile drains exported 14 to 109 kg ha(-1) of total N (TN), of which 58 to 90% was nitrate-N. Constructed wetlands intercepting these flows removed 30 to 369 gTN m(-2) (7-63%) of influent loadings annually. Seasonal percentage nitrate-N and TN removal were negatively associated with wetland N mass loadings. Wetland P removal was poor in all wetlands, with 12 to 115% more total P exported annually overall than received. Annually, the tile drains exported 0.12 to 1.38 kg ha of total P, of which 15 to 93% was dissolved reactive P. Additional measures are required to reduce these losses or provide supplementary P removal. Wetland N removal performance could be improved by modifying drainage systems to release flows more gradually and improving irrigation practices to reduce drainage losses.
The Viking mortar - Design, development, and flight qualification.
NASA Technical Reports Server (NTRS)
Brecht, J. P.; Pleasants, J. E.; Mehring, R. D.
1973-01-01
Approximately 25,400 ft above the local surface of Mars, a radar height sensor fires the Viking mortar, which ejects a 53-ft D sub o disk-gap-band (DGB) parachute. The parachute decelerates and stabilizes the Viking lander sufficiently for the terminal engine system to take over and effect a soft landing. The general design and environmental requirements for the mortar system are presented; various illustrations of the mortar components and how the mortar system functions also are presented. Primary emphasis is placed on manufacturing, developing, and qualification testing of the mortar system.
Orientation of Steel Fibers in Magnetically Driven Concrete and Mortar.
Xue, Wen; Chen, Ju; Xie, Fang; Feng, Bing
2018-01-22
The orientation of steel fibers in magnetically driven concrete and magnetically driven mortar was experimentally studied in this paper using a magnetic method. In the magnetically driven concrete, a steel slag was used to replace the coarse aggregate. In the magnetically driven mortar, steel slag and iron sand were used to replace the fine aggregate. A device was established to provide the magnetic force. The magnetic force was used to rotate the steel fibers. In addition, the magnetic force was also used to vibrate the concrete and mortar. The effect of magnetic force on the orientation of steel fibers was examined by comparing the direction of fibers before and after vibration. The effect of magnetically driven concrete and mortar on the orientation of steel fibers was also examined by comparing specimens to normal concrete and mortar. It is shown that the fibers could rotate about 90° in magnetically driven concrete. It is also shown that the number of fibers rotated in magnetically driven mortar was much more than in mortar vibrated using a shaking table. A splitting test was performed on concrete specimens to investigate the effect of fiber orientation. In addition, a flexural test was also performed on mortar test specimens. It is shown that the orientation of the steel fibers in magnetically driven concrete and mortar affects the strength of the concrete and mortar specimens.
Orientation of Steel Fibers in Magnetically Driven Concrete and Mortar
Xue, Wen; Chen, Ju; Xie, Fang; Feng, Bing
2018-01-01
The orientation of steel fibers in magnetically driven concrete and magnetically driven mortar was experimentally studied in this paper using a magnetic method. In the magnetically driven concrete, a steel slag was used to replace the coarse aggregate. In the magnetically driven mortar, steel slag and iron sand were used to replace the fine aggregate. A device was established to provide the magnetic force. The magnetic force was used to rotate the steel fibers. In addition, the magnetic force was also used to vibrate the concrete and mortar. The effect of magnetic force on the orientation of steel fibers was examined by comparing the direction of fibers before and after vibration. The effect of magnetically driven concrete and mortar on the orientation of steel fibers was also examined by comparing specimens to normal concrete and mortar. It is shown that the fibers could rotate about 90° in magnetically driven concrete. It is also shown that the number of fibers rotated in magnetically driven mortar was much more than in mortar vibrated using a shaking table. A splitting test was performed on concrete specimens to investigate the effect of fiber orientation. In addition, a flexural test was also performed on mortar test specimens. It is shown that the orientation of the steel fibers in magnetically driven concrete and mortar affects the strength of the concrete and mortar specimens. PMID:29361798
Wavefunctions, quantum diffusion, and scaling exponents in golden-mean quasiperiodic tilings.
Thiem, Stefanie; Schreiber, Michael
2013-02-20
We study the properties of wavefunctions and the wavepacket dynamics in quasiperiodic tight-binding models in one, two, and three dimensions. The atoms in the one-dimensional quasiperiodic chains are coupled by weak and strong bonds aligned according to the Fibonacci sequence. The associated d-dimensional quasiperiodic tilings are constructed from the direct product of d such chains, which yields either the hypercubic tiling or the labyrinth tiling. This approach allows us to consider fairly large systems numerically. We show that the wavefunctions of the system are multifractal and that their properties can be related to the structure of the system in the regime of strong quasiperiodic modulation by a renormalization group (RG) approach. We also study the dynamics of wavepackets to get information about the electronic transport properties. In particular, we investigate the scaling behaviour of the return probability of the wavepacket with time. Applying again the RG approach we show that in the regime of strong quasiperiodic modulation the return probability is governed by the underlying quasiperiodic structure. Further, we also discuss lower bounds for the scaling exponent of the width of the wavepacket and propose a modified lower bound for the absolute continuous regime.
Cross-contamination in Porcelain Mortars.
Bauer-Brandl, A; Falck, A; Ingebrigtsen, L; Nilson, C
2001-01-01
Porcelain mortars and pestles are frequently used to comminute drug substances on a small scale and (in some cases) in the production of liquid and semisolid suspensions. Although it is generally accepted that removal of a drug substance from a rough surface by rinsing may be difficult and may lead to cross-contamination, no hard data support that theory. In this study, the amount of salicylic acid remaining on a porcelain mortar after different washing procedures was quantified and compared with the amount remaining on a plastic mortar. Drug residues in the "mg" range on the porcelain mortars made common rinsing procedures appear inappropriate, but no traces of drug were detected on plastic mortars. In addition, the quality of suspension ointments with respect to particle size and homogeneity produced by the two types of mortars was compared. Porcelain and plastic mortars appeared equally suitable for use in the production of semisolid suspensions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong Shiyun, E-mail: tjzhongshiyun@163.com; Ni Kun; Li Jinmei
2012-07-15
Highlights: Black-Right-Pointing-Pointer The mortar with uncalcined FGD gypsum has suitable workability. Black-Right-Pointing-Pointer The strength of mortar with uncalcined FGD gypsum is higher than that of mortar without uncalcined FGD gypsum. Black-Right-Pointing-Pointer The dry shrinkage of mortar with uncalcined FGD gypsum is lower than that of mortar without uncalcined FGD gypsum. Black-Right-Pointing-Pointer The leaching of sulfate ion of mortar is studied. - Abstract: A series of novel mortars were developed from composite binder of uncalcined FGD gypsum, fly ash (FA) and ground granulated blast furnace slag (GGBFS) for the good utilization of flue gas desulphurization (FGD) gypsum. At a fixed ratiomore » (20%) of GGBFS to the composite binder, keeping consistency of the mortar between 9.5 and 10.0 cm, the properties of the composite mortar were studied. The results show that higher water/binder (W/B) is required to keep the consistency when increasing the percentage of FGD gypsum. No obvious influences of the W/B and content of FGD gypsum on the bleeding of paste were observed which keeps lower than 2% under all experimental conditions tried. The highest compressive and flexural strengths (ratio is 20% FGD gypsum, 20% GGBFS and 60% FA) are 22.6 and 4.3 MPa at 28 days, respectively. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) results indicate that massive ettringite crystals and C-S-H gels exist in the hydration products. At 90 days the mortars with FGD gypsum is dramatically smaller drying shrinkage (563-938 micro strain) than that without FGD gypsum (about 2250 micro strain). The release of the SO{sub 4}{sup 2-} from the mortar was analyzed, indicating that the dissolution of sulfate increases with FGD gypsum. The concentration of SO{sub 4}{sup 2-} releasing from the mortar with 10% FGD gypsum is almost equal to that obtained from the mortar without FGD gypsum. The release of SO{sub 4}{sup 2-} from the mortar with 20% FGD gypsum is 9200 mg{center_dot}m{sup -2}, which is lower than that from the mortar with 95% cement clinker and 5% FGD gypsum.« less
Properties of Foamed Mortar Prepared with Granulated Blast-Furnace Slag.
Zhao, Xiao; Lim, Siong-Kang; Tan, Cher-Siang; Li, Bo; Ling, Tung-Chai; Huang, Runqiu; Wang, Qingyuan
2015-01-30
Foamed mortar with a density of 1300 kg/m³ was prepared. In the initial laboratory trials, water-to-cement (w/c) ratios ranging from 0.54 to 0.64 were tested to determine the optimal value for foamed mortar corresponding to the highest compressive strength without compromising its fresh state properties. With the obtained optimal w/c ratio of 0.56, two types of foamed mortar were prepared, namely cement-foamed mortar (CFM) and slag-foamed mortar (SFM, 50% cement was replaced by slag weight). Four different curing conditions were adopted for both types of foamed mortar to assess their compressive strength, ultrasonic pulse velocity (UPV) and thermal insulation performance. The test results indicated that utilizing 50% of slag as cement replacement in the production of foamed mortar improved the compressive strength, UPV and thermal insulation properties. Additionally, the initial water curing of seven days gained higher compressive strength and increased UPV values as compared to the air cured and natural weather curing samples. However, this positive effect was more pronounced in the case of compressive strength than in the UPV and thermal conductivity of foamed mortar.
Drying Shrinkage of Mortar Incorporating High Volume Oil Palm Biomass Waste
NASA Astrophysics Data System (ADS)
Shukor Lim, Nor Hasanah Abdul; Samadi, Mostafa; Rahman Mohd. Sam, Abdul; Khalid, Nur Hafizah Abd; Nabilah Sarbini, Noor; Farhayu Ariffin, Nur; Warid Hussin, Mohd; Ismail, Mohammed A.
2018-03-01
This paper studies the drying shrinkage of mortar incorporating oil palm biomass waste including Palm Oil Fuel Ash, Oil Palm Kernel Shell and Oil Palm Fibre. Nano size of palm oil fuel ash was used up to 80 % as cement replacement by weight. The ash has been treated to improve the physical and chemical properties of mortar. The mass ratio of sand to blended ashes was 3:1. The test was carried out using 25 × 25 × 160 mm prism for drying shrinkage tests and 70 × 70 ×70 mm for compressive strength test. The results show that the shrinkage value of biomass mortar is reduced by 31% compared with OPC mortar thus, showing better performance in restraining deformation of the mortar while the compressive strength increased by 24% compared with OPC mortar at later age. The study gives a better understanding of how the biomass waste affect on mortar compressive strength and drying shrinkage behaviour. Overall, the oil palm biomass waste can be used to produce a better performance mortar at later age in terms of compressive strength and drying shrinkage.
Effect of hydrated lime on compressive strength mortar of fly ash laterite soil geopolymer mortar
NASA Astrophysics Data System (ADS)
Wangsa, F. A.; Tjaronge, M. W.; Djamaluddin, A. R.; Muhiddin, A. B.
2017-11-01
This paper explored the suitability of fly ash, hydrated lime, and laterite soil with several activator (sodium hydroxide and sodium tiosulfate) to produce geopolymer mortar. Furthermore, the heat that released by hydrated lime was used instead of oven curing. In order to produce geopolymer mortar without oven curing, three variations of curing condition has been applied. Based on the result, all the curing condition showed that the hardener mortar can be produced and exhibited the increasing of compressive strength of geopolymer mortar from 3 days to 7 days without oven curing.
Influence of aggregate type and chemical admixtures on frost resistance of lightweight mortars
NASA Astrophysics Data System (ADS)
Klimek, Beata; Widomski, Marcin K.; Barnat-Hunek, Danuta
2017-07-01
The aim of studies presented in this paper covered analyses of type of lightweight aggregate as well as aeration and hydrophobic admixtures influence on absorbability and frost resistance of heat-insulating mortars applied in the energy-efficient construction. In the presented research, expanded perlite (EP) and expanded clay aggregate (ceramsite) were used as lightweight aggregates. The measurements of the basic mechanical and physical characteristics of tested mortars were performed, including, inter alia, compressive and flexural tensile strength, density, effective (open) and total porosity, absorbability, thermal conductivity as well as frost resistance after 25 cycles of freezing and thawing. Substitution of some part of sand fraction by the lightweight aggregates, expanded clay aggregate or perlite, resulted in changes in physical properties of the tested mortars. The observed decrease in density (specific weight), coefficient of heat transport and strength parameters were simultaneously accompanied by the increase in absorbability. Researches concerning frost resistance of mortars containing ceramsite and perlite showed the improved frost resistance of mortar utilizing perlite. Most of the tested mortars shoved satisfactory frost resistance, only samples of mortar containing ceramsite and aeration admixture were destroyed. The significant influence of aerating admixture on frost resistance of mortars was determined. Hydrophobic siloxanes addition failed to adequately protect the mortars against frost erosion, regardless the type of applied aggregate.
Rheology of Carbon Fibre Reinforced Cement-Based Mortar
NASA Astrophysics Data System (ADS)
Banfill, Phillip F. G.; Starrs, Gerry; McCarter, W. John
2008-07-01
Carbon fibre reinforced cement based materials (CFRCs) offer the possibility of fabricating "smart" electrically conductive materials. Rheology of the fresh mix is crucial to satisfactory moulding and fresh CFRC conforms to the Bingham model with slight structural breakdown. Both yield stress and plastic viscosity increase with increasing fibre length and volume concentration. Using a modified Viskomat NT, the concentration dependence of CFRC rheology up to 1.5% fibre volume is reported.
Structural and thermodynamic analysis of modified nucleosides in self-assembled DNA cross-tiles.
Hakker, Lauren; Marchi, Alexandria N; Harris, Kimberly A; LaBean, Thomas H; Agris, Paul F
2014-01-01
DNA Holliday junctions are important natural strand-exchange structures that form during homologous recombination. Immobile four-arm junctions, analogs to Holliday junctions, have been designed to self-assemble into cross-tile structures by maximizing Watson-Crick base pairing and fixed crossover points. The cross-tiles, self-assembled from base pair recognition between designed single-stranded DNAs, form higher order lattice structures through cohesion of self-associating sticky ends. These cross-tiles have 16 unpaired nucleosides in the central loop at the junction of the four duplex stems. The importance of the centralized unpaired nucleosides to the structure's thermodynamic stability and self-assembly is unknown. Cross-tile DNA nanostructures were designed and constructed from nine single-stranded DNAs with four shell strands, four arms, and a central loop containing 16 unpaired bases. The 16 unpaired bases were either 2'-deoxyribothymidines, 2'-O-methylribouridines, or abasic 1',2'-dideoxyribonucleosides. Thermodynamic profiles and structural base-stacking contributions were assessed using UV absorption spectroscopy during thermal denaturation and circular dichroism spectroscopy, respectively, and the resulting structures were observed by atomic force microscopy. There were surprisingly significant changes in the thermodynamic and structural properties of lattice formation as a result of altering only the 16 unpaired, centralized nucleosides. The 16 unpaired 2'-O-methyluridines were stabilizing and produced uniform tubular structures. In contrast, the abasic nucleosides were destabilizing producing a mixture of structures. These results strongly indicate the importance of a small number of centrally located unpaired nucleosides within the structures. Since minor modifications lead to palpable changes in lattice formation, DNA cross-tiles present an easily manipulated structure convenient for applications in biomedical and biosensing devices.
Properties of Foamed Mortar Prepared with Granulated Blast-Furnace Slag
Zhao, Xiao; Lim, Siong-Kang; Tan, Cher-Siang; Li, Bo; Ling, Tung-Chai; Huang, Runqiu; Wang, Qingyuan
2015-01-01
Foamed mortar with a density of 1300 kg/m3 was prepared. In the initial laboratory trials, water-to-cement (w/c) ratios ranging from 0.54 to 0.64 were tested to determine the optimal value for foamed mortar corresponding to the highest compressive strength without compromising its fresh state properties. With the obtained optimal w/c ratio of 0.56, two types of foamed mortar were prepared, namely cement-foamed mortar (CFM) and slag-foamed mortar (SFM, 50% cement was replaced by slag weight). Four different curing conditions were adopted for both types of foamed mortar to assess their compressive strength, ultrasonic pulse velocity (UPV) and thermal insulation performance. The test results indicated that utilizing 50% of slag as cement replacement in the production of foamed mortar improved the compressive strength, UPV and thermal insulation properties. Additionally, the initial water curing of seven days gained higher compressive strength and increased UPV values as compared to the air cured and natural weather curing samples. However, this positive effect was more pronounced in the case of compressive strength than in the UPV and thermal conductivity of foamed mortar. PMID:28787950
Petrography of Mayan mortar, Isla Mujeres, Quintana Roo, Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bain, R.J.
1985-01-01
Along coastal regions of the Yucatan Peninsula Mayan builders used a mixture of beach sand, shell fragments, and clasts of rock as mortar for construction. With exposure to subaerial conditions, the aragonitic sand was converted into a semi-lithified mortar. Petrographic analysis of mortar samples collected from Mayan ruins on the south end of Isla Mujeres indicates that the mortar is cemented by blocky, meniscus style, low Mg calcite. In addition to the cement, low Mg calcite also occurs as blocky equant crystals either replacing grains or filling grain-moldic porosity. X-ray analysis of both modern beach sand and mortar shows themore » sand is composed of aragonite and high Mg calcite but lacks low Mg calcite. Mortar, on the other hand, consists of low Mg calcite, high Mg calcite, and aragonite however aragonite is much less abundant than in the sand. Aragonitic ooids, pellets and bioclasts of beach sand used in mortar were dissolved producing moldic porosity. At the same time, CaCO/sub 3/ derived from this process was precipitated as low Mg calcite which formed meniscus cement and filled moldic porosity within the walls of Mayan structures producing a remarkably hard mortar.« less
NASA Astrophysics Data System (ADS)
Stolarska, Agata; Garbalińska, Halina
2017-05-01
This paper presents results of tests and studies conducted on six common building materials, used for constructing and finishing of external walls. These included: ceramic brick, silicate brick, autoclaved aerated concrete, cement mortar, cement-lime mortar and cement mortar modified with polypropylene fibers. Each of these materials is distinguished by the other structure of porousness, affecting both the course of sorption processes and the isotherms obtained. At first, measurements of moisture sorption kinetics at temperatures of 5, 20 and 35 °C were performed, each time at six levels of relative humidity. Then, when the sorption processes expired, equilibrium moisture sorption values were determined for the materials in 18 individual temperature and humidity conditions. The experimental data were used to determine the sorption isotherm courses for each material at the three temperatures. Then, theoretical analysis was performed in order to determine, which of the models available in the literature described the sorption isotherms of the concerned building materials the best. For each material and each of the three temperature values, twenty-four equations were tested. In each case, those of them were identified which ensured the best matching between the theoretical courses and the experimental data. The obtained results indicate that the Chen's model proved to be the most versatile. It ensured a detailed description of the sorption isotherms for each material and temperature tested.
Baglioni, Michele; Montis, Costanza; Chelazzi, David; Giorgi, Rodorico; Berti, Debora; Baglioni, Piero
2018-06-18
Aqueous nanostructured fluids (NSFs) have been proposed to remove polymer coatings from the surface of works of art; this process usually involves film dewetting. The NSF cleaning mechanism was studied using several techniques that were employed to obtain mechanistic insight on the interaction of a methacrylic/acrylic copolymer (Paraloid B72) film laid on glass surfaces and several NSFs, based on two solvents and two surfactants. The experimental results provide a detailed picture of the dewetting process. The gyration radius and the reduction of the T g of Paraloid B72 fully swollen in the two solvents is larger for propylene carbonate than for methyl ethyl ketone, suggesting higher mobility of polymer chains for the former, while a nonionic alcohol ethoxylate surfactant was more effective than sodium dodecylsulfate in favoring the dewetting process. FTIR 2D imaging showed that the dewetting patterns observed on model samples are also present on polymer-coated mortar tiles when exposed to NSFs. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Heinemeier, Jan; Jungner, Högne; Lindroos, Alf; Ringbom, Åsa; von Konow, Thorborg; Rud, Niels
1997-03-01
A method for refining lime mortar samples for 14C dating has been developed. It includes mechanical and chemical separation of mortar carbonate with optical control of the purity of the samples. The method has been applied to a large series of AMS datings on lime mortar from three medieval churches on the Åland Islands, Finland. The datings show convincing internal consistency and confine the construction time of the churches to AD 1280-1380 with a most probable date just before AD 1300. We have also applied the method to the controversial Newport Tower, Rhode Island, USA. Our mortar datings confine the building to colonial time in the 17th century and thus refute claims of Viking origin of the tower. For the churches, a parallel series of datings of organic (charcoal) inclusions in the mortar show less reliable results than the mortar samples, which is ascribed to poor association with the construction time.
Effect of some biotic factors on microbially-induced calcite precipitation in cement mortar.
Al-Salloum, Yousef; Abbas, H; Sheikh, Q I; Hadi, S; Alsayed, Saleh; Almusallam, Tarek
2017-02-01
Sporosarcina pasteurii , a common soil bacterium has been tested for microbial treatment of cement mortar. The present study also seeks to investigate the effects of growth medium, bacterial concentration and different buffers concerning the preparation of bacterial suspensions on the compressive strength of cement mortar. Two growth media, six different suspensions and two bacterial concentrations were used in the study. The influence of growth medium on calcification efficiency of S. pasteurii was insignificant. Significant improvement in the compressive as well as the tensile strength of cement mortar was observed. Microbial mineral precipitation visualized by Scanning Electron Microscopy (SEM) shows fibrous material that increased the strength of cement mortar. Formation of thin strands of fillers observed through SEM micrographs improves the pore structure, impermeability and thus the compressive as well as the tensile strengths of the cement mortar. The type of substrate and its molarity have a significant influence on the strength of cement mortar.
Strength of mortar containing rubber tire particle
NASA Astrophysics Data System (ADS)
Jusoh, M. A.; Abdullah, S. R.; Adnan, S. H.
2018-04-01
The main focus in this investigation is to determine the strength consist compressive and tensile strength of mortar containing rubber tire particle. In fact, from the previous study, the strength of mortar containing waste rubber tire in mortar has a slightly decreases compare to normal mortar. In this study, rubber tire particle was replacing on volume of fine aggregate with 6%. 9% and 12%. The sample were indicated M0 (0%), M6 (6%), M9 (9%) and M12 (12%). In this study, two different size of sample used with cube 100mm x 100mm x 100mm for compressive strength and 40mm x 40mm x 160mm for flexural strength. Morphology test was conducted by using Scanning electron microscopic (SEM) were done after testing compressive strength test. The concrete sample were cured for day 3, 7 and 28 before testing. Results compressive strength and flexural strength of rubber mortar shown improved compare to normal mortar.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Ya; Cultural Relics and Archaeology Institute of Hunan, Changsha 410083; Fu, Xuan
Urgent restoration of the Wugang Ming dynasty city wall brings about the need for a study of the formulation and properties of mortars. In the present paper, mortar samples from the Wugang Ming dynasty city wall were characterized in a combination of sheet polarized light optical microscopy, scanning electron microscopy with X-ray energy dispersive spectrometer, thermogravimetric/differential scanning calorimetry, X-ray powder diffraction, Fourier transform infrared spectroscopy, and inductively coupled plasma emission spectroscopy. Results show that mortars are mainly built up from inorganic calcium carbonate based organic–inorganic hybrid material with a small amount of sticky rice, which plays a crucial role inmore » forming dense and compact microstructure of mortars and effectively hindering penetration of water and air into mortars. Analysis of decayed products shows that the detrimental soluble salts originates from ambient environment. - Highlights: • Mortars used in the Wugang city wall are a calcium carbonate-sticky rice hybrid bonding material. • Carbonation processing is extremely slow due to dense and compact microstructure of mortars. • Decying of mortars results from the appearance of soluble salt from ambient environment.« less
Water transfer properties and shrinkage in lime-based rendering mortars
NASA Astrophysics Data System (ADS)
Arizzi, A.; Cultrone, G.
2012-04-01
Rendering is the practice of covering a wall or a building façade with one or more layers of mortar, with the main aim to protect the masonry structure against weathering. The render applied must show high flexibility, good adhesion and compatibility with the support (i.e. stone, brick) and, overall, it should be characterised by low water absorption and high water vapour permeability. Water (in the solid, liquid and vapour state) is one of the main factors that drive construction materials to deterioration. Therefore, to evaluate the quality and durability of a rendering mortar, thus ensuring its protective function in the masonry structure, it is fundamental to assess the behaviour of this mortar towards water. Mortars were elaborated with a calcitic dry hydrated lime, a calcareous aggregate, a pozzolan, a lightweight aggregate, a water-retaining agent and a plasticiser. Four types of lime mortars were prepared, in which the binder-to-aggregate ratios were 1:3, 1:4, 1:6 and 1:9 by weight, whilst the pozzolan was kept at 10% of the lime (by mass) and the total admixtures proportion was less than 2% of the total mass. The influence of the characteristics of mortars pore system on the amount of water absorbed and the kinetics of absorption was investigated by means of: free water absorption and drying; capillary uptake; water permeability; water vapour permeability. Interesting deductions can be made from the values of water and water vapour permeability found for mortars: the former increases exponentially with the sand volume of the mortar, whilst the latter increases almost exponentially with the initial water content added to the mortar mixes during their elaboration. However, the relationship obtained between porosity of mortars and permeability values is not really clear. This finding suggests that the permeability of a material cannot be estimated on the basis of its porosity as it can be made for the capillary uptake and free water absorption. Another aspect to be considered in the evaluation of the decay caused by water is the high shrinkage suffered by renders when they are applied on an extended surface (i.e. a wall), especially when they are aerial lime-based mortars. The shrinkage causes the formation of fissures that become an easy way for water to entry and diffuse through the mortar pore system. This factor is rarely taken into consideration during the hydric assays performed in the laboratory, since mortar samples of 4x4x16 or 4x4x4 cm in size do not undergo to such degree of shrinkage. For this reason, we have also studied the shrinkage of these mortars and considered it in the final assessment of mortars hydric properties. The shrinkage was evaluated according to a non-standardized method, by means of a shrinkage-measuring device that measures the mortar dimensional variations over time. This measurement has shown that the highest the lime content the biggest the mortar shrinkage and, consequently, the strongest the decay due to water.
Effect of Graphene Oxide on Mechanical Properties of Recycled Mortar
NASA Astrophysics Data System (ADS)
Fang, Changle; Long, Wujian; Wei, Jingjie; Xiao, Bingxu; Yan, Chen
2017-12-01
The use of recycled aggregate as replacement of natural aggregate has increased in recent years in order to reduce the high consumption of natural resources in construction industry. This paper presents an experimental investigation on the effect of graphene oxide (GO) on the mechanical properties of recycled mortar. It is showed that the recycled mortar with GO has a better mechanical properties than the recycled mortar without GO. Microstructural analysis of the recycled mortar with GO showed to have much denser and better crystallization of hydration product.
Konował, Emilia; Sybis, Marta; Modrzejewska-Sikorska, Anna; Milczarek, Grzegorz
2017-11-01
Various commercial dextrins were used as reducing and stabilizing agents for a novel one-step synthesis of silver nanoparticles from ammonia complexes of silver ions. As a result, stable colloids of silver were formed during the reaction with the particle size being the function of the dextrin type. The obtained colloids were characterized by UV-vis spectrophotometry, size distribution (using Non-Invasive Backscatter optics) and transmission electron microscopy (TEM). The achieved results clearly indicate the possibility of low-cost production of large quantities of colloidal silver nanoparticles using materials derived from renewable sources. The resulting silver colloids can be used for different purposes, e.g. as bactericidal agents. Combination of the aforementioned properties of nanosilver particles with plasticizing properties of dextrin enables to obtain cement mortars with increased workability and enhanced compressive strength. Moreover, the obtained material is also characterized by increased immunity to adverse impact of microorganisms. Copyright © 2017 Elsevier B.V. All rights reserved.
Recycling red mud from the production of aluminium as a red cement-based mortar.
Yang, Xiaojie; Zhao, Jianfeng; Li, Haoxin; Zhao, Piqi; Chen, Qin
2017-05-01
Current management for red mud is insufficient and a new method is needed. A series of experiments have been carried out to develop a new approach for effective management of red mud. Mortars without or with 3%, 6% and 9% red mud were prepared and their fresh and hardened properties were measured to access the possibility of recycling the red mud in the production of red cement-based mortar. The mechanisms corresponding to their mechanical performance variations were explored by X-ray powder diffraction and scanning electron microscopy. The results show that the fresh mortars with red mud present an increase of viscosity as compared with the control. However, little difference is found when the content of red mud is altered. It also can be seen that red mud increases flow time and reduces the slump flow of the mortar. Meanwhile, it is found that mortar with red mud is provided with higher air content. Red mud is eligible to adjust the decorative mortar colour. Compressive strength of mortar is improved when less than 6% red mud is added. However, overall it has a slightly negative effect on tensile bond strength. It decreases the Ca(OH) 2 content and densifies the microstructure of hardened paste. The heavy metal concentrations in leachates of mortars with red mud are much lower than the values required in the standard, and it will not do harm to people's health and the environment. These results are important to recycle and effectively manage red mud via the production of red cement-based mortar.
Krizova, Iva; Schultz, Julia; Nemec, Ivan; Cabala, Radomir; Hynek, Radovan; Kuckova, Stepanka
2018-01-01
Natural organic additives such as eggs, lard, resins, and oils have been added to mortars since ancient times, because the ancient builders knew of their positive effect on the mortar quality. The tradition of adding organic materials to mortars was commonly handed down only verbally for thousands years. However, this practice disappeared in the nineteenth century, when the usage of modern materials started. Today, one of the most recent topics in the industry of building materials is the reusing of natural organic materials and searching for the forgotten ancient recipes. The research of the old technological approaches involves currently the most advanced analytical techniques and methods. This paper is focussed on testing the possibility of identification of proteinaceous additives in historical mortars and model mortar samples containing blood, bone glue, curd, eggs and gelatine, by Fourier transform infrared (FTIR) and Raman spectroscopy, gas chromatography - mass spectrometry (GC-MS), matrix-assisted laser desorption/ionisation-time of flight mass spectrometry (MALDI-TOF MS), liquid chromatography-electrospray ionisation-quadrupole-time of flight mass spectrometry (LC-ESI-Q-TOF MS) and enzyme-linked immunosorbent assay (ELISA). All these methods were applied to the mortar sample taken from the interior of the medieval (sixteenth century) castle in Namest nad Oslavou in the Czech Republic and their comparison contributed to the rough estimation of the protein additive content in the mortar. The obtained results demonstrate that only LC-ESI-Q-TOF MS, MALDI-TOF MS and ELISA have the sufficiently low detection limits that enable the reliable identification of collagens in historical mortars. Graphical abstract Proteomics analyses of historical mortars.
46. DETAIL VIEW OF THE MORTAR BOXES, STAMP BATTERIES AND ...
46. DETAIL VIEW OF THE MORTAR BOXES, STAMP BATTERIES AND AMALGAMATION TABLES. NOTE FULTON IRON WORKS, SAM FRANCISCO 1908 STAMPED INTO THE MORTAR BOX. ALSO NOTE THE DIES RESTING ON THE OUTSIDE OF THE MORTAR BOX BY THE SECOND STAMP BATTERY FROM THE CAMERA POSITION. - Standard Gold Mill, East of Bodie Creek, Northeast of Bodie, Bodie, Mono County, CA
NASA Astrophysics Data System (ADS)
Grazzini, A.; Lacidogna, G.; Valente, S.; Accornero, F.
2018-06-01
Masonry walls of historical buildings are subject to rising damp effects due to capillary or rain infiltrations, which in the time produce decay and delamination of historical plasters. In the restoration of masonry buildings, the plaster detachment frequently occurs because of mechanical incompatibility in repair mortar. An innovative laboratory procedure is described for test mechanical adhesion of new repair mortars. Compression static tests were carried out on composite specimens stone block-repair mortar, which specific geometry can test the de-bonding process of mortar in adherence with a stone masonry structure. The acoustic emission (AE) technique was employed for estimating the amount of energy released from fracture propagation in adherence surface between mortar and stone. A numerical simulation was elaborated based on the cohesive crack model. The evolution of detachment process of mortar in a coupled stone brick-mortar system was analysed by triangulation of AE signals, which can improve the numerical model and predict the type of failure in the adhesion surface of repair plaster. Through the cohesive crack model, it was possible to interpret theoretically the de-bonding phenomena occurring at the interface between stone block and mortar. Therefore, the mechanical behaviour of the interface is characterized.
Effect of mixing proportion on the properties of seaweed modified sustainable concrete
NASA Astrophysics Data System (ADS)
Siddique, Md Nurul Islam; Wahid, Zularisam bin Abd
2017-10-01
Although the application of organic polymer has already been reported in the development of polymer modification process the use of carbohydrate polymer hasn't been reported till date. The effect of mixing ratio of seaweed modified mortar on the properties of sustainable concrete was investigated. A number of mixing ratios of seaweed (gel) with cement, sand and water (such as 0.1; 0.6; 1.1; 6) was studied in this work. In addition, a range of mixing ratios of seaweed (powder) with cement, sand and water (such as 0.1; 0.3; 0.6; 1.1; 2.1, 5.1) was examined. The performance of the seaweed modified sustainable concrete was evaluated by compressive and splitting strength. Results revealed that seaweed modified concrete with mixing ratio (0.6) was optimum. This ratio produced significant compressive and splitting strength of 30 MPa and 5 MPa for 28 days, respectively.
Utilization of ground waste seashells in cement mortars for masonry and plastering.
Lertwattanaruk, Pusit; Makul, Natt; Siripattarapravat, Chalothorn
2012-11-30
In this research, four types of waste seashells, including short-necked clam, green mussel, oyster, and cockle, were investigated experimentally to develop a cement product for masonry and plastering. The parameters studied included water demand, setting time, compressive strength, drying shrinkage and thermal conductivity of the mortars. These properties were compared with those of a control mortar that was made of a conventional Portland cement. The main parameter of this study was the proportion of ground seashells used as cement replacement (5%, 10%, 15%, or 20% by weight). Incorporation of ground seashells resulted in reduced water demand and extended setting times of the mortars, which are advantages for rendering and plastering in hot climates. All mortars containing ground seashells yielded adequate strength, less shrinkage with drying and lower thermal conductivity compared to the conventional cement. The results indicate that ground seashells can be applied as a cement replacement in mortar mixes and may improve the workability of rendering and plastering mortar. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wyrzykowski, Mateusz, E-mail: mateusz.wyrzykowski@empa.ch; Lodz University of Technology, Department of Building Physics and Building Materials, Lodz; Trtik, Pavel
2015-07-15
Water transport in fresh, highly permeable concrete and rapid water evaporation from the concrete surface during the first few hours after placement are the key parameters influencing plastic shrinkage cracking. In this work, neutron tomography was used to determine both the water loss from the concrete surface due to evaporation and the redistribution of fluid that occurs in fresh mortars exposed to external drying. In addition to the reference mortar with a water to cement ratio (w/c) of 0.30, a mortar with the addition of pre-wetted lightweight aggregates (LWA) and a mortar with a shrinkage reducing admixture (SRA) were tested.more » The addition of SRA reduced the evaporation rate from the mortar at the initial stages of drying and reduced the total water loss. The pre-wetted LWA released a large part of the absorbed water as a consequence of capillary pressure developing in the fresh mortar due to evaporation.« less
Jang, Hong-Seok; Xing, Shuli; Lee, Malrey; Lee, Young-Keun; So, Seung-Young
2016-05-01
In this study, an artificial neural networks study was carried out to predict the quantity of radon of Granulated Blast Furnace Slag (GBFS) cement mortar. A data set of a laboratory work, in which a total of 3 mortars were produced, was utilized in the Artificial Neural Networks (ANNs) study. The mortar mixture parameters were three different GBFS ratios (0%, 20%, 40%). Measurement radon of moist cured specimens was measured at 3, 10, 30, 100, 365 days by sensing technology for continuous monitoring of indoor air quality (IAQ). ANN model is constructed, trained and tested using these data. The data used in the ANN model are arranged in a format of two input parameters that cover the cement, GBFS and age of samples and, an output parameter which is concentrations of radon emission of mortar. The results showed that ANN can be an alternative approach for the predicting the radon concentration of GBFS mortar using mortar ingredients as input parameters.
Chloride Ion Adsorption Capacity of Anion Exchange Resin in Cement Mortar.
Lee, Yunsu; Lee, Hanseung; Jung, Dohyun; Chen, Zhengxin; Lim, Seungmin
2018-04-05
This paper presents the effect of anion exchange resin (AER) on the adsorption of chloride ions in cement mortar. The kinetic and equilibrium behaviors of AER were investigated in distilled water and Ca(OH)₂ saturated solutions, and then the adsorption of chloride ions by the AER in the mortar specimen was determined. The AER was used as a partial replacement for sand in the mortar specimen. The mortar specimen was coated with epoxy, except for an exposed surface, and then immersed in a NaCl solution for 140 days. The chloride content in the mortar specimen was characterized by energy dispersive X-ray fluorescence analysis and electron probe microanalysis. The results showed that the AER could adsorb the chloride ions from the solution rapidly but had a relatively low performance when the pH of its surrounding environment increased. When the AER was mixed in the cement mortar, its chloride content was higher than that of the cement matrix around it, which confirms the chloride ion adsorption capacity of the AER.
NASA Astrophysics Data System (ADS)
Chiu, C.; Bowling, L. C.
2011-12-01
The Wabash River watershed is the largest watershed in Indiana and includes the longest undammed river reach east of the Mississippi River. The land use of the Wabash River basin began to significantly change from mixed woodland dominated by small lakes and wetlands to agriculture in the mid-1800s and agriculture is now the predominant land use. Over 80% of natural wetland areas were drained to facilitate better crop production through both surface and subsurface drainage applications. Quantifying the change in hydrologic response in this intensively managed landscape requires a hydrologic model that can represent wetlands, crop growth, and impervious area as well as subsurface and surface drainage enhancements, coupled with high resolution soil and topographic inputs. The Variable Infiltration Capacity (VIC) model wetland algorithm has been previously modified to incorporate spatially-varying estimates of water table distribution using a topographic index approach, as well as a simple urban representation. Now, the soil water characteristics curve and a derived drained to equilibrium moisture profile are used to improve the model's estimation of the water table. In order to represent subsurface (tile) drainage, the tile drainage component of subsurface flow is calculated when the simulated water table rises above a specified drain depth. A map of the current estimated extent of subsurface tile drainage for the Wabash River based on a decision tree classifier of soil drainage class, soil slope and agricultural land use is used to activate the new tile drainage feature in the VIC model, while wetland depressional storage capacity is extracted from digital elevation and soil information. This modified VIC model is used to evaluate the performance of model physical variations in the intensively managed hydrologic regime of the Wabash River system and to understand the role of surface and subsurface storage, and land use and land cover change on hydrologic change.
Hydrophobic Properties of Biofilm-Enriched Hybrid Mortar.
Grumbein, Stefan; Minev, Dionis; Tallawi, Marwa; Boettcher, Kathrin; Prade, Friedrich; Pfeiffer, Franz; Grosse, Christian Ulrich; Lieleg, Oliver
2016-10-01
A mortar hybrid material is presented in which biomineralization processes are stimulated by adding a biological component, i.e., bacterial biofilm, to standard mortar. A material is obtained that exhibits increased roughness on the microscale and the nanoscale. Accordingly, the hybrid mortar not only resists wetting but also suppresses the uptake of water by capillary forces. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dietzel, Martin; Schön, Frerich; Heinrichs, Jens; Deditius, Artur P; Leis, Albrecht
2016-01-01
Ancient hydraulic lime mortar preserves chemical and isotopic signatures that provide important information about historical processing and its durability. The distribution and isotopic composition of calcite in a mortar of a well-preserved Punic-Roman cistern at Pantelleria Island (Italy) was used to trace the formation conditions, durability, and individual processing periods of the cistern mortar. The analyses of stable carbon and oxygen isotopes of calcite revealed four individual horizons, D, E, B-1 and B-2, of mortar from the top to the bottom of the cistern floor. Volcanic and ceramic aggregates were used for the production of the mortar of horizons E/D and B-1/B-2, respectively. All horizons comprise hydraulic lime mortar characterized by a mean cementation index of 1.5 ± 1, and a constant binder to aggregate ratio of 0.31 ± 0.01. This suggests standardized and highly effective processing of the cistern. The high durability of calcite formed during carbonation of slaked lime within the matrix of the ancient mortar, and thus the excellent resistance of the hydraulic lime mortar against water, was documented by (i) a distinct positive correlation of δ(18)Ocalcite and δ(13)Ccalcite; typical for carbonation through a mortar horizon, (ii) a characteristic evolution of δ(18)Ocalcite and δ(13)Ccalcite through each of the four mortar horizons; lighter follow heavier isotopic values from upper to lower part of the cistern floor, and (iii) δ(18)Ocalcite varying from -10 to -5 ‰ Vienna Pee Dee belemnite (VPDB). The range of δ(18)Ocalcite values rule out recrystallization and/or neoformation of calcite through chemical attack of water stored in cistern. The combined studies of the chemical composition of the binder and the isotopic composition of the calcite in an ancient mortar provide powerful tools for elucidating the ancient techniques and processing periods. This approach helps to evaluate the durability of primary calcite and demonstrates the importance of calcite as a proxy for chemical attack and quality of the ancient inorganic binder.
Dong, Zuo-chao; Xia, Jun-wu; Duan, Xiao-mu; Cao, Ji-chang
2016-03-01
By using X-ray diffraction (XRD) and environmental scanning electron microscope (SEM) analysis method, we stud- ied the activity of coal gangue fine aggregate under different calcination temperature. In view of the activity of the highest-700 degrees C high temperature calcined coal gangue fine aggregate mortar of hydration products, microstructure and strength were discussed in this paper, and the change laws of mortar strength with curing age (3, 7, 14, 28, 60 and 90 d) growth were analyzed. Test results showed that coal gangue fine aggregate with the increase of calcination temperature, the active gradually increases. When the calcination temperature reaches 700 degrees C, the activity of coal gangue fine aggregate is the highest. When calcining temperature continues to rise, activity falls. After 700 degrees C high temperature calcined coal gangue fine aggregate has obvious ash activity, the active components of SiO2 and Al2 O3 can be with cement hydration products in a certain degree of secondary hydration reaction. Through on the top of the activity of different curing age 700 degrees C high temperature calcined coal gangue fine aggregate mortar, XRD and SEM analysis showed that with the increase of curing age, secondary hydration reaction will be more fully, and the amount of hydration products also gradually increases. Compared with the early ages of the cement mortar, the products are more stable hydration products filling in mortar microscopic pore, which can further improve the microstructure of mortar, strengthen the interface performance of the mortar. The mortar internal structure is more uniform, calcined coal gangue fine aggregate and cement mortar are more of a strong continuous whole, which increase the later strength of hardened cement mortar, 700 degrees C high temperature calcined coal gangue fine aggregate pozzolanic effect is obvious.
Properties of Cement Mortar by Use of Hot-Melt Polyamides as Substitute for Fine Aggregate
Yuan, Xiongzhou; Xu, Weiting; Sun, Wei; Xing, Feng; Wang, Weilun
2015-01-01
This paper presents an experimental study on use of hot-melt polyamide (HMP) to prepare mortar specimens with improved crack healing and engineering properties. The role of HMP in the crack repairing of cement mortar subjected to several rounds of heat treatment was investigated. Compatibility between HMP and hydraulic cement was investigated through X-ray diffraction (XRD) and Fourier transform infrared spectra (FTIR) technology. Mortar specimens were prepared using standard cement mortar mixes with HMP at 1%, 3% and 5% (by volume) for fine aggregate substitute. After curing for 28 days, HMP specimens were subjected to heating at temperature of 160 °C for one, two, and three days and then natural cooling down to ambient temperature. Mechanical and durability properties of the heated HMP mortars were evaluated and compared with those of the corresponding mortars without heating. The microscopic observation of the interfacial transition zone (ITZ) of HMP mortar was conducted through environmental scanning electron microscopy (ESEM). Results reveal that incorporation of HMP improves the workability of the HMP/cement binder while leading to decrease in compressive strength and durability. The heated HMP mortars after exposure to heating for one, two, and three days exhibit no obvious change in compressive strength while presenting notable increase in flexural strength and durability compared with the corresponding mortars without heating. The XRD, FTIR and ESEM analyses indicate that no obvious chemical reaction occurs between HMP and hydraulic cement, and thus the self-repairing for interfacial micro-crack in HMP/cement composite system is ascribed to the physical adhesion of HMP to cement matrix rather than the chemical bonding between them.
[Study on the traditional lime mortar from the memorial archway in the southern Anhui province].
Wei, Guo-Feng; Sun, Sheng; Wang, Cheng-Xing; Zhang, Bing-Jian; Chen, Xi-Min
2013-07-01
The traditional lime mortar was investigated by means of scanning electron microscope (SEM), X-ray diffractometry and Fourier transform infrared spectrometry (FTIR). The results show that the mortar from the memorial archway in the southern Anhui province was the organic-inorganic composite materials composed of lime with tung oil or sticky rice. It was found that the excellent performance of the tung oil-lime mortar can be explained by the compact lamellar organic-inorganic composite structure that was produced by carbonization reaction of lime, cross-linking reactions of tung oil and oxygen and complexing reaction of Ca2+ and -COO-. The compact micro-structure of sticky rice-lime mortar, which was produced due to carbonation process of lime controlled by amylopectin, should be the cause of the good performance of this kind of organic-inorganic mortar.
Porosity estimation of aged mortar using a micromechanical model.
Hernández, M G; Anaya, J J; Sanchez, T; Segura, I
2006-12-22
Degradation of concrete structures located in high humidity atmospheres or under flowing water is a very important problem. In this study, a method for ultrasonic non-destructive characterization in aged mortar is presented. The proposed method makes a prediction of the behaviour of aged mortar accomplished with a three phase micromechanical model using ultrasonic measurements. Aging mortar was accelerated by immersing the probes in ammonium nitrate solution. Both destructive and non-destructive characterization of mortar was performed. Destructive tests of porosity were performed using a vacuum saturation method and non-destructive characterization was carried out using ultrasonic velocities. Aging experiments show that mortar degradation not only involves a porosity increase, but also microstructural changes in the cement matrix. Experimental results show that the estimated porosity using the proposed non-destructive methodology had a comparable performance to classical destructive techniques.
Atta-ur-Rehman; Qudoos, Abdul; Kim, Hong Gi
2018-01-01
In this study, the effects of titanium dioxide (TiO2) nanoparticles on the sulfate attack resistance of ordinary Portland cement (OPC) and slag-blended mortars were investigated. OPC and slag-blended mortars (OPC:Slag = 50:50) were made with water to binder ratio of 0.4 and a binder to sand ratio of 1:3. TiO2 was added as an admixture as 0%, 3%, 6%, 9% and 12% of the binder weight. Mortar specimens were exposed to an accelerated sulfate attack environment. Expansion, changes in mass and surface microhardness were measured. Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), X-ray Diffraction (XRD), Thermogravimetry Analysis (TGA) and Differential Scanning Calorimetry (DSC) tests were conducted. The formation of ettringite and gypsum crystals after the sulfate attack were detected. Both these products had caused crystallization pressure in the microstructure of mortars and deteriorated the mortars. Our results show that the addition of nano-TiO2 accelerated expansion, variation in mass, loss of surface microhardness and widened cracks in OPC and slag-blended mortars. Nano-TiO2 containing slag-blended mortars were more resistant to sulfate attack than nano-TiO2 containing OPC mortars. Because nano-TiO2 reduced the size of coarse pores, so it increased crystallization pressure due to the formation of ettringite and gypsum thus led to more damage under sulfate attack. PMID:29495616
Influence of Chloride-Ion Adsorption Agent on Chloride Ions in Concrete and Mortar.
Peng, Gai-Fei; Feng, Nai-Qian; Song, Qi-Ming
2014-04-30
The influence of a chloride-ion adsorption agent (Cl agent in short), composed of zeolite, calcium aluminate hydrate and calcium nitrite, on the ingress of chloride ions into concrete and mortar has been experimentally studied. The permeability of concrete was measured, and the chloride ion content in mortar was tested. The experimental results reveal that the Cl agent could adsorb chloride ions effectively, which had penetrated into concrete and mortar. When the Cl agent was used at a dosage of 6% by mass of cementitious materials in mortar, the resistance to the penetration of chloride ions could be improved greatly, which was more pronounced when a combination of the Cl agent and fly ash or slag was employed. Such an effect is not the result of the low permeability of the mortar, but might be a result of the interaction between the Cl agent and the chloride ions penetrated into the mortar. There are two possible mechanisms for the interaction between the Cl agent and chloride ion ingress. One is the reaction between calcium aluminate hydrate in the Cl agent and chloride ions to form Friedel's salt, and the other one is that calcium aluminate hydrate reacts with calcium nitrite to form AFm during the early-age hydration of mortar and later the NO₂ - in AFm is replaced by chloride ions, which then penetrate into the mortar, also forming Friedel's salt. More research is needed to confirm the mechanisms.
Influence of recycled fine aggregates on the resistance of mortars to magnesium sulfate attack
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Seung-Tae
2009-08-15
The influence of recycled fine aggregates, which had been reclaimed from field-demolished concretes, on the resistance of mortar specimens to magnesium sulfate attack was investigated. Mortar specimens were prepared with recycled fine aggregates at different replacement levels (0%, 25%, 50%, 75% and 100% of natural fine aggregate by mass). The mortar specimens were exposed to 4.24% magnesium sulfate solution for about 1 year at ambient temperature, and regularly monitored for visual appearance, compressive strength loss and expansion. Additionally, in order to identify products of magnesium sulfate attack, mortar samples incorporating 0%, 25% and 100% replacement levels of the recycled finemore » aggregates were examined by X-ray diffraction (XRD) technique. Experimental results confirmed that the use of recycled fine aggregates up to a maximum 50% replacement level is effective under severe magnesium sulfate environment, irrespective of type of recycled fine aggregates. However, the worse performance was observed in mortar specimens incorporating 100% replacement level. It was found that the water absorption of recycled fine aggregates affected deterioration of mortar specimens, especially at a higher replacement level. XRD results indicated that the main cause of deterioration of the mortar specimens was primarily due to the formation of gypsum and thaumasite by magnesium sulfate attack. In addition, it appeared that the conversion of C-S-H into M-S-H by the attack probably influenced mechanical deterioration of mortar specimens with recycled fine aggregates.« less
Influence of Chloride-Ion Adsorption Agent on Chloride Ions in Concrete and Mortar
Peng, Gai-Fei; Feng, Nai-Qian; Song, Qi-Ming
2014-01-01
The influence of a chloride-ion adsorption agent (Cl agent in short), composed of zeolite, calcium aluminate hydrate and calcium nitrite, on the ingress of chloride ions into concrete and mortar has been experimentally studied. The permeability of concrete was measured, and the chloride ion content in mortar was tested. The experimental results reveal that the Cl agent could adsorb chloride ions effectively, which had penetrated into concrete and mortar. When the Cl agent was used at a dosage of 6% by mass of cementitious materials in mortar, the resistance to the penetration of chloride ions could be improved greatly, which was more pronounced when a combination of the Cl agent and fly ash or slag was employed. Such an effect is not the result of the low permeability of the mortar, but might be a result of the interaction between the Cl agent and the chloride ions penetrated into the mortar. There are two possible mechanisms for the interaction between the Cl agent and chloride ion ingress. One is the reaction between calcium aluminate hydrate in the Cl agent and chloride ions to form Friedel’s salt, and the other one is that calcium aluminate hydrate reacts with calcium nitrite to form AFm during the early-age hydration of mortar and later the NO2− in AFm is replaced by chloride ions, which then penetrate into the mortar, also forming Friedel’s salt. More research is needed to confirm the mechanisms. PMID:28788625
Vanderbilt University Gamma Irradiation of Nano-modified Concrete (2017 Milestone Report)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deichert, Geoffrey G.; Linton, Kory D.; Terrani, Kurt A.
This document outlines the irradiation of concrete specimens in the Gamma Irradiation Facility in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). Two gamma irradiation runs were performed in July of 2017 on 18 reference mortar bar specimens, 26 reference cement paste bar specimens, and 28 reference cement paste tab specimens to determine the dose and temperature response of the specimens in the gamma irradiation environment. Specimens from the first two gamma irradiations were surveyed and released to Vanderbilt University. The temperature and dose information obtained informs the test parameters of the final two gamma irradiationsmore » of nano-modified concrete planned for FY 2018.« less
Combined Effects of Non-Conforming Fly Ash and Recycled Masonry Aggregates on Mortar Properties
Torres-Gómez, Ana Isabel; Ledesma, Enrique F.; Otero, Rocio; Fernández, José Maria; Jiménez, José Ramón; de Brito, Jorge
2016-01-01
This work evaluates the effects of using non-conforming fly ash (Nc-FA) generated in a thermoelectric power plant as filler material for mortars made with natural sand (NA) and recycled sand from masonry waste (FRMA). The incorporation of powdered recycled masonry filler (R-MF) is also tested as an alternative to siliceous filler (Si-F). Three families of mortars were designed to study: the effect of replacing Si-F with Nc-FA on mortars made with NA; the effect of replacing Si-F with Nc-FA on mortars made with 50% of NA and 50% of FRMA; and the effect of replacing Si-F with R-MF on mortars made with NA and FRMA. Replacing Si-F with Nc-FA is a viable alternative that increases the mechanical strength, the workability and durability properties and decreases the shrinkage. The use of FRMA and Nc-FA improved the mechanical strength of mortars, and it slightly increased the shrinkage. The replacement of Si-F with R-MF on mortars made with FRMA is not a good alternative, because it has a negative impact on all of the properties tested. This work can help both to reduce cement and natural resources’ consumption and to increase the recycling rate of Nc-FA and FRMA. PMID:28773849
Combined Effects of Non-Conforming Fly Ash and Recycled Masonry Aggregates on Mortar Properties.
Torres-Gómez, Ana Isabel; Ledesma, Enrique F; Otero, Rocio; Fernández, José Maria; Jiménez, José Ramón; de Brito, Jorge
2016-08-25
This work evaluates the effects of using non-conforming fly ash (Nc-FA) generated in a thermoelectric power plant as filler material for mortars made with natural sand (NA) and recycled sand from masonry waste (FRMA). The incorporation of powdered recycled masonry filler (R-MF) is also tested as an alternative to siliceous filler (Si-F). Three families of mortars were designed to study: the effect of replacing Si-F with Nc-FA on mortars made with NA; the effect of replacing Si-F with Nc-FA on mortars made with 50% of NA and 50% of FRMA; and the effect of replacing Si-F with R-MF on mortars made with NA and FRMA. Replacing Si-F with Nc-FA is a viable alternative that increases the mechanical strength, the workability and durability properties and decreases the shrinkage. The use of FRMA and Nc-FA improved the mechanical strength of mortars, and it slightly increased the shrinkage. The replacement of Si-F with R-MF on mortars made with FRMA is not a good alternative, because it has a negative impact on all of the properties tested. This work can help both to reduce cement and natural resources' consumption and to increase the recycling rate of Nc-FA and FRMA.
NASA Astrophysics Data System (ADS)
Olivia, M.; Jingga, H.; Toni, N.; Wibisono, G.
2018-04-01
The invention of environmentally friendly, high performance, and green material such as biopolymers marked an emerging trend for sustainable construction over the past decades. Biopolymer comprises of natural monomers and synthesized by plants or other organisms. The sustainable, biodegradable, and renewable biopolymers were used in concrete mixes to improve their physical and mechanical properties and durability. The aim of this paper is to provide a brief an overview of the impact of biopolymer addition into concrete and mortar mixes. Many studies on the influence of biopolymer on the properties of concrete and mortar by adding biopolymers at a certain proportion (usually less than one wt.%) to the concrete or mortar mixes, and the heavy metal leaching, rheological, and mechanical properties of the mixes were conducted. Biopolymers included in this review are chitosan (CH), xanthan gum (XG), guar gum (GG), lignosulphonate (LS), and cellulose ethers (CE). Data from previous studies showed that the addition of certain types of biopolymer into concrete and mortar mixes improve workability, water retention, and compressive strength by up to 30 percent. Chitosan strengthens heavy metal encapsulation in the mortar and neutralizes the negative impact of heavy metal on the mortar properties and environment. To sum up, the use of biopolymers improve physical properties and leaching characteristics of mortar and concrete.
Effect of Graphene Oxide on the Damping Capability of Recycled Mortar
NASA Astrophysics Data System (ADS)
Wei, Jing-Jie; Long, Wu-Jian; Fang, Chang-Le; Li, Hao-Dao; Guo, Yue-Gui
2018-03-01
The use of recycled aggregate as replacement of natural aggregate has increased in recent years in order to reduce the high consumption of natural resources in construction industry. This paper presents an experimental investigation on the effect of graphene oxide (GO) on the damping capability of recycled mortar. The effect of GO on damping capability was examined by using dynamic mechanical analyzer (DMA), It is showed that the recycled mortar with GO has a better damping capability than the recycled mortar without GO. Microstructural analysis of the recycled mortar with GO showed to have much denser and better crystallization of hydration products.
Recycled sand in lime-based mortars.
Stefanidou, M; Anastasiou, E; Georgiadis Filikas, K
2014-12-01
The increasing awareness of the society about safe guarding heritage buildings and at the same time protecting the environment promotes strategies of combining principles of restoration with environmentally friendly materials and techniques. Along these lines, an experimental program was carried out in order to investigate the possibility of producing repair, lime-based mortars used in historic buildings incorporating secondary materials. The alternative material tested was recycled fine aggregates originating from mixed construction and demolition waste. Extensive tests on the raw materials have been performed and mortar mixtures were produced using different binding systems with natural, standard and recycled sand in order to compare their mechanical, physical and microstructure properties. The study reveals the improved behavior of lime mortars, even at early ages, due to the reaction of lime with the Al and Si constituents of the fine recycled sand. The role of the recycled sand was more beneficial in lime mortars rather than the lime-pozzolan or lime-pozzolan-cement mortars as a decrease in their performance was recorded in the latter cases due to the mortars' structure. Copyright © 2014 Elsevier Ltd. All rights reserved.
Experimental Investigation of Multi-mode Fiber Laser Cutting of Cement Mortar.
Lee, Dongkyoung; Pyo, Sukhoon
2018-02-10
This study successfully applied multi-mode laser cutting with the variation of the laser cutting speed to cement mortar for the first time. The effects of the amount of silica sand in the cement mortar on laser cutting are tested and analyzed. The kerf width and penetration depth of the specimens after laser cutting are investigated. As the laser cutting speed increases, the penetration depth decreases for both cement paste and cement mortar, whereas the kerf width becomes saturated and increases, respectively, for cement paste and cement mortar. Cross sections of the specimens are compared with illustrations. Top-view images of the cement mortar with indicators of the physical characteristics, such as re-solidification, burning, and cracks are examined, and the possible causes of these characteristics are explained. The optical absorption rates of cement-based materials are quantified at wide ranges of wavelength to compare the absorption rates in accordance with the materials compositions. The chemical composition variation before and after laser cutting is also compared by EDX (Energy Dispersive X-Ray) analysis. In addition to these observations, material removal mechanisms for cement mortar are proposed.
Effect of nylon fiber on mechanical properties of cement based mortar
NASA Astrophysics Data System (ADS)
Hanif, I. M.; Syuhaili, M. R. Noor; Hasmori, M. F.; Shahmi, S. M.
2017-11-01
An investigation has been carried out to study the effect of nylon fiber on the mechanical properties of cement based mortar after receiving large quantities of nylon waste. Subsequently, this research was conducted to compare the compressive, tensile and flexural strength of normal cement based mortar with nylon fiber cement based mortar. All samples using constant water-cement ratio of 0.63 and three different percentages of nylon fiber were added in the mixture during the samples preparation period which consists of 0.5%, 1.5% and 2.5% by total weight of cement based mortar. The results obtained with different nylon percentage marked an increases in compressive strength (up to 17%), tensile strength (up to 21%) and flexural strength (up to 13%) when compared with control cement based mortar samples. Therefore, the results obtained from this study shows that by using nylon fiber as additive material can improve the mechanical properties of the cement based mortar and at the same time produce a good sustainable product that can protects and conserve the marine environment.
Experimental Investigation of Multi-mode Fiber Laser Cutting of Cement Mortar
2018-01-01
This study successfully applied multi-mode laser cutting with the variation of the laser cutting speed to cement mortar for the first time. The effects of the amount of silica sand in the cement mortar on laser cutting are tested and analyzed. The kerf width and penetration depth of the specimens after laser cutting are investigated. As the laser cutting speed increases, the penetration depth decreases for both cement paste and cement mortar, whereas the kerf width becomes saturated and increases, respectively, for cement paste and cement mortar. Cross sections of the specimens are compared with illustrations. Top-view images of the cement mortar with indicators of the physical characteristics, such as re-solidification, burning, and cracks are examined, and the possible causes of these characteristics are explained. The optical absorption rates of cement-based materials are quantified at wide ranges of wavelength to compare the absorption rates in accordance with the materials compositions. The chemical composition variation before and after laser cutting is also compared by EDX (Energy Dispersive X-Ray) analysis. In addition to these observations, material removal mechanisms for cement mortar are proposed. PMID:29439431
Reuse of ground waste glass as aggregate for mortars.
Corinaldesi, V; Gnappi, G; Moriconi, G; Montenero, A
2005-01-01
This work was aimed at studying the possibility of reusing waste glass from crushed containers and building demolition as aggregate for preparing mortars and concrete. At present, this kind of reuse is still not common due to the risk of alkali-silica reaction between the alkalis of cement and silica of the waste glass. This expansive reaction can cause great problems of cracking and, consequently, it can be extremely deleterious for the durability of mortar and concrete. However, data reported in the literature show that if the waste glass is finely ground, under 75mum, this effect does not occur and mortar durability is guaranteed. Therefore, in this work the possible reactivity of waste glass with the cement paste in mortars was verified, by varying the particle size of the finely ground waste glass. No reaction has been detected with particle size up to 100mum thus indicating the feasibility of the waste glass reuse as fine aggregate in mortars and concrete. In addition, waste glass seems to positively contribute to the mortar micro-structural properties resulting in an evident improvement of its mechanical performance.
Chloride Ion Adsorption Capacity of Anion Exchange Resin in Cement Mortar
Lee, Hanseung; Jung, Dohyun; Chen, Zhengxin
2018-01-01
This paper presents the effect of anion exchange resin (AER) on the adsorption of chloride ions in cement mortar. The kinetic and equilibrium behaviors of AER were investigated in distilled water and Ca(OH)2 saturated solutions, and then the adsorption of chloride ions by the AER in the mortar specimen was determined. The AER was used as a partial replacement for sand in the mortar specimen. The mortar specimen was coated with epoxy, except for an exposed surface, and then immersed in a NaCl solution for 140 days. The chloride content in the mortar specimen was characterized by energy dispersive X-ray fluorescence analysis and electron probe microanalysis. The results showed that the AER could adsorb the chloride ions from the solution rapidly but had a relatively low performance when the pH of its surrounding environment increased. When the AER was mixed in the cement mortar, its chloride content was higher than that of the cement matrix around it, which confirms the chloride ion adsorption capacity of the AER. PMID:29621188
A Study on the Properties of Carbon Black Mortar Using Granulated Blast Furnace Slag and Polymer.
Jang, Hong-Seok; Jeon, Ui-Hyeon; So, Seung-Young
2015-11-01
White Portland Cement (WPC) and inorganic pigment have been used in colored concrete, but there are some physical problems such as increases in efflorescence, and poor workability and low economics. The aim of this study was to investigate the effects of GBFS and polymer (methyl cellulose) on the physical properties of carbon black mortar. For this purpose, a flow test, compressive strength test and color evaluation and was carried out on cement mortar mixed with polymer by changing the proportion of cement and ratio of GBFS. The results show that the addition of polymer influences significantly the color value efficiency in colored mortar. This is due to the reduction of overall amount of micro pore. This polymer films prevent the transport of soluble calcium towards the surface, and decreases efflorescence. And the flow of colored mortar was increased in proportion to the addition rate of the GBFS. In addition the strength of colored mortars with GBFS at the long-term aged (after 28 days) was higher than that of the general WPC mortar, although its strength was developed slowly at the early ages.
NASA Technical Reports Server (NTRS)
Pearson, A.
1975-01-01
The objective of this program was to establish feasibility of a process to produce low cost aluminum oxide fibers having sufficient strength, flexibility, and thermal stability for multiple re-use at temperatures to 1480 C in advanced RSI type heat shields for reentry vehicles. Using bench-scale processing apparatus, the Alcoa 'Saphiber' process was successfully modified to produce nominally 8 microns diameter polycrystalline alpha-alumina fiber. Thermal stability was demonstrated in vacuum reheating tests to 1371 C and in atmospheric reheating to 1483 C. Individual fiber properties of strength, modulus, and flexibility were not determined because of friability and short length of the fiber. Rigidized tile produced from fiber of nominally 8, 20 and 40 micron diameter had thermal conductivities significantly higher than those of RSI SiO2 or mullite at relatively low temperature but became comparable above about 1000 C. Tile densities were high due to short fiber length, especially in the coarser diameter fiber. No significant effect of fiber diameter on thermal properties could be determined form the data. Mechanical properties of tiles deteriorated as fiber diameter increased.
Effect of alternative surface inlet designs on sediment and phosphorus drainage losses
USDA-ARS?s Scientific Manuscript database
Open surface inlets that connect to subsurface tile drainage systems provide a direct pathway for sediment, nutrients, and agrochemicals to surface waters. This study was conducted to determine whether modifying open inlets by burying them in gravel capped with 30 cm of sandy clay loam soil or in ve...
Luminescence quartz dating of lime mortars. A first research approach.
Zacharias, N; Mauz, B; Michael, C T
2002-01-01
Lime mortars mixed with sand are well suited for connecting structural materials, like stones and bricks, due to the mechanical properties this material exhibits. Their extensive use in architectural and decorative works during the last 4000 years motivated the introduction of the 'Luminescence clock' for age determination of mortars. The same principles as for quartz optically stimulated luminescence (OSL) dating of sediments were applied for age estimation of a mortar fragment removed from a Byzantine church monument dated by archaeological means to 1050-1100 years ago (the first half of the 10th century). The OSL from the quartz was monitored under blue light stimulation and UV detection, using a single-aliquot-regenerative-dose protocol. The quartz-OSL dating of the mortar resulted in 870 +/- 230 a. TL polymineral fine grain dating was also performed on a brick fragment which was connected to the mortar, resulting in a TL age of 1095 +/- 190 a.
Continuous monitoring of setting and hardening of mortar using FBG sensors
NASA Astrophysics Data System (ADS)
Lima, H.; Ribeiro, R.; Nogueira, R.; Silva, L.; Abe, I.; Pinto, J. L.
2007-05-01
The use of fibre Bragg grating sensors to study mortars' dimensional variations during the setting process is reported. When determining a mortar's potential to fissure, it's important to know its total retraction. This means it is necessary to know not only the mortar's retraction after hardened, but also to know how much it retracts during the plastic phase. This work presents a technique which allows to measure dimensional variations, either expansion or retraction, during the whole setting process. Temperature and strain evolution during both plastic and hardened phase of the mortar were obtained, allowing the determination of dimensional variations and setting times. Due to its high-speed, ease of implementation and low operation costs, this technique will allow to get a deeper knowledge of the effects of several additives on the mortar's behaviour, allowing to improve its mechanical properties through the determination of the proper chemical composition.
NASA Astrophysics Data System (ADS)
Estokova, A.; Smolakova, M.; Luptakova, A.; Strigac, J.
2017-10-01
Water absorptivity is heavily influenced by the volume and connectivity of pores in the pore network of cement composites and has been used as an important parameter for quantifying their durability. To improve the durability and permeability of mortars, various mineral admixtures such as furnace slag, silica fume or fly ash are added into the mortar and concrete mixtures. These admixtures provide numerous important advantages such as corrosion control, improvement of mechanical and physical properties and better workability. This study investigated the changes in absorptivity of cement mortars with different amounts of mineral admixture, represented by granulated blast furnace slag, under aggressive bacterial influence. The water absorptivity of mortars specimens exposed to sulphur-oxidising bacteria A. thiooxidans for the period of 3 and 6 months has changed due to bio-corrosion-based degradation process. The differences in water absorptivity in dependence on the mortars composition have been observed.
Corrosion sensor for monitoring the service condition of chloride-contaminated cement mortar.
Lu, Shuang; Ba, Heng-Jing
2010-01-01
A corrosion sensor for monitoring the corrosion state of cover mortar was developed. The sensor was tested in cement mortar, with and without the addition of chloride to simulate the adverse effects of chloride-contaminated environmental conditions on concrete structures. In brief, a linear polarization resistance method combined with an embeddable reference electrode was utilized to measure the polarization resistance (Rp) using built-in sensor electrodes. Subsequently, electrochemical impedance spectroscopy in the frequency range of 1 kHz to 50 kHz was used to obtain the cement mortar resistance (Rs). The results show that the polarization resistance is related to the chloride content and Rs; ln (Rp) is linearly related to the Rs values in mortar without added chloride. The relationships observed between the Rp of the steel anodes and the resistance of the surrounding cement mortar measured by the corrosion sensor confirms that Rs can indicate the corrosion state of concrete structures.
Amination of black liquor and the application in the ready-mixed wet mortar.
Zheng, Dafeng; Zheng, Tao; Chen, Ran; Li, Xiaokang; Qiu, Xueqing
2018-01-01
In order to extend the application of black liquor (BL), amino group was introduced in lignin through Mannich reaction. The structure of the aminated black liquor (ABL) was characterized with FT-IR, elemental analysis, the zeta potential and the inherent viscosity. The foam generated by ABL was more stable, for the surface tension was lower. The results of the mortar test indicated that the water-retention rate of the fresh mortar incorporated with 0.3 wt% ABL was 89.1%; the consistency loss was about 39.7% after 4 h. When the dosage was less than 0.3 wt%, ABL could increase the bond strength of the hardened mortars. The results showed that ABL could be used as an effective ready-mixed wet mortar admixture. This study not only provided a new method to develop new mortar admixture, but also alleviated the pollution of BL.
Mechanical Properties and Microstructure of Class C Fly Ash-Based Geopolymer Paste and Mortar.
Li, Xueying; Ma, Xinwei; Zhang, Shoujie; Zheng, Enzu
2013-04-09
This paper presents workability, compressive strength and microstructure for geopolymer pastes and mortars made of class C fly ash at mass ratios of water-to-fly ash from 0.30 to 0.35. Fluidity was in the range of 145-173 mm for pastes and 131-136 mm for mortars. The highest strengths of paste and mortar were 58 MPa and 85 MPa when they were cured at 70 °C for 24 h. In XRD patterns, unreacted quartz and some reacted product were observed. SEM examination indicated that reacted product has formed and covered the unreacted particles in the paste and mortar that were consistent with their high strength.
Reuse of de-inking sludge from wastepaper recycling in cement mortar products.
Yan, Shiqin; Sagoe-Crentsil, Kwesi; Shapiro, Gretta
2011-08-01
This paper presents results of an investigation into the use of de-inking sludge from a paper recycling mill as feedstock material in the manufacture of cement mortar products, including masonry blocks and mortar renders. Both physical and mechanical properties of mortar specimens containing various amounts of de-inking sludge were investigated. It was observed that the addition of de-inking sludge to cement mortar at a fixed water-to-cement ratio significantly reduced flow properties and increased setting time. Water absorption and volume of permeable voids of cement mortar increased with increased dosage of de-inking sludge, with a corresponding reduction of bulk density. The 91-day compressive strength of mortar samples with 2.5 wt% and 20 wt% de-inking sludge loadings retained 83% and 62% respectively of the reference mortar strength. The corresponding drying shrinkage increased by up to 160% compared to reference samples. However, a de-inking sludge loading of up to 2.5 wt% did not significantly alter measured physical and mechanical properties. The results demonstrate that despite the high moisture absorbance of de-inking sludge due to its organic matter and residual cellulose fibre content, it serves as a potential supplementary additive and its cellulosic content proving to be an active set retardant to cementitious masonry products. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soleimani, Sahar, E-mail: ssoleima@connect.carleton.ca; Isgor, O. Burkan, E-mail: burkan_isgor@carleton.ca; Ormeci, Banu, E-mail: banu_ormeci@carleton.ca
2013-11-15
Following the reported success of biofilm applications on metal surfaces to inhibit microbiologically influenced corrosion, effectiveness and sustainability of E. coli DH5α biofilm on mortar surface to prevent microbiologically influenced concrete deterioration (MICD) are investigated. Experiments simulating microbial attack were carried out by exposing incrementally biofilm-covered mortar specimens to sulfuric acid solutions with pH ranging from 3 to 6. Results showed that calcium concentration in control reactors without biofilm was 23–47% higher than the reactors with biofilm-covered mortar. Formation of amorphous silica gel as an indication of early stages of acid attack was observed only on the control mortar specimensmore » without biofilm. During acidification, the biofilm continued to grow and its thickness almost doubled from ∼ 30 μm before acidification to ∼ 60 μm after acidification. These results demonstrated that E. coli DH5α biofilm was able to provide a protective and sustainable barrier on mortar surfaces against medium to strong sulfuric acid attack. -- Highlights: •Effectiveness of E.coli DH5α biofilm to prevent MICD was studied. •Conditions that lead to MICD were simulated by chemical acidification. •Biofilm-covered mortar specimens were exposed to sulfuric acid solutions. •The presence of biofilm helped reduce the chemically-induced mortar deterioration. •Biofilm remained alive and continued to grow during the acidification process.« less
Improvements of nano-SiO2 on sludge/fly ash mortar.
Lin, D F; Lin, K L; Chang, W C; Luo, H L; Cai, M Q
2008-01-01
Sewage sludge ash has been widely applied to cementitious materials. In this study, in order to determine effects of nano-SiO(2) additives on properties of sludge/fly ash mortar, different amounts of nano-SiO(2) were added to sludge/fly ash mortar specimens to investigate their physical properties and micro-structures. A water-binding ratio of 0.7 was assigned to the mix. Substitution amounts of 0%, 10%, 20%, and 30% of sludge/fly ash (1:1 ratio) were proposed. Moreover, 0%, 1%, 2%, and 3% of nano-SiO(2) was added to the mix. Tests, including SEM and compressive strength, were carried out on mortar specimens cured at 3, 7, and 28 days. Results showed that sludge/fly ash can make the crystals of cement hydration product finer. Moreover, crystals increased after nano-SiO(2) was added. Hence, nano-SiO(2) can improve the effects of sludge/fly ash on the hydration of mortar. Further, due to the low pozzolanic reaction active index of sludge ash, early compressive strengths of sludge/fly ash mortar were decreased. Yet, nano-SiO(2) could help produce hydration crystals, which implies that the addition of nano-SiO(2) to mortar can improve the influence of sludge/fly ash on the development of the early strength of the mortar.
Luo, Huan-Lin; Chang, Wei-Che; Lin, Deng-Fong
2009-04-01
To improve the drawbacks caused by the sludge ash replacement in mortar, the previous studies have shown that the early strength and durability of sludge ash/cement mortar are improved by adding nano-silicon dioxide (nano-SiO2) to mortar. In this article, three types of nano-SiO2--SS, HS, and SP (manufacturer code names)--were applied to sludge ash/cement mixture to make paste or mortar specimens. The object is to further extend the recycle of the sludge ash by determining the better type of nano-SiO2 additive to improve properties of sludge ash/ cement paste or mortar. The cement was replaced by 0, 10, 20, and 30% of sludge ash, and 0 and 2% of nano-SiO2 additives were added to the sludge ash paste or mortar specimens. Tests such as setting time, compressive strength, scanning electron microscopy, X-ray diffraction, nuclear magnetic resonance, and thermogravimetric analysis/differential thermal analysis were performed in this study. Test results show that nano-SiO2 additives can not only effectively increase the hydration product (calcium silicate hydrate [C-S-H] gel), but also make the crystal structure denser. Among the three types of nano-SiO2 additive, the SS type can best improve the properties of sludge ash/cement paste or mortar, followed by the SP and HS types.
Fractal assembly of micrometre-scale DNA origami arrays with arbitrary patterns.
Tikhomirov, Grigory; Petersen, Philip; Qian, Lulu
2017-12-06
Self-assembled DNA nanostructures enable nanometre-precise patterning that can be used to create programmable molecular machines and arrays of functional materials. DNA origami is particularly versatile in this context because each DNA strand in the origami nanostructure occupies a unique position and can serve as a uniquely addressable pixel. However, the scale of such structures has been limited to about 0.05 square micrometres, hindering applications that demand a larger layout and integration with more conventional patterning methods. Hierarchical multistage assembly of simple sets of tiles can in principle overcome this limitation, but so far has not been sufficiently robust to enable successful implementation of larger structures using DNA origami tiles. Here we show that by using simple local assembly rules that are modified and applied recursively throughout a hierarchical, multistage assembly process, a small and constant set of unique DNA strands can be used to create DNA origami arrays of increasing size and with arbitrary patterns. We illustrate this method, which we term 'fractal assembly', by producing DNA origami arrays with sizes of up to 0.5 square micrometres and with up to 8,704 pixels, allowing us to render images such as the Mona Lisa and a rooster. We find that self-assembly of the tiles into arrays is unaffected by changes in surface patterns on the tiles, and that the yield of the fractal assembly process corresponds to about 0.95 m - 1 for arrays containing m tiles. When used in conjunction with a software tool that we developed that converts an arbitrary pattern into DNA sequences and experimental protocols, our assembly method is readily accessible and will facilitate the construction of sophisticated materials and devices with sizes similar to that of a bacterium using DNA nanostructures.
Fractal assembly of micrometre-scale DNA origami arrays with arbitrary patterns
NASA Astrophysics Data System (ADS)
Tikhomirov, Grigory; Petersen, Philip; Qian, Lulu
2017-12-01
Self-assembled DNA nanostructures enable nanometre-precise patterning that can be used to create programmable molecular machines and arrays of functional materials. DNA origami is particularly versatile in this context because each DNA strand in the origami nanostructure occupies a unique position and can serve as a uniquely addressable pixel. However, the scale of such structures has been limited to about 0.05 square micrometres, hindering applications that demand a larger layout and integration with more conventional patterning methods. Hierarchical multistage assembly of simple sets of tiles can in principle overcome this limitation, but so far has not been sufficiently robust to enable successful implementation of larger structures using DNA origami tiles. Here we show that by using simple local assembly rules that are modified and applied recursively throughout a hierarchical, multistage assembly process, a small and constant set of unique DNA strands can be used to create DNA origami arrays of increasing size and with arbitrary patterns. We illustrate this method, which we term ‘fractal assembly’, by producing DNA origami arrays with sizes of up to 0.5 square micrometres and with up to 8,704 pixels, allowing us to render images such as the Mona Lisa and a rooster. We find that self-assembly of the tiles into arrays is unaffected by changes in surface patterns on the tiles, and that the yield of the fractal assembly process corresponds to about 0.95m - 1 for arrays containing m tiles. When used in conjunction with a software tool that we developed that converts an arbitrary pattern into DNA sequences and experimental protocols, our assembly method is readily accessible and will facilitate the construction of sophisticated materials and devices with sizes similar to that of a bacterium using DNA nanostructures.
Antimicrobial mortar surfaces for the improvement of hygienic conditions.
De Muynck, W; De Belie, N; Verstraete, W
2010-01-01
To evaluate the effectiveness of various antimicrobial mortar formulations in inhibiting the growth of a selection of pathogens of environmental and hygienic concern. Mortar prisms containing triclosan-incorporated fibres or different concentrations of silver copper zeolites were incubated with Escherichia coli, Listeria monocytogenes, Salmonella enterica or Staphylococcus aureus at 4 or 20 degrees C for 24 h. From plate counting, a substantial bactericidal effect (>4 log units) could only be observed for the mortar specimens containing more than 3% zeolites on cement weight base, the effect being more pronounced at 20 degrees C compared to 4 degrees C. No inhibitory effect could be observed for mortar specimens containing antimicrobial fibres. Adenosinetriphosphate (ATP) measurements allowed for a rapid indication of the occurrence of antimicrobial activity. In order to obtain a bactericidal effect on mortar surfaces, concentrations of silver copper zeolites of more then 3% are required. To our knowledge, this is the first study in which the effectiveness of various antimicrobial mortar mixtures towards the inhibition of pathogens has been evaluated in a quantitative way. Antimicrobial concrete mixtures can be used for the improvement of the hygienic conditions in a variety of environments.
NASA Astrophysics Data System (ADS)
Siegesmund, Siegfried; Middendorf, Bernhard
2008-12-01
The indoor exhibit of the Market Gate of Miletus is unique for an archaeological monument. The reconstruction of the gate was done in such a way that most marble fragments were removed leaving cored marble columns 3-4 cm in thickness. These cored columns were mounted on a steel construction and filled with different mortars or filled with specially shaped blocks of brick combined with mortar. All the missing marble elements were replaced by copies made of a Portland cement based concrete, which is compositionally similar to the original building materials. During the Second World War the monument was heavily damaged by aerial bombardment. For 2 years the Market Gate of Miletus was exposed to weathering, because a brick wall protecting the gate was also destroyed. The deterioration phenomena observed are microcracks, macroscopic fractures, flaking, sugaring, greying, salt efflorescence, calcitic-sinter layers and iron oxide formation etc. The rapid deterioration seems to be due to indoor atmospheric effects, and also by a combination of incompatible materials (e.g. marble, steel, mortar, concrete, bricks etc.). Compatible building materials like mortars or stone replacing materials have to be developed for the planned restoration. The requirements for restoration mortars are chemical-mineralogical and physical-mechanical compatibilities with the existing building materials. In detail this means that the mortar should ensure good bonding properties, adapted strength development and not stain the marble when in direct contact. The favoured mortar was developed with a hydraulic binder based on iron-free white cement and pozzolana based on activated clay. A special limestone and quartz sand mixture was used as an aggregate. The cement was adjusted using chemical additives. Specially designed tests were applied extensively to prove whether the developed mortar is suitable for the restoration of this precious monument.
The use of shale ash in dry mix construction materials
NASA Astrophysics Data System (ADS)
Gulbe, L.; Setina, J.; Juhnevica, I.
2017-10-01
The research was made to determine the use of shale ash usage in dry mix construction materials by replacing part of cement amount. Cement mortar ZM produced by SIA Sakret and two types of shale ashes from Narva Power plant (cyclone ash and electrostatic precipitator ash) were used. Fresh mortar properties, hardened mortar bulk density, thermal conductivity (λ10, dry) (table value) were tested in mortar ZM samples and mortar samples in which 20% of the amount of cement was replaced by ash. Compressive strenght, frost resistance and resistance to sulphate salt solutions were checked. It was stated that the use of electrostatic precipitator ash had a little change of the material properties, but the cyclone ash significantly reduced the mechanical strength of the material.
Stolz, Carina M; Masuero, Angela B
2015-10-01
This study assesses the influence of the granulometric composition of sand, application energy and the superficial tension of substrates on the contact area of rendering mortars. Three substrates with distinct wetting behaviors were selected and mortars were prepared with different sand compositions. Characterization tests were performed on fresh and hardened mortars, as well as the rheological characterization. Mortars were applied to substrates with two different energies. The interfacial area was then digitized with 3D scanner. Results show that variables are all of influence on the interfacial contact in the development area. Furthermore, 3D laser scanning proved to be a good method to contact area measurement. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartz, W., E-mail: wojciech.bartz@ing.uni.wroc.pl; Filar, T.
Optical microscopic observations, scanning electron microscopy and microprobe with energy dispersive X-ray analysis, X-ray diffraction and differential thermal/thermogravimetric analysis allowed detailed characterization of rendering mortars from decorative details (figures of Saints) of a baroque building in Kozuchow (Lubuskie Voivodship, Western Poland). Two separate coats of rendering mortars have been distinguished, differing in composition of their filler. The under coat mortar has filler composed of coarse-grained siliceous sand, whereas the finishing one has much finer grained filler, dominated by a mixture of charcoal and Fe-smelting slag, with minor amounts of quartz grains. Both mortars have air-hardening binder composed of gypsum andmore » micritic calcite, exhibiting microcrystalline structure.« less
Wei, Guo-feng; Fang, Shi-qiang; Zhang, Bing-jian; Wang, Xiao-qi; Li, Zu-guang
2012-08-01
Liesegang patterns in traditional sticky rice-lime mortar undergoing carbonation were investigated by means of FTIR, XRD and SEM. Results indicate that well-developed Liesegang patterns only occur in the mortar prepared with aged lime and sticky rice. The smaller Ca(OH)2 particle size in aged lime and the control of the sticky rice for the crystallization of calcium carbonate lead to the small pores in this mortar. These small pores can make Ca2+ and CO3(2-) highly supersaturated, which explains the reason why Liesegang pattern developed in the sticky rice-aged lime mortar. The formed metastable aragonite proves that Liesegang pattern could be explained based on the post-nucleation theory.
Mechanical Properties and Microstructure of Class C Fly Ash-Based Geopolymer Paste and Mortar
Li, Xueying; Ma, Xinwei; Zhang, Shoujie; Zheng, Enzu
2013-01-01
This paper presents workability, compressive strength and microstructure for geopolymer pastes and mortars made of class C fly ash at mass ratios of water-to-fly ash from 0.30 to 0.35. Fluidity was in the range of 145–173 mm for pastes and 131–136 mm for mortars. The highest strengths of paste and mortar were 58 MPa and 85 MPa when they were cured at 70 °C for 24 h. In XRD patterns, unreacted quartz and some reacted product were observed. SEM examination indicated that reacted product has formed and covered the unreacted particles in the paste and mortar that were consistent with their high strength. PMID:28809222
Corrosion Sensor for Monitoring the Service Condition of Chloride-Contaminated Cement Mortar
Lu, Shuang; Ba, Heng-Jing
2010-01-01
A corrosion sensor for monitoring the corrosion state of cover mortar was developed. The sensor was tested in cement mortar, with and without the addition of chloride to simulate the adverse effects of chloride-contaminated environmental conditions on concrete structures. In brief, a linear polarization resistance method combined with an embeddable reference electrode was utilized to measure the polarization resistance (Rp) using built-in sensor electrodes. Subsequently, electrochemical impedance spectroscopy in the frequency range of 1 kHz to 50 kHz was used to obtain the cement mortar resistance (Rs). The results show that the polarization resistance is related to the chloride content and Rs; ln (Rp) is linearly related to the Rs values in mortar without added chloride. The relationships observed between the Rp of the steel anodes and the resistance of the surrounding cement mortar measured by the corrosion sensor confirms that Rs can indicate the corrosion state of concrete structures. PMID:22319347
Mortar radiocarbon dating: preliminary accuracy evaluation of a novel methodology.
Marzaioli, Fabio; Lubritto, Carmine; Nonni, Sara; Passariello, Isabella; Capano, Manuela; Terrasi, Filippo
2011-03-15
Mortars represent a class of building and art materials that are widespread at archeological sites from the Neolithic period on. After about 50 years of experimentation, the possibility to evaluate their absolute chronology by means of radiocarbon ((14)C) remains still uncertain. With the use of a simplified mortar production process in the laboratory environment, this study shows the overall feasibility of a novel physical pretreatment for the isolation of the atmospheric (14)CO(2) (i.e., binder) signal absorbed by the mortars during their setting. This methodology is based on the assumption that an ultrasonic attack in liquid phase isolates a suspension of binder carbonates from bulk mortars. Isotopic ((13)C and (14)C), % C, X-ray diffractometry (XRD), and scanning electron microscopy (SEM) analyses were performed to characterize the proposed methodology. The applied protocol allows suppression of the fossil carbon (C) contamination originating from the incomplete burning of the limestone during the quick lime production, providing unbiased dating for "laboratory" mortars produced operating at historically adopted burning temperatures.
The application of electrical resistance measurements to water transport in lime-masonry systems
NASA Astrophysics Data System (ADS)
Ball, R. J.; Allen, G. C.; Carter, M. A.; Wilson, M. A.; Ince, C.; El-Turki, A.
2012-03-01
The paper describes an experimental determination of impedance spectroscopy derived resistance measurements to record water transport in lime-masonry systems. It strongly supports the use of Sharp Front theory and Boltzmann's distribution law of statistical thermodynamics to corroborate the data obtained. A novel approach is presented for the application of impedance measurements to the water transport between freshly mixed mortars and clay brick substrates. Once placed, fresh mortar is dewatered by brick and during this time the volume fraction water content of the mortar is reduced. An equation is derived relating this change in water content to the bulk resistance of the mortar. Experimental measurements on hydraulic lime mortars placed in contact with brick prisms confirm the theoretical predictions. Further, the results indicate the time at which dewatering of a mortar bed of given depth is completed. The technique has then potential to be applied for in situ monitoring of dewatering as a means of giving insight into the associated changes in mechanical and chemical properties.
Brancher, Luiza R; Nunes, Maria Fernanda de O; Grisa, Ana Maria C; Pagnussat, Daniel T; Zeni, Mára
2016-01-15
This paper aims to contribute to acoustical comfort in buildings by presenting a study about the polymer waste micronized poly (ethylene vinyl acetate) (EVA) to be used in mortars for impact sound insulation in subfloor systems. The evaluation method included physical, mechanical and morphological properties of the mortar developed with three distinct thicknesses designs (3, 5, and 7 cm) with replacement percentage of the natural aggregate by 10%, 25%, and 50% EVA. Microscopy analysis showed the surface deposition of cement on EVA, with preservation of polymer porosity. The compressive creep test estimated long-term deformation, where the 10% EVA sample with a 7 cm thick mortar showed the lowest percentage deformation of its height. The impact noise test was performed with 50% EVA samples, reaching an impact sound insulation of 23 dB when the uncovered slab was compared with the 7 cm thick subfloor mortar. Polymer waste addition decreased the mortar compressive strength, and EVA displayed characteristics of an influential material to intensify other features of the composite.
Effects of nano-SiO(2) and different ash particle sizes on sludge ash-cement mortar.
Lin, K L; Chang, W C; Lin, D F; Luo, H L; Tsai, M C
2008-09-01
The effects of nano-SiO(2) on three ash particle sizes in mortar were studied by replacing a portion of the cement with incinerated sewage sludge ash. Results indicate that the amount of water needed at standard consistency increased as more nano-SiO(2) was added. Moreover, a reduction in setting time became noticeable for smaller ash particle sizes. The compressive strength of the ash-cement mortar increased as more nano-SiO(2) was added. Additionally, with 2% nano-SiO(2) added and a cure length of 7 days, the compressive strength of the ash-cement mortar with 1 microm ash particle size was about 1.5 times better that of 75microm particle size. Further, nano-SiO(2) functioned to fill pores for ash-cement mortar with different ash particle sizes. However, the effects of this pore-filling varied with ash particle size. Higher amounts of nano-SiO(2) better influenced the ash-cement mortar with larger ash particle sizes.
USDA-ARS?s Scientific Manuscript database
Open surface inlets that connect to subsurface tile drainage systems provide a direct pathway for sediment, nutrients, and agrochemicals to surface waters. This study was conducted to determine whether modifying open inlets by burying them in gravel capped with 30 cm of sandy clay loam soil or in ve...
2008-10-20
CAPE CANAVERAL, Fla. - In Orbiter Processing Facility bay 3 at NASA's Kennedy Space Center in Florida, boundary layer transition, or BLT, tile is being affixed to space shuttle Discovery before its launch on the STS-119 mission in February 2009. The specially modified tiles and instrumentation package will monitor the heating effects of early re-entry boundary layer transition at high mach numbers. These data support analytical modeling and design efforts for both the space shuttles and NASA next-generation spacecraft, the Orion crew exploration vehicle. On the STS-119 mission, Discovery also will carry the S6 truss segment to complete the 361-foot-long backbone of the International Space Station. The truss includes the fourth pair of solar array wings and electronics that convert sunlight to power for the orbiting laboratory. Photo credit: NASA/Tim Jacobs
2008-10-20
CAPE CANAVERAL, Fla. - In Orbiter Processing Facility bay 3 at NASA's Kennedy Space Center in Florida, workers attach boundary layer transition, or BLT, tile to space shuttle Discovery before its launch on the STS-119 mission in February 2009. The specially modified tiles and instrumentation package will monitor the heating effects of early re-entry boundary layer transition at high mach numbers. These data support analytical modeling and design efforts for both the space shuttles and NASA next-generation spacecraft, the Orion crew exploration vehicle. On the STS-119 mission, Discovery also will carry the S6 truss segment to complete the 361-foot-long backbone of the International Space Station. The truss includes the fourth pair of solar array wings and electronics that convert sunlight to power for the orbiting laboratory. Photo credit: NASA/Tim Jacobs
2008-10-20
CAPE CANAVERAL, Fla. - In Orbiter Processing Facility bay 3 at NASA's Kennedy Space Center in Florida, workers attach boundary layer transition, or BLT, tile to space shuttle Discovery before its launch on the STS-119 mission in February 2009. The specially modified tiles and instrumentation package will monitor the heating effects of early re-entry boundary layer transition at high mach numbers. These data support analytical modeling and design efforts for both the space shuttles and NASA next-generation spacecraft, the Orion crew exploration vehicle. On the STS-119 mission, Discovery also will carry the S6 truss segment to complete the 361-foot-long backbone of the International Space Station. The truss includes the fourth pair of solar array wings and electronics that convert sunlight to power for the orbiting laboratory. Photo credit: NASA/Tim Jacobs
2008-10-20
CAPE CANAVERAL, Fla. - In Orbiter Processing Facility bay 3 at NASA's Kennedy Space Center in Florida, workers attach boundary layer transition, or BLT, tile to space shuttle Discovery before its launch on the STS-119 mission in February 2009. The specially modified tiles and instrumentation package will monitor the heating effects of early re-entry boundary layer transition at high mach numbers. These data support analytical modeling and design efforts for both the space shuttles and NASA next-generation spacecraft, the Orion crew exploration vehicle. On the STS-119 mission, Discovery also will carry the S6 truss segment to complete the 361-foot-long backbone of the International Space Station. The truss includes the fourth pair of solar array wings and electronics that convert sunlight to power for the orbiting laboratory. Photo credit: NASA/Tim Jacobs
NASA Astrophysics Data System (ADS)
Baali, L.; Naceri, A.; Rahmouni, Z.; Mehidi, M. W. Noui
This experimental study investigates the possibility to make a mortar with a ternary sand (natural and artificial fine aggregates). This method is utilized to correct the particle size distribution of various sands used in mortar. For this investigation, three sands have been used: a dune sand (DS), a slag sand (SS), and brick sand (BS) at different proportions in mortar. After crushing, the artificial fine aggregate (blast furnace slag and waste brick fine aggregate) was sifted in order to use it as fine aggregate. The effect of the quality and grain size distribution of natural fine aggregate (i.e., DS) and artificial fine aggregates (i.e., SS and BS) on the physical properties of ternary sand confected (density, porosity, fineness modulus, equivalent sand, particle size distribution, water absorption) and properties of fresh and hardened mortar were analysed. In the same way for this study, the physical properties and chemical compositions of DS, SS, BS and cement were investigated. The results obtained show that the mechanical strength on mortar depends of the nature and particle size distribution of sand studied. The reuse of this recycled material (slag blast furnace and waste brick) in the industry would contribute to the protection of the environment. This study shows the potential of this method to make mortar with ternary sand (natural and artificial fine aggreagates) in order to improve the physical properties of sand. Utilising natural and artificial fine aggregates to produce quality mortar should yield significant environmental benefits.
Studies on the reuse of waste printed circuit board as an additive for cement mortar.
Ban, Bong-Chan; Song, Jong-Yoon; Lim, Joong-Yeon; Wang, Soo-Kyoon; An, Kwang-Guk; Kim, Dong-Su
2005-01-01
The recent development in electronic industries has generated a drastic increase in production of printed circuit boards (PCB). Accordingly, the amount of waste PCB from electronic productions and waste electronics and its environmental impact such as soil and groundwater contamination have become a great concern. This study aims to propose a method for reuse of waste PCB as an additive for cement mortar. Although the expansibility of waste PCB powder finer than 0.08 mm in water was observed to be greater than 2.0%, the maximum expansion rates in water for 0.08 to approximately 0.15 and 0.15 to approximately 0.30 mm sized PCB powders were less than 2.0%, which satisfied the necessary condition as an alternative additive for cement mortar in place of sand. The difference in the compressive strength of standard mortar and waste PCB added mortar was observed to be less than 10% and their difference was expected to be smaller after prolonged aging. The durability of waste PCB added cement mortar was also examined through dry/wet conditioning cyclic tests and acidic/alkaline conditioning tests. From the tests, both weight and compressive strength of cement mortar were observed to be recovered with aging. The leaching test for heavy metals from waste PCB added mortar showed that no heavy metal ions such as copper, lead, or cadmium were detected in the leachate, which resulted from fixation effect of the cement hydrates.
NASA Astrophysics Data System (ADS)
Zapała-Sławeta, Justyna; Owsiak, Zdzisława
2017-10-01
Lithium nitrate is known to have the highest potential to inhibit alkali silica reaction in concrete. It is well soluble in water and does not increase the pH of concrete pore solution. The extent to which the alkali silica reaction is mitigated is affected by the amount of the applied lithium ions, exposure conditions and by the kind of reactive aggregate. It is known that some lithium compounds such as lithium carbonate or lithium fluoride, when used in insufficient amount, may increase expansion due to alkali silica reaction. This effect was not detected in the presence of lithium nitrate. The aim of this study was to determine the effect of lithium nitrate on alkali silica reaction in mortars exposed to different conditions. Expansion studies were conducted in accordance with the accelerated mortar bar test (ASTM C1260) and the standard mortar bar test (ASTM C227). It was observed that the long-term expansion results are different from the values obtained in the accelerated mortar bar test. Lithium nitrate does not reduce ASR-induced expansion when mortars are stored under conditions specified in ASTM C 227. The microstructure of the mortar samples exposed to different conditions was examined and X-ray microanalysis was performed. The microstructure and compositions of the alkali-silica reaction products varied. The amount of alkali silica gel in mortars with lithium nitrate in which the expansion was high was greater than that in the mortar bars tested by accelerated method.
DOT National Transportation Integrated Search
2006-01-01
The air-void systems produced by two commercially available air-entraining admixtures (AEA), one a vinsol resin formulation and the other a tall oil formulation, were studied in mortars. Mortars were composed of four different portland cements and tw...
NASA Astrophysics Data System (ADS)
Kabiri Rahani, Ehsan
Condition based monitoring of Thermal Protection Systems (TPS) is necessary for safe operations of space shuttles when quick turn-around time is desired. In the current research Terahertz radiation (T-ray) has been used to detect mechanical and heat induced damages in TPS tiles. Voids and cracks inside the foam tile are denoted as mechanical damage while property changes due to long and short term exposures of tiles to high heat are denoted as heat induced damage. Ultrasonic waves cannot detect cracks and voids inside the tile because the tile material (silica foam) has high attenuation for ultrasonic energy. Instead, electromagnetic terahertz radiation can easily penetrate into the foam material and detect the internal voids although this electromagnetic radiation finds it difficult to detect delaminations between the foam tile and the substrate plate. Thus these two technologies are complementary to each other for TPS inspection. Ultrasonic and T-ray field modeling in free and mounted tiles with different types of mechanical and thermal damages has been the focus of this research. Shortcomings and limitations of FEM method in modeling 3D problems especially at high-frequencies has been discussed and a newly developed semi-analytical technique called Distributed Point Source Method (DPSM) has been used for this purpose. A FORTRAN code called DPSM3D has been developed to model both ultrasonic and electromagnetic problems using the conventional DPSM method. This code is designed in a general form capable of modeling a variety of geometries. DPSM has been extended from ultrasonic applications to electromagnetic to model THz Gaussian beams, multilayered dielectrics and Gaussian beam-scatterer interaction problems. Since the conventional DPSM has some drawbacks, to overcome it two modification methods called G-DPSM and ESM have been proposed. The conventional DPSM in the past was only capable of solving time harmonic (frequency domain) problems. Time history was obtained by FFT (Fast Fourier Transform) algorithm. In this research DPSM has been extended to model DPSM transient problems without using FFT. This modified technique has been denoted as t-DPSM. Using DPSM, scattering of focused ultrasonic fields by single and multiple cavities in fluid & solid media is studied. It is investigated when two cavities in close proximity can be distinguished and when it is not possible. A comparison between the radiation forces generated by the ultrasonic energies reflected from two small cavities versus a single big cavity is also carried out.
Simple Analysis of Historical Lime Mortars
ERIC Educational Resources Information Center
Pires, Joa~o
2015-01-01
A laboratory experiment is described in which a simple characterization of a historical lime mortar is made by the determination of its approximate composition by a gravimetric method. Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) are also used for the qualitative characterization of the lime mortar components. These…
24 CFR 3285.306 - Design procedures for concrete block piers.
Code of Federal Regulations, 2014 CFR
2014-04-01
... top to the bottom of the pier must not exceed one-half inch. (5) Mortar is not required, unless... not exceeded. Mortar is not required for concrete block piers, unless otherwise specified in the..., in accordance with acceptable engineering practice. Mortar is not required for concrete block piers...
24 CFR 3285.306 - Design procedures for concrete block piers.
Code of Federal Regulations, 2012 CFR
2012-04-01
... top to the bottom of the pier must not exceed one-half inch. (5) Mortar is not required, unless... not exceeded. Mortar is not required for concrete block piers, unless otherwise specified in the..., in accordance with acceptable engineering practice. Mortar is not required for concrete block piers...
24 CFR 3285.306 - Design procedures for concrete block piers.
Code of Federal Regulations, 2011 CFR
2011-04-01
... top to the bottom of the pier must not exceed one-half inch. (5) Mortar is not required, unless... not exceeded. Mortar is not required for concrete block piers, unless otherwise specified in the..., in accordance with acceptable engineering practice. Mortar is not required for concrete block piers...
24 CFR 3285.306 - Design procedures for concrete block piers.
Code of Federal Regulations, 2013 CFR
2013-04-01
... top to the bottom of the pier must not exceed one-half inch. (5) Mortar is not required, unless... not exceeded. Mortar is not required for concrete block piers, unless otherwise specified in the..., in accordance with acceptable engineering practice. Mortar is not required for concrete block piers...
Comparing the use of sewage sludge ash and glass powder in cement mortars.
Chen, Zhen; Poon, Chi Sun
2017-06-01
This study explored the suitability of using sewage sludge ash (SSA) and mixed-colored glass powder (MGP) as construction materials in cement mortars. Positive findings from this study may help promote the recycling of waste SSA and MGP in construction works. The results indicated that the SSA decreased while MGP improved the mortar workability. The SSA exhibited very low pozzolanic activity, but the cement mortar prepared with 20% SSA yielded strength values slightly superior to those of the glass mortars due to its water absorption ability. MGP can serve as a pozzolan and when 20% of cement was replaced by MGP, apparent compressive strength gains were found at later curing ages. The SSA could be used to mitigate ASR expansion while the MGP was superior in resisting drying shrinkage.
A Study of Array Direction HDPE Fiber Reinforced Mortar
NASA Astrophysics Data System (ADS)
Kamsuwan, Trithos
2018-02-01
This paper presents the effect of array direction HDPE fiber using as the reinforced material in cement mortar. The experimental data were created reference to the efficiency of using HDPE fiber reinforced on the tensile properties of cement mortar with different high drawn ratio of HDPE fibers. The fiber with the different drawn ratio 25x (d25 with E xx), and 35x (d35 with E xx) fiber volume fraction (0%, 1.0%, 1.5%) and fiber length 20 mm. were used to compare between random direction and array direction of HDPE fibers and the stress - strain displacement relationship behavior of HDPE short fiber reinforced cement mortar were investigated. It was found that the array direction with HDPE fibers show more improved in tensile strength and toughness when reinforced in cement mortar.
Effect of water curing duration on strength behaviour of portland composite cement (PCC) mortar
NASA Astrophysics Data System (ADS)
Caronge, M. A.; Tjaronge, M. W.; Hamada, H.; Irmawaty, R.
2017-11-01
Cement manufacturing of Indonesia has been introduced Portland Composite Cement (PCC) to minimize the rising production cost of cement which contains 80% clinker and 20% mineral admixture. A proper curing is very important when the cement contains mineral admixture materials. This paper reports the results of an experimental study conducted to evaluate the effect of water curing duration on strength behaviour of PCC mortar. Mortar specimens with water to cement ratio of (W/C) 0.5 were casted. Compressive strength, flexural strength and concrete resistance were tested at 7, 28 and 91 days cured water. The results indicated that water curing duration is essential to continue the pozzolanic reaction in mortar which contributes to the development of strength of mortar made with PCC.
Effects of surfactants on the properties of mortar containing styrene/methacrylate superplasticizer.
Negim, El-Sayed; Kozhamzharova, Latipa; Khatib, Jamal; Bekbayeva, Lyazzat; Williams, Craig
2014-01-01
The physical and mechanical properties of mortar containing synthetic cosurfactants as air entraining agent are investigated. The cosurfactants consist of a combination of 2% dodecyl benzene sodium sulfonate (DBSS) and either 1.5% polyvinyl alcohol (PVA) or 1.5% polyoxyethylene glycol monomethyl ether (POE). Also these cosurfactants were used to prepare copolymers latex: styrene/butyl methacrylate (St/BuMA), styrene/methyl methacrylate (St/MMA), and styrene/glycidyl methacrylate (St/GMA), in order to study their effects on the properties of mortar. The properties of mortar examined included flow table, W/C ratio, setting time, water absorption, compressive strength, and combined water. The results indicate that the latex causes improvement in mortar properties compared with cosurfactants. Also polymer latex containing DBSS/POE is more effective than that containing DBSS/PVA.
NASA Technical Reports Server (NTRS)
Pleasants, J. E.
1973-01-01
Mortars are used as one method for ejecting parachutes into the airstream to decelerate spacecraft and aircraft pilot escape modules and to effect spin recovery of the aircraft. An approach to design of mortars in the class that can accommodate parachutes in the 20- to 55-foot-diameter size is presented. Parachute deployment considerations are discussed. Comments are made on the design of a power unit, mortar tube, cover, and sabot. Propellant selection and breech characteristics and size are discussed. A method of estimating hardware weights and reaction load is presented. In addition, some aspects of erodible orifices are given as well as comments concerning ambient effects on performance. This paper collates data and experience from design and flight qualification of four mortar systems, and provides pertinent estimations that should be of interest on programs considering parachute deployment.
Effects of Surfactants on the Properties of Mortar Containing Styrene/Methacrylate Superplasticizer
Negim, El-Sayed; Kozhamzharova, Latipa; Khatib, Jamal; Bekbayeva, Lyazzat; Williams, Craig
2014-01-01
The physical and mechanical properties of mortar containing synthetic cosurfactants as air entraining agent are investigated. The cosurfactants consist of a combination of 2% dodecyl benzene sodium sulfonate (DBSS) and either 1.5% polyvinyl alcohol (PVA) or 1.5% polyoxyethylene glycol monomethyl ether (POE). Also these cosurfactants were used to prepare copolymers latex: styrene/butyl methacrylate (St/BuMA), styrene/methyl methacrylate (St/MMA), and styrene/glycidyl methacrylate (St/GMA), in order to study their effects on the properties of mortar. The properties of mortar examined included flow table, W/C ratio, setting time, water absorption, compressive strength, and combined water. The results indicate that the latex causes improvement in mortar properties compared with cosurfactants. Also polymer latex containing DBSS/POE is more effective than that containing DBSS/PVA. PMID:24955426
Ling, Tung-Chai; Poon, Chi-Sun; Lam, Wai-Shung; Chan, Tai-Po; Fung, Karl Ka-Lok
2012-01-15
Recycled glass derived from cathode ray tubes (CRT) glass with a specific gravity of approximately 3.0 g/cm(3) can be potentially suitable to be used as fine aggregate for preparing cement mortars for X-ray radiation-shielding applications. In this work, the effects of using crushed glass derived from crushed CRT funnel glass (both acid washed and unwashed) and crushed ordinary beverage container glass at different replacement levels (0%, 25%, 50%, 75% and 100% by volume) of sand on the mechanical properties (strength and density) and radiation-shielding performance of the cement-sand mortars were studied. The results show that all the prepared mortars had compressive strength values greater than 30 MPa which are suitable for most building applications based on ASTM C 270. The density and shielding performance of the mortar prepared with ordinary crushed (lead-free) glass was similar to the control mortar. However, a significant enhancement of radiation-shielding was achieved when the CRT glasses were used due to the presence of lead in the glass. In addition, the radiation shielding contribution of CRT glasses was more pronounced when the mortar was subject to a higher level of X-ray energy. Copyright © 2011 Elsevier B.V. All rights reserved.
Concretes and mortars with waste paper industry: Biomass ash and dregs.
Martínez-Lage, Isabel; Velay-Lizancos, Miriam; Vázquez-Burgo, Pablo; Rivas-Fernández, Marcos; Vázquez-Herrero, Cristina; Ramírez-Rodríguez, Antonio; Martín-Cano, Miguel
2016-10-01
This article describes a study on the viability of using waste from the paper industry: biomass boiler ash and green liquor dregs to fabricate mortars and concretes. Both types of ash were characterized by obtaining their chemical and mineralogical composition, their organic matter content, granulometry, adsorption and other common tests for construction materials. Seven different mortars were fabricated, one for reference made up of cement, sand, and water, three in which 10, 20, or 30% of the cement was replaced by biomass ash, and three others in which 10, 20, or 30% of the cement was replaced with dregs. Test specimens were fabricated with these mortars to conduct flexural and compression tests. Flexural strength is reduced for all the mortars studied. Compressive strength increases for the mortars fabricated with biomass ash and decreases for the mortar with dregs. Finally, 5 concretes were made, one of them as a reference (neither biomass ash nor dregs added), two of them with replacements of 10 and 20% of biomass ash instead of cement and another two with replacements of 10 and 20% of dregs instead of cement. The compressive and tensile splitting strength increase when a 10% of ash is replaced and decrease in all the other cases. The modulus of elasticity always decreases. Copyright © 2016 Elsevier Ltd. All rights reserved.
Koo, Bon-Min; Kim, Jang-Ho Jay; Kim, Tae-Kyun; Kim, Byung-Yun
2015-01-01
In this study, the amount of cement used in a concrete mix is minimized to reduce the toxic effects on users by adjusting the concrete mixture contents. The reduction of cement is achieved by using various admixtures (ground granulated blast-furnace slag, flyash, ordinary Portland cement, and activated Hwangtoh powder). To apply the mix to construction, material property tests such as compressive strength, slump, and pH are performed. Preliminary experimental results showed that the Hwangtoh concrete could be used as a healthy construction material. Also, the health issues and effects of Hwangtoh mortar are quantitatively evaluated through an animal clinical test. Mice are placed in Hwangtoh mortar and cement mortar cages to record their activity. For the test, five cages are made with Hwangtoh and ordinary Portland cement mortar floors, using Hwangtoh powder replacement ratios of 20%, 40%, 60%, and 80% of the normal cement mortar mixing ratio, and two cages are made with Hwangtoh mortar living quarters. The activity parameter measurements included weight, food intake, water intake, residential space selection, breeding activity, and aggression. The study results can be used to evaluate the benefits of using Hwangtoh as a cement replacing admixture for lifestyle, health and sustainability. PMID:28793563
Koo, Bon-Min; Kim, Jang-Ho Jay; Kim, Tae-Kyun; Kim, Byung-Yun
2015-09-17
In this study, the amount of cement used in a concrete mix is minimized to reduce the toxic effects on users by adjusting the concrete mixture contents. The reduction of cement is achieved by using various admixtures (ground granulated blast-furnace slag, flyash, ordinary Portland cement, and activated Hwangtoh powder). To apply the mix to construction, material property tests such as compressive strength, slump, and pH are performed. Preliminary experimental results showed that the Hwangtoh concrete could be used as a healthy construction material. Also, the health issues and effects of Hwangtoh mortar are quantitatively evaluated through an animal clinical test. Mice are placed in Hwangtoh mortar and cement mortar cages to record their activity. For the test, five cages are made with Hwangtoh and ordinary Portland cement mortar floors, using Hwangtoh powder replacement ratios of 20%, 40%, 60%, and 80% of the normal cement mortar mixing ratio, and two cages are made with Hwangtoh mortar living quarters. The activity parameter measurements included weight, food intake, water intake, residential space selection, breeding activity, and aggression. The study results can be used to evaluate the benefits of using Hwangtoh as a cement replacing admixture for lifestyle, health and sustainability.
Directed nucleation assembly of DNA tile complexes for barcode-patterned lattices
NASA Astrophysics Data System (ADS)
Yan, Hao; Labean, Thomas H.; Feng, Liping; Reif, John H.
2003-07-01
The programmed self-assembly of patterned aperiodic molecular structures is a major challenge in nanotechnology and has numerous potential applications for nanofabrication of complex structures and useful devices. Here we report the construction of an aperiodic patterned DNA lattice (barcode lattice) by a self-assembly process of directed nucleation of DNA tiles around a scaffold DNA strand. The input DNA scaffold strand, constructed by ligation of shorter synthetic oligonucleotides, provides layers of the DNA lattice with barcode patterning information represented by the presence or absence of DNA hairpin loops protruding out of the lattice plane. Self-assembly of multiple DNA tiles around the scaffold strand was shown to result in a patterned lattice containing barcode information of 01101. We have also demonstrated the reprogramming of the system to another patterning. An inverted barcode pattern of 10010 was achieved by modifying the scaffold strands and one of the strands composing each tile. A ribbon lattice, consisting of repetitions of the barcode pattern with expected periodicity, was also constructed by the addition of sticky ends. The patterning of both classes of lattices was clearly observable via atomic force microscopy. These results represent a step toward implementation of a visual readout system capable of converting information encoded on a 1D DNA strand into a 2D form readable by advanced microscopic techniques. A functioning visual output method would not only increase the readout speed of DNA-based computers, but may also find use in other sequence identification techniques such as mutation or allele mapping.
Directed nucleation assembly of DNA tile complexes for barcode-patterned lattices.
Yan, Hao; LaBean, Thomas H; Feng, Liping; Reif, John H
2003-07-08
The programmed self-assembly of patterned aperiodic molecular structures is a major challenge in nanotechnology and has numerous potential applications for nanofabrication of complex structures and useful devices. Here we report the construction of an aperiodic patterned DNA lattice (barcode lattice) by a self-assembly process of directed nucleation of DNA tiles around a scaffold DNA strand. The input DNA scaffold strand, constructed by ligation of shorter synthetic oligonucleotides, provides layers of the DNA lattice with barcode patterning information represented by the presence or absence of DNA hairpin loops protruding out of the lattice plane. Self-assembly of multiple DNA tiles around the scaffold strand was shown to result in a patterned lattice containing barcode information of 01101. We have also demonstrated the reprogramming of the system to another patterning. An inverted barcode pattern of 10010 was achieved by modifying the scaffold strands and one of the strands composing each tile. A ribbon lattice, consisting of repetitions of the barcode pattern with expected periodicity, was also constructed by the addition of sticky ends. The patterning of both classes of lattices was clearly observable via atomic force microscopy. These results represent a step toward implementation of a visual readout system capable of converting information encoded on a 1D DNA strand into a 2D form readable by advanced microscopic techniques. A functioning visual output method would not only increase the readout speed of DNA-based computers, but may also find use in other sequence identification techniques such as mutation or allele mapping.
PEO Ammunition Systems Portfolio Book 2012-2013
2011-02-02
assembly. Aluminum ogive contains firing pin, a rubber anti-creep spring and M550 fuze escapement assembly and is threaded to projectile body...51 The Mortar Weapons and Fire Control Family M95/M96 Mortar Fire Control System (MFCS) – Mounted...52 M150/M151 Mortar Fire Control System Dismounted (MFCS-D
Brancher, Luiza R.; Nunes, Maria Fernanda de O.; Grisa, Ana Maria C.; Pagnussat, Daniel T.; Zeni, Mára
2016-01-01
This paper aims to contribute to acoustical comfort in buildings by presenting a study about the polymer waste micronized poly (ethylene vinyl acetate) (EVA) to be used in mortars for impact sound insulation in subfloor systems. The evaluation method included physical, mechanical and morphological properties of the mortar developed with three distinct thicknesses designs (3, 5, and 7 cm) with replacement percentage of the natural aggregate by 10%, 25%, and 50% EVA. Microscopy analysis showed the surface deposition of cement on EVA, with preservation of polymer porosity. The compressive creep test estimated long-term deformation, where the 10% EVA sample with a 7 cm thick mortar showed the lowest percentage deformation of its height. The impact noise test was performed with 50% EVA samples, reaching an impact sound insulation of 23 dB when the uncovered slab was compared with the 7 cm thick subfloor mortar. Polymer waste addition decreased the mortar compressive strength, and EVA displayed characteristics of an influential material to intensify other features of the composite. PMID:28787851
Use of waste brick as a partial replacement of cement in mortar.
Naceri, Abdelghani; Hamina, Makhloufi Chikouche
2009-08-01
The aim of this study is to investigate the use of waste brick as a partial replacement for cement in the production of cement mortar. Clinker was replaced by waste brick in different proportions (0%, 5%, 10%, 15% and 20%) by weight for cement. The physico-chemical properties of cement at anhydrous state and the hydrated state, thus the mechanical strengths (flexural and compressive strengths after 7, 28 and 90 days) for the mortar were studied. The microstructure of the mortar was investigated using scanning electron microscopy (SEM), the mineralogical composition (mineral phases) of the artificial pozzolan was investigated by the X-ray diffraction (XRD) and the particle size distributions was obtained from laser granulometry (LG) of cements powders used in this study. The results obtained show that the addition of artificial pozzolan improves the grinding time and setting times of the cement, thus the mechanical characteristics of mortar. A substitution of cement by 10% of waste brick increased mechanical strengths of mortar. The results of the investigation confirmed the potential use of this waste material to produce pozzolanic cement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsukada, K., E-mail: tsukada@cc.okayama-u.ac.jp; Kusaka, T.; Saari, M. M.
2014-05-07
We developed a magnetic measurement method to measure the moisture content and hydration condition of mortar as a magnetic mixture material. Mortar is a mixture of Portland cement, sand, and water, and these materials exhibit different magnetic properties. The magnetization–magnetic field curves of these components and of mortars with different moisture contents were measured, using a specially developed high-temperature-superconductor superconducting quantum interference device. Using the differences in magnetic characteristics, the moisture content of mortar was measured at the ferromagnetic saturation region over 250 mT. A correlation between magnetic susceptibility and moisture content was successfully established. After Portland cement and water aremore » mixed, hydration begins. At the early stage of the hydration/gel, magnetization strength increased over time. To investigate the magnetization change, we measured the distribution between bound and free water in the mortar in the early stage by magnetic resonance imaging (MRI). The MRI results suggest that the amount of free water in mortar correlates with the change in magnetic susceptibility.« less
Use of waste brick as a partial replacement of cement in mortar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naceri, Abdelghani; Hamina, Makhloufi Chikouche
2009-08-15
The aim of this study is to investigate the use of waste brick as a partial replacement for cement in the production of cement mortar. Clinker was replaced by waste brick in different proportions (0%, 5%, 10%, 15% and 20%) by weight for cement. The physico-chemical properties of cement at anhydrous state and the hydrated state, thus the mechanical strengths (flexural and compressive strengths after 7, 28 and 90 days) for the mortar were studied. The microstructure of the mortar was investigated using scanning electron microscopy (SEM), the mineralogical composition (mineral phases) of the artificial pozzolan was investigated by themore » X-ray diffraction (XRD) and the particle size distributions was obtained from laser granulometry (LG) of cements powders used in this study. The results obtained show that the addition of artificial pozzolan improves the grinding time and setting times of the cement, thus the mechanical characteristics of mortar. A substitution of cement by 10% of waste brick increased mechanical strengths of mortar. The results of the investigation confirmed the potential use of this waste material to produce pozzolanic cement.« less
Additives for cement compositions based on modified peat
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kopanitsa, Natalya, E-mail: kopanitsa@mail.ru; Sarkisov, Yurij, E-mail: sarkisov@tsuab.ru; Gorshkova, Aleksandra, E-mail: kasatkina.alexandra@gmail.com
High quality competitive dry building mixes require modifying additives for various purposes to be included in their composition. There is insufficient amount of quality additives having stable properties for controlling the properties of cement compositions produced in Russia. Using of foreign modifying additives leads to significant increasing of the final cost of the product. The cost of imported modifiers in the composition of the dry building mixes can be up to 90% of the material cost, depending on the composition complexity. Thus, the problem of import substitution becomes relevant, especially in recent years, due to difficult economic situation. The articlemore » discusses the possibility of using local raw materials as a basis for obtaining dry building mixtures components. The properties of organo-mineral additives for cement compositions based on thermally modified peat raw materials are studied. Studies of the structure and composition of the additives are carried out by physicochemical research methods: electron microscopy and X-ray analysis. Results of experimental research showed that the peat additives contribute to improving of cement-sand mortar strength and hydrophysical properties.« less
NASA Astrophysics Data System (ADS)
Tang, Qiang; Zhang, Ya-mei; Zhang, Pei-gen; Shi, Jin-jie; Tian, Wu-bian; Sun, Zheng-ming
2017-10-01
Waste shell stacking with odor and toxicity is a serious hazard to our living environment. To make effective use of the natural resources, the shell powder was applied as a filler of outdoor thermal insulation coatings. Sodium stearate (SS) was used to modify the properties of shell powder to reduce its agglomeration and to increase its compatibility with the emulsion. The oil absorption rate and the spectrum reflectance of the shell powder show that the optimized content of SS as a modifier is 1.5wt%. The total spectrum reflectance of the coating made with the shell powder that is modified at this optimum SS content is 9.33% higher than that without any modification. At the optimum SS content of 1.5wt%, the thermal insulation of the coatings is improved by 1.0°C for the cement mortar board and 1.6°C for the steel plate, respectively. The scouring resistance of the coating with the 1.5wt% SS-modified shell powder is three times that of the coating without modification.
Experimental study on compressive strength of sediment brick masonry
NASA Astrophysics Data System (ADS)
Woen, Ean Lee; Malek, Marlinda Abdul; Mohammed, Bashar S.; Chao-Wei, Tang; Tamunif, Muhammad Thaqif
2018-02-01
The effects of pre-wetted unit bricks, mortar type and slenderness ratio of prisms on the compressive strength and failure mode of newly developed sediment brick have been evaluated and compared to clay brick and cement-sand bricks. The results show that pre-wetted sediment brick masonry exhibits higher compressive strength of up to 20% compared to the dry sediment masonry. Using cement-lime mortar leads to lower compressive strength compared to cement mortar. However, the sediment brick masonry with the cement lime mortar exhibit higher compressive strength in comparison with cement mortar masonry. More of diagonal shear cracks have been observed in the failure mode of the sediment bricks masonry compared to clay and cement-sand bricks masonry that show mostly vertical cracks and crushing. The sediment unit bricks display compressive strength in between clay and cement-sand bricks.
New System of Shrinkage Measurement through Cement Mortars Drying
Morón, Carlos; Saiz, Pablo; Ferrández, Daniel; García-Fuentevilla, Luisa
2017-01-01
Cement mortar is used as a conglomerate in the majority of construction work. There are multiple variants of cement according to the type of aggregate used in its fabrication. One of the major problems that occurs while working with this type of material is the excessive loss of moisture during cement hydration (setting and hardening), known as shrinkage, which provokes a great number of construction pathologies that are difficult to repair. In this way, the design of a new sensor able to measure the moisture loss of mortars at different age levels is useful to establish long-term predictions concerning mortar mass volume loss. The purpose of this research is the design and fabrication of a new capacitive sensor able to measure the moisture of mortars and to relate it with the shrinkage. PMID:28272297
Natural and synthetic polymers in fabric and home care applications
NASA Astrophysics Data System (ADS)
Paderes, Monissa; Ahirwal, Deepak; Fernández Prieto, Susana
2017-07-01
Polymers can be tailored to provide different benefits in Fabric & Home Care formulations depending on the monomers and modifications used, such as avoiding dye transfer inhibition in the wash, modifying the surface of tiles or increasing the viscosity and providing suspension properties to consumer products. Specifically, the rheology modification properties of synthetic and natural polymers are discussed in this chapter. The choice of a polymeric rheology modifier will depend on the formulation ingredients (charges, functional groups), the type and the amount of surfactants, the pH and the desired rheology modification. Natural polymeric rheology modifiers have been traditionally used in the food industry, being xanthan gum one of the most well-known ones. On the contrary, synthetic rheology modifiers are preferably used in paints & coats, textile printing and cleaning products.
NASA Astrophysics Data System (ADS)
Prasanna Venkatesh, G. J.; Vivek, S. S.; Dhinakaran, G.
2017-07-01
In the majority of civil engineering applications, the basic building blocks were the masonry units. Those masonry units were developed as a monolithic structure by plastering process with the help of binding agents namely mud, lime, cement and their combinations. In recent advancements, the mortar study plays an important role in crack repairs, structural rehabilitation, retrofitting, pointing and plastering operations. The rheology of mortar includes flowable, passing and filling properties which were analogous with the behaviour of self compacting concrete. In self compacting (SC) mortar cubes, the cement was replaced by mineral admixtures namely silica fume (SF) from 5% to 20% (with an increment of 5%), metakaolin (MK) from 10% to 30% (with an increment of 10%) and ground granulated blast furnace slag (GGBS) from 25% to 75% (with an increment of 25%). The ratio between cement and fine aggregate was kept constant as 1: 2 for all normal and self compacting mortar mixes. The accelerated curing namely electric oven curing with the differential temperature of 128°C for the period of 4 hours was adopted. It was found that the compressive strength obtained from the normal and electric oven method of curing was higher for self compacting mortar cubes than normal mortar cube. The cement replacement by 15% SF, 20% MK and 25%GGBS obtained higher strength under both curing conditions.
Kirgiz, Mehmet Serkan
2014-01-01
Effects of chemical compositions changes of blended-cement pastes (BCPCCC) on some strength gains of blended cement mortars (BCMSG) were monitored in order to gain a better understanding for developments of hydration and strength of blended cements. Blended cements (BC) were prepared by blending of 5% gypsum and 6%, 20%, 21%, and 35% marble powder (MP) or 6%, 20%, 21%, and 35% brick powder (BP) for CEMI42.5N cement clinker and grinding these portions in ball mill at 30 (min). Pastes and mortars, containing the MP-BC and the BP-BC and the reference cement (RC) and tap water and standard mortar sand, were also mixed and they were cured within water until testing. Experiments included chemical compositions of pastes and compressive strengths (CS) and flexural strengths (FS) of mortars were determined at 7th-day, 28th-day, and 90th-day according to TS EN 196-2 and TS EN 196-1 present standards. Experimental results indicated that ups and downs of silica oxide (SiO2), sodium oxide (Na2O), and alkali at MP-BCPCC and continuously rising movement of silica oxide (SiO2) at BP-BCPCC positively influenced CS and FS of blended cement mortars (BCM) in comparison with reference mortars (RM) at whole cure days as MP up to 6% or BP up to 35% was blended for cement. PMID:24587737
Properties of wastepaper sludge in geopolymer mortars for masonry applications.
Yan, Shiqin; Sagoe-Crentsil, Kwesi
2012-12-15
This paper presents the results of an investigation into the use of wastepaper sludge in geopolymer mortar systems for manufacturing construction products. The investigation was driven by the increasing demand for reuse options in paper-recycling industry. Both fresh and hardened geopolymer mortar properties are evaluated for samples incorporating dry wastepaper sludge, and the results indicate potential end-use benefits in building product manufacture. Addition of wastepaper sludge to geopolymer mortar reduces flow properties, primarily due to dry sludge absorbing water from the binder mix. The average 91-day compressive strength of mortar samples incorporating 2.5 wt% and 10 wt% wastepaper sludge respectively retained 92% and 52% of the reference mortar strength. However, contrary to the normal trend of increasing drying shrinkage with increasing paper sludge addition to Portland cement matrices, the corresponding geopolymer drying shrinkage decreased by 34% and 64%. Equally important, the water absorption of hardened geopolymer mortar decreased with increasing paper sludge content at ambient temperatures, providing good prospects of overall potential for wastepaper sludge incorporation in the production of building and masonry elements. The results indicate that, despite its high moisture absorbance due to the organic matter and residual cellulose fibre content, wastepaper sludge appears compatible with geopolymer chemistry, and hence serves as a potential supplementary additive to geopolymer cementitious masonry products. Copyright © 2012 Elsevier Ltd. All rights reserved.
Saikia, Nabajyoti; Cornelis, Geert; Mertens, Gilles; Elsen, Jan; Van Balen, Koenraad; Van Gerven, Tom; Vandecasteele, Carlo
2008-06-15
Three types of wastes, metallurgical slag from Pb production (SLG), the sand-sized (0.1-2 mm) fraction of MSWI bottom ash from a grate furnace (SF), and boiler and fly ash from a fluidised bed incinerator (BFA), were characterized and used to replace the fine aggregate during preparation of cement mortar. The chemical and mineralogical behaviour of these wastes along with the reactivities of the wastes with lime and the hydration behaviour of ordinary Portland cement paste with and without these wastes added were evaluated by various chemical and instrumental techniques. The compressive strengths of the cement mortars containing waste as a partial substitution of fine aggregates were also assessed. Finally, leaching studies of the wastes and waste containing cement mortars were conducted. SLG addition does not show any adverse affect during the hydration of cement, or on the compressive strengths behaviours of mortars. Formation of expansive products like ettringite, aluminium hydroxide and H2 gas due to the reaction of some constituents of BFA and SF with alkali creates some cracks in the paste as well as in the cement mortars, which lower the compressive strength of the cement mortars. However, utilization of all materials in cement-based application significantly improves the leaching behaviour of the majority of the toxic elements compared to the waste as such.
Ling, Tung-Chai; Poon, Chi-Sun
2011-08-30
Rapid advances in the electronic industry led to an excessive amount of early disposal of older electronic devices such as computer monitors and old televisions (TV) before the end of their useful life. The management of cathode ray tubes (CRT), which have been a key component in computer monitors and TV sets, has become a major environmental problem worldwide. Therefore, there is a pressing need to develop sustainable alternative methods to manage hazardous CRT glass waste. This study assesses the feasibility of utilizing CRT glass as a substitute for natural aggregates in cement mortar. The CRT glass investigated was an acid-washed funnel glass of dismantled CRT from computer monitors and old TV sets. The mechanical properties of mortar mixes containing 0%, 25%, 50%, 75% and 100% of CRT glass were investigated. The potential of the alkali-silica reaction (ASR) and leachability of lead were also evaluated. The results confirmed that the properties of the mortar mixes prepared with CRT glass was similar to that of the control mortar using sand as fine aggregate, and displayed innocuous behaviour in the ASR expansion test. Incorporating CRT glass in cement mortar successfully prevented the leaching of lead. We conclude that it is feasible to utilize CRT glass in cement mortar production. Copyright © 2011 Elsevier B.V. All rights reserved.
Modeling of Carbon Mortar Color Expression Using Artificial Neural Network.
Jang, Hong-Seok; Kim, Ju-Hee; Shuli, Xing; So, Seung-Young
2018-09-01
Colored concrete uses pigments and white Portland cement (WPC) to perform decorative functions together with structural function. Pigments are used in permanent coloring of concrete with colors different from the natural color of the cement or the aggregates with mixing WPC. In this study, an artificial neural networks study was carried out to predict the color evaluation of black mortar using pigment and carbon black. A data set of a laboratory work, in which a total of 9 mortars were produced, was utilized in the Artificial Neural Networks (ANNs) study. The mortar mixture parameters were nine different pigment and carbon black ratios. Each mortar was measured at ten locations on the surface and averaged. Color can be evaluated by measurements of tristimulus values L* , a* and b* , represented in the chromatic space CIELAB. The L* value is a measure of luminosity (0 darkness), from completely opaque (0) to completely transparent (100); a* is a measure of redness (-a* greenness) and b* of yellowness (-b* blueness). ANN model is constructed, trained and tested using these data. The data used in the ANN model are arranged in a format of three input parameters that cover the pigment, carbon black and WPC and, an output parameter which is the color parameters of the black colored mortar. The results showed that ANN can be an alternative approach for the predicting the color parameters using mortar ingredients as input parameters.
Assessing the effects of UVA photocatalysis on soot-coated TiO2-containing mortars.
De la Rosa, José M; Miller, Ana Z; Pozo-Antonio, J Santiago; González-Pérez, José A; Jiménez-Morillo, Nicasio T; Dionisio, Amelia
2017-12-15
The deposition of soot on building surfaces darkens their colour and leads to undesirable black crusts, which are one of the most serious problems on the conservation of built cultural heritage. As a preventive strategy, self-cleaning systems based on the use of titanium dioxide (TiO 2 ) coatings have been employed on building materials for degrading organic compounds deposited on building surfaces, improving their durability and performance. In this study, the self-cleaning effect of TiO 2 -containing mortars coated with diesel soot has been appraised under laboratory conditions. The mortar samples were manufactured using lime putty and two different doses of TiO 2 (2.5% and 5%). The lime mortars were then coated with diesel engine soot and irradiated with ultraviolet A (UVA) illumination for 30days. The photocatalytic efficiency was evaluated by visual inspection, field emission scanning electron microscopy (FESEM) and colour spectrophotometry. Changes in the chemical composition of the soot particles (including persistent organic pollutants) were assessed by analytical pyrolysis (Py-GC/MS) and solid state 13 C NMR spectroscopy. The FESEM and colour spectrophotometry revealed that the soot-coated TiO 2 -containing mortars promoted a self-cleaning effect after UVA irradiation. The combination of analytical pyrolysis and 13 C solid state NMR showed that the UVA irradiation caused the cracking of polycyclic aromatic structures and n-alkyl compounds of the diesel soot and its transformation into methyl polymers. Our findings also revealed that the inclusion of TiO 2 in the lime mortar formulations catalysed these transformations promoting the self-cleaning of the soot-stained mortars. The combined action of TiO 2 and UVA irradiation is a promising proxy to clean lime mortars affected by soot deposition. Copyright © 2017 Elsevier B.V. All rights reserved.
Programmable DNA tile self-assembly using a hierarchical sub-tile strategy.
Shi, Xiaolong; Lu, Wei; Wang, Zhiyu; Pan, Linqiang; Cui, Guangzhao; Xu, Jin; LaBean, Thomas H
2014-02-21
DNA tile based self-assembly provides a bottom-up approach to construct desired nanostructures. DNA tiles have been directly constructed from ssDNA and readily self-assembled into 2D lattices and 3D superstructures. However, for more complex lattice designs including algorithmic assemblies requiring larger tile sets, a more modular approach could prove useful. This paper reports a new DNA 'sub-tile' strategy to easily create whole families of programmable tiles. Here, we demonstrate the stability and flexibility of our sub-tile structures by constructing 3-, 4- and 6-arm DNA tiles that are subsequently assembled into 2D lattices and 3D nanotubes according to a hierarchical design. Assembly of sub-tiles, tiles, and superstructures was analyzed using polyacrylamide gel electrophoresis and atomic force microscopy. DNA tile self-assembly methods provide a bottom-up approach to create desired nanostructures; the sub-tile strategy adds a useful new layer to this technique. Complex units can be made from simple parts. The sub-tile approach enables the rapid redesign and prototyping of complex DNA tile sets and tiles with asymmetric designs.
Barnat-Hunek, Danuta; Widomski, Marcin K; Szafraniec, Małgorzata; Łagód, Grzegorz
2018-03-01
The aim of the research that is presented in this paper was to evaluate the physical and mechanical properties of heat-insulating mortars with expanded cork aggregates and different binders. In this work, the measurements of surface roughness and adhesion strength, supported by determination of basic mechanical and physical parameters, such as density, bulk density, open porosity, total porosity, absorbability, thermal conductivity coefficient, compressive strength, flexural strength, and frost resistance of mortars containing expanded oak cork, were performed. The scanning electron microscope (SEM) investigations demonstrated the microstructure, contact zone, and distribution of pores in the heat-insulating mortars containing expanded cork. The results indicated that the addition of expanded cork and different binders in heat-insulating mortars triggers changes in their roughness and adhesion strength. The SEM research confirmed the very good adhesion of the paste to the cork aggregate.
Field and laboratory determination of a poly(vinyl/vinylidene chloride) additive in brick mortar.
Law, S L; Newman, J H; Ptak, F L
1990-02-01
A polymerized vinyl/vinylidene chloride additive, used in brick mortar during the 60s and 70s, is detected at the building site by the field method, which employs a commercially available chloride test strip. The field test results can then be verified by the laboratory methods. In one method, total chlorine in the mortar is determined by an oxygen-bomb method and the additive chloride is determined by difference after water-soluble chlorides have been determined on a separate sample. In the second method, the polymerized additive is extracted directly from the mortar with tetrahydrofuran (THF). The difference in weight before and after extraction of the additive gives the weight of additive in the mortar. Evaporation of the THF from the extract leaves a thin film of the polymer, which gives an infrared "fingerprint" spectrum characteristic of the additive polymer.
Barnat-Hunek, Danuta; Widomski, Marcin K.; Szafraniec, Małgorzata; Łagód, Grzegorz
2018-01-01
The aim of the research that is presented in this paper was to evaluate the physical and mechanical properties of heat-insulating mortars with expanded cork aggregates and different binders. In this work, the measurements of surface roughness and adhesion strength, supported by determination of basic mechanical and physical parameters, such as density, bulk density, open porosity, total porosity, absorbability, thermal conductivity coefficient, compressive strength, flexural strength, and frost resistance of mortars containing expanded oak cork, were performed. The scanning electron microscope (SEM) investigations demonstrated the microstructure, contact zone, and distribution of pores in the heat-insulating mortars containing expanded cork. The results indicated that the addition of expanded cork and different binders in heat-insulating mortars triggers changes in their roughness and adhesion strength. The SEM research confirmed the very good adhesion of the paste to the cork aggregate. PMID:29494525
A chemometric approach to the characterisation of historical mortars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rampazzi, L.; Pozzi, A.; Sansonetti, A.
2006-06-15
The compositional knowledge of historical mortars is of great concern in case of provenance and dating investigations and of conservation works since the nature of the raw materials suggests the most compatible conservation products. The classic characterisation usually goes through various analytical determinations, while conservation laboratories call for simple and quick analyses able to enlighten the nature of mortars, usually in terms of the binder fraction. A chemometric approach to the matter is here undertaken. Specimens of mortars were prepared with calcitic and dolomitic binders and analysed by Atomic Spectroscopy. Principal Components Analysis (PCA) was used to investigate the featuresmore » of specimens and samples. A Partial Least Square (PLS1) regression was done in order to predict the binder/aggregate ratio. The model was applied to historical mortars from the churches of St. Lorenzo (Milan) and St. Abbondio (Como). The accordance between the predictive model and the real samples is discussed.« less
Fracture detection in concrete by glass fiber cloth reinforced plastics
NASA Astrophysics Data System (ADS)
Shin, Soon-Gi; Lee, Sung-Riong
2006-04-01
Two types of carbon (carbon fiber and carbon powder) and a glass cloth were used as conductive phases and a reinforcing fiber, respectively, in polymer rods. The carbon powder was used for fabricating electrically conductive carbon powder-glass fiber reinforced plastic (CP-GFRP) rods. The carbon fiber tows and the CP-GFRP rods were adhered to mortar specimens using epoxy resin and glass fiber cloth. On bending, the electrical resistance of the carbon fiber tow attached to the mortar specimen increased greatly after crack generation, and that of the CP-GFRP rod increased after the early stages of deflection in the mortar. Therefore, the CP-GFRP rod is superior to the carbon fiber tow in detecting fractures. Also, by reinforcing with a glass fiber cloth reinforced plastic, the strength of the mortar specimens became more than twice as strong as that of the unreinforced mortar.
Command History. 1968. Volume 1. Sanitized.
1968-01-01
752 Mobility ...... ..... ..... ................................ ..... 756 Artiilery/ Mortar /Rocket/Countermeasures...I- mortar attacks. I urge that we continue to impress upon corn .,anders at all level. the need to remain offensive- minded and to move troops out...in NVN and another month after joining the NVA 95th Regiment in the Konturn- Cambodia border area in July. After firing mortars at A. hamlet near Doc
ERIC Educational Resources Information Center
Turner, Daniel James
2012-01-01
This study examines the impact that involvement in Mortar Board National Senior Honor Society has on lifelong views of civic engagement and leadership. Mortar Board Senior Honor Society is a collegiate honor society established in 1918 that recognizes students for their outstanding contributions to their college or university community in the…
NASA Astrophysics Data System (ADS)
Ali Abd El Aziz, Magdy; Abdelaleem, Salh; Heikal, Mohamed
2013-12-01
When a concrete structure is exposed to fire and cooling, some deterioration in its chemical resistivity and mechanical properties takes place. This deterioration can reach a level at which the structure may have to be thoroughly renovated or completely replaced. In this investigation, four types of cement mortars, ground clay bricks (GCB)/sand namely 0/3, 1/2, 2/1 and 3/0, were used. Three different cement contents were used: 350, 400 and 450 kg/m3. All the mortars were prepared and cured in tap water for 3 months and then kept in laboratory atmospheric conditions up to 6 months. The specimens were subjected to elevated temperatures up to 700°C for 3h and then cooled by three different conditions: water, furnace, and air cooling. The results show that all the mortars subjected to fire, irrespective of cooling mode, suffered a significant reduction in compressive strength. However, the mortars cooled in air exhibited a relativity higher reduction in compressive strength rather than those water or furnace cooled. The mortars containing GCB/sand (3/0) and GCB/sand (1/2) exhibited a relatively higher thermal stability than the others.
Strength and Density of Geopolymer Mortar Cured at Ambient Temperature for Use as Repair Material
NASA Astrophysics Data System (ADS)
Warid Wazien, A. Z.; Bakri Abdullah, Mohd Mustafa Al; Abd. Razak, Rafiza; Mohd Remy Rozainy, M. A. Z.; Faheem Mohd Tahir, Muhammad
2016-06-01
Geopolymers produced by synthesizing aluminosilicate source materials with an alkaline activator solution promised an excellent properties akin to the existing construction material. This study focused on the effect of various binder to sand ratio on geopolymer mortar properties. Mix design of geopolymer mortar was produced using NaOH concentration of 12 molars, ratio of fly ash/alkaline activator and ratio Na2SiO3/NaOH of 2.0 and 2.5 respectively. Samples subsequently ware cured at ambient temperature. The properties of geopolymer mortar were analysed in term of compressive strength and density at different period which are on the 3rd and 7th day of curing. Experimental results revealed that the addition of sand slightly increase the compressive strength of geopolymer. The optimum compressive strength obtained was up to 31.39 MPa on the 7th day. The density of geopolymer mortar was in the range between 2.0 g/cm3 to 2.23 g/cm3. Based on this findings, the special properties promoted by geopolymer mortar display high potential to be implemented in the field of concrete patch repair.
Immobilization in cement mortar of chromium removed from water using titania nanoparticles.
Husnain, Ahmed; Qazi, Ishtiaq Ahmed; Khaliq, Wasim; Arshad, Muhammad
2016-05-01
Because of the high toxicity of chromium, particularly as Cr (VI), it is removed from industrial effluents before their discharge into water bodies by a variety of techniques, including adsorption. Ultimate disposal of the sludge or the adsorbate, however, is a serious problem. While titania, in nanoparticle form, serves as a very good adsorbent for chromium, as an additive, it also helps to increase the compressive strength of mortar and concrete. Combining these two properties of the material, titania nanoparticles were used to adsorb chromium and then added to mortar up to a concentration of 20% by weight. The compressive strength of the resulting mortar specimens that replaced 15% of cement with chromium laden titania showed an improved strength than that without titania, thus confirming that this material had positive effect on the mortar strength. Leachate tests using the Toxicity Characteristics Leaching Procedure (TCLP) confirmed that the mortar sample chromium leachate was well within the permissible limits. The proposed technique thus offers a safe and viable method for the ultimate disposal of toxic metal wastes, in general, and those laden waste chromium, in particular. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mechanical Properties of Epoxy Resin Mortar with Sand Washing Waste as Filler.
Yemam, Dinberu Molla; Kim, Baek-Joong; Moon, Ji-Yeon; Yi, Chongku
2017-02-28
The objective of this study was to investigate the potential use of sand washing waste as filler for epoxy resin mortar. The mechanical properties of four series of mortars containing epoxy binder at 10, 15, 20, and 25 wt. % mixed with sand blended with sand washing waste filler in the range of 0-20 wt. % were examined. The compressive and flexural strength increased with the increase in epoxy and filler content; however, above epoxy 20 wt. %, slight change was seen in strength due to increase in epoxy and filler content. Modulus of elasticity also linearly increased with the increase in filler content, but the use of epoxy content beyond 20 wt. % decreased the modulus of elasticity of the mortar. For epoxy content at 10 wt. %, poor bond strength lower than 0.8 MPa was observed, and adding filler at 20 wt. % adversely affected the bond strength, in contrast to the mortars containing epoxy at 15, 20, 25 wt. %. The results indicate that the sand washing waste can be used as potential filler for epoxy resin mortar to obtain better mechanical properties by adding the optimum level of sand washing waste filler.
NASA Astrophysics Data System (ADS)
Dahlan, K.; Haryati, E.; Aninam, Y. S.
2018-03-01
This study explores the effect of fine aggregate on mortar properties and its application as a nuclear shield. This study was based on a hypothesis that the types of aggregate applied as radiation shield determined the level of its effectiveness on preventing nuclear radiation. There are two types and sources of fine aggregate that was used as main ingredients for mortar production in this research, namely iron sand and river sand. Both types of sand were derived from the respective regions of Sarmi and Jayapura, Papua. The results showed that the mortar materials that were produced with the iron sand provided better results in dispelling radiation than that of river sand. The compressive strength of fine aggregate from the iron sand was 21.62 MPa, while the compressive strength of the river sand was 16.8 MPa. Measuring the attenuation coefficient of material, we found that the largest aggregated value of mortar with fine iron sand reached 0.0863 / cm. On the other hand, the smallest HVT (Half Value Thickness) was obtained from the iron sand mortar, at 8.03 cm.
Mechanical Properties of Epoxy Resin Mortar with Sand Washing Waste as Filler
Yemam, Dinberu Molla; Kim, Baek-Joong; Moon, Ji-Yeon; Yi, Chongku
2017-01-01
The objective of this study was to investigate the potential use of sand washing waste as filler for epoxy resin mortar. The mechanical properties of four series of mortars containing epoxy binder at 10, 15, 20, and 25 wt. % mixed with sand blended with sand washing waste filler in the range of 0–20 wt. % were examined. The compressive and flexural strength increased with the increase in epoxy and filler content; however, above epoxy 20 wt. %, slight change was seen in strength due to increase in epoxy and filler content. Modulus of elasticity also linearly increased with the increase in filler content, but the use of epoxy content beyond 20 wt. % decreased the modulus of elasticity of the mortar. For epoxy content at 10 wt. %, poor bond strength lower than 0.8 MPa was observed, and adding filler at 20 wt. % adversely affected the bond strength, in contrast to the mortars containing epoxy at 15, 20, 25 wt. %. The results indicate that the sand washing waste can be used as potential filler for epoxy resin mortar to obtain better mechanical properties by adding the optimum level of sand washing waste filler. PMID:28772603
NASA Astrophysics Data System (ADS)
Safi, B.; Aknouche, H.; Mechakra, H.; Aboutaleb, D.; Bouali, K.
2018-04-01
Previous research indicates that the inclusion of nanosilica (NS) modifies the properties of the fresh and hardened state, compared to the traditional mineral additions. NS decreases the setting times of the cement mortar compared to silica fume (SF) and reduce of required water while improving the cohesion of the mixtures in the fresh state. Some authors estimate that the appropriate percentage of Nano-silica should be small (1 to 5% by weight) because of difficulties caused by agglomeration to particles during mixing, while others indicate that 10% by weight, if adjustments are made to the formulation to avoid an excess of self-drying and micro cracks that could impede strength. For this purpose, the present work aim to see the effect of the introduction mode of the nanosilica on the rheological and physic mechanical properties of cement mortars. In this study, NS was used either powdered with cement or in solution with the superplasticizer (Superplasticizer doped in nanosilica). Results show that the use of nanosilica powder (replacing cement on the one hand) has a negative influence on the rheological parameters and the rheological behavior of cementitious pastes. However, the introduction of nanosilica in solution in the superplasticizer (SP) was significantly improved the rheological parameters and the rheological behavior of cementitious pastes. Indeed, more the dosage of NS-doped SP increases more the shear stress and viscosities of the cementitious pastes become more fluid and manageable. A significant reduction of shear stress and plastic viscosity were observed that due to the increase in superplasticizer. A dosage of 1.5% NS-doped SP gave adequate fluidity and the shear rate was lower.
Rodriguez-Navarro, Carlos; Ruiz-Agudo, Encarnacion; Burgos-Cara, Alejandro; Elert, Kerstin; Hansen, Eric F
2017-10-17
Hydrated lime (Ca(OH) 2 ) is a vernacular art and building material produced following slaking of CaO in water. If excess water is used, a slurry, called lime putty, forms, which has been the preferred craftsman selection for formulating lime mortars since Roman times. A variety of natural additives were traditionally added to the lime putty to improve its quality. The mucilaginous juice extracted from nopal cladodes has been and still is used as additive incorporated in the slaking water for formulation of lime mortars and plasters, both in ancient Mesoamerica and in the USA Southwest. Little is known on the ultimate effects of this additive on the crystallization and microstructure of hydrated lime. Here, we show that significant changes in habit and size of portlandite crystals occur following slaking in the presence of nopal juice as well as compositionally similar citrus pectin. Both additives contain polysaccharides made up of galacturonic acid and neutral sugar residues. The carboxyl (and hydroxyl) functional groups present in these residues and in their alkaline degradation byproducts, which are deprotonated at the high pH (12.4) produced during lime slaking, strongly interact with newly formed Ca(OH) 2 crystals acting in two ways: (a) as nucleation inhibitors, promoting the formation of nanosized crystals, and (b) as habit modifiers, favoring the development of planar habit following their adsorption onto positively charged (0001) Ca(OH) 2 faces. Adsorption of polysaccharides on Ca(OH) 2 crystals prevents the development of large particles, resulting in a very reactive, nanosized portlandite slurry. It also promotes steric stabilization, which limits aggregation, thus enhancing the colloidal nature of the lime putty. Overall, these effects are very favorable for the preparation of highly plastic lime mortars with enhanced properties.
NASA Astrophysics Data System (ADS)
Zulkifeli, Muhamad Faqrul Hisham bin Mohd; Saman@Hj Mohamed, Hamidah binti Mohd
2017-08-01
Work on thermal resistant of outer structures of buildings is one of the solution to reduce death, damages and properties loss in fire cases. Structures protected with thermal resistant materials can delay or avoid failure and collapse during fire. Hence, establishment of skin cladding with advance materials to protect the structure of buildings is a necessary action. Expanded perlite is a good insulation material which can be used as aggregate replacement in mortar. This study is to study on mortar mechanical properties of flexural and compressive strength subjected to elevated temperatures using expanded perlite aggregate (EPA). This study involved experimental work which was developing mortar with sand replacement by volume of 0%, 10%, 20%, 30% and 40% of EPA and cured for 56 days. The mortars then exposed to 200°C, 400 °C, 700 °C and 1000 °C. Flexural and compressive strength of the mortar were tested. The tests showed that there were increased of flexural and compressive strength at 200°C, and constantly decreased when subjected to 400°C, 700°C and 1000 °C. There were also variation of strengths at different percentages of EPA replacement. Highest compressive strength and flexural strength recorded were both at 200 °C with 65.52 MPa and 21.34 MPa respectively. The study conclude that by using EPA as aggregate replacement was ineffective below elevated temperatures but increased the performance of the mortar at elevated temperatures.
NASA Astrophysics Data System (ADS)
Maravelaki-Kalaitzaki, P.; Galanos, A.; Doganis, I.; Kallithrakas-Kontos, N.
2011-07-01
Mortars and plasters from the ancient aqueduct on the island of Naxos, Greece, were studied with regard to mineralogical and chemical composition, grain size distribution, raw materials and hydraulic properties, in order to assess their characteristics and design compatible repair mortars. The authentic materials contained lime, crushed-brick, siliceous and calcitic aggregates, in different proportions according to mortar type. Crushed-bricks fired at low temperatures and lightweight volcanic aggregates contained amorphous phases, which upon reaction with lime yielded hydraulic components capable of protecting the construction from the continuous presence of water. Hydraulic calcium silicate/aluminate hydrates, the proportions and the perfect packing of the raw materials, along with the diligent application justify the longevity and durability of the studied samples. The hydraulic properties of samples were pointed out through (a) the well-established CO2/H2O ratio derived from the thermogravimetric analysis and (b) by introducing two powerful indices issued from the chemical analysis, namely CaOhydr and soluble SiO2 hydr. These indices improved the clustering of hydraulic mortars and provided better correlation between mortars, plasters and their binders. By comparing grain size distribution and hydraulicity indices it was possible to distinguish among the construction phases. Based on this study, repair mortars were formulated by hydraulic lime, siliceous sand, calcareous and crushed-brick aggregates, with the optimal water content, ensuring optimum workability and compatible appearance with the authentic ones.
Transient Thermal Response of Lightweight Cementitious Composites Made with Polyurethane Foam Waste
NASA Astrophysics Data System (ADS)
Kismi, M.; Poullain, P.; Mounanga, P.
2012-07-01
The development of low-cost lightweight aggregate (LWA) mortars and concretes presents many advantages, especially in terms of lightness and thermal insulation performances of structures. Low-cost LWA mainly comes from the recovery of vegetal or plastic wastes. This article focuses on the characterization of the thermal conductivity of innovative lightweight cementitious composites made with fine particles of rigid polyurethane (PU) foam waste. Five mortars were prepared with various mass substitution rates of cement with PU-foam particles. Their thermal conductivity was measured with two transient methods: the heating-film method and the hot-disk method. The incorporation of PU-foam particles causes a reduction of up to 18 % of the mortar density, accompanied by a significant improvement of the thermal insulating performance. The effect of segregation on the thermal properties of LWA mortars due to the differences of density among the cementitious matrix, sand, and LWA has also been quantified. The application of the hot-disk method reveals a gradient of thermal conductivity along the thickness of the specimens, which could be explained by a non-uniform repartition of fine PU-foam particles and mineral aggregates within the mortars. The results show a spatial variation of the thermal conductivity of the LWA mortars, ranging from 9 % to 19 %. However, this variation remains close to or even lower than that observed on a normal weight aggregate mortar. Finally, a self-consistent approach is proposed to estimate the thermal conductivity of PU-foam cement-based composites.
Directed nucleation assembly of DNA tile complexes for barcode-patterned lattices
Yan, Hao; LaBean, Thomas H.; Feng, Liping; Reif, John H.
2003-01-01
The programmed self-assembly of patterned aperiodic molecular structures is a major challenge in nanotechnology and has numerous potential applications for nanofabrication of complex structures and useful devices. Here we report the construction of an aperiodic patterned DNA lattice (barcode lattice) by a self-assembly process of directed nucleation of DNA tiles around a scaffold DNA strand. The input DNA scaffold strand, constructed by ligation of shorter synthetic oligonucleotides, provides layers of the DNA lattice with barcode patterning information represented by the presence or absence of DNA hairpin loops protruding out of the lattice plane. Self-assembly of multiple DNA tiles around the scaffold strand was shown to result in a patterned lattice containing barcode information of 01101. We have also demonstrated the reprogramming of the system to another patterning. An inverted barcode pattern of 10010 was achieved by modifying the scaffold strands and one of the strands composing each tile. A ribbon lattice, consisting of repetitions of the barcode pattern with expected periodicity, was also constructed by the addition of sticky ends. The patterning of both classes of lattices was clearly observable via atomic force microscopy. These results represent a step toward implementation of a visual readout system capable of converting information encoded on a 1D DNA strand into a 2D form readable by advanced microscopic techniques. A functioning visual output method would not only increase the readout speed of DNA-based computers, but may also find use in other sequence identification techniques such as mutation or allele mapping. PMID:12821776
Flight qualification of mortar-actuated parachute deployment systems
NASA Technical Reports Server (NTRS)
Pleasants, J. E.
1975-01-01
A brief discussion outlines background of mortar use in parachute deployment systems. A description of the system operation is presented. Effects of the environment on performance are discussed as well as the instrumentation needed to assess this performance. Power unit qualification and lot qualification for shear pins and cartridges is delineated. Functional mortar system tests are described. Finally, bridle deployment and parachute deployment are discussed.
Carbonates in leaching reactions in context of 14C dating
NASA Astrophysics Data System (ADS)
Michalska, Danuta; Czernik, Justyna
2015-10-01
Lime mortars as a mixture of binder and aggregate may contain carbon of various origins. If the mortars are made of totally burnt lime, radiocarbon dating of binder yields the real age of building construction. The presence of carbonaceous aggregate has a significant influence on the 14C measurements results and depending on the type of aggregate and fraction they may cause overaging. Another problem, especially in case of hydraulic mortars that continue to be chemically active for a very long time, is the recrystallization usually connected with rejuvenation of the results but also, depending on local geological structures, with so called reservoir effect yielding apparent ages. An attempt in separating the binder from other carbonaceous components successfully was made for samples from Israel by Nawrocka-Michalska et al. (2007). The same preparation procedure, after taking into account the petrographic composition, was used for samples coming from Poland, Nawrocka et al. (2009). To verify the procedure used previously for non-hydraulic samples determination an experimental tests on carbonaceous mortars with crushed bricks from Novae in Bulgaria were made. Additionally, to identify different carbonaceous structures and their morphology, a cathodoluminescence and scanning electron microscope with electron dispersive spectrometer were applied. The crushed bricks and brick dust used in mortars production process have been interpreted as an alternative use to other pozzolanic materials. The reaction between lime and pozzolanic additives take place easily and affects the rate and course of carbonates decomposition in orthophosphric acid, during the samples pretreatment for dating. The composition of the Bulgarian samples together with influence of climate conditions on mortar carbonates do not allow for making straightforward conclusions in chronology context, but gives some new guidelines in terms of hydraulic mortars application for dating. This work has mainly methodological character, illustrating the special preparation methods used for mortars with complicated (in context of radiocarbon dating) petrographic composition. The local geology combined with finding sources of raw materials for the production of mortars is important issue in final interpretation of the 14C measurement results.
Measures for the reduction of sinter formations in tunnels
NASA Astrophysics Data System (ADS)
Harer, Gerhard
2017-09-01
A considerable part of the maintenance costs of tunnel structures is related to the inspection, maintenance and repair of the drainage system. The drainage system of tunnels is frequently clogged with Calcium precipitates. Cleaning and water conditioning are costintensive for operating companies. Apart from the direct costs associated with inspection, maintenance and repair works of the drainage system indirect costs are generated, such as by the blocking of the tunnel while inspection, maintenance or repair or by the reduction of the permitted operation speed. Sintering and clogging of the drainage systems is mainly caused by dissolution of cement minerals in concrete and mortar and/or by inadequate design and construction of the drainage system and/or grubby workmanship. With long-term studies and in-situ experiments in Austria traffic tunnels the specific input factors for sinter mechanism have been identified and appropriate counter measures could be defined. In particular modified mix designs for shotcretes and mortars have proven to bring a significant beneficial effect. By means of constructional measures and by the application of hardness stabilizers a further reduction of hard deposits inside the drainage system is achievable. The paper will deal with the specific aspects and will propose adequate counter measures.
Strengthening and repair of RC beams with sugarcane bagasse fiber reinforced cement mortar
NASA Astrophysics Data System (ADS)
Syamir Senin, Mohamad; Shahidan, Shahiron; Maarof, M. Z. Md; Syazani Leman, Alif; Zuki, S. S. Mohd; Azmi, M. A. Mohammad
2017-11-01
The use of a jacket made of fiber reinforced cement mortar with tensile hardening behaviour for strengthening RC beams was investigated in this study. A full-scale test was conducted on beams measuring 1000mm in length. A 25mm jacket was directly applied to the surface of the beams to test its ability to repair and strengthen the beams. The beams were initially damaged and eventually repaired. Three types of beams which included unrepaired beams, beams repaired with normal mortar jacket and beams repaired with 10% sugarcane bagasse fiber mortar jacket were studied. The jacket containing 10% of sugarcane bagasse fiber enhanced the flexural strength of the beams.
The influence of fine aggregates on the 3D printing performance
NASA Astrophysics Data System (ADS)
Lin, J. C.; Wu, X.; Yang, W.; Zhao, R. X.; Qiao, L. G.
2018-01-01
Influences of nature Particle, size, grain shape and fineness modulus of fine aggregates on the 3D printing performance of cement-based mortar were investigated. Results showed that the working performance of the mortar is not only dependent on the fineness of the aggregate, but also the gradation and grain size of the aggregate. And the mechanical properties of the mortar are increasing with the increase of Mx in the same test condition. The research shows that it is effective to choose different properties of materials for different design requirements, and the fluidity of mortar must be decreased under assuring construction quality and the pumpability of 3D printing materials.
Impacts of Space Shuttle thermal protection system tile on F-15 aircraft vertical tile
NASA Technical Reports Server (NTRS)
Ko, W. L.
1985-01-01
Impacts of the space shuttle thermal protection system (TPS) tile on the leading edge and the side of the vertical tail of the F-15 aircraft were analyzed under different TPS tile orientations. The TPS tile-breaking tests were conducted to simulate the TPS tile impacts. It was found that the predicted tile impact forces compare fairly well with the tile-breaking forces, and the impact forces exerted on the F-15 aircraft vertical tail were relatively low because a very small fraction of the tile kinetic energy was dissipated in the impact, penetration, and fracture of the tile. It was also found that the oblique impact of the tile on the side of the F-15 aircraft vertical tail was unlikely to dent the tail surface.
The use of waste ceramic tile in cement production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ay, N.; Uenal, M.
In ceramic tile production, because of various reasons, unsold fired products come out. These are waste tiles and only a little part of them are used. Remainings create environmental problems. If these waste tiles are used in cement production, this pollution decreases. In this study, usage of waste tile as pozzolan was studied. Waste tile was added into Portland cement in 25%, 30%, 35%, and 40% weight ratios. Pozzolanic properties of waste tile and setting time, volume stability, particle size, density, specific surface area, and strength of cement including waste tile were investigated. The test results indicated that the wastemore » tiles show pozzolanic properties, and chemical and physical properties of the cement including tile conforms to cement standard up to the addition of 35% waste tile.« less
Linko, Veikko; Leppiniemi, Jenni; Paasonen, Seppo-Tapio; Hytönen, Vesa P; Toppari, J Jussi
2011-07-08
We present a novel, defined-size, small and rigid DNA template, a so-called B-A-B complex, based on DNA triple crossover motifs (TX tiles), which can be utilized in molecular scale patterning for nanoelectronics, plasmonics and sensing applications. The feasibility of the designed construct is demonstrated by functionalizing the TX tiles with one biotin-triethylene glycol (TEG) and efficiently decorating them with streptavidin, and furthermore by positioning and anchoring single thiol-modified B-A-B complexes to certain locations on a chip via dielectrophoretic trapping. Finally, we characterize the conductance properties of the non-functionalized construct, first by measuring DC conductivity and second by utilizing AC impedance spectroscopy in order to describe the conductivity mechanism of a single B-A-B complex using a detailed equivalent circuit model. This analysis also reveals further information about the conductivity of DNA structures in general.
Microscopic characterisation of old mortars from the Santa Maria Church in Evora
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adriano, P., E-mail: padriano@lnec.pt; Santos Silva, A., E-mail: ssilva@lnec.pt; Veiga, R., E-mail: rveiga@lnec.pt
2009-07-15
Evora Cathedral (one of the most emblematic monuments of Evora - Portugal) has suffered several conservation and restoration interventions through the ages, without, however, any type of previous knowledge about mortars and materials used. This work was carried out in order to identify the mortar's composition in different locations, which were attributed to different construction or conservation periods. The characterisation methodology involved a multidisciplinary set of chemical, physical, microstructural and mechanical techniques, and gave special attention to the use of microstructural characterisation techniques, particularly petrographical analysis and scanning electron microscopy for the identification of the mortar's constituents as well asmore » in the evaluation of the state of conservation. The test results showed that two types of aerial binders were used, dolomitic and calcitic limes, the former being predominant. The aggregates used have a siliceous nature and are similar in composition to the granodiorites of the region around Evora. The mortars differ in the aggregate contents and, in some cases, crushed bricks were used as an additive.« less
Self-leveling mortar as a possible cause of symptoms associated with "sick building syndrome".
Lundholm, M; Lavrell, G; Mathiasson, L
1990-01-01
In newly constructed houses and buildings in which self-leveling mortar containing casein has been used, residents and office employees have noted a bad odor and have complained of headache, eye and throat irritation, and tiredness. These problems were suspected to result from the degradation products emitted from the mortar. Samples obtained from dry mortar powder and from mortar in buildings where casein was used and from control buildings were found to contain microorganisms (mean of 10(2) culture forming units/g). Environmental species were predominantly found, e.g., Bacillus, Clostridium, Micrococcus, and Propionibacterium. Fungi were found occasionally; no evidence of bacterial degradation was found. Headspace and gas chromatographic-mass spectrometric analysis of air from the newly constructed houses and from hydroxide-degraded casein revealed the presence of amines in the 0.003-0.013 ppm range and the presence of ammonia and sulfhydryl compounds, all of which in low concentrations can cause the symptoms observed. These substances, however, were not detected in control buildings.
Reactive powder based concretes: Mechanical properties, durability and hybrid use with OPC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cwirzen, A.; Penttala, V.; Vornanen, C.
2008-10-15
The basic mechanical properties, frost durability and the bond strength with normal strength concretes of the ultra high strength (UHS) mortars and concretes were studied. The produced mixes had plastic or fluid-like consistency. The 28-day compressive strength varied between 170 and 202 MPa for the heat-treated specimens and between 130 and 150 MPa for the non-heat-treated specimens. The shrinkage values were two times higher for the UHS mortars in comparison with the UHS concretes. After the initial shrinkage, swelling was noticed in the UHS mortars. The lowest creep values were measured for the non-heat-treated UHS concretes. The frost-deicing salts durabilitymore » of the UHS mortars and concretes appeared to be very good even despite the increased water uptake of the UHS concretes. The study of the hybrid concrete beams indicated the formation of low strength transition zone between the UHS mortar and normal strength concrete.« less
Sweetening Android Lemon Markets: Measuring and Curbing Malware in Application Marketplaces
2012-06-08
the main software distribution mechanism for modern mobile devices but are also emerging as a viable alternative to brick -and- mortar stores for...mechanism for modern mobile devices but are also emerging as a viable alternative to brick -and- mortar stores for personal computers. While most...through the Apple App Store , thereby entirely forgoing the traditional distribution channel – packaged opti- cal media sold in brick -and- mortar
Cabrera-Covarrubias, Francisca Guadalupe; Gómez-Soberón, José Manuel; Almaral-Sánchez, Jorge Luis; Arredondo-Rea, Susana Paola; Gómez-Soberón, María Consolación; Corral-Higuera, Ramón
2016-12-21
The difficult current environmental situation, caused by construction industry residues containing ceramic materials, could be improved by using these materials as recycled aggregates in mortars, with their processing causing a reduction in their use in landfill, contributing to recycling and also minimizing the consumption of virgin materials. Although some research is currently being carried out into recycled mortars, little is known about their stress-strain (σ-ε); therefore, this work will provide the experimental results obtained from recycled mortars with recycled ceramic aggregates (with contents of 0%, 10%, 20%, 30%, 50% and 100%), such as the density and compression strength, as well as the σ-ε curves representative of their behavior. The values obtained from the analytical process of the results in order to finally obtain, through numerical analysis, the equations to predict their behavior (related to their recycled content) are those of: σ (elastic ranges and failure maximum), ε (elastic ranges and failure maximum), and Resilience and Toughness. At the end of the investigation, it is established that mortars with recycled ceramic aggregate contents of up to 20% could be assimilated just like mortars with the usual aggregates, and the obtained prediction equations could be used in cases of similar applications.
Cabrera-Covarrubias, Francisca Guadalupe; Gómez-Soberón, José Manuel; Almaral-Sánchez, Jorge Luis; Arredondo-Rea, Susana Paola; Gómez-Soberón, María Consolación; Corral-Higuera, Ramón
2016-01-01
The difficult current environmental situation, caused by construction industry residues containing ceramic materials, could be improved by using these materials as recycled aggregates in mortars, with their processing causing a reduction in their use in landfill, contributing to recycling and also minimizing the consumption of virgin materials. Although some research is currently being carried out into recycled mortars, little is known about their stress-strain (σ-ε); therefore, this work will provide the experimental results obtained from recycled mortars with recycled ceramic aggregates (with contents of 0%, 10%, 20%, 30%, 50% and 100%), such as the density and compression strength, as well as the σ-ε curves representative of their behavior. The values obtained from the analytical process of the results in order to finally obtain, through numerical analysis, the equations to predict their behavior (related to their recycled content) are those of: σ (elastic ranges and failure maximum), ε (elastic ranges and failure maximum), and Resilience and Toughness. At the end of the investigation, it is established that mortars with recycled ceramic aggregate contents of up to 20% could be assimilated just like mortars with the usual aggregates, and the obtained prediction equations could be used in cases of similar applications. PMID:28774151
NASA Astrophysics Data System (ADS)
Owusu Twumasi, Jones; Le, Viet; Tang, Qixiang; Yu, Tzuyang
2016-04-01
Corrosion of steel reinforcing bars (rebars) is the primary cause for the deterioration of reinforced concrete structures. Traditional corrosion monitoring methods such as half-cell potential and linear polarization resistance can only detect the presence of corrosion but cannot quantify it. This study presents an experimental investigation of quantifying degree of corrosion of steel rebar inside cement mortar specimens using ultrasonic testing (UT). A UT device with two 54 kHz transducers was used to measure ultrasonic pulse velocity (UPV) of cement mortar, uncorroded and corroded reinforced cement mortar specimens, utilizing the direct transmission method. The results obtained from the study show that UPV decreases linearly with increase in degree of corrosion and corrosion-induced cracks (surface cracks). With respect to quantifying the degree of corrosion, a model was developed by simultaneously fitting UPV and surface crack width measurements to a two-parameter linear model. The proposed model can be used for predicting the degree of corrosion of steel rebar embedded in cement mortar under similar conditions used in this study up to 3.03%. Furthermore, the modeling approach can be applied to corroded reinforced concrete specimens with additional modification. The findings from this study show that UT has the potential of quantifying the degree of corrosion inside reinforced cement mortar specimens.
Kong, Yaning; Wang, Peiming; Liu, Shuhua; Zhao, Guorong; Peng, Yu
2016-01-01
In order to investigate the effects of microwave curing on the microstructure of the interfacial transition zone of mortar prepared with a composite binder containing glass powder and to explain the mechanism of microwave curing on the improvement of compressive strength, in this study, the compressive strength of mortar under microwave curing was compared against mortar cured using (a) normal curing at 20 ± 1 °C with relative humidity (RH) > 90%; (b) steam curing at 40 °C for 10 h; and (c) steam curing at 80 °C for 4 h. The microstructure of the interfacial transition zone of mortar under the four curing regimes was analyzed by Scanning electron microscopy (SEM). The results showed that the improvement of the compressive strength of mortar under microwave curing can be attributed to the amelioration of the microstructure of the interfacial transition zone. The hydration degree of cement is accelerated by the thermal effect of microwave curing and Na+ partially dissolved from the fine glass powder to form more reticular calcium silicate hydrate, which connects the aggregate, calcium hydroxide, and non-hydrated cement and glass powder into a denser integral structure. In addition, a more stable triangular structure of calcium hydroxide contributes to the improvement of compressive strength. PMID:28773854
Use of rubble from building demolition in mortars.
Corinaldesi, V; Giuggiolini, M; Moriconi, G
2002-01-01
Because of increasing waste production and public concerns about the environment, it is desirable to recycle materials from building demolition. If suitably selected, ground, cleaned and sieved in appropriate industrial crushing plants, these materials can be profitably used in concrete. Nevertheless, the presence of masonry instead of concrete rubble is particularly detrimental to the mechanical performance and durability of recycled-aggregate concrete and the same negative effect is detectable when natural sand is replaced by fine recycled aggregate fraction. An alternative use of both masonry rubble and fine recycled material fraction could be in mortars. These could contain either recycled instead of natural sand or powder obtained by bricks crushing as partial cement substitution. In particular, attention is focused on the modification that takes place when either polypropylene or stainless steel fibers are added to these mortars. Polypropylene fibers are added in order to reduce shrinkage of mortars, stainless steel fibers for improving their flexural strength. The combined use of polypropylene fibers and fine recycled material from building demolition could allow the preparation of mortars showing good performance, in particular when coupled with bricks. Furthermore, the combined use of stainless steel fibers and mortars containing brick powder seems to be an effective way to guarantee a high flexural strength.
Kong, Yaning; Wang, Peiming; Liu, Shuhua; Zhao, Guorong; Peng, Yu
2016-08-27
In order to investigate the effects of microwave curing on the microstructure of the interfacial transition zone of mortar prepared with a composite binder containing glass powder and to explain the mechanism of microwave curing on the improvement of compressive strength, in this study, the compressive strength of mortar under microwave curing was compared against mortar cured using (a) normal curing at 20 ± 1 °C with relative humidity (RH) > 90%; (b) steam curing at 40 °C for 10 h; and (c) steam curing at 80 °C for 4 h. The microstructure of the interfacial transition zone of mortar under the four curing regimes was analyzed by Scanning electron microscopy (SEM). The results showed that the improvement of the compressive strength of mortar under microwave curing can be attributed to the amelioration of the microstructure of the interfacial transition zone. The hydration degree of cement is accelerated by the thermal effect of microwave curing and Na⁺ partially dissolved from the fine glass powder to form more reticular calcium silicate hydrate, which connects the aggregate, calcium hydroxide, and non-hydrated cement and glass powder into a denser integral structure. In addition, a more stable triangular structure of calcium hydroxide contributes to the improvement of compressive strength.
Amin, Muhammad Nasir; Khan, Kaffayatullah; Saleem, Muhammad Umair; Khurram, Nauman; Niazi, Muhammad Umar Khan
2017-06-11
In this study, the researchers investigated the potential use of locally available waste materials from the lime stone quarry and the granite industry as a partial replacement of cement. Quarry sites and granite industry in the eastern province of Saudi Arabia produces tons of powder wastes in the form of quarry dust (QD) and granite sludge (GS), respectively, causing serious environmental problems along with frequent dust storms in the area. According to ASTM C109, identical 50-mm3 specimens were cast throughout this study to evaluate the compressive strength development of mortars (7, 28 and 91 days) containing these waste materials. Experimental variables included different percentage replacement of cement with waste materials (GS, QD), fineness of GS, various curing temperatures (20, 40 and 60 °C as local normal and hot environmental temperatures) and curing moisture (continuously moist and partially moist followed by air curing). Finally, the results of mortar containing waste materials were compared to corresponding results of control mortar (CM) and mortar containing fly ash (FA). The test results indicated that under normal curing (20 °C, moist cured), the compressive strength of mortar containing the different percentage of waste materials (QD, GS, FA and their combinations) remained lower than that of CM at all ages. However, the compressive strength of mortar containing waste materials slightly increased with increased fineness of GS and significantly increased under high curing temperatures. It was recommended that more fineness of GS be achieved to use its high percentage replacement with cement (30% or more) incorporating local environmental conditions.
Amin, Muhammad Nasir; Khan, Kaffayatullah; Saleem, Muhammad Umair; Khurram, Nauman; Niazi, Muhammad Umar Khan
2017-01-01
In this study, the researchers investigated the potential use of locally available waste materials from the lime stone quarry and the granite industry as a partial replacement of cement. Quarry sites and granite industry in the eastern province of Saudi Arabia produces tons of powder wastes in the form of quarry dust (QD) and granite sludge (GS), respectively, causing serious environmental problems along with frequent dust storms in the area. According to ASTM C109, identical 50-mm3 specimens were cast throughout this study to evaluate the compressive strength development of mortars (7, 28 and 91 days) containing these waste materials. Experimental variables included different percentage replacement of cement with waste materials (GS, QD), fineness of GS, various curing temperatures (20, 40 and 60 °C as local normal and hot environmental temperatures) and curing moisture (continuously moist and partially moist followed by air curing). Finally, the results of mortar containing waste materials were compared to corresponding results of control mortar (CM) and mortar containing fly ash (FA). The test results indicated that under normal curing (20 °C, moist cured), the compressive strength of mortar containing the different percentage of waste materials (QD, GS, FA and their combinations) remained lower than that of CM at all ages. However, the compressive strength of mortar containing waste materials slightly increased with increased fineness of GS and significantly increased under high curing temperatures. It was recommended that more fineness of GS be achieved to use its high percentage replacement with cement (30% or more) incorporating local environmental conditions. PMID:28772999
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dowell, Larry Jonathan
Disclosed is a method and device for aligning at least two digital images. An embodiment may use frequency-domain transforms of small tiles created from each image to identify substantially similar, "distinguishing" features within each of the images, and then align the images together based on the location of the distinguishing features. To accomplish this, an embodiment may create equal sized tile sub-images for each image. A "key" for each tile may be created by performing a frequency-domain transform calculation on each tile. A information-distance difference between each possible pair of tiles on each image may be calculated to identify distinguishingmore » features. From analysis of the information-distance differences of the pairs of tiles, a subset of tiles with high discrimination metrics in relation to other tiles may be located for each image. The subset of distinguishing tiles for each image may then be compared to locate tiles with substantially similar keys and/or information-distance metrics to other tiles of other images. Once similar tiles are located for each image, the images may be aligned in relation to the identified similar tiles.« less
Experimental pavement delineation treatments
NASA Astrophysics Data System (ADS)
Bryden, J. E.; Lorini, R. A.
1981-06-01
Visibility and durability of materials used to delineate shoulders and medians adjacent to asphalt pavements were evaluated. Materials evaluated were polysulfide and coal tar epoxies, one and two component polyesters, portland cement, acrylic paints, modified-alkyd traffic paint, preformed plastic tape, and thermoplastic markings. Neat applications, sand mortars, and surface treatments were installed in several geometric patterns including cross hatches, solid median treatments, and various widths of edge lines. Thermoplastic pavement markings generally performed very well, providing good visibility under adverse viewing conditions for at least 4 years. Thermoplastic 4 in. wide edge lines appear to provide adequate visibility for most conditions.
1982-02-01
11-17 TACTICAL PROGRAMS 2.37.24.A HEAVY ANTITAIg/ASSAULT WEAPON SYSTEM (TOW...AIRBORNE,4) DIO SYSTEM (SINCGARS)................................ 11-328 6.37.47.A SOLDIER SUPPORT/SURVIVABILITY...enhanced illumination over the current 81mm mortar. The current smoke cartridges for the 81mm mortar and 4.2" battalion heavy mortar, in use since the
Ghosh, P; Mandal, S; Pal, S; Bandyopadhyaya, G; Chattopadhyay, B D
2006-04-01
In the biosphere, bacteria can function as geo-chemical agents, promoting the dispersion, fractionation and/or concentration of materials. Microbial mineral precipitation is resulted from metabolic activities of microorganisms. Based on this biomineralogy concept, an attempt has been made to develop bioconcrete material incorporating of an enrichment culture of thermophilic and anaerobic bacteria within cement-sand mortar/concrete. The results showed a significant increase in compressive strength of both cement-sand mortar and concrete due to the development of filler material within the pores of cement sand matrix. Maximum strength was observed at concentration 10(5)cell/ml of water used in mortar/concrete. Addition of Escherichia coil or media composition on mortar showed no such improvement in strength.
Influence of pore structure on compressive strength of cement mortar.
Zhao, Haitao; Xiao, Qi; Huang, Donghui; Zhang, Shiping
2014-01-01
This paper describes an experimental investigation into the pore structure of cement mortar using mercury porosimeter. Ordinary Portland cement, manufactured sand, and natural sand were used. The porosity of the manufactured sand mortar is higher than that of natural sand at the same mix proportion; on the contrary, the probable pore size and threshold radius of manufactured sand mortar are finer. Besides, the probable pore size and threshold radius increased with increasing water to cement ratio and sand to cement ratio. In addition, the existing models of pore size distribution of cement-based materials have been reviewed and compared with test results in this paper. Finally, the extended Bhattacharjee model was built to examine the relationship between compressive strength and pore structure.
Influence of Pore Structure on Compressive Strength of Cement Mortar
Zhao, Haitao; Xiao, Qi; Huang, Donghui
2014-01-01
This paper describes an experimental investigation into the pore structure of cement mortar using mercury porosimeter. Ordinary Portland cement, manufactured sand, and natural sand were used. The porosity of the manufactured sand mortar is higher than that of natural sand at the same mix proportion; on the contrary, the probable pore size and threshold radius of manufactured sand mortar are finer. Besides, the probable pore size and threshold radius increased with increasing water to cement ratio and sand to cement ratio. In addition, the existing models of pore size distribution of cement-based materials have been reviewed and compared with test results in this paper. Finally, the extended Bhattacharjee model was built to examine the relationship between compressive strength and pore structure. PMID:24757414
NASA Astrophysics Data System (ADS)
Honings, J.; Seyoum, W. M.
2017-12-01
Understanding the response of water cycle dynamics to climate change and human activity is essential for best management of water resources. This study used the USDA Soil-Water Assessment Tool (SWAT) to measure and predict major water balance variables including stream discharge, potential aquifer recharge, and surface storage in a small-scale watershed ( 2,930 km²) in Central Illinois. The Mackinaw River drains the study watershed, which is predominantly tile-drained agricultural land. Two reservoirs, Evergreen Lake and Lake Bloomington, and the Mahomet Aquifer in the watershed are used for public water supply. Tiles modify watershed hydrology by efficiently draining water from saturated soil to streams, which increases total streamflow and reduces direct aquifer recharge from precipitation. To assess how the watershed is affected by future climate change, this study used high-resolution climate projection data ( 12 km) in a calibrated and validated SWAT hydrologic model. Using General Circulation Models, four (4) representative concentration pathways (RCPs) developed by the IPCC Coupled Model Intercomparison Project Fifth Assessment Report (CMIP5) were used for prediction of precipitation, mean, minimum, and maximum temperature for the watershed. Temperature predictions for 2050 were warmer for RCPs 2.6 and 8.0 (+0.69°C and +1.8°C), coinciding with increased precipitation rates (+2.5% and +4.3%). End of century projections indicate warmer mean temperatures (+0.66°C and +4.9°C) for RCPs 2.6 and 8.0. By 2099, precipitation predictions are wetter for RCP 8.0 (+10%), but drier for RCP 2.6 (-2%) from the baseline. Preliminary model calibration (R2 value = 0.7) results showed an annual average watershed yield of 32.8 m³/s at the outlet with average potential recharge of 18% of total precipitation. Tile flow comprises 10 to 30% of total flow in the watershed simulations. Predicted hydrologic variables for the extreme scenarios at mid- and end of century indicate +4.1% total flow and +4.8% recharge for RCP 2.6, compared to +4.5% total flow and +11% recharge for RCP 8.0. Effects of tile drainage and other management practices in the watershed will be examined under climate change scenarios. Model results will be used to aid future decisions involving water resource consumption and agricultural management.
Tuning iteration space slicing based tiled multi-core code implementing Nussinov's RNA folding.
Palkowski, Marek; Bielecki, Wlodzimierz
2018-01-15
RNA folding is an ongoing compute-intensive task of bioinformatics. Parallelization and improving code locality for this kind of algorithms is one of the most relevant areas in computational biology. Fortunately, RNA secondary structure approaches, such as Nussinov's recurrence, involve mathematical operations over affine control loops whose iteration space can be represented by the polyhedral model. This allows us to apply powerful polyhedral compilation techniques based on the transitive closure of dependence graphs to generate parallel tiled code implementing Nussinov's RNA folding. Such techniques are within the iteration space slicing framework - the transitive dependences are applied to the statement instances of interest to produce valid tiles. The main problem at generating parallel tiled code is defining a proper tile size and tile dimension which impact parallelism degree and code locality. To choose the best tile size and tile dimension, we first construct parallel parametric tiled code (parameters are variables defining tile size). With this purpose, we first generate two nonparametric tiled codes with different fixed tile sizes but with the same code structure and then derive a general affine model, which describes all integer factors available in expressions of those codes. Using this model and known integer factors present in the mentioned expressions (they define the left-hand side of the model), we find unknown integers in this model for each integer factor available in the same fixed tiled code position and replace in this code expressions, including integer factors, with those including parameters. Then we use this parallel parametric tiled code to implement the well-known tile size selection (TSS) technique, which allows us to discover in a given search space the best tile size and tile dimension maximizing target code performance. For a given search space, the presented approach allows us to choose the best tile size and tile dimension in parallel tiled code implementing Nussinov's RNA folding. Experimental results, received on modern Intel multi-core processors, demonstrate that this code outperforms known closely related implementations when the length of RNA strands is bigger than 2500.
Ancient mortars from Cape Verde: mineralogical and physical characterization
NASA Astrophysics Data System (ADS)
Rocha, Fernando; Costa, Cristiana; Velosa, Ana; Quintela, Ana; Terroso, Denise; Marques, Vera
2014-05-01
Times and locations of different building constructions means different knowledge, habits, different construction methods and materials. The study and safeguarding of the architectural heritage takes nowadays a progressive importance as a vehicle for transmission of cultures and history of nations. The coatings are of great importance in the durability of a building due to the protective role of the masonry. The compatibility between the materials with which they are executed (masonry, mortar and grout settlement) promotes the proper functioning of the wall and a consequent increase in durability. Therefore, it becomes important to study and characterize the mortar coating of buildings to know its characteristics and to use compatible materials in the rehabilitation and maintenance of buildings. This study aims to characterize the chemical, physical, mechanical and mineralogical mortar samples collected in buildings in three islands of Cape Verde, for the conservation, rehabilitation and preservation of them. The collected samples belong to buildings constructed in the end of XIX century and in the beginning of XX century. In order to characterize the mortar samples some tests was made, such as X-Ray Diffraction, X- Ray Fluorescence, acid attack and mechanical strength. The samples were divided into three groups depending on origin; so we have a first group collected on the island of Santiago, the second on the island of Saint Vincent and the third on the island of Santo Antao. The samples are all carbonated, but Santiago samples have a lower carbonates content. In terms of insoluble residue (from the acid attack) it was concluded that the samples have similar value ranging from 9 to 26%. The compressive strength of the mortars have a range between 1.36 and 4.55 MPa, which is related to the presence of more binder in samples with higher resistance. The chemical and mineralogical analyzes showed that these consist of lime mortars (binder), natural pozzolan and basaltic sands, which would be expected because these buildings are in a volcanic complex. The addition of pozzolans mortars confers resistance. It will be important in the conservation and maintenance of these buildings to use mortars with the same constituents of those proposed on this study, for greater durability of the coating of these buildings. These basic properties provide a basis for the development of adequate interventions, preserving the characteristics of the buildings.
Numerical Simulation of the Freeze-Thaw Behavior of Mortar Containing Deicing Salt Solution
Esmaeeli, Hadi S.; Farnam, Yaghoob; Bentz, Dale P.; Zavattieri, Pablo D.; Weiss, Jason
2016-01-01
This paper presents a one-dimensional finite difference model that is developed to describe the freeze-thaw behavior of an air-entrained mortar containing deicing salt solution. A phenomenological model is used to predict the temperature and the heat flow for mortar specimens during cooling and heating. Phase transformations associated with the freezing/melting of water/ice or transition of the eutectic solution from liquid to solid are included in this phenomenological model. The lever rule is used to calculate the quantity of solution that undergoes the phase transformation, thereby simulating the energy released/absorbed during phase transformation. Undercooling and pore size effects are considered in the numerical model. To investigate the effect of pore size distribution, this distribution is considered using the Gibbs-Thomson equation in a saturated mortar specimen. For an air-entrained mortar, the impact of considering pore size (and curvature) on freezing was relatively insignificant; however the impact of pore size is much more significant during melting. The fluid inside pores smaller than 5 nm (i.e., gel pores) has a relatively small contribution in the macroscopic freeze-thaw behavior of mortar specimens within the temperature range used in this study (i.e., +24 °C to −35 °C), and can therefore be neglected for the macroscopic freeze-thaw simulations. A heat sink term is utilized to simulate the heat dissipation during phase transformations. Data from experiments performed using a low-temperature longitudinal guarded comparative calorimeter (LGCC) on mortar specimens fully saturated with various concentration NaCl solutions or partially saturated with water is compared to the numerical results and a promising agreement is generally obtained. PMID:28082830
Numerical Simulation of the Freeze-Thaw Behavior of Mortar Containing Deicing Salt Solution.
Esmaeeli, Hadi S; Farnam, Yaghoob; Bentz, Dale P; Zavattieri, Pablo D; Weiss, Jason
2017-02-01
This paper presents a one-dimensional finite difference model that is developed to describe the freeze-thaw behavior of an air-entrained mortar containing deicing salt solution. A phenomenological model is used to predict the temperature and the heat flow for mortar specimens during cooling and heating. Phase transformations associated with the freezing/melting of water/ice or transition of the eutectic solution from liquid to solid are included in this phenomenological model. The lever rule is used to calculate the quantity of solution that undergoes the phase transformation, thereby simulating the energy released/absorbed during phase transformation. Undercooling and pore size effects are considered in the numerical model. To investigate the effect of pore size distribution, this distribution is considered using the Gibbs-Thomson equation in a saturated mortar specimen. For an air-entrained mortar, the impact of considering pore size (and curvature) on freezing was relatively insignificant; however the impact of pore size is much more significant during melting. The fluid inside pores smaller than 5 nm (i.e., gel pores) has a relatively small contribution in the macroscopic freeze-thaw behavior of mortar specimens within the temperature range used in this study (i.e., +24 °C to -35 °C), and can therefore be neglected for the macroscopic freeze-thaw simulations. A heat sink term is utilized to simulate the heat dissipation during phase transformations. Data from experiments performed using a low-temperature longitudinal guarded comparative calorimeter (LGCC) on mortar specimens fully saturated with various concentration NaCl solutions or partially saturated with water is compared to the numerical results and a promising agreement is generally obtained.
Mortar and artillery variants classification by exploiting characteristics of the acoustic signature
NASA Astrophysics Data System (ADS)
Hohil, Myron E.; Grasing, David; Desai, Sachi; Morcos, Amir
2007-10-01
Feature extraction methods based on the discrete wavelet transform and multiresolution analysis facilitate the development of a robust classification algorithm that reliably discriminates mortar and artillery variants via acoustic signals produced during the launch/impact events. Utilizing acoustic sensors to exploit the sound waveform generated from the blast for the identification of mortar and artillery variants. Distinct characteristics arise within the different mortar variants because varying HE mortar payloads and related charges emphasize concussive and shrapnel effects upon impact employing varying magnitude explosions. The different mortar variants are characterized by variations in the resulting waveform of the event. The waveform holds various harmonic properties distinct to a given mortar/artillery variant that through advanced signal processing techniques can employed to classify a given set. The DWT and other readily available signal processing techniques will be used to extract the predominant components of these characteristics from the acoustic signatures at ranges exceeding 2km. Exploiting these techniques will help develop a feature set highly independent of range, providing discrimination based on acoustic elements of the blast wave. Highly reliable discrimination will be achieved with a feed-forward neural network classifier trained on a feature space derived from the distribution of wavelet coefficients, frequency spectrum, and higher frequency details found within different levels of the multiresolution decomposition. The process that will be described herein extends current technologies, which emphasis multi modal sensor fusion suites to provide such situational awareness. A two fold problem of energy consumption and line of sight arise with the multi modal sensor suites. The process described within will exploit the acoustic properties of the event to provide variant classification as added situational awareness to the solider.
2009-06-01
Figure 2. Examples of surface vegetation at a firing point (inset) and near the crater of an 81-mm mortar projectile low-order detonation on an artillery... mortar impact range.......................... 7 Figure 3. Fort Richardson and surrounding areas...crater where an 81-mm mortar projectile had low-ordered on an impact range. If vegetation is removed or avoided during sampling, energetic residue
Stealing the Sword: Limiting Terrorist Use of Advanced Conventional Weapons
2007-01-01
ammunition, are combined (see Figure 2.9 for a handgun concept that features four barrels , two with lethal and two with nonlethal ammunition). Other...Weapons Figure 2.9 A Four- Barreled Concept Handgun Mortar Systems Mortars have long been regarded as cheap, lightweight, short-range artillery. Mortars are...Terrorists? 37 manner).63 An example of an advance in lightweight materials for mor- tars is the development of the carbon fiber composite barrel in the
NASA Astrophysics Data System (ADS)
Lima, Nathan B.; Rogerio, V. A.; Belarmino, Marcia K. D. L.; Silva, Anderson I. S.; Ioras, Renan U. F.; Oliveira, Romilde A.; Lima, Nathalia B. D.
2018-07-01
A chemical rationalization of the processing and application of the roughcast and plaster mortar coatings was advanced. The results revealed that the structural and thermodynamic nature of the hydrogen-bonded complexes between the inorganic precursors and water molecules are associated with the physical properties of both coatings. In this sense, the workability and curing time of the roughcast and the plaster mortars studied, seemingly, are related to the nature of the water solvation in the main components of these materials: calcium hydroxide and silicon dioxide. In addition, PM7 and PM7/COSMO results indicate that the enthalpy of solvation of water by hydrogen bonds in calcium hydroxide is stronger when compared with silicon dioxide systems. Therefore, the presence of free hydrated lime (calcium hydroxide) in the precursor mixture of plaster mortar leads to the large workability and elapsed curing time of this material. On the other hand, the absence of free hydrated lime in the precursor mixture of the roughcast mortar leads to its poor workability and faster elapsed curing time. Further, fluorescence microscopy experiments revealed that the inorganic compounds present in the cement precursor were transformed into different materials, that exhibit red and blue fluorescence. Finally, mechanical tests showed a tensile strength average 0.67 MPa for the plaster mortar material, whereas for the roughcast material is 0.53 MPa.
Lime-pozzolana mortars in Roman catacombs: composition, structures and restoration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez-Moral, Sergio; Luque, Luis; Canaveras, Juan-Carlos
Analyses of microsamples collected from Roman catacombs and samples of lime-pozzolana mortars hardened in the laboratory display higher contents in carbonated binder than other subaerial Roman monuments. The measured environmental data inside the Saint Callistus and Domitilla catacombs show a constant temperature of 15-17 deg C, a high CO{sub 2} content (1700 to 3500 ppm) and a relative humidity close to 100%. These conditions and particularly the high CO{sub 2} concentration speed-up the lime calcitization roughly by 500% and reduce the cationic diffusion to form hydrous calcium aluminosilicates. The structure of Roman catacomb mortars shows (i) coarser aggregates and thickermore » beds on the inside, (ii) thin, smoothed, light and fine-grained external surfaces with low content of aggregates and (iii) paintings and frescoes on the outside. The observed high porosity of the mortars can be attributed to cracking after drying linked with the high binder content. Hardened lime lumps inside the binder denote low water/mortar ratios for slaking. The aggregate tephra pyroclasts rich in aluminosilicate phases with accessorial amounts of Ba, Sr, Rb, Cu and Pb were analysed through X-ray diffraction (XRD), electron microprobe analysis (EMPA) and also by environmental scanning electron microscopy (ESEM) to identify the size and distribution of porosity. Results support procedures using local materials, special mortars and classic techniques for restoration purposes in hypogeal backgrounds.« less
On the Utilization of Pozzolanic Wastes as an Alternative Resource of Cement
Karim, Md. Rezaul; Hossain, Md. Maruf; Khan, Mohammad Nabi Newaz; Zain, Muhammad Fauzi Mohd; Jamil, Maslina; Lai, Fook Chuan
2014-01-01
Recently, as a supplement of cement, the utilization of pozzolanic materials in cement and concrete manufacturing has increased significantly. This study investigates the scope to use pozzolanic wastes (slag, palm oil fuel ash and rice husk ash) as an alkali activated binder (AAB) that can be used as an alternative to cement. To activate these materials, sodium hydroxide solution was used at 1.0, 2.5 and 5.0 molar concentration added into the mortar, separately. The required solution was used to maintain the flow of mortar at 110% ± 5%. The consistency and setting time of the AAB-paste were determined. Mortar was tested for its flow, compressive strength, porosity, water absorption and thermal resistance (heating at 700 °C) and investigated by scanning electron microscopy. The experimental results reveal that AAB-mortar exhibits less flow than that of ordinary Portland cement (OPC). Surprisingly, AAB-mortars (with 2.5 molar solution) achieved a compressive strength of 34.3 MPa at 28 days, while OPC shows that of 43.9 MPa under the same conditions. Although water absorption and porosity of the AAB-mortar are slightly high, it shows excellent thermal resistance compared to OPC. Therefore, based on the test results, it can be concluded that in the presence of a chemical activator, the aforementioned pozzolans can be used as an alternative material for cement. PMID:28788277
Classifiers utilized to enhance acoustic based sensors to identify round types of artillery/mortar
NASA Astrophysics Data System (ADS)
Grasing, David; Desai, Sachi; Morcos, Amir
2008-04-01
Feature extraction methods based on the statistical analysis of the change in event pressure levels over a period and the level of ambient pressure excitation facilitate the development of a robust classification algorithm. The features reliably discriminates mortar and artillery variants via acoustic signals produced during the launch events. Utilizing acoustic sensors to exploit the sound waveform generated from the blast for the identification of mortar and artillery variants as type A, etcetera through analysis of the waveform. Distinct characteristics arise within the different mortar/artillery variants because varying HE mortar payloads and related charges emphasize varying size events at launch. The waveform holds various harmonic properties distinct to a given mortar/artillery variant that through advanced signal processing and data mining techniques can employed to classify a given type. The skewness and other statistical processing techniques are used to extract the predominant components from the acoustic signatures at ranges exceeding 3000m. Exploiting these techniques will help develop a feature set highly independent of range, providing discrimination based on acoustic elements of the blast wave. Highly reliable discrimination will be achieved with a feedforward neural network classifier trained on a feature space derived from the distribution of statistical coefficients, frequency spectrum, and higher frequency details found within different energy bands. The processes that are described herein extend current technologies, which emphasis acoustic sensor systems to provide such situational awareness.
Artillery/mortar type classification based on detected acoustic transients
NASA Astrophysics Data System (ADS)
Morcos, Amir; Grasing, David; Desai, Sachi
2008-04-01
Feature extraction methods based on the statistical analysis of the change in event pressure levels over a period and the level of ambient pressure excitation facilitate the development of a robust classification algorithm. The features reliably discriminates mortar and artillery variants via acoustic signals produced during the launch events. Utilizing acoustic sensors to exploit the sound waveform generated from the blast for the identification of mortar and artillery variants as type A, etcetera through analysis of the waveform. Distinct characteristics arise within the different mortar/artillery variants because varying HE mortar payloads and related charges emphasize varying size events at launch. The waveform holds various harmonic properties distinct to a given mortar/artillery variant that through advanced signal processing and data mining techniques can employed to classify a given type. The skewness and other statistical processing techniques are used to extract the predominant components from the acoustic signatures at ranges exceeding 3000m. Exploiting these techniques will help develop a feature set highly independent of range, providing discrimination based on acoustic elements of the blast wave. Highly reliable discrimination will be achieved with a feed-forward neural network classifier trained on a feature space derived from the distribution of statistical coefficients, frequency spectrum, and higher frequency details found within different energy bands. The processes that are described herein extend current technologies, which emphasis acoustic sensor systems to provide such situational awareness.
Artillery/mortar round type classification to increase system situational awareness
NASA Astrophysics Data System (ADS)
Desai, Sachi; Grasing, David; Morcos, Amir; Hohil, Myron
2008-04-01
Feature extraction methods based on the statistical analysis of the change in event pressure levels over a period and the level of ambient pressure excitation facilitate the development of a robust classification algorithm. The features reliably discriminates mortar and artillery variants via acoustic signals produced during the launch events. Utilizing acoustic sensors to exploit the sound waveform generated from the blast for the identification of mortar and artillery variants as type A, etcetera through analysis of the waveform. Distinct characteristics arise within the different mortar/artillery variants because varying HE mortar payloads and related charges emphasize varying size events at launch. The waveform holds various harmonic properties distinct to a given mortar/artillery variant that through advanced signal processing and data mining techniques can employed to classify a given type. The skewness and other statistical processing techniques are used to extract the predominant components from the acoustic signatures at ranges exceeding 3000m. Exploiting these techniques will help develop a feature set highly independent of range, providing discrimination based on acoustic elements of the blast wave. Highly reliable discrimination will be achieved with a feedforward neural network classifier trained on a feature space derived from the distribution of statistical coefficients, frequency spectrum, and higher frequency details found within different energy bands. The processes that are described herein extend current technologies, which emphasis acoustic sensor systems to provide such situational awareness.
Abdul-Majid, S; Othman, F
1994-03-01
Polyethylene and polyvinyl chloride pellets were introduced into concrete to improve its neutron attenuation characteristics while several types of heavy coarse aggregates were used to improve its gamma ray attenuation properties. Neutron and gamma ray attenuation were studied in concrete samples containing coarse aggregates of barite, pyrite, basalt, hematite, and marble as well as polyethylene and polyvinyl chloride pellets in narrow-beam geometry. The highest neutron attenuation was shown by polyethylene mortar, followed by polyvinyl chloride mortar; barite and pyrite concrete showed higher gamma ray attenuation than ordinary concrete. Broad-beam and continuous (infinite) medium geometries were used to study the neutron attenuation of samples containing polymers at different concentrations with and without heavy aggregates, the fitting equations were established, and from these the neutron removal coefficients were deduced. In a radiation field of neutrons and gamma rays, the appropriate concentration of polymer and heavy aggregate can be selected to give the optimum total dose attenuation depending on the relative intensities of each type of radiation. This would give much better design flexibility over ordinary concrete. The compressive strength tests performed on mortar and concrete samples showed that their value, in general, decreases as polymer concentration increases and that the polyvinyl chloride mortar showed higher values than the polyethylene mortar. For general construction purposes, the compression strength was considered acceptable in these samples.
Alkali activated slag mortars provide high resistance to chloride-induced corrosion of steel
NASA Astrophysics Data System (ADS)
Criado, Maria; Provis, John L.
2018-06-01
The pore solutions of alkali-activated slag cements and Portland-based cements are very different in terms of their chemical and redox characteristics, particularly due to the high alkalinity and high sulfide content of alkali-activated slag cement. Therefore, differences in corrosion mechanisms of steel elements embedded in these cements could be expected, with important implications for the durability of reinforced concrete elements. This study assesses the corrosion behaviour of steel embedded in alkali-activated blast furnace slag (BFS) mortars exposed to alkaline solution, alkaline chloride-rich solution, water, and standard laboratory conditions, using electrochemical techniques. White Portland cement (WPC) mortars and blended cement mortars (white Portland cement and blast furnace slag) were also tested for comparative purposes. The steel elements embedded in immersed alkali-activated slag mortars presented very negative redox potentials and high apparent corrosion current values; the presence of sulfide reduced the redox potential, and the oxidation of the reduced sulfur-containing species within the cement itself gave an electrochemical signal that classical electrochemical tests for reinforced concrete durability would interpret as being due to steel corrosion processes. However, the actual observed resistance to chloride-induced corrosion was very high, as measured by extraction and characterisation of the steel at the end of a 9-month exposure period, whereas the steel embedded in white Portland cement mortars was significantly damaged under the same conditions.
On the Utilization of Pozzolanic Wastes as an Alternative Resource of Cement.
Karim, Md Rezaul; Hossain, Md Maruf; Khan, Mohammad Nabi Newaz; Zain, Muhammad Fauzi Mohd; Jamil, Maslina; Lai, Fook Chuan
2014-12-05
Recently, as a supplement of cement, the utilization of pozzolanic materials in cement and concrete manufacturing has increased significantly. This study investigates the scope to use pozzolanic wastes (slag, palm oil fuel ash and rice husk ash) as an alkali activated binder (AAB) that can be used as an alternative to cement. To activate these materials, sodium hydroxide solution was used at 1.0, 2.5 and 5.0 molar concentration added into the mortar, separately. The required solution was used to maintain the flow of mortar at 110% ± 5%. The consistency and setting time of the AAB-paste were determined. Mortar was tested for its flow, compressive strength, porosity, water absorption and thermal resistance (heating at 700 °C) and investigated by scanning electron microscopy. The experimental results reveal that AAB-mortar exhibits less flow than that of ordinary Portland cement (OPC). Surprisingly, AAB-mortars (with 2.5 molar solution) achieved a compressive strength of 34.3 MPa at 28 days, while OPC shows that of 43.9 MPa under the same conditions. Although water absorption and porosity of the AAB-mortar are slightly high, it shows excellent thermal resistance compared to OPC. Therefore, based on the test results, it can be concluded that in the presence of a chemical activator, the aforementioned pozzolans can be used as an alternative material for cement.
Jin, Xiaochao; Hou, Cheng; Fan, Xueling; Lu, Chunsheng; Yang, Huawei; Shu, Xuefeng; Wang, Zhihua
2017-11-10
As concrete and mortar materials widely used in structural engineering may suffer dynamic loadings, studies on their mechanical properties under different strain rates are of great importance. In this paper, based on splitting tests of Brazilian discs, the tensile strength and failure pattern of concrete and mortar were investigated under quasi-static and dynamic loadings with a strain rate of 1-200 s -1 . It is shown that the quasi-static tensile strength of mortar is higher than that of concrete since coarse aggregates weaken the interface bonding strength of the latter. Numerical results confirmed that the plane stress hypothesis lead to a lower value tensile strength for the cylindrical specimens. With the increase of strain rates, dynamic tensile strengths of concrete and mortar significantly increase, and their failure patterns change form a single crack to multiple cracks and even fragment. Furthermore, a relationship between the dynamic increase factor and strain rate was established by using a linear fitting algorithm, which can be conveniently used to calculate the dynamic increase factor of concrete-like materials in engineering applications.
Formulation and characterization of date palm fibers mortar by addition of silica fume
NASA Astrophysics Data System (ADS)
Mokhtari, A.; Kriker, A.; Ouaggad, H.; Merad, N.
2018-05-01
This paper presents the results of experimental investigations of the formulated and characterization of date palm fibers mortar by addition of silica fume. The use of addition mineral is widely used in the production of cements through the world. The objective of this work is to bring our contribution to the recovery of local resources in the occurrence vegetable fibers of date palm to weak cost and from renewable source and integrate it in the filled of building. Date palm fiber are from Ouargla town in south of Algeria. Different mortar mixtures were prepared in which the cement was substitute by 10% of silica fume. The mechanical characteristics (compressive and flexural strength) of date palm fibers mortar by treatment of the matrix by the adding of silica fume were examined. The results obtained have shown that the mortar workability as well as the compressive and flexural strength decreases with increasing the silica fume replacement. The results showed that the use of silica fume enabled to evaluate the flexural strength. However, another treatment of fibers and matrix will be recommended for Improved the characteristics.
NASA Astrophysics Data System (ADS)
Guo, Wenkang; Yin, Haibo; Wang, Shuyin; He, Zhifeng
2017-04-01
Through studying on the setting times, cement mortar compressive strength and cement mortar compressive strength ratio, the influence of alkali-free liquid accelerators polycarboxylate-type super-plasticizers on the performance of alkali-free liquid accelerators in cement-based material was investigated. The results showed that the compatibility of super-plasticizers and alkali-free liquid accelerators was excellent. However, the dosage of super-plasticizers had a certain impact on the performance of alkali-free liquid accelerators as follows: 1) the setting times of alkali-free liquid accelerators was in the inverse proportional relationship to the dosage of super-plasticizers; 2)the influence of super-plasticizers dosage on the cement mortar compressive strength of alkali-free liquid accelerators was related to the types of accelerators, where exist an optimum super-plasticizers dosage for cement mortar compressive strength at 28d; 3)the later cement mortar compressive strength with alkali-free liquid accelerators were decreasing with the increment of the super-plasticizers dosage. In the practical application of alkali-free liquid accelerators and super-plasticizer, the dosage of super-plasticizer must be determined by dosage optimization test results.
Pino, F; Fermo, P; La Russa, M; Ruffolo, S; Comite, V; Baghdachi, J; Pecchioni, E; Fratini, F; Cappelletti, G
2017-05-01
In the present work, two kinds of hybrid polymeric-inorganic coatings containing TiO 2 or SiO 2 particles and prepared starting from two commercial resins (Alpha®SI30 and Bluesil®BP9710) were developed and applied to two kinds of mortars (an air-hardening calcic lime mortar [ALM] and a natural hydraulic lime mortar [HLM]) to achieve better performances in terms of water repellence and consequently damage resistance. The two pure commercial resins were also applied for comparison purposes. Properties of the coated materials and their performance were studied using different techniques such as contact angle measurements, capillary absorption test, mercury intrusion porosimetry, surface free energy, colorimetric measurements and water vapour permeability tests. Tests were also performed to determine the weathering effects on both the commercial and the hybrid coatings in order to study their durability. Thus, exposures to UV radiation, to UV radiation/condensed water cycles and to a real polluted atmospheric environment have been performed. The effectiveness of the hybrid SiO 2 based coating was demonstrated, especially in the case of the HLM mortar.
Tile Patterns with LOGO--Part III: Tile Patterns from Mult Tiles Using Logo.
ERIC Educational Resources Information Center
Clason, Robert G.
1991-01-01
A mult tile is a set of polygons each of which can be dissected into smaller polygons similar to the original set of polygons. Using a recursive LOGO method that requires solutions to various geometry and trigonometry problems, dissections of mult tiles are carried out repeatedly to produce tile patterns. (MDH)
Steep-Slope Assembly Testing of Clay and Concrete Tile With and Without Cool Pigmented Colors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, William A
Cool color pigments and sub-tile venting of clay and concrete tile roofs significantly impact the heat flow crossing the roof deck of a steep-slope roof. Field measures for the tile roofs revealed a 70% drop in the peak heat flow crossing the deck as compared to a direct-nailed asphalt shingle roof. The Tile Roofing Institute (TRI) and its affiliate members are keenly interested in documenting the magnitude of the drop for obtaining solar reflectance credits with state and federal "cool roof" building efficiency standards. Tile roofs are direct-nailed or are attached to a deck with batten or batten and counter-battenmore » construction. S-Misson clay and concrete tile roofs, a medium-profile concrete tile roof, and a flat slate tile roof were installed on fully nstrumented attic test assemblies. Temperature measures of the roof, deck, attic, and ceiling, heat flows, solar reflectance, thermal emittance, and the ambient weather were recorded for each of the tile roofs and also on an adjacent attic cavity covered with a conventional pigmented and directnailed asphalt shingle roof. ORNL measured the tile's underside temperature and the bulk air temperature and heat flows just underneath the tile for batten and counter-batten tile systems and compared the results to the conventional asphalt shingle.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Myoung-Youl; Lee, Jae-Yong; Chung, Chul-Woo
2012-01-12
In this research, the possible applicability of fine aggregates blended with natural, crushed, and recycled fine aggregate are discussed. The fresh and hardened properties of mortar using blended fine aggregates are monitored depending on various blending ratio of fine aggregates. Newly developed ternary diagram was also utilized for better interpretation of the data. It was found that air content increased and unit weight decreased as recycled fine aggregate content increased. With moisture type processing of recycled fine aggregate, the mortar flow was not negatively affected by increase in the recycled fine aggregate content. The ternary diagram is found to bemore » an effective graphical presentation tool that can be used for the quality evaluation of mortar using blended fine aggregate.« less
NASA Astrophysics Data System (ADS)
Himabindu, Ch.; Geethasri, Ch.; Hari, N.
2018-05-01
Cement mortar is a mixture of cement and sand. Usage of high amount of cement increases the consumption of natural resources and electric power. To overcome this problem we need to replace cement with some other material. Cement is replaced with many other materials like ceramic powder, silica fume, fly ash, granulated blast furnace slag, metakaolin etc.. In this research cement is replaced with ceramic powder and silica fume. Different combinations of ceramic powder and silica fume in cement were replaced. Cement mortar cubes of 1:3 grade were prepared. These cubes were cured under normal water for 7 days, 14days and 28 days. Compressive strength test was conducted for all mixes of cement mortar cubes.
Roig-Salom, José-Luis; Doménech-Carbó, María-Teresa; de la Cruz-Cañizares, Juana; Bolívar-Galiano, Fernando; Pelufo-Carbonell, María-José; Peraza-Zurita, Yaiza
2003-04-01
A study by SEM/EDX and spectrophotometry in the visible region attempting to assess the stability of new resin-bound mortars used for casting replicas of marble historic fountains is presented in this paper. Different accelerating tests such as thermal ageing, UV light ageing, ageing in an SO(2) pollutant chamber, freezing cycles ageing, salt crystallisation ageing, natural ageing and biological attack have been applied to a series of test specimens prepared with polyester-, epoxy- and gel-coat-bound mortars. Examination of morphology, measurement of chemical composition and chromatic coordinates before and after ageing treatments establish the higher stability and resistance properties of these resin-bound mortars by comparison to those from the natural marbles.
Stability Analysis of a mortar cover ejected at various Mach numbers and angles of attack
NASA Astrophysics Data System (ADS)
Schwab, Jane; Carnasciali, Maria-Isabel; Andrejczyk, Joe; Kandis, Mike
2011-11-01
This study utilized CFD software to predict the aerodynamic coefficient of a wedge-shaped mortar cover which is ejected from a spacecraft upon deployment of its Parachute Recovery System (PRS). Concern over recontact or collision between the mortar cover and spacecraft served as the impetus for this study in which drag and moment coefficients were determined at Mach numbers from 0.3 to 1.6 at 30-degree increments. These CFD predictions were then used as inputs to a two-dimensional, multi-body, three-DoF trajectory model to calculate the relative motion of the mortar cover and spacecraft. Based upon those simulations, the study concluded a minimal/zero risk of collision with either the spacecraft or PRS. Sponsored by Pioneer Aerospace.
A new simple tiling, with unusual properties, by a polyhedron with 14 faces.
Gabbrielli, Ruggero; O'Keeffe, Michael
2008-05-01
A monotypic simple tiling by a 14-face polyhedron that does not admit an isohedral tiling is described. The tiling is triclinic and contains four distinct, but combinatorially equivalent, kinds of tile.
Fractal analysis of mandibular trabecular bone: optimal tile sizes for the tile counting method.
Huh, Kyung-Hoe; Baik, Jee-Seon; Yi, Won-Jin; Heo, Min-Suk; Lee, Sam-Sun; Choi, Soon-Chul; Lee, Sun-Bok; Lee, Seung-Pyo
2011-06-01
This study was performed to determine the optimal tile size for the fractal dimension of the mandibular trabecular bone using a tile counting method. Digital intraoral radiographic images were obtained at the mandibular angle, molar, premolar, and incisor regions of 29 human dry mandibles. After preprocessing, the parameters representing morphometric characteristics of the trabecular bone were calculated. The fractal dimensions of the processed images were analyzed in various tile sizes by the tile counting method. The optimal range of tile size was 0.132 mm to 0.396 mm for the fractal dimension using the tile counting method. The sizes were closely related to the morphometric parameters. The fractal dimension of mandibular trabecular bone, as calculated with the tile counting method, can be best characterized with a range of tile sizes from 0.132 to 0.396 mm.
Fractal analysis of mandibular trabecular bone: optimal tile sizes for the tile counting method
Huh, Kyung-Hoe; Baik, Jee-Seon; Heo, Min-Suk; Lee, Sam-Sun; Choi, Soon-Chul; Lee, Sun-Bok; Lee, Seung-Pyo
2011-01-01
Purpose This study was performed to determine the optimal tile size for the fractal dimension of the mandibular trabecular bone using a tile counting method. Materials and Methods Digital intraoral radiographic images were obtained at the mandibular angle, molar, premolar, and incisor regions of 29 human dry mandibles. After preprocessing, the parameters representing morphometric characteristics of the trabecular bone were calculated. The fractal dimensions of the processed images were analyzed in various tile sizes by the tile counting method. Results The optimal range of tile size was 0.132 mm to 0.396 mm for the fractal dimension using the tile counting method. The sizes were closely related to the morphometric parameters. Conclusion The fractal dimension of mandibular trabecular bone, as calculated with the tile counting method, can be best characterized with a range of tile sizes from 0.132 to 0.396 mm. PMID:21977478
41. West tile gauge on south pier. Each square tile ...
41. West tile gauge on south pier. Each square tile is 4' in size. Bottom number scale of west tile - Duluth Ship Canal, South Pier, North end of Minnesota Point & Canal Park, Duluth, St. Louis County, MN
48. East tile gauge on south pier. Each square tile ...
48. East tile gauge on south pier. Each square tile is 4' in size. Lower section of tile cross only - Duluth Ship Canal, South Pier, North end of Minnesota Point & Canal Park, Duluth, St. Louis County, MN
Testing Machine for Biaxial Loading
NASA Technical Reports Server (NTRS)
Demonet, R. J.; Reeves, R. D.
1985-01-01
Standard tensile-testing machine applies bending and tension simultaneously. Biaxial-loading test machine created by adding two test fixtures to commercial tensile-testing machine. Bending moment applied by substrate-deformation fixture comprising yoke and anvil block. Pneumatic tension-load fixture pulls up on bracket attached to top surface of specimen. Tension and deflection measured with transducers. Modified test apparatus originally developed to load-test Space Shuttle surface-insulation tiles and particuarly important for composite structures.
Ultrafast Modulation of Semiconductor Lasers Through a Terahertz Field
NASA Technical Reports Server (NTRS)
Ning, Cun-Zheng; Hughes, Steven; Citrin, David
1998-01-01
We demonstrate, by means of numerical simulation, a new mechanism to modulate and switch semiconductor lasers at THz and sub-THz frequency rates. A sinusoidal terahertz field applied to a semiconductor laser heats the electron-hole plasma and consequently modifies the optical susceptibility. This allows an almost linear modulation of the output power of tile semiconductor laser and leads to a faithful reproduction of the terahertz-field waveform in the emitted laser intensity.
Defense Attache Saigon: RVNAF Quarterly Assessment, 4th Quarter FY74
1974-08-01
bombardments with mortars , rockets, and artillery against this outpost and other GVN outposts in the area. Ralliers indicated that elements of the 5th...lery/ mortar fire and mines to stall RVNAF attempts to regain control west of Ben Cat and to inflict casualties. (6) In the Phu Giao area, the 209th and...losses reported were 390 KIA and 12 DTN. Additionally 28 CS, 63 SA, a substantial number of rockets, mortar rounds, AT-3 missiles, mines and other
Verification of chloride adsorption effect of mortar with salt adsorbent
NASA Astrophysics Data System (ADS)
Hoshina, T.; Nakajima, N.; Sudo, H.; Date, S.
2017-11-01
In order to investigate the chloride adsorption effect of mortar mixed with chloride adsorbent, electrophoresis test using mortar specimen and immersion dry repeated test were conducted to evaluate chloride adsorption effect. As a result, it was confirmed that soluble salt content that causes corrosion of rebar in the specimen was reduced by the chloride adsorbent and corrosion inhibiting effect of the rebar was also obtained. It was also confirmed that by increasing dosage of the chloride adsorbent, the chloride adsorbing effect becomes larger as well..
The Effect of Mechanical Performance on PP Fiber to Polymer Mortar
NASA Astrophysics Data System (ADS)
Xie, Xinying; Kang, Xinnan; Jin, Yujie; Cai, Jingwei
2018-03-01
It introduces the purpose of of adding Polypropylene fiber. The paper The production process and test method of epoxy resin mortar with PP fiber are developed. The influence of PP fiber on mechanical properties of polymer mortar was studied in this paper, including the influence of PP fiber content on flexural strength, the ratio of flexural and compressive strength and so on. The experimental results are compared and analyzed. The reason is found, the conclusion of research is acquired.
2006-01-11
KENNEDY SPACE CENTER, FLA. - In the Thermal Protection System Facility, Tim Wright, engineering manager with United Space Alliance, tests a new tile, called "Boeing replacement insulation" or "BRI-18." The new tiles will gradually replace older tiles around main landing gear doors, external tank doors and nose landing gear doors. Currently, 10 tiles have been processed inside the facility. Discovery will receive the first BRI-18 tiles. Technicians inside the Orbiter Processing Facility are performing fit checks and will begin bonding the tiles to the vehicle this month. The raw material is manufactured by The Boeing Company in Huntington Beach, Calif. Replacing older tile with the BRI-18 tile in strategic areas is one of the Columbia Accident Investigation Board's recommendations to strengthen the orbiters. The tiles are more impact resistant than previous designs, enhancing the crew’s safety.
2006-01-11
KENNEDY SPACE CENTER, FLA. - In the Thermal Protection System Facility, Tim Wright, engineering manager with United Space Alliance, tests a new tile, called "Boeing replacement insulation" or "BRI-18." The new tiles will gradually replace older tiles around main landing gear doors, external tank doors and nose landing gear doors. Currently, 10 tiles have been processed inside the facility. Discovery will receive the first BRI-18 tiles. Technicians inside the Orbiter Processing Facility are performing fit checks and will begin bonding the tiles to the vehicle this month. The raw material is manufactured by The Boeing Company in Huntington Beach, Calif. Replacing older tile with the BRI-18 tile in strategic areas is one of the Columbia Accident Investigation Board's recommendations to strengthen the orbiters. The tiles are more impact resistant than previous designs, enhancing the crew’s safety.
40. West tile gauge on south pier. Each square tile ...
40. West tile gauge on south pier. Each square tile is 4' in size. Bottom right hand corner of west tile - Duluth Ship Canal, South Pier, North end of Minnesota Point & Canal Park, Duluth, St. Louis County, MN
39. West tile gauge on south pier. Each square tile ...
39. West tile gauge on south pier. Each square tile is 4' in size. Bottom left hand corner of west tile - Duluth Ship Canal, South Pier, North end of Minnesota Point & Canal Park, Duluth, St. Louis County, MN
Binder characterisation of mortars used at different ages in the San Lorenzo church in Milan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertolini, Luca, E-mail: luca.bertolini@polimi.it; Carsana, Maddalena, E-mail: maddalena.carsana@polimi.it; Gastaldi, Matteo, E-mail: matteo.gastaldi@polimi.it
The paper describes a study on the mortars of the basilica of San Lorenzo in Milan, which was carried out to support an archaeological study aimed at dating and documenting the construction techniques used throughout the centuries. The church, which was founded between the 4th and 5th century, at the end of the period when Milan was the capital of the Roman Empire, was subjected in time to extensions, collapses and reconstructions that lasted until the Renaissance period and even later on. Thanks to the good state of conservation, San Lorenzo church is a collection of materials and construction techniquesmore » throughout a period of more than a millennium. Mortars were investigated in order to compare the binders used for structural elements built in different historical ages. From an archaeological study, samples of mortars attributed to the late Roman period, the Middle Ages and the Renaissance were available. The binder of each sample was separated by the aggregates and it was characterised on the basis of X-ray diffraction analysis, thermogravimetric analysis and scanning electron microscopy. Constituents of the binder were identified and their origin is discussed in order to investigate if they could be attributed to the original composition of the binder or to possible alteration in time due to atmospheric pollution. Results show that, even though the binder is mainly based on magnesian lime, there are significant differences in the microstructure of the binding matrix used in mortars ascribed to the different historical periods. In the Roman period, in correspondence of the structural elements that required higher strength, also hydraulic cocciopesto mortars were detected. Gypsum was found in most samples, which was maybe added intentionally. - Highlights: • Binders of mortars of San Lorenzo church in Milan were investigated. • Roman, Middle Ages and Renaissance samples were studied by XRD, TG and SEM. • Magnesian-lime binders containing silico-aluminates were used in all periods. • Cocciopesto hydraulic mortars were used only in the Roman period. • Gypsum was found in most samples, which was maybe added intentionally.« less
Direct atomic force microscopy observation of DNA tile crystal growth at the single-molecule level.
Evans, Constantine G; Hariadi, Rizal F; Winfree, Erik
2012-06-27
While the theoretical implications of models of DNA tile self-assembly have been extensively researched and such models have been used to design DNA tile systems for use in experiments, there has been little research testing the fundamental assumptions of those models. In this paper, we use direct observation of individual tile attachments and detachments of two DNA tile systems on a mica surface imaged with an atomic force microscope (AFM) to compile statistics of tile attachments and detachments. We show that these statistics fit the widely used kinetic Tile Assembly Model and demonstrate AFM movies as a viable technique for directly investigating DNA tile systems during growth rather than after assembly.
Tony Rollins fashions a new tile for the Space Shuttle orbiter
NASA Technical Reports Server (NTRS)
1998-01-01
In the Tile Fabrication Shop, Tony Rollins, with United Space Alliance, holds down a curtain while making a test sample of tile on a block 5-axis computerized numerical control milling machine. About 70 percent of a Space Shuttle orbiter's external surface is shielded from heat by a network of more than 24,000 tiles formed from a silica fiber compound. They are known as High-Temperature Reusable Surface Insulation (HRSI) tiles and Low-Temperature Reusable Surface Insulation (LRSI) tiles. Most HRSI tiles are 6 inches square, but may be as large as 12 inches in some areas, and 1 to 5 inches thick. LRSI tiles are generally 8 inches square, ranging from 0.2- to 1-inch thick. More advanced materials such as Flexible Insulation Blankets have replaced tiles on some upper surfaces of the orbiter.
Ceramic tile expansion engine housing
Myers, Blake
1995-01-01
An expandable ceramic tile housing for a high temperature engine is disclosed wherein each tile is independently supported in place in an interlocking matrix by retention mechanisms which mechanically couple the individual ceramic tiles to an outer metal support housing while maintaining thermal isolation of the metal housing from the ceramic tiles. The ceramic tiles are formed with either an octagonal front face portion and a square shank portion or a square front face portion with an octagonal shank portion. The length of the sides of the octagonal front face portion on one tile is equal to the length of the sides of the square front face portion of adjoining tiles to permit formation of an interlocking matrix. Fibrous ceramic sealing material may be placed between radial and tangential facing surfaces of adjacent tiles to limit radial gas flow therebetween. Labyrinth-sealed pressure-controlled compartments may be established between the tile housing and the outer metal support housing to control radial gas flow.
Ceramic tile expansion engine housing
Myers, B.
1995-04-11
An expandable ceramic tile housing for a high temperature engine is disclosed wherein each tile is independently supported in place in an interlocking matrix by retention mechanisms which mechanically couple the individual ceramic tiles to an outer metal support housing while maintaining thermal isolation of the metal housing from the ceramic tiles. The ceramic tiles are formed with either an octagonal front face portion and a square shank portion or a square front face portion with an octagonal shank portion. The length of the sides of the octagonal front face portion on one tile is equal to the length of the sides of the square front face portion of adjoining tiles to permit formation of an interlocking matrix. Fibrous ceramic sealing material may be placed between radial and tangential facing surfaces of adjacent tiles to limit radial gas flow there between. Labyrinth-sealed pressure-controlled compartments may be established between the tile housing and the outer metal support housing to control radial gas flow. 8 figures.
NASA Technical Reports Server (NTRS)
Macconochie, Ian O.; Kelly, H. Neale
1989-01-01
A thermal protection tile for earth-to-orbit transports is described. The tiles consist of a rigid external shell filled with a flexible insulation. The tiles tend to be thicker than the current Shuttle rigidized silica tiles for the same entry heat load but are projected to be more durable and lighter. The tiles were thermally tested for several simulated entry trajectories.
VIEW OF MORTARED ROCK AND CONCRETE INLET TO COUCH LATERAL ...
VIEW OF MORTARED ROCK AND CONCRETE INLET TO COUCH LATERAL CANAL, UPSTREAM OF COLLINS ROAD. LOOKING NORTH/NORTHEAST - Tumalo Irrigation District, Tumalo Project, West of Deschutes River, Tumalo, Deschutes County, OR
63. BUILDING NO. 1301, ORDNANCE FACILITY (MORTAR POWDER BUILDING), INTERIOR, ...
63. BUILDING NO. 1301, ORDNANCE FACILITY (MORTAR POWDER BUILDING), INTERIOR, LOOKING SOUTHEAST DOWN SCREENED WALKWAY ON NORTHWEST SIDE. - Picatinny Arsenal, State Route 15 near I-80, Dover, Morris County, NJ
NASA Astrophysics Data System (ADS)
Haq, Bibi Safia; Khan, Hidayat Ullah; Dou, Yuehua; Alam, Khan; Attaullah, Shehnaz; Zari, Islam
2015-09-01
The patterning of thin keratin films has been explored to manufacture model skin surfaces based on the "bricks and mortar" view of the relationship between keratin and lipids. It has been demonstrated that laser light is capable of preparing keratin-based "bricks and mortar" wall structure as in epidermis, the outermost layer of the human skin. "Bricks and mortar" pattern in keratin films has been fabricated using an ArF excimer laser (193 nm wavelength) and femtosecond laser (800 and 400 nm wavelength). Due to the very low ablation threshold of keratin, femtosecond laser systems are practical for laser processing of proteins. These model skin structures are fabricated for the first time that will help to produce potentially effective moisturizing products for the protection of skin from dryness, diseases and wrinkles.
NASA Astrophysics Data System (ADS)
Morillas, Héctor; Maguregui, Maite; Trebolazabala, Josu; Madariaga, Juan Manuel
2015-02-01
Bricks and mortar currently constitute one of the most important building materials used in the construction of most modern facades. The deterioration of these materials is caused primarily by the impact of numerous external stressors, while poor manufacturing quality, particularly of mortars, can also contribute to this process. In this work, the non-invasive Raman spectroscopy technique was used to identify the recently formed deterioration compounds (primarily sulfates and nitrates) in bricks, artificial stones, and joint mortars from detached houses in the Bilbao metropolitan area (Basque Country, North of Spain), as well as to investigate the deterioration processes taking place in these materials. Additionally, to confirm and in some cases complement the results obtained with Raman spectroscopy, SEM-EDS and XRD measurements were also carried out.
The dynamic behavior of mortar under impact-loading
NASA Astrophysics Data System (ADS)
Kawai, Nobuaki; Inoue, Kenji; Misawa, Satoshi; Tanaka, Kyoji; Hayashi, Shizuo; Kondo, Ken-Ichi; Riedel, Werner
2007-06-01
Concrete and mortar are the most fundamental structural material. Therefore, considerable interest in characterizing the dynamic behavior of them under impact-loading exists. In this study, plate impact experiments have been performed to determine the dynamic behavior of mortar. Longitudinal and lateral stresses have been directly measured by means of embedded polyvinylidene fluoride (PVDF) gauges up to 1 GPa. A 200 mm-cal. powder gun enable us to measure longitudinal and lateral stresses at several point from the impact surface, simultaneously. The shear strength under impact-loading has been obtained from measured longitudinal and lateral stresses. The longitudinal stress profile shows a two-wave structure. It is indicated that this structure is associated with the onset of pore compaction and failure of mortar by comparing with hydrocode simulations using an elastic-plastic damage model for concrete.
Application of micromechanics to the characterization of mortar by ultrasound.
Hernández, M G; Anaya, J J; Izquierdo, M A G; Ullate, L G
2002-05-01
Mechanical properties of concrete and mortar structures can be estimated by ultrasonic non-destructive testing. When the ultrasonic velocity is known, there are standardized methods based on considering the concrete a homogeneous material. Cement composites, however, are heterogeneous and porous, and have a negative effect on the mechanical properties of structures. This work studies the impact of porosity on mechanical properties by considering concrete a multiphase material. A micromechanical model is applied in which the material is considered to consist of two phases: a solid matrix and pores. From this method, a set of expressions is obtained that relates the acoustic velocity and Young's modulus of mortar. Experimental work is based on non-destructive and destructive procedures over mortar samples whose porosity is varied. A comparison is drawn between micromechanical and standard methods, showing positive results for the method here proposed.
Study on the ratio and properties of the slurry of light insulation masonry with volcanic slag
NASA Astrophysics Data System (ADS)
Liguang, Xiao; Dawei, Jiang
2017-12-01
Volcanic slag is a kind of natural high quality porous material, and it has a good thermal insulation effect, and it is an extremely rich natural resource. Therefore, this paper adopts the natural volcanic slag as the aggregate to build the insulation mortar mix design for the slag masonry, and tests the related performance of the mortar. The results show that adopts natural volcanic slag as the aggregate and the cement use fly ash to replace, and the appropriate uniform sealing pores were introduced into the mortar mix. The performance of the manufactured products can meet the requirements of JC/T890. The coefficient of thermal conductivity of lightweight masonry mortar is less than 0.14W/(m•K), and the frost resistance is greater than 100 times, and it is with a low price.
Durability of concrete materials in high-magnesium brine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wakeley, L.D.; Poole, T.S.; Burkes, J.P.
1994-03-01
Cement pastes and mortars representing 11 combinations of candidate concrete materials were cast in the laboratory and monitored for susceptibility to chemical deterioration in high-magnesium brine. Mixtures were selected to include materials included in the current leading candidate concrete for seals at the Waste Isolation Pilot Plant (WIPP). Some materials were included in the experimental matrix to answer questions that had arisen during study of the concrete used for construction of the liner of the WIPP waste-handling shaft. Mixture combinations compared Class C and Class F fly ashes, presence or absence of an expansive component, and presence or absence ofmore » salt as a mixture component. Experimental conditions exposed the pastes and mortars to extreme conditions, those being very high levels of Mg ion and an effectively unlimited supply of brine. All pastes and mortars showed deterioration with brine exposure. In general, mortars deteriorated more extensively than the corresponding pastes. Two-inch cube specimens of mortar were not uniformly deteriorated, but showed obvious zoning even after a year in the brine, with a relatively unreacted zone remaining at the center of each cube. Loss of calcium from the calcium hydroxide of paste/aggregate interfaces caused measurable strength loss in the reacted zone comprising the outer portion of every mortar specimen. The current candidate mass concrete for WIPP seals includes salt as an initial component, and has a relatively closed initial microstructure. Both of these features contribute to its suitability for use in large placements within the Salado Formation.« less
NASA Astrophysics Data System (ADS)
Usman, Aliyu; Ibrahim, Muhammad B.; Bala, Nura
2018-04-01
This research is aimed at investigating the effect of using amorphous silica ash (ASA) obtained from rice husk as a partial replacement of ordinary Portland cement (OPC) on the compressive and flexural strength of mortar. ASA was used in partial replacement of ordinary Portland cement in the following percentages 2.5 percent, 5 percent, 7.5 percent and 10 percent. These partial replacements were used to produce Cement-ASA mortar. ASA was found to contain all major chemical compounds found in cement with the exception of alumina, which are SiO2 (91.5%), CaO (2.84%), Fe2O3 (1.96%), and loss on ignition (LOI) was found to be 9.18%. It also contains other minor oxides found in cement. The test on hardened mortar were destructive in nature which include flexural strength test on prismatic beam (40mm x 40mm x 160mm) and compressive strength test on the cube size (40mm x 40mm, by using the auxiliary steel plates) at 2,7,14 and 28 days curing. The Cement-ASA mortar flexural and compressive strengths were found to be increasing with curing time and decreases with cement replacement by ASA. It was observed that 5 percent replacement of cement with ASA attained the highest strength for all the curing ages and all the percentage replacements attained the targeted compressive strength of 6N/mm2 for 28 days for the cement mortar
Tile Patterns with LOGO--Part II: Tile Patterns from Rep Tiles Using LOGO.
ERIC Educational Resources Information Center
Clason, Robert G.
1991-01-01
Described is a recursive LOGO method for dissecting polygons into congruent parts (rep tiles) similar to the original polygon, thereby producing unexpected patterns. A list of descriptions for such dissections is included along with suggestions for modifications that allow extended student explorations into tile patterns. (JJK)
Switched Antenna Array Tile for Real-Time Microwave Imaging Aperture
2016-06-26
Switched Antenna Array Tile for Real -Time Microwave Imaging Aperture William F. Moulder, Janusz J. Majewski, Charles M. Coldwell, James D. Krieger...Fast Imaging Algorithm 10mm 250mm Switched Array Tile Fig. 1. Diagram of real -time imaging array, with fabricated antenna tile. except for antenna...formed. IV. CONCLUSIONS A switched array tile to be used in a real time imaging aperture has been presented. Design and realization of the tile were
Beautiful Math, Part 5: Colorful Archimedean Tilings from Dynamical Systems.
Ouyang, Peichang; Zhao, Weiguo; Huang, Xuan
2015-01-01
The art of tiling originated very early in the history of civilization. Almost every known human society has made use of tilings in some form or another. In particular, tilings using only regular polygons have great visual appeal. Decorated regular tilings with continuous and symmetrical patterns were widely used in decoration field, such as mosaics, pavements, and brick walls. In science, these tilings provide inspiration for synthetic organic chemistry. Building on previous CG&A “Beautiful Math” articles, the authors propose an invariant mapping method to create colorful patterns on Archimedean tilings (1-uniform tilings). The resulting patterns simultaneously have global crystallographic symmetry and local cyclic or dihedral symmetry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Page, Ralph H.; Doty, Patrick F.
2017-08-01
The various technologies presented herein relate to a tiled filter array that can be used in connection with performance of spatial sampling of optical signals. The filter array comprises filter tiles, wherein a first plurality of filter tiles are formed from a first material, the first material being configured such that only photons having wavelengths in a first wavelength band pass therethrough. A second plurality of filter tiles is formed from a second material, the second material being configured such that only photons having wavelengths in a second wavelength band pass therethrough. The first plurality of filter tiles and themore » second plurality of filter tiles can be interspersed to form the filter array comprising an alternating arrangement of first filter tiles and second filter tiles.« less
Design and Applications of Rapid Image Tile Producing Software Based on Mosaic Dataset
NASA Astrophysics Data System (ADS)
Zha, Z.; Huang, W.; Wang, C.; Tang, D.; Zhu, L.
2018-04-01
Map tile technology is widely used in web geographic information services. How to efficiently produce map tiles is key technology for rapid service of images on web. In this paper, a rapid producing software for image tile data based on mosaic dataset is designed, meanwhile, the flow of tile producing is given. Key technologies such as cluster processing, map representation, tile checking, tile conversion and compression in memory are discussed. Accomplished by software development and tested by actual image data, the results show that this software has a high degree of automation, would be able to effectively reducing the number of IO and improve the tile producing efficiency. Moreover, the manual operations would be reduced significantly.
An automated data management/analysis system for space shuttle orbiter tiles. [stress analysis
NASA Technical Reports Server (NTRS)
Giles, G. L.; Ballas, M.
1982-01-01
An engineering data management system was combined with a nonlinear stress analysis program to provide a capability for analyzing a large number of tiles on the space shuttle orbiter. Tile geometry data and all data necessary of define the tile loads environment accessed automatically as needed for the analysis of a particular tile or a set of tiles. User documentation provided includes: (1) description of computer programs and data files contained in the system; (2) definitions of all engineering data stored in the data base; (3) characteristics of the tile anaytical model; (4) instructions for preparation of user input; and (5) a sample problem to illustrate use of the system. Description of data, computer programs, and analytical models of the tile are sufficiently detailed to guide extension of the system to include additional zones of tiles and/or additional types of analyses
Method and apparatus for displaying information
NASA Technical Reports Server (NTRS)
Huang, Sui (Inventor); Eichler, Gabriel (Inventor); Ingber, Donald E. (Inventor)
2010-01-01
A method for displaying large amounts of information. The method includes the steps of forming a spatial layout of tiles each corresponding to a representative reference element; mapping observed elements onto the spatial layout of tiles of representative reference elements; assigning a respective value to each respective tile of the spatial layout of the representative elements; and displaying an image of the spatial layout of tiles of representative elements. Each tile includes atomic attributes of representative elements. The invention also relates to an apparatus for displaying large amounts of information. The apparatus includes a tiler forming a spatial layout of tiles, each corresponding to a representative reference element; a comparator mapping observed elements onto said spatial layout of tiles of representative reference elements; an assigner assigning a respective value to each respective tile of said spatial layout of representative reference elements; and a display displaying an image of the spatial layout of tiles of representative reference elements.
NASA Technical Reports Server (NTRS)
Galanter, S. A.
1975-01-01
A space shuttle high temperature reusable surface insulation (HRSI) tile array with a single missing or lost tile was exposed to a hot gas simulated reentry environment to investigate the heating conditions in and around the vicinity of the missing HRSI tile. Heat flux and pressure data for the lost tile condition were obtained by the use of a water cooled lost tile calibration model. The maximum aluminum substrate temperature obtained during the simulated reentry was 128 C (263 F). The lost tile calibration data indicated a maximum heat flux in the lost tile cavity region of 63 percent of the upstream reference value. This test was conducted at the Ames Research Center in the 20 MW semielliptical thermal protection system (TPS) pilot plasma arc test facility.
Healing assessment of tile sets for error tolerance in DNA self-assembly.
Hashempour, M; Mashreghian Arani, Z; Lombardi, F
2008-12-01
An assessment of the effectiveness of healing for error tolerance in DNA self-assembly tile sets for algorithmic/nano-manufacturing applications is presented. Initially, the conditions for correct binding of a tile to an existing aggregate are analysed using a Markovian approach; based on this analysis, it is proved that correct aggregation (as identified with a so-called ideal tile set) is not always met for the existing tile sets for nano-manufacturing. A metric for assessing tile sets for healing by utilising punctures is proposed. Tile sets are investigated and assessed with respect to features such as error (mismatched tile) movement, punctured area and bond types. Subsequently, it is shown that the proposed metric can comprehensively assess the healing effectiveness of a puncture type for a tile set and its capability to attain error tolerance for the desired pattern. Extensive simulation results are provided.
A Global User-Driven Model for Tile Prefetching in Web Geographical Information Systems.
Pan, Shaoming; Chong, Yanwen; Zhang, Hang; Tan, Xicheng
2017-01-01
A web geographical information system is a typical service-intensive application. Tile prefetching and cache replacement can improve cache hit ratios by proactively fetching tiles from storage and replacing the appropriate tiles from the high-speed cache buffer without waiting for a client's requests, which reduces disk latency and improves system access performance. Most popular prefetching strategies consider only the relative tile popularities to predict which tile should be prefetched or consider only a single individual user's access behavior to determine which neighbor tiles need to be prefetched. Some studies show that comprehensively considering all users' access behaviors and all tiles' relationships in the prediction process can achieve more significant improvements. Thus, this work proposes a new global user-driven model for tile prefetching and cache replacement. First, based on all users' access behaviors, a type of expression method for tile correlation is designed and implemented. Then, a conditional prefetching probability can be computed based on the proposed correlation expression mode. Thus, some tiles to be prefetched can be found by computing and comparing the conditional prefetching probability from the uncached tiles set and, similarly, some replacement tiles can be found in the cache buffer according to multi-step prefetching. Finally, some experiments are provided comparing the proposed model with other global user-driven models, other single user-driven models, and other client-side prefetching strategies. The results show that the proposed model can achieve a prefetching hit rate in approximately 10.6% ~ 110.5% higher than the compared methods.
Comparison of Glass Powder and Fly Ash Effect on the Fresh Properties of Self-Compacting Mortars
NASA Astrophysics Data System (ADS)
Öznur Öz, Hatice; Erhan Yücel, Hasan; Güneş, Muhammet
2017-10-01
This study is aimed to determine effects of glass powder on fresh properties of self-compacting mortars. Self-compacting mortars incorporating glass powder (SCMGPs) were designed with a water/binder ratio of 0.40 and a total binder content of 550 kg/m3. At first, the control mixture was produced with 20% fly ash and % 80 cement of the total binder content without using the glass powder. Then, glass powder was used in the proportions 5%, 10%, 15% and 20% instead of fly ash in the mortars. Mini-slump flow and mini-v funnel tests experimentally investigated on SCMGPs to compare the effect of fly ash and glass powder. With increasing the amount of glass powder used in SCMGPs increased the amount of superplasticizer used to obtain the desired mini-slump flow diameter. So, the use of glass powder reduced the flow ability of SCMGPs in comparison to fly ash. Additionally, the compressive strength and flexural strength of the mortar mixtures were determined at the 28th day. The test results indicated that the mechanical characteristics of SCMGPs improved when the fly ash was replaced with glass powder in SCMGPs.
Low Carbon Footprint mortar from Pozzolanic Waste Material
NASA Astrophysics Data System (ADS)
Mehmannavaz, Taha; Mehman navaz, Hossein Ali; Moayed Zefreh, Fereshteh; Aboata, Zahra
2017-04-01
Nowadays, Portland cement clinker leads to emission of CO2 into the atmosphere and therefore causes greenhouse effect. Incorporating of Palm Oil Fuel Ash (POFA) and Pulverized Fuel Ash (PFA) as partial cement replacement materials into mix of low carbon mortar decreases the amount of cement use and reduces high dependence on cements compared to ordinary mortar. The result of this research supported use of the new concept in preparing low carbon mortar for industrial constructions. Strength of low carbon mortar with POFA and PFA replacement in cement was affected and changed by replacing percent finesse, physical and chemical properties and pozzolanic activity of these wastes. Waste material replacement instead of Ordinary Portland Cement (OPC) was used in this study. This in turn was useful for promoting better quality of construction and innovative systems in construction industry, especially in Malaysia. This study was surely a step forward to achieving quality products which were affordable, durable and environmentally friendly. Disposing ash contributes to shortage of landfill space in Malaysia. Besides, hazard of ash might be another serious issue for human health. The ash disposal area also might create a new problem, which is the area's sedimentation and erosion.
Glass Masonry - Experimental Verification of Bed Joint under Shear
NASA Astrophysics Data System (ADS)
Fíla, J.; Eliášová, M.; Sokol, Z.
2017-10-01
Glass is considered as a traditional material for building industry but was mostly used for glazing of the windows. At present, glass is an integral part of contemporary architecture where glass structural elements such as beams, stairs, railing ribs or columns became popular in the last two decades. However, using glass as structural material started at the beginning of 20th century, when masonry from hollow glass blocks were used. Using solid glass brick is very rare and only a few structures with solid glass bricks walls have been built in the last years. Pillars and walls made from solid glass bricks are mainly loaded by compression and/or bending from the eccentricity of vertical load or wind load. Due to high compressive strength of glass, the limiting factor of the glass masonry is the joint between the glass bricks as the smooth surface requires another type of mortar / glue compared to traditional masonry. Shear resistance and failure modes of brick bed joint was determined during series of tests using various mortars, two types of surface treatment and different thickness of the mortar joint. Shear tests were completed by small scale tests for mortar - determination of flexural and compressive strength of hardened mortar.
NASA Astrophysics Data System (ADS)
Zaidan, Shihab A.; Omar, Mustafa H.
2018-05-01
One of the most important requirements for the manufacture of refractory mortars, especially those used in the construction of thermal systems (building or plastering), is the balance between thermal insulation properties and porosity. Where, increasing porosity of mortar to a large amount may be always undesirable, because the absorption of liquid and gases emitted from industrial system is decline the bonded with bricks and structural properties of mortars. Refractory mortars prepared from either fired bauxite or metakaolin clays with different percentages of kaolin (10, 20, 30, and 40 wt%). Bauxite rocks were fired at 1200 °C and metakaolin was obtained by firing kaolin up to 700 °C then crushed and grinded. Grog was added to mixture to reduce the shrinkage. Cylindrical specimens are prepared and then sintered at 1200 °C. All mixtures maintained a low thermal conductivity within the limits of thermal insulation material (less than 0.5 W/m K); it was done by controlling the porosity which reached a maximum value approximately 25%. The volumetric heat capacity and thermal diffusivity was ranged between (1-10 MJ/m3 K), (0.06-0.2 mm2/s), respectively.
NASA Astrophysics Data System (ADS)
Pelto, Jani; Leivo, Markku; Gruyaert, Elke; Debbaut, Brenda; Snoeck, Didier; De Belie, Nele
2017-10-01
Superabsorbent polymers have shown potential for use in mortar and concrete as self-healing agents. The main drawback is, however, that these superabsorbent polymers also absorb mixing water during the preparation and casting of mortar or concrete, leading to a loss in workability. To avoid the absorption of mixing water, superabsorbent polymers were coated using a fluid bed spraying process. The barrier coating consisted of three successive coating layers: polyvinylbutyral as primer/wetting layer, cyclo-olefin copolymer as a barrier layer and a sol-gel derived zirconium-silicon oxide as an adhesion-promoting topcoat layer. The coated SAPs were characterized, and their swelling determined to quantify the delay in uptake of water and Ca(OH)2 solution. The last was considered as the most important, as the SAPs will finally be applied in mortar or concrete having a pore solution with high pH. The results showed that swelling could be delayed to a large extent, but for a short time. Results showed that the self-sealing efficiency of mortars was not affected by coating the SAPs. Moreover, due to the reduced uptake of mixing water, the strength reduction, noticed when uncoated SAPs were added to the mortar, could partly be compensated.
Sikora, Pawel; Augustyniak, Adrian; Cendrowski, Krzysztof; Horszczaruk, Elzbieta; Rucinska, Teresa; Nawrotek, Pawel; Mijowska, Ewa
2016-01-01
The recycling of waste glass is a major problem for municipalities worldwide. The problem concerns especially colored waste glass which, due to its low recycling rate as result of high level of impurity, has mostly been dumped into landfills. In recent years, a new use was found for it: instead of creating waste, it can be recycled as an additive in building materials. The aim of the study was to evaluate the possibility of manufacturing sustainable and self-cleaning cement mortars with use of commercially available nanomaterials and brown soda-lime waste glass. Mechanical and bactericidal properties of cement mortars containing brown soda-lime waste glass and commercially available nanomaterials (amorphous nanosilica and cement containing nanocrystalline titanium dioxide) were analyzed in terms of waste glass content and the effectiveness of nanomaterials. Quartz sand is replaced with brown waste glass at ratios of 25%, 50%, 75% and 100% by weight. Study has shown that waste glass can act as a successful replacement for sand (up to 100%) to produce cement mortars while nanosilica is incorporated. Additionally, a positive effect of waste glass aggregate for bactericidal properties of cement mortars was observed. PMID:28773823
PLASTIC SHRINKAGE CONTROLLING EFFECT BY POLYPROPYLENE SHORT FIBER WITH HYDROPHILY
NASA Astrophysics Data System (ADS)
Hosoda, Akira; Sadatsuki, Yoshitomo; Oshima, Akihiro; Ishii, Akina; Tsubaki, Tatsuya
The aim of this research is to clarify the mechanism of controlling plastic shrinkage crack by adding small amout of synthetic short fiber, and to propose optimum polypropylene short fiber to control plastic shrinkage crack. In this research, the effect of the hydrophily of polypropylene fiber was investigated in the amount of plastic shrinkage of mortar, total area of plastic shrinkage crack, and bond properties between fiber and mortar. The plastic shrinkage test of morar was conducted under high temperature, low relative humidity, and constant wind velocity. When polypropylene fiber had hydrophily, the amount of plastic shrinkage of mortar was restrained, which was because cement paste in morar was captured by hydrophilic fiber and then bleeding of mortar was restrained. With hydrophily, plastic shrinkage of mortar was restrained and bridging effect was improved due to better bond, which led to remarkable reduction of plastic shrinkage crack. Based on experimental results, the way of developing optimum polypropylene short fiber for actual construction was proposed. The fiber should have large hydrophily and small diameter, and should be used in as small amount as possible in order not to disturb workability of concrete.
Compressive and bonding strength of fly ash based geopolymer mortar
NASA Astrophysics Data System (ADS)
Zailani, Warid Wazien Ahmad; Abdullah, Mohd Mustafa Al Bakri; Zainol, Mohd Remy Rozainy Mohd Arif; Razak, Rafiza Abd.; Tahir, Muhammad Faheem Mohd
2017-09-01
Geopolymer which is produced by synthesizing aluminosilicate source materials with an alkaline activator solution promotes sustainable and excellent properties of binder. The purpose of this paper is to determine the optimum binder to sand ratio of geopolymer mortars based on mechanical properties. In order to optimize the formulation of geopolymer mortar, various binder to sand ratios (0.25, 0.33, 0.5, 1.0, 2.0, 3.0, and 4.0) are prepared. The investigation on the effect of sand inclusion to the compressive and bonding strength of geopolymer mortar is approached. The experimental results show that the bonding strength performance of geopolymer is also depends on the various binder to sand ratio, where the optimum ratio 0.5 gives a highest strength of 12.73 MPa followed by 12.35 MPa, which corresponds the ratio 1.0 for geopolymer, while the compared value of OPC bonding strength is given by 9.3 MPa. The morphological structure at the interface zone is determined by Scanning Electron Microscope (SEM) and the homogenous bonding between geopolymer and substrate can be observed. Fly ash based geopolymers reveal a new category of mortar which has high potential to be used in the field of concrete repair and rehabilitation.
Modeling Heat and Moisture Transport in Steam-Cured Mortar: Application to Aashto Type Vi Beams.
Hernández-Bautista, E; Sandoval-Torres, S; de J Cano-Barrita, P F; Bentz, D P
2017-10-01
During steam curing of concrete, temperature and moisture gradients are developed, which are difficult to measure experimentally and can adversely affect the durability of concrete. In this research, a model of cement hydration coupled to moisture and heat transport was used to simulate the process of steam curing of mortars with water-to-cement ( w/c ) ratios by mass of 0.30 and 0.45, considering natural convection boundary conditions in mortar and concrete specimens of AASHTO Type VI beams. The primary variables of the model were moisture content, temperature, and degree of hydration. Moisture content profiles of mortar specimens (40 mm in diameter and 50 mm in height) were measured by magnetic resonance imaging. The degree of hydration was obtained by mass-based measurements of loss on ignition to 1000 °C. The results indicate that the model correctly simulates the moisture distribution and degree of hydration in mortar specimens. Application of the model to the steam curing of an AASHTO Type VI beam indicates temperature differences (between the surface and the center) higher than 20 °C during the cooling stage, and internal temperatures higher than 70 °C that may compromise the durability of the concrete.
Castellote, Marta; Menéndez, Esperanza; Andrade, Carmen; Zuloaga, Pablo; Navarro, Mariano; Ordóñez, Manuel
2004-05-15
Electric arc furnace dust (EAFD), generated by the steel-making industry, is in itself an intrinsic hazardous waste; however, the case may also be that scrap used in the process is accidentally contaminated by radioactive elements such as cesium. In this case the resulting EAFD is to be handled as radioactive waste, being duly confined in low- and medium-activity repositories (LMAR). What this paper studies is the reliability of using this radioactive EAFD as an addition in the immobilization mortar of the containers of the LMAR, that is, from the point of view of the durability. Different mixes of mortar containing different percentages of EAFD have been subjected to flexural and compressive strength, initial and final setting time, XRD study, total porosity and pore size distribution, determination of the chloride diffusion coefficient, dimensional stability tests, hydration heat, workability of the fresh mix, and leaching behavior. What is deduced from the results is that for the conditions used in this research, (cement + sand) can be replaced by EAFD upto a ratio [EAFD/(cement + EAFD)] of 46% in the immobilization mortar of LMAR, apparently without any loss in the long-term durability properties of the mortar.
Sikora, Pawel; Augustyniak, Adrian; Cendrowski, Krzysztof; Horszczaruk, Elzbieta; Rucinska, Teresa; Nawrotek, Pawel; Mijowska, Ewa
2016-08-18
The recycling of waste glass is a major problem for municipalities worldwide. The problem concerns especially colored waste glass which, due to its low recycling rate as result of high level of impurity, has mostly been dumped into landfills. In recent years, a new use was found for it: instead of creating waste, it can be recycled as an additive in building materials. The aim of the study was to evaluate the possibility of manufacturing sustainable and self-cleaning cement mortars with use of commercially available nanomaterials and brown soda-lime waste glass. Mechanical and bactericidal properties of cement mortars containing brown soda-lime waste glass and commercially available nanomaterials (amorphous nanosilica and cement containing nanocrystalline titanium dioxide) were analyzed in terms of waste glass content and the effectiveness of nanomaterials. Quartz sand is replaced with brown waste glass at ratios of 25%, 50%, 75% and 100% by weight. Study has shown that waste glass can act as a successful replacement for sand (up to 100%) to produce cement mortars while nanosilica is incorporated. Additionally, a positive effect of waste glass aggregate for bactericidal properties of cement mortars was observed.
NASA Astrophysics Data System (ADS)
Le, Tuan Hung; Dormieux, Luc; Jeannin, Laurent; Burlion, Nicolas; Barthélémy, Jean-François
2008-08-01
This paper is devoted to a micromechanics-based simulation of the response of concrete to hydrostatic and oedometric compressions. Concrete is described as a composite made up of a cement matrix in which rigid inclusions are embedded. The focus is put on the role of the interface between matrix and inclusion which represent the interfacial transition zone (ITZ). A plastic behavior is considered for both the matrix and the interfaces. The effective response of the composite is derived from the modified secant method adapted to the situation of imperfect interfaces. To cite this article: T.H. Le et al., C. R. Mecanique 336 (2008).
VIEW OF MORTARED ROCK FOOTING THAT ONCE SUPPORTED THE TWIN ...
VIEW OF MORTARED ROCK FOOTING THAT ONCE SUPPORTED THE TWIN FLUME'S OUTLET TO TUMALO FEED CANAL, WITH BRIDGE. LOOKING NORTHWEST - Tumalo Irrigation District, Tumalo Project, West of Deschutes River, Tumalo, Deschutes County, OR
9. DETAIL OF DECORATIVE MORTAR AND COBBLESTONE WORK ON TYPICAL ...
9. DETAIL OF DECORATIVE MORTAR AND COBBLESTONE WORK ON TYPICAL POST ON UPSTREAM PARAPET WALL OF UPPER EMBANKMENT. VIEW TO SOUTH. - Boise Project, Deer Flat Embankments, Lake Lowell, Nampa, Canyon County, ID
8. VIEW TO NORTH OF INTERIOR OF STAMPMILLING LEVEL; MORTAR ...
8. VIEW TO NORTH OF INTERIOR OF STAMPMILLING LEVEL; MORTAR MOUNT FOR MILL IS IMMEDIATELY BELOW AND TO LEFT OF ORE-HOPPER (UPPER-CENTER). - Steamboat Stampmill, Brush Creek Canyon, Jacksonville, Jackson County, OR
Study on basalt fiber parameters affecting fiber-reinforced mortar
NASA Astrophysics Data System (ADS)
Orlov, A. A.; Chernykh, T. N.; Sashina, A. V.; Bogusevich, D. V.
2015-01-01
This article considers the effect of different dosages and diameters of basalt fibers on tensile strength increase during bending of fiberboard-reinforced mortar samples. The optimal dosages of fiber, providing maximum strength in bending are revealed. The durability of basalt fiber in an environment of cement, by means of microscopic analysis of samples of fibers and fiberboard-reinforced mortar long-term tests is examined. The article also compares the behavior of basalt fiber in the cement stone environment to a glass one and reveals that the basalt fiber is not subject to destruction.
Finite Element Analysis of Crack-Path Selection in a Brick and Mortar Structure
NASA Astrophysics Data System (ADS)
Sarrafi-Nour, Reza; Manoharan, Mohan; Johnson, Curtis A.
Many natural composite materials rely on organized architectures that span several length scales. The structures of natural shells such as nacre (mother-of-pearl) and conch are prominent examples of such organizations where the calcium carbonate platelets, the main constituent of natural shells, are held together in an organized fashion within an organic matrix. At one or multiple length scales, these organized arrangements often resemble a brick-and-mortar structure, with calcium carbonate platelets acting as bricks connected through the organic mortar phase.
The Study on Development of Light-Weight Foamed Mortar for Tunnel Backfill
NASA Astrophysics Data System (ADS)
Ma, Sang-Joon; Kang, Eun-Gu; Kim, Dong-Min
This study was intended to develop the Light-Weight Foamed Mortar which is used for NATM Composite lining backfill. In the wake of the study, the mixing method which satisfies the requirements for compressive strength, permeability coefficient, fluidity, specific gravity and settlement was developed and moreover field applicability was verified through the model test. Thus the mixing of Light-Weight Foamed Mortar developed in this study is expected to be applicable to NATM Composite lining, thereby making commitment to improving the stability and drainage performance of lining.
Understanding the Elementary Steps in DNA Tile-Based Self-Assembly.
Jiang, Shuoxing; Hong, Fan; Hu, Huiyu; Yan, Hao; Liu, Yan
2017-09-26
Although many models have been developed to guide the design and implementation of DNA tile-based self-assembly systems with increasing complexity, the fundamental assumptions of the models have not been thoroughly tested. To expand the quantitative understanding of DNA tile-based self-assembly and to test the fundamental assumptions of self-assembly models, we investigated DNA tile attachment to preformed "multi-tile" arrays in real time and obtained the thermodynamic and kinetic parameters of single tile attachment in various sticky end association scenarios. With more sticky ends, tile attachment becomes more thermostable with an approximately linear decrease in the free energy change (more negative). The total binding free energy of sticky ends is partially compromised by a sequence-independent energy penalty when tile attachment forms a constrained configuration: "loop". The minimal loop is a 2 × 2 tetramer (Loop4). The energy penalty of loops of 4, 6, and 8 tiles was analyzed with the independent loop model assuming no interloop tension, which is generalizable to arbitrary tile configurations. More sticky ends also contribute to a faster on-rate under isothermal conditions when nucleation is the rate-limiting step. Incorrect sticky end contributes to neither the thermostability nor the kinetics. The thermodynamic and kinetic parameters of DNA tile attachment elucidated here will contribute to the future improvement and optimization of tile assembly modeling, precise control of experimental conditions, and structural design for error-free self-assembly.
Ceramic-ceramic shell tile thermal protection system and method thereof
NASA Technical Reports Server (NTRS)
Riccitiello, Salvatore R. (Inventor); Smith, Marnell (Inventor); Goldstein, Howard E. (Inventor); Zimmerman, Norman B. (Inventor)
1986-01-01
A ceramic reusable, externally applied composite thermal protection system (TPS) is proposed. The system functions by utilizing a ceramic/ceramic upper shell structure which effectively separates its primary functions as a thermal insulator and as a load carrier to transmit loads to the cold structure. The composite tile system also prevents impact damage to the atmospheric entry vehicle thermal protection system. The composite tile comprises a structurally strong upper ceramic/ceramic shell manufactured from ceramic fibers and ceramic matrix meeting the thermal and structural requirements of a tile used on a re-entry aerospace vehicle. In addition, a lightweight high temperature ceramic lower temperature base tile is used. The upper shell and lower tile are attached by means effective to withstand the extreme temperatures (3000 to 3200F) and stress conditions. The composite tile may include one or more layers of variable density rigid or flexible thermal insulation. The assembly of the overall tile is facilitated by two or more locking mechanisms on opposing sides of the overall tile assembly. The assembly may occur subsequent to the installation of the lower shell tile on the spacecraft structural skin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peric, A.
1997-12-31
The rutile form of titanium dioxide and granules of high density polyethylene (PEHD) and low density polyethylene (PELD) were used to prepare mortar matrices for immobilization of radioactive waste materials containing {sup 137}Cs. PELD, PEHD and TiO{sub 2} were added to mortar matrix preparations with the objective of improving physico-chemical characteristics of the radwaste-mortar matrix mixtures, in particular the leach-rate of the immobilized radionuclide. One type of PELD and two types of PEHD were used to replace 50 wt.% of stone granules normally used in the matrix, in order to decrease the porosity and density of the mortar matrix andmore » to avoid segregation of the stone particles at the bottom of the immobilized radioactive waste cylindrical form. TiO{sub 2} was also added to the mortar formulation, replacing 5 and 8 wt.% of the total cement weight. Cured samples were investigated under temperature stress conditions, where the temperature extremes were: T{sub min} = {minus}20 C, T{sub max} = +70 C. Samples were periodically immersed in distilled water at the ambient room temperature, after each freezing and heating treatment. Results of accelerated leaching experiments for these samples and samples prepared exclusively with polyethylenes replacing 100% of the stone granules and TiO{sub 2}, treated in nonaccelerated leaching experiments, were compared. Even using an accelerated ageing leach test that overestimates {sup 137}Cs leach rates, it can be deduced, that radionuclide leach rates from the radioactive waste mortar mixture forms were improved. Leach rates decreased from 5%, for the material prepared with stone aggregate, to 3.1 to 4.0%, for the materials prepared solely with PEHD, PELD or TiO{sub 2}, and to about 3% for all six types of the TiO{sub 2}-PEHD and TiO{sub 2}-PELD mixtures tested.« less
1998-08-10
In the Tile Fabrication Shop, Tony Rollins, with United Space Alliance, holds down a curtain while making a test sample of tile on a block 5-axis computerized numerical control milling machine. About 70 percent of a Space Shuttle orbiter’s external surface is shielded from heat by a network of more than 24,000 tiles formed from a silica fiber compound. They are known as High-Temperature Reusable Surface Insulation (HRSI) tiles and Low-Temperature Reusable Surface Insulation (LRSI) tiles. Most HRSI tiles are 6 inches square, but may be as large as 12 inches in some areas, and 1 to 5 inches thick. LRSI tiles are generally 8 inches square, ranging from 0.2to 1-inch thick. More advanced materials such as Flexible Insulation Blankets have replaced tiles on some upper surfaces of the orbiter
Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.
1997-10-28
The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention provides a method for increasing the rate of strength gain of a hardenable mixture containing fly ash by exposing the fly ash to an aqueous slurry of calcium oxide (lime) prior to its incorporation into the hardenable mixture. The invention further relates to such hardenable mixtures, e.g., concrete and mortar, that contain fly ash pre-reacted with calcium oxide. In particular, the fly ash is added to a slurry of calcium oxide in water, prior to incorporating the fly ash in a hardenable mixture. The hardenable mixture may be concrete or mortar. In a specific embodiment, mortar containing fly ash treated by exposure to an aqueous lime slurry are prepared and tested for compressive strength at early time points. 2 figs.
Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.
1997-01-01
The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention provides a method for increasing the rate of strength gain of a hardenable mixture containing fly ash by exposing the fly ash to an aqueous slurry of calcium oxide (lime) prior to its incorporation into the hardenable mixture. The invention further relates to such hardenable mixtures, e.g., concrete and mortar, that contain fly ash pre-reacted with calcium oxide. In particular, the fly ash is added to a slurry of calcium oxide in water, prior to incorporating the fly ash in a hardenable mixture. The hardenable mixture may be concrete or mortar. In a specific embodiment, mortar containing fly ash treated by exposure to an aqueous lime slurry are prepared and tested for compressive strength at early time points.
Tian, Zhenghong; Bu, Jingwu
2014-01-01
The uniaxial compression response of manufactured sand mortars proportioned using different water-cement ratio and sand-cement ratio is examined. Pore structure parameters such as porosity, threshold diameter, mean diameter, and total amounts of macropores, as well as shape and size of micropores are quantified by using mercury intrusion porosimetry (MIP) technique. Test results indicate that strains at peak stress and compressive strength decreased with the increasing sand-cement ratio due to insufficient binders to wrap up entire sand. A compression stress-strain model of normal concrete extending to predict the stress-strain relationships of manufactured sand mortar is verified and agreed well with experimental data. Furthermore, the stress-strain model constant is found to be influenced by threshold diameter, mean diameter, shape, and size of micropores. A mathematical model relating stress-strain model constants to the relevant pore structure parameters of manufactured sand mortar is developed. PMID:25133257
Durability of Waste Glass Flax Fiber Reinforced Mortar
NASA Astrophysics Data System (ADS)
Aly, M.; Hashmi, M. S. J.; Olabi, A. G.; Messeiry, M.
2011-01-01
The main concern for natural fibre reinforced mortar composites is the durability of the fibres in the alkaline environment of cement. The composites may undergo a reduction in strength as a result of weakening of the fibres by a combination of alkali attack and fibre mineralisation. In order to enhance the durability of natural fiber reinforced cement composites several approaches have been studied including fiber impregnation, sealing of the matrix pore system and reduction of matrix alkalinity through the use of pozzolanic materials. In this study waste glass powder was used as a pozzolanic additive to improve the durability performance of flax fiber reinforced mortar (FFRM). The durability of the FFRM was studied by determining the effects of ageing in water and exposure to wetting and drying cycles; on the microstructures and flexural behaviour of the composites. The mortar tests demonstrated that the waste glass powder has significant effect on improving the durability of FFRM.
Effect of various superplasticizers on rheological properties of cement paste and mortars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masood, I.; Agarwal, S.K.
The effect of eight commercial superplasticizers including one developed from Cashew Nut Shell Liquid (CNSL) at CBRI on the rheological properties viz. viscosity and flow of cement paste and mortars have been investigated. The viscosity measurements have been made at various shear rates (5--100 rpm). It is found that at higher rates (100 rpm) even with the low concentration of superplasticizers (0.1), the viscosity of the cement paste is more or less the same as that obtained with 0.6 % dosages of SPs at lesser shear rates. The effect of split addition (delayed addition) of superplasticizers on viscosity of cementmore » paste and 1:3 cement sand mortar have also been studied. A decrease in viscosity due to split addition has been observed in the cement paste and there is an increase of 15--20 % in flow of mortars.« less
Morillas, Héctor; Maguregui, Maite; Trebolazabala, Josu; Madariaga, Juan Manuel
2015-02-05
Bricks and mortar currently constitute one of the most important building materials used in the construction of most modern facades. The deterioration of these materials is caused primarily by the impact of numerous external stressors, while poor manufacturing quality, particularly of mortars, can also contribute to this process. In this work, the non-invasive Raman spectroscopy technique was used to identify the recently formed deterioration compounds (primarily sulfates and nitrates) in bricks, artificial stones, and joint mortars from detached houses in the Bilbao metropolitan area (Basque Country, North of Spain), as well as to investigate the deterioration processes taking place in these materials. Additionally, to confirm and in some cases complement the results obtained with Raman spectroscopy, SEM-EDS and XRD measurements were also carried out. Copyright © 2014 Elsevier B.V. All rights reserved.
Comparative Effect of Bio-waste Ashes on Strength Properties of Cement Mortar
NASA Astrophysics Data System (ADS)
Ajay, Goyal; Hattori, Kunio; Ogata, Hidehiko; Ashraf, Muhammad; Ahmed, Mohamed Anwar
Biomass fuels produce about 400 million tonnes of ashes as waste material. This paper discusses the pozzolanic character of bio-waste ashes obtained from dry tree leaves (AML), Korai grass (KRI) and Tifton grass (TFT). Ashes were obtained by control incineration of the wastes at 600°C for 5 hours and mortar specimens were prepared by substituting cement with 10, 20 and 30% ash. Strength development of ash-blended mortar specimens was evaluated by conducting destructive tests as well as non-destructive tests till 91 days. X-ray diffraction, scanning electron microscopic and thermo-gravimetric techniques were used to analyze the influence of ash substitution on strength properties of blended-mortar. Pozzolanic reactivity of AML- and KRI-ash was confirmed, but TFT-ash did not show enough reactivity. Overall results confirmed that up to 20% substitution of cement can be made with AML- or KRI-ash with strength approaching 90% of that of control.
Characterization of Incorporation the Glass Waste in Adhesive Mortar
NASA Astrophysics Data System (ADS)
Santos, D. P.; Azevedo, A. R. G.; Hespanhol, R. L.; Alexandre, J.
Ehe search for reuse generated waste in urban centers, intending to preserve natural resources, has remained fairly constant, both in context of preventing exploitation of resources as the emplacement of waste on the environment. Glass waste glass created a serious environmental problem, mainly because of inconsistency of its flows. Ehe use of this product as a mineral additive, finely ground, cement replacement and aggregate is a promising direction for recycling. This work aims to study the influence of glass waste from cutting process in adhesive mortar, replacing part of cement. Ehe glass powder is used replacing Portland cement at 10, 15 and 20% by mass. Ehe produced mortars will be evaluated its performance in fresh and hardened states through tests performed in laboratory. Ehe selected feature is indicated by producers of additive and researchers to present good results when used as adhesive mortar.
A mortar formulation including viscoelastic layers for vibration analysis
NASA Astrophysics Data System (ADS)
Paolini, Alexander; Kollmannsberger, Stefan; Rank, Ernst; Horger, Thomas; Wohlmuth, Barbara
2018-05-01
In order to reduce the transfer of sound and vibrations in structures such as timber buildings, thin elastomer layers can be embedded between their components. The influence of these elastomers on the response of the structures in the low frequency range can be determined accurately by using conforming hexahedral finite elements. Three-dimensional mesh generation, however, is yet a non-trivial task and mesh refinements which may be necessary at the junctions can cause a high computational effort. One remedy is to mesh the components independently from each other and to couple them using the mortar method. Further, the hexahedral mesh for the thin elastomer layer itself can be avoided by integrating its elastic behavior into the mortar formulation. The present paper extends this mortar formulation to take damping into account such that frequency response analyses can be performed more accurately. Finally, the proposed method is verified by numerical examples.
Performance Characteristics of Waste Glass Powder Substituting Portland Cement in Mortar Mixtures
NASA Astrophysics Data System (ADS)
Kara, P.; Csetényi, L. J.; Borosnyói, A.
2016-04-01
In the present work, soda-lime glass cullet (flint, amber, green) and special glass cullet (soda-alkaline earth-silicate glass coming from low pressure mercury-discharge lamp cullet and incandescent light bulb borosilicate glass waste cullet) were ground into fine powders in a laboratory planetary ball mill for 30 minutes. CEM I 42.5N Portland cement was applied in mortar mixtures, substituted with waste glass powder at levels of 20% and 30%. Characterisation and testing of waste glass powders included fineness by laser diffraction particle size analysis, specific surface area by nitrogen adsorption technique, particle density by pycnometry and chemical analysis by X-ray fluorescence spectrophotometry. Compressive strength, early age shrinkage cracking and drying shrinkage tests, heat of hydration of mortars, temperature of hydration, X-ray diffraction analysis and volume stability tests were performed to observe the influence of waste glass powder substitution for Portland cement on physical and engineering properties of mortar mixtures.
Mechanical properties of the rust layer induced by impressed current method in reinforced mortar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Care, S.; Nguyen, Q.T.; L'Hostis, V.
This paper describes the mechanical effects of rust layer formed in reinforced mortar through accelerated tests of corrosion. The morphological and physico-chemical properties (composition, structures) of the corrosion system were characterized at different stages by using optical microscope and scanning electron microscope coupled with energy dispersive spectroscopy. The corrosion pattern was mainly characterized by a rust layer confined at the interface between the steel and the mortar. Expansion coefficient of rust products was determined from the rust thickness and the Faraday's law. Furthermore, in order to understand the mechanical effects of corrosion on the damage of mortar, displacement field measurementsmore » were obtained by using digital image correlation. An analytical model (hollow cylinder subjected to inner and outer pressures) was used with a set of experimental data to deduce the time of cracking and the order of magnitude of the mechanical properties of the rust layer.« less
NASA Astrophysics Data System (ADS)
Bilgen, Nejat; Olgun, Asim
This paper focuses on the spectroscopic and thermal analysis of the archaeological samples of mortar and plaster from middle Bronze Age and Achaemenid period in Seyitömer Höyük. The composition of the samples was investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and thermogravimetric thermal analysis (TG-DTA). The results showed that human used different types of raw materials in the preperation of the mortar and plaster in the Middle Bronze Age and Achaemenid period. The material used in middle Bronze Age contains muscovite whereas the material in Achaemenid period contains albite. Although, the chemical composition of the mortar and plaster used in the period were similar, the calcium content of the plaster is relatively higher than the one of the mortar indicating people's awareness of the binding properties of calcite.
NASA Astrophysics Data System (ADS)
Ervin, Benjamin L.; Reis, Henrique; Bernhard, Jennifer T.; Kuchma, Daniel A.
2008-03-01
High-frequency guided longitudinal waves have been used in a through-transmission arrangement to monitor reinforced mortar specimens undergoing both accelerated uniform and localized corrosion. High-frequency guided longitudinal waves were chosen because they have the fastest propagation velocity and lowest theoretical attenuation for the rebar/mortar system. This makes the modes easily discernible and gives them the ability to travel over long distances. The energy of the high-frequency longitudinal waves is located primarily in the center of the rebar, leading to less leakage into the surrounding mortar. The results indicate that the guided mechanical waves are sensitive to both forms of corrosion attack in the form of attenuation, with less sensitivity at higher frequencies. Also promising is the ability to discern uniform corrosion from localized corrosion in a through-transmission arrangement by examination of the frequency domain.
Preparation and Characterization of New Geopolymer-Epoxy Resin Hybrid Mortars
Colangelo, Francesco; Roviello, Giuseppina; Ricciotti, Laura; Ferone, Claudio; Cioffi, Raffaele
2013-01-01
The preparation and characterization of metakaolin-based geopolymer mortars containing an organic epoxy resin are presented here for the first time. The specimens have been prepared by means of an innovative in situ co-reticulation process, in mild conditions, of commercial epoxy based organic resins and geopolymeric slurry. In this way, geopolymer based hybrid mortars characterized by a different content of normalized sand (up to 66% in weight) and by a homogeneous dispersion of the organic resin have been obtained. Once hardened, these new materials show improved compressive strength and toughness in respect to both the neat geopolymer and the hybrid pastes since the organic polymer provides a more cohesive microstructure, with a reduced amount of microcracks. The microstructural characterization allows to point out the presence of an Interfacial Transition Zone similar to that observed in cement based mortars and concretes. A correlation between microstructural features and mechanical properties has been studied too. PMID:28811418
Tian, Zhenghong; Bu, Jingwu
2014-01-01
The uniaxial compression response of manufactured sand mortars proportioned using different water-cement ratio and sand-cement ratio is examined. Pore structure parameters such as porosity, threshold diameter, mean diameter, and total amounts of macropores, as well as shape and size of micropores are quantified by using mercury intrusion porosimetry (MIP) technique. Test results indicate that strains at peak stress and compressive strength decreased with the increasing sand-cement ratio due to insufficient binders to wrap up entire sand. A compression stress-strain model of normal concrete extending to predict the stress-strain relationships of manufactured sand mortar is verified and agreed well with experimental data. Furthermore, the stress-strain model constant is found to be influenced by threshold diameter, mean diameter, shape, and size of micropores. A mathematical model relating stress-strain model constants to the relevant pore structure parameters of manufactured sand mortar is developed.
Multiprocessor Z-Buffer Architecture for High-Speed, High Complexity Computer Image Generation.
1983-12-01
Oversampling 50 17. "Poking Through" Effects 51 18. Sampling Paths 52 19. Triangle Variables 54 20. Intelligent Tiling Algorithm 61 21. Tiler Functional Blocks...64 * 22. HSD Interface 65 23. Tiling Machine Setup 67 24. Tiling Machine 68 25. Tile Accumulate 69 26. A lx$ Sorting Machine 77 27. A 2x8 Sorting...Delay 227 87. Effect of Triangle Size on Tiler Throughput Rates 229 88. Tiling Machine Setup Stage Performance for Oversample Mode 234 89. Tiling
Aerodynamic heat transfer to RSI tile surfaces and gap intersections. [Reusable Surface Insulation
NASA Technical Reports Server (NTRS)
Dunavant, J. C.; Throckmorton, D. A.
1974-01-01
Review of the results of aerothermal heating tests of a simulated reusable surface insulation (RSI) tile array, performed on the sidewall of a Mach-10 hypersonic tunnel. In particular, the heating characteristics of the tile array, such as they result from heating inside the tile-expansion-space providing gaps between individual tiles, are investigated. The results include the finding that heating on the upstream face of a tile is strongly affected by the interacting longitudinal gap flow.
Evaluation of tile layer productivity in construction project
NASA Astrophysics Data System (ADS)
Aziz, Hamidi Abdul; Hassan, Siti Hafizan; Rosly, Noorsyalili; Ul-Saufie, Ahmad Zia
2017-10-01
Construction is a key sector of the national economy for countries all over the world. Until today, construction industries are still facing lots of problems concerning the low productivity, poor safety and insufficient quality. Labour productivity is one of the factors that will give impact to the quality of projects. This study is focusing on evaluating the tile layer productivity in the area of Seberang Perai, Penang. The objective of this study is to determine the relationship of age and experience of tile layers with their productivity and to evaluate the effect of nationality to tile layers productivity. Interview and site observation of tile layers has been conducted to obtain the data of age, experience and nationality of tile layers. Site observation is made to obtain the number of tiles installed for every tile layer for the duration of 1 hour, and the data were analysed by using Statistical Package for Social Science (IBM SPSS Statistic 23) software. As a result, there is a moderate linear relationship between age and experience of tile layers with their productivity. The age of 30 and the experience of 4 years give the highest productivity. It also can be concluded that the tile layers from Indonesia tend to have higher productivity compared to tile layers from Myanmar.
Geometrical tile design for complex neighborhoods.
Czeizler, Eugen; Kari, Lila
2009-01-01
Recent research has showed that tile systems are one of the most suitable theoretical frameworks for the spatial study and modeling of self-assembly processes, such as the formation of DNA and protein oligomeric structures. A Wang tile is a unit square, with glues on its edges, attaching to other tiles and forming larger and larger structures. Although quite intuitive, the idea of glues placed on the edges of a tile is not always natural for simulating the interactions occurring in some real systems. For example, when considering protein self-assembly, the shape of a protein is the main determinant of its functions and its interactions with other proteins. Our goal is to use geometric tiles, i.e., square tiles with geometrical protrusions on their edges, for simulating tiled paths (zippers) with complex neighborhoods, by ribbons of geometric tiles with simple, local neighborhoods. This paper is a step toward solving the general case of an arbitrary neighborhood, by proposing geometric tile designs that solve the case of a "tall" von Neumann neighborhood, the case of the f-shaped neighborhood, and the case of a 3 x 5 "filled" rectangular neighborhood. The techniques can be combined and generalized to solve the problem in the case of any neighborhood, centered at the tile of reference, and included in a 3 x (2k + 1) rectangle.
The challenging scales of the bird: Shuttle tile structural integrity
NASA Technical Reports Server (NTRS)
Schneider, W. C.; Miller, G. J.
1985-01-01
The principal design issues, tests, and analyses required to solve the tile integrity problem on the space shuttle orbiters are addressed. Proof testing of installed tiles is discussed along with an airflow test of special tiles. Orbiter windshield tiles are considered in terms of changes necessary to ensure acceptable margins of safety for flight.
NASA Astrophysics Data System (ADS)
Wedekind, Wanja; Protz, Andreas
2016-04-01
The damaging alcali-silica reaction leads to crack-formation and structural destruction at noumerous, constructed with cement mortar, buildings worldwide. The ASR-reaction causes the expansion of altered aggregates by the formation of a swelling gel. This gel consists of calcium silicate hydrate (C-S-H) that increases in volume with water, which exerts an expansive pressure inside the material. The cathedral of Schleswig is one of the oldest in northern Germany. The first church was built in 985-965. The Romanesque building part was erected around 1180 and the Gothic nave at the end of the 13th century. The central tower was constructed between 1888 and 1894 with brick and cement mortar. With 112 meters, the tower is the second-largest church spire of the country of Schleswig-Holstein in northern Germany. Due to the formation of cracks and damages from 1953 to 1956 first restoration works took place. Further developments of cracks are making restoration necessary again today. For developing a suitable conservation strategy, different investigations were done. The investigation included the determination of the pore space properties, the hygric and thermal dilatation and mercury porosimetry measurements. Furthermore, the application of cathodoluminescence microscopy may give information about the alteration process and microstructures present and reveal the differences between unaltered and altered mortars. An obvious relation between the porosity and the swelling intensity could be detected. Furthermore it becomes apparent, that a clear zonation of the mortar took place. The mortar near the surface is denser with a lower porosity and has a significantly lower swelling or dilatation.
[Study on Hollow Brick Wall's Surface Temperature with Infrared Thermal Imaging Method].
Tang, Ming-fang; Yin, Yi-hua
2015-05-01
To address the characteristic of uneven surface temperature of hollow brick wall, the present research adopts soft wares of both ThermaCAM P20 and ThermaCAM Reporter to test the application of infrared thermal image technique in measuring surface temperature of hollow brick wall, and further analyzes the thermal characteristics of hollow brick wall, and building material's impact on surface temperature distribution including hollow brick, masonry mortar, and so on. The research selects the construction site of a three-story-high residential, carries out the heat transfer experiment, and further examines the exterior wall constructed by 3 different hollow bricks including sintering shale hollow brick, masonry mortar and brick masonry. Infrared thermal image maps are collected, including 3 kinds of sintering shale hollow brick walls under indoor heating in winter; and temperature data of wall surface, and uniformity and frequency distribution are also collected for comparative analysis between 2 hollow bricks and 2 kinds of mortar masonry. The results show that improving heat preservation of hollow brick aid masonry mortar can effectively improve inner wall surface temperature and indoor thermal environment; non-uniformity of surface temperature decreases from 0. 6 to 0. 4 °C , and surface temperature frequency distribution changes from the asymmetric distribution into a normal distribution under the condition that energy-saving sintering shale hollow brick wall is constructed by thermal mortar replacing cement mortar masonry; frequency of average temperature increases as uniformity of surface temperature increases. This research provides a certain basis for promotion and optimization of hollow brick wall's thermal function.
The potential use of silica sand as nanomaterials for mortar
NASA Astrophysics Data System (ADS)
Setiati, N. Retno
2017-11-01
The development of nanotechnology is currently experiencing rapid growth. The use of the term nanotechnology is widely applied in areas such as healthcare, industrial, pharmaceutical, informatics, or construction. By the nanotechnology in the field of concrete construction, especially the mechanical properties of concrete are expected to be better than conventional concrete. This study aims to determine the effect of the potential of silica sand as a nanomaterial that is added into the concrete mix The methodology used consist of nanomaterial synthesis process of silica sand using Liquid Polishing Milling Technology (PLMT). The XRF and XRD testing were conducted to determine the composition of silica contained in the silica sand and the level of reactivity of the compound when added into the concrete mix. To determine the effect of nano silica on mortar, then made the specimen with size 50 mm x 50 mm x 50 mm. The composition of mortar is made in two variations, ie by the addition of 3% nano silica and without the addition of nanosilica. To know the mechanical properties of mortar, it is done testing of mortar compressive strength at the age of 28 days. Based on the analysis and evaluation, it is shown that compounds of silica sand in Indonesia, especially Papua reached more than 99% SiO2 and so that the amorphous character of silica sand can be used as a nanomaterial for concrete construction. The results of mechanical tests show that there is an increase of 12% compressive strength of mortar that is added with 3% nano silica.
Sandvall, Brinkley K; Jacobson, Lauren; Miller, Erin A; Dodge, Ryan E; Alex Quistberg, D; Rowhani-Rahbar, Ali; Vavilala, Monica S; Friedrich, Jeffrey B; Keys, Kari A
2017-10-01
There is a paucity of clinical data on severe fireworks-related injuries, and the relationship between firework types, injury patterns, and magnitude of impairment is not well understood. Our objective was to describe the relationship between fireworks type, injury patterns, and impairment. Retrospective case series (2005-2015) of patients who sustained consumer fireworks-related injuries requiring hospital admission and/or an operation at a Level 1 Trauma/Burn Center. Fireworks types, injury patterns (body region, injury type), operation, and permanent impairment were examined. Data from 294 patients 1 to 61years of age (mean 24years) were examined. The majority (90%) were male. 119 (40%) patients were admitted who did not undergo surgery, 163 (55%) patients required both admission and surgery, and 12 (5%) patients underwent outpatient surgery. The greatest proportion of injuries was related to shells/mortars (39%). There were proportionally more rocket injuries in children (44%), more homemade firework injuries in teens (34%), and more shell/mortar injuries in adults (86%). Brain, face, and hand injuries were disproportionately represented in the shells/mortars group. Seventy percent of globe-injured patients experienced partial or complete permanent vision loss. Thirty-seven percent of hand-injured patients required at least one partial or whole finger/hand amputation. The greatest proportion of eye and hand injuries resulting in permanent impairment was in the shells/mortars group, followed by homemade fireworks. Two patients died. Severe fireworks-related injuries from homemade fireworks and shells/mortars have specific injury patterns. Shells/mortars disproportionately cause permanent impairment from eye and hand injury. Published by Elsevier Inc.
The Rejuvenating Effect in Hot Asphalt Recycling by Mortar Transfer Ratio and Image Analysis.
Wang, Fusong; Wang, Zipeng; Li, Chao; Xiao, Yue; Wu, Shaopeng; Pan, Pan
2017-05-24
Using a rejuvenator to improve the performance of asphalt pavement is an effective and economic way of hot asphalt recycling. This research analyzes the rejuvenating effect on aged asphalt by means of a Mortar Transfer Ratio (MTR) test, which concerns the ratio of asphalt mortar that moves from recycled aggregates (RAP aggregates) to fresh added aggregates when aged asphalt is treated with a regenerating agent and comes into contact with fresh aggregates. The proposed MTR test analyzes the regeneration in terms of the softening degree on aged asphalt when the rejuvenator is applied. The covered area ratio is studied with an image analyzing tool to understand the possibility of mortar transferring from RAP aggregates to fresh aggregates. Additionally, a micro-crack closure test is conducted and observed through a microscope. The repairing ability and diffusion characteristics of micro-cracks can therefore be analyzed. The test results demonstrate that the proposed mortar transfer ratio is a feasible way to evaluate rejuvenator diffusion during hot recycling. The mortar transfer ratio and uncovered area ratio on fresh aggregates are compatible, and can be used to quantify the contribution of the rejuvenator. Within a certain temperature range, the diffusing effect of the rejuvenator is better when the diffusing temperature is higher. The diffusion time of the rejuvenator is optimum when diffusion occurs for 4-8 h. When the rejuvenator is properly applied, the rough and cracking surface can be repaired, resulting in better covered aggregates. The micro-closure analysis visually indicates that rejuvenators can be used to repair the RAP aggregates during hot recycling.
The Rejuvenating Effect in Hot Asphalt Recycling by Mortar Transfer Ratio and Image Analysis
Wang, Fusong; Wang, Zipeng; Li, Chao; Xiao, Yue; Wu, Shaopeng; Pan, Pan
2017-01-01
Using a rejuvenator to improve the performance of asphalt pavement is an effective and economic way of hot asphalt recycling. This research analyzes the rejuvenating effect on aged asphalt by means of a Mortar Transfer Ratio (MTR) test, which concerns the ratio of asphalt mortar that moves from recycled aggregates (RAP aggregates) to fresh added aggregates when aged asphalt is treated with a regenerating agent and comes into contact with fresh aggregates. The proposed MTR test analyzes the regeneration in terms of the softening degree on aged asphalt when the rejuvenator is applied. The covered area ratio is studied with an image analyzing tool to understand the possibility of mortar transferring from RAP aggregates to fresh aggregates. Additionally, a micro-crack closure test is conducted and observed through a microscope. The repairing ability and diffusion characteristics of micro-cracks can therefore be analyzed. The test results demonstrate that the proposed mortar transfer ratio is a feasible way to evaluate rejuvenator diffusion during hot recycling. The mortar transfer ratio and uncovered area ratio on fresh aggregates are compatible, and can be used to quantify the contribution of the rejuvenator. Within a certain temperature range, the diffusing effect of the rejuvenator is better when the diffusing temperature is higher. The diffusion time of the rejuvenator is optimum when diffusion occurs for 4–8 h. When the rejuvenator is properly applied, the rough and cracking surface can be repaired, resulting in better covered aggregates. The micro-closure analysis visually indicates that rejuvenators can be used to repair the RAP aggregates during hot recycling. PMID:28772935
Application of biochar from food and wood waste as green admixture for cement mortar.
Gupta, Souradeep; Kua, Harn Wei; Koh, Hui Jun
2018-04-01
Landfilling of food waste due to its low recycling rate is raising serious concerns because of associated soil and water contamination, and emission of methane and other greenhouse gases during the degradation process. This paper explores feasibility of using biochar derived from mixed food waste (FWBC), rice waste (RWBC) and wood waste (mixed wood saw dust, MWBC) as carbon sequestering additive in mortar. RWBC is prepared from boiled plain rice, while FWBC is prepared from combination of rice, meat, and vegetables in fixed proportion. Carbon content in FWBC, RWBC and MWBC were found to be 71%, 66% and 87% by weight respectively. Results show that addition of 1-2wt% of FWBC and RWBC in mortar results in similar mechanical strength as control mix (without biochar). 1wt% of FWBC led to 40% and 35% reduction in water penetration and sorptivity respectively, indicating higher impermeability of mortar. Biochar from mixed wood saw dust performed better in terms of mechanical and permeability properties. Increase in compressive strength and tensile strength by up to 20% was recorded, while depth of water penetration and sorptivity was reduced by about 60% and 38% respectively compared to control. Both FWBC and MWBC were found to act as reinforcement to mortar paste, which resulted in higher ductility than control at failure under flexure. This study suggests that biochar from food waste and mixed wood saw dust has the potential to be successfully deployed as additive in cement mortar, which would also promote waste recycling, and sequester high volume carbon in civil infrastructure. Copyright © 2017 Elsevier B.V. All rights reserved.
Flaw detection in a multi-material multi-layered composite: using fem and air-coupled ut
DOE Office of Scientific and Technical Information (OSTI.GOV)
Livings, R. A.; Dayal, V.; Barnard, D. J.
Ceramic tiles are the main ingredient of a multi-layer multi-material composite being considered for the modernization of tank armors. The high stiffness, low attenuation, and precise dimensions of these uniform tiles make them remarkable resonators when driven to vibrate. This study is aimed at modeling the vibration modes of the tiles and the composite lay-up with finite element analysis and comparing the results with the resonance modes observed in air-coupled ultrasonic excitation of the tiles and armor samples. Defects in the tile, during manufacturing and/or after usage, are expected to change the resonance modes. The comparison of a pristine tile/lay-upmore » and a defective tile/lay-up will thus be a quantitative damage metric. The understanding of the vibration behavior of the tile, both by itself and in the composite lay-up, can provide useful guidance to the nondestructive evaluation of armor panels containing ceramic tiles.« less
7. Detail, beaded mortar joint, stepped wingwall coping at the ...
7. Detail, beaded mortar joint, stepped wingwall coping at the east portal of Tunnel 18, 135mm lens with electronic flash fill. - Southern Pacific Railroad Natron Cutoff, Tunnel No. 18, Milepost 410, Dorris, Siskiyou County, CA
Interlocking wettable ceramic tiles
Tabereaux, Jr., Alton T.; Fredrickson, Guy L.; Groat, Eric; Mroz, Thomas; Ulicny, Alan; Walker, Mark F.
2005-03-08
An electrolytic cell for the reduction of aluminum having a layer of interlocking cathode tiles positioned on a cathode block. Each tile includes a main body and a vertical restraining member to prevent movement of the tiles away from the cathode block during operation of the cell. The anode of the electrolytic cell may be positioned about 1 inch from the interlocking cathode tiles.
Moriasi, Daniel N; Gowda, Prasanna H; Arnold, Jeffrey G; Mulla, David J; Ale, Srinivasulu; Steiner, Jean L; Tomer, Mark D
2013-11-01
Subsurface tile drains in agricultural systems of the midwestern United States are a major contributor of nitrate-N (NO-N) loadings to hypoxic conditions in the Gulf of Mexico. Hydrologic and water quality models, such as the Soil and Water Assessment Tool, are widely used to simulate tile drainage systems. The Hooghoudt and Kirkham tile drain equations in the Soil and Water Assessment Tool have not been rigorously tested for predicting tile flow and the corresponding NO-N losses. In this study, long-term (1983-1996) monitoring plot data from southern Minnesota were used to evaluate the SWAT version 2009 revision 531 (hereafter referred to as SWAT) model for accurately estimating subsurface tile drain flows and associated NO-N losses. A retention parameter adjustment factor was incorporated to account for the effects of tile drainage and slope changes on the computation of surface runoff using the curve number method (hereafter referred to as Revised SWAT). The SWAT and Revised SWAT models were calibrated and validated for tile flow and associated NO-N losses. Results indicated that, on average, Revised SWAT predicted monthly tile flow and associated NO-N losses better than SWAT by 48 and 28%, respectively. For the calibration period, the Revised SWAT model simulated tile flow and NO-N losses within 4 and 1% of the observed data, respectively. For the validation period, it simulated tile flow and NO-N losses within 8 and 2%, respectively, of the observed values. Therefore, the Revised SWAT model is expected to provide more accurate simulation of the effectiveness of tile drainage and NO-N management practices. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
9. Detail of "BMT lines" tile sign, and decorative tiles ...
9. Detail of "BMT lines" tile sign, and decorative tiles between center and east castellations of south facade. Looking north. - Stillwell Avenue Station, Intersection of Stillwell & Surf Avenues, Brooklyn, Kings County, NY
Modeling and Simulation of Ceramic Arrays to Improve Ballaistic Performance
2013-11-01
2219 , 2000 Tile gap is found to increase the DoP as compared to One Tile tiles The next step will be run simulations on narrower and wider gap sizes...experiments described in reference - ARL-TR- 2219 , 2000 □ Tile gap is found to increase the DoP as compared to One Tile tiles □ The next step will be run...L| Al m ^ s\\cr V^ 1 v^ □ Smoothed-particle hydrodynamics (SPH) used for all parts □ SPH size = 0.40-mm, totaling 278k
8. SIDE VIEW OF NORTHEASTERN ROCKFACED DRESSED AND MORTARED STONE ...
8. SIDE VIEW OF NORTHEASTERN ROCKFACED DRESSED AND MORTARED STONE BRIDGE ABUTMENT (LEFT) AND DRESSED, DRY-LAID RETAINING WALL (RIGHT). FACING WEST. - Coverts Crossing Bridge, Spanning Mahoning River along Township Route 372 (Covert Road), New Castle, Lawrence County, PA
18. Detail, typical quarryfaced ashlar blocks, convextooled mortar joints, on ...
18. Detail, typical quarry-faced ashlar blocks, convex-tooled mortar joints, on pillars in former porte porte cochere area, view to southeast, 135mm lens. - Southern Pacific Depot, 559 El Camino Real, San Carlos, San Mateo County, CA
9. VIEW OF SOUTHERN ROCKFACED DRESSED AND MORTARED STONE ABUTMENT, ...
9. VIEW OF SOUTHERN ROCKFACED DRESSED AND MORTARED STONE ABUTMENT, SHOWING STEEL CROSSBEAMS, TORSIONAL DIAGONAL STRUTS, AND WOODEN STRINGERS. FACING SOUTHWEST. - Coverts Crossing Bridge, Spanning Mahoning River along Township Route 372 (Covert Road), New Castle, Lawrence County, PA
10. SIDE VIEW OF SOUTHEASTERN ROCKFACED DRESSED AND MORTARED STONE ...
10. SIDE VIEW OF SOUTHEASTERN ROCKFACED DRESSED AND MORTARED STONE BRIDGE ABUTMENT (RIGHT) AND DRESSED, DRY-LAID RETAINING WALL (LEFT). FACING NORTHWEST. - Coverts Crossing Bridge, Spanning Mahoning River along Township Route 372 (Covert Road), New Castle, Lawrence County, PA
Geometrical Tile Design for Complex Neighborhoods
Czeizler, Eugen; Kari, Lila
2009-01-01
Recent research has showed that tile systems are one of the most suitable theoretical frameworks for the spatial study and modeling of self-assembly processes, such as the formation of DNA and protein oligomeric structures. A Wang tile is a unit square, with glues on its edges, attaching to other tiles and forming larger and larger structures. Although quite intuitive, the idea of glues placed on the edges of a tile is not always natural for simulating the interactions occurring in some real systems. For example, when considering protein self-assembly, the shape of a protein is the main determinant of its functions and its interactions with other proteins. Our goal is to use geometric tiles, i.e., square tiles with geometrical protrusions on their edges, for simulating tiled paths (zippers) with complex neighborhoods, by ribbons of geometric tiles with simple, local neighborhoods. This paper is a step toward solving the general case of an arbitrary neighborhood, by proposing geometric tile designs that solve the case of a “tall” von Neumann neighborhood, the case of the f-shaped neighborhood, and the case of a 3 × 5 “filled” rectangular neighborhood. The techniques can be combined and generalized to solve the problem in the case of any neighborhood, centered at the tile of reference, and included in a 3 × (2k + 1) rectangle. PMID:19956398
Physical principles for DNA tile self-assembly.
Evans, Constantine G; Winfree, Erik
2017-06-19
DNA tiles provide a promising technique for assembling structures with nanoscale resolution through self-assembly by basic interactions rather than top-down assembly of individual structures. Tile systems can be programmed to grow based on logical rules, allowing for a small number of tile types to assemble large, complex assemblies that can retain nanoscale resolution. Such algorithmic systems can even assemble different structures using the same tiles, based on inputs that seed the growth. While programming and theoretical analysis of tile self-assembly often makes use of abstract logical models of growth, experimentally implemented systems are governed by nanoscale physical processes that can lead to very different behavior, more accurately modeled by taking into account the thermodynamics and kinetics of tile attachment and detachment in solution. This review discusses the relationships between more abstract and more physically realistic tile assembly models. A central concern is how consideration of model differences enables the design of tile systems that robustly exhibit the desired abstract behavior in realistic physical models and in experimental implementations. Conversely, we identify situations where self-assembly in abstract models can not be well-approximated by physically realistic models, putting constraints on physical relevance of the abstract models. To facilitate the discussion, we introduce a unified model of tile self-assembly that clarifies the relationships between several well-studied models in the literature. Throughout, we highlight open questions regarding the physical principles for DNA tile self-assembly.
Elemental analysis using ED-XRF and 14C dating of Cuman wall paintings samples
NASA Astrophysics Data System (ADS)
Brocchieri, J.; Sabbarese, C.; Marzaioli, F.; Passariello, I.; Terrasi, F.; De Maio, C.; Ferrara, L.
2018-04-01
The aim of the present research was to analyse pigments and mortars of fresco fragments located at Cuma (Naples, Italy). The ED-XRF technique and 14C dating were used to establish the nature of the pigments and the age of mortars, respectively. ED-XRF results allowed to determine the elemental composition of the pigments that identified the colours and, hence, the historical period of completion. The 14C dating, applied to mortars using a particular preparation, provided results that are in accordance with the archaeological information within the 2σ interval range.
Chemical Stockpile Disposal Program. Risk Analysis of the Onsite Disposal of Chemical Munitions.
1987-08-01
F-l7. Cartridge, mortar , 4.2-in., HT, M2/M2Al 0 F-20 M 4v M-Cs nAA PAA L4 vk I ,;t -,0 Fig. -18. .2-i. morars re stred n fibr tues wih I[w tue pr...Demilitarization PI periodic inspection PM periodic maintenance PMD projectile/ mortar disassembly PRA probabilistic risk assessment PUDA Pueblo Depot Activity RDC...Projectiles and Mortars .......... 3-8 ix * L L 3.2.4. Bombs ................... 3-8 ) 3.2.5. Spray Tanks .... ................ . 3-8 3.2.6. Bulk Agent
Scaling of strength and ductility in bioinspired brick and mortar composites
NASA Astrophysics Data System (ADS)
Wilbrink, David V.; Utz, Marcel; Ritchie, Robert O.; Begley, Matthew R.
2010-11-01
This paper provides scaling relationships between constituent properties and the uniaxial tensile response of synthetic "brick and mortar" composite materials inspired by nacre. The macroscopic strength and ductility (work of fracture) are predicted in terms of the brick properties (size, strength, and layout) and interface cohesive properties (e.g., maximum shear and normal stresses and separations). The results illustrate the trade-off between increasing strength and decreasing ductility with the increasing aspect ratio of the bricks. The models can be used to identify optimum mortar properties that maximize toughness for a given brick strength.
Application of AMDS mortar as a treatment agent for arsenic in subsurface environment
NASA Astrophysics Data System (ADS)
Choi, J.; Lee, H.; Choi, U. K.; Yang, I. J.
2014-12-01
Among the treatment technologies available for As in soil and groundwater, adsorption or precipitation using acid mine drainage (AMD) sludge has become a promised technique because of high efficiency, inexpensiveness and simple to handling. The adsorbents were prepared by addition of Cement, Joomoonjin sand, fly ash, and Ca(OH)2 to air dry AMD sludge. In this work, the adsorption of As (III) and As (V) on AMDS mortar has been studied as a function of kinetic, pH, and initial arsenic concentration. Results of batch study showed that 75-90% of both As (III) and As (V) were removed at pH 7. Arsenic adsorption capacities were the highest at neutral pH condition and the adsorption equilibrium time reached in 7 days using AMDS mortar. Additionally, the adsorption kinetic process is expressed well by pseudo-second-order model. The adsorption capacities of AMDS mortar for As(III) and As(V) were found 19.04 and 30.75 mg g-1, respectively. The results of As (III) adsorption isotherms were fitted well to the Freundlich model. Moreover, As (V) adsorption isotherms were fitted well to the Langmuir model rather than Freundlich model. Based on experimental results in this study, we could conclude that AMDS mortar can be effectively used for arsenic removal agent from subsurface environment.
Identification of potential hazards associated with new residential construction.
Methner, M M
2000-02-01
There were several advantages and limitations of this observational study. The most important advantage of this study was the opportunity to observe residential construction workers performing their jobs. By observing work practices, valuable information was gathered about specific trades and their potential exposure to various chemical and physical agents. This information will be useful in guiding subsequent exposure assessments. Probably the greatest limitation of this study was the lack of participation by homebuilders. Ideally, observations of construction processes would have been more objective if the study included the participation of more than one homebuilder. Aside from one worker who was observed to wear safety glasses, leather gloves, and a dust mask, virtually no personal protective equipment (PPE) was observed onsite. Often small contractors do not have the financial resources necessary to procure the appropriate PPE and issue these items to the workers. Based on hazard prevalence, professional judgement, and the degree of hazardous product use, potential exposures that warrant quantitative sampling efforts during Phase 2 of this study are: bulldozer/backhoe operators--noise, vibration, diesel exhaust; concrete workers--naphtha, mineral spirits, Portland cement; asphalt workers--petroleum hydrocarbons, asphalt, mineral spirits; plumbers--methylethyl ketone, acetone, tetrahydrofuran, cyclohexanone; drywall finishers--total and respirable dust, hexane, acetone; painters--ethylene glycol, VOCs; masons--dust (during the preparation of mortar); floor preparation technicians--total and respirable dust; and ceramic tile installers--toluene, naphtha, silica (from grout powder).
Covering the Plane with Rep-Tiles.
ERIC Educational Resources Information Center
Fosnaugh, Linda S.; Harrell, Marvin E.
1996-01-01
Presents an activity in which students use geometric figures, rep-tiles, to design a tile floor. Rep-tiles are geometric figures of which copies can fit together to form a larger similar figure. Includes reproducible student worksheet. (MKR)
NASA Astrophysics Data System (ADS)
Livings, R. A.; Dayal, V.; Barnard, D. J.; Hsu, D. K.
2012-05-01
Ceramic tiles are the main ingredient of a multi-material, multi-layered composite being considered for the modernization of tank armors. The high stiffness, low attenuation, and precise dimensions of these uniform tiles make them remarkable resonators when driven to vibrate. Defects in the tile, during manufacture or after usage, are expected to change the resonance frequencies and resonance images of the tile. The comparison of the resonance frequencies and resonance images of a pristine tile/lay-up to a defective tile/lay-up will thus be a quantitative damage metric. By examining the vibrational behavior of these tiles and the composite lay-up with Finite Element Modeling and analytical plate vibration equations, the development of a new Nondestructive Evaluation technique is possible. This study examines the development of the Air-Coupled Ultrasonic Resonance Imaging technique as applied to a hexagonal ceramic tile and a multi-material, multi-layered composite.
Real-time biscuit tile image segmentation method based on edge detection.
Matić, Tomislav; Aleksi, Ivan; Hocenski, Željko; Kraus, Dieter
2018-05-01
In this paper we propose a novel real-time Biscuit Tile Segmentation (BTS) method for images from ceramic tile production line. BTS method is based on signal change detection and contour tracing with a main goal of separating tile pixels from background in images captured on the production line. Usually, human operators are visually inspecting and classifying produced ceramic tiles. Computer vision and image processing techniques can automate visual inspection process if they fulfill real-time requirements. Important step in this process is a real-time tile pixels segmentation. BTS method is implemented for parallel execution on a GPU device to satisfy the real-time constraints of tile production line. BTS method outperforms 2D threshold-based methods, 1D edge detection methods and contour-based methods. Proposed BTS method is in use in the biscuit tile production line. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Architectural Survey of Pence Elementary School, Fort Leonard Wood, Missouri
2011-09-01
classroom floors , replacement acoustical tile drop ceilings, both original pendent ceiling light fixtures and replacement light fixtures, replacement wood...fixed pane transoms above, original door hardware, acoustical tile drop-ceiling, asbestos tile floor , and a metal radiator cover (photos 38-40...119). The corridors have acoustical tile drop-ceilings, concrete block walls, and asbestos tile floors (photo 44). There are several push-pin cork
Composite treatment of ceramic tile armor
Hansen, James G. R. [Oak Ridge, TN; Frame, Barbara J [Oak Ridge, TN
2010-12-14
An improved ceramic tile armor has a core of boron nitride and a polymer matrix composite (PMC) facing of carbon fibers fused directly to the impact face of the tile. A polyethylene fiber composite backing and spall cover are preferred. The carbon fiber layers are cured directly onto the tile, not adhered using a separate adhesive so that they are integral with the tile, not a separate layer.
Composite treatment of ceramic tile armor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, James G. R.; Frame, Barbara J
An improved ceramic tile armor has a core of boron nitride and a polymer matrix composite (PMC) facing of carbon fibers fused directly to the impact face of the tile. A polyethylene fiber composite backing and spall cover are preferred. The carbon fiber layers are cured directly onto the tile, not adhered using a separate adhesive so that they are integral with the tile, not a separate layer.
NASA Astrophysics Data System (ADS)
Sheehan, E. V.; Thompson, R. C.; Coleman, R. A.; Attrill, M. J.
2008-11-01
Collection of marine invertebrates for use as fishing bait is a substantial activity in many parts of the world, often with unknown ecological consequences. As new fisheries develop, it is critical for environmental managers to have high quality ecological information regarding the potential impacts, in order to develop sound management strategies. Crab-tiling is a largely unregulated and un-researched fishery, which operates commercially in the south-west UK. The target species is the green crab Carcinus maenas. Those crabs which are pre-ecdysis and have a carapace width greater than 40 mm are collected to be sold to recreational anglers as bait. Collection involves laying artificial structures on intertidal sandflats and mudflats in estuaries. Crabs use these structures as refugia and are collected during low tide. However, the effect that this fishery has on populations of C. maenas is not known. The impact of crab-tiling on C. maenas population structure was determined by sampling crabs from tiled estuaries and non-tiled estuaries using baited drop-nets. A spatially and temporarily replicated, balanced design was used to compare crab abundance, sizes and sex ratios between estuaries. Typically, fisheries are associated with a reduction in the abundance of the target species. Crab-tiling, however, significantly increased C. maenas abundance. This was thought to be a result of the extra habitat in tiled estuaries, which probably provides protection from natural predators, such as birds and fish. Although crabs were more abundant in tiled estuaries than non-tiled estuaries, the overall percentage of reproductively active crabs in non-tiled estuaries was greater than in tiled estuaries. As with most exploited fisheries stocks, crabs in exploited (tiled) estuaries tended to be smaller, with a modal carapace width of 20-29 mm rather than 30-39 mm in non-tiled estuaries. The sex ratio of crabs however; was not significantly different between tiled and non-tiled estuaries. These results illustrate the potential to manage fished populations using habitat provision to mitigate the effects of fishing pressure.
NASA Astrophysics Data System (ADS)
Choe, Giseok; Nang, Jongho
The tiled-display system has been used as a Computer Supported Cooperative Work (CSCW) environment, in which multiple local (and/or remote) participants cooperate using some shared applications whose outputs are displayed on a large-scale and high-resolution tiled-display, which is controlled by a cluster of PC's, one PC per display. In order to make the collaboration effective, each remote participant should be aware of all CSCW activities on the titled display system in real-time. This paper presents a capturing and delivering mechanism of all activities on titled-display system to remote participants in real-time. In the proposed mechanism, the screen images of all PC's are periodically captured and delivered to the Merging Server that maintains separate buffers to store the captured images from the PCs. The mechanism selects one tile image from each buffer, merges the images to make a screen shot of the whole tiled-display, clips a Region of Interest (ROI), compresses and streams it to remote participants in real-time. A technical challenge in the proposed mechanism is how to select a set of tile images, one from each buffer, for merging so that the tile images displayed at the same time on the tiled-display can be properly merged together. This paper presents three selection algorithms; a sequential selection algorithm, a capturing time based algorithm, and a capturing time and visual consistency based algorithm. It also proposes a mechanism of providing several virtual cameras on tiled-display system to remote participants by concurrently clipping several different ROI's from the same merged tiled-display images, and delivering them after compressing with video encoders requested by the remote participants. By interactively changing and resizing his/her own ROI, a remote participant can check the activities on the tiled-display effectively. Experiments on a 3 × 2 tiled-display system show that the proposed merging algorithm can build a tiled-display image stream synchronously, and the ROI-based clipping and delivering mechanism can provide individual views on the tiled-display system to multiple remote participants in real-time.
Local dynamic range compensation for scanning electron microscope imaging system.
Sim, K S; Huang, Y H
2015-01-01
This is the extended project by introducing the modified dynamic range histogram modification (MDRHM) and is presented in this paper. This technique is used to enhance the scanning electron microscope (SEM) imaging system. By comparing with the conventional histogram modification compensators, this technique utilizes histogram profiling by extending the dynamic range of each tile of an image to the limit of 0-255 range while retains its histogram shape. The proposed technique yields better image compensation compared to conventional methods. © Wiley Periodicals, Inc.
A Global User-Driven Model for Tile Prefetching in Web Geographical Information Systems
Pan, Shaoming; Chong, Yanwen; Zhang, Hang; Tan, Xicheng
2017-01-01
A web geographical information system is a typical service-intensive application. Tile prefetching and cache replacement can improve cache hit ratios by proactively fetching tiles from storage and replacing the appropriate tiles from the high-speed cache buffer without waiting for a client’s requests, which reduces disk latency and improves system access performance. Most popular prefetching strategies consider only the relative tile popularities to predict which tile should be prefetched or consider only a single individual user's access behavior to determine which neighbor tiles need to be prefetched. Some studies show that comprehensively considering all users’ access behaviors and all tiles’ relationships in the prediction process can achieve more significant improvements. Thus, this work proposes a new global user-driven model for tile prefetching and cache replacement. First, based on all users’ access behaviors, a type of expression method for tile correlation is designed and implemented. Then, a conditional prefetching probability can be computed based on the proposed correlation expression mode. Thus, some tiles to be prefetched can be found by computing and comparing the conditional prefetching probability from the uncached tiles set and, similarly, some replacement tiles can be found in the cache buffer according to multi-step prefetching. Finally, some experiments are provided comparing the proposed model with other global user-driven models, other single user-driven models, and other client-side prefetching strategies. The results show that the proposed model can achieve a prefetching hit rate in approximately 10.6% ~ 110.5% higher than the compared methods. PMID:28085937
Light, Strong Insulating Tiles
NASA Technical Reports Server (NTRS)
Cordia, E.; Schirle, J.
1987-01-01
Improved lightweight insulating silica/aluminum borosilicate/silicon carbide tiles combine increased tensile strength with low thermal conductivity. Changes in composition substantially improve heat-insulating properties of silica-based refractory tile. Silicon carbide particles act as high-emissivity radiation scatterers in tile material.
Tile Patterns with Logo--Part I: Laying Tile with Logo.
ERIC Educational Resources Information Center
Clason, Robert G.
1990-01-01
Described is a method for drawing periodic tile patterns using LOGO. Squares, triangles, hexagons, shape filling, and random tile laying are included. These activities incorporate problem solving, programing methods, and the geometry of angles and polygons. (KR)
The Intricate Art of Persian Tiles: An Interview with Jafar Mogadam.
ERIC Educational Resources Information Center
Gamble, Harriet
1998-01-01
Transcribes an interview with Jafar Mogadam, an Iranian artist who paints Persian tiles. Traces Mogadam's development as an artist and describes how he creates his tile compositions. Provides a brief history of Persian tiles. (DSK)
Low-Density, Aerogel-Filled Thermal-Insulation Tiles
NASA Technical Reports Server (NTRS)
Santos, Maryann; Heng, Vann; Barney, Andrea; Oka, Kris; Droege, Michael
2005-01-01
Aerogel fillings have been investigated in a continuing effort to develop low-density thermal-insulation tiles that, relative to prior such tiles, have greater dimensional stability (especially less shrinkage), equal or lower thermal conductivity, and greater strength and durability. In preparation for laboratory tests of dimensional and thermal stability, prototypes of aerogel-filled versions of recently developed low-density tiles have been fabricated by impregnating such tiles to various depths with aerogel formations ranging in density from 1.5 to 5.6 lb/ft3 (about 53 to 200 kg/cu m). Results available at the time of reporting the information for this article showed that the thermal-insulation properties of the partially or fully aerogel- impregnated tiles were equivalent or superior to those of the corresponding non-impregnated tiles and that the partially impregnated tiles exhibited minimal (<1.5 percent) shrinkage after multiple exposures at a temperature of 2,300 F (1,260 C). Latest developments have shown that tiles containing aerogels at the higher end of the density range are stable after multiple exposures at the said temperature.
Szabo, Jeffrey G; Muhammad, Nur; Heckman, Lee; Rice, Eugene W; Hall, John
2012-04-01
Germination was evaluated as an enhancement to decontamination methods for removing Bacillus spores from drinking water infrastructure. Germinating spores before chlorinating cement mortar or flushing corroded iron was more effective than chlorinating or flushing alone.
44. East tile gauge on south pier. Each square tile ...
44. East tile gauge on south pier. Each square tile is 4' in size. Top left section of 4' square eagle section - Duluth Ship Canal, South Pier, North end of Minnesota Point & Canal Park, Duluth, St. Louis County, MN
47. East tile gauge on south pier. Each square tile ...
47. East tile gauge on south pier. Each square tile is 4' in size. Middle right section of 4' square eagle section - Duluth Ship Canal, South Pier, North end of Minnesota Point & Canal Park, Duluth, St. Louis County, MN
46. East tile gauge on south pier. Each square tile ...
46. East tile gauge on south pier. Each square tile is 4' in size. Lower right section of 4' square eagle section - Duluth Ship Canal, South Pier, North end of Minnesota Point & Canal Park, Duluth, St. Louis County, MN
43. East tile gauge on south pier. Each square tile ...
43. East tile gauge on south pier. Each square tile is 4' in size. Eagle itself in 4' square eagle section - Duluth Ship Canal, South Pier, North end of Minnesota Point & Canal Park, Duluth, St. Louis County, MN
45. East tile gauge on south pier. Each square tile ...
45. East tile gauge on south pier. Each square tile is 4' in size. Lower left section of 4' square eagel section - Duluth Ship Canal, South Pier, North end of Minnesota Point & Canal Park, Duluth, St. Louis County, MN
51. East tile gauge on south pier. Each square tile ...
51. East tile gauge on south pier. Each square tile is 4' in size. Lower end of cross second from bottom - Duluth Ship Canal, South Pier, North end of Minnesota Point & Canal Park, Duluth, St. Louis County, MN
Tile-based Level of Detail for the Parallel Age
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niski, K; Cohen, J D
Today's PCs incorporate multiple CPUs and GPUs and are easily arranged in clusters for high-performance, interactive graphics. We present an approach based on hierarchical, screen-space tiles to parallelizing rendering with level of detail. Adapt tiles, render tiles, and machine tiles are associated with CPUs, GPUs, and PCs, respectively, to efficiently parallelize the workload with good resource utilization. Adaptive tile sizes provide load balancing while our level of detail system allows total and independent management of the load on CPUs and GPUs. We demonstrate our approach on parallel configurations consisting of both single PCs and a cluster of PCs.
Geopolymers as potential repair material in tiles conservation
NASA Astrophysics Data System (ADS)
Geraldes, Catarina F. M.; Lima, Augusta M.; Delgado-Rodrigues, José; Mimoso, João Manuel; Pereira, Sílvia R. M.
2016-03-01
The restoration materials currently used to fill gaps in historical architectural tiles (e.g. lime or organic resin pastes) usually show serious drawbacks in terms of compatibility, effectiveness or durability. The existing solutions do not fully protect Portuguese faïence tiles ( azulejos) in outdoor conditions and frequently result in further deterioration. Geopolymers can be a potential solution for tile lacunae infill, given the chemical-mineralogical similitude to the ceramic body, and also the durability and versatile range of physical properties that can be obtained through the manipulation of their formulation and curing conditions. This work presents and discusses the viability of the use of geopolymeric pastes to fill lacunae in tiles or to act as "cold" cast ceramic tile surrogates reproducing missing tile fragments. The formulation of geopolymers, namely the type of activators, the alumino-silicate source, the quantity of water required for adequate workability and curing conditions, was studied. The need for post-curing desalination was also considered envisaging their application in the restoration of outdoor historical architectural tiles frequently exposed to adverse environmental conditions. The possible advantages and disadvantages of the use of geopolymers in the conservation of tiles are also discussed. The results obtained reveal that geopolymers pastes are a promising material for the restoration of tiles, when compared to other solutions currently in use.
Interference Lattice-based Loop Nest Tilings for Stencil Computations
NASA Technical Reports Server (NTRS)
VanderWijngaart, Rob F.; Frumkin, Michael
2000-01-01
A common method for improving performance of stencil operations on structured multi-dimensional discretization grids is loop tiling. Tile shapes and sizes are usually determined heuristically, based on the size of the primary data cache. We provide a lower bound on the numbers of cache misses that must be incurred by any tiling, and a close achievable bound using a particular tiling based on the grid interference lattice. The latter tiling is used to derive highly efficient loop orderings. The total number of cache misses of a code is the sum of (necessary) cold misses and misses caused by elements being dropped from the cache between successive loads (replacement misses). Maximizing temporal locality is equivalent to minimizing replacement misses. Temporal locality of loop nests implementing stencil operations is optimized by tilings that avoid data conflicts. We divide the loop nest iteration space into conflict-free tiles, derived from the cache miss equation. The tiling involves the definition of the grid interference lattice an equivalence class of grid points whose images in main memory map to the same location in the cache-and the construction of a special basis for the lattice. Conflicts only occur on the boundaries of the tiles, unless the tiles are too thin. We show that the surface area of the tiles is bounded for grids of any dimensionality, and for caches of any associativity, provided the eccentricity of the fundamental parallelepiped (the tile spanned by the basis) of the lattice is bounded. Eccentricity is determined by two factors, aspect ratio and skewness. The aspect ratio of the parallelepiped can be bounded by appropriate array padding. The skewness can be bounded by the choice of a proper basis. Combining these two strategies ensures that pathologically thin tiles are avoided. They do not, however, minimize replacement misses per se. The reason is that tile visitation order influences the number of data conflicts on the tile boundaries. If two adjacent tiles are visited successively, there will be no replacement misses on the shared boundary. The iteration space may be covered with pencils larger than the size of the cache while avoiding data conflicts if the pencils are traversed by a scanning-face method. Replacement misses are incurred only on the boundaries of the pencils, and the number of misses is minimized by maximizing the volume of the scanning face, not the volume of the tile. We present an algorithm for constructing the most efficient scanning face for a given grid and stencil operator. In two dimensions it is based on a continued fraction algorithm. In three dimensions it follows Voronoi's successive minima algorithm. We show experimental results of using the scanning face, and compare with canonical loop orderings.
NASA Astrophysics Data System (ADS)
Chan, Chia-Hsin; Tu, Chun-Chuan; Tsai, Wen-Jiin
2017-01-01
High efficiency video coding (HEVC) not only improves the coding efficiency drastically compared to the well-known H.264/AVC but also introduces coding tools for parallel processing, one of which is tiles. Tile partitioning is allowed to be arbitrary in HEVC, but how to decide tile boundaries remains an open issue. An adaptive tile boundary (ATB) method is proposed to select a better tile partitioning to improve load balancing (ATB-LoadB) and coding efficiency (ATB-Gain) with a unified scheme. Experimental results show that, compared to ordinary uniform-space partitioning, the proposed ATB can save up to 17.65% of encoding times in parallel encoding scenarios and can reduce up to 0.8% of total bit rates for coding efficiency.
NASA Technical Reports Server (NTRS)
Williams, J. G.
1981-01-01
Structural tests were conducted on thermal protection systems (TPS) LI 900 and LI 2200 tiles and .41 cm and .23 cm thick strain isolation pads. The bond surface of selected tiles was densified to obtain improved strength. Four basic types of experiments were conducted including tension tests, substrate mismatch (initial imperfection) tests, tension loads eccentrically applied, and pressure loads applied rapidly to the tile top surface. A small initial imperfection mismatch (2.29 m spherical radius on the substrate) did not influence significantly the ultimate failure strength. Densification of the tile bond region improved the strength of TPS constructed both of LI 900 tile and of LI 2200 tile. Pressure shock conditions studied did not significantly affect the TPS strength.
Wang, Pengfei; Wu, Siyu; Tian, Cheng; Yu, Guimei; Jiang, Wen; Wang, Guansong; Mao, Chengde
2016-10-11
Current tile-based DNA self-assembly produces simple repetitive or highly symmetric structures. In the case of 2D lattices, the unit cell often contains only one basic tile because the tiles often are symmetric (in terms of either the backbone or the sequence). In this work, we have applied retrosynthetic analysis to determine the minimal asymmetric units for complex DNA nanostructures. Such analysis guides us to break the intrinsic structural symmetries of the tiles to achieve high structural complexities. This strategy has led to the construction of several DNA nanostructures that are not accessible from conventional symmetric tile designs. Along with previous studies, herein we have established a set of four fundamental rules regarding tile-based assembly. Such rules could serve as guidelines for the design of DNA nanostructures.
Tile drainage as karst: Conduit flow and diffuse flow in a tile-drained watershed
Schilling, K.E.; Helmers, M.
2008-01-01
The similarity of tiled-drained watersheds to karst drainage basins can be used to improve understanding of watershed-scale nutrient losses from subsurface tile drainage networks. In this study, short-term variations in discharge and chemistry were examined from a tile outlet collecting subsurface tile flow from a 963 ha agricultural watershed. Study objectives were to apply analytical techniques from karst springs to tile discharge to evaluate water sources and estimate the loads of agricultural pollutants discharged from the tile with conduit, intermediate and diffuse flow regimes. A two-member mixing model using nitrate, chloride and specific conductance was used to distinguish rainwater versus groundwater inputs. Results indicated that groundwater comprised 75% of the discharge for a three-day storm period and rainwater was primarily concentrated during the hydrograph peak. A contrasting pattern of solute concentrations and export loads was observed in tile flow. During base flow periods, tile flow consisted of diffuse flow from groundwater sources and contained elevated levels of nitrate, chloride and specific conductance. During storm events, suspended solids and pollutants adhered to soil surfaces (phosphorus, ammonium and organic nitrogen) were concentrated and discharged during the rapid, conduit flow portion of the hydrograph. During a three-day period, conduit flow occurred for 5.6% of the time but accounted for 16.5% of the total flow. Nitrate and chloride were delivered primarily with diffuse flow (more than 70%), whereas 80-94% of total suspended sediment, phosphorus and ammonium were exported with conduit and intermediate flow regimes. Understanding the water sources contributing to tile drainage and the manner by which pollutant discharge occurs from these systems (conduit, intermediate or diffuse flow) may be useful for designing, implementing and evaluating non-point source reduction strategies in tile-drained landscapes. ?? 2007 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Frey, Steven K.; Hwang, Hyoun-Tae; Park, Young-Jin; Hussain, Syed I.; Gottschall, Natalie; Edwards, Mark; Lapen, David R.
2016-04-01
Tile drainage management is considered a beneficial management practice (BMP) for reducing nutrient loads in surface water. In this study, 2-dimensional dual permeability models were developed to simulate flow and transport following liquid swine manure and rhodamine WT (strongly sorbing) tracer application on macroporous clay loam soils under controlled (CD) and free drainage (FD) tile management. Dominant flow and transport characteristics were successfully replicated, including higher and more continuous tile discharge and lower peak rhodamine WT concentrations in FD tile effluent; in relation to CD, where discharge was intermittent, peak rhodamine concentrations higher, and mass exchange from macropores into the soil matrix greater. Explicit representation of preferential flow was essential, as macropores transmitted >98% of surface infiltration, tile flow, and tile solute loads for both FD and CD. Incorporating an active 3rd type lower boundary condition that facilitated groundwater interaction was imperative for simulating CD, as the higher (relative to FD) water table enhanced water and soluble nutrient movement from the soil profile into deeper groundwater. Scenario analysis revealed that in conditions where slight upwards hydraulic gradients exist beneath tiles, groundwater upwelling can influence the concentration of surface derived solutes in tile effluent under FD conditions; whereas the higher and flatter CD water table can restrict groundwater upwelling. Results show that while CD can reduce tile discharge, it can also lead to an increase in surface-application derived nutrient concentrations in tile effluent and hence surface water receptors, and it can promote NO3 loading into groundwater. This study demonstrates dual permeability modeling as a tool for increasing the conceptual understanding of tile drainage BMPs.
DOT National Transportation Integrated Search
2017-12-11
Glass fiber reinforced polymer (GFRP) recycled from retired wind turbines was implemented in mortar as a volumetric replacement of sand during the two phases of this study. In Phase I, the mechanically refined GFRP particle sizes were sieved for four...
Muhammad, Nur; Heckman, Lee; Rice, Eugene W.; Hall, John
2012-01-01
Germination was evaluated as an enhancement to decontamination methods for removing Bacillus spores from drinking water infrastructure. Germinating spores before chlorinating cement mortar or flushing corroded iron was more effective than chlorinating or flushing alone. PMID:22267659
Influence of bicarbonate ions on the deterioration of mortar bars in sulfate solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kunther, W., E-mail: Wolfgang.Kunther@empa.ch; Lothenbach, B.; Scrivener, K.
2013-02-15
This work investigates the influence of bicarbonate ions on the deterioration of cementitious material exposed to sulfate ions. Mortars based on a CEM I and on a CEM III/B cement were investigated. Experimental investigations were compared to thermodynamic modeling and phase characterization to understand the differences in deterioration. The presence of bicarbonate ions significantly reduced the expansion of the CEM I mortars. Thermodynamic modeling showed that at high concentrations of bicarbonate ettringite and gypsum become unstable. Microstructural characterization combined with information from thermodynamic modeling suggests that conditions of high supersaturation with respect to ettringite are unlikely in the samples exposedmore » in solutions containing bicarbonate. Consequently, expansive forces are not generated by the crystallization pressure of ettringite. There was little expansion of the CEM III/B sample even in the sodium sulfate solution. In the bicarbonate solution this mortar showed a highly leached zone at the surface in which calcite was observed.« less
The Effects of Different Fine Recycled Concrete Aggregates on the Properties of Mortar
Fan, Cheng-Chih; Huang, Ran; Hwang, Howard; Chao, Sao-Jeng
2015-01-01
The practical use of recycled concrete aggregate produced by crushing concrete waste reduces the consumption of natural aggregate and the amount of concrete waste that ends up in landfills. This study investigated two methods used in the production of fine recycled concrete aggregate: (1) a method that produces fine as well as coarse aggregate, and (2) a method that produces only fine aggregate. Mortar specimens were tested using a variety of mix proportions to determine how the characteristics of fine recycled concrete aggregate affect the physical and mechanical properties of the resulting mortars. Our results demonstrate the superiority of mortar produced using aggregate produced using the second of the two methods. Nonetheless, far more energy is required to render concrete into fine aggregate than is required to produce coarse as well as fine aggregate simultaneously. Thus, the performance benefits of using only fine recycled concrete aggregate must be balanced against the increased impact on the environment.
Applying a biodeposition layer to increase the bond of a repair mortar on a mortar substrate.
Snoeck, D; Wang, J; Bentz, D P; De Belie, N
2018-02-01
One of the major concerns in infrastructure repair is a sufficient bond between the substrate and the repair material, especially for the long-term performance and durability of the repaired structure. In this study, the bond of the repair material on the mortar substrate is promoted via the biodeposition of a calcium carbonate layer by a ureolytic bacterium. X-ray diffraction and scanning electron microscopy were used to examine the interfaces between the repair material and the substrate, as well as the polymorph of the deposited calcium carbonate. The approximately 50 μm thick biodeposition film on the mortar surface mostly consisted of calcite and vaterite. Both the repair material and the substrate tended to show a good adherence to that layer. The bond, as assessed by slant shear specimen testing, was improved by the presence of the biodeposition layer. A further increase was found when engineering the substrate surface using a structured pattern layer of biodeposition.
Calcite-forming bacteria for compressive strength improvement in mortar.
Park, Sung-Jin; Park, Yu-Mi; Chun, Woo-Young; Kim, Wha-Jung; Ghim, Sa-Youl
2010-04-01
Microbiological calcium carbonate precipitation (MCP) has been investigated for its ability to improve the compressive strength of concrete mortar. However, very few studies have been conducted on the use of calcite-forming bacteria (CFB) to improve compressive strength. In this study, we discovered new bacterial genera that are capable of improving the compressive strength of concrete mortar. We isolated 4 CFB from 7 environmental concrete structures. Using sequence analysis of the 16S rRNA genes, the CFB could be partially identified as Sporosarcina soli KNUC401, Bacillus massiliensis KNUC402, Arthrobacter crystallopoietes KNUC403, and Lysinibacillus fusiformis KNUC404. Crystal aggregates were apparent in the bacterial colonies grown on an agar medium. Stereomicroscopy, scanning electron microscopy, and x-ray diffraction analyses illustrated both the crystal growth and the crystalline structure of the CaCO3 crystals. We used the isolates to improve the compressive strength of concrete mortar cubes and found that KNUC403 offered the best improvement in compressive strength.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Escoda, J.; Departement Materiaux et Mecanique des Composants, Electricite de France, Moret-sur-Loing; Willot, F., E-mail: francois.willot@ensmp.f
2011-05-15
This study concerns the prediction of the elastic properties of a 3D mortar image, obtained by micro-tomography, using a combined image segmentation and numerical homogenization approach. The microstructure is obtained by segmentation of the 3D image into aggregates, voids and cement paste. Full-fields computations of the elastic response of mortar are undertaken using the Fast Fourier Transform method. Emphasis is made on highly-contrasted properties between aggregates and matrix, to anticipate needs for creep or damage computation. The representative volume element, i.e. the volume size necessary to compute the effective properties with a prescribed accuracy, is given. Overall, the volumes usedmore » in this work were sufficient to estimate the effective response of mortar with a precision of 5%, 6% and 10% for contrast ratios of 100, 1000 and 10,000, resp. Finally, a statistical and local characterization of the component of the stress field parallel to the applied loading is carried out.« less
Durability of waste glass flax fiber reinforced mortar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aly, M.; Hashmi, M. S. J.; Olabi, A. G.
2011-01-17
The main concern for natural fibre reinforced mortar composites is the durability of the fibres in the alkaline environment of cement. The composites may undergo a reduction in strength as a result of weakening of the fibres by a combination of alkali attack and fibre mineralisation. In order to enhance the durability of natural fiber reinforced cement composites several approaches have been studied including fiber impregnation, sealing of the matrix pore system and reduction of matrix alkalinity through the use of pozzolanic materials. In this study waste glass powder was used as a pozzolanic additive to improve the durability performancemore » of flax fiber reinforced mortar (FFRM). The durability of the FFRM was studied by determining the effects of ageing in water and exposure to wetting and drying cycles; on the microstructures and flexural behaviour of the composites. The mortar tests demonstrated that the waste glass powder has significant effect on improving the durability of FFRM.« less
Brick-and-Mortar Self-Assembly Approach to Graphitic Mesoporous Carbon Nanocomposites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Sheng; Fulvio, Pasquale F; Mayes, Richard T
2011-01-01
Mesoporous carbon materials do not have sufficient ordering at the atomic scale to exhibit good electronic conductivity. To date, mesoporous carbons having uniform mesopores and high surface areas have been prepared from partially-graphitizable precursors in the presence of templates. High temperature thermal treatments above 2000 C, which are usually required to increase conductivity, result in a partial or total collapse of the mesoporous structures and reduced surface areas induced by growth of graphitic domains, limiting their applications in electric double layer capacitors and lithium-ion batteries. In this work, we successfully implemented a 'brick-and-mortar' approach to obtain ordered graphitic mesoporous carbonmore » nanocomposites with tunable mesopore sizes below 850 C without using graphitization catalysts or high temperature thermal treatments. Phenolic resin-based mesoporous carbons act as mortar to highly conductive carbon blacks and carbon onions (bricks). The capacitance and resistivity of final materials can be tailored by changing the mortar to brick ratios.« less
ERIC Educational Resources Information Center
Manpower Administration (DOL), Washington, DC. U.S. Training and Employment Service.
The United States Training and Employment Service General Aptitude Test Battery (GATB), first published in 1947, has been included in a continuing program of research to validate the tests against success in many different occupations. The GATB consists of 12 tests which measure nine aptitudes: General Learning Ability; Verbal Aptitude; Numerical…
40 CFR 427.70 - Applicability; description of the asbestos floor tile subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... asbestos floor tile subcategory. 427.70 Section 427.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Floor Tile Subcategory § 427.70 Applicability; description of the asbestos floor tile subcategory...
40 CFR 427.70 - Applicability; description of the asbestos floor tile subcategory.
Code of Federal Regulations, 2014 CFR
2014-07-01
... asbestos floor tile subcategory. 427.70 Section 427.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Floor Tile Subcategory § 427.70 Applicability; description of the asbestos floor tile...
40 CFR 427.70 - Applicability; description of the asbestos floor tile subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... asbestos floor tile subcategory. 427.70 Section 427.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Floor Tile Subcategory § 427.70 Applicability; description of the asbestos floor tile subcategory...
40 CFR 427.70 - Applicability; description of the asbestos floor tile subcategory.
Code of Federal Regulations, 2013 CFR
2013-07-01
... asbestos floor tile subcategory. 427.70 Section 427.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Floor Tile Subcategory § 427.70 Applicability; description of the asbestos floor tile...
40 CFR 427.70 - Applicability; description of the asbestos floor tile subcategory.
Code of Federal Regulations, 2012 CFR
2012-07-01
... asbestos floor tile subcategory. 427.70 Section 427.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Floor Tile Subcategory § 427.70 Applicability; description of the asbestos floor tile...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peric, A.D.
Powder and granules of the high density polyethylene (PEHD) were used to prepare mortar based matrices for immobilization of radioactive waste materials containing {sup 137}Cs, as well as containers for solidified radioactive waste form. Seven types of matrices, differ due to the percentage of granules and filler material added, were investigated. PEHD powder and granules were added to mortar matrix preparations with the objective of improving physico-chemical characteristics of the radwaste-mortar matrix mixtures, in particular the leach-rate of the immobilized radionuclide, as well as mechanical characteristics either of mortar matrix and container. In this paper, only mechanical strength aspect ofmore » the investigated mortar and concrete container formulations, is presented. The equivalent diameter of the PEHD granules used was 2.0 mm. PEHD granules were used to replace 100 volume percent of stone granules, sifted size of 2.0 mm, normally used in the matrix preparation, in order to decrease the porosity and density of the mortar matrix and to avoid segregation of the stone particles at the bottom of the immobilized radioactive waste cylindrical form. PEHD powder, particle size of 250 micrometer, was added as filler to the mortar formulation, replacing 5, 8 and 10 wt% of the total cement weight in matrix formulation and 15 and 18 wt% of the total cement weight in container formulation. Cured samples were investigated on mechanical strength, using 150 MPa hydraulic press, in order to determine influence of added polyethylene granules and powder on samples resistance to mechanical forces that solidified waste materials and concrete containers may experience at the disposal site. Results of performed investigations have shown that samples prepared with polyethylene granules, replacing 100 wt% of the stone granules, have almost twice as much mechanical strength than samples prepared with stone aggregate. Samples prepared with PEHD granules and powder have mechanical strength resistance up to 13.5% higher than ones prepared with PEHD granules, solely. Improved Mechanical strength resistance of tested samples accommodates trend that functionally depends on the percentage of PEHD powder added in formulation.« less
Spectral response data for development of cool coloured tile coverings
NASA Astrophysics Data System (ADS)
Libbra, Antonio; Tarozzi, Luca; Muscio, Alberto; Corticelli, Mauro A.
2011-03-01
Most ancient or traditional buildings in Italy show steep-slope roofs covered by red clay tiles. As the rooms immediately below the roof are often inhabited in historical or densely urbanized centres, the combination of low solar reflectance of tile coverings and low thermal inertia of either wooden roof structures or sub-tile insulation panels makes summer overheating a major problem. The problem can be mitigated by using tiles coated with cool colours, that is colours with the same spectral response of clay tiles in the visible, but highly reflecting in the near infrared range, which includes more than half of solar radiation. Cool colours can yield the same visible aspect of common building surfaces, but higher solar reflectance. Studies aimed at developing cool colour tile coverings for traditional Italian buildings have been started. A few coating solutions with the typical red terracotta colour have been produced and tested in the laboratory, using easily available materials. The spectral response and the solar reflectance have been measured and compared with that of standard tiles.
Archimedean Voronoi spiral tilings
NASA Astrophysics Data System (ADS)
Yamagishi, Yoshikazu; Sushida, Takamichi
2018-01-01
We study the transition of the number of spirals (called parastichy in the theory of phyllotaxis) within a Voronoi tiling for Archimedean spiral lattices. The transition of local parastichy numbers within a tiling is regarded as a transition at the base site point in a continuous family of tilings. This gives a natural description of the quasiperiodic structure of the grain boundaries. It is proved that the number of tiles in the grain boundaries are denominators of rational approximations of the argument (called the divergence angle) of the generator. The local parastichy numbers are non-decreasing functions of the plastochron parameter. The bifurcation diagram of local parastichy numbers has a Farey tree structure. We also prove Richards’ formula of spiral phyllotaxis in the case of Archimedean Voronoi spiral tilings, and show that, if the divergence angle is a quadratic irrational number, then the shapes of tiles in the grain boundaries are close to rectangles. If the divergence angle is linearly equivalent to the golden section, then the shape of tiles in the grain boundaries is close to square.
Tile Drainage Expansion Detection using Satellite Soil Moisture Dynamics
NASA Astrophysics Data System (ADS)
Jacobs, J. M.; Cho, E.; Jia, X.
2017-12-01
In the past two decades, tile drainage installation has accelerated throughout the Red River of the North Basin (RRB) in parts of western Minnesota, eastern North Dakota, and a small area of northeastern South Dakota, because the flat topography and low-permeability soils in this region necessitated the removal of excess water to improve crop production. Interestingly, streamflow in the Red River has markedly increased and six of 13 major floods during the past century have occurred since the late 1990s. It has been suggested that the increase in RRB flooding could be due to change in agricultural practices, including extensive tile drainage installation. Reliable information on existing and future tile drainage installation is greatly needed to capture the rapid extension of tile drainage systems and to locate tile drainage systems in the north central U.S. including the RRB region. However, there are few reliable data of tile drainage installation records, except tile drainage permit records in the Bois de Sioux watershed (a sub-basin in southern part of the RRB where permits are required for tile drainage installation). This study presents a tile drainage expansion detection method based on a physical principle that the soil-drying rate may increase with increasing tile drainage for a given area. In order to capture the rate of change in soil drying rate with time over entire RRB (101,500 km2), two satellite-based microwave soil moisture records from the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) and AMSR2 were used during 2002 to 2016. In this study, a sub-watershed level (HUC10) potential tile drainage growth map was developed and the results show good agreement with tile drainage permit records of six sub-watersheds in the Bois de Sioux watershed. Future analyses will include improvement of the potential tile drainage map through additional information using optical- and thermal-based sensor products and evaluation of its hydrological impacts on intensity, duration, and frequency of extreme streamflow from watershed to basin scale.
NASA Technical Reports Server (NTRS)
Sawyer, J. W.
1981-01-01
The effect of load eccentricity and substructure deformation on the ultimate strength and stress displacement properties of the shuttle orbiter thermal protection system (TPS) was determined. The LI-900 Reusable Surface Insulation (RSI) tiles mounted on the .41 cm thick Strain Isolator Pad (SIP) were investigated. Substructure deformations reduce the ultimate strength of the SIP/tile TPS and increase the scatter in the ultimate strength data. Substructure deformations that occur unsymmetric to the tile can cause the tile to rotate when subjected to a uniform applied load. Load eccentricity reduces SIP/tile TPS ultimate strength and causes tile rotation.
Computerized Machine for Cutting Space Shuttle Thermal Tiles
NASA Technical Reports Server (NTRS)
Ramirez, Luis E.; Reuter, Lisa A.
2009-01-01
A report presents the concept of a machine aboard the space shuttle that would cut oversized thermal-tile blanks to precise sizes and shapes needed to replace tiles that were damaged or lost during ascent to orbit. The machine would include a computer-controlled jigsaw enclosed in a clear acrylic shell that would prevent escape of cutting debris. A vacuum motor would collect the debris into a reservoir and would hold a tile blank securely in place. A database stored in the computer would contain the unique shape and dimensions of every tile. Once a broken or missing tile was identified, its identification number would be entered into the computer, wherein the cutting pattern associated with that number would be retrieved from the database. A tile blank would be locked into a crib in the machine, the shell would be closed (proximity sensors would prevent activation of the machine while the shell was open), and a "cut" command would be sent from the computer. A blade would be moved around the crib like a plotter, cutting the tile to the required size and shape. Once the tile was cut, an astronaut would take a space walk for installation.
Water table management reduces tile nitrate loss in continuous corn and in a soybean-corn rotation.
Drury, C F; Tan, C S; Gaynor, J D; Reynolds, W D; Welacky, T W; Oloya, T O
2001-10-25
Water table management systems can be designed to alleviate soil water excesses and deficits, as well as reduce nitrate leaching losses in tile discharge. With this in mind, a standard tile drainage (DR) system was compared over 8 years (1991 to 1999) to a controlled tile drainage/subirrigation (CDS) system on a low-slope (0.05 to 0.1%) Brookston clay loam soil (Typic Argiaquoll) in southwestern Ontario, Canada. In the CDS system, tile discharge was controlled to prevent excessive drainage, and water was pumped back up the tile lines (subirrigation) to replenish the crop root zone during water deficit periods. In the first phase of the study (1991 to 1994), continuous corn (Zea mays, L.) was grown with annual nitrogen (N) fertilizer inputs as per local soil test recommendations. In the second phase (1995 to 1999), a soybean (Glycine max L., Merr.)-corn rotation was used with N fertilizer added only during the two corn years. In Phase 1 when continuous corn was grown, CDS reduced total tile discharge by 26% and total nitrate loss in tile discharge by 55%, compared to DR. In addition, the 4-year flow weighted mean (FWM) nitrate concentration in tile discharge exceeded the Canadian drinking water guideline (10 mg N l(-1)) under DR (11.4 mg N l(-1)), but not under CDS (7.0 mg N l(-1)). In Phase 2 during the soybean-corn rotation, CDS reduced total tile discharge by 38% and total nitrate loss in tile discharge by 66%, relative to DR. The 4-year FWM nitrate concentration during Phase 2 in tile discharge was below the drinking water guideline for both DR (7.3 mg N l(-1)) and CDS (4.0 mg N l(-1)). During both phases of the experiment, the CDS treatment caused only minor increases in nitrate loss in surface runoff relative to DR. Hence CDS decreased FWM nitrate concentrations, total drainage water loss, and total nitrate loss in tile discharge relative to DR. In addition, soybean-corn rotation reduced FWM nitrate concentrations and total nitrate loss in tile discharge relative to continuous corn. CDS and crop rotations with reduced N fertilizer inputs can thus improve the quality of tile discharge water substantially.
40 CFR 63.8535 - Am I subject to this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
... manufacturing facility is a plant site that manufactures pressed floor tile, pressed wall tile, other pressed tile, or sanitaryware (e.g., sinks and toilets). Clay ceramics manufacturing facilities typically process clay, shale, and various additives; form the processed materials into tile or sanitaryware shapes...
40 CFR 63.8535 - Am I subject to this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
... manufacturing facility is a plant site that manufactures pressed floor tile, pressed wall tile, other pressed tile, or sanitaryware (e.g., sinks and toilets). Clay ceramics manufacturing facilities typically process clay, shale, and various additives; form the processed materials into tile or sanitaryware shapes...
40 CFR 63.8535 - Am I subject to this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... manufacturing facility is a plant site that manufactures pressed floor tile, pressed wall tile, other pressed tile, or sanitaryware (e.g., sinks and toilets). Clay ceramics manufacturing facilities typically process clay, shale, and various additives; form the processed materials into tile or sanitaryware shapes...
40 CFR 63.8535 - Am I subject to this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... manufacturing facility is a plant site that manufactures pressed floor tile, pressed wall tile, other pressed tile, or sanitaryware (e.g., sinks and toilets). Clay ceramics manufacturing facilities typically process clay, shale, and various additives; form the processed materials into tile or sanitaryware shapes...
40 CFR 63.8535 - Am I subject to this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
... manufacturing facility is a plant site that manufactures pressed floor tile, pressed wall tile, other pressed tile, or sanitaryware (e.g., sinks and toilets). Clay ceramics manufacturing facilities typically process clay, shale, and various additives; form the processed materials into tile or sanitaryware shapes...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-02
... that the concrete in the footings, piers, and walls, or the mortar in the masonry piers and walls, is... during steel erection. Note: This is not and will not be enforced for mortar in piers and walls until...
Strong parameterization and coordination encirclements of graph of Penrose tiling vertices
NASA Astrophysics Data System (ADS)
Shutov, A. V.; Maleev, A. V.
2017-07-01
The coordination encirclements in a graph of Penrose tiling vertices have been investigated based on the analysis of vertice parameters. A strong parameterization of these vertices is developed in the form of a tiling of a parameter set in the region corresponding to different first coordination encirclements of vertices. An algorithm for constructing tilings of a set of parameters determining different coordination encirclements in a graph of Penrose tiling vertices of order n is proposed.
Investigating the Influence of Waste Basalt Powder on Selected Properties of Cement Paste and Mortar
NASA Astrophysics Data System (ADS)
Dobiszewska, Magdalena; Beycioğlu, Ahmet
2017-10-01
Concrete is the most widely used man-made construction material in civil engineering applications. The consumption of cement and thus concrete, increases day by day along with the growth of urbanization and industrialization and due to new developments in construction technologies, population growing, increasing of living standard. Concrete production consumes much energy and large amounts of natural resources. It causes environmental, energy and economic losses. The most important material in concrete production is cement. Cement industry contributes to production of about 7% of all CO2 generated in the world. Every ton of cement production releases nearly one ton of CO2 to atmosphere. Thus the concrete and cement industry changes the environment appearance and influences it very much. Therefore, it has become very important for construction industry to focus on minimizing the environmental impact, reducing energy consumption and limiting CO2 emission. The need to meet these challenges has spurred an interest in the development of a blended Portland cement in which the amount of clinker is reduced and partially replaced with mineral additives - supplementary cementitious materials (SCMs). Many researchers have studied the possibility of using another mineral powder in mortar and concrete production. The addition of marble dust, basalt powder, granite or limestone powder positively affects some properties of cement mortar and concrete. This paper presents an experimental study on the properties of cement paste and mortar containing basalt powder. The basalt powder is a waste emerged from the preparation of aggregate used in asphalt mixture production. Previous studies have shown that analysed waste used as a fine aggregate replacement, has a beneficial effect on some properties of mortar and concrete, i.e. compressive strength, flexural strength and freeze resistance also. The present study shows the results of the research concerning the modification of cement paste and mortar with basalt powder. The modification consists in that the powder waste was added as partial replacement of cement. Four types of common cement were examined, i.e. CEM I, CEM II/A-S, CEM II/A-V and CEM II/B-V. The percentages of basalt powder in this research are 0%, 1%, 2%, 3%, 4%, 6%, 8% and 10% by mass. Results showed that the addition of basalt powder improved the strength of cement mortar. The use of mineral powder as the partial substitution of cement allows the effective management of industrial waste and improves some properties of cement mortar.
Modal analysis and dynamic stresses for acoustically excited Shuttle insulation tiles
NASA Technical Reports Server (NTRS)
Ojalvo, I. U.; Ogilvie, P. I.
1976-01-01
The thermal protection system of the Space Shuttle consists of thousands of separate insulation tiles, of varying thicknesses, bonded to the orbiter's surface through a soft strain-isolation pad which is bonded, in turn, to the vehicle's stiffened metallic skin. A modal procedure for obtaining the acoustically induced RMS stress in these comparatively thick tiles is described. The modes employed are generated by a previously developed iterative procedure which converges rapidly for the combined system of tiles and primary structure considered. Each tile is idealized by several hundred three-dimensional finite elements and all tiles on a given panel interact dynamically. Acoustic response results from the present analyses are presented. Comparisons with other analytical results and measured modal data for a typical Shuttle panel, both with and without tiles, are made, and the agreement is good.
Ledesma, E F; Jiménez, J R; Ayuso, J; Fernández, J M; Brito, J de
2017-03-15
This article shows the results of an experimental study carried out in order to determine the maximum amount of electric arc furnace dust (EAFD) that can be incorporated into fluid cement-based mortars to produce mechanically stable monolithic blocks. The leaching performance of all mixes was studied in order to classify them according to the EU Council Decision 2003/33/EC. Two mortars were used as reference and three levels of EAFD incorporation were tested in each of the reference mortars. As the incorporation ratio of EAFD/cement increases, the mechanical strength decreases. This is due to the greater EAFD/cement and water/cement ratios, besides the presence of a double-hydrated hydroxide of Ca and Zn (CaZn 2 (OH) 6 ·2H 2 O) instead of the portlandite phase (Ca(OH) 2 ) in the mixes made with EAFD, as well as non-hydrated tricalcium silicate. A mass ratio of 2:1 (EAFD: cement-based mortar) can be added maintaining a stable mechanical strength. The mechanical stabilization process also reduced the leaching of metals, although it was not able to reduce the Pb concentration below the limit for hazardous waste. The high amount of EAFD mechanically stabilized in this experimental study can be useful to reduce the storage volume required in hazardous waste landfills. Copyright © 2016 Elsevier B.V. All rights reserved.
Pofale, Arun D; Nadeem, Mohammed
2012-01-01
This investigation explores the possibility of utilizing granular slag as an alternative to fine aggregate (natural sand) in construction applications like masonry and plastering. Construction industry utilizes large volume of fine aggregate in all the applications which has resulted into shortage of good quality naturally available fine aggregate. Use of granular slag serves two fold purposes, i.e. waste utilisation as well as alternative eco-friendly green building material for construction. The investigation highlights comparative study of properties with partial and full replacement of fine aggregate (natural sand) by granular slag in cement mortar applications (masonry and plastering). For this purpose, cement mortar mix proportions from 1:3, 1:4, 1:5 & 1:6 by volume were selected for 0, 25, 50, 75 & 100% replacement levels with w/c ratios of 0.60, 0.65, 0.70 & 0.72 respectively. Based on the study results, it could be inferred that replacement of natural sand with granular slag from 25 to 75% increased the packing density of mortar which resulted into reduced w/c ratio, increased strength properties of all mortar mixes. Hence, it could be recommended that the granular slag could be effectively utilized as fine aggregate in masonry and plastering applications in place of conventional cement mortar mixes using natural sand.
Pozzolanic Activity Assessment of LUSI (LUmpur SIdoarjo) Mud in Semi High Volume Pozzolanic Mortar
Hardjito, Djwantoro; Antoni; Wibowo, Gunadi M.; Christianto, Danny
2012-01-01
LUSI mud obtained from the mud volcano in Sidoarjo, Indonesia, is a viable aluminosilicate material to be utilized as pozzolanic material. LUSI is an abbreviation of the local name of the mud, i.e., Lumpur Sidoarjo, meaning Sidoarjo mud. This paper reports the results of an investigation to assess the pozzolanic activity of LUSI mud, especially in semi high volume pozzolanic mortar. In this case, the amount of mud incorporated is between 30% to 40% of total cementitious material, by mass. The content of SiO2 in the mud is about 30%, whilst the total content of SiO2, Fe2O3 and Al2O3 is more than 70%. Particle size and degree of partial cement replacement by treated LUSI mud affect the compressive strength, the strength activity index (SAI), the rate of pozzolanic activity development, and the workability of mortar incorporating LUSI mud. Manufacturing semi high volume LUSI mud mortar, up to at least 40% cement replacement, is a possibility, especially with a smaller particle size of LUSI mud, less than 63 μm. The use of a larger percentage of cement replacement by LUSI mud does not show any adverse effect on the water demand, as the flow of the fresh mortar increased with the increase of percentage of LUSI mud usage.
NASA Astrophysics Data System (ADS)
Wardhono, A.
2018-01-01
The use of fly ash as cement replacement material can overcome the environmental issues, especially the global warming problem caused by the greenhouse effect. This is attributed to the CO2 gas produced during the cement manufacturing process, which 1 ton of cement is equivalent to 1 ton CO2. However, the major problem of fly ash is the requirement of activators to activate the polymer reactions. The most common activator used in non-cement or geopolymer material is the combination of sodium hydroxide (NaOH) and sodium silicate. This study aims to identify the effect of NaOH molarity as activator on strength development of non-cement class C fly ash geopolymer mortar. The molarity variations of NaOH were 6 Molar (M), 8M, 10M, 12M, 14M and 15M. The compressive strength test was performed at the age of 3, 7 and 28 days in accordance with ASTM standard, and the specimens were cured at room temperature. The results show that the highest compressive strength was achieved by geopolymer mortar with a molarity of 12M. It exhibits a higher strength to that normal mortar at 28 days. However, the use of NaOH molarity more than 12M tends to decrease the strength of non-cement geopolymer mortar specimens.
On the role of hydrophobic Si-based protective coatings in limiting mortar deterioration.
Cappelletti, G; Fermo, P; Pino, F; Pargoletti, E; Pecchioni, E; Fratini, F; Ruffolo, S A; La Russa, M F
2015-11-01
In order to avoid both natural and artificial stone decay, mainly due to the interaction with atmospheric pollutants (both gases such as NOx and SO2 and particulate matter), polymeric materials have been widely studied as protective coatings enable to limit the penetration of fluids into the bulk material. In the current work, an air hardening calcic lime mortar (ALM) and a natural hydraulic lime mortar (HLM) were used as substrates, and commercially available Si-based resins (Alpha®SI30 and Silres®BS16) were adopted as protective agents to give hydrophobicity features to the artificial stones. Surface properties of coatings and their performance as hydrophobic agents were studied using different techniques such as contact angle measurements, capillary absorption test, mercury intrusion porosimetry, surface free energy, colorimetric measurements and water vapour permeability tests. Finally, some exposure tests to UV radiation and to real polluted atmospheric environments (a city centre and an urban background site) were carried out during a wintertime period (when the concentrations of the main atmospheric pollutants are higher) in order to study the durability of the coating systems applied. The effectiveness of the two commercial resins in reducing salt formation (sulphate and nitrate), induced by the interaction of the mortars with the atmospheric pollutants, was demonstrated in the case of the HLM mortar. Graphical Abstract ᅟ.
Musielak, Marion; Brusseau, Mark L; Marcoux, Manuel; Morrison, Candice; Quintard, Michel
2014-08-01
Experiments have been performed to investigate the sorption of trichloroethene (TCE) vapor by concrete material or, more specifically, the cement mortar component. Gas-flow experiments were conducted using columns packed with small pieces of cement mortar obtained from the grinding of typical concrete material. Transport and retardation of TCE at high vapor concentrations (500 mg L -1 ) was compared to that of a non-reactive gas tracer (Sulfur Hexafluoride, SF6). The results show a large magnitude of retardation (retardation factor = 23) and sorption (sorption coefficient = 10.6 cm 3 g -1 ) for TCE, compared to negligible sorption for SF6. This magnitude of sorption obtained with pollutant vapor is much bigger than the one obtained for aqueous-flow experiments conducted for water-saturated systems. The considerable sorption exhibited for TCE under vapor-flow conditions is attributed to some combination of accumulation at the air-water interface and vapor-phase adsorption, both of which are anticipated to be significant for this system given the large surface area associated with the cement mortar. Transport of both SF6 and TCE was simulated successfully with a two-region physical non-equilibrium model, consistent with the dual-medium structure of the crushed cement mortar. This work emphasizes the importance of taking into account sorption phenomena when modeling transport of volatile organic compounds through concrete material, especially in regard to assessing vapor intrusion.
GROWTH EVALUATION OF FUNGI (PENICILLIUM AND ASPERGILLUS SPP.) ON CEILING TILES
The paper gives results of an evaluation of the potential for fungal growth on four different ceiling tiles in static chambers. It was found that even new ceiling tiles supported fungal growth under favorable conditions. Used ceiling tiles appeared to be more susceptible to funga...
USDA-ARS?s Scientific Manuscript database
Tile drainage is a common water management practice in many agricultural landscapes in the Midwestern United States. Drainage ditches regularly receive water from agricultural fields through these tile drains. This field-scale study was conducted to determine the impact of tile discharge on ambient ...
7 CFR 28.956 - Prescribed fees.
Code of Federal Regulations, 2014 CFR
2014-01-01
.... sample 42.00 3.0Furnishing standard color tiles for calibrating cotton colormeters, per set of five tiles... outside continental United States 165.00 3.1Furnishing single color calibration tiles for use with specific instruments or as replacements in above sets, each tile: a. f.o.b. Memphis, Tennessee 22.00 b...
Two Views of Islam: Ceramic Tile Design and Miniatures.
ERIC Educational Resources Information Center
Macaulay, Sara Grove
2001-01-01
Describes an art project focusing on Islamic art that consists of two parts: (1) ceramic tile design; and (2) Islamic miniatures. Provides background information on Islamic art and step-by-step instructions for designing the Islamic tile and miniature. Includes learning objectives and resources on Islamic tile miniatures. (CMK)
7 CFR 28.956 - Prescribed fees.
Code of Federal Regulations, 2012 CFR
2012-01-01
.... sample 42.00 3.0Furnishing standard color tiles for calibrating cotton colormeters, per set of five tiles... outside continental United States 165.00 3.1Furnishing single color calibration tiles for use with specific instruments or as replacements in above sets, each tile: a. f.o.b. Memphis, Tennessee 22.00 b...
Biomass fly ash incorporation in cement based materials =
NASA Astrophysics Data System (ADS)
Rajamma, Rejini
In recent years, pressures on global environment and energy security have led to an increasing demand on renewable energy sources, and diversification of Europe's energy supply. Among these resources the biomass could exert an important role, since it is considered a renewable and CO2 neutral energy resource once the consumption rate is lower than the growth rate, and can potentially provide energy for heat, power and transports from the same installation. Currently, most of the biomass ash produced in industrial plants is either disposed of in landfill or recycled on agricultural fields or forest, and most times this goes on without any form of control. However, considering that the disposal cost of biomass ashes are raising, and that biomass ash volumes are increasing worldwide, a sustainable ash management has to be established. The main objective of the present study is the effect of biomass fly ashes in cement mortars and concretes in order to be used as a supplementary cementitious material. The wastes analyzed in the study were collected from the fluidized bed boilers and grate boilers available in the thermal power plants and paper pulp plants situated in Portugal. The physical as well as chemical characterisations of the biomass fly ashes were investigated. The cement was replaced by the biomass fly ashes in 10, 20 and 30% (weight %) in order to investigate the fresh properties as well as the hardened properties of biomass fly ash incorporated cement mortar and concrete formulations. Expansion reactions such as alkali silica reaction (ASR), sulphate attack (external and internal) were conducted in order to check the durability of the biomass fly ash incorporated cement mortars and concretes. Alternative applications such as incorporation in lime mortars and alkali activation of the biomass fly ashes were also attempted. The biomass fly ash particles were irregular in shape and fine in nature. The chemical characterization revealed that the biomass fly ashes were similar to a class C fly ash. The mortar results showed a good scope for biomass fly ashes as supplementary cementitious materials in lower dosages (<20%). The poor workability, concerns about the organic content, alkalis, chlorides and sulphates stand as the reasons for preventing the use of biomass fly ash in high content in the cement mortars. The results obtained from the durability tests have shown a clear reduction in expansion for the biomass fly ash mortars/concretes and the binder blend made with biomass fly ash (20%) and metakaolin (10%) inhibited the ASR reaction effectively. The biomass fly ash incorporation in lime mortars did not improve the mortar properties significantly though the carbonation was enhanced in the 15-20% incorporation. The biomass fly ash metakaolin blend worked well in the alkali activated complex binder application also. Portland cement free binders (with 30-40 MPa compressive strength) were obtained on the alkali activation of biomass fly ashes (60-80%) blended with metakaolin (20-40%).
Machine Learning Techniques for Persuasion Detection in Conversation
2010-06-01
files maintained the original post and tile ordering within each transcript. These files were each internally shuffled prior to creating test and...of the number of post or tiles. The other 90% was used for training data. Each post and each tile appeared in only one of the 10 test sets. Each post ...concatenating 5 test sets and pairing it with the 6th test set. This process was conducted for both posts and tiles. The shortest transcript (19 posts , 0 tiles
Global Swath and Gridded Data Tiling
NASA Technical Reports Server (NTRS)
Thompson, Charles K.
2012-01-01
This software generates cylindrically projected tiles of swath-based or gridded satellite data for the purpose of dynamically generating high-resolution global images covering various time periods, scaling ranges, and colors called "tiles." It reconstructs a global image given a set of tiles covering a particular time range, scaling values, and a color table. The program is configurable in terms of tile size, spatial resolution, format of input data, location of input data (local or distributed), number of processes run in parallel, and data conditioning.
Numerical Simulation of Ballistic Impact of Layered Aluminum Nitride Ceramic
2015-09-01
tile(s) Aluminum nitride (AlN) 163 a Polymer layers Polyurethane foam 18 b Backing metal Aluminum 6061-T6 (Al) 23 c Projectile Tungsten heavy alloy...larger (a factor of 3.8) than the most dense polyurethane foam of the available constitutive models. Default options for element failure were imposed in...AlN), a polycrystalline ceramic. The total thickness of the tile(s) is 38.1 mm in all cases. A thin polyurethane laminate separates neighboring tiles
Cultural Resources Collection Analysis Albeni Falls Project, Northern Idaho.
1987-01-01
numerous pestles and mortars, bolas stones, nephrite adzes, notched pebbles or net weights, an atlatl weight, and several unique incised and carved...tools including flaked and ground stone was documented; bifacial tools, drills, gravers, scrapers, numerous pestles and mortars, bolas stones, nephrite...59 27 Pestles ............................................................ 60 28 Zoomorphic pestle (?) fragment
2. VIEW, LOOKING FROM THE NORTHEAST. THESE THREE CONCRETE MORTAR ...
2. VIEW, LOOKING FROM THE NORTHEAST. THESE THREE CONCRETE MORTAR BLOCKS WERE FOR THE MILL'S 3-STAMP BATTERIES ERECTED IN 1903, NORTH OF THE TWO 1901 BATTERIES WHICH WERE MOUNTED ON WOODEN TIMBERS - Wilbur-Womble Mill, Southern Edge Of Salt Spring Valley, Copperopolis, Calaveras County, CA
9. Detail view, greenhouse, fragment of Doric frieze located in ...
9. Detail view, greenhouse, fragment of Doric frieze located in the south wall (Note the decorative mortar work known as galleting in which small stones are imbedded on the surface of the mortar. - John Bartram House & Garden, Greenhouse, 54th Street & LIndbergh Boulevard, Philadelphia, Philadelphia County, PA
2008-07-14
CAPE CANAVERAL, Fla. – In the tile shop at NASA's Kennedy Space Center, a worker places a Boeing Replacement Insulation 18, or BRI-18, tile in the oven. The tile will be baked at 2,200 degrees Fahrenheit to cure the ceramic coating, part of the process to prepare the tiles for installation on space shuttles. BRI-18 is the strongest material used for thermal insulation on the orbiters and, when coated to produce toughened unipiece fibrous insulation, provides a tile with extremely high-impact resistance. It is replacing other tiles on areas of the vehicle where impact risk is high, such as the landing gear doors, the wing leading edge and the external tank doors. Photo credit: NASA/Jim Grossmann
NASA Technical Reports Server (NTRS)
Giles, G. L.
1980-01-01
A substructure procedure to include the flexibility of the tile in the stress analysis of the shuttle thermal protection system (TPS) is described. In this procedure, the TPS is divided into substructures of (1) the tile which is modeled by linear finite elements and (2) the SIP which is modeled as a nonlinear continuum. This procedure was applied for loading cases of uniform pressure, uniform moment, and an aerodynamic shock on various tile thicknesses. The ratios of through-the-thickness stresses in the SIP which were calculated using a flexible tile compared to using a rigid tile were found to be less than 1.05 for the cases considered.
Fractal spectral triples on Kellendonk's C∗-algebra of a substitution tiling
NASA Astrophysics Data System (ADS)
Mampusti, Michael; Whittaker, Michael F.
2017-02-01
We introduce a new class of noncommutative spectral triples on Kellendonk's C∗-algebra associated with a nonperiodic substitution tiling. These spectral triples are constructed from fractal trees on tilings, which define a geodesic distance between any two tiles in the tiling. Since fractals typically have infinite Euclidean length, the geodesic distance is defined using Perron-Frobenius theory, and is self-similar with scaling factor given by the Perron-Frobenius eigenvalue. We show that each spectral triple is θ-summable, and respects the hierarchy of the substitution system. To elucidate our results, we construct a fractal tree on the Penrose tiling, and explicitly show how it gives rise to a collection of spectral triples.
Accounting for the risks of phosphorus losses through tile drains in a phosphorus index.
Reid, D Keith; Ball, Bonnie; Zhang, T Q
2012-01-01
Tile drainage systems have been identified as a significant conduit for phosphorus (P) losses to surface water, but P indices do not currently account for this transport pathway in a meaningful way. Several P indices mention tile drains, but most account for either the reduction in surface runoff or the enhanced transport through tiles rather than both simultaneously. A summary of the current state of how tile drains are accounted for within P indices is provided, and the challenges in predicting the risk of P losses through tile drains that are relative to actual losses are discussed. A framework for a component P Index is described, along with a proposal to incorporate predictions of losses through tile drains as a component within this framework. Options for calibrating and testing this component are discussed. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Production Process for Strong, Light Ceramic Tiles
NASA Technical Reports Server (NTRS)
Holmquist, G. R.; Cordia, E. R.; Tomer, R. S.
1985-01-01
Proportions of ingredients and sintering time/temperature schedule changed. Production process for lightweight, high-strength ceramic insulating tiles for Space Shuttle more than just scaled-up version of laboratory process for making small tiles. Boron in aluminum borosilicate fibers allows fusion at points where fibers contact each other during sintering, thereby greatly strengthening tiles structure.
Installation of Ceramic Tile: Residential Thin-Set Methods.
ERIC Educational Resources Information Center
Short, Sam
This curriculum guide contains materials for use in teaching a course on residential thin-set methods of tile installation. Covered in the individual units are the following topics: the tile industry; basic math; tools; measurement; safety in tile setting; installation materials and guidelines for their use; floors; counter tops and backsplashes;…
USDA-ARS?s Scientific Manuscript database
Subsurface tile drainage systems are widely used in agricultural watersheds in the Midwestern U.S. Tile drainage systems enable the Midwest area to become highly productive agricultural lands, but can also create environmental problems, for example nitrate-N contamination associated with drainage w...
Flat Tile Armour Cooled by Hypervapotron Tube: a Possible Technology for ITER
NASA Astrophysics Data System (ADS)
Schlosser, J.; Escourbiac, F.; Merola, M.; Schedler, B.; Bayetti, P.; Missirlian, M.; Mitteau, R.; Robin-Vastra, I.
Carbon fibre composite (CFC) flat tile armours for actively cooled plasma facing components (PFC’s) are an important challenge for controlled fusion machines. Flat tile concepts, water cooled by tubes, were studied, developed, tested and finally operated with success in Tore Supra. The components were designed for 10 MW/m2 and mock-ups were successfully fatigue tested at 15 MW/m2, 1000 cycles. For ITER, a tube-in-tile concept was developed and mock-ups sustained up to 25 MW/m2 for 1000 cycles without failure. Recently flat tile armoured mock-ups cooled by a hypervapotron tube successfully sustained a cascade failure test under a mean heat flux of 10 MW/m2 but with a doubling of the heat flux on some tiles to simulate missing tiles (500 cycles). This encouraging results lead to reconsider the limits for flat tile concept when cooled by hypervapotron (HV) tube. New tests are now scheduled to investigate these limits in regard to the ITER requirements. Experimental evidence of the concept could be gained in Tore Supra by installing a new limiter into the machine.
Crystallization mosaic effect generation by superpixels
NASA Astrophysics Data System (ADS)
Xie, Yuqi; Bo, Pengbo; Yuan, Ye; Wang, Kuanquan
2015-03-01
Art effect generation from digital images using computational tools has been a hot research topic in recent years. We propose a new method for generating crystallization mosaic effects from color images. Two key problems in generating pleasant mosaic effect are studied: grouping pixels into mosaic tiles and arrangement of mosaic tiles adapting to image features. To give visually pleasant mosaic effect, we propose to create mosaic tiles by pixel clustering in feature space of color information, taking compactness of tiles into consideration as well. Moreover, we propose a method for processing feature boundaries in images which gives guidance for arranging mosaic tiles near image features. This method gives nearly uniform shape of mosaic tiles, adapting to feature lines in an esthetic way. The new approach considers both color distance and Euclidean distance of pixels, and thus is capable of giving mosaic tiles in a more pleasing manner. Some experiments are included to demonstrate the computational efficiency of the present method and its capability of generating visually pleasant mosaic tiles. Comparisons with existing approaches are also included to show the superiority of the new method.
Swiatoniowski, Anna K; Quillen, Ellen E; Shriver, Mark D; Jablonski, Nina G
2013-06-01
Prior to the introduction of reflectance spectrophotometry into anthropological field research during the 1950s, human skin color was most commonly classified by visual skin color matching using the von Luschan tiles, a set of 36 standardized, opaque glass tiles arranged in a chromatic scale. Our goal was to establish a conversion formula between the tile-based color matching method and modern reflectance spectrophotometry to make historical and contemporary data comparable. Skin pigmentation measurements were taken on the forehead, inner upper arms, and backs of the hands using both the tiles and a spectrophotometer on 246 participants showing a broad range of skin pigmentation. From these data, a second-order polynomial conversion formula was derived by jackknife analysis to estimate melanin index (M-index) based on tile values. This conversion formula provides a means for comparing modern data to von Luschan tile measurements recorded in historical reports. This is particularly important for populations now extinct, extirpated, or admixed for which tile-based measures of skin pigmentation are the only data available. Copyright © 2013 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Wilson, Brad; Galatzer, Yishai
2008-01-01
The Space Shuttle is protected by a Thermal Protection System (TPS) made of tens of thousands of individually shaped heat protection tile. With every flight, tiles are damaged on take-off and return to earth. After each mission, the heat tiles must be fixed or replaced depending on the level of damage. As part of the return to flight mission, the TPS requirements are more stringent, leading to a significant increase in heat tile replacements. The replacement operation requires scanning tile cavities, and in some cases the actual tiles. The 3D scan data is used to reverse engineer each tile into a precise CAD model, which in turn, is exported to a CAM system for the manufacture of the heat protection tile. Scanning is performed while other activities are going on in the shuttle processing facility. Many technicians work simultaneously on the space shuttle structure, which results in structural movements and vibrations. This paper will cover a portable, ultra-fast data acquisition approach used to scan surfaces in this unstable environment.
Preferential flow estimates to an agricultural tile drain with implications for glyphosate transport
Stone, W.W.; Wilson, J.T.
2006-01-01
Agricultural subsurface drains, commonly referred to as tile drains, are potentially significant pathways for the movement of fertilizers and pesticides to streams and ditches in much of the Midwest. Preferential flow in the unsaturated zone provides a route for water and solutes to bypass the soil matrix and reach tile drains faster than predicted by traditional displacement theory. This paper uses chloride concentrations to estimate preferential flow contributions to a tile drain during two storms in May 2004. Chloride, a conservative anion, was selected as the tracer because of differences in chloride concentrations between the two sources of water to the tile drain, preferential and matrix flow. A strong correlation between specific conductance and chloride concentration provided a mechanism to estimate chloride concentrations in the tile drain throughout the storm hydrographs. A simple mixing analysis was used to identify the preferential flow component of the storm hydrograph. During two storms, preferential flow contributed 11 and 51% of total storm tile drain flow; the peak contributions, 40 and 81%, coincided with the peak tile drain flow. Positive relations between glyphosate [N-(phosphonomethyl)glycine] concentrations and preferential flow for the two storms suggest that preferential flow is an important transport pathway to the tile drain. ?? ASA, CSSA, SSSA.
Kinetics of DNA tile dimerization.
Jiang, Shuoxing; Yan, Hao; Liu, Yan
2014-06-24
Investigating how individual molecular components interact with one another within DNA nanoarchitectures, both in terms of their spatial and temporal interactions, is fundamentally important for a better understanding of their physical behaviors. This will provide researchers with valuable insight for designing more complex higher-order structures that can be assembled more efficiently. In this report, we examined several spatial factors that affect the kinetics of bivalent, double-helical (DH) tile dimerization, including the orientation and number of sticky ends (SEs), the flexibility of the double helical domains, and the size of the tiles. The rate constants we obtained confirm our hypothesis that increased nucleation opportunities and well-aligned SEs accelerate tile-tile dimerization. Increased flexibility in the tiles causes slower dimerization rates, an effect that can be reversed by introducing restrictions to the tile flexibility. The higher dimerization rates of more rigid tiles results from the opposing effects of higher activation energies and higher pre-exponential factors from the Arrhenius equation, where the pre-exponential factor dominates. We believe that the results presented here will assist in improved implementation of DNA tile based algorithmic self-assembly, DNA based molecular robotics, and other specific nucleic acid systems, and will provide guidance to design and assembly processes to improve overall yield and efficiency.
Reuse of solid petroleum waste in the manufacture of porcelain stoneware tile.
Pinheiro, B C A; Holanda, J N F
2013-03-30
This study investigates the incorporation of solid petroleum waste as raw material into a porcelain stoneware tile body, in replacement to natural kaolin material by up to 5 wt.%. Tile formulations containing solid petroleum waste were pressed and fired at 1240 °C by using a fast-firing cycle. The tile pieces were tested to determine their properties (linear shrinkage, water absorption, apparent density, and flexural strength), sintered microstructure, and leaching toxicity. The results therefore indicated that the growing addition of solid petroleum waste into tile formulations leads to a decrease of linear shrinkage, apparent density, and flexural strength, and to an increase of water absorption of the produced tile materials. It was also found that the replacement of kaolin with solid petroleum waste, in the range up to 2.5 wt.%, allows the production of porcelain stoneware tile (group BIa, ISO 13006 standard). All concentrations of Ag, As, Ba, Cd, Cr (total), Hg, and Pb of the fired porcelain stoneware tile pieces in the leachate comply with the current regulatory limits. These results indicate that the solid petroleum waste could be used for high-quality porcelain stoneware tile production, thus giving rise to a new possibility for an environmentally friendly management of this abundant waste. Copyright © 2013 Elsevier Ltd. All rights reserved.
A portable high-power diode laser-based single-stage ceramic tile grout sealing system
NASA Astrophysics Data System (ADS)
Lawrence, J.; Schmidt, M. J. J.; Li, L.; Edwards, R. E.; Gale, A. W.
2002-02-01
By means of a 60 W high-power diode laser (HPDL) and a specially developed grout material the void between adjoining ceramic tiles has been successfully sealed. A single-stage process has been developed which uses a crushed ceramic tile mix to act as a tough, inexpensive bulk substrate and a glazed enamel surface to provide an impervious surface glaze. The single-stage ceramic tile grout sealing process yielded seals produced in normal atmospheric conditions that displayed no discernible cracks and porosities. The single-stage grout is simple to formulate and easy to apply. Tiles were successfully sealed with power densities as low as 200 kW/ mm2 and at rates of up to 600 mm/ min. Bonding of the enamel to the crushed ceramic tile mix was identified as being primarily due to van der Waals forces and, on a very small scale, some of the crushed ceramic tile mix material dissolving into the glaze. In terms of mechanical, physical and chemical characteristics, the single-stage ceramic tile grout was found to be far superior to the conventional epoxy tile grout and, in many instances, matched and occasionally surpassed that of the ceramic tiles themselves. What is more, the development of a hand-held HPDL beam delivery unit and the related procedures necessary to lead to the commercialisation of the single-stage ceramic tile grout sealing process are presented. Further, an appraisal of the potential hazards associated with the use of the HPDL in an industrial environment and the solutions implemented to ensure that the system complies with the relevant safety standards are given.
Frey, Steven K; Topp, Ed; Ball, Bonnie R; Edwards, Mark; Gottschall, Natalie; Sunohara, Mark; Zoski, Erin; Lapen, David R
2013-01-01
This study investigated the potential for controlled tile drainage (CD) to reduce bacteria and nutrient loading to surface water and groundwater from fall-season liquid manure application (LMA) on four macroporous clay loam plots, of which two had CD and two had free-draining (FD) tiles. Rhodamine WT (RWT) was mixed into the manure and monitored in the tile water and groundwater following LMA. Tile water and groundwater quality were influenced by drainage management. Following LMA on the FD plots, RWT, nutrients, and bacteria moved rapidly via tiles to surface water; at the CD plots, tiles did not flow until the first post-LMA rainfall, so the immediate risk of LMA-induced contamination of surface water was abated. During the 36-d monitoring period, flow-weighted average specific conductance, redox potential, and turbidity, as well as total Kjeldahl N (TKN), total P (TP), NH-N, reactive P, and RWT concentrations, were higher in the CD tile effluent; however, because of lower tile discharge from the CD plots, there was no significant ( ≤ 0.05) difference in surface water nutrient and RWT loading between the CD and FD plots when all tiles were flowing. The TKN, TP, and RWT concentrations in groundwater also tended to be higher at the CD plots. Bacteria behaved differently than nutrients and RWT, with no significant difference in total coliform, , fecal coliform, fecal streptococcus, and concentrations between the CD and FD tile effluent; however, for all but , hourly loading was higher from the FD plots. Results indicate that CD has potential for mitigating bacteria movement to surface water. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Dirac cones in isogonal hexagonal metallic structures
NASA Astrophysics Data System (ADS)
Wang, Kang
2018-03-01
A honeycomb hexagonal metallic lattice is equivalent to a triangular atomic one and cannot create Dirac cones in its electromagnetic wave spectrum. We study in this work the low-frequency electromagnetic band structures in isogonal hexagonal metallic lattices that are directly related to the honeycomb one and show that such structures can create Dirac cones. The band formation can be described by a tight-binding model that allows investigating, in terms of correlations between local resonance modes, the condition for the Dirac cones and the consequence of the third structure tile sustaining an extra resonance mode in the unit cell that induces band shifts and thus nonlinear deformation of the Dirac cones following the wave vectors departing from the Dirac points. We show further that, under structure deformation, the deformations of the Dirac cones result from two different correlation mechanisms, both reinforced by the lattice's metallic nature, which directly affects the resonance mode correlations. The isogonal structures provide new degrees of freedom for tuning the Dirac cones, allowing adjustment of the cone shape by modulating the structure tiles at the local scale without modifying the lattice periodicity and symmetry.
NASA Astrophysics Data System (ADS)
Panchmatia, Parth
Numerous laboratory and field studies have demonstrated that concrete incorporating air cooled blast furnace slag (ACBFS) aggregate showed a higher degree of infilling of voids with ettringite as opposed to concrete prepared using naturally mined carbonate aggregates when exposed to similar environmental conditions. This observation prompted some to link the deterioration observed in the ACBFS aggregate concrete structures to the compromised freeze-thaw resistance due to infilling of air voids. Concerns about the release of sulfur from ACBFS aggregate into the pore solution of concrete had been presented as the reason for the observed ettringite deposits in the air voids. However, literature quantifying the influence of ACBFS aggregate on the chemistry of the pore solution of concrete is absent. Therefore, the main purpose of this research was to quantify the effects of ACBFS aggregate on the chemistry of the pore solution of mortars incorporating them. Coarse and crushed ACBFS aggregates were submerged in artificial pore solutions (APSs) representing pore solutions of 3-day, 7-day, and 28-day hydrated plain, binary, and ternary paste systems. The change in the chemistry of these artificial pore solutions was recorded to quantify the chemical contribution of ACBFS aggregate to the pore solution of concrete. It was observed that the sulfate concentration of all APSs increased once they were in contact with either coarse or crushed ACBFS aggregate. After 28 days of contact, the increase in sulfate concentration of the APSs ranged from 4.85 - 12.23 mmol/L and 14.21 - 16.87 mmol/L for contact with coarse and crushed ACBFS aggregate, respectively. More than 40% of the total sulfate that was released by the ACBFS aggregate occurred during the first 72 hours (3 days) of its contact with the APSs. There was little or no difference in the amount of sulfate released from ACBFS aggregate in the different types of APSs. In other words, the type of binder solution from which pore solution was extracted had no effect on the amount of sulfate that was released when it was in contact with ACBFS aggregate. The relatively quick release of sulfur from ACBFS aggregate into the APSs prompted investigation of the chemical composition of the pore solution of mortar (at early stages of hydration) incorporating ACBFS aggregate. The chemical composition of the pore solutions obtained from mortars prepared using ACBFS aggregate and plain and binary paste matrices was compared those of mortars prepared using Ottawa sand and plain and binary paste matrices. After 7 days of hydration, the sulfur (S) concentration of the pore solution extracted from mortars prepared using ACBFS aggregate was 3.4 - 5.6 times greater than that obtained from corresponding mortars (i.e. mortars with the same paste matrix) prepared using Ottawa sand. Binary mortars containing fly ash (FA) showed the lowest S content after 7 days of hydration amongst all mortars prepared using ACBFS aggregate. On the other hand, binary mortars prepared using slag cement (SC) and ACBFS aggregate had the highest S concentration after 7 days of hydration. These effects on the S concentration in the pore solutions can be explained by the difference in the chemical makeup of the binders, and not because of different rate of release of S from ACBFS into the pore solution. In addition, TGA analysis of 7-day hydrated mortars revealed that the ettringite, monosulfate, and calcium hydroxide content was lower in mortars prepared using ACBFS aggregate as opposed to those prepared using Ottawa sand. This could be because of the low degree of hydration in mortars with ACBFS aggregate because of the high sulfate concentration in its pore solution. The properties of the interfacial transition zone (ITZ), i.e. the zone in the vicinity of the aggregate surface, depends on the property of the aggregate such as its porosity and texture. Therefore, it is expected that the properties of ITZ around the ACBFS particle, which is porous and proven to contribute sulfate, be different from the ITZ around the naturally mined siliceous aggregate. Image analysis conducted on backscattered images obtained using scanning electron microscope revealed that the ITZ of naturally mined siliceous aggregate was more porous compared to the ITZ of ACBFS aggregate. In addition, calcium hydroxide deposits were more frequent and larger in size in the ITZ around siliceous sand than in the case of the ITZ around the ACBFS aggregate.
Kundeti, Vamsi; Rajasekaran, Sanguthevar
2012-06-01
Efficient tile sets for self assembling rectilinear shapes is of critical importance in algorithmic self assembly. A lower bound on the tile complexity of any deterministic self assembly system for an n × n square is [Formula: see text] (inferred from the Kolmogrov complexity). Deterministic self assembly systems with an optimal tile complexity have been designed for squares and related shapes in the past. However designing [Formula: see text] unique tiles specific to a shape is still an intensive task in the laboratory. On the other hand copies of a tile can be made rapidly using PCR (polymerase chain reaction) experiments. This led to the study of self assembly on tile concentration programming models. We present two major results in this paper on the concentration programming model. First we show how to self assemble rectangles with a fixed aspect ratio ( α:β ), with high probability, using Θ( α + β ) tiles. This result is much stronger than the existing results by Kao et al. (Randomized self-assembly for approximate shapes, LNCS, vol 5125. Springer, Heidelberg, 2008) and Doty (Randomized self-assembly for exact shapes. In: proceedings of the 50th annual IEEE symposium on foundations of computer science (FOCS), IEEE, Atlanta. pp 85-94, 2009)-which can only self assembly squares and rely on tiles which perform binary arithmetic. On the other hand, our result is based on a technique called staircase sampling . This technique eliminates the need for sub-tiles which perform binary arithmetic, reduces the constant in the asymptotic bound, and eliminates the need for approximate frames (Kao et al. Randomized self-assembly for approximate shapes, LNCS, vol 5125. Springer, Heidelberg, 2008). Our second result applies staircase sampling on the equimolar concentration programming model (The tile complexity of linear assemblies. In: proceedings of the 36th international colloquium automata, languages and programming: Part I on ICALP '09, Springer-Verlag, pp 235-253, 2009), to self assemble rectangles (of fixed aspect ratio) with high probability. The tile complexity of our algorithm is Θ(log( n )) and is optimal on the probabilistic tile assembly model (PTAM)- n being an upper bound on the dimensions of a rectangle.
NASA Astrophysics Data System (ADS)
Watanabe, Kenzo; Yokozeki, Kosuke; Torichigai, Takeshi; Sakai, Etsuo
The experiments have been conducted in order to investigate the mechanical and chemical properties of mortar with three different binders under the several conditions in accelerated carbonation curing. As the results, the depth of carbonation varied among each mix proportion. It is proven that by increasing CO2 density in the mortar having γ-2CaO.SiO2, the CaCO3 production will increase, which leads to the increase of filling ability in the pore of mortar. Furthermore, as a result from the calculation of Tritium permeation, it shows that the permeation decreases with an increase of CO2 density.
Nonconforming mortar element methods: Application to spectral discretizations
NASA Technical Reports Server (NTRS)
Maday, Yvon; Mavriplis, Cathy; Patera, Anthony
1988-01-01
Spectral element methods are p-type weighted residual techniques for partial differential equations that combine the generality of finite element methods with the accuracy of spectral methods. Presented here is a new nonconforming discretization which greatly improves the flexibility of the spectral element approach as regards automatic mesh generation and non-propagating local mesh refinement. The method is based on the introduction of an auxiliary mortar trace space, and constitutes a new approach to discretization-driven domain decomposition characterized by a clean decoupling of the local, structure-preserving residual evaluations and the transmission of boundary and continuity conditions. The flexibility of the mortar method is illustrated by several nonconforming adaptive Navier-Stokes calculations in complex geometry.
39. CLOSE UP DETAIL OF THE FEEDER AND STAMP CONNECTION. ...
39. CLOSE UP DETAIL OF THE FEEDER AND STAMP CONNECTION. THE STAMP AN MORTAR BOX ARE ON THE LEFT AND THE FEEDER WITH ITS FEEDER DISK IS ON THE RIGHT. NOTE THE COLLAR ON THE CENTER STAMP STEM (UPPER LEFT CORNER OF THE IMAGE) THAT ACTIVATES THE LEVER IN THE CENTER OF THE PHOTO. THE COLLAR IS POSITIONED SUCH THAT WHEN THE LEVEL OF THE MATERIAL REACHES A LOW POINT IN THE MORTAR BOX IT PUSHES DOWN ON THE LEVER WHICH IN TURN ACTIVATES THE AUTOMATIC FEEDER DRIVE MECHANISM WHICH THEM DELIVERS ORE INTO THE BACKSIDE OF THE MORTAR BOX. - Standard Gold Mill, East of Bodie Creek, Northeast of Bodie, Bodie, Mono County, CA
Study on the Carbonation Behavior of Cement Mortar by Electrochemical Impedance Spectroscopy
Dong, Biqin; Qiu, Qiwen; Xiang, Jiaqi; Huang, Canjie; Xing, Feng; Han, Ningxu
2014-01-01
A new electrochemical model has been carefully established to explain the carbonation behavior of cement mortar, and the model has been validated by the experimental results. In fact, it is shown by this study that the electrochemical impedance behavior of mortars varies in the process of carbonation. With the cement/sand ratio reduced, the carbonation rate reveals more remarkable. The carbonation process can be quantitatively accessed by a parameter, which can be obtained by means of the electrochemical impedance spectroscopy (EIS)-based electrochemical model. It has been found that the parameter is a function of carbonation depth and of carbonation time. Thereby, prediction of carbonation depth can be achieved. PMID:28788452
Study on the Carbonation Behavior of Cement Mortar by Electrochemical Impedance Spectroscopy.
Dong, Biqin; Qiu, Qiwen; Xiang, Jiaqi; Huang, Canjie; Xing, Feng; Han, Ningxu
2014-01-03
A new electrochemical model has been carefully established to explain the carbonation behavior of cement mortar, and the model has been validated by the experimental results. In fact, it is shown by this study that the electrochemical impedance behavior of mortars varies in the process of carbonation. With the cement/sand ratio reduced, the carbonation rate reveals more remarkable. The carbonation process can be quantitatively accessed by a parameter, which can be obtained by means of the electrochemical impedance spectroscopy (EIS)-based electrochemical model. It has been found that the parameter is a function of carbonation depth and of carbonation time. Thereby, prediction of carbonation depth can be achieved.
The TeleEngineering Toolkit Software Reference Manual
2007-08-01
arrangement of windows. ................................................................. 74 Figure 6.26. Tile arrangement of windows...Level 1, and Commercial Satellite Imagery (CSIL). The Toolkit also supports USGS Digital Orthophoto Quadrangle, scanned georectified maps, and various...in a cascading manner as shown in Figure 6.25. Tile The Tile tool in the Window menu will arrange the windows in a tiled manner as shown in
ERIC Educational Resources Information Center
Keeler, Rusty
2007-01-01
Just like the classroom, children's outdoor environments should be filled with artistic creations that add sparkle and imagination to the space. One of the author's favorite ways to add art to the outdoors is by installing a mosaic mural of child-made tiles. The process of making the tiles is fun for all; each tile is a charming work of art in…
21. TILES OF THE NEW WORLD PANEL, NORTH WALL OF ...
21. TILES OF THE NEW WORLD PANEL, NORTH WALL OF THE INDIAN HOUSE. THE RELIEF BROCADE TILES ILLUSTRATE SCENES OF NATIVE AMERICAN HISTORY AND CULTURE, AND THE EARLY EUROPEAN EXPLORATION OF THE NEW WORLD. - Moravian Pottery & Tile Works, Southwest side of State Route 313 (Swamp Road), Northwest of East Court Street, Doylestown, Bucks County, PA
Laubinger, Sascha; Zeller, Georg; Henz, Stefan R; Sachsenberg, Timo; Widmer, Christian K; Naouar, Naïra; Vuylsteke, Marnik; Schölkopf, Bernhard; Rätsch, Gunnar; Weigel, Detlef
2008-01-01
Gene expression maps for model organisms, including Arabidopsis thaliana, have typically been created using gene-centric expression arrays. Here, we describe a comprehensive expression atlas, Arabidopsis thaliana Tiling Array Express (At-TAX), which is based on whole-genome tiling arrays. We demonstrate that tiling arrays are accurate tools for gene expression analysis and identified more than 1,000 unannotated transcribed regions. Visualizations of gene expression estimates, transcribed regions, and tiling probe measurements are accessible online at the At-TAX homepage. PMID:18613972
Tethers as Debris: Simulating Impacts of Tether Fragments on Shuttle Tiles
NASA Technical Reports Server (NTRS)
Evans, Steven W.
2004-01-01
The SPHC hydrodynamic code was used to simulate impacts of Kevlar and aluminum projectiles on a model of the LI-900 type insulating tiles used on Space Shuffle Orbiters The intent was to examine likely damage that such tiles might experience if impacted by orbital debris consisting of tether fragments. Projectile speeds ranged from 300 meters per second to 10 kilometers per second. Damage is characterized by penetration depth, tile surface-hole diameter, tile body-cavity diameter, coating fracture diameter, tether and cavity wall material phases, and deformation of the aluminum backwall.
Multilayer Impregnated Fibrous Thermal Insulation Tiles
NASA Technical Reports Server (NTRS)
Tran, Huy K.; Rasky, Daniel J.; Szalai, Christine e.; Hsu, Ming-ta; Carroll, Joseph A.
2007-01-01
The term "secondary polymer layered impregnated tile" ("SPLIT") denotes a type of ablative composite-material thermal- insulation tiles having engineered, spatially non-uniform compositions. The term "secondary" refers to the fact that each tile contains at least two polymer layers wherein endothermic reactions absorb considerable amounts of heat, thereby helping to prevent overheating of an underlying structure. These tiles were invented to afford lighter-weight alternatives to the reusable thermal-insulation materials heretofore variously used or considered for use in protecting the space shuttles and other spacecraft from intense atmospheric-entry heating.
2008-07-14
CAPE CANAVERAL, Fla. – In the tile shop at NASA's Kennedy Space Center, a worker reaches for the door to close the oven with the Boeing Replacement Insulation 18, or BRI-18, tile inside. The tile will be baked at 2,200 degrees Fahrenheit to cure the ceramic coating, part of the process to prepare the tiles for installation on space shuttles. BRI-18 is the strongest material used for thermal insulation on the orbiters and, when coated to produce toughened unipiece fibrous insulation, provides a tile with extremely high-impact resistance. It is replacing other tiles on areas of the vehicle where impact risk is high, such as the landing gear doors, the wing leading edge and the external tank doors. Photo credit: NASA/Jim Grossmann
2008-07-14
CAPE CANAVERAL, Fla. – In the tile shop at NASA's Kennedy Space Center, a worker is ready to place a Boeing Replacement Insulation 18, or BRI-18, tile in the oven. The tile will be baked at 2,200 degrees Fahrenheit to cure the ceramic coating, part of the process to prepare the tiles for installation on space shuttles. BRI-18 is the strongest material used for thermal insulation on the orbiters and, when coated to produce toughened unipiece fibrous insulation, provides a tile with extremely high-impact resistance. It is replacing other tiles on areas of the vehicle where impact risk is high, such as the landing gear doors, the wing leading edge and the external tank doors. Photo credit: NASA/Jim Grossmann
Ion beam sputter target and method of manufacture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Higdon, Clifton; Elmoursi, Alaa A.; Goldsmith, Jason
A target for use in an ion beam sputtering apparatus made of at least two target tiles where at least two of the target tiles are made of different chemical compositions and are mounted on a main tile and geometrically arranged on the main tile to yield a desired chemical composition on a sputtered substrate. In an alternate embodiment, the tiles are of varied thickness according to the desired chemical properties of the sputtered film. In yet another alternate embodiment, the target is comprised of plugs pressed in a green state which are disposed in cavities formed in a mainmore » tile also formed in a green state and the assembly can then be compacted and then sintered.« less
CFD-Predicted Tile Heating Bump Factors Due to Tile Overlay Repairs
NASA Technical Reports Server (NTRS)
Lessard, Victor R.
2006-01-01
A Computational Fluid Dynamics investigation of the Orbiter's Tile Overlay Repair (TOR) is performed to assess the aeroheating Damage Assessment Team's (DAT) existing heating correlation method for protuberance interference heating on the surrounding thermal protection system. Aerothermodynamic heating analyses are performed for TORs at the design reference damage locations body points 1800 and 1075 for a Mach 17.9 and a=39deg STS-107 flight trajectory point with laminar flow. Six different cases are considered. The computed peak heating bump factor on the surrounding tiles are below the DAT's heating bump factor values for smooth tile cases. However, for the uneven tiles cases the peak interference heating is shown to be considerably higher than the existing correlation prediction.
This report describes the performance evaluation of a fiber reinforced geopolymer spray-applied mortar, which has potential as a structural alternative to traditional open cut techniques used in large-diameter sewer pipes. Geopolymer is a sustainable green material that incorpor...
Do Schools Still Need Brick-and-Mortar Libraries?
ERIC Educational Resources Information Center
Johnson, Doug; Mastrion, Keith
2009-01-01
Do all schools need brick-and-mortar libraries? In this article, Johnson and Mastrion share their contradictory thoughts to the question. Johnson says some schools don't need library facilities or programs or librarians. These schools' teachers and administrators: (1) feel no need for a collaborative learning space; (2) feel the ability to process…
2015-06-12
market. However, in 2004, Netflix changed the home video entertainment landscape from brick and mortar rental outlets to the DVD-by-mail business...competing companies had very different organizational structures and leadership styles. Amazon stayed true to an online brick and mortar platform
Alkali Silica Reaction In The Presence Of Metakaolin - The Significant Role of Calcium Hydroxide
NASA Astrophysics Data System (ADS)
Zapała-Sławeta, Justyna
2017-10-01
Reducing the internal corrosion, which is the result of reactions between alkalis and reactive aggregates is especially important in ensuring durability properties of concrete. One of the methods of inhibiting the reaction is using some mineral additives which have pozzolanic properties. This paper presents the efficacy of high-reactivity metakaolin in reducing expansion due to alkali-silica reaction. It was demonstrated that metakaolin in the amount from 5% to 20% by mass of Portland cement reduce linear expansion of mortar bars with opal aggregate. Nevertheless, the safe expansion level in the specimens, classified as non-destructive to concrete, was recorded for the mortars prepared with 20% addition of metakaolin. Depletion of free calcium hydroxide content was considered as one of the most beneficial effects of metakaolin in controlling alkali silica reaction. Based on thermogravimetric analysis (TGA) performed on mortar bars with and without metakaolin the differences in portlandite content were determined. Microstructural observation of the specimens containing metakaolin indicated the presence of a reaction products but fewer in number than those forming in the mortars without mineral additives.
Farinha, Catarina Brazão; de Brito, Jorge; Veiga, Rosário; Fernández, J M; Jiménez, J R; Esquinas, A R
2018-03-20
The production of waste has increased over the years and, lacking a recycle or recovery solution, it is forwarded to landfill. The incorporation of wastes in cement-based materials is a solution to reduce waste deposition. In this regard, some researchers have been studying the incorporation of wastes with different functions: aggregate, binder and addition. The incorporation of wastes should take advantage of their characteristics. It requires a judicious analysis of their particles. This research involves the analysis of seven industrial wastes: biomass ashes, glass fibre, reinforced polymer dust, sanitary ware, fluid catalytic cracking, acrylic fibre, textile fibre and glass fibre. The main characteristics and advantages of each waste are enunciated and the best type of introduction in mortars is discussed. The characterization of the wastes as particles is necessary to identify the most suitable incorporation in mortars. In this research, some wastes are studied with a view to their re-use or recycling in mortars. Thus, this research focuses on the chemical, physical and mechanical characterization of industrial wastes and identification of the potentially most advantageous type of incorporation.
Self-leveling morter as a possible cause of symptoms associated with sick building syndrome
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lundholm, M.; Lavrell, G.; Mathiasson, L.
In newly constructed houses and buildings in which self-leveling mortar containing casein has been used, residents and office employees have noted a bad odor and have complained of headache, eye and throat irritation, and tiredness. These problems were suspected to result from the degradation products emitted from the mortar. Samples obtained from dry mortar powder and from mortar in buildings where casein was used and from control buildings were found to contain microorganisms (mean of 10{sup 2} culture forming units/g). Environmental species were predominantly found, e.g., Bacillus, Clostridium, Micrococcus, and Propionibacterium. Fungi were found occasionally; no evidence of bacterial degradationmore » was found. Headspace and gas chromatographic-mass spectrometric analysis of air from the newly constructed houses and from hydroxide-degraded casein revealed the presence of amines in the 0.003-0.013 ppm range and the presence of ammonia and sulfhydryl compounds, all of which in low concentrations can cause the symptoms observed. These substances, however, were not detected in control buildings.« less
NASA Astrophysics Data System (ADS)
Dassekpo, Jean-Baptiste Mawulé; Zha, Xiaoxiong; Zhan, Jiapeng; Ning, Jiaqian
Geopolymer is an energy efficient and sustainable material that is currently used in construction industry as an alternative for Portland cement. As a new material, specific mix design method is essential and efforts have been made to develop a mix design procedure with the main focus on achieving better compressive strength and economy. In this paper, a sequential addition of synthesis parameters such as fly ash-sand, alkaline liquids, plasticizer and additional water at well-defined time intervals was investigated. A total of 4 mix procedures were used to study the compressive performance on fly ash-based geopolymer mortar and the results of each method were analyzed and discussed. Experimental results show that the sequential addition of sodium hydroxide (NaOH), sodium silicate (Na2SiO3), plasticizer (PL), followed by adding water (WA) increases considerably the compressive strengths of the geopolymer-based mortar. These results clearly demonstrate the high significant influence of sequential addition of synthesis parameters on geopolymer materials compressive properties, and also provide a new mixing method for the preparation of geopolymer paste, mortar and concrete.
Razi, Putri Zulaiha; Abdul Razak, Hashim; Khalid, Nur Hafizah A
2016-05-06
This study investigates the engineering performance and CO₂ footprint of mortar mixers by replacing Portland cement with 10%, 20%, 40% and 60% fly ash, a common industrial waste material. Samples of self-compacting mortar (SCM) were prepared with four different water/binder ratios and varying dosages of superplasticizer to give three ranges of workability, i.e. , normal, high and self-compacting mortar mix. The engineering performance was assessed in term of compressive strength after designated curing periods for all mixes. CO₂ footprint was the environmental impact indicator of each production stage. The optimum mix obtained was at 10% replacement rate for all mixes. Total production emission reduced by 56% when the fly ash replacement rate increased from 0% to 60% (maximum). This is translated to a reduction of 80% in eco-points (assuming that the energy consumption rate of production with 0% fly ash is at 100%). Such re-utilization is encouraged since it is able to reduce possible soil toxicity due to sulfur leaching by 5% to 27% and landfill area by 15% to 91% on average.
de Brito, Jorge; Veiga, Rosário
2018-01-01
The production of waste has increased over the years and, lacking a recycle or recovery solution, it is forwarded to landfill. The incorporation of wastes in cement-based materials is a solution to reduce waste deposition. In this regard, some researchers have been studying the incorporation of wastes with different functions: aggregate, binder and addition. The incorporation of wastes should take advantage of their characteristics. It requires a judicious analysis of their particles. This research involves the analysis of seven industrial wastes: biomass ashes, glass fibre, reinforced polymer dust, sanitary ware, fluid catalytic cracking, acrylic fibre, textile fibre and glass fibre. The main characteristics and advantages of each waste are enunciated and the best type of introduction in mortars is discussed. The characterization of the wastes as particles is necessary to identify the most suitable incorporation in mortars. In this research, some wastes are studied with a view to their re-use or recycling in mortars. Thus, this research focuses on the chemical, physical and mechanical characterization of industrial wastes and identification of the potentially most advantageous type of incorporation. PMID:29558418
Razi, Putri Zulaiha; Abdul Razak, Hashim; Khalid, Nur Hafizah A.
2016-01-01
This study investigates the engineering performance and CO2 footprint of mortar mixers by replacing Portland cement with 10%, 20%, 40% and 60% fly ash, a common industrial waste material. Samples of self-compacting mortar (SCM) were prepared with four different water/binder ratios and varying dosages of superplasticizer to give three ranges of workability, i.e., normal, high and self-compacting mortar mix. The engineering performance was assessed in term of compressive strength after designated curing periods for all mixes. CO2 footprint was the environmental impact indicator of each production stage. The optimum mix obtained was at 10% replacement rate for all mixes. Total production emission reduced by 56% when the fly ash replacement rate increased from 0% to 60% (maximum). This is translated to a reduction of 80% in eco-points (assuming that the energy consumption rate of production with 0% fly ash is at 100%). Such re-utilization is encouraged since it is able to reduce possible soil toxicity due to sulfur leaching by 5% to 27% and landfill area by 15% to 91% on average. PMID:28773465
Overview of the Mars Science Laboratory Parachute Decelerator Subsystem
NASA Technical Reports Server (NTRS)
Sengupta, Anita; Steltzner, Adam; Witkowski, Al; Rowan, Jerry; Cruz, Juan
2007-01-01
In 2010 the Mars Science Laboratory (MSL) mission will deliver NASA's largest and most capable rover to the surface of Mars. MSL will explore previously unattainable landing sites due to the implementation of a high precision Entry, Descent, and Landing (EDL) system. The parachute decelerator subsystem (PDS) is an integral prat of the EDL system, providing a mass and volume efficient some of aerodynamic drag to decelerate the entry vehicle from Mach 2 to subsonic speeds prior to final propulsive descent to the sutface. The PDS for MSL is a mortar deployed 19.7m Viking type Disk-Gap-Band (DGB) parachute; chosen to meet the EDL timeline requirements and to utilize the heritage parachute systems from Viking, Mars Pathfinder, Mars Exploration Rover, and Phoenix NASA Mars Lander Programs. The preliminary design of the parachute soft goods including materials selection, stress analysis, fabrication approach, and development testing will be discussed. The preliminary design of mortar deployment system including mortar system sizing and performance predictions, gas generator design, and development mortar testing will also be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Xiaohui; Jacobsen, Stefan; He Jianying
2009-08-15
The characteristics of the profiles of elastic modulus and hardness of the steel fiber-matrix and fiber-matrix-aggregate interfacial zones in steel fiber reinforced mortars have been investigated by using nanoindentation and Scanning Electron Microscopy (SEM), where two sets of parameters, i.e. water/binder ratio and content of silica fume were considered. Different interfacial bond conditions in the interfacial transition zones (ITZ) are discussed. For sample without silica fume, efficient interfacial bonds across the steel fiber-matrix and fiber-matrix-aggregate interfaces are shown in low water/binder ratio mortar; while in high water/binder ratio mortar, due to the discontinuous bleeding voids underneath the fiber, the fiber-matrixmore » bond is not very good. On the other hand, for sample with silica fume, the addition of 10% silica fume leads to no distinct presence of weak ITZ in the steel fiber-matrix interface; but the effect of the silica fume on the steel fiber-matrix-aggregate interfacial zone is not obvious due to voids in the vicinity of steel fiber.« less