Science.gov

Sample records for modifies neuroprotecting globins

  1. Running, swimming and diving modifies neuroprotecting globins in the mammalian brain

    PubMed Central

    Williams, Terrie M; Zavanelli, Mary; Miller, Melissa A; Goldbeck, Robert A; Morledge, Michael; Casper, Dave; Pabst, D. Ann; McLellan, William; Cantin, Lucas P; Kliger, David S

    2007-01-01

    The vulnerability of the human brain to injury following just a few minutes of oxygen deprivation with submergence contrasts markedly with diving mammals, such as Weddell seals (Leptonychotes weddellii), which can remain underwater for more than 90 min while exhibiting no neurological or behavioural impairment. This response occurs despite exposure to blood oxygen levels concomitant with human unconsciousness. To determine whether such aquatic lifestyles result in unique adaptations for avoiding ischaemic–hypoxic neural damage, we measured the presence of circulating (haemoglobin) and resident (neuroglobin and cytoglobin) oxygen-carrying globins in the cerebral cortex of 16 mammalian species considered terrestrial, swimming or diving specialists. Here we report a striking difference in globin levels depending on activity lifestyle. A nearly 9.5-fold range in haemoglobin concentration (0.17–1.62 g Hb 100 g brain wet wt−1) occurred between terrestrial and deep-diving mammals; a threefold range in resident globins was evident between terrestrial and swimming specialists. Together, these two globin groups provide complementary mechanisms for facilitating oxygen transfer into neural tissues and the potential for protection against reactive oxygen and nitrogen groups. This enables marine mammals to maintain sensory and locomotor neural functions during prolonged submergence, and suggests new avenues for averting oxygen-mediated neural injury in the mammalian brain. PMID:18089537

  2. Translation of globin messenger RNA modified by benzo(a)pyrene 7,8-dihydrodiol 9,10-oxide in a wheat germ cell-free system

    SciTech Connect

    Grunberger, D.; Pergolizzi, R.G.; Jones, R.E.

    1980-01-25

    Poly(U/sub 3/G) and rabbit globin mRNA were modified with the active carcinogenic metabolite of benzo(a)pyrene, (+-)-7..beta..,8..cap alpha..-dihydroxy-9..cap alpha..,10..cap alpha..-epoxy-7,8,9,10-tetrahydrobenzo(a)pyrene, and the effects of modification on translation in a cell-free protein synthesizing system were studied. High performance liquid chromatography of modified nucleosides from enzymatically hydrolyzed globin mRNA reveals that the active carcinogen formed two adducts with guanosine, four adducts with adenosine, and one adduct probably with cytidine residues. When globin mRNA with 0.4 carcinogen residues/molecule is used as a template, incorporation of amino acids into proteins is inhibited by 50%, and mRNA with 2.4 residues has only 10% of the template activity compared to unmodified molecules. On the other hand, modification of poly(U/sub 3/G) has no effect on its template activity. Since no significant formation of smaller peptides in the protein synthesizing system programmed with modified mRNA is detected, it is suggested that the carcinogen does not block the elongation step in mRNA translation. However, glycerol gradient centrifugation of initiation complexes reveals that modified globin mRNA does not form initiation complexes with ribosomes as effectively as does the unmodified globin mRNA. These results suggest that modification significantly reduces the ability of mRNA to be translated by affecting the initiation step in protein synthesis.

  3. B6 peptide-modified PEG-PLA nanoparticles for enhanced brain delivery of neuroprotective peptide.

    PubMed

    Liu, Zhongyang; Gao, Xiaoling; Kang, Ting; Jiang, Mengyin; Miao, Deyu; Gu, Guangzhi; Hu, Quanyin; Song, Qingxiang; Yao, Lei; Tu, Yifan; Chen, Hongzhuan; Jiang, Xinguo; Chen, Jun

    2013-06-19

    The blood-brain barrier (BBB), which is formed by the brain capillary wall, greatly hinders the development of new drugs for the brain. Over the past decades, among the various receptor-mediated endogenous BBB transport systems, the strategy of using transferrin or anti-transferrin receptor antibodies to facilitate brain drug delivery system is of particular interest. However, the application of large proteins still suffers from the drawbacks including synthesis procedure, stability, and immunological response. Here, we explored a B6 peptide discovered by phase display as a substitute for transferrin, and conjugated it to PEG-PLA nanoparticles (NP) with the aim of enhancing the delivery of neuroprotective drug across the BBB for the treatment of Alzheimer's disease. B6-modified NP (B6-NP) exhibited significantly higher accumulation in brain capillary endothelial cells via lipid raft-mediated and clathrin-mediated endocytosis. In vivo, fluorescently labeled B6-NP exhibited much higher brain accumulation when compared with NP. Administration of B6-NP encapsulated neuroprotective peptide-NAPVSIPQ (NAP)-to Alzheimer's disease mouse models showed excellent amelioration in learning impairments, cholinergic disruption, and loss of hippocampal neurons even at lower dose. These findings together suggested that B6-NP might serve as a promising DDS for facilitating the brain delivery of neuropeptides.

  4. A phylogenomic profile of globins

    PubMed Central

    Vinogradov, Serge N; Hoogewijs, David; Bailly, Xavier; Arredondo-Peter, Raúl; Gough, Julian; Dewilde, Sylvia; Moens, Luc; Vanfleteren, Jacques R

    2006-01-01

    Background Globins occur in all three kingdoms of life: they can be classified into single-domain globins and chimeric globins. The latter comprise the flavohemoglobins with a C-terminal FAD-binding domain and the gene-regulating globin coupled sensors, with variable C-terminal domains. The single-domain globins encompass sequences related to chimeric globins and «truncated» hemoglobins with a 2-over-2 instead of the canonical 3-over-3 α-helical fold. Results A census of globins in 26 archaeal, 245 bacterial and 49 eukaryote genomes was carried out. Only ~25% of archaea have globins, including globin coupled sensors, related single domain globins and 2-over-2 globins. From one to seven globins per genome were found in ~65% of the bacterial genomes: the presence and number of globins are positively correlated with genome size. Globins appear to be mostly absent in Bacteroidetes/Chlorobi, Chlamydia, Lactobacillales, Mollicutes, Rickettsiales, Pastorellales and Spirochaetes. Single domain globins occur in metazoans and flavohemoglobins are found in fungi, diplomonads and mycetozoans. Although red algae have single domain globins, including 2-over-2 globins, the green algae and ciliates have only 2-over-2 globins. Plants have symbiotic and nonsymbiotic single domain hemoglobins and 2-over-2 hemoglobins. Over 90% of eukaryotes have globins: the nematode Caenorhabditis has the most putative globins, ~33. No globins occur in the parasitic, unicellular eukaryotes such as Encephalitozoon, Entamoeba, Plasmodium and Trypanosoma. Conclusion Although Bacteria have all three types of globins, Archaeado not have flavohemoglobins and Eukaryotes lack globin coupled sensors. Since the hemoglobins in organisms other than animals are enzymes or sensors, it is likely that the evolution of an oxygen transport function accompanied the emergence of multicellular animals. PMID:16600051

  5. Genetically modified neural stem cells for a local and sustained delivery of neuroprotective factors to the dystrophic mouse retina.

    PubMed

    Jung, Gila; Sun, Jing; Petrowitz, Bettina; Riecken, Kristoffer; Kruszewski, Katharina; Jankowiak, Wanda; Kunst, Frank; Skevas, Christos; Richard, Gisbert; Fehse, Boris; Bartsch, Udo

    2013-12-01

    A continuous intraocular delivery of neurotrophic factors (NFs) is being explored as a strategy to rescue photoreceptor cells and visual functions in degenerative retinal disorders that are currently untreatable. To establish a cell-based intraocular delivery system for a sustained administration of NFs to the dystrophic mouse retina, we used a polycistronic lentiviral vector to genetically modify adherently cultivated murine neural stem (NS) cells. The vector concurrently encoded a gene of interest, a reporter gene, and a resistance gene and thus facilitated the selection, cloning, and in vivo tracking of the modified cells. To evaluate whether modified NS cells permit delivery of functionally relevant quantities of NFs to the dystrophic mouse retina, we expressed a secretable variant of ciliary neurotrophic factor (CNTF) in NS cells and grafted the cells into the vitreous space of Pde6b(rd1) and Pde6b(rd10) mice, two animal models of retinitis pigmentosa. In both mouse lines, grafted cells attached to the retina and lens, where they differentiated into astrocytes and some neurons. Adverse effects of the transplanted cells on the morphology of host retinas were not observed. Importantly, the CNTF-secreting NS cells significantly attenuated photoreceptor degeneration in both mutant mouse lines. The neuroprotective effect was significantly more pronounced when clonally derived NS cell lines selected for high expression levels of CNTF were grafted into Pde6b(rd1) mice. Intravitreal transplantations of modified NS cells may thus represent a useful method for preclinical studies aimed at evaluating the therapeutic potential of a cell-based intraocular delivery of NFs in mouse models of photoreceptor degeneration.

  6. Environmental Enrichment Modified Epigenetic Mechanisms in SAMP8 Mouse Hippocampus by Reducing Oxidative Stress and Inflammaging and Achieving Neuroprotection

    PubMed Central

    Griñan-Ferré, Christian; Puigoriol-Illamola, Dolors; Palomera-Ávalos, Verónica; Pérez-Cáceres, David; Companys-Alemany, Júlia; Camins, Antonio; Ortuño-Sahagún, Daniel; Rodrigo, M. Teresa; Pallàs, Mercè

    2016-01-01

    With the increase in life expectancy, aging and age-related cognitive impairments are becoming one of the most important issues for human health. At the same time, it has been shown that epigenetic mechanisms are emerging as universally important factors in life expectancy. The Senescence Accelerated Mouse P8 (SAMP8) strain exhibits age-related deterioration evidenced in learning and memory abilities and is a useful model of neurodegenerative disease. In SAMP8, Environmental Enrichment (EE) increased DNA-methylation levels (5-mC) and reduced hydroxymethylation levels (5-hmC), as well as increased histone H3 and H4 acetylation levels. Likewise, we found changes in the hippocampal gene expression of some chromatin-modifying enzyme genes, such as Dnmt3b. Hdac1. Hdac2. Sirt2, and Sirt6. Subsequently, we assessed the effects of EE on neuroprotection-related transcription factors, such as the Nuclear regulatory factor 2 (Nrf2)–Antioxidant Response Element pathway and Nuclear Factor kappa Beta (NF-κB), which play critical roles in inflammation. We found that EE produces an increased expression of antioxidant genes, such as Hmox1. Aox1, and Cox2, and reduced the expression of inflammatory genes such as IL-6 and Cxcl10, all of this within the epigenetic context modified by EE. In conclusion, EE prevents epigenetic changes that promote or drive oxidative stress and inflammaging. PMID:27803663

  7. Coexpression of Human α- and Circularly Permuted β-Globins Yields a Hemoglobin with Normal R State but Modified T State Properties†

    PubMed Central

    Asmundson, Anna L.; Taber, Alexandria M.; van der Walde, Adella; Lin, Danielle H.; Olson, John S.; Anthony-Cahill, Spencer J.

    2009-01-01

    For the first time, a circularly permuted human β-globin (cpβ) has been coexpressed with human α-globin in bacterial cells and shown to associate to form α-cpβ hemoglobin in solution. Flash photolysis studies of α-cpβ show markedly biphasic CO and O2 kinetics with the amplitudes for the fast association phases being dominant due the presence of large amounts of high-affinity liganded hemoglobin dimers. Extensive dimerization of liganded but not deoxygenated α-cpβ was observed by gel chromatography. The rate constants for O2 and CO binding to the R state forms of α-cpβ are almost identical to those of native HbA (k′R(CO) ≈ 5.0 μM−1 s−1; k′R(O2) ≈ 50 μM−1 s−1), and the rate of O2 dissociation from fully oxygenated α-cpβ is also very similar to that observed for HbA (kR(O2) ≈ 21–28 s−1). When the equilibrium deoxyHb form of α-cpβ is reacted with CO in rapid mixing experiments, the observed time courses are monophasic and the observed bimolecular association rate constant is ∼1.0 μM−1 s−1, which is intermediate between the R state rate measured in partial photolysis experiments (∼5 μM−1 s−1) and that observed for T state deoxyHbA (k′T(CO) ≈ 0.1 to 0.2 μM−1 s−1). Thus the deoxygenated permutated β subunits generate an intermediate, higher affinity, deoxyHb quaternary state. This conclusion is supported by equilibrium oxygen binding measurements in which α-cpβ exhibits a P50 of ∼1.5 mmHg and a low n-value (∼1.3) at pH 7, 20 °C, compared to 8.5 mmHg and n ≈ 2.8 for native HbA under identical, dilute conditions. PMID:19397368

  8. A modified chronic ocular hypertension rat model for retinal ganglion cell neuroprotection.

    PubMed

    Zhong, Lichun

    2013-09-01

    This study aimed to modify a chronic ocular hypertension (OHT) rat model to screen for potential compounds to protect retinal ganglion cells (RGCs) from responding to increased intraocular pressure (IOP). A total of 266 rats were prepared and randomly grouped according to different time-points, namely, weeks 3, 8, 16, and 24. Rats were sedated and eye examination was performed to score as the corneal damage on a scale of 1 to 4. The OHT rat model was created via the injection of a hypertonic saline solution into the episcleral veins once weekly for two weeks. OHT was identified when the IOP at week 0 was [Symbol: see text] 6 mmHg than that at week -2 for the same eye. Viable RGCs were labeled by injecting 4% FluoroGold. Rats were sacrificed, and the eyes were enucleated and fixed. The fixed retinas were dissected to prepare flat whole-mounts. The viable RGCs were visualized and imaged. The IOP (mean ± SD) was calculated, and data were analyzed by the paired t-test and one-way ANOVA. The OHT model was created in 234 of 266 rats (87.97%), whereas 32 rats (12.03%) were removed from the study because of the absence of IOP elevation (11.28%) and/or corneal damage scores over 4 (0.75%). IOP was elevated by as much as 81.35% for 24 weeks. The average IOP was (16.68 ± 0.98) mmHg in non-OHT eyes (n = 234), but was (27.95 ± 0.97) mmHg in OHTeyes (n = 234). Viable RGCs in the OHT eyes were significantly decreased in a time-dependent manner by 29.41%, 38.24%, 55.32%, and 59.30% at weeks 3, 8, 16, and 24, respectively, as compared to viable RGCs in the non-OHT eyes (P < 0.05). The OHT model was successfully created in 88% of the rats. The IOP in the OHT eyes was elevated by approximately 81% for 24 weeks. The number of viable RGCs was decreased by 59% of the rats in a time-dependent manner. The modified OHT model may provide an effective and reliable method for screening drugs to protect RGCs from glaucoma.

  9. The globins of Campylobacter jejuni.

    PubMed

    Tinajero-Trejo, Mariana; Shepherd, Mark

    2013-01-01

    Campylobacter jejuni is a zoonotic Gram-negative bacterial pathogen that is exposed to reactive nitrogen species, such as nitric oxide, from a variety of sources. To combat the toxic effects of this nitrosative stress, C. jejuni upregulates a small regulon under the control of the transcriptional activator NssR, which positively regulates the expression of a single-domain globin protein (Cgb) and a truncated globin protein (Ctb). Cgb has previously been shown to detoxify nitric oxide, but the role of Ctb remains contentious. As C. jejuni is amenable to genetic manipulation, and its globin proteins are easily expressed and purified, a combination of mutagenesis, complementation, transcriptomics, spectroscopic characterisation and structural analyses has been used to probe the regulation, function and structure of Cgb and Ctb. This ability to study Cgb and Ctb with such a multi-pronged approach is a valuable asset, especially since only a small fraction of known globin proteins have been functionally characterised.

  10. Characterisation of neuroprotective efficacy of modified poly-arginine-9 (R9) peptides using a neuronal glutamic acid excitotoxicity model.

    PubMed

    Edwards, Adam B; Anderton, Ryan S; Knuckey, Neville W; Meloni, Bruno P

    2017-02-01

    In a recent study, we highlighted the importance of cationic charge and arginine residues for the neuroprotective properties of poly-arginine and arginine-rich peptides. In this study, using cortical neuronal cultures and an in vitro glutamic acid excitotoxicity model, we examined the neuroprotective efficacy of different modifications to the poly-arginine-9 peptide (R9). We compared an unmodified R9 peptide with R9 peptides containing the following modifications: (i) C-terminal amidation (R9-NH2); (ii) N-terminal acetylation (Ac-R9); (iii) C-terminal amidation with N-terminal acetylation (Ac-R9-NH2); and (iv) C-terminal amidation with D-amino acids (R9D-NH2). The three C-terminal amidated peptides (R9-NH2, Ac-R9-NH2, and R9D-NH2) displayed neuroprotective effects greater than the unmodified R9 peptide, while the N-terminal acetylated peptide (Ac-R9) had reduced efficacy. Using the R9-NH2 peptide, neuroprotection could be induced with a 10 min peptide pre-treatment, 1-6 h before glutamic acid insult, or when added to neuronal cultures up to 45 min post-insult. In addition, all peptides were capable of reducing glutamic acid-mediated neuronal intracellular calcium influx, in a manner that reflected their neuroprotective efficacy. This study further highlights the neuroprotective properties of poly-arginine peptides and provides insight into peptide modifications that affect efficacy.

  11. Repair of Thalassemic Human β -globin mRNA in Mammalian Cells by Antisense Oligonucleotides

    NASA Astrophysics Data System (ADS)

    Sierakowska, Halina; Sambade, Maria J.; Agrawal, Sudhir; Kole, Ryszard

    1996-11-01

    In one form of β -thalassemia, a genetic blood disorder, a mutation in intron 2 of the β -globin gene (IVS2-654) causes aberrant splicing of β -globin pre-mRNA and, consequently, β -globin deficiency. Treatment of mammalian cells stably expressing the IVS2-654 human β -globin gene with antisense oligonucleotides targeted at the aberrant splice sites restored correct splicing in a dose-dependent fashion, generating correct human β -globin mRNA and polypeptide. Both products persisted for up to 72 hr posttreatment. The oligonucleotides modified splicing by a true antisense mechanism without overt unspecific effects on cell growth and splicing of other pre-mRNAs. This novel approach in which antisense oligonucleotides are used to restore rather than to down-regulate the activity of the target gene is applicable to other splicing mutants and is of potential clinical interest.

  12. The Full Globin Repertoire of Turtles Provides Insights into Vertebrate Globin Evolution and Functions

    PubMed Central

    Schwarze, Kim; Singh, Abhilasha; Burmester, Thorsten

    2015-01-01

    Globins are small heme proteins that play an important role in oxygen supply, but may also have other functions. Globins offer a unique opportunity to study the functional evolution of genes and proteins. We have characterized the globin repertoire of two different turtle species: the Chinese softshell turtle (Pelodiscus sinensis) and the western painted turtle (Chrysemys picta bellii). In the genomes of both species, we have identified eight distinct globin types: hemoglobin (Hb), myoglobin, neuroglobin, cytoglobin, globin E, globin X, globin Y, and androglobin. Therefore, along with the coelacanth, turtles are so far the only known vertebrates with a full globin repertoire. This fact allows for the first time a comparative analysis of the expression of all eight globins in a single species. Phylogenetic analysis showed an early divergence of neuroglobin and globin X before the radiation of vertebrates. Among the other globins, cytoglobin diverged first, and there is a close relationship between myoglobin and globin E; the position of globin Y is not resolved. The globin E gene was selectively lost in the green anole, and the genes coding for globin X and globin Y were deleted in chicken. Quantitative real-time reverse transcription polymerase chain reaction experiments revealed that myoglobin, neuroglobin, and globin E are highly expressed with tissue-specific patterns, which are in line with their roles in the oxidative metabolism of the striated muscles, the brain, and the retina, respectively. Histochemical analyses showed high levels of globin E in the pigment epithelium of the eye. Globin E probably has a myoglobin-like role in transporting O2 across the pigment epithelium to supply in the metabolically highly active retina. PMID:26078264

  13. Genome scan identifies a locus affecting gamma-globin expression in human beta-cluster YAC transgenic mice

    SciTech Connect

    Lin, S.D.; Cooper, P.; Fung, J.; Weier, H.U.G.; Rubin, E.M.

    2000-03-01

    Genetic factors affecting post-natal g-globin expression - a major modifier of the severity of both b-thalassemia and sickle cell anemia, have been difficult to study. This is especially so in mice, an organism lacking a globin gene with an expression pattern equivalent to that of human g-globin. To model the human b-cluster in mice, with the goal of screening for loci affecting human g-globin expression in vivo, we introduced a human b-globin cluster YAC transgene into the genome of FVB mice . The b-cluster contained a Greek hereditary persistence of fetal hemoglobin (HPFH) g allele resulting in postnatal expression of human g-globin in transgenic mice. The level of human g-globin for various F1 hybrids derived from crosses between the FVB transgenics and other inbred mouse strains was assessed. The g-globin level of the C3HeB/FVB transgenic mice was noted to be significantly elevated. To map genes affecting postnatal g-globin expression, a 20 centiMorgan (cM) genome scan of a C3HeB/F VB transgenics [prime] FVB backcross was performed, followed by high-resolution marker analysis of promising loci. From this analysis we mapped a locus within a 2.2 cM interval of mouse chromosome 1 at a LOD score of 4.2 that contributes 10.4% of variation in g-globin expression level. Combining transgenic modeling of the human b-globin gene cluster with quantitative trait analysis, we have identified and mapped a murine locus that impacts on human g-globin expression in vivo.

  14. Molecular analysis of globin gene expression in different thalassaemia disorders: individual variation of β(E) pre-mRNA splicing determine disease severity.

    PubMed

    Tubsuwan, Alisa; Munkongdee, Thongperm; Jearawiriyapaisarn, Natee; Boonchoy, Chanikarn; Winichagoon, Pranee; Fucharoen, Suthat; Svasti, Saovaros

    2011-09-01

    Thalassaemia is characterized by the reduced or absent production of globins in the haemoglobin molecule leading to imbalanced α-globin/non α-globin chains. HbE, the result of a G to A mutation in codon 26 of the HBB (β-globin) gene, activates a cryptic 5' splice site in codon 25 leading to a reduction of correctly spliced β(E) -globin (HBB:c.79G>A) mRNA and consequently β(+) -thalassaemia. A wide range of clinical severities in bothα- and β-thalassaemia syndromes, from nearly asymptomatic to transfusion-dependent, has been observed. The correlation between clinical heterogeneity in various genotypes of thalassaemia and the levels of globin gene expression and β(E) -globin pre-mRNA splicing were examined using multiplex quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR) and allele-specific RT-qPCR. The α-globin/non α-globin mRNA ratio was demonstrated to be a good indicator for disease severity among different thalassaemia disorders. However, the α-globin/non α-globin mRNA ratio ranged widely in β-thalassaemia/HbE patients, with no significant difference between mild and severe phenotypes. Interestingly, the correctly to aberrantly spliced β(E) -globin mRNA ratio in 30% of mild β-thalassaemia/HbE patients was higher than that of the severe patients. The splicing process of β(E) -globin pre-mRNA differs among β-thalassaemia/HbE patients and serves as one of the modifying factors for disease severity.

  15. Globin domain interactions control heme pocket conformation and oligomerization of globin coupled sensors.

    PubMed

    Rivera, Shannon; Burns, Justin L; Vansuch, Gregory E; Chica, Bryant; Weinert, Emily E

    2016-11-01

    Globin coupled sensors (GCS) are O2-sensing proteins used by bacteria to monitor the surrounding gaseous environment. To investigate the biphasic O2 dissociation kinetics observed for full-length GCS proteins, isolated globin domains from Pectobacterium carotovorum ssp. carotovorum (PccGlobin), and Bordetella pertussis (BpeGlobin), have been characterized. PccGlobin is found to be dimeric, while BpeGlobin is monomeric, indicating key differences in the globin domain dimer interface. Through characterization of wild type globin domains and globin variants with mutations at the dimer interface and within the distal pocket, dimerization of the globin domain is demonstrated to correlate with biphasic dissociation kinetics. Furthermore, a distal pocket tyrosine is identified as the primary hydrogen bond donor, while a secondary hydrogen bond donor within the distal heme pocket is involved in conformation(s) that lead to the second O2 dissociation rate. These findings highlight the role of the globin dimer interface in controlling properties of both the heme pocket and full-length GCS proteins.

  16. Brain globins in physiology and pathology

    PubMed Central

    Xie, Luo-kun; Yang, Shao-hua

    2016-01-01

    Globins are globular proteins for either transport or storage of oxygen which are critical for cellular metabolism. Four globins have been identified in rodent and human brains. Among them, neuroglobin, cytoglobin and hemoglobin chains are constitutively expressed in normal brain, while myoglobin is only expressed in some neurological disorders. Studies on the molecular structure, expression and functional features of these brain globins indicated that they may play crucial roles in maintenance of neural cell survival and activity, including neurons and astrocytes. Their regulation in neurological disorders may help thoroughly understand initiation and progression of ischemia, Alzheimer's disease and glioma, etc. Elucidation of the brain globin functions might remarkably improve medical strategies that sustain neurological homeostasis and treat neurological diseases. Here the expression pattern and functions of brain globins and their involvement in neurological disorders are reviewed. PMID:27867483

  17. Globin chain synthesis ratios in sideroblastic anaemia.

    PubMed

    Peters, R E; May, A; Jacobs, A

    1983-02-01

    Globin synthesis ratios were measured on reticulocytes from nine patients with primary acquired sideroblastic anaemia (SA), four patients with hereditary or congenital SA, two patients with secondary acquired SA and three patients with iron deficiency (ID). Ten of the samples from patients with SA and all the samples from patients with ID had normal ratios. Samples from three patients had significantly abnormal ratios, one from a patient with SA and acquired Hb H disease (alpha/beta 0 X 26), one from a patient with secondary acquired SA (alpha/beta 0 X 88), and one from a patient who went on to develop acute myeloblastic leukaemia (alpha/beta 1 X 36). Globin synthesis was stimulated by 100 microM haem similarly in normal, SA and ID reticulocytes. Any limitation of globin synthesis in SA and ID is therefore not easily reversible by adding haem. Inhibition of haem synthesis in nonsideroblastic reticulocytes using 4 mM isonicotinic acid hydrazide for 1 h incubation affected neither total globin synthesis nor the alpha/beta ratio. These results contradict the view that decreased haem synthesis decreases globin chain synthesis and decreases the alpha/beta globin chain synthesis ratios in human reticulocytes. Previously reported findings that haem could reverse globin chain synthesis inhibition in SA were good evidence for a primary deficiency of haem synthesis in the erythroblasts of these patients. Our inability to substantiate these findings emphasizes the need for a re-evaluation of the aetiology of sideroblastic anaemia.

  18. Molecular Characterization and Expression of α-Globin and β-Globin Genes in the Euryhaline Flounder (Platichthys flesus).

    PubMed

    Lu, Weiqun; Mayolle, Aurelie; Cui, Guoqiang; Luo, Lei; Balment, Richard J

    2011-01-01

    In order to understand the possible role of globin genes in fish salinity adaptation, we report the molecular characterization and expression of all four subunits of haemoglobin, and their response to salinity challenge in flounder. The entire open reading frames of α1-globin and α2-globin genes were 432 and 435 bp long, respectively, whereas the β1-globin and β2-globin genes were both 447 bp. Although the head kidney (pronephros) is the predicted major site of haematopoiesis, real-time PCR revealed that expression of α-globin and β-globin in kidney (mesonephros) was 1.5 times higher than in head kidney. Notably, the α1-globin and β1-globin mRNA expression was higher than α2-globin and β2-globin in kidney. Expression levels of all four globin subunits were higher in freshwater- (FW-) than in seawater- (SW-)adapted fish kidney. If globins do play a role in salinity adaptation, this is likely to be more important in combating the hemodilution faced by fish in FW than the dehydration and salt loading which occur in SW.

  19. Perinatal neuroprotection

    PubMed Central

    Jelin, Angie C.; Thiet, Mari-Paule

    2014-01-01

    Fetal or neonatal brain injury can result in lifelong neurologic disability. The most significant risk factor for perinatal brain injury is prematurity; however, in absolute numbers, full-term infants represent the majority of affected children. Research on strategies to prevent or mitigate the impact of perinatal brain injury (“perinatal neuroprotection”) has established the mitigating roles of magnesium sulfate administration for preterm infants and therapeutic hypothermia for term infants with suspected perinatal brain injury. Banked umbilical cord blood, erythropoietin, and a number of other agents that may improve neuronal repair show promise for improving outcomes following perinatal brain injury in animal models. Other preventative strategies include delayed umbilical cord clamping in preterm infants and progesterone in women with prior preterm birth or short cervix and avoidance of infections. Despite these advances, we have not successfully decreased the rate of preterm birth, nor are we able to predict term infants at risk of hypoxic brain injury in order to intervene prior to the hypoxic event. Further, we lack the ability to modulate the sequelae of neuronal cell insults or the ability to repair brain injury after it has been sustained. As a consequence, despite exciting advances in the field of perinatal neuroprotection, perinatal brain injury still impacts thousands of newborns each year with significant long-term morbidity and mortality. PMID:24592318

  20. Nutritive value of globin-amino acid and complementary globin-cereal mixtures.

    PubMed

    Landmann, W A; Dill, C W; Young, C R

    1980-11-01

    Protein efficiency ratios (PER) were determined using male weanling rats fed diets containing bovine globin alone and with wheat and corn gluten. Simultaneous equations and graphical methods were devised for selecting combinations of globin and cereal proteins to provide optimal and suboptimal profiles of limiting amino acids. Supplementation of the globin with amino acids established isoleucine and methionine as limiting amino acids. Addition of globin, whose amino acid pattern is complementary to that of the cereal proteins, markedly improved the PER values of the proteins. However, growth rates of rats fed various combinations of proteins were not identical, even though PER values differed only slightly. The PER of combined proteins were not predictable from amino acid composition or from correlations between PER and chemical score based on National Research Council (NRC) requirements for essential amino acids. The inability of the optimal mixtures to meet expected nutritional performance clearly indicated that other factors affecting availability of amino acids are implicated. Nevertheless, mutual improvement of two incomplete proteins such as globin and wheat or corn gluten was demonstrated. Addition of globin to widely used diets consisting mainly of corn or wheat can be nutritionally beneficial.

  1. The nucleotide sequence of the human beta-globin gene.

    PubMed

    Lawn, R M; Efstratiadis, A; O'Connell, C; Maniatis, T

    1980-10-01

    We report the complete nucleotide sequence of the human beta-globin gene. The purpose of this study is to obtain information necessary to study the evolutionary relationships between members of the human beta-like globin gene family and to provide the basis for comparing normal beta-globin genes with those obtained from the DNA of individuals with genetic defects in hemoglobin expression.

  2. Erythropoietin and Neonatal Neuroprotection

    PubMed Central

    Juul, Sandra E.; Pet, Gillian C.

    2015-01-01

    Certain groups of neonates are at high risk of developing long-term neurodevelopmental impairment (NDI) and might be considered candidates for neuroprotective interventions. This chapter will explore some of these high-risk groups, relevant mechanisms of brain injury, and specific mechanisms of cellular injury and death. The potential of erythropoietin (Epo) to act as a neuroprotective agent for neonatal brain injury will be discussed. Clinical trials of Epo neuroprotection in preterm and term infants are updated. PMID:26250911

  3. Epigenetic interplay at the β-globin locus.

    PubMed

    Lee, Wei Shern; McColl, Bradley; Maksimovic, Jovana; Vadolas, Jim

    2017-02-01

    During development, the α- and β-globin genes exhibit a highly conserved pattern of expression, giving rise to several developmental stage-specific hemoglobin variants. Networks of regulatory proteins interact with epigenetic complexes to regulate DNA accessibility and histone modifications, thereby determining appropriate patterns of globin gene expression. In this review, we focus on recent advances in the understanding of the molecular mechanisms that underpin globin gene expression, focusing on multi-subunit regulatory complexes that bind to specific regions of DNA to orchestrate globin gene transcription throughout development.

  4. Deletion of a region that is a candidate for the difference between the deletion forms of hereditary persistence of fetal hemoglobin and deltabeta-thalassemia affects beta- but not gamma-globin gene expression.

    PubMed Central

    Calzolari, R; McMorrow, T; Yannoutsos, N; Langeveld, A; Grosveld, F

    1999-01-01

    The analysis of a number of cases of beta-globin thalassemia and hereditary persistence of fetal hemoglobin (HPFH) due to large deletions in the beta-globin locus has led to the identification of several DNA elements that have been implicated in the switch from human fetal gamma- to adult beta-globin gene expression. We have tested this hypothesis for an element that covers the minimal distance between the thalassemia and HPFH deletions and is thought to be responsible for the difference between a deletion HPFH and deltabeta-thalassemia, located 5' of the delta-globin gene. This element has been deleted from a yeast artificial chromosome (YAC) containing the complete human beta-globin locus. Analysis of this modified YAC in transgenic mice shows that early embryonic expression is unaffected, but in the fetal liver it is subject to position effects. In addition, the efficiency of transcription of the beta-globin gene is decreased, but the developmental silencing of the gamma-globin genes is unaffected by the deletion. These results show that the deleted element is involved in the activation of the beta-globin gene perhaps through the loss of a structural function required for gene activation by long-range interactions. PMID:10022837

  5. Globin gene structure in a reptile supports the transpositional model for amniote α- and β-globin gene evolution.

    PubMed

    Patel, Vidushi S; Ezaz, Tariq; Deakin, Janine E; Graves, Jennifer A Marshall

    2010-12-01

    The haemoglobin protein, required for oxygen transportation in the body, is encoded by α- and β-globin genes that are arranged in clusters. The transpositional model for the evolution of distinct α-globin and β-globin clusters in amniotes is much simpler than the previously proposed whole genome duplication model. According to this model, all jawed vertebrates share one ancient region containing α- and β-globin genes and several flanking genes in the order MPG-C16orf35-(α-β)-GBY-LUC7L that has been conserved for more than 410 million years, whereas amniotes evolved a distinct β-globin cluster by insertion of a transposed β-globin gene from this ancient region into a cluster of olfactory receptors flanked by CCKBR and RRM1. It could not be determined whether this organisation is conserved in all amniotes because of the paucity of information from non-avian reptiles. To fill in this gap, we examined globin gene organisation in a squamate reptile, the Australian bearded dragon lizard, Pogona vitticeps (Agamidae). We report here that the α-globin cluster (HBK, HBA) is flanked by C16orf35 and GBY and is located on a pair of microchromosomes, whereas the β-globin cluster is flanked by RRM1 on the 3' end and is located on the long arm of chromosome 3. However, the CCKBR gene that flanks the β-globin cluster on the 5' end in other amniotes is located on the short arm of chromosome 5 in P. vitticeps, indicating that a chromosomal break between the β-globin cluster and CCKBR occurred at least in the agamid lineage. Our data from a reptile species provide further evidence to support the transpositional model for the evolution of β-globin gene cluster in amniotes.

  6. O-Linked N-Acetylglucosamine (O-GlcNAc) Transferase and O-GlcNAcase Interact with Mi2β Protein at the Aγ-Globin Promoter.

    PubMed

    Zhang, Zhen; Costa, Flávia C; Tan, Ee Phie; Bushue, Nathan; DiTacchio, Luciano; Costello, Catherine E; McComb, Mark E; Whelan, Stephen A; Peterson, Kenneth R; Slawson, Chad

    2016-07-22

    One mode of γ-globin gene silencing involves a GATA-1·FOG-1·Mi2β repressor complex that binds to the -566 GATA site relative to the (A)γ-globin gene cap site. However, the mechanism of how this repressor complex is assembled at the -566 GATA site is unknown. In this study, we demonstrate that the O-linked N-acetylglucosamine (O-GlcNAc) processing enzymes, O-GlcNAc-transferase (OGT) and O-GlcNAcase (OGA), interact with the (A)γ-globin promoter at the -566 GATA repressor site; however, mutation of the GATA site to GAGA significantly reduces OGT and OGA promoter interactions in β-globin locus yeast artificial chromosome (β-YAC) bone marrow cells. When WT β-YAC bone marrow cells are treated with the OGA inhibitor Thiamet-G, the occupancy of OGT, OGA, and Mi2β at the (A)γ-globin promoter is increased. In addition, OGT and Mi2β recruitment is increased at the (A)γ-globin promoter when γ-globin becomes repressed in postconception day E18 human β-YAC transgenic mouse fetal liver. Furthermore, we show that Mi2β is modified with O-GlcNAc, and both OGT and OGA interact with Mi2β, GATA-1, and FOG-1. Taken together, our data suggest that O-GlcNAcylation is a novel mechanism of γ-globin gene regulation mediated by modulating the assembly of the GATA-1·FOG-1·Mi2β repressor complex at the -566 GATA motif within the promoter.

  7. Conservation of globin genes in the "living fossil" Latimeria chalumnae and reconstruction of the evolution of the vertebrate globin family.

