Science.gov

Sample records for modified van der

  1. Van der Waals Forces

    NASA Astrophysics Data System (ADS)

    Parsegian, V. Adrian

    2006-03-01

    This should prove to be the definitive work explaining van der Waals forces, how to calculate them and take account of their impact under any circumstances and conditions. These weak intermolecular forces are of truly pervasive impact, and biologists, chemists, physicists and engineers will profit greatly from the thorough grounding in these fundamental forces that this book offers. Parsegian has organized his book at three successive levels of mathematical sophistication, to satisfy the needs and interests of readers at all levels of preparation. The Prelude and Level 1 are intended to give everyone an overview in words and pictures of the modern theory of van der Waals forces. Level 2 gives the formulae and a wide range of algorithms to let readers compute the van der Waals forces under virtually any physical or physiological conditions. Level 3 offers a rigorous basic formulation of the theory. Author is among the most highly respected biophysicists Van der Waals forces are significant for a wide range of questions and problems in the life sciences, chemistry, physics, and engineering, ranging up to the macro level No other book that develops the subject vigorously, and this book also makes the subject intuitively accessible to students who had not previously been mathematically sophisticated enough to calculate them

  2. Search for genetic modifiers of IRF6 and genotype-phenotype correlations in Van der Woude and popliteal pterygium syndromes.

    PubMed

    Leslie, Elizabeth J; Mancuso, Jennifer L; Schutte, Brian C; Cooper, Margaret E; Durda, Kate M; L'heureux, Jamie; Zucchero, Theresa M; Marazita, Mary L; Murray, Jeffrey C

    2013-10-01

    Van der Woude syndrome is the most common form of syndromic orofacial clefting, accounting for 1-2% of all patients with cleft lip and/or cleft palate. Van der Woude and popliteal pterygium syndromes are caused by mutations in IRF6, but phenotypic variability within and among families with either syndrome suggests that other genetic factors contribute to the phenotypes. The aim of this study was to identify common variants acting as genetic modifiers of IRF6 as well as genotype-phenotype correlations based on mutation type and location. We identified an association between mutations in the DNA-binding domain of IRF6 and limb defects (including pterygia). Although we did not detect formally significant associations with the genes tested, borderline associations suggest several genes that could modify the VWS phenotype, including FOXE1, TGFB3, and TFAP2A. Some of these genes are hypothesized to be part of the IRF6 gene regulatory network and may suggest additional genes for future study when larger sample sizes are also available. We also show that families with the Van de Woude phenotype but in whom no mutations have been identified have a lower frequency of cleft lip, suggesting there may be locus and/or mutation class differences in Van de Woude syndrome. PMID:23949966

  3. Synchronizing modified van der Pol Duffing oscillators with offset terms using observer design: application to secure communications

    NASA Astrophysics Data System (ADS)

    Fodjouong, G. J.; Fotsin, H. B.; Woafo, P.

    2007-05-01

    This study addresses the adaptive synchronization of the modified van der Pol-Duffing (MVDPD) oscillator with offset terms. From our investigations of the system dynamics, we obtain that the system presents a chaotic behaviour at weak values of the offset parameters. Routh-Hurwitz criteria are used to study the asymptotic stability of the steady states. An adaptive observer design method is applied to achieve synchronization of two identical MVDPD oscillators with offset. Numerical simulations are given to validate the proposed synchronization approach. Moreover, as an application, the proposed scheme is applied to secure communication. Also, simulation results verify the proposed scheme's success in the communication application.

  4. [Van-der-Woude Syndrome].

    PubMed

    Del Frari, B; Amort, M; Janecke, A R; Schutte, B C; Piza-Katzer, H

    2008-01-01

    We report on two families with different expression of a Van-der-Woude-Syndrome (VWS) and with proven mutation of the IRF6- gene. The Van-der-Woude syndrome is a rare disease, typically consisting of congenital pits of the lower lip in combination with cleft lip or cleft palate or both. The Van-der-Woude syndrome is an autosomal dominant syndrome with variable expression. The penetrance is between 0,89 and 0,99. It is important to establish the correct diagnosis by careful investigation of patients with cleft lip or cleft palate and their parents. Genetic counselling is recommended in such cases. PMID:18095255

  5. How many-body effects modify the van der Waals interaction between graphene sheets

    NASA Astrophysics Data System (ADS)

    Dobson, John; Gould, Tim; Vignale, Giovanni

    2014-03-01

    Cold undoped graphene sheets were previously predicted, via Random Phase approximation (RPA) arguments, to exhibit an unusual asymptotic van der Waals (vdW) interaction energy E = - KD-3 where D is the (large) separation between the two parallel graphene sheets. This is compared with D - 5 / 2 for 2D metals and D-4 for 2D insulators. Here we show that graphene is the first known system where effects beyond the RPA should make QUALITATIVE changes to the vdW force. For large separations, D > 10 nm where only πz-mediated vdW forces remain, we predict that the vdW interaction is substantially reduced from the RPA prediction, and has a different power law. This new D dependence is very sensitive to the form of the long-wavelength many-body renormalization of the velocity of the massless Dirac fermions, and may provide independent confirmation of the latter. We will briefly discuss issues involved in possible experiments. Work supported by the Australian Research Council, NSF and DIPC.

  6. Twisted Van der Waals Systems

    NASA Astrophysics Data System (ADS)

    Gani, Satrio; Rossi, Enrico

    Van der Waals systems formed by two-dimensional (2D) crystals and nanostructures possess electronic properties that make them extremely interesting for basic science and for possible technological applications. By tuning the relative angle (the twist angle) between the layers, or nanostructures, forming the Van der Waals systems experimentalists have been able to control the stacking configuration of such systems. We study the dependence on the twist angle of the electronic properties of two classes of Van der Waals systems: double layers formed by two, one-atom thick, layers of a metal dichalcogenide such as molybdenum disulfide (MoS2), and graphene nanoribbons on a hexagonal boron nitride substrate. We present results that show how, for both classes of systems, the electronic properties can be strongly tuned via the twist angle. Work supported by ACS-PRF-53581-DNI5 and NSF-DMR-1455233.

  7. Accurate van der Waals coefficients between fullerenes and fullerene-alkali atoms and clusters: Modified single-frequency approximation

    NASA Astrophysics Data System (ADS)

    Tao, Jianmin; Mo, Yuxiang; Tian, Guocai; Ruzsinszky, Adrienn

    2016-08-01

    Long-range van der Waals (vdW) interaction is critically important for intermolecular interactions in molecular complexes and solids. However, accurate modeling of vdW coefficients presents a great challenge for nanostructures, in particular for fullerene clusters, which have huge vdW coefficients but also display very strong nonadditivity. In this work, we calculate the coefficients between fullerenes, fullerene and sodium clusters, and fullerene and alkali atoms with the hollow-sphere model within the modified single-frequency approximation (MSFA). In the MSFA, we assume that the electron density is uniform in a molecule and that only valence electrons in the outmost subshell of atoms contribute. The input to the model is the static multipole polarizability, which provides a sharp cutoff for the plasmon contribution outside the effective vdW radius. We find that the model can generate C6 in excellent agreement with expensive wave-function-based ab initio calculations, with a mean absolute relative error of only 3 % , without suffering size-dependent error. We show that the nonadditivities of the coefficients C6 between fullerenes and C60 and sodium clusters Nan revealed by the model agree remarkably well with those based on the accurate reference values. The great flexibility, simplicity, and high accuracy make the model particularly suitable for the study of the nonadditivity of vdW coefficients between nanostructures, advancing the development of better vdW corrections to conventional density functional theory.

  8. Nonsingular van der Waals potentials

    NASA Astrophysics Data System (ADS)

    Lu, J. X.; Marlow, W. H.

    1995-09-01

    Universal, spherical, nonsingular van der Waals interactions including retardation effect are developed for atoms and small molecules through a semiclassical field approach. Consideration of the finite molecular size effect removes the short-distance singular behavior inherent in the widely used potentials obtained from the point-molecule approximation. Physical arguments lead to the molecular size parameter a (in atomic units) as 1/a=1.25(I/IH)1/2, except for a system that involves at least an atom or a molecule with very different first and second ionization potentials, and for such a system the above numerical factor 1.25 is replaced by unity. Here I and IH are the first ionization potentials for the atom or molecule considered and for a hydrogen atom, respectively. The nonsingular potentials have been tested for the following representative systems: H2 (3Σ+u), He2, Ar2, NaK (3Σ+), LiHg (2Σ+), He-HF, Ne-HF, HF-HF, and Ar-HCl. Very good agreement has been found for each of the systems. Based on the above systems studied, an empirical relation has been obtained between the parameter b in the Born-Mayer repulsive potential Ae-bR and the molecular size parameters (a1 and a2). Applying this relation to dozens of systems with known b from either self-consistent-field calculations or experiments, surprisingly good agreements have been obtained. By the same token, another empirical formula is obtained that relates the van der Waals minimum well parameter Rm to the molecular size parameters (a1 and a2) and the first ionization potentials (Ix and Iy) of interacting species. Again, very good agreements have been achieved in comparison with dozens of systems with known experimental Rm's.

  9. Genetics Home Reference: van der Woude syndrome

    MedlinePlus

    ... people with this disorder are born with a cleft lip , a cleft palate (an opening in the roof ... People with van der Woude syndrome who have cleft lip and/or palate, like other individuals with these ...

  10. Integrable extended van der Waals model

    NASA Astrophysics Data System (ADS)

    Giglio, Francesco; Landolfi, Giulio; Moro, Antonio

    2016-10-01

    Inspired by the recent developments in the study of the thermodynamics of van der Waals fluids via the theory of nonlinear conservation laws and the description of phase transitions in terms of classical (dissipative) shock waves, we propose a novel approach to the construction of multi-parameter generalisations of the van der Waals model. The theory of integrable nonlinear conservation laws still represents the inspiring framework. Starting from a macroscopic approach, a four parameter family of integrable extended van der Waals models is indeed constructed in such a way that the equation of state is a solution to an integrable nonlinear conservation law linearisable by a Cole-Hopf transformation. This family is further specified by the request that, in regime of high temperature, far from the critical region, the extended model reproduces asymptotically the standard van der Waals equation of state. We provide a detailed comparison of our extended model with two notable empirical models such as Peng-Robinson and Soave's modification of the Redlich-Kwong equations of state. We show that our extended van der Waals equation of state is compatible with both empirical models for a suitable choice of the free parameters and can be viewed as a master interpolating equation. The present approach also suggests that further generalisations can be obtained by including the class of dispersive and viscous-dispersive nonlinear conservation laws and could lead to a new type of thermodynamic phase transitions associated to nonclassical and dispersive shock waves.

  11. Ben van der Veken Honor Issue

    NASA Astrophysics Data System (ADS)

    Durig, James

    2015-02-01

    In acclamation of Ben van der Veken, a former editor of Spectrochimica Acta, many co-authors and friends have submitted papers in his honor. He has collaborated with many scientists from the United States, Russia, England, Scotland as well as some in other countries. His research is known throughout the world.

  12. Note on a van der Waals Gas.

    ERIC Educational Resources Information Center

    Bauman, Robert P.; Harrison, Joseph G.

    1996-01-01

    Discusses the difficulties with the standard model for introduction of attractive forces into the van der Waals equation. Presents an analysis in terms of force and time delays and an alternative analysis for more advanced students in terms of energy. (JRH)

  13. The Forced van der Pol Equation

    ERIC Educational Resources Information Center

    Fay, Temple H.

    2009-01-01

    We report on a study of the forced van der Pol equation x + [epsilon](x[superscript 2] - 1)x + x = F cos[omega]t, by solving numerically the differential equation for a variety of values of the parameters [epsilon], F and [omega]. In doing so, many striking and interesting trajectories can be discovered and phenomena such as frequency entrainment,…

  14. Obituary for Jan van der Pers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    After a short but valiant struggle against cancer, Jan van der Pers died on 29 April, 2006 in the hospital in Hilversum, The Netherlands, close to his home. Our conversations with Jan during the last months of his life showed the remarkable strength and positive attitude typical of him. Discussions...

  15. Tuning the van der Waals Interaction of Graphene with Molecules via Doping

    NASA Astrophysics Data System (ADS)

    Huttmann, Felix; Martínez-Galera, Antonio J.; Caciuc, Vasile; Atodiresei, Nicolae; Schumacher, Stefan; Standop, Sebastian; Hamada, Ikutaro; Wehling, Tim O.; Blügel, Stefan; Michely, Thomas

    2015-12-01

    We use scanning tunneling microscopy to visualize and thermal desorption spectroscopy to quantitatively measure that the binding of naphthalene molecules to graphene, a case of pure van der Waals interaction, strengthens with n and weakens with p doping of graphene. Density-functional theory calculations that include the van der Waals interaction in a seamless, ab initio way accurately reproduce the observed trend in binding energies. Based on a model calculation, we propose that the van der Waals interaction is modified by changing the spatial extent of graphene's π orbitals via doping.

  16. Comments on the paper "A statistical assessment of differences and equivalences between genetically modified and reference plant varieties" by van der Voet et al. 2011.

    PubMed

    Ward, Keith J; Nemeth, Margaret A; Brownie, Cavell; Hong, Bonnie; Herman, Rod A; Oberdoerfer, Regina

    2012-01-01

    van der Voet et al. (2011) describe statistical methodology that the European Food Safety Authority expects an applicant to adopt when making a GM crop regulatory submission. Key to their proposed methodology is the inclusion of reference varieties in the experimental design to provide a measure of natural variation amongst commercially grown crops. While taking proper account of natural variation amongst commercial varieties in the safety assessment of GM plants makes good sense, the methodology described by the authors is shown here to be fundamentally flawed and consequently cannot be considered fit for purpose in its current form.

  17. van der Waals Heterostructures Grown by MBE

    NASA Astrophysics Data System (ADS)

    Hinkle, Christopher

    In this work, we demonstrate the high-quality MBE heterostructure growth of various layered 2D materials by van der Waals epitaxy (VDWE). The coupling of different types of van der Waals materials including transition metal dichalcogenide thin films (e.g., WSe2, WTe2, HfSe2) , insulating hexagonal boron nitride (h-BN), and topological insulators (e.g., Bi2Se3) allows for the fabrication of novel electronic devices that take advantage of unique quantum confinement and spin-based characteristics. The relaxed lattice-matching criteria of van der Waals epitaxy has allowed for high-quality heterostructure growth with atomically abrupt interfaces, allowing us to couple these materials based primarily on their band alignment and electronic properties. We will discuss the impact of sample preparation, surface reactivity, and lattice mismatch of various substrates (sapphire, graphene, TMDs, Bi2Se3) on the growth mode and quality of the films and will discuss our studies of substrate temperature and flux rates on the resultant growth and grain size. Structural and chemical characterization was conducted via reflection high energy electron diffraction (RHEED, X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning tunneling microscopy/spectroscopy (STM/S), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Experimentally determined band alignments have been determined and compared with first-principles calculations allowing the design of novel low-power logic and magnetic memory devices. Initial results from the electrical characterization of these grown thin films and some simple devices will also be presented. These VDWE grown layered 2D materials show significant potential for fabricating novel heterostructures with tunable band alignments and magnetic properties for a variety of nanoelectronic and optoelectronic applications.

  18. Van der Waals heterostructures and devices

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Weiss, Nathan O.; Duan, Xidong; Cheng, Hung-Chieh; Huang, Yu; Duan, Xiangfeng

    2016-09-01

    Two-dimensional layered materials (2DLMs) have been a central focus of materials research since the discovery of graphene just over a decade ago. Each layer in 2DLMs consists of a covalently bonded, dangling-bond-free lattice and is weakly bound to neighbouring layers by van der Waals interactions. This makes it feasible to isolate, mix and match highly disparate atomic layers to create a wide range of van der Waals heterostructures (vdWHs) without the constraints of lattice matching and processing compatibility. Exploiting the novel properties in these vdWHs with diverse layering of metals, semiconductors or insulators, new designs of electronic devices emerge, including tunnelling transistors, barristors and flexible electronics, as well as optoelectronic devices, including photodetectors, photovoltaics and light-emitting devices with unprecedented characteristics or unique functionalities. We review the recent progress and challenges, and offer our perspective on the exploration of 2DLM-based vdWHs for future application in electronics and optoelectronics.

  19. Hybrid Meson Potentials and the Gluonic van der Waals Force

    SciTech Connect

    O. Lakhina; E.S. Swanson

    2004-03-01

    The chromoelectric polarizability of mesons governs the strength of the gluonic van der Waals force and therefore of non-quark-exchange processes in hadronic physics. We compute the polarizability of heavy mesons with the aid of lattice gauge theory and the Born--Oppenheimer adiabatic expansion. We find that the operator product expansion breaks down at surprisingly large quarks masses due to nonperturbative gluodynamics and that previous conclusions concerning J/{psi}--nuclear matter interactions and J/{psi} dissociation in the quark-gluon plasma must be substantially modified.

  20. Tunnelling in van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Mishchenko, Artem; Novoselov, Kostya; Geim, Andre; Eaves, Laurence; Falko, Vladimir

    When graphene and other conductive two-dimensional (2D) materials are separated by an atomically thin insulating 2D crystal, quantum mechanical tunnelling leads to appreciable current between two 2D conductors due to the overlap of their wavefunctions. These tunnel devices demonstrate interesting physics and potential for applications: such effects as resonant tunnelling, negative differential conductance, light emission and detection have already been demonstrated. In this presentation we will outline the current status and perspectives of tunnelling transistors based on 2D materials assembled into van der Waals heterostructures. Particularly, we will present results on mono- and bilayer graphene tunnelling, tunnelling in 2D crystal-based quantum wells, and tunnelling in superconducting 2D materials. Such effects as momentum and chirality conservation, phonon- and impurity-assisted tunnelling will also be discussed. Finally, we will ponder the implications of discovered effects for practical applications.

  1. Isotope separation by photodissociation of Van der Waal's molecules

    DOEpatents

    Lee, Yuan T.

    1977-01-01

    A method of separating isotopes based on the dissociation of a Van der Waal's complex. A beam of molecules of a Van der Waal's complex containing, as one partner of the complex, a molecular species in which an element is present in a plurality of isotopes is subjected to radiation from a source tuned to a frequency which will selectively excite vibrational motion by a vibrational transition or through electronic transition of those complexed molecules of the molecular species which contain a desired isotope. Since the Van der Waal's binding energy is much smaller than the excitational energy of vibrational motion, the thus excited Van der Waal's complex dissociate into molecular components enriched in the desired isotope. The recoil velocity associated with vibrational to translational and rotational relaxation will send the separated molecules away from the beam whereupon the product enriched in the desired isotope can be separated from the constituents of the beam.

  2. Van der Waals Epitaxy of Ultrathin Halide Perovkistes

    NASA Astrophysics Data System (ADS)

    Wang, Yiping; Shi, Yunfeng; Shi, Jian

    We present our understanding, with CH3NH3PbX3 as a model system, on the 2D van der Waals growth and kinetics of 3D parent materials. We show the successful synthesis of ultrathin (sub-10 nm), large scale (a few tens of μm) single crystalline 2D perovskite thin films on layered mica substrate by van der Waals (VDW) epitaxy. Classical nucleation and growth model explaining conventional epitaxy has been modified to interpret the unique 2D results under VDW mechanism. The generalization of our model shows that a 3D crystal with low cohesive energy tends to favor the 2D growth while the one with strong cohesive energy has less kinetic window. With Monte Carlo simulations, we show that the fractal 2D morphology in perovskite precisely manifests the kinetic competition between VDW diffusivity and thermodynamic driving force, a unique phenomenon to VDW growth, suggesting a fundamental limit on the morphology stability of the 2D form of a 3D material. On the other hand, our single crystal thin film growth results and subsequent cryogenic study in the iodide perovskite provide a perfect resource for the exploration of its complex optical and electronic properties and unveiling the origins of its popularity in the energy conversion field.

  3. Ripplocations in van der Waals layers.

    PubMed

    Kushima, Akihiro; Qian, Xiaofeng; Zhao, Peng; Zhang, Sulin; Li, Ju

    2015-02-11

    Dislocations are topological line defects in three-dimensional crystals. Same-sign dislocations repel according to Frank's rule |b1 + b2|(2) > |b1|(2) + |b2|(2). This rule is broken for dislocations in van der Waals (vdW) layers, which possess crystallographic Burgers vector as ordinary dislocations but feature "surface ripples" due to the ease of bending and weak vdW adhesion of the atomic layers. We term these line defects "ripplocations" in accordance to their dual "surface ripple" and "crystallographic dislocation" characters. Unlike conventional ripples on noncrystalline (vacuum, amorphous, or fluid) substrates, ripplocations tend to be very straight, narrow, and crystallographically oriented. The self-energy of surface ripplocations scales sublinearly with |b|, indicating that same-sign ripplocations attract and tend to merge, opposite to conventional dislocations. Using in situ transmission electron microscopy, we directly observed ripplocation generation and motion when few-layer MoS2 films were lithiated or mechanically processed. Being a new subclass of elementary defects, ripplocations are expected to be important in the processing and defect engineering of vdW layers.

  4. Supercurrent in van der Waals Josephson junction.

    PubMed

    Yabuki, Naoto; Moriya, Rai; Arai, Miho; Sata, Yohta; Morikawa, Sei; Masubuchi, Satoru; Machida, Tomoki

    2016-01-01

    Supercurrent flow between two superconductors with different order parameters, a phenomenon known as the Josephson effect, can be achieved by inserting a non-superconducting material between two superconductors to decouple their wavefunctions. These Josephson junctions have been employed in fields ranging from digital to quantum electronics, yet their functionality is limited by the interface quality and use of non-superconducting material. Here we show that by exfoliating a layered dichalcogenide (NbSe2) superconductor, the van der Waals (vdW) contact between the cleaved surfaces can instead be used to construct a Josephson junction. This is made possible by recent advances in vdW heterostructure technology, with an atomically flat vdW interface free of oxidation and inter-diffusion achieved by eliminating all heat treatment during junction preparation. Here we demonstrate that this artificially created vdW interface provides sufficient decoupling of the wavefunctions of the two NbSe2 crystals, with the vdW Josephson junction exhibiting a high supercurrent transparency.

  5. Dielectric Genome of van der Waals Heterostructures.

    PubMed

    Andersen, Kirsten; Latini, Simone; Thygesen, Kristian S

    2015-07-01

    Vertical stacking of two-dimensional (2D) crystals, such as graphene and hexagonal boron nitride, has recently lead to a new class of materials known as van der Waals heterostructures (vdWHs) with unique and highly tunable electronic properties. Ab initio calculations should in principle provide a powerful tool for modeling and guiding the design of vdWHs, but in their traditional form such calculations are only feasible for commensurable structures with a few layers. Here we show that the dielectric properties of realistic, incommensurable vdWHs comprising hundreds of layers can be efficiently calculated using a multiscale approach where the dielectric functions of the individual layers (the dielectric building blocks) are computed ab initio and coupled together via the long-range Coulomb interaction. We use the method to illustrate the 2D-3D transition of the dielectric function of multilayer MoS2 crystals, the hybridization of quantum plasmons in thick graphene/hBN heterostructures, and to demonstrate the intricate effect of substrate screening on the non-Rydberg exciton series in supported WS2. The dielectric building blocks for a variety of 2D crystals are available in an open database together with the software for solving the coupled electrodynamic equations.

  6. Supercurrent in van der Waals Josephson junction

    PubMed Central

    Yabuki, Naoto; Moriya, Rai; Arai, Miho; Sata, Yohta; Morikawa, Sei; Masubuchi, Satoru; Machida, Tomoki

    2016-01-01

    Supercurrent flow between two superconductors with different order parameters, a phenomenon known as the Josephson effect, can be achieved by inserting a non-superconducting material between two superconductors to decouple their wavefunctions. These Josephson junctions have been employed in fields ranging from digital to quantum electronics, yet their functionality is limited by the interface quality and use of non-superconducting material. Here we show that by exfoliating a layered dichalcogenide (NbSe2) superconductor, the van der Waals (vdW) contact between the cleaved surfaces can instead be used to construct a Josephson junction. This is made possible by recent advances in vdW heterostructure technology, with an atomically flat vdW interface free of oxidation and inter-diffusion achieved by eliminating all heat treatment during junction preparation. Here we demonstrate that this artificially created vdW interface provides sufficient decoupling of the wavefunctions of the two NbSe2 crystals, with the vdW Josephson junction exhibiting a high supercurrent transparency. PMID:26830754

  7. Van der Waals Interactions Involving Proteins

    NASA Technical Reports Server (NTRS)

    Roth, Charles M.; Neal, Brian L.; Lenhoff, Abraham M.

    1996-01-01

    Van der Waals (dispersion) forces contribute to interactions of proteins with other molecules or with surfaces, but because of the structural complexity of protein molecules, the magnitude of these effects is usually estimated based on idealized models of the molecular geometry, e.g., spheres or spheroids. The calculations reported here seek to account for both the geometric irregularity of protein molecules and the material properties of the interacting media. Whereas the latter are found to fall in the generally accepted range, the molecular shape is shown to cause the magnitudes of the interactions to differ significantly from those calculated using idealized models. with important consequences. First, the roughness of the molecular surface leads to much lower average interaction energies for both protein-protein and protein-surface cases relative to calculations in which the protein molecule is approximated as a sphere. These results indicate that a form of steric stabilization may be an important effect in protein solutions. Underlying this behavior is appreciable orientational dependence, one reflection of which is that molecules of complementary shape are found to exhibit very strong attractive dispersion interactions. Although this has been widely discussed previously in the context of molecular recognition processes, the broader implications of these phenomena may also be important at larger molecular separations, e.g., in the dynamics of aggregation, precipitation, and crystal growth.

  8. Modern theory of van der Waals interactions

    NASA Astrophysics Data System (ADS)

    Dobson, John

    2014-03-01

    van der Waals (vdW, dispersion) interactions are important in diverse areas such as colloid, surface and nano science, cohesion of molecular crystals, and biomolecular science. They also provide competition in experiments to discover the fifth fundamental force.While vdW interactions have been understood in principle for a century, their quantitative first-principles prediction and modelling down to chemical contact separations have proven stubbornly difficult because the quantal many-electron problem is involved. After some brief historical material, the current state of the art will be discussed with particular reference to several approaches: pairwise additive, perturbative quantum chemical, vdW-DF, Lifshitz-like scattering, RPA-like, Adiabatic Connection Fluctuation Dissipation / Time Dependent DFT based etc.. A potentially useful classification will be introduced to aid in understanding the physical causes of departures from pairwise additivity, that is from the usual sum of C6R-6 contributions. These departures result in non-standard power law decays of nanostructure vdW interactions as a function of separation D, as well as surprising dependences of the attraction on the number, N, of atoms within each vdW-interacting fragment. Some further recent results on non-additivity will also be presented. Work supported by an Australian Research Council Discovery Grant.

  9. Van der Waals Interactions in Aspirin

    NASA Astrophysics Data System (ADS)

    Reilly, Anthony; Tkatchenko, Alexandre

    2015-03-01

    The ability of molecules to yield multiple solid forms, or polymorphs, has significance for diverse applications ranging from drug design and food chemistry to nonlinear optics and hydrogen storage. In particular, aspirin has been used and studied for over a century, but has only recently been shown to have an additional polymorphic form, known as form II. Since the two observed solid forms of aspirin are degenerate in terms of lattice energy, kinetic effects have been suggested to determine the metastability of the less abundant form II. Here, first-principles calculations provide an alternative explanation based on free-energy differences at room temperature. The explicit consideration of many-body van der Waals interactions in the free energy demonstrates that the stability of the most abundant form of aspirin is due to a subtle coupling between collective electronic fluctuations and quantized lattice vibrations. In addition, a systematic analysis of the elastic properties of the two forms of aspirin rules out mechanical instability of form II as making it metastable.

  10. Effect of van der Waals interaction on the mode I fracture characteristics of graphene sheet

    NASA Astrophysics Data System (ADS)

    Parashar, Avinash; Mertiny, Pierre

    2013-11-01

    In this paper a study has been performed to investigate the effect of van der Waals interaction forces on the mode I (opening mode) fracture characteristics of a graphene sheet. Finite element based atomistic approach was employed to perform the investigation, where graphene structure was assumed to behave like a space frame structure. Few graphene sheets were modeled in finite element environment with different set of interlayer spacing. Modified virtual crack closure technique (VCCT) was employed to estimate the strain energy release rate (SERR) under mode I of fracture criteria. Significant effect of van der Waals forces was observed on the mode I fracture characteristics of graphene.

  11. Van der Waals interaction in uniaxial anisotropic media

    NASA Astrophysics Data System (ADS)

    Kornilovitch, Pavel E.

    2013-01-01

    Van der Waals interactions between flat surfaces in uniaxial anisotropic media are investigated in the nonretarded limit. The main focus is the effect of nonzero tilt between the optical axis and the surface normal on the strength of the van der Waals attraction. General expressions for the van der Waals free energy are derived using the surface mode method and the transfer-matrix formalism. To facilitate numerical calculations a temperature-dependent three-band parameterization of the dielectric tensor of the liquid crystal 5CB is developed. A solid slab immersed in a liquid crystal experiences a van der Waals torque that aligns the surface normal relative to the optical axis of the medium. The preferred orientation is different for different materials. Two solid slabs in close proximity experience a van der Waals attraction that is strongest for homeotropic alignment of the intervening liquid crystal for all the materials studied. The results have implications for the stability of plate-like colloids in liquid crystal hosts.

  12. Van der Waals interaction in uniaxial anisotropic media.

    PubMed

    Kornilovitch, Pavel E

    2013-01-23

    Van der Waals interactions between flat surfaces in uniaxial anisotropic media are investigated in the nonretarded limit. The main focus is the effect of nonzero tilt between the optical axis and the surface normal on the strength of the van der Waals attraction. General expressions for the van der Waals free energy are derived using the surface mode method and the transfer-matrix formalism. To facilitate numerical calculations a temperature-dependent three-band parameterization of the dielectric tensor of the liquid crystal 5CB is developed. A solid slab immersed in a liquid crystal experiences a van der Waals torque that aligns the surface normal relative to the optical axis of the medium. The preferred orientation is different for different materials. Two solid slabs in close proximity experience a van der Waals attraction that is strongest for homeotropic alignment of the intervening liquid crystal for all the materials studied. The results have implications for the stability of plate-like colloids in liquid crystal hosts. PMID:23234868

  13. Van der woude syndrome with short review of the literature.

    PubMed

    Deshmukh, Pallavi K; Deshmukh, Kiran; Mangalgi, Anand; Patil, Subhash; Hugar, Deepa; Kodangal, Saraswathi Fakirappa

    2014-01-01

    Van der Woude syndrome (VWS) is a rare autosomal dominant condition with high penetrance and variable expression. Clinical manifestation of this autosomal dominant clefting syndrome includes bilateral midline lower lip pits, cleft lip, and cleft palate along with hypodontia. These congenital lip pits appear as a malformation in the vermilion border of the lip, with or without excretion. Discomfort caused by spontaneous or induced drainage of saliva/mucus when pressure is applied or during a meal as well as poor aesthetic match is one of the main complaints of patients with congenital lip fistula. The pits are treated by surgical resection. Dentists should be aware of the congenital lip pits as in Van der Woude syndrome because they have been reported to be associated with a variety of malformations or other congenital disorders. Here, the authors report a rare case of Van der Woude syndrome with short review of the literature. PMID:25050184

  14. A cartography of the van der Waals territories.

    PubMed

    Alvarez, Santiago

    2013-06-28

    The distribution of distances from atoms of a particular element E to a probe atom X (oxygen in most cases), both bonded and intermolecular non-bonded contacts, has been analyzed. In general, the distribution is characterized by a maximum at short E···X distances corresponding to chemical bonds, followed by a range of unpopulated distances--the van der Waals gap--and a second maximum at longer distances--the van der Waals peak--superimposed on a random distribution function that roughly follows a d(3) dependence. The analysis of more than five million interatomic "non-bonded" distances has led to the proposal of a consistent set of van der Waals radii for most naturally occurring elements, and its applicability to other element pairs has been tested for a set of more than three million data, all of them compared to over one million bond distances.

  15. Spontaneous stacking faults in van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Boussinot, G.

    2016-08-01

    The rapid developments in the manipulation of two-dimensional monoatomic layers such as graphene or h-BN allow one to create heterostructures consisting of possibly many chemically different layers, stacked owing to van der Waals attraction. We propose a Frenkel-Kontorova model including a transverse degree of freedom in order to describe local deformations in these heterostructures. We study the case where two dissimilar monolayers are alternatively stacked, and find that stacking faults may emerge spontaneously for a large enough number of stacked layers as a result of the competition between adhesion and elastic energies. This symmetry-breaking transition should become of fundamental importance for the description of three-dimensional van der Waals heterostructures as soon as a precise control on the lattice orientation of the van der Waals layers is achieved.

  16. van der Waals interactions between excited atoms in generic environments

    NASA Astrophysics Data System (ADS)

    Barcellona, Pablo; Passante, Roberto; Rizzuto, Lucia; Buhmann, Stefan Yoshi

    2016-07-01

    We consider the van der Waals force involving excited atoms in general environments, constituted by magnetodielectric bodies. We develop a dynamical approach studying the dynamics of the atoms and the field, mutually coupled. When only one atom is excited, our dynamical theory suggests that for large distances the van der Waals force acting on the ground-state atom is monotonic, while the force acting in the excited atom is spatially oscillating. We show how this latter force can be related to the known oscillating Casimir-Polder force on an excited atom near a (ground-state) body. Our force also reveals a population-induced dynamics: for times much larger that the atomic lifetime the atoms will decay to their ground states leading to the van der Waals interaction between ground-state atoms.

  17. Collisional stabilization of van der Waals states of ozone.

    PubMed

    Ivanov, Mikhail V; Babikov, Dmitri

    2011-05-01

    The mixed quantum-classical theory developed earlier [M. Ivanov and D. Babikov, J. Chem. Phys. 134, 144107 (2011)] is employed to treat the collisional energy transfer and the ro-vibrational energy flow in a recombination reaction that forms ozone. Assumption is that the van der Waals states of ozone are formed in the O + O(2) collisions, and then stabilized into the states of covalent well by collisions with bath gas. Cross sections for collision induced dissociation of van der Waals states of ozone, for their stabilization into the covalent well, and for their survival in the van der Waals well are computed. The role these states may play in the kinetics of ozone formation is discussed.

  18. Collisional stabilization of van der Waals states of ozone

    NASA Astrophysics Data System (ADS)

    Ivanov, Mikhail V.; Babikov, Dmitri

    2011-05-01

    The mixed quantum-classical theory developed earlier [M. Ivanov and D. Babikov, J. Chem. Phys. 134, 144107 (2011)] is employed to treat the collisional energy transfer and the ro-vibrational energy flow in a recombination reaction that forms ozone. Assumption is that the van der Waals states of ozone are formed in the O + O2 collisions, and then stabilized into the states of covalent well by collisions with bath gas. Cross sections for collision induced dissociation of van der Waals states of ozone, for their stabilization into the covalent well, and for their survival in the van der Waals well are computed. The role these states may play in the kinetics of ozone formation is discussed.

  19. Van der Waals stacked 2D layered materials for optoelectronics

    NASA Astrophysics Data System (ADS)

    Zhang, Wenjing; Wang, Qixing; Chen, Yu; Wang, Zhuo; Wee, Andrew T. S.

    2016-06-01

    The band gaps of many atomically thin 2D layered materials such as graphene, black phosphorus, monolayer semiconducting transition metal dichalcogenides and hBN range from 0 to 6 eV. These isolated atomic planes can be reassembled into hybrid heterostructures made layer by layer in a precisely chosen sequence. Thus, the electronic properties of 2D materials can be engineered by van der Waals stacking, and the interlayer coupling can be tuned, which opens up avenues for creating new material systems with rich functionalities and novel physical properties. Early studies suggest that van der Waals stacked 2D materials work exceptionally well, dramatically enriching the optoelectronics applications of 2D materials. Here we review recent progress in van der Waals stacked 2D materials, and discuss their potential applications in optoelectronics.

  20. The Economics of van der Waals Force Engineering

    NASA Astrophysics Data System (ADS)

    Pinto, Fabrizio

    2008-01-01

    As micro-electro-mechanical system (MEMS) fabrication continues on an ever-decreasing scale, new technological challenges must be successfully negotiated if Moore's Law is to be an even approximately valid model of the future of device miniaturization. Among the most significant obstacles is the existence of strong surface forces related to quantum mechanical van der Waals interatomic interactions, which rapidly diverge as the distance between any two neutral boundaries decreases. The van der Waals force is a contributing factor in several device failures and limitations, including, for instance, stiction and oscillator non-linearities. In the last decade, however, it has been conclusively shown that van der Waals forces are not just a MEMS limitation but can be engineered in both magnitude and sign so as to enable classes of proprietary inventions which either deliver novel capabilities or improve upon existing ones. The evolution of van der Waals force research from an almost exclusively theoretical field in quantum-electro-dynamics to an enabling nanotechnology discipline represents a useful example of the ongoing paradigm shift from government-centered to private-capital funded R&D in cutting-edge physics leading to potentially profitable products. In this paper, we discuss the reasons van der Waals force engineering may lead to the creation of thriving markets both in the short and medium terms by highlighting technical challenges that can be competitively addressed by this novel approach. We also discuss some notable obstacles to the cultural transformation of the academic research community required for the emergence of a functional van der Waals force engineering industry worldwide.

  1. Curves of growth for van der Waals broadened spectral lines

    NASA Technical Reports Server (NTRS)

    Park, C.

    1980-01-01

    Curves of growth are evaluated for a spectral line broadened by the van der Waals interactions during collisions. The growth of the equivalent widths of such lines is shown to be dependent on the product of the perturber density and the 6/10 power of the van der Waals potential coefficient. When the parameter is small, the widths grow as the 1/2 power of the optical depth as they do for the Voigt profile: but when the parameter is large, they grow as 2/3 power and, hence, faster than the Voigt profile. An approximate analytical expression for the computed growth characteristics is given.

  2. Statistical complexity, virial expansion, and van der Waals equation

    NASA Astrophysics Data System (ADS)

    Pennini, F.; Plastino, A.

    2016-09-01

    We investigate the notion of LMC statistical complexity with regards to a real gas and in terms of the second virial coefficient. The ensuing results are applied to the van der Waals equation. Interestingly enough, one finds a complexity-interpretation for the associated phase transition.

  3. Excited nucleon as a van der Waals system of partons

    SciTech Connect

    Jenkovszky, L. L.; Muskeyev, A. O. Yezhov, S. N.

    2012-06-15

    Saturation in deep inelastic scattering (DIS) and deeply virtual Compton scattering (DVCS) is associated with a phase transition between the partonic gas, typical of moderate x and Q{sup 2}, and partonic fluid appearing at increasing Q{sup 2} and decreasing Bjorken x. We suggest the van der Waals equation of state to describe properly this phase transition.

  4. Generalized van der Waals density functional theory for nonuniform polymers

    SciTech Connect

    Patra, Chandra N.; Yethiraj, Arun

    2000-01-15

    A density functional theory is presented for the effect of attractions on the structure of polymers at surfaces. The theory treats the ideal gas functional exactly, and uses a weighted density approximation for the hard chain contribution to the excess free energy functional. The attractive interactions are treated using a van der Waals approximation. The theory is in good agreement with computer simulations for the density profiles at surfaces for a wide range of densities and temperatures, except for low polymer densities at low temperatures where it overestimates the depletion of chains from the surface. This deficiency is attributed to the neglect of liquid state correlations in the van der Waals term of the free energy functional. (c) 2000 American Institute of Physics.

  5. Photovoltaic effect in an electrically tunable van der Waals heterojunction.

    PubMed

    Furchi, Marco M; Pospischil, Andreas; Libisch, Florian; Burgdörfer, Joachim; Mueller, Thomas

    2014-08-13

    Semiconductor heterostructures form the cornerstone of many electronic and optoelectronic devices and are traditionally fabricated using epitaxial growth techniques. More recently, heterostructures have also been obtained by vertical stacking of two-dimensional crystals, such as graphene and related two-dimensional materials. These layered designer materials are held together by van der Waals forces and contain atomically sharp interfaces. Here, we report on a type-II van der Waals heterojunction made of molybdenum disulfide and tungsten diselenide monolayers. The junction is electrically tunable, and under appropriate gate bias an atomically thin diode is realized. Upon optical illumination, charge transfer occurs across the planar interface and the device exhibits a photovoltaic effect. Advances in large-scale production of two-dimensional crystals could thus lead to a new photovoltaic solar technology.

  6. van der Waals explosion of cold Rydberg clusters

    NASA Astrophysics Data System (ADS)

    Faoro, R.; Simonelli, C.; Archimi, M.; Masella, G.; Valado, M. M.; Arimondo, E.; Mannella, R.; Ciampini, D.; Morsch, O.

    2016-03-01

    We report on the direct measurement in real space of the effect of the van der Waals forces between individual Rydberg atoms on their external degrees of freedom. Clusters of Rydberg atoms with interparticle distances of around 5 μ m are created by first generating a small number of seed excitations in a magneto-optical trap, followed by off-resonant excitation that leads to a chain of facilitated excitation events. After a variable expansion time the Rydberg atoms are field ionized, and from the arrival time distributions the size of the Rydberg cluster after expansion is calculated. Our experimental results agree well with a numerical simulation of the van der Waals explosion.

  7. Charge Transfer Excitons at van der Waals Interfaces.

    PubMed

    Zhu, Xiaoyang; Monahan, Nicholas R; Gong, Zizhou; Zhu, Haiming; Williams, Kristopher W; Nelson, Cory A

    2015-07-01

    The van der Waals interfaces of molecular donor/acceptor or graphene-like two-dimensional (2D) semiconductors are central to concepts and emerging technologies of light-electricity interconversion. Examples include, among others, solar cells, photodetectors, and light emitting diodes. A salient feature in both types of van der Waals interfaces is the poorly screened Coulomb potential that can give rise to bound electron-hole pairs across the interface, i.e., charge transfer (CT) or interlayer excitons. Here we address common features of CT excitons at both types of interfaces. We emphasize the competition between localization and delocalization in ensuring efficient charge separation. At the molecular donor/acceptor interface, electronic delocalization in real space can dictate charge carrier separation. In contrast, at the 2D semiconductor heterojunction, delocalization in momentum space due to strong exciton binding may assist in parallel momentum conservation in CT exciton formation. PMID:26001297

  8. Photovoltaic Effect in an Electrically Tunable van der Waals Heterojunction

    PubMed Central

    2014-01-01

    Semiconductor heterostructures form the cornerstone of many electronic and optoelectronic devices and are traditionally fabricated using epitaxial growth techniques. More recently, heterostructures have also been obtained by vertical stacking of two-dimensional crystals, such as graphene and related two-dimensional materials. These layered designer materials are held together by van der Waals forces and contain atomically sharp interfaces. Here, we report on a type-II van der Waals heterojunction made of molybdenum disulfide and tungsten diselenide monolayers. The junction is electrically tunable, and under appropriate gate bias an atomically thin diode is realized. Upon optical illumination, charge transfer occurs across the planar interface and the device exhibits a photovoltaic effect. Advances in large-scale production of two-dimensional crystals could thus lead to a new photovoltaic solar technology. PMID:25057817

  9. Van der Waals interaction-tuned heat transfer in nanostructures.

    PubMed

    Sun, Tao; Wang, Jianxiang; Kang, Wei

    2013-01-01

    Interfaces usually impede heat transfer in heterogeneous structures. Recent experiments show that van der Waals (vdW) interactions can significantly enhance thermal conductivity parallel to the interface of a bundle of nanoribbons compared to a single layer of freestanding nanoribbon. In this paper, by simulating heat transfer in nanostructures based on a model of nonlinear one-dimensional lattices interacting via van der Waals interactions, we show that the vdW interface interaction can adjust the thermal conductivity parallel to the interface. The efficiency of the adjustment depends on the intensity of interactions and temperature. The nonlinear dependence of the conductivity on the intensity of interactions agrees well with experimental results for carbon nanotube bundles, multi-walled carbon nanotubes, multi-layer graphene, and nanoribbons.

  10. Quantum field theory of van der Waals friction

    SciTech Connect

    Volokitin, A. I.; Persson, B. N. J.

    2006-11-15

    van der Waals friction between two semi-infinite solids, and between a small neutral particle and semi-infinite solid is studied using thermal quantum field theory in the Matsubara formulation. We show that the friction to linear order in the sliding velocity can be obtained from the equilibrium Green functions and that our treatment can be extended for bodies with complex geometry. The calculated friction agrees with the friction obtained using a dynamical modification of the Lifshitz theory, which is based on the fluctuation-dissipation theorem. We show that it should be possible to measure the van der Waals friction in noncontact friction experiment using state-of-the-art equipment.

  11. Spin-Flavor van der Waals Forces and NN interaction

    SciTech Connect

    Alvaro Calle Cordon, Enrique Ruiz Arriola

    2011-12-01

    A major goal in Nuclear Physics is the derivation of the Nucleon-Nucleon (NN) interaction from Quantum Chromodynamics (QCD). In QCD the fundamental degrees of freedom are colored quarks and gluons which are confined to form colorless strongly interacting hadrons. Because of this the resulting nuclear forces at sufficiently large distances correspond to spin-flavor excitations, very much like the dipole excitations generating the van der Waals (vdW) forces acting between atoms. We study the Nucleon-Nucleon interaction in the Born-Oppenheimer approximation at second order in perturbation theory including the Delta resonance as an intermediate state. The potential resembles strongly chiral potentials computed either via soliton models or chiral perturbation theory and has a van der Waals like singularity at short distances which is handled by means of renormalization techniques. Results for the deuteron are discussed.

  12. Persistent hysteresis in graphene-mica van der Waals heterostructures.

    PubMed

    Mohrmann, Jens; Watanabe, Kenji; Taniguchi, Takashi; Danneau, Romain

    2015-01-01

    We report the study of electronic transport in graphene-mica van der Waals heterostructures. We have designed various graphene field-effect devices in which mica is utilized as a substrate and/or gate dielectric. When mica is used as a gate dielectric we observe a very strong positive gate voltage hysteresis of the resistance, which persists in samples that were prepared in a controlled atmosphere down to even millikelvin temperatures. In a double-gated mica-graphene-hBN van der Waals heterostructure, we found that while a strong hysteresis occurred when mica was used as a substrate/gate dielectric, the same graphene sheet on mica substrate no longer showed hysteresis when the charge carrier density was tuned through a second gate with the hBN dielectric. While this hysteretic behavior could be useful for memory devices, our findings confirm that the environment during sample preparation has to be controlled strictly.

  13. Isolated lower lip fistulas in Van der Woude syndrome.

    PubMed

    Etöz, Osman A; Etöz, Abdullah

    2009-09-01

    Van der Woude syndrome (VWS) is a dominantly inherited disease of orofacial region. Characteristic features of this syndrome are bilateral lower lip sinuses along with cleft lip or palate deformity. However, isolated lower lip pits in VWS without any cleft syndrome is uncommon. Lip pits in VWS are usually asymptomatic; however, patients may complain of watery drainage and/or infection. In this report, asymptomatic isolated lower lip sinuses without any cleft syndrome in a patient and his father are presented. PMID:19816310

  14. Van der Woude syndrome with an unusual intraoral finding.

    PubMed

    Sarode, Gargi S; Desai, Rajiv S; Sarode, Sachin C; Kulkarni, Meena A

    2011-01-01

    Orofacial manifestations of Van der Woude syndrome (VWS) include cleft lip or palate, lower lip pits, hypodontia, hypernasal voice, cleft or bifid uvula, syngnathia, narrow high arched palate, and ankyloglossia. Extraoral manifestations include limb anomalies, popliteal webs, accessory nipples, congenital heart defects, and Hirschsprung disease. We report an interesting case of VWS with characteristic orofacial features along with an unusual additional finding of fusion of primary mandibular left lateral incisor and canine in a 7-year-old boy. PMID:21525698

  15. Van der Waals interactions: accuracy of pair potential approximations.

    PubMed

    Cole, Milton W; Kim, Hye-Young; Liebrecht, Michael

    2012-11-21

    Van der Waals interactions between single atoms and solids are discussed for the regime of large separation. A commonly employed approximation is to evaluate this interaction as a sum of two-body interactions between the adatom and the constituent atoms of the solid. The resulting potentials are here compared with known results in various geometries. Analogous comparisons are made for diatomic molecules near either single atoms or semi-infinite surfaces and for triatomic molecules' interactions with single atoms. PMID:23181315

  16. Nonadiabatic Van der Pol oscillations in molecular transport

    NASA Astrophysics Data System (ADS)

    Kartsev, Alexey; Verdozzi, Claudio; Stefanucci, Gianluca

    2014-01-01

    The force exerted by the electrons on the nuclei of a current-carrying molecular junction can be manipulated to engineer nanoscale mechanical systems. In the adiabatic regime a peculiarity of these forces is negative friction, responsible for Van der Pol oscillations of the nuclear coordinates. In this work we study the robustness of the Van der Pol oscillations against high-frequency sources. For this purpose we go beyond the adiabatic approximation and perform full Ehrenfest dynamics simulations. The numerical scheme implements a mixed quantum-classical algorithm for open systems and is capable to deal with arbitrary time-dependent driving fields. We find that the Van der Pol oscillations are extremely stable. The nonadiabatic electron dynamics distorts the trajectory in the momentum-coordinate phase space but preserves the limit cycles in an average sense. We further show that high-frequency fields change both the oscillation amplitudes and the average nuclear positions. By switching the fields off at different times one obtains cycles of different amplitudes which attain the limit cycle only after considerably long times.

  17. van der Waals interactions at the nanoscale: The effects of nonlocality

    PubMed Central

    Luo, Yu; Zhao, Rongkuo; Pendry, John B.

    2014-01-01

    Calculated using classical electromagnetism, the van der Waals force increases without limit as two surfaces approach. In reality, the force saturates because the electrons cannot respond to fields of very short wavelength: polarization charges are always smeared out to some degree and in consequence the response is nonlocal. Nonlocality also plays an important role in the optical spectrum and distribution of the modes but introduces complexity into calculations, hindering an analytical solution for interactions at the nanometer scale. Here, taking as an example the case of two touching nanospheres, we show for the first time, to our knowledge, that nonlocality in 3D plasmonic systems can be accurately analyzed using the transformation optics approach. The effects of nonlocality are found to dramatically weaken the field enhancement between the spheres and hence the van der Waals interaction and to modify the spectral shifts of plasmon modes. PMID:25468982

  18. Van der Waals pressure and its effect on trapped interlayer molecules

    NASA Astrophysics Data System (ADS)

    Vasu, K. S.; Prestat, E.; Abraham, J.; Dix, J.; Kashtiban, R. J.; Beheshtian, J.; Sloan, J.; Carbone, P.; Neek-Amal, M.; Haigh, S. J.; Geim, A. K.; Nair, R. R.

    2016-07-01

    Van der Waals assembly of two-dimensional crystals continue attract intense interest due to the prospect of designing novel materials with on-demand properties. One of the unique features of this technology is the possibility of trapping molecules between two-dimensional crystals. The trapped molecules are predicted to experience pressures as high as 1 GPa. Here we report measurements of this interfacial pressure by capturing pressure-sensitive molecules and studying their structural and conformational changes. Pressures of 1.2+/-0.3 GPa are found using Raman spectrometry for molecular layers of 1-nm in thickness. We further show that this pressure can induce chemical reactions, and several trapped salts are found to react with water at room temperature, leading to two-dimensional crystals of the corresponding oxides. This pressure and its effect should be taken into account in studies of van der Waals heterostructures and can also be exploited to modify materials confined at the atomic interfaces.

  19. Van der Waals equation of state revisited: importance of the dispersion correction.

    PubMed

    de Visser, Sam P

    2011-04-28

    One of the most basic equations of state describing nonideal gases and liquids is the van der Waals equation of state, and as a consequence, it is generally taught in most first year undergraduate chemistry courses. In this work, we show that the constants a and b in the van der Waals equation of state are linearly proportional to the polarizability volume of the molecules in a gas or liquid. Using this information, a new thermodynamic one-parameter equation of state is derived that contains experimentally measurable variables and physics constants only. This is the first equation of state apart from the Ideal Gas Law that contains experimentally measurable variables and physics constants only, and as such, it may be a very useful and practical equation for the description of dilute gases and liquids. The modified van der Waals equation of state describes pV as the sum of repulsive and attractive intermolecular interaction energies that are represented by an exponential repulsion function between the electron clouds of the molecules and a London dispersion component, respectively. The newly derived equation of state is tested against experimental data for several gas and liquid examples, and the agreement is satisfactory. The description of the equation of state as a one-parameter function also has implications on other thermodynamic functions, such as critical parameters, virial coefficients, and isothermal compressibilities. Using our modified van der Waals equation of state, we show that all of these properties are a function of the molecular polarizability volume. Correlations of experimental data confirm the derived proportionalities.

  20. Van der Waals equation of state revisited: importance of the dispersion correction.

    PubMed

    de Visser, Sam P

    2011-04-28

    One of the most basic equations of state describing nonideal gases and liquids is the van der Waals equation of state, and as a consequence, it is generally taught in most first year undergraduate chemistry courses. In this work, we show that the constants a and b in the van der Waals equation of state are linearly proportional to the polarizability volume of the molecules in a gas or liquid. Using this information, a new thermodynamic one-parameter equation of state is derived that contains experimentally measurable variables and physics constants only. This is the first equation of state apart from the Ideal Gas Law that contains experimentally measurable variables and physics constants only, and as such, it may be a very useful and practical equation for the description of dilute gases and liquids. The modified van der Waals equation of state describes pV as the sum of repulsive and attractive intermolecular interaction energies that are represented by an exponential repulsion function between the electron clouds of the molecules and a London dispersion component, respectively. The newly derived equation of state is tested against experimental data for several gas and liquid examples, and the agreement is satisfactory. The description of the equation of state as a one-parameter function also has implications on other thermodynamic functions, such as critical parameters, virial coefficients, and isothermal compressibilities. Using our modified van der Waals equation of state, we show that all of these properties are a function of the molecular polarizability volume. Correlations of experimental data confirm the derived proportionalities. PMID:21469648

  1. van der Waals coefficients for systems with ultracold polar alkali-metal molecules

    NASA Astrophysics Data System (ADS)

    Żuchowski, P. S.; Kosicki, M.; Kodrycka, M.; Soldán, P.

    2013-02-01

    A systematic study of the leading isotropic van der Waals coefficients for the alkali-metal atom+molecule and molecule+molecule systems is presented. Dipole moments and static and dynamic dipole polarizabilities are calculated employing high-level quantum chemistry calculations. The dispersion, induction, and rotational parts of the isotropic van der Waals coefficient are evaluated. The known van der Waals coefficients are then used to derive characteristics essential for simple models of the collisions involving the corresponding ultracold polar molecules.

  2. Application of Diffusion Monte Carlo to Materials Dominated by van der Waals Interactions

    SciTech Connect

    Benali, Anouar; Shulenburger, Luke; Romero, Nichols A.; Kim, Jeongnim; von Lilienfeld, O. Anatole

    2014-06-12

    Van der Waals forces are notoriously difficult to account for from first principles. We perform extensive calculation to assess the usefulness and validity of diffusion quantum Monte Carlo when applied to van der Waals forces. We present results for noble gas solids and clusters - archetypical van der Waals dominated assemblies, as well as a relevant pi-pi stacking supramolecular complex: DNA + intercalating anti-cancer drug Ellipticine.

  3. Multiple critical points and liquid liquid equilibria from the van der Waals like equations of state

    NASA Astrophysics Data System (ADS)

    Artemenko, Sergey; Lozovsky, Taras; Mazur, Victor

    2008-06-01

    The principal aim of this work is a comprehensive analysis of the phase diagram of water via the van der Waals like equations of state (EoSs) which are considered as superpositions of repulsive and attractive forces. We test more extensively the modified van der Waals EoS (MVDW) proposed by Skibinski et al (2004 Phys. Rev. E 69 061206) and refine this model by introducing instead of the classical van der Waals repulsive term a very accurate hard sphere EoS over the entire stable and metastable regions (Liu 2006 Preprint cond-mat/0605392). It was detected that the simplest form of MVDW EoS displays a complex phase behavior, including three critical points, and identifies four fluid phases (gas, low density liquid (LDL), high density liquid (HDL), and very high density liquid (VHDL)). Moreover the experimentally observed (Mallamace et al 2007 Proc. Natl Acad. Sci. USA 104 18387) anomalous behavior of the density of water in the deeply supercooled region (a density minimum) is reproduced by the MWDW EoS. An improvement of the repulsive part does not change the topological picture of the phase behavior of water in the wide range of thermodynamic variables. The new parameters set for second and third critical points are recognized by thorough analysis of experimental data for the loci of thermodynamic response function extrema.

  4. Large area molybdenum disulphide- epitaxial graphene vertical Van der Waals heterostructures

    PubMed Central

    Pierucci, Debora; Henck, Hugo; Naylor, Carl H.; Sediri, Haikel; Lhuillier, Emmanuel; Balan, Adrian; Rault, Julien E.; Dappe, Yannick J.; Bertran, François; Fèvre, Patrick Le; Johnson, A. T. Charlie; Ouerghi, Abdelkarim

    2016-01-01

    Two-dimensional layered transition metal dichalcogenides (TMDCs) show great potential for optoelectronic devices due to their electronic and optical properties. A metal-semiconductor interface, as epitaxial graphene - molybdenum disulfide (MoS2), is of great interest from the standpoint of fundamental science, as it constitutes an outstanding platform to investigate the interlayer interaction in van der Waals heterostructures. Here, we study large area MoS2-graphene-heterostructures formed by direct transfer of chemical-vapor deposited MoS2 layer onto epitaxial graphene/SiC. We show that via a direct transfer, which minimizes interface contamination, we can obtain high quality and homogeneous van der Waals heterostructures. Angle-resolved photoemission spectroscopy (ARPES) measurements combined with Density Functional Theory (DFT) calculations show that the transition from indirect to direct bandgap in monolayer MoS2 is maintained in these heterostructures due to the weak van der Waals interaction with epitaxial graphene. A downshift of the Raman 2D band of the graphene, an up shift of the A1g peak of MoS2 and a significant photoluminescence quenching are observed for both monolayer and bilayer MoS2 as a result of charge transfer from MoS2 to epitaxial graphene under illumination. Our work provides a possible route to modify the thin film TDMCs photoluminescence properties via substrate engineering for future device design. PMID:27246929

  5. Hermite Functional Link Neural Network for Solving the Van der Pol-Duffing Oscillator Equation.

    PubMed

    Mall, Susmita; Chakraverty, S

    2016-08-01

    Hermite polynomial-based functional link artificial neural network (FLANN) is proposed here to solve the Van der Pol-Duffing oscillator equation. A single-layer hermite neural network (HeNN) model is used, where a hidden layer is replaced by expansion block of input pattern using Hermite orthogonal polynomials. A feedforward neural network model with the unsupervised error backpropagation principle is used for modifying the network parameters and minimizing the computed error function. The Van der Pol-Duffing and Duffing oscillator equations may not be solved exactly. Here, approximate solutions of these types of equations have been obtained by applying the HeNN model for the first time. Three mathematical example problems and two real-life application problems of Van der Pol-Duffing oscillator equation, extracting the features of early mechanical failure signal and weak signal detection problems, are solved using the proposed HeNN method. HeNN approximate solutions have been compared with results obtained by the well known Runge-Kutta method. Computed results are depicted in term of graphs. After training the HeNN model, we may use it as a black box to get numerical results at any arbitrary point in the domain. Thus, the proposed HeNN method is efficient. The results reveal that this method is reliable and can be applied to other nonlinear problems too. PMID:27348738

  6. Hermite Functional Link Neural Network for Solving the Van der Pol-Duffing Oscillator Equation.

    PubMed

    Mall, Susmita; Chakraverty, S

    2016-08-01

    Hermite polynomial-based functional link artificial neural network (FLANN) is proposed here to solve the Van der Pol-Duffing oscillator equation. A single-layer hermite neural network (HeNN) model is used, where a hidden layer is replaced by expansion block of input pattern using Hermite orthogonal polynomials. A feedforward neural network model with the unsupervised error backpropagation principle is used for modifying the network parameters and minimizing the computed error function. The Van der Pol-Duffing and Duffing oscillator equations may not be solved exactly. Here, approximate solutions of these types of equations have been obtained by applying the HeNN model for the first time. Three mathematical example problems and two real-life application problems of Van der Pol-Duffing oscillator equation, extracting the features of early mechanical failure signal and weak signal detection problems, are solved using the proposed HeNN method. HeNN approximate solutions have been compared with results obtained by the well known Runge-Kutta method. Computed results are depicted in term of graphs. After training the HeNN model, we may use it as a black box to get numerical results at any arbitrary point in the domain. Thus, the proposed HeNN method is efficient. The results reveal that this method is reliable and can be applied to other nonlinear problems too.

  7. Large area molybdenum disulphide- epitaxial graphene vertical Van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Pierucci, Debora; Henck, Hugo; Naylor, Carl H.; Sediri, Haikel; Lhuillier, Emmanuel; Balan, Adrian; Rault, Julien E.; Dappe, Yannick J.; Bertran, François; Fèvre, Patrick Le; Johnson, A. T. Charlie; Ouerghi, Abdelkarim

    2016-06-01

    Two-dimensional layered transition metal dichalcogenides (TMDCs) show great potential for optoelectronic devices due to their electronic and optical properties. A metal-semiconductor interface, as epitaxial graphene - molybdenum disulfide (MoS2), is of great interest from the standpoint of fundamental science, as it constitutes an outstanding platform to investigate the interlayer interaction in van der Waals heterostructures. Here, we study large area MoS2-graphene-heterostructures formed by direct transfer of chemical-vapor deposited MoS2 layer onto epitaxial graphene/SiC. We show that via a direct transfer, which minimizes interface contamination, we can obtain high quality and homogeneous van der Waals heterostructures. Angle-resolved photoemission spectroscopy (ARPES) measurements combined with Density Functional Theory (DFT) calculations show that the transition from indirect to direct bandgap in monolayer MoS2 is maintained in these heterostructures due to the weak van der Waals interaction with epitaxial graphene. A downshift of the Raman 2D band of the graphene, an up shift of the A1g peak of MoS2 and a significant photoluminescence quenching are observed for both monolayer and bilayer MoS2 as a result of charge transfer from MoS2 to epitaxial graphene under illumination. Our work provides a possible route to modify the thin film TDMCs photoluminescence properties via substrate engineering for future device design.

  8. Large area molybdenum disulphide- epitaxial graphene vertical Van der Waals heterostructures.

    PubMed

    Pierucci, Debora; Henck, Hugo; Naylor, Carl H; Sediri, Haikel; Lhuillier, Emmanuel; Balan, Adrian; Rault, Julien E; Dappe, Yannick J; Bertran, François; Fèvre, Patrick Le; Johnson, A T Charlie; Ouerghi, Abdelkarim

    2016-01-01

    Two-dimensional layered transition metal dichalcogenides (TMDCs) show great potential for optoelectronic devices due to their electronic and optical properties. A metal-semiconductor interface, as epitaxial graphene - molybdenum disulfide (MoS2), is of great interest from the standpoint of fundamental science, as it constitutes an outstanding platform to investigate the interlayer interaction in van der Waals heterostructures. Here, we study large area MoS2-graphene-heterostructures formed by direct transfer of chemical-vapor deposited MoS2 layer onto epitaxial graphene/SiC. We show that via a direct transfer, which minimizes interface contamination, we can obtain high quality and homogeneous van der Waals heterostructures. Angle-resolved photoemission spectroscopy (ARPES) measurements combined with Density Functional Theory (DFT) calculations show that the transition from indirect to direct bandgap in monolayer MoS2 is maintained in these heterostructures due to the weak van der Waals interaction with epitaxial graphene. A downshift of the Raman 2D band of the graphene, an up shift of the A1g peak of MoS2 and a significant photoluminescence quenching are observed for both monolayer and bilayer MoS2 as a result of charge transfer from MoS2 to epitaxial graphene under illumination. Our work provides a possible route to modify the thin film TDMCs photoluminescence properties via substrate engineering for future device design. PMID:27246929

  9. Van der Waals interaction between two crossed carbon nanotubes.

    PubMed

    Zhbanov, Alexander I; Pogorelov, Evgeny G; Chang, Yia-Chung

    2010-10-26

    The analytical expressions for the van der Waals potential energy and force between two crossed carbon nanotubes are presented. The Lennard-Jones potential between pairs of carbon atoms and the smeared-out approximation suggested by L. A. Girifalco (J. Phys. Chem. 1992, 96, 858) were used. The exact formula is expressed in terms of rational and elliptical functions. The potential and force for carbon nanotubes were calculated. The uniform potential curves for single- and multiwall nanotubes were plotted. The equilibrium distance, maximal attractive force, and potential energy have been evaluated. PMID:20863127

  10. Reconstruction of the lower lip in Van der Woude syndrome.

    PubMed

    Bozkurt, Mehmet; Kulahci, Yalcin; Zor, Fatih; Kapi, Emin; Yucetas, Altan

    2009-04-01

    Van der Woude syndrome (VWS) is a congenital disease characterized by labial cysts, accessory salivary glands, congenital lower lip pits, fistula, and paramedian sinuses, and is often accompanied by cleft lip and palate. VWS is an autosomal dominant craniofacial syndrome, which represents only lower lip pits due to variable gene expression. The principles of VWS surgery include excision of lower lip pits and accessory glands, reconstruction of the lip and nose, and correction of accompanying anomalies. In this article, we present a technique with dermal allograft reconstruction to prevent deformities after excision of the accessory gland in the lower lip pit. PMID:19325355

  11. Lower lip pits: van der woude or kabuki syndrome?

    PubMed

    David-Paloyo, Ferri P; Yang, Xuecai; Lin, Ju-Li; Wong, Fen-Hwa; Wu-Chou, Yah-Huei; Lo, Lun-Jou

    2014-11-01

    Kabuki syndrome (KS) is a multiple congenital anomaly/mental retardation syndrome with characteristic facial features. Despite more than 350 documented cases and recent correlation of MLL2 mutations as a genetic cause, its full clinical spectrum is still being defined. This report describes two patients who were initially diagnosed with Van der Woude syndrome (VWS) based on the presence of lower lip pits. However, this finding can occur with KS, albeit infrequently. For patients with lower lip pits, a thorough evaluation should be made to distinguish between VWS and KS, as there are differences in long-term prognosis. PMID:24088119

  12. Nonadditivity of van der Waals forces on liquid surfaces

    NASA Astrophysics Data System (ADS)

    Venkataram, Prashanth S.; Whitton, Jeremy D.; Rodriguez, Alejandro W.

    2016-09-01

    We present an approach for modeling nanoscale wetting and dewetting of textured solid surfaces that exploits recently developed, sophisticated techniques for computing exact long-range dispersive van der Waals (vdW) or (more generally) Casimir forces in arbitrary geometries. We apply these techniques to solve the variational formulation of the Young-Laplace equation and predict the equilibrium shapes of liquid-vacuum interfaces near solid gratings. We show that commonly employed methods of computing vdW interactions based on additive Hamaker or Derjaguin approximations, which neglect important electromagnetic boundary effects, can result in large discrepancies in the shapes and behaviors of liquid surfaces compared to exact methods.

  13. Synchronous regimes in ensembles of coupled Bonhoeffer-van der Pol oscillators.

    PubMed

    Kryukov, Alexey K; Osipov, Grigory V; Polovinkin, Andrey V; Kurths, Jürgen

    2009-04-01

    We study synchronous behavior in ensembles of locally coupled nonidentical Bonhoeffer-van der Pol oscillators. We show that, in a chain of N elements not less than 2;{N-1}, different coexisting regimes of global synchronization are possible, and we investigate wave-induced synchronous regimes in a chain and in a lattice of coupled nonidentical Bonhoeffer-van der Pol oscillators.

  14. Two-dimensional van der Waals C60 molecular crystal

    PubMed Central

    Reddy, C. D.; Gen Yu, Zhi; Zhang, Yong-Wei

    2015-01-01

    Two-dimensional (2D) atomic crystals, such as graphene and transition metal dichalcogenides et al. have drawn extraordinary attention recently. For these 2D materials, atoms within their monolayer are covalently bonded. An interesting question arises: Can molecules form a 2D monolayer crystal via van der Waals interactions? Here, we first study the structural stability of a free-standing infinite C60 molecular monolayer using molecular dynamic simulations, and find that the monolayer is stable up to 600 K. We further study the mechanical properties of the monolayer, and find that the elastic modulus, ultimate tensile stress and failure strain are 55–100 GPa, 90–155 MPa, and 1.5–2.3%, respectively, depending on the stretching orientation. The monolayer fails due to shearing and cavitation under uniaxial tensile loading. The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of the monolayer are found to be delocalized and as a result, the band gap is reduced to only 60% of the isolated C60 molecule. Interestingly, this band gap can be tuned up to ±30% using strain engineering. Owing to its thermal stability, low density, strain-tunable semi-conducting characteristics and large bending flexibility, this van der Waals molecular monolayer crystal presents aplenty opportunities for developing novel applications in nanoelectronics. PMID:26183501

  15. van der Waals forces influencing adhesion of cells

    PubMed Central

    Kendall, K.; Roberts, A. D.

    2015-01-01

    Adhesion molecules, often thought to be acting by a ‘lock and key’ mechanism, have been thought to control the adhesion of cells. While there is no doubt that a coating of adhesion molecules such as fibronectin on a surface affects cell adhesion, this paper aims to show that such surface contamination is only one factor in the equation. Starting from the baseline idea that van der Waals force is a ubiquitous attraction between all molecules, and thereby must contribute to cell adhesion, it is clear that effects from geometry, elasticity and surface molecules must all add on to the basic cell attractive force. These effects of geometry, elasticity and surface molecules are analysed. The adhesion force measured between macroscopic polymer spheres was found to be strongest when the surfaces were absolutely smooth and clean, with no projecting protruberances. Values of the measured surface energy were then about 35 mJ m−2, as expected for van der Waals attractions between the non-polar molecules. Surface projections such as abrasion roughness or dust reduced the molecular adhesion substantially. Water cut the measured surface energy to 3.4 mJ m−2. Surface active molecules lowered the adhesion still further to less than 0.3 mJ m−2. These observations do not support the lock and key concept. PMID:25533101

  16. Quantum Monte Carlo Simulation of condensed van der Waals Systems

    NASA Astrophysics Data System (ADS)

    Benali, Anouar; Shulenburger, Luke; Romero, Nichols A.; Kim, Jeongnim; Anatole von Lilienfeld, O.

    2012-02-01

    Van der Waals forces are as ubiquitous as infamous. While post-Hartree-Fock methods enable accurate estimates of these forces in molecules and clusters, they remain elusive for dealing with many-electron condensed phase systems. We present Quantum Monte Carlo [1,2] results for condensed van der Waals systems. Interatomic many-body contributions to cohesive energies and bulk modulus will be discussed. Numerical evidence is presented for crystals of rare gas atoms, and compared to experiments and methods [3]. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DoE's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.[4pt] [1] J. Kim, K. Esler, J. McMinis and D. Ceperley, SciDAC 2010, J. of Physics: Conference series, Chattanooga, Tennessee, July 11 2011 [0pt] [2] QMCPACK simulation suite, http://qmcpack.cmscc.org (unpublished)[0pt] [3] O. A. von Lillienfeld and A. Tkatchenko, J. Chem. Phys. 132 234109 (2010)

  17. Implication of Two-Coupled Differential Van der Pol Duffing Oscillator in Weak Signal Detection

    NASA Astrophysics Data System (ADS)

    Peng, Hang-hang; Xu, Xue-mei; Yang, Bing-chu; Yin, Lin-zi

    2016-04-01

    The principle of the Van der Pol Duffing oscillator for state transition and for determining critical value is described, which has been studied to indicate that the application of the Van der Pol Duffing oscillator in weak signal detection is feasible. On the basis of this principle, an improved two-coupled differential Van der Pol Duffing oscillator is proposed which can identify signals under any frequency and ameliorate signal-to-noise ratio (SNR). The analytical methods of the proposed model and the construction of the proposed oscillator are introduced in detail. Numerical experiments on the properties of the proposed oscillator compared with those of the Van der Pol Duffing oscillator are carried out. Our numerical simulations have confirmed the analytical treatment. The results demonstrate that this novel oscillator has better detection performance than the Van der Pol Duffing oscillator.

  18. Van der Waals Epitaxy of Functional Oxide Heterostructures

    NASA Astrophysics Data System (ADS)

    Chu, Ying-Hao

    In the diligent pursuit of low-power consumption, multifunctional, and environmentally friendly electronics, more sophisticated requirements on functional materials are on demand. Recently, the discovery of 2D layered materials has created a revolution to this field. Pioneered by graphene, these new 2D materials exhibit abundant unusual physical phenomena that is undiscovered in bulk forms. These materials are characterized with their layer form and almost pure 2D electronic behavior. The confinement of charge and heat transport at such ultrathin planes offers possibilities to overcome the bottleneck of present device development in thickness limitation, and thus push the technologies into next generation. Van der Waals epitaxy, an epitaxial growth method to combine 2D and 3D materials, is one of current reliable manufacturing processes to fabricate 2D materials by growing these 2D materials epitaxially on 3D materials. Then, transferring the 2D materials to the substrates for practical applications. In the mean time, van der Waals epitaxy has also been used to create free-standing 3D materials by growing 3D materials on 2D materials and then removing them from 2D materials since the interfacial boding between 2D and 3D materials should be weak van der Waals bonds. In this study, we intend to take the same concept, but to integrate a family of functional materials in order to open new avenue to flexible electronics. Due to the interplay of lattice, charge, orbital, and spin degrees of freedom, correlated electrons in oxides generate a rich spectrum of competing phases and physical properties. Recently, lots of studies have suggested that oxide heterostructures provide a powerful route to create and manipulate the degrees of freedom and offer new possibilities for next generation devices, thus create a new playground for researchers to investigate novel physics and the emergence of fascinating states of condensed matter. In this talk, we use a 2D layered material as

  19. Characterization of rarefaction waves in van der Waals fluids.

    PubMed

    Yuen, Albert; Barnard, John J

    2015-12-01

    We calculate the isentropic evolution of an instantaneously heated foil, assuming a van der Waals equation of state with the Maxwell construction. The analysis by Yuen and Barnard [Phys. Rev. E 92, 033019 (2015)] is extended for the particular case of three degrees of freedom. We assume heating to temperatures in the vicinity of the critical point. The self-similar profiles of the rarefaction waves describing the evolution of the foil display plateaus in density and temperature due to a phase transition from the single-phase to the two-phase regime. The hydrodynamic equations are expressed in a dimensionless form and the solutions form a set of universal curves, depending on a single parameter: the dimensionless initial entropy. We characterize the rarefaction waves by calculating how the plateau length, density, pressure, temperature, velocity, internal energy, and sound speed vary with dimensionless initial entropy. PMID:26764692

  20. Heterostructures based on inorganic and organic van der Waals systems

    SciTech Connect

    Lee, Gwan-Hyoung; Lee, Chul-Ho; Zande, Arend M. van der; Han, Minyong; Cui, Xu; Arefe, Ghidewon; Hone, James; Nuckolls, Colin; Heinz, Tony F.; Kim, Philip

    2014-09-01

    The two-dimensional limit of layered materials has recently been realized through the use of van der Waals (vdW) heterostructures composed of weakly interacting layers. In this paper, we describe two different classes of vdW heterostructures: inorganic vdW heterostructures prepared by co-lamination and restacking; and organic-inorganic hetero-epitaxy created by physical vapor deposition of organic molecule crystals on an inorganic vdW substrate. Both types of heterostructures exhibit atomically clean vdW interfaces. Employing such vdW heterostructures, we have demonstrated various novel devices, including graphene/hexagonal boron nitride (hBN) and MoS{sub 2} heterostructures for memory devices; graphene/MoS{sub 2}/WSe{sub 2}/graphene vertical p-n junctions for photovoltaic devices, and organic crystals on hBN with graphene electrodes for high-performance transistors.

  1. A crossover in anisotropic nanomechanochemistry of van der Waals crystals

    NASA Astrophysics Data System (ADS)

    Shimamura, Kohei; Misawa, Masaaki; Li, Ying; Kalia, Rajiv K.; Nakano, Aiichiro; Shimojo, Fuyuki; Vashishta, Priya

    2015-12-01

    In nanoscale mechanochemistry, mechanical forces selectively break covalent bonds to essentially control chemical reactions. An archetype is anisotropic detonation of layered energetic molecular crystals bonded by van der Waals (vdW) interactions. Here, quantum molecular dynamics simulations reveal a crossover of anisotropic nanomechanochemistry of vdW crystal. Within 10-13 s from the passage of shock front, lateral collision produces NO2 via twisting and bending of nitro-groups and the resulting inverse Jahn-Teller effect, which is mediated by strong intra-layer hydrogen bonds. Subsequently, as we transition from heterogeneous to homogeneous mechanochemical regimes around 10-12 s, shock normal to multilayers becomes more reactive, producing H2O assisted by inter-layer N-N bond formation. These time-resolved results provide much needed atomistic understanding of nanomechanochemistry that underlies a wider range of technologies.

  2. Dynamics of a delayed van der Pol-Mathieu oscillator

    NASA Astrophysics Data System (ADS)

    Sarmah, Dipak; Bora, Madhurjya P.

    2014-02-01

    The dynamics of a van der Pol-Mathieu (vdPM) equation with time delay is considered. The vdPM model can be realized as the governing equation for dust density in a simplified model of dusty plasma. The dynamics of the time-delayed equation is analyzed by separating the time-scales of the system assuming that the fundamental simple harmonic oscillator is at least an ϐ(ɛ) dominating other terms of the oscillator including time-delay, where ɛ ≪ 1. Our analytic prediction of the slow-flow system correctly represents the dynamics of the original system, showing periodic creation and annihilation of multi-periodic limit cycles. The original system is then analyzed using the DDE-Biftool [1] bifurcation analysis tool. We show that for large time-delay, the system undergoes a double-Hopf bifurcation, whereas for small delay, it undergoes a Bogdanov-Takens bifurcation.

  3. A crossover in anisotropic nanomechanochemistry of van der Waals crystals

    SciTech Connect

    Shimamura, Kohei; Misawa, Masaaki; Li, Ying; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya; Shimojo, Fuyuki

    2015-12-07

    In nanoscale mechanochemistry, mechanical forces selectively break covalent bonds to essentially control chemical reactions. An archetype is anisotropic detonation of layered energetic molecular crystals bonded by van der Waals (vdW) interactions. Here, quantum molecular dynamics simulations reveal a crossover of anisotropic nanomechanochemistry of vdW crystal. Within 10{sup −13} s from the passage of shock front, lateral collision produces NO{sub 2} via twisting and bending of nitro-groups and the resulting inverse Jahn-Teller effect, which is mediated by strong intra-layer hydrogen bonds. Subsequently, as we transition from heterogeneous to homogeneous mechanochemical regimes around 10{sup −12} s, shock normal to multilayers becomes more reactive, producing H{sub 2}O assisted by inter-layer N-N bond formation. These time-resolved results provide much needed atomistic understanding of nanomechanochemistry that underlies a wider range of technologies.

  4. Van der Waals Density Functional Theory with Applications

    NASA Astrophysics Data System (ADS)

    Langreth, David C.

    2004-03-01

    We discuss the development of electronic density functionals that are applicable for weakly bound systems where the van der Waals interaction and its ramifications become important. Our current functionals approach the correct asymptotic dependence at large distances and are seamless at small distances. The first form of the functional, appropriate for layered systems, has been recently applied to graphite, boron nitride, and molybdenum sulfide [H. Rydberg et al., Phys. Rev. Lett. 91, 126402 (2003) and D. C. Langreth, Int. J. Quant. Chem. (submitted), see http//:www.physics.rutgers.edu/ ˜langreth/preprints/dft2003.pdf]. The second form of the functional [M. Dion it et al. (to be published)] is appropriate for arbitrary geometries. Recent results on rare gas dimers and the benzene dimer suggest promise for this method as well.

  5. Van der Waals Interactions in Density Functional Theory: Intermolecular Complexes

    NASA Astrophysics Data System (ADS)

    Kannemann, Felix; Becke, Axel

    2010-03-01

    Conventional density functional theory (GGA and hybrid functionals) fails to account for dispersion interactions and is therefore not applicable to systems where van der Waals interactions play a dominant role, such as intermolecular complexes and biomolecules. The exchange-hole dipole moment (XDM) dispersion model of Becke and Johnson [A. D. Becke and E. R. Johnson, J. Chem. Phys. 127, 154108 (2007)] corrects for this deficiency. We have previously shown that the XDM dispersion model can be combined with standard GGA functionals (PW86 for exchange and PBE for correlation) to give accurate binding energy curves for rare-gas diatomics [F. O. Kannemann and A. D. Becke, J. Chem. Theory Comput. 5, 719 (2009)]. Here we present further tests of the GGA-XDM method using benchmark sets including hydrogen bonding, electrostatic, dispersion and stacking interactions, and systems ranging from rare-gas diatomics to biomolecular complexes.

  6. Characterization of rarefaction waves in van der Waals fluids

    NASA Astrophysics Data System (ADS)

    Yuen, Albert; Barnard, John J.

    2015-12-01

    We calculate the isentropic evolution of an instantaneously heated foil, assuming a van der Waals equation of state with the Maxwell construction. The analysis by Yuen and Barnard [Phys. Rev. E 92, 033019 (2015), 10.1103/PhysRevE.92.033019] is extended for the particular case of three degrees of freedom. We assume heating to temperatures in the vicinity of the critical point. The self-similar profiles of the rarefaction waves describing the evolution of the foil display plateaus in density and temperature due to a phase transition from the single-phase to the two-phase regime. The hydrodynamic equations are expressed in a dimensionless form and the solutions form a set of universal curves, depending on a single parameter: the dimensionless initial entropy. We characterize the rarefaction waves by calculating how the plateau length, density, pressure, temperature, velocity, internal energy, and sound speed vary with dimensionless initial entropy.

  7. Characterization of rarefaction waves in van der Waals fluids.

    PubMed

    Yuen, Albert; Barnard, John J

    2015-12-01

    We calculate the isentropic evolution of an instantaneously heated foil, assuming a van der Waals equation of state with the Maxwell construction. The analysis by Yuen and Barnard [Phys. Rev. E 92, 033019 (2015)] is extended for the particular case of three degrees of freedom. We assume heating to temperatures in the vicinity of the critical point. The self-similar profiles of the rarefaction waves describing the evolution of the foil display plateaus in density and temperature due to a phase transition from the single-phase to the two-phase regime. The hydrodynamic equations are expressed in a dimensionless form and the solutions form a set of universal curves, depending on a single parameter: the dimensionless initial entropy. We characterize the rarefaction waves by calculating how the plateau length, density, pressure, temperature, velocity, internal energy, and sound speed vary with dimensionless initial entropy.

  8. Ontogenic Caste Differences in the Van der Vecht Organ of Primitively Eusocial Neotropical Paper Wasps

    PubMed Central

    de Souza, André Rodrigues; Petrocelli, Iacopo; Lino-Neto, José; Santos, Eduardo Fernando; Noll, Fernando Barbosa; Turillazzi, Stefano

    2016-01-01

    Recent studies have reported incipient morphological caste dimorphism in the Van der Vecht organ size of some temperate Polistes paper wasps. Whether species other than the temperate ones show a similar pattern remains elusive. Here, we have studied some Neotropical Polistes species. By comparing females collected through the year, we showed caste related differences in the size of the Van der Vecht organ in P. ferreri (body size corrected Van der Vech organ size of queens = 0.45 ± 0.06, workers = 0.38 ± 0.07 mm2, p = 0.0021), P. versicolor (body size corrected Van der Vech organ size of queens = 0.54 ± 0.11, workers = 0.46 ± 0.09 mm2, p = 0.010), but not P. simillimus (body size corrected Van der Vech organ size of queens = 0.52 ± 0.05, workers = 0.49 ± 0.06 mm2, p = 0.238). Therefore, it seems that queens and workers of some Neotropical Polistes have diverged in their ontogenic trajectory of the Van der Vecht organ size, providing clear evidence for incipient morphological caste dimorphism. As Polistes are distributed mostly in the tropics, we propose that physical caste differences may be widespread in the genus. Also, we highlight that morphological divergence in the queen–worker phenotypes may have started through differential selection of body structures, like the Van der Vecht organ. PMID:27167514

  9. Ontogenic Caste Differences in the Van der Vecht Organ of Primitively Eusocial Neotropical Paper Wasps.

    PubMed

    de Souza, André Rodrigues; Petrocelli, Iacopo; Lino-Neto, José; Santos, Eduardo Fernando; Noll, Fernando Barbosa; Turillazzi, Stefano

    2016-01-01

    Recent studies have reported incipient morphological caste dimorphism in the Van der Vecht organ size of some temperate Polistes paper wasps. Whether species other than the temperate ones show a similar pattern remains elusive. Here, we have studied some Neotropical Polistes species. By comparing females collected through the year, we showed caste related differences in the size of the Van der Vecht organ in P. ferreri (body size corrected Van der Vech organ size of queens = 0.45 ± 0.06, workers = 0.38 ± 0.07 mm2, p = 0.0021), P. versicolor (body size corrected Van der Vech organ size of queens = 0.54 ± 0.11, workers = 0.46 ± 0.09 mm2, p = 0.010), but not P. simillimus (body size corrected Van der Vech organ size of queens = 0.52 ± 0.05, workers = 0.49 ± 0.06 mm2, p = 0.238). Therefore, it seems that queens and workers of some Neotropical Polistes have diverged in their ontogenic trajectory of the Van der Vecht organ size, providing clear evidence for incipient morphological caste dimorphism. As Polistes are distributed mostly in the tropics, we propose that physical caste differences may be widespread in the genus. Also, we highlight that morphological divergence in the queen-worker phenotypes may have started through differential selection of body structures, like the Van der Vecht organ. PMID:27167514

  10. van der Waals rovibration levels and the high resolution spectrum of the argon-benzene dimer

    NASA Astrophysics Data System (ADS)

    van der Avoird, Ad

    1993-04-01

    The van der Waals vibrations of Ar-benzene are calculated from two different intermolecular potentials, which are analytic fits to the same ab initio potential. The rovibrational Hamiltonian was derived earlier; the wave functions of the large amplitude vibrations are expanded in products of harmonic oscillator functions. The rotational structure of each van der Waals state is obtained from perturbation theory, as well as from variational calculations of the complete rovibrational states for J=0, 1, and 2. The degenerate bending modes and combinations have a large vibrational angular momentum; for their rotational structure it is important to include all first, second, and higher order rovibrational (Coriolis) coupling. The calculated vibrational frequencies, the information about rovibrational coupling, and the PI(C6v) selection rules for van der Waals transitions, in combination with the vibronic 601 transition on the benzene monomer, lead to a partially new assignment of the three van der Waals sidebands observed in high resolution UV spectra.

  11. Van der Waals pressure and its effect on trapped interlayer molecules

    PubMed Central

    Vasu, K. S.; Prestat, E.; Abraham, J.; Dix, J.; Kashtiban, R. J.; Beheshtian, J.; Sloan, J.; Carbone, P.; Neek-Amal, M.; Haigh, S. J.; Geim, A. K.; Nair, R. R.

    2016-01-01

    Van der Waals assembly of two-dimensional crystals continue attract intense interest due to the prospect of designing novel materials with on-demand properties. One of the unique features of this technology is the possibility of trapping molecules between two-dimensional crystals. The trapped molecules are predicted to experience pressures as high as 1 GPa. Here we report measurements of this interfacial pressure by capturing pressure-sensitive molecules and studying their structural and conformational changes. Pressures of 1.2±0.3 GPa are found using Raman spectrometry for molecular layers of 1-nm in thickness. We further show that this pressure can induce chemical reactions, and several trapped salts are found to react with water at room temperature, leading to two-dimensional crystals of the corresponding oxides. This pressure and its effect should be taken into account in studies of van der Waals heterostructures and can also be exploited to modify materials confined at the atomic interfaces. PMID:27385262

  12. van't Hoff-van der Waals osmotic pressure and energy transformers.

    PubMed

    Zener, C; Levenson, W

    1983-07-01

    We find the van't Hoff relations between osmotic pressure, freezing point depression, and boiling point elevation provide a clue on how, by using salt solutions, one may lower the cost of extracting power from low-grade heat sources. In particular, the ratio of 7 between the heat of evaporation and the heat of freezing of pure water suggests a chemical system that raises 7-fold the temperature difference between heat source and heat sink, while decreasing by the same factor the heat flux. Heat exchangers dominate the cost of heat engines operating upon low-grade heat. Their area for a fixed power output is inversely proportional to the available temperature differential. Herein lies the potential for a great cost reduction. We show that the simple van der Waals concept of a gas of hard elastic spheres suffices to understand the colligative properties of salt solutions, at least up to the concentration of the eutectic composition. This concept enables us to physically interpret the thermodynamic processes during the concentration of salt solutions by evaporation and during the mixing of ice and solid salt hydrates at their eutectic temperature. These are identical to the thermodynamic processes taking place during the isothermal compression and expansion of gases in pumps and in turbines.

  13. van't Hoff-van der Waals osmotic pressure and energy transformers.

    PubMed

    Zener, C; Levenson, W

    1983-07-01

    We find the van't Hoff relations between osmotic pressure, freezing point depression, and boiling point elevation provide a clue on how, by using salt solutions, one may lower the cost of extracting power from low-grade heat sources. In particular, the ratio of 7 between the heat of evaporation and the heat of freezing of pure water suggests a chemical system that raises 7-fold the temperature difference between heat source and heat sink, while decreasing by the same factor the heat flux. Heat exchangers dominate the cost of heat engines operating upon low-grade heat. Their area for a fixed power output is inversely proportional to the available temperature differential. Herein lies the potential for a great cost reduction. We show that the simple van der Waals concept of a gas of hard elastic spheres suffices to understand the colligative properties of salt solutions, at least up to the concentration of the eutectic composition. This concept enables us to physically interpret the thermodynamic processes during the concentration of salt solutions by evaporation and during the mixing of ice and solid salt hydrates at their eutectic temperature. These are identical to the thermodynamic processes taking place during the isothermal compression and expansion of gases in pumps and in turbines. PMID:16593343

  14. van't Hoff-van der Waals osmotic pressure and energy transformers

    PubMed Central

    Zener, Clarence; Levenson, William

    1983-01-01

    We find the van't Hoff relations between osmotic pressure, freezing point depression, and boiling point elevation provide a clue on how, by using salt solutions, one may lower the cost of extracting power from low-grade heat sources. In particular, the ratio of 7 between the heat of evaporation and the heat of freezing of pure water suggests a chemical system that raises 7-fold the temperature difference between heat source and heat sink, while decreasing by the same factor the heat flux. Heat exchangers dominate the cost of heat engines operating upon low-grade heat. Their area for a fixed power output is inversely proportional to the available temperature differential. Herein lies the potential for a great cost reduction. We show that the simple van der Waals concept of a gas of hard elastic spheres suffices to understand the colligative properties of salt solutions, at least up to the concentration of the eutectic composition. This concept enables us to physically interpret the thermodynamic processes during the concentration of salt solutions by evaporation and during the mixing of ice and solid salt hydrates at their eutectic temperature. These are identical to the thermodynamic processes taking place during the isothermal compression and expansion of gases in pumps and in turbines. PMID:16593343

  15. Consistent van der Waals radii for the whole main group.

    PubMed

    Mantina, Manjeera; Chamberlin, Adam C; Valero, Rosendo; Cramer, Christopher J; Truhlar, Donald G

    2009-05-14

    Atomic radii are not precisely defined but are nevertheless widely used parameters in modeling and understanding molecular structure and interactions. The van der Waals radii determined by Bondi from molecular crystals and data for gases are the most widely used values, but Bondi recommended radius values for only 28 of the 44 main-group elements in the periodic table. In the present Article, we present atomic radii for the other 16; these new radii were determined in a way designed to be compatible with Bondi's scale. The method chosen is a set of two-parameter correlations of Bondi's radii with repulsive-wall distances calculated by relativistic coupled-cluster electronic structure calculations. The newly determined radii (in A) are Be, 1.53; B, 1.92; Al, 1.84; Ca, 2.31; Ge, 2.11; Rb, 3.03; Sr, 2.49; Sb, 2.06; Cs, 3.43; Ba, 2.68; Bi, 2.07; Po, 1.97; At, 2.02; Rn, 2.20; Fr, 3.48; and Ra, 2.83.

  16. Van Der Pol model of a Cerenkov maser

    SciTech Connect

    Kleckner, M.; Ron, A.; Botton, M.

    1995-12-31

    A non-linear analysis of a Cerenkov maser is presented. The system consists of a ring configuration of a cylindrical waveguide filled with a dielectric material. A single transverse-magnetic mode is assumed to propagate in the system. A low-density pencil electron beam travels in part of the ring, confined by a strong axial magnetic field. Using the single-particle description for the beam and the wave equation for the field, we obtain a set of two coupled non-linear differential equations describing the slowly varying amplitude and phase of the electromagnetic mode. The gain per path is assumed to be small and the spatial growth of the field is neglected. The resulting time dependent amplitude includes the exponential gain of the linear stage and the saturation to its maximum value. The time dependent frequency is also calculated. The two equations are combined to a single Van Der Pol equation with a non-linear restoring force. This description demonstrates the similarities and differences between the Cerenkov maser and other lasing systems.

  17. Abnormal brain structure in adults with Van der Woude syndrome.

    PubMed

    Nopoulos, P; Richman, L; Andreasen, N C; Murray, J C; Schutte, B

    2007-06-01

    Van der Woude syndrome (VWS) is an autosomal dominant disorder manifested in cleft lip and/or palate and lip pits. Isolated clefts of the lip and/or palate (ICLP) have both genotype and phenotype overlap with VWS. Subjects with ICLP have abnormalities in brain structure and function. Given the similarities between VWS and ICLP, the current study was designed to evaluate the pattern of brain structure of adults with VWS. Fourteen adults with VWS were compared to age- and gender-matched healthy controls. Brain structure was evaluated using magnetic resonance imaging. All subjects with VWS had enlarged volumes of the anterior regions of the cerebrum. Men with VWS had reduced volumes of the posterior cerebrum. Anterior cerebrum volume was negatively correlated with intelligent quotient in the subjects with VWS indicating that the enlargement of this brain region was 'pathologic.' The pattern of brain structure in VWS is nearly identical to those seen in ICLP. In addition, men are affected more severely. Pathologic enlargement of the tissue and a gender effect with men affected more severely are common features of neurodevelopmental disorders supporting the notion that the brain structure of VWS and ICLP may be because of abnormal brain development. PMID:17539900

  18. Synchronization of two memristively coupled van der Pol oscillators

    NASA Astrophysics Data System (ADS)

    Ignatov, M.; Hansen, M.; Ziegler, M.; Kohlstedt, H.

    2016-02-01

    The objective of this letter is to convey two essential principles of biological computing—synchronization and memory—in an electronic circuit with two van der Pol (vdP) oscillators coupled via a memristive device. The coupling was mediated by connecting the gate terminals of two programmable unijunction transistors through a resistance-capacitance network comprising an Ag-TiOx-Al memristive device. In the high resistance state the memristance was in the order of MΩ, which leads to two independent self-sustained oscillators characterized by the different frequencies f1 and f2 and no phase relation between the oscillations. Depending on the mediated pulse amplitude, the memristive device switched to the low resistance state after a few cycles and a frequency adaptation and phase locking were observed. The experimental results are underlined by theoretically considering a system of two coupled vdP equations. This experiment may pave the way to larger neuromorphic networks in which the coupling parameters (through memristive devices) can vary in time and strength and are able to remember the history of applied electrical potentials.

  19. Spatially Correlated Disorder in Epitaxial van der Waals Heterostructures

    NASA Astrophysics Data System (ADS)

    Laanait, Nouamane; Zhang, Zhan; Schleputz, Christian; Liu, Ying; Wojcik, Michael; Myers-Ward, Rachael; Gaskill, D. Kurt; Fenter, Paul; Li, Lian

    The structural cohesion of van der Waals (vdW) heterostructures relies upon a cooperative balance between strong intra-layer bonded interactions and weak inter-layer coupling. The confinement of extended defects to within a single vdW layer and competing interactions introduced by epitaxial constraints could generate fundamentally new structural disorders. Here we report on the presence of spatially correlated and localized disorder states that coexist with the near perfect crystallographic order along the growth direction of epitaxial vdW heterostructure of Bi2Se3/graphene/SiC grown by molecular beam epitaxy. With the depth penetration of hard X-ray diffraction microscopy and high-resolution surface scattering, we imaged local structural configurations from the atomic to mesoscopic length scales, and found that these disorder states result as a confluence of atomic scale modulations in the strength of vdW layer-layer interactions and nanoscale boundary conditions imposed by the substrate. These findings reveal a vast landscape of novel disorder states that can be manifested in epitaxial vdW heterostructures. Supported by the Wigner Fellowship program at Oak Ridge Nat'l Lab.

  20. The van der Waals potential of the magnesium dimer.

    PubMed

    Li, P; Xie, W; Tang, K T

    2010-08-28

    The ground state van der Waals potential of the magnesium dimer is described by the Tang-Toennies potential model, which requires five essential parameters. Among them, the three dispersion coefficients C(6), C(8), and C(10) are available from accurate ab initio calculations. The other two are the Born-Mayer parameters in A exp(-bR). In this paper, we show that A and b can be determined from the self-consistent Hartree-Fock calculations and the experimental dissociation energy D(0). The predicted well depth D(e) and equilibrium distance R(e) are in nearly perfect agreement with the experiment. In fact, the entire potential energy curve, which is given by a single analytic function, is in excellent agreement with the pointwise potential energies constructed from the spectroscopic measurements in the interval of 6a(0)-14a(0) and in good agreement with the experimental repulsive potential determined from Franck-Condon factors of the bound-free transitions for R less than 6a(0). The reduced potential of Mg(2) is analyzed in terms of its components, and the number of terms in the dispersion series necessary for convergence is investigated.

  1. Photocurrent generation with two-dimensional van der Waals semiconductors.

    PubMed

    Buscema, Michele; Island, Joshua O; Groenendijk, Dirk J; Blanter, Sofya I; Steele, Gary A; van der Zant, Herre S J; Castellanos-Gomez, Andres

    2015-06-01

    Two-dimensional (2D) materials have attracted a great deal of interest in recent years. This family of materials allows for the realization of versatile electronic devices and holds promise for next-generation (opto)electronics. Their electronic properties strongly depend on the number of layers, making them interesting from a fundamental standpoint. For electronic applications, semiconducting 2D materials benefit from sizable mobilities and large on/off ratios, due to the large modulation achievable via the gate field-effect. Moreover, being mechanically strong and flexible, these materials can withstand large strain (>10%) before rupture, making them interesting for strain engineering and flexible devices. Even in their single layer form, semiconducting 2D materials have demonstrated efficient light absorption, enabling large responsivity in photodetectors. Therefore, semiconducting layered 2D materials are strong candidates for optoelectronic applications, especially for photodetection. Here, we review the state-of-the-art in photodetectors based on semiconducting 2D materials, focusing on the transition metal dichalcogenides, novel van der Waals materials, black phosphorus, and heterostructures.

  2. Universal shape and pressure inside bubbles appearing in van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Khestanova, E.; Guinea, F.; Fumagalli, L.; Geim, A. K.; Grigorieva, I. V.

    2016-08-01

    Trapped substances between a two-dimensional (2D) crystal and an atomically flat substrate lead to the formation of bubbles. Their size, shape and internal pressure are determined by the competition between van der Waals attraction of the crystal to the substrate and the elastic energy needed to deform it, allowing to use bubbles to study elastic properties of 2D crystals and conditions of confinement. Using atomic force microscopy, we analysed a variety of bubbles formed by monolayers of graphene, boron nitride and MoS2. Their shapes are found to exhibit universal scaling, in agreement with our analysis based on the theory of elasticity of membranes. We also measured the hydrostatic pressure induced by the confinement, which was found to reach tens of MPa inside submicron bubbles. This agrees with our theory estimates and suggests that for even smaller, sub-10 nm bubbles the pressure can be close to 1 GPa and may modify properties of a trapped material.

  3. Improving the accuracy of the nonlocal van der Waals density functional with minimal empiricism.

    PubMed

    Vydrov, Oleg A; Van Voorhis, Troy

    2009-03-14

    The nonlocal van der Waals density functional (vdW-DF) captures the essential physics of the dispersion interaction not only in the asymptotic regime but also for a general case of overlapping fragment densities. A balanced treatment of other energetic contributions, such as exchange, is crucial if we aim for accurate description of various properties of weakly bound systems. In this paper, the vdW-DF correlation functional is modified to make it better compatible with accurate exchange functionals. We suggest a slightly simplified construction of the nonlocal correlation, yielding more accurate asymptotic C(6) coefficients. We also derive a gradient correction, containing a parameter that can be adjusted to suit an exchange functional of choice. We devise a particularly apt combination of exchange and correlation terms, which satisfies many important constraints and performs well for our benchmark tests.

  4. Van der Waals coefficients beyond the classical shell model

    SciTech Connect

    Tao, Jianmin; Fang, Yuan; Hao, Pan; Scuseria, G. E.; Ruzsinszky, Adrienn; Perdew, John P.

    2015-01-14

    Van der Waals (vdW) coefficients can be accurately generated and understood by modelling the dynamic multipole polarizability of each interacting object. Accurate static polarizabilities are the key to accurate dynamic polarizabilities and vdW coefficients. In this work, we present and study in detail a hollow-sphere model for the dynamic multipole polarizability proposed recently by two of the present authors (JT and JPP) to simulate the vdW coefficients for inhomogeneous systems that allow for a cavity. The inputs to this model are the accurate static multipole polarizabilities and the electron density. A simplification of the full hollow-sphere model, the single-frequency approximation (SFA), circumvents the need for a detailed electron density and for a double numerical integration over space. We find that the hollow-sphere model in SFA is not only accurate for nanoclusters and cage molecules (e.g., fullerenes) but also yields vdW coefficients among atoms, fullerenes, and small clusters in good agreement with expensive time-dependent density functional calculations. However, the classical shell model (CSM), which inputs the static dipole polarizabilities and estimates the static higher-order multipole polarizabilities therefrom, is accurate for the higher-order vdW coefficients only when the interacting objects are large. For the lowest-order vdW coefficient C{sub 6}, SFA and CSM are exactly the same. The higher-order (C{sub 8} and C{sub 10}) terms of the vdW expansion can be almost as important as the C{sub 6} term in molecular crystals. Application to a variety of clusters shows that there is strong non-additivity of the long-range vdW interactions between nanoclusters.

  5. EDITORIAL: Van der Waals interactions in advanced materials, in memory of David C Langreth Van der Waals interactions in advanced materials, in memory of David C Langreth

    NASA Astrophysics Data System (ADS)

    Hyldgaard, Per; Rahman, Talat S.

    2012-10-01

    Rahman Frictional temperature rise in a sliding physisorbed monolayer of Kr/grapheneM Walker, C Jaye, J Krim and Milton W Cole How to modify the van der Waals and Casimir forces without change of the dielectric permittivityG L Klimchitskaya, U Mohideen and V M Mostepanenko Spectroscopic characterization of van der Waals interactions in a metal organic framework with unsaturated metal centers: MOF-74-MgNour Nijem, Pieremanuele Canepa, Lingzhu Kong, Haohan Wu, Jing Li, Timo Thonhauser and Yves J Chabal A theoretical study of the hydrogen-storage potential of (H2)4CH4 in metal organic framework materials and carbon nanotubesQ Li and T Thonhauser The influence of dispersion interactions on the hydrogen adsorption properties of expanded graphiteYungok Ihm, Valentino R Cooper, Lujian Peng and James R Morris A DFT-D study of structural and energetic properties of TiO2 modificationsJonas Moellmann, Stephan Ehrlich, Ralf Tonner and Stefan Grimme Spherical-shell model for the van der Waals coefficients between fullerenes and/or nearly spherical nanoclustersJohn P Perdew, Jianmin Tao, Pan Hao, Adrienn Ruzsinszky, Gábor I Csonka and J M Pitarke Dynamical screening of the van der Waals interaction between graphene layersY J Dappe, P G Bolcatto, J Ortega and F Flores Structural evolution of amino acid crystals under stress from a non-empirical density functionalRiccardo Sabatini, Emine Küçükbenli, Brian Kolb, T Thonhauser and Stefano de Gironcoli Physisorption of nucleobases on graphene: a comparative van der Waals studyDuy Le, Abdelkader Kara, Elsebeth Schröder, Per Hyldgaard and Talat S Rahman The role of van der Waals interactions in the adsorption of noble gases on metal surfacesDe-Li Chen, W A Al-Saidi and J Karl Johnson Desorption of n-alkanes from graphene: a van der Waals density functional studyElisa Londero, Emma K Karlson, Marcus Landahl, Dimitri Ostrovskii, Jonatan D Rydberg and Elsebeth Schröder Benchmarking van der Waals density functionals with experimental data

  6. Clamping instability and van der Waals forces in carbon nanotube mechanical resonators.

    PubMed

    Aykol, Mehmet; Hou, Bingya; Dhall, Rohan; Chang, Shun-Wen; Branham, William; Qiu, Jing; Cronin, Stephen B

    2014-05-14

    We investigate the role of weak clamping forces, typically assumed to be infinite, in carbon nanotube mechanical resonators. Due to these forces, we observe a hysteretic clamping and unclamping of the nanotube device that results in a discrete drop in the mechanical resonance frequency on the order of 5-20 MHz, when the temperature is cycled between 340 and 375 K. This instability in the resonant frequency results from the nanotube unpinning from the electrode/trench sidewall where it is bound weakly by van der Waals forces. Interestingly, this unpinning does not affect the Q-factor of the resonance, since the clamping is still governed by van der Waals forces above and below the unpinning. For a 1 μm device, the drop observed in resonance frequency corresponds to a change in nanotube length of approximately 50-65 nm. On the basis of these findings, we introduce a new model, which includes a finite tension around zero gate voltage due to van der Waals forces and shows better agreement with the experimental data than the perfect clamping model. From the gate dependence of the mechanical resonance frequency, we extract the van der Waals clamping force to be 1.8 pN. The mechanical resonance frequency exhibits a striking temperature dependence below 200 K attributed to a temperature-dependent slack arising from the competition between the van der Waals force and the thermal fluctuations in the suspended nanotube. PMID:24758201

  7. Comparing heat exchangers of thermacoustic prime movers with a Van der Pol model

    NASA Astrophysics Data System (ADS)

    Cox, I.; Jorgensen, M.; Andersen, B.

    2010-10-01

    A thermoacoustic standing-wave prime mover is a self-sustained oscillator whose initial growth of acoustic pressure into amplitude saturation can be modeled by the Van der Pol equation. The nonlinear Van der Pol equation is calculated computationally, using 4^th order Runge-Kutta. The Van der Pol model gives quantitative loss and gain parameters, when using a best-fit with experimental data. The engines tested in this study have an average frequency of 2700 Hz, which suggests that the first second of oscillations when using the Van der Pol model can reveal information about the steady-state performance of the device. This model is applied to studying the effect of different heat exchanger sizes. All sixteen possible permutations were tested using different copper wire mesh dimensions: 24X24, 40X40, 60X60, and 80X80 for the hot and cold heat exchangers (where ##X## indicates wires per inch). Plotting the steady-state acoustic pressure as a function of the gain term divided by the loss term shows roughly, a linear relationship. The engine with the highest gain term and smallest loss term was using 80X80 for the hot heat exchanger combined with the 24X24 for the cold heat exchanger and is consistent with the highest steady-state pressure achieved. The modeling process has been very successful and fits the Van der Pol equation.

  8. Dynamics of three coupled van der Pol oscillators with application to circadian rhythms

    NASA Astrophysics Data System (ADS)

    Rompala, Kevin; Rand, Richard; Howland, Howard

    2007-08-01

    In this work we study a system of three van der Pol oscillators. Two of the oscillators are identical, and are not directly coupled to each other, but rather are coupled via the third oscillator. We investigate the existence of the in-phase mode in which the two identical oscillators have the same behavior. To this end we use the two variable expansion perturbation method (also known as multiple scales) to obtain a slow flow, which we then analyze using the computer algebra system MACSYMA and the numerical bifurcation software AUTO. Our motivation for studying this system comes from the presence of circadian rhythms in the chemistry of the eyes. We model the circadian oscillator in each eye as a van der Pol oscillator. Although there is no direct connection between the two eyes, they are both connected to the brain, especially to the pineal gland, which is here represented by a third van der Pol oscillator.

  9. Van der Waals interactions and the limits of isolated atom models at interfaces.

    PubMed

    Kawai, Shigeki; Foster, Adam S; Björkman, Torbjörn; Nowakowska, Sylwia; Björk, Jonas; Canova, Filippo Federici; Gade, Lutz H; Jung, Thomas A; Meyer, Ernst

    2016-01-01

    Van der Waals forces are among the weakest, yet most decisive interactions governing condensation and aggregation processes and the phase behaviour of atomic and molecular matter. Understanding the resulting structural motifs and patterns has become increasingly important in studies of the nanoscale regime. Here we measure the paradigmatic van der Waals interactions represented by the noble gas atom pairs Ar-Xe, Kr-Xe and Xe-Xe with a Xe-functionalized tip of an atomic force microscope at low temperature. Individual rare gas atoms were fixed at node sites of a surface-confined two-dimensional metal-organic framework. We found that the magnitude of the measured force increased with the atomic radius, yet detailed simulation by density functional theory revealed that the adsorption induced charge redistribution strengthened the van der Waals forces by a factor of up to two, thus demonstrating the limits of a purely atomic description of the interaction in these representative systems. PMID:27174162

  10. Van der Waals interactions and the limits of isolated atom models at interfaces

    NASA Astrophysics Data System (ADS)

    Kawai, Shigeki; Foster, Adam S.; Björkman, Torbjörn; Nowakowska, Sylwia; Björk, Jonas; Canova, Filippo Federici; Gade, Lutz H.; Jung, Thomas A.; Meyer, Ernst

    2016-05-01

    Van der Waals forces are among the weakest, yet most decisive interactions governing condensation and aggregation processes and the phase behaviour of atomic and molecular matter. Understanding the resulting structural motifs and patterns has become increasingly important in studies of the nanoscale regime. Here we measure the paradigmatic van der Waals interactions represented by the noble gas atom pairs Ar-Xe, Kr-Xe and Xe-Xe with a Xe-functionalized tip of an atomic force microscope at low temperature. Individual rare gas atoms were fixed at node sites of a surface-confined two-dimensional metal-organic framework. We found that the magnitude of the measured force increased with the atomic radius, yet detailed simulation by density functional theory revealed that the adsorption induced charge redistribution strengthened the van der Waals forces by a factor of up to two, thus demonstrating the limits of a purely atomic description of the interaction in these representative systems.

  11. Van der Waals interactions and the limits of isolated atom models at interfaces

    PubMed Central

    Kawai, Shigeki; Foster, Adam S.; Björkman, Torbjörn; Nowakowska, Sylwia; Björk, Jonas; Canova, Filippo Federici; Gade, Lutz H.; Jung, Thomas A.; Meyer, Ernst

    2016-01-01

    Van der Waals forces are among the weakest, yet most decisive interactions governing condensation and aggregation processes and the phase behaviour of atomic and molecular matter. Understanding the resulting structural motifs and patterns has become increasingly important in studies of the nanoscale regime. Here we measure the paradigmatic van der Waals interactions represented by the noble gas atom pairs Ar–Xe, Kr–Xe and Xe–Xe with a Xe-functionalized tip of an atomic force microscope at low temperature. Individual rare gas atoms were fixed at node sites of a surface-confined two-dimensional metal–organic framework. We found that the magnitude of the measured force increased with the atomic radius, yet detailed simulation by density functional theory revealed that the adsorption induced charge redistribution strengthened the van der Waals forces by a factor of up to two, thus demonstrating the limits of a purely atomic description of the interaction in these representative systems. PMID:27174162

  12. van der Waals interaction between a microparticle and a single-walled carbon nanotube

    SciTech Connect

    Blagov, E. V.; Mostepanenko, V. M.; Klimchitskaya, G. L.

    2007-06-15

    The Lifshitz-type formulas describing the free energy and the force of the van der Waals interaction between an atom (molecule) and a single-walled carbon nanotube are obtained. The single-walled nanotube is considered as a cylindrical sheet carrying a two-dimensional free-electron gas with appropriate boundary conditions on the electromagnetic field. The obtained formulas are used to calculate the van der Waals free energy and force between a hydrogen atom (molecule) and single-walled carbon nanotubes of different radii. Comparison studies of the van der Waals interaction of hydrogen atoms with single-walled and multiwalled carbon nanotubes show that depending on atom-nanotube separation distance, the idealization of graphite dielectric permittivity is already applicable to nanotubes with only two or three walls.

  13. The role of collective motion in the ultrafast charge transfer in van der Waals heterostructures

    PubMed Central

    Wang, Han; Bang, Junhyeok; Sun, Yiyang; Liang, Liangbo; West, Damien; Meunier, Vincent; Zhang, Shengbai

    2016-01-01

    The success of van der Waals heterostructures made of graphene, metal dichalcogenides and other layered materials, hinges on the understanding of charge transfer across the interface as the foundation for new device concepts and applications. In contrast to conventional heterostructures, where a strong interfacial coupling is essential to charge transfer, recent experimental findings indicate that van der Waals heterostructues can exhibit ultrafast charge transfer despite the weak binding of these heterostructures. Here we find, using time-dependent density functional theory molecular dynamics, that the collective motion of excitons at the interface leads to plasma oscillations associated with optical excitation. By constructing a simple model of the van der Waals heterostructure, we show that there exists an unexpected criticality of the oscillations, yielding rapid charge transfer across the interface. Application to the MoS2/WS2 heterostructure yields good agreement with experiments, indicating near complete charge transfer within a timescale of 100 fs. PMID:27160484

  14. Quantum vacuum photon modes and repulsive Lifshitz-van der Waals interactions

    NASA Astrophysics Data System (ADS)

    Dellieu, Louis; Deparis, Olivier; Muller, Jérôme; Kolaric, Branko; Sarrazin, Michaël

    2015-12-01

    The bridge between quantum vacuum photon modes and properties of patterned surfaces is currently being established on solid theoretical grounds. Based on these foundations, the manipulation of quantum vacuum photon modes in a nanostructured cavity is theoretically shown to be able to change the Lifshitz-van der Waals forces from attractive to repulsive regime. Since this concept relies on surface nanopatterning instead of chemical composition changes, it drastically relaxes the usual conditions for achieving repulsive Lifshitz-van der Waals forces. As a case study, the potential interaction energy between a nanopatterned polyethylene slab and a flat polyethylene slab with water as the intervening medium is calculated. Extremely small corrugation heights (<10 nm) are shown to be able to change the Lifshitz-van der Waals force from attractive to repulsive, the interaction strength being controlled by the corrugation height. This new approach could lead to various applications in surface science.

  15. Analyzing Longitudinal Magnetoresistance Asymmetry to Quantify Doping Gradients: Generalization of the van der Pauw Method

    NASA Astrophysics Data System (ADS)

    Zhou, Wang; Yoo, H. M.; Prabhu-Gaunkar, S.; Tiemann, L.; Reichl, C.; Wegscheider, W.; Grayson, M.

    2015-10-01

    A longitudinal magnetoresistance asymmetry (LMA) between a positive and negative magnetic field is known to occur in both the extreme quantum limit and the classical Drude limit in samples with a nonuniform doping density. By analyzing the current stream function in van der Pauw measurement geometry, it is shown that the electron density gradient can be quantitatively deduced from this LMA in the Drude regime. Results agree with gradients interpolated from local densities calibrated across an entire wafer, establishing a generalization of the van der Pauw method to quantify density gradients.

  16. General theory based on fluctuational electrodynamics for van der Waals interactions in colloidal systems

    SciTech Connect

    Yannopapas, Vassilios

    2007-12-15

    A rigorous theory for the determination of the van der Waals interactions in colloidal systems is presented. The method is based on fluctuational electrodynamics and a multiple-scattering method which provides the electromagnetic Green's tensor. In particular, expressions for the Green's tensor are presented for arbitrary, finite collections of colloidal particles, for infinitely periodic or defected crystals, as well as for finite slabs of crystals. The presented formalism allows for ab initio calculations of the van der Waals interactions in colloidal systems since it takes fully into account retardation, many-body, multipolar, and near-field effects.

  17. Near-Unity Absorption in van der Waals Semiconductors for Ultrathin Optoelectronics.

    PubMed

    Jariwala, Deep; Davoyan, Artur R; Tagliabue, Giulia; Sherrott, Michelle C; Wong, Joeson; Atwater, Harry A

    2016-09-14

    We demonstrate near-unity, broadband absorbing optoelectronic devices using sub-15 nm thick transition metal dichalcogenides (TMDCs) of molybdenum and tungsten as van der Waals semiconductor active layers. Specifically, we report that near-unity light absorption is possible in extremely thin (<15 nm) van der Waals semiconductor structures by coupling to strongly damped optical modes of semiconductor/metal heterostructures. We further fabricate Schottky junction devices using these highly absorbing heterostructures and characterize their optoelectronic performance. Our work addresses one of the key criteria to enable TMDCs as potential candidates to achieve high optoelectronic efficiency. PMID:27563733

  18. Near-Unity Absorption in van der Waals Semiconductors for Ultrathin Optoelectronics.

    PubMed

    Jariwala, Deep; Davoyan, Artur R; Tagliabue, Giulia; Sherrott, Michelle C; Wong, Joeson; Atwater, Harry A

    2016-09-14

    We demonstrate near-unity, broadband absorbing optoelectronic devices using sub-15 nm thick transition metal dichalcogenides (TMDCs) of molybdenum and tungsten as van der Waals semiconductor active layers. Specifically, we report that near-unity light absorption is possible in extremely thin (<15 nm) van der Waals semiconductor structures by coupling to strongly damped optical modes of semiconductor/metal heterostructures. We further fabricate Schottky junction devices using these highly absorbing heterostructures and characterize their optoelectronic performance. Our work addresses one of the key criteria to enable TMDCs as potential candidates to achieve high optoelectronic efficiency.

  19. Solution phase van der Waals epitaxy of ZnO wire arrays

    NASA Astrophysics Data System (ADS)

    Zhu, Yue; Zhou, Yong; Bakti Utama, Muhammad Iqbal; Mata, María De La; Zhao, Yanyuan; Zhang, Qing; Peng, Bo; Magen, Cesar; Arbiol, Jordi; Xiong, Qihua

    2013-07-01

    As an incommensurate epitaxy, van der Waals epitaxy allows defect-free crystals to grow on substrates even with a large lattice mismatch. Furthermore, van der Waals epitaxy is proposed as a universal platform where heteroepitaxy can be achieved irrespective of the nature of the overlayer material and the method of crystallization. Here we demonstrate van der Waals epitaxy in solution phase synthesis for seedless and catalyst-free growth of ZnO wire arrays on phlogopite mica at low temperature. A unique incommensurate interface is observed even with the incomplete initial wetting of ZnO onto the substrate. Interestingly, the imperfect contacting layer does not affect the crystalline and optical properties of other parts of the wires. In addition, we present patterned growth of a well-ordered array with hexagonal facets and in-plane alignment. We expect our seedless and catalyst-free solution phase van der Waals epitaxy synthesis to be widely applicable in other materials and structures.As an incommensurate epitaxy, van der Waals epitaxy allows defect-free crystals to grow on substrates even with a large lattice mismatch. Furthermore, van der Waals epitaxy is proposed as a universal platform where heteroepitaxy can be achieved irrespective of the nature of the overlayer material and the method of crystallization. Here we demonstrate van der Waals epitaxy in solution phase synthesis for seedless and catalyst-free growth of ZnO wire arrays on phlogopite mica at low temperature. A unique incommensurate interface is observed even with the incomplete initial wetting of ZnO onto the substrate. Interestingly, the imperfect contacting layer does not affect the crystalline and optical properties of other parts of the wires. In addition, we present patterned growth of a well-ordered array with hexagonal facets and in-plane alignment. We expect our seedless and catalyst-free solution phase van der Waals epitaxy synthesis to be widely applicable in other materials and structures

  20. Numerical integration of nearly-Hamiltonian systems. [Van der Pol oscillator and perturbed Keplerian motion

    NASA Technical Reports Server (NTRS)

    Bond, V. R.

    1978-01-01

    The reported investigation is concerned with the solution of systems of differential equations which are derived from a Hamiltonian function in the extended phase space. The problem selected involves a one-dimensional perturbed harmonic oscillator. The van der Pol equation considered has an exact asymptotic value for its amplitude. Comparisons are made between a numerical solution and a known analytical solution. In addition to the van der Pol problem, known solutions regarding the restricted problem of three bodies are used as examples for perturbed Keplerian motion. The extended phase space Hamiltonian discussed by Stiefel and Scheifele (1971) is considered. A description is presented of two canonical formulations of the perturbed harmonic oscillator.

  1. Replica-exchange method in van der Waals radius space: overcoming steric restrictions for biomolecules.

    PubMed

    Itoh, Satoru G; Okumura, Hisashi; Okamoto, Yuko

    2010-04-01

    We present a new type of the Hamiltonian replica-exchange method, where the van der Waals radius parameter and not the temperature is exchanged. By decreasing the van der Waals radii, which control spatial sizes of atoms, this Hamiltonian replica-exchange method overcomes the steric restrictions and energy barriers. Furthermore, the simulation based on this method escapes from the local-minimum free-energy states and realizes effective sampling in the conformational space. We applied this method to an alanine dipeptide in aqueous solution and showed the effectiveness of the method by comparing the results with those obtained from the conventional canonical and replica-exchange methods.

  2. A high-pressure van der Waals compound in solid nitrogen-helium mixtures

    NASA Technical Reports Server (NTRS)

    Vos, W. L.; Finger, L. W.; Hemley, R. J.; Hu, J. Z.; Mao, H. K.; Schouten, J. A.

    1992-01-01

    A detailed diamond anvil-cell study using synchrotron X-ray diffraction, Raman scattering, and optical microscopy has been conducted for the He-N system, with a view to the weakly-bound van der Waals molecule interactions that can be formed in the gas phase. High pressure is found to stabilize the formation of a stoichiometric, solid van der Waals compound of He(N2)11 composition which may exemplify a novel class of compounds found at high pressures in the interiors of the outer planets and their satellites.

  3. On Attempting to Do What Lord Said Was Impossible: Commentary on van der Linden's "Some Conceptual Issues in Observed-Score Equating"

    ERIC Educational Resources Information Center

    Dorans, Neil J.

    2013-01-01

    van der Linden (this issue) uses words differently than Holland and Dorans. This difference in language usage is a source of some confusion in van der Linden's critique of what he calls equipercentile equating. I address these differences in language. van der Linden maintains that there are only two requirements for score equating. I maintain…

  4. Generalized van der Waals Hamiltonian: periodic orbits and C1 nonintegrability.

    PubMed

    Guirao, Juan L G; Llibre, Jaume; Vera, Juan A

    2012-03-01

    The aim of this paper is to study the periodic orbits of the generalized van der Waals Hamiltonian system. The tool for studying such periodic orbits is the averaging theory. Moreover, for this Hamiltonian system we provide information on its C(1) nonintegrability, i.e., on the existence of a second first integral of class C(1).

  5. Gas Temperature Determination in Argon-Helium Plasma at Atmospheric Pressure using van der Waals Broadening

    SciTech Connect

    Munoz, Jose; Yubero, Cristina; Calzada, Maria Dolores; Dimitrijevic, Milan S.

    2008-10-22

    The use of the van der Waals broadening of Ar atomic lines to determine the gas temperature in Ar-He plasmas, taking into account both argon and helium atoms as perturbers, has been analyzed. The values of the gas temperature inferred from this broadening have been compared with those obtained from the spectra of the OH molecular species in the discharge.

  6. Maxwell's Relations for a van der Waals Gas and a Nuclear Paramagnetic System.

    ERIC Educational Resources Information Center

    Herlihy, James; And Others

    1981-01-01

    Since Maxwell's relations are derived in general form from the first to second laws, and students often wonder what they mean and how they are used, appropriate partition functions for van der Waals gas and the nuclear paramagnetic system are used to obtain entropy expressions and equations of state. (Author/SK)

  7. Generalized van der Waals theory for the thermodynamic properties of square-well fluids

    NASA Astrophysics Data System (ADS)

    Largo, J.; Solana, J. R.

    2003-06-01

    A theory previously developed for the coordination number of square-well fluids is used within the context of a generalized van der Waals theory to obtain the compressibility factor and the internal energy of these fluids. Results are compared with computer simulations for several densities, temperatures, and potential widths, which are also reported.

  8. van der Waals Density Functional Theory vdW-DFq for Semihard Materials

    NASA Astrophysics Data System (ADS)

    Peng, Qing; de, Suvranu

    There are a large number of materials with mild stiffness, which are not as soft as tissues and not as strong as metals. These semihard materials includes energetic materials, molecular crystals, layered materials, and van der Waals crystals. The integrity and mechanical stability are mainly determined by the interactions between instantaneously induced dipoles, the so called London dispersion force or van der Waals force. It is challenging to accurately model the structural and mechanical properties of these semihard materials in the frame of density functional theory where the non-local correlation functionals are not well known. Here we propose a van der Waals density functional named vdW-DFq to accurately model the density and geometry of semihard materials. Using β-cyclotetramethylene tetranitramine as a prototype, we adjust the enhancement factor of the exchange energy functional with generalized gradient approximations. We find this method to be simple and robust over a wide tuning range when calibrating the functional on-demand with experimental data. With a calibrated value q = 1 . 05 , the proposed vdW-DFq method shows good performance in predicting the geometries of 11 common energetic material molecular crystals and 3 typical layered van der Waals crystals. The authors would like to acknowledge the generous financial support from the Defense Threat Reduction Agency (DTRA) Grant # HDTRA1-13-1-0025.

  9. Approximating the 3D Character of a Van Der Waals Atom-Solid Potential

    NASA Astrophysics Data System (ADS)

    Bruch, L. W.

    2016-10-01

    A truncated Fourier decomposition of the atom-substrate potential energy is developed for three-dimensional models of van der Waals systems, specifically for adsorption on the basal plane surface of graphite or the (111) face of a face-centered-cubic lattice. This provides a framework for analysis of a priori calculations of physical adsorption energies.

  10. The first record of Pyxidium tardigradum Van der Land, 1964 (Ciliophora) in Romania.

    PubMed

    Ciobanu, Daniel Adrian; Roszkowska, Milena; Moglan, Ioan; Kaczmarek, Łukasz

    2015-04-02

    In three lichen samples collected from eastern part of Romania, three populations of Ramazzottius cf. oberhaeuseri (Doyère, 1840) infested by Pyxidium tardigradum Van der Land 1964 were found. In this short correspondence we present a first record of P. tardigradum in Romania and infestation rates in studied populations according to the different life stages.

  11. First principles calculations of solid-state thermionic transport in layered van der Waals heterostructures.

    PubMed

    Wang, Xiaoming; Zebarjadi, Mona; Esfarjani, Keivan

    2016-08-21

    This work aims at understanding solid-state energy conversion and transport in layered (van der Waals) heterostructures in contact with metallic electrodes via a first-principles approach. As an illustration, a graphene/phosphorene/graphene heterostructure in contact with gold electrodes is studied by using density functional theory (DFT)-based first principles calculations combined with real space Green's function (GF) formalism. We show that for a monolayer phosphorene, quantum tunneling dominates the transport. By adding more phosphorene layers, one can switch from tunneling-dominated transport to thermionic-dominated transport, resulting in transporting more heat per charge carrier, thus, enhancing the cooling coefficient of performance. The use of layered van der Waals heterostructures has two advantages: (a) thermionic transport barriers can be tuned by changing the number of layers, and (b) thermal conductance across these non-covalent structures is very weak. The phonon thermal conductance of the present van der Waals heterostructure is found to be 4.1 MW m(-2) K(-1) which is one order of magnitude lower than the lowest value for that of covalently-bonded interfaces. The thermionic coefficient of performance for the proposed device is 18.5 at 600 K corresponding to an equivalent ZT of 0.13, which is significant for nanoscale devices. This study shows that layered van der Waals structures have great potential to be used as solid-state energy-conversion devices.

  12. First principles calculations of solid-state thermionic transport in layered van der Waals heterostructures.

    PubMed

    Wang, Xiaoming; Zebarjadi, Mona; Esfarjani, Keivan

    2016-08-21

    This work aims at understanding solid-state energy conversion and transport in layered (van der Waals) heterostructures in contact with metallic electrodes via a first-principles approach. As an illustration, a graphene/phosphorene/graphene heterostructure in contact with gold electrodes is studied by using density functional theory (DFT)-based first principles calculations combined with real space Green's function (GF) formalism. We show that for a monolayer phosphorene, quantum tunneling dominates the transport. By adding more phosphorene layers, one can switch from tunneling-dominated transport to thermionic-dominated transport, resulting in transporting more heat per charge carrier, thus, enhancing the cooling coefficient of performance. The use of layered van der Waals heterostructures has two advantages: (a) thermionic transport barriers can be tuned by changing the number of layers, and (b) thermal conductance across these non-covalent structures is very weak. The phonon thermal conductance of the present van der Waals heterostructure is found to be 4.1 MW m(-2) K(-1) which is one order of magnitude lower than the lowest value for that of covalently-bonded interfaces. The thermionic coefficient of performance for the proposed device is 18.5 at 600 K corresponding to an equivalent ZT of 0.13, which is significant for nanoscale devices. This study shows that layered van der Waals structures have great potential to be used as solid-state energy-conversion devices. PMID:27314610

  13. Comments on "Some Conceptual Issues in Observed-Score Equating" by Wim J. van der Linden

    ERIC Educational Resources Information Center

    Bradlow, Eric T.

    2013-01-01

    The van der Linden article (this issue) provides a roadmap for future research in equating. My belief is that the roadmap begins and ends with collecting auxiliary data that can be utilized to provide improved equating, especially when data are sparse or equating beyond simple moments is desired.

  14. The Average IQ of Sub-Saharan Africans: Comments on Wicherts, Dolan, and van der Maas

    ERIC Educational Resources Information Center

    Lynn, Richard; Meisenberg, Gerhard

    2010-01-01

    Wicherts, Dolan, and van der Maas (2009) contend that the average IQ of sub-Saharan Africans is about 80. A critical evaluation of the studies presented by WDM shows that many of these are based on unrepresentative elite samples. We show that studies of 29 acceptably representative samples on tests other than the Progressive Matrices give a…

  15. Dynamical screening of the van der Waals interaction between graphene layers.

    PubMed

    Dappe, Y J; Bolcatto, P G; Ortega, J; Flores, F

    2012-10-24

    The interaction between graphene layers is analyzed combining local orbital DFT and second order perturbation theory. For this purpose we use the linear combination of atomic orbitals-orbital occupancy (LCAO-OO) formalism, that allows us to separate the interaction energy as the sum of a weak chemical interaction between graphene layers plus the van der Waals interaction (Dappe et al 2006 Phys. Rev. B 74 205434). In this work, the weak chemical interaction is calculated by means of corrected-LDA calculations using an atomic-like sp(3)d(5) basis set. The van der Waals interaction is calculated by means of second order perturbation theory using an atom-atom interaction approximation and the atomic-like-orbital occupancies. We also analyze the effect of dynamical screening in the van der Waals interaction using a simple model. We find that this dynamical screening reduces by 40% the van der Waals interaction. Taking this effect into account, we obtain a graphene-graphene interaction energy of 70 ± 5 meV/atom in reasonable agreement with the experimental evidence.

  16. First kind symmetric periodic solutions of the generalized van der Waals Hamiltonian

    NASA Astrophysics Data System (ADS)

    Alberti, Angelo; Vidal, Claudio

    2016-07-01

    The aim of this paper is to prove the existence of a new symmetric family of periodic solutions of the generalized van der Waals Hamiltonian. In fact, we prove the existence of several families of first kind symmetric periodic solutions as continuation of circular orbits of the Kepler problem in the spatial case.

  17. Atomically thin p-n junctions with van der Waals heterointerfaces.

    PubMed

    Lee, Chul-Ho; Lee, Gwan-Hyoung; van der Zande, Arend M; Chen, Wenchao; Li, Yilei; Han, Minyong; Cui, Xu; Arefe, Ghidewon; Nuckolls, Colin; Heinz, Tony F; Guo, Jing; Hone, James; Kim, Philip

    2014-09-01

    Semiconductor p-n junctions are essential building blocks for electronic and optoelectronic devices. In conventional p-n junctions, regions depleted of free charge carriers form on either side of the junction, generating built-in potentials associated with uncompensated dopant atoms. Carrier transport across the junction occurs by diffusion and drift processes influenced by the spatial extent of this depletion region. With the advent of atomically thin van der Waals materials and their heterostructures, it is now possible to realize a p-n junction at the ultimate thickness limit. Van der Waals junctions composed of p- and n-type semiconductors--each just one unit cell thick--are predicted to exhibit completely different charge transport characteristics than bulk heterojunctions. Here, we report the characterization of the electronic and optoelectronic properties of atomically thin p-n heterojunctions fabricated using van der Waals assembly of transition-metal dichalcogenides. We observe gate-tunable diode-like current rectification and a photovoltaic response across the p-n interface. We find that the tunnelling-assisted interlayer recombination of the majority carriers is responsible for the tunability of the electronic and optoelectronic processes. Sandwiching an atomic p-n junction between graphene layers enhances the collection of the photoexcited carriers. The atomically scaled van der Waals p-n heterostructures presented here constitute the ultimate functional unit for nanoscale electronic and optoelectronic devices.

  18. Dynamics of Gold Nanoparticles on Carbon Nanostructures Driven by van der Waals and Electrostatic Interactions.

    PubMed

    La Torre, Alessandro; Gimenez-Lopez, Maria del Carmen; Fay, Michael W; Lucas, Carlos Herreros; Brown, Paul D; Khlobystov, Andrei N

    2015-06-01

    Transmission electron microscopy studies on the assembly and growth of gold nanoparticles on carbon nanotubes supported on few-layer graphene and amorphous carbon reveal a competition between van der Waals forces and electrostatic interactions, enabling controlled positioning and sizing of adsorbed nanoparticles at the nanochannels formed between the carbon nanotube and the few-layer graph-ene surface. PMID:25689488

  19. A van der Waals Equation of State for a Dilute Boson Gas

    ERIC Educational Resources Information Center

    Deeney, F. A.; O'Leary, J. P.

    2012-01-01

    An equation of state of a system is a relationship that connects the thermodynamic variables of the system such as pressure and temperature. Such equations are well known for classical gases but less so for quantum systems. In this paper we develop a van der Waals equation of state for a dilute boson gas that may be used to explain the occurrence…

  20. Bonded Paths and van der Waals Interactions in Orpiment, As2S3

    SciTech Connect

    Gibbs, Gerald V.; Wallace, Adam F.; Zallen, Richard; Downs, R. T.; Ross, Nancy L.; Cox, David F.; Rosso, Kevin M.

    2010-06-17

    Bond critical properties and bond paths have been calculated for the thioarsenide molecular crystal orpiment, As2S3. In addition to the intramolecular As-S bond paths and van der Waals As-S and S-S bond paths within the layers, intermolecular S-S, As-S and As-As van der Waals paths exist between the layers. The S-S bond paths between the layers are identified with the main interlayer restoring forces responsible for the vibrational internal-mode splitting and the low frequency rigid layer modes previously documented in infrared and Raman studies of orpiment. These S-S bond paths are comparable with those calculated for orthorhombic native sulfur and the As4Sn (n = 3,4,5) molecules for several arsenide molecular crystals. The As-S bond paths show that the two nonequivalent arsenic atoms are each coordinated by a highly distorted octahedral array of sulfur atoms. The octahedra consist of three As-S intramolecular bonded interactions and three longer van der Waals interactions (two intramolecular and one intermolecular). One of the arsenic atoms is also coordinated by an arsenic atom in an interlayer As-As bonded interaction. Laplacian isosurface envelopes calculated for the arsenic and sulfur atoms are comparable with those calculated for native arsenic and orthorhombic sulfur. The intermolecular As-S bond paths connect Lewis acid domains on arsenic and an Lewis base domains on sulfur. Van der Waals interactions are traditionally defined as attractive interactions other than those ascribed to bond formation. However, theoretical evidence and arguments, as well as the connection between the bond paths and the vibrational spectra, indicate that the van der Waals interactions in orpiment are directed bonded interactions in the Slater sense. The experimental bond lengths for the As-S and S-S bonded interactions decrease nonlinearly with the increasing value of the electron density at the bond critical point, concomitant with a decrease in the bonded radii of arsenic and

  1. In-situ epitaxial growth of graphene/h-BN van der Waals heterostructures by molecular beam epitaxy.

    PubMed

    Zuo, Zheng; Xu, Zhongguang; Zheng, Renjing; Khanaki, Alireza; Zheng, Jian-Guo; Liu, Jianlin

    2015-01-01

    Van der Waals materials have received a great deal of attention for their exceptional layered structures and exotic properties, which can open up various device applications in nanoelectronics. However, in situ epitaxial growth of dissimilar van der Waals materials remains challenging. Here we demonstrate a solution for fabricating van der Waals heterostructures. Graphene/hexagonal boron nitride (h-BN) heterostructures were synthesized on cobalt substrates by using molecular beam epitaxy. Various characterizations were carried out to evaluate the heterostructures. Wafer-scale heterostructures consisting of single-layer/bilayer graphene and multilayer h-BN were achieved. The mismatch angle between graphene and h-BN is below 1°.

  2. Novel IRF6 mutations in Chinese patients with Van der Woude syndrome.

    PubMed

    Du, X; Tang, W; Tian, W; Li, S; Li, X; Liu, L; Zheng, X; Chen, X; Lin, Y; Tang, Y

    2006-10-01

    Van der Woude syndrome (VWS) (OMIM 119300) is a dominantly inherited, developmental disorder that is characterized by pits and/or sinuses of the lower lip and a cleft lip and/or cleft palate. Mutations in the interferon regulatory factor 6 gene (IRF6) have been recently identified in patients with VWS, with more than 60 mutations reported. However, the VWS phenotype, IRF6 mutation genotypes, and their interrelationships in Chinese VWS patients have not been studied. Here, we report 11 Chinese families with variable clinical phenotypes of VWS and identified mutations in all patients. Of the 11 mutations, 8 appeared to be novel: CC5.6GT, T342A, 566delA, C748T, C756A, C989A, C1209G, and 1316delT. Seven mutations caused a change or loss of the IRF6 domain. The marked phenotypic variation may be caused by the action of certain modifier genes on IRF6 function. PMID:16998136

  3. Universal shape and pressure inside bubbles appearing in van der Waals heterostructures

    PubMed Central

    Khestanova, E.; Guinea, F.; Fumagalli, L.; Geim, A. K.; Grigorieva, I. V.

    2016-01-01

    Trapped substances between a two-dimensional (2D) crystal and an atomically flat substrate lead to the formation of bubbles. Their size, shape and internal pressure are determined by the competition between van der Waals attraction of the crystal to the substrate and the elastic energy needed to deform it, allowing to use bubbles to study elastic properties of 2D crystals and conditions of confinement. Using atomic force microscopy, we analysed a variety of bubbles formed by monolayers of graphene, boron nitride and MoS2. Their shapes are found to exhibit universal scaling, in agreement with our analysis based on the theory of elasticity of membranes. We also measured the hydrostatic pressure induced by the confinement, which was found to reach tens of MPa inside submicron bubbles. This agrees with our theory estimates and suggests that for even smaller, sub-10 nm bubbles the pressure can be close to 1 GPa and may modify properties of a trapped material. PMID:27557732

  4. Prediction of physicochemical properties of organic molecules using van der Waals surface electrostatic potentials.

    PubMed

    Kim, Chan Kyung; Lee, Kyung A; Hyun, Kwan Hoon; Park, Heung Jin; Kwack, In Young; Kim, Chang Kon; Lee, Hai Whang; Lee, Bon-Su

    2004-12-01

    The generalized interaction properties function (GIPF) methodology developed by Politzer and coworkers, which calculated molecular surface electrostatic potential (MSESP) on a density envelope surface, was modified by calculating the MSESP on a much simpler van der Waals (vdW) surface of a molecule. In this work, vdW molecular surfaces were obtained from the fully optimized structures confirmed by frequency calculations at B3LYP/6-31G(d) level of theory. Multiple linear regressions for normal boiling point, heats of vaporization, heats of sublimation, heats of fusion, liquid density, and solid density were performed using GIPF variables from vdW model surface. Results from our model are compared with those from Politzer and coworkers. The surface-dependent beta (and gamma) values are dependent on the surface models but the surface-independent alpha and regression coefficients (r) are constant when vdW surface and density surface with 0.001 a.u. contour value are compared. This interesting phenomenon is explained by linear dependencies of GIPF variables.

  5. Universal shape and pressure inside bubbles appearing in van der Waals heterostructures.

    PubMed

    Khestanova, E; Guinea, F; Fumagalli, L; Geim, A K; Grigorieva, I V

    2016-01-01

    Trapped substances between a two-dimensional (2D) crystal and an atomically flat substrate lead to the formation of bubbles. Their size, shape and internal pressure are determined by the competition between van der Waals attraction of the crystal to the substrate and the elastic energy needed to deform it, allowing to use bubbles to study elastic properties of 2D crystals and conditions of confinement. Using atomic force microscopy, we analysed a variety of bubbles formed by monolayers of graphene, boron nitride and MoS2. Their shapes are found to exhibit universal scaling, in agreement with our analysis based on the theory of elasticity of membranes. We also measured the hydrostatic pressure induced by the confinement, which was found to reach tens of MPa inside submicron bubbles. This agrees with our theory estimates and suggests that for even smaller, sub-10 nm bubbles the pressure can be close to 1 GPa and may modify properties of a trapped material. PMID:27557732

  6. Universal shape and pressure inside bubbles appearing in van der Waals heterostructures.

    PubMed

    Khestanova, E; Guinea, F; Fumagalli, L; Geim, A K; Grigorieva, I V

    2016-08-25

    Trapped substances between a two-dimensional (2D) crystal and an atomically flat substrate lead to the formation of bubbles. Their size, shape and internal pressure are determined by the competition between van der Waals attraction of the crystal to the substrate and the elastic energy needed to deform it, allowing to use bubbles to study elastic properties of 2D crystals and conditions of confinement. Using atomic force microscopy, we analysed a variety of bubbles formed by monolayers of graphene, boron nitride and MoS2. Their shapes are found to exhibit universal scaling, in agreement with our analysis based on the theory of elasticity of membranes. We also measured the hydrostatic pressure induced by the confinement, which was found to reach tens of MPa inside submicron bubbles. This agrees with our theory estimates and suggests that for even smaller, sub-10 nm bubbles the pressure can be close to 1 GPa and may modify properties of a trapped material.

  7. Goiter in paintings by Rogier van der Weyden (1399-1464).

    PubMed

    Lazzeri, Davide; Pozzilli, Paolo; Zhang, Yi Xin; Persichetti, Paolo

    2015-05-01

    Figures affected by goiter were only sparsely depicted by Peter Paul Rubens and Albrecht Dürer among Flemish artists, because obvious goiter was not common in regions such as the Netherlands and Belgium. However, the recent observation of two figures with a goiter elegantly depicted by Rogier van der Weyden has raised our interest in this topic. When taking a close look at the paintings of this Flemish Renaissance painter, it is interesting to note that 16 portrayed subjects show an abnormal profile of the neck with swelling, suggestive of a presumptive medico-artistic diagnosis of goiter. Van der Weyden travelled to Italy where he soon acquired great fame and was second only to the other Flemish painter of the time, Jan Van Eyck. It is very likely that in Italy he had the opportunity to look at several female figures depicted with goiter, which may have influenced his paintings. Van der Weyden was appreciated because of his style to mix realistic details with idealized softened features to increase the beauty and appeal of his models. It is also likely that the integration of the goiter may have been part of the Renaissance tendency toward a more realistic and precise representation of subjects. The fact that in almost all cases the goiter was a low-to-moderate grade enlargement of the thyroid may confirm our speculation that perhaps the painter used the same model or the template derived from one model for subsequent paintings. PMID:25747746

  8. Goiter in paintings by Rogier van der Weyden (1399-1464).

    PubMed

    Lazzeri, Davide; Pozzilli, Paolo; Zhang, Yi Xin; Persichetti, Paolo

    2015-05-01

    Figures affected by goiter were only sparsely depicted by Peter Paul Rubens and Albrecht Dürer among Flemish artists, because obvious goiter was not common in regions such as the Netherlands and Belgium. However, the recent observation of two figures with a goiter elegantly depicted by Rogier van der Weyden has raised our interest in this topic. When taking a close look at the paintings of this Flemish Renaissance painter, it is interesting to note that 16 portrayed subjects show an abnormal profile of the neck with swelling, suggestive of a presumptive medico-artistic diagnosis of goiter. Van der Weyden travelled to Italy where he soon acquired great fame and was second only to the other Flemish painter of the time, Jan Van Eyck. It is very likely that in Italy he had the opportunity to look at several female figures depicted with goiter, which may have influenced his paintings. Van der Weyden was appreciated because of his style to mix realistic details with idealized softened features to increase the beauty and appeal of his models. It is also likely that the integration of the goiter may have been part of the Renaissance tendency toward a more realistic and precise representation of subjects. The fact that in almost all cases the goiter was a low-to-moderate grade enlargement of the thyroid may confirm our speculation that perhaps the painter used the same model or the template derived from one model for subsequent paintings.

  9. Binding and Diffusion of Lithium in Graphite: Quantum Monte Carlo Benchmarks and Validation of van der Waals Density Functional Methods.

    PubMed

    Ganesh, P; Kim, Jeongnim; Park, Changwon; Yoon, Mina; Reboredo, Fernando A; Kent, Paul R C

    2014-12-01

    Highly accurate diffusion quantum Monte Carlo (QMC) studies of the adsorption and diffusion of atomic lithium in AA-stacked graphite are compared with van der Waals-including density functional theory (DFT) calculations. Predicted QMC lattice constants for pure AA graphite agree with experiment. Pure AA-stacked graphite is shown to challenge many van der Waals methods even when they are accurate for conventional AB graphite. Highest overall DFT accuracy, considering pure AA-stacked graphite as well as lithium binding and diffusion, is obtained by the self-consistent van der Waals functional vdW-DF2, although errors in binding energies remain. Empirical approaches based on point charges such as DFT-D are inaccurate unless the local charge transfer is assessed. The results demonstrate that the lithium-carbon system requires a simultaneous highly accurate description of both charge transfer and van der Waals interactions, favoring self-consistent approaches. PMID:26583215

  10. Binding and Diffusion of Lithium in Graphite: Quantum Monte Carlo Benchmarks and Validation of van der Waals Density Functional Methods

    SciTech Connect

    Ganesh, P.; Kim, Jeongnim; Park, Changwon; Yoon, Mina; Reboredo, Fernando A.; Kent, Paul R. C.

    2014-11-03

    In highly accurate diffusion quantum Monte Carlo (QMC) studies of the adsorption and diffusion of atomic lithium in AA-stacked graphite are compared with van der Waals-including density functional theory (DFT) calculations. Predicted QMC lattice constants for pure AA graphite agree with experiment. Pure AA-stacked graphite is shown to challenge many van der Waals methods even when they are accurate for conventional AB graphite. Moreover, the highest overall DFT accuracy, considering pure AA-stacked graphite as well as lithium binding and diffusion, is obtained by the self-consistent van der Waals functional vdW-DF2, although errors in binding energies remain. Empirical approaches based on point charges such as DFT-D are inaccurate unless the local charge transfer is assessed. Our results demonstrate that the lithium carbon system requires a simultaneous highly accurate description of both charge transfer and van der Waals interactions, favoring self-consistent approaches.

  11. Binding and Diffusion of Lithium in Graphite: Quantum Monte Carlo Benchmarks and Validation of van der Waals Density Functional Methods.

    PubMed

    Ganesh, P; Kim, Jeongnim; Park, Changwon; Yoon, Mina; Reboredo, Fernando A; Kent, Paul R C

    2014-12-01

    Highly accurate diffusion quantum Monte Carlo (QMC) studies of the adsorption and diffusion of atomic lithium in AA-stacked graphite are compared with van der Waals-including density functional theory (DFT) calculations. Predicted QMC lattice constants for pure AA graphite agree with experiment. Pure AA-stacked graphite is shown to challenge many van der Waals methods even when they are accurate for conventional AB graphite. Highest overall DFT accuracy, considering pure AA-stacked graphite as well as lithium binding and diffusion, is obtained by the self-consistent van der Waals functional vdW-DF2, although errors in binding energies remain. Empirical approaches based on point charges such as DFT-D are inaccurate unless the local charge transfer is assessed. The results demonstrate that the lithium-carbon system requires a simultaneous highly accurate description of both charge transfer and van der Waals interactions, favoring self-consistent approaches.

  12. Coexisting two canards and their breakdown into chaos in the van der Pol oscillator under weak periodic perturbation

    NASA Astrophysics Data System (ADS)

    Sekikawa, Munehisa; Inaba, Naohiko; Aihara, Kazuyuki

    2007-04-01

    Two coexisting stable canards are discussed in a periodically driven singularly perturbed van der Pol equation, where the amplitude of the driving force is extremely small. Canard breakdown into chaos via period-doubling bifurcations is also observed.

  13. Band engineering in a van der Waals heterostructure using a 2D polar material and a capping layer

    NASA Astrophysics Data System (ADS)

    Cho, Sung Beom; Chung, Yong-Chae

    2016-06-01

    Van der Waals (vdW) heterostructures are expected to play a key role in next-generation electronic and optoelectronic devices. In this study, the band alignment of a vdW heterostructure with 2D polar materials was studied using first-principles calculations. As a model case study, single-sided fluorographene (a 2D polar material) on insulating (h-BN) and metallic (graphite) substrates was investigated to understand the band alignment behavior of polar materials. Single-sided fluorographene was found to have a potential difference along the out-of-plane direction. This potential difference provided as built-in potential at the interface, which shift the band alignment between h-BN and graphite. The interface characteristics were highly dependent on the interface terminations because of this built-in potential. Interestingly, this band alignment can be modified with a capping layer of graphene or BN because the capping layer triggered electronic reconstruction near the interface. This is because the bonding nature is not covalent, but van der Waals, which made it possible to avoid Fermi-level pinning at the interface. The results of this study showed that diverse types of band alignment can be achieved using polar materials and an appropriate capping layer.

  14. Universal curves for the van der Waals interaction between single-walled carbon nanotubes.

    PubMed

    Pogorelov, Evgeny G; Zhbanov, Alexander I; Chang, Yia-Chung; Yang, Sung

    2012-01-17

    We report very simple and accurate algebraic expressions for the van der Waals (VDW) potentials and the forces between two parallel and crossed carbon nanotubes. The Lennard-Jones potential for two carbon atoms and the method of the smeared-out approximation suggested by Girifalco were used. It is found that the interaction between parallel and crossed tubes is described by two universal curves for parallel and crossed configurations that do not depend on the van der Waals constants, the angle between tubes, and the surface density of atoms and their nature but only on the dimensionless distance. The explicit functions for equilibrium VDW distances, well depths, and maximal attractive forces have been given. These results may be used as a guide for the analysis of experimental data to investigate the interaction between nanotubes of various natures. PMID:22129302

  15. Van der Waals heterostructure of phosphorene and hexagonal boron nitride: First-principles modeling

    NASA Astrophysics Data System (ADS)

    Peng, Zhang; Jing, Wang; Xiang-Mei, Duan

    2016-03-01

    We have studied the structural and electronic properties of a hybrid hexagonal boron nitride with phosphorene nanocomposite using ab initio density functional calculations. It is found that the interaction between the hexagonal boron nitride and phosphorene is dominated by the weak van der Waals interaction, with their own intrinsic electronic properties preserved. Furthermore, the band gap of the nanocomposite is dependent on the interfacial distance. Our results could shed light on the design of new devices based on van der Waals heterostructure. Projected supported by the National Natural Science Foundation of China (Grant No. 11574167), the New Century 151 Talents Project of Zhejiang Province,China, and the K. C. Wong Magna Foundation in Ningbo University, China.

  16. Electrical and optical properties of SnS2/WSe2 van der Waals Heterojunction FETs

    NASA Astrophysics Data System (ADS)

    Zubair, Ahmad; Nourbakhsh, Amirhasan; Dresselhaus, Mildred; Palacios, Tomas

    Two dimensional crystals based on atomically thin films of transition metal dichalcogenides offer an exciting platform for various optoelectronic applications. Their unique crystal properties make them particularly attractive for van der Waals heterostructures which open up an additional degree of freedom to tailor the material properties into new physics and device applications. In this work, we explore, for the first time, the optoelectronic properties of van der Waals SnS2/WSe2 heterojunction. WSe2 is an ambipolar semiconductor while SnS2 is an n-type wide bandgap semiconductor. We use the pickup and dry transfer methods to fabricate SnS2/WSe2 heterojunction transistors (hetero-FETs). We observe negative differential transconductance in the SnS2/WSe2 hetero-FET. Also, the heterostructure couples strongly to incident light and shows high photovoltaic responsivity which can find applications in nano-devices such as photo-detectors and solar cells.

  17. Van der Waals force: a dominant factor for reactivity of graphene.

    PubMed

    Lee, Jong Hak; Avsar, Ahmet; Jung, Jeil; Tan, Jun You; Watanabe, K; Taniguchi, T; Natarajan, Srinivasan; Eda, Goki; Adam, Shaffique; Castro Neto, Antonio H; Özyilmaz, Barbaros

    2015-01-14

    Reactivity control of graphene is an important issue because chemical functionalization can modulate graphene's unique mechanical, optical, and electronic properties. Using systematic optical studies, we demonstrate that van der Waals interaction is the dominant factor for the chemical reactivity of graphene on two-dimensional (2D) heterostructures. A significant enhancement in the chemical stability of graphene is achieved by replacing the common SiO2 substrate with 2D crystals such as an additional graphene layer, WS2, MoS2, or h-BN. Our theoretical and experimental results show that its origin is a strong van der Waals interaction between the graphene layer and the 2D substrate. This results in a high resistive force on graphene toward geometric lattice deformation. We also demonstrate that the chemical reactivity of graphene can be controlled by the relative lattice orientation with respect to the substrates and thus can be used for a wide range of applications including hydrogen storage.

  18. Stochastic bifurcations in a bistable Duffing-Van der Pol oscillator with colored noise.

    PubMed

    Xu, Yong; Gu, Rencai; Zhang, Huiqing; Xu, Wei; Duan, Jinqiao

    2011-05-01

    This paper aims to investigate Gaussian colored-noise-induced stochastic bifurcations and the dynamical influence of correlation time and noise intensity in a bistable Duffing-Van der Pol oscillator. By using the stochastic averaging method, theoretically, one can obtain the stationary probability density function of amplitude for the Duffing-Van der Pol oscillator and can reveal interesting dynamics under the influence of Gaussian colored noise. Stochastic bifurcations are discussed through a qualitative change of the stationary probability distribution, which indicates that system parameters, noise intensity, and noise correlation time, respectively, can be treated as bifurcation parameters. They also imply that the effects of multiplicative noise are rather different from that of additive noise. The results of direct numerical simulation verify the effectiveness of the theoretical analysis. Moreover, the largest Lyapunov exponent calculations indicate that P and D bifurcations have no direct connection. PMID:21728638

  19. First principles calculations of solid-state thermionic transport in layered van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoming; Zebarjadi, Mona; Esfarjani, Keivan

    2016-08-01

    This work aims at understanding solid-state energy conversion and transport in layered (van der Waals) heterostructures in contact with metallic electrodes via a first-principles approach. As an illustration, a graphene/phosphorene/graphene heterostructure in contact with gold electrodes is studied by using density functional theory (DFT)-based first principles calculations combined with real space Green's function (GF) formalism. We show that for a monolayer phosphorene, quantum tunneling dominates the transport. By adding more phosphorene layers, one can switch from tunneling-dominated transport to thermionic-dominated transport, resulting in transporting more heat per charge carrier, thus, enhancing the cooling coefficient of performance. The use of layered van der Waals heterostructures has two advantages: (a) thermionic transport barriers can be tuned by changing the number of layers, and (b) thermal conductance across these non-covalent structures is very weak. The phonon thermal conductance of the present van der Waals heterostructure is found to be 4.1 MW m-2 K-1 which is one order of magnitude lower than the lowest value for that of covalently-bonded interfaces. The thermionic coefficient of performance for the proposed device is 18.5 at 600 K corresponding to an equivalent ZT of 0.13, which is significant for nanoscale devices. This study shows that layered van der Waals structures have great potential to be used as solid-state energy-conversion devices.This work aims at understanding solid-state energy conversion and transport in layered (van der Waals) heterostructures in contact with metallic electrodes via a first-principles approach. As an illustration, a graphene/phosphorene/graphene heterostructure in contact with gold electrodes is studied by using density functional theory (DFT)-based first principles calculations combined with real space Green's function (GF) formalism. We show that for a monolayer phosphorene, quantum tunneling dominates the

  20. On the pseudopotential approximation in the van der Waals density functional calculations

    NASA Astrophysics Data System (ADS)

    Hamada, Ikutaro; Callsen, Martin

    The van der Waals density functional (vdW-DF) is a density functional that is able to describe van der Waals and covalent interactions in a seamless fashion, and has been applied to a variety of systems. In practical calculations, the pseudopotential (PP) approximation has been employed, for which the PPs should be generated consistently for the chosen exchange correlation XC functional. However, usually PPs generated with a generalized gradient approximation (GGA) XC functional are used and the effect of the approximation to the XC functional applied in the PP generation is scarcely discussed. In this work, we discuss the appropriate XC functionals in the PP generation for the vdW-DF calculations. Furthermore, we compare the vdW-DF results for several systems using the PP's generated with appropriate XC and those with GGA XC.

  1. Nuclear spin-spin coupling anisotropy in the van der Waals-bonded 129Xe dimer.

    PubMed

    Jokisaari, Jukka; Vaara, Juha

    2013-07-21

    The spin-spin coupling constant, J, in the van der Waals-bonded (129)Xe-(129)Xe dimer cannot be determined experimentally because of the magnetic equivalence of the two nuclei. In contrast, the anisotropy of the coupling tensor, ΔJ, can be obtained from the so called effective dipole-dipole coupling determined in a solid state inclusion compound whose cages accommodate two xenon atoms. For the determination of the experimental ΔJ((129)Xe, (129)Xe) we exploited the data reported earlier in this journal. [D. H. Brouwer et al., Phys. Chem. Chem. Phys., 2007, 9, 1093.] The experimental value and the value obtained from relativistic first-principles computation are in perfect agreement. To the best of our knowledge this is the first investigation of spin-spin coupling anisotropy in a van der Waals-bonded system. PMID:23743998

  2. Stochastic bifurcations in a bistable Duffing-Van der Pol oscillator with colored noise.

    PubMed

    Xu, Yong; Gu, Rencai; Zhang, Huiqing; Xu, Wei; Duan, Jinqiao

    2011-05-01

    This paper aims to investigate Gaussian colored-noise-induced stochastic bifurcations and the dynamical influence of correlation time and noise intensity in a bistable Duffing-Van der Pol oscillator. By using the stochastic averaging method, theoretically, one can obtain the stationary probability density function of amplitude for the Duffing-Van der Pol oscillator and can reveal interesting dynamics under the influence of Gaussian colored noise. Stochastic bifurcations are discussed through a qualitative change of the stationary probability distribution, which indicates that system parameters, noise intensity, and noise correlation time, respectively, can be treated as bifurcation parameters. They also imply that the effects of multiplicative noise are rather different from that of additive noise. The results of direct numerical simulation verify the effectiveness of the theoretical analysis. Moreover, the largest Lyapunov exponent calculations indicate that P and D bifurcations have no direct connection.

  3. Two dimensional graphene nanogenerator by coulomb dragging: Moving van der Waals heterostructure

    SciTech Connect

    Zhong, Huikai; Li, Xiaoqiang; Wu, Zhiqian; Zhang, Shengjiao; Xu, Zhijuan; Chen, Hongsheng; Lin, Shisheng

    2015-06-15

    Harvesting energy from environment is the current focus of scientific community. Here, we demonstrate a graphene nanogenerator, which is based on moving van der Waals heterostructure formed between graphene and two dimensional (2D) graphene oxide (GO). This nanogenerator can convert mechanical energy into electricity with a voltage output of around 10 mV. Systematic experiments reveal the generated electricity originates from the coulomb interaction induced momentum transfer between 2D GO and holes in graphene. 2D boron nitride was also demonstrated to be effective in the framework of moving van der Waals heterostructure nanogenerator. This investigation of nanogenerator based on the interaction between 2D macromolecule materials will be important to understand the origin of the flow-induced potential in nanomaterials and may have great potential in practical applications.

  4. Bonding in mercury-alkali molecules: Orbital-driven van der Waals complexes.

    PubMed

    Kraka, Elfi; Cremer, Dieter

    2008-06-01

    The bonding situation in mercury-alkali diatomics HgA ((2)Sigma(+)) (A = Li, Na, K, Rb) has been investigated employing the relativistic all-electron method Normalized Elimination of the Small Component (NESC), CCSD(T), and augmented VTZ basis sets. Although Hg,A interactions are typical of van der Waals complexes, trends in calculated D(e) values can be explained on the basis of a 3-electron 2-orbital model utilizing calculated ionization potentials and the D(e) values of HgA(+)((1)Sigma(+)) diatomics. HgA molecules are identified as orbital-driven van der Waals complexes. The relevance of results for the understanding of the properties of liquid alkali metal amalgams is discussed.

  5. Nuclear spin-spin coupling anisotropy in the van der Waals-bonded 129Xe dimer.

    PubMed

    Jokisaari, Jukka; Vaara, Juha

    2013-07-21

    The spin-spin coupling constant, J, in the van der Waals-bonded (129)Xe-(129)Xe dimer cannot be determined experimentally because of the magnetic equivalence of the two nuclei. In contrast, the anisotropy of the coupling tensor, ΔJ, can be obtained from the so called effective dipole-dipole coupling determined in a solid state inclusion compound whose cages accommodate two xenon atoms. For the determination of the experimental ΔJ((129)Xe, (129)Xe) we exploited the data reported earlier in this journal. [D. H. Brouwer et al., Phys. Chem. Chem. Phys., 2007, 9, 1093.] The experimental value and the value obtained from relativistic first-principles computation are in perfect agreement. To the best of our knowledge this is the first investigation of spin-spin coupling anisotropy in a van der Waals-bonded system.

  6. van der Waals forces in density functional theory: Perturbational long-range electron-interaction corrections

    SciTech Connect

    Angyan, Janos G.; Gerber, Iann C.; Savin, Andreas; Toulouse, Julien

    2005-07-15

    Long-range exchange and correlation effects, responsible for the failure of currently used approximate density functionals in describing van der Waals forces, are taken into account explicitly after a separation of the electron-electron interaction in the Hamiltonian into short- and long-range components. We propose a 'range-separated hybrid' functional based on a local density approximation for the short-range exchange-correlation energy, combined with a long-range exact exchange energy. Long-range correlation effects are added by a second-order perturbational treatment. The resulting scheme is general and is particularly well adapted to describe van der Waals complexes, such as rare gas dimers.

  7. van der Waals binding and band structure effects in graphene overlayers and graphane multilayers

    NASA Astrophysics Data System (ADS)

    Hyldgaard, Per; Rohrer, Jochen

    2011-03-01

    We study graphene formation (by selective Si evaporation) and adhesion on SiC surfaces as well as stacking and binding of graphane multilayers using a number of versions of the van der Waals Density Functional (vdW-DF) method and plane-wave density functional theory calculations. For the graphene/SiC systems and for the graphane multilayers we document that the bonding is entirely dominated by van der Waals (vdW) forces. At the same time we find that dispersive forces acting on the layers produce significant modifications in the graphene and graphane band structure. We interpret the changes and discuss a competition between wave function hybridization and interaction with the charge enhancement (between the layers) that results from density overlap. Supported by Svenska Vetenskapsrådet VR #621-2008-4346.

  8. Spectroscopic measurement of the titanium-helium van der Waals molecule: TiHe

    NASA Astrophysics Data System (ADS)

    Quiros, Nancy; Tariq, Naima; Weinstein, Jonathan

    2016-05-01

    Atoms that are weakly bound by the van der Waals (vdW) interaction are known as van der Waals molecules. The existence and formation of vdW molecules is favorable at low temperatures due to their weak binding energy. We have used laser ablation and helium buffer gas cooling to create the exotic vdW diatomic molecule made of titanium (Ti) and helium (He). TiHe molecules were detected through laser-induced-fluorescence spectroscopy closely blue-detuned from the a3F2 --> y3F3 atomic Ti transition at 25227 cm-1. Measurements of the binding energy of TiHe were obtained by studying its equilibrium thermodynamic properties. It is believed the molecules are formed from the constituent cold atoms through three-body recombination. Progress towards measuring the three-body recombination rate coefficient will be discussed. This material is based upon work supported by National Science Foundation under Grant No. PHY 1265905.

  9. Stochastic bifurcations induced by correlated noise in a birhythmic van der Pol system

    NASA Astrophysics Data System (ADS)

    Mbakob Yonkeu, R.; Yamapi, R.; Filatrella, G.; Tchawoua, C.

    2016-04-01

    We investigate the effects of exponentially correlated noise on birhythmic van der Pol type oscillators. The analytical results are obtained applying the quasi-harmonic assumption to the Langevin equation to derive an approximated Fokker-Planck equation. This approach allows to analytically derive the probability distributions as well as the activation energies associated to switching between coexisting attractors. The stationary probability density function of the van der Pol oscillator reveals the influence of the correlation time on the dynamics. Stochastic bifurcations are discussed through a qualitative change of the stationary probability distribution, which indicates that noise intensity and correlation time can be treated as bifurcation parameters. Comparing the analytical and numerical results, we find good agreement both when the frequencies of the attractors are about equal or when they are markedly different.

  10. Microwave spectra of van der Waals complexes of importance in planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Suenram, R. D.; Lovas, F. J.

    1990-01-01

    The Fourier-transform Fabry-Perot pulsed-molecular-beam microwave spectrometer at NIST was used to study the microwave spectra of a number of molecular dimers and trimers that may be present in planetary atmospheres. The weak van der Waals bonds associated with these species usually give rise to rotational-tunneling splittings in the microwave spectra. The microwave spectrum of the water dimer species was used to illustrate the complications that can arise in the study of the rotational spectra of these loosely bound species. In addition to the water dimer species, the microwave spectra of the following hydrogen-bonded and van der Waals complexes were studied: (CO2)2-H2O, CO2-(H2O)2, CO2-H2S, N2-H2O, CO-H2O, SO2-H2O, and O3-H2O.

  11. The Van der Woude syndrome: a case report and review of the literature.

    PubMed

    Dissemond, J; Haberer, D; Franckson, T; Hillen, U

    2004-09-01

    The Van der Woude syndrome is a rare autosomal dominant developmental malformation usually associated with bilateral lower lip pits. These congenital lip pits appear clinically as a malformation in the vermilion border of the lip, with or without excretion. As a genetic defect has been identified as a microdeletion of chromosome bands 1q32-q41, genetic counselling of patients may be considered. A nonsense mutation in the interferon regulatory factor-6 (IRF-6) is discussed as a pathogenic relevant factor. Therapeutic intervention is generally not necessary, although surgical excision is especially indicated in patients with recurrent inflammation. Physicians should be aware of the Van der Woude syndrome because it has been reported to be associated with a variety of malformations or other congenital disorders. PMID:15324408

  12. A simplified implementation of van der Waals density functionals for first-principles molecular dynamics applications

    NASA Astrophysics Data System (ADS)

    Wu, Jun; Gygi, François

    2012-06-01

    We present a simplified implementation of the non-local van der Waals correlation functional introduced by Dion et al. [Phys. Rev. Lett. 92, 246401 (2004)] and reformulated by Román-Pérez et al. [Phys. Rev. Lett. 103, 096102 (2009)]. The proposed numerical approach removes the logarithmic singularity of the kernel function. Complete expressions of the self-consistent correlation potential and of the stress tensor are given. Combined with various choices of exchange functionals, five versions of van der Waals density functionals are implemented. Applications to the computation of the interaction energy of the benzene-water complex and to the computation of the equilibrium cell parameters of the benzene crystal are presented. As an example of crystal structure calculation involving a mixture of hydrogen bonding and dispersion interactions, we compute the equilibrium structure of two polymorphs of aspirin (2-acetoxybenzoic acid, C9H8O4) in the P21/c monoclinic structure.

  13. The role of collective motion in the ultrafast charge transfer in van der Waals heterostructures

    DOE PAGESBeta

    Wang, Han; Bang, Junhyeok; Sun, Yiyang; West, Damien; Meunier, Vincent; Zhang, Shengbai; Liang, Linagbo

    2016-05-10

    Here, the success of van der Waals (vdW) heterostructures, made of graphene, metal dichalcogenides, and other layered materials, hinges on the understanding of charge transfer across the interface as the foundation for new device concepts and applications. In contrast to conventional heterostructures, where a strong interfacial coupling is essential to charge transfer, recent experimental findings indicate that vdW heterostructues can exhibit ultra-fast charge transfer despite the weak binding of the heterostructure. Using time-dependent density functional theory molecular dynamics, we identify a strong dynamic coupling between the vdW layers associated with charge transfer. This dynamic coupling results in rapid nonlinear coherentmore » charge oscillations which constitute a purely electronic phenomenon and are shown to be a general feature of vdW heterostructures provided they have a critical minimum dipole coupling. Application to MoS2/WS2 heterostructure yields good agreement with experiment, indicating near complete charge transfer within a timescale of 100 fs.The success of van der Waals heterostructures made of graphene, metal dichalcogenides and other layered materials, hinges on the understanding of charge transfer across the interface as the foundation for new device concepts and applications. In contrast to conventional heterostructures, where a strong interfacial coupling is essential to charge transfer, recent experimental findings indicate that van der Waals heterostructues can exhibit ultrafast charge transfer despite the weak binding of these heterostructures. Here we find, using time-dependent density functional theory molecular dynamics, that the collective motion of excitons at the interface leads to plasma oscillations associated with optical excitation. By constructing a simple model of the van der Waals heterostructure, we show that there exists an unexpected criticality of the oscillations, yielding rapid charge transfer across the

  14. Estimation of Some Parameters from Morse-Morse-Spline-Van Der Waals Intermolecular Potential

    SciTech Connect

    Coroiu, I.

    2007-04-23

    Some parameters such as transport cross-sections and isotopic thermal diffusion factor have been calculated from an improved intermolecular potential, Morse-Morse-Spline-van der Waals (MMSV) potential proposed by R.A. Aziz et al. The treatment was completely classical and no corrections for quantum effects were made. The results would be employed for isotope separations of different spherical and quasi-spherical molecules.

  15. Van der woude syndrome associated with hypodontia: a rare clinical entity.

    PubMed

    Soni, Romesh; Vivek, Rajul; Srivastava, Adit; Singh, Ankita; Srivastava, Shalabh; Chaturvedi, T P

    2012-01-01

    Van der Woude syndrome (VWS) is usually underreported and frequently not diagnosed. The phenomenon that cleft lip and palate are regularly combined in the same pedigree makes it unique. A meticulous examination of a patient with lip pits may reveal a hidden form of a cleft, for example, submucous. This paper presents a case of VWS in a ten-year-old boy with characteristic orofacial features. Special emphasis has also been given on the need for appropriate genetic counseling. PMID:23326687

  16. Stability analysis for periodic solutions of the Van der Pol-Duffing forced oscillator

    NASA Astrophysics Data System (ADS)

    Cui, Jifeng; Liang, Jiaming; Lin, Zhiliang

    2016-01-01

    Based on the homotopy analysis method (HAM), the high accuracy frequency response curve and the stable/unstable periodic solutions of the Van der Pol-Duffing forced oscillator with the variation of the forced frequency are obtained and studied. The stability of the periodic solutions obtained is analyzed by use of Floquet theory. Furthermore, the results are validated in the light of spectral analysis and bifurcation theory.

  17. EXPERIMENTAL AND THEORETICAL STUDIES OF THE CN-AR VAN DER WAALS COMPLEX

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The CN-Ar van der Waals complex has been observed using B2E+-X2E+ and A2II-X2E+ electronic transitions. The spectra yielded a dissociation energy of D0"=109+2 cm1 and a zero point rational constant of B0"=0.067+0.005 cm-1 for CN(x)-Ar. The dissociation energy for Cn(A)-Ar was found to be D0"=132+2...

  18. Van der Waals epitaxial double heterostructure: InAs/single-layer graphene/InAs.

    PubMed

    Hong, Young Joon; Yang, Jae Won; Lee, Wi Hyoung; Ruoff, Rodney S; Kim, Kwang S; Fukui, Takashi

    2013-12-17

    Van der Waals (vdW) epitaxial double heterostructures have been fabricated by vdW epitaxy of InAs nanostructures on both sides of graphene. InAs nanostructures diametrically form on/underneath graphene exclusively along As-polar direction, indicating polarity inversion of the double heterostructures. First-principles and density functional calculations demonstrate how and why InAs easily form to be double heterostructures with polarity inversion.

  19. Controlled Synthesis of Organic/Inorganic van der Waals Solid for Tunable Light-Matter Interactions.

    PubMed

    Niu, Lin; Liu, Xinfeng; Cong, Chunxiao; Wu, Chunyang; Wu, Di; Chang, Tay Rong; Wang, Hong; Zeng, Qingsheng; Zhou, Jiadong; Wang, Xingli; Fu, Wei; Yu, Peng; Fu, Qundong; Najmaei, Sina; Zhang, Zhuhua; Yakobson, Boris I; Tay, Beng Kang; Zhou, Wu; Jeng, Horng Tay; Lin, Hsin; Sum, Tze Chien; Jin, Chuanhong; He, Haiyong; Yu, Ting; Liu, Zheng

    2015-12-16

    High-quality organic and inorganic van der Waals (vdW) solids are realized using methylammonium lead halide (CH3 NH3 PbI3 ) as the organic part (organic perovskite) and 2D inorganic monolayers as counterparts. By stacking on various 2D monolayers, the vdW solids exhibit dramatically different light emissions. Futhermore, organic/h-BN vdW solid arrays are patterned for red-light emission.

  20. CONNECTING LOCAL STRUCTURE TO INTERFACE FORMATION: A Molecular Scale van der Waals Theory of Nonuniform Liquids

    NASA Astrophysics Data System (ADS)

    Weeks, John D.

    2002-10-01

    This article reviews a new and general theory of nonuniform fluids that naturally incorporates molecular scale information into the classical van der Waals theory of slowly varying interfaces. The method optimally combines two standard approximations, molecular (mean) field theory to describe interface formation and linear response (or Gaussian fluctuation) theory to describe local structure. Accurate results have been found in many different applications in nonuniform simple fluids and these ideas may have important implications for the theory of hydrophobic interactions in water.

  1. van der Waals epitaxy and photoresponse of two-dimensional CdSe plates

    NASA Astrophysics Data System (ADS)

    Zhu, Dan-Dan; Xia, Jing; Wang, Lei; Li, Xuan-Ze; Tian, Li-Feng; Meng, Xiang-Min

    2016-06-01

    Here we demonstrate the first growth of two-dimensional (2D) single-crystalline CdSe plates on mica substrates via van der Waals epitaxy. The as-synthesized 2D plates exhibit hexagonal, truncated triangular and triangular shapes with the lateral size around several microns. Photodetectors based on 2D CdSe plates present a fast response time of 24 ms, revealing that 2D CdSe is a promising building block for ultrathin optoelectronic devices.

  2. Epitaxial growth of molecular crystals on van der waals substrates for high-performance organic electronics.

    PubMed

    Lee, Chul-Ho; Schiros, Theanne; Santos, Elton J G; Kim, Bumjung; Yager, Kevin G; Kang, Seok Ju; Lee, Sunwoo; Yu, Jaeeun; Watanabe, Kenji; Taniguchi, Takashi; Hone, James; Kaxiras, Efthimios; Nuckolls, Colin; Kim, Philip

    2014-05-01

    Epitaxial van der Waals (vdW) heterostructures of organic and layered materials are demonstrated to create high-performance organic electronic devices. High-quality rubrene films with large single-crystalline domains are grown on h-BN dielectric layers via vdW epitaxy. In addition, high carrier mobility comparable to free-standing single-crystal counterparts is achieved by forming interfacial electrical contacts with graphene electrodes. PMID:24458727

  3. Black phosphorene/monolayer transition-metal dichalcogenides as two dimensional van der Waals heterostructures: a first-principles study.

    PubMed

    You, Baiqing; Wang, Xiaocha; Zheng, Zhida; Mi, Wenbo

    2016-03-14

    The electronic structure of black phosphorene (BP)/monolayer 1H-XT2 (X = Mo, W; T = S, Se, Te) two dimensional (2D) van der Waals heterostructures have been calculated by the first-principles method. It is found that the electronic band structures of both BP and XT2 are preserved in the combined van der Waals heterostructures. The WSe2/BP van der Waals heterostructure demonstrates a type-I band alignment, but the MoS2/BP, MoSe2/BP, MoTe2/BP, WS2/BP and WTe2/BP van der Waals heterostructures demonstrate a type-II band alignment. In particular, the n-type XT2/p-type BP van der Waals heterostructures can be applied in p-n diode and logical devices. Strong spin splitting appears in all of the heterostructures when considering the spin orbital coupling. Our results play a significant role in the prediction of novel 2D van der Waals heterostructures that have potential applications in spin-filter devices, spin field effect transistors, optoelectronic devices, etc. PMID:26899350

  4. Van der Pol and the history of relaxation oscillations: toward the emergence of a concept.

    PubMed

    Ginoux, Jean-Marc; Letellier, Christophe

    2012-06-01

    Relaxation oscillations are commonly associated with the name of Balthazar van der Pol via his paper (Philosophical Magazine, 1926) in which he apparently introduced this terminology to describe the nonlinear oscillations produced by self-sustained oscillating systems such as a triode circuit. Our aim is to investigate how relaxation oscillations were actually discovered. Browsing the literature from the late 19th century, we identified four self-oscillating systems in which relaxation oscillations have been observed: (i) the series dynamo machine conducted by Gérard-Lescuyer (1880), (ii) the musical arc discovered by Duddell (1901) and investigated by Blondel (1905), (iii) the triode invented by de Forest (1907), and (iv) the multivibrator elaborated by Abraham and Bloch (1917). The differential equation describing such a self-oscillating system was proposed by Poincaré for the musical arc (1908), by Janet for the series dynamo machine (1919), and by Blondel for the triode (1919). Once Janet (1919) established that these three self-oscillating systems can be described by the same equation, van der Pol proposed (1926) a generic dimensionless equation which captures the relevant dynamical properties shared by these systems. Van der Pol's contributions during the period of 1926-1930 were investigated to show how, with Le Corbeiller's help, he popularized the "relaxation oscillations" using the previous experiments as examples and, turned them into a concept.

  5. Probabilistic characteristics of noisy Van der Pol type oscillator with nonlinear damping

    NASA Astrophysics Data System (ADS)

    Dubkov, A. A.; Litovsky, I. A.

    2016-05-01

    The exact Fokker-Planck equation for the joint probability distribution of amplitude and phase of a Van der Pol oscillator perturbed by both additive and multiplicative noise sources with arbitrary nonlinear damping is first derived by the method of functional splitting of averages. We truncate this equation in the usual manner using the smallness of the damping parameter and obtain a general expression for the stationary probability density function of oscillation amplitude, which is valid for any nonlinearity in the feedback loop of the oscillator. We analyze the dependence of this stationary solution on system parameters and intensities of noise sources for two different situations: (i) Van der Pol generator with soft and hard excitation regimes; (ii) Van der Pol oscillator with negative nonlinear damping. As shown, in the first case the probability distribution of amplitude demonstrates one characteristic maximum, which indicates the presence of a stable limit cycle in the system. The non-monotonic dependence of stationary probability density function on oscillation frequency is also detected. In the second case we examine separately three situations: linear oscillator with two noise sources, nonlinear oscillator with additive noise and nonlinear oscillator with frequency fluctuations. For the last two situations, noise-induced transitions in the system under consideration are found.

  6. Van der Waals interactions: evaluations by use of a statistical mechanical method.

    PubMed

    Høye, Johan S

    2011-10-01

    In this work the induced van der Waals interaction between a pair of neutral atoms or molecules is considered by use of a statistical mechanical method. With use of the Schrödinger equation this interaction can be obtained by standard quantum mechanical perturbation theory to second order. However, the latter is restricted to electrostatic interactions between dipole moments. So with radiating dipole-dipole interaction where retardation effects are important for large separations of the particles, other methods are needed, and the resulting induced interaction is the Casimir-Polder interaction usually obtained by field theory. It can also be evaluated, however, by a statistical mechanical method that utilizes the path integral representation. We here show explicitly by use of this method the equivalence of the Casimir-Polder interaction and the van der Waals interaction based upon the Schrödinger equation. The equivalence is to leading order for short separations where retardation effects can be neglected. In recent works [J. S. Høye, Physica A 389, 1380 (2010); Phys. Rev. E 81, 061114 (2010)], the Casimir-Polder or Casimir energy was added as a correction to calculations of systems like the electron clouds of molecules. The equivalence to van der Waals interactions indicates that the added Casimir energy will improve the accuracy of calculated molecular energies. Thus, we give numerical estimates of this energy including analysis and estimates for the uniform electron gas.

  7. Influence of dielectric properties on van der Waals/Casimir forces in solid-liquid systems

    SciTech Connect

    Zwol, P. J. van; Palasantzas, G.; De Hosson, J. Th. M.

    2009-05-15

    In this paper, we present calculations of van der Waals/Casimir forces, described by Lifshitz theory, for the solid-liquid-solid system using measured dielectric functions of all involved materials for the wavelength range from millimeters down to subnanometers. It is shown that even if the dielectric function is known over all relevant frequency ranges, the scatter in the dielectric data can lead to very large scatter in the calculated van der Waals/Casimir forces. Especially when the liquid dielectric function becomes comparable in magnitude to the dielectric function of one of the interacting solids, the associated variation in the force can be up to a factor of 2 for plate-plate separations 5-500 nm. This corresponds to an uncertainty up to 100% in the theory prediction for a specific system. As a result accuracy testing of the Lifshitz theory under these circumstances is rather questionable. Finally we discuss predictions of Lifshitz theory regarding multiple repulsive-attractive transitions with separation distance, as well as nontrivial scaling of the van der Waals/Casimir force with distance.

  8. Physisorption of nucleobases on graphene: a comparative van der Waals study.

    PubMed

    Le, Duy; Kara, Abdelkader; Schröder, Elsebeth; Hyldgaard, Per; Rahman, Talat S

    2012-10-24

    The physisorption of the nucleobases adenine (A), cytosine (C), guanine (G), thymine (T), and uracil (U) on graphene is studied using several variants of the density functional theory (DFT): the generalized gradient approximation with the inclusion of van der Waals interaction (vdW) based on the TS approach (Tkatchenko and Scheffer 2009 Phys. Rev. Lett. 102 073005) and our simplified version of this approach (here called sTS), the van der Waals density functional vdW-DF (Dion et al 2004 Phys. Rev. Lett. 92 246401) and vdW-DF2 (Lee et al 2010 Phys. Rev. B 82 081101), and DFT-D2 (Grimme 2006 J. Comput. Chem. 27 1787) and DFT-D3 (Grimme et al 2010 J. Chem. Phys. 132 154104) methods. The binding energies of nucleobases on graphene are found to be in the following order: G > A > T > C > U within TS, sTS, vdW-DF, and DFT-D2, and in the following order: G > A > T ~ C > U within DFT-D3 and vdW-DF2. The binding separations are found to be different within different methods and in the following order: DFT-D2 < TS < DFT-D3 ~ vdW-DF2 < vdW-DF. We also comment on the efficiency of combining the DFT-D approach and vdW-DF to study systems with van der Waals interactions.

  9. Physisorption of nucleobases on graphene: a comparative van der Waals study

    NASA Astrophysics Data System (ADS)

    Le, Duy; Kara, Abdelkader; Schröder, Elsebeth; Hyldgaard, Per; Rahman, Talat S.

    2012-10-01

    The physisorption of the nucleobases adenine (A), cytosine (C), guanine (G), thymine (T), and uracil (U) on graphene is studied using several variants of the density functional theory (DFT): the generalized gradient approximation with the inclusion of van der Waals interaction (vdW) based on the TS approach (Tkatchenko and Scheffer 2009 Phys. Rev. Lett. 102 073005) and our simplified version of this approach (here called sTS), the van der Waals density functional vdW-DF (Dion et al 2004 Phys. Rev. Lett. 92 246401) and vdW-DF2 (Lee et al 2010 Phys. Rev. B 82 081101), and DFT-D2 (Grimme 2006 J. Comput. Chem. 27 1787) and DFT-D3 (Grimme et al 2010 J. Chem. Phys. 132 154104) methods. The binding energies of nucleobases on graphene are found to be in the following order: G > A > T > C > U within TS, sTS, vdW-DF, and DFT-D2, and in the following order: G > A > T ˜ C > U within DFT-D3 and vdW-DF2. The binding separations are found to be different within different methods and in the following order: DFT-D2 < TS < DFT-D3 ˜ vdW-DF2 < vdW-DF. We also comment on the efficiency of combining the DFT-D approach and vdW-DF to study systems with van der Waals interactions.

  10. The effects of van der Waals attractions on cloud droplet growth by coalescence

    NASA Technical Reports Server (NTRS)

    Rogers, Jan R.; Davis, Robert H.

    1990-01-01

    The inclusion of van der Waals attractions in the interaction between cloud droplets has been recently shown to significantly increase the collision efficiencies of the smaller droplets. In the current work, these larger values for the collision efficiencies are used in a population dynamics model of the droplet size distribution evolution with time, in hopes of at least partially resolving the long-standing paradox in cloud microphysics that predicted rates of the onset of precipitation are generally much lower than those which are observed. Evolutions of several initial cloud droplet spectra have been tracked in time. Size evolutions are compared as predicted from the use of collision efficiencies computed using two different models to allow for droplet-droplet contact: one which considers slip flow effects only, and one which considers the combined effects of van der Waals forces and slip flow. The rate at which the droplet mass density function shifts to larger droplet sizes is increased by typically 20-25 percent, when collision efficiencies which include van der Waals forces are used.

  11. Short-range Cut-Off of the Summed-Up van der Waals Series

    NASA Astrophysics Data System (ADS)

    Patra, Abhirup; Perdew, John P.

    2015-03-01

    van der Waals interactions are important in typical van der Waals-bound systems such as noble-gas, hydrocarbon, alkali and alkaline-earth dimers. The summed-up van der Waals series works well and gives an accurate result at large separation between two atoms. But it has a strong singularity at short non-zero separation, where the two atoms touch. In this work we remove that singularity with a reasonable and physical choice of the cut-off distance. Only one fitting parameter has been introduced for the short-range cut off. The parameter in our model has been optimized for each system, and a system-averaged value has been used to get the final binding energy curves. When this correction is added to the binding energy curve from the semilocal density functional meta-GGA-MS2, we get vdW- corrected binding energy curve. These curves are compared with the results of other vdW-corrected methods such as PBE-D2 and vdW-DF2 .Binding energy curves are in reasonable agreement with those from experiment. These curves also predict reasonably good equilibrium bond length. Supported by NSF (DMR).

  12. Van der Pol and the history of relaxation oscillations: Toward the emergence of a concept

    NASA Astrophysics Data System (ADS)

    Ginoux, Jean-Marc; Letellier, Christophe

    2012-06-01

    Relaxation oscillations are commonly associated with the name of Balthazar van der Pol via his paper (Philosophical Magazine, 1926) in which he apparently introduced this terminology to describe the nonlinear oscillations produced by self-sustained oscillating systems such as a triode circuit. Our aim is to investigate how relaxation oscillations were actually discovered. Browsing the literature from the late 19th century, we identified four self-oscillating systems in which relaxation oscillations have been observed: (i) the series dynamo machine conducted by Gérard-Lescuyer (1880), (ii) the musical arc discovered by Duddell (1901) and investigated by Blondel (1905), (iii) the triode invented by de Forest (1907), and (iv) the multivibrator elaborated by Abraham and Bloch (1917). The differential equation describing such a self-oscillating system was proposed by Poincaré for the musical arc (1908), by Janet for the series dynamo machine (1919), and by Blondel for the triode (1919). Once Janet (1919) established that these three self-oscillating systems can be described by the same equation, van der Pol proposed (1926) a generic dimensionless equation which captures the relevant dynamical properties shared by these systems. Van der Pol's contributions during the period of 1926-1930 were investigated to show how, with Le Corbeiller's help, he popularized the "relaxation oscillations" using the previous experiments as examples and, turned them into a concept.

  13. The hot pick-up technique for batch assembly of van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Pizzocchero, Filippo; Gammelgaard, Lene; Jessen, Bjarke S.; Caridad, José M.; Wang, Lei; Hone, James; Bøggild, Peter; Booth, Timothy J.

    2016-06-01

    The assembly of individual two-dimensional materials into van der Waals heterostructures enables the construction of layered three-dimensional materials with desirable electronic and optical properties. A core problem in the fabrication of these structures is the formation of clean interfaces between the individual two-dimensional materials which would affect device performance. We present here a technique for the rapid batch fabrication of van der Waals heterostructures, demonstrated by the controlled production of 22 mono-, bi- and trilayer graphene stacks encapsulated in hexagonal boron nitride with close to 100% yield. For the monolayer devices, we found semiclassical mean-free paths up to 0.9 μm, with the narrowest samples showing clear indications of the transport being affected by boundary scattering. The presented method readily lends itself to fabrication of van der Waals heterostructures in both ambient and controlled atmospheres, while the ability to assemble pre-patterned layers paves the way for complex three-dimensional architectures.

  14. Probabilistic characteristics of noisy Van der Pol type oscillator with nonlinear damping

    NASA Astrophysics Data System (ADS)

    Dubkov, A. A.; Litovsky, I. A.

    2016-05-01

    The exact Fokker–Planck equation for the joint probability distribution of amplitude and phase of a Van der Pol oscillator perturbed by both additive and multiplicative noise sources with arbitrary nonlinear damping is first derived by the method of functional splitting of averages. We truncate this equation in the usual manner using the smallness of the damping parameter and obtain a general expression for the stationary probability density function of oscillation amplitude, which is valid for any nonlinearity in the feedback loop of the oscillator. We analyze the dependence of this stationary solution on system parameters and intensities of noise sources for two different situations: (i) Van der Pol generator with soft and hard excitation regimes; (ii) Van der Pol oscillator with negative nonlinear damping. As shown, in the first case the probability distribution of amplitude demonstrates one characteristic maximum, which indicates the presence of a stable limit cycle in the system. The non-monotonic dependence of stationary probability density function on oscillation frequency is also detected. In the second case we examine separately three situations: linear oscillator with two noise sources, nonlinear oscillator with additive noise and nonlinear oscillator with frequency fluctuations. For the last two situations, noise-induced transitions in the system under consideration are found.

  15. The hot pick-up technique for batch assembly of van der Waals heterostructures

    PubMed Central

    Pizzocchero, Filippo; Gammelgaard, Lene; Jessen, Bjarke S.; Caridad, José M.; Wang, Lei; Hone, James; Bøggild, Peter; Booth, Timothy J.

    2016-01-01

    The assembly of individual two-dimensional materials into van der Waals heterostructures enables the construction of layered three-dimensional materials with desirable electronic and optical properties. A core problem in the fabrication of these structures is the formation of clean interfaces between the individual two-dimensional materials which would affect device performance. We present here a technique for the rapid batch fabrication of van der Waals heterostructures, demonstrated by the controlled production of 22 mono-, bi- and trilayer graphene stacks encapsulated in hexagonal boron nitride with close to 100% yield. For the monolayer devices, we found semiclassical mean-free paths up to 0.9 μm, with the narrowest samples showing clear indications of the transport being affected by boundary scattering. The presented method readily lends itself to fabrication of van der Waals heterostructures in both ambient and controlled atmospheres, while the ability to assemble pre-patterned layers paves the way for complex three-dimensional architectures. PMID:27305833

  16. Parameters identification of Van der Pol-Duffing oscillators via particle swarm optimization and differential evolution

    NASA Astrophysics Data System (ADS)

    Quaranta, Giuseppe; Monti, Giorgio; Marano, Giuseppe Carlo

    2010-10-01

    Many of the proposed approaches for non-linear systems control are developed under the assumption that all involved parameters are known in advance. Unfortunately, their estimation is not so simple because the nature of the non-linear behaviors is very complex in the most part of the cases. In view of this complication, parameters identification of non-linear oscillators has attracted increasing interests in various research fields: from a pure mathematical point-of-view, parameters identification can be formalized as a multi-dimensional optimization problem, typically over real bounded domains. In doing this, the use of the so-called non-classical methods based on soft computing theories seems to be promising because they do not require a priori information and the robustness of the identification against the noise contamination is satisfactory. However, further studies are required to evaluate the general effectiveness of these methodologies. In this sense, the paper addresses the consistency of two classes of soft computing based methods for the identification of Van der Pol-Duffing oscillators. A large numerical investigation has been conducted to evaluate the performances of six differential evolution algorithms (including a modified differential evolution algorithm proposed by the authors) and four swarm intelligence based algorithms (including a chaotic particle swarm optimization algorithm). Single well, double well and double-hump oscillators are identified and noisy system responses are considered in order to evaluate the robustness of the identification processes. The investigated soft computing techniques behave very well and thus they are suitable for practical applications.

  17. The van der Waals Interaction between a Spherical Particle and a Cylinder.

    PubMed

    Gu; Li

    1999-09-01

    Based on the Hamaker approach, this paper presents a general method to compute the retarded van der Waals (vdW) interaction potential and force between a spherical particle and a cylinder. The effects of the relative dimensions of the cylinder to the sphere were examined by this general method. First, the unretarded vdW interaction potential between these two bodies is obtained by pairwise summation of all the relevant intermolecular interactions and evaluated by accurate multiple numerical integrations. The interaction potential is then modified to account for the retardation effect by incorporating a correction factor which depends on the separation distance and the characteristic wavelength of the interactions. The numerical predictions indicate that the vdW interaction between a sphere and a finitely long cylinder can be approximated as the interaction between a sphere and an infinitely long cylinder only if the ratio of the cylinder length to its radius, B = L/R, is greater than a certain lower limit, say, B > 10. At smaller dimensionless separation distances, H = D/a

  18. Application of Solution-blown 20-50 nm Nanofibers in Filtration of Nanoparticles: The Efficient van der Waals Collectors

    NASA Astrophysics Data System (ADS)

    Sinha-Ray, Sumit; Sinha-Ray, Suman; Yarin, Alexander; Pourdeyhimi, Behnam

    2015-11-01

    Filtration efficiency of commercially available filter media with fiber/pore sizes on the scale of 10 μm can be dramatically increased by adding a layer of ultrafine supersonically-blown 20-50 nm nanofibers. Different commercial filters were modified with (i) electrospun nanofibers alone, (ii) solution-blown 20-50 nm alone, and (iii) the dual coating with electrospun nanofibers deposited first and the solution-blown 20-50 nm nanofibers deposited on top of them. Detailed observations of nanoparticle removal revealed that the above-mentioned modified filters, especially those with the dual nanofiber coating with the 20-50 nm nanofibers deposited on top, are the most effective in removing the below-200 nm Cu nanoparticles/clusters from aqueous suspensions, in particular at the lowest concentrations of 0.2-0.5 ppm. The theory developed in the present work dealing with convective transport of nanoparticles in the fluid flow along with diffusion of nanoparticles and the van der Waals attraction explains and describes how the smallest solution-blown nanofibers introduce a novel physical mechanism of nanoparticle interception (the attractive van der Waals forces) and become significantly more efficient collectors compared to the larger electrospun nanofibers. The theory also elucidates the morphology of the nanoparticle clusters being accumulated at the smallest nanofiber surfaces, including the clusters growing at the windward side, or in some cases also on the leeward side of a nanofiber. This work is supported by the Nonwovens Cooperative Research Center (NCRC), grant No. 12-144SB.

  19. When is the mode-summation method of calculating van der Waals force valid?

    NASA Astrophysics Data System (ADS)

    Narayanaswamy, Arvind

    2015-03-01

    Most calculations of van der Waals forces and Casimir forces can be categorized as variations of two ``proto methods'': (1) Lifshitz theory, and (2) mode summation method. In the Lifshitz theory, by which I include the subsequent generalization by Dzyaloshinskii, Lifshitz, and Pitaevskii [Adv. Phys. 10, 165 (1961); See also Zheng and Narayanaswamy, Phys. Rev. A 83, 042504 (2011)] the dispersion force is expressed in terms of the (dyadic) Green's function of the vector Helmholtz equation. In the mode summation method [see Casimir, Proc. Kon. Ned. Akad. Wetensch. 51, 793 (1948); Van Kampen, Nijboer, and Schram, Phys. Lett. A 26, 307 (1968)], the free energy of a configuration of objects is expressed in terms of the sum of the free energies of each of the possible electromagnetic modes. The derivative of this free energy with respect to variation of relative positions between the objects yields the force between two objects. However, we raised questions about the validity of the mode summation method when calculating van der Waals forces in dissipative media [see Narayanaswamy and Zheng, Phys. Rev. A 88, 012502 (2013) and Ninham, Parsegian, and Weiss, J. Stat. Phys. 2, 323 (1970)]. In this talk, I want to start a discussion about the validity of the mode summation method.

  20. Local Probe Spectroscopy of Two-Dimensional van der Waals Heterostructures

    NASA Astrophysics Data System (ADS)

    Yankowitz, Matthew Abraham

    A large family of materials, collectively known as "van der Waals materials", have attracted enormous research attention over the past decade following the realization that they could be isolated into individual crystalline monolayers, with charge carriers behaving effectively two-dimensionally. More recently, an even larger class of composite materials has been realized, made possible by combining the isolated atomic layers of different materials into "van der Waals heterostructures", which can exhibit electronic and optical behaviors not observed in the parent materials alone. This thesis describes efforts to characterize the atomic-scale structural and electronic properties of these van der Waals materials and heterostructures through scanning tunneling microscopy measurements. The majority of this work addresses the properties of monolayer and few-layer graphene, whose charge carriers are described by massless and massive chiral Dirac Hamiltonians, respectively. In heterostructures with hexagonal boron nitride, an insulating isomorph of graphene, we observe electronic interference patterns between the two materials which depend on their relative rotation. As a result, replica Dirac cones are formed in the valence and conduction bands of graphene, with their energy tuned by the rotation. Further, we are able to dynamically drag the graphene lattice in these heterostructures, owing to an interaction between the scanning probe tip and the domain walls formed by the electronic interference pattern. Similar dragging is observed in domain walls of trilayer graphene, whose electronic properties are found to depend on the stacking configuration of the three layers. Scanning tunneling spectroscopy provides a direct method for visualizing the scattering pathways of electrons in these materials. By analyzing the scattering, we can directly infer properties of the band structures and local environments of these heterostructures. In bilayer graphene, we map the electrically

  1. Microwave and ab initio studies of rare gas-methane van der Waals complexes

    NASA Astrophysics Data System (ADS)

    Liu, Yaqian; Jäger, Wolfgang

    2004-05-01

    Rotational spectra of the weakly bound Kr-methane van der Waals complex were recorded using a pulsed molecular beam Fourier transform microwave spectrometer in the range from 3.5 to 18 GHz. Spectra of 25 isotopomers of Kr-methane were assigned and analyzed. For isotopomers containing CH4, 13CH4, and CD4, two sets of transitions with K=0 and one with K=1 were recorded, correlating to the j=0, 1, and 2 rotational levels of free methane, respectively (j is the rotational angular momentum quantum number of the methane monomer). For isotopomers containing CH3D and CHD3, two K=0 components were recorded, correlating to the jk=00 and 11 rotational levels of free methane (k corresponds to the projection of j onto the C3 axis of CH3D and CHD3). The obtained spectroscopic results were used to derive van der Waals bond distance R, van der Waals stretching frequency νs, and the corresponding stretching force constant ks. Nuclear spin statistical weights of individual states were obtained from molecular symmetry group analyses and were compared with the observed relative transition intensities. The tentatively assigned j=2 transitions were more intense than predicted from symmetry considerations. This is attributed to a relatively large effective dipole moment of this state, supported by ab initio dipole moment calculations. Ab initio potential energy calculations of Kr-CH4 and Ar-CH4 were done at the coupled cluster level of theory, with single and double excitations and perturbative inclusion of triple excitations, using the aug-cc-pVTZ basis set supplemented with bond functions. The theoretical results show that the angular dynamics of the dimer does not change significantly when the binding partner of methane changes from Ar to Kr. The dipole moment of Ar-CH4 was calculated at various configurations, providing a qualitative explanation for the unsuccessful spectral searches for rotational transitions of Ar-CH4.

  2. Nonlocal van der Waals functionals: the case of rare-gas dimers and solids.

    PubMed

    Tran, Fabien; Hutter, Jürg

    2013-05-28

    Recently, the nonlocal van der Waals (vdW) density functionals [M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004)] have attracted considerable attention due to their good performance for systems where weak interactions are important. Since the physics of dispersion is included in these functionals, they are usually more accurate and show less erratic behavior than the semilocal and hybrid methods. In this work, several variants of the vdW functionals have been tested on rare-gas dimers (from He2 to Kr2) and solids (Ne, Ar, and Kr) and their accuracy compared to standard semilocal approximations, supplemented or not by an atom-pairwise dispersion correction [S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys. 132, 154104 (2010)]. An analysis of the results in terms of energy decomposition is also provided.

  3. Interlayer coupling effects on Schottky barrier in the arsenene-graphene van der Waals heterostructures

    SciTech Connect

    Xia, Congxin Xue, Bin; Wang, Tianxing; Peng, Yuting; Jia, Yu

    2015-11-09

    The electronic characteristics of arsenene-graphene van der Waals (vdW) heterostructures are studied by using first-principles methods. The results show that a linear Dirac-like dispersion relation around the Fermi level can be quite well preserved in the vdW heterostructures. Moreover, the p-type Schottky barrier (0.18 eV) to n-type Schottky barrier (0.31 eV) transition occurs when the interlayer distance increases from 2.8 to 4.5 Å, which indicates that the Schottky barrier can be tuned effectively by the interlayer distance in the vdW heterostructures.

  4. Nanoscopy of Surface-Induced van der Waals-Zeeman Transitions

    SciTech Connect

    Hamamda, M.; Grucker, J.; Dutier, G.; Perales, F.; Baudon, J.; Ducloy, M.; Bocvarski, V.

    2008-10-22

    van der Waals transitions among magnetic sub-levels of a metastable rare gas atom passing near a surface immersed in a magnetic field, are described. Related transition amplitudes are calculated using both the sudden and the Landau-Zener approximations. Experimental data for Ne*({sup 3}P{sub 2}) atoms traversing a copper grating are presented. For a pair of surfaces (e.g. the opposite edges of a slit) and a sufficiently large coherence width, Fresnel's biprism interference fringes are obtained. From this interference pattern, detailed information about the transition amplitude at a sub-nanometric scale can be derived. The effect of gravity on this pattern is examined.

  5. Congenital lower lip pits (Van der Woude syndrome): report of a case.

    PubMed

    Kirzioglu, Zuhal; Ertürk, Münciye Semra Ozay

    2006-02-15

    Van der Woude syndrome (VWS) is a rare autosomal dominant disorder that is characterized by a cleft lip and palate with congenital lip pits. This is a report of a case of VWS with sinuses in the lower lip, a cleft in the upper lip, and a supernumerary tooth in the maxilla. The main characteristics of this disorder are discussed. Dental treatment of the patient was performed, but the surgical removal of the sinus was rejected by the parents. This case report brings this condition to the attention of dentists and surgeons and emphasizes lip pits may not always be identical in appearance. PMID:16491156

  6. Lower lip pits in a patient with van der Woude syndrome.

    PubMed

    Baghestani, Shahram; Sadeghi, Naser; Yavarian, Majid; Alghasi, Hekmat

    2010-09-01

    van der Woude syndrome (VWS) is a congenital malformation characterized by lower lip pits with or without cleft lip or cleft palate. It is an autosomal-dominant inherited disorder with variable expression in clinical manifestation. Microdeletion in chromosome bands 1q32-q41 and recently identified mutation in interferon regulatory factor 6 gene (IRF6) have been reported to cause VWS. We report a case of VWS with lower lip pits as its main clinical manifestation without associated cleft in lip or palate. No mutation or deletion was found in the IRF6 gene or promoter site, indicating the heterogeneity of this defect. PMID:20818247

  7. Construction of van der Waals magnetic tunnel junction using ferromagnetic layered dichalcogenide

    SciTech Connect

    Arai, Miho; Moriya, Rai Yabuki, Naoto; Masubuchi, Satoru; Ueno, Keiji; Machida, Tomoki

    2015-09-07

    We investigate the micromechanical exfoliation and van der Waals (vdW) assembly of ferromagnetic layered dichalcogenide Fe{sub 0.25}TaS{sub 2}. The vdW interlayer coupling at the Fe-intercalated plane of Fe{sub 0.25}TaS{sub 2} allows exfoliation of flakes. A vdW junction between the cleaved crystal surfaces is constructed by dry transfer method. We observe tunnel magnetoresistance in the resulting junction under an external magnetic field applied perpendicular to the plane, demonstrating spin-polarized tunneling between the ferromagnetic layered material and the vdW junction.

  8. Observing the interplay between surface and bulk optical nonlinearities in thin van der Waals crystals

    PubMed Central

    Deckoff-Jones, Skylar; Zhang, Jingjing; Petoukhoff, Christopher E.; Man, Michael K.L.; Lei, Sidong; Vajtai, Robert; Ajayan, Pulickel M.; Talbayev, Diyar; Madéo, Julien; Dani, Keshav M.

    2016-01-01

    Van der Waals materials, existing in a range of thicknesses from monolayer to bulk, allow for interplay between surface and bulk nonlinearities, which otherwise dominate only at atomically-thin or bulk extremes, respectively. Here, we observe an unexpected peak in intensity of the generated second harmonic signal versus the thickness of Indium Selenide crystals, in contrast to the quadratic increase expected from thin crystals. We explain this by interference effects between surface and bulk nonlinearities, which offer a new handle on engineering the nonlinear optical response of 2D materials and their heterostructures. PMID:26936437

  9. Microwaves Probe Dipole Blockade and van der Waals Forces in a Cold Rydberg Gas.

    PubMed

    Teixeira, R Celistrino; Hermann-Avigliano, C; Nguyen, T L; Cantat-Moltrecht, T; Raimond, J M; Haroche, S; Gleyzes, S; Brune, M

    2015-07-01

    We show that microwave spectroscopy of a dense Rydberg gas trapped on a superconducting atom chip in the dipole blockade regime reveals directly the dipole-dipole many-body interaction energy spectrum. We use this method to investigate the expansion of the Rydberg cloud under the effect of repulsive van der Waals forces and the breakdown of the frozen gas approximation. This study opens a promising route for quantum simulation of many-body systems and quantum information transport in chains of strongly interacting Rydberg atoms.

  10. In-plane Van der Waals interactions of molecular self-assembly monolayer

    NASA Astrophysics Data System (ADS)

    Gao, Hong-Ying; Wagner, Hendrik; Held, Philipp Alexander; Du, Shixuan; Gao, Hong-Jun; Studer, Armido; Fuchs, Harald

    2015-02-01

    We demonstrate that the Van der Waals interactions in plane are important to control molecular self-assembly structure as well their phase transition. Using precise chemical modification to mediate such in-plane cohesive interactions, we observed the spontaneous formations of 2D order or disorder molecular self-assembly structures, as well their order-disorder phase transitions by annealing. Interestingly, we identified that the side alkyl chains stand up at surfaces and form the `locked' pairs/windmill structures. Moreover, we realized the covalent coupling based on ethynyl functionality before molecular desorption from metal surfaces, by enhancing the in-plane interactions.

  11. Stability of an attractive bosonic cloud with van der Waals interaction

    SciTech Connect

    Biswas, Anindya; Das, Tapan Kumar; Salasnich, Luca; Chakrabarti, Barnali

    2010-10-15

    We investigate the structure and stability of Bose-Einstein condensates of {sup 7}Li atoms with realistic van der Waals interactions by using the potential harmonic expansion method. Besides the known low-density metastable solution with a contact {delta}-function interaction, we find a stable branch at a higher density which corresponds to the formation of an atomic cluster. Comparison with the results of a nonlocal effective interaction is also presented. We analyze the effect of trap size on the transition between the two branches of solutions. We also compute the loss rate of a Bose condensate due to two- and three-body collisions.

  12. Microwaves Probe Dipole Blockade and van der Waals Forces in a Cold Rydberg Gas.

    PubMed

    Teixeira, R Celistrino; Hermann-Avigliano, C; Nguyen, T L; Cantat-Moltrecht, T; Raimond, J M; Haroche, S; Gleyzes, S; Brune, M

    2015-07-01

    We show that microwave spectroscopy of a dense Rydberg gas trapped on a superconducting atom chip in the dipole blockade regime reveals directly the dipole-dipole many-body interaction energy spectrum. We use this method to investigate the expansion of the Rydberg cloud under the effect of repulsive van der Waals forces and the breakdown of the frozen gas approximation. This study opens a promising route for quantum simulation of many-body systems and quantum information transport in chains of strongly interacting Rydberg atoms. PMID:26182093

  13. Nonadiabatic alignment of van der Waals--force-bound argon dimers by femtosecond laser pulses

    SciTech Connect

    Wu, J.; Vredenborg, A.; Ulrich, B.; Schmidt, L. Ph. H.; Meckel, M.; Voss, S.; Sann, H.; Kim, H.; Jahnke, T.; Doerner, R.

    2011-06-15

    We demonstrated that the weak van der Waals-force-bound argon dimer can be nonadiabatically aligned by nonresonant femtosecond laser pulses, showing periodic alignment and anti-alignment revivals after the extinction of the laser pulse. Based on the measured nonadiabatic alignment trace, the rotational constant of the argon dimer ground state is determined to be B{sub 0}= 0.05756 {+-} 0.00004 cm{sup -1}. Noticeable alignment dependence of frustrated tunneling ionization and bond-softening induced dissociation of the argon dimer are observed.

  14. Variations of the Lifshitz-van der Waals force between metals immersed in liquids.

    PubMed

    Esquivel-Sirvent, R

    2010-05-21

    We present a theoretical calculation of the Lifshitz-van der Waals force between two metallic slabs embedded in a fluid, taking into account the change of the Drude parameters of the metals when in contact with liquids of different index of refraction. For the three liquids considered in this work, water, CCl(3)F and CBr(3)F the change in the Drude parameters of the metal imply a difference of up to 15% in the determination of the force at short separations. These variations in the force are larger for liquids with a higher index of refraction.

  15. Microwaves Probe Dipole Blockade and van der Waals Forces in a Cold Rydberg Gas

    NASA Astrophysics Data System (ADS)

    Teixeira, R. Celistrino; Hermann-Avigliano, C.; Nguyen, T. L.; Cantat-Moltrecht, T.; Raimond, J. M.; Haroche, S.; Gleyzes, S.; Brune, M.

    2015-07-01

    We show that microwave spectroscopy of a dense Rydberg gas trapped on a superconducting atom chip in the dipole blockade regime reveals directly the dipole-dipole many-body interaction energy spectrum. We use this method to investigate the expansion of the Rydberg cloud under the effect of repulsive van der Waals forces and the breakdown of the frozen gas approximation. This study opens a promising route for quantum simulation of many-body systems and quantum information transport in chains of strongly interacting Rydberg atoms.

  16. Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Chuan; Ghosh, Ram Krishna; Addou, Rafik; Lu, Ning; Eichfeld, Sarah M.; Zhu, Hui; Li, Ming-Yang; Peng, Xin; Kim, Moon J.; Li, Lain-Jong; Wallace, Robert M.; Datta, Suman; Robinson, Joshua A.

    2015-06-01

    Vertical integration of two-dimensional van der Waals materials is predicted to lead to novel electronic and optical properties not found in the constituent layers. Here, we present the direct synthesis of two unique, atomically thin, multi-junction heterostructures by combining graphene with the monolayer transition-metal dichalcogenides: molybdenum disulfide (MoS2), molybdenum diselenide (MoSe2) and tungsten diselenide (WSe2). The realization of MoS2-WSe2-graphene and WSe2-MoS2-graphene heterostructures leads to resonant tunnelling in an atomically thin stack with spectrally narrow, room temperature negative differential resistance characteristics.

  17. Graphene-based van der Waals heterostructures for emission and detection of terahertz radiation

    NASA Astrophysics Data System (ADS)

    Otsuji, Taiichi; Dubinov, Alexander; Aleshkin, Vladimir Y.; Svintsov, Dmitry; Ryzhii, Maxim; Boubanga Tombet, Stephane; Yadav, Deepika; Satou, Akira; Mitin, Vladimir; Shur, Michael S.; Ryzhii, Victor

    2016-04-01

    This paper reviews recent advances in the research of graphene-based van der Waals heterostructures for emission and detection of terahertz radiation. A gated double-graphene-layer (DGL) nanocapacitor is the core shell under consideration, in which a thin tunnel barrier layer is sandwiched by outer graphene layers at both sides. The DGL can support symmetric optical and anti-symmetric acoustic coupled plasmon modes in the GLs. The latter mode can modulate the band-offset between the GL, giving rise to modulation of the inter-GL-layer resonant tunneling. This can dramatically enhance the THz gain or responsivity via plasmon-assisted inter-GL resonant tunneling.

  18. Families at risk: comment on Dirkzwager, Bramsen, Adèr, and van der Ploeg (2005).

    PubMed

    Fairbank, John A; Fairbank, Doreen W

    2005-06-01

    New findings from a study by A. J. E. Dirkzwager, I. Bramsen, H. Adèr, and H. M. van der Ploeg (2005; see record 2005-06518-006) provide important empirical information on the adverse psychological and functional adjustment of families of former Dutch peacekeepers suffering from posttraumatic stress disorder (PTSD). In this comment the authors consider a few methodological limitations and issues for future study, including the need for intergenerational studies of the legacy of peacekeeping-related PTSD. Attention to considering the treatment needs of families of traumatized former peacekeepers is encouraged. PMID:15982099

  19. Effects of zero van der Waals and zero electrostatic forces on droplet sedimentation

    NASA Technical Reports Server (NTRS)

    Omenyi, S. N.; Snyder, R. S.; Van Oss, C. J.; Absolom, D. R.; Neumann, A. W.

    1981-01-01

    The present investigation provides a confirmation of the dependence of droplet sedimentation on particle concentration. It is shown that it is possible to determine the maximum particle concentration which can remain stable on a given liquid from droplet sedimentation experiments. Droplet sedimentation can be reduced but not totally eliminated by the addition of appropriate amounts of dimethyl sulfoxide (DMSO) to reduce the van der Waals forces to zero. It was found that, at 12% DMSO, a maximum particle concentration of 6.3 x 10 to the 8th cells/ml of glutaraldehyde-fixed human erythrocytes suspended in physiological saline can remain stable on a D2O cushion.

  20. Period-doubling cascades of canards from the extended Bonhoeffer-van der Pol oscillator

    NASA Astrophysics Data System (ADS)

    Sekikawa, Munehisa; Inaba, Naohiko; Yoshinaga, Tetsuya; Hikihara, Takashi

    2010-08-01

    This Letter investigates the period-doubling cascades of canards, generated in the extended Bonhoeffer-van der Pol oscillator. Canards appear by Andronov-Hopf bifurcations (AHBs) and it is confirmed that these AHBs are always supercritical in our system. The cascades of period-doubling bifurcation are followed by mixed-mode oscillations. The detailed two-parameter bifurcation diagrams are derived, and it is clarified that the period-doubling bifurcations arise from a narrow parameter value range at which the original canard in the non-extended equation is observed.

  1. GaN: From three- to two-dimensional single-layer crystal and its multilayer van der Waals solids

    NASA Astrophysics Data System (ADS)

    Onen, A.; Kecik, D.; Durgun, E.; Ciraci, S.

    2016-02-01

    Three-dimensional (3D) GaN is a III-V compound semiconductor with potential optoelectronic applications. In this paper, starting from 3D GaN in wurtzite and zinc-blende structures, we investigated the mechanical, electronic, and optical properties of the 2D single-layer honeycomb structure of GaN (g -GaN ) and its bilayer, trilayer, and multilayer van der Waals solids using density-functional theory. Based on high-temperature ab initio molecular-dynamics calculations, we first showed that g -GaN can remain stable at high temperature. Then we performed a comparative study to reveal how the physical properties vary with dimensionality. While 3D GaN is a direct-band-gap semiconductor, g -GaN in two dimensions has a relatively wider indirect band gap. Moreover, 2D g -GaN displays a higher Poisson ratio and slightly less charge transfer from cation to anion. In two dimensions, the optical-absorption spectra of 3D crystalline phases are modified dramatically, and their absorption onset energy is blueshifted. We also showed that the physical properties predicted for freestanding g -GaN are preserved when g -GaN is grown on metallic as well as semiconducting substrates. In particular, 3D layered blue phosphorus, being nearly lattice-matched to g -GaN , is found to be an excellent substrate for growing g -GaN . Bilayer, trilayer, and van der Waals crystals can be constructed by a special stacking sequence of g -GaN , and they can display electronic and optical properties that can be controlled by the number of g -GaN layers. In particular, their fundamental band gap decreases and changes from indirect to direct with an increasing number of g -GaN layers.

  2. Simple model for analyzing Efimov energy and three-body recombination of three identical bosons with van der Waals interactions

    NASA Astrophysics Data System (ADS)

    Li, Jing-Lun; Hu, Xue-Jin; Han, Yong-Chang; Cong, Shu-Lin

    2016-09-01

    We construct a simple model to calculate the trimer bound state energy ET(n ) and three-body recombination rate K30 of three identical bosons with van der Waals interaction without using any two- or three-body fitting parameter. Using this simple model, we investigate the influence of the van der Waals finite-range effect on ET(n ) and K30. Our calculation shows that the finite-range effect leads to the ground trimer state energy ET(0 ) not crossing the atom-dimer threshold, and the scaled three-body recombination rate K30/a4 deviating from the universal three-body theory. The results of our simple model agree within a few percent with other theoretical works with van der Waals interaction and also the experimental data.

  3. Critical lines for an unequal size of molecules in a binary gas-liquid mixture around the van Laar point using the combination of the Tompa model and the van der Waals equation.

    PubMed

    Gençaslan, Mustafa; Keskin, Mustafa

    2012-02-14

    We combine the modified Tompa model with the van der Waals equation to study critical lines for an unequal size of molecules in a binary gas-liquid mixture around the van Laar point. The van Laar point is coined by Meijer and it is the only point at which the mathematical double point curve is stable. It is the intersection of the tricritical point and the double critical end point. We calculate the critical lines as a function of χ(1) and χ(2), the density of type I molecules and the density of type II molecules for various values of the system parameters; hence the global phase diagrams are presented and discussed in the density-density plane. We also investigate the connectivity of critical lines at the van Laar point and its vicinity and discuss these connections according to the Scott and van Konynenburg classifications. It is also found that the critical lines and phase behavior are extremely sensitive to small modifications in the system parameters.

  4. Existence of quasi-periodic solutions of fast excited van der Pol-Mathieu-Duffing equation

    NASA Astrophysics Data System (ADS)

    Lu, Lin; Li, Xuemei

    2015-12-01

    The van der Pol-Mathieu-Duffing equation x ̈ + ( Ω0 2 + h 1 cos Ω 1 t + h 2 cos Ω 2 t ) x - ( α - β x 2 ) x ˙ - h 3 x 3 = h 4 Ω3 2 cos x cos Ω 3 t is considered in this paper, where α, β, h1, h2, h3, h4, Ω1, Ω2 are small parameters, α, β > 0, the frequency Ω3 is large compared to Ω1 and Ω2, the above parameters are real. For ∀α, β > 0, we use KAM (Kolmogorov-Arnold-Moser) theory to prove that the van der Pol-Mathieu-Duffing equation possesses quasi-periodic solutions for most of the parameters Ω0, Ω1, Ω2, Ω3, it verifies some phenomenon of Fahsi and Belhaq [Commun. Nonlinear Sci. 14, 244-253 (2009)] and can be regarded as a extension of Abouhazim et al. [Nonlinear Dyn. 39, 395-409 (2005)].

  5. Band Alignment and Minigaps in Monolayer MoS2-Graphene van der Waals Heterostructures.

    PubMed

    Pierucci, Debora; Henck, Hugo; Avila, Jose; Balan, Adrian; Naylor, Carl H; Patriarche, Gilles; Dappe, Yannick J; Silly, Mathieu G; Sirotti, Fausto; Johnson, A T Charlie; Asensio, Maria C; Ouerghi, Abdelkarim

    2016-07-13

    Two-dimensional layered MoS2 shows great potential for nanoelectronic and optoelectronic devices due to its high photosensitivity, which is the result of its indirect to direct band gap transition when the bulk dimension is reduced to a single monolayer. Here, we present an exhaustive study of the band alignment and relativistic properties of a van der Waals heterostructure formed between single layers of MoS2 and graphene. A sharp, high-quality MoS2-graphene interface was obtained and characterized by micro-Raman spectroscopy, high-resolution X-ray photoemission spectroscopy (HRXPS), and scanning high-resolution transmission electron microscopy (STEM/HRTEM). Moreover, direct band structure determination of the MoS2/graphene van der Waals heterostructure monolayer was carried out using angle-resolved photoemission spectroscopy (ARPES), shedding light on essential features such as doping, Fermi velocity, hybridization, and band-offset of the low energy electronic dynamics found at the interface. We show that, close to the Fermi level, graphene exhibits a robust, almost perfect, gapless, and n-doped Dirac cone and no significant charge transfer doping is detected from MoS2 to graphene. However, modification of the graphene band structure occurs at rather larger binding energies, as the opening of several miniband-gaps is observed. These miniband-gaps resulting from the overlay of MoS2 and the graphene layer lattice impose a superperiodic potential. PMID:27281693

  6. Atomically Sharp Interface in an h-BN-epitaxial graphene van der Waals Heterostructure

    PubMed Central

    Sediri, Haikel; Pierucci, Debora; Hajlaoui, Mahdi; Henck, Hugo; Patriarche, Gilles; Dappe, Yannick J.; Yuan, Sheng; Toury, Bérangère; Belkhou, Rachid; Silly, Mathieu G.; Sirotti, Fausto; Boutchich, Mohamed; Ouerghi, Abdelkarim

    2015-01-01

    Stacking various two-dimensional atomic crystals is a feasible approach to creating unique multilayered van der Waals heterostructures with tailored properties. Herein for the first time, we present a controlled preparation of large-area h-BN/graphene heterostructures via a simple chemical deposition of h-BN layers on epitaxial graphene/SiC(0001). Van der Waals forces, which are responsible for the cohesion of the multilayer system, give rise to an abrupt interface without interdiffusion between graphene and h-BN, as shown by X-ray Photoemission Spectroscopy (XPS) and direct observation using scanning and High-Resolution Transmission Electron Microscopy (STEM/HRTEM). The electronic properties of graphene, such as the Dirac cone, remain intact and no significant charge transfer i.e. doping, is observed. These results are supported by Density Functional Theory (DFT) calculations. We demonstrate that the h-BN capped graphene allows the fabrication of vdW heterostructures without altering the electronic properties of graphene. PMID:26585245

  7. Atomically Sharp Interface in an h-BN-epitaxial graphene van der Waals Heterostructure.

    PubMed

    Sediri, Haikel; Pierucci, Debora; Hajlaoui, Mahdi; Henck, Hugo; Patriarche, Gilles; Dappe, Yannick J; Yuan, Sheng; Toury, Bérangère; Belkhou, Rachid; Silly, Mathieu G; Sirotti, Fausto; Boutchich, Mohamed; Ouerghi, Abdelkarim

    2015-01-01

    Stacking various two-dimensional atomic crystals is a feasible approach to creating unique multilayered van der Waals heterostructures with tailored properties. Herein for the first time, we present a controlled preparation of large-area h-BN/graphene heterostructures via a simple chemical deposition of h-BN layers on epitaxial graphene/SiC(0001). Van der Waals forces, which are responsible for the cohesion of the multilayer system, give rise to an abrupt interface without interdiffusion between graphene and h-BN, as shown by X-ray Photoemission Spectroscopy (XPS) and direct observation using scanning and High-Resolution Transmission Electron Microscopy (STEM/HRTEM). The electronic properties of graphene, such as the Dirac cone, remain intact and no significant charge transfer i.e. doping, is observed. These results are supported by Density Functional Theory (DFT) calculations. We demonstrate that the h-BN capped graphene allows the fabrication of vdW heterostructures without altering the electronic properties of graphene. PMID:26585245

  8. Interfactant-mediated quasi-Frank-van der Merwe growth of Pb on Si(111)

    NASA Astrophysics Data System (ADS)

    Schmidt, Th.; Bauer, E.

    2000-12-01

    The influence of interfactants (Au, Ag) on the growth of Pb on Si(111) is studied by low-energy electron microscopy in the temperature range from 260 K to 460 K. On the Si(111)-(7×7) surface Pb grows in the Stranski-Krastanov mode, on the Si(111)-(3×3)R30°-Au and on the Si(111)-(6×6)-Au surface in the quasi-Frank-van der Merwe (layer-by-layer) mode. On the Si(111)-(3×3)R30°-Ag surface the growth mode changes from layer-by-layer below 300 K to the Stranski-Krastanov mode above 300 K. The temperature dependence of the growth cannot be explained by thermodynamics but is governed by kinetics. The analysis of the maximum island density in terms of the atomistic nucleation theory gives acceptable values for nucleus size and energies only in the layer-by-layer growth regime. In the Stranski-Krastanov growth regime abnormal values are obtained that are attributed to high cluster mobility on the initial two-dimensional layer. The conditions leading to quasi-Frank-van der Merwe growth are discussed.

  9. Density-functional description of polymer crystals: A comparative study of recent van der Waals functionals

    NASA Astrophysics Data System (ADS)

    Pham, Thinh H.; Ramprasad, Rampi; Nguyen, Huy-Viet

    2016-06-01

    Due to the lack of treatment of long-range dispersion energies, density functional theory with local and semilocal approximations of exchange-correlation energy is known to fail in describing van der Waals complexes, including polymer crystals. This limitation can be overcome by using a different class of functionals, called van der Waals density functional (vdW-DF), originally developed by Dion et al. [Phys. Rev. Lett. 92, 246401 (2004)]. In this work, we performed a systematic study of structural properties of polymeric crystals using the original vdW-DF functional by Dion et al. and its variants and refinements. Our study shows that this class of functional outperforms the conventional LDA or PBE functionals and gives results with similar accuracy to that of empirical dispersion-corrected schemes such as DFT-D. This study suggests the use of vdW-DF2 functional — a revised version of vdW-DF functional — to obtain a high-fidelity prediction of structural and other properties of polymeric materials.

  10. Density-functional description of polymer crystals: A comparative study of recent van der Waals functionals.

    PubMed

    Pham, Thinh H; Ramprasad, Rampi; Nguyen, Huy-Viet

    2016-06-01

    Due to the lack of treatment of long-range dispersion energies, density functional theory with local and semilocal approximations of exchange-correlation energy is known to fail in describing van der Waals complexes, including polymer crystals. This limitation can be overcome by using a different class of functionals, called van der Waals density functional (vdW-DF), originally developed by Dion et al. [Phys. Rev. Lett. 92, 246401 (2004)]. In this work, we performed a systematic study of structural properties of polymeric crystals using the original vdW-DF functional by Dion et al. and its variants and refinements. Our study shows that this class of functional outperforms the conventional LDA or PBE functionals and gives results with similar accuracy to that of empirical dispersion-corrected schemes such as DFT-D. This study suggests the use of vdW-DF2 functional - a revised version of vdW-DF functional - to obtain a high-fidelity prediction of structural and other properties of polymeric materials. PMID:27276968

  11. From the Cover: Evidence for van der Waals adhesion in gecko setae

    NASA Astrophysics Data System (ADS)

    Autumn, Kellar; Sitti, Metin; Liang, Yiching A.; Peattie, Anne M.; Hansen, Wendy R.; Sponberg, Simon; Kenny, Thomas W.; Fearing, Ronald; Israelachvili, Jacob N.; Full, Robert J.

    2002-09-01

    Geckos have evolved one of the most versatile and effective adhesives known. The mechanism of dry adhesion in the millions of setae on the toes of geckos has been the focus of scientific study for over a century. We provide the first direct experimental evidence for dry adhesion of gecko setae by van der Waals forces, and reject the use of mechanisms relying on high surface polarity, including capillary adhesion. The toes of live Tokay geckos were highly hydrophobic, and adhered equally well to strongly hydrophobic and strongly hydrophilic, polarizable surfaces. Adhesion of a single isolated gecko seta was equally effective on the hydrophobic and hydrophilic surfaces of a microelectro-mechanical systems force sensor. A van der Waals mechanism implies that the remarkable adhesive properties of gecko setae are merely a result of the size and shape of the tips, and are not strongly affected by surface chemistry. Theory predicts greater adhesive forces simply from subdividing setae to increase surface density, and suggests a possible design principle underlying the repeated, convergent evolution of dry adhesive microstructures in gecko, anoles, skinks, and insects. Estimates using a standard adhesion model and our measured forces come remarkably close to predicting the tip size of Tokay gecko seta. We verified the dependence on size and not surface type by using physical models of setal tips nanofabricated from two different materials. Both artificial setal tips stuck as predicted and provide a path to manufacturing the first dry, adhesive microstructures.

  12. Understanding corrosion inhibition with van der Waals DFT methods: the case of benzotriazole.

    PubMed

    Gattinoni, Chiara; Michaelides, Angelos

    2015-01-01

    The corrosion of materials is an undesirable and costly process affecting many areas of technology and everyday life. As such, considerable effort has gone into understanding and preventing it. Organic molecule based coatings can in certain circumstances act as effective corrosion inhibitors. Although they have been used to great effect for more than sixty years, how they function at the atomic-level is still a matter of debate. In this work, computer simulation approaches based on density functional theory are used to investigate benzotriazole (BTAH), one of the most widely used and studied corrosion inhibitors for copper. In particular, the structures formed by protonated and deprotonated BTAH molecules on Cu(111) have been determined and linked to their inhibiting properties. It is found that hydrogen bonding, van der Waals interactions and steric repulsions all contribute in shaping how BTAH molecules adsorb, with flat-lying structures preferred at low coverage and upright configurations preferred at high coverage. The interaction of the dehydrogenated benzotriazole molecule (BTA) with the copper surface is instead dominated by strong chemisorption via the azole moiety with the aid of copper adatoms. Structures of dimers or chains are found to be the most stable structures at all coverages, in good agreement with scanning tunnelling microscopy results. Benzotriazole thus shows a complex phase behaviour in which van der Waals forces play an important role and which depends on coverage and on its protonation state and all of these factors feasibly contribute to its effectiveness as a corrosion inhibitor.

  13. Band Alignment and Minigaps in Monolayer MoS2-Graphene van der Waals Heterostructures.

    PubMed

    Pierucci, Debora; Henck, Hugo; Avila, Jose; Balan, Adrian; Naylor, Carl H; Patriarche, Gilles; Dappe, Yannick J; Silly, Mathieu G; Sirotti, Fausto; Johnson, A T Charlie; Asensio, Maria C; Ouerghi, Abdelkarim

    2016-07-13

    Two-dimensional layered MoS2 shows great potential for nanoelectronic and optoelectronic devices due to its high photosensitivity, which is the result of its indirect to direct band gap transition when the bulk dimension is reduced to a single monolayer. Here, we present an exhaustive study of the band alignment and relativistic properties of a van der Waals heterostructure formed between single layers of MoS2 and graphene. A sharp, high-quality MoS2-graphene interface was obtained and characterized by micro-Raman spectroscopy, high-resolution X-ray photoemission spectroscopy (HRXPS), and scanning high-resolution transmission electron microscopy (STEM/HRTEM). Moreover, direct band structure determination of the MoS2/graphene van der Waals heterostructure monolayer was carried out using angle-resolved photoemission spectroscopy (ARPES), shedding light on essential features such as doping, Fermi velocity, hybridization, and band-offset of the low energy electronic dynamics found at the interface. We show that, close to the Fermi level, graphene exhibits a robust, almost perfect, gapless, and n-doped Dirac cone and no significant charge transfer doping is detected from MoS2 to graphene. However, modification of the graphene band structure occurs at rather larger binding energies, as the opening of several miniband-gaps is observed. These miniband-gaps resulting from the overlay of MoS2 and the graphene layer lattice impose a superperiodic potential.

  14. Potential-energy surface and van der Waals motions of p-difluorobenzene-argon cation

    NASA Astrophysics Data System (ADS)

    Makarewicz, Jan

    2005-07-01

    The structure and dynamics of the van der Waals complex of argon with the p-difluorobenzene cation are investigated using the ab initio theory. The restricted open-shell Møller-Plesset second-order perturbation method combined with the augmented correlation-consistent polarized valence double-ζ basis set is employed to determine the electronic ground-state potential-energy surface of the cationic complex. This surface is extremely flat in a wide region of the configuration space of the Ar atom which moves almost freely over the monomer ring. However, it is bound to the monomer stronger in the cationic than in the neutral complex. Its binding energy is calculated to be 621cm-1 at a distance of 3.445Å from the monomer center. The calculated dissociation energy of 572cm-1 agrees perfectly with the experimental value of 572±6cm-1 [S. M. Belm, R. J. Moulds, and D. Lawrence, J. Chem. Phys. 115, 10709 (2001)]. The effect of a strong coupling of large-amplitude intermolecular motions on the character of van der Waals vibrational states is investigated. The vibrational structure of the spectrum of the complex is explained and its earlier assignment is partly corrected.

  15. Density-functional description of polymer crystals: A comparative study of recent van der Waals functionals.

    PubMed

    Pham, Thinh H; Ramprasad, Rampi; Nguyen, Huy-Viet

    2016-06-01

    Due to the lack of treatment of long-range dispersion energies, density functional theory with local and semilocal approximations of exchange-correlation energy is known to fail in describing van der Waals complexes, including polymer crystals. This limitation can be overcome by using a different class of functionals, called van der Waals density functional (vdW-DF), originally developed by Dion et al. [Phys. Rev. Lett. 92, 246401 (2004)]. In this work, we performed a systematic study of structural properties of polymeric crystals using the original vdW-DF functional by Dion et al. and its variants and refinements. Our study shows that this class of functional outperforms the conventional LDA or PBE functionals and gives results with similar accuracy to that of empirical dispersion-corrected schemes such as DFT-D. This study suggests the use of vdW-DF2 functional - a revised version of vdW-DF functional - to obtain a high-fidelity prediction of structural and other properties of polymeric materials.

  16. Experimental detection and theoretical characterization of the H2-NHX van der Waals complex.

    PubMed

    Fawzy, Wafaa M; Kerenskaya, Galina; Heaven, Michael C

    2005-04-01

    The H2-NH(X) van der Waals complex has been examined using ab initio theory and detected via fluorescence excitation spectroscopy of the A(3)Pi-X(3)Sigma(-) transition. Electronic structure calculations show that the minimum energy geometry corresponds to collinear H2-NH(X), with a well depth of D(e)=116 cm(-1). The potential-energy surface supports a secondary minimum for a T-shaped geometry, where the H atom of NH points towards the middle of the H2 bond (C(2v) point group). For this geometry the well depth is 73 cm(-1). The laser excitation spectra for the complex show transitions to the H2+NH(A) dissociative continuum. The onset of the continuum establishes a binding energy of D(0)=32+/-2 cm(-1) for H2-NH(X). The fluorescence from bound levels of H2-NH(A) was not detected, most probably due to the rapid reactive decay [H2-NH(A)-->H+NH2]. The complex appears to be a promising candidate for studies of the photoinitiated H2+NH abstraction reaction under conditions were the reactants are prealigned by the van der Waals forces.

  17. Microwave and ab initio studies of the Xe-CH4 van der Waals complex

    NASA Astrophysics Data System (ADS)

    Wen, Qing; Jäger, Wolfgang

    2006-01-01

    An ab initio potential-energy surface of the Xe-CH4 van der Waals complex was constructed at the coupled cluster level of theory with single, double, and perturbatively included triple excitations. The recently developed small-core pseudopotential and augmented correlation-consistent polarized valence quadruple-zeta basis set was used for the xenon atom and Dunning's augmented correlation-consistent polarized valence triple-zeta basis set for the other atoms. The basis sets were supplemented with bond functions. Dipole moments were also calculated at various configurations. Rotational spectra of the Xe-CH4 van der Waals complex were recorded using a pulsed-nozzle Fourier transform microwave spectrometer. The isotopomers studied include those of CH4,CH134,CD4,CH3D, and CHD3 with the five most abundant Xe isotopes. Transitions within three internal rotor states, namely, the j =0,K=0;j=1,K=0; and j =2,K=1 states, were observed and assigned. Nuclear quadrupole hyperfine structures due to the presence of Xe131(I=3/2) were detected and analyzed. It was found that the j =1,K=0 state is perturbed by a Coriolis interaction with a nearby j =1,K=1 state. For isotopomers containing CH3D and CHD3, the j =2 states are no longer metastable and could not be observed. The spectroscopic results were used to derive structural and dynamical information of the Xe-CH4 complex.

  18. Experimental and theoretical studies of the CN-Ar van der Waals complex.

    PubMed

    Han, Jiande; Heaven, Michael C; Schnupf, Udo; Alexander, Millard H

    2008-03-14

    The CN-Ar van der Waals complex has been observed using the B (2)Sigma(+)-X (2)Sigma(+) and A (2)Pi-X (2)Sigma(+) electronic transitions. The spectra yield a dissociation energy of D(0")=102+/-2 cm(-1) and a zero-point rotational constant of B(0")=0.067+/-0.005 cm(-1) for CN(X)-Ar. The dissociation energy for CN(A)-Ar was found to be D(0')=125+/-2 cm(-1). Transitions to vibrationally excited levels of CN(B)-Ar dominated the B-X spectrum, indicative of substantial differences in the intermolecular potential energy surfaces (PESs) for the X and B states. Ab initio PESs were calculated for the X and B states. These were used to predict rovibrational energy levels and van der Waals bond energies (D(0")=115 and D(0')=183 cm(-1)). The results for the X state were in reasonably good agreement with the experimental data. Spectral simulations based on the ab initio potentials yielded qualitative insights concerning the B-X spectrum, but the level of agreement was not sufficient to permit vibronic assignment. Electronic predissociation was observed for both CN(A)-Ar and CN(B)-Ar. The process leading to the production of CN(A,nu=8,9) fragments from the predissociation of CN(B,nu=0)-Ar was characterized using time-resolved fluorescence and optical-optical double resonance measurements.

  19. Potential-energy surface and van der Waals motions of p-difluorobenzene-argon cation.

    PubMed

    Makarewicz, Jan

    2005-07-22

    The structure and dynamics of the van der Waals complex of argon with the p-difluorobenzene cation are investigated using the ab initio theory. The restricted open-shell Møller-Plesset second-order perturbation method combined with the augmented correlation-consistent polarized valence double-zeta basis set is employed to determine the electronic ground-state potential-energy surface of the cationic complex. This surface is extremely flat in a wide region of the configuration space of the Ar atom which moves almost freely over the monomer ring. However, it is bound to the monomer stronger in the cationic than in the neutral complex. Its binding energy is calculated to be 621 cm(-1) at a distance of 3.445 A from the monomer center. The calculated dissociation energy of 572 cm(-1) agrees perfectly with the experimental value of 572+/-6 cm(-1) [S. M. Belm, R. J. Moulds, and D. Lawrence, J. Chem. Phys. 115, 10709 (2001)]. The effect of a strong coupling of large-amplitude intermolecular motions on the character of van der Waals vibrational states is investigated. The vibrational structure of the spectrum of the complex is explained and its earlier assignment is partly corrected.

  20. Characteristics and relaxation dynamics of van der Waals complexes between p-difluorobenzene and Ne.

    PubMed

    Jayasekharan, Thankan; Parmenter, Charles S

    2004-06-22

    Characteristics of the single and double Ne van der Waals complexes of p-difluorobenzene (pDFB) have been explored with ultraviolet fluorescence excitation and dispersed fluorescence spectroscopy. Eight S(1)-S(0) fluorescence excitation bands involving six ring modes of pDFB-Ne and two bands of pDFB-Ne(2) have been identified. Band assignments are confirmed by dispersed fluorescence from the pumped band. Shifts of the complex bands from the analogous monomer bands are generally 4 cm(-1) to the red for pDFB-Ne and 8 cm(-1) for pDFB-Ne(2). None of the observed ring modes is significantly perturbed by complexation in either the S(1) or S(0) states. The pDFB-Ne S(1) van der Waals binding energy D(0')

  1. Strain-Induced Electronic Structure Changes in Stacked van der Waals Heterostructures.

    PubMed

    He, Yongmin; Yang, Yang; Zhang, Zhuhua; Gong, Yongji; Zhou, Wu; Hu, Zhili; Ye, Gonglan; Zhang, Xiang; Bianco, Elisabeth; Lei, Sidong; Jin, Zehua; Zou, Xiaolong; Yang, Yingchao; Zhang, Yuan; Xie, Erqing; Lou, Jun; Yakobson, Boris; Vajtai, Robert; Li, Bo; Ajayan, Pulickel

    2016-05-11

    Vertically stacked van der Waals heterostructures composed of compositionally different two-dimensional atomic layers give rise to interesting properties due to substantial interactions between the layers. However, these interactions can be easily obscured by the twisting of atomic layers or cross-contamination introduced by transfer processes, rendering their experimental demonstration challenging. Here, we explore the electronic structure and its strain dependence of stacked MoSe2/WSe2 heterostructures directly synthesized by chemical vapor deposition, which unambiguously reveal strong electronic coupling between the atomic layers. The direct and indirect band gaps (1.48 and 1.28 eV) of the heterostructures are measured to be lower than the band gaps of individual MoSe2 (1.50 eV) and WSe2 (1.60 eV) layers. Photoluminescence measurements further show that both the direct and indirect band gaps undergo redshifts with applied tensile strain to the heterostructures, with the change of the indirect gap being particularly more sensitive to strain. This demonstration of strain engineering in van der Waals heterostructures opens a new route toward fabricating flexible electronics. PMID:27120401

  2. Moire pattern interlayer potentials in van der Waals materials from high level ab initio calculations

    NASA Astrophysics Data System (ADS)

    Jung, Jeil; Leconte, Nicolas; Lebegue, Sebastien; Gould, Timothy

    Stacking-dependent interlayer interactions are important for understanding the structural and electronic properties in incommensurable two dimensional material assemblies where long-range moiré patterns arise due to small lattice constant mismatch or twist angles. We study the stacking-dependent interlayer coupling energies between graphene (G) and hexagonal boron nitride (BN) single layers for different possible combinations such as G/G, G/BN and BN/BN using high-level EXX+RPA ab initio calculations. The total energies differ substantially when compared with conventional LDA, but for stacking-dependent total energy differences we find that the dominance of short-range covalent-type binding over the longer-ranged van der Waals tails near equilibrium geometries renders the LDA as a reasonable starting point for ab initio calculation based analyses for the systems we have studied. Our calculations are useful input for study of strains originated by interlayer interactions in incommensurable 2D van der Waals crystals.

  3. Static hyperpolarizability of the van der Waals complex CH(4)-N(2).

    PubMed

    Kalugina, Yulia N; Buldakov, Mikhail A; Cherepanov, Victor N

    2012-12-15

    The static first hyperpolarizability of the van der Waals CH(4)-N(2) complex was calculated. The calculations were carried out in the approximation of the rigid interacting molecules for a broad range of intermolecular separations (R = 6-40 a(0)) and for six configurations at CCSD(T) level of theory using the correlation consistent aug-cc-pVTZ basis set with the basis set superposition error correction. It was shown that the long-range classical approximation, including the terms up to R(-6), is in a good agreement with ab initio calculations for R > 11 a(0). It was found out that for the family of most stable configurations of the complex, the first hyperpolarizability invariants practically do not change (the changes are less than 0.1%). Under forming the stable van der Waals CH(4)-N(2) complex, the intensity and degree of depolarization of the hyper-Rayleigh scattering are noticeable decreased (by ∼10%) to be compared with the free CH(4) and N(2) molecules. PMID:22903865

  4. The residue harmonic balance for fractional order van der Pol like oscillators

    NASA Astrophysics Data System (ADS)

    Leung, A. Y. T.; Yang, H. X.; Guo, Z. J.

    2012-02-01

    When seeking a solution in series form, the number of terms needed to satisfy some preset requirements is unknown in the beginning. An iterative formulation is proposed so that when an approximation is available, the number of effective terms can be doubled in one iteration by solving a set of linear equations. This is a new extension of the Newton iteration in solving nonlinear algebraic equations to solving nonlinear differential equations by series. When Fourier series is employed, the method is called the residue harmonic balance. In this paper, the fractional order van der Pol oscillator with fractional restoring and damping forces is considered. The residue harmonic balance method is used for generating the higher-order approximations to the angular frequency and the period solutions of above mentioned fractional oscillator. The highly accurate solutions to angular frequency and limit cycle of the fractional order van der Pol equations are obtained analytically. The results that are obtained reveal that the proposed method is very effective for obtaining asymptotic solutions of autonomous nonlinear oscillation systems containing fractional derivatives. The influence of the fractional order on the geometry of the limit cycle is investigated for the first time.

  5. Ab initio phonon dispersion in crystalline naphthalene using van der Waals density functionals

    NASA Astrophysics Data System (ADS)

    Brown-Altvater, Florian; Rangel, Tonatiuh; Neaton, Jeffrey B.

    2016-05-01

    Acene molecular crystals are of current interest in organic optoelectronics, both as active materials and for exploring and understanding new phenomena. Phonon scattering can be an important facilitator and dissipation mechanism in charge separation and carrier transport processes. Here, we carry out density functional theory (DFT) calculations of the structure and the full phonon dispersion of crystalline naphthalene, a well-characterized acene crystal for which detailed neutron-diffraction measurements, as well as infrared and Raman spectroscopy, are available. We evaluate the performance, relative to experiments, of DFT within the local density approximation (LDA); the generalized gradient approximation of Perdew, Burke, and Ernzerhof (PBE); and a recent van der Waals-corrected nonlocal correlation (vdW-DF-cx) functional. We find that the vdW-DF-cx functional accurately predicts lattice parameters of naphthalene within 1%. Intermolecular and intramolecular phonon frequencies across the Brillouin zone are reproduced within 7.8% and 1%, respectively. As expected, LDA (PBE) underestimates (overestimates) the lattice parameters and overestimates (underestimates) phonon frequencies, demonstrating their shortcomings for predictive calculations of weakly bound materials. If the unit cell is fixed to the experimental lattice parameters, PBE is shown to lead to improved phonon frequencies. Our study provides a detailed understanding of the phonon spectrum of naphthalene, and highlights the importance of including van der Waals dispersion interactions in predictive calculations of lattice parameters and phonon frequencies of molecular crystals and related organic materials.

  6. Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities

    PubMed Central

    Dufferwiel, S.; Schwarz, S.; Withers, F.; Trichet, A. A. P.; Li, F.; Sich, M.; Del Pozo-Zamudio, O.; Clark, C.; Nalitov, A.; Solnyshkov, D. D.; Malpuech, G.; Novoselov, K. S.; Smith, J. M.; Skolnick, M. S.; Krizhanovskii, D. N.; Tartakovskii, A. I.

    2015-01-01

    Layered materials can be assembled vertically to fabricate a new class of van der Waals heterostructures a few atomic layers thick, compatible with a wide range of substrates and optoelectronic device geometries, enabling new strategies for control of light–matter coupling. Here, we incorporate molybdenum diselenide/hexagonal boron nitride (MoSe2/hBN) quantum wells in a tunable optical microcavity. Part-light–part-matter polariton eigenstates are observed as a result of the strong coupling between MoSe2 excitons and cavity photons, evidenced from a clear anticrossing between the neutral exciton and the cavity modes with a splitting of 20 meV for a single MoSe2 monolayer, enhanced to 29 meV in MoSe2/hBN/MoSe2 double-quantum wells. The splitting at resonance provides an estimate of the exciton radiative lifetime of 0.4 ps. Our results pave the way for room-temperature polaritonic devices based on multiple-quantum-well van der Waals heterostructures, where polariton condensation and electrical polariton injection through the incorporation of graphene contacts may be realized. PMID:26446783

  7. Level-spacing statistics and spectral correlations in diffuse van der Waals clusters

    NASA Astrophysics Data System (ADS)

    Haldar, S. K.; Chakrabarti, B.; Chavda, N. D.; Das, T. K.; Canuto, S.; Kota, V. K. B.

    2014-04-01

    We present a statistical analysis of eigenenergies and discuss several measures of spectral fluctuations and spectral correlations for the van der Waals clusters of different sizes. We show that the clusters become more and more complex with increase in cluster size. We study nearest-neighbor level-spacing distribution P (s), the level number variance Σ2(L), and the Dyson-Mehta Δ3 statistics for various cluster sizes. For large clusters we find that although the Bohigas-Giannoni-Schmit conjecture seems to be valid, it does not exhibit true signatures of quantum chaos. However, contrasting conjecture of Berry and Tabor is observed with smaller cluster size. For a small number of bosons, we observe the existence of a large number of quasidegenerate states in low-lying excitation which exhibits the Shnirelman peak in P (s) distribution. We also find a narrow region of intermediate spectrum which can be described by semi-Poisson statistics whereas the higher levels are regular and exhibit Poisson statistics. These observations are further supported by the analysis of the distribution of the ratio of consecutive level spacings P (r) which is independent of unfolding procedure and thereby provides a tool for more transparent comparison with experimental findings than P (s). Thus our detail numerical study clearly shows that the van der Waals clusters become more correlated with the increase in cluster size.

  8. Measuring anisotropic resistivity of single crystals using the van der Pauw technique

    NASA Astrophysics Data System (ADS)

    Borup, Kasper A.; Fischer, Karl F. F.; Brown, David R.; Snyder, G. Jeffrey; Iversen, Bo B.

    2015-07-01

    Anisotropy in properties of materials is important in materials science and solid-state physics. Measurement of the full resistivity tensor of crystals using the standard four-point method with bar shaped samples requires many measurements and may be inaccurate due to misalignment of the bars along crystallographic directions. Here an approach to extracting the resistivity tensor using van der Pauw measurements is presented. This reduces the number of required measurements. The theory of the van der Pauw method is extended to extract the tensor from parallelogram shaped samples with known geometry. Methods to extract the tensor for both known and unknown principal axis orientation are presented for broad applicability to single crystals. Numerical simulations of errors are presented to quantify error sources. Several benchmark experiments are performed on isotropic graphite samples to verify the internal consistency of the developed theory, test experimental precision, and characterize error sources. The presented methods are applied to a RuS b2 single crystal at room temperature and the results are discussed based on the error source analysis. Temperature resolved resistivities along the a and b directions are finally reported and briefly discussed.

  9. The role of van der Waals forces in the performance of molecular diodes

    NASA Astrophysics Data System (ADS)

    Nerngchamnong, Nisachol; Yuan, Li; Qi, Dong-Chen; Li, Jiang; Thompson, Damien; Nijhuis, Christian A.

    2013-02-01

    One of the main goals of organic and molecular electronics is to relate the performance and electronic function of devices to the chemical structure and intermolecular interactions of the organic component inside them, which can take the form of an organic thin film, a self-assembled monolayer or a single molecule. This goal is difficult to achieve because organic and molecular electronic devices are complex physical-organic systems that consist of at least two electrodes, an organic component and two (different) organic/inorganic interfaces. Singling out the contribution of each of these components remains challenging. So far, strong π-π interactions have mainly been considered for the rational design and optimization of the performances of organic electronic devices, and weaker intermolecular interactions have largely been ignored. Here, we show experimentally that subtle changes in the intermolecular van der Waals interactions in the active component of a molecular diode dramatically impact the performance of the device. In particular, we observe an odd-even effect as the number of alkyl units is varied in a ferrocene-alkanethiolate self-assembled monolayer. As a result of a more favourable van der Waals interaction, junctions made from an odd number of alkyl units have a lower packing energy (by ~0.4-0.6 kcal mol-1), rectify currents 10 times more efficiently, give a 10% higher yield in working devices, and can be made two to three times more reproducibly than junctions made from an even number of alkyl units.

  10. Formation and dynamics of van der Waals molecules in buffer-gas traps.

    PubMed

    Brahms, Nathan; Tscherbul, Timur V; Zhang, Peng; Kłos, Jacek; Forrey, Robert C; Au, Yat Shan; Sadeghpour, H R; Dalgarno, A; Doyle, John M; Walker, Thad G

    2011-11-14

    We show that weakly bound He-containing van der Waals molecules can be produced and magnetically trapped in buffer-gas cooling experiments, and provide a general model for the formation and dynamics of these molecules. Our analysis shows that, at typical experimental parameters, thermodynamics favors the formation of van der Waals complexes composed of a helium atom bound to most open-shell atoms and molecules, and that complex formation occurs quickly enough to ensure chemical equilibrium. For molecular pairs composed of a He atom and an S-state atom, the molecular spin is stable during formation, dissociation, and collisions, and thus these molecules can be magnetically trapped. Collisional spin relaxation is too slow to affect trap lifetimes. However, (3)He-containing complexes can change spin due to adiabatic crossings between trapped and untrapped Zeeman states, mediated by the anisotropic hyperfine interaction, causing trap loss. We provide a detailed model for Ag(3)He molecules, using ab initio calculation of Ag-He interaction potentials and spin interactions, quantum scattering theory, and direct Monte Carlo simulations to describe formation and spin relaxation in this system. The calculated rate of spin-change agrees quantitatively with experimental observations, providing indirect evidence for molecular formation in buffer-gas-cooled magnetic traps. Finally, we discuss the possibilities for spectroscopic detection of these complexes, including a calculation of expected spectra for Ag(3)He, and report on our spectroscopic search for Ag(3)He, which produced a null result.

  11. Nuclear spin-spin coupling in a van der Waals-bonded system: xenon dimer.

    PubMed

    Vaara, Juha; Hanni, Matti; Jokisaari, Jukka

    2013-03-14

    Nuclear spin-spin coupling over van der Waals bond has recently been observed via the frequency shift of solute protons in a solution containing optically hyperpolarized (129)Xe nuclei. We carry out a first-principles computational study of the prototypic van der Waals-bonded xenon dimer, where the spin-spin coupling between two magnetically non-equivalent isotopes, J((129)Xe - (131)Xe), is observable. We use relativistic theory at the four-component Dirac-Hartree-Fock and Dirac-density-functional theory levels using novel completeness-optimized Gaussian basis sets and choosing the functional based on a comparison with correlated ab initio methods at the nonrelativistic level. J-coupling curves are provided at different levels of theory as functions of the internuclear distance in the xenon dimer, demonstrating cross-coupling effects between relativity and electron correlation for this property. Calculations on small Xe clusters are used to estimate the importance of many-atom effects on J((129)Xe - (131)Xe). Possibilities of observing J((129)Xe - (131)Xe) in liquid xenon are critically examined, based on molecular dynamics simulation. A simplistic spherical model is set up for the xenon dimer confined in a cavity, such as in microporous materials. It is shown that the on the average shorter internuclear distance enforced by the confinement increases the magnitude of the coupling as compared to the bulk liquid case, rendering J((129)Xe - (131)Xe) in a cavity a feasible target for experimental investigation. PMID:23514495

  12. Microwave and ab initio studies of rare gas-methane van der Waals complexes.

    PubMed

    Liu, Yaqian; Jäger, Wolfgang

    2004-05-15

    Rotational spectra of the weakly bound Kr-methane van der Waals complex were recorded using a pulsed molecular beam Fourier transform microwave spectrometer in the range from 3.5 to 18 GHz. Spectra of 25 isotopomers of Kr-methane were assigned and analyzed. For isotopomers containing CH4, 13CH4, and CD4, two sets of transitions with K = 0 and one with K = 1 were recorded, correlating to the j = 0, 1, and 2 rotational levels of free methane, respectively (j is the rotational angular momentum quantum number of the methane monomer). For isotopomers containing CH3D and CHD3, two K = 0 components were recorded, correlating to the j(k) = 0(0) and 1(1) rotational levels of free methane (k corresponds to the projection of j onto the C3 axis of CH3D and CHD3). The obtained spectroscopic results were used to derive van der Waals bond distance R, van der Waals stretching frequency nu(s), and the corresponding stretching force constant k(s). Nuclear spin statistical weights of individual states were obtained from molecular symmetry group analyses and were compared with the observed relative transition intensities. The tentatively assigned j = 2 transitions were more intense than predicted from symmetry considerations. This is attributed to a relatively large effective dipole moment of this state, supported by ab initio dipole moment calculations. Ab initio potential energy calculations of Kr-CH4 and Ar-CH4 were done at the coupled cluster level of theory, with single and double excitations and perturbative inclusion of triple excitations, using the aug-cc-pVTZ basis set supplemented with bond functions. The theoretical results show that the angular dynamics of the dimer does not change significantly when the binding partner of methane changes from Ar to Kr. The dipole moment of Ar-CH4 was calculated at various configurations, providing a qualitative explanation for the unsuccessful spectral searches for rotational transitions of Ar-CH4.

  13. From Canards of Folded Singularities to Torus Canards in a Forced van der Pol Equation

    NASA Astrophysics Data System (ADS)

    Burke, John; Desroches, Mathieu; Granados, Albert; Kaper, Tasso J.; Krupa, Martin; Vo, Theodore

    2016-04-01

    In this article, we study canard solutions of the forced van der Pol equation in the relaxation limit for low-, intermediate-, and high-frequency periodic forcing. A central numerical observation made herein is that there are two branches of canards in parameter space which extend across all positive forcing frequencies. In the low-frequency forcing regime, we demonstrate the existence of primary maximal canards induced by folded saddle nodes of type I and establish explicit formulas for the parameter values at which the primary maximal canards and their folds exist. Then, we turn to the intermediate- and high-frequency forcing regimes and show that the forced van der Pol possesses torus canards instead. These torus canards consist of long segments near families of attracting and repelling limit cycles of the fast system, in alternation. We also derive explicit formulas for the parameter values at which the maximal torus canards and their folds exist. Primary maximal canards and maximal torus canards correspond geometrically to the situation in which the persistent manifolds near the family of attracting limit cycles coincide to all orders with the persistent manifolds that lie near the family of repelling limit cycles. The formulas derived for the folds of maximal canards in all three frequency regimes turn out to be representations of a single formula in the appropriate parameter regimes, and this unification confirms the central numerical observation that the folds of the maximal canards created in the low-frequency regime continue directly into the folds of the maximal torus canards that exist in the intermediate- and high-frequency regimes. In addition, we study the secondary canards induced by the folded singularities in the low-frequency regime and find that the fold curves of the secondary canards turn around in the intermediate-frequency regime, instead of continuing into the high-frequency regime. Also, we identify the mechanism responsible for this

  14. Vibronic structure of the cyclopentadienyl radical and its nonrigid van der Waals cluster with nitrogen

    NASA Astrophysics Data System (ADS)

    Sun, S.; Bernstein, E. R.

    1995-09-01

    Fluorescence excitation and two color mass resolved excitation spectroscopy are employed to study the D1(2A2″)←D0(2E1″) vibronic transitions of the cyclopentadienyl radical (cpd) and its van der Waals cluster with nitrogen. The radical is created by photolysis of the cyclopentadiene dimer and cooled by expansion from a supersonic nozzle. The cpd(N2)1 cluster is generated in this cooling process. Mass resolved excitation spectra of cpd are obtained for the first 1200 cm-1 of the D1←D0 transition. The excitation spectrum of cpd(N2)1 shows a complicated structure for the origin transition. With the application of hole burning spectroscopy, we are able to assign all the cluster transitions to a single isomer. The features are assigned to a 55 cm-1 out-of-plane van der Waals mode stretch and contortional (rotational) motions of the N2 molecule with respect to the cpd radical. Empirical potential energy calculations are used to predict the properties of this cluster and yield the following results: (1) the N2 molecular axis is perpendicular to the cpd fivefold axis and parallel to the plane of the cpd ring with the two molecular centers of mass lying on the fivefold ring axis; (2) the binding energy of cpd(N2)1 is 434 cm-1; and (3) the rotational motion of the N2 molecule is essentially unhindered about the cpd fivefold axis. The molecular symmetry group D5h(MS) is applied to the nonrigid cluster, and optical selection rules exclude even↔odd transitions (Δn=0, ±2, ±4,... allowed) between the different contortional levels. Tentative assignments are given to the observed contortional features based on these considerations. The barrier to internal rotation is also small in the excited state. The results for the cpd(N2)1 van der Waals cluster are compared to those for the benzene (N2)1 and benzyl radical (N2)1 clusters.

  15. Note on Unconditional and Conditional Hypothesis Testing: A Discussion of an Issue Raised by van der Linden and Sotaridona

    ERIC Educational Resources Information Center

    Lewis, Charles

    2006-01-01

    In the context of reviewing an article for this journal (van der Linden & Sotaridona, this issue, pp. 283-304) the topic of unconditional and conditional hypothesis testing came under consideration. While this is hardly a new issue (consider, for example, arguments regarding the chi square vs. Fisher exact test of independence for a 2 x 2…

  16. Spherical-shell model for the van der Waals coefficients between fullerenes and/or nearly spherical nanoclusters.

    PubMed

    Perdew, John P; Tao, Jianmin; Hao, Pan; Ruzsinszky, Adrienn; Csonka, Gábor I; Pitarke, J M

    2012-10-24

    Fullerene molecules such as C(60) are large nearly spherical shells of carbon atoms. Pairs of such molecules have a strong long-range van der Waals attraction that can produce scattering or binding into molecular crystals. A simplified classical-electrodynamics model for a fullerene is a spherical metal shell, with uniform electron density confined between outer and inner radii (just as a simplified model for a nearly spherical metallic nanocluster is a solid metal sphere or filled shell). For the spherical-shell model, the exact dynamic multipole polarizabilities are all known analytically. From them, we can derive exact analytic expressions for the van der Waals coefficients of all orders between two spherical metal shells. The shells can be identical or different, and hollow or filled. To connect the model to a real fullerene, we input the static dipole polarizability, valence electron number and estimated shell thickness t of the real molecule. Our prediction for the leading van der Waals coefficient C(6) between two C(60) molecules ((1.30 ± 0.22) × 10(5) hartree bohr(6)) agrees well with a prediction for the real molecule from time-dependent density functional theory. Our prediction is remarkably insensitive to t. Future work might include the prediction of higher-order (e.g. C(8) and C(10)) coefficients for C(60), applications to other fullerenes or nearly spherical metal clusters, etc. We also make general observations about the van der Waals coefficients.

  17. Binding and Diffusion of Lithium in Graphite: Quantum Monte Carlo Benchmarks and Validation of van der Waals Density Functional Methods

    DOE PAGESBeta

    Ganesh, P.; Kim, Jeongnim; Park, Changwon; Yoon, Mina; Reboredo, Fernando A.; Kent, Paul R. C.

    2014-11-03

    In highly accurate diffusion quantum Monte Carlo (QMC) studies of the adsorption and diffusion of atomic lithium in AA-stacked graphite are compared with van der Waals-including density functional theory (DFT) calculations. Predicted QMC lattice constants for pure AA graphite agree with experiment. Pure AA-stacked graphite is shown to challenge many van der Waals methods even when they are accurate for conventional AB graphite. Moreover, the highest overall DFT accuracy, considering pure AA-stacked graphite as well as lithium binding and diffusion, is obtained by the self-consistent van der Waals functional vdW-DF2, although errors in binding energies remain. Empirical approaches based onmore » point charges such as DFT-D are inaccurate unless the local charge transfer is assessed. Our results demonstrate that the lithium carbon system requires a simultaneous highly accurate description of both charge transfer and van der Waals interactions, favoring self-consistent approaches.« less

  18. Wavelike charge density fluctuations and van der Waals interactions at the nanoscale.

    PubMed

    Ambrosetti, Alberto; Ferri, Nicola; DiStasio, Robert A; Tkatchenko, Alexandre

    2016-03-11

    Recent experiments on noncovalent interactions at the nanoscale have challenged the basic assumptions of commonly used particle- or fragment-based models for describing van der Waals (vdW) or dispersion forces. We demonstrate that a qualitatively correct description of the vdW interactions between polarizable nanostructures over a wide range of finite distances can only be attained by accounting for the wavelike nature of charge density fluctuations. By considering a diverse set of materials and biological systems with markedly different dimensionalities, topologies, and polarizabilities, we find a visible enhancement in the nonlocality of the charge density response in the range of 10 to 20 nanometers. These collective wavelike fluctuations are responsible for the emergence of nontrivial modifications of the power laws that govern noncovalent interactions at the nanoscale.

  19. Strain induced piezoelectric effect in black phosphorus and MoS2 van der Waals heterostructure

    PubMed Central

    Huang, Le; Li, Yan; Wei, Zhongming; Li, Jingbo

    2015-01-01

    The structural, electronic, transport and optical properties of black phosphorus/MoS2 (BP/MoS2) van der Waals (vdw) heterostructure are investigated by using first principles calculations. The band gap of BP/MoS2 bilayer decreases with the applied normal compressive strain and a semiconductor-to-metal transition is observed when the applied strain is more than 0.85 Å. BP/MoS2 bilayer also exhibits modulation of its carrier effective mass and carrier concentration by the applied compressive strain, suggesting that mobility engineering and good piezoelectric effect can be realized in BP/MoS2 heterostructure. Because the type-II band alignment can facilitate the separation of photo-excited electrons and holes, and it can benefit from the great absorption coefficient in ultra-violet region, the BP/MoS2 shows great potential to be a very efficient ultra-violet photodetector. PMID:26553370

  20. Two novel mutations affecting splicing in the IRF6 gene associated with van der Woude syndrome.

    PubMed

    Scioletti, Anna Paola; Brancati, Francesco; Gatta, Valentina; Antonucci, Ivana; Peissel, Bernard; Pizzuti, Antonio; Mortellaro, Carmen; Tetè, Stefano; Gherlone, Enrico; Palka, Giandomenico; Stuppia, Liborio

    2010-09-01

    van der Woude syndrome (VWS) is a rare autosomal dominant oral facial disorder characterized by high penetrance and variable expression, manifesting with lower lip pits, cleft lips with or without cleft palate, and isolated cleft palate. The phenotypic expression of clefts ranges from incomplete to complete. Different studies have demonstrated an association between VWS and mutations of the IRF6 (interferon regulatory factor) gene. In this study, we describe 2 novel Italian families with VWS harboring 2 distinct splice site mutations in the IRF6 gene. These results add to the previous 9 splicing mutations identified in patients with VWS and strengthen the importance of this type of alterations in the pathogenesis of the disease. PMID:20856073

  1. Van der Woude syndrome: report of two cases with supplementary findings.

    PubMed

    More, Chandramani B; Varma, Saurabh; Tailor, Mansi; Bhavsar, Khushbu

    2013-01-01

    Van der Woude syndrome (VWS) is a rare developmental disorder with an autosomal dominant inheritance and variable expressivity, occurring in about 1 of every 1,00,000-2,00,000 people. This syndrome is remarkably variable. It is characterized by orofacial manifestations like lower lip pits, cleft lip and/or cleft palate, hypodontia, cleft or bifid uvula, syngnathia, narrow high arched palate, ankyloglossia and hyper nasal voice. We report two interesting cases of VWS with characteristic orofacial features and an unusual additional finding of bilateral commissural pits. The purpose of this article is to facilitate understanding of etio-pathogenesis, clinical manifestations, role of genetic counseling and with special emphasis on commissural pits as an additional feature in VWS. PMID:24025891

  2. Novel mutations in the IRF6 gene in Brazilian families with Van der Woude syndrome.

    PubMed

    Paranaíba, Lívia Máris Ribeiro; Martelli-Júnior, Hercílio; Oliveira Swerts, Mário Sergio; Line, Sergio R P; Coletta, Ricardo D

    2008-10-01

    Van der Woude Syndrome (VWS) is an autosomal craniofacial disorder characterized by lower lip pits and cleft lip and/or palate. Mutations in the interferon regulatory factor 6 (IRF6) gene have been identified in patients with VWS. To identify novel IRF6 mutations in patients affected by VWS, we screened 2 Brazilian families, sequencing the entire IRF6-coding region and flanking intronic boundaries. Two novel heterozygous mutations were identified: a frame shift mutation with deletion of G at the nucleotide position 520 in the exon 6 (520delG), and a missense single nucleotide substitution from T to A at nucleotide position 1135 in exon 8 (T1135A). By using restriction enzyme analysis, we were able to demonstrate the lack of similar mutations in unrelated healthy individuals and non-syndromic cleft lip and palate patients. Our results further confirmed that haploinsufficiency of the IRF6 gene results in VWS. PMID:18813858

  3. 1-D Van der Waals Foams Heated by Ion Beam Energy Deposition

    SciTech Connect

    Zylstra, A. B.; Barnard, J. J.; More, R. M.

    2009-12-23

    One dimensional simulations of various initial average density aluminum foams (modeled as slabs of solid metal separated by low density regions) heated by volumetric energy deposition are conducted with a Lagrangian hydrodynamics code using a van der Waals equation of tate (EOS). The resulting behavior is studied to facilitate the design of future warm dense matter (WDM) experiments at LBNL. In the simulations the energy deposition ranges from 10 to 30 kJ/g and from 0.075 to 4.0 ns total pulse length, resulting in temperatures from approximately 1 o 4 eV. We study peak pressures and temperatures in the foams, expansion velocity, and the phase evolution. Five relevant time scales in the problem are identified. Additionally, we present a method for characterizing the level of inhomogeneity in a foam target as it is heated and the time it takes for a foam to homogenize.

  4. 1-D Van der Waals Foams Heated by Ion Beam Energy Deposition

    SciTech Connect

    Zylstra, A; Barnard, J J; More, R M

    2010-03-19

    One dimensional simulations of various initial average density aluminum foams (modeled as slabs of solid metal separated by low density regions) heated by volumetric energy deposition are conducted with a Lagrangian hydrodynamics code using a van der Waals equation of state (EOS). The resulting behavior is studied to facilitate the design of future warm dense matter (WDM) experiments at LBNL. In the simulations the energy deposition ranges from 10 to 30 kJ/g and from 0.075 to 4.0 ns total pulse length, resulting in temperatures from approximately 1 to 4 eV. We study peak pressures and temperatures in the foams, expansion velocity, and the phase evolution. Five relevant time scales in the problem are identified. Additionally, we present a method for characterizing the level of inhomogeneity in a foam target as it is heated and the time it takes for a foam to homogenize.

  5. Chimera states in networks of Van der Pol oscillators with hierarchical connectivities

    NASA Astrophysics Data System (ADS)

    Ulonska, Stefan; Omelchenko, Iryna; Zakharova, Anna; Schöll, Eckehard

    2016-09-01

    Chimera states are complex spatio-temporal patterns that consist of coexisting domains of coherent and incoherent dynamics. We analyse chimera states in ring networks of Van der Pol oscillators with hierarchical coupling topology. We investigate the stepwise transition from a nonlocal to a hierarchical topology and propose the network clustering coefficient as a measure to establish a link between the existence of chimera states and the compactness of the initial base pattern of a hierarchical topology; we show that a large clustering coefficient promotes the occurrence of chimeras. Depending on the level of hierarchy and base pattern, we obtain chimera states with different numbers of incoherent domains. We investigate the chimera regimes as a function of coupling strength and nonlinearity parameter of the individual oscillators. The analysis of a network with larger base pattern resulting in larger clustering coefficient reveals two different types of chimera states and highlights the increasing role of amplitude dynamics.

  6. Accurate and efficient method for many-body van der Waals interactions.

    PubMed

    Tkatchenko, Alexandre; DiStasio, Robert A; Car, Roberto; Scheffler, Matthias

    2012-06-01

    An efficient method is developed for the microscopic description of the frequency-dependent polarizability of finite-gap molecules and solids. This is achieved by combining the Tkatchenko-Scheffler van der Waals (vdW) method [Phys. Rev. Lett. 102, 073005 (2009)] with the self-consistent screening equation of classical electrodynamics. This leads to a seamless description of polarization and depolarization for the polarizability tensor of molecules and solids. The screened long-range many-body vdW energy is obtained from the solution of the Schrödinger equation for a system of coupled oscillators. We show that the screening and the many-body vdW energy play a significant role even for rather small molecules, becoming crucial for an accurate treatment of conformational energies for biomolecules and binding of molecular crystals. The computational cost of the developed theory is negligible compared to the underlying electronic structure calculation.

  7. Thermodynamic properties of van der Waals fluids from Monte Carlo simulations and perturbative Monte Carlo theory

    NASA Astrophysics Data System (ADS)

    Díez, A.; Largo, J.; Solana, J. R.

    2006-08-01

    Computer simulations have been performed for fluids with van der Waals potential, that is, hard spheres with attractive inverse power tails, to determine the equation of state and the excess energy. On the other hand, the first- and second-order perturbative contributions to the energy and the zero- and first-order perturbative contributions to the compressibility factor have been determined too from Monte Carlo simulations performed on the reference hard-sphere system. The aim was to test the reliability of this "exact" perturbation theory. It has been found that the results obtained from the Monte Carlo perturbation theory for these two thermodynamic properties agree well with the direct Monte Carlo simulations. Moreover, it has been found that results from the Barker-Henderson [J. Chem. Phys. 47, 2856 (1967)] perturbation theory are in good agreement with those from the exact perturbation theory.

  8. Revisiting the adsorption of copper-phthalocyanine on Au(111) including van der Waals corrections.

    PubMed

    Lüder, Johann; Eriksson, Olle; Sanyal, Biplab; Brena, Barbara

    2014-03-28

    We have studied the adsorption of copper-phthalocyanine on Au(111) by means of van der Waals corrected density functional theory using the Tkatchenko-Scheffler method. We have compared the element and site resolved adsorption distances to recent experimental normal-incident X-ray standing wave measurements. The measured adsorption distances could be reproduced within a deviation of 1% for the Cu atom, 1% for the C atoms, and 2% for the N atoms. The molecule was found to have a magnetic moment of 1 μB distributed over the Cu and the N atoms of the pyrrole ring. Simulated scanning tunnel microscopy images based on the total and on the spin-resolved differential charge densities are provided for bias voltages of -1.45 and 1.45 eV.

  9. Microwave Observation of the Van Der Waals Complex O_2-CO

    NASA Astrophysics Data System (ADS)

    Marshall, Frank E.; Persinger, Thomas D.; Gillcrist, David Joseph; Moon, Nicole; Ndengue, Steve Alexandre; Dawes, Richard; Grubbs, G. S., II

    2016-06-01

    FTMW spectroscopy has long been known to be a powerful tool in characterizing van der Waals complexes. Along with this, advances in microwave technology and computing have made complicated spin-interaction systems much easier to observe and characterize. One such system, O_2-CO has been observed for the first time on a CP-FTMW spectrometer operational in the 6-18 GHz region. Preliminary observations and calculations indicate a slipped-parallel structure. High level calculations are ongoing, including the construction of a 4D potential energy surface. Rotational assignments, along with any observed fine structure due to the ^3Σ ground state of O_2 will be discussed. Stewart Novick, Bibliography of Rotational Spectra of Weakly Bound Complexes

  10. Wavelike charge density fluctuations and van der Waals interactions at the nanoscale.

    PubMed

    Ambrosetti, Alberto; Ferri, Nicola; DiStasio, Robert A; Tkatchenko, Alexandre

    2016-03-11

    Recent experiments on noncovalent interactions at the nanoscale have challenged the basic assumptions of commonly used particle- or fragment-based models for describing van der Waals (vdW) or dispersion forces. We demonstrate that a qualitatively correct description of the vdW interactions between polarizable nanostructures over a wide range of finite distances can only be attained by accounting for the wavelike nature of charge density fluctuations. By considering a diverse set of materials and biological systems with markedly different dimensionalities, topologies, and polarizabilities, we find a visible enhancement in the nonlocality of the charge density response in the range of 10 to 20 nanometers. These collective wavelike fluctuations are responsible for the emergence of nontrivial modifications of the power laws that govern noncovalent interactions at the nanoscale. PMID:26965622

  11. Strain induced piezoelectric effect in black phosphorus and MoS2 van der Waals heterostructure.

    PubMed

    Huang, Le; Li, Yan; Wei, Zhongming; Li, Jingbo

    2015-01-01

    The structural, electronic, transport and optical properties of black phosphorus/MoS2 (BP/MoS2) van der Waals (vdw) heterostructure are investigated by using first principles calculations. The band gap of BP/MoS2 bilayer decreases with the applied normal compressive strain and a semiconductor-to-metal transition is observed when the applied strain is more than 0.85 Å. BP/MoS2 bilayer also exhibits modulation of its carrier effective mass and carrier concentration by the applied compressive strain, suggesting that mobility engineering and good piezoelectric effect can be realized in BP/MoS2 heterostructure. Because the type-II band alignment can facilitate the separation of photo-excited electrons and holes, and it can benefit from the great absorption coefficient in ultra-violet region, the BP/MoS2 shows great potential to be a very efficient ultra-violet photodetector. PMID:26553370

  12. Ytterbium in quantum gases and atomic clocks: van der Waals interactions and blackbody shifts.

    PubMed

    Safronova, M S; Porsev, S G; Clark, Charles W

    2012-12-01

    We evaluated the C(6) coefficients of Yb-Yb, Yb-alkali, and Yb-group II van der Waals interactions with 2% uncertainty. The only existing experimental result for such quantities is for the Yb-Yb dimer. Our value, C(6)=1929(39) a.u., is in excellent agreement with the recent experimental determination of 1932(35) a.u. We have also developed a new approach for the calculation of the dynamic correction to the blackbody radiation shift. We have calculated this quantity for the Yb 6s(2) (1)S(0)-6s6p (3)P(0)(o) clock transition with 3.5% uncertainty. This reduces the fractional uncertainty due to the blackbody radiation shift in the Yb optical clock at 300 K to the 10(-18) level.

  13. Encapsulation of organic molecules in carbon nanotubes: role of the van der Waals interactions

    NASA Astrophysics Data System (ADS)

    Dappe, Y. J.

    2014-02-01

    Carbon nanotubes are fascinating nano-objects not only from a fundamental point of view but also with respect to their remarkable properties, holding great potential in new materials design. When combined with organic molecules, these properties can be enhanced or modulated in order to fulfil the demand in domains as diverse as molecular electronics, biomaterials or even construction engineering, to name a few. To adequately conceive these hybrid materials it is essential to fully appreciate the nature of molecule-carbon nanotube interactions. In this review, we will discuss some relevant fundamental and applied research done on encapsulated molecules in carbon nanotubes. We will particularly focus on the weak and van der Waals interactions which rule the molecule-tube coupling. Therefore a small state of the art on the theoretical methods used to describe these interactions is presented here. Then, we will discuss various applications of molecular encapsulation, where we will consider structural, magnetic, charge transfer and transport, and optical properties.

  14. On the van der Pauw's method applied to the measurement of low thermal conductivity materials

    NASA Astrophysics Data System (ADS)

    Morales, C.; Flores, E.; Bodega, J.; Leardini, F.; Ferrer, I. J.; Ares, J. R.; Sánchez, C.

    2016-08-01

    The electrical van der Pauw's method has recently been extended to measure the thermal conductivity of different elements and compounds. This technique provides an easy way to determine the sample in-plane thermal conductivity by avoiding the influence of the thermal contact resistances. However, the reported calculated error values appear to be underestimated when dealing with the materials with low thermal conductivity (<5 W/Km) at room temperature. The causes of this underestimation are investigated in this communication and it has been found that they are due to the drastic influence of conduction heat losses through the thermo-resistance wires as well as the resulting modification of the sample temperature map. Both phenomena lead to experimental values of the sample thermal conductivity, which are systematically higher than the tabulated ones. The magnitude of this systematic error is ˜100% dealing with the samples of macroscopic dimensions, and low thermal conductivity indicated that the obtained accurate measurements can be quite challenging.

  15. Improving the Description of Nonmagnetic and Magnetic Molecular Crystals via the van der Waals Density Functional

    NASA Astrophysics Data System (ADS)

    Obata, Masao; Nakamura, Makoto; Hamada, Ikutaro; Oda, Tatsuki

    2015-02-01

    We have derived and implemented a stress tensor formulation for the van der Waals density functional (vdW-DF) with spin-polarization-dependent gradient correction (GC) recently proposed by the authors [J. Phys. Soc. Jpn. 82, 093701 (2013)] and applied it to nonmagnetic and magnetic molecular crystals under ambient condition. We found that the cell parameters of the molecular crystals obtained with vdW-DF show an overall improvement compared with those obtained using local density and generalized gradient approximations. In particular, the original vdW-DF with GC gives the equilibrium structural parameters of solid oxygen in the α-phase, which are in good agreement with the experiment.

  16. Revisiting the adsorption of copper-phthalocyanine on Au(111) including van der Waals corrections

    SciTech Connect

    Lüder, Johann; Eriksson, Olle; Sanyal, Biplab; Brena, Barbara

    2014-03-28

    We have studied the adsorption of copper-phthalocyanine on Au(111) by means of van der Waals corrected density functional theory using the Tkatchenko-Scheffler method. We have compared the element and site resolved adsorption distances to recent experimental normal-incident X-ray standing wave measurements. The measured adsorption distances could be reproduced within a deviation of 1% for the Cu atom, 1% for the C atoms, and 2% for the N atoms. The molecule was found to have a magnetic moment of 1 μ{sub B} distributed over the Cu and the N atoms of the pyrrole ring. Simulated scanning tunnel microscopy images based on the total and on the spin-resolved differential charge densities are provided for bias voltages of −1.45 and 1.45 eV.

  17. Adsorption of large hydrocarbons on coinage metals: a van der Waals density functional study.

    PubMed

    Björk, Jonas; Stafström, Sven

    2014-09-15

    The adsorption of organic molecules onto the close-packed facets of coinage metals is studied, and how accurately adsorption heights can be described by using recent advances of the van der Waals density functional (vdWDF), with optPBE/vdWDF, optB86b/vdWDF, vdWDF2, and rev/vdWDF2 functionals is illustrated. The adsorption of two prototypical aromatic hydrocarbons is investigated, and the calculated adsorption heights are compared to experimental literature values from normal incident X-ray standing wave absorption and a state-of-the-art semi-empirical method. It is shown that both the optB86b/vdWDF and rev/vdWDF2 functionals describe adsorption heights with an accuracy of 0.1 Å, compared to experimental values, and are concluded as reliable methods of choice for related systems.

  18. Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures

    PubMed Central

    Lin, Yu-Chuan; Ghosh, Ram Krishna; Addou, Rafik; Lu, Ning; Eichfeld, Sarah M.; Zhu, Hui; Li, Ming-Yang; Peng, Xin; Kim, Moon J.; Li, Lain-Jong; Wallace, Robert M.; Datta, Suman; Robinson, Joshua A.

    2015-01-01

    Vertical integration of two-dimensional van der Waals materials is predicted to lead to novel electronic and optical properties not found in the constituent layers. Here, we present the direct synthesis of two unique, atomically thin, multi-junction heterostructures by combining graphene with the monolayer transition-metal dichalcogenides: molybdenum disulfide (MoS2), molybdenum diselenide (MoSe2) and tungsten diselenide (WSe2). The realization of MoS2–WSe2–graphene and WSe2–MoS2–graphene heterostructures leads to resonant tunnelling in an atomically thin stack with spectrally narrow, room temperature negative differential resistance characteristics. PMID:26088295

  19. Measuring the van der Waals forces between a Rydberg atom and a metallic surface

    SciTech Connect

    Anderson, A.; Haroche, S.; Hinds, E.A.; Jhe, W.; Meschede, D.

    1988-05-01

    We have observed the deflection of Rydberg atoms towards a metallic surface by the van der Waals force. Cs and Na atoms in states of principal quantum number n were sent between two parallel gold-coated mirrors, spaced by a gap w (2.1 ..mu..mless than or equal towless than or equal to8.5 ..mu..m). We measured the value n/sub m/ at which the transmission cuts off and from the variation of n/sub m/ versus w, we obtained a measure of the atom-surface interaction. For 12

  20. Revisiting the adsorption of copper-phthalocyanine on Au(111) including van der Waals corrections.

    PubMed

    Lüder, Johann; Eriksson, Olle; Sanyal, Biplab; Brena, Barbara

    2014-03-28

    We have studied the adsorption of copper-phthalocyanine on Au(111) by means of van der Waals corrected density functional theory using the Tkatchenko-Scheffler method. We have compared the element and site resolved adsorption distances to recent experimental normal-incident X-ray standing wave measurements. The measured adsorption distances could be reproduced within a deviation of 1% for the Cu atom, 1% for the C atoms, and 2% for the N atoms. The molecule was found to have a magnetic moment of 1 μB distributed over the Cu and the N atoms of the pyrrole ring. Simulated scanning tunnel microscopy images based on the total and on the spin-resolved differential charge densities are provided for bias voltages of -1.45 and 1.45 eV. PMID:24697474

  1. Ytterbium in quantum gases and atomic clocks: van der Waals interactions and blackbody shifts.

    PubMed

    Safronova, M S; Porsev, S G; Clark, Charles W

    2012-12-01

    We evaluated the C(6) coefficients of Yb-Yb, Yb-alkali, and Yb-group II van der Waals interactions with 2% uncertainty. The only existing experimental result for such quantities is for the Yb-Yb dimer. Our value, C(6)=1929(39) a.u., is in excellent agreement with the recent experimental determination of 1932(35) a.u. We have also developed a new approach for the calculation of the dynamic correction to the blackbody radiation shift. We have calculated this quantity for the Yb 6s(2) (1)S(0)-6s6p (3)P(0)(o) clock transition with 3.5% uncertainty. This reduces the fractional uncertainty due to the blackbody radiation shift in the Yb optical clock at 300 K to the 10(-18) level. PMID:23368178

  2. Beyond Graphene: Progress in Novel Two-Dimensional Materials and van der Waals Solids

    NASA Astrophysics Data System (ADS)

    Das, Saptarshi; Robinson, Joshua A.; Dubey, Madan; Terrones, Humberto; Terrones, Mauricio

    2015-07-01

    Interest in 2D materials and van der Waals solids is growing exponentially across various scientific and engineering disciplines owing to their fascinating electrical, optical, chemical, and thermal properties. Whereas the micromechanical exfoliation technique has been adopted for rapid material characterization and demonstration of innovative device ideas based on these 2D systems, significant advances have recently been made in large-scale homogeneous and heterogeneous growth of these materials. This review reflects recent progress and outlines future prospects of these novel 2D materials. We provide a holistic overview of the different synthesis and characterization techniques, electronic and photonic device characteristics, and catalytic properties of transition metal dichalcogenides and their heterostructures. We also comment on the challenges that need to be overcome for full-scale commercial implementation of this novel class of layered materials.

  3. Designed Synthesis of van der Waals Heterostructures: The Power of Kinetic Control.

    PubMed

    Alemayehu, Matti B; Falmbigl, Matthias; Ta, Kim; Ditto, Jeffrey; Medlin, Douglas L; Johnson, David C

    2015-12-14

    Selecting specific 2D building blocks and specific layering sequences of van der Waals heterostructures should allow the formation of new materials with designed properties for specific applications. Unfortunately, the synthetic ability to prepare such structures at will, especially in a manner that can be manufactured, does not exist. Herein, we report the targeted synthesis of new metal-semiconductor heterostructures using the modulated elemental-reactant technique to nucleate specific 2D building blocks, control their thickness, and avoid epitaxial structures with long-range order. The building blocks, VSe2 and GeSe2 , have different crystal structures, which inhibits cation intermixing. The precise control of this approach enabled us to synthesize heterostructures containing GeSe2 monolayers alternating with VSe2 structural units with specific sequences. The transport properties systematically change with nanoarchitecture and a charge-density wave-like transition is observed.

  4. Ab initio characterization of the Mg-HF van der Waals complex.

    PubMed

    Koput, Jacek; Makarewicz, Jan

    2010-10-28

    The equilibrium structure and the three-dimensional potential energy surface of the Mg-HF van der Waals complex in its ground electronic state have been determined from accurate ab initio calculations using the coupled-cluster method, CCSD(T), in conjunction with the basis sets of triple- through quintuple-zeta quality. The core-electron correlation, high-order valence-electron correlation, and scalar relativistic effects were investigated. The Mg-HF complex was confirmed to be linear at equilibrium, with a vibrationless dissociation energy (into Mg and HF) D(e) of 280 cm(-1). The vibration-rotation energy levels of two isotopologues, (24)Mg-HF and (24)Mg-DF, were predicted using the variational method. The predicted spectroscopic constants can be useful in a further analysis of high-resolution vibration-rotation spectra of the Mg-HF complex.

  5. Ab initio characterization of the Ca-HCl van der Waals complex.

    PubMed

    Koput, Jacek; Makarewicz, Jan

    2010-02-14

    The equilibrium structure and three-dimensional potential energy surface of the Ca-HCl van der Waals complex in its ground electronic state have been determined from accurate ab initio calculations using the coupled-cluster method, CCSD(T), in conjunction with basis sets of quadruple- and quintuple-zeta quality. The core-electron correlation, high-order valence-electron correlation, and scalar relativistic effects were investigated. The Ca-HCl complex was confirmed to be linear at equilibrium, with the vibrationless dissociation energy (into Ca and HCl) D(e) of 287 cm(-1). The vibration-rotation energy levels of various Ca-HCl isotopomers were predicted using the variational method. The predicted spectroscopic constants can be useful in a further analysis of high-resolution vibration-rotation spectra of the Ca-HCl complex.

  6. The Electric Dipole Moment of the CO2-CO van der Waals Complex.

    PubMed

    Muenter; Bhattacharjee

    1998-08-01

    Radiofrequency transitions within K = 2 asymmetry doublets have been observed for the CO2-CO van der Waals complex. A Stark effect measurement on the J = 2, K = 2 transition provides an electric dipole moment of µ = 0.2493(1) D. Combining this result with the permanent moment of CO, µCO = 0.1098 D, gives a change of moment on complex formation of Deltaµ = 0.140 D. The sign of Deltaµ is such that the CO end of the complex is more positive than CO2. The origin of Deltaµ should not be attributed to any single mechanism, and several different contributions to Deltaµ are discussed. Copyright 1998 Academic Press.

  7. Influence of ultrathin water layer on the van der Waals/Casimir force between gold surfaces

    SciTech Connect

    Palasantzas, G.; Zwol, P. J. van; Svetovoy, V. B.

    2009-06-15

    In this paper we investigate the influence of ultrathin water layer ({approx}1-1.5 nm) on the van der Waals/Casimir force between gold surfaces. Adsorbed water is inevitably present on gold surfaces at ambient conditions as jump-up-to contact during adhesion experiments demonstrate. Calculations based on the Lifshitz theory give very good agreement with the experiment in the absence of any water layer for surface separations d > or approx. 10 nm. However, a layer of thickness h < or approx. 1.5 nm is allowed by the error margin in force measurements. At shorter separations, d < or approx. 10 nm, the water layer can have a strong influence as calculations show for flat surfaces. Nonetheless, in reality the influence of surface roughness must also be considered, and it can overshadow any water layer influence at separations comparable to the total sphere-plate rms roughness w{sub shp}+w.

  8. Van der waals-like isotherms in a confined electrolyte by spherical and cylindrical nanopores.

    PubMed

    Aguilar-Pineda, Gabriel E; Jiménez-Angeles, Felipe; Yu, Jiang; Lozada-Cassou, Marcelo

    2007-03-01

    Electrolytes confined by spherical, cylindrical, and slit-like charged nanopores are studied. Results for ionic distribution profiles, pressures of the confined fluid, and absorption isotherms are obtained through the hypernetted chain/mean spherical approximation (HNC/MSA) integral equations theory. In spherical and cylindrical geometries, an inward, non-monotonic behavior of the pressure is found as confinement increases, implying a negative compressibility. The pressure vs volume isotherms resemble liquid-vapor van der Waals-like phase transition diagrams. This effect is correlated with a charge separation inside a spherical pore previously reported (Phys. Rev. Lett., 79, 3656, 1997). Here, the mechanism of charge separation and negative compressibility are explored in detail. When compared with the slit-like pore pressure, important qualitative differences are found.

  9. An exact calculation of the van der Waals interaction between two spheres of classical dipolar fluid.

    PubMed

    Stenhammar, Joakim; Linse, Per; Wennerström, Håkan; Karlström, Gunnar

    2010-10-28

    An exact treatment of the van der Waals interaction between two spherical dielectric bodies possessing purely classical degrees of freedom is presented. The spheres are described by multipole expansions of their fluctuating charge distributions, and the correlation between the fluctuations are taken into account using classical electrostatics and statistical mechanics. The presented approach avoids both the assumption of pairwise additivity of Hamaker theory and the implicit linear response assumption of Lifshitz theory. The resulting equations are solved numerically for D/a ≥ 0.01, where a is the radius of the spheres and D is their minimum separation, for a system with ε = 80, and the results are compared to the analytical Hamaker formula with a Hamaker constant calculated from Lifshitz theory.

  10. Phase diagram of Rydberg atoms with repulsive van der Waals interaction

    SciTech Connect

    Osychenko, O. N.; Astrakharchik, G. E.; Boronat, J.; Lutsyshyn, Y.; Lozovik, Yu. E.

    2011-12-15

    We report a quantum Monte Carlo calculation of the phase diagram of bosons interacting with a repulsive inverse sixth power pair potential, a model for assemblies of Rydberg atoms in the local van der Waals blockade regime. The model can be parametrized in terms of just two parameters, the reduced density and temperature. Solidification happens to the fcc phase. At zero temperature, the transition density is found with the diffusion Monte Carlo method at density {rho}=3.9 (({Dirac_h}/2{pi}){sup 2}/mC{sub 6}){sup 3/4}, where C{sub 6} is the strength of the interaction. The solidification curve at nonzero temperature is studied with the path-integral Monte Carlo approach and is compared with transitions in corresponding harmonic and classical crystals. Relaxation mechanisms are considered in relation to present experiments.

  11. Self-consistent van der Waals density functional study of benzene adsorption on Si(100)

    NASA Astrophysics Data System (ADS)

    Hamamoto, Yuji; Hamada, Ikutaro; Inagaki, Kouji; Morikawa, Yoshitada

    2016-06-01

    The adsorption of benzene on the Si(100) surface is studied theoretically using the self-consistent van der Waals density functional (vdW-DF) method. The adsorption energies of two competing adsorption structures, butterfly (BF) and tight-bridge (TB) structures, are calculated with several vdW-DFs at saturation coverage. Our results show that recently proposed vdW-DFs with high accuracy all prefer TB to BF, in accord with more accurate calculations based on exact exchange and correlation within the random-phase approximation. Detailed analyses reveal the important roles played by the molecule-surface interaction and molecular deformation upon adsorption, and we suggest that their precise description is a prerequisite for accurate prediction of the most stable adsorption structure of organic molecules on semiconductor surfaces.

  12. On the van der Pauw's method applied to the measurement of low thermal conductivity materials.

    PubMed

    Morales, C; Flores, E; Bodega, J; Leardini, F; Ferrer, I J; Ares, J R; Sánchez, C

    2016-08-01

    The electrical van der Pauw's method has recently been extended to measure the thermal conductivity of different elements and compounds. This technique provides an easy way to determine the sample in-plane thermal conductivity by avoiding the influence of the thermal contact resistances. However, the reported calculated error values appear to be underestimated when dealing with the materials with low thermal conductivity (<5 W/Km) at room temperature. The causes of this underestimation are investigated in this communication and it has been found that they are due to the drastic influence of conduction heat losses through the thermo-resistance wires as well as the resulting modification of the sample temperature map. Both phenomena lead to experimental values of the sample thermal conductivity, which are systematically higher than the tabulated ones. The magnitude of this systematic error is ∼100% dealing with the samples of macroscopic dimensions, and low thermal conductivity indicated that the obtained accurate measurements can be quite challenging.

  13. Effective elastic properties of a van der Waals molecular monolayer at a metal surface

    NASA Astrophysics Data System (ADS)

    Sun, Dezheng; Kim, Dae-Ho; Le, Duy; Borck, Øyvind; Berland, Kristian; Kim, Kwangmoo; Lu, Wenhao; Zhu, Yeming; Luo, Miaomiao; Wyrick, Jonathan; Cheng, Zhihai; Einstein, T. L.; Rahman, Talat S.; Hyldgaard, Per; Bartels, Ludwig

    2010-11-01

    Adsorbing anthracene on a Cu(111) surface results in a wide range of complex and intriguing superstructures spanning a coverage range from 1 per 17 to 1 per 15 substrate atoms. In accompanying first-principles density-functional theory calculations we show the essential role of van der Waals interactions in estimating the variation in anthracene adsorption energy and height across the sample. We can thereby evaluate the compression of the anthracene film in terms of continuum elastic properties, which results in an effective Young’s modulus of 1.5 GPa and a Poisson ratio ≈0.1 . These values suggest interpretation of the molecular monolayer as a porous material—in marked congruence with our microscopic observations.

  14. Van der Waals epitaxy of functional MoO2 film on mica for flexible electronics

    NASA Astrophysics Data System (ADS)

    Ma, Chun-Hao; Lin, Jheng-Cyuan; Liu, Heng-Jui; Do, Thi Hien; Zhu, Yuan-Min; Ha, Thai Duy; Zhan, Qian; Juang, Jenh-Yih; He, Qing; Arenholz, Elke; Chiu, Po-Wen; Chu, Ying-Hao

    2016-06-01

    Flexible electronics have a great potential to impact consumer electronics and with that our daily life. Currently, no direct growth of epitaxial functional oxides on commercially available flexible substrates is possible. In this study, in order to address this challenge, muscovite, a common layered oxide, is used as a flexible substrate that is chemically similar to typical functional oxides. We fabricated epitaxial MoO2 films on muscovite via pulsed laser deposition technique. A combination of X-ray diffraction and transmission electron microscopy confirms van der Waals epitaxy of the heterostructures. The electrical transport properties of MoO2 films are similar to those of the bulk. Flexible or free-standing MoO2 thin film can be obtained and serve as a template to integrate additional functional oxide layers. Our study demonstrates a remarkable concept to create flexible electronics based on functional oxides.

  15. Quantum dynamics of X{sub 2}BC van der Waals clusters

    SciTech Connect

    Gray, S.K.

    1992-12-31

    Wave packet calculations modeling vibrational predissociation in X{sub 2}BC(v{sup {prime}}) van der Waals clusters are discussed. A model involving three active degrees of freedom is used. Cluster lifetimes and BC vibrational product distributions are obtained, and compared with available experimental results for He{sub 2}Cl{sub 2}, and Ne{sub 2}Cl{sub 2}. Some preliminary results for He{sub 2}I{sub 2} and Ne{sub 2}I{sub 2} are also discussed. Mechanistic issues, including the role of direct versus sequential mechanisms in leading to the production of 2X {plus} BC are addressed, as well as the role of intramolecular vibrational relaxation (IVR). Higher dimension extensions of the model are suggested. 3 figs., 3 tabs., 22 refs.

  16. Communication: evidence of stable van der Waals CO2 clusters relevant to Venus atmosphere conditions.

    PubMed

    Asfin, Ruslan E; Buldyreva, Jeanna V; Sinyakova, Tatyana N; Oparin, Daniil V; Filippov, Nikolai N

    2015-02-01

    Non-intrusive spectroscopic probing of weakly bound van der Waals complexes forming in gaseous carbon dioxide is generally performed at low pressures, for instance in supersonic jets, where the low temperature favors dimers, or in few-atmosphere samples, where the signature of dimers varying as the squared gas density is entangled with the dominating collision-induced absorption. We report experimental and theoretical results on CO2 dimers at very high pressures approaching the liquid phase. We observe that the shape of the CO2-dimer bands undergoes a distinctive line-mixing transformation, which reveals an unexpected stability of the dimers despite the collisions with the surrounding particles and negates the common belief that CO2 dimers are short-lived complexes. Our results furnish a deeper insight allowing a better modeling of CO2-rich atmospheres and provide also a new spectroscopic tool for studying the robustness of molecular clusters.

  17. Probing interlayer interactions in WS2 -graphene van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Chung, Ting Fung; Yuan, Long; Huang, Libai; Chen, Yong P.

    Two-dimensional crystals based van der Waals coupled heterostructures are of interest owing to their potential applications for flexible and transparent electronics and optoelectronics. The interaction between the 2D layered crystals at the interfaces of these heterostructures is crucial in determining the overall performance and is strongly affected by contamination and interfacial strain. We have fabricated heterostructures consisting of atomically thin exfoliated WS2 and chemical-vapor-deposited (CVD) graphene, and studied the interaction and coupling between the WS2 and graphene using atomic force microscopy (AFM), Raman spectroscopy and femtosecond transient absorption measurement (TAM). Information from Raman-active phonon modes allows us to estimate charge doping in graphene and interfacial strain on the crystals. Spatial imaging probed by TAM can be correlated to the heterostructure surface morphology measured by AFM and Raman maps of graphene and WS2, showing how the interlayer coupling alters exciton decay dynamics quantitatively.

  18. Periodic bifurcation of Duffing-van der Pol oscillators having fractional derivatives and time delay

    NASA Astrophysics Data System (ADS)

    Leung, A. Y. T.; Yang, H. X.; Zhu, P.

    2014-04-01

    In this paper, a Duffing-van der Pol oscillator having fractional derivatives and time delays is investigated by the residue harmonic method. The angular frequencies and limit cycles of periodic motions are expanded into a power series of an order-tracking parameter and the unbalanced residues resulting from the truncated Fourier series are considered iteratively to improve the accuracy. The periodic bifurcations are examined using the fractional order, feedback gain and time delay as continuation parameters. It is shown that jumps and hysteresis phenomena can be delayed or removed. Transition from discontinuous bifurcation to continuous bifurcation is observed. The approximations are verified by numerical integration. We find that the proposed method can easily be programmed and can predict accurate periodic approximations while the system parameters being unfolded.

  19. Graphene/h-BN/ZnO van der Waals tunneling heterostructure based ultraviolet photodetector.

    PubMed

    Wu, Zhiqian; Li, Xiaoqiang; Zhong, Huikai; Zhang, Shengjiao; Wang, Peng; Kim, Tae-ho; Kwak, Sung Soo; Liu, Cheng; Chen, Hongsheng; Kim, Sang-Woo; Lin, Shisheng

    2015-07-27

    We report a novel ultraviolet photodetector based on graphene/h-BN/ZnO van der Waals heterostructure. Graphene/ZnO heterostructure shows poor rectification behavior and almost no photoresponse. In comparison, graphene/h-BN/ZnO structure shows improved electrical rectified behavior and surprising high UV photoresponse (1350AW(-1)), which is two or three orders magnitude larger than reported GaN UV photodetector (0.2~20AW(-1)). Such high photoresponse mainly originates from the introduction of ultrathin two-dimensional (2D) insulating h-BN layer, which behaves as the tunneling layer for holes produced in ZnO and the blocking layer for holes in graphene. The graphene/h-BN/ZnO heterostructure should be a novel and representative 2D heterostructure for improving the performance of 2D materials/Semiconductor heterostructure based optoelectronic devices.

  20. Communication: Multiple-property-based diabatization for open-shell van der Waals molecules.

    PubMed

    Karman, Tijs; van der Avoird, Ad; Groenenboom, Gerrit C

    2016-03-28

    We derive a new multiple-property-based diabatization algorithm. The transformation between adiabatic and diabatic representations is determined by requiring a set of properties in both representations to be related by a similarity transformation. This set of properties is determined in the adiabatic representation by rigorous electronic structure calculations. In the diabatic representation, the same properties are determined using model diabatic states defined as products of undistorted monomer wave functions. This diabatic model is generally applicable to van der Waals molecules in arbitrary electronic states. Application to locating seams of conical intersections and collisional transfer of electronic excitation energy is demonstrated for O2 - O2 in low-lying excited states. Property-based diabatization for this test system included all components of the electric quadrupole tensor, orbital angular momentum, and spin-orbit coupling. PMID:27036418

  1. A self-consistent GW approach to the van der Waals potential for a helium dimer.

    PubMed

    Shoji, Toru; Kuwahara, Riichi; Ono, Shota; Ohno, Kaoru

    2016-09-21

    van der Waals interaction between two helium (He) atoms is studied by calculating the total energy as a function of the He-He distance within the self-consistent GW approximation, which is expected to behave correctly in the long wavelength limit. In the Born-Oppenheimer (BO) approximation, the pair potential curve has its minimum value at 2.87 Å, which is somewhat larger than the local density approximation result, 2.40 Å, and is closer to previous quantum chemistry results. The expectation value for the interatomic distance, calculated by solving the Schrödinger equation for the two nuclei problem using the BO potential energy curve, is 30 Å, which is smaller but of the same order as previous experimental and theoretical results. PMID:27538378

  2. Communication: Multiple-property-based diabatization for open-shell van der Waals molecules

    NASA Astrophysics Data System (ADS)

    Karman, Tijs; van der Avoird, Ad; Groenenboom, Gerrit C.

    2016-03-01

    We derive a new multiple-property-based diabatization algorithm. The transformation between adiabatic and diabatic representations is determined by requiring a set of properties in both representations to be related by a similarity transformation. This set of properties is determined in the adiabatic representation by rigorous electronic structure calculations. In the diabatic representation, the same properties are determined using model diabatic states defined as products of undistorted monomer wave functions. This diabatic model is generally applicable to van der Waals molecules in arbitrary electronic states. Application to locating seams of conical intersections and collisional transfer of electronic excitation energy is demonstrated for O2 - O2 in low-lying excited states. Property-based diabatization for this test system included all components of the electric quadrupole tensor, orbital angular momentum, and spin-orbit coupling.

  3. Epitaxial 2D SnSe2/ 2D WSe2 van der Waals Heterostructures.

    PubMed

    Aretouli, Kleopatra Emmanouil; Tsoutsou, Dimitra; Tsipas, Polychronis; Marquez-Velasco, Jose; Aminalragia Giamini, Sigiava; Kelaidis, Nicolaos; Psycharis, Vassilis; Dimoulas, Athanasios

    2016-09-01

    van der Waals heterostructures of 2D semiconductor materials can be used to realize a number of (opto)electronic devices including tunneling field effect devices (TFETs). It is shown in this work that high quality SnSe2/WSe2 vdW heterostructure can be grown by molecular beam epitaxy on AlN(0001)/Si(111) substrates using a Bi2Se3 buffer layer. A valence band offset of 0.8 eV matches the energy gap of SnSe2 in such a way that the VB edge of WSe2 and the CB edge of SnSe2 are lined up, making this materials combination suitable for (nearly) broken gap TFETs. PMID:27537619

  4. Formation of van der Waals molecules in buffer-gas-cooled magnetic traps [corrected].

    PubMed

    Brahms, N; Tscherbul, T V; Zhang, P; Kłos, J; Sadeghpour, H R; Dalgarno, A; Doyle, J M; Walker, T G

    2010-07-16

    We predict that a large class of helium-containing cold polar molecules form readily in a cryogenic buffer gas, achieving densities as high as 10(12)  cm(-3). We explore the spin relaxation of these molecules in buffer-gas-loaded magnetic traps and identify a loss mechanism based on Landau-Zener transitions arising from the anisotropic hyperfine interaction. Our results show that the recently observed strong T(-6) thermal dependence of the spin-change rate of silver (Ag) trapped in dense (3)He is accounted for by the formation and spin change of Ag(3)He van der Waals molecules, thus providing indirect evidence for molecular formation in a buffer-gas trap.

  5. Spectroscopic probe of the van der Waals interaction between polar molecules and a curved surface

    NASA Astrophysics Data System (ADS)

    Bimonte, Giuseppe; Emig, Thorsten; Jaffe, R. L.; Kardar, Mehran

    2016-08-01

    We study the shift of rotational levels of a diatomic polar molecule due to its van der Waals interaction with a gently curved dielectric surface at temperature T , and submicron separations. The molecule is assumed to be in its electronic and vibrational ground state, and the rotational degrees are described by a rigid rotor model. We show that under these conditions retardation effects and surface dispersion can be neglected. The level shifts are found to be independent of T , and given by the quantum state averaged classical electrostatic interaction of the dipole with its image on the surface. We use a derivative expansion for the static Green's function to express the shifts in terms of surface curvature. We argue that the curvature induced line splitting is experimentally observable, and not obscured by natural linewidths and thermal broadening.

  6. Freestanding van der Waals heterostructures of graphene and transition metal dichalcogenides.

    PubMed

    Azizi, Amin; Eichfeld, Sarah; Geschwind, Gayle; Zhang, Kehao; Jiang, Bin; Mukherjee, Debangshu; Hossain, Lorraine; Piasecki, Aleksander F; Kabius, Bernd; Robinson, Joshua A; Alem, Nasim

    2015-05-26

    Vertical stacking of two-dimensional (2D) crystals has recently attracted substantial interest due to unique properties and potential applications they can introduce. However, little is known about their microstructure because fabrication of the 2D heterostructures on a rigid substrate limits one's ability to directly study their atomic and chemical structures using electron microscopy. This study demonstrates a unique approach to create atomically thin freestanding van der Waals heterostructures-WSe2/graphene and MoS2/graphene-as ideal model systems to investigate the nucleation and growth mechanisms in heterostructures. In this study, we use transmission electron microscopy (TEM) imaging and diffraction to show epitaxial growth of the freestanding WSe2/graphene heterostructure, while no epitaxy is maintained in the MoS2/graphene heterostructure. Ultra-high-resolution aberration-corrected scanning transmission electron microscopy (STEM) shows growth of monolayer WSe2 and MoS2 triangles on graphene membranes and reveals their edge morphology and crystallinity. Photoluminescence measurements indicate a significant quenching of the photoluminescence response for the transition metal dichalcogenides on freestanding graphene, compared to those on a rigid substrate, such as sapphire and epitaxial graphene. Using a combination of (S)TEM imaging and electron diffraction analysis, this study also reveals the significant role of defects on the heterostructure growth. The direct growth technique applied here enables us to investigate the heterostructure nucleation and growth mechanisms at the atomic level without sample handling and transfer. Importantly, this approach can be utilized to study a wide spectrum of van der Waals heterostructures.

  7. Thioarsenides: A case for long-range Lewis acid-base-directed van der Waals interactions

    SciTech Connect

    Gibbs, Gerald V.; Wallace, Adam F.; Downs, R. T.; Ross, Nancy L.; Cox, David F.; Rosso, Kevin M.

    2011-04-01

    Electron density distributions, bond paths, Laplacian and local energy density properties have been calculated for a number of As4Sn (n = 3,4,5) thioarsenide molecular crystals. On the basis of the distributions, the intramolecular As-S and As-As interactions classify as shared bonded interactions and the intermolecular As-S, As-As and S-S interactions classify as closed-shell van der Waals bonded interactions. The bulk of the intermolecular As-S bond paths link regions of locally concentrated electron density (Lewis base regions) with aligned regions of locally depleted electron density (Lewis acid regions) on adjacent molecules. The paths are comparable with intermolecular paths reported for several other molecular crystals that link aligned Lewis base and acid regions in a key-lock fashion, interactions that classified as long range Lewis acid-base directed van der Waals interactions. As the bulk of the intermolecular As-S bond paths (~70%) link Lewis acid-base regions on adjacent molecules, it appears that molecules adopt an arrangement that maximizes the number of As-S Lewis acid-base intermolecular bonded interactions. The maximization of the number of Lewis acid-base interactions appears to be connected with the close-packed array adopted by molecules: distorted cubic close-packed arrays are adopted for alacránite, pararealgar, uzonite, realgar and β-AsS and the distorted hexagonal close-packed arrays adopted by α- and β-dimorphite. A growth mechanism is proposed for thioarsenide molecular crystals from aqueous species that maximizes the number of long range Lewis acid-base vdW As-S bonded interactions with the resulting directed bond paths structuralizing the molecules as a molecular crystal.

  8. Excitons in van der Waals heterostructures: The important role of dielectric screening

    NASA Astrophysics Data System (ADS)

    Latini, S.; Olsen, T.; Thygesen, K. S.

    2015-12-01

    The existence of strongly bound excitons is one of the hallmarks of the newly discovered atomically thin semiconductors. While it is understood that the large binding energy is mainly due to the weak dielectric screening in two dimensions, a systematic investigation of the role of screening on two-dimensional (2D) excitons is still lacking. Here we provide a critical assessment of a widely used 2D hydrogenic exciton model, which assumes a dielectric function of the form ɛ (q )=1 +2 π α q , and we develop a quasi-2D model with a much broader applicability. Within the quasi-2D picture, electrons and holes are described as in-plane point charges with a finite extension in the perpendicular direction, and their interaction is screened by a dielectric function with a nonlinear q dependence which is computed ab initio. The screened interaction is used in a generalized Mott-Wannier model to calculate exciton binding energies in both isolated and supported 2D materials. For isolated 2D materials, the quasi-2D treatment yields results almost identical to those of the strict 2D model, and both are in good agreement with ab initio many-body calculations. On the other hand, for more complex structures such as supported layers or layers embedded in a van der Waals heterostructure, the size of the exciton in reciprocal space extends well beyond the linear regime of the dielectric function, and a quasi-2D description has to replace the 2D one. Our methodology has the merit of providing a seamless connection between the strict 2D limit of isolated monolayer materials and the more bulk-like screening characteristics of supported 2D materials or van der Waals heterostructures.

  9. Electrical Transport and Thermal Expansion in van der Waals Materials: Graphene and Topological Insulator

    NASA Astrophysics Data System (ADS)

    Jing, Lei

    Novel two-dimensional materials with weak interlayer Van der Waals interaction are fantastic platforms to study novel physical phenomena. This thesis describes our investigation on two different Van der Waals materials: graphene and bismuth selenide with calcium doping (CaxBi 2-xSe3, x as the doping level) in the topological insulator family. Firstly, we characterize the electrical transport behaviors of high-quality substrate-supported bilayer graphene devices with suspended metal gates. The device exhibits a transport gap induced by external electric field with an on/off ratio of 20,000, which could be explained by variable range hoping between localized states or disordered charge puddles. At large magnetic field, the device presents quantum Hall plateau at fractional values of conductance quantum, which arises from the equilibration of edge states between differentially doped regions. Secondly, we present our study on the electronic transport of CaxBi 2-xSe3 thin films, which are three-dimensional topological insulators and coupled with superconducting leads. In these novel Josephson transistors, we observe different characteristic features by energy dispersion spectrum (EDS) and Raman spectroscopy, and the weak suppression in the critical current Ic. Thirdly, we explore the thermal expansion of suspended graphene. By in-situ scanning electron microscope (SEM), we measure the thickness-dependence of graphene's negative thermal expansion coefficient (TEC). We propose that there is a competitive relation between the intrinsic TEC and the friction from the substrate and the graphene. Lastly, in collaboration with Dr. Nikolai Kalugin from New Mexico Tech., we explore the graphene's application as a quantum Hall effect infrared photodetector. This graphene-based detector can be operated at higher temperature (liquid nitrogen) and wider frequency than the previous implementations of quantum Hall detector.

  10. Van der Waals complexes of polar aromatic molecules: unexpected structures for dimers of azulene.

    PubMed

    Piacenza, Manuel; Grimme, Stefan

    2005-10-26

    Full geometry optimizations at the dispersion corrected DFT-BLYP/TZV2P level of theory have been performed for dimers of azulene that may serve as a model system for the van der Waals complexes of polar pi systems. The structures and binding energies for 11 dimers are investigated in detail. The DFT-D interaction energies have been successfully checked against results from the accurate SCS-MP2/aug-cc-pVTZ approach. Out of the nine investigated stacked complexes, eight have binding energies larger than 7.4 kcal/mol (SCS-MP2) that exceed the value of 7.1 kcal/mol for the best naphthalene dimer. T-shaped arrangements (CH...pi) are significantly less stable. Two out of the three best structures have an antiparallel alignment of the monomer dipole moments in the complex, although the best ones with a parallel orientation are only about 0.5 kcal/mol less strongly bound which points to a minor importance of dipole-dipole interactions to binding. Quite surprisingly, the energetically lowest structure (DeltaE = -9.2 kcal/mol) corresponds to a situation where the two seven-membered rings are located almost on top of each other (7-7) and the long molecular axes are rotated against each other by 130 degrees. The 7-7 structural motif is found also in other energetically low-lying structures, and the expected 5-7 (two-side) arrangement is less strongly bound by about 2 kcal/mol. This can be explained by the electrostatic potential of azulene that only partially reflects the charge separation according to the common 4n + 2 pi electron rule. General rules for predicting stable van der Waals complexes of polar pi systems are discussed.

  11. Jet-Cooled High Resolution Infrared Spectroscopy of Small Van Der Waals SF_6 Clusters

    NASA Astrophysics Data System (ADS)

    Asselin, Pierre; Boudon, Vincent; Potapov, Alexey; Bruel, Laurent; Gaveau, Marc-André; Mons, Michel

    2016-06-01

    Using a pulsed slit nozzle multipass absorption spectrometer with a tunable quantum cascade laser we investigated van der Waals clusters involving sulfur hexafluoride in the spectral range near the νb{3} stretching vibration. Different sized homo-complexes were generated in a planar supersonic expansion with typically 0,5 % SF_6 diluted in 6 bar He. Firstly, several rotationally resolved parallel and perpendicular bands of (SF_6)_2, at 934,0 and 956,1 wn (#1 structure) in agreement with Takami et al. but also one band at 933,6 wn (#2 structure) never observed previously, were analyzed in light of a recent theoretical study predicting three nearly isoenergetic isomers of D2d, C2h and C_2 symmetry for the dimer. Furthermore, some broader bands were detected around 938 and 964 wn and assigned to (SF_6)_3 and (SF_6)_4 clusters on the grounds of concentration effects and/or ab initio calculations. Lastly, with 0,5 % rare gas Rg (Rg = Ne, Ar, Kr and Xe) added to the SF_6:He gas mixture, a series of van der Waals (SF_6)_2-Rg hetero-trimers were observed, which display a remarkable linear dependence of the vibrational shift with the polarizability of the rare gas atom provided that the initial SF_6 dimer structure is #2 . In the same time no transitions belonging to the binary complexes SF_6-Rg were found near the νb{3} monomer band. This result suggests a complex thermodynamics within the pulsed supersonic expansion leading to the preponderance of (SF_6)_2-Rg clusters over SF_6-Rg binary systems. R. D. Urban and M. Takami, J. Chem. Phys. 103, 9132 (1995). T. Vazhappily, A. Marjolin and K. D. Jordan, J. Phys. Chem. B, DOI: 10.1021/acs.jpcb.5b09419 (2015).

  12. Versatile van der Waals Density Functional Based on a Meta-Generalized Gradient Approximation

    NASA Astrophysics Data System (ADS)

    Peng, Haowei; Yang, Zeng-Hui; Perdew, John P.; Sun, Jianwei

    2016-10-01

    A "best-of-both-worlds" van der Waals (vdW) density functional is constructed, seamlessly supplementing the strongly constrained and appropriately normed (SCAN) meta-generalized gradient approximation for short- and intermediate-range interactions with the long-range vdW interaction from r VV 10 , the revised Vydrov-van Voorhis nonlocal correlation functional. The resultant SCAN +r VV 10 is the only vdW density functional to date that yields excellent interlayer binding energies and spacings, as well as intralayer lattice constants in 28 layered materials. Its versatility for various kinds of bonding is further demonstrated by its good performance for 22 interactions between molecules; the cohesive energies and lattice constants of 50 solids; the adsorption energy and distance of a benzene molecule on coinage-metal surfaces; the binding energy curves for graphene on Cu(111), Ni(111), and Co(0001) surfaces; and the rare-gas solids. We argue that a good semilocal approximation should (as SCAN does) capture the intermediate-range vdW through its exchange term. We have found an effective range of the vdW interaction between 8 and 16 Å for systems considered here, suggesting that this interaction is negligibly small at the larger distances where it reaches its asymptotic power-law decay.

  13. Nonlocal van der Waals functionals: The case of rare-gas dimers and solids

    NASA Astrophysics Data System (ADS)

    Tran, Fabien; Hutter, Jürg

    2013-05-01

    Recently, the nonlocal van der Waals (vdW) density functionals [M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004), 10.1103/PhysRevLett.92.246401] have attracted considerable attention due to their good performance for systems where weak interactions are important. Since the physics of dispersion is included in these functionals, they are usually more accurate and show less erratic behavior than the semilocal and hybrid methods. In this work, several variants of the vdW functionals have been tested on rare-gas dimers (from He2 to Kr2) and solids (Ne, Ar, and Kr) and their accuracy compared to standard semilocal approximations, supplemented or not by an atom-pairwise dispersion correction [S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys. 132, 154104 (2010), 10.1063/1.3382344]. An analysis of the results in terms of energy decomposition is also provided.

  14. Electronic structures and enhanced optical properties of blue phosphorene/transition metal dichalcogenides van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Peng, Qiong; Wang, Zhenyu; Sa, Baisheng; Wu, Bo; Sun, Zhimei

    2016-08-01

    As a fast emerging topic, van der Waals (vdW) heterostructures have been proposed to modify two-dimensional layered materials with desired properties, thus greatly extending the applications of these materials. In this work, the stacking characteristics, electronic structures, band edge alignments, charge density distributions and optical properties of blue phosphorene/transition metal dichalcogenides (BlueP/TMDs) vdW heterostructures were systematically studied based on vdW corrected density functional theory. Interestingly, the valence band maximum and conduction band minimum are located in different parts of BlueP/MoSe2, BlueP/WS2 and BlueP/WSe2 heterostructures. The MoSe2, WS2 or WSe2 layer can be used as the electron donor and the BlueP layer can be used as the electron acceptor. We further found that the optical properties under visible-light irradiation of BlueP/TMDs vdW heterostructures are significantly improved. In particular, the predicted upper limit energy conversion efficiencies of BlueP/MoS2 and BlueP/MoSe2 heterostructures reach as large as 1.16% and 0.98%, respectively, suggesting their potential applications in efficient thin-film solar cells and optoelectronic devices.

  15. Electronic structures and enhanced optical properties of blue phosphorene/transition metal dichalcogenides van der Waals heterostructures.

    PubMed

    Peng, Qiong; Wang, Zhenyu; Sa, Baisheng; Wu, Bo; Sun, Zhimei

    2016-01-01

    As a fast emerging topic, van der Waals (vdW) heterostructures have been proposed to modify two-dimensional layered materials with desired properties, thus greatly extending the applications of these materials. In this work, the stacking characteristics, electronic structures, band edge alignments, charge density distributions and optical properties of blue phosphorene/transition metal dichalcogenides (BlueP/TMDs) vdW heterostructures were systematically studied based on vdW corrected density functional theory. Interestingly, the valence band maximum and conduction band minimum are located in different parts of BlueP/MoSe2, BlueP/WS2 and BlueP/WSe2 heterostructures. The MoSe2, WS2 or WSe2 layer can be used as the electron donor and the BlueP layer can be used as the electron acceptor. We further found that the optical properties under visible-light irradiation of BlueP/TMDs vdW heterostructures are significantly improved. In particular, the predicted upper limit energy conversion efficiencies of BlueP/MoS2 and BlueP/MoSe2 heterostructures reach as large as 1.16% and 0.98%, respectively, suggesting their potential applications in efficient thin-film solar cells and optoelectronic devices.

  16. Electronic structures and enhanced optical properties of blue phosphorene/transition metal dichalcogenides van der Waals heterostructures.

    PubMed

    Peng, Qiong; Wang, Zhenyu; Sa, Baisheng; Wu, Bo; Sun, Zhimei

    2016-01-01

    As a fast emerging topic, van der Waals (vdW) heterostructures have been proposed to modify two-dimensional layered materials with desired properties, thus greatly extending the applications of these materials. In this work, the stacking characteristics, electronic structures, band edge alignments, charge density distributions and optical properties of blue phosphorene/transition metal dichalcogenides (BlueP/TMDs) vdW heterostructures were systematically studied based on vdW corrected density functional theory. Interestingly, the valence band maximum and conduction band minimum are located in different parts of BlueP/MoSe2, BlueP/WS2 and BlueP/WSe2 heterostructures. The MoSe2, WS2 or WSe2 layer can be used as the electron donor and the BlueP layer can be used as the electron acceptor. We further found that the optical properties under visible-light irradiation of BlueP/TMDs vdW heterostructures are significantly improved. In particular, the predicted upper limit energy conversion efficiencies of BlueP/MoS2 and BlueP/MoSe2 heterostructures reach as large as 1.16% and 0.98%, respectively, suggesting their potential applications in efficient thin-film solar cells and optoelectronic devices. PMID:27553787

  17. Communication: Accurate higher-order van der Waals coefficients between molecules from a model dynamic multipole polarizability

    NASA Astrophysics Data System (ADS)

    Tao, Jianmin; Rappe, Andrew M.

    2016-01-01

    Due to the absence of the long-range van der Waals (vdW) interaction, conventional density functional theory (DFT) often fails in the description of molecular complexes and solids. In recent years, considerable progress has been made in the development of the vdW correction. However, the vdW correction based on the leading-order coefficient C6 alone can only achieve limited accuracy, while accurate modeling of higher-order coefficients remains a formidable task, due to the strong non-additivity effect. Here, we apply a model dynamic multipole polarizability within a modified single-frequency approximation to calculate C8 and C10 between small molecules. We find that the higher-order vdW coefficients from this model can achieve remarkable accuracy, with mean absolute relative deviations of 5% for C8 and 7% for C10. Inclusion of accurate higher-order contributions in the vdW correction will effectively enhance the predictive power of DFT in condensed matter physics and quantum chemistry.

  18. Electronic structures and enhanced optical properties of blue phosphorene/transition metal dichalcogenides van der Waals heterostructures

    PubMed Central

    Peng, Qiong; Wang, Zhenyu; Sa, Baisheng; Wu, Bo; Sun, Zhimei

    2016-01-01

    As a fast emerging topic, van der Waals (vdW) heterostructures have been proposed to modify two-dimensional layered materials with desired properties, thus greatly extending the applications of these materials. In this work, the stacking characteristics, electronic structures, band edge alignments, charge density distributions and optical properties of blue phosphorene/transition metal dichalcogenides (BlueP/TMDs) vdW heterostructures were systematically studied based on vdW corrected density functional theory. Interestingly, the valence band maximum and conduction band minimum are located in different parts of BlueP/MoSe2, BlueP/WS2 and BlueP/WSe2 heterostructures. The MoSe2, WS2 or WSe2 layer can be used as the electron donor and the BlueP layer can be used as the electron acceptor. We further found that the optical properties under visible-light irradiation of BlueP/TMDs vdW heterostructures are significantly improved. In particular, the predicted upper limit energy conversion efficiencies of BlueP/MoS2 and BlueP/MoSe2 heterostructures reach as large as 1.16% and 0.98%, respectively, suggesting their potential applications in efficient thin-film solar cells and optoelectronic devices. PMID:27553787

  19. Performance of the van der Waals Density Functional VV10 and (hybrid)GGA Variants for Thermochemistry and Noncovalent Interactions.

    PubMed

    Hujo, Waldemar; Grimme, Stefan

    2011-12-13

    The nonlocal van der Waals density functional VV10 (Vydrov, O. A.; Van Voorhis, T. J. Chem. Phys.2010, 133, 244103) is tested for the thermochemical properties of 1200+ atoms and molecules in the GMTKN30 database in order to assess its global accuracy. Five GGA and hybrid functionals in unmodified form are augmented by the nonlocal (NL) part of the VV10 functional (one parameter adjusted). The addition of the NL dispersion energy definitely improves the results of all tested functionals. On the basis of little empiricism and basic physical insight, DFT-NL can be recommended as a fully electronic, robust electronic structure method.

  20. A novel mutation in the IRF6 gene associated with facial asymmetry in a family affected with Van der Woude syndrome.

    PubMed

    Miñones-Suárez, Lorena; Mas-Vidal, Alberto; Fernandez-Toral, Joaquin; Llano-Rivas, Isabel; González-García, Manuel

    2012-01-01

    This report describes a novel missense mutation in the interferon regulation factor 6 (IRF6) gene associated to facial asymmetry. This new feature widens the phenotype spectrum of Van der Woude syndrome (VWS). PMID:21995291

  1. Communication: Determining the structure of the N{sub 2}Ar van der Waals complex with laser-based channel-selected Coulomb explosion

    SciTech Connect

    Wu, Chengyin Liu, Yunquan; Gong, Qihuang; Wu, Cong; Xie, Xiguo; Li, Min; Deng, Yongkai; Song, Di; Su, Hongmei

    2014-04-14

    We experimentally reconstructed the structure of the N{sub 2}Ar van der Waals complex with the technique of laser-based channel-selected Coulomb explosion imaging. The internuclear distance between the N{sub 2} center of mass and the Ar atom, i.e., the length of the van der Waals bond, was determined to be 3.88 Å from the two-body explosion channels. The angle between the van der Waals bond and the N{sub 2} principal axis was determined to be 90° from the three-body explosion channels. The reconstructed structure was contrasted with our high level ab initio calculations. The agreement demonstrated the potential application of laser-based Coulomb explosion in imaging transient molecular structure, particularly for floppy van der Waals complexes, whose structures remain difficult to be determined by conventional spectroscopic methods.

  2. van der Waals forces in density functional theory: a review of the vdW-DF method.

    PubMed

    Berland, Kristian; Cooper, Valentino R; Lee, Kyuho; Schröder, Elsebeth; Thonhauser, T; Hyldgaard, Per; Lundqvist, Bengt I

    2015-06-01

    A density functional theory (DFT) that accounts for van der Waals (vdW) interactions in condensed matter, materials physics, chemistry, and biology is reviewed. The insights that led to the construction of the Rutgers-Chalmers van der Waals density functional (vdW-DF) are presented with the aim of giving a historical perspective, while also emphasizing more recent efforts which have sought to improve its accuracy. In addition to technical details, we discuss a range of recent applications that illustrate the necessity of including dispersion interactions in DFT. This review highlights the value of the vdW-DF method as a general-purpose method, not only for dispersion bound systems, but also in densely packed systems where these types of interactions are traditionally thought to be negligible.

  3. van der Waals forces in density functional theory: a review of the vdW-DF method

    DOE PAGESBeta

    Berland, Kristian; Cooper, Valentino R.; Lee, Kyuho; Schröder, Elsebeth; Thonhauser, T.; Hyldgaard, Per; Lundqvist, Bengt I.

    2015-05-15

    We review a density functional theory (DFT) that accounts for van der Waals (vdW) interactions in condensed matter, materials physics, chemistry, and biology. The insights that led to the construction of the Rutgers–Chalmers van der Waals density functional (vdW-DF) are presented with the aim of giving a historical perspective, while also emphasizing more recent efforts which have sought to improve its accuracy. In addition to technical details, we discuss a range of recent applications that illustrate the necessity of including dispersion interactions in DFT. This review highlights the value of the vdW-DF method as a general-purpose method, not only formore » dispersion bound systems, but also in densely packed systems where these types of interactions are traditionally thought to be negligible.« less

  4. van der Waals forces in density functional theory: a review of the vdW-DF method

    SciTech Connect

    Berland, Kristian; Cooper, Valentino R.; Lee, Kyuho; Schröder, Elsebeth; Thonhauser, T.; Hyldgaard, Per; Lundqvist, Bengt I.

    2015-05-15

    We review a density functional theory (DFT) that accounts for van der Waals (vdW) interactions in condensed matter, materials physics, chemistry, and biology. The insights that led to the construction of the Rutgers–Chalmers van der Waals density functional (vdW-DF) are presented with the aim of giving a historical perspective, while also emphasizing more recent efforts which have sought to improve its accuracy. In addition to technical details, we discuss a range of recent applications that illustrate the necessity of including dispersion interactions in DFT. This review highlights the value of the vdW-DF method as a general-purpose method, not only for dispersion bound systems, but also in densely packed systems where these types of interactions are traditionally thought to be negligible.

  5. Chemical sensing by band modulation of a black phosphorus/molybdenum diselenide van der Waals hetero-structure

    NASA Astrophysics Data System (ADS)

    Feng, Zhihong; Chen, Buyun; Qian, Shuangbei; Xu, Linyan; Feng, Liefeng; Yu, Yuanyuan; Zhang, Rui; Chen, Jiancui; Li, Qianqian; Li, Quanning; Sun, Chongling; Zhang, Hao; Liu, Jing; Pang, Wei; Zhang, Daihua

    2016-09-01

    We report on a new chemical sensor based on black phosphorus/molybdenum diselenide van der Waals hetero-junctions. Due to the atomically thin nature of two-dimensional (2D) materials, surface adsorption of gas molecules can effectively modulate the band alignment at the junction interface, making the device a highly sensitive detector for chemical adsorptions. Compared to sensors made of homogeneous nanomaterials, the hetero-junction demonstrates considerably lower detection limit and higher sensitivity toward nitrogen dioxide. Kelvin probe force microscopy and finite element simulations have provided experimental and theoretical explanations for the enhanced performance, proving that chemical adsorption can induce significant changes in band alignment and carrier transport behaviors. The study demonstrates the potential of van der Waals hetero-junction as a new platform for sensing applications, and provides more insights into the interaction between gaseous molecules and 2D hetero-structures.

  6. Rovibronic spectroscopy of the van der Waals complex He-HCl+

    NASA Astrophysics Data System (ADS)

    Dhont, G.; Chambaud, G.; Groenenboom, G. C.; van der Avoird, A.

    2004-01-01

    The potential energy surfaces and the calculated rovibronic spectrum of the electronic ground state of the van der Waals He-HCl+ cation are presented. The system is in a X2Π electronic state at linearity, which splits into an A' and an A'' state upon bending, leading to a Renner-Teller effect. Three-dimensional potential energy surfaces have been determined using the partially spin-restricted open-shell single and double excitation coupled cluster method with perturbative triples [RCCSD(T)]. The absolute minimum of a two-dimensional surface with the diatom bond length r fixed at re = 2.489 a0 is located at the linear He-HCl+ geometry with a van der Waals bond length R of 5.98 a0 and De ≃ 300 cm-1. The minimum in the full three-dimensional potential occurs for a slightly larger value of r: 2.492 a0. The rovibronic levels of the He-HCl+ complex have been computed by a variational method for total angular momenta J =1/2, 3/2, 5/2, 7/2 and 9/2. The binding energy D0 is calculated as 161.5 cm-1 using the two-dimensional potential energy surfaces with r frozen at re and as 163.5 cm-1 in full three-dimensional calculations. Owing to the large and negative value of the spin-orbit parameter in HCl+ (ASO = -648.13 cm-1), all the considered rovibronic states correspond to the |Ω| = 3/2 spin-orbit component of HCl+. The nuclear wave functions of the complex could be interpreted using the model of a slightly hindered diatomic rotor. The energy level pattern and wave functions have been compared with the more floppy Ar-OH complex on the one hand and the more rigid He-HF+ system on the other. The anisotropy of the potential energy surface of the He-HCl+ complex is intermediate between these two cases and the rovibronic states reflect this property.

  7. Infrared overtone spectroscopy of hydrogen fluoride van der Waals complexes at upsilon (HF) = 3

    NASA Astrophysics Data System (ADS)

    Tsang, Susy Ngan Ping

    1998-11-01

    The dependence of weak intermolecular forces on valence bond excitations is investigated by the spectroscopy and vibrational predissociation dynamics of four hydrogen fluoride van der Waals complexes, N2HF, (HF)2, Ar2HF and Ar3HF, at the second overtone vibrational excitation of the hydrogen bonded HF intramolecular stretch, v HF=3. The formation and detection of these weakly bound complexes are achieved by the unique combination of slit supersonic jet expansion and intracavity Ti:sapphire laser-induced fluorescence. For the four complexes studied, an increase in the red- shift as a function of v HF was observed in the hydrogen bonded HF valence stretch as a result of the strengthening of the hydrogen bond. In addition, changes in the anisotropies of the intermolecular potentials of these weakly bound systems are in accord with those observed in the prototypical studies of ArHF at v HF=3 in this laboratory. However, the van der Waals soft modes have only been completely characterized for N2HF at v HF=3. Moreover, the frequencies of these intermolecular modes were experimentally determined for the first time in the N2HF complex. Of major interest in the N2HF studies is the intermolecular state dependence of the vibrational predissociation in this complex at v HF=3. Intermolecular state dependent vibrational predissociation dynamics is also observed in the (HF)2 studies. In order to further understand the complex internal dynamics in N2HF, ab initio calculations for a highly accurate four-dimensional potential energy surface using the symmetry adapted perturbation theory (SAPT) method were performed at v HF=0 and at v HF=3. A preliminary analysis of the ab initio data for both vibrational states and bound state calculations for the ground state potential energy surface are presented. The work on the Ar2HF and Ar3HF clusters tests the accuracy of pairwise additive intermolecular potentials for these two systems at v HF=3. In particular, the data obtained on these

  8. Accurate description of van der Waals complexes by density functional theory including empirical corrections.

    PubMed

    Grimme, Stefan

    2004-09-01

    An empirical method to account for van der Waals interactions in practical calculations with the density functional theory (termed DFT-D) is tested for a wide variety of molecular complexes. As in previous schemes, the dispersive energy is described by damped interatomic potentials of the form C6R(-6). The use of pure, gradient-corrected density functionals (BLYP and PBE), together with the resolution-of-the-identity (RI) approximation for the Coulomb operator, allows very efficient computations for large systems. Opposed to previous work, extended AO basis sets of polarized TZV or QZV quality are employed, which reduces the basis set superposition error to a negligible extend. By using a global scaling factor for the atomic C6 coefficients, the functional dependence of the results could be strongly reduced. The "double counting" of correlation effects for strongly bound complexes is found to be insignificant if steep damping functions are employed. The method is applied to a total of 29 complexes of atoms and small molecules (Ne, CH4, NH3, H2O, CH3F, N2, F2, formic acid, ethene, and ethine) with each other and with benzene, to benzene, naphthalene, pyrene, and coronene dimers, the naphthalene trimer, coronene. H2O and four H-bonded and stacked DNA base pairs (AT and GC). In almost all cases, very good agreement with reliable theoretical or experimental results for binding energies and intermolecular distances is obtained. For stacked aromatic systems and the important base pairs, the DFT-D-BLYP model seems to be even superior to standard MP2 treatments that systematically overbind. The good results obtained suggest the approach as a practical tool to describe the properties of many important van der Waals systems in chemistry. Furthermore, the DFT-D data may either be used to calibrate much simpler (e.g., force-field) potentials or the optimized structures can be used as input for more accurate ab initio calculations of the interaction energies.

  9. Development of polarizable models for molecular mechanical calculations. 4. van der Waals parametrization.

    PubMed

    Wang, Junmei; Cieplak, Piotr; Li, Jie; Cai, Qin; Hsieh, Meng-Juei; Luo, Ray; Duan, Yong

    2012-06-21

    In the previous publications of this series, we presented a set of Thole induced dipole interaction models using four types of screening functions. In this work, we document our effort to refine the van der Waals parameters for the Thole polarizable models. Following the philosophy of AMBER force field development, the van der Waals (vdW) parameters were tuned for the Thole model with linear screening function to reproduce both the ab initio interaction energies and the experimental densities of pure liquids. An in-house genetic algorithm was applied to maximize the fitness of "chromosomes" which is a function of the root-mean-square errors (RMSE) of interaction energy and liquid density. To efficiently explore the vdW parameter space, a novel approach was developed to estimate the liquid densities for a given vdW parameter set using the mean residue-residue interaction energies through interpolation/extrapolation. This approach allowed the costly molecular dynamics simulations be performed at the end of each optimization cycle only and eliminated the simulations during the cycle. Test results show notable improvements over the original AMBER FF99 vdW parameter set, as indicated by the reduction in errors of the calculated pure liquid densities (d), heats of vaporization (H(vap)), and hydration energies. The average percent error (APE) of the densities of 59 pure liquids was reduced from 5.33 to 2.97%; the RMSE of H(vap) was reduced from 1.98 to 1.38 kcal/mol; the RMSE of solvation free energies of 15 compounds was reduced from 1.56 to 1.38 kcal/mol. For the interaction energies of 1639 dimers, the overall performance of the optimized vdW set is slightly better than the original FF99 vdW set (RMSE of 1.56 versus 1.63 kcal/mol). The optimized vdW parameter set was also evaluated for the exponential screening function used in the Amoeba force field to assess its applicability for different types of screening functions. Encouragingly, comparable performance was

  10. Tuning electronic transport in epitaxial graphene-based van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Chuan; Li, Jun; de La Barrera, Sergio C.; Eichfeld, Sarah M.; Nie, Yifan; Addou, Rafik; Mende, Patrick C.; Wallace, Robert M.; Cho, Kyeongjae; Feenstra, Randall M.; Robinson, Joshua A.

    2016-04-01

    Two-dimensional tungsten diselenide (WSe2) has been used as a component in atomically thin photovoltaic devices, field effect transistors, and tunneling diodes in tandem with graphene. In some applications it is necessary to achieve efficient charge transport across the interface of layered WSe2-graphene, a semiconductor to semimetal junction with a van der Waals (vdW) gap. In such cases, band alignment engineering is required to ensure a low-resistance, ohmic contact. In this work, we investigate the impact of graphene electronic properties on the transport at the WSe2-graphene interface. Electrical transport measurements reveal a lower resistance between WSe2 and fully hydrogenated epitaxial graphene (EGFH) compared to WSe2 grown on partially hydrogenated epitaxial graphene (EGPH). Using low-energy electron microscopy and reflectivity on these samples, we extract the work function difference between the WSe2 and graphene and employ a charge transfer model to determine the WSe2 carrier density in both cases. The results indicate that WSe2-EGFH displays ohmic behavior at small biases due to a large hole density in the WSe2, whereas WSe2-EGPH forms a Schottky barrier junction.Two-dimensional tungsten diselenide (WSe2) has been used as a component in atomically thin photovoltaic devices, field effect transistors, and tunneling diodes in tandem with graphene. In some applications it is necessary to achieve efficient charge transport across the interface of layered WSe2-graphene, a semiconductor to semimetal junction with a van der Waals (vdW) gap. In such cases, band alignment engineering is required to ensure a low-resistance, ohmic contact. In this work, we investigate the impact of graphene electronic properties on the transport at the WSe2-graphene interface. Electrical transport measurements reveal a lower resistance between WSe2 and fully hydrogenated epitaxial graphene (EGFH) compared to WSe2 grown on partially hydrogenated epitaxial graphene (EGPH). Using low

  11. Bifurcational Mechanism of Multistability Formation and Frequency Entrainment in a van der Pol Oscillator with an Additional Oscillatory Circuit

    NASA Astrophysics Data System (ADS)

    Astakhov, Sergey; Astakhov, Oleg; Astakhov, Vladimir; Kurths, Jürgen

    2016-06-01

    In this paper, the bifurcational mechanism of frequency entrainment in a van der Pol oscillator coupled with an additional oscillatory circuit is studied. It is shown that bistability observed in the system is based on two bifurcations: a supercritical Andronov-Hopf bifurcation and a sub-critical Neimark-Sacker bifurcation. The attracting basin boundaries are determined by stable and unstable invariant manifolds of a saddle two-dimensional torus.

  12. Adaptive optics actuation by means of van der Waals forces: a novel nanotechnology strategy to steer light by light

    NASA Astrophysics Data System (ADS)

    Pinto, Fabrizio

    2008-11-01

    The feasibility to carry out the contactless actuation and control of both continuous facesheet deformable mirrors and MOEMS segmented micromirrors by manipulating van der Waals forces between electrically neutral surfaces is discussed. As we show, appropriately engineering such surface forces allows for adaptive optics strategies that are fully scalable down to the nanostructure level and that are intimately based on the optical properties of the materials involved. Since the magnitude of unretarded van der Waals forces diverges as the third power of the distance between the adaptive surface and the back-facing, actuating boundary, the novel approach proposed herein remains effective as the device size decreases even enabling one to address individual atoms. In some implementations, the actuation mechanism is driven by the dependence of van der Waals forces in semiconductors on illumination. Therefore the possibility exists, with adequate power levels, to design feed-back loops driven exclusively by light. A remarkable property of dispersion forces is their drastic behavior as a function of the topology of the interacting surfaces. This fact, at the frontier of contemporary numerical investigations, leads to the consideration of geometries in which dispersion forces are expected to change from attractive to repulsive. Finally, van der Waals forces exist between all neutral materials and contactless actuation can be achieved, for instance, even if the reflecting surface is not a conductor. This will open new multidimensional parameter space to the use of suitably designed classes of adaptive optics materials, including dielectrics, semiconductors, and multilayered structures, such as photonic-band-gap crystals.

  13. Influence of van der Waals forces on increasing the strength and toughness in dynamic fracture of nanofibre networks: a peridynamic approach

    NASA Astrophysics Data System (ADS)

    Bobaru, F.

    2007-07-01

    The peridynamic method is used here to analyse the effect of van der Waals forces on the mechanical behaviour and strength and toughness properties of three-dimensional nanofibre networks under imposed stretch deformation. The peridynamic formulation allows for a natural inclusion of long-range forces (such as van der Waals forces) by considering all interactions as 'long-range'. We use van der Waals interactions only between different fibres and do not need to model individual atoms. Fracture is introduced at the microstructural (peridynamic bond) level for the microelastic type bonds, while van der Waals bonds can reform at any time. We conduct statistical studies to determine a certain volume element for which the network of randomly oriented fibres becomes quasi-isotropic and insensitive to statistical variations. This qualitative study shows that the presence of van der Waals interactions and of heterogeneities (sacrificial bonds) in the strength of the bonds at the crosslinks between fibres can help in increasing the strength and toughness of the nanofibre network. Two main mechanisms appear to control the deformation of nanofibre networks: fibre reorientation (caused by deformation and breakage) and fibre accretion (due to van der Waals interaction). Similarities to the observed toughness of polymer adhesive in the abalone shell composition are explained. The author would like to dedicate this work to the 60th anniversary of Professor Subrata Mukherjee.

  14. Hybrid, Gate-Tunable, van der Waals p-n Heterojunctions from Pentacene and MoS2.

    PubMed

    Jariwala, Deep; Howell, Sarah L; Chen, Kan-Sheng; Kang, Junmo; Sangwan, Vinod K; Filippone, Stephen A; Turrisi, Riccardo; Marks, Tobin J; Lauhon, Lincoln J; Hersam, Mark C

    2016-01-13

    The recent emergence of a wide variety of two-dimensional (2D) materials has created new opportunities for device concepts and applications. In particular, the availability of semiconducting transition metal dichalcogenides, in addition to semimetallic graphene and insulating boron nitride, has enabled the fabrication of "all 2D" van der Waals heterostructure devices. Furthermore, the concept of van der Waals heterostructures has the potential to be significantly broadened beyond layered solids. For example, molecular and polymeric organic solids, whose surface atoms possess saturated bonds, are also known to interact via van der Waals forces and thus offer an alternative for scalable integration with 2D materials. Here, we demonstrate the integration of an organic small molecule p-type semiconductor, pentacene, with a 2D n-type semiconductor, MoS2. The resulting p-n heterojunction is gate-tunable and shows asymmetric control over the antiambipolar transfer characteristic. In addition, the pentacene/MoS2 heterojunction exhibits a photovoltaic effect attributable to type II band alignment, which suggests that MoS2 can function as an acceptor in hybrid solar cells. PMID:26651229

  15. The Relative Nature of Perception: A Response to Cañal-Bruland and van der Kamp (2015)

    PubMed Central

    2015-01-01

    Cañal-Bruland and van der Kamp present an argument about the incommensurate relationship between affordance perception and spatial perception in a criticism of Proffitt and Linkenauger’s phenotypic approach to perception. Many of their criticisms are based on a difference in the interpretation of the core ideas underlying the phenotypic approach. The most important of these differences in interpretations concern fundamental assumptions about the nature of the perceptions of size and distance themselves. Extent perception must be relative to the organism; therefore, there can be no veridical perception of space. Also, we argue in the phenotypic approach that space perception is an emergent property of affordance perception; they are not different types of perceptions as Cañal-Bruland and van der Kamp presume. Third, affordance perception need not be perfectly accurate, just good enough. Additionally, affordance perception need not be dichotomous; this presumption likely originates in the methodology typically employed to study affordance perception. Finally, I agree with Cañal-Bruland and van der Kamp that joint research efforts will clarify and improve our understanding of these issues. PMID:27648215

  16. Counterpoise correction is not useful for short and Van der Waals distances but may be useful at long range.

    PubMed

    Sheng, Xiao Wei; Mentel, Lukasz; Gritsenko, Oleg V; Baerends, Evert Jan

    2011-10-01

    This article investigates the errors in supermolecule calculations for the helium dimer. In a full CI calculation, there are two errors. One is the basis set superposition error (BSSE), the other is the basis set convergence error (BSCE). Both of the errors arise from the incompleteness of the basis set. These two errors make opposite contributions to the interaction energies. The BSCE is by far the largest error in the short range and larger than (but much closer to) BSSE around the Van der Waals minimum. Only at the long range, the BSSE becomes the larger error. The BSCE and BSSE largely cancel each other over the Van der Waals well. Accordingly, it may be recommended to not include the BSSE for the calculation of the potential energy curve from short distance till well beyond the Van der Waals minimum, but it may be recommended to include the BSSE correction if an accurate tail behavior is required. Only if the calculation has used a very large basis set, one can refrain from including the counterpoise correction in the full potential range. These results are based on full CI calculations with the aug-cc-pVXZ (X = D, T, Q, 5) basis sets.

  17. Calculations of van der Waals forces in 2-dimensionally anisotropic materials and its application to carbon black.

    PubMed

    Dagastine, Raymond R; Prieve, Dennis C; White, Lee R

    2002-05-01

    We present calculations of the van der Waals force for carbon black dispersions in both aqueous and nonaqueous media using Lifshitz theory. The microstructure and composition of carbon black are complex, but an initial approximation to the shell-like microstructure of carbon black allows the local interaction of carbon black particles to be approximated as oriented domains of graphite. The dielectric spectra for graphite, which has a 2-dimensional anisotropy due to its the layered microstructure, is required for the Lifshitz theory van der Waals force calculations. The anisotropic dielectric spectra of graphite (which behaves as a semiconductor) was constructed by modeling the conduction or free charge response separately from the polarization or bound charge response. The free charge response was modeled using the Drude model, while the dielectric spectra for the bound charge response was constructed from the spectroscopic data directly according to the Kramers-Kronig relation for the dielectric function, epsilon(omega). The expressions for calculating the fully retarded van der Waals force for half spaces with 2-dimensional dielectric anisotropy were derived as well as. The construction for the dielectric spectra of polystyrene from recent spectroscopic data from the literature according to the method outlined in (Dagastine, R. R., Prieve, D. C., and White, L. R., J. Colloid Interface Sci.231, 351 (2000)) is also presented.

  18. Energy-based analysis of frequency entrainment described by van der Pol and phase-locked loop equations

    NASA Astrophysics Data System (ADS)

    Susuki, Yoshihiko; Yokoi, Yuuichi; Hikihara, Takashi

    2007-06-01

    This paper analyzes frequency entrainment described by van der Pol and phase-locked loop (PLL) equations. The PLL equation represents the dynamics of a PLL circuit that appear in typical phase-locking phenomena. These two equations describe frequency entrainment by a periodic force. The entrainment originates from two different types of limit cycles: libration for the van der Pol equation and rotation for the PLL one. To explore the relationship between the geometry of limit cycles and the mechanism of entrainment, we investigate the entrainment using an energy balance relation. This relation is equivalent to the energy conservation law of dynamical systems with dissipation and input terms. We show response curves for the dc component, harmonic amplitude, phase difference, and energy supplied by a periodic force. The obtained curves indicate that the entrainments for the two equations have different features of supplied energy, and that the entrainment for the PLL equation possibly has the same mechanism as does the regulation of the phase difference for the van der Pol equation.

  19. The Relative Nature of Perception: A Response to Cañal-Bruland and van der Kamp (2015)

    PubMed Central

    2015-01-01

    Cañal-Bruland and van der Kamp present an argument about the incommensurate relationship between affordance perception and spatial perception in a criticism of Proffitt and Linkenauger’s phenotypic approach to perception. Many of their criticisms are based on a difference in the interpretation of the core ideas underlying the phenotypic approach. The most important of these differences in interpretations concern fundamental assumptions about the nature of the perceptions of size and distance themselves. Extent perception must be relative to the organism; therefore, there can be no veridical perception of space. Also, we argue in the phenotypic approach that space perception is an emergent property of affordance perception; they are not different types of perceptions as Cañal-Bruland and van der Kamp presume. Third, affordance perception need not be perfectly accurate, just good enough. Additionally, affordance perception need not be dichotomous; this presumption likely originates in the methodology typically employed to study affordance perception. Finally, I agree with Cañal-Bruland and van der Kamp that joint research efforts will clarify and improve our understanding of these issues.

  20. Hybrid, Gate-Tunable, van der Waals p-n Heterojunctions from Pentacene and MoS2

    NASA Astrophysics Data System (ADS)

    Jariwala, Deep; Howell, Sarah L.; Chen, Kan-Sheng; Kang, Junmo; Sangwan, Vinod K.; Filippone, Stephen A.; Turrisi, Riccardo; Marks, Tobin J.; Lauhon, Lincoln J.; Hersam, Mark C.

    2016-01-01

    The recent emergence of a wide variety of two-dimensional (2D) materials has created new opportunities for device concepts and applications. In particular, the availability of semiconducting transition metal dichalcogenides, in addition to semi-metallic graphene and insulating boron nitride, has enabled the fabrication of all 2D van der Waals heterostructure devices. Furthermore, the concept of van der Waals heterostructures has the potential to be significantly broadened beyond layered solids. For example, molecular and polymeric organic solids, whose surface atoms possess saturated bonds, are also known to interact via van der Waals forces and thus offer an alternative for scalable integration with 2D materials. Here, we demonstrate the integration of an organic small molecule p-type semiconductor, pentacene, with a 2D n-type semiconductor, MoS2. The resulting p-n heterojunction is gate-tunable and shows asymmetric control over the anti-ambipolar transfer characteristic. In addition, the pentacene-MoS2 heterojunction exhibits a photovoltaic effect attributable to type II band alignment, which suggests that MoS2 can function as an acceptor in hybrid solar cells.

  1. The Relative Nature of Perception: A Response to Cañal-Bruland and van der Kamp (2015).

    PubMed

    Linkenauger, Sally A

    2015-10-01

    Cañal-Bruland and van der Kamp present an argument about the incommensurate relationship between affordance perception and spatial perception in a criticism of Proffitt and Linkenauger's phenotypic approach to perception. Many of their criticisms are based on a difference in the interpretation of the core ideas underlying the phenotypic approach. The most important of these differences in interpretations concern fundamental assumptions about the nature of the perceptions of size and distance themselves. Extent perception must be relative to the organism; therefore, there can be no veridical perception of space. Also, we argue in the phenotypic approach that space perception is an emergent property of affordance perception; they are not different types of perceptions as Cañal-Bruland and van der Kamp presume. Third, affordance perception need not be perfectly accurate, just good enough. Additionally, affordance perception need not be dichotomous; this presumption likely originates in the methodology typically employed to study affordance perception. Finally, I agree with Cañal-Bruland and van der Kamp that joint research efforts will clarify and improve our understanding of these issues. PMID:27648215

  2. Microwave spectra and structure of the argon-cyclopentanone and neon-cyclopentanone van der Waals complexes.

    PubMed

    Lin, Wei; Brooks, Andrew H; Minei, Andrea J; Novick, Stewart E; Pringle, Wallace C

    2014-02-01

    The rotational spectra of cyclopentanone and its van der Waals complexes with argon and neon have been observed with a Balle-Flygare type pulsed jet Fourier transform microwave spectrometer in the 6 to 20 GHz region. This work improves the rotational constants and quartic centrifugal distortion constants for cyclopentanone and its five (13)C and the (18)O isotopologues. The argon-(12)C5H8(16)O van der Waals complex has rotational constants of A = 2611.6688, B = 1112.30298, and C = 971.31969 MHz. The (20)Ne-(12)C5H8(16)O complex has rotational constants of A = 2728.8120, B = 1736.5882, and C = 1440.4681 MHz. In addition, the five unique, singly substituted (13)C and (18)O isotopologues of the argon complex are reported. The five single-substituted (13)C of the (20)Ne complex and the (22)Ne-(12)C5H8(16)O complex are reported. The rare gases are in van der Waals contact with the carbonyl α carbon and nearly in contact with the hydrogen on β and γ carbons toward the back of the ring.

  3. Repulsive van der Waals forces enable Pickering emulsions with non-touching colloids.

    PubMed

    Elbers, Nina A; van der Hoeven, Jessi E S; de Winter, D A Matthijs; Schneijdenberg, Chris T W M; van der Linden, Marjolein N; Filion, Laura; van Blaaderen, Alfons

    2016-09-21

    Emulsions stabilized by solid particles, called Pickering emulsions, offer promising applications in drug delivery, cosmetics, food science and the manufacturing of porous materials. This potential stems from their high stability against coalescence and 'surfactant-free' nature. Generally, Pickering emulsions require that the solid particles are wetted by both phases and as a result, the adsorption free energy is often large with respect to the thermal energy (kBT). Here we provide the first experimental proof for an alternative scenario: non-touching (effectively non-wetting), charged, particles that are completely immersed in the oil phase through a balance of charge induced attractions and repulsions caused by van der Waals forces. These particles nonetheless stabilize the emulsion. The main advantage of this novel adsorption mechanism is that these particles can easily be detached from the interface simply by adding salt. This not only makes the finding fundamentally of interest, but also enables a triggered de-emulsification and particle recovery, which is useful in fields like enhanced oil recovery, heterogeneous catalysis, and emulsion polymerization. PMID:27406917

  4. Communication: Non-additivity of van der Waals interactions between nanostructures

    SciTech Connect

    Tao, Jianmin; Perdew, John P.

    2014-10-14

    Due to size-dependent non-additivity, the van der Waals interaction (vdW) between nanostructures remains elusive. Here we first develop a model dynamic multipole polarizability for an inhomogeneous system that allows for a cavity. The model recovers the exact zero- and high-frequency limits and respects the paradigms of condensed matter physics (slowly varying density) and quantum chemistry (one- and two-electron densities). We find that the model can generate accurate vdW coefficients for both spherical and non-spherical clusters, with an overall mean absolute relative error of 4%, without any fitting. Based on this model, we study the non-additivity of vdW interactions. We find that there is strong non-additivity of vdW interactions between nanostructures, arising from electron delocalization, inequivalent contributions of atoms, and non-additive many-body interactions. Furthermore, we find that the non-additivity can have increasing size dependence as well as decreasing size dependence with cluster size.

  5. Gold nanoparticle assemblies stabilized by bis(phthalocyaninato)lanthanide(III) complexes through van der Waals interactions

    PubMed Central

    Noda, Yuki; Noro, Shin-ichiro; Akutagawa, Tomoyuki; Nakamura, Takayoshi

    2014-01-01

    Gold nanoparticle assemblies possess diverse application potential, ranging from industrial nanotechnology to medical biotechnology. Because the structures and properties of assemblies are directly affected by the stabilization mechanism between the organic molecules serving as protecting ligands and the gold nanoparticle surface, it is crucial to find and investigate new stabilization mechanisms. Here, we report that π-conjugated phthalocyanine rings can serve as stabilizing ligands for gold nanoparticles. Bis(phthalocyaninato)lutetium(III) (LuPc2) or bis(phthalocyaninato)terbium(III) (TbPc2), even though complex, do not have specific binding units and stabilize gold nanoparticles through van der Waals interaction between parallel adsorbed phthalocyanine ligands and the gold nanoparticle surface. AC magnetic measurements and the electron-transport properties of the assemblies give direct evidence that the phthalocyanines are isolated from each other. Each nanoparticle shows weak electronic coupling despite the short internanoparticle distance (~1 nm), suggesting Efros–Shklovskii-type variable-range hopping and collective single-electron tunnelling behaviours. PMID:24441566

  6. Perturbation analysis of the limit cycle of the free van der Pol equation

    NASA Technical Reports Server (NTRS)

    Dadfar, M. B.; Geer, J.; Anderson, C. M.

    1983-01-01

    A power series expansion in the damping parameter, epsilon, of the limit cycle of the free van der Pol equation is constructed and analyzed. Coefficients in the expansion are computed in exact rational arithmetic using the symbolic manipulation system MACSYMA and using a FORTRAN program. The series is analyzed using Pade approximants. The convergence of the series for the maximum amplitude of the limit cycle is limited by two pair of complex conjugate singularities in the complex epsilon-plane. A new expansion parameter is introduced which maps these singularities to infinity and leads to a new expansion for the amplitude which converges for all real values of epsilon. Amplitudes computed from this transformed series agree very well with reported numerical and asymptotic results. For the limit cycle itself, convergence of the series expansion is limited by three pair of complex conjugate branch point singularities. Two pair remain fixed throughout the cycle, and correspond to the singularities found in the maximum amplitude series, while the third pair moves in the epsilon-plane as a function of t from one of the fixed pairs to the other. The limit cycle series is transformed using a new expansion parameter, which leads to a new series that converges for larger values of epsilon.

  7. Size effects in aerosol particle interactions: the van der Waals potential and collision rates

    SciTech Connect

    Marlow, W H

    1980-01-01

    Three effects which are explicitly dependent on aerosol particle size are identified and discussed. They are focussed about the particle collision rate and how it relates to the properties of the gas, the particle, and the particle's interaction potential energy which play roles in particle-particle collision rates. By incorporating the conduction electronic free path effect for conductors into the frequency-dependent dielectric constants of silver and graphite, particle size effects in the Lifshitz-van der Waals potentials for identical pairs of 1 nm and 100 nm particles are evaluated. Water and tetradecane particle interaction potentials for the same size particles are also calculated to illustrate size effects due to the retardation of the interaction. These potentials are then used to calculate the enhancement of the particle collision rates above their values in the absence of any potential at various gas pressures. The roles of the interaction potential in collision among identical pairs of particles of differing compositions is also briefly discussed.

  8. New species of Tanytarsus van der Wulp (Diptera: Chironomidae) from São Paulo State, Brazil.

    PubMed

    Sanseverino, Angela M; Trivinho-Strixino, Susana

    2010-01-01

    Tanytarsus lenyae sp. n., T. giovannii sp. n., T. fittkaui sp. n. and T. alfredoi sp. n. from São Paulo State (Brazil) are described and diagnosed, the first as adult male and pupa, and the remaining as male, pupa and larva. The species were collected in areas of Cerrado, at the boundaries of São Carlos city. Complete diagnoses and drawings of the species are given. The imagos can be separated from other species of Tanytarsus van der Wulp mainly by differences in the antennal ratio, dorsomedian extension of the eyes, the thorax and wing setation, the shape of anal tergal bands, the anal point armament and the shape of superior volsella, digitus and median volsella. The pupae are characterized by the thoracic horn armament, the arrangement of the precorneals, the shape of anal comb and the abdominal setation. The larvae can be separated by differences in the antennal pedestal, the sclerotization of the second antennal segment, the size of Lauterborn organ pedicels, the shape of the clypeal seta S3 and the sclerotization of the mentum. Apparently, the four new species are not closely related, and the anal point armament alone would be enough to separate one species from the other. PMID:20305901

  9. Unusual role of epilayer–substrate interactions in determining orientational relations in van der Waals epitaxy

    PubMed Central

    Liu, Lei; Siegel, David A.; Chen, Wei; Liu, Peizhi; Guo, Junjie; Duscher, Gerd; Zhao, Chong; Wang, Hao; Wang, Wenlong; Bai, Xuedong; McCarty, Kevin F.; Zhang, Zhenyu; Gu, Gong

    2014-01-01

    Using selected-area low-energy electron diffraction analysis, we showed strict orientational alignment of monolayer hexagonal boron nitride (h-BN) crystallites with Cu(100) surface lattices of Cu foil substrates during atmospheric pressure chemical vapor deposition. In sharp contrast, the graphene–Cu(100) system is well-known to assume a wide range of rotations despite graphene’s crystallographic similarity to h-BN. Our density functional theory calculations uncovered the origin of this surprising difference: The crystallite orientation is determined during nucleation by interactions between the cluster’s edges and the substrate. Unlike the weaker B– and N–Cu interactions, strong C–Cu interactions rearrange surface Cu atoms, resulting in the aligned geometry not being a distinct minimum in total energy. The discovery made in this specific case runs counter to the conventional wisdom that strong epilayer–substrate interactions enhance orientational alignment in epitaxy and sheds light on the factors that determine orientational relation in van der Waals epitaxy of 2D materials. PMID:25385622

  10. Van der Waals interactions based on maximally localized Wannier functions in ABINIT

    NASA Astrophysics Data System (ADS)

    Espejo, Camilo; Rangel, Tonatiuh; Pouillon, Yann; Romero, Aldo; Gonze, Xavier

    2012-02-01

    We review the recent implementationootnotetextC. Espejo et al. Computer Phys. Comm. In press (2011), doi:10.1016/j.cpc.2011.11.003 of the method to evaluate van der Waals (vdW) interactions based on maximally localized Wannier functionsootnotetextP. L. Silvestrelli. Phys. Rev. B., 100, 053002 (2008)^,ootnotetextP. L. Silvestrelli. J. Phys. Chem. A., 113, 5224 (2009) in the DFT software ABINITootnotetextX. Gonze et al. Computer Phys. Comm. 180, 2582 (2009). The implementation allows for the evaluation of vdW interaction energies for molecular and periodic systems on the same grounds and at a low additional computational cost as compared with a normal DFT calculation. Some results on test systems such as Ar2, benzene dimer and graphene bilayer show both its reliabilty and performance. Discussion of new defined variables controlling the calculation and guide lines for the user will be presented along with an application to MoS2 structure.

  11. Limiting temperature of pion gas with the van der Waals equation of state

    NASA Astrophysics Data System (ADS)

    Poberezhnyuk, R. V.; Vovchenko, V.; Anchishkin, D. V.; Gorenstein, M. I.

    2016-09-01

    The grand canonical ensemble formulation of the van der Waals equation of state that includes the effects of Bose statistics is applied to the equilibrium system of interacting pions. If the attractive interaction between pions is large enough, a limiting temperature T 0 emerges, i.e., no thermodynamical equilibrium is possible at T\\gt {T}0. The system pressure p, particle number density n, and energy density ε remain finite at T={T}0, whereas for T near T 0 both the specific heat C={{d}}\\varepsilon /{{d}}T and the scaled variance of particle number fluctuations ω [N] are proportional to {({T}0-T)}-1/2 and, thus, go to infinity at T\\to {T}0. The limiting temperature also corresponds to the softest point of the equation of state, i.e., the speed of sound squared {c}s2={{d}}p/{{d}}\\varepsilon goes to zero as {({T}0-T)}1/2. Very similar thermodynamical behavior takes place in the Hagedorn model for the special choice of a power, namely {m}-4, in the pre-exponential factor of the mass spectrum ρ (m).

  12. A van der Waals pn heterojunction with organic/inorganic semiconductors

    SciTech Connect

    He, Daowei; Yang, Ziyi; Wu, Bing; Xu, Bingchen; Zhang, Yuhan; Li, Yun; Shi, Yi E-mail: xrwang@nju.edu.cn; Wang, Xinran E-mail: xrwang@nju.edu.cn; Pan, Yiming; Wang, Baigeng; Nan, Haiyan; Luo, Xiaoguang; Ni, Zhenhua; Gu, Shuai; Zhu, Jia; Chai, Yang

    2015-11-02

    van der Waals (vdW) heterojunctions formed by two-dimensional (2D) materials have attracted tremendous attention due to their excellent electrical/optical properties and device applications. However, current 2D heterojunctions are largely limited to atomic crystals, and hybrid organic/inorganic structures are rarely explored. Here, we fabricate the hybrid 2D heterostructures with p-type dioctylbenzothienobenzothiophene (C{sub 8}-BTBT) and n-type MoS{sub 2}. We find that few-layer C{sub 8}-BTBT molecular crystals can be grown on monolayer MoS{sub 2} by vdW epitaxy, with pristine interface and controllable thickness down to monolayer. The operation of the C{sub 8}-BTBT/MoS{sub 2} vertical heterojunction devices is highly tunable by bias and gate voltages between three different regimes: interfacial recombination, tunneling, and blocking. The pn junction shows diode-like behavior with rectifying ratio up to 10{sup 5} at the room temperature. Our devices also exhibit photovoltaic responses with a power conversion efficiency of 0.31% and a photoresponsivity of 22 mA/W. With wide material combinations, such hybrid 2D structures will offer possibilities for opto-electronic devices that are not possible from individual constituents.

  13. van der Waals force-induced crack healing in dry rough interfaces

    NASA Astrophysics Data System (ADS)

    Soylemez, Emrecan; de Boer, Maarten P.

    2016-02-01

    Spontaneous crack healing due to van der Waals forces is an important phenomenon in diverse areas such as precision assembly, locomotion, soft robotics, and micro- and nanomachines. For rough surfaces that can be described as a collection of asperities, parallel plate models are used to gain insight into the adhesion values. A single adhesion value is then found for a given surface description. However, experiments reveal a range of values. Here, implementing a simple beam model to gain physical insight, we show that an important contribution to the range can be due to the placement of asperities relative to the crack tip. For example, tall asperities far from the crack tip resist crack healing if they contact the substrate, but promote healing if not in contact with it. Due to this effect, the beam model predicts a range of values that is significant compared with the observed experiment variation. Furthermore, as the crack approaches mechanical equilibrium, the resisting action tends to dominate over the healing action, and the beam model predicts a lower adhesion value than the parallel plate model. These effects will be greatest in the case where the elasticity (Tabor) parameter is small.

  14. Light-emitting diodes by band-structure engineering in van der Waals heterostructures.

    PubMed

    Withers, F; Del Pozo-Zamudio, O; Mishchenko, A; Rooney, A P; Gholinia, A; Watanabe, K; Taniguchi, T; Haigh, S J; Geim, A K; Tartakovskii, A I; Novoselov, K S

    2015-03-01

    The advent of graphene and related 2D materials has recently led to a new technology: heterostructures based on these atomically thin crystals. The paradigm proved itself extremely versatile and led to rapid demonstration of tunnelling diodes with negative differential resistance, tunnelling transistors, photovoltaic devices and so on. Here, we take the complexity and functionality of such van der Waals heterostructures to the next level by introducing quantum wells (QWs) engineered with one atomic plane precision. We describe light-emitting diodes (LEDs) made by stacking metallic graphene, insulating hexagonal boron nitride and various semiconducting monolayers into complex but carefully designed sequences. Our first devices already exhibit an extrinsic quantum efficiency of nearly 10% and the emission can be tuned over a wide range of frequencies by appropriately choosing and combining 2D semiconductors (monolayers of transition metal dichalcogenides). By preparing the heterostructures on elastic and transparent substrates, we show that they can also provide the basis for flexible and semi-transparent electronics. The range of functionalities for the demonstrated heterostructures is expected to grow further on increasing the number of available 2D crystals and improving their electronic quality.

  15. Principle of direct van der Waals epitaxy of single-crystalline films on epitaxial graphene.

    PubMed

    Kim, Jeehwan; Bayram, Can; Park, Hongsik; Cheng, Cheng-Wei; Dimitrakopoulos, Christos; Ott, John A; Reuter, Kathleen B; Bedell, Stephen W; Sadana, Devendra K

    2014-09-11

    There are numerous studies on the growth of planar films on sp(2)-bonded two-dimensional (2D) layered materials. However, it has been challenging to grow single-crystalline films on 2D materials due to the extremely low surface energy. Recently, buffer-assisted growth of crystalline films on 2D layered materials has been introduced, but the crystalline quality is not comparable with the films grown on sp(3)-bonded three-dimensional materials. Here we demonstrate direct van der Waals epitaxy of high-quality single-crystalline GaN films on epitaxial graphene with low defectivity and surface roughness comparable with that grown on conventional SiC or sapphire substrates. The GaN film is released and transferred onto arbitrary substrates. The post-released graphene/SiC substrate is reused for multiple growth and transfer cycles of GaN films. We demonstrate fully functional blue light-emitting diodes (LEDs) by growing LED stacks on reused graphene/SiC substrates followed by transfer onto plastic tapes.

  16. Vertical electron transport in van der Waals heterostructures with graphene layers

    NASA Astrophysics Data System (ADS)

    Ryzhii, V.; Otsuji, T.; Ryzhii, M.; Aleshkin, V. Ya.; Dubinov, A. A.; Mitin, V.; Shur, M. S.

    2015-04-01

    We propose and analyze an analytical model for the self-consistent description of the vertical electron transport in van der Waals graphene-layer (GL) heterostructures with the GLs separated by the barriers layers. The top and bottom GLs serve as the structure emitter and collector. The vertical electron transport in such structures is associated with the propagation of the electrons thermionically emitted from GLs above the inter-GL barriers. The model under consideration describes the processes of the electron thermionic emission from and the electron capture to GLs. It accounts for the nonuniformity of the self-consistent electric field governed by the Poisson equation which accounts for the variation of the electron population in GLs. The model takes also under consideration the cooling of electrons in the emitter layer due to the Peltier effect. We find the spatial distributions of the electric field and potential with the high-electric-field domain near the emitter GL in the GL heterostructures with different numbers of GLs. Using the obtained spatial distributions of the electric field, we calculate the current-voltage characteristics. We demonstrate that the Peltier cooling of the two-dimensional electron gas in the emitter GL can strongly affect the current-voltage characteristics resulting in their saturation. The obtained results can be important for the optimization of the hot-electron bolometric terahertz detectors and different devices based on GL heterostructures.

  17. Identification of a Van der Woude syndrome mutation in the cleft palate 1 mutant mouse.

    PubMed

    Stottmann, R W; Bjork, B C; Doyle, J B; Beier, D R

    2010-05-01

    Mutations in Interferon Regulatory Factor 6 (IRF6) have been identified in two human allelic syndromes with cleft lip and/or palate: Van der Woude (VWS) and Popliteal Pterygium syndromes (PPS). Furthermore, common IRF6 haplotypes and single nucleotide polymorphisms (SNP) alleles are strongly associated with nonsyndromic clefting defects in multiple ethnic populations. Mutations in the mouse often provide good models for the study of human diseases and developmental processes. We identified the cleft palate 1 (clft1) mouse mutant in a forward genetic screen for phenotypes modeling human congenital disease. In the clft1 mutant, we have identified a novel missense point mutation in the mouse Irf6 gene, which confers an amino acid alteration that has been found in a VWS family. Phenotypic comparison of clft1 mutants to previously reported Irf6 mutant alleles demonstrates the Irf6(clft1) allele is a hypomorphic allele. The cleft palate seen in these mutants appears to be due to abnormal adhesion between the palate and tongue. The Irf6(clft1) allele provides the first mouse model for the study of an etiologic IRF6 missense mutation observed in a human VWS family. PMID:20196077

  18. Identification of novel mutations of IRF6 gene in Chinese families with Van der Woude syndrome.

    PubMed

    Ye, Xiao-Qian; Jin, Hui-Xi; Shi, Li-Song; Fan, Ming-Wen; Song, Guang-Tai; Fan, Hua-Li; Bian, Zhuan

    2005-11-01

    Van der Woude syndrome (VWS) is an autosomal dominant disorder of syndromic clefts clinically characterized by lower lip pits, cleft lip and/or palate, hypodontia. Mutations in the IRF6 gene have recently been found to cause VWS and more than 70 mutations have been reported. However, genotype distribution and prevalence of IRF6 mutations underlying Chinese are largely unknown. In the present study, we report on four Chinese families with VWS. Considerably variable clinical phenotypes were observed between and within each family. By direct sequencing, three novel mutations (Y111H, S407fsX436, F165fsX166) as well as a recurrent mutation (R400W) were identified. In contrast to the IRF6 mutations reported in Caucasians, the majority of these mutations occurred at a run of 1- or 2-base repetitive sequence unit, and localized neither in the conserved DNA-binding domain nor in the Smad-interferon regulatory factor-binding domain (SMIR). Therefore, our results indicate the existence of other putative IRF6 regions that are predisposed to mutations. Repeated nucleotides in the IRF6 coding regions may increase the instability and chance of DNA replication errors, and are prone to be potential mutation hot-spots. PMID:16211254

  19. Dominant mutations in GRHL3 cause Van der Woude Syndrome and disrupt oral periderm development.

    PubMed

    Peyrard-Janvid, Myriam; Leslie, Elizabeth J; Kousa, Youssef A; Smith, Tiffany L; Dunnwald, Martine; Magnusson, Måns; Lentz, Brian A; Unneberg, Per; Fransson, Ingegerd; Koillinen, Hannele K; Rautio, Jorma; Pegelow, Marie; Karsten, Agneta; Basel-Vanagaite, Lina; Gordon, William; Andersen, Bogi; Svensson, Thomas; Murray, Jeffrey C; Cornell, Robert A; Kere, Juha; Schutte, Brian C

    2014-01-01

    Mutations in interferon regulatory factor 6 (IRF6) account for ∼70% of cases of Van der Woude syndrome (VWS), the most common syndromic form of cleft lip and palate. In 8 of 45 VWS-affected families lacking a mutation in IRF6, we found coding mutations in grainyhead-like 3 (GRHL3). According to a zebrafish-based assay, the disease-associated GRHL3 mutations abrogated periderm development and were consistent with a dominant-negative effect, in contrast to haploinsufficiency seen in most VWS cases caused by IRF6 mutations. In mouse, all embryos lacking Grhl3 exhibited abnormal oral periderm and 17% developed a cleft palate. Analysis of the oral phenotype of double heterozygote (Irf6(+/-);Grhl3(+/-)) murine embryos failed to detect epistasis between the two genes, suggesting that they function in separate but convergent pathways during palatogenesis. Taken together, our data demonstrated that mutations in two genes, IRF6 and GRHL3, can lead to nearly identical phenotypes of orofacial cleft. They supported the hypotheses that both genes are essential for the presence of a functional oral periderm and that failure of this process contributes to VWS. PMID:24360809

  20. A novel missense mutation in Van der Woude syndrome: usefulness of fingernail DNA for genetic analysis.

    PubMed

    Matsuzawa, N; Shimozato, K; Natsume, N; Niikawa, N; Yoshiura, K

    2006-12-01

    Van der Woude syndrome (VWS) is an autosomal-dominant oral facial disorder. To find a gene mutation in a Japanese family using fingernail DNA samples, we performed this study. We hypothesized that a gene mutation in IRF6 might be involved in VWS, and that fingernail DNA samples may be valuable for detecting such mutations. Linkage and haplotype analyses of the family mapped the disease locus to the 1q32-q41 region. Mutation analysis with an improved extraction method for fingernail DNA detected a novel missense mutation (1046A>T, E349V) in exon 7 of IRF6 in all the affected members of the family. Since the E349V change may disturb the hydrophobic core and affect regulatory activity of IRF6, it is most likely that the mutation is causative for VWS in this family. Fingernail DNA is thus useful for linkage and mutation analyses, since the fingernail can be easily obtained non-invasively, sent through the mail, and stored for a long period. We emphasize here the usefulness of fingernail DNA for the genetic analysis of a disease. PMID:17122170

  1. Epidemiology of Van der Woude syndrome from mutational analyses in affected patients from Pakistan.

    PubMed

    Malik, S; Kakar, N; Hasnain, S; Ahmad, J; Wilcox, E R; Naz, S

    2010-09-01

    Mutations in IRF6 cause Van der Woude syndrome (VWS), one of the most common syndromes associated with cleft lip (CL) with or without cleft palate (CP). The presence of pits on the lower lip of patients is the most characteristic feature of the syndrome. We have identified three novel and seven previously reported IRF6 mutations in 12 of 16 unrelated families segregating VWS from Pakistan. The three newly identified mutations include a frameshift (c.568delG) and two missense mutations c.295G>A (p.G99S) and c.1219T>C (p.S407P). Recent functional studies on IRF6 and the three-dimensional structure of IRF5 carboxy (C) terminus, a protein encoded by a paralog of IRF6, shed light on the p.S407P substitution. Additionally, the identification of the same mutations responsible for VWS in Pakistan, as reported in other global populations worldwide, marks these residues as mutational hotspots and indicates their essential role in structural stability or function of IRF6. This is the first study of VWS in Pakistan and we estimate that 1 in 100 patients with CL with or without CP (CL/P) are affected in the Pakistani population predominantly from the Punjab area. PMID:20184620

  2. Evolution of Moiré Profiles from van der Waals Superstructures of Boron Nitride Nanosheets.

    PubMed

    Liao, Yunlong; Cao, Wei; Connell, John W; Chen, Zhongfang; Lin, Yi

    2016-01-01

    Two-dimensional (2D) van der Waals (vdW) superstructures, or vdW solids, are formed by the precise restacking of 2D nanosheet lattices, which can lead to unique physical and electronic properties that are not available in the parent nanosheets. Moiré patterns formed by the crystalline mismatch between adjacent nanosheets are the most direct features for vdW superstructures under microscopic imaging. In this article, transmission electron microscopy (TEM) observation of hexagonal Moiré patterns with unusually large micrometer-sized lateral areas (up to ~1 μm(2)) and periodicities (up to ~50 nm) from restacking of liquid exfoliated hexagonal boron nitride nanosheets (BNNSs) is reported. This observation was attributed to the long range crystallinity and the contaminant-free surfaces of these chemically inert nanosheets. Parallel-line-like Moiré fringes with similarly large periodicities were also observed. The simulations and experiments unambiguously revealed that the hexagonal patterns and the parallel fringes originated from the same rotationally mismatched vdW stacking of BNNSs and can be inter-converted by simply tilting the TEM specimen following designated directions. This finding may pave the way for further structural decoding of other 2D vdW superstructure systems with more complex Moiré images. PMID:27188697

  3. Alternating-gradient focusing of the benzonitrile-argon van der Waals complex

    NASA Astrophysics Data System (ADS)

    Putzke, Stephan; Filsinger, Frank; Küpper, Jochen; Meijer, Gerard

    2012-09-01

    We report on the focusing and guiding of the van der Waals complex formed between benzonitrile molecules (C6H5CN) and argon atoms in a cold molecular beam using an ac electric quadrupole guide. The distribution of quantum states in the guided beam is non-thermal, because the transmission efficiency depends on the state-dependent effective dipole moment in the applied electric fields. At a specific ac frequency, however, the excitation spectrum can be described by a thermal distribution at a rotational temperature of 0.8 K. From the observed transmission characteristics and a combination of trajectory and Stark-energy calculations we conclude that the permanent electric dipole moment of benzonitrile remains unchanged upon the attachment of the argon atom to within ±5%. By exploiting the different dipole-moment-to-mass (µ/m) ratios of the complex and the benzonitrile monomer, transmission can be selectively suppressed for or, in the limit of 0 K rotational temperature, restricted to the complex.

  4. Tuning ultrafast electron thermalization pathways in a van der Waals heterostructure

    NASA Astrophysics Data System (ADS)

    Ma, Qiong; Andersen, Trond I.; Nair, Nityan L.; Gabor, Nathaniel M.; Massicotte, Mathieu; Lui, Chun Hung; Young, Andrea F.; Fang, Wenjing; Watanabe, Kenji; Taniguchi, Takashi; Kong, Jing; Gedik, Nuh; Koppens, Frank H. L.; Jarillo-Herrero, Pablo

    2016-05-01

    Ultrafast electron thermalization--the process leading to carrier multiplication via impact ionization, and hot-carrier luminescence--occurs when optically excited electrons in a material undergo rapid electron-electron scattering to redistribute excess energy and reach electronic thermal equilibrium. Owing to extremely short time and length scales, the measurement and manipulation of electron thermalization in nanoscale devices remains challenging even with the most advanced ultrafast laser techniques. Here, we overcome this challenge by leveraging the atomic thinness of two-dimensional van der Waals (vdW) materials to introduce a highly tunable electron transfer pathway that directly competes with electron thermalization. We realize this scheme in a graphene-boron nitride-graphene (G-BN-G) vdW heterostructure, through which optically excited carriers are transported from one graphene layer to the other. By applying an interlayer bias voltage or varying the excitation photon energy, interlayer carrier transport can be controlled to occur faster or slower than the intralayer scattering events, thus effectively tuning the electron thermalization pathways in graphene. Our findings, which demonstrate a means to probe and directly modulate electron energy transport in nanoscale materials, represent a step towards designing and implementing optoelectronic and energy-harvesting devices with tailored microscopic properties.

  5. Potential energy surface of the CO2-N2 van der Waals complex

    NASA Astrophysics Data System (ADS)

    Nasri, Sameh; Ajili, Yosra; Jaidane, Nejm-Eddine; Kalugina, Yulia N.; Halvick, Philippe; Stoecklin, Thierry; Hochlaf, Majdi

    2015-05-01

    Four-dimensional potential energy surface (4D-PES) of the atmospherically relevant CO2-N2 van der Waals complex is generated using the explicitly correlated coupled cluster with single, double, and perturbative triple excitation (CCSD(T)-F12) method in conjunction with the augmented correlation consistent triple zeta (aug-cc-pVTZ) basis set. This 4D-PES is mapped along the intermonomer coordinates. An analytic fit of this 4D-PES is performed. Our extensive computations confirm that the most stable form corresponds to a T-shape structure where the nitrogen molecule points towards the carbon atom of CO2. In addition, we located a second isomer and two transition states in the ground state PES of CO2-N2. All of them lay below the CO2 + N2 dissociation limit. This 4D-PES is flat and strongly anisotropic along the intermonomer coordinates. This results in the possibility of the occurrence of large amplitude motions within the complex, such as the inversion of N2, as suggested in the recent spectroscopic experiments. Finally, we show that the experimentally established deviations from the C2v structure at equilibrium for the most stable isomer are due to the zero-point out-of-plane vibration correction.

  6. Elastic behavior of Bi2Se3 2D nanosheets grown by van der Waals epitaxy

    NASA Astrophysics Data System (ADS)

    Yan, Haoming; Vajner, Cooper; Kuhlman, Michael; Guo, Lingling; Li, Lin; Araujo, Paulo T.; Wang, Hung-Ta

    2016-07-01

    Elastic properties of bismuth selenite (Bi2Se3) two-dimensional (2D) nanosheets were investigated using atomic force microscope (AFM) nanoindentations. Bi2Se3 2D nanosheets were synthesized by van der Waals epitaxy and subsequently transferred on SiO2/Si substrates containing pre-fabricated hole arrays. The suspension of 2D nanosheets was confirmed via the distinct optical contrast characteristics and AFM. In nanoindentations, the correlation between a point force load and the elastic response in the deformation depth was found being thickness-dependent, between 7 and 12 quintuple layers. The Young's modulus, E = 17.86-25.45 GPa (fitted value = 20.67 GPa), and the pretension, T = 0.0218-0.0417 N/m, acquired according to the bending plate regime are consistent with ones from the stretching membrane regime. Furthermore, these Bi2Se3 2D nanosheets could elastically endure a 4.0%-8.3% strain before being ruptured with AFM tips. Compliant and robust elastic properties of Bi2Se3 2D nanosheets, as observed, provide a feasible way for exploring the topological phase transition.

  7. Finite-size effects and nonadditivity in the van der Waals interaction

    SciTech Connect

    Melo e Souza, Reinaldo de; Kort-Kamp, W. J. M.; Sigaud, C.; Farina, C.

    2011-11-15

    We obtain analytically the exact nonretarded dispersive interaction energy between an atom and a perfectly conducting disk. We consider the atom in the symmetry axis of the disk and assume that the atom is predominantly polarizable in the direction of this axis. For this situation we discuss the finite-size effects on the corresponding interaction energy. We follow the recent procedure introduced by Eberlein and Zietal together with the old and powerful Sommerfeld's image method for nontrivial geometries. For the sake of clarity we present a detailed discussion of Sommerfeld's image method. Comparing our results for the atom-disk system with those recently obtained for an atom near a conducting plane with a circular aperture, we discuss the nonadditivity of the van der Waals interactions involving an atom and two complementary surfaces. We show that there is a given ratio z/a between the distance z from the atom to the center of the disk (aperture) and the radius of the disk a (aperture) for which nonadditivity effects vanish. Qualitative arguments suggest that this quite unexpected result will occur not only for a circular hole, but for any other symmetric hole.

  8. Gold nanoparticle assemblies stabilized by bis(phthalocyaninato)lanthanide(III) complexes through van der Waals interactions

    NASA Astrophysics Data System (ADS)

    Noda, Yuki; Noro, Shin-Ichiro; Akutagawa, Tomoyuki; Nakamura, Takayoshi

    2014-01-01

    Gold nanoparticle assemblies possess diverse application potential, ranging from industrial nanotechnology to medical biotechnology. Because the structures and properties of assemblies are directly affected by the stabilization mechanism between the organic molecules serving as protecting ligands and the gold nanoparticle surface, it is crucial to find and investigate new stabilization mechanisms. Here, we report that π-conjugated phthalocyanine rings can serve as stabilizing ligands for gold nanoparticles. Bis(phthalocyaninato)lutetium(III) (LuPc2) or bis(phthalocyaninato)terbium(III) (TbPc2), even though complex, do not have specific binding units and stabilize gold nanoparticles through van der Waals interaction between parallel adsorbed phthalocyanine ligands and the gold nanoparticle surface. AC magnetic measurements and the electron-transport properties of the assemblies give direct evidence that the phthalocyanines are isolated from each other. Each nanoparticle shows weak electronic coupling despite the short internanoparticle distance (~1 nm), suggesting Efros-Shklovskii-type variable-range hopping and collective single-electron tunnelling behaviours.

  9. Effect of van der Waals corrections on DFT-computed metallic surface properties

    NASA Astrophysics Data System (ADS)

    Chiter, Fatah; Bac Nguyen, Van; Tarrat, Nathalie; Benoit, Magali; Tang, Hao; Lacaze-Dufaure, Corinne

    2016-04-01

    State-of-the-art van der Waals (vdW) corrected density functional theory (DFT) is routinely used to overcome the failure of standard DFT in the description of molecule/surface long range interactions. However, the systematic use of dispersion forces to model metallic surfaces could lead to less accurate results than the standard DFT and the effect of these corrections on the metal properties should be properly evaluated. In this framework, the behavior of two widely used vdW corrected DFT methods (DFT-D2 and vdW-DF/optB86b) has been evaluated on six metals, i.e. Al, Cu, Au, Ni, Co and Fe, with respect to standard GGA-DFT and experiments. Regarding bulk properties, general trends are found for the lattice parameter, cohesive energy and magnetic moment variations when the vdW correction is introduced. Surface energies, work functions and interlayer distances of closed packed surfaces, Al(111), Cu(111), Au(111) and magnetic Ni(111), Co(0001) and Fe(110), are also strongly affected by the dispersion forces. These modifications suggest a systematic verification of the surface properties when a dispersion correction is included.

  10. A van der Waals density functional theory comparison of metal decorated graphene systems for hydrogen adsorption

    NASA Astrophysics Data System (ADS)

    Wong, Janet; Yadav, Shwetank; Tam, Jasmine; Veer Singh, Chandra

    2014-06-01

    Previous Density Functional Theory (DFT) studies on metal decorated graphene generally use local density approximation (LDA) or generalized gradient approximation (GGA) functionals which can cause inaccuracies in hydrogen binding energies as they neglect van der Waals (vdW) interactions and are difficult to compare due to their widely varying simulation parameters. We investigated the hydrogen binding ability of several metals with a consistent set of simulations using the GGA functional and incorporated vdW forces through the vdW-DF2 functional. Metal adatom anchoring on graphene and hydrogen adsorption ability for both single and double sided decoration were studied for eight metals (Al, Li, Na, Ca, Cu, Ni, Pd, and Pt). It was found that the vdW correction can have a significant impact on both metal and hydrogen binding energies. The vdW-DF2 functional led to stronger metal adatom and hydrogen binding for light metals in comparison to GGA results, while heavier transition metals displayed the opposite behaviour but still produced stronger hydrogen binding energies than light metals. Nickel was found to be the best balance between hydrogen binding ability for reversible storage and low weight. The effects on hydrogen binding energy and maximum achievable hydrogen gravimetric density were analyzed for Ni-graphene systems with varying metal coverage. Lower metal coverage was found to improve hydrogen binding but decrease hydrogen gravimetric density. The highest achieved Ni-graphene system gravimetric density was 6.12 wt. %.

  11. Evolution of Moiré Profiles from van der Waals Superstructures of Boron Nitride Nanosheets.

    PubMed

    Liao, Yunlong; Cao, Wei; Connell, John W; Chen, Zhongfang; Lin, Yi

    2016-01-01

    Two-dimensional (2D) van der Waals (vdW) superstructures, or vdW solids, are formed by the precise restacking of 2D nanosheet lattices, which can lead to unique physical and electronic properties that are not available in the parent nanosheets. Moiré patterns formed by the crystalline mismatch between adjacent nanosheets are the most direct features for vdW superstructures under microscopic imaging. In this article, transmission electron microscopy (TEM) observation of hexagonal Moiré patterns with unusually large micrometer-sized lateral areas (up to ~1 μm(2)) and periodicities (up to ~50 nm) from restacking of liquid exfoliated hexagonal boron nitride nanosheets (BNNSs) is reported. This observation was attributed to the long range crystallinity and the contaminant-free surfaces of these chemically inert nanosheets. Parallel-line-like Moiré fringes with similarly large periodicities were also observed. The simulations and experiments unambiguously revealed that the hexagonal patterns and the parallel fringes originated from the same rotationally mismatched vdW stacking of BNNSs and can be inter-converted by simply tilting the TEM specimen following designated directions. This finding may pave the way for further structural decoding of other 2D vdW superstructure systems with more complex Moiré images.

  12. Transformation of the Strongly Hydrogen Bonded System into van der Waals one Reflected in Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Kamiński, K.; Kamińska, E.; Grzybowska, K.; Włodarczyk, P.; Pawlus, S.; Paluch, M.; Zioło, J.; Rzoska, S. J.; Pilch, J.; Kasprzycka, A.; Szeja, W.

    Dielectric relaxation studies on disaccharides lactose and octa-O-acetyl-lactose are reported. The latter is a hydrogen bonded system while the former is a van der Waals glass former. The transformation between them was arranged by substituting hydrogen atoms in lactose by acetyl groups. Hereby the influence of differences in bounding on dynamics of both systems is discussed. We showed that the faster secondary relaxation (labeled γ) in octa-O-acetyl-lactose has much lower amplitude than that of lactose. The relaxation time and activation energy remain unchanged in comparison to the γ- relaxation of lactose. We did not observe the slow secondary relaxation (labeled β), clearly visible in lactose, in its acethyl derivative. Detailed analysis of the dielectric spectra measured for octa-O-acetyl-lactose in its glassy state (not standard change in the shape of the γ- peak with lowering temperature) enabled us to provide probable explanation of our finding. No credible comparative analysis of the α- relaxation process of the lactose and octa-O-acetyl-lactose are presented, because loss spectra of the former carbohydrate were affected by the huge contribution of the dc conductivity. Notwithstanding, one can expect that octa-O-acetyl-lactose has lower glass transition temperature and steepness index than lactose.

  13. Non-additivity of molecule-surface van der Waals potentials from force measurements

    PubMed Central

    Wagner, Christian; Fournier, Norman; Ruiz, Victor G.; Li, Chen; Müllen, Klaus; Rohlfing, Michael; Tkatchenko, Alexandre; Temirov, Ruslan; Tautz, F. Stefan

    2014-01-01

    Van der Waals (vdW) forces act ubiquitously in condensed matter. Despite being weak on an atomic level, they substantially influence molecular and biological systems due to their long range and system-size scaling. The difficulty to isolate and measure vdW forces on a single-molecule level causes our present understanding to be strongly theory based. Here we show measurements of the attractive potential between differently sized organic molecules and a metal surface using an atomic force microscope. Our choice of molecules and the large molecule-surface separation cause this attraction to be purely of vdW type. The experiment allows testing the asymptotic vdW force law and its validity range. We find a superlinear growth of the vdW attraction with molecular size, originating from the increased deconfinement of electrons in the molecules. Because such non-additive vdW contributions are not accounted for in most first-principles or empirical calculations, we suggest further development in that direction. PMID:25424490

  14. Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides

    PubMed Central

    Fang, Hui; Battaglia, Corsin; Carraro, Carlo; Nemsak, Slavomir; Ozdol, Burak; Kang, Jeong Seuk; Bechtel, Hans A.; Desai, Sujay B.; Kronast, Florian; Unal, Ahmet A.; Conti, Giuseppina; Conlon, Catherine; Palsson, Gunnar K.; Martin, Michael C.; Minor, Andrew M.; Fadley, Charles S.; Yablonovitch, Eli; Maboudian, Roya; Javey, Ali

    2014-01-01

    Semiconductor heterostructures are the fundamental platform for many important device applications such as lasers, light-emitting diodes, solar cells, and high-electron-mobility transistors. Analogous to traditional heterostructures, layered transition metal dichalcogenide heterostructures can be designed and built by assembling individual single layers into functional multilayer structures, but in principle with atomically sharp interfaces, no interdiffusion of atoms, digitally controlled layered components, and no lattice parameter constraints. Nonetheless, the optoelectronic behavior of this new type of van der Waals (vdW) semiconductor heterostructure is unknown at the single-layer limit. Specifically, it is experimentally unknown whether the optical transitions will be spatially direct or indirect in such hetero-bilayers. Here, we investigate artificial semiconductor heterostructures built from single-layer WSe2 and MoS2. We observe a large Stokes-like shift of ∼100 meV between the photoluminescence peak and the lowest absorption peak that is consistent with a type II band alignment having spatially direct absorption but spatially indirect emission. Notably, the photoluminescence intensity of this spatially indirect transition is strong, suggesting strong interlayer coupling of charge carriers. This coupling at the hetero-interface can be readily tuned by inserting dielectric layers into the vdW gap, consisting of hexagonal BN. Consequently, the generic nature of this interlayer coupling provides a new degree of freedom in band engineering and is expected to yield a new family of semiconductor heterostructures having tunable optoelectronic properties with customized composite layers. PMID:24733906

  15. Vertical electron transport in van der Waals heterostructures with graphene layers

    SciTech Connect

    Ryzhii, V.; Otsuji, T.; Ryzhii, M.; Aleshkin, V. Ya.; Dubinov, A. A.; Mitin, V.; Shur, M. S.

    2015-04-21

    We propose and analyze an analytical model for the self-consistent description of the vertical electron transport in van der Waals graphene-layer (GL) heterostructures with the GLs separated by the barriers layers. The top and bottom GLs serve as the structure emitter and collector. The vertical electron transport in such structures is associated with the propagation of the electrons thermionically emitted from GLs above the inter-GL barriers. The model under consideration describes the processes of the electron thermionic emission from and the electron capture to GLs. It accounts for the nonuniformity of the self-consistent electric field governed by the Poisson equation which accounts for the variation of the electron population in GLs. The model takes also under consideration the cooling of electrons in the emitter layer due to the Peltier effect. We find the spatial distributions of the electric field and potential with the high-electric-field domain near the emitter GL in the GL heterostructures with different numbers of GLs. Using the obtained spatial distributions of the electric field, we calculate the current-voltage characteristics. We demonstrate that the Peltier cooling of the two-dimensional electron gas in the emitter GL can strongly affect the current-voltage characteristics resulting in their saturation. The obtained results can be important for the optimization of the hot-electron bolometric terahertz detectors and different devices based on GL heterostructures.

  16. A van der Waals density functional theory study of poly(vinylidene difluoride) crystalline phases

    NASA Astrophysics Data System (ADS)

    Pelizza, F.; Smith, B. R.; Johnston, K.

    2016-07-01

    Ferroelectric polymers, such as poly(vinylidene difluoride) (PVDF), have many potential applications in flexible electronic devices. PVDF has six experimentally observed polymorphs, three of which are ferroelectric. In this work we use density functional theory to investigate the structural properties, energetics and polarisation of the stable α-phase, its ferroelectric analogue, the δ-phase, and the β-phase, which has the best ferroelectric properties. The results from a variety of exchange and correlation functionals were compared and it was found that van der Waals (vdW) interactions have an important effect on the calculated crystal structures and energetics, with the vdW-DF functional giving the best agreement with experimental lattice parameters. The spontaneous polarisation was found to strongly correlate with the unit cell volumes, which depend on the functional used. While the relative phase energies were not strongly dependent on the functional, the cohesive energies were significantly underestimated using the PBE functional. The inclusion of vdW interactions is, therefore, important to obtain the correct lattice structures, polarisation and energetics of PVDF polymorphs.

  17. On the van der Pauw's method applied to the measurement of low thermal conductivity materials.

    PubMed

    Morales, C; Flores, E; Bodega, J; Leardini, F; Ferrer, I J; Ares, J R; Sánchez, C

    2016-08-01

    The electrical van der Pauw's method has recently been extended to measure the thermal conductivity of different elements and compounds. This technique provides an easy way to determine the sample in-plane thermal conductivity by avoiding the influence of the thermal contact resistances. However, the reported calculated error values appear to be underestimated when dealing with the materials with low thermal conductivity (<5 W/Km) at room temperature. The causes of this underestimation are investigated in this communication and it has been found that they are due to the drastic influence of conduction heat losses through the thermo-resistance wires as well as the resulting modification of the sample temperature map. Both phenomena lead to experimental values of the sample thermal conductivity, which are systematically higher than the tabulated ones. The magnitude of this systematic error is ∼100% dealing with the samples of macroscopic dimensions, and low thermal conductivity indicated that the obtained accurate measurements can be quite challenging. PMID:27587145

  18. How van der Waals interactions determine the unique properties of water.

    PubMed

    Morawietz, Tobias; Singraber, Andreas; Dellago, Christoph; Behler, Jörg

    2016-07-26

    Whereas the interactions between water molecules are dominated by strongly directional hydrogen bonds (HBs), it was recently proposed that relatively weak, isotropic van der Waals (vdW) forces are essential for understanding the properties of liquid water and ice. This insight was derived from ab initio computer simulations, which provide an unbiased description of water at the atomic level and yield information on the underlying molecular forces. However, the high computational cost of such simulations prevents the systematic investigation of the influence of vdW forces on the thermodynamic anomalies of water. Here, we develop efficient ab initio-quality neural network potentials and use them to demonstrate that vdW interactions are crucial for the formation of water's density maximum and its negative volume of melting. Both phenomena can be explained by the flexibility of the HB network, which is the result of a delicate balance of weak vdW forces, causing, e.g., a pronounced expansion of the second solvation shell upon cooling that induces the density maximum. PMID:27402761

  19. Comment on `Banana-doughnut kernels and mantle tomography' by van der Hilst and de Hoop

    NASA Astrophysics Data System (ADS)

    Montelli, R.; Nolet, G.; Dahlen, F. A.

    2006-12-01

    E debbasi considerare come non è cosa più difficile a trattare, né più dubbia a riuscire, nè più pericolosa a maneggiare, che farsi capo ad introdurre nuovi ordini. Perché lo introduttore ha per nimici tutti quelli che delli ordini vecchi fanno bene, et ha tepidi defensori tutti quelli che delli ordini nuovi farebbono bene.† Machiavelli, Il Principe The claim by van der Hilst and de Hoop that finite-frequency (FF) inversion of seismic traveltimes does not result in measurable improvements in tomographic images is misguided, and based upon a biased selection of images in the upper mantle, where wave front healing effects are indeed small, and where our models are generally poorly resolved because we primarily used teleseismic waves that travel steeply in the upper mantle; and upon an improper application of statistics to the better-resolved anomalies in the lower mantle. If station corrections for long-period P waves are computed using ray theory, as we do, unmodelled FF effects may be responsible for slow anomalies of up to 0.3 per cent beneath very small island stations, but these effects are negligible for larger islands such as Reunion and Kerguelen. The presence of a plume beneath these islands is the most probable explanation for the observed low velocities.

  20. Non-additivity of molecule-surface van der Waals potentials from force measurements.

    PubMed

    Wagner, Christian; Fournier, Norman; Ruiz, Victor G; Li, Chen; Müllen, Klaus; Rohlfing, Michael; Tkatchenko, Alexandre; Temirov, Ruslan; Tautz, F Stefan

    2014-11-26

    Van der Waals (vdW) forces act ubiquitously in condensed matter. Despite being weak on an atomic level, they substantially influence molecular and biological systems due to their long range and system-size scaling. The difficulty to isolate and measure vdW forces on a single-molecule level causes our present understanding to be strongly theory based. Here we show measurements of the attractive potential between differently sized organic molecules and a metal surface using an atomic force microscope. Our choice of molecules and the large molecule-surface separation cause this attraction to be purely of vdW type. The experiment allows testing the asymptotic vdW force law and its validity range. We find a superlinear growth of the vdW attraction with molecular size, originating from the increased deconfinement of electrons in the molecules. Because such non-additive vdW contributions are not accounted for in most first-principles or empirical calculations, we suggest further development in that direction.

  1. FDE-vdW: A van der Waals inclusive subsystem density-functional theory

    SciTech Connect

    Kevorkyants, Ruslan; Pavanello, Michele; Eshuis, Henk

    2014-07-28

    We present a formally exact van der Waals inclusive electronic structure theory, called FDE-vdW, based on the Frozen Density Embedding formulation of subsystem Density-Functional Theory. In subsystem DFT, the energy functional is composed of subsystem additive and non-additive terms. We show that an appropriate definition of the long-range correlation energy is given by the value of the non-additive correlation functional. This functional is evaluated using the fluctuation–dissipation theorem aided by a formally exact decomposition of the response functions into subsystem contributions. FDE-vdW is derived in detail and several approximate schemes are proposed, which lead to practical implementations of the method. We show that FDE-vdW is Casimir-Polder consistent, i.e., it reduces to the generalized Casimir-Polder formula for asymptotic inter-subsystems separations. Pilot calculations of binding energies of 13 weakly bound complexes singled out from the S22 set show a dramatic improvement upon semilocal subsystem DFT, provided that an appropriate exchange functional is employed. The convergence of FDE-vdW with basis set size is discussed, as well as its dependence on the choice of associated density functional approximant.

  2. Principle of direct van der Waals epitaxy of single-crystalline films on epitaxial graphene

    NASA Astrophysics Data System (ADS)

    Kim, Jeehwan; Bayram, Can; Park, Hongsik; Cheng, Cheng-Wei; Dimitrakopoulos, Christos; Ott, John A.; Reuter, Kathleen B.; Bedell, Stephen W.; Sadana, Devendra K.

    2014-09-01

    There are numerous studies on the growth of planar films on sp2-bonded two-dimensional (2D) layered materials. However, it has been challenging to grow single-crystalline films on 2D materials due to the extremely low surface energy. Recently, buffer-assisted growth of crystalline films on 2D layered materials has been introduced, but the crystalline quality is not comparable with the films grown on sp3-bonded three-dimensional materials. Here we demonstrate direct van der Waals epitaxy of high-quality single-crystalline GaN films on epitaxial graphene with low defectivity and surface roughness comparable with that grown on conventional SiC or sapphire substrates. The GaN film is released and transferred onto arbitrary substrates. The post-released graphene/SiC substrate is reused for multiple growth and transfer cycles of GaN films. We demonstrate fully functional blue light-emitting diodes (LEDs) by growing LED stacks on reused graphene/SiC substrates followed by transfer onto plastic tapes.

  3. van der Waals interaction between an atom and a spherical plasma shell

    SciTech Connect

    Khusnutdinov, Nail R.

    2011-03-15

    The van der Waals interaction energy of an atom with an infinitely thin sphere with finite conductivity is investigated in the framework of the hydrodynamic approach. Thin sphere models the fullerene. We put the sphere into a spherical cavity inside the infinite dielectric media then calculate the energy of vacuum fluctuations in the context of the {zeta}-function approach. The interaction energy for a single atom is obtained from this expression in the limit of the rare media. The Casimir-Polder expression for an atom and plate is recovered in the limit of the infinite radius of the sphere. Assuming a finite radius of the sphere, the interaction energy of an atom falls down to a third power of distance between the atom and sphere for short distances and to a seventh power for large distances from the sphere. Numerically the interaction energy is 3.8 eV for the hydrogen atom placed on the surface of the sphere with parameters of fullerene C{sub 60}. We also show that the polarizability of fullerene is merely a cube of its radius.

  4. Free-standing electronic character of monolayer MoS2 in van der Waals epitaxy

    NASA Astrophysics Data System (ADS)

    Kim, HoKwon; Dumcenco, Dumitru; Frégnaux, Mathieu; Benayad, Anass; Chen, Ming-Wei; Kung, Yen-Cheng; Kis, Andras; Renault, Olivier

    2016-08-01

    We have evaluated as-grown Mo S2 crystals, epitaxially grown on a monocrystalline sapphire by chemical vapor deposition (CVD), with direct electronic band-structure measurements by energy-filtered k -space photoelectron emission microscopy performed with a conventional laboratory vacuum ultraviolet He I light source under off-normal illumination. The valence states of the epitaxial Mo S2 were mapped in momentum space down to 7 eV below the Fermi level. Despite the high nucleation density within the imaged area, the CVD Mo S2 possesses an electronic structure similar to the free-standing monolayer Mo S2 single crystal, and it exhibits hole effective masses of 2.41 ±0.05 m0 , and 0.81 ±0.05 m0 , respectively, at Γ and K high-symmetry points that are consistent with the van der Waals epitaxial growth mechanism. This demonstrates the excellent ability of the Mo S2 CVD on sapphire to yield a highly aligned growth of well-stitched grains through epitaxial registry with a strongly preferred crystallographic orientation.

  5. The role of van der Waals interactions in the adsorption of noble gases on metal surfaces

    SciTech Connect

    Chen, De-Li; Al-Saidi, W A; Johnson, J Karl

    2012-10-03

    Adsorption of noble gases on metal surfaces is determined by weak interactions. We applied two versions of the nonlocal van der Waals density functional (vdW-DF) to compute adsorption energies of Ar, Kr, and Xe on Pt(111), Pd(111), Cu(111), and Cu(110) metal surfaces. We have compared our results with data obtained using other density functional approaches, including the semiempirical vdW corrected DFT-D2. The vdW-DF results show considerable improvements in the description of adsorption energies and equilibrium distances over other DFTbased methods, giving good agreement with experiments. We have also calculated perpendicular vibrational energies for noble gases on the metal surfaces using vdWDF data and found excellent agreement with available experimental results. Our vdW-DF calculations show that adsorption of noble gases on low-coordination sites is energetically favored over high-coordination sites, but only by a few meV. Analysis of the 2-dimensional potential energy surface shows that the high-coordination sites are local maxima on the 2-dimensional potential energy surface and therefore unlikely to be observed in experiments, which provides an explanation of the experimental observations. The DFT-D2 approach with the standard parameterization was found to overestimate the dispersion interactions, and to give the wrong adsorption site preference for four of the nine systems we studied.

  6. Evolution of Moiré Profiles from van der Waals Superstructures of Boron Nitride Nanosheets

    PubMed Central

    Liao, Yunlong; Cao, Wei; Connell, John W.; Chen, Zhongfang; Lin, Yi

    2016-01-01

    Two-dimensional (2D) van der Waals (vdW) superstructures, or vdW solids, are formed by the precise restacking of 2D nanosheet lattices, which can lead to unique physical and electronic properties that are not available in the parent nanosheets. Moiré patterns formed by the crystalline mismatch between adjacent nanosheets are the most direct features for vdW superstructures under microscopic imaging. In this article, transmission electron microscopy (TEM) observation of hexagonal Moiré patterns with unusually large micrometer-sized lateral areas (up to ~1 μm2) and periodicities (up to ~50 nm) from restacking of liquid exfoliated hexagonal boron nitride nanosheets (BNNSs) is reported. This observation was attributed to the long range crystallinity and the contaminant-free surfaces of these chemically inert nanosheets. Parallel-line-like Moiré fringes with similarly large periodicities were also observed. The simulations and experiments unambiguously revealed that the hexagonal patterns and the parallel fringes originated from the same rotationally mismatched vdW stacking of BNNSs and can be inter-converted by simply tilting the TEM specimen following designated directions. This finding may pave the way for further structural decoding of other 2D vdW superstructure systems with more complex Moiré images. PMID:27188697

  7. Ab initio study of the Br(2P)-HBr van der Waals complex.

    PubMed

    Toboła, R; Chałasiński, G; Kłos, J; Szcześniak, M M

    2009-05-14

    This study reports an ab initio characterization of a prereactive van der Waals complex between an open-shell atom Br((2)P) and a closed shell molecule HBr. The three adiabatic potential surfaces 1 (2)A('), 2 (2)A('), and 1 (2)A("), which result from the splitting of degenerate P state of Br are obtained from coupled cluster calculations. The coupling between same-symmetry states is calculated by multireference configuration-interaction method. A transformation to a diabatic representation and inclusion of the spin-orbit coupling effects on the interactions are also discussed. Bound states are calculated using an adiabatic bender model. The global minimum on the lowest adiabatic potential surface corresponds to a T-shaped geometry and has a well depth of D(e)=762.5 cm(-1) at R(e)=3.22 A. A secondary minimum occurs for a hydrogen-bonded geometry with D(e)=445.3 cm(-1) at R(e)=4.24 A. Upon inclusion of spin-orbit coupling the hydrogen-bonded minimum remains at the same depth, but the T-shaped minimum washes out to less than half of its spin-free value. The lowest bound state is localized in the linear minimum. The spin-orbit coupling plays a very important role in shaping of the potential energy surfaces of Br-HBr.

  8. Ab initio investigation of the NH(X)-N2 van der Waals complex.

    PubMed

    Fawzy, Wafaa M; Heaven, Michael C

    2007-04-21

    The NH-N(2) van der Waals complex has been examined at the CCSD(T) level of theory using aug-cc-pVDZ and aug-cc-pVTZ basis sets. The full basis set superposition error correction was applied. Two minimum energy structures were located for the electronic ground state. The global minimum corresponds to a linear geometry of the complex (NH-N-N), with D(e)=236 cm(-1) and R(c.m.)=4.22 A. The secondary minimum corresponds to a T-shaped geometry of C(2v) symmetry, where the nitrogen atom of the H-N moiety points toward the center of mass of the N(2) unit, aligned with the a-inertial axis of the complex. The binding energy and R(c.m.) value for the secondary minimum were 144 cm(-1) and 3.63 A, respectively. This potential energy surface is consistent with the properties of matrix-isolated NH-N(2), and it is predicted that linear NH-N(2) will be a stable complex in the gas phase at low temperatures.

  9. Physical properties of the van der Waals bonded ferromagnet Fe3-xGeTe2

    NASA Astrophysics Data System (ADS)

    May, Andrew; Calder, Stuart; Cantoni, Claudia; Cao, Huibo; McGuire, Michael

    Fe3GeTe2 is an itinerant ferromagnetic with a layered structure held together by van der Waals bonds. The material has been synthesized using a flux-growth technique that results in large single crystals suitable for neutron scattering, and its magnetic structure and phase diagram have been investigated. The flux-grown crystals possess a Curie temperature TC ~ 150K, which is less than that reported for polycrystalline Fe3GeTe2 with TC ~ 230K. The difference is explained by intrinsic Fe-deficiency in these single crystals. This talk will summarize the physical properties of the flux grown single crystals and a series of polycrystalline samples with varying concentrations of Fe, which reveal how Fe content is correlated to structural parameters and TC. In combination with the magnetic properties, Hall effect and thermoelectric data reveal that Fe3-xGeTe2 compounds are multi-carrier type, itinerant ferromagnets. Research supported by the US DOE, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.

  10. SCAN+rVV10: A promising van der Waals density functional

    NASA Astrophysics Data System (ADS)

    Peng, Haowei; Yang, Zeng-Hui; Sun, Jianwei; Perdew, John

    The newly developed ``strongly constrained and appropriately normed'' (SCAN) meta-generalized-gradient approximation (meta-GGA) can generally improve over the non-empirical Perdew-Burke-Ernzerhof (PBE) GGA not only for strong chemical bonding, but also for the intermediate-range van der Waals (vdW) interaction. However, the long-range vdW interaction is still missing. To remedy this, we propose here pairing SCAN with the non-local correlation part from the rVV10 vdW density functional, with only two empirical parameters. The resulting SCAN+rVV10 yields excellent geometric and energetic results not only for molecular systems, but also for solids and layered-structure materials, as well as the adsorption of benzene on coinage metal surfaces. Especially, SCAN+rVV10 outperforms all current methods with comparable computational efficiencies, accurately reproducing the three most fundamental parameters--the inter-layer binding energies, inter-, and intra-layer lattice constants--for 28 layered-structure materials. Hence, we have achieved with SCAN+rVV10 a promising vdW density functional for general geometries, with minimal empiricism. This work was supported as part of the Center for the Computational Design of Functional Layered Materials, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award #.DE-SC0012575.

  11. Van der Waals Interactions and Dipole Blockade in a Cold Rydberg Gas Probed by Microwave Spectroscopy

    NASA Astrophysics Data System (ADS)

    Nguyen, Thanh Long; Celistrino Teixeira, Raul; Hermann Avigliano, Carla; Cantat Moltrecht, Tigrane; Raimond, Jean Michel; Haroche, Serge; Gleyzes, Sebastiens; Brune, Michel

    2016-05-01

    Dipole-dipole interactions between Rydberg atoms are a flourishing tool for quantum information processing and for quantum simulation of complex many-body problems. Microwave spectroscopy of a dense Rydberg gas trapped close to a superconducting atom chip in the strong dipole blockade regime reveals directly the many-body atomic interaction spectrum. We present here a direct measurement of the interaction energy distribution in the strong dipole blockade regime, based on microwave spectroscopy. We first apply this method to the observation of the excitation dynamics of the Rydberg gas, conditioned by dipole-dipole interactions, in either the strong blockade regime or the so-called facilitation regime. We also observe with this method the atomic cloud expansion driven by the repulsive Van der Waals interaction after excitation. This measurement, in good agreement with Monte Carlo simulations of the excitation process and of the cloud dynamics, reveals the limits of the frozen gas approximation. This method can help investigate self-organization and dynamical phase transitions in Rydberg-atom based quantum simulators. This study thus opens a promising route for quantum simulation of many-body systems and quantum information transport in chains of strongly interacting Rydberg atom.

  12. Esaki Diodes in van der Waals Heterojunctions with Broken-Gap Energy Band Alignment.

    PubMed

    Yan, Rusen; Fathipour, Sara; Han, Yimo; Song, Bo; Xiao, Shudong; Li, Mingda; Ma, Nan; Protasenko, Vladimir; Muller, David A; Jena, Debdeep; Xing, Huili Grace

    2015-09-01

    van der Waals (vdW) heterojunctions composed of two-dimensional (2D) layered materials are emerging as a solid-state materials family that exhibits novel physics phenomena that can power a range of electronic and photonic applications. Here, we present the first demonstration of an important building block in vdW solids: room temperature Esaki tunnel diodes. The Esaki diodes were realized in vdW heterostructures made of black phosphorus (BP) and tin diselenide (SnSe2), two layered semiconductors that possess a broken-gap energy band offset. The presence of a thin insulating barrier between BP and SnSe2 enabled the observation of a prominent negative differential resistance (NDR) region in the forward-bias current-voltage characteristics, with a peak to valley ratio of 1.8 at 300 K and 2.8 at 80 K. A weak temperature dependence of the NDR indicates electron tunneling being the dominant transport mechanism, and a theoretical model shows excellent agreement with the experimental results. Furthermore, the broken-gap band alignment is confirmed by the junction photoresponse, and the phosphorus double planes in a single layer of BP are resolved in transmission electron microscopy (TEM) for the first time. Our results represent a significant advance in the fundamental understanding of vdW heterojunctions and broaden the potential applications of 2D layered materials.

  13. Stabilization of thin liquid films by repulsive van der Waals force.

    PubMed

    Li, Er Qiang; Vakarelski, Ivan U; Chan, Derek Y C; Thoroddsen, Sigurdur T

    2014-05-13

    Using high-speed video recording of bubble rise experiments, we study the stability of thin liquid films trapped between a rising bubble and a surfactant-free liquid-liquid meniscus interface. Using different combinations of nonpolar oils and water that are all immiscible, we investigate the extent to which film stability can be predicted by attractive and repulsive van der Waals (vdW) interactions that are indicated by the relative magnitude of the refractive indices of the liquid combinations, for example, water (refractive index, n = 1.33), perfluorohexane (n = 1.23), and tetradecane (n = 1.43). We show that, when the film-forming phase was oil (perfluorohexane or tetradecane), the stability of the film could always be predicted from the sign of the vdW interaction, with a repulsive vdW force resulting in a stable film and an attractive vdW force resulting in film rupture. However, if aqueous electrolyte is the film-forming bulk phase between the rising air bubble and the upper oil phase, the film always ruptured, even when a repulsive vdW interaction was predicted. We interpret these results as supporting the hypothesis that a short-ranged hydrophobic attraction determines the stability of the thin water film formed between an air phase and a nonpolar oil phase. PMID:24761748

  14. Repulsive van der Waals forces enable Pickering emulsions with non-touching colloids.

    PubMed

    Elbers, Nina A; van der Hoeven, Jessi E S; de Winter, D A Matthijs; Schneijdenberg, Chris T W M; van der Linden, Marjolein N; Filion, Laura; van Blaaderen, Alfons

    2016-09-21

    Emulsions stabilized by solid particles, called Pickering emulsions, offer promising applications in drug delivery, cosmetics, food science and the manufacturing of porous materials. This potential stems from their high stability against coalescence and 'surfactant-free' nature. Generally, Pickering emulsions require that the solid particles are wetted by both phases and as a result, the adsorption free energy is often large with respect to the thermal energy (kBT). Here we provide the first experimental proof for an alternative scenario: non-touching (effectively non-wetting), charged, particles that are completely immersed in the oil phase through a balance of charge induced attractions and repulsions caused by van der Waals forces. These particles nonetheless stabilize the emulsion. The main advantage of this novel adsorption mechanism is that these particles can easily be detached from the interface simply by adding salt. This not only makes the finding fundamentally of interest, but also enables a triggered de-emulsification and particle recovery, which is useful in fields like enhanced oil recovery, heterogeneous catalysis, and emulsion polymerization.

  15. Temperature dependent van der Pauw-Hall measurements on sodium doped single crystalline cadmium telluride

    SciTech Connect

    Ahmad, Faisal R.

    2015-03-21

    In this report, results of the temperature dependent electrical conductivity measurements conducted on single crystalline cadmium telluride (CdTe), containing sodium (Na) impurities are presented and discussed. The electrical conductivity measurements were conducted using an apparatus that allowed the implementation of a standard van der Pauw-Hall effect technique through which the electrical resistivity, concentration of majority carriers, as well as the carrier mobility were determined for temperatures ranging between 24 K and 350 K. Over this temperature range, the electrical resistivity was observed to change by 7 orders of magnitude. Hall measurements showed that the hole concentration at 300 K was ∼3 × 10{sup 15 }cm{sup –3} and the hole mobility at the same temperature was ∼80 cm{sup 2}/V s. Measuring the concentration of holes as a function of the sample temperature enabled the estimation of the acceptor energy level with respect to the valence band maximum to be ∼60 meV. The same data also revealed the potential presence of a compensating donor level. Furthermore, the hole mobility was also analyzed over the entire temperature range and the data revealed that above 100 K, the carrier mobility was dominated by the scattering of holes from lattice vibrations.

  16. Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode.

    PubMed

    Deng, Yexin; Luo, Zhe; Conrad, Nathan J; Liu, Han; Gong, Yongji; Najmaei, Sina; Ajayan, Pulickel M; Lou, Jun; Xu, Xianfan; Ye, Peide D

    2014-08-26

    Phosphorene, a elemental 2D material, which is the monolayer of black phosphorus, has been mechanically exfoliated recently. In its bulk form, black phosphorus shows high carrier mobility (∼10,000 cm(2)/V·s) and a ∼0.3 eV direct band gap. Well-behaved p-type field-effect transistors with mobilities of up to 1000 cm(2)/V·s, as well as phototransistors, have been demonstrated on few-layer black phosphorus, showing its promise for electronics and optoelectronics applications due to its high hole mobility and thickness-dependent direct band gap. However, p–n junctions, the basic building blocks of modern electronic and optoelectronic devices, have not yet been realized based on black phosphorus. In this paper, we demonstrate a gate-tunable p–n diode based on a p-type black phosphorus/n-type monolayer MoS2 van der Waals p–n heterojunction. Upon illumination, these ultrathin p–n diodes show a maximum photodetection responsivity of 418 mA/W at the wavelength of 633 nm and photovoltaic energy conversion with an external quantum efficiency of 0.3%. These p–n diodes show promise for broad-band photodetection and solar energy harvesting.

  17. Alternating-gradient focusing of the benzonitrile-argon van der Waals complex.

    PubMed

    Putzke, Stephan; Filsinger, Frank; Küpper, Jochen; Meijer, Gerard

    2012-09-14

    We report on the focusing and guiding of the van der Waals complex formed between benzonitrile molecules (C(6)H(5)CN) and argon atoms in a cold molecular beam using an ac electric quadrupole guide. The distribution of quantum states in the guided beam is non-thermal, because the transmission efficiency depends on the state-dependent effective dipole moment in the applied electric fields. At a specific ac frequency, however, the excitation spectrum can be described by a thermal distribution at a rotational temperature of 0.8 K. From the observed transmission characteristics and a combination of trajectory and Stark-energy calculations we conclude that the permanent electric dipole moment of benzonitrile remains unchanged upon the attachment of the argon atom to within ±5%. By exploiting the different dipole-moment-to-mass ([micro sign]/m) ratios of the complex and the benzonitrile monomer, transmission can be selectively suppressed for or, in the limit of 0 K rotational temperature, restricted to the complex.

  18. Coupled Oscillatory Systems with 𝔻4 Symmetry and Application to van der Pol Oscillators

    NASA Astrophysics Data System (ADS)

    Murza, Adrian C.; Yu, Pei

    In this paper, we study the dynamics of autonomous ODE systems with 𝔻4 symmetry. First, we consider eight weakly-coupled oscillators and establish the condition for the existence of stable heteroclinic cycles in most generic 𝔻4-equivariant systems. Then, we analyze the action of 𝔻4 on ℂ2 and study the pattern of periodic solutions arising from Hopf bifurcation. We identify the type of periodic solutions associated with the pairs (H,K) of spatiotemporal or spatial symmetries, and prove their existence by using the HmodK Theorem due to Hopf bifurcation and the 𝔻4 symmetry. In particular, we give a rigorous proof for the existence of a fourth branch of periodic solutions in 𝔻4-equivariant systems. Further, we apply our theory to study a concrete case: two coupled van der Pol oscillators with 𝔻4 symmetry. We use normal form theory to analyze the periodic solutions arising from Hopf bifurcation. Among the families of the periodic solutions, we pay particular attention to the phase-locked oscillations, each of them being embedded in one of the invariant manifolds, and identify the in-phase, completely synchronized motions. We derive their explicit expressions and analyze their stability in terms of the parameters.

  19. Fractional derivative and time delay damper characteristics in Duffing-van der Pol oscillators

    NASA Astrophysics Data System (ADS)

    Leung, A. Y. T.; Guo, Zhongjin; Yang, H. X.

    2013-10-01

    In this paper, we investigate the damping characteristics of two Duffing-van der Pol oscillators having damping terms described by fractional derivative and time delay respectively. The residue harmonic balance method is presented to find periodic solutions. No small parameter is assumed. Highly accurate limited cycle frequency and amplitude are captured. The results agree well with the numerical solutions for a wide range of parameters. Based on the obtained solutions, the damping effects of these two oscillators are investigated. When the system parameters are identical, the steady state responses and their stability are qualitatively different. The initial approximations are obtained by solving a few harmonic balance equations. They are improved iteratively by solving linear equations of increasing dimension. The second-order solutions accurately exhibit the dynamical phenomena when taking the fractional derivative and time delay as bifurcation parameters respectively. When damping is described by time delay, the stable steady state response is more complex because time delay takes past history into account implicitly. Numerical examples taking time delay and fractional derivative are respectively given for feature extraction and convergence study.

  20. Phonon dispersion in acene molecular crystals using van der Waals density functionals

    NASA Astrophysics Data System (ADS)

    Brown-Altvater, Florian; Rangel, Tonatiuh; Neaton, Jeffrey B.

    Much progress has been made of late in understanding the fundamental processes in optoelectronic materials. An ongoing challenge is the accurate inclusion of nuclear motion and to go beyond the Born-Oppenheimer approximation. Especially in materials like molecular crystals, where van der Waals (vdW) forces dominate the cohesive energy and the electronic structure is very sensitive to intermolecular geometry, phonons can be an important facilitator and dissipation mechanism. Thus there is a need to assess and understand the efficacy of existing approaches for phonon dispersions in vdW-bound solids. In this work we use a vdW density functional to calculate the phonon dispersion of members of the acene family. We establish the accuracy of the method using naphthalene, obtaining excellent agreement with experimental results, and in a further step, we explore the strength of the electron-phonon coupling across the Brillouin zone. Taken all together, our calculations illustrate the potential for quantitative prediction of vibrational properties of weakly-bound organic crystals over the entire Brillouin zone from first principles.

  1. Zener Tunneling and Photoresponse of a WS2/Si van der Waals Heterojunction.

    PubMed

    Lan, Changyong; Li, Chun; Wang, Shuai; He, Tianying; Jiao, Tianpeng; Wei, Dapeng; Jing, Wenkui; Li, Luying; Liu, Yong

    2016-07-20

    Van der Waals heterostructures built from two-dimensional materials on a conventional semiconductor offer novel electronic and optoelectronic properties for next-generation information devices. Here we report that by simply stacking a vapor-phase-synthesized multilayer n-type WS2 film onto a p-type Si substrate, a high-responsivity Zener photodiode can be achieved. We find that above a small reverse threshold voltage of 0.5 V, the fabricated heterojunction exhibits Zener tunneling behavior which was confirmed by its negative temperature coefficient of the breakdown voltage. The WS2/Si heterojunction working in the Zener breakdown regime shows a stable and linear photoresponse, a broadband photoresponse ranging from 340 to 1100 nm with a maximum photoresponsivity of 5.7 A/W at 660 nm and a fast response speed of 670 μs. Such high performance can be attributed to the ultrathin depletion layer involved in the WS2/Si p-n junction, on which a strong electric field can be created even with a small reverse voltage and thereby enabling an efficient separation of the photogenerated electron-hole pairs. PMID:27351271

  2. Esaki Diodes in van der Waals Heterojunctions with Broken-Gap Energy Band Alignment.

    PubMed

    Yan, Rusen; Fathipour, Sara; Han, Yimo; Song, Bo; Xiao, Shudong; Li, Mingda; Ma, Nan; Protasenko, Vladimir; Muller, David A; Jena, Debdeep; Xing, Huili Grace

    2015-09-01

    van der Waals (vdW) heterojunctions composed of two-dimensional (2D) layered materials are emerging as a solid-state materials family that exhibits novel physics phenomena that can power a range of electronic and photonic applications. Here, we present the first demonstration of an important building block in vdW solids: room temperature Esaki tunnel diodes. The Esaki diodes were realized in vdW heterostructures made of black phosphorus (BP) and tin diselenide (SnSe2), two layered semiconductors that possess a broken-gap energy band offset. The presence of a thin insulating barrier between BP and SnSe2 enabled the observation of a prominent negative differential resistance (NDR) region in the forward-bias current-voltage characteristics, with a peak to valley ratio of 1.8 at 300 K and 2.8 at 80 K. A weak temperature dependence of the NDR indicates electron tunneling being the dominant transport mechanism, and a theoretical model shows excellent agreement with the experimental results. Furthermore, the broken-gap band alignment is confirmed by the junction photoresponse, and the phosphorus double planes in a single layer of BP are resolved in transmission electron microscopy (TEM) for the first time. Our results represent a significant advance in the fundamental understanding of vdW heterojunctions and broaden the potential applications of 2D layered materials. PMID:26226296

  3. Benchmark data base for accurate van der Waals interaction in inorganic fragments

    NASA Astrophysics Data System (ADS)

    Brndiar, Jan; Stich, Ivan

    2012-02-01

    A range of inorganic materials, such as Sb, As, P, S, Se are built from van der Waals (vdW) interacting units forming the crystals, which neither the standard DFT GGA description as well as cheap quantum chemistry methods, such as MP2, do not describe correctly. We use this data base, for which have performed ultra accurate CCSD(T) calculations in complete basis set limit, to test the alternative approximate theories, such as Grimme [1], Langreth-Lundqvist [2], and Tkachenko-Scheffler [3]. While none of these theories gives entirely correct description, Grimme consistently provides more accurate results than Langreth-Lundqvist, which tend to overestimate the distances and underestimate the interaction energies for this set of systems. Contrary Tkachenko-Scheffler appear to yield surprisingly accurate and computationally cheap and convenient description applicable also for systems with appreciable charge transfer. [4pt] [1] S. Grimme, J. Comp. Chem. 27, 1787 (2006) [0pt] [2] K. Lee, et al., Phys. Rev. B 82 081101 (R) (2010) [0pt] [3] Tkachenko and M. Scheffler Phys. Rev. Lett. 102 073005 (2009).

  4. The HeI2(ion-pair states) van der Waals complexes

    NASA Astrophysics Data System (ADS)

    Baturo, V. V.; Lukashov, S. S.; Poretsky, S. A.; Pravilov, A. M.; Zhironkin, A. I.

    2016-10-01

    The T-shaped HeI2 (E0g+) van der Waals complexes populated in the HeI2(E,vE = 0-2,nE = 0 ← B,19,nB = 0 ← X,0,nX) excitation pathway have been studied. Analysis of the luminescence excitation spectra as well as the I2(E0g+ → B0u+, D0u+ → X0g+, and D‧2g → A‧2u) luminescence spectra themselves has been carried out. It has been shown that the I2(D → X, and D‧ → A‧) luminescence is due to HeI2(E ← B) transitions with subsequent electronic predissociation. We have determined dissociation energies of the HeI2(E,vE = 0-2) complexes, vibrational populations of the E, D states and branching ratios of vibrational and electronic predissociations. One can suppose that luminescence of the HeI2(E,vE = 0,nE = 0) complexes occurs.

  5. Infrared Spectroscopy of the H2/HD/D2-O2 Van Der Waals Complexes

    NASA Astrophysics Data System (ADS)

    Raston, Paul; Bunn, Hayley

    2016-06-01

    Hydrogen is the most abundant element in the universe and oxygen is the third, so understanding the interaction between the two in their different forms is important to understanding astrochemical processes. The interaction between H2 and O2 has been explored in low energy scattering experiments and by far infrared synchrotron spectroscopy of the van der Waals complex. The far infrared spectra suggest a parallel stacked average structure with seven bound rotationally excited states. Here, we present the far infrared spectrum of HD/D2-O2 and the mid infrared spectrum of H2-O2 at 80 K, recorded at the infrared beamline facility of the Australian Synchrotron. We observed 'sharp' peaks in the mid infrared region, corresponding to the end over end rotation of H2-O2, that are comparatively noisier than analogous peaks in the far infrared where the synchrotron light is brightest. The larger reduced mass of HD and D2 compared to H2 is expected to result in more rotational bound states and narrower bands. The latest results in our ongoing efforts to explore this system will be presented. Y. Kalugina, et al., Phys. Chem. Chem. Phys. 14, 16458 (2012) S. Chefdeville et al. Science 341, 1094 (2013) H. Bunn et al. ApJ 799, 65 (2015)

  6. How van der Waals interactions determine the unique properties of water.

    PubMed

    Morawietz, Tobias; Singraber, Andreas; Dellago, Christoph; Behler, Jörg

    2016-07-26

    Whereas the interactions between water molecules are dominated by strongly directional hydrogen bonds (HBs), it was recently proposed that relatively weak, isotropic van der Waals (vdW) forces are essential for understanding the properties of liquid water and ice. This insight was derived from ab initio computer simulations, which provide an unbiased description of water at the atomic level and yield information on the underlying molecular forces. However, the high computational cost of such simulations prevents the systematic investigation of the influence of vdW forces on the thermodynamic anomalies of water. Here, we develop efficient ab initio-quality neural network potentials and use them to demonstrate that vdW interactions are crucial for the formation of water's density maximum and its negative volume of melting. Both phenomena can be explained by the flexibility of the HB network, which is the result of a delicate balance of weak vdW forces, causing, e.g., a pronounced expansion of the second solvation shell upon cooling that induces the density maximum.

  7. Microwave spectra of the Ne-N2 Van der Waals complex: Experiment and theory

    NASA Astrophysics Data System (ADS)

    Jäger, W.; Xu, Y.; Armstrong, G.; Gerry, M. C. L.; Naumkin, F. Y.; Wang, F.; McCourt, F. R. W.

    1998-10-01

    High-resolution microwave spectra of the ground state 20Ne-14N2, 20Ne-15N2, 22Ne-14N2, and 22Ne-15N2 Van der Waals complexes, involving rotational levels up to J=4, are reported. Interpretation and assignment of the observed transitions were made by combining results of measurements and theoretical predictions of the MW line positions in terms of available empirical potential energy surfaces and of a new high-level ab initio potential energy surface. The deviations of the calculated MW spectra from those observed experimentally are more uniform for the ab initio potential surface than they are for the empirical potential surfaces, allowing for reduction of the deviations to within 0.07% for all isotopomers by a single-parameter scaling of the ab initio potential energy surface. The scaled Ne-N2 interaction potential was used to predict the MW line positions for the transitions J'-J″=3-2, 4-3 for all species. A simple procedure is proposed to improve the ab initio results for atom-diatom systems on the basis of atom-atom interaction components.

  8. Non-additivity of molecule-surface van der Waals potentials from force measurements

    NASA Astrophysics Data System (ADS)

    Tautz, Stefan

    2014-03-01

    Van der Waals (vdW) forces act ubiquitously in condensed matter. Their description as an inherently quantum mechanical phenomenon was developed for single atoms and homogeneous macroscopic bodies by London, Casimir, and Lifshitz. For intermediate-sized objects like organic molecules an atomistic description is required, but explicit first principles calculations are very difficult since correlations between many interacting electrons have to be considered. Hence, semi-empirical correction schemes are often used that simplify the vdW interaction to a sum over atom-pair potentials. A similar gap exists between successful measurements of vdW and Casimir forces for single atoms on the one hand and macroscopic bodies on the other, as comparable experiments for molecules are absent. I will present experiments in which long-range vdW potentials between a series of related molecules and a metal surface have been determined experimentally. The experiments rely on the extremely sensitive force detection of an atomic force microscope in combination with its molecular manipulation capabilities. The results allow us to confirm the asymptotic force law and to quantify the non-additive part of the vdW interaction which is particularly challenging for theory. In the present case, cooperative effects account for 10% of the total interaction. This effect is of general validity in molecules and thus relevant at the intersection of chemistry, physics, biology, and materials science.

  9. Low-energy universality and scaling of van der Waals forces

    SciTech Connect

    Calle Cordon, A.; Ruiz Arriola, E.

    2010-04-15

    At long distances, interactions between neutral ground-state atoms can be described by the van der Waals potential. In the ultracold regime, atom-atom scattering is dominated by s-waves phase shifts given by an effective range expansion in terms of the scattering length {alpha}{sub 0} and the effective range r{sub 0}. We show that while the scattering length cannot be predicted for these potentials, the effective range is given by the universal low-energy theorem r{sub 0}=A+B/{alpha}{sub 0}+C/{alpha}{sub 0}{sup 2}, where A, B, and C depend on the dispersion coefficients C{sub n} and the reduced diatom mass. We confront this formula to about 100 determinations of r{sub 0} and {alpha}{sub 0} and show why the result is dominated by the leading dispersion coefficient C{sub 6}. Universality and scaling extend much beyond naive dimensional analysis estimates.

  10. Enhanced Li capacity in functionalized graphene: A first principle study with van der Waals correction

    NASA Astrophysics Data System (ADS)

    Chouhan, Rajiv K.; Raghani, Pushpa

    2015-09-01

    We have investigated the adsorption of Li on graphene oxide using density functional theory. We show a novel and simple approach to achieve a positive lithiation potential on epoxy and hydroxyl functionalized graphene, compared to the negative lithiation potential that has been found on prestine graphene. We included the van der Waals correction into the calculation so as to get a better picture of weak interactions. A positive lithiation potential suggests a favorable adsorption of Li on graphene oxide sheets that can lead to an increase in the specific capacity, which in turn can be used as an anode material in Li-batteries. We find a high specific capacity of ˜860 mAhg-1 by functionalizing the graphene sheet. This capacity is higher than the previously reported capacities that were achieved on graphene with high concentration of Stone-Wales (75%) and divacancy (16%) defects. Creating such high density of defects can make the entire system energetically unstable, whereas graphene oxide is a naturally occurring substance.

  11. van der Waals trilayers and superlattices: modification of electronic structures of MoS2 by intercalation.

    PubMed

    Lu, Ning; Guo, Hongyan; Wang, Lu; Wu, Xiaojun; Zeng, Xiao Cheng

    2014-05-01

    We perform a comprehensive first-principles study of the electronic properties of van der Waals (vdW) trilayers via intercalating a two-dimensional (2D) monolayer (ML = BN, MoSe2, WS2, or WSe2) between a MoS2 bilayer to form various MoS2/ML/MoS2 sandwich trilayers. We find that the BN monolayer is the most effective sheet to decouple the interlayer vdW coupling of the MoS2 bilayer, and the resulting sandwich trilayer can recover the electronic structures of the MoS2 monolayer, particularly the direct-gap character. Further study of the MoS2/BN superlattices confirms the effectiveness of the BN monolayer for the decoupling of the MoS2-MoS2 interaction. In addition, the intercalation of a transition-metal dichalcogenide (TMDC) MoSe2 or WSe2 sheet makes the sandwich trilayer undergo an indirect-gap to direct-gap transition due to the newly formed heterogeneous S/Se interfaces. In contrast, the MoS2/WS2/MoS2 sandwich trilayer still retains the indirect-gap character of the MoS2 bilayer due to the lack of the heterogeneous S/Se interfaces. Moreover, the 3D superlattice of the MoS2/TMDC heterostructures also exhibits similar electronic band characters to the MoS2/TMDC/MoS2 trilayer heterostructures, albeit a slight decrease of the bandgap compared to the trilayers. Compared to the bulk MoS2, the 3D MoS2/TMDC superlattice can give rise to new and distinctive properties. Our study offers not only new insights into electronic properties of the vdW multilayer heterostructures but also guidance in designing new heterostructures to modify electronic structures of 2D TMDC crystals.

  12. van der Waals force-induced loading of proangiogenic nanoparticles on microbubbles for enhanced neovascularization

    NASA Astrophysics Data System (ADS)

    Chen, Jinrong; Lee, Min Kyung; Qin, Ellen; Misra, Sanjay; Kong, Hyunjoon

    2015-10-01

    Nanoparticles emerged as carriers of promising diagnostic and therapeutic molecules due to their unique size, injectability, and potential to sustainably release molecular cargos. However, with local injection of particles into target tissue, the significant particle loss caused by external biomechanical forces is a great challenge yet to be resolved to date. We hypothesized that nanoparticles associated with tissue-adherent microbubbles in the form of core-shell particles due to van der Waals attractive forces would stably remain on an implanted site and significantly increase therapeutic efficacy of drug cargos. To examine this hypothesis, we used 100 nm diameter nanoparticles made of poly(lactide-co-glycolic acid) (PLGA) as a model nanoparticle and 50 μm diameter microbubbles made of poly(2-hydroxyethyl aspartamide) (PHEA) grafted with octadecyl chains, PHEA-g-C18, as a model microbubble. Simple mixing of PLGA nanoparticles and PHEA-g-C18 microbubbles resulted in the core-shell particles. Following implantation, the PHEA-g-C18 microbubbles acted as glue to minimize the displacement of PLGA nanoparticles, because of the association between the octadecyl chains on PHEA-g-C18 and the epithelium of the tissue. As a consequence, the core-shell particles prepared with Angiopoietin-1 (Ang1)-encapsulated PLGA nanoparticles significantly promoted vascularization in the implanted tissue. Overall, the results of this study provide a simple but advanced strategy for improving therapeutic efficacy of drug-carrying nanoparticles without altering their surface chemistry and potential.Nanoparticles emerged as carriers of promising diagnostic and therapeutic molecules due to their unique size, injectability, and potential to sustainably release molecular cargos. However, with local injection of particles into target tissue, the significant particle loss caused by external biomechanical forces is a great challenge yet to be resolved to date. We hypothesized that nanoparticles

  13. Dynamical screening of van der Waals interactions in nanostructured solids: Sublimation of fullerenes

    SciTech Connect

    Tao, Jianmin; Yang, Jing; Rappe, Andrew M.

    2015-04-28

    Sublimation energy is one of the most important properties of molecular crystals, but it is difficult to study, because the attractive long-range van der Waals (vdW) interaction plays an important role. Here, we apply efficient semilocal density functional theory (DFT), corrected with the dynamically screened vdW interaction (DFT + vdW), the Rutgers-Chalmers nonlocal vdW-DF, and the pairwise-based dispersion-corrected DFT-D2 developed by Grimme and co-workers, to study the sublimation of fullerenes. We find that the short-range part, which accounts for the interaction due to the orbital overlap between fullerenes, is negligibly small. Our calculation shows that there exists a strong screening effect on the vdW interaction arising from the valence electrons of fullerenes. On the other hand, higher-order contributions can be as important as the leading-order term. The reasons are that (i) the surface of fullerene molecules is metallic and thus highly polarizable, (ii) the band gap of fullerene solids is small (less than 2 eV), and (iii) fullerene molecules in the solid phase are so densely packed, yielding the high valence electron density and small equilibrium intermolecular distances (the first nearest neighbor distance is only about 10 Å for C{sub 60}). However, these two effects make opposite contributions, leading to significant error cancellation between these two contributions. We demonstrate that, by considering higher-order contributions and the dynamical screening, the DFT + vdW method can yield sublimation energies of fullerenes in good agreement with reference values, followed by vdW-DF and DFT-D2. The insights from this study are important for a better understanding of the long-range nature of vdW interactions in nanostructured solids.

  14. Identification of IRF6 gene variants in three families with Van der Woude syndrome.

    PubMed

    Tan, Ene-Choo; Lim, Eileen Chew-Ping; Yap, Shiao-Hui; Lee, Seng-Teik; Cheng, Joanne; Por, Yong-Chen; Yeow, Vincent

    2008-06-01

    Van der Woude syndrome is the most common cause of syndromic orofacial clefting. It is characterised by the presence of lip pits, cleft lip and/or cleft palate. It is transmitted in an autosomal dominant manner, with high penetrance and variable expressivity. Several mutations in the interferon regulatory factor 6 (IRF6) gene have been found in VWS families, suggesting that this gene is the primary locus. We screened for mutations in this gene in three families in our population. There was a recurrent nonsense mutation within exon 9 of the gene for a Malay family consisting of five affected members with different presentations. We also found a co-segregating rare polymorphism which would result in a non-synonymous change 23 bases downstream of the nonsense mutation. This polymorphism was present in <1% of the Malay subjects screened, but was not found among the Chinese and Indians in our population. For another family, a 396C-->T mutation (R45W in the DNA-binding domain) was found in the proband, although the possibility of a genetic defect elsewhere could not be excluded because his mother and twin sister (both unaffected) also had this variant. In the third case with complete absence of family history, a de novo deletion spanning the whole IRF6 gene was detected in the child with VWS. This case of haploinsufficiency caused disruption of orofacial development but not other organ systems as the child has no other medical or developmental abnormalities despite the deletion of at least five other genes. PMID:18506368

  15. Wound complications after cleft repair in children with Van der Woude syndrome.

    PubMed

    Jones, Jodi L P; Canady, John W; Brookes, James T; Wehby, George L; L'Heureux, Jamie; Schutte, Brian C; Murray, Jeffrey C; Dunnwald, Martine

    2010-09-01

    Van der Woude syndrome (VWS; OMIM 119300) is an autosomal-dominant condition associated with clefts of the lip and/or palate and lower lip pits and is caused by mutations in interferon regulatory factor 6 (IRF6). The standard of practice for children born with cleft lip/palate is surgical repair, which requires proper wound healing. We tested the hypothesis that children with VWS are more likely to have wound complications after cleft repair than children with nonsyndromic cleft lip/palate (NSCLP). Furthermore, we hypothesized that children with VWS have more surgical procedures. A retrospective, case-controlled study was performed. Seventeen children with VWS and 68 matched controls with NSCLP were scored for the presence of wound complications after cleft repair, for the severity of complications, and for number of surgeries from age 0 to 10. Of the 17 children with VWS, 8 had wound complications. Of 68 controls, 13 had wound complications (P = 0.02). Of 8 wound complications in the VWS group, 6 were major, whereas of 13 complications in the control group, 9 were major (P = 0.04). Most wound complications were fistulae and occurred in isolated cleft palate and bilateral cleft lip. The mean number of surgeries in the VWS group was 3.0 compared with 2.8 in the control group (P = 0.67). Our studies suggest that children with VWS have an increased risk for wound complications after cleft repair compared with children with NSCLP. Furthermore, these data support a role for IRF6 in wound healing. PMID:20856020

  16. Novel IRF6 mutations in Honduran Van der Woude syndrome patients.

    PubMed

    Birkeland, Andrew C; Larrabee, Yuna; Kent, David T; Flores, Carlos; Su, Gloria H; Lee, Joseph H; Haddad, Joseph

    2011-01-01

    Van der Woude syndrome (VWS) is an autosomal dominant inherited disease characterized by lower lip pits, cleft lip and/or cleft palate. Missense, nonsense and frameshift mutations in IRF6 have been revealed to be responsible for VWS in European, Asian, North American and Brazilian populations. However, the mutations responsible for VWS have not been studied in Central American populations. Here, we investigated the role of IRF6 in patients with VWS in a previously unstudied Honduran population. IRF6 mutations were identified in four out of five VWS families examined, which strongly suggests that mutations in IRF6 are responsible for VWS in this population. We reported three novel mutations and one previously described mutation. In the first family, a mother and daughter both exhibited a p.N88I mutation in the DNA-binding region of IRF6 that was not present in unaffected family members. In the second, we found a unique p.K101QfsX15 mutation in the affected patient, leading to a frameshift and early stop codon. In the third, we identified a p.Q208X mutation occurring in exon 6. In the fourth, we found a nonsense mutation in exon 9 (p.R412X), previously described in Brazilian and Northern European populations. In the fifth, we did not identify any unique exonic missense, nonsense or frameshift mutations. This study reports the first cases of IRF6 mutations in VWS patients in a Central American population, further confirming that the causal link between IRF6 and VWS is consistent across multiple populations. PMID:21468557

  17. Electrical conductance sensitivity functions for square and circular cloverleaf van der Pauw geometries

    NASA Astrophysics Data System (ADS)

    Koon, Daniel W.; Heřmanová, Martina; Náhlík, Josef

    2015-11-01

    We have undertaken the first systematic computational and experimental study of the sensitivity of charge transport measurement to local physical defects for van der Pauw circular and square cloverleafs with rounded internal corners and unclovered geometries, using copper-foil specimens. Cloverleafs with rounded internal corners are in common use and reduce sampling of the material near their boundaries, an advantage over sharp corners. We have defined two parameters for these cloverleafs, one of which, the ‘admittance’, is the best predictor of the sensitivity at the center of these specimens, with this sensitivity depending only weakly on the central ‘core’ size when its diameter is less than about 60% of the specimen’s lateral size. Resistive measurement errors in all four geometries are linear in areas for errors up to about 50% in sheet resistance, and superlinear above. An ASTM-based ‘standard’ cloverleaf geometry, in which the central core diameter of the specimen is 1/5 the overall length and the slit widths are 1/10 the overall length, narrows the effective area sampled by the resistive measurement by a factor of about 16  ×  in the small-hole limit and over 40  ×  for larger holes, relative to unclovered goemetries, whether square or circular, with a smooth transition in these numbers for geometries intermediate between the standard cloverleaf and unclovered specimens. We believe that this work will allow materials scientists to better estimate the impact of factors such as the uniformity of film thickness and of material purity on their measurements, and allow sensor designers to better choose an optimal specimen geometry.

  18. Effects of truncating van der Waals interactions in lipid bilayer simulations

    NASA Astrophysics Data System (ADS)

    Huang, Kun; García, Angel E.

    2014-09-01

    In membrane simulations, it is known that truncating electrostatic interactions results in artificial ordering of lipids at the truncation distance. However, less attention has been paid to the effect of truncating van der Waals (VDW) interactions. Since the VDW potential decays as r-6, it is frequently neglected beyond a cutoff of around 1 nm. In some cases, analytical dispersion corrections appropriate for isotropic systems are applied to the pressure and the potential energy. In this work, we systematically study the effect of truncating VDW interactions at different cutoffs in 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine bilayers with the Berger force field. We show that the area per lipid decreases systematically when the VDW cutoff (rc) increases. This dependence persists even when dispersion corrections are applied. Since the analytical form of the dispersion correction is only appropriate for isotropic systems, we suggest that a long VDW cutoff should be used in preference over a short VDW cutoff. To determine the appropriate cutoff, we simulate liquid pentadecane with the Berger parameters and find that rc ≥ 1.4 nm is sufficient to reproduce the density and the heat of vaporization of pentadecane. Bilayers simulated with rc ≥ 1.4 nm show an improved agreement with experiments in both the form factors and the deuterium order parameters. Finally, we report that the VDW cutoff has a significant impact on the lipid flip-flop energetics and an inappropriate short VDW cutoff results in a bilayer that is prone to form water defects across the bilayer.

  19. Comparative study of van der Waals corrections to the bulk properties of graphite.

    PubMed

    Rêgo, Celso R C; Oliveira, Luiz N; Tereshchuk, Polina; Da Silva, Juarez L F

    2015-10-21

    Graphite is a stack of honeycomb (graphene) layers bound together by nonlocal, long-range van der Waals (vdW) forces, which are poorly described by density functional theory (DFT) within local or semilocal exchange-correlation functionals. Several approximations have been proposed to add a vdW correction to the DFT total energies (Stefan Grimme (D2 and D3) with different damping functions (D3-BJ), Tkatchenko-Scheffler (TS) without and with self-consistent screening (TS  +  SCS) effects). Those corrections have remarkly improved the agreement between our results and experiment for the interlayer distance (from 3.9 to 0.6%) [corrected] and high-level random-phase approximation (RPA) calculations for interlayer binding energy (from 69.5 to 1.5%). [corrected]. We report a systematic investigation of various structural, energetic and electron properties with the aforementioned vdW corrections followed by comparison with experimental and theoretical RPA data. Comparison between the resulting relative errors shows that the TS  +  SCS correction provides the best results; the other corrections yield significantly larger errors for at least one of the studied properties. If considerations of computational costs or convergence problems rule out the TS  +  SCS approach, we recommend the D3-BJ correction. Comparison between the computed π(z)Γ-splitting and experimental results shows disagreements of 10% or more with all vdW corrections. Even the computationally more expensive hybrid PBE0 has proved unable to improve the agreement with the measured splitting. Our results indicate that improvements of the exchange-correlation functionals beyond the vdW corrections are necessary to accurately describe the band structure of graphite.

  20. Turbulent mixing of a slightly supercritical van der Waals fluid at low-Mach number

    SciTech Connect

    Battista, F.; Casciola, C. M.; Picano, F.

    2014-05-15

    Supercritical fluids near the critical point are characterized by liquid-like densities and gas-like transport properties. These features are purposely exploited in different contexts ranging from natural products extraction/fractionation to aerospace propulsion. Large part of studies concerns this last context, focusing on the dynamics of supercritical fluids at high Mach number where compressibility and thermodynamics strictly interact. Despite the widespread use also at low Mach number, the turbulent mixing properties of slightly supercritical fluids have still not investigated in detail in this regime. This topic is addressed here by dealing with Direct Numerical Simulations of a coaxial jet of a slightly supercritical van der Waals fluid. Since acoustic effects are irrelevant in the low Mach number conditions found in many industrial applications, the numerical model is based on a suitable low-Mach number expansion of the governing equation. According to experimental observations, the weakly supercritical regime is characterized by the formation of finger-like structures – the so-called ligaments – in the shear layers separating the two streams. The mechanism of ligament formation at vanishing Mach number is extracted from the simulations and a detailed statistical characterization is provided. Ligaments always form whenever a high density contrast occurs, independently of real or perfect gas behaviors. The difference between real and perfect gas conditions is found in the ligament small-scale structure. More intense density gradients and thinner interfaces characterize the near critical fluid in comparison with the smoother behavior of the perfect gas. A phenomenological interpretation is here provided on the basis of the real gas thermodynamics properties.

  1. Probing Dynamics from Within in Negative Ions, Neutral Molecules and van der Waals Clusters

    NASA Astrophysics Data System (ADS)

    Berrah, Nora

    2006-05-01

    We have investigated with unprecedented levels of detail, processes and phenomena involving photodetachment of negative ions and photoionization of molecules and van der Waals clusters using the brightness, spectral resolution, tunability and polarization of the Advanced Light Source at Lawrence Berkeley National Laboratory. Photodetachment of negative ions exhibit structure and processes differing substantially from corresponding processes in neutral and positive ions, owing to the dominance of correlation in both the initial and final states. We will report on investigations carried out in inner-valence CN^- molecules giving rise to absolute double photodetachment cross sections as well as on fragmentation of negative ions clusters. We will also present absolute inner-shell photodetachment of atoms leading to multi-Auger decay [1] and discuss threshold laws [2] and PCI effects [3]. The measurements were conducted using collinear photon-ion spectroscopy. The evolution of inner-shell photoionization of clusters, as a function of photon energy, will be presented and compared to analogous measurements in atoms. The measurements were conducted using angle resolved two-dimensional photoelectron spectroscopy. Molecular fragmentation results using an ion imaging detector will briefly be presented. [1] R. C. Bilodeau, J. D. Bozek, G. D. Ackerman, N. D. Gibson, C. W.Walter, A. Aguilar, G. Turri, I. Dumitriu and N. Berrah, PRA 72, 050701(R), 2005. [2] R. C. Bilodeau, J. D. Bozek, N. D. Gibson, C. W. Walter, G. D. Ackerman, I. Dumitriu, and N. Berrah, Phys. Rev. Lett. 95, 083001 (2005). [3] R. C. Bilodeau, J. D. Bozek, A. Agular, G. D. Ackerman, and N. Berrah, (in press PRA brief report).

  2. Generalized van der Waals theory for the twist elastic modulus and helical pitch of cholesterics

    NASA Astrophysics Data System (ADS)

    Wensink, H. H.; Jackson, G.

    2009-06-01

    We present a generalized van der Waals theory for a lyotropic cholesteric system of chiral spherocylinders based on the classical Onsager theory for hard anisometric bodies. The rods consist of a hard spherocylindrical backbone surrounded with a square-well potential to account for attractive (or soft repulsive) interactions. Long-ranged chiral interactions are described by means of a simple pseudoscalar potential which is appropriate for weak chiral forces of a predominant electrostatic origin. Based on the formalism proposed by Straley [Phys. Rev. A 14, 1835 (1976)], we derive explicit algebraic expressions for the twist elastic modulus and the cholesteric pitch for rods as a function of density and temperature. The pitch varies nonmonotonically with density, with a sharp decrease at low packing fractions and a marked increase at higher packing fractions. A similar trend is found for the temperature dependence. The unwinding of the helical pitch at high densities (or low temperatures) originates from a strong enhancement of the local nematic order and the corresponding increase in the twist elastic resistance associated with near-parallel local rod configurations. This contrasts with the commonly held view that the increase in pitch with decreasing temperature as often observed in cholesterics is due to layer formation resulting from presmectic fluctuations. The increase in pitch with increasing temperature is consistent with an entropic unwinding as the chiral interaction becomes less significant than the thermal energy. The variation of the pitch with density, temperature, and contour length is in qualitative agreement with recent experimental results on colloidal fd rods.

  3. Turbulent mixing of a slightly supercritical van der Waals fluid at low-Mach number

    NASA Astrophysics Data System (ADS)

    Battista, F.; Picano, F.; Casciola, C. M.

    2014-05-01

    Supercritical fluids near the critical point are characterized by liquid-like densities and gas-like transport properties. These features are purposely exploited in different contexts ranging from natural products extraction/fractionation to aerospace propulsion. Large part of studies concerns this last context, focusing on the dynamics of supercritical fluids at high Mach number where compressibility and thermodynamics strictly interact. Despite the widespread use also at low Mach number, the turbulent mixing properties of slightly supercritical fluids have still not investigated in detail in this regime. This topic is addressed here by dealing with Direct Numerical Simulations of a coaxial jet of a slightly supercritical van der Waals fluid. Since acoustic effects are irrelevant in the low Mach number conditions found in many industrial applications, the numerical model is based on a suitable low-Mach number expansion of the governing equation. According to experimental observations, the weakly supercritical regime is characterized by the formation of finger-like structures - the so-called ligaments - in the shear layers separating the two streams. The mechanism of ligament formation at vanishing Mach number is extracted from the simulations and a detailed statistical characterization is provided. Ligaments always form whenever a high density contrast occurs, independently of real or perfect gas behaviors. The difference between real and perfect gas conditions is found in the ligament small-scale structure. More intense density gradients and thinner interfaces characterize the near critical fluid in comparison with the smoother behavior of the perfect gas. A phenomenological interpretation is here provided on the basis of the real gas thermodynamics properties.

  4. Interaction of boron with graphite: A van der Waals density functional study

    NASA Astrophysics Data System (ADS)

    Liu, Juan; Wang, Chen; Liang, Tongxiang; Lai, Wensheng

    2016-08-01

    Boron doping has been widely investigated to improve oxidation resistance of graphite. In this work the interaction of boron with graphite is investigated by a van der Waals density-functional approach (vdW-DF). The traditional density-functional theory (DFT) is well accounted for the binding in boron-substituted graphite. However, to investigate the boron atom on graphite surface and the interstitial impurities require use of a description of graphite interlayer binding. Traditional DFT cannot describe the vdW physics, for instance, GGA calculations show no relevant binding between graphite sheets. LDA shows some binding, but they fail to provide an accurate account of vdW forces. In this paper, we compare the calculation results of graphite lattice constant and cohesive energy by several functionals, it shows that vdW-DF such as two optimized functionals optB88-vdW and optB86b-vdW give much improved results than traditional DFT. The vdW-DF approach is then applied to study the interaction of boron with graphite. Boron adsorption, substitution, and intercalation are discussed in terms of structural parameters and electronic structures. When adsorbing on graphite surface, boron behaves as π electron acceptor. The π electron approaches boron atom because of more electropositive of boron than carbon. For substitution situation, the hole introduced by boron mainly concentrates on boron and the nearest three carbon atoms. The B-doped graphite system with the hole has less ability to offer electrons to oxygen, ultimately resulted in the inhibition of carbon oxidation. For interstitial doping, vdW-DFs show more accurate formation energy than LDA. PBE functional cannot describe the interstitial boron in graphite reasonably because of the ignoring binding of graphite sheets. The investigation of electron structures of boron doped graphite will play an important role in understanding the oxidation mechanism in further study.

  5. Comparative study of van der Waals corrections to the bulk properties of graphite

    NASA Astrophysics Data System (ADS)

    Rêgo, Celso R. C.; Oliveira, Luiz N.; Tereshchuk, Polina; Da Silva, Juarez L. F.

    2015-10-01

    Graphite is a stack of honeycomb (graphene) layers bound together by nonlocal, long-range van der Waals (vdW) forces, which are poorly described by density functional theory (DFT) within local or semilocal exchange-correlation functionals. Several approximations have been proposed to add a vdW correction to the DFT total energies (Stefan Grimme (D2 and D3) with different damping functions (D3-BJ), Tkatchenko-Scheffler (TS) without and with self-consistent screening (TS  +  SCS) effects). Those corrections have remarkly improved the agreement between our results and experiment for the interlayer distance (from 3.8 to 0.1%) and high-level random-phase approximation (RPA) calculations for interlayer binding energy (from 56.2 to 0.6%). We report a systematic investigation of various structural, energetic and electron properties with the aforementioned vdW corrections followed by comparison with experimental and theoretical RPA data. Comparison between the resulting relative errors shows that the TS  +  SCS correction provides the best results; the other corrections yield significantly larger errors for at least one of the studied properties. If considerations of computational costs or convergence problems rule out the TS  +  SCS approach, we recommend the D3-BJ correction. Comparison between the computed {πz}Γ\\text{ } -splitting and experimental results shows disagreements of 10% or more with all vdW corrections. Even the computationally more expensive hybrid PBE0 has proved unable to improve the agreement with the measured splitting. Our results indicate that improvements of the exchange-correlation functionals beyond the vdW corrections are necessary to accurately describe the band structure of graphite.

  6. van der Waals epitaxy of CdTe thin film on graphene

    NASA Astrophysics Data System (ADS)

    Mohanty, Dibyajyoti; Xie, Weiyu; Wang, Yiping; Lu, Zonghuan; Shi, Jian; Zhang, Shengbai; Wang, Gwo-Ching; Lu, Toh-Ming; Bhat, Ishwara B.

    2016-10-01

    van der Waals epitaxy (vdWE) facilitates the epitaxial growth of materials having a large lattice mismatch with the substrate. Although vdWE of two-dimensional (2D) materials on 2D materials have been extensively studied, the vdWE for three-dimensional (3D) materials on 2D substrates remains a challenge. It is perceived that a 2D substrate passes little information to dictate the 3D growth. In this article, we demonstrated the vdWE growth of the CdTe(111) thin film on a graphene buffered SiO2/Si substrate using metalorganic chemical vapor deposition technique, despite a 46% large lattice mismatch between CdTe and graphene and a symmetry change from cubic to hexagonal. Our CdTe films produce a very narrow X-ray rocking curve, and the X-ray pole figure analysis showed 12 CdTe (111) peaks at a chi angle of 70°. This was attributed to two sets of parallel epitaxy of CdTe on graphene with a 30° relative orientation giving rise to a 12-fold symmetry in the pole figure. First-principles calculations reveal that, despite the relatively small energy differences, the graphene buffer layer does pass epitaxial information to CdTe as the parallel epitaxy, obtained in the experiment, is energetically favored. The work paves a way for the growth of high quality CdTe film on a large area as well as on the amorphous substrates.

  7. Effects of truncating van der Waals interactions in lipid bilayer simulations

    SciTech Connect

    Huang, Kun; García, Angel E.

    2014-09-14

    In membrane simulations, it is known that truncating electrostatic interactions results in artificial ordering of lipids at the truncation distance. However, less attention has been paid to the effect of truncating van der Waals (VDW) interactions. Since the VDW potential decays as r{sup −6}, it is frequently neglected beyond a cutoff of around 1 nm. In some cases, analytical dispersion corrections appropriate for isotropic systems are applied to the pressure and the potential energy. In this work, we systematically study the effect of truncating VDW interactions at different cutoffs in 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine bilayers with the Berger force field. We show that the area per lipid decreases systematically when the VDW cutoff (r{sub c}) increases. This dependence persists even when dispersion corrections are applied. Since the analytical form of the dispersion correction is only appropriate for isotropic systems, we suggest that a long VDW cutoff should be used in preference over a short VDW cutoff. To determine the appropriate cutoff, we simulate liquid pentadecane with the Berger parameters and find that r{sub c} ≥ 1.4 nm is sufficient to reproduce the density and the heat of vaporization of pentadecane. Bilayers simulated with r{sub c} ≥ 1.4 nm show an improved agreement with experiments in both the form factors and the deuterium order parameters. Finally, we report that the VDW cutoff has a significant impact on the lipid flip-flop energetics and an inappropriate short VDW cutoff results in a bilayer that is prone to form water defects across the bilayer.

  8. Controlling Electronic Transitions in Fullerene van der Waals Aggregates via Supramolecular Assembly.

    PubMed

    Das, Saunak; Herrmann-Westendorf, Felix; Schacher, Felix H; Täuscher, Eric; Ritter, Uwe; Dietzek, Benjamin; Presselt, Martin

    2016-08-24

    Morphologies crucially determine the optoelectronic properties of organic semiconductors. Therefore, hierarchical and supramolecular approaches have been developed for targeted design of supramolecular ensembles of organic semiconducting molecules and performance improvement of, e.g., organic solar cells (OSCs), organic light emitting diodes (OLEDs), and organic field-effect transistors (OFETs). We demonstrate how the photonic properties of fullerenes change with the formation of van der Waals aggregates. We identified supramolecular structures with broadly tunable absorption in the visible spectral range and demonstrated how to form aggregates with targeted visible (vis) absorption. To control supramolecular structure formation, we functionalized the C60-backbone with polar (bis-polyethylene glycol malonate-MPEG) tails, thus yielding an amphiphilic fullerene derivative that self-assembles at interfaces. Aggregates of systematically tuned size were obtained from concentrating MPEGC60 in stearic acid matrices, while different supramolecular geometries were provoked via different thin film preparation methods, namely spin-casting and Langmuir-Blodgett (LB) deposition from an air-water interface. We demonstrated that differences in molecular orientation in LB films (C2v type point group aggregates) and spin-casting (stochastic aggregates) lead to huge changes in electronic absorption spectra due to symmetry and orientation reasons. These differences in the supramolecular structures, causing the different photonic properties of spin-cast and LB films, could be identified by means of quantum chemical calculations. Employing supramolecular assembly, we propounded that molecular symmetry in fullerene aggregates is extremely important in controlling vis absorption to harvest photons efficiently, when mixed with a donor molecule, thus improving active layer design and performance of OSCs. PMID:27482718

  9. EDITORIAL: Van der Waals interactions in advanced materials, in memory of David C Langreth Van der Waals interactions in advanced materials, in memory of David C Langreth

    NASA Astrophysics Data System (ADS)

    Hyldgaard, Per; Rahman, Talat S.

    2012-10-01

    The past decade has seen a dramatic rise in interest in exploring the role that van der Waals (vdW) or dispersion forces play in materials and in material behavior. Part of this stems from the obvious fact that vdW interactions (and other weak forces, such as Casimir) underpin molecular recognition, i.e., nature's approach to search for a match between genes and anti-genes and hence enable biological function. Less obvious is the recognition that vdW interactions affect a multitude of properties of a vast variety of materials in general, some of which also have strong technological applications. While for two atom- or orbital-sized material fragments the dispersive contributions to binding are small compared to those from the better known forms (ionic, covalent, metallic), those between sparse materials (spread over extended areas) can be of paramount importance. For example, an understanding of binding in graphite cannot arise solely from a study of the graphene layers individually, but also requires insight from inter-sheet graphene vdW bonding. It is the extended-area vdW bonding that provides sufficient cohesion to make graphite a robust, naturally occurring material. In fact, it is the vdW-bonded graphite, and not the all-covalently bonded diamond, that is the preferred form of pure carbon under ambient conditions. Also important is the understanding that vdW attraction can attain a dramatic relevance even if the material fragments, the building blocks, are not necessarily parallel from the outset or smooth when viewed in isolation (such as a graphene sheet or a carbon nanotube). This can happen if the building blocks have some softness and flexibility and allow an internal relative alignment to emerge. The vdW forces can then cause increasingly larger parts of the interacting fragments to line up at sub-nanometer separations and thus beget more areas with a sizable vdW bonding contribution. The gecko can scale a wall because it can bring its flexible hairs

  10. Beyond the Van Der Waals loop: What can be learned from simulating Lennard-Jones fluids inside the region of phase coexistence

    NASA Astrophysics Data System (ADS)

    Binder, Kurt; Block, Benjamin J.; Virnau, Peter; Tröster, Andreas

    2012-12-01

    As a rule, mean-field theories applied to a fluid that can undergo a transition from saturated vapor at density ρυ to a liquid at density ρℓ yield a van der Waals loop. For example, isotherms of the chemical potential μ(T ,ρ) as a function of the density ρ at a fixed temperature T less than the critical temperature Tc exhibit a maximum and a minimum. Metastable and unstable parts of the van der Waals loop can be eliminated by the Maxwell construction. Van der Waals loops and the corresponding double minimum potentials are mean-field artifacts. Simulations at fixed μ =μcoex for ρυ<ρ <ρℓ yield a loop, but for sufficiently large systems this loop does not resemble the van der Waals loop and reflects interfacial effects on phase coexistence due to finite size effects. In contrast to the van der Waals loop, all parts of the loop found in simulations are thermodynamically stable. The successive umbrella sampling algorithm is described as a convenient tool for seeing these effects. It is shown that the maximum of the loop is not the stability limit of a metastable vapor but signifies the droplet evaporation-condensation transition. The descending part of the loop contains information on Tolman-like corrections to the surface tension, rather than describing unstable states.

  11. Two-atom interaction energies with one atom in an excited state: van der Waals potentials versus level shifts

    NASA Astrophysics Data System (ADS)

    Donaire, M.

    2016-05-01

    I revisit the problem of the interaction between two dissimilar atoms with one atom in an excited state, recently addressed by Berman [Phys. Rev. A 91, 042127 (2015), 10.1103/PhysRevA.91.042127], Donaire et al. [Phys. Rev. Lett. 115, 033201 (2015), 10.1103/PhysRevLett.115.033201], and Milonni and Rafsanjani [Phys. Rev. A 92, 062711 (2015), 10.1103/PhysRevA.92.062711], for which precedent approaches have given conflicting results. In the first place, I discuss to what extent these works provide equivalent results. I show that the phase-shift rate of the two-atom wave function computed by Berman, the van der Waals potential of the excited atom by Donaire et al., and the level shift of the excited atom by Milonni and Rafsanjani possess equivalent expressions in the quasistationary approximation. In addition, I show that the level shift of the ground-state atom computed by Milonni and Rafsanjani is equivalent to its van der Waals potential. A diagrammatic representation of all those quantities is provided. The equivalences among them are, however, not generic. In particular, it is found that for the case of the interaction between two identical atoms excited, the phase-shift rate and the van der Waals potentials differ. Concerning the conflicting results of previous approaches in regards to the spatial oscillation of the interactions, I conclude, in agreement with Berman and with Milonni and Rafsanjani, that they refer to different physical quantities. The impacts of free-space dissipation and finite excitation rates on the dynamics of the potentials are analyzed. In contrast with Milonni and Rafsanjani, the oscillatory versus monotonic spatial forms of the potentials of each atom are found not to be related to the reversible versus irreversible nature of the excitation transfer involved.

  12. Van der Waals heterostructure of phosphorene and graphene: tuning the Schottky barrier and doping by electrostatic gating.

    PubMed

    Padilha, J E; Fazzio, A; da Silva, Antônio J R

    2015-02-13

    In this Letter, we study the structural and electronic properties of single-layer and bilayer phosphorene with graphene. We show that both the properties of graphene and phosphorene are preserved in the composed heterostructure. We also show that via the application of a perpendicular electric field, it is possible to tune the position of the band structure of phosphorene with respect to that of graphene. This leads to control of the Schottky barrier height and doping of phosphorene, which are important features in the design of new devices based on van der Waals heterostructures.

  13. Formation of a cyclic dimer containing two mirror image monomers in the solid state controlled by van der Waals forces.

    PubMed

    Zhang, Zibin; Yu, Guocan; Han, Chengyou; Liu, Jiyong; Ding, Xia; Yu, Yihua; Huang, Feihe

    2011-09-16

    Two new copillar[5]arenes were prepared. They are arranged in two completely different motifs, a cyclic dimer containing two monomers with two different conformations that are mirror images of each other and linear supramolecular polymers in the solid state. Not only has it been shown that to form this kind of dimer is a unique feature associated with pillar[5]arene macrocycles but also it was demonstrated that weak van der Waals forces can be used to control the self-organization of monomers during their supramolecular polymerization process.

  14. Differential properties of Van der Pol — Duffing mathematical model of cerebrovascular haemodynamics based on clinical measurements

    NASA Astrophysics Data System (ADS)

    Parshin, D. V.; Ufimtseva, I. V.; Cherevko, A. A.; Khe, A. K.; Orlov, K. Yu; Krivoshapkin, A. L.; Chupakhin, A. P.

    2016-06-01

    The present paper discusses the method of identification (diseased/healthy) human cerebral vessels by using of mathematical model. Human cerebral circulation as a single tuned circuit, which consists of blood flow, elastic vessels and elastic brain gel tissue is under consideration. Non linear Van der Pol-Duffing equation is assumed as mathematical model of cerebrovascular circulation. Hypothesis of vascular pathology existence in some position of blood vessel, based on mathematical model properties for this position is formulated. Good reliability of hypothesis is proved statistically for 7 patients with arterial aneurysms.

  15. Precise, Self-Limited Epitaxy of Ultrathin Organic Semiconductors and Heterojunctions Tailored by van der Waals Interactions.

    PubMed

    Wu, Bing; Zhao, Yinghe; Nan, Haiyan; Yang, Ziyi; Zhang, Yuhan; Zhao, Huijuan; He, Daowei; Jiang, Zonglin; Liu, Xiaolong; Li, Yun; Shi, Yi; Ni, Zhenhua; Wang, Jinlan; Xu, Jian-Bin; Wang, Xinran

    2016-06-01

    Precise assembly of semiconductor heterojunctions is the key to realize many optoelectronic devices. By exploiting the strong and tunable van der Waals (vdW) forces between graphene and organic small molecules, we demonstrate layer-by-layer epitaxy of ultrathin organic semiconductors and heterostructures with unprecedented precision with well-defined number of layers and self-limited characteristics. We further demonstrate organic p-n heterojunctions with molecularly flat interface, which exhibit excellent rectifying behavior and photovoltaic responses. The self-limited organic molecular beam epitaxy (SLOMBE) is generically applicable for many layered small-molecule semiconductors and may lead to advanced organic optoelectronic devices beyond bulk heterojunctions.

  16. The role of asymmetrical and repulsive coupling in the dynamics of two coupled van der Pol oscillators.

    PubMed

    Astakhov, Sergey; Gulai, Artem; Fujiwara, Naoya; Kurths, Jürgen

    2016-02-01

    A system of two asymmetrically coupled van der Pol oscillators has been studied. We show that the introduction of a small asymmetry in coupling leads to the appearance of a "wideband synchronization channel" in the bifurcational structure of the parameter space. An increase of asymmetry and transition to repulsive interaction leads to the formation of multistability. As the result, the tip of the Arnold's tongue widens due to the formation of folds defined by saddle-node bifurcation curves for the limit cycles on the torus. PMID:26931583

  17. Measurement of radial deformation of single-wall carbon nanotubes induced by intertube van der Waals forces

    SciTech Connect

    Jiang, Y. Y.; Kim, T.; Zuo, J. M.; Zhou, W.; Huang, Y.

    2008-04-15

    A cylindrical single-wall carbon nanotube (SWCNT) deforms in a nanotube bundle by van der Waals forces. The deformation is hard to measure, but is required in order to understand the properties of bundles. Here, we show that such deformations can be measured from changes in electron diffraction intensities. We demonstrate this for a bundle of two SWCNTs (d=2.05 and 1.56 nm). Deformation model predicted by atomistic simulations is scaled to fit the experiment. We show that the best fit gives flattening values of 0.7 and 0.35 A at the middle of the binding surface for the two SWCNTs.

  18. Piecewise-linear Bonhoeffer-van der Pol dynamics explaining mixed-mode oscillation-incrementing bifurcations

    NASA Astrophysics Data System (ADS)

    Shimizu, Kuniyasu; Inaba, Naohiko

    2016-03-01

    This study investigates mixed-mode oscillations (MMOs) generated by weakly driven piecewise-linear Bonhoeffer-van der Pol and Fitzhugh-Nagumo dynamics. Such a simple piecewise-linear oscillator can generate extremely complex MMO bifurcations such as mixed-mode oscillation-incrementing bifurcations (MMOIBs) and intermittently chaotic MMOs. These remarkable bifurcations are confirmed using explicit solutions of the piecewise-linear differential equation. Moreover, Lorenz plots are introduced, which strongly suggest that MMOIBs occur successively many times, and show that each MMO sequence is surrounded by chaos.

  19. The role of asymmetrical and repulsive coupling in the dynamics of two coupled van der Pol oscillators

    NASA Astrophysics Data System (ADS)

    Astakhov, Sergey; Gulai, Artem; Fujiwara, Naoya; Kurths, Jürgen

    2016-02-01

    A system of two asymmetrically coupled van der Pol oscillators has been studied. We show that the introduction of a small asymmetry in coupling leads to the appearance of a "wideband synchronization channel" in the bifurcational structure of the parameter space. An increase of asymmetry and transition to repulsive interaction leads to the formation of multistability. As the result, the tip of the Arnold's tongue widens due to the formation of folds defined by saddle-node bifurcation curves for the limit cycles on the torus.

  20. Fibonacci stairs and the Afraimovich-Pesin dimension for a stroboscopic section of a nonautonomous van der Pol oscillator

    NASA Astrophysics Data System (ADS)

    Semenova, Nadezhda I.; Anishchenko, Vadim S.

    2015-07-01

    Statistics of Poincaré recurrences is studied in the stroboscopic section of trajectories of a nonautonomous van der Pol oscillator in the framework of the global approach. It is shown that when the oscillator frequency and the frequency of the external force are irrationally related, the set obtained stroboscopically is equivalent to the circle map. For small values of the external amplitude, the Fibonacci stairs is constructed for the golden and silver ratios and its universal properties are confirmed. It is established that the Afraimovich-Pesin dimension for the map in the stroboscopic section is αc = 1 for Diophantine irrational rotation numbers.

  1. Fibonacci stairs and the Afraimovich-Pesin dimension for a stroboscopic section of a nonautonomous van der Pol oscillator.

    PubMed

    Semenova, Nadezhda I; Anishchenko, Vadim S

    2015-07-01

    Statistics of Poincaré recurrences is studied in the stroboscopic section of trajectories of a nonautonomous van der Pol oscillator in the framework of the global approach. It is shown that when the oscillator frequency and the frequency of the external force are irrationally related, the set obtained stroboscopically is equivalent to the circle map. For small values of the external amplitude, the Fibonacci stairs is constructed for the golden and silver ratios and its universal properties are confirmed. It is established that the Afraimovich-Pesin dimension for the map in the stroboscopic section is αc = 1 for Diophantine irrational rotation numbers. PMID:26232962

  2. Van der Waals corrected DFT study of adsorption of groups VA and VIA hydrides on graphene monoxide

    NASA Astrophysics Data System (ADS)

    Notash, M. Yaghoobi; Ebrahimzadeh, A. Rastkar

    2016-06-01

    Adsorption properties of H2O, H2S, NH3 and PH3 on graphene monoxide (GMO) nano flack are investigated using density functional theory (DFT). Calculations were carried out by van der Waals correction and general gradient approximation. The adsorption energies and charge transfer between species are obtained and discussed for the considered positions of adsorbate molecules. Charge transfer analysis show that the gas molecules act as an electron acceptor in all cases. The analysis of the adsorption energies suggest GMO can be a good candidate for the adsorption of these molecules.

  3. Accurate intermolecular ground state potential of the Ar-N2 van der Waals complex.

    PubMed

    Munteanu, Cristian R; Cacheiro, Javier López; Fernández, Berta

    2004-12-01

    After carrying out a systematic basis set convergence study, we evaluate several ground state potential energy surfaces of the Ar-N(2) van der Waals complex at the coupled cluster singles and doubles model including connected triples corrections. We use the aug-cc-pVXZ (X=5,Q,D) and the daug-cc-pVQZ basis sets augmented with a set of 3s3p2d1f1g (denoted 33211) and 3s3p2d2f1g (denoted 33221) midbond functions, respectively. aug-cc-pVTZ-33211 results were available in the literature. The aug-cc-pV5Z-33211 (daug-cc-pVQZ-33221) surface is characterized by a T-shaped minimum at R(e)=3.709 (3.701) A and of 99.01 (102.50) cm(-1), and a linear saddle point at 4.260 (4.257) A and D(e)=75.28 (79.73) cm(-1). These results are compared with the values provided by the semiempirical potentials available, and those of previous theoretical studies. The basis set convergence of the intermolecular potentials is also analyzed. From the potentials the rovibronic spectroscopic properties are determined. We study the basis set convergence of the rotational frequencies. The binding parameters that characterized the aug-cc-pVTZ-33211 surface are reasonable, but the surface is not good enough to evaluate the microwave spectra. The aug-cc-pVQZ-33211 basis set results considerably improve the triple zeta and are close to the aug-cc-pV5Z-33211. Considering the small differences between the quadruple and the quintuple zeta surfaces, the latter results can be expected to be close to convergence. At this level the differences with respect to the accurate experimental frequencies are in the order of 0.7%. In the case of the daug-cc-pVXZ-33211,33221 (X=5,Q,T,D) series, the convergence of the interaction energies with respect to basis set improvement is not so smooth. The errors in the frequencies obtained with the daug-cc-pVQZ-33221 basis set with respect to experiment are in the order of 0.4%.

  4. Redox levels in aqueous solution: Effect of van der Waals interactions and hybrid functionals

    NASA Astrophysics Data System (ADS)

    Ambrosio, Francesco; Miceli, Giacomo; Pasquarello, Alfredo

    2015-12-01

    We investigate redox levels in aqueous solution using a combination of ab initio molecular dynamics (MD) simulations and thermodynamic integration methods. The molecular dynamics are performed with both the semilocal Perdew-Burke-Ernzerhof functional and a nonlocal functional (rVV10) accounting for van der Waals (vdW) interactions. The band edges are determined through three different schemes, namely, from the energy of the highest occupied and of the lowest unoccupied Kohn-Sham states, from total-energy differences, and from a linear extrapolation of the density of states. It is shown that the latter does not depend on the system size while the former two are subject to significant finite-size effects. For the redox levels, we provide a formulation in analogy to the definition of charge transition levels for defects in crystalline materials. We consider the H+/H2 level defining the standard hydrogen electrode, the OH-/OH∗ level corresponding to the oxidation of the hydroxyl ion, and the H2O/OH∗ level for the dehydrogenation of water. In spite of the large structural modifications induced in liquid water, vdW interactions do not lead to any significant structural effect on the calculated band gap and band edges. The effect on the redox levels is also small since the solvation properties of ionic species are little affected by vdW interactions. Since the electronic properties are not significantly affected by the underlying structural properties, it is justified to perform hybrid functional calculations on the configurations of our MD simulations. The redox levels calculated as a function of the fraction α of Fock exchange are found to remain constant, reproducing a general behavior previously observed for charge transition levels of defects. Comparison with experimental values shows very good agreement. At variance, the band edges and the band gap evolve linearly with α. For α ≃ 0.40, we achieve a band gap, band-edge positions, and redox levels in overall

  5. Redox levels in aqueous solution: Effect of van der Waals interactions and hybrid functionals

    SciTech Connect

    Ambrosio, Francesco Miceli, Giacomo; Pasquarello, Alfredo

    2015-12-28

    We investigate redox levels in aqueous solution using a combination of ab initio molecular dynamics (MD) simulations and thermodynamic integration methods. The molecular dynamics are performed with both the semilocal Perdew-Burke-Ernzerhof functional and a nonlocal functional (rVV10) accounting for van der Waals (vdW) interactions. The band edges are determined through three different schemes, namely, from the energy of the highest occupied and of the lowest unoccupied Kohn-Sham states, from total-energy differences, and from a linear extrapolation of the density of states. It is shown that the latter does not depend on the system size while the former two are subject to significant finite-size effects. For the redox levels, we provide a formulation in analogy to the definition of charge transition levels for defects in crystalline materials. We consider the H{sup +}/H{sub 2} level defining the standard hydrogen electrode, the OH{sup −}/OH{sup ∗} level corresponding to the oxidation of the hydroxyl ion, and the H{sub 2}O/OH{sup ∗} level for the dehydrogenation of water. In spite of the large structural modifications induced in liquid water, vdW interactions do not lead to any significant structural effect on the calculated band gap and band edges. The effect on the redox levels is also small since the solvation properties of ionic species are little affected by vdW interactions. Since the electronic properties are not significantly affected by the underlying structural properties, it is justified to perform hybrid functional calculations on the configurations of our MD simulations. The redox levels calculated as a function of the fraction α of Fock exchange are found to remain constant, reproducing a general behavior previously observed for charge transition levels of defects. Comparison with experimental values shows very good agreement. At variance, the band edges and the band gap evolve linearly with α. For α ≃ 0.40, we achieve a band gap, band

  6. Redox levels in aqueous solution: Effect of van der Waals interactions and hybrid functionals.

    PubMed

    Ambrosio, Francesco; Miceli, Giacomo; Pasquarello, Alfredo

    2015-12-28

    We investigate redox levels in aqueous solution using a combination of ab initio molecular dynamics (MD) simulations and thermodynamic integration methods. The molecular dynamics are performed with both the semilocal Perdew-Burke-Ernzerhof functional and a nonlocal functional (rVV10) accounting for van der Waals (vdW) interactions. The band edges are determined through three different schemes, namely, from the energy of the highest occupied and of the lowest unoccupied Kohn-Sham states, from total-energy differences, and from a linear extrapolation of the density of states. It is shown that the latter does not depend on the system size while the former two are subject to significant finite-size effects. For the redox levels, we provide a formulation in analogy to the definition of charge transition levels for defects in crystalline materials. We consider the H(+)/H2 level defining the standard hydrogen electrode, the OH(-)/OH(∗) level corresponding to the oxidation of the hydroxyl ion, and the H2O/OH(∗) level for the dehydrogenation of water. In spite of the large structural modifications induced in liquid water, vdW interactions do not lead to any significant structural effect on the calculated band gap and band edges. The effect on the redox levels is also small since the solvation properties of ionic species are little affected by vdW interactions. Since the electronic properties are not significantly affected by the underlying structural properties, it is justified to perform hybrid functional calculations on the configurations of our MD simulations. The redox levels calculated as a function of the fraction α of Fock exchange are found to remain constant, reproducing a general behavior previously observed for charge transition levels of defects. Comparison with experimental values shows very good agreement. At variance, the band edges and the band gap evolve linearly with α. For α ≃ 0.40, we achieve a band gap, band-edge positions, and redox levels in

  7. Gas-transfer analysis. Section H - real gas results via the van der Waals equation of state and virial expansion extension of its limiting Abel-Noble form

    SciTech Connect

    Chenoweth, D R

    1983-06-01

    An ideal-gas, quasi-steady, duct-flow model previously formulated for small scale gas-transfer problems is extended to real gases via the van der Waals equation of state as well as general virial expansions. The model is applicable for an arbitrary series of ducting components where each is described empirically by total pressure and total temperature change correlations. The adequacy of the van der Waals model for gas-transfer calculations is verified by comparisons with: (1) real gas PVT data; (2) the magnitudes of the controlling effects; and (3) approximate limiting case solutions with numerical results using more accurate real-gas modeling. 25 figures.

  8. Exfoliation and Raman Spectroscopic Fingerprint of Few-Layer NiPS3 Van der Waals Crystals

    PubMed Central

    Kuo, Cheng-Tai; Neumann, Michael; Balamurugan, Karuppannan; Park, Hyun Ju; Kang, Soonmin; Shiu, Hung Wei; Kang, Jin Hyoun; Hong, Byung Hee; Han, Moonsup; Noh, Tae Won; Park, Je-Geun

    2016-01-01

    The range of mechanically cleavable Van der Waals crystals covers materials with diverse physical and chemical properties. However, very few of these materials exhibit magnetism or magnetic order, and thus the provision of cleavable magnetic compounds would supply invaluable building blocks for the design of heterostructures assembled from Van der Waals crystals. Here we report the first successful isolation of monolayer and few-layer samples of the compound nickel phosphorus trisulfide (NiPS3) by mechanical exfoliation. This material belongs to the class of transition metal phosphorus trisulfides (MPS3), several of which exhibit antiferromagnetic order at low temperature, and which have not been reported in the form of ultrathin sheets so far. We establish layer numbers by optical bright field microscopy and atomic force microscopy, and perform a detailed Raman spectroscopic characterization of bilayer and thicker NiPS3 flakes. Raman spectral features are strong functions of excitation wavelength and sample thickness, highlighting the important role of interlayer coupling. Furthermore, our observations provide a spectral fingerprint for distinct layer numbers, allowing us to establish a sensitive and convenient means for layer number determination. PMID:26875451

  9. Microwave spectrum and structure of the 3,5-difluoropyridine⋯CO2 van der Waals complex

    NASA Astrophysics Data System (ADS)

    Dewberry, Christopher T.; Cornelius, Ryan D.; Mackenzie, Rebecca B.; Smith, C. J.; Dvorak, Michael A.; Leopold, Kenneth R.

    2016-10-01

    The rotational spectrum of the weakly bound complex 3,5-difluoropyridine⋯CO2 has been observed using pulsed-nozzle Fourier transform microwave spectroscopy. Spectroscopic constants are reported for the parent and 13CO2 isotopologues. The data indicate a planar structure in which the nitrogen approaches the carbon of the CO2 with either a C2v or effectively C2v geometry in the ground vibrational state. The N⋯C van der Waals bond distance is 2.8245(16) Å and the oxygen⋯ortho-hydrogen distance is 3.091(2) Å. The N⋯C van der Waals bond length is 0.027(8) Å longer than that previously determined for pyridine-CO2, but is still considerably shorter than the 2.998 Å distance in HCN⋯CO2. M06-2X/6-311++G(3df,3pd) calculations place the binding energy of the complex at 4.3 kcal/mol (4.1 kcal/mol with counterpoise correction). The calculations further indicate that a secondary interaction between the ortho-hydrogens of the ring and the CO2 oxygens account for ∼50% of the total binding energy.

  10. Exfoliation and Raman Spectroscopic Fingerprint of Few-Layer NiPS3 Van der Waals Crystals.

    PubMed

    Kuo, Cheng-Tai; Neumann, Michael; Balamurugan, Karuppannan; Park, Hyun Ju; Kang, Soonmin; Shiu, Hung Wei; Kang, Jin Hyoun; Hong, Byung Hee; Han, Moonsup; Noh, Tae Won; Park, Je-Geun

    2016-01-01

    The range of mechanically cleavable Van der Waals crystals covers materials with diverse physical and chemical properties. However, very few of these materials exhibit magnetism or magnetic order, and thus the provision of cleavable magnetic compounds would supply invaluable building blocks for the design of heterostructures assembled from Van der Waals crystals. Here we report the first successful isolation of monolayer and few-layer samples of the compound nickel phosphorus trisulfide (NiPS3) by mechanical exfoliation. This material belongs to the class of transition metal phosphorus trisulfides (MPS3), several of which exhibit antiferromagnetic order at low temperature, and which have not been reported in the form of ultrathin sheets so far. We establish layer numbers by optical bright field microscopy and atomic force microscopy, and perform a detailed Raman spectroscopic characterization of bilayer and thicker NiPS3 flakes. Raman spectral features are strong functions of excitation wavelength and sample thickness, highlighting the important role of interlayer coupling. Furthermore, our observations provide a spectral fingerprint for distinct layer numbers, allowing us to establish a sensitive and convenient means for layer number determination. PMID:26875451

  11. Exfoliation and Raman Spectroscopic Fingerprint of Few-Layer NiPS3 Van der Waals Crystals.

    PubMed

    Kuo, Cheng-Tai; Neumann, Michael; Balamurugan, Karuppannan; Park, Hyun Ju; Kang, Soonmin; Shiu, Hung Wei; Kang, Jin Hyoun; Hong, Byung Hee; Han, Moonsup; Noh, Tae Won; Park, Je-Geun

    2016-02-15

    The range of mechanically cleavable Van der Waals crystals covers materials with diverse physical and chemical properties. However, very few of these materials exhibit magnetism or magnetic order, and thus the provision of cleavable magnetic compounds would supply invaluable building blocks for the design of heterostructures assembled from Van der Waals crystals. Here we report the first successful isolation of monolayer and few-layer samples of the compound nickel phosphorus trisulfide (NiPS3) by mechanical exfoliation. This material belongs to the class of transition metal phosphorus trisulfides (MPS3), several of which exhibit antiferromagnetic order at low temperature, and which have not been reported in the form of ultrathin sheets so far. We establish layer numbers by optical bright field microscopy and atomic force microscopy, and perform a detailed Raman spectroscopic characterization of bilayer and thicker NiPS3 flakes. Raman spectral features are strong functions of excitation wavelength and sample thickness, highlighting the important role of interlayer coupling. Furthermore, our observations provide a spectral fingerprint for distinct layer numbers, allowing us to establish a sensitive and convenient means for layer number determination.

  12. Exfoliation and Raman Spectroscopic Fingerprint of Few-Layer NiPS3 Van der Waals Crystals

    NASA Astrophysics Data System (ADS)

    Kuo, Cheng-Tai; Neumann, Michael; Balamurugan, Karuppannan; Park, Hyun Ju; Kang, Soonmin; Shiu, Hung Wei; Kang, Jin Hyoun; Hong, Byung Hee; Han, Moonsup; Noh, Tae Won; Park, Je-Geun

    2016-02-01

    The range of mechanically cleavable Van der Waals crystals covers materials with diverse physical and chemical properties. However, very few of these materials exhibit magnetism or magnetic order, and thus the provision of cleavable magnetic compounds would supply invaluable building blocks for the design of heterostructures assembled from Van der Waals crystals. Here we report the first successful isolation of monolayer and few-layer samples of the compound nickel phosphorus trisulfide (NiPS3) by mechanical exfoliation. This material belongs to the class of transition metal phosphorus trisulfides (MPS3), several of which exhibit antiferromagnetic order at low temperature, and which have not been reported in the form of ultrathin sheets so far. We establish layer numbers by optical bright field microscopy and atomic force microscopy, and perform a detailed Raman spectroscopic characterization of bilayer and thicker NiPS3 flakes. Raman spectral features are strong functions of excitation wavelength and sample thickness, highlighting the important role of interlayer coupling. Furthermore, our observations provide a spectral fingerprint for distinct layer numbers, allowing us to establish a sensitive and convenient means for layer number determination.

  13. Van der waals interactions and decrease of the rotational barrier of methyl-sized rotators: a theoretical study.

    PubMed

    Baudry, Jerome

    2006-08-30

    Rotational barriers of methyl-sized molecular rotators are investigated theoretically using ab initio and empirical force field calculations in molecular models simulating various environmental conditions experienced by the molecular rotors. Calculations on neopentane surrounded by methyl groups suggest that the neopentane's methyl rotational potential energy barrier can be reduced by up to an order of magnitude by locating satellite functional groups around the rotator at a geometry that destabilizes the staggered conformation of the rotator through van der Waals repulsive interactions and reduces the staggered/eclipsed relative energy difference. Molecular mechanics and molecular dynamics calculations indicate that this barrier-reducing geometry can also be found in molecular rotators surface mounted on graphite surfaces or carbon nanotube models. In these models, molecular dynamics simulations show that the rotation of methyl-sized functional groups can be catalyzed by van der Waals interactions, thus making very rigid rotators become thermally activated at room temperature. These results are discussed in the context of design of nanostructures and use of methyl groups as markers for microenvironmental conditions.

  14. Layer-Controlled Chemical Vapor Deposition Growth of MoS2 Vertical Heterostructures via van der Waals Epitaxy.

    PubMed

    Samad, Leith; Bladow, Sage M; Ding, Qi; Zhuo, Junqiao; Jacobberger, Robert M; Arnold, Michael S; Jin, Song

    2016-07-26

    The fascinating semiconducting and optical properties of monolayer and few-layer transition metal dichalcogenides, as exemplified by MoS2, have made them promising candidates for optoelectronic applications. Controllable growth of heterostructures based on these layered materials is critical for their successful device applications. Here, we report a direct low temperature chemical vapor deposition (CVD) synthesis of MoS2 monolayer/multilayer vertical heterostructures with layer-controlled growth on a variety of layered materials (SnS2, TaS2, and graphene) via van der Waals epitaxy. Through precise control of the partial pressures of the MoCl5 and elemental sulfur precursors, reaction temperatures, and careful tracking of the ambient humidity, we have successfully and reproducibly grown MoS2 vertical heterostructures from 1 to 6 layers over a large area. The monolayer MoS2 heterostructure was verified using cross-sectional high resolution transmission electron microscopy (HRTEM) while Raman and photoluminescence spectroscopy confirmed the layer-controlled MoS2 growth and heterostructure electronic interactions. Raman, photoluminescence, and energy dispersive X-ray spectroscopy (EDS) mappings verified the uniform coverage of the MoS2 layers. This reaction provides an ideal method for the scalable layer-controlled growth of transition metal dichalcogenide heterostructures via van der Waals epitaxy for a variety of optoelectronic applications. PMID:27373305

  15. Multimodal Nonlinear Optical Imaging of MoS₂ and MoS₂-Based van der Waals Heterostructures.

    PubMed

    Li, Dawei; Xiong, Wei; Jiang, Lijia; Xiao, Zhiyong; Golgir, Hossein Rabiee; Wang, Mengmeng; Huang, Xi; Zhou, Yunshen; Lin, Zhe; Song, Jingfeng; Ducharme, Stephen; Jiang, Lan; Silvain, Jean-Francois; Lu, Yongfeng

    2016-03-22

    van der Waals layered structures, notably the transitional metal dichalcogenides (TMDs) and TMD-based heterostructures, have recently attracted immense interest due to their unique physical properties and potential applications in electronics, optoelectronics, and energy harvesting. Despite the recent progress, it is still a challenge to perform comprehensive characterizations of critical properties of these layered structures, including crystal structures, chemical dynamics, and interlayer coupling, using a single characterization platform. In this study, we successfully developed a multimodal nonlinear optical imaging method to characterize these critical properties of molybdenum disulfide (MoS2) and MoS2-based heterostructures. Our results demonstrate that MoS2 layers exhibit strong four-wave mixing (FWM), sum-frequency generation (SFG), and second-harmonic generation (SHG) nonlinear optical characteristics. We believe this is the first observation of FWM and SFG from TMD layers. All three kinds of optical nonlinearities are sensitive to layer numbers, crystal orientation, and interlayer coupling. The combined and simultaneous SHG/SFG-FWM imaging not only is capable of rapid evaluation of crystal quality and precise determination of odd-even layers but also provides in situ monitoring of the chemical dynamics of thermal oxidation in MoS2 and interlayer coupling in MoS2-graphene heterostructures. This method has the advantages of versatility, high fidelity, easy operation, and fast imaging, enabling comprehensive characterization of van der Waals layered structures for fundamental research and practical applications. PMID:26914313

  16. Layer-Controlled Chemical Vapor Deposition Growth of MoS2 Vertical Heterostructures via van der Waals Epitaxy.

    PubMed

    Samad, Leith; Bladow, Sage M; Ding, Qi; Zhuo, Junqiao; Jacobberger, Robert M; Arnold, Michael S; Jin, Song

    2016-07-26

    The fascinating semiconducting and optical properties of monolayer and few-layer transition metal dichalcogenides, as exemplified by MoS2, have made them promising candidates for optoelectronic applications. Controllable growth of heterostructures based on these layered materials is critical for their successful device applications. Here, we report a direct low temperature chemical vapor deposition (CVD) synthesis of MoS2 monolayer/multilayer vertical heterostructures with layer-controlled growth on a variety of layered materials (SnS2, TaS2, and graphene) via van der Waals epitaxy. Through precise control of the partial pressures of the MoCl5 and elemental sulfur precursors, reaction temperatures, and careful tracking of the ambient humidity, we have successfully and reproducibly grown MoS2 vertical heterostructures from 1 to 6 layers over a large area. The monolayer MoS2 heterostructure was verified using cross-sectional high resolution transmission electron microscopy (HRTEM) while Raman and photoluminescence spectroscopy confirmed the layer-controlled MoS2 growth and heterostructure electronic interactions. Raman, photoluminescence, and energy dispersive X-ray spectroscopy (EDS) mappings verified the uniform coverage of the MoS2 layers. This reaction provides an ideal method for the scalable layer-controlled growth of transition metal dichalcogenide heterostructures via van der Waals epitaxy for a variety of optoelectronic applications.

  17. Rotational spectroscopic and ab initio studies of the Xe-H2O van der Waals dimer.

    PubMed

    Wen, Qing; Jäger, Wolfgang

    2006-06-22

    An ab initio potential energy surface of the Xe-H(2)O van der Waals dimer was constructed at the coupled cluster level of theory with single, double, and pertubatively included triple excitations. For the Xe atom, the small-core pseudopotential and augmented correlation-consistent polarized valence quadruple-zeta (aug-cc-pVQZ-PP) basis set was used. Dunning's augmented correlation-consistent polarized valence triple-zeta (aug-cc-pVTZ) basis set was chosen for O and H atoms. Midbond functions were used to supplement the atom-centered basis sets. Rotational spectra of the Xe-H(2)O van der Waals dimer were recorded with a pulsed-nozzle Fourier transform microwave spectrometer. Rotational transitions within two internal rotor states, namely, the 0(00) and 1(01) states, were measured and assigned. Nuclear quadrupole hyperfine structures due to the (131)Xe (I = (3)/(2)), D (I = 1) and (17)O (I = (5)/(2)) nuclei were also observed and analyzed. Information about the molecular structure and the H(2)O angular motions was extracted from the spectroscopic results with the assistance of the ab initio potential.

  18. Pressure dependent low temperature kinetics for CN + CH3CN: competition between chemical reaction and van der Waals complex formation.

    PubMed

    Sleiman, Chantal; González, Sergio; Klippenstein, Stephen J; Talbi, Dahbia; El Dib, Gisèle; Canosa, André

    2016-06-01

    The gas phase reaction between the CN radical and acetonitrile CH3CN was investigated experimentally, at low temperatures, with the CRESU apparatus and a slow flow reactor to explore the temperature dependence of its rate coefficient from 354 K down to 23 K. Whereas a standard Arrhenius behavior was found at T > 200 K, indicating the presence of an activation barrier, a dramatic increase in the rate coefficient by a factor of 130 was observed when the temperature was decreased from 168 to 123 K. The reaction was found to be pressure independent at 297 K unlike the experiments carried out at 52 and 132 K. The work was complemented by ab initio transition state theory based master equation calculations using reaction pathways investigated with highly accurate thermochemical protocols. The role of collisional stabilization of a CNCH3CN van der Waals complex and of tunneling induced H atom abstractions were also considered. The experimental pressure dependence at 52 and 132 K is well reproduced by the theoretical calculations provided that an anharmonic state density is considered for the van der Waals complex CH3CNCN and its Lennard-Jones radius is adjusted. Furthermore, these calculations indicate that the experimental observations correspond to the fall-off regime and that tunneling remains small in the low-pressure regime. Hence, the studied reaction is essentially an association process at very low temperature. Implications for the chemistry of interstellar clouds and Titan are discussed.

  19. Electrolytic phototransistor based on graphene-MoS2 van der Waals p-n heterojunction with tunable photoresponse

    NASA Astrophysics Data System (ADS)

    Henck, Hugo; Pierucci, Debora; Chaste, Julien; Naylor, Carl H.; Avila, Jose; Balan, Adrian; Silly, Mathieu G.; Asensio, Maria C.; Sirotti, Fausto; Johnson, A. T. Charlie; Lhuillier, Emmanuel; Ouerghi, Abdelkarim

    2016-09-01

    Van der Waals (vdW) heterostructures obtained by stacking 2D materials offer a promising route for next generation devices by combining different unique properties in completely new artificial materials. In particular, the vdW heterostructures combine high mobility and optical properties that can be exploited for optoelectronic devices. Since the p-n junction is one of the most fundamental units of optoelectronics, we propose an approach for its fabrication based on the intrinsic n doped MoS2 and the p doped bilayer graphene hybrid interfaces. We demonstrate the control of the photoconduction properties using electrolytic gating which ensures a low bias operation. We show that by finely choosing the doping value of each layer, the photoconductive properties of the hybrid system can be engineered to achieve magnitude and sign control of the photocurrent. Finally, we provide a simple phase diagram relating the photoconductive behavior with the chosen doping, which we believe can be very useful for the future design of the van der Waals based photodetectors.

  20. Pressure dependent low temperature kinetics for CN + CH3CN: competition between chemical reaction and van der Waals complex formation.

    PubMed

    Sleiman, Chantal; González, Sergio; Klippenstein, Stephen J; Talbi, Dahbia; El Dib, Gisèle; Canosa, André

    2016-06-01

    The gas phase reaction between the CN radical and acetonitrile CH3CN was investigated experimentally, at low temperatures, with the CRESU apparatus and a slow flow reactor to explore the temperature dependence of its rate coefficient from 354 K down to 23 K. Whereas a standard Arrhenius behavior was found at T > 200 K, indicating the presence of an activation barrier, a dramatic increase in the rate coefficient by a factor of 130 was observed when the temperature was decreased from 168 to 123 K. The reaction was found to be pressure independent at 297 K unlike the experiments carried out at 52 and 132 K. The work was complemented by ab initio transition state theory based master equation calculations using reaction pathways investigated with highly accurate thermochemical protocols. The role of collisional stabilization of a CNCH3CN van der Waals complex and of tunneling induced H atom abstractions were also considered. The experimental pressure dependence at 52 and 132 K is well reproduced by the theoretical calculations provided that an anharmonic state density is considered for the van der Waals complex CH3CNCN and its Lennard-Jones radius is adjusted. Furthermore, these calculations indicate that the experimental observations correspond to the fall-off regime and that tunneling remains small in the low-pressure regime. Hence, the studied reaction is essentially an association process at very low temperature. Implications for the chemistry of interstellar clouds and Titan are discussed. PMID:27199083

  1. Orbitally selective chemical reaction in Hg-H2 van der Waals complexes

    NASA Astrophysics Data System (ADS)

    Breckenridge, W. H.; Jouvet, Christophe; Soep, Benoit

    1986-02-01

    A new technique is described for probing the reaction dynamics of ``half-collisions'' in systems where ``full-collision'' chemical dynamics can also be studied. By selective laser excitation of an atom-molecule van der Waals complex, an electronically excited atom can be created at a known distance from, and with a known orbital symmetry with respect to, the reactive molecule. From spectra of the complex and from detection of nascent products in a state-resolved fashion, not only can a great deal be learned about the dynamics of the half-collision, but comparison can also be made with analogous full-collision dynamical information. Reported here are initial results involving the HgṡH2 van der Waals complex. When the Hg (6s 1S0)ṡH2 ground-state complex is excited to the Hg(6p 3P1)ṡH2 complex with frequencies near that of the Hg(6 1S0-6 3P1) free atom transition, the molecular product HgH(X 2Σ+) is readily detected. No fluorescence of the Hg(6p 3P1)ṡH2 complex is observed, nor is Hg(6p 3P0) detected as a major product. The two electronic configurations of the excited Hg(6p 3P1)ṡH2 complex, 3Σ and 3Π (which correspond approximately to axial and perpendicular orientation, respectively, of the p orbital with respect to the freely rotating H2 molecule) exhibit different behavior. The reaction to form HgH (X 2Σ+) via the 3Π complex is ``direct,'' i.e., occurs within 0.1 ps, since the HgH(X 2Σ+) action spectrum for 3Π excitation is continuous. In contrast, there is rovibrational structure in the HgH (X2 Σ+) action spectrum for 3Σ excitation, showing that HgH(X 2Σ+) formation in this case is ``indirect,'' i.e., occurs on a time scale between 2 ps and 1 ns. Furthermore, the HgH (X 2Σ+, v=0) rotational quantum-state distribution from 3Σ complex excitation is bimodal, with a major component quite similar to that resulting from excitation of the 3Π complex, but with a minor component present at low N. Possible explanations of these results, which

  2. Energy ranking of molecular crystals using density functional theory calculations and an empirical van der waals correction.

    PubMed

    Neumann, Marcus A; Perrin, Marc-Antoine

    2005-08-18

    By combination of high level density functional theory (DFT) calculations with an empirical van der Waals correction, a hybrid method has been designed and parametrized that provides unprecedented accuracy for the structure optimization and the energy ranking of molecular crystals. All DFT calculations are carried out using the VASP program. The van der Waals correction is expressed as the sum over atom-atom pair potentials with each pair potential for two atoms A and B being the product of an asymptotic C(6,A,B)/r(6) term and a damping function d(A,B)(r). Empirical parameters are provided for the elements H, C, N, O, F, Cl, and S. Following Wu and Yang, the C(6) coefficients have been determined by least-squares fitting to molecular C(6) coefficients derived by Meath and co-workers from dipole oscillator strength distributions. The damping functions d(A,B)(r) guarantee the crossover from the asymptotic C(6,A,B)/r(6) behavior at large interatomic distances to a constant interaction energy at short distances. The careful parametrization of the damping functions is of crucial importance to obtain the correct balance between the DFT part of the lattice energy and the contribution from the empirical van der Waals correction. The damping functions have been adjusted to yield the best possible agreement between the unit cells of a set of experimental low temperature crystal structures and their counterparts obtained by lattice energy optimization using the hybrid method. On average, the experimental and the calculated unit cell lengths deviate by 1%. To assess the performance of the hybrid method with respect to the lattice energy ranking of molecular crystals, various crystal packings of ethane, ethylene, acetylene, methanol, acetic acid, and urea have been generated with Accelrys' Polymorph Predictor in a first step and optimized with the hybrid method in a second step. In five out of six cases, the experimentally observed low-temperature crystal structure corresponds

  3. The Average IQ of Sub-Saharan Africans Assessed by the Progressive Matrices: A Reply to Wicherts, Dolan, Carlson & van der Maas

    ERIC Educational Resources Information Center

    Lynn, Richard

    2010-01-01

    Wicherts, Dolan, Carlson & van der Maas (WDCM) (2010) contend that the average IQ in sub-Saharan Africa is about 76 in relation to a British mean of 100 and sd of 15. This result is achieved by including many studies of unrepresentative elite samples. Studies of acceptably representative samples indicate a sub-Saharan Africa IQ of approximately…

  4. Direct observation of adsorption geometry for the van der Waals adsorption of a single π-conjugated hydrocarbon molecule on Au(111)

    SciTech Connect

    Kim, Ju-Hyung; Jung, Jaehoon; Kim, Yousoo E-mail: ykim@riken.jp; Tahara, Kazukuni; Tobe, Yoshito E-mail: ykim@riken.jp; Kawai, Maki E-mail: ykim@riken.jp

    2014-02-21

    Weak van der Waals adsorption of π-conjugated hydrocarbon molecules onto the gold surface, Au(111), is one of the essential processes in constructing organic-metal interfaces in organic electronics. Here we provide a first direct observation of adsorption geometry of a single π-conjugated hydrocarbon molecule on Au(111) using an atomically resolved scanning tunneling microscopy study combined with van der Waals density functional methodology. For the purpose, we utilized a highly symmetric π-conjugated hydrocarbon molecule, dehydrobenzo[12]annulene (DBA), which has a definite three-fold symmetry, the same as the Au(111) surface. Interestingly, our observations on an atomically resolved scale clearly indicate that the DBA molecule has only one adsorption configuration on Au(111) in spite of the weak van der Waals adsorption system. Based on the precisely determined adsorption geometry of DBA/Au(111), our calculation results imply that even a very small contribution of the interfacial orbital interaction at the organic-metal interface can play a decisive role in constraining the adsorption geometry even in the van der Waals adsorption system of a π-conjugated hydrocarbon molecule on the noblest Au(111) surface. Our observations provide not only deeper insight into the weak adsorption process, but also new perspectives to organic electronics using π-conjugated hydrocarbon molecules on the Au surface.

  5. Comparative analysis of IRF6 variants in families with Van der Woude syndrome and popliteal pterygium syndrome using public whole-exome databases

    PubMed Central

    Leslie, Elizabeth J.; Standley, Jennifer; Compton, John; Bale, Sherri; Schutte, Brian C.; Murray, Jeffrey C.

    2013-01-01

    Purpose: Mutations in the transcription factor IRF6 cause allelic autosomal dominant clefting syndromes, Van der Woude syndrome, and popliteal pterygium syndrome. We compared the distribution of IRF6 coding and splice-site mutations from 549 families with Van der Woude syndrome or popliteal pterygium syndrome with that of variants from the 1000 Genomes and National Heart, Lung, and Blood Institute Exome Sequencing Projects. Methods: We compiled all published pathogenic IRF6 mutations and performed direct sequencing of IRF6 in families with Van der Woude syndrome or popliteal pterygium syndrome. Results: Although mutations causing Van der Woude syndrome or popliteal pterygium syndrome were nonrandomly distributed with significantly increased frequencies in the DNA-binding domain (P = 0.0001), variants found in controls were rare and evenly distributed in IRF6. Of 194 different missense or nonsense variants described as potentially pathogenic, we identified only two in more than 6,000 controls. PolyPhen and SIFT (sorting intolerant from tolerant) reported 5.9% of missense mutations in patients as benign, suggesting that use of current in silico prediction models to determine function can have significant false negatives. Conclusion: Mutation of IRF6 occurs infrequently in controls, suggesting that for IRF6 there is a high probability that disruption of the coding sequence, particularly the DNA-binding domain, will result in syndromic features. Prior associations of coding sequence variants in IRF6 with clefting syndromes have had few false positives. PMID:23154523

  6. Electric field modulation of Schottky barrier height in graphene/MoSe{sub 2} van der Waals heterointerface

    SciTech Connect

    Sata, Yohta; Moriya, Rai E-mail: tmachida@iis.u-tokyo.ac.jp; Morikawa, Sei; Yabuki, Naoto; Masubuchi, Satoru; Machida, Tomoki E-mail: tmachida@iis.u-tokyo.ac.jp

    2015-07-13

    We demonstrate a vertical field-effect transistor based on a graphene/MoSe{sub 2} van der Waals (vdW) heterostructure. The vdW interface between the graphene and MoSe{sub 2} exhibits a Schottky barrier with an ideality factor of around 1.3, suggesting a high-quality interface. Owing to the low density of states in graphene, the position of the Fermi level in the graphene can be strongly modulated by an external electric field. Therefore, the Schottky barrier height at the graphene/MoSe{sub 2} vdW interface is also modulated. We demonstrate a large current ON-OFF ratio of 10{sup 5}. These results point to the potential high performance of the graphene/MoSe{sub 2} vdW heterostructure for electronics applications.

  7. Van der Waals metal-semiconductor junction: Weak Fermi level pinning enables effective tuning of Schottky barrier

    DOE PAGESBeta

    Liu, Yuanyue; Stradins, Paul; Wei, Su -Huai

    2016-04-22

    Two-dimensional (2D) semiconductors have shown great potential for electronic and optoelectronic applications. However, their development is limited by a large Schottky barrier (SB) at the metal-semiconductor junction (MSJ), which is difficult to tune by using conventional metals because of the effect of strong Fermi level pinning (FLP). We show that this problem can be overcome by using 2D metals, which are bounded with 2D semiconductors through van der Waals (vdW) interactions. This success relies on a weak FLP at the vdW MSJ, which is attributed to the suppression of metal-induced gap states. Consequently, the SB becomes tunable and can vanishmore » with proper 2D metals (for example, H-NbS2). This work not only offers new insights into the fundamental properties of heterojunctions but also uncovers the great potential of 2D metals for device applications.« less

  8. On using block pulse transform to perform equivalent linearization for a nonlinear Van der Pol oscillator under stochastic excitation

    NASA Astrophysics Data System (ADS)

    Younespour, Amir; Ghaffarzadeh, Hosein

    2016-06-01

    This paper applied the idea of block pulse (BP) transform in the equivalent linearization of a nonlinear system. The BP transform gives effective tools to approximate complex problems. The main goal of this work is on using BP transform properties in process of linearization. The accuracy of the proposed method compared with the other equivalent linearization including the stochastic equivalent linearization and the regulation linearization methods. Numerical simulations are applied to the nonlinear Van der Pol oscillator system under Gaussian white noise excitation to demonstrate the feasibility of the present method. Different values of nonlinearity are considered to show the effectiveness of the present method. Besides, by comparing the mean-square responses for divers values of nonlinearity and excitation intensity depicted the present method is able to approximate the behavior of nonlinear system and is in agreement with other methods.

  9. Role of Directed van der Waals Bonded Interactions in the Determination of the Structures of Molecular Arsenate Solids

    SciTech Connect

    Gibbs, Gerald V.; Wallace, Adam F.; Cox, David F.; Dove, Patricia M; Downs, R. T.; Ross, Nancy L.; Rosso, Kevin M.

    2009-01-05

    Bond paths, local energy density properties, and Laplacian, L(r) = -2ρ(r), composite isosurfaces of the electron density distributions were calculated for the intramolecular and intermolecular bonded interactions for molecular solids of As2O3 and AsO2 composition, an As2O5 crystal, a number of arsenate molecules, and the arsenic metalloid, arsenolamprite. The directed intermolecular van der Waals As-O, O-O, and As-As bonded interactions are believed to serve as mainstays between the individual molecules in each of the molecular solids. As-O bond paths between the bonded atoms connect Lewis base charge concentrations and Lewis acid charge depletion domains, whereas the O-O and As-As paths connect Lewis base pair and Lewis acid pair domains, respectively, giving rise to sets of intermolecular directed bond paths. The alignment of the directed bond paths results in the periodic structures adopted by the arsenates. The arrangements of the As atoms in the claudetite polymorphs of As2O3 and the As atoms in arsenolamprite are similar. Like the As2O3 polymorphs, arsenolamprite is a molecular solid connected by relatively weak As-As intermolecular directed van der Waals bond paths between the layers of stronger As-As intramolecular bonded interactions. The bond critical point and local energy density properties of the intermolecular As-As bonded interactions in arsenolamprite are comparable with the As-As interactions in claudetite I. As such, the structure of claudetite I can be viewed as a stuffed derivative of the arsenolamprite structure with O atoms between pairs of As atoms comprising the layers of the structure. The cubic structure adopted by the arsenolite polymorph can be understood in terms of sets of directed acid-base As-O and base-base O-O pair domains and bond paths that radiate from the tetrahedral faces of its constituent molecules, serving as face-to-face key

  10. Spin-Component-Scaled Double-Hybrid Density Functionals with Nonlocal van der Waals Correlations for Noncovalent Interactions.

    PubMed

    Yu, Feng

    2014-10-14

    Nonlocal (NL) van der Waals correlation has been incorporated into the spin-component and spin-opposite scaled double-hybrid density functionals (DHDFs) for noncovalent interactions. The short-range attenuation parameters for the tested DHDFs with the NL correlations are optimized by minimizing the mean absolute deviations (MADs) against the S66 database. And consequently, the obtained DHDFs with the NL correlations are denoted as PWPB95-NL, DSD-BLYP-NL, DSD-PBEP86-NL, and DOD-PBEP86-NL. These four DHDFs with the NL correlations are further assessed with the S22B, NCCE31, and ADIM6 databases. On the basis of our benchmark computations, the cooperation of the NL correlation and the spin-component and spin-opposite scaled DHDFs is successful for noncovalent interactions. However, the performances of the four aforementioned DHDFs with the NL correlations on the charge transfer interactions are less than satisfactory. PMID:26588137

  11. Charge density waves in exfoliated films of van der Waals materials: evolution of Raman spectrum in TiSe2.

    PubMed

    Goli, Pradyumna; Khan, Javed; Wickramaratne, Darshana; Lake, Roger K; Balandin, Alexander A

    2012-11-14

    A number of the charge-density-wave materials reveal a transition to the macroscopic quantum state around 200 K. We used graphene-like mechanical exfoliation of TiSe(2) crystals to prepare a set of films with different thicknesses. The transition temperature to the charge-density-wave state was determined via modification of Raman spectra of TiSe(2) films. It was established that the transition temperature can increase from its bulk value to ~240 K as the thickness of the van der Waals films reduces to the nanometer range. The obtained results are important for the proposed applications of such materials in the collective-state information processing, which require room-temperature operation.

  12. Weak Van der Waals Stacking, Wide-Range Band Gap, and Raman Study on Ultrathin Layers of Metal Phosphorus Trichalcogenides.

    PubMed

    Du, Ke-zhao; Wang, Xing-zhi; Liu, Yang; Hu, Peng; Utama, M Iqbal Bakti; Gan, Chee Kwan; Xiong, Qihua; Kloc, Christian

    2016-02-23

    2D semiconducting metal phosphorus trichalcogenides, particularly the bulk crystals of MPS3 (M = Fe, Mn, Ni, Cd and Zn) sulfides and MPSe3 (M = Fe and Mn) selenides, have been synthesized, crystallized and exfoliated into monolayers. The Raman spectra of monolayer FePS3 and 3-layer FePSe3 show the strong intralayer vibrations and structural stability of the atomically thin layers under ambient condition. The band gaps can be adjusted by element choices in the range of 1.3-3.5 eV. The wide-range band gaps suggest their optoelectronic applications in a broad wavelength range. The calculated cleavage energies of MPS3 are smaller than that of graphite. Therefore, the monolayers used for building of heterostructures by van der Waals stacking could be considered as the candidates for artificial 2D materials with unusual ferroelectric and magnetic properties.

  13. The role of 9qh+ in phenotypic and genotypic heterogeneity in a Van der Woude syndrome pedigree.

    PubMed

    Moghe, G A; Kaur, M S; Thomas, A M; Raseswari, T; Swapna, M; Rao, L

    2010-01-01

    Van der Woude syndrome (VWS) (OMIM 119300) is a dominantly inherited developmental disorder that is characterized by pits and/or sinuses of the lower lip and cleft lip and/or cleft palate. Mutations in the interferon regulatory factor 6 gene (IRF6) have been recently identified in patients with VWS, with more than 60 mutations reported. We report the phenotypic variants of the syndrome in a family and present the application of the multicolor chromosome banding (mBAND) analysis in the identification of complex intrachromosome rearrangements of chromosome 9 in a child with VWS. The authors conclude that increased heterochromatin on chromosome 9 did not have any effect on the phenotypic expression of the syndrome in the family that was studied. PMID:20660977

  14. Interlayer Transition and Infrared Photodetection in Atomically Thin Type-II MoTe₂/MoS₂ van der Waals Heterostructures.

    PubMed

    Zhang, Kenan; Zhang, Tianning; Cheng, Guanghui; Li, Tianxin; Wang, Shuxia; Wei, Wei; Zhou, Xiaohao; Yu, Weiwei; Sun, Yan; Wang, Peng; Zhang, Dong; Zeng, Changgan; Wang, Xingjun; Hu, Weida; Fan, Hong Jin; Shen, Guozhen; Chen, Xin; Duan, Xiangfeng; Chang, Kai; Dai, Ning

    2016-03-22

    We demonstrate the type-II staggered band alignment in MoTe2/MoS2 van der Waals (vdW) heterostructures and an interlayer optical transition at ∼1.55 μm. The photoinduced charge separation between the MoTe2/MoS2 vdW heterostructure is verified by Kelvin probe force microscopy (KPFM) under illumination, density function theory (DFT) simulations and photoluminescence (PL) spectroscopy. Photoelectrical measurements of MoTe2/MoS2 vdW heterostructures show a distinct photocurrent response in the infrared regime (1550 nm). The creation of type-II vdW heterostructures with strong interlayer coupling could improve our fundamental understanding of the essential physics behind vdW heterostructures and help the design of next-generation infrared optoelectronics. PMID:26950255

  15. Effect of van der Waals interactions on the chemisorption and physisorption of phenol and phenoxy on metal surfaces

    NASA Astrophysics Data System (ADS)

    Peköz, Rengin; Donadio, Davide

    2016-09-01

    The adsorption of phenol and phenoxy on the (111) surface of Au and Pt has been investigated by density functional theory calculations with the conventional PBE functional and three different non-local van der Waals (vdW) exchange and correlation functionals. It is found that both phenol and phenoxy on Au(111) are physisorbed. In contrast, phenol on Pt(111) presents an adsorption energy profile with a stable chemisorption state and a weakly metastable physisorbed precursor. While the use of vdW functionals is essential to determine the correct binding energy of both chemisorption and physisorption states, the relative stability and existence of an energy barrier between them depend on the semi-local approximations in the functionals. The first dissociation mechanism of phenol, yielding phenoxy and atomic hydrogen, has been also investigated, and the reaction and activation energies of the resulting phenoxy on the flat surfaces of Au and Pt were discussed.

  16. Photocurrent measurements in Coupled Quantum Well van der Waals Heterostructures made of 2D Transition Metal Dichalcogenides

    NASA Astrophysics Data System (ADS)

    Joe, Andrew; Jauregui, Luis; High, Alex; Dibos, Alan; Gulpinar, Elgin; Pistunova, Kateryna; Park, Hongkun; Kim, Philip

    , Luis A. Jauregui, Alex A. High, Alan Dibos, Elgin Gulpinar, Kateryna Pistunova, Hongkun Park, Philip Kim Harvard University, Physics Department -abstract- Single layer transition metal dichalcogenides (TMDC) are 2-dimensional (2D) semiconductors van der Waals (vdW) characterized by a direct optical bandgap in the visible wavelength (~2 eV). Characterization of the band alignment between TMDC and the barrier is important for the fabrication of tunneling devices. Here, we fabricate coupled quantum well (CQW) heterostructures made of 2D TMDCs with hexagonal Boron nitride (hBN) as an atomically thin barrier and gate dielectric and with top and bottom metal (or graphite) as gate electrodes. We observe a clear dependence of the photo-generated current with varying hBN thickness, electrode workfunctions, electric field, laser excitation power, excitation wavelength, and temperature. We will discuss the implication of photocurrent in relation to quantum transport process across the vdW interfaces.

  17. Site-dependence of van der Waals interaction explains exciton spectra of double-walled tubular J-aggregates.

    PubMed

    Megow, Jörg; Röhr, Merle I S; Schmidt am Busch, Marcel; Renger, Thomas; Mitrić, Roland; Kirstein, Stefan; Rabe, Jürgen P; May, Volkhard

    2015-03-14

    The simulation of the optical properties of supramolecular aggregates requires the development of methods, which are able to treat a large number of coupled chromophores interacting with the environment. Since it is currently not possible to treat large systems by quantum chemistry, the Frenkel exciton model is a valuable alternative. In this work we show how the Frenkel exciton model can be extended in order to explain the excitonic spectra of a specific double-walled tubular dye aggregate explicitly taking into account dispersive energy shifts of ground and excited states due to van der Waals interaction with all surrounding molecules. The experimentally observed splitting is well explained by the site-dependent energy shift of molecules placed at the inner or outer side of the double-walled tube, respectively. Therefore we can conclude that inclusion of the site-dependent dispersive effect in the theoretical description of optical properties of nanoscaled dye aggregates is mandatory. PMID:25620460

  18. Range-separated approach to the RPA correlation applied to the van der Waals Bond and to diffusion of defects.

    PubMed

    Bruneval, Fabien

    2012-06-22

    The random-phase approximation (RPA) is a promising approximation to the exchange-correlation energy of density functional theory, since it contains the van der Waals (vdW) interaction and yields a potential with the correct band gap. However, its calculation is computationally very demanding. We apply a range-separation concept to RPA and demonstrate how it drastically speeds up the calculations without loss of accuracy. The scheme is then successfully applied to a layered system subjected to weak vdW attraction and is used to address the controversy of the self-diffusion in silicon. We calculate the formation and migration energies of self-interstitials and vacancies taking into account atomic relaxations. The obtained activation energies deviate significantly from the earlier calculations and challenge some of the experimental interpretations: the diffusion of vacancies and interstitials has almost the same activation energy.

  19. Interlayer Transition and Infrared Photodetection in Atomically Thin Type-II MoTe₂/MoS₂ van der Waals Heterostructures.

    PubMed

    Zhang, Kenan; Zhang, Tianning; Cheng, Guanghui; Li, Tianxin; Wang, Shuxia; Wei, Wei; Zhou, Xiaohao; Yu, Weiwei; Sun, Yan; Wang, Peng; Zhang, Dong; Zeng, Changgan; Wang, Xingjun; Hu, Weida; Fan, Hong Jin; Shen, Guozhen; Chen, Xin; Duan, Xiangfeng; Chang, Kai; Dai, Ning

    2016-03-22

    We demonstrate the type-II staggered band alignment in MoTe2/MoS2 van der Waals (vdW) heterostructures and an interlayer optical transition at ∼1.55 μm. The photoinduced charge separation between the MoTe2/MoS2 vdW heterostructure is verified by Kelvin probe force microscopy (KPFM) under illumination, density function theory (DFT) simulations and photoluminescence (PL) spectroscopy. Photoelectrical measurements of MoTe2/MoS2 vdW heterostructures show a distinct photocurrent response in the infrared regime (1550 nm). The creation of type-II vdW heterostructures with strong interlayer coupling could improve our fundamental understanding of the essential physics behind vdW heterostructures and help the design of next-generation infrared optoelectronics.

  20. Inversion of Spin Signal and Spin Filtering in Ferromagnet|Hexagonal Boron Nitride-Graphene van der Waals Heterostructures

    PubMed Central

    Kamalakar, M. Venkata; Dankert, André; Kelly, Paul J.; Dash, Saroj P.

    2016-01-01

    Two dimensional atomically thin crystals of graphene and its insulating isomorph hexagonal boron nitride (h-BN) are promising materials for spintronic applications. While graphene is an ideal medium for long distance spin transport, h-BN is an insulating tunnel barrier that has potential for efficient spin polarized tunneling from ferromagnets. Here, we demonstrate the spin filtering effect in cobalt|few layer h-BN|graphene junctions leading to a large negative spin polarization in graphene at room temperature. Through nonlocal pure spin transport and Hanle precession measurements performed on devices with different interface barrier conditions, we associate the negative spin polarization with high resistance few layer h-BN|ferromagnet contacts. Detailed bias and gate dependent measurements reinforce the robustness of the effect in our devices. These spintronic effects in two-dimensional van der Waals heterostructures hold promise for future spin based logic and memory applications. PMID:26883717

  1. Site-dependence of van der Waals interaction explains exciton spectra of double-walled tubular J-aggregates.

    PubMed

    Megow, Jörg; Röhr, Merle I S; Schmidt am Busch, Marcel; Renger, Thomas; Mitrić, Roland; Kirstein, Stefan; Rabe, Jürgen P; May, Volkhard

    2015-03-14

    The simulation of the optical properties of supramolecular aggregates requires the development of methods, which are able to treat a large number of coupled chromophores interacting with the environment. Since it is currently not possible to treat large systems by quantum chemistry, the Frenkel exciton model is a valuable alternative. In this work we show how the Frenkel exciton model can be extended in order to explain the excitonic spectra of a specific double-walled tubular dye aggregate explicitly taking into account dispersive energy shifts of ground and excited states due to van der Waals interaction with all surrounding molecules. The experimentally observed splitting is well explained by the site-dependent energy shift of molecules placed at the inner or outer side of the double-walled tube, respectively. Therefore we can conclude that inclusion of the site-dependent dispersive effect in the theoretical description of optical properties of nanoscaled dye aggregates is mandatory.

  2. Crystallographic features related to a van der Waals coupling in the layered chalcogenide FePS3

    NASA Astrophysics Data System (ADS)

    Murayama, Chisato; Okabe, Momoko; Urushihara, Daisuke; Asaka, Toru; Fukuda, Koichiro; Isobe, Masahiko; Yamamoto, Kazuo; Matsushita, Yoshitaka

    2016-10-01

    We investigated the crystallographic structure of FePS3 with a layered structure using transmission electron microscopy and powder X-ray diffraction. We found that FePS3 forms a rotational twin structure with the common axis along the c*-axis. The high-resolution transmission electron microscopy images revealed that the twin boundaries were positioned at the van der Waals gaps between the layers. The narrow bands of dark contrast were observed in the bright-field transmission electron microscopy images below the antiferromagnetic transition temperature, TN ≈ 120 K. Low-temperature X-ray diffraction showed a lattice distortion; the a- and b-axes shortened and lengthened, respectively, as the temperature decreased below TN. We propose that the narrow bands of dark contrast observed in the bright-field transmission electron microscopy images are caused by the directional lattice distortion with respect to each micro-twin variant in the antiferromagnetic phase.

  3. Inversion of Spin Signal and Spin Filtering in Ferromagnet|Hexagonal Boron Nitride-Graphene van der Waals Heterostructures

    NASA Astrophysics Data System (ADS)

    Kamalakar, M. Venkata; Dankert, André; Kelly, Paul J.; Dash, Saroj P.

    2016-02-01

    Two dimensional atomically thin crystals of graphene and its insulating isomorph hexagonal boron nitride (h-BN) are promising materials for spintronic applications. While graphene is an ideal medium for long distance spin transport, h-BN is an insulating tunnel barrier that has potential for efficient spin polarized tunneling from ferromagnets. Here, we demonstrate the spin filtering effect in cobalt|few layer h-BN|graphene junctions leading to a large negative spin polarization in graphene at room temperature. Through nonlocal pure spin transport and Hanle precession measurements performed on devices with different interface barrier conditions, we associate the negative spin polarization with high resistance few layer h-BN|ferromagnet contacts. Detailed bias and gate dependent measurements reinforce the robustness of the effect in our devices. These spintronic effects in two-dimensional van der Waals heterostructures hold promise for future spin based logic and memory applications.

  4. Electronic structure of transferred graphene/h-BN van der Waals heterostructures with nonzero stacking angles by nano-ARPES.

    PubMed

    Wang, Eryin; Chen, Guorui; Wan, Guoliang; Lu, Xiaobo; Chen, Chaoyu; Avila, Jose; Fedorov, Alexei V; Zhang, Guangyu; Asensio, Maria C; Zhang, Yuanbo; Zhou, Shuyun

    2016-11-01

    In van der Waals heterostructures, the periodic potential from the Moiré superlattice can be used as a control knob to modulate the electronic structure of the constituent materials. Here we present a nanoscale angle-resolved photoemission spectroscopy (nano-ARPES) study of transferred graphene/h-BN heterostructures with two different stacking angles of 2.4° and 4.3° respectively. Our measurements reveal six replicas of graphene Dirac cones at the superlattice Brillouin zone (SBZ) centers. The size of the SBZ and its relative rotation angle to the graphene BZ are in good agreement with Moiré superlattice period extracted from atomic force microscopy (AFM) measurements. Comparison to the epitaxial graphene/h-BN with 0° stacking angles suggests that the interaction between graphene and h-BN decreases with increasing stacking angle. PMID:27604538

  5. Van der Waals metal-semiconductor junction: Weak Fermi level pinning enables effective tuning of Schottky barrier

    PubMed Central

    Liu, Yuanyue; Stradins, Paul; Wei, Su-Huai

    2016-01-01

    Two-dimensional (2D) semiconductors have shown great potential for electronic and optoelectronic applications. However, their development is limited by a large Schottky barrier (SB) at the metal-semiconductor junction (MSJ), which is difficult to tune by using conventional metals because of the effect of strong Fermi level pinning (FLP). We show that this problem can be overcome by using 2D metals, which are bounded with 2D semiconductors through van der Waals (vdW) interactions. This success relies on a weak FLP at the vdW MSJ, which is attributed to the suppression of metal-induced gap states. Consequently, the SB becomes tunable and can vanish with proper 2D metals (for example, H-NbS2). This work not only offers new insights into the fundamental properties of heterojunctions but also uncovers the great potential of 2D metals for device applications. PMID:27152360

  6. A van der Waals density functional study of adenine on graphene: Single molecular adsorption and overlayer binding

    SciTech Connect

    Berland, Kristian; Cooper, Valentino R; Langreth, David C.; Schroder, Prof. Elsebeth; Chakarova-Kack, Svetla

    2011-01-01

    The adsorption of an adenine molecule on graphene is studied using a first-principles van der Waals functional (vdW-DF) [Dion et al., Phys. Rev. Lett. 92, 246401 (2004)]. The cohesive energy of an ordered adenine overlayer is also estimated. For the adsorption of a single molecule, we determine the optimal binding configuration and adsorption energy by translating and rotating the molecule. The adsorption energy for a single molecule of adenine is found to be 711 meV, which is close to the calculated adsorption energy of the similar-sized naphthalene. Based on the single molecular binding configuration, we estimate the cohesive energy of a two-dimensional ordered overlayer. We find a significantly stronger binding energy for the ordered overlayer than for single-molecule adsorption.

  7. Electronic structure of transferred graphene/h-BN van der Waals heterostructures with nonzero stacking angles by nano-ARPES

    NASA Astrophysics Data System (ADS)

    Wang, Eryin; Chen, Guorui; Wan, Guoliang; Lu, Xiaobo; Chen, Chaoyu; Avila, Jose; Fedorov, Alexei V.; Zhang, Guangyu; Asensio, Maria C.; Zhang, Yuanbo; Zhou, Shuyun

    2016-11-01

    In van der Waals heterostructures, the periodic potential from the Moiré superlattice can be used as a control knob to modulate the electronic structure of the constituent materials. Here we present a nanoscale angle-resolved photoemission spectroscopy (nano-ARPES) study of transferred graphene/h-BN heterostructures with two different stacking angles of 2.4° and 4.3° respectively. Our measurements reveal six replicas of graphene Dirac cones at the superlattice Brillouin zone (SBZ) centers. The size of the SBZ and its relative rotation angle to the graphene BZ are in good agreement with Moiré superlattice period extracted from atomic force microscopy (AFM) measurements. Comparison to the epitaxial graphene/h-BN with 0° stacking angles suggests that the interaction between graphene and h-BN decreases with increasing stacking angle.

  8. Imaginary-frequency polarizability and van der Waals force constants of two-electron atoms, with rigorous bounds

    NASA Technical Reports Server (NTRS)

    Glover, R. M.; Weinhold, F.

    1977-01-01

    Variational functionals of Braunn and Rebane (1972) for the imagery-frequency polarizability (IFP) have been generalized by the method of Gramian inequalities to give rigorous upper and lower bounds, valid even when the true (but unknown) unperturbed wavefunction must be represented by a variational approximation. Using these formulas in conjunction with flexible variational trial functions, tight error bounds are computed for the IFP and the associated two- and three-body van der Waals interaction constants of the ground 1(1S) and metastable 2(1,3S) states of He and Li(+). These bounds generally establish the ground-state properties to within a fraction of a per cent and metastable properties to within a few per cent, permitting a comparative assessment of competing theoretical methods at this level of accuracy. Unlike previous 'error bounds' for these properties, the present results have a completely a priori theoretical character, with no empirical input data.

  9. Structural and vibrational properties of α-MoO3 from van der Waals corrected density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Ding, Hong; Ray, Keith G.; Ozolins, Vidvuds; Asta, Mark

    2012-01-01

    Structural and vibrational properties of α-MoO3 are studied employing two recently proposed methodologies for incorporating van der Waals (vdW) contributions in density functional theory (DFT) based calculations. The DFT-D2 [S. Grimme, J. Comput. Chem.JCCHDD0192-865110.1002/jcc.20495 27, 1787 (2006)] and optB88 vdW-DFT [J. Klimeš , J. Phys.: Condens. MatterPRBMDO0953-898410.1088/0953-8984/22/2/022201 22, 022201 (2010)] methods are shown to give rise to increased accuracy in predicted lattice parameters, relative to conventional DFT methods. Calculated vibrational frequencies agree with measurements to within 5% and 10% for modes involving bonded and nonbonded interactions in this compound, respectively.

  10. A procedure for the calculation of alpha function coefficients for the attraction parameter of Van der Waals equations of state

    SciTech Connect

    Stamateris, B.; Olivera-Fuentes, C.

    1996-12-31

    A new procedure is proposed for the calculation and correlation of cohesion parameters in cubic equations of state of the Van der Waals type. In this method, the derivative (rather than the function itself) is computed subject to the Maxwell (equal area) and Clapeyron equations. Strong experimental evidence indicates that properly formulated a functions must generate negative values at high temperatures. A theoretical analysis demonstrates the correct, hard-body limiting behavior of the cohesion function at infinite temperatures. From this, the simplest possible form of the cohesion function follows as a two-constant expression that can be considered an extension of a functional form previously proposed by Martin. The proposed function`s performance is comparable to more complex expressions previously presented in the literature, predicting vapor pressures of polar and nonpolar fluids with relative deviations (i) of {+-} 1%. 14 refs., 2 figs., 1 tab.

  11. Effect of van der Waals interactions on the chemisorption and physisorption of phenol and phenoxy on metal surfaces.

    PubMed

    Peköz, Rengin; Donadio, Davide

    2016-09-14

    The adsorption of phenol and phenoxy on the (111) surface of Au and Pt has been investigated by density functional theory calculations with the conventional PBE functional and three different non-local van der Waals (vdW) exchange and correlation functionals. It is found that both phenol and phenoxy on Au(111) are physisorbed. In contrast, phenol on Pt(111) presents an adsorption energy profile with a stable chemisorption state and a weakly metastable physisorbed precursor. While the use of vdW functionals is essential to determine the correct binding energy of both chemisorption and physisorption states, the relative stability and existence of an energy barrier between them depend on the semi-local approximations in the functionals. The first dissociation mechanism of phenol, yielding phenoxy and atomic hydrogen, has been also investigated, and the reaction and activation energies of the resulting phenoxy on the flat surfaces of Au and Pt were discussed. PMID:27634269

  12. Van der Waals Epitaxy of Two-Dimensional MoS2-Graphene Heterostructures in Ultrahigh Vacuum.

    PubMed

    Miwa, Jill A; Dendzik, Maciej; Grønborg, Signe S; Bianchi, Marco; Lauritsen, Jeppe V; Hofmann, Philip; Ulstrup, Søren

    2015-06-23

    In this work, we demonstrate direct van der Waals epitaxy of MoS2-graphene heterostructures on a semiconducting silicon carbide (SiC) substrate under ultrahigh vacuum conditions. Angle-resolved photoemission spectroscopy (ARPES) measurements show that the electronic structure of free-standing single-layer (SL) MoS2 is retained in these heterostructures due to the weak van der Waals interaction between adjacent materials. The MoS2 synthesis is based on a reactive physical vapor deposition technique involving Mo evaporation and sulfurization in a H2S atmosphere on a template consisting of epitaxially grown graphene on SiC. Using scanning tunneling microscopy, we study the seeding of Mo on this substrate and the evolution from nanoscale MoS2 islands to SL and bilayer (BL) MoS2 sheets during H2S exposure. Our ARPES measurements of SL and BL MoS2 on graphene reveal the coexistence of the Dirac states of graphene and the expected valence band of MoS2 with the band maximum shifted to the corner of the Brillouin zone at K̅ in the SL limit. We confirm the 2D character of these electronic states via a lack of dispersion with photon energy. The growth of epitaxial MoS2-graphene heterostructures on SiC opens new opportunities for further in situ studies of the fundamental properties of these complex materials, as well as perspectives for implementing them in various device schemes to exploit their many promising electronic and optical properties.

  13. Incommensurate van der Waals epitaxy of nanowire arrays: a case study with ZnO on muscovite mica substrates.

    PubMed

    Utama, Muhammad Iqbal Bakti; Belarre, Francisco J; Magen, Cesar; Peng, Bo; Arbiol, Jordi; Xiong, Qihua

    2012-04-11

    The requirement of lattice matching between a material and its substrate for the growth of defect-free heteroepitaxial crystals can be circumvented with van der Waals epitaxy (vdWE). However, the utilization and characteristics of vdWE in nonlamellar/nonplanar nanoarchitectures are still not very well-documented. Here we establish the characteristics of vdWE in nanoarchitectures using a case study of ZnO nanowire (NW) array on muscovite mica substrate without any buffer/seed layer. With extensive characterizations involving electron microscopy, diffractometry, and the related analyses, we conclude that the NWs grown via vdWE exhibit an incommensurate epitaxy. The incommensurate vdWE allows a nearly complete lattice relaxation at the NW-substrate heterointerface without any defects, thus explaining the unnecessity of lattice matching for well-crystallized epitaxial NWs on muscovite mica. We then determine the polarity of the NW via a direct visualization of Zn-O dumbbells using the annular bright field scanning transmission electron miscroscopy (ABF-STEM) in order to identify which atoms are at the base of the NWs and responsible for the van der Waals interactions. The information from the ABF-STEM is then used to construct the proper atomic arrangement at the heterointerface with a 3D atomic modeling to corroborate the characteristics of the incommensurate vdWE. Our findings suggest that the vdWE might be extended for a wider varieties of compounds and epitaxial nanoarchitectures to serve as a universal epitaxy strategy.

  14. Investigation of the distinction between van der Waals interaction and chemical bonding based on the PAEM-MO diagram.

    PubMed

    Zhao, Dong-Xia; Yang, Zhong-Zhi

    2014-05-15

    In recent years, the basic problem of understanding chemical bonding, nonbonded, and/or van der Waals interactions has been intensively debated in terms of various theoretical methods. We propose and construct the potential acting on one electron in a molecule-molecular orbital (PAEM-MO) diagram, which draws the PAEM inserted the MO energy levels with their major atomic orbital components. PAEM-MO diagram is able to show clear distinction of chemical bonding from nonbonded and/or vdW interactions. The rule for this is as follows. Along the line connecting two atoms in a molecule or a complex, the existence of chemical bonding between these two atoms needs to satisfy two conditions: (a) a critical point of PAEM exists and (b) PAEM barrier between the two atoms is lower in energy than the occupied major valence-shell bonding MO which contains in-phase atomic components (positive overlap) of the two considered atoms. In contrast to the chemical bonding, for a nonbonded interaction or van der Waals interaction between two atoms, both conditions (a) and (b) do not be satisfied at the same time. This is demonstrated and discussed by various typical cases, particularly those related to helium atom and H-H bonding in phenanthrene. There are helium bonds in HHeF and HeBeO molecules, whereas no H-H bonding in phenanthrene. The validity and limitation for this rule is demonstrated through the investigations of the curves of the PAEM barrier top and MO energies versus the internuclear distances for He2 , H2 , and He2 (+) systems. PMID:24615750

  15. Electronic structure and spectra of the RbAr van der Waals system including spin-orbit interaction.

    PubMed

    Dhiflaoui, J; Berriche, H; Herbane, M; Alsehimi, A G; Heaven, M C

    2012-11-01

    The potential energy curves and spectroscopic constants of the ground and excited states of the RbAr van der Waals system have been determined using a one-electron pseudopotential approach. This technique is used to replace the effect of the Rb(+) core and the electron-Ar interactions by effective potentials. The core-core interaction for Rb(+)Ar was incorporated using the accurate CCSD(T) potential of Hickling et al. [Hickling, H. L.; Viehland, L. A.; Shepherd, D. T.; Soldán, P.; Lee, E. P. F.; Wright, T. G. Phys. Chem. Chem. Phys. 2004, 6, 4233-4239]. This model reduces the number of active electrons of the RbAr van der Waals systems to just the single valence electron, permitting the use of very large basis sets for the Rb and Ar atoms. Using this approach, the potential energy curves of the ground and excited states dissociating into Rb(5s, 5p, 4d, 6s, 6p, 6d, and 7s) + Ar are calculated at the SCF level. Spin-orbit interaction was also considered within a semiempirical scheme for the states dissociating into Rb(5p) and Rb(6p). Spectroscopic constants are derived and compared with the available theoretical and experimental data. Such comparisons for RbAr show very good agreement for the ground and the first excited states. Furthermore, we have predicted the B(2)Σ(+)(1/2) ← X(2)Σ(+), A(2)Π(1/2) ← X(2)Σ(+), A(2)Π(3/2) ← X(2)Σ(+), A(2)Π(3/2) ← X(2)Σ(+), 5(2)Σ(+) ← X(2)Σ(+), 3(2)Π(1/2) ← X(2)Σ(+), and 3(2)Π(3/2) ← X(2)Σ(+) absorption spectra.

  16. Competition between van der Waals and hydrogen bonding interactions: structure of the trans-1-naphthol/N(2) cluster.

    PubMed

    Xantheas, Sotiris S; Roth, Wolfgang; Fischer, Ingo

    2005-10-27

    The excitation energy in the multiphoton ionization spectrum of the trans-1-naphthol/N(2) cluster shows only a small red shift with respect to isolated naphthol, indicating a van der Waals pi-bound structure rather than a hydrogen-bonded one. To confirm this interpretation, high-level electronic structure calculations were performed for several pi- and hydrogen-bonded isomers of this cluster. The calculations were carried out at the second order Møller-Plesset (MP2) level of perturbation theory with the family of correlation consistent basis sets up to quintuple-zeta quality including corrections for the basis set superposition error and extrapolation to the MP2 complete basis set (CBS) limit. We report the optimal geometries, vibrational frequencies, and binding energies (D(e)), also corrected for harmonic zero-point energies (D(0)), for three energetically low-lying isomers. In all calculations the lowest energy structure was found to be an isomer with the N(2) molecule bound to the pi-system of the naphthol ring carrying the OH group. In the CBS limit its dissociation energy was computed to be D(0) = 2.67 kcal/mol (934 cm(-1)) as compared to D(0) = 1.28 kcal/mol (448 cm(-1)) for the H-bound structure. The electronic structure calculations therefore confirm the assignment of the experimental electronic spectrum corresponding to a van der Waals pi-bound structure. The energetic stabilization of the pi-bound isomer with respect to the hydrogen-bonded one is rather unexpected when compared with previous findings in related systems, in particular phenol/N(2).

  17. Compact two-electron wave function for bond dissociation and Van der Waals interactions: A natural amplitude assessment

    SciTech Connect

    Giesbertz, Klaas J. H.; Leeuwen, Robert van

    2014-05-14

    Electron correlations in molecules can be divided in short range dynamical correlations, long range Van der Waals type interactions, and near degeneracy static correlations. In this work, we analyze for a one-dimensional model of a two-electron system how these three types of correlations can be incorporated in a simple wave function of restricted functional form consisting of an orbital product multiplied by a single correlation function f (r{sub 12}) depending on the interelectronic distance r{sub 12}. Since the three types of correlations mentioned lead to different signatures in terms of the natural orbital (NO) amplitudes in two-electron systems, we make an analysis of the wave function in terms of the NO amplitudes for a model system of a diatomic molecule. In our numerical implementation, we fully optimize the orbitals and the correlation function on a spatial grid without restrictions on their functional form. Due to this particular form of the wave function, we can prove that none of the amplitudes vanishes and moreover that it displays a distinct sign pattern and a series of avoided crossings as a function of the bond distance in agreement with the exact solution. This shows that the wave function ansatz correctly incorporates the long range Van der Waals interactions. We further show that the approximate wave function gives an excellent binding curve and is able to describe static correlations. We show that in order to do this the correlation function f (r{sub 12}) needs to diverge for large r{sub 12} at large internuclear distances while for shorter bond distances it increases as a function of r{sub 12} to a maximum value after which it decays exponentially. We further give a physical interpretation of this behavior.

  18. Fabrication and characterization of PbSe nanostructures on van der Waals surfaces of GaSe layered semiconductor crystals

    NASA Astrophysics Data System (ADS)

    Kudrynskyi, Z. R.; Bakhtinov, A. P.; Vodopyanov, V. N.; Kovalyuk, Z. D.; Tovarnitskii, M. V.; Lytvyn, O. S.

    2015-11-01

    The growth morphology, composition and structure of PbSe nanostructures grown on the atomically smooth, clean, nanoporous and oxidized van der Waals (0001) surfaces of GaSe layered crystals were studied by means of atomic force microscopy, x-ray diffractometry, photoelectron spectroscopy and Raman spectroscopy. Semiconductor heterostructures were grown by the hot-wall technique in vacuum. Nanoporous GaSe substrates were fabricated by the thermal annealing of layered crystals in a molecular hydrogen atmosphere. The irradiation of the GaSe(0001) surface by UV radiation was used to fabricate thin Ga2O3 layers with thickness < 2 nm. It was found that the narrow gap semiconductor PbSe shows a tendency to form clusters with a square or rectangular symmetry on the clean low-energy (0001) GaSe surface, and (001)-oriented growth of PbSe thin films takes place on this surface. Using this growth technique it is possible to grow PbSe nanostructures with different morphologies: continuous epitaxial layers with thickness < 10 nm on the uncontaminated p-GaSe(0001) surfaces, homogeneous arrays of quantum dots with a high lateral density (more than 1011 cm-2) on the oxidized van der Waals (0001) surfaces and faceted square pillar-like nanostructures with a low lateral density (˜108 cm-2) on the nanoporous GaSe substrates. We exploit the ‘vapor-liquid-solid’ growth with low-melting metal (Ga) catalyst of PbSe crystalline branched nanostructures via a surface-defect-assisted mechanism.

  19. One-dimensional Fermi accelerator model with moving wall described by a nonlinear van der Pol oscillator.

    PubMed

    Botari, Tiago; Leonel, Edson D

    2013-01-01

    A modification of the one-dimensional Fermi accelerator model is considered in this work. The dynamics of a classical particle of mass m, confined to bounce elastically between two rigid walls where one is described by a nonlinear van der Pol type oscillator while the other one is fixed, working as a reinjection mechanism of the particle for a next collision, is carefully made by the use of a two-dimensional nonlinear mapping. Two cases are considered: (i) the situation where the particle has mass negligible as compared to the mass of the moving wall and does not affect the motion of it; and (ii) the case where collisions of the particle do affect the movement of the moving wall. For case (i) the phase space is of mixed type leading us to observe a scaling of the average velocity as a function of the parameter (χ) controlling the nonlinearity of the moving wall. For large χ, a diffusion on the velocity is observed leading to the conclusion that Fermi acceleration is taking place. On the other hand, for case (ii), the motion of the moving wall is affected by collisions with the particle. However, due to the properties of the van der Pol oscillator, the moving wall relaxes again to a limit cycle. Such kind of motion absorbs part of the energy of the particle leading to a suppression of the unlimited energy gain as observed in case (i). The phase space shows a set of attractors of different periods whose basin of attraction has a complicated organization.

  20. Communication: THz absorption spectrum of the CO{sub 2}–H{sub 2}O complex: Observation and assignment of intermolecular van der Waals vibrations

    SciTech Connect

    Andersen, J.; Mahler, D. W.; Larsen, R. Wugt; Heimdal, J.; Nelander, B.

    2014-03-07

    Terahertz absorption spectra have been recorded for the weakly bound CO{sub 2}–H{sub 2}O complex embedded in cryogenic neon matrices at 2.8 K. The three high-frequency van der Waals vibrational transitions associated with out-of-plane wagging, in-plane rocking, and torsional motion of the isotopic H{sub 2}O subunit have been assigned and provide crucial observables for benchmark theoretical descriptions of this systems’ flat intermolecular potential energy surface. A (semi)-empirical value for the zero-point energy of 273 ± 15 cm{sup −1} from the class of intermolecular van der Waals vibrations is proposed and the combination with high-level quantum chemical calculations provides a value of 726 ± 15 cm{sup −1} for the dissociation energy D{sub 0}.