    PubMed

    Schwarze, Kim; Burmester, Thorsten

    2013-09-01

    The (hemo-)globins are among the best-investigated proteins in biomedical sciences. These small heme-proteins play an important role in oxygen supply, but may also have other functions. In addition to well known hemoglobin and myoglobin, six other vertebrate globin types have been identified in recent years: neuroglobin, cytoglobin, globin E, globin X, globin Y, and androglobin. Analyses of the genome of the "living fossil" Latimeria chalumnae show that the coelacanth is the only known vertebrate that includes all eight globin types. Thus, Latimeria can also be considered as a "globin fossil". Analyses of gene synteny and phylogenetic reconstructions allow us to trace the evolution and the functional changes of the vertebrate globin family. Neuroglobin and globin X diverged from the other globin types before the separation of Protostomia and Deuterostomia. The cytoglobins, which are unlikely to be involved in O2 supply, form the earliest globin branch within the jawed vertebrates (Gnathostomata), but do not group with the agnathan hemoglobins, as it has been proposed before. There is strong evidence from phylogenetic reconstructions and gene synteny that the eye-specific globin E and muscle-specific myoglobin constitute a common clade, suggesting a similar role in intracellular O2 supply. Latimeria possesses two α- and two β-hemoglobin chains, of which one α-chain emerged prior to the divergence of Actinopterygii and Sarcopterygii, but has been retained only in the coelacanth. Notably, the embryonic hemoglobin α-chains of Gnathostomata derive from a common ancestor, while the embryonic β-chains - with the exception of a more complex pattern in the coelacanth and amphibians - display a clade-specific evolution. Globin Y is associated with the hemoglobin gene cluster, but its phylogenetic position is not resolved. Our data show an early divergence of distinct globin types in the vertebrate evolution before the emergence of tetrapods. The subsequent loss of

  8. Reactivation of developmentally silenced globin genes by forced chromatin looping

    PubMed Central

    Krivega, Ivan; Breda, Laura; Motta, Irene; Jahn, Kristen S.; Reik, Andreas; Gregory, Philip D.; Rivella, Stefano; Dean, Ann; Blobel, Gerd A.

    2014-01-01

    Summary Distal enhancers commonly contact target promoters via chromatin looping. In erythroid cells, the locus control region (LCR) contacts β-type globin genes in a developmental stage-specific manner to stimulate transcription. Previously, we induced LCR-promoter looping by tethering the self-association domain (SA) of Ldb1 to the β-globin promoter via artificial zinc fingers. Here, we show that targeting the SA to a developmentally silenced embryonic globin gene in adult murine erythroblasts triggered its transcriptional reactivation. This activity depended on the LCR, consistent with an LCR-promoter looping mechanism. Strikingly, targeting SA to the fetal γ-globin promoter in primary adult human erythroblasts increased γ-globin promoter-LCR contacts, stimulating transcription to approximately 85% of total β-globin synthesis with a reciprocal reduction in adult β-globin expression. Our findings demonstrate that forced chromatin looping can override a stringent developmental gene expression program and suggest a novel approach to control the balance of globin gene transcription for therapeutic applications. PMID:25126789

  9. A Limited Number of Globin Genes in Human DNA

    PubMed Central

    Gambino, Roberto; Kacian, Daniel; O'Donnell, Joyce; Ramirez, Francesco; Marks, Paul A.; Bank, Arthur

    1974-01-01

    The number of globin genes in human cells was determined by hybridizing DNA from human spleens to 3H-labeled DNA complementary to human globin mRNA. Assuming the rates of reannealing of complementary DNA and cellular DNA are similar, the extent of hybridization of complementary DNA at various ratios of cellular DNA to complementary DNA indicate that there are fewer than 10 globin gene copies per haploid human genome. An alternative analysis of the data, which introduces no assumptions concerning the relative rates of reaction of complementary DNA and cellular DNA, indicates fewer than 20 globin gene copies are present. DNA isolated from the spleen of a patient with β+ thalassemia contained a number of globin gene copies similar to that of normal DNA. PMID:4530276

  10. Axolotl hemoglobin: cDNA-derived amino acid sequences of two alpha globins and a beta globin from an adult Ambystoma mexicanum.

    PubMed

    Shishikura, Fumio; Takeuchi, Hiro-aki; Nagai, Takatoshi

    2005-11-01

    Erythrocytes of the adult axolotl, Ambystoma mexicanum, have multiple hemoglobins. We separated and purified two kinds of hemoglobin, termed major hemoglobin (Hb M) and minor hemoglobin (Hb m), from a five-year-old male by hydrophobic interaction column chromatography on Alkyl Superose. The hemoglobins have two distinct alpha type globin polypeptides (alphaM and alpham) and a common beta globin polypeptide, all of which were purified in FPLC on a reversed-phase column after S-pyridylethylation. The complete amino acid sequences of the three globin chains were determined separately using nucleotide sequencing with the assistance of protein sequencing. The mature globin molecules were composed of 141 amino acid residues for alphaM globin, 143 for alpham globin and 146 for beta globin. Comparing primary structures of the five kinds of axolotl globins, including two previously established alpha type globins from the same species, with other known globins of amphibians and representatives of other vertebrates, we constructed phylogenetic trees for amphibian hemoglobins and tetrapod hemoglobins. The molecular trees indicated that alphaM, alpham, beta and the previously known alpha major globin were adult types of globins and the other known alpha globin was a larval type. The existence of two to four more globins in the axolotl erythrocyte is predicted.

  11. Widespread occurrence of N-terminal acylation in animal globins and possible origin of respiratory globins from a membrane-bound ancestor.

    PubMed

    Blank, Miriam; Burmester, Thorsten

    2012-11-01

    Proteins of the (hemo-)globin superfamily have been identified in many different animals but also occur in plants, fungi, and bacteria. Globins are renowned for their ability to store and to transport oxygen, but additional globin functions such as sensing, signaling, and detoxification have been proposed. Recently, we found that the zebrafish globin X protein is myristoylated and palmitoylated at its N-terminus. The addition of fatty acids results in an association with the cellular membranes, suggesting a previously unrecognized globin function. In this study, we show that N-terminal acylation likely occurs in globin proteins from a broad range of phyla. An N-terminal myristoylation site was identified in 90 nonredundant globins from Chlorophyta, Heterokontophyta, Cnidaria, Mollusca, Arthropoda, Nematoda, Echinodermata, Hemichordata, and Chordata (including Cephalochordata), of which 66 proteins carry an additional palmitoylation site. Bayesian phylogenetic analyses identified five major globin families, which may mirror the ancient globin diversity of the Metazoa. Globin X-like proteins form two related clades, which diverged before the radiation of the Eumetazoa. Vertebrate hemoglobin (Hb), myoglobin, cytoglobin, globin E, and globin Y form a strongly supported common clade, which is the sister group of a clade consisting of invertebrate Hbs and relatives. The N-terminally acylated globins do not form a single monophyletic group but are distributed to four distinct clades. This pattern may be either explained by multiple introduction of an N-terminal acylation site into distinct globin lineages or by the origin of animal respiratory globins from a membrane-bound ancestor. Similarly, respiratory globins were not monophyletic. This suggests that respiratory globins might have emerged independently several times and that the early metazoan globins might have been associated with a membrane and carried out a function that was related to lipid protection or

  12. Comparison of ligand migration and binding in heme proteins of the globin family

    NASA Astrophysics Data System (ADS)

    Karin, Nienhaus; Ulrich Nienhaus, G.

    2015-12-01

    The binding of small diatomic ligands such as carbon monoxide or dioxygen to heme proteins is among the simplest biological processes known. Still, it has taken many decades to understand the mechanistic aspects of this process in full detail. Here, we compare ligand binding in three heme proteins of the globin family, myoglobin, a dimeric hemoglobin, and neuroglobin. The combination of structural, spectroscopic, and kinetic experiments over many years by many laboratories has revealed common properties of globins and a clear mechanistic picture of ligand binding at the molecular level. In addition to the ligand binding site at the heme iron, a primary ligand docking site exists that ensures efficient ligand binding to and release from the heme iron. Additional, secondary docking sites can greatly facilitate ligand escape after its dissociation from the heme. Although there is only indirect evidence at present, a preformed histidine gate appears to exist that allows ligand entry to and exit from the active site. The importance of these features can be assessed by studies involving modified proteins (via site-directed mutagenesis) and comparison with heme proteins not belonging to the globin family.

  13. Globins Scavenge Sulfur Trioxide Anion Radical*

    PubMed Central

    Gardner, Paul R.; Gardner, Daniel P.; Gardner, Alexander P.

    2015-01-01

    Ferrous myoglobin was oxidized by sulfur trioxide anion radical (STAR) during the free radical chain oxidation of sulfite. Oxidation was inhibited by the STAR scavenger GSH and by the heme ligand CO. Bimolecular rate constants for the reaction of STAR with several ferrous globins and biomolecules were determined by kinetic competition. Reaction rate constants for myoglobin, hemoglobin, neuroglobin, and flavohemoglobin are large at 38, 120, 2,600, and ≥ 7,500 × 106 m−1 s−1, respectively, and correlate with redox potentials. Measured rate constants for O2, GSH, ascorbate, and NAD(P)H are also large at ∼100, 10, 130, and 30 × 106 m−1 s−1, respectively, but nevertheless allow for favorable competition by globins and a capacity for STAR scavenging in vivo. Saccharomyces cerevisiae lacking sulfite oxidase and deleted of flavohemoglobin showed an O2-dependent growth impairment with nonfermentable substrates that was exacerbated by sulfide, a precursor to mitochondrial sulfite formation. Higher O2 exposures inactivated the superoxide-sensitive mitochondrial aconitase in cells, and hypoxia elicited both aconitase and NADP+-isocitrate dehydrogenase activity losses. Roles for STAR-derived peroxysulfate radical, superoxide radical, and sulfo-NAD(P) in the mechanism of STAR toxicity and flavohemoglobin protection in yeast are suggested. PMID:26381408

  14. Globins Scavenge Sulfur Trioxide Anion Radical.

    PubMed

    Gardner, Paul R; Gardner, Daniel P; Gardner, Alexander P

    2015-11-06

    Ferrous myoglobin was oxidized by sulfur trioxide anion radical (STAR) during the free radical chain oxidation of sulfite. Oxidation was inhibited by the STAR scavenger GSH and by the heme ligand CO. Bimolecular rate constants for the reaction of STAR with several ferrous globins and biomolecules were determined by kinetic competition. Reaction rate constants for myoglobin, hemoglobin, neuroglobin, and flavohemoglobin are large at 38, 120, 2,600, and ≥ 7,500 × 10(6) m(-1) s(-1), respectively, and correlate with redox potentials. Measured rate constants for O2, GSH, ascorbate, and NAD(P)H are also large at ∼100, 10, 130, and 30 × 10(6) m(-1) s(-1), respectively, but nevertheless allow for favorable competition by globins and a capacity for STAR scavenging in vivo. Saccharomyces cerevisiae lacking sulfite oxidase and deleted of flavohemoglobin showed an O2-dependent growth impairment with nonfermentable substrates that was exacerbated by sulfide, a precursor to mitochondrial sulfite formation. Higher O2 exposures inactivated the superoxide-sensitive mitochondrial aconitase in cells, and hypoxia elicited both aconitase and NADP(+)-isocitrate dehydrogenase activity losses. Roles for STAR-derived peroxysulfate radical, superoxide radical, and sulfo-NAD(P) in the mechanism of STAR toxicity and flavohemoglobin protection in yeast are suggested.

  15. Phylogenetic Diversification of the Globin Gene Superfamily in Chordates

    PubMed Central

    Storz, Jay F.; Opazo, Juan C.; Hoffmann, Federico G.

    2015-01-01

    Summary Phylogenetic reconstructions provide a means of inferring the branching relationships among members of multigene families that have diversified via successive rounds of gene duplication and divergence. Such reconstructions can illuminate the pathways by which particular expression patterns and protein functions evolved. For example, phylogenetic analyses can reveal cases in which similar expression patterns or functional properties evolved independently in different lineages, either through convergence, parallelism, or evolutionary reversals. The purpose of this paper is to provide a robust phylogenetic framework for interpreting experimental data and for generating hypotheses about the functional evolution of globin proteins in chordate animals. To do this we present a consensus phylogeny of the chordate globin gene superfamily. We document the relative roles of gene duplication and whole-genome duplication in fueling the functional diversification of vertebrate globins, and we unravel patterns of shared ancestry among globin genes from representatives of the three chordate subphyla (Craniata, Urochordata, and Cephalochordata). Our results demonstrate the value of integrating phylogenetic analyses with genomic analyses of conserved synteny to infer the duplicative origins and evolutionary histories of globin genes. We also discuss a number of case studies that illustrate the importance of phylogenetic information when making inferences about the evolution of globin gene expression and protein function. Finally, we discuss why the globin gene superfamily presents special challenges for phylogenetic analysis, and we describe methodological approaches that can be used to meet those challenges. PMID:21557448

  16. Chicken alpha-globin switching depends on autonomous silencing of the embryonic pi globin gene by epigenetics mechanisms.

    PubMed

    Rincón-Arano, Héctor; Guerrero, Georgina; Valdes-Quezada, Christian; Recillas-Targa, Félix

    2009-10-15

    Switching in hemoglobin gene expression is an informative paradigm for studying transcriptional regulation. Here we determined the patterns of chicken alpha-globin gene expression during development and erythroid differentiation. Previously published data suggested that the promoter regions of alpha-globin genes contain the complete information for proper developmental regulation. However, our data show a preferential trans-activation of the embryonic alpha-globin gene independent of the developmental or differentiation stage. We also found that DNA methylation and histone deacetylation play key roles in silencing the expression of the embryonic pi gene in definitive erythrocytes. However, drug-mediated reactivation of the embryonic gene during definitive erythropoiesis dramatically impaired the expression of the adult genes, suggesting gene competition or interference for enhancer elements. Our results also support a model in which the lack of open chromatin marks and localized recruitment of chicken MeCP2 contribute to autonomous gene silencing of the embryonic alpha-globin gene in a developmentally specific manner. We propose that epigenetic mechanisms are necessary for in vivo chicken alpha-globin gene switching through differential gene silencing of the embryonic alpha-globin gene in order to allow proper activation of adult alpha-globin genes.

  17. Globin X is a six-coordinate globin that reduces nitrite to nitric oxide in fish red blood cells

    PubMed Central

    Corti, Paola; Xue, Jianmin; Tejero, Jesús; Wajih, Nadeem; Sun, Ming; Stolz, Donna B.; Tsang, Michael; Kim-Shapiro, Daniel B.; Gladwin, Mark T.

    2016-01-01

    The discovery of novel globins in diverse organisms has stimulated intense interest in their evolved function, beyond oxygen binding. Globin X (GbX) is a protein found in fish, amphibians, and reptiles that diverged from a common ancestor of mammalian hemoglobins and myoglobins. Like mammalian neuroglobin, GbX was first designated as a neuronal globin in fish and exhibits six-coordinate heme geometry, suggesting a role in intracellular electron transfer reactions rather than oxygen binding. Here, we report that GbX to our knowledge is the first six-coordinate globin and the first globin protein apart from hemoglobin, found in vertebrate RBCs. GbX is present in fish erythrocytes and exhibits a nitrite reduction rate up to 200-fold faster than human hemoglobin and up to 50-fold higher than neuroglobin or cytoglobin. Deoxygenated GbX reduces nitrite to form nitric oxide (NO) and potently inhibits platelet activation in vitro, to a greater extent than hemoglobin. Fish RBCs also reduce nitrite to NO and inhibit platelet activation to a greater extent than human RBCs, whereas GbX knockdown inhibits this nitrite-dependent NO signaling. The description of a novel, six-coordinate globin in RBCs with dominant electron transfer and nitrite reduction functionality provides new insights into the evolved signaling properties of ancestral heme-globins. PMID:27407144

  18. Molecular cloning and expression of α-globin and β-globin genes from crocodile (Crocodylus siamensis).

    PubMed

    Anwised, Preeyanan; Kabbua, Thai; Temsiripong, Theeranan; Dhiravisit, Apisak; Jitrapakdee, Sarawut; Araki, Tomohiro; Yoneda, Kazunari; Thammasirirak, Sompong

    2013-03-01

    The first report of complete nucleotide sequences for α- and β-globin chains from the Siamese hemoglobin (Crocodylus siamensis) is given in this study. The cDNAs encoding α- and β-globins were cloned by RT-PCR using the degenerate primers and by the rapid amplification of cDNA ends method. The full-length α-globin cDNA contains an open reading frame of 423 nucleotides encoding 141 amino acid residues, whereas the β-globin cDNA contains an open reading frame of 438 nucleotides encoding 146 amino acid residues. The authenticity of both α- and β-globin cDNA clones were also confirmed by the heterologous expression in Escherichia coli (E. coli). This is the first time that the recombinant C. siamensis globins were produced in prokaryotic system. Additionally, the heme group was inserted into the recombinant proteins and purified heme-bound proteins were performed by affinity chromatography using Co(2+)-charged Talon resins. The heme-bound proteins appeared to have a maximum absorbance at 415 nm, indicated that the recombinant proteins bound to oxygen and formed active oxyhemoglobin (HbO2). The results indicated that recombinant C. siamensis globins were successfully expressed in prokaryotic system and possessed an activity as ligand binding protein.

  19. The globins of cyanobacteria and algae.

    PubMed

    Johnson, Eric A; Lecomte, Juliette T J

    2013-01-01

    Approximately, 20 years ago, a haemoglobin gene was identified within the genome of the cyanobacterium Nostoc commune. Haemoglobins have now been confirmed in multiple species of photosynthetic microbes beyond N. commune, and the diversity of these proteins has recently come under increased scrutiny. This chapter summarizes the state of knowledge concerning the phylogeny, physiology and chemistry of globins in cyanobacteria and green algae. Sequence information is by far the best developed and the most rapidly expanding aspect of the field. Structural and ligand-binding properties have been described for just a few proteins. Physiological data are available for even fewer. Although activities such as nitric oxide dioxygenation and oxygen scavenging are strong candidates for cellular function, dedicated studies will be required to complete the story on this intriguing and ancient group of proteins.

  20. Genetics Home Reference: methemoglobinemia, beta-globin type

    MedlinePlus

    ... blood cells. Specifically, it alters a molecule called hemoglobin within these cells. Hemoglobin within red blood cells attaches (binds) to oxygen ... in tissues throughout the body. Instead of normal hemoglobin, people with methemoglobinemia, beta-globin type have an ...

  1. Neuroprotection in Glaucoma

    PubMed Central

    Doozandeh, Azadeh; Yazdani, Shahin

    2016-01-01

    Glaucoma is a degenerative optic neuropathy characterized by retinal ganglion cell (RGC) loss and visual field defects. It is known that in some glaucoma patients, death of RGCs continues despite intraocular pressure (IOP) reduction. Neuroprotection in the field of glaucoma is defined as any treatment, independent of IOP reduction, which prevents RGC death. Glutamate antagonists, ginkgo biloba extract, neurotrophic factors, antioxidants, calcium channel blockers, brimonidine, glaucoma medications with blood regulatory effect and nitric oxide synthase inhibitors are among compounds with possible neuroprotective activity in preclinical studies. A few agents (such as brimonidine or memantine) with neuroprotective effects in experimental studies have advanced to clinical trials; however the results of clinical trials for these agents have not been conclusive. Nevertheless, lack of compelling clinical evidence has not prevented the off-label use of some of these compounds in glaucoma practice. Stem cell transplantation has been reported to halt experimental neurodegenerative disease processes in the absence of cell replacement. It has been hypothesized that transplantation of some types of stem cells activates multiple neuroprotective pathways via secretion of various factors. The advantage of this approach is a prolonged and targeted effect. Important concerns in this field include the secretion of unwanted harmful mediators, graft survival issues and tumorigenesis. Neuroprotection in glaucoma, pharmacologically or by stem cell transplantation, is an interesting subject waiting for broad and multidisciplinary collaborative studies to better clarify its role in clinical practice. PMID:27413504

  2. Neuroprotective therapy in Parkinson disease.

    PubMed

    Chen, Sheng; Le, Weidong

    2006-01-01

    During the past decade, there has been a remarkable progress in our understanding of the biology of Parkinson disease (PD), which has been translated into searching for novel therapy for PD. Much focus is shifted from the development of drugs that only relieve PD symptoms to new generation of remedies that can potentially protect dopaminergic neurons and modify the disease course. Several novel therapeutic approaches have been tested in preclinical experiments and in clinical trials, including molecules targeting on genes involved in the pathogenesis of the disease, neurotrophic factors critical for dopaminergic neuron survival and function, new generation of dopamine receptor agonists that may possess neuroprotective effects, and agents of antioxidation, antiinflammation, and antiapoptosis. The results of these studies will shed new light to our hope that PD can be cured in the future.

  3. Neuroprotective effects of creatine.

    PubMed

    Beal, M Flint

    2011-05-01

    There is a substantial body of literature, which has demonstrated that creatine has neuroprotective effects both in vitro and in vivo. Creatine can protect against excitotoxicity as well as against β-amyloid toxicity in vitro. We carried out studies examining the efficacy of creatine as a neuroprotective agent in vivo. We demonstrated that creatine can protect against excitotoxic lesions produced by N-methyl-D: -aspartate. We also showed that creatine is neuroprotective against lesions produced by the toxins malonate and 3-nitropropionic acid (3-NP) which are reversible and irreversible inhibitors of succinate dehydrogenase, respectively. Creatine produced dose-dependent neuroprotective effects against MPTP toxicity reducing the loss of dopamine within the striatum and the loss of dopaminergic neurons in the substantia nigra. We carried out a number of studies of the neuroprotective effects of creatine in transgenic mouse models of neurodegenerative diseases. We demonstrated that creatine produced an extension of survival, improved motor performance, and a reduction in loss of motor neurons in a transgenic mouse model of amyotrophic lateral sclerosis (ALS). Creatine produced an extension of survival, as well as improved motor function, and a reduction in striatal atrophy in the R6/2 and the N-171-82Q transgenic mouse models of Huntington's disease (HD), even when its administration was delayed until the onset of disease symptoms. We recently examined the neuroprotective effects of a combination of coenzyme Q10 (CoQ10) with creatine against both MPTP and 3-NP toxicity. We found that the combination of CoQ and creatine together produced additive neuroprotective effects in a chronic MPTP model, and it blocked the development of alpha-synuclein aggregates. In the 3-NP model of HD, CoQ and creatine produced additive neuroprotective effects against the size of the striatal lesions. In the R6/2 transgenic mouse model of HD, the combination of CoQ and creatine produced

  4. Nucleotide sequence from the coding region of rabbit β-globin messenger RNA

    PubMed Central

    Proudfoot, N.J.

    1976-01-01

    A sequence of 89 nucleotides from rabbit β-globin mRNA has been determined and is shown to code for residues 107 to 137 of the β-globin protein. In addition, a sequence heterogeneity has been identified within this 89 nucleotide long sequence which corresponds to a known polymorphic variant of rabbit β-globin. Images PMID:61580

  5. trans-Activation of a globin promoter in nonerythroid cells.

    PubMed Central

    Evans, T; Felsenfeld, G

    1991-01-01

    We show that expression in fibroblasts of a single cDNA, encoding the erythroid DNA-binding protein Eryf1 (GF-1, NF-E1), very efficiently activates transcription of a chicken alpha-globin promoter, trans-Activation in these cells occurred when Eryf1 bound to a single site within a minimal globin promoter. In contrast, efficient activation in erythroid cells required multiple Eryf1 binding sites. Our results indicate that mechanisms exist that are capable of modulating the trans-acting capabilities of Eryf1 in a cell-specific manner, without affecting DNA binding. The response of the minimal globin promoter to Eryf1 in fibroblasts was at least as great as for optimal constructions in erythroid cells. Therefore, the assay provides a very simple and sensitive system with which to study gene activation by a tissue-specific factor. Images PMID:1990287

  6. Differential Loss and Retention of Cytoglobin, Myoglobin, and Globin-E during the Radiation of Vertebrates

    PubMed Central

    Hoffmann, Federico G.; Opazo, Juan C.; Storz, Jay F.

    2011-01-01

    If rates of postduplication gene retention are positively correlated with levels of functional constraint, then gene duplicates that have been retained in a restricted number of taxonomic lineages would be expected to exhibit relatively low levels of sequence conservation. Paradoxical patterns are presented by gene duplicates that have been retained in a small number of taxa but which are nonetheless subject to strong purifying selection relative to paralogous members of the same multigene family. This pattern suggests that such genes may have been co-opted for novel, lineage-specific functions. One possible example involves the enigmatic globin-E gene (GbE), which appears to be exclusively restricted to birds. Available data indicate that this gene is expressed exclusively in the avian eye, but its physiological function remains a mystery. In contrast to the highly restricted phyletic distribution of GbE, the overwhelming majority of jawed vertebrates (gnathostomes) possess copies of the related cytoglobin (Cygb) and myoglobin (Mb) genes. The purpose of the present study was 1) to assess the phyletic distribution of the Cygb, Mb, and GbE genes among vertebrates, 2) to elucidate the duplicative origins and evolutionary histories of these three genes, and 3) to evaluate the relative levels of functional constraint of these genes based on comparative sequence analysis. To accomplish these objectives, we conducted a combined phylogenetic and comparative genomic analysis involving taxa that represent each of the major lineages of gnathostome vertebrates. Results of synteny comparisons and phylogenetic topology tests revealed that GbE is clearly not the product of a recent, bird-specific duplication event. Instead, GbE originated via duplication of a proto-Mb gene in the stem lineage of gnathostomes. Unlike the Mb gene, which has been retained in all major gnathostome lineages other than amphibians, the GbE gene has been retained only in the lineage leading to modern

  7. Thioflavones as novel neuroprotective agents.

    PubMed

    Ravishankar, Divyashree; Corona, Giulia; Hogan, Stephanie M; Spencer, Jeremy P E; Greco, Francesca; Osborn, Helen M I

    2016-11-01

    Oxidative stress is associated with the pathology of neurodegenerative diseases. Identification of small molecules capable of protecting against oxidative stress is therefore of significant importance. In this context, a library of 76 hydroxy flavones, methoxy flavones and their 4-thio analogues has been evaluated for neuroprotection against H2O2-induced oxidative stress. This revealed the synthetic 7,8-dihydroxy 4-thioflavones as neuroprotective compounds, with 14d and 18d showing highest neuroprotective effects at lower concentrations (0.3μM). Neuroprotection was found to be mediated via activation of the anti-apoptotic cell survival proteins of the ERK1/2 and PI3K/Akt pathways. Structure-activity relationship analysis revealed the B-ring phenyl group as essential for greater neuroprotection. Replacing the 4-CO moiety with a 4-CS moiety also generally enhanced neuroprotection.

  8. Expression of human. alpha. -globin and mouse/human hybrid. beta. -globin genes in murine hemopoietic stem cells transduced by recombinant retroviruses

    SciTech Connect

    Li, C.L.; Dwarki, V.J.; Verma, I.M. )

    1990-06-01

    Murine cell lines releasing helper-free recombinant retroviruses containing human {alpha}-globin and mouse/human hybrid {beta}-globin genes were generated. The expression of the hybrid {beta}-globin gene but not the human {alpha}-globin gene was regulated appropriately in infected mouse erythroid leukemia (MEL) cells. Murine bone marrow cells were infected by coculture with virus-producing cells and transplanted into lethally irradiated syngeneic recipients. Greater than 90% of the spleen colonies (12-15 days), which are derived from hemopoietic multipotential stem cells, showed proviral integration. Various levels of expression of the transduced globin genes were detected in all of the provirus-positive spleen colonies. Proviral sequences and transcripts from the transduced globin genes could also be detected in a few long-term reconstituted recipients in an observation period of 10 months after transplantation.

  9. A Dual Reporter Mouse Model of the Human β-Globin Locus: Applications and Limitations

    PubMed Central

    Papadopoulos, Petros; Gutiérrez, Laura; van der Linden, Reinier; Kong-A-San, John; Maas, Alex; Drabek, Dubravka; Patrinos, George P.; Philipsen, Sjaak; Grosveld, Frank

    2012-01-01

    The human β-globin locus contains the β-like globin genes (i.e. fetal γ-globin and adult β-globin), which heterotetramerize with α-globin subunits to form fetal or adult hemoglobin. Thalassemia is one of the commonest inherited disorders in the world, which results in quantitative defects of the globins, based on a number of genome variations found in the globin gene clusters. Hereditary persistence of fetal hemoglobin (HPFH) also caused by similar types of genomic alterations can compensate for the loss of adult hemoglobin. Understanding the regulation of the human γ-globin gene expression is a challenge for the treatment of thalassemia. A mouse model that facilitates high-throughput assays would simplify such studies. We have generated a transgenic dual reporter mouse model by tagging the γ- and β-globin genes with GFP and DsRed fluorescent proteins respectively in the endogenous human β-globin locus. Erythroid cell lines derived from this mouse model were tested for their capacity to reactivate the γ-globin gene. Here, we discuss the applications and limitations of this fluorescent reporter model to study the genetic basis of red blood cell disorders and the potential use of such model systems in high-throughput screens for hemoglobinopathies therapeutics. PMID:23272095

  10. Neuroprotective therapies for glaucoma

    PubMed Central

    Song, Wei; Huang, Ping; Zhang, Chun

    2015-01-01

    Glaucoma is the second leading cause for blindness worldwide. It is mainly caused by glaucomatous optic neuropathy (GON) characterized by retinal ganglion cell loss, which leads to visual field defect and blindness. Up to now, the main purpose of antiglaucomatous therapies has been to lower intraocular pressure (IOP) through surgeries and medications. However, it has been found that progressive GON is still present in some patients with effective IOP decrease. Therefore, risk factors other than IOP elevation, like neurotrophin deprivation and excitotoxicity, contribute to progressive GON. Novel approaches of neuroprotection may be more effective for preserving the function of the optic nerve. PMID:25792807

  11. Identification of patients with defects in the globin genes

    PubMed Central

    Dell’Edera, Domenico; Epifania, Annunziata Anna; Milazzo, Giusi Natalia; Leo, Manuela; Santacesaria, Carmela; Allegretti, Arianna; Mazzone, Eleonora; Panetta, Paolo; Iammarino, Giovanna; Lupo, Maria Giovanna; Barbieri, Rocchina; Lioi, Maria Brigida

    2013-01-01

    Summary Introduction hemoglobinopathies constitute a major health problem worldwide. These disorders are characterized by a clinical and hematological phenotypic heterogeneity. The increase of HbA2 is an invaluable hematological marker of the beta-thalassemia heterozygosis and of double heterozygosis for the alleles of delta and alpha globin genes or for the alleles of delta and beta globin genes which can cause the increase of HbA2 up to normal or borderline values. Case Report we report the case of a 30-year-old woman (first pregnant) who was admitted to our Unit at 12 weeks for a screening for thalassemia. The outcomes of the biochemical and haematological exams (MCV, MCH, HbA2, HbF) highlighted that the patient was a carrier of a beta-thalassemic trait. Molecular analysis of the beta globin genes highlighted a β039C>T heterozygous mutation. Biochemical and hematological parameters of the husband (MCV, MCH, HbA2, HbF) were normal except for the level of HbA2 (3,6%). The molecular analysis of the beta globin genes highlighted a IVS2 nt844 C>G heterozygous mutation. Furthermore, the heterozygous mutation δ+cod.27G>T was detected in his δ globin gene. For this reason, he was diagnosed a δ+β Thal. Conclusions the aim of this paper is to highlight that biochemical diagnosis could not exhaustive and a molecular diagnostic widening is required to detect the genetic deficiency causing the thalassemic trait. PMID:24611095

  12. Acute chest syndrome is associated with single nucleotide polymorphism-defined beta globin cluster haplotype in children with sickle cell anaemia.

    PubMed

    Bean, Christopher J; Boulet, Sheree L; Yang, Genyan; Payne, Amanda B; Ghaji, Nafisa; Pyle, Meredith E; Hooper, W Craig; Bhatnagar, Pallav; Keefer, Jeffrey; Barron-Casella, Emily A; Casella, James F; Debaun, Michael R

    2013-10-01

    Genetic diversity at the human β-globin locus has been implicated as a modifier of sickle cell anaemia (SCA) severity. However, haplotypes defined by restriction fragment length polymorphism sites across the β-globin locus have not been consistently associated with clinical phenotypes. To define the genetic structure at the β-globin locus more thoroughly, we performed high-density single nucleotide polymorphism (SNP) mapping in 820 children who were homozygous for the sickle cell mutation (HbSS). Genotyping results revealed very high linkage disequilibrium across a large region spanning the locus control region and the HBB (β-globin gene) cluster. We identified three predominant haplotypes accounting for 96% of the β(S) -carrying chromosomes in this population that could be distinguished using a minimal set of common SNPs. Consistent with previous studies, fetal haemoglobin level was significantly associated with β(S) -haplotypes. After controlling for covariates, an association was detected between haplotype and rate of hospitalization for acute chest syndrome (ACS) (incidence rate ratio 0·51, 95% confidence interval 0·29-0·89) but not incidence rate of vaso-occlusive pain or presence of silent cerebral infarct (SCI). Our results suggest that these SNP-defined β(S) -haplotypes may be associated with ACS, but not pain or SCI in a study population of children with SCA.

  13. The chromosomal arrangement of human alpha-like globin genes: sequence homology and alpha-globin gene deletions.

    PubMed

    Lauer, J; Shen, C K; Maniatis, T

    1980-05-01

    We report the isolation of a cluster of four alpha-like globin genes from a bacteriophage lambda library of human DNA (Lawn et al., 1978). Analysis of the cloned DNA confirms the linkage arrangement of the two adult alpha-globin genes (alpha 1 and alpha 2) previously derived from genomic blotting experiments (Orkin, 1978) and identifies two additional closely linked alpha-like genes. The nucleotide sequence of a portion of each of these alpha-like genes was determined. One of these sequences is tentatively identified as an embryonic zeta-globin gene (zeta 1) by comparison with structural data derived from purified zeta-globin protein (J. Clegg, personal communication), while the other sequence cannot be matched with any known alpha-like polypeptide sequence (we designate this sequence phi alpha 1). Localization of the four alpha-like sequences on a restriction map of the gene cluster indicates that the genes have the same transcriptional orientation and are arranged in the order 5'-zeta 1-phi alpha 1-alpha 2-alpha 1-3'. Genomic blotting experiments identified a second, nonallelic zeta-like globin gene (phi 2) located 10-12 kb 5' to the cloned zeta-globin gene. Comparison of the locations of restriction sites within alpha 1 and alpha 2 and heteroduplex studies reveal extensive sequence homology within and flanking the two genes. The homologous sequences, which are interrupted by two blocks of nonhomology, span a region of approximately 4 kb. This extensive sequence homology between two genes which are thought to be the products of an ancient duplication event suggests the existence of a mechanism for sequence matching during evolution. One consequence of this arrangement of homologous sequences is the occurrence of two types of deletions in recombinant phage DNA during propagation in E. coli. The locations and sizes of the two types of deletions are indistinguishable from those of the two types of deletions associated with alpha-thalassemia 2 (Embury et al., 1979

  14. Neuroprotective antioxidants from marijuana.

    PubMed

    Hampson, A J; Grimaldi, M; Lolic, M; Wink, D; Rosenthal, R; Axelrod, J

    2000-01-01

    Cannabidiol and other cannabinoids were examined as neuroprotectants in rat cortical neuron cultures exposed to toxic levels of the neurotransmitter, glutamate. The psychotropic cannabinoid receptor agonist delta 9-tetrahydrocannabinol (THC) and cannabidiol, (a non-psychoactive constituent of marijuana), both reduced NMDA, AMPA and kainate receptor mediated neurotoxicities. Neuroprotection was not affected by cannabinoid receptor antagonist, indicating a (cannabinoid) receptor-independent mechanism of action. Glutamate toxicity can be reduced by antioxidants. Using cyclic voltametry and a fenton reaction based system, it was demonstrated that Cannabidiol, THC and other cannabinoids are potent antioxidants. As evidence that cannabinoids can act as an antioxidants in neuronal cultures, cannabidiol was demonstrated to reduce hydroperoxide toxicity in neurons. In a head to head trial of the abilities of various antioxidants to prevent glutamate toxicity, cannabidiol was superior to both alpha-tocopherol and ascorbate in protective capacity. Recent preliminary studies in a rat model of focal cerebral ischemia suggest that cannabidiol may be at least as effective in vivo as seen in these in vitro studies.

  15. In vitro DNA dependent synthesis of globin RNA sequences from erythroleukemic cell chromatin.

    PubMed

    Reff, M E; Davidson, R L

    1979-01-01

    Murine erythroleukemic cells in culture accumulate cytoplasmic globin mRNA during differentiation induced by dimethyl sulfoxide (DMSO)1. Chromatin was prepared from DMSO induced erythroleukemic cells that were transcribing globin RNA in order to determine whether in vitro synthesis of globin RNA sequences was possible from chromatin. RNA was synthesized in vitro using 5-mercuriuridine triphosphate and exogenous Escheria coli RNA polymerase. Newly synthesized mercurated RNA was purified from endogenous chromatin associated RNA by affinity chromatography on a sepharose sulfhydryl column, and the globin RNA sequence content of the mercurated RNA was assayed by hybridization to cDNA globin. The synthesis of globin RNA sequences was shown to occur and to be sensitive to actinomycin and rifampicin and insensitive to alpha-amanitin. In contrast, synthesis of globin RNA sequence synthesis was not detected in significant amounts from chromatin prepared from uninduced erythroleukemic cells, nor from uninduced cell chromatin to which globin RNA was added prior to transcription. Isolated RNA:cDNA globin hybrids were shown to contain mercurated RNA by affinity chromatography. These results indicated that synthesis of globin RNA sequences from chromatin can be performed by E. coli RNA polymerase.

  16. Genomic evidence for independent origins of beta-like globin genes in monotremes and therian mammals.

    PubMed

    Opazo, Juan C; Hoffmann, Federico G; Storz, Jay F

    2008-02-05

    Phylogenetic reconstructions of the beta-globin gene family in vertebrates have revealed that developmentally regulated systems of hemoglobin synthesis have been reinvented multiple times in independent lineages. For example, the functional differentiation of embryonic and adult beta-like globin genes occurred independently in birds and mammals. In both taxa, the embryonic beta-globin gene is exclusively expressed in primitive erythroid cells derived from the yolk sac. However, the "epsilon-globin" gene in birds is not orthologous to the epsilon-globin gene in mammals, because they are independently derived from lineage-specific duplications of a proto beta-globin gene. Here, we report evidence that the early and late expressed beta-like globin genes in monotremes and therian mammals (marsupials and placental mammals) are the products of independent duplications of a proto beta-globin gene in each of these two lineages. Results of our analysis of genomic sequence data from a large number of vertebrate taxa, including sequence from the recently completed platypus genome, reveal that the epsilon- and beta-globin genes of therian mammals arose via duplication of a proto beta-globin gene after the therian/monotreme split. Our analysis of genomic sequence from the platypus also revealed the presence of a duplicate pair of beta-like globin genes that originated via duplication of a proto beta-globin gene in the monotreme lineage. This discovery provides evidence that, in different lineages of mammals, descendent copies of the same proto beta-globin gene may have been independently neofunctionalized to perform physiological tasks associated with oxygen uptake and storage during embryonic development.

  17. Neuroprotection and antioxidants

    PubMed Central

    Lalkovičová, Maria; Danielisová, Viera

    2016-01-01

    Ischemia as a serious neurodegenerative disorder causes together with reperfusion injury many changes in nervous tissue. Most of the neuronal damage is caused by complex of biochemical reactions and substantial processes, such as protein agregation, reactions of free radicals, insufficient blood supply, glutamate excitotoxicity, and oxidative stress. The result of these processes can be apoptotic or necrotic cell death and it can lead to an irreversible damage. Therefore, neuroprotection and prevention of the neurodegeneration are highly important topics to study. There are several approaches to prevent the ischemic damage. Use of many modern therapeutical methods and the incorporation of several substances into the diet of patients is possible to stimulate the endogenous protective mechanisms and improve the life quality. PMID:27482198

  18. Therapeutic Hypothermia for Neuroprotection

    PubMed Central

    Karnatovskaia, Lioudmila V.; Wartenberg, Katja E.

    2014-01-01

    The earliest recorded application of therapeutic hypothermia in medicine spans about 5000 years; however, its use has become widespread since 2002, following the demonstration of both safety and efficacy of regimens requiring only a mild (32°C-35°C) degree of cooling after cardiac arrest. We review the mechanisms by which hypothermia confers neuroprotection as well as its physiological effects by body system and its associated risks. With regard to clinical applications, we present evidence on the role of hypothermia in traumatic brain injury, intracranial pressure elevation, stroke, subarachnoid hemorrhage, spinal cord injury, hepatic encephalopathy, and neonatal peripartum encephalopathy. Based on the current knowledge and areas undergoing or in need of further exploration, we feel that therapeutic hypothermia holds promise in the treatment of patients with various forms of neurologic injury; however, additional quality studies are needed before its true role is fully known. PMID:24982721

  19. Neuroprotective potential of phytochemicals

    PubMed Central

    Kumar, G. Phani; Khanum, Farhath

    2012-01-01

    Cognitive dysfunction is a major health problem in the 21st century, and many neuropsychiatric disorders and neurodegenerative disorders, such as schizophrenia, depression, Alzheimer's Disease dementia, cerebrovascular impairment, seizure disorders, head injury and Parkinsonism, can be severly functionally debilitating in nature. In course of time, a number of neurotransmitters and signaling molecules have been identified which have been considered as therapeutic targets. Conventional as well newer molecules have been tried against these targets. Phytochemicals from medicinal plants play a vital role in maintaining the brain's chemical balance by influencing the function of receptors for the major inhibitory neurotransmitters. In traditional practice of medicine, several plants have been reported to treat cognitive disorders. In this review paper, we attempt to throw some light on the use of medicinal herbs to treat cognitive disorders. In this review, we briefly deal with some medicinal herbs focusing on their neuroprotective active phytochemical substances like fatty acids, phenols, alkaloids, flavonoids, saponins, terpenes etc. The resistance of neurons to various stressors by activating specific signal transduction pathways and transcription factors are also discussed. It was observed in the review that a number of herbal medicines used in Ayurvedic practices as well Chinese medicines contain multiple compounds and phytochemicals that may have a neuroprotective effect which may prove beneficial in different neuropsychiatric and neurodegenerative disorders. Though the presence of receptors or transporters for polyphenols or other phytochemicals of the herbal preparations, in brain tissues remains to be ascertained, compounds with multiple targets appear as a potential and promising class of therapeutics for the treatment of diseases with a multifactorial etiology. PMID:23055633

  20. Butyrate Infusions in the Ovine Fetus Delay the Biologic Clock for Globin Gene Switching

    NASA Astrophysics Data System (ADS)

    Perrine, Susan P.; Rudolph, Abraham; Faller, Douglas V.; Roman, Christine; Cohen, Ruth A.; Chen, Shao-Jing; Kan, Yuet Wai

    1988-11-01

    The switch from fetal to adult hemoglobin expression is regulated in many mammalian species by a developmental clock-like mechanism and determined by the gestational age of the fetus. Prolonging fetal globin gene expression is of considerable interest for therapeutic potential in diseases caused by abnormal β -globin genes. Butyric acid, which is found in increased plasma concentrations in infants of diabetic mothers who have delayed globin gene switching, was infused into catheterized fetal lambs in utero during the time of the normal globin gene switch period. The globin gene switch was significantly delayed in three of four butyrate-treated fetuses compared with controls and was entirely prevented in one fetus in whom the infusion was begun before the globin switch was under way. These data provide a model for investigating and arresting the biologic clock of hemoglobin switching.

  1. Neuroglobin and cytoglobin: two new members of globin family

    PubMed Central

    Tosqui, Priscilla; Colombo, Marcio Francisco

    2011-01-01

    The globin family has long been defined by myoglobin and hemoglobin, proteins with the functions of oxygen storage and transportation, respectively. Recently, two new members of this family were discovered: neuroglobin present in neurons and retinal cells and cytoglobin found in various types of tissue. The increased expression of these proteins in hypoxic conditions first suggested a role in oxygen supply. However structural and functional differences, such as the hexacoordinated heme, a high autoxidation rate and different concentrations between different cellular types, have dismissed this hypothesis. The protective role of these globins has already been established. In vitro and in vivo studies have demonstrated increased survival of neurons under stress in the presence of neuroglobin and increased resistance to neurodegenerative diseases. However the mechanism remains unknown. Functions, including detoxification of nitric oxide, free radical scavenging and as an antioxidant and signaling of apoptosis, have also been suggested for neuroglobin and an antifibrotic function for cytoglobin. PMID:23049323

  2. The Evolution of the Globins: We Thought We Understood It

    NASA Astrophysics Data System (ADS)

    Lesk, Arthur M.

    Protein crystallography achieved its first results in the late 1950s with the structure determinations of sperm whale myoglobin and human haemoglobin. These gave us our first glimpse of the structural changes that take place during protein evolution. Many other structures of proteins in the globin family have continued to reveal interesting and important details of the coordinated divergence during evolution of amino acid sequences and protein structures and functions.

  3. Neuroprotective Effects of Marine Algae

    PubMed Central

    Pangestuti, Ratih; Kim, Se-Kwon

    2011-01-01

    The marine environment is known as a rich source of chemical structures with numerous beneficial health effects. Among marine organisms, marine algae have been identified as an under-exploited plant resource, although they have long been recognized as valuable sources of structurally diverse bioactive compounds. Presently, several lines of studies have provided insight into biological activities and neuroprotective effects of marine algae including antioxidant, anti-neuroinflammatory, cholinesterase inhibitory activity and the inhibition of neuronal death. Hence, marine algae have great potential to be used for neuroprotection as part of pharmaceuticals, nutraceuticals and functional foods. This contribution presents an overview of marine algal neuroprotective effects and their potential application in neuroprotection. PMID:21673890

  4. Finding an average core structure: Application to the globins

    SciTech Connect

    Altman, R.B.; Gerstein, M.

    1994-12-31

    We present a procedure for automatically identifying from a set of aligned protein structures a subset of atoms with only a small amount of structural variation, i.e., a core. We apply this procedure to the globin family of proteins. Based purely on the results of the procedure, we show that the globin fold can be divided into two parts. The part with greater structural variation consists of the residues near the heme (the F helix and parts of the G and H helices), and the part with lesser structural variation (the core) forms a structural framework similar to that of the repressor protein (A, B, and E helices and remainder of the G and H helices). Such a division is consistent with many other structural and biochemical findings. In addition, we find further partitions within the core that may have biological significance. Finally, using the structural core of the globin family as a reference point, we have compared structural variation to sequence variation and shown that a core definition based on sequence conservation does not necessarily agree with one based on structural similarity.

  5. α-Globin gene mutations in Isfahan Province, Iran.

    PubMed

    Karamzade, Arezo; Mirzapour, Hadi; Hoseinzade, Majid; Asadi, Sara; Gholamrezapour, Tahere; Tavakoli, Parvaneh; Salehi, Mansoor; Selebi, Mansoor

    2014-01-01

    α-Thalassemia (α-thal) encompasses a spectrum of mutations including deletion and point mutations on the α-globin chains that is characterized by a reduction or complete absence of α-globin genes. Most of the α-thal cases are deletions involving one (α(+)) or both (α(0)) α-globin genes, although point mutations (α(T)α or αα(T)) are found as well. In this study, 314 individuals with low hematological values, normal Hb A2 who were not affected with β-thal or iron deficiency, were investigated for the presence of α-thal mutations. The most common deletion was -α(3.7) (rightward) with a frequency of 70.7%, followed by α(-5 nt) (-TGAGG) (8.7%), -α(4.2) (leftward) (4.7%), the polyadenylation signal (polyA2) site (AATAAA > AATGAA) (4.2%), -(α)(20.5) (3.8%), Hb Constant Spring [Hb CS, α142, Stop→Gln; HBA2: c.427T > C] (2.9%), polyA1 (AATAAA > AATAAG) and α(codon 19) (GCG > GC-, α2) (16%), and - -(MED) (0.9%). The results of this study may be valuable for designing a plan for carrier screening, premarital genetic counseling, prenatal diagnosis (PND) and reducing excessive health care costs to an affordable level in Isfahan Province, Iran.

  6. Fine structure genetic analysis of a beta-globin promoter.

    PubMed

    Myers, R M; Tilly, K; Maniatis, T

    1986-05-02

    A novel procedure for saturation mutagenesis of cloned DNA was used to obtain more than 100 single base substitutions within the promoter of the mouse beta-major globin gene. The effects of these promoter substitutions on transcription were determined by transfecting the cloned mutant genes into HeLa cells on plasmids containing an SV40 transcription enhancer, and measuring the levels of correctly initiated beta-globin transcripts after 2 days. Mutations in three regions of the promoter resulted in a significant decrease in the level of transcription: (i) the CACCC box, located between -87 and -95, (ii) the CCAAT box, located between -72 and -77, and (iii) the TATA box, located between -26 and -30 relative to the start site of transcription. In contrast, two different mutations in nucleotides immediately upstream from the CCAAT box resulted in a 3- to 3.5-fold increase in transcription. With two minor exceptions, single base substitutions in all other regions of the promoter had no effect on transcription. These results precisely delineate the cis-acting sequences required for accurate and efficient initiation of beta-globin transcription, and they establish a general approach for the fine structure genetic analysis of eukaryotic regulatory sequences.

  7. The regulated expression of beta-globin genes introduced into mouse erythroleukemia cells.

    PubMed

    Chao, M V; Mellon, P; Charnay, P; Maniatis, T; Axel, R

    1983-02-01

    We have introduced a hybrid mouse-human beta-globin gene as well as the intact human beta-globin gene into murine erythroleukemia (MEL) cells and have demonstrated that these genes are appropriately regulated during differentiation of the MEL cell in culture. The addition of chemical inducers to cotransformed cells results in a 5 to 50 fold increase in the level of mRNA transcribed from the exogenous globin gene. S1 nuclease and primer extension analyses demonstrate that these mRNAs initiate and terminate correctly. Nuclear transcription experiments indicate that induction of hybrid mRNA results at least in part from the increase in the rate of globin gene transcription. Furthermore, the induction appears to be specific for globin genes within an erythroid cell. These results permit the study of expression of the globin gene during erythroid differentiation and suggest that the specific induction of the globin gene is an inherent property of DNA sequences within or flanking the beta-globin genes. Moreover, the fact that the human and hybrid globin genes are both inducible in MEL cells suggests that these regulatory sequences are conserved between mouse and human cells.

  8. Original Research: Generation of non-deletional hereditary persistence of fetal hemoglobin β-globin locus yeast artificial chromosome transgenic mouse models: -175 Black HPFH and -195 Brazilian HPFH

    PubMed Central

    Braghini, Carolina A; Costa, Flavia C; Fedosyuk, Halyna; Neades, Renee Y; Novikova, Lesya V; Parker, Matthew P; Winefield, Robert D

    2016-01-01

    Fetal hemoglobin is a major genetic modifier of the phenotypic heterogeneity in patients with sickle cell disease and certain β-thalassemias. Normal levels of fetal hemoglobin postnatally are approximately 1% of total hemoglobin. Patients who have hereditary persistence of fetal hemoglobin, characterized by elevated synthesis of γ-globin in adulthood, show reduced disease pathophysiology. Hereditary persistence of fetal hemoglobin is caused by β-globin locus deletions (deletional hereditary persistence of fetal hemoglobin) or γ-globin gene promoter point mutations (non-deletional hereditary persistence of fetal hemoglobin). Current research has focused on elucidating the pathways involved in the maintenance/reactivation of γ-globin in adult life. To better understand these pathways, we generated new β-globin locus yeast artificial chromosome transgenic mice bearing the Aγ-globin -175 T > C or -195 C > G hereditary persistence of fetal hemoglobin mutations to model naturally occurring hereditary persistence of fetal hemoglobin. Adult -175 and -195 mutant β-YAC mice displayed a hereditary persistence of fetal hemoglobin phenotype, as measured at the mRNA and protein levels. The molecular basis for these phenotypes was examined by chromatin immunoprecipitation of transcription factor/co-factor binding, including YY1, PAX1, TAL1, LMO2, and LDB1. In -175 HPFH versus wild-type samples, the occupancy of LMO2, TAL1 and LDB1 proteins was enriched in HPFH mice (5.8-fold, 5.2-fold and 2.7-fold, respectively), a result that concurs with a recent study in cell lines showing that these proteins form a complex with GATA-1 to mediate long-range interactions between the locus control region and the Aγ-globin gene. Both hereditary persistence of fetal hemoglobin mutations result in a gain of Aγ-globin activation, in contrast to other hereditary persistence of fetal hemoglobin mutations that result in a loss of repression. The mice provide additional tools to study

  9. Molecular nature of alpha-globin genes in the Saudi population

    PubMed Central

    Borgio, J. Francis

    2015-01-01

    Alpha-thalassemia (α-thal) is a disorder caused by the deletion of single or double α-globin genes, and/or point mutations in the α-globin genes. There are 2 common types of α-globin genes; HBA2 and HBA1. Recently, it has been discovered that the HBA2 gene is replaced by a unique HBA12 gene convert in 5.7% of the Saudi population. The α-globin genes have been emerging as a molecular target for the treatment of β-thalassemia (β-thal). Hence, it is essential to understand the molecular nature of α-globin genes to treat the most prevalent hemoglobin disorders, such as sickle cell disease, α-thal, and β-thal prevalent in the Kingdom of Saudi Arabia. Thirty-two different α-globin genotypes have been observed in the Saudi population. This review outlines the classification of the α-globin genes on the basis of their molecular nature and complex combinations of α-globin genes, and their variants predominant in Saudis. PMID:26593158

  10. Presence of tadpole and adult globin RNA sequences in oocytes of Xenopus laevis

    PubMed Central

    Perlman, S. M.; Ford, P. J.; Rosbash, M. M.

    1977-01-01

    Complementary DNA transcribed from adult Xenopus laevis globin mRNA was used to assay ovary RNA from Xenopus for the presence of globin sequences by RNA·cDNA hybridization. These sequences are present at approximately the same concentration as the majority of poly(A)-containing ovary sequences. The sequences are also found at approximately 200,000 copies per cell in poly(A)-containing RNA extracted from mature oocytes. To rule out contamination of the oocytes with somatic cells, two additional experiments were performed. First, RNA isolated from ovulated unfertilized eggs, which are devoid of somatic cells, was also shown to contain the globin sequences. Second, globin mRNA was isolated from Xenopus tadpoles. Adult globin mRNA is free of the tadpole sequence and no homology was detected between adult and tadpoles globin RNA. The ovary was shown to contain tadpole globin RNA at nearly the same concentration as the adult sequences. Thus, the results cannot be explained by contamination with erythroid cells which should contain only the adult sequence. The swimming tadpole, which possesses an active circulatory system, was also assayed for the tadpole and adult globin sequences. Whereas the adult sequences are present at approximately the same concentration as in the mature oocyte, the concentration of the tadpole sequences increases at least 300-fold in the first 3 days following fertilization. PMID:269434

  11. [Review on the neuroprotective effects of green tea polyphenols for the treatment of neurodegenerative diseases].

    PubMed

    Li, Qiong; Li, Yong

    2010-01-01

    Considering the multi-etiological characters of neurodegenerative disorders such as Parkinson's disease and Alzheimer's disease, the current pharmacological approaches using drugs oriented towards a single molecular target possess limited ability to modify the course of the diseases. Green tea polyphenols have been reported to possess more than two active neuroprotective-neurorescue moieties that simultaneously manipulate multiple targets involved in neurodegeneration. This review aims to shed light on the multipharmacological neuroprotective activities and the mechanisms of green tea polyphenols on neurodegenerative diseases.

  12. Role of α-globin H helix in the building of tetrameric human hemoglobin: interaction with α-hemoglobin stabilizing protein (AHSP) and heme molecule.

    PubMed

    Domingues-Hamdi, Elisa; Vasseur, Corinne; Fournier, Jean-Baptiste; Marden, Michael C; Wajcman, Henri; Baudin-Creuza, Véronique

    2014-01-01

    Alpha-Hemoglobin Stabilizing Protein (AHSP) binds to α-hemoglobin (α-Hb) or α-globin and maintains it in a soluble state until its association with the β-Hb chain partner to form Hb tetramers. AHSP specifically recognizes the G and H helices of α-Hb. To investigate the degree of interaction of the various regions of the α-globin H helix with AHSP, this interface was studied by stepwise elimination of regions of the α-globin H helix: five truncated α-Hbs α-Hb1-138, α-Hb1-134, α-Hb1-126, α-Hb1-123, α-Hb1-117 were co-expressed with AHSP as two glutathione-S-transferase (GST) fusion proteins. SDS-PAGE and Western Blot analysis revealed that the level of expression of each truncated α-Hb was similar to that of the wild type α-Hb except the shortest protein α-Hb1-117 which displayed a decreased expression. While truncated GST-α-Hb1-138 and GST-α-Hb1-134 were normally soluble; the shorter globins GST-α-Hb1-126 and GST-α-Hb1-117 were obtained in very low quantities, and the truncated GST-α-Hb1-123 provided the least material. Absorbance and fluorescence studies of complexes showed that the truncated α-Hb1-134 and shorter forms led to modified absorption spectra together with an increased fluorescence emission. This attests that shortening the H helix leads to a lower affinity of the α-globin for the heme. Upon addition of β-Hb, the increase in fluorescence indicates the replacement of AHSP by β-Hb. The CO binding kinetics of different truncated AHSPWT/α-Hb complexes showed that these Hbs were not functionally normal in terms of the allosteric transition. The N-terminal part of the H helix is primordial for interaction with AHSP and C-terminal part for interaction with heme, both features being required for stability of α-globin chain.

  13. Role of α-Globin H Helix in the Building of Tetrameric Human Hemoglobin: Interaction with α-Hemoglobin Stabilizing Protein (AHSP) and Heme Molecule

    PubMed Central

    Domingues-Hamdi, Elisa; Vasseur, Corinne; Fournier, Jean-Baptiste; Marden, Michael C.; Wajcman, Henri; Baudin-Creuza, Véronique

    2014-01-01

    Alpha-Hemoglobin Stabilizing Protein (AHSP) binds to α-hemoglobin (α-Hb) or α-globin and maintains it in a soluble state until its association with the β-Hb chain partner to form Hb tetramers. AHSP specifically recognizes the G and H helices of α-Hb. To investigate the degree of interaction of the various regions of the α-globin H helix with AHSP, this interface was studied by stepwise elimination of regions of the α-globin H helix: five truncated α-Hbs α-Hb1-138, α-Hb1-134, α-Hb1-126, α-Hb1-123, α-Hb1-117 were co-expressed with AHSP as two glutathione-S-transferase (GST) fusion proteins. SDS-PAGE and Western Blot analysis revealed that the level of expression of each truncated α-Hb was similar to that of the wild type α-Hb except the shortest protein α-Hb1-117 which displayed a decreased expression. While truncated GST-α-Hb1-138 and GST-α-Hb1-134 were normally soluble; the shorter globins GST-α-Hb1-126 and GST-α-Hb1-117 were obtained in very low quantities, and the truncated GST-α-Hb1-123 provided the least material. Absorbance and fluorescence studies of complexes showed that the truncated α-Hb1-134 and shorter forms led to modified absorption spectra together with an increased fluorescence emission. This attests that shortening the H helix leads to a lower affinity of the α-globin for the heme. Upon addition of β-Hb, the increase in fluorescence indicates the replacement of AHSP by β-Hb. The CO binding kinetics of different truncated AHSPWT/α-Hb complexes showed that these Hbs were not functionally normal in terms of the allosteric transition. The N-terminal part of the H helix is primordial for interaction with AHSP and C-terminal part for interaction with heme, both features being required for stability of α-globin chain. PMID:25369055

  14. Evolution of the globin gene family in deuterostomes: lineage-specific patterns of diversification and attrition.

    PubMed

    Hoffmann, Federico G; Opazo, Juan C; Hoogewijs, David; Hankeln, Thomas; Ebner, Bettina; Vinogradov, Serge N; Bailly, Xavier; Storz, Jay F

    2012-07-01

    In the Metazoa, globin proteins display an underlying unity in tertiary structure that belies an extraordinary diversity in primary structures, biochemical properties, and physiological functions. Phylogenetic reconstructions can reveal which of these functions represent novel, lineage-specific innovations, and which represent ancestral functions that are shared with homologous globin proteins in other eukaryotes and even prokaryotes. To date, our understanding of globin diversity in deuterostomes has been hindered by a dearth of genomic sequence data from the Ambulacraria (echinoderms + hemichordates), the sister group of chordates, and the phylum Xenacoelomorpha, which includes xenoturbellids, acoelomorphs, and nemertodermatids. Here, we report the results of a phylogenetic and comparative genomic analysis of the globin gene repertoire of deuterostomes. We first characterized the globin genes of the acorn worm, Saccoglossus kowalevskii, a representative of the phylum Hemichordata. We then integrated genomic sequence data from the acorn worm into a comprehensive analysis of conserved synteny and phylogenetic relationships among globin genes from representatives of the eight lineages that comprise the superphylum Deuterostomia. The primary aims were 1) to unravel the evolutionary history of the globin gene superfamily in deuterostomes and 2) to use the estimated phylogeny to gain insights into the functional evolution of deuterostome globins. Results of our analyses indicate that the deuterostome common ancestor possessed a repertoire of at least four distinct globin paralogs and that different subsets of these ancestral genes have been retained in each of the descendant organismal lineages. In each major deuterostome group, a different subset of ancestral precursor genes underwent lineage-specific expansions of functional diversity through repeated rounds of gene duplication and divergence. By integrating results of the phylogenetic analysis with available

  15. Evolution and Expression of Tissue Globins in Ray-Finned Fishes

    PubMed Central

    Gallagher, Michael D.

    2017-01-01

    The globin gene family encodes oxygen-binding hemeproteins conserved across the major branches of multicellular life. The origins and evolutionary histories of complete globin repertoires have been established for many vertebrates, but there remain major knowledge gaps for ray-finned fish. Therefore, we used phylogenetic, comparative genomic and gene expression analyses to discover and characterize canonical “non-blood” globin family members (i.e., myoglobin, cytoglobin, neuroglobin, globin-X, and globin-Y) across multiple ray-finned fish lineages, revealing novel gene duplicates (paralogs) conserved from whole genome duplication (WGD) and small-scale duplication events. Our key findings were that: (1) globin-X paralogs in teleosts have been retained from the teleost-specific WGD, (2) functional paralogs of cytoglobin, neuroglobin, and globin-X, but not myoglobin, have been conserved from the salmonid-specific WGD, (3) triplicate lineage-specific myoglobin paralogs are conserved in arowanas (Osteoglossiformes), which arose by tandem duplication and diverged under positive selection, (4) globin-Y is retained in multiple early branching fish lineages that diverged before teleosts, and (5) marked variation in tissue-specific expression of globin gene repertoires exists across ray-finned fish evolution, including several previously uncharacterized sites of expression. In this respect, our data provide an interesting link between myoglobin expression and the evolution of air breathing in teleosts. Together, our findings demonstrate great-unrecognized diversity in the repertoire and expression of nonblood globins that has arisen during ray-finned fish evolution. PMID:28173090

  16. Olive oil phenols and neuroprotection.

    PubMed

    Khalatbary, Ali Reza

    2013-11-01

    Olive oil is a rich source of phenolic components which have a wide variety of beneficial health effects in vitro, in vivo, and clinically. The beneficial effects of olive oil phenols attributed to a variety of biological activities including free radical scavenging/antioxidant actions, anti-inflammatory effects, anti-carcinogenic properties, and anti-microbial activities. On the other hand, olive oil phenols have been shown to be some of neuroprotective effects against cerebral ischemia, spinal cord injury, Huntington's disease, Alzheimer's diseases, multiple sclerosis, Parkinson's disease, aging, and peripheral neuropathy. This paper summarizes current knowledge on the mechanisms of neuroprotective effects of olive oil phenols.

  17. Neuroprotective therapies in glaucoma: II. Genetic nanotechnology tools

    PubMed Central

    Nafissi, Nafiseh; Foldvari, Marianna

    2015-01-01

    Neurotrophic factor genome engineering could have many potential applications not only in the deeper understanding of neurodegenerative disorders but also in improved therapeutics. The fields of nanomedicine, regenerative medicine, and gene/cell-based therapy have been revolutionized by the development of safer and efficient non-viral technologies for gene delivery and genome editing with modern techniques for insertion of the neurotrophic factors into clinically relevant cells for a more sustained pharmaceutical effect. It has been suggested that the long-term expression of neurotrophic factors is the ultimate approach to prevent and/or treat neurodegenerative disorders such as glaucoma in patients who do not respond to available treatments or are at the progressive stage of the disease. Recent preclinical research suggests that novel neuroprotective gene and cell therapeutics could be promising approaches for both non-invasive neuroprotection and regenerative functions in the eye. Several progenitor and retinal cell types have been investigated as potential candidates for glaucoma neurotrophin therapy either as targets for gene therapy, options for cell replacement therapy, or as vehicles for gene delivery. Therefore, in parallel with deeper understanding of the specific protective effects of different neurotrophic factors and the potential therapeutic cell candidates for glaucoma neuroprotection, the development of non-invasive and highly specific gene delivery methods with safe and effective technologies to modify cell candidates for life-long neuroprotection in the eye is essential before investing in this field. PMID:26528114

  18. Hb Wilde and Hb Patagonia: two novel elongated beta-globin variants causing dominant beta-thalassemia.

    PubMed

    Scheps, Karen G; Hasenahuer, Marcia A; Parisi, Gustavo; Fornasari, María S; Pennesi, Sandra P; Erramouspe, Beatriz; Basack, Felisa N; Veber, Ernesto S; Aversa, Luis; Elena, Graciela; Varela, Viviana

    2015-06-01

    We describe here the molecular and hematological characteristics of novel frameshift mutations in exon 2 of the HBB gene (in heterozygous state) found in two Argentinean pediatric patients with dominant β-thalassemia-like features. In Hb Wilde, HBB:c.270_273delTGAG(p.Glu90Cysfs*67), we detected the deletion of the third base of the codon 89 (T) and the codon 90 (GAG), whereas in Hb Patagonia, HBB:c.296_297dupGT(p.Asp99Trpfs*59), the frameshift mutation was due to a duplication of a 'GT' dinucleotide after the second base of codon 98 (GTG). The Hb Patagonia and Hb Wilde mutations would result in elongated β-globin chains with modified C-terminal sequences and a total of 155 and 157 amino acids residues, respectively. Based on bioinformatics and structural analysis, as well as protein modeling, we predict that the elongated β-globins would affect the formation of the αβ dimers and their stability, which would further support the mechanism for the observed clinical features in both patients.

  19. Incorporation of beta-globin untranslated regions into a Sindbis virus vector for augmentation of heterologous mRNA expression.

    PubMed

    Strong, T V; Hampton, T A; Louro, I; Bilbao, G; Conry, R M; Curiel, D T

    1997-06-01

    Polynucleotide immunization has been employed as a means of inducing immune responses through the introduction of antigen-encoding DNA. While immunization against specific tumor antigens may be achieved through this strategy, various candidate tumor antigens may not be approached via DNA-based vaccines as they represent transforming oncogenes. As an alternative approach, we have explored the utility of mRNA vectors for polynucleotide immunization. The transient expression achieved by mRNA may provide an efficient and safe system for stimulating immune responses to tumor-specific antigens. Our previous work demonstrated that a self-replicating RNA enhances the magnitude and duration of transgene expression for this application. Here we further modify the vector for optimal use in gene therapy through the incorporation of untranslated regions flanking the encoded transgene. The beta-globin 5' and 3' untranslated regions (UTRs) were inserted directly flanking the luciferase gene in both nonreplicative and replicative RNA constructs. In both cases, elevated and prolonged levels of luciferase expression were detected from the beta-globin UTR-flanked luciferase as compared to luciferase without these sequences. These modifications improve the ability of replicative RNA vectors to produce high, yet transient transgene expression for cancer immunotherapy strategies.

  20. Structure and in vitro transcription of human globin genes.

    PubMed

    Proudfoot, N J; Shander, M H; Manley, J L; Gefter, M L; Maniatis, T

    1980-09-19

    The alpha-like and beta-like subunits of human hemoglobin are encoded by a small family of genes that are differentially expressed during development. Through the use of molecular cloning procedures, each member of this gene family has been isolated and extensively characterized. Although the alpha-like and beta-like globin genes are located on different chromosomes, both sets of genes are arranged in closely linked clusters. In both clusters, each of the genes is transcribed from the same DNA strand, and the genes are arranged in the order of their expressions during development. Structural comparisons of immediately adjacent genes within each cluster have provided evidence for the occurrence of gene duplication and correction during evolution and have led to the discovery of pseudogenes, genes that have acquired numerous mutations that prevent their normal expression. Recently, in vivo and in vitro systems for studying the expression of cloned eukaryotic genes have been developed as a means of identifying DNA sequences that are necessary for normal gene function. This article describes the application of an in vitro transcription procedure to the study of human globin gene expression.

  1. Peptide nucleic acids targeting β-globin mRNAs selectively inhibit hemoglobin production in murine erythroleukemia cells

    PubMed Central

    MONTAGNER, GIULIA; GEMMO, CHIARA; FABBRI, ENRICA; MANICARDI, ALEX; ACCARDO, IGEA; BIANCHI, NICOLETTA; FINOTTI, ALESSIA; BREVEGLIERI, GIULIA; SALVATORI, FRANCESCA; BORGATTI, MONICA; LAMPRONTI, ILARIA; BRESCIANI, ALBERTO; ALTAMURA, SERGIO; CORRADINI, ROBERTO; GAMBARI, ROBERTO

    2015-01-01

    In the treatment of hemoglobinopathies, amending altered hemoglobins and/or globins produced in excess is an important part of therapeutic strategies and the selective inhibition of globin production may be clinically beneficial. Therefore the development of drug-based methods for the selective inhibition of globin accumulation is required. In this study, we employed peptide nucleic acids (PNAs) to alter globin gene expression. The main conclusion of the present study was that PNAs designed to target adult murine β-globin mRNA inhibit hemoglobin accumulation and erythroid differentiation of murine erythroleukemia (MEL) cells with high efficiency and fair selectivity. No major effects were observed on cell proliferation. Our study supports the concept that PNAs may be used to target mRNAs that, similar to globin mRNAs, are expressed at very high levels in differentiating erythroid cells. Our data suggest that PNAs inhibit the excess production of globins involved in the pathophysiology of hemoglobinopathies. PMID:25405921

  2. Organization of a β and α globin gene set in the teleost Atlantic cod, Gadus morhua.

    PubMed

    Halldórsdóttir, Katrín; Árnason, Einar

    2009-12-01

    Developmental globin gene expression and gene switching in vertebrates have been extensively studied. Globin gene regions have been characterized in some fish species and show linked α and β loci. Understanding coordinated expression between α and β globin genes in fish is of importance for further insights into globin gene regulation in teleosts and higher vertebrates. We characterize linked β and α globin genes in Atlantic cod, pulled from the Atlantic cod genome with a PCR research strategy, by screening a genomic λ library and primer walking. The genes are oriented tail-to-head (5'-3'), differing from the head-to-head orientation in transcriptional polarity characteristic of teleostean globin genes. Four tandem repeats are found in an intergenic region of 1500 base pairs. One microsatellite, which consists primarily of atg tandem repeats, has an open reading frame. The globin genes and open reading frame have a CCAAT promoter element and TATA boxes. The promoters of the open reading frame and the β gene share an 89-bp block (with 100% identity) that probably regulates transcription.

  3. Integrated protein quality-control pathways regulate free α-globin in murine β-thalassemia

    PubMed Central

    Khandros, Eugene; Thom, Christopher S.; D'Souza, Janine

    2012-01-01

    Cells remove unstable polypeptides through protein quality-control (PQC) pathways such as ubiquitin-mediated proteolysis and autophagy. In the present study, we investigated how these pathways are used in β-thalassemia, a common hemoglobinopathy in which β-globin gene mutations cause the accumulation and precipitation of cytotoxic α-globin subunits. In β-thalassemic erythrocyte precursors, free α-globin was polyubiquitinated and degraded by the proteasome. These cells exhibited enhanced proteasome activity, and transcriptional profiling revealed coordinated induction of most proteasome subunits that was mediated by the stress-response transcription factor Nrf1. In isolated thalassemic cells, short-term proteasome inhibition blocked the degradation of free α-globin. In contrast, prolonged in vivo treatment of β-thalassemic mice with the proteasome inhibitor bortezomib did not enhance the accumulation of free α-globin. Rather, systemic proteasome inhibition activated compensatory proteotoxic stress-response mechanisms, including autophagy, which cooperated with ubiquitin-mediated proteolysis to degrade free α-globin in erythroid cells. Our findings show that multiple interregulated PQC responses degrade excess α-globin. Therefore, β-thalassemia fits into the broader framework of protein-aggregation disorders that use PQC pathways as cell-protective mechanisms. PMID:22427201

  4. cis and trans activation of globin gene transcription in transient assays.

    PubMed

    Treisman, R; Green, M R; Maniatis, T

    1983-12-01

    We examined the effects of the simian virus 40 enhancer sequence on transcription of cloned human alpha- and beta-globin genes shortly after their introduction into cultured mammalian cells. We find that (i) detectable transcription of the beta-globin gene but not the alpha-globin gene requires linkage to the enhancer; (ii) the enhancer increases the amount of beta-globin RNA at least 100-fold but results in only a 5- to 10-fold increase in the amount of alpha-globin RNA; (iii) plasmid replication does not increase the level of beta-globin RNA, regardless of linkage to the enhancer, but does result in an approximately equal to 50-fold increase in the level of alpha-globin RNA; (iv) the enhancer is not required for and does not increase transcription of either gene in 293 cells, an adenovirus 5-transformed human kidney cell line. We also show that an enhancer sequence is not required for activity of the normally enhancer-dependent simian virus 40 early promoter in 293 cells, indicating that these cells contain a trans-acting factor(s) that circumvents the requirement for the enhancer sequence.

  5. Mutation screening in the human epsilon-globin gene using single-strand conformation polymorphism analysis.

    PubMed

    Papachatzopoulou, Adamantia; Menounos, Panagiotis G; Kolonelou, Christina; Patrinos, George P

    2006-02-01

    The human epsilon-globin gene is necessary for primitive human erythropoiesis in the yolk sac. Herein we report a non-radioactive single-strand conformation polymorphism (SSCP) approach to screen the human epsilon-globin gene and its regulatory regions for possible mutations and single-nucleotide polymorphisms in normal adult subjects, in order to determine those genomic regions, which are not necessary for its proper regulation and function. We identified no sequence variations apart from the expected 5'epsilon /HincII polymorphism in the fragments analyzed, suggesting that genomic alterations in the epsilon-globin gene are most likely incompatible with normal erythropoiesis and proper embryonic development.

  6. Alpha-globin gene markers identify genetic differences between Australian aborigines and Melanesians.

    PubMed Central

    Tsintsof, A S; Hertzberg, M S; Prior, J F; Mickleson, K N; Trent, R J

    1990-01-01

    Australian aborigines exhibit a number of alpha-globin cluster rearrangements involving both alpha- and zeta-globin genes. alpha+-Thalassemia (-alpha/) in this population is heterogeneous and includes the 3.7 types I, II, and III gene deletions. The alpha alpha alpha/ and zeta zeta zeta/ rearrangements are each found in association with two haplotypes, indicating origins from at least two separate DNA crossover events. Differences in alpha-globin cluster rearrangements and in haplotypes between Australian aborigines, Papua New Guinea highlanders and island Melanesians, are consistent with multiple colonizing events into Australia. PMID:2294746

  7. β-Thalassemia due to intronic LINE-1 insertion in the β-globin gene (HBB): molecular mechanisms underlying reduced transcript levels of the β-globin(L1) allele.

    PubMed

    Lanikova, Lucie; Kucerova, Jana; Indrak, Karel; Divoka, Martina; Issa, Jean-Pierre; Papayannopoulou, Thalia; Prchal, Josef T; Divoky, Vladimir

    2013-10-01

    We describe the molecular etiology of β(+)-thalassemia that is caused by the insertion of the full-length transposable element LINE-1 (L1) into the intron-2 of the β-globin gene (HBB). The transcript level of the affected β-globin gene was severely reduced. The remaining transcripts consisted of full-length, correctly processed β-globin mRNA and a minute amount of three aberrantly spliced transcripts with a decreased half-life due to activation of the nonsense-mediated decay pathway. The lower steady-state amount of mRNA produced by the β-globin(L1) allele also resulted from a reduced rate of transcription and decreased production of full-length β-globin primary transcripts. The promoter and enhancer sequences of the β-globin(L1) allele were hypermethylated; however, treatment with a demethylating agent did not restore the impaired transcription. A histone deacetylase inhibitor partially reactivated the β-globin(L1) transcription despite permanent β-globin(L1) promoter CpG methylation. This result indicates that the decreased rate of transcription from the β-globin(L1) allele is associated with an altered chromatin structure. Therefore, the molecular defect caused by intronic L1 insertion in the β-globin gene represents a novel etiology of β-thalassemia.

  8. Murine erythroleukemia cell line GM979 contains factors that can activate silent chromosomal human. gamma. -globin genes

    SciTech Connect

    Zitnik, G.; Hines, P.; Stamatoyannopoulos, G.; Papayannopoulou, T. )

    1991-03-15

    The authors introduced a normal chromosome 11 into GM979 murine erythroleukemia cells by fusing them with Epstein-Barr virus-transformed lymphocytes from a normal individual. In contrast to precious data obtained with other murine erythroleukemia cells, they detected activation of human chromosomal {gamma}-globin genes in GM979 cells. GM979, unlike previously used murine erythroleukemia cell lines, expresses murine embryonic globin in addition to adult globin. While all the hybrids expressed {gamma}- and {beta}-globin, they displayed a wide range of {gamma}-globin expression in relation to that of {beta}-globin. No correlation, however, was found in quantitative expression between murine embryonic globin and human {gamma}-globin in these hybrids, suggesting that the two globins are regulated independently, at least in this cell line. These data indicate that {gamma}-globin genes from normal, nonerythroid chromosomes are not irreversibly silenced, and they can be activated by a positive trans factor(s) present in GM979 cells.

  9. Potentially therapeutic levels of anti-sickling globin gene expression following lentivirus-mediated gene transfer in sickle cell disease bone marrow CD34+ cells.

    PubMed

    Urbinati, Fabrizia; Hargrove, Phillip W; Geiger, Sabine; Romero, Zulema; Wherley, Jennifer; Kaufman, Michael L; Hollis, Roger P; Chambers, Christopher B; Persons, Derek A; Kohn, Donald B; Wilber, Andrew

    2015-05-01

    Sickle cell disease (SCD) can be cured by allogeneic hematopoietic stem cell transplant. However, this is only possible when a matched donor is available, making the development of gene therapy using autologous hematopoietic stem cells a highly desirable alternative. We used a culture model of human erythropoiesis to directly compare two insulated, self-inactivating, and erythroid-specific lentiviral vectors, encoding for γ-globin (V5m3-400) or a modified β-globin (βAS3-FB) for production of antisickling hemoglobin (Hb) and correction of red cell deformability after deoxygenation. Bone marrow CD34+ cells from three SCD patients were transduced using V5m3-400 or βAS3-FB and compared with mock-transduced SCD or healthy donor CD34+ cells. Lentiviral transduction did not impair cell growth or differentiation, as gauged by proliferation and acquisition of erythroid markers. Vector copy number averaged approximately one copy per cell, and corrective globin mRNA levels were increased more than sevenfold over mock-transduced controls. Erythroblasts derived from healthy donor and mock-transduced SCD cells produced a low level of fetal Hb that was increased to 23.6 ± 4.1% per vector copy for cells transduced with V5m3-400. Equivalent levels of modified normal adult Hb of 17.6 ± 3.8% per vector copy were detected for SCD cells transduced with βAS3-FB. These levels of antisickling Hb production were sufficient to reduce sickling of terminal-stage red blood cells upon deoxygenation. We concluded that the achieved levels of fetal Hb and modified normal adult Hb would likely prove therapeutic to SCD patients who lack matched donors.

  10. Ancient Duplications and Expression Divergence in the Globin Gene Superfamily of Vertebrates: Insights from the Elephant Shark Genome and Transcriptome

    PubMed Central

    Opazo, Juan C.; Toloza-Villalobos, Jessica; Burmester, Thorsten; Venkatesh, Byrappa; Storz, Jay F.

    2015-01-01

    Comparative analyses of vertebrate genomes continue to uncover a surprising diversity of genes in the globin gene superfamily, some of which have very restricted phyletic distributions despite their antiquity. Genomic analysis of the globin gene repertoire of cartilaginous fish (Chondrichthyes) should be especially informative about the duplicative origins and ancestral functions of vertebrate globins, as divergence between Chondrichthyes and bony vertebrates represents the most basal split within the jawed vertebrates. Here, we report a comparative genomic analysis of the vertebrate globin gene family that includes the complete globin gene repertoire of the elephant shark (Callorhinchus milii). Using genomic sequence data from representatives of all major vertebrate classes, integrated analyses of conserved synteny and phylogenetic relationships revealed that the last common ancestor of vertebrates possessed a repertoire of at least seven globin genes: single copies of androglobin and neuroglobin, four paralogous copies of globin X, and the single-copy progenitor of the entire set of vertebrate-specific globins. Combined with expression data, the genomic inventory of elephant shark globins yielded four especially surprising findings: 1) there is no trace of the neuroglobin gene (a highly conserved gene that is present in all other jawed vertebrates that have been examined to date), 2) myoglobin is highly expressed in heart, but not in skeletal muscle (reflecting a possible ancestral condition in vertebrates with single-circuit circulatory systems), 3) elephant shark possesses two highly divergent globin X paralogs, one of which is preferentially expressed in gonads, and 4) elephant shark possesses two structurally distinct α-globin paralogs, one of which is preferentially expressed in the brain. Expression profiles of elephant shark globin genes reveal distinct specializations of function relative to orthologs in bony vertebrates and suggest hypotheses about

  11. Ancient Duplications and Expression Divergence in the Globin Gene Superfamily of Vertebrates: Insights from the Elephant Shark Genome and Transcriptome.

    PubMed

    Opazo, Juan C; Lee, Alison P; Hoffmann, Federico G; Toloza-Villalobos, Jessica; Burmester, Thorsten; Venkatesh, Byrappa; Storz, Jay F

    2015-07-01

    Comparative analyses of vertebrate genomes continue to uncover a surprising diversity of genes in the globin gene superfamily, some of which have very restricted phyletic distributions despite their antiquity. Genomic analysis of the globin gene repertoire of cartilaginous fish (Chondrichthyes) should be especially informative about the duplicative origins and ancestral functions of vertebrate globins, as divergence between Chondrichthyes and bony vertebrates represents the most basal split within the jawed vertebrates. Here, we report a comparative genomic analysis of the vertebrate globin gene family that includes the complete globin gene repertoire of the elephant shark (Callorhinchus milii). Using genomic sequence data from representatives of all major vertebrate classes, integrated analyses of conserved synteny and phylogenetic relationships revealed that the last common ancestor of vertebrates possessed a repertoire of at least seven globin genes: single copies of androglobin and neuroglobin, four paralogous copies of globin X, and the single-copy progenitor of the entire set of vertebrate-specific globins. Combined with expression data, the genomic inventory of elephant shark globins yielded four especially surprising findings: 1) there is no trace of the neuroglobin gene (a highly conserved gene that is present in all other jawed vertebrates that have been examined to date), 2) myoglobin is highly expressed in heart, but not in skeletal muscle (reflecting a possible ancestral condition in vertebrates with single-circuit circulatory systems), 3) elephant shark possesses two highly divergent globin X paralogs, one of which is preferentially expressed in gonads, and 4) elephant shark possesses two structurally distinct α-globin paralogs, one of which is preferentially expressed in the brain. Expression profiles of elephant shark globin genes reveal distinct specializations of function relative to orthologs in bony vertebrates and suggest hypotheses about

  12. Synergistic neuroprotective therapies with hypothermia

    PubMed Central

    Cilio, Maria Roberta; Ferriero, Donna M.

    2010-01-01

    summary Neuroprotection is a major health care priority, given the enormous burden of human suffering and financial cost caused by perinatal brain damage. With the advent of hypothermia as therapy for term hypoxic–ischemic encephalopathy, there is hope for repair and protection of the brain after a profound neonatal insult. However, it is clear from the published clinical trials and animal studies that hypothermia alone will not provide complete protection or stimulate the repair that is necessary for normal neurodevelopmental outcome. This review critically discusses drugs used to treat seizures after hypoxia–ischemia in the neonate with attention to evidence of possible synergies for therapy. In addition, other agents such as xenon, N-acetylcysteine, erythropoietin, melatonin and cannabinoids are discussed as future potential therapeutic agents that might augment protection from hypothermia. Finally, compounds that might damage the developing brain or counteract the neuroprotective effects of hypothermia are discussed. PMID:20207600

  13. Regulated expression of a complete human beta-globin gene encoded by a transmissible retrovirus vector.

    PubMed Central

    Cone, R D; Weber-Benarous, A; Baorto, D; Mulligan, R C

    1987-01-01

    We introduced a human beta-globin gene into murine erythroleukemia (MEL) cells by infection with recombinant retroviruses containing the complete genomic globin sequence. The beta-globin gene was correctly regulated during differentiation, steady-state mRNA levels being induced 5- to 30-fold after treatment of the cells with the chemical inducer dimethyl sulfoxide. Studies using vectors which yield integrated proviruses lacking transcriptional enhancer sequences indicated that neither retroviral transcription nor the retroviral enhancer sequences themselves had any obvious effect on expression of the globin gene. Viral RNA expression also appeared inducible, being considerably depressed in uninduced MEL cells but approaching normal wild-type levels after dimethyl sulfoxide treatment. We provide data which suggest that the control point for both repression and subsequent activation of virus expression in MEL cells lies in the viral enhancer element. Images PMID:3029570

  14. Characterization of histone H3K27 modifications in the {beta}-globin locus

    SciTech Connect

    Kim, Yea Woon; Kim, AeRi

    2011-02-11

    Research highlights: {yields} The {beta}-globin locus control region is hyperacetylated and monomethylated at histone H3K27. {yields} Highly transcribed globin genes are marked by H3K27ac, but H3K27me2 is remarkable at silent globin genes in erythroid K562 cells. {yields} Association of PRC2 subunits is comparable with H3K27me3 pattern. {yields} Modifications of histone H3K27 are established in an enhancer-dependent manner. -- Abstract: Histone H3K27 is acetylated or methylated in the environment of nuclear chromatin. Here, to characterize the modification pattern of H3K27 in locus control region (LCR) and to understand the correlation of various H3K27 modifications with transcriptional activity of genes, we analyzed the human {beta}-globin locus using the ChIP assay. The LCR of the human {beta}-globin locus was enriched by H3K27ac and H3K27me1 in erythroid K562 cells. The highly transcribed globin genes were hyperacetylated at H3K27, but the repressed globin genes were highly dimethylated at this lysine in these cells. However, in non-erythroid 293FT cells, the {beta}-globin locus was marked by a high level of H3K27me3. EZH2 and SUZ12, subunits of polycomb repressive complex 2, were comparably detected with the H3K27me3 pattern in K562 and 293FT cells. In addition, H3K27ac, H3K27me1 and H3K27me3 were established in an enhancer-dependent manner in a model minichromosomal locus containing an enhancer and its target gene. Taken together, these results show that H3K27 modifications have distinctive correlations with the chromatin state or transcription level of genes and are influenced by an enhancer.

  15. Ruminant globin gene structures suggest an evolutionary role for Alu-type repeats.

    PubMed Central

    Schimenti, J C; Duncan, C H

    1984-01-01

    Bovine fetal and adult globin genes were cloned and subjected to DNA sequence analysis. Both of these genes contained insertions of Alu-type repetitive DNA within their introns. Comparison of cow and goat beta-type globin genes indicates that intragenic DNA insertions played a role in their evolution. These data support the theory that Alu-type repeats maintain genetic diversity by inhibiting gene conversion. PMID:6322113

  16. A precise termination site in the mouse beta major-globin transcription unit.

    PubMed Central

    Salditt-Georgieff, M; Darnell, J E

    1983-01-01

    Nascent labeled RNA from induced, globin-producing mouse erythroleukemia cells was hybridized to cloned regions of the beta major-globin gene. Transcription ceases about 1,000 bases downstream from the poly(A) site as indicated by protection from nuclease digestion of a discrete-sized RNA fragment that it shorter than the protecting cloned DNA fragment. This defines an apparently unique termination site for a protein-coding gene that is transcribed by RNA polymerase II. Images PMID:6192441

  17. Hydrolytic Cleavage Products of Globin Adducts in Urine as Possible Biomarkers of Cumulative Dose: Proof of Concept Using Styrene Oxide as a Model Adduct-Forming Compound.

    PubMed

    Mráz, Jaroslav; Hanzlíková, Iveta; Moulisová, Alena; Dušková, Šárka; Hejl, Kamil; Bednářová, Aneta; Dabrowská, Ludmila; Linhart, Igor

    2016-04-18

    A new experimental model was designed to study the fate of globin adducts with styrene 7,8-oxide (SO), a metabolic intermediate of styrene and a model electrophilic compound. Rat erythrocytes were incubated with SO at 7 or 22 °C. Levels of specific amino acid adducts in globin were determined by LC/MS analysis of the globin hydrolysate, and erythrocytes with known adduct content were administered intravenously to recipient rats. The course of adduct elimination from the rat blood was measured over the following 50 days. In the erythrocytes incubated at 22 °C, a rapid decline in the adduct levels on the first day post-transfusion followed by a slow phase of elimination was observed. In contrast, the adduct elimination in erythrocytes incubated at 7 °C was nearly linear, copying elimination of intact erythrocytes. In the urine of recipient rats, regioisomeric SO adducts at cysteine, valine, lysine, and histidine in the form of amino acid adducts and/or their acetylated metabolites as well as SO-dipeptide adducts were identified by LC/MS supported by synthesized reference standards. S-(2-Hydroxy-1-phenylethyl)cysteine and S-(2-hydroxy-2-phenylethyl)cysteine, the most abundant globin adducts, were excreted predominantly in the form of the corresponding urinary mercapturic acids (HPEMAs). Massive elimination of HPEMAs via urine occurred within the first day from the erythrocytes incubated at both 7 and 22 °C. However, erythrocytes incubated at 7 °C also showed a slow second phase of elimination such that HPEMAs were detected in urine up to 50 days post-transfusion. These results indicate for the first time that globin adducts can be cleaved in vivo to modified amino acids and dipeptides. The cleavage products and/or their predictable metabolites are excreted in urine over the whole life span of erythrocytes. Some of the urinary adducts may represent a new type of noninvasive biomarker for exposure to adduct-forming chemicals.

  18. Correlation of BACH1 and Hemoglobin E/Beta-Thalassemia Globin Expression

    PubMed Central

    Lee, Tze Yan; Muniandy, Logeswaran; Teh, Lai Kuan; Abdullah, Maha; George, Elizabeth; Sathar, Jameela; Lai, Mei I

    2016-01-01

    Objective: The diverse clinical phenotype of hemoglobin E (HbE)/β-thalassemia has not only confounded clinicians in matters of patient management but has also led scientists to investigate the complex mechanisms involved in maintaining the delicate red cell environment where, even with apparent similarities of α- and β-globin genotypes, the phenotype tells a different story. The BTB and CNC homology 1 (BACH1) protein is known to regulate α- and β-globin gene transcriptions during the terminal differentiation of erythroid cells. With the mutations involved in HbE/β-thalassemia disorder, we studied the role of BACH1 in compensating for the globin chain imbalance, albeit for fine-tuning purposes. Materials and Methods: A total of 47 HbE/β-thalassemia samples were analyzed using real-time quantitative polymerase chain reaction and correlated with age, sex, red blood cell parameters, globin gene expressions, and some clinical data. Results: The BACH1 expression among the β-thalassemia intermedia patients varied by up to 2-log differences and was positively correlated to age; α-, β-, and γ-globin gene expression level; and heme oxygenase 1 protein. BACH1 was also negatively correlated to reticulocyte level and had a significant correlation with splenectomy. Conclusion: This study indicates that the expression of BACH1 could be elevated as a compensatory mechanism to decrease the globin chain imbalance as well as to reduce the oxidative stress found in HbE/β-thalassemia. PMID:26377036

  19. Transcriptional activation of cloned human beta-globin genes by viral immediate-early gene products.

    PubMed

    Green, M R; Treisman, R; Maniatis, T

    1983-11-01

    When the human beta-globin gene is transfected into Hela cells, no beta-globin RNA is detected unless the gene is linked to a viral transcription enhancer. In this paper we show that trans-acting adenovirus and herpesvirus (pseudorabies) transcriptional regulatory proteins can circumvent this enhancer requirement for detectable beta-globin transcription in transient expression assays. The viral gene products can be provided by constitutively expressed, integrated viral genes in established cell lines, by viral infection of permissive cells, or by transfection of cells with bacterial plasmids carrying the viral immediate-early genes. These results demonstrate the utility of transient expression assays for studying regulatory mechanisms involving trans-acting factors. Analysis of beta-globin promoter mutants indicates that between 75 and 128 bp of sequence 5' to the mRNA cap site is required for enhancer-dependent transcription in Hela cells. In contrast, beta-globin transcription in the presence of viral immediate-early gene products requires only 36 bp of 5'-flanking sequence, which includes the TATA box. Thus both cis and trans-acting viral factors activate beta-globin gene transcription in transient expression experiments, but the mechanisms by which they act appear to be fundamentally different.

  20. β-globin gene cluster haplotypes in ethnic minority populations of southwest China

    PubMed Central

    Sun, Hao; Liu, Hongxian; Huang, Kai; Lin, Keqin; Huang, Xiaoqin; Chu, Jiayou; Ma, Shaohui; Yang, Zhaoqing

    2017-01-01

    The genetic diversity and relationships among ethnic minority populations of southwest China were investigated using seven polymorphic restriction enzyme sites in the β-globin gene cluster. The haplotypes of 1392 chromosomes from ten ethnic populations living in southwest China were determined. Linkage equilibrium and recombination hotspot were found between the 5′ sites and 3′ sites of the β-globin gene cluster. 5′ haplotypes 2 (+−−−), 6 (−++−+), 9 (−++++) and 3′ haplotype FW3 (−+) were the predominant haplotypes. Notably, haplotype 9 frequency was significantly high in the southwest populations, indicating their difference with other Chinese. The interpopulation differentiation of southwest Chinese minority populations is less than those in populations of northern China and other continents. Phylogenetic analysis shows that populations sharing same ethnic origin or language clustered to each other, indicating current β-globin cluster diversity in the Chinese populations reflects their ethnic origin and linguistic affiliations to a great extent. This study characterizes β-globin gene cluster haplotypes in southwest Chinese minorities for the first time, and reveals the genetic variability and affinity of these populations using β-globin cluster haplotype frequencies. The results suggest that ethnic origin plays an important role in shaping variations of the β-globin gene cluster in the southwestern ethnic populations of China. PMID:28205625

  1. Mutations in the paralogous human alpha-globin genes yielding identical hemoglobin variants.

    PubMed

    Moradkhani, Kamran; Préhu, Claude; Old, John; Henderson, Shirley; Balamitsa, Vera; Luo, Hong-Yuan; Poon, Man-Chiu; Chui, David H K; Wajcman, Henri; Patrinos, George P

    2009-06-01

    The human alpha-globin genes are paralogues, sharing a high degree of DNA sequence similarity and producing an identical alpha-globin chain. Over half of the alpha-globin structural variants reported to date are only characterized at the amino acid level. It is likely that a fraction of these variants, with phenotypes differing from one observation to another, may be due to the same mutation but on a different alpha-globin gene. There have been very few previous examples of hemoglobin variants that can be found at both HBA1 and HBA2 genes. Here, we report the results of a systematic multicenter study in a large multiethnic population to identify such variants and to analyze their differences from a functional and evolutionary perspective. We identified 14 different Hb variants resulting from identical mutations on either one of the two human alpha-globin paralogue genes. We also showed that the average percentage of hemoglobin variants due to a HBA2 gene mutation (alpha2) is higher than the percentage of hemoglobin variants due to the same HBA1 gene mutation (alpha1) and that the alpha2/alpha1 ratio varied between variants. These alpha-globin chain variants have most likely occurred via recurrent mutations, gene conversion events, or both. Based on these data, we propose a nomenclature for hemoglobin variants that fall into this category.

  2. The primary transcription unit of the human alpha 2 globin gene defined by quantitative RT/PCR.

    PubMed Central

    Owczarek, C M; Enriquez-Harris, P; Proudfoot, N J

    1992-01-01

    We have set up an experimental system to map the primary transcription unit of the human alpha 2 globin gene. The duplicated human alpha globin genes (alpha 2-alpha 1) were linked to the alpha globin locus Positive Regulatory Element (PRE) and stably transfected into murine erythroleukaemia cells. We then developed a quantitative reverse transcriptase, polymerase chain reaction assay to map alpha 2 primary transcripts using primer pairs derived from different parts of the alpha 2 globin gene and its 3' flanking region. This approach has revealed the presence of steady state nuclear RNA past the poly(A) site of the alpha 2 globin gene at approximately 40% of the level of unspliced intron transcript. Furthermore, these 3' flanking transcripts diminish 500 bp into the 3' flanking region, identifying this part of the alpha 2 globin gene as the principal region of termination of transcription. Images PMID:1371868

  3. Human beta-globin gene expression in transgenic mice is enhanced by a distant DNase I hypersensitive site.

    PubMed Central

    Curtin, P T; Liu, D P; Liu, W; Chang, J C; Kan, Y W

    1989-01-01

    Several lines of evidence suggest that erythroid-specific DNase I hypersensitive sites (HS) located far upstream of the human beta-globin gene are important in regulating beta-globin gene expression. We used the polymerase chain reaction technique to amplify and clone an 882-base-pair DNA fragment spanning one of these HS, designated HSII, which is located 54 kilobases upstream of the beta-globin gene. The cloned HSII fragment was linked to a human beta-globin gene in either the genomic (HSII-beta) or antigenomic (HSII-beta) orientation. These two constructs and a beta-globin gene alone (beta) were injected into fertilized mouse eggs, and expression was analyzed in liver and brain from day-16 transgenic fetuses. Five of 7 beta-transgenic fetuses expressed human beta-globin mRNA, but the level of expression per gene copy was low, ranging from 0.93 to 22.4% of mouse alpha-globin mRNA (average 9.9%). In contrast, 11 of 12 HSII-beta transgenic fetuses expressed beta-globin mRNA at levels per gene copy ranging from 31.3 to 336.6% of mouse alpha-globin mRNA (average 139.5%). Only three fetuses containing intact copies of the HSII-beta construct were produced. Two of three expressed human beta-globin mRNA at levels per gene copy of 179.2 and 387.1%. Expression of human beta-globin mRNA was tissue-specific in all three types of transgenic fetuses. These studies demonstrate that a small DNA fragment containing a single erythroid-specific HS can stimulate high-level human beta-globin gene expression in transgenic mice. Images PMID:2780563

  4. Alignment of 700 globin sequences: extent of amino acid substitution and its correlation with variation in volume.

    PubMed Central

    Kapp, O. H.; Moens, L.; Vanfleteren, J.; Trotman, C. N.; Suzuki, T.; Vinogradov, S. N.

    1995-01-01

    Seven-hundred globin sequences, including 146 nonvertebrate sequences, were aligned on the basis of conservation of secondary structure and the avoidance of gap penalties. Of the 182 positions needed to accommodate all the globin sequences, only 84 are common to all, including the absolutely conserved PheCD1 and HisF8. The mean number of amino acid substitutions per position ranges from 8 to 13 for all globins and 5 to 9 for internal positions. Although the total sequence volumes have a variation approximately 2-3%, the variation in volume per position ranges from approximately 13% for the internal to approximately 21% for the surface positions. Plausible correlations exist between amino acid substitution and the variation in volume per position for the 84 common and the internal but not the surface positions. The amino acid substitution matrix derived from the 84 common positions was used to evaluate sequence similarity within the globins and between the globins and phycocyanins C and colicins A, via calculation of pairwise similarity scores. The scores for globin-globin comparisons over the 84 common positions overlap the globin-phycocyanin and globin-colicin scores, with the former being intermediate. For the subset of internal positions, overlap is minimal between the three groups of scores. These results imply a continuum of amino acid sequences able to assume the common three-on-three alpha-helical structure and suggest that the determinants of the latter include sites other than those inaccessible to solvent. PMID:8535255

  5. CP2 binding to the promoter is essential for the enhanced transcription of globin genes in erythroid cells.

    PubMed

    Chae, Ji Hyung; Kim, Chul Geun

    2003-02-28

    We have previously reported that the reduced level of CP2 suppresses the mouse alpha- and beta-globin gene expression and hemoglobin synthesis during terminal differentiation of mouse erythroleukemia (MEL) cells in vitro [Chae et al. (1999)]. As an extension of this study, we demonstrated that human alpha-, epsilon-, and gamma- globin genes were also suppressed by the reduced expression of CP2 in K562 cells. To address how much CP2 contributes in the regulation of globin gene expression, we measured transcriptional activities of the wild type alpha-globin promoter and its various factor-binding sites mutants in erythroid and nonerythroid cells. Interestingly, CP2 site dependent transcriptional activation occurred in an erythroid-cell specific manner, even though CP2 is ubiquitously expressed. In addition, CP2 site mutation within the alpha-promoter severely suppressed promoter activity in differentiated, but not in undifferentiated MEL cells, suggesting that the CP2 binding site is needed for the enhanced transcription of globin genes during erythroid differentiation. When the human beta-globin locus control region was linked to the alpha-promoter, suppression was more severe in the CP2 site mutant in differentiated MEL cells. Overall data indicate that CP2 is a major factor in the regulation of globin expression in human and mouse erythroid cells, and CP2 binding to the globin gene promoter is essential for the enhanced transcription of globin genes in erythroid differentiation.

  6. Neuroprotective strategies in radical prostatectomy.

    PubMed

    Schiff, Jonathan D; Mulhall, John P

    2005-01-01

    In this section, authors from New York give their views on the various neuroprotective strategies for patients having a radical prostatectomy, such as the use of nerve grafts and other approaches. A joint study from Korea, the USA, Canada and the UK is presented in a paper on the importance of patient perception in the clinical assessment and management of BPH. There is also a review of robotic urological surgery. Finally, authors from New York give a review on the life of Isaac Newton. This is a new historical review in the journal, but one that will be of general interest.

  7. New Genes Originated via Multiple Recombinational Pathways in the β-Globin Gene Family of Rodents

    PubMed Central

    Hoffmann, Federico G.; Opazo, Juan C.; Storz, Jay F.

    2008-01-01

    Species differences in the size or membership composition of multigene families can be attributed to lineage-specific additions of new genes via duplication, losses of genes via deletion or inactivation, and the creation of chimeric genes via domain shuffling or gene fusion. In principle, it should be possible to infer the recombinational pathways responsible for each of these different types of genomic change by conducting detailed comparative analyses of genomic sequence data. Here, we report an attempt to unravel the complex evolutionary history of the β-globin gene family in a taxonomically diverse set of rodent species. The main objectives were: 1) to characterize the genomic structure of the β-globin gene cluster of rodents; 2) to assign orthologous and paralogous relationships among duplicate copies of β-like globin genes; and 3) to infer the specific recombinational pathways responsible for gene duplications, gene deletions, and the creation of chimeric fusion genes. Results of our comparative genomic analyses revealed that variation in gene family size among rodent species is mainly attributable to the differential gain and loss of later expressed β-globin genes via unequal crossing-over. However, two distinct recombinational mechanisms were implicated in the creation of chimeric fusion genes. In muroid rodents, a chimeric γ/ε fusion gene was created by unequal crossing-over between the embryonic ε- and γ-globin genes. Interestingly, this γ/ε fusion gene was generated in the same fashion as the “anti-Lepore” 5′-δ-(β/δ)-β-3′ duplication mutant in humans (the reciprocal exchange product of the pathological hemoglobin Lepore deletion mutant). By contrast, in the house mouse, Mus musculus, a chimeric β/δ fusion pseudogene was created by a β-globin → δ-globin gene conversion event. Although the γ/ε and β/δ fusion genes share a similar chimeric gene structure, they originated via completely different recombinational pathways. PMID

  8. Globin synthesis in hybrid cells constructed by transplantation of dormant avian erythrocyte nuclei into enucleated fibroblasts.

    PubMed Central

    Bruno, J; Reich, N; Lucas, J J

    1981-01-01

    The polypeptides synthesized by mature embryonic erythrocytes prepared from the peripheral blood of 14- to 15-day-old chicken embryos were analyzed by two-dimensional gel electrophoresis. Fewer than 200 species of polypeptides were detected; the major polypeptides made at this time were identified as the alpha A-, alpha D-, and beta-globin chains. The dormant erythrocyte nuclei were next reactivated to transcriptional competence by transplantation into enucleated mouse or chicken embryo fibroblasts, with frequencies of cytoplast renucleation of about 50 and 90%, respectively. Since large numbers of hybrid cells could be constructed, a biochemical analysis was possible. Electrophoretic analysis of the [35S]methionine-labeled polypeptides made in the hybrid cell types showed that polypeptides having the mobilities of only two (alpha A and alpha D) of the three major adult globin chains were made as major constituents of the hybrid cells. However, analysis of 14C-amino acid-labeled polypeptides revealed that a beta-like polypeptide that lacked methionine was also synthesized in large amounts. This polypeptide was tentatively identified as the early embryonic globin species rho. Globin synthesis was detected as early as 3 h after nuclear transplantation and as late as 18 h, the last time measured in these experiments. It appeared that globin polypeptides made at very early times were translated at least partially from chicken messenger ribonucleic acid introduced into the hybrid cells during fusion, whereas those made at later times were translated primarily from newly synthesized globin messenger ribonucleic acid. The potential usefulness of this hybrid cell system in analyzing mechanisms regulating globin gene expression is discussed. Images PMID:7346715

  9. Non-methylated CpG-rich islands at the human alpha-globin locus: implications for evolution of the alpha-globin pseudogene.

    PubMed Central

    Bird, A P; Taggart, M H; Nicholls, R D; Higgs, D R

    1987-01-01

    We have analysed CpG frequency and CpG methylation across part of the human alpha-globin locus. Clusters of CpG at the alpha 1 and alpha 2 genes resemble the 'HpaII tiny fragment (HTF) islands' that are characteristic of mammalian 'housekeeping' genes: CpG frequency is not suppressed; testable CpGs are not methylated in DNA from erythroid or nonerythroid tissues, although flanking CpGs are methylated; CpG clusters are approximately 1.5 kb long and extend both upstream and downstream of the alpha-globin transcription start site. These features are not found at genes of the beta-globin locus. The alpha-globin pseudogene (psi alpha 1) is highly homologous to the alpha 2 and alpha 1 genes, but it lacks an HTF island. Sequence comparison shows that a high proportion of CpGs in the alpha 2 gene are substituted by TpG or CpA in the pseudogene. This strongly suggests that an ancestral HTF island at the pseudogene became methylated in the germline, and was lost due to the mutability of 5-methylcytosine. Images Fig. 2. Fig. 3. Fig. 5. PMID:3595568

  10. Retroviral transfer of a human beta-globin/delta-globin hybrid gene linked to beta locus control region hypersensitive site 2 aimed at the gene therapy of sickle cell disease.

    PubMed Central

    Takekoshi, K J; Oh, Y H; Westerman, K W; London, I M; Leboulch, P

    1995-01-01

    Human gamma-globin and delta-globin chains have been previously identified as strong inhibitors of the polymerization of hemoglobin S, in contrast to the beta-globin chain, which exerts only a moderate antisickling effect. However, gamma-globin and delta-globin are normally expressed at very low levels in adult erythroid cells, in contrast to beta-globin. We report the design of a beta-globin/delta-globin hybrid gene, beta/delta-sickle cell inhibitor 1 (beta/delta-SCI1) and its transduction by retrovirus-mediated gene transfer. The beta/delta-SCI1-encoding gene retains the overall structure of the human beta-globin gene, while incorporating specific amino acid residues from the delta chain previously found responsible for its enhanced antisickling properties. To achieve high expression levels of beta/delta-SCI1 in adult erythrocytes, the hybrid gene was placed under the transcriptional control of the human beta-globin promoter and the DNase I hypersensitive site 2 of the human beta locus control region. High-titer retroviruses were generated, and stable proviral transmission was achieved in infected cells. The mRNA expression levels of the beta/delta-SCI1 gene in infected, dimethyl sulfoxide-induced murine erythroleukemia cells approached 85% of the endogenous murine beta maj-globin mRNA, on a per gene basis, evidence that high gene expression levels were achieved in adult erythroid cells. Further evaluation of this strategy in transgenic animal models of sickle cell disease should assess its efficacy for the gene therapy of human patients. Images Fig. 4 Fig. 5 PMID:7708766

  11. New strategies in neuroprotection and neurorepair.

    PubMed

    Antonelli, Marta C; Guillemin, Gilles J; Raisman-Vozari, Rita; Del-Bel, Elaine A; Aschner, Michael; Collins, Michael A; Tizabi, Yousef; Moratalla, Rosario; West, Adrian K

    2012-01-01

    There are currently few clinical strategies in place, which provide effective neuroprotection and repair, despite an intense international effort over the past decades. One possible explanation for this is that a deeper understanding is required of how endogenous mechanisms act to confer neuroprotection. This mini-review reports the proceedings of a recent workshop "Neuroprotection and Neurorepair: New Strategies" (Iguazu Falls, Misiones, Argentina, April 11-13, 2011, Satellite Symposium of the V Neurotoxicity Society Meeting, 2011) in which four areas of active research were identified to have the potential to generate new insights into this field. Topics discussed were (i) metallothionein and other multipotent neuroprotective molecules; (ii) oxidative stress and their signal mediated pathways in neuroregeneration; (iii) neurotoxins in glial cells, and (iv) drugs of abuse with neuroprotective effects.

  12. Alpha thalassaemia and extended alpha globin genes in Sri Lanka.

    PubMed

    Suresh, Sasikala; Fisher, Christopher; Ayyub, Helena; Premawardhena, Anuja; Allen, Angela; Perera, Ashok; Bandara, Dayananda; Olivieri, Nancy; Weatherall, David

    2013-02-01

    The α-globin genes were studied in nine families with unexplained hypochromic anaemia and in 167 patients with HbE β thalassaemia in Sri Lanka. As well as the common deletion forms of α(+) thalassaemia three families from an ethnic minority were found to carry a novel form of α(0) thalassaemia, one family carried a previously reported form of α(0) thalassaemia, --(THAI), and five families had different forms of non-deletional thalassaemia. The patients with HbE β thalassaemia who had co-inherited α thalassaemia all showed an extremely mild phenotype and reduced levels of HbF and there was a highly significant paucity of α(+) thalassaemia in these patients compared with the normal population. Extended α gene arrangements, including ααα, αααα and ααααα, occurred at a low frequency and were commoner in the more severe phenotypes of HbE β thalassaemia. As well as emphasising the ameliorating effect of α thalassaemia on HbE β thalassaemia the finding of a novel form of α(0) thalassaemia in an ethnic minority, together with an unexpected diversity of forms of non-deletion α thalassaemia in Sri Lanka, further emphasises the critical importance of micro-mapping populations for determining the frequency of clinically important forms of the disease.

  13. Neuroprotective compounds of Tilia amurensis

    PubMed Central

    Lee, Bohyung; Weon, Jin Bae; Eom, Min Rye; Jung, Youn Sik; Ma, Choong Je

    2015-01-01

    Background: Tilia amurensis (Tiliacese) has been used for anti-tumor and anti-inflammatory in Korea, China, and Japan. Objective: In this study, we isolated five compounds from T. amurensis and determined whether protected neuronal cells against glutamate-induced oxidative stress in HT22 cells. Materials and Methods: Compounds were isolated using chromatographic techniques including silica gel, Sephadex LH-20 open column and high performance liquid chromatography analysis, and evaluated neuroprotective effect in HT22 cells by 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. Results: β-D-fructofuranosyl α-D-glucopyranoside (1), (-)-epicatechin (2), nudiposide (3), lyoniside (4), and scopoletin (5) were isolated by bioactivity-guided fractionation from the ethyl acetate fraction of T. amurensis. Among them, (-)-epicatechin, nudiposide, lyoniside, and scopoletin had significant neuroprotective activities against glutamate-injured neurotoxicity in HT22 cells. Conclusion: These results demonstrated that compound two, three, four, and five have a pronounced protective effect against glutamate-induced neurotoxicity in HT22 cells. PMID:26664019

  14. Neuroprotective Role of Natural Polyphenols.

    PubMed

    Spagnuolo, Carmela; Napolitano, Marianna; Tedesco, Idolo; Moccia, Stefania; Milito, Alfonsina; Russo, Gian Luigi

    2016-01-01

    Neurodegenerative diseases cause a progressive functional alteration of neuronal systems, resulting in a state of dementia which is considered one of the most common psychiatric disorders of the elderly. Dementia implies an irreversible impairment of intellect that increases with age causing alteration of memory, language and behavioral problems. The most common form, which occurs in more than half of all cases, is Alzheimer's disease, characterized by accumulation of amyloid plaques and neurofibrillary tangles. Neuroinflammation and oxidative stresses have been considered as a hallmark of Alzheimer disease, playing a crucial role in neurotoxicity. For this reason, an adequate antioxidant strategy may improve the treatment of neurodegenerative diseases and dementia. Several studies support the neuroprotective abilities of polyphenolic compounds resulting in neuronal protection against injury induced by neurotoxins, ability to suppress neuroinflammation and the potential to promote memory, learning and cognitive functions. We critically reviewed here the therapeutic potential of pure herbal compounds (e.g., green tea polyphenol (-)- epigallocatechin-3-gallate, resveratrol, curcumin, quercetin and others) and extracts enriched in polyphenols showing the most promising neuroprotective effects. We are also presenting data on the ability of an extract derived from elderberry, Sambucus nigra, possessing elevated polyphenolic content and antioxidant capacity to protect neuronal cells against oxidizing agents.

  15. A novel human gamma-globin gene vector for genetic correction of sickle cell anemia in a humanized sickle mouse model: critical determinants for successful correction.

    PubMed

    Perumbeti, Ajay; Higashimoto, Tomoyasu; Urbinati, Fabrizia; Franco, Robert; Meiselman, Herbert J; Witte, David; Malik, Punam

    2009-08-06

    We show that lentiviral delivery of human gamma-globin gene under beta-globin regulatory control elements in hematopoietic stem cells (HSCs) results in sufficient postnatal fetal hemoglobin (HbF) expression to correct sickle cell anemia (SCA) in the Berkeley "humanized" sickle mouse. Upon de-escalating the amount of transduced HSCs in transplant recipients, using reduced-intensity conditioning and varying gene transfer efficiency and vector copy number, we assessed critical parameters needed for correction. A systematic quantification of functional and hematologic red blood cell (RBC) indices, organ pathology, and life span was used to determine the minimal amount of HbF, F cells, HbF/F-cell, and gene-modified HSCs required for correcting the sickle phenotype. We show that long-term amelioration of disease occurred (1) when HbF exceeded 10%, F cells constituted two-thirds of the circulating RBCs, and HbF/F cell was one-third of the total hemoglobin in sickle RBCs; and (2) when approximately 20% gene-modified HSCs repopulated the marrow. Moreover, we show a novel model using reduced-intensity conditioning to determine genetically corrected HSC threshold that corrects a hematopoietic disease. These studies provide a strong preclinical model for what it would take to genetically correct SCA and are a foundation for the use of this vector in a human clinical trial.

  16. The Globin Gene Repertoire of Lampreys: Convergent Evolution of Hemoglobin and Myoglobin in Jawed and Jawless Vertebrates

    PubMed Central

    Schwarze, Kim; Campbell, Kevin L.; Hankeln, Thomas; Storz, Jay F.; Hoffmann, Federico G.; Burmester, Thorsten

    2014-01-01

    Agnathans (jawless vertebrates) occupy a key phylogenetic position for illuminating the evolution of vertebrate anatomy and physiology. Evaluation of the agnathan globin gene repertoire can thus aid efforts to reconstruct the origin and evolution of the globin genes of vertebrates, a superfamily that includes the well-known model proteins hemoglobin and myoglobin. Here, we report a comprehensive analysis of the genome of the sea lamprey (Petromyzon marinus) which revealed 23 intact globin genes and two hemoglobin pseudogenes. Analyses of the genome of the Arctic lamprey (Lethenteron camtschaticum) identified 18 full length and five partial globin gene sequences. The majority of the globin genes in both lamprey species correspond to the known agnathan hemoglobins. Both genomes harbor two copies of globin X, an ancient globin gene that has a broad phylogenetic distribution in the animal kingdom. Surprisingly, we found no evidence for an ortholog of neuroglobin in the lamprey genomes. Expression and phylogenetic analyses identified an ortholog of cytoglobin in the lampreys; in fact, our results indicate that cytoglobin is the only orthologous vertebrate-specific globin that has been retained in both gnathostomes and agnathans. Notably, we also found two globins that are highly expressed in the heart of P. marinus, thus representing functional myoglobins. Both genes have orthologs in L. camtschaticum. Phylogenetic analyses indicate that these heart-expressed globins are not orthologous to the myoglobins of jawed vertebrates (Gnathostomata), but originated independently within the agnathans. The agnathan myoglobin and hemoglobin proteins form a monophyletic group to the exclusion of functionally analogous myoglobins and hemoglobins of gnathostomes, indicating that specialized respiratory proteins for O2 transport in the blood and O2 storage in the striated muscles evolved independently in both lineages. This dual convergence of O2-transport and O2-storage proteins in

  17. The globin gene repertoire of lampreys: convergent evolution of hemoglobin and myoglobin in jawed and jawless vertebrates.

    PubMed

    Schwarze, Kim; Campbell, Kevin L; Hankeln, Thomas; Storz, Jay F; Hoffmann, Federico G; Burmester, Thorsten

    2014-10-01

    Agnathans (jawless vertebrates) occupy a key phylogenetic position for illuminating the evolution of vertebrate anatomy and physiology. Evaluation of the agnathan globin gene repertoire can thus aid efforts to reconstruct the origin and evolution of the globin genes of vertebrates, a superfamily that includes the well-known model proteins hemoglobin and myoglobin. Here, we report a comprehensive analysis of the genome of the sea lamprey (Petromyzon marinus) which revealed 23 intact globin genes and two hemoglobin pseudogenes. Analyses of the genome of the Arctic lamprey (Lethenteron camtschaticum) identified 18 full length and five partial globin gene sequences. The majority of the globin genes in both lamprey species correspond to the known agnathan hemoglobins. Both genomes harbor two copies of globin X, an ancient globin gene that has a broad phylogenetic distribution in the animal kingdom. Surprisingly, we found no evidence for an ortholog of neuroglobin in the lamprey genomes. Expression and phylogenetic analyses identified an ortholog of cytoglobin in the lampreys; in fact, our results indicate that cytoglobin is the only orthologous vertebrate-specific globin that has been retained in both gnathostomes and agnathans. Notably, we also found two globins that are highly expressed in the heart of P. marinus, thus representing functional myoglobins. Both genes have orthologs in L. camtschaticum. Phylogenetic analyses indicate that these heart-expressed globins are not orthologous to the myoglobins of jawed vertebrates (Gnathostomata), but originated independently within the agnathans. The agnathan myoglobin and hemoglobin proteins form a monophyletic group to the exclusion of functionally analogous myoglobins and hemoglobins of gnathostomes, indicating that specialized respiratory proteins for O2 transport in the blood and O2 storage in the striated muscles evolved independently in both lineages. This dual convergence of O2-transport and O2-storage proteins in

  18. VNTR alleles associated with the {alpha}-globin locus are haplotype and population related

    SciTech Connect

    Martinson, J.J.; Clegg, J.B.; Boyce, A.J.

    1994-09-01

    The human {alpha}-globin complex contains several polymorphic restriction-enzyme sites (i.e., RFLPs) linked to form haplotypes and is flanked by two hypervariable VNTR loci, the 5{prime} hypervariable region (HVR) and the more highly polymorphic 3{prime}HVR. Using a combination of RFLP analysis and PCR, the authors have characterized the 5{prime}HVR and 3{prime}HVR alleles associated with the {alpha}-globin haplotypes of 133 chromosomes, and they here show that specific {alpha}-globin haplotypes are each associated with discrete subsets of the alleles observed at these two VNTR loci. This statistically highly significant association is observed over a region spanning {approximately} 100 kb. With the exception of closely related haplotypes, different haplotypes do not share identically sized 3{prime}HVR alleles. Earlier studies have shown that {alpha}-globin haplotype distributions differ between populations; the current findings also reveal extensive population substructure in the repertoire of {alpha}-globin VNTRs. If similar features are characteristic of other VNTR loci, this will have important implications for forensic and anthropological studies. 42 refs., 5 figs., 5 tabs.

  19. Effect of β‑globin MAR characteristic elements on transgene expression.

    PubMed

    Li, Qin; Dong, Weihua; Wang, Tianyun; Liu, Zhonghe; Wang, Fang; Wang, Xiaoyin; Zhao, Chunpeng; Zhang, Junhe; Wang, Li

    2013-06-01

    The aim of the present study was to investigate the effect of the characteristic elements of matrix attachment region (MAR) on transgene expression. Human β‑globin MAR was obtained by PCR amplification. A splicing MAR fragment containing all the characteristic elements of β‑globin MAR was artificially synthesized and then cloned into the eukaryotic expression vector. Following digestion and sequence identification, we transfected Chinese hamster ovary (CHO) cells with the two vectors, and then screened for the transformation of stable cells. The transgene expression level was analyzed by ELISA, and the copy numbers of the CAT gene were analyzed by real‑time fluorescent quantitative PCR. β‑globin MAR enhanced CAT reporter gene expression by 2.1489‑fold, whereas the β‑globin MAR characteristic elements did not enhance this expression. The real‑time fluorescent quantitative PCR analysis demonstrated that the relative copy numbers of the CAT gene of the β‑globin MAR expression vector were 1.2‑fold higher compared with those of the non‑MAR expression vector. MAR was able to improve the transgene expression level to a certain extent. The MAR characteristic elements did not improve the transgene expression alone. The transgenic expression levels were not linear with the transgene copy number; however, the enhancement of transgenic expression was relative to the increase in the gene copy number.

  20. The structure of the human zeta-globin gene and a closely linked, nearly identical pseudogene.

    PubMed

    Proudfoot, N J; Gil, A; Maniatis, T

    1982-12-01

    DNA sequencing studies indicate that only one of two closely linked human embryonic alpha-like globin genes, zeta (zeta), encodes a functional polypeptide. The other is a pseudogene (psi zeta) that differs by only 3 bp in the protein coding sequence, one of which converts the codon for amino acid 6 into a chain termination codon. Both zeta-globin genes differ from all other alpha-like genes thus far reported in that they contain large introns consisting, in part, of simple repeat sequences. Intron 1 of each gene contains a variation of the repeat sequence ACAGTGGGGAGGGG, while intron 2 contains the repeat sequence CGGGG. Comparison of the human zeta- and alpha-globin gene sequences reveals that the embryonic and adult alpha-like genes began to diverge from each other relatively early in vertebrate evolution (400 million years ago). In contrast, the beta-like embryonic globin gene, epsilon (epsilon), is the product of a much more recent evolutionary event (200 million years ago). Thus, even though the temporal and quantitative expression of zeta- and epsilon-globin genes must be coordinately controlled during development, their evolutionary histories are clearly distinct.

  1. The linkage arrangement of four rabbit beta-like globin genes.

    PubMed

    Lacy, E; Hardison, R C; Quon, D; Maniatis, T

    1979-12-01

    Four different regions of rabbit beta-like globin gene sequences designated beta 1, beta 2, beta 3 and beta 4 were identified in a set of clones isolated from a bacteriophage lambda library of chromosomal DNA fragments (Maniatis et al., 1978). Restriction mapping and blot hybridization (Southern, 1975) studies indicate that a subset of these clones containing beta 1 and beta 2 hybridizes to an adult beta-globin cDNA clone (Maniatis et al., 1976) more efficiently than to a human gamma-globin cDNA clone (Wilson et al., 1978), while another subset containing beta 3 and beta 4 displays the converse hybridization specificity. beta 1 was identified as the adult beta-globin gene, while beta 2, beta 3 and beta 4 have not been identified with any known rabbit globin polypeptides. Cross-hybridization and transcriptional orientation experiments indicate that the set of beta-like gene clones contains overlapping restriction fragments encompassing 44 kb of rabbit chromosomal DNA. In addition, all four genes have the same transcriptional orientation and are arranged in the order 5'-beta 4-beta 3-beta 2-beta 1-3'.

  2. The role of EKLF in human beta-globin gene competition.

    PubMed

    Wijgerde, M; Gribnau, J; Trimborn, T; Nuez, B; Philipsen, S; Grosveld, F; Fraser, P

    1996-11-15

    We have investigated the role of erythroid Kruppel-like factor (EKLF) in expression of the human beta-globin genes in compound EKLF knockout/human beta-locus transgenic mice. EKLF affects only the adult mouse beta-globin genes in homozygous knockout mice; heterozygous mice are unaffected. Here we show that EKLF knockout mice express the human epsilon and gamma-globin genes normally in embryonic red cells. However, fetal liver erythropoiesis, which is marked by a period of gamma- and beta-gene competition in which the genes are alternately transcribed, exhibits an altered ratio of gamma- to beta-gene transcription. EKLF heterozygous fetal livers display a decrease in the number of transcriptionally active beta genes with a reciprocal increase in the number of transcriptionally active gamma genes. beta-Gene transcription is absent in homozygous knockout fetuses with coincident changes in chromatin structure at the beta promoter. There is a further increase in the number of transcriptionally active gamma genes and accompanying gamma gene promoter chromatin alterations. These results indicate that EKLF plays a major role in gamma- and beta-gene competition and suggest that EKLF is important in stabilizing the interaction between the Locus Control Region and the beta-globin gene. In addition, these findings provide further evidence that developmental modulation of globin gene expression within individual cells is accomplished by altering the frequency and/or duration of transcriptional periods of a gene rather than changing the rate of transcription.

  3. Erythroid cell-specific alpha-globin gene regulation by the CP2 transcription factor family.

    PubMed

    Kang, Ho Chul; Chae, Ji Hyung; Lee, Yeon Ho; Park, Mi-Ae; Shin, June Ho; Kim, Sung-Hyun; Ye, Sang-Kyu; Cho, Yoon Shin; Fiering, Steven; Kim, Chul Geun

    2005-07-01

    We previously demonstrated that ubiquitously expressed CP2c exerts potent erythroid-specific transactivation of alpha-globin through an unknown mechanism. This mechanism is reported here to involve specific CP2 splice variants and protein inhibitor of activated STAT1 (PIAS1). We identify a novel murine splice isoform of CP2, CP2b, which is identical to CP2a except that it has an additional 36 amino acids encoded by an extra exon. CP2b has an erythroid cell-specific transcriptional activation domain, which requires the extra exon and can form heteromeric complexes with other CP2 isoforms, but lacks the DNA binding activity found in CP2a and CP2c. Transcriptional activation of alpha-globin occurred following dimerization between CP2b and CP2c in erythroid K562 and MEL cells, but this dimerization did not activate the alpha-globin promoter in nonerythroid 293T cells, indicating that an additional erythroid factor is missing in 293T cells. PIAS1 was confirmed as a CP2 binding protein by the yeast two-hybrid screen, and expression of CP2b, CP2c, and PIAS1 in 293T cell induced alpha-globin promoter activation. These results show that ubiquitously expressed CP2b exerts potent erythroid cell-specific alpha-globin gene expression by complexing with CP2c and PIAS1.

  4. Autoinduction, purification, and characterization of soluble α-globin chains of crocodile (Crocodylus siamensis) hemoglobin in Escherichia coli.

    PubMed

    Kabbua, Thai; Anwised, Preeyanan; Boonmee, Atcha; Subedi, Bishnu P; Pierce, Brad S; Thammasirirak, Sompong

    2014-11-01

    We have established a method to express soluble heme-bound recombinant crocodile (Crocodylus siamensis) α-globin chain holo-protein in bacteria (Escherichia coli) using an autoinduction system without addition of exogenous heme. This is the first time that heme-bound crocodile α-globin chains have been expressed in bacteria without in vitro heme reconstitution. The observed molecular mass of purified recombinant α-globin is consistent with that calculated from the primary amino acid sequence of native crocodile (C. siamensis) α-globin. Both the monomeric and the dimeric protein configuration formed by intermolecular disulfide bond could be purified as soluble protein. Spectroscopic characterization [UV-visible, circular dichroism (CD), and electron paramagnetic resonance (EPR)] of purified recombinant α-globin demonstrates nearly identical properties as reported for hemoglobin and myoglobin isolated from other organisms. For comparison, cyanide and nitric oxide binding of purified α-globin was also investigated. These results suggested that C. siamensis α-globin expressed in E. coli was folded correctly with proper incorporation of the heme cofactor. The expression method we now describe can facilitate production and isolation of individual globin chains in order to further study the mechanism and assembly of crocodile hemoglobin.

  5. Evolution and molecular characterization of a beta-globin gene from the Australian Echidna Tachyglossus aculeatus (Monotremata).

    PubMed

    Lee, M H; Shroff, R; Cooper, S J; Hope, R

    1999-07-01

    Coinciding with a period in evolution when monotremes, marsupials, and eutherians diverged from a common ancestor, a proto-beta-globin gene duplicated, producing the progenitors of mammalian embryonic and adult beta-like globin genes. To determine whether monotremes contain orthologues of these genes and to further investigate the evolutionary relationships of monotremes, marsupials, and eutherians, we have determined the complete DNA sequence of an echidna (Tachyglossus aculeatus) beta-like globin gene. Conceptual translation of the gene and sequence comparisons with eutherian and marsupial beta-like globin genes and echidna adult beta-globin indicate that the gene is adult expressed. Phylogenetic analyses do not clearly resolve the branching pattern of mammalian beta-like globin gene lineages and it is therefore uncertain whether monotremes have orthologues of the embryonic beta-like globin genes of marsupials and eutherians. Four models are proposed that provide a framework for interpreting further studies on the evolution of beta-like globin genes in the context of the evolution of monotremes, marsupials, and eutherians.

  6. The phylogenetic and evolutionary history of a novel alpha-globin-type gene in orangutans (Pongo pygmaeus).

    PubMed

    Steiper, Michael E; Wolfe, Nathan D; Karesh, William B; Kilbourn, Annelisa M; Bosi, Edwin J; Ruvolo, Maryellen

    2006-07-01

    The alpha-globin genes are implicated in human resistance to malaria, a disease caused by Plasmodium parasites. This study is the first to analyze DNA sequences from a novel alpha-globin-type gene in orangutans, a species affected by Plasmodium. Phylogenetic methods show that the gene is a duplication of an alpha-globin gene and is located 5' of alpha-2 globin. The alpha-globin-type gene is notable for having four amino acid replacements relative to the orangutan's alpha-1 and alpha-2 globin genes, with no synonymous differences. Pairwise K(a)/K(s) methods and likelihood ratio tests (LRTs) revealed that the evolutionary history of the alpha-globin-type gene has been marked by either neutral or positive evolution, but not purifying selection. A comparative analysis of the amino acid replacements of the alpha-globin-type gene with human hemoglobinopathies and hemoglobin structure showed that two of the four replaced sites are members of the same molecular bond, one that is crucial to the proper functioning of the hemoglobin molecule. This suggested an adaptive evolutionary change. Functionally, this locus may result in a thalassemia-like phenotype in orangutans, possibly as an adaptation to combat Plasmodium.

  7. RNA Trans-Splicing Targeting Endogenous β-Globin Pre-Messenger RNA in Human Erythroid Cells.

    PubMed

    Uchida, Naoya; Washington, Kareem N; Mozer, Brian; Platner, Charlotte; Ballantine, Josiah; Skala, Luke P; Raines, Lydia; Shvygin, Anna; Hsieh, Matthew M; Mitchell, Lloyd G; Tisdale, John F

    2017-02-14

    Sickle cell disease results from a point mutation in exon 1 of the β-globin gene (total 3 exons). Replacing sickle β-globin exon 1 (and exon 2) with a normal sequence by trans-splicing is a potential therapeutic strategy. Therefore, this study sought to develop trans-splicing targeting β-globin pre-messenger RNA among human erythroid cells. Binding domains from random β-globin sequences were comprehensively screened. Six candidates had optimal binding, and all targeted intron 2. Next, lentiviral vectors encoding RNA trans-splicing molecules were constructed incorporating a unique binding domain from these candidates, artificial 5' splice site, and γ-globin cDNA, and trans-splicing was evaluated in CD34(+) cell-derived erythroid cells from healthy individuals. Lentiviral transduction was efficient, with vector copy numbers of 9.7 to 15.3. The intended trans-spliced RNA product, including exon 3 of endogenous β-globin and γ-globin, was detected at the molecular level. Trans-splicing efficiency was improved to 0.07-0.09% by longer binding domains, including the 5' splice site of intron 2. In summary, screening was performed to select efficient binding domains for trans-splicing. Detectable levels of trans-splicing were obtained for endogenous β-globin RNA in human erythroid cells. These methods provide the basis for future trans-splicing directed gene therapy.

  8. Expression of the human beta-globin gene after retroviral transfer into murine erythroleukemia cells and human BFU-E cells.

    PubMed Central

    Bender, M A; Miller, A D; Gelinas, R E

    1988-01-01

    Replication-defective amphotropic retrovirus vectors containing either the human beta-globin gene with introns or an intronless beta-globin minigene were constructed and used to study beta-globin expression following gene transfer into hematopoietic cells. The beta-globin genes were marked by introducing a 6-base-pair insertion into the region corresponding to the 5' untranslated region of the beta-globin mRNA to allow detection of RNA encoded by the new gene in human cells expressing normal human beta-globin RNA. Introduction of a virus containing the beta-globin gene with introns into murine erythroleukemia cells resulted in inducible expression of human beta-globin RNA and protein, while the viruses containing the minigene were inactive. The introduced human beta-globin gene was 6 to 110% as active as the endogenous mouse beta maj-globin genes in six randomly chosen cell clones. Introduction of the viruses into human BFU-E cells, followed by analysis of marked and unmarked globin RNAs in differentiated erythroid colonies, revealed that the introduced beta-globin gene was about 5% as active as the endogenous genes in these normal human erythroid cells and that again the minigene was inactive. These data are discussed in terms of the potential treatment of genetic disease by gene therapy. Images PMID:3288863

  9. Lineage-Specific Patterns of Functional Diversification in the α- and β-Globin Gene Families of Tetrapod Vertebrates

    PubMed Central

    Storz, Jay F.; Gorr, Thomas A.; Opazo, Juan C.

    2010-01-01

    The α- and β-globin gene families of jawed vertebrates have diversified with respect to both gene function and the developmental timing of gene expression. Phylogenetic reconstructions of globin gene family evolution have provided suggestive evidence that the developmental regulation of hemoglobin synthesis has evolved independently in multiple vertebrate lineages. For example, the embryonic β-like globin genes of birds and placental mammals are not 1:1 orthologs. Despite the similarity in developmental expression profiles, the genes are independently derived from lineage-specific duplications of a β-globin pro-ortholog. This suggests the possibility that other vertebrate taxa may also possess distinct repertoires of globin genes that were produced by repeated rounds of lineage-specific gene duplication and divergence. Until recently, investigations into this possibility have been hindered by the dearth of genomic sequence data from nonmammalian vertebrates. Here, we report new insights into globin gene family evolution that were provided by a phylogenetic analysis of vertebrate globins combined with a comparative genomic analysis of three key sauropsid taxa: a squamate reptile (anole lizard, Anolis carolinensis), a passeriform bird (zebra finch, Taeniopygia guttata), and a galliform bird (chicken, Gallus gallus). The main objectives of this study were 1) to characterize evolutionary changes in the size and membership composition of the α- and β-globin gene families of tetrapod vertebrates and 2) to test whether functional diversification of the globin gene clusters occurred independently in different tetrapod lineages. Results of our comparative genomic analysis revealed several intriguing patterns of gene turnover in the globin gene clusters of different taxa. Lineage-specific differences in gene content were especially pronounced in the β-globin gene family, as phylogenetic reconstructions revealed that amphibians, lepidosaurs (as represented by anole

  10. [A novel mutation in β-globin gene of a patient with β-thalassemia].

    PubMed

    Peng, Yun-Sheng; Sun, Shun-Chang; Chen, Qun-Rong; Wang, Qing; Mo, Bao-Mei

    2012-04-01

    This study was aimed to analyze the β-globin gene mutations in a patient with β-thalassemia minor. Genomic DNA was extracted from peripheral blood cells of the patient. The full-length DNA sequence coding for β-globin was amplified by polymerase chain reaction, and the gene mutation was determined by DNA sequencing. The results indicated that a heterogeneous A→G mutation was found at position 129 in intron 1 of the β-thalassemia minor patient. It is concluded that the IVS-I-129(A→G) mutation is a splicing site mutation leading to a splicing error in immature messenger RNA and a protein translation error for the β-globin gene. Thus, the IVS-I-129(A→G) is a novel mutation.

  11. A redox signalling globin is essential for reproduction in Caenorhabditis elegans

    PubMed Central

    De Henau, Sasha; Tilleman, Lesley; Vangheel, Matthew; Luyckx, Evi; Trashin, Stanislav; Pauwels, Martje; Germani, Francesca; Vlaeminck, Caroline; Vanfleteren, Jacques R.; Bert, Wim; Pesce, Alessandra; Nardini, Marco; Bolognesi, Martino; De Wael, Karolien; Moens, Luc; Dewilde, Sylvia; Braeckman, Bart P.

    2015-01-01

    Moderate levels of reactive oxygen species (ROS) are now recognized as redox signalling molecules. However, thus far, only mitochondria and NADPH oxidases have been identified as cellular sources of ROS in signalling. Here we identify a globin (GLB-12) that produces superoxide, a type of ROS, which serves as an essential signal for reproduction in C. elegans. We find that GLB-12 has an important role in the regulation of multiple aspects in germline development, including germ cell apoptosis. We further describe how GLB-12 displays specific molecular, biochemical and structural properties that allow this globin to act as a superoxide generator. In addition, both an intra- and extracellular superoxide dismutase act as key partners of GLB-12 to create a transmembrane redox signal. Our results show that a globin can function as a driving factor in redox signalling, and how this signal is regulated at the subcellular level by multiple control layers. PMID:26621324

  12. The population genetics of the alpha-2 globin locus of orangutans (Pongo pygmaeus).

    PubMed

    Steiper, Michael E; Wolfe, Nathan D; Karesh, William B; Kilbourn, Annelisa M; Bosi, Edwin J; Ruvolo, Maryellen

    2005-03-01

    In this study, the molecular population genetics of the orangutan's alpha-2 globin (HBA2) gene were investigated in order to test for the action of natural selection. Haplotypes from 28 orangutan chromosomes were collected from a 1.46-kilobase region of the alpha-2 globin locus. While many aspects of the data were consistent with neutrality, the observed heterogeneous distribution of polymorphisms was inconsistent with neutral expectations. Furthermore, a single amino acid variant, found in both the Bornean and the Sumatran orangutan subspecies, was associated with different alternative synonymous variants in each subspecies, suggesting that the allele may have spread separately through the two subspecies after two distinct origination events. This variant is not in Hardy-Weinberg equilibrium (HWE). These observations are consistent with neutral models that incorporate population structure and models that invoke selection. The orangutan Plasmodium parasite is a plausible selective agent that may underlie the variation at alpha-2 globin in orangutans.

  13. beta (+)-Thalassaemia in the Po river delta region (northern Italy): genotype and beta globin synthesis.

    PubMed Central

    Del Senno, L; Pirastu, M; Barbieri, R; Bernardi, F; Buzzoni, D; Marchetti, G; Perrotta, C; Vullo, C; Kan, Y W; Conconi, F

    1985-01-01

    Six beta(+)-thalassaemic patients from the Po river delta region have been studied. Using synthetic oligonucleotides as specific hybridisation probes, the beta(+) IVS I mutation (G----A at position 108) was demonstrated. This lesion and the enzyme polymorphism pattern in the subjects examined are the same as have been described for other Mediterranean beta(+)-thalassaemias. Antenatal diagnosis through DNA analysis of beta(+)-thalassaemia is therefore possible. The production of beta globin in a beta(+), homozygote and in a beta (+), beta(0) 39 (nonsense mutation at codon 39) double heterozygote is approximately 20% and 10% respectively of total non-alpha globin synthesis. Despite some overlapping of the results, similar beta globin synthesis levels have been obtained in 43 beta(+)-thalassaemia patients. This suggests that in the Po river delta region the most common thalassaemic genes are beta(0) 39 and beta(+) IVS I. Images PMID:2580095

  14. A redox signalling globin is essential for reproduction in Caenorhabditis elegans.

    PubMed

    De Henau, Sasha; Tilleman, Lesley; Vangheel, Matthew; Luyckx, Evi; Trashin, Stanislav; Pauwels, Martje; Germani, Francesca; Vlaeminck, Caroline; Vanfleteren, Jacques R; Bert, Wim; Pesce, Alessandra; Nardini, Marco; Bolognesi, Martino; De Wael, Karolien; Moens, Luc; Dewilde, Sylvia; Braeckman, Bart P

    2015-12-01

    Moderate levels of reactive oxygen species (ROS) are now recognized as redox signalling molecules. However, thus far, only mitochondria and NADPH oxidases have been identified as cellular sources of ROS in signalling. Here we identify a globin (GLB-12) that produces superoxide, a type of ROS, which serves as an essential signal for reproduction in C. elegans. We find that GLB-12 has an important role in the regulation of multiple aspects in germline development, including germ cell apoptosis. We further describe how GLB-12 displays specific molecular, biochemical and structural properties that allow this globin to act as a superoxide generator. In addition, both an intra- and extracellular superoxide dismutase act as key partners of GLB-12 to create a transmembrane redox signal. Our results show that a globin can function as a driving factor in redox signalling, and how this signal is regulated at the subcellular level by multiple control layers.

  15. Neuroprotective role for carbonyl reductase?

    PubMed

    Maser, Edmund

    2006-02-24

    Oxidative stress is increasingly implicated in neurodegenerative disorders including Alzheimer's, Parkinson's, Huntington's, and Creutzfeld-Jakob diseases or amyotrophic lateral sclerosis. Reactive oxygen species seem to play a significant role in neuronal cell death in that they generate reactive aldehydes from membrane lipid peroxidation. Several neuronal diseases are associated with increased accumulation of abnormal protein adducts of reactive aldehydes, which mediate oxidative stress-linked pathological events, including cellular growth inhibition and apoptosis induction. Combining findings on neurodegeneration and oxidative stress in Drosophila with studies on the metabolic characteristics of the human enzyme carbonyl reductase (CR), it is clear now that CR has a potential physiological role for neuroprotection in humans. Several lines of evidence suggest that CR represents a significant pathway for the detoxification of reactive aldehydes derived from lipid peroxidation and that CR in humans is essential for neuronal cell survival and to confer protection against oxidative stress-induced brain degeneration.

  16. Gene duplication, genome duplication, and the functional diversification of vertebrate globins

    PubMed Central

    Storz, Jay F.; Opazo, Juan C.; Hoffmann, Federico G.

    2015-01-01

    The functional diversification of the vertebrate globin gene superfamily provides an especially vivid illustration of the role of gene duplication and whole-genome duplication in promoting evolutionary innovation. For example, key globin proteins that evolved specialized functions in various aspects of oxidative metabolism and oxygen signaling pathways (hemoglobin [Hb], myoglobin [Mb], and cytoglobin [Cygb]) trace their origins to two whole-genome duplication events in the stem lineage of vertebrates. The retention of the proto-Hb and Mb genes in the ancestor of jawed vertebrates permitted a physiological division of labor between the oxygen-carrier function of Hb and the oxygen-storage function of Mb. In the Hb gene lineage, a subsequent tandem gene duplication gave rise to the proto α- and β-globin genes, which permitted the formation of multimeric Hbs composed of unlike subunits (α2β2). The evolution of this heteromeric quaternary structure was central to the emergence of Hb as a specialized oxygen-transport protein because it provided a mechanism for cooperative oxygen-binding and allosteric regulatory control. Subsequent rounds of duplication and divergence have produced diverse repertoires of α- and β-like globin genes that are ontogenetically regulated such that functionally distinct Hb isoforms are expressed during different stages of prenatal development and postnatal life. In the ancestor of jawless fishes, the proto Mb and Hb genes appear to have been secondarily lost, and the Cygb homolog evolved a specialized respiratory function in blood-oxygen transport. Phylogenetic and comparative genomic analyses of the vertebrate globin gene superfamily have revealed numerous instances in which paralogous globins have convergently evolved similar expression patterns and/or similar functional specializations in different organismal lineages. PMID:22846683

  17. Common 5' beta-globin RFLP haplotypes harbour a surprising level of ancestral sequence mosaicism.

    PubMed

    Webster, Matthew T; Clegg, John B; Harding, Rosalind M

    2003-07-01

    Blocks of linkage disequilibrium (LD) in the human genome represent segments of ancestral chromosomes. To investigate the relationship between LD and genealogy, we analysed diversity associated with restriction fragment length polymorphism (RFLP) haplotypes of the 5' beta-globin gene complex. Genealogical analyses were based on sequence alleles that spanned a 12.2-kb interval, covering 3.1 kb around the psibeta gene and 6.2 kb of the delta-globin gene and its 5' flanking sequence known as the R/T region. Diversity was sampled from a Kenyan Luo population where recent malarial selection has contributed to substantial LD. A single common sequence allele spanning the 12.2-kb interval exclusively identified the ancestral chromosome bearing the "Bantu" beta(s) (sickle-cell) RFLP haplotype. Other common 5' RFLP haplotypes comprised interspersed segments from multiple ancestral chromosomes. Nucleotide diversity was similar between psibeta and R/T-delta-globin but was non-uniformly distributed within the R/T-delta-globin region. High diversity associated with the 5' R/T identified two ancestral lineages that probably date back more than 2 million years. Within this genealogy, variation has been introduced into the 3' R/T by gene conversion from other ancestral chromosomes. Diversity in delta-globin was found to lead through parts of the main genealogy but to coalesce in a more recent ancestor. The well-known recombination hotspot is clearly restricted to the region 3' of delta-globin. Our analyses show that, whereas one common haplotype in a block of high LD represents a long segment from a single ancestral chromosome, others are mosaics of short segments from multiple ancestors related in genealogies of unsuspected complexity.

  18. Human globin gene analysis for a patient with beta-o/delta beta-thalassemia.

    PubMed Central

    Ottolenghi, S; Lanyon, W G; Williamson, R; Weatherall, D J; Clegg, J B; Pitcher, C S

    1975-01-01

    Complementary DNA (cDNA) was prepared with RNA-dependent DNA polymerase from human globin messenger RNA (mRNA). Annealing and translation experimenta with total mRNA from circulating cells from a patient with heterozygous beta/heterozygous beta-delta-o thalassemia (beta-o/delta beta-o-thalassemia) demonstrated no detectable mRNA for beta-globin. cDNA enriched in sequences homologous to beta-globin mRNA was prepared by hydroxylapatite fractionation of hybrids formed between beta-o/delta beta-o-thalassemic mRNA and cDNA made from mRNA from a patient with alpha-thalassemia (hemoglobin H disease). The rate of annealing of this beta-enriched cDNA to normal human nuclear DNA was that of a sequence present as only a single copy per haploid genome. The beta-enriched cDNA annealed to the beta-o-delta beta-o-thalassemia total DNA with approximately the same kinetics as to normal DNA, indicating that no total gene deletion of beta-globin genes from the diploid genome has occurred, although the accuracy of the technique could not exclude with certainty a partial deletion or a deletion of a beta-globin gene from only one of the haploid genomes. This demonstrates that at least one of the beta-o- or the delta beta-o-thalassemia haploid genomes in this case contains a substantially intact beta-globin gene. PMID:49057

  19. Gene duplication, genome duplication, and the functional diversification of vertebrate globins.

    PubMed

    Storz, Jay F; Opazo, Juan C; Hoffmann, Federico G

    2013-02-01

    The functional diversification of the vertebrate globin gene superfamily provides an especially vivid illustration of the role of gene duplication and whole-genome duplication in promoting evolutionary innovation. For example, key globin proteins that evolved specialized functions in various aspects of oxidative metabolism and oxygen signaling pathways (hemoglobin [Hb], myoglobin [Mb], and cytoglobin [Cygb]) trace their origins to two whole-genome duplication events in the stem lineage of vertebrates. The retention of the proto-Hb and Mb genes in the ancestor of jawed vertebrates permitted a physiological division of labor between the oxygen-carrier function of Hb and the oxygen-storage function of Mb. In the Hb gene lineage, a subsequent tandem gene duplication gave rise to the proto α- and β-globin genes, which permitted the formation of multimeric Hbs composed of unlike subunits (α(2)β(2)). The evolution of this heteromeric quaternary structure was central to the emergence of Hb as a specialized oxygen-transport protein because it provided a mechanism for cooperative oxygen-binding and allosteric regulatory control. Subsequent rounds of duplication and divergence have produced diverse repertoires of α- and β-like globin genes that are ontogenetically regulated such that functionally distinct Hb isoforms are expressed during different stages of prenatal development and postnatal life. In the ancestor of jawless fishes, the proto Mb and Hb genes appear to have been secondarily lost, and the Cygb homolog evolved a specialized respiratory function in blood-oxygen transport. Phylogenetic and comparative genomic analyses of the vertebrate globin gene superfamily have revealed numerous instances in which paralogous globins have convergently evolved similar expression patterns and/or similar functional specializations in different organismal lineages.

  20. Molecular cloning and characterization of the human beta-like globin gene cluster.

    PubMed

    Fritsch, E F; Lawn, R M; Maniatis, T

    1980-04-01

    The genes encoding human embryonic (epsilon), fetal (G gamma, A gamma) and adult (delta, beta) beta-like globin polypeptides were isolated as a set of overlapping cloned DNA fragments from bacteriophage lambda libraries of high molecular weight (15-20 kb) chromosomal DNA. The 65 kb of DNA represented in these overlapping clones contains the genes for all five beta-like polypeptides, including the embryonic epsilon-globin gene, for which the chromosomal location was previously unknown. All five genes are transcribed from the same DNA strand and are arranged in the order 5'-epsilon-(13.3 kb)-G gamma-(3.5 kb)-A gamma-(13.9 kb)-delta-(5.4 kb)-beta-3'. Thus the genes are positioned on the chromosome in the order of their expression during development. In addition to the five known beta-like globin genes, we have detected two other beta-like globin sequences which do not correspond to known polypeptides. One of these sequences has been mapped to the A gamma-delta intergenic region while the other is located 6-9 kb 5' to the epsilon gene. Cross hybridization experiments between the intergenic sequences of the gene cluster have revealed a nonglobin repeat sequence (*) which is interspersed with the globin genes in the following manner: 5'-**epsilon-*G gamma-A gamma*-**delta-beta*-3'. Fine structure mapping of the region located 5' to the delta-globin gene revealed two repeats with a maximum size of 400 bp, which are separated by approximately 700 bp of DNA not repeated within the cluster. Preliminary experiments indicate that this repeat family is also repeated many times in the human genome.

  1. Immunomodulation as a neuroprotective and therapeutic strategy for Parkinson’s disease

    PubMed Central

    Olson, Katherine E.; Gendelman, Howard E.

    2015-01-01

    While immune control is associated with nigrostriatal neuroprotection for Parkinson’s disease, direct cause and effect relationships have not yet been realized, and modulating the immune system for therapeutic gain has been openly debated. Here, we review how innate and adaptive immunity affect disease pathobiology, and how each could be harnessed for treatment. The overarching idea is to employ immunopharmacologics as neuroprotective strategies for disease. The aim of the current work is to review disease-modifying treatments that are currently being developed as neuroprotective strategies for PD in experimental animal models and for human disease translation. The long-term goal of this research is to effectively harness the immune system to slow or prevent PD pathobiology. PMID:26571205

  2. Distinctive Patterns of Evolution of the δ-Globin Gene (HBD) in Primates

    PubMed Central

    Moleirinho, Ana; Lopes, Alexandra M.; Seixas, Susana; Morales-Hojas, Ramiro; Prata, Maria J.; Amorim, António

    2015-01-01

    In most vertebrates, hemoglobin (Hb) is a heterotetramer composed of two dissimilar globin chains, which change during development according to the patterns of expression of α- and β-globin family members. In placental mammals, the β-globin cluster includes three early-expressed genes, ε(HBE)-γ(HBG)-ψβ(HBBP1), and the late expressed genes, δ (HBD) and β (HBB). While HBB encodes the major adult β-globin chain, HBD is weakly expressed or totally silent. Paradoxically, in human populations HBD shows high levels of conservation typical of genes under strong evolutionary constraints, possibly due to a regulatory role in the fetal-to-adult switch unique of Anthropoid primates. In this study, we have performed a comprehensive phylogenetic and comparative analysis of the two adult β-like globin genes in a set of diverse mammalian taxa, focusing on the evolution and functional divergence of HBD in primates. Our analysis revealed that anthropoids are an exception to a general pattern of concerted evolution in placental mammals, showing a high level of sequence conservation at HBD, less frequent and shorter gene conversion events. Moreover, this lineage is unique in the retention of a functional GATA-1 motif, known to be involved in the control of the developmental expression of the β-like globin genes. We further show that not only the mode but also the rate of evolution of the δ-globin gene in higher primates are strictly associated with the fetal/adult β-cluster developmental switch. To gain further insight into the possible functional constraints that have been shaping the evolutionary history of HBD in primates, we calculated dN/dS (ω) ratios under alternative models of gene evolution. Although our results indicate that HBD might have experienced different selective pressures throughout primate evolution, as shown by different ω values between apes and Old World Monkeys + New World Monkeys (0.06 versus 0.43, respectively), these estimates corroborated a

  3. Therapeutic Time Window and Dose Dependence of Xenon Delivered via Echogenic Liposomes for Neuroprotection in Stroke

    PubMed Central

    Peng, Tao; Britton, George L.; Kim, Hyunggun; Cattano, Davide; Aronowski, Jaroslaw; Grotta, James; McPherson, David D.; Huang, Shao-Ling

    2013-01-01

    Aims Neurologic impairment following ischemic injury complicates the quality of life for stroke survivors. Xenon (Xe) has favorable neuroprotective properties to modify stroke. Xe delivery is hampered by a lack of suitable administration strategies. We have developed Xe-containing echogenic liposomes (Xe-ELIP) for systemic Xe delivery. We investigated the time window for Xe-ELIP therapeutic effect and the most efficacious dose for neuroprotection. Molecular mechanisms for Xe neuroprotection were investigated. Methods Xe-ELIP were created by a previously developed pressurization-freezing method. Following right middle cerebral artery occlusion (2 hours), animals were treated with Xe-ELIP at 2, 3 or 5 hours to determine time window of therapeutic effect. The neuroprotectant dosage for optimal effect was evaluated 3 hours after stroke onset. Expression of brain-derived neurotrophic factor (BDNF), protein kinase B (Akt), and mitogen-activated protein kinases (MAPK) were determined. Results Xe-ELIP administration for up to 5 hours after stroke onset reduced infract size. Treatment groups given 7 and 14 mg/kg of Xe-ELIP reduced infarct size. Behavioral outcomes corresponded to changes in infarct volume. Xe-ELIP treatment reduced ischemic neuronal cell death via activation of both MAPK and Akt. Elevated BDNF expression was shown following Xe-ELIP delivery. Conclusion This study demonstrates the therapeutic efficacy of Xe-ELIP administered within 5 hours after stroke onset with an optimal dosage range of 7–14 mg/kg for maximal neuroprotection. PMID:23981565

  4. [Main regulatory element (MRE) of the Danio rerio α/β-globin gene domain exerts enhancer activity toward the promoters of the embryonic-larval and adult globin genes].

    PubMed

    Kovina, A P; Petrova, N V; Razin, S V; Yarovaia, O V

    2016-01-01

    In warm-blooded vertebrates, the α- and β-globin genes are organized in domains of different types and are regulated in different fashion. In cold-blooded vertebrates and, in particular, the tropical fish Danio rerio, the α- and β-globin genes form two gene clusters. A major D. rerio globin gene cluster is in chromosome 3 and includes the α- and β-globin genes of embryonic-larval and adult types. The region upstream of the cluster contains c16orf35, harbors the main regulatory element (MRE) of the α-globin gene domain in warm-blooded vertebrates. In this study, transient transfection of erythroid cells with genetic constructs containing a reporter gene under the control of potential regulatory elements of the domain was performed to characterize the promoters of the embryonic-larval and adult α- and β-globin genes of the major cluster. Also, in the 5th intron of c16orf35 in Danio reriowas detected a functional analog of the warm-blooded vertebrate MRE. This enhancer stimulated activity of the promoters of both adult and embryonic-larval α- and β-globin genes.

  5. HisE11 and HisF8 provide bis-histidyl heme hexa-coordination in the globin domain of Geobacter sulfurreducens globin-coupled sensor.

    PubMed

    Pesce, Alessandra; Thijs, Liesbet; Nardini, Marco; Desmet, Filip; Sisinni, Lorenza; Gourlay, Louise; Bolli, Alessandro; Coletta, Massimiliano; Van Doorslaer, Sabine; Wan, Xuehua; Alam, Maqsudul; Ascenzi, Paolo; Moens, Luc; Bolognesi, Martino; Dewilde, Sylvia

    2009-02-13

    Among heme-based sensors, recent phylogenomic and sequence analyses have identified 34 globin coupled sensors (GCS), to which an aerotactic or gene-regulating function has been tentatively ascribed. Here, the structural and biochemical characterization of the globin domain of the GCS from Geobacter sulfurreducens (GsGCS(162)) is reported. A combination of X-ray crystallography (crystal structure at 1.5 A resolution), UV-vis and resonance Raman spectroscopy reveals the ferric GsGCS(162) as an example of bis-histidyl hexa-coordinated GCS. In contrast to the known hexa-coordinated globins, the distal heme-coordination in ferric GsGCS(162) is provided by a His residue unexpectedly located at the E11 topological site. Furthermore, UV-vis and resonance Raman spectroscopy indicated that ferrous deoxygenated GsGCS(162) is a penta-/hexa-coordinated mixture, and the heme hexa-to-penta-coordination transition does not represent a rate-limiting step for carbonylation kinetics. Lastly, electron paramagnetic resonance indicates that ferrous nitrosylated GsGCS(162) is a penta-coordinated species, where the proximal HisF8-Fe bond is severed.

  6. Preliminary identification of hemoglobin q-iran in an Iranian family from central province of Iran by globin chain analysis on HPLC.

    PubMed

    Khatami, Shohreh; Najmabadi, Hossein; Rouhi, Soghra; Mirzazadeh, Roghieh; Bayat, Parastoo; Sadeghi, Sedigheh

    2013-12-01

    Many abnormal α-chain hemoglobins (Hbs) are caused by single nucleotide mutations in α1- or α2-goblin genes. One of these Hbs is Hb Q-Iran which is resulted from a point mutation at codon 75 of the α1-globin gene (Asp→His). The identification of Hb Q-Iran was observed in two members of a family from the Central Province of Iran. In this study, Globin chain analysis on high performance liquid chromatography (HPLC) and DNA sequencing were applied. An unusual Hb variant, like HbS on alkaline pH electrophoresis was identified from samples of a father and his son from Arak city in the Central Province of Iran. The variant was further characterized by globin chain analysis and DNA sequencing methods. Globin chain analysis revealed an unknown globin chain peak after α-globin chain peak with a different retention time from βs-globin chain, as the control in both samples. Genetic analysis led to the identification of an unknown Hb variant, Hb Q-Iran. Globin chain analysis showed the presence of an unknown globin chain, and likewise DNA sequencing revealed HbQ-Iran. In other words, Globin chain analysis procedure could preliminarily detect an unknown globin chain.

  7. Translational stability of native and deadenylylated rabbit globin mRNA injected into HeLa cells.

    PubMed Central

    Huez, G; Bruck, C; Cleuter, Y

    1981-01-01

    HeLa human cells were injected with a natural mixture of rabbit alpha and beta globin mRNA. They were incubated for 6 hr with [35S]methionine either immediately after injection or 20 hr later. The labeled proteins in the injected cells were analyzed by fluorography of two-dimensional electrophoresis gels. By using this procedure, it was possible to show that, during the first few hours after injection, both alpha and beta globin molecules are synthesized with an alpha to beta ratio approximately equal to 0.6. The rate of synthesis of alpha globin decreased significantly faster than that of beta globin over a 26-hr period after injection of the two mRNAs. It thus seems that two messenger RNAs coding for closely related polypeptides possess a markedly different translational stability. When deadenylylated rabbit globin mRNAs were injected into HeLa cells, no globin synthesis could be detected by the techniques used. We conclude that the translational half-life of mRNAs lacking poly(A) is very short in these cells. It is thus clear that the poly(A) segment is required to ensure stability to globin mRNA in somatic cells as in Xenopus oocytes. Images PMID:6940155

  8. Organisation of the Hb 1 genes of the Antarctic skate Bathyraja eatonii: new insights into the evolution of globin genes.

    PubMed

    Marino, Katia; Boschetto, Loredana; de Pascale, Donatella; Cocca, Ennio

    2007-12-30

    An extensive investigation of the organisation of globin genes has greatly contributed to the understanding of universal mechanisms of gene evolution and expression. Cartilaginous fish are the first organisms that have evolved the tetrameric form of hemoglobin (Hb). So far, there has been absolute lack of data about globin genes in chondrichthyans. Bathyraja is the dominant rajid south of 60 degrees S. In the framework of the investigations on globin genes of Antarctic red-blooded and Hb-less fish we obtained the cloning of the alpha- and beta-globin cDNAs of the main Hb (Hb 1) of the skate Bathyraja eatonii. Then, a genomic fragment of 6.2 kb was isolated where the Hb 1 alpha and beta genes are linked in a tail-to-head (3' to 5') orientation. The beta-globin gene promoter region and the chromosomal organisation of the Hb 1 genes of B. eatonii have been compared to their homologues in other vertebrates. The finding of a tail-to-head linkage of the Hb 1 alpha- and beta-globin genes in B. eatonii is the first characterisation of the organisation of globin genes in chondrichthyes; such finding offers a novel contribution to the understanding of the evolution of this class of genes. Moreover, the characterisation of chondrichthyan genes is very important for gaining insight into the ancestral state of vertebrate genomes.

  9. Inter-MAR association contributes to transcriptionally active looping events in human beta-globin gene cluster.

    PubMed

    Wang, Li; Di, Li-Jun; Lv, Xiang; Zheng, Wei; Xue, Zheng; Guo, Zhi-Chen; Liu, De-Pei; Liang, Chi-Chuan

    2009-01-01

    Matrix attachment regions (MARs) are important in chromatin organization and gene regulation. Although it is known that there are a number of MAR elements in the beta-globin gene cluster, it is unclear that how these MAR elements are involved in regulating beta-globin genes expression. Here, we report the identification of a new MAR element at the LCR (locus control region) of human beta-globin gene cluster and the detection of the inter-MAR association within the beta-globin gene cluster. Also, we demonstrate that SATB1, a protein factor that has been implicated in the formation of network like higher order chromatin structures at some gene loci, takes part in beta-globin specific inter-MAR association through binding the specific MARs. Knocking down of SATB1 obviously reduces the binding of SATB1 to the MARs and diminishes the frequency of the inter-MAR association. As a result, the ACH establishment and the alpha-like globin genes and beta-like globin genes expressions are affected either. In summary, our results suggest that SATB1 is a regulatory factor of hemoglobin genes, especially the early differentiation genes at least through affecting the higher order chromatin structure.

  10. Whole-Genome Duplications Spurred the Functional Diversification of the Globin Gene Superfamily in Vertebrates

    PubMed Central

    Hoffmann, Federico G.; Opazo, Juan C.; Storz, Jay F.

    2012-01-01

    It has been hypothesized that two successive rounds of whole-genome duplication (WGD) in the stem lineage of vertebrates provided genetic raw materials for the evolutionary innovation of many vertebrate-specific features. However, it has seldom been possible to trace such innovations to specific functional differences between paralogous gene products that derive from a WGD event. Here, we report genomic evidence for a direct link between WGD and key physiological innovations in the vertebrate oxygen transport system. Specifically, we demonstrate that key globin proteins that evolved specialized functions in different aspects of oxidative metabolism (hemoglobin, myoglobin, and cytoglobin) represent paralogous products of two WGD events in the vertebrate common ancestor. Analysis of conserved macrosynteny between the genomes of vertebrates and amphioxus (subphylum Cephalochordata) revealed that homologous chromosomal segments defined by myoglobin + globin-E, cytoglobin, and the α-globin gene cluster each descend from the same linkage group in the reconstructed proto-karyotype of the chordate common ancestor. The physiological division of labor between the oxygen transport function of hemoglobin and the oxygen storage function of myoglobin played a pivotal role in the evolution of aerobic energy metabolism, supporting the hypothesis that WGDs helped fuel key innovations in vertebrate evolution. PMID:21965344

  11. The role of transcriptional activator GATA-1 at human β-globin HS2

    PubMed Central

    Cho, Youngran; Song, Sang-Hyun; Lee, Jong Joo; Choi, Narae; Kim, Chul Geun; Dean, Ann; Kim, AeRi

    2008-01-01

    GATA-1 is an erythroid activator that binds β-globin gene promoters and DNase I hypersensitive sites (HSs) of the β-globin locus control region (LCR). We investigated the direct role of GATA-1 interaction at the LCR HS2 enhancer by mutating its binding sites within minichromosomes in erythroid cells. Loss of GATA-1 in HS2 did not compromise interaction of NF-E2, a second activator that binds to HS2, nor was DNase I hypersensitivity at HS2 or the promoter of a linked ε-globin gene altered. Reduction of NF-E2 using RNAi confirmed the overall importance of this activator in establishing LCR HSs. However, recruitment of the histone acetyltransferase CBP and RNA pol II to HS2 was diminished by GATA-1 loss. Transcription of ε-globin was severely compromised with loss of RNA pol II from the transcription start site and reduction of H3 acetylation and H3K4 di- and tri-methylation in coding sequences. In contrast, widespread detection of H3K4 mono-methylation was unaffected by loss of GATA-1 in HS2. These results support the idea that GATA-1 interaction in HS2 has a prominent and direct role in co-activator and pol II recruitment conferring active histone tail modifications and transcription activation to a target gene but that it does not, by itself, play a major role in establishing DNase I hypersensitivity. PMID:18586828

  12. Contribution of polyadenylate sequences to the translational efficiency of globin messenger RNAs.

    PubMed Central

    Parets Soler, A; Gozalbo, D; Zueco, J; Sentandreu, R

    1987-01-01

    mRNAs from reticulocyte polysomes were fractionated by chromatography on poly(U)-Sepharose and thermal elution. The molar ratio of alpha- to beta-globin mRNA was found to be 2:1 and 1:1 respectively in short- and long-poly(A) size classes. Translational analyses indicated that the globin mRNAs containing long poly(A) tracts (with a mean length of about 70 nucleotides) directed protein synthesis with higher rates than did mRNA containing short poly(A) tracts (15-35 nucleotides). Experiments performed with sub-saturating mRNA concentrations showed that the digestion with RNAase H induced a decrease in the translational capacity of both globin mRNAs and an increase in the alpha- to beta-globin synthesis ratio. No correlation was observed between the size of the poly(A) tail in mRNA and the optimal K+ requirement for translation. Images Fig. 1. PMID:3689323

  13. Differential loss of embryonic globin genes during the radiation of placental mammals

    PubMed Central

    Opazo, Juan C.; Hoffmann, Federico G.; Storz, Jay F.

    2008-01-01

    The differential gain and loss of genes from homologous gene families represents an important source of functional variation among the genomes of different species. Differences in gene content between species are primarily attributable to lineage-specific gene gains via duplication and lineage-specific losses via deletion or inactivation. Here, we use a comparative genomic approach to investigate this process of gene turnover in the β-globin gene family of placental mammals. By analyzing genomic sequence data from representatives of each of the main superordinal clades of placental mammals, we were able to reconstruct pathways of gene family evolution during the basal radiation of this physiologically and morphologically diverse vertebrate group. Our analysis revealed that an initial expansion of the nonadult portion of the β-globin gene cluster in the ancestor of placental mammals was followed by the differential loss and retention of ancestral gene lineages, thereby generating variation in the complement of embryonic globin genes among contemporary species. The sorting of ε-, γ-, and η-globin gene lineages among the basal clades of placental mammals has produced species differences in the functional types of hemoglobin isoforms that can be synthesized during the course of embryonic development. PMID:18755893

  14. Oligomeric state affects oxygen dissociation and diguanylate cyclase activity of globin coupled sensors.

    PubMed

    Burns, Justin L; Deer, D Douglas; Weinert, Emily E

    2014-11-01

    Bacterial biofilm formation is regulated by enzymes, such as diguanylate cyclases, that respond to environmental signals and alter c-di-GMP levels. Diguanylate cyclase activity of two globin coupled sensors is shown to be regulated by gaseous ligands, with cyclase activity and O2 dissociation affected by protein oligomeric state.

  15. Analysis of the human [alpha]-globin gene cluster in transgenic mice

    SciTech Connect

    Sharpe, J.A.; Vyas, P.; Higgs, D.R.; Wood, W.G. ); Wells, D.J. ); Whitelaw, E. )

    1993-11-15

    A 350-bp segment of DNA associated with an erythroid-specific DNase I-hypersensitive site (HS -40), upstream of the [alpha]-globin gene cluster, has been identified as the major tissue-specific regulator of the [alpha]-globin genes. However, this element does not direct copy number-dependent or developmentally stable expression of the human genes in transgenic mice. To determine whether additional upstream hypersensitive sites could provide more complete regulation of [alpha] gene expression, the authors have studied 17 lines of transgenic mice bearing various DNA fragments containing HSs -33, -10, -8, and -4, in addition to HS -40. Position-independent, high-level expression of the human [zeta]- and [alpha]-globin genes was consistently observed in embryonic erythroid cells. However, the additional HSs did not confer copy-number dependence, alter the level of expression, or prevent the variable down-regulation of expression in adults. These results suggest that the region upstream of the human [alpha]-globin genes is not equivalent to that upstream of the [beta] locus and that although the two clusters are coordinately expressed, there may be differences in their regulation.

  16. Identification and molecular characterization of four new large deletions in the beta-globin gene cluster.

    PubMed

    Joly, Philippe; Lacan, Philippe; Garcia, Caroline; Couprie, Nicole; Francina, Alain

    2009-01-01

    Despite the fact that mutations in the human beta-globin gene cluster are essentially point mutations, a significant number of large deletions have also been described. We present here four new large deletions in the beta-globin gene cluster that have been identified on patients displaying an atypical hemoglobin phenotype (high HbF) at routine analysis. The first deletion, which spreads over 2.0 kb, removes the entire beta-globin gene, including its promoter, and is associated with a typical beta-thal minor phenotype. The three other deletions are larger (19.7 to 23.9 kb) and remove both the delta and beta-globin genes. Phenotypically, they look like an HPFH-deletion as they are associated with normal hematological parameters. The precise localization of their 5' and 3' breakpoints gives new insights about the differences between HPFH and (deltabeta)(0)-thalassemia at the molecular level. The importance of detection of these deletions in prenatal diagnosis and newborn screening of hemoglobinopathies is also discussed.

  17. Structural Plasticity in Globins: Role of Protein Dynamics in Defining Ligand Migration Pathways.

    PubMed

    Estarellas, C; Capece, L; Seira, C; Bidon-Chanal, A; Estrin, D A; Luque, F J

    2016-01-01

    Globins are a family of proteins characterized by the presence of the heme prosthetic group and involved in variety of biological functions in the cell. Due to their biological relevance and widespread distribution in all kingdoms of life, intense research efforts have been devoted to disclosing the relationships between structural features, protein dynamics, and function. Particular attention has been paid to the impact of differences in amino acid sequence on the topological features of docking sites and cavities and to the influence of conformational flexibility in facilitating the migration of small ligands through these cavities. Often, tunnels are carved in the interior of globins, and ligand exchange is regulated by gating residues. Understanding the subtle intricacies that relate the differences in sequence with the structural and dynamical features of globins with the ultimate aim of rationalizing the thermodynamics and kinetics of ligand binding continues to be a major challenge in the field. Due to the evolution of computational techniques, significant advances into our understanding of these questions have been made. In this review we focus our attention on the analysis of the ligand migration pathways as well as the function of the structural cavities and tunnels in a series of representative globins, emphasizing the synergy between experimental and theoretical approaches to gain a comprehensive knowledge into the molecular mechanisms of this diverse family of proteins.

  18. RNA sequencing for increasing gene discovery and and coverage using globin RNA reduced porcine blood samples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background Transcriptome analysis in porcine whole blood will provide major insights to decipher genetic mechanisms for host responses to viral infection. The abundance of porcine globin transcripts, however, impedes the ability to detect less abundant transcripts. The objective of our study was to...

  19. [Applicability of cellulose acetate electrophoresis of globin chains to thalassemia screening].

    PubMed

    Masala, B; Demuro, P; Dore, F; Formato, M; Longinotti, M; Tidore, M

    1981-07-15

    We considered the possible application of globin chain separation on cellulose acetate strips electrophoresis to thalassemia screening. The method shows good accuracy and reproducibility when compared with the chromatographic method on CM-cellulose. The electrophoretic method could be recommended as the simplest test of hemoglobin biosynthesis in countries where high incidence of thalassemic syndromes occurs.

  20. Gene Turnover in the Avian Globin Gene Families and Evolutionary Changes in Hemoglobin Isoform Expression

    PubMed Central

    Opazo, Juan C.; Hoffmann, Federico G.; Natarajan, Chandrasekhar; Witt, Christopher C.; Berenbrink, Michael; Storz, Jay F.

    2015-01-01

    The apparent stasis in the evolution of avian chromosomes suggests that birds may have experienced relatively low rates of gene gain and loss in multigene families. To investigate this possibility and to explore the phenotypic consequences of variation in gene copy number, we examined evolutionary changes in the families of genes that encode the α- and β-type subunits of hemoglobin (Hb), the tetrameric α2β2 protein responsible for blood-O2 transport. A comparative genomic analysis of 52 bird species revealed that the size and membership composition of the α- and β-globin gene families have remained remarkably constant during approximately 100 My of avian evolution. Most interspecific variation in gene content is attributable to multiple independent inactivations of the αD-globin gene, which encodes the α-chain subunit of a functionally distinct Hb isoform (HbD) that is expressed in both embryonic and definitive erythrocytes. Due to consistent differences in O2-binding properties between HbD and the major adult-expressed Hb isoform, HbA (which incorporates products of the αA-globin gene), recurrent losses of αD-globin contribute to among-species variation in blood-O2 affinity. Analysis of HbA/HbD expression levels in the red blood cells of 122 bird species revealed high variability among lineages and strong phylogenetic signal. In comparison with the homologous gene clusters in mammals, the low retention rate for lineage-specific gene duplicates in the avian globin gene clusters suggests that the developmental regulation of Hb synthesis in birds may be more highly conserved, with orthologous genes having similar stage-specific expression profiles and similar functional properties in disparate taxa. PMID:25502940

  1. High-density SNP genotyping to define beta-globin locus haplotypes.

    PubMed

    Liu, Li; Muralidhar, Shalini; Singh, Manisha; Sylvan, Caprice; Kalra, Inderdeep S; Quinn, Charles T; Onyekwere, Onyinye C; Pace, Betty S

    2009-01-01

    Five major beta-globin locus haplotypes have been established in individuals with sickle cell disease (SCD) from the Benin, Bantu, Senegal, Cameroon, and Arab-Indian populations. Historically, beta-haplotypes were established using restriction fragment length polymorphism (RFLP) analysis across the beta-locus, which consists of five functional beta-like globin genes located on chromosome 11. Previous attempts to correlate these haplotypes as robust predictors of clinical phenotypes observed in SCD have not been successful. We speculate that the coverage and distribution of the RFLP sites located proximal to or within the globin genes are not sufficiently dense to accurately reflect the complexity of this region. To test our hypothesis, we performed RFLP analysis and high-density single nucleotide polymorphism (SNP) genotyping across the beta-locus using DNA samples from healthy African Americans with either normal hemoglobin A (HbAA) or individuals with homozygous SS (HbSS) disease. Using the genotyping data from 88 SNPs and Haploview analysis, we generated a greater number of haplotypes than that observed with RFLP analysis alone. Furthermore, a unique pattern of long-range linkage disequilibrium between the locus control region and the beta-like globin genes was observed in the HbSS group. Interestingly, we observed multiple SNPs within the HindIII restriction site located in the Ggamma-globin intervening sequence II which produced the same RFLP pattern. These findings illustrated the inability of RFLP analysis to decipher the complexity of sequence variations that impacts genomic structure in this region. Our data suggest that high-density SNP mapping may be required to accurately define beta-haplotypes that correlate with the different clinical phenotypes observed in SCD.

  2. Gene turnover in the avian globin gene families and evolutionary changes in hemoglobin isoform expression.

    PubMed

    Opazo, Juan C; Hoffmann, Federico G; Natarajan, Chandrasekhar; Witt, Christopher C; Berenbrink, Michael; Storz, Jay F

    2015-04-01

    The apparent stasis in the evolution of avian chromosomes suggests that birds may have experienced relatively low rates of gene gain and loss in multigene families. To investigate this possibility and to explore the phenotypic consequences of variation in gene copy number, we examined evolutionary changes in the families of genes that encode the α- and β-type subunits of hemoglobin (Hb), the tetrameric α2β2 protein responsible for blood-O2 transport. A comparative genomic analysis of 52 bird species revealed that the size and membership composition of the α- and β-globin gene families have remained remarkably constant during approximately 100 My of avian evolution. Most interspecific variation in gene content is attributable to multiple independent inactivations of the α(D)-globin gene, which encodes the α-chain subunit of a functionally distinct Hb isoform (HbD) that is expressed in both embryonic and definitive erythrocytes. Due to consistent differences in O2-binding properties between HbD and the major adult-expressed Hb isoform, HbA (which incorporates products of the α(A)-globin gene), recurrent losses of α(D)-globin contribute to among-species variation in blood-O2 affinity. Analysis of HbA/HbD expression levels in the red blood cells of 122 bird species revealed high variability among lineages and strong phylogenetic signal. In comparison with the homologous gene clusters in mammals, the low retention rate for lineage-specific gene duplicates in the avian globin gene clusters suggests that the developmental regulation of Hb synthesis in birds may be more highly conserved, with orthologous genes having similar stage-specific expression profiles and similar functional properties in disparate taxa.

  3. Erythropoietin Neuroprotection with Traumatic Brain Injury

    PubMed Central

    Ponce, Lucido L.; Navarro, Jovany Cruz; Ahmed, Osama; Robertson, Claudia S.

    2012-01-01

    Numerous experimental studies in recent years have suggested that erythropoietin (EPO) is an endogenous mediator of neuroprotection in various central nervous system disorders, including TBI. Many characteristics of EPO neuroprotection that have been defined in TBI experimental models suggest that it is an attractive candidate for a new treatment of TBI. EPO targets multiple mechanisms known to cause secondary injury after TBI, including anti-excitotoxic, antioxidant, anti-edematous, and anti-inflammatory mechanisms. EPO crosses the blood brain barrier. EPO has a known dose response and time window for neuroprotection and neurorestoration that would be practical in the clinical setting. However, EPO also stimulates erythropoiesis, which can result in thromboembolic complications. Derivatives of EPO which do not bind to the classical EPO receptor (carbamylated EPO) or that have such a brief half-life in the circulation that they do not stimulate erythropoiesis (asialo EPO and neuro EPO) have the neuroprotective activities of EPO without these potential thromboembolic adverse effects associated with EPO administration. Likewise, a peptide based on the structure of the Helix B segment of the EPO molecule that does not bind to the EPO receptor (pyruglutamate Helix B surface peptide) has promise as another alternative to EPO that may provide neuroprotection without stimulating erythropoiesis. PMID:22421507

  4. Correction of murine sickle cell disease using gamma-globin lentiviral vectors to mediate high-level expression of fetal hemoglobin.

    PubMed

    Pestina, Tamara I; Hargrove, Phillip W; Jay, Dennis; Gray, John T; Boyd, Kelli M; Persons, Derek A

    2009-02-01

    Increased levels of red cell fetal hemogloblin, whether due to hereditary persistence of expression or from induction with hydroxyurea therapy, effectively ameliorate sickle cell disease (SCD). Therefore, we developed erythroid-specific, gamma-globin lentiviral vectors for hematopoietic stem cell (HSC)-targeted gene therapy with the goal of permanently increasing fetal hemoglobin (HbF) production in sickle red cells. We evaluated two different gamma-globin lentiviral vectors for therapeutic efficacy in the BERK sickle cell mouse model. The first vector, V5, contained the gamma-globin gene driven by 3.1 kb of beta-globin regulatory sequences and a 130-bp beta-globin promoter. The second vector, V5m3, was identical except that the gamma-globin 3'-untranslated region (3'-UTR) was replaced with the beta-globin 3'-UTR. Adult erythroid cells have beta-globin mRNA 3'-UTR-binding proteins that enhance beta-globin mRNA stability and we postulated this design might enhance gamma-globin expression. Stem cell gene transfer was efficient and nearly all red cells in transplanted mice expressed human gamma-globin. Both vectors demonstrated efficacy in disease correction, with the V5m3 vector producing a higher level of gamma-globin mRNA which was associated with high-level correction of anemia and secondary organ pathology. These data support the rationale for a gene therapy approach to SCD by permanently enhancing HbF using a gamma-globin lentiviral vector.

  5. Epigenetics and therapeutic targets mediating neuroprotection.

    PubMed

    Qureshi, Irfan A; Mehler, Mark F

    2015-12-02

    The rapidly evolving science of epigenetics is transforming our understanding of the nervous system in health and disease and holds great promise for the development of novel diagnostic and therapeutic approaches targeting neurological diseases. Increasing evidence suggests that epigenetic factors and mechanisms serve as important mediators of the pathogenic processes that lead to irrevocable neural injury and of countervailing homeostatic and regenerative responses. Epigenetics is, therefore, of considerable translational significance to the field of neuroprotection. In this brief review, we provide an overview of epigenetic mechanisms and highlight the emerging roles played by epigenetic processes in neural cell dysfunction and death and in resultant neuroprotective responses. This article is part of a Special Issue entitled SI: Neuroprotection.

  6. Neuroprotection in Parkinson's disease; a commentary.

    PubMed

    Gatto, Emilia Mabel; Riobó, Natalia; Carreras, María Cecilia; Poderoso, Juan José; Micheli, Federico E

    2002-03-01

    Parkinson's disease (PD) is a worldwide neurodegenerative disorder. Although the etiology has been linked to genetic and environmental factors, curative treatment remains a challenge. Several hypotheses support different pathophysiological mechanisms related to oxidative stress, glutamate-mediated neurotoxicity, mitochondrial energetic impairment and nitric oxide (NO) over-production. Moreover, apoptotic mechanisms have been identified in PD. In this way, classical drugs such as amantadine, selegiline and dopamine agonists show only a modest neuroprotective effect. New strategies with enormous potential are now under development. These include neuroprotectants and agents that might rescue dopaminergic neurons. Glutamate receptor antagonists, neurotrophins, neuroimmunophilins, adenosine A2A receptor antagonists, iron-chelators and NO modulators, as well as caspase inhibitors have evident neuroprotective properties in experimental PD models.

  7. Neuroprotective Mechanisms of Melatonin in Hemorrhagic Stroke.

    PubMed

    Wu, Hai-Jian; Wu, Cheng; Niu, Huan-Jiang; Wang, Kun; Mo, Lian-Jie; Shao, An-Wen; Dixon, Brandon J; Zhang, Jian-Min; Yang, Shu-Xu; Wang, Yi-Rong

    2017-01-28

    Hemorrhagic stroke which consists of subarachnoid hemorrhage and intracerebral hemorrhage is a dominant cause of death and disability worldwide. Although great efforts have been made, the physiological mechanisms of these diseases are not fully understood and effective pharmacological interventions are still lacking. Melatonin (N-acetyl-5-methoxytryptamine), a neurohormone produced by the pineal gland, is a broad-spectrum antioxidant and potent free radical scavenger. More importantly, there is extensive evidence demonstrating that melatonin confers neuroprotective effects in experimental models of hemorrhagic stroke. Multiple molecular mechanisms such as antioxidant, anti-apoptosis, and anti-inflammation, contribute to melatonin-mediated neuroprotection against brain injury after hemorrhagic stroke. This review article aims to summarize current knowledge regarding the beneficial effects of melatonin in experimental models of hemorrhagic stroke and explores the underlying mechanisms. We propose that melatonin is a promising neuroprotective candidate that is worthy of further evaluation for its potential therapeutic applications in hemorrhagic stroke.

  8. Neuroprotection in Stroke: Past, Present, and Future

    PubMed Central

    Majid, Arshad

    2014-01-01

    Stroke is a devastating medical condition, killing millions of people each year and causing serious injury to many more. Despite advances in treatment, there is still little that can be done to prevent stroke-related brain damage. The concept of neuroprotection is a source of considerable interest in the search for novel therapies that have the potential to preserve brain tissue and improve overall outcome. Key points of intervention have been identified in many of the processes that are the source of damage to the brain after stroke, and numerous treatment strategies designed to exploit them have been developed. In this review, potential targets of neuroprotection in stroke are discussed, as well as the various treatments that have been targeted against them. In addition, a summary of recent progress in clinical trials of neuroprotective agents in stroke is provided. PMID:24579051

  9. An analysis of fetal hemoglobin variation in sickle cell disease: the relative contributions of the X-linked factor, beta-globin haplotypes, alpha-globin gene number, gender, and age.

    PubMed

    Chang, Y C; Smith, K D; Moore, R D; Serjeant, G R; Dover, G J

    1995-02-15

    Five factors have been shown to influence the 20-fold variation of fetal hemoglobin (Hb F) levels in sickle cell anemia (SS): age, sex, the alpha-globin gene number, beta-globin haplotypes, and an X-linked locus that regulates the production of Hb F-containing erythrocytes (F cells), ie, the F-cell production (FCP) locus. To determine the relative importance of these factors, we studied 257 Jamaican SS subjects from a Cohort group identified by newborn screening and from a Sib Pair study. Linear regression analyses showed that each variable, when analyzed alone, had a significant association with Hb F levels (P < .05). Multiple regression analysis, including all variables, showed that the FCP locus is the strongest predictor, accounting for 40% of Hb F variation. beta-Globin haplotypes, alpha-globin genes, and age accounted for less than 10% of the variation. The association between the beta-globin haplotypes and Hb F levels becomes apparent if the influence of the FCP locus is removed by analyzing only individuals with the same FCP phenotype. Thus, the FCP locus is the most important factor identified to date in determining Hb F levels. The variation within each FCP phenotype is modulated by factors associated with the three common beta-globin haplotypes and other as yet unidentified factor(s).

  10. Correlation of BACH1 and Hemoglobin E/Beta-Thalassemia Globin Expression.

    PubMed

    Lee, Tze Yan; Muniandy, Logeswaran; Teh, Lai Kuan; Abdullah, Maha; George, Elizabeth; Sathar, Jameela; Lai, Mei I

    2016-03-05

    Amaç: Hemoglobin E (HbE)/β-talaseminin çeşitli klinik fenotipleri klinisyenlerin hasta yönetimi esnasında zihinlerini karıştırmakla kalmamış, α- ve β-globin genotiplerinde bariz benzerlikler varken fenotiplerde farklılıklar bulunduğundan bilim insanlarının hassas eritrosit çevrenin muhafaza edilmesinde yer alan karmaşık mekanizmaları incelemelerine de ön ayak olmuştur. BTB ve CNC homoloji 1 (BACH1) proteininin eritroid hücrelerin son farklılaşması sırasında α- and β-globin gen transkripsiyonlarını ayarladığı bilinmektedir. HbE/β-talasemi hastalığındaki mutasyonlar ile her ne kadar ince ayar amaçlı ise de BACH1’in globin zincir dengesizliğini kompanse etmedeki rolünü inceledik. Gereç ve Yöntemler: Toplam 47 HbE/β-talasemi örneği gerçek zamanlı kantitatif polimeraz zincir reaksiyonu ile incelendi ve yaş, cinsiyet, eritrosit değişkenleri, globin gen sunumları ve bazı klinik veriler ile korele edildi. Bulgular: β-talasemi intermedia hastalarındaki BACH1 sunumu 2-log’a kadar farklılık göstermekteydi ve yaş; α-, β- ve γ-globin gen sunum düzeyleri; ve hem oksijenaz 1 proteini ile pozitif korelasyonu vardı. Ayrıca BACH1’in retikülosit düzeyi ile negatif korelasyonu vardı ve splenektomi ile anlamlı korelasyonu bulunmaktaydı. Sonuç: Bu çalışma hem HbE/β-talasemide bulunan oksidatif stresi hem de globin zincir dengesizliğini azaltmak için BACH1 sunumunun kompansasyon mekanizması olarak artabileceğini göstermiştir.

  11. Nonrandom association of polymorphic restriction sites in the beta-globin gene cluster.

    PubMed

    Antonarakis, S E; Boehm, C D; Giardina, P J; Kazazian, H H

    1982-01-01

    By using probes for epsilon-, Psibeta(1)-, and beta-globin genes, we found four additional polymorphic restriction sites that have frequencies >0.1 in persons of Mediterranean area origin, Asian Indians, and American Blacks. Three of these (HincII sites) and the two previously described polymorphic HindIII sites [one in intervening sequence (IVS) II of each gamma-globin gene] are distributed over 32 kilobases (kb) of DNA located 5' to the delta-globin gene. This region of DNA comprises two-thirds of the beta-globin gene cluster. Since each of these five polymorphic sites can be present (+) or absent (-), in theory there exist 32 possible combinations of sites (haplotypes). However, in Italians, Greeks, Indians, and Turks, 3 of the 32 haplotypes, (+----), (-+-++), and (-++-+), account for 92% of 89 beta(A) chromosomes examined. The observed frequencies for these haplotypes are 0.64, 0.15, and 0.13 in the populations studied, in contrast to expected frequencies (based on the observed gene frequencies at each of the five sites) of 0.20, 0.006, and 0.005, respectively. In American Blacks, a fourth haplotype, (----+), which is rare in non-Black populations, has a frequency of 0.37 in contrast to its expected frequency of 0.05. These results suggest a nonrandom association of DNA sequences over 32 kb 5' to the delta-globin gene in all populations studied. Two other polymorphic sites 3' to the delta gene (the newly discovered Ava II site in IVS II of the beta-globin gene and the BamHI site 3' to it) are nonrandomly associated with each other but randomly distributed with respect to the above haplotypes. This suggests that randomization of sequences has occurred within 12 kb of DNA between these two nonrandomly associated sequence clusters. Nonrandom association of polymorphic restriction sites has practical consequences in that it limits the usefulness of these additional HincII sites for prenatal diagnosis of hemoglobinopathies by linkage analysis. These sites provide

  12. Neuroprotection from Brain Injury by Novel Estrogens

    DTIC Science & Technology

    2001-08-01

    controls. EFFECT OF TESTOSTERONE ON BLOOD PRESSURE, GASES, pH, IONS AND REGIONAL CEREBRAL BLOOD FLOW Physiological parameters are shown in table 1. .There...HE AM ERI C AN HE A RT A SSOC I AT ION . 0Vx OVX-E:’ OVX-E:’ oVx-Ŗ O(LOVX-E2 12-hour 1-hour 2-hour 3.honur I.-hour Estroggen Neuroprotective Effects ...is reported below. Technical Aim 1: To assess the prophylactic and post-treatment neuroprotective effects of novel estratrienes in an animal model of

  13. Expression of the human. beta. -globin gene following retroviral-mediated transfer into multipotential hematopoietic progenitors of mice

    SciTech Connect

    Karlsson, S.; Bodine, D.M.; Perry, L.; Papayannopoulou, T.; Nienhuis, A.W. )

    1988-08-01

    Efficient transfer of the {beta}-globin gene into primitive hematopoietic progenitors was achieved with consistent and significant expression in the progeny of those cells. Retroviral vectors containing the intact genomic human {beta}-globin gene and the neomycin (G418)-resistance (neo{sup R}) gene were constructed. These gave titers of 10{sup 6} or more neo{sup R} colony-forming units/ml when packaged in {psi}2 cells. Mouse bone marrow cells were infected by coculture with producer cells and injected into lethally irradiated animals. Several parameters were varied to enhance infection frequency of colony-forming units, spleen (CFU-S); overall 41% of 116 foci studied contained an intact proviral genome. The human {beta}-globin gene was expressed in 31 of 35 CFU-S-derived spleen colonies that contained the intact vector genome at levels ranging from 1% to 5% of that of the mouse {beta}-globin genes. Infected bone marrow cells were also injected into genetically anemic W/W{sup v} recipients without prior irradiation. Human {beta}-globin chains were detected in circulating erythrocytes by immunofluorescent staining with a specific monoclonal antibody. All animals injected with donor cells that had been cultured in G418 (1 mg/ml) for 48 hr after retroviral infection had circulating erythrocytes containing human {beta}-globin chains between 3 and 8 weeks after transplantation.

  14. Development of phenotypic screening assays for γ-globin induction using primary human bone marrow day 7 erythroid progenitor cells.

    PubMed

    Li, Hu; Xie, Wensheng; Gore, Elizabeth R; Montoute, Monica N; Bee, Weilin Tiger; Zappacosta, Francesca; Zeng, Xin; Wu, Zining; Kallal, Lorena; Ames, Robert S; Pope, Andrew J; Benowitz, Andrew; Erickson-Miller, Connie L

    2013-12-01

    Sickle cell anemia (SCA) is a genetic disorder of the β-globin gene. SCA results in chronic ischemia with pain and tissue injury. The extent of SCA symptoms can be ameliorated by treatment with drugs, which result in increasing the levels of γ-globin in patient red blood cells. Hydroxyurea (HU) is a Food and Drug Administration-approved drug for SCA, but it has dose-limiting toxicity, and patients exhibit highly variable treatment responses. To identify compounds that may lead to the development of better and safer medicines, we have established a method using primary human bone marrow day 7 erythroid progenitor cells (EPCs) to screen for compounds that induce γ-globin production. First, human marrow CD34(+) cells were cultured and expanded for 7 days and characterized for the expression of erythroid differentiation markers (CD71, CD36, and CD235a). Second, fresh or cryopreserved EPCs were treated with compounds for 3 days in 384-well plates followed by γ-globin quantification by an enzyme-linked immunosorbent assay (ELISA), which was validated using HU and decitabine. From the 7408 compounds screened, we identified at least one new compound with confirmed γ-globin-inducing activity. Hits are undergoing analysis in secondary assays. In this article, we describe the method of generating fit-for-purpose EPCs; the development, optimization, and validation of the ELISA and secondary assays for γ-globin detection; and screening results.

  15. Molecular mechanisms of human hemoglobin switching: selective undermethylation and expression of globin genes in embryonic, fetal, and adult erythroblasts.

    PubMed Central

    Mavilio, F; Giampaolo, A; Carè, A; Migliaccio, G; Calandrini, M; Russo, G; Pagliardi, G L; Mastroberardino, G; Marinucci, M; Peschle, C

    1983-01-01

    The globin chain synthetic pattern and the extent of DNA methylation within embryonic, fetal, and adult beta-like globin gene domains were evaluated in greater than or equal to 90% purified human erythroblasts from yolk sacs and fetal livers in the 6- to 12-wk gestational period as well as from adult marrows. The 6-wk erythroblasts produce essentially embryonic epsilon chains, whereas the 12-wk erythroblasts synthesize largely fetal gamma globin and the adult marrow erythroblasts synthesize almost exclusively adult beta chains. In all phases of ontogenic development, a strong correlation exists between DNA hypomethylation in the close flanking sequences of globin genes and their expression. These results suggest that modulation of the methylation pattern may represent a key mechanism for regulating expression of human globin genes during embryonic leads to fetal and fetal leads to adult Hb switches in humans. In ontogenic development this mechanism might in turn correlate with a gradual modification of chromatin structure in the non-alpha gene cluster, thus leading to a 5' leads to 3' activation of globin genes in a balanced fashion. Images PMID:6316333

  16. An N-myristoylated globin with a redox-sensing function that regulates the defecation cycle in Caenorhabditis elegans.

    PubMed

    Tilleman, Lesley; De Henau, Sasha; Pauwels, Martje; Nagy, Nora; Pintelon, Isabel; Braeckman, Bart P; De Wael, Karolien; Van Doorslaer, Sabine; Adriaensen, Dirk; Timmermans, Jean-Pierre; Moens, Luc; Dewilde, Sylvia

    2012-01-01

    Globins occur in all kingdoms of life where they fulfill a wide variety of functions. In the past they used to be primarily characterized as oxygen transport/storage proteins, but since the discovery of new members of the globin family like neuroglobin and cytoglobin, more diverse and complex functions have been assigned to this heterogeneous family. Here we propose a function for a membrane-bound globin of C. elegans, GLB-26. This globin was predicted to be myristoylated at its N-terminus, a post-translational modification only recently described in the globin family. In vivo, this globin is found in the membrane of the head mesodermal cell and in the tail stomato-intestinal and anal depressor muscle cells. Since GLB-26 is almost directly oxidized when exposed to oxygen, we postulate a possible function as electron transfer protein. Phenotypical studies show that GLB-26 takes part in regulating the length of the defecation cycle in C. elegans under oxidative stress conditions.

  17. Biomarkers for trials of neuroprotection in Parkinson's disease.

    PubMed

    Agarwal, Pankaj A; Stoessl, A Jon

    2013-01-01

    With increased understanding of disease pathogenesis and the foreseeable reality of disease-modifying therapies, there is a growing need to find biomarkers that will allow early (preferably preclinical) detection of disease and that will provide an independent readout of disease progression. In this article, we review a variety of markers, with a focus on functional imaging techniques, which while imperfect, currently provide the best approach to this problem. We consider the limitations of functional imaging of the dopamine system in assessing the progression of Parkinson's Disease (PD) as well as the potential use of structural imaging and emerging progress in other biochemical and molecular markers. While there is no single biomarker that will satisfy all requirements, some combination is likely to be of great use in identifying those subjects most likely to benefit from neuroprotective therapies, as well as in monitoring the effects of these interventions.

  18. Prehospital Use of Magnesium Sulfate as Neuroprotection in Acute Stroke

    PubMed Central

    Saver, Jeffrey L.; Starkman, Sidney; Eckstein, Marc; Stratton, Samuel J.; Pratt, Franklin D.; Hamilton, Scott; Conwit, Robin; Liebeskind, David S.; Sung, Gene; Kramer, Ian; Moreau, Gary; Goldweber, Robert; Sanossian, Nerses

    2016-01-01

    BACKGROUND Magnesium sulfate is neuroprotective in preclinical models of stroke and has shown signals of potential efficacy with an acceptable safety profile when delivered early after stroke onset in humans. Delayed initiation of neuroprotective agents has hindered earlier phase 3 trials of neuroprotective agents. METHODS We randomly assigned patients with suspected stroke to receive either intravenous magnesium sulfate or placebo, beginning within 2 hours after symptom onset. A loading dose was initiated by paramedics before the patient arrived at the hospital, and a 24-hour maintenance infusion was started on the patient’s arrival at the hospital. The primary outcome was the degree of disability at 90 days, as measured by scores on the modified Rankin scale (range, 0 to 6, with higher scores indicating greater disability). RESULTS Among the 1700 enrolled patients (857 in the magnesium group and 843 in the placebo group), the mean (±SD) age was 69±13 years, 42.6% were women, and the mean pretreatment score on the Los Angeles Motor Scale of stroke severity (range, 0 to 10, with higher scores indicating greater motor deficits) was 3.7±1.3. The final diagnosis of the qualifying event was cerebral ischemia in 73.3% of patients, intracranial hemorrhage in 22.8%, and a stroke-mimicking condition in 3.9%. The median interval between the time the patient was last known to be free of stroke symptoms and the start of the study-drug infusion was 45 minutes (interquartile range, 35 to 62), and 74.3% of patients received the study-drug infusion within the first hour after symptom onset. There was no significant shift in the distribution of 90-day disability outcomes on the global modified Rankin scale between patients in the magnesium group and those in the placebo group (P = 0.28 by the Cochran–Mantel–Haenszel test); mean scores at 90 days did not differ between the magnesium group and the placebo group (2.7 in each group, P = 1.00). No significant between

  19. Identification of the proteins in direct contact with duck globin mRNA.

    PubMed

    Lockard, R E

    1987-07-27

    Proteins in direct contact with translationally active and repressed duck globin mRNA were determined by irradiating blood or lysates with ultraviolet light. Cross-linked proteins from polyribosomes and free mRNP particles were 14C-labeled by reductive methylation and identified on SDS-polyacrylamide gels upon autoradiography. Results indicate that ten cross-linked proteins are common to both polysomal and free mRNP, however, a 44 kDa protein appears to be specific for repressed mRNP particles. Furthermore, the notable lack of cross-linked proteins in the 20-30 kDa range in free mRNP supports the view that the characteristic low molecular mass 'prosomal' proteins, previously found associated with translationally repressed duck globin free mRNP [(1984) EMBO J. 3, 29-34], do not interact directly with the mRNA molecule.

  20. Diversity of [beta]-globin mutations in Israeli ethnic groups reflects recent historic events

    SciTech Connect

    Filon, D.; Oron, V.; Krichevski, S.; Shaag, A.; Goldfarb, A.; Aker, M.; Rachmilewitz, E.A.; Rund, D.; Oppenheim, A. )

    1994-05-01

    The authors characterized nearly 500 [beta]-thalassemia genes from the Israeli population representing a variety of ethnic subgroups. They found 28 different mutations in the [beta]-globin gene, including three mutations ([beta][sup S], [beta][sup C], and [beta][sup O-Arab]) causing hemoglobinopathies. Marked genetic heterogeneity was observed in both the Arab (20 mutations) and Jewish (17 mutations) populations. On the other hand, two ethnic isolates - Druze and Samaritans - had a single mutation each. Fifteen of the [beta]-thalassemia alleles are Mediterranean in type, 5 originated in Kurdistan, 2 are of Indian origin, and 2 sporadic alleles came from Europe. Only one mutant allele-nonsense codon 37-appears to be indigenous to Israel. While human habitation in Israel dates back to early prehistory, the present-day spectrum of [beta]-globin mutations can be largely explained by migration events that occurred in the past millennium. 26 refs., 2 figs., 3 tabs.

  1. High-resolution analysis of cis-acting regulatory networks at the α-globin locus.

    PubMed

    Hughes, Jim R; Lower, Karen M; Dunham, Ian; Taylor, Stephen; De Gobbi, Marco; Sloane-Stanley, Jacqueline A; McGowan, Simon; Ragoussis, Jiannis; Vernimmen, Douglas; Gibbons, Richard J; Higgs, Douglas R

    2013-01-01

    We have combined the circular chromosome conformation capture protocol with high-throughput, genome-wide sequence analysis to characterize the cis-acting regulatory network at a single locus. In contrast to methods which identify large interacting regions (10-1000 kb), the 4C approach provides a comprehensive, high-resolution analysis of a specific locus with the aim of defining, in detail, the cis-regulatory elements controlling a single gene or gene cluster. Using the human α-globin locus as a model, we detected all known local and long-range interactions with this gene cluster. In addition, we identified two interactions with genes located 300 kb (NME4) and 625 kb (FAM173a) from the α-globin cluster.

  2. beta(S)-Globin gene cluster haplotypes in the West Bank of Palestine.

    PubMed

    Samarah, Fekri; Ayesh, Suhail; Athanasiou, Miranda; Christakis, John; Vavatsi, Norma

    2009-01-01

    Sickle cell disease is an inherited autosomal recessive disorder of the beta-globin chain. In Palestine it is accompanied by a low level of Hb F (mean 5.14%) and a severe clinical presentation. In this study, 59 Palestinian patients, homozygotes for Hb S were studied for their haplotype background. Eight polymorphic sites in the beta-globin gene cluster were examined. The Benin haplotype was predominant with a frequency of 88.1%, followed by a frequency of 5.1% for the Bantu haplotype. One chromosome was found to carry the Cameroon haplotype (0.85%). Three atypical haplotypes were also found (5.95%). Heterogeneity was observed in Hb F production, ranging between 1.5 and 17.0%, whereas the (G)gamma ratio was homogeneous among all haplotypes with a normal amount of about 41%. Our results are in agreement with previous reports of the Benin haplotype origin in the Mediterranean.

  3. Globin mRNA reduction for whole-blood transcriptome sequencing

    PubMed Central

    Krjutškov, Kaarel; Koel, Mariann; Roost, Anne Mari; Katayama, Shintaro; Einarsdottir, Elisabet; Jouhilahti, Eeva-Mari; Söderhäll, Cilla; Jaakma, Ülle; Plaas, Mario; Vesterlund, Liselotte; Lohi, Hannes; Salumets, Andres; Kere, Juha

    2016-01-01

    The transcriptome analysis of whole-blood RNA by sequencing holds promise for the identification and tracking of biomarkers; however, the high globin mRNA (gmRNA) content of erythrocytes hampers whole-blood and buffy coat analyses. We introduce a novel gmRNA locking assay (GlobinLock, GL) as a robust and simple gmRNA reduction tool to preserve RNA quality, save time and cost. GL consists of a pair of gmRNA-specific oligonucleotides in RNA initial denaturation buffer that is effective immediately after RNA denaturation and adds only ten minutes of incubation to the whole cDNA synthesis procedure when compared to non-blood RNA analysis. We show that GL is fully effective not only for human samples but also for mouse and rat, and so far incompletely studied cow, dog and zebrafish. PMID:27515369

  4. Spectrum of Common α-Globin Deletion Mutations in the Southern Region of Vietnam.

    PubMed

    Bui Thi Kim, Ly; Phu Chi, Dung; Hoang Thanh, Chi

    2016-06-01

    The common deletion mutations of α-globin genes in the Vietnamese population is not well known. Here we report the presence of five deletional mutations of Southeast Asia in the southern region of Vietnam. The - -(SEA) (NG_000006.1: g.26264_45564del19301) mutation is the most common type of deletion (87.35%), followed by the -α(3.7) (rightward) (NG_000006.1: g.34164_37967del3804) deletion (9.64%), -α(4.2) (leftward) (AF221717) deletion (2.41%) and - -(THAI) (NG_000006.1: g.10664_44164del33501) (0.6%) mutation in this region. The - -(FIL) (NG_000006.1: g.11684_43534del31581) mutation was not detected in this study. This result provided a view of the distribution of common α-globin gene mutations in Vietnam and could serve as a baseline for further investigations into these genetic defects.

  5. Cellular prion protein transduces neuroprotective signals

    PubMed Central

    Chiarini, Luciana B.; Freitas, Adriana R.O.; Zanata, Silvio M.; Brentani, Ricardo R.; Martins, Vilma R.; Linden, Rafael

    2002-01-01

    To test for a role for the cellular prion protein (PrPc) in cell death, we used a PrPc-binding peptide. Retinal explants from neonatal rats or mice were kept in vitro for 24 h, and anisomycin (ANI) was used to induce apoptosis. The peptide activated both cAMP/protein kinase A (PKA) and Erk pathways, and partially prevented cell death induced by ANI in explants from wild-type rodents, but not from PrPc-null mice. Neuroprotection was abolished by treatment with phosphatidylinositol-specific phospholipase C, with human peptide 106–126, with certain antibodies to PrPc or with a PKA inhibitor, but not with a MEK/Erk inhibitor. In contrast, antibodies to PrPc that increased cAMP also induced neuroprotection. Thus, engagement of PrPc transduces neuroprotective signals through a cAMP/PKA-dependent pathway. PrPc may function as a trophic receptor, the activation of which leads to a neuroprotective state. PMID:12093733

  6. A femtomolar-acting neuroprotective peptide.

    PubMed Central

    Brenneman, D E; Gozes, I

    1996-01-01

    A novel 14-amino acid peptide, with stress-protein-like sequences, exhibiting neuroprotection at unprecedented concentrations, is revealed. This peptide prevented neuronal cell death associated with the envelope protein (GP 120) from HIV, with excitotoxicity (N-methyl d-aspartate), with the beta amyloid peptide (putative cytotoxin in Alzheimer's disease), and with tetrodotoxin (electrical blockade). The peptide was designed to contain a sequence derived from a new neuroprotective protein secreted by astroglial cells in the presence of vasoactive intestinal peptide. The neurotrophic protein was isolated by sequential chromatographic methods combining ion exchange, size separation, and hydrophobic interaction. The protein (mol mass, 14 kD and pI, 8.3 +/- 0.25) was named activity-dependent neurotrophic factor, as it protected neurons from death associated with electrical blockade. Peptide sequencing led to the synthesis of the novel 14-amino acid peptide that was homologous, but not identical, to an intracellular stress protein, heat shock protein 60. Neutralizing antiserum to heat shock protein 60 produced neuronal cell death that could be prevented by cotreatment with the novel protein, suggesting the existence of extracellular stress-like proteins with neuroprotective properties. These studies identify a potent neuroprotective glial protein and an active peptide that provide a basis for developing treatments of currently intractable neurodegenerative diseases. PMID:8636410

  7. Neuroprotection trials in Parkinson's disease: systematic review.

    PubMed

    Hart, Robert G; Pearce, Lesly A; Ravina, Bernard M; Yaltho, Toby C; Marler, John R

    2009-04-15

    Treatments to slow the progression are a major unmet need in Parkinson's disease. Detailed assessment of randomized trials testing putative neuroprotective drugs was undertaken to inform the design, reporting, and interpretation of future studies. This study is a systematic review of trials testing neuroprotective drugs. Data were extracted independently by two coauthors. Fifteen completed, published trials involving 4,087 participants tested 13 different drugs in 18 double-blind comparisons with placebo. Seven comparisons involving 2,000 subjects assessed MAO-B inhibitors. The primary outcome was change in the Unified Parkinson's Disease Rating Scale score in eight trials and time to need for dopaminergic therapy in seven. Mean participant age was 62 years, 35% were women, the interval from diagnosis to entry averaged 11 months, and the number of participants averaged 272 (largest = 806). Follow-up averaged <16 months in all but two trials. Detailed randomization methods and success of double-blinding were reported in 20% and 13%, respectively. Based on the investigators' conclusions, six trials were interpreted as consistent with a neuroprotective effect, three as negative, and five as either confounded or not meeting criteria for futility. Neuroprotection trials have involved relatively uniform groups of participants early in the clinical disease course, with outcomes weighted heavily toward motor deterioration. Future trials should include participants with wider ranges of disease stages and assess broader neurological outcomes.

  8. Neuritogenic and neuroprotective activities of fruit residues.

    PubMed

    Tadtong, Sarin; Kanlayavattanakul, Mayuree; Lourith, Nattaya

    2013-11-01

    Neuritogenic and neuroprotective activities of litchi (Litchi chinensis Sonn., Sapindaceae) and salacca (Salacca edulis Reinw., Arecaceae) pericarp, and sapodilla (Achras sapota L., Sapotaceae) and tamarind Srichompu cultivar (Tamarindus indica L., Caesalpiniaceae) seed coat extracts were evaluated on cultured cholinergic P19-derived neurons. All the extracts, at a very low concentration (1 ng/mL of litchi and salacca pericarp extracts, 10 ng/mL of sapodilla and 100 ng/mL of tamarind seed coat extracts), enhanced the survival of cultured neurons (% viability more than 100%) by XTT reduction assay. The extracts were further evaluated for their neuritogenicity by observing cell morphology by phase-contrast microscopy and neuroprotective activity in serum deprivation and pre- and co-administration of hydrogen peroxide models. The phase-contrast micrographs displayed that all of the extracts possessed neurogenic activity by promoting the neurite outgrowth of the cultured neurons. Moreover, these extracts can protect neurons from oxidative stress-caused cell death in a serum deprivation model, and prevent and protect neuron cells from the toxicity of hydrogen peroxide. In this study we assured that the neuritogenic and neuroprotective activities of these extracts derived from the phenolic components and flavonoids contained in the extracts by acting as signaling molecules to enhance neuron survival and promote neurite outgrowth. These results suggest that all of the extracts are potentially sources of neuritogenic and neuroprotective components which might be used either as pharmaceutical products or dietary supplements for neurodegenerative disorder patients, for example, those suffering from Alzheimer's disease.

  9. Neuroprotection against diisopropylfluorophosphate in acute hippocampal slices

    PubMed Central

    Ferchmin, P. A.; Pérez, Dinely; Cuadrado, Brenda L.; Carrasco, Marimée; Martins, Antonio H.; Eterović, Vesna A.

    2015-01-01

    Diisopropylfluorophosphate (DFP) is an irreversible inhibitor of acetylcholine esterase (AChE) and a surrogate of the organophosphorus (OP) nerve agent sarin. The neurotoxicity of DFP was assessed as a reduction of population spike (PS) area elicited by synaptic stimulation in acute hippocampal slices. Two classical antidotes, atropine, and pralidoxime, and two novel antidotes, 4R-cembranotriene-diol (4R) and a caspase 9 inhibitor, were tested. Atropine, pralidoxime, and 4R significantly protected when applied 30 min after DFP. The caspase inhibitor was neuroprotective when applied 5–10 min before or after DFP, suggesting that early synaptic apoptosis is responsible for the loss of PSs. It is likely that apoptosis starts at the synapses and, if antidotes are not applied, descends to the cell bodies, causing death. The acute slice is a reliable tool for mechanistic studies, and the assessment of neurotoxicity and neuroprotection with PS areas is, in general, pharmacologically congruent with in vivo results and predicts the effect of drugs in vivo. 4R was first found to be neuroprotective in slices and later we demonstrated that 4R is neuroprotective in vivo. The mechanism of neurotoxicity of OPs is not well understood, and there is a need for novel antidotes that could be discovered using acute slices. PMID:26438150

  10. NAP (davunetide) provides functional and structural neuroprotection.

    PubMed

    Gozes, Illana

    2011-01-01

    NAP (davunetide) is an eight amino acid peptide (NAPVSIPQ) that has been shown to provide potent neuroprotection, in vitro and in vivo. In human clinical trials, NAP has been shown to increase memory scores in patients suffering from amnestic mild cognitive impairment, a precursor to Alzheimer's disease and to enhance functional daily behaviors in schizophrenia patients. NAP is derived from activity-dependent neuroprotective protein (ADNP) a molecule that is essential for brain formation, interacting with chromatin associated protein alpha and the chromatin remodeling complex SWI/SNF and regulating >400 genes during embryonic development. Partial loss in ADNP results in cognitive deficits and pathology of the microtubule associated protein tau (tauopathy) that is ameliorated in part by NAP replacement therapy. Recent studies increased the scope of NAP neuroprotection and provided further insights into the NAP mechanisms of action. Thus, it has been hypothesized that the presence of tau on axonal microtubules renders them notably less sensitive to the microtubule-severing protein katanin, and NAP was shown to protect microtubules from katanin disruption in the face of reduced tau expression. Parallel studies showed that NAP reduced the number of apoptotic neurons through activation of PI-3K/Akt pathway in the cortical plate or both PI-3K/Akt and MAPK/MEK1 kinases in the white matter. The interaction of these disparate yet complementary pathways is the subject of future studies toward human brain neuroprotection in the clinical scenario.

  11. Correction of human. beta. sup S -globin gene by gene targeting

    SciTech Connect

    Shesely, E.G.; Hyungsuk Kim; Shehee, W.R.; Smithies, O. ); Papayannopoulou, T. ); Popovich, B.W. )

    1991-05-15

    As a step toward using gene targeting for gene therapy, the authors have corrected a human {beta}{sup S}-globin gene to the normal {beta}{sup A} allele by homologous recombination in the mouse-human hybrid cell line BSM. BSM is derived from a mouse erythroleukemia cell line and carries a single human chromosome 11 with the {beta}{sup S}-globin allele. A {beta}{sup A}-globin targeting construct containing a unique oligomer and a neomycin-resistance gene was electroporated into the BSM cells, which were then placed under G418 selection. Then 126 resulting pools containing a total {approx}29,000 G418-resistant clones were screened by PCR for the presence of a targeted recombinant: 3 positive pools were identified. A targeted clone was isolated by replating one of the positive pools into smaller pools and rescreening by PCR, followed by dilution cloning. Southern blot analysis demonstrated that the isolated clone had been targeted as planned. The correction of the {beta}{sup S} allele to {beta}{sup A} was confirmed both by allele-specific PCR and by allele-specific antibodies. Expression studies comparing the uninduced and induced RNA levels in unmodified BSM cells and in the targeted clone showed no significant alteration in the ability of the targeted clone to undergo induction, despite the potentially disrupting presence of a transcriptionally active neomycin gene 5{prime} to the human {beta}{sup A}-globin gene. Thus gene targeting can correct a {beta}{sup S} allele to {beta}{sup A}, and the use of a selectable helper gene need not significantly interfere with the induction of the corrected gene.

  12. Total alpha-globin gene cluster deletion has high frequency in Filipinos

    SciTech Connect

    Hunt, J.A.; Haruyama, A.Z.; Chu, B.M.

    1994-09-01

    Most {alpha}-thalassemias [Thal] are due to large deletions. In Southeast Asians, the (--{sup SEA}) double {alpha}-globin gene deletion is common, 3 (--{sup Tot}) total {alpha}-globin cluster deletions are known: Filipino (--{sup Fil}), Thai (--{sup Thai}), and Chinese (--{sup Chin}). In a Hawaii Thal project, provisional diagnosis of {alpha}-Thal-1 heterozygotes was based on microcytosis, normal isoelectric focusing, and no iron deficiency. One in 10 unselected Filipinos was an {alpha}-Thal-1 heterozygote, 2/3 of these had a (--{sup Tot}) deletion: a {var_sigma}-cDNA probe consistently showed fainter intensity of the constant 5.5 kb {var_sigma}{sub 2} BamHI band, with no heterzygosity for {var_sigma}-globin region polymorphisms; {alpha}-cDNA or {var_sigma}-cDNA probes showed no BamHI or BglII bands diagnostic of the (--{sup SEA}) deletion; bands for the (-{alpha}) {alpha}-Thal-2 single {alpha}-globin deletions were only seen in Hb H cases. A reliable monoclonal anti-{var_sigma}-peptide antibody test for the (--{sup SEA}) deletion was always negative in (--{sup Tot}) samples. Southern digests with the Lo probe, a gift from D. Higgs of Oxford Univ., confirmed that 49 of 50 (--{sup Tot}) chromosomes in Filipinos were (--{sup Fil}). Of 20 {alpha}-Thal-1 hydrops born to Filipinos, 11 were (--{sup Fil}/--{sup SEA}) compound heterozygotes; 9 were (--{sup SEA}/--{sup SEA}) homozygotes, but none was a (--{sup Fil}/--{sup Fil}).

  13. Globin genes in Micronesia: origins and affinities of Pacific Island peoples.

    PubMed Central

    O'Shaughnessy, D F; Hill, A V; Bowden, D K; Weatherall, D J; Clegg, J B

    1990-01-01

    DNA polymorphisms and copy-number variants of alpha-, zeta-, and gamma-globin genes have been studied in seven Micronesian island populations and have been compared with those in populations from Southeast Asia, Melanesia, and Polynesia. Micronesians are not significantly different from Polynesians at these loci and appear to be intermediate between Southeast Asians and Melanesians. There is evidence of significant Melanesian input into the Micronesian gene pool and of substantial proto-Polynesian contact with Melanesia. PMID:1967206

  14. A genetic strategy to treat sickle cell anemia by coregulating globin transgene expression and RNA interference.

    PubMed

    Samakoglu, Selda; Lisowski, Leszek; Budak-Alpdogan, Tulin; Usachenko, Yelena; Acuto, Santina; Di Marzo, Rosalba; Maggio, Aurelio; Zhu, Ping; Tisdale, John F; Rivière, Isabelle; Sadelain, Michel

    2006-01-01

    The application of RNA interference (RNAi) to stem cell-based therapies will require highly specific and lineage-restricted gene silencing. Here we show the feasibility and therapeutic potential of coregulating transgene expression and RNAi in hematopoietic stem cells. We encoded promoterless small-hairpin RNA (shRNA) within the intron of a recombinant gamma-globin gene. Expression of both gamma-globin and the lariat-embedded small interfering RNA (siRNA) was induced upon erythroid differentiation, specifically downregulating the targeted gene in tissue- and differentiation stage-specific fashion. The position of the shRNA within the intron was critical to concurrently achieve high-level transgene expression, effective siRNA generation and minimal interferon induction. Lentiviral transduction of CD34(+) cells from patients with sickle cell anemia led to erythroid-specific expression of the gamma-globin transgene and concomitant reduction of endogenous beta(S) transcripts, thus providing proof of principle for therapeutic strategies that require synergistic gene addition and gene silencing in stem cell progeny.

  15. Pomalidomide reverses γ-globin silencing through the transcriptional reprogramming of adult hematopoietic progenitors.

    PubMed

    Dulmovits, Brian M; Appiah-Kubi, Abena O; Papoin, Julien; Hale, John; He, Mingzhu; Al-Abed, Yousef; Didier, Sebastien; Gould, Michael; Husain-Krautter, Sehba; Singh, Sharon A; Chan, Kyle W H; Vlachos, Adrianna; Allen, Steven L; Taylor, Naomi; Marambaud, Philippe; An, Xiuli; Gallagher, Patrick G; Mohandas, Narla; Lipton, Jeffrey M; Liu, Johnson M; Blanc, Lionel

    2016-03-17

    Current therapeutic strategies for sickle cell anemia are aimed at reactivating fetal hemoglobin. Pomalidomide, a third-generation immunomodulatory drug, was proposed to induce fetal hemoglobin production by an unknown mechanism. Here, we report that pomalidomide induced a fetal-like erythroid differentiation program, leading to a reversion of γ-globin silencing in adult human erythroblasts. Pomalidomide acted early by transiently delaying erythropoiesis at the burst-forming unit-erythroid/colony-forming unit-erythroid transition, but without affecting terminal differentiation. Further, the transcription networks involved in γ-globin repression were selectively and differentially affected by pomalidomide including BCL11A, SOX6, IKZF1, KLF1, and LSD1. IKAROS (IKZF1), a known target of pomalidomide, was degraded by the proteasome, but was not the key effector of this program, because genetic ablation of IKZF1 did not phenocopy pomalidomide treatment. Notably, the pomalidomide-induced reprogramming was conserved in hematopoietic progenitors from individuals with sickle cell anemia. Moreover, multiple myeloma patients treated with pomalidomide demonstrated increased in vivo γ-globin levels in their erythrocytes. Together, these data reveal the molecular mechanisms by which pomalidomide reactivates fetal hemoglobin, reinforcing its potential as a treatment for patients with β-hemoglobinopathies.

  16. Construction of a recombinant bacterial plasmid containing DNA sequences for a mouse embryonic globin chain.

    PubMed

    Fantoni, A; Bozzoni, I; Ullu, E; Farace, M G

    1979-08-10

    Messenger RNAs for mouse embryonic globins were purified from yolk sac derived eyrthroid cells in mouse fetuses. Double stranded DNAs complementary to these messengers were synthesized and blunt end ligated to a EcoRI digested and DNA polymerase I repaired pBR322 plasmid. Of the ampicillin resistant transformants, one contained a plasmid with globin-specific cDNA. The inserted sequence is about 350 base pairs long. It contains one restriction site for EcoRI and one restriction site for HinfI about 170 and 80 base pairs from one end. The insert is not cleaved by HindIII, HindII, BamHI, PstI, SalI, AvaI, TaqI, HpaII, BglI. A mixture of purified messengers coding for alpha chains and for x, y and z embryonic chains was incubated with the recombinant plasmid and the hybridized messenger was translated in a mRNA depleted reticulocyte lysate protein synthesizing system. The product of translation was identified as a z chain by carboxymethylcellulose cromatography. The recombinant plasmid is named "pBR322-egz" after embryonic globin z.

  17. Neuroglobins, Pivotal Proteins Associated with Emerging Neural Systems and Precursors of Metazoan Globin Diversity

    PubMed Central

    Lechauve, Christophe; Jager, Muriel; Laguerre, Laurent; Kiger, Laurent; Correc, Gaëlle; Leroux, Cédric; Vinogradov, Serge; Czjzek, Mirjam; Marden, Michael C.; Bailly, Xavier

    2013-01-01

    Neuroglobins, previously thought to be restricted to vertebrate neurons, were detected in the brain of a photosymbiotic acoel, Symsagittifera roscoffensis, and in neurosensory cells of the jellyfish Clytia hemisphaerica. For the neuroglobin of S. roscoffensis, a member of a lineage that originated either at the base of the bilateria or of the deuterostome clade, we report the ligand binding properties, crystal structure at 2.3 Å, and brain immunocytochemical pattern. We also describe in situ hybridizations of two neuroglobins specifically expressed in differentiating nematocytes (neurosensory cells) and in statocytes (ciliated mechanosensory cells) of C. hemisphaerica, a member of the early branching animal phylum cnidaria. In silico searches using these neuroglobins as queries revealed the presence of previously unidentified neuroglobin-like sequences in most metazoan lineages. Because neural systems are almost ubiquitous in metazoa, the constitutive expression of neuroglobin-like proteins strongly supports the notion of an intimate association of neuroglobins with the evolution of animal neural systems and hints at the preservation of a vitally important function. Neuroglobins were probably recruited in the first protoneurons in early metazoans from globin precursors. Neuroglobins were identified in choanoflagellates, sponges, and placozoans and were conserved during nervous system evolution. Because the origin of neuroglobins predates the other metazoan globins, it is likely that neuroglobin gene duplication followed by co-option and subfunctionalization led to the emergence of globin families in protostomes and deuterostomes (i.e. convergent evolution). PMID:23288852

  18. Stress Granules contribute to α-globin homeostasis in differentiating erythroid cells

    PubMed Central

    Ghisolfi, Laura; Dutt, Shilpee; McConkey, Marie E.; Ebert, Benjamin L.; Anderson, Paul

    2012-01-01

    Hemoglobin is the major biosynthetic product of developing erythroid cells. Assembly of hemoglobin requires the balanced production of globin protein and the oxygen-carrying heme moiety. The heme-regulated inhibitor kinase (HRI) participates in this process by phosphorylating eIF2α and inhibiting the translation of globin protein when levels of free heme are limiting. HRI is also activated in erythroid cells subjected to oxidative stress. Phospho-eIF2α-mediated translational repression induces the assembly of stress granules (SG), cytoplasmic foci that harbor untranslated mRNAs and promote the survival of cells subjected to adverse environmental conditions. We have found that differentiating erythroid, but not myelomonocytic or megakaryocytic, murine and human progenitor cells assemble SGs, in vitro and in vivo. Targeted knockdown of HRI or G3BP, a protein required for SG assembly, inhibits spontaneous and arsenite-induced assembly of SGs in erythroid progenitor cells. This is accompanied by reduced globin production and increased apoptosis suggesting that G3BP+ SGs facilitate the survival of developing erythroid cells. PMID:22452989

  19. Expression of β-globin by cancer cells promotes cell survival during blood-borne dissemination

    PubMed Central

    Zheng, Yu; Miyamoto, David T.; Wittner, Ben S.; Sullivan, James P.; Aceto, Nicola; Jordan, Nicole Vincent; Yu, Min; Karabacak, Nezihi Murat; Comaills, Valentine; Morris, Robert; Desai, Rushil; Desai, Niyati; Emmons, Erin; Milner, John D.; Lee, Richard J.; Wu, Chin-Lee; Sequist, Lecia V.; Haas, Wilhelm; Ting, David T.; Toner, Mehmet; Ramaswamy, Sridhar; Maheswaran, Shyamala; Haber, Daniel A.

    2017-01-01

    Metastasis-competent circulating tumour cells (CTCs) experience oxidative stress in the bloodstream, but their survival mechanisms are not well defined. Here, comparing single-cell RNA-Seq profiles of CTCs from breast, prostate and lung cancers, we observe consistent induction of β-globin (HBB), but not its partner α-globin (HBA). The tumour-specific origin of HBB is confirmed by sequence polymorphisms within human xenograft-derived CTCs in mouse models. Increased intracellular reactive oxygen species (ROS) in cultured breast CTCs triggers HBB induction, mediated through the transcriptional regulator KLF4. Depletion of HBB in CTC-derived cultures has minimal effects on primary tumour growth, but it greatly increases apoptosis following ROS exposure, and dramatically reduces CTC-derived lung metastases. These effects are reversed by the anti-oxidant N-Acetyl Cysteine. Conversely, overexpression of HBB is sufficient to suppress intracellular ROS within CTCs. Altogether, these observations suggest that β-globin is selectively deregulated in cancer cells, mediating a cytoprotective effect during blood-borne metastasis. PMID:28181495

  20. Analysis of delta-globin gene alleles in the Sicilian population: identification of five new mutations.

    PubMed

    Giambona, Antonino; Passarello, Cristina; Ruggeri, Gaetano; Renda, Disma; Teresi, Pietro; Anzà, Maurizio; Maggio, Aurelio

    2006-12-01

    Although delta-globin gene (HBD MIM#142000) mutations have no clinical implications, co-inheritance of beta- and delta-thalassemia may lead to misdiagnosis. Among 7,153 samples studied for beta-thalassemia, 205 samples with lower than expected HbA2 levels were selected for our analysis and 183 samples (2.5%) were positive for delta-globin gene mutations. Twelve different mutations were detected, and among these five have not been not previously described (HbA2-Catania HBD c.8A-->T, HbA2-Corleone HBD c.41C-->A, HbA2-Ventimiglia HBD c.212C-->G, HbA2-Montechiaro HBD c.260C-->A, and HbA2-Bagheria HBD c.422C-->T). This study suggests that delta-globin gene defects are very common in Sicily. Thus, these mutations need to be considered during beta-thalassemia screening to avoid false negative results in the detection of at-risk couples.

  1. Characterization of the molecularly cloned murine alpha-globin transcription factor CP2.

    PubMed

    Lim, L C; Fang, L; Swendeman, S L; Sheffery, M

    1993-08-25

    We recently cloned human and murine cDNAs that encode CP2, a transcription factor that interacts with the murine alpha-globin promoter. In this report, we exploited our ability to express CP2 in bacteria and eukaryotic cells to further investigate factor activities in vitro and in vivo. CP2 expressed in bacteria was significantly enriched and used in a series of DNase I footprinting and electrophoretic gel shift assays. The results suggest that CP2 binds a hyphenated recognition sequence motif that spans one DNA helix turn. In addition, the enriched bacterial protein activated transcription of alpha-globin promoter templates approximately 3- to 4-fold in vitro. We then tested the effect of elevating CP2 levels 2.5- to 5.5-fold in vivo using both transient and stable transformation assays. When a reporter construct comprised of the intact murine alpha-globin promoter driving the bacterial chloramphenicol acetyltransferase (CAT) gene was introduced into these overexpressing cells, we observed a 3- to 6-fold increase in CAT activity when compared to cells expressing normal levels of CP2. These results define the CP2 factor binding site in more detail and help characterize the activities of the factor in vivo.

  2. Progress in Neuroprotective Strategies for Preventing Epilepsy

    PubMed Central

    Acharya, Munjal M.; Hattiangady, Bharathi; Shetty, Ashok K.

    2008-01-01

    Neuroprotection is increasingly considered as a promising therapy for preventing and treating temporal lobe epilepsy (TLE). The development of chronic TLE, also termed as epileptogenesis, is a dynamic process. An initial precipitating injury (IPI) such as the status epilepticus (SE) leads to neurodegeneration, abnormal reorganization of the brain circuitry and a significant loss of functional inhibition. All of these changes likely contribute to the development of chronic epilepsy, characterized by spontaneous recurrent motor seizures (SRMS) and learning and memory deficits. The purpose of this review is to discuss the current state of knowledge pertaining to neuroprotection in epileptic conditions, and to highlight the efficacy of distinct neuroprotective strategies for preventing or treating chronic TLE. Although the administration of certain conventional and new generation antiepileptic drugs is effective for primary neuroprotection such as reduced neurodegeneration after acute seizures or the SE, their competence for preventing the development of chronic epilepsy after an IPI is either unknown or not promising. On the other hand, alternative strategies such as the ketogenic diet therapy, administration of distinct neurotrophic factors, hormones or antioxidants seem useful for preventing and treating chronic TLE. However, long term studies on the efficacy of these approaches introduced at different time-points after the SE or an IPI are lacking. Additionally, grafting of fetal hippocampal cells at early time-points after an IPI holds considerable promise for preventing TLE, though issues regarding availability of donor cells, ethical concerns, timing of grafting after SE, and durability of graft-mediated seizure suppression need to be resolved for further advances with this approach. Overall, from the studies performed so far, there is consensus that neuroprotective strategies need to be employed as quickly as possible after the onset of the SE or an IPI for

  3. Prolactin mediates neuroprotection against excitotoxicity in primary cell cultures of hippocampal neurons via its receptor.

    PubMed

    Vergara-Castañeda, E; Grattan, D R; Pasantes-Morales, H; Pérez-Domínguez, M; Cabrera-Reyes, E A; Morales, T; Cerbón, M

    2016-04-01

    Recently it has been reported that prolactin (PRL) exerts a neuroprotective effect against excitotoxicity in hippocampus in the rat in vivo models. However, the exact mechanism by which PRL mediates this effect is not completely understood. The aim of our study was to assess whether prolactin exerts neuroprotection against excitotoxicity in an in vitro model using primary cell cultures of hippocampal neurons, and to determine whether this effect is mediated via the prolactin receptor (PRLR). Primary cell cultures of rat hippocampal neurons were used in all experiments, gene expression was evaluated by RT-qPCR, and protein expression was assessed by Western blot analysis and immunocytochemistry. Cell viability was assessed by using the MTT method. The results demonstrated that PRL treatment of neurons from primary cultures did not modify cell viability, but that it exerted a neuroprotective effect, with cells treated with PRL showing a significant increase of viability after glutamate (Glu)--induced excitotoxicity as compared with neurons treated with Glu alone. Cultured neurons expressed mRNA for both PRL and its receptor (PRLR), and both PRL and PRLR expression levels changed after the excitotoxic insult. Interestingly, the PRLR protein was detected as two main isoforms of 100 and 40 kDa as compared with that expressed in hypothalamic cells, which was present only as a 30 kDa variant. On the other hand, PRL was not detected in neuron cultures, either by western blot or by immunohistochemistry. Neuroprotection induced by PRL was significantly blocked by specific oligonucleotides against PRLR, thus suggesting that the PRL role is mediated by its receptor expressed in these neurons. The overall results indicated that PRL induces neuroprotection in neurons from primary cell cultures.

  4. Differentiation of the mRNA transcripts originating from the alpha 1- and alpha 2-globin loci in normals and alpha-thalassemics.

    PubMed

    Liebhaber, S A; Kan, Y W

    1981-08-01

    The alpha-globin polypeptide is encoded by two adjacent genes, alpha 1 and alpha 2. In the normal diploid state (alpha alpha/alpha alpha) all four alpha-globin genes are expressed. Loss or dysfunction of one or more of these genes leads to deficient alpha-globin production and results in alpha-thalassemia. We present a technique to differentially assess the steady-state levels of the alpha 1- and alpha-2-globin messenger RNA (mRNA) transcripts and thus delineate the relative level of expression of the two alpha-globin loci in a variety of alpha-thalassemia states. Only alpha 1 mRNA was produced in the alpha-thalassemia-2 haplotype (-alpha) (one of the two alpha-globin genes deleted from chromosome 16). This confirms previous gene mapping data which demonstrate deletion of the alpha 2 gene. The triple alpha-globin gene haplotype (alpha alpha alpha) is the reciprocal of the alpha-thalassemia-2 haplotype and thus contains an extra alpha 2-globin gene. RNA from this haplotype contained a greater than normal level of alpha 2-relative to alpha 1-globin mRNA. This data implies that the extra alpha 2 gene in the triple alpha-globin haplotype is functional. We detected a relative instability of the alpha 2-globin mRNA encoding the alpha-globin structural mutant Constant Spring. This instability may contribute to the low level of expression of the alpha-Constant Spring protein. In a Chinese patient with nondeletion hemoglobin-H disease (- -/alpha alpha T) (both alpha-globin genes are present but not fully functional) a normal ratio was maintained between the levels of alpha 1- and alpha 2-globin mRNA, implying that mRNA production from both alpha-globin genes is suppressed in a balanced manner. These observations extended previous findings concerning the structural rearrangements in the deletion types of alpha-thalassemia and the pathophysiology of two nondeletion variants.

  5. Meta-analysis of Creatine for neuroprotection against Parkinson's disease.

    PubMed

    Attia, Attia; Ahmed, Hussien; Gadelkarim, Mohamed; Morsi, Mahmoud; Awad, Kamal; Elnenny, Mohamed; Ghanem, Esraa; El-Jafaary, Shaimaa; Negida, Ahmed

    2016-11-04

    Background Creatine is an antioxidant agent that showed neuroprotective effects in animal models of Parkinson's disease (PD). Creatine was selected by the National Institute of Neurological Disorders and Stroke as a possible disease modifying agent for Parkinson's disease. Therefore, many clinical trials evaluated the efficacy of creatine for patients with PD. The aim of this systematic review and meta-analysis is to synthesize evidence from published randomized controlled trials (RCTs) about the efficacy of Creatine for patients with PD. Methods We followed PRISMA statement guidelines during the preparation of this systematic review and meta-analysis. A computer literature search for PubMed, EBSCO, web of science and Ovid Midline was carried out. We included RCTs comparing creatine with placebo in terms of motor functions and quality of life. Outcomes of total Unified Parkinson's Disease Rating Scale (UPDRS), UPDRS I, UPDRS II, and UPDRS III were pooled as mean difference (MD) between two groups from baseline to the endpoint. Statistical heterogeneity was assessed by visual inspection of the forest plot and measured by chi-square and I square tests. Results Three RCTs (n=1935) were included in this study. The overall effect did not favor either of the two groups in terms of: UPDRS total score (MD 1.07, 95% CI [3.38 to 1.25], UPDRS III (MD 0.62, 95% CI [2.27 to 1.02]), UPDRS II (MD 0.03, 95% CI [0.81 to 0.86], or UPDRS I (MD 0.03, 95% CI [0.33 to 0.28]). Conclusion Current evidence does not support the use of creatine for neuroprotection against PD. Future well-designed, randomized controlled trials are needed.

  6. Inhibition of transcription and translation of globin messenger RNA in dimethyl sulfoxide-stimulated Friend erythroleukemic cells treated with interferon.

    PubMed Central

    Rossi, G B; Dolei, A; Cioé, L; Benedetto, A; Matarese, G P; Belardelli, F

    1977-01-01

    The addition of appropriate doses of interferon (IF) to cultures of Friend erythroleukemic cells inhibits dimethyl sulfoxide (Me2SO)-stimulated erythroid differentiation. In this study, the synthesis of heme, hemoglobin, and globin mRNA in Me2SO-stimulated cultures, with or without IF added, was compared. Although the hemoglobin content in Me2SO+IF-treated cultures was reduced 6- to 9-fold compared to that of cultures treated with Me2SO alone, there was less than a 2-fold decrease in the amount of heme accumulated. Globin mRNA, although unchanged in size or base sequence, was reduced in content in the Me2SO+IF cultures. The level of reduction of globin mRNA was insufficient to account for the lack of globin synthesis. Thus, it appears that IF may operate on two levels--one involving the transcription of globin mRNA and the other involving its translation. PMID:266723

  7. Electron transfer function versus oxygen delivery: a comparative study for several hexacoordinated globins across the animal kingdom.

    PubMed

    Kiger, Laurent; Tilleman, Lesley; Geuens, Eva; Hoogewijs, David; Lechauve, Christophe; Moens, Luc; Dewilde, Sylvia; Marden, Michael C

    2011-01-01

    Caenorhabditis elegans globin GLB-26 (expressed from gene T22C1.2) has been studied in comparison with human neuroglobin (Ngb) and cytoglobin (Cygb) for its electron transfer properties. GLB-26 exhibits no reversible binding for O(2) and a relatively low CO affinity compared to myoglobin-like globins. These differences arise from its mechanism of gaseous ligand binding since the heme iron of GLB-26 is strongly hexacoordinated in the absence of external ligands; the replacement of this internal ligand, probably the E7 distal histidine, is required before binding of CO or O(2) as for Ngb and Cygb. Interestingly the ferrous bis-histidyl GLB-26 and Ngb, another strongly hexacoordinated globin, can transfer an electron to cytochrome c (Cyt-c) at a high bimolecular rate, comparable to those of inter-protein electron transfer in mitochondria. In addition, GLB-26 displays an unexpectedly rapid oxidation of the ferrous His-Fe-His complex without O(2) actually binding to the iron atom, since the heme is oxidized by O(2) faster than the time for distal histidine dissociation. These efficient mechanisms for electron transfer could indicate a family of hexacoordinated globin which are functionally different from that of pentacoordinated globins.

  8. SIRT1 deacetylates SATB1 to facilitate MAR HS2-MAR ε interaction and promote ε-globin expression.

    PubMed

    Xue, Zheng; Lv, Xiang; Song, Wei; Wang, Xing; Zhao, Guang-Nian; Wang, Wen-Tian; Xiong, Jian; Mao, Bei-Bei; Yu, Wei; Yang, Ben; Wu, Jie; Zhou, Li-Quan; Hao, De-Long; Dong, Wen-Ji; Liu, De-Pei; Liang, Chih-Chuan

    2012-06-01

    The higher order chromatin structure has recently been revealed as a critical new layer of gene transcriptional control. Changes in higher order chromatin structures were shown to correlate with the availability of transcriptional factors and/or MAR (matrix attachment region) binding proteins, which tether genomic DNA to the nuclear matrix. How posttranslational modification to these protein organizers may affect higher order chromatin structure still pending experimental investigation. The type III histone deacetylase silent mating type information regulator 2, S. cerevisiae, homolog 1 (SIRT1) participates in many physiological processes through targeting both histone and transcriptional factors. We show that MAR binding protein SATB1, which mediates chromatin looping in cytokine, MHC-I and β-globin gene loci, as a new type of SIRT1 substrate. SIRT1 expression increased accompanying erythroid differentiation and the strengthening of β-globin cluster higher order chromatin structure, while knockdown of SIRT1 in erythroid k562 cells weakened the long-range interaction between two SATB1 binding sites in the β-globin locus, MAR(HS2) and MAR(ε). We also show that SIRT1 activity significantly affects ε-globin gene expression in a SATB1-dependent manner and that knockdown of SIRT1 largely blocks ε-globin gene activation during erythroid differentiation. Our work proposes that SIRT1 orchestrates changes in higher order chromatin structure during erythropoiesis, and reveals the dynamic higher order chromatin structure regulation at posttranslational modification level.

  9. A New Intergenic α-Globin Deletion (α-αΔ125) Found in a Kabyle Population.

    PubMed

    Singh, Amrathlal Rabbind; Lacan, Philippe; Cadet, Estelle; Bignet, Patricia; Dumesnil, Cécile; Vannier, Jean-Pierre; Joly, Philippe; Rochette, Jacques

    2016-01-01

    We have identified a deletion of 125 bp (α-α(Δ125)) (NG_000006.1: g.37040_37164del) in the α-globin gene cluster in a Kabyle population. A combination of singlex and multiplex polymerase chain reaction (PCR)-based assays have been used to identify the molecular defect. Sequencing of the abnormal PCR amplification product revealed a novel α1-globin promoter deletion. The endpoints of the deletion were characterized by sequencing the deletion junctions of the mutated allele. The observed deletion was located 378 bp upstream of the α1-globin gene transcription initiation site and leaves the α2 gene intact. In some patients, the α-α(Δ125) deletion was shown to segregate with Hb S (HBB: c.20A>T) and/or Hb C (HBB: c.19G>A) or a β-thalassemic allele. The α-α(Δ125) deletion has no discernible effect on red cell indices when inherited with no other abnormal globin genes. The family study demonstrated that the deletion is heritable. This is the only example of an intergenic α2-α1 non coding DNA deletion, leaving the α2-globin gene and the α1 coding part intact.

  10. Novel Neuroprotective Strategies in Ischemic Retinal Lesions

    PubMed Central

    Szabadfi, Krisztina; Mester, Laszlo; Reglodi, Dora; Kiss, Peter; Babai, Norbert; Racz, Boglarka; Kovacs, Krisztina; Szabo, Aliz; Tamas, Andrea; Gabriel, Robert; Atlasz, Tamas

    2010-01-01

    Retinal ischemia can be effectively modeled by permanent bilateral common carotid artery occlusion, which leads to chronic hypoperfusion-induced degeneration in the entire rat retina. The complex pathways leading to retinal cell death offer a complex approach of neuroprotective strategies. In the present review we summarize recent findings with different neuroprotective candidate molecules. We describe the protective effects of intravitreal treatment with: (i) urocortin 2; (ii) a mitochondrial ATP-sensitive K+ channel opener, diazoxide; (iii) a neurotrophic factor, pituitary adenylate cyclase activating polypeptide; and (iv) a novel poly(ADP-ribose) polymerase inhibitor (HO3089). The retinoprotective effects are demonstrated with morphological description and effects on apoptotic pathways using molecular biological techniques. PMID:20386654

  11. Exosomes: Mediators of Neurodegeneration, Neuroprotection and Therapeutics

    PubMed Central

    Kalani, Anuradha; Tyagi, Alka

    2014-01-01

    Exosomes have emerged as prominent mediators of neurodegenerative diseases where they have been shown to carry disease particles such as beta amyloid and prions from their cells of origin to other cells. Their simple structure and ability to cross the blood-brain barrier allow great opportunity to design a “makeup” with drugs and genetic elements, such as siRNA or miRNA, and use them as delivery vehicles for neurotherapeutics. Their role in neuroprotection is evident by the fact that they are involved in the regeneration of peripheral nerves and repair of neuronal injuries. This review is focused on the role of exosomes in mediating neurodegeneration and neuroprotection. PMID:23999871

  12. Current perspective of neuroprotection and glaucoma

    PubMed Central

    Tian, Kailin; Shibata-Germanos, Shannon; Pahlitzsch, Milena; Cordeiro, M Francesca

    2015-01-01

    Glaucoma is the second leading cause of blindness worldwide and is most notably characterized by progressive optic nerve atrophy and advancing loss of retinal ganglion cells (RGCs). The main concomitant factor is the elevated intraocular pressure (IOP). Existing treatments are focused generally on lowering IOP. However, both RGC loss and optic nerve atrophy can independently occur with IOP at normal levels. In recent years, there has been substantial progress in the development of neuroprotective therapies for glaucoma in order to restore vital visual function. The present review intends to offer a brief insight into conventional glaucoma treatments and discuss exciting current developments of mostly preclinical data in novel neuroprotective strategies for glaucoma that include recent advances in noninvasive diagnostics going beyond IOP maintenance for an enhanced global view. Such strategies now target RGC loss and optic nerve damage, opening a critical therapeutic window for preventative monitoring and treatment. PMID:26635467

  13. Neuroprotective Strategies after Neonatal Hypoxic Ischemic Encephalopathy

    PubMed Central

    Dixon, Brandon J.; Reis, Cesar; Ho, Wing Mann; Tang, Jiping; Zhang, John H.

    2015-01-01

    Neonatal hypoxic ischemic encephalopathy (HIE) is a devastating disease that primarily causes neuronal and white matter injury and is among the leading cause of death among infants. Currently there are no well-established treatments; thus, it is important to understand the pathophysiology of the disease and elucidate complications that are creating a gap between basic science and clinical translation. In the development of neuroprotective strategies and translation of experimental results in HIE, there are many limitations and challenges to master based on an appropriate study design, drug delivery properties, dosage, and use in neonates. We will identify understudied targets after HIE, as well as neuroprotective molecules that bring hope to future treatments such as melatonin, topiramate, xenon, interferon-beta, stem cell transplantation. This review will also discuss some of the most recent trials being conducted in the clinical setting and evaluate what directions are needed in the future. PMID:26389893

  14. Neuroprotection in experimental stroke with targeted neurotrophins.

    PubMed

    Wu, Dafang

    2005-01-01

    More than 30 neurotrophins have been identified, and many of them have neuroprotective effects in brain ischemia or injury. However, all the clinical trials with several neurotrophins for the treatment of acute ischemic stroke or neurodegenerative diseases have failed so far, primarily because of their poor blood-brain barrier (BBB) permeability. This article is an overview of recent progress in the research focused on BBB targeted neurotrophins using a chimeric peptide approach, in which antitransferrin receptor antibody was used as a BBB delivery vector, and neurotrophin peptide was conjugated to the antibody via the avidin/biotin technology. Vasoactive intestinal peptide was the first model chimeric peptide to show an enhanced CNS effect after noninvasive peripheral administration. Brain-derived neurotrophic factor (BDNF) chimeric peptide was neuroprotective in rats subjected to transient forebrain ischemia, permanent focal ischemia, or transient focal ischemia. Delayed treatments with the BDNF chimeric peptide showed an effective time window of 1-2 h after ischemia. Basic FGF chimeric peptide was highly effective in the reduction of infarct volume in the rat model of permanent focal ischemia, with lowest effective dose of 1 mug per rat. Future studies in this exciting area include genetically engineered fusion proteins or humanized antibodies for BBB drug targeting with less immunogenicity and reduced working burden in the chemical conjugation, the use of antihuman insulin receptor antibody for higher BBB delivery efficiency, and combination therapies using chimeric neurotrophins plus other neuroprotectants to achieve additive or synergistic effects.

  15. New multipotent tetracyclic tacrines with neuroprotective activity.

    PubMed

    Marco-Contelles, José; León, Rafael; de los Ríos, Cristóbal; García, Antonio G; López, Manuela G; Villarroya, Mercedes

    2006-12-15

    The synthesis and the biological evaluation (neuroprotection, voltage dependent calcium channel blockade, AChE/BuChE inhibitory activity and propidium binding) of new multipotent tetracyclic tacrine analogues (5-13) are described. Compounds 7, 8 and 11 showed a significant neuroprotective effect on neuroblastoma cells subjected to Ca(2+) overload or free radical induced toxicity. These compounds are modest AChE inhibitors [the best inhibitor (11) is 50-fold less potent than tacrine], but proved to be very selective, as for most of them no BuChE inhibition was observed. In addition, the propidium displacement experiments showed that these compounds bind AChE to the peripheral anionic site (PAS) of AChE and, consequently, are potential agents that can prevent the aggregation of beta-amyloid. Overall, compound 8 is a modest and selective AChE inhibitor, but an efficient neuroprotective agent against 70mM K(+) and 60microM H(2)O(2). Based on these results, some of these molecules can be considered as lead candidates for the further development of anti-Alzheimer drugs.

  16. Ginseng: a promising neuroprotective strategy in stroke

    PubMed Central

    Rastogi, Vaibhav; Santiago-Moreno, Juan; Doré, Sylvain

    2015-01-01

    Ginseng is one of the most widely used herbal medicines in the world. It has been used in the treatment of various ailments and to boost immunity for centuries; especially in Asian countries. The most common ginseng variant in traditional herbal medicine is ginseng, which is made from the peeled and dried root of Panax Ginseng. Ginseng has been suggested as an effective treatment for a vast array of neurological disorders, including stroke and other acute and chronic neurodegenerative disorders. Ginseng’s neuroprotective effects are focused on the maintenance of homeostasis. This review involves a comprehensive literature search that highlights aspects of ginseng’s putative neuroprotective effectiveness, focusing on stroke. Attenuation of inflammation through inhibition of various proinflammatory mediators, along with suppression of oxidative stress by various mechanisms, including activation of the cytoprotective transcriptional factor Nrf2, which results in decrease in reactive oxygen species, could account for its neuroprotective efficacy. It can also prevent neuronal death as a result of stroke, thus decreasing anatomical and functional stroke damage. Although there are diverse studies that have investigated the mechanisms involved in the efficacy of ginseng in treating disorders, there is still much that needs to be clarified. Both in vitro and in vivo studies including randomized controlled clinical trials are necessary to develop in-depth knowledge of ginseng and its practical applications. PMID:25653588

  17. Cis-vaccenic acid induces differentiation and up-regulates gamma globin synthesis in K562, JK1 and transgenic mice erythroid progenitor stem cells.

    PubMed

    Aimola, Idowu A; Inuwa, Hajiya M; Nok, Andrew J; Mamman, Aisha I; Bieker, James J

    2016-04-05

    Gamma globin induction remains a promising pharmacological therapeutic treatment mode for sickle cell anemia and beta thalassemia, however Hydroxyurea remains the only FDA approved drug which works via this mechanism. In this regard, we assayed the γ-globin inducing capacity of Cis-vaccenic acid (CVA). CVA induced differentiation of K562, JK1 and transgenic mice primary bone marrow hematopoietic progenitor stem cells. CVA also significantly up-regulated γ-globin gene expression in JK-1 and transgenic mice bone marrow erythroid progenitor stem cells (TMbmEPSCs) but not K562 cells without altering cell viability. Increased γ-globin expression was accompanied by KLF1 suppression in CVA induced JK-1 cells. Erythropoietin induced differentiation of JK-1 cells 24h before CVA induction did not significantly alter CVA induced differentiation and γ-globin expression in JK-1 cells. Inhibition of JK-1 and Transgenic mice bone marrow erythroid progenitor stem cells Fatty acid elongase 5 (Elovl5) and Δ(9) desaturase suppressed the γ-globin inductive effects of CVA. CVA treatment failed to rescue γ-globin expression in Elovl5 and Δ(9)-desaturase inhibited cells 48 h post inhibition in JK-1 cells. The data suggests that CVA directly modulates differentiation of JK-1 and TMbmEPSCs, and indirectly modulates γ-globin gene expression in these cells. Our findings provide important clues for further evaluations of CVA as a potential fetal hemoglobin therapeutic inducer.

  18. Recombinant AAV2-mediated β-globin expression in human fetal hematopoietic cells from the aborted fetuses with β-thalassemia major.

    PubMed

    Tian, Jing; Wang, Feng; Xue, Jin-Feng; Zhao, Fei; Song, Liu-Jiang; Tan, Meng-Qun

    2011-06-01

    Genetic correction of autologous hematopoietic stem cells has been proposed as an attractive treatment method for β-thalassemia. Our previous study has shown that recombinant adeno-associated virus 2 (rAAV2) efficiently transduces human fetal liver hematopoietic cells, and mediates the expression of the human β-globin gene in vivo. In this study, we investigated whether rAAV2 could also mediate the expression of normal β-globin gene in human hematopoietic cells from β-thalassemia patients. Human hematopoietic cells were isolated from aborted β-thalassemia major fetuses, transduced with rAAV2-β-globin, and then transplanted into nude mice. We found that rAAV2-β-globin transduced human fetal hematopoietic cells, as determined by allele-specific PCR analysis. Furthermore, β-globin transgene expression was detected in human hematopoietic cells up to 70 days post-transplantation in the recipient mice. High-pressure liquid chromatography analysis showed that human β-globin expression levels increased significantly compared with control, as indicated by a 1.2-2.8-fold increase in the ratio of β/α-globin chain. These novel data demonstrate that rAAV2 can transduce and mediate the normal β-globin gene expression in fetal hematopoietic cells from β-thalassemia patients. Our findings further support the potential use of rAAV-based gene therapy in the treatment of human β-thalassemia.

  19. Generation and Characterization of a Transgenic Mouse Carrying a Functional Human β-Globin Gene with the IVSI-6 Thalassemia Mutation

    PubMed Central

    Mancini, Irene; Lampronti, Ilaria; Salvatori, Francesca; Fabbri, Enrica; Zuccato, Cristina; Cosenza, Lucia C.; Montagner, Giulia; Borgatti, Monica; Altruda, Fiorella; Fagoonee, Sharmila; Carandina, Gianni; Aiello, Vincenzo; Breda, Laura; Rivella, Stefano; Gambari, Roberto

    2015-01-01

    Mouse models that carry mutations causing thalassemia represent a suitable tool to test in vivo new mutation-specific therapeutic approaches. Transgenic mice carrying the β-globin IVSI-6 mutation (the most frequent in Middle-Eastern regions and recurrent in Italy and Greece) are, at present, not available. We report the production and characterization of a transgenic mouse line (TG-β-IVSI-6) carrying the IVSI-6 thalassemia point mutation within the human β-globin gene. In the TG-β-IVSI-6 mouse (a) the transgenic integration region is located in mouse chromosome 7; (b) the expression of the transgene is tissue specific; (c) as expected, normally spliced human β-globin mRNA is produced, giving rise to β-globin production and formation of a human-mouse tetrameric chimeric hemoglobin muα-globin2/huβ-globin2 and, more importantly, (d) the aberrant β-globin-IVSI-6 RNAs are present in blood cells. The TG-β-IVSI-6 mouse reproduces the molecular features of IVSI-6 β-thalassemia and might be used as an in vivo model to characterize the effects of antisense oligodeoxynucleotides targeting the cryptic sites responsible for the generation of aberrantly spliced β-globin RNA sequences, caused by the IVSI-6 mutation. These experiments are expected to be crucial for the development of a personalized therapy for β-thalassemia. PMID:26097845

  20. The beta-globin gene in Sardinian delta beta 0-thalassemia carries a C----T nonsense mutation at codon 39.

    PubMed

    Guida, S; Giglioni, B; Comi, P; Ottolenghi, S; Camaschella, C; Saglio, G

    1984-04-01

    Sardinian delta beta 0-thalassemia is an inherited syndrome characterized by the inactivity of the beta-globin gene and the persistent activity of the fetal gamma-globin genes, particularly the A gamma-globin gene. Previous mapping studies with restriction enzymes failed to show any abnormality in the non-alpha globin gene cluster. We have now examined the possibility that this syndrome might result from a single rather than two different defects. Restriction enzyme polymorphisms linked to the delta beta 0-thalassemic non-alpha globin fragments were defined providing the basis for cloning the delta beta 0-thalassemic beta-globin gene from the DNA of a heterozygous patient. This gene appears to carry a C----T single mutation causing the appearance of a stop codon at amino acid position 39 of the beta-globin gene. This mutation was previously reported in beta 0-thalassemic patients, in linkage with different haplotypes. We conclude that Sardinian delta beta 0-thalassemia is the result of two separate mutations, the former one (unknown) responsible for persistent expression of gamma-globin genes, the latter for beta 0-thalassemia.

  1. Cis-vaccenic acid induces differentiation and up-regulates gamma globin synthesis in K562, JK1 and transgenic mice erythroid progenitor stem cells

    PubMed Central

    Aimola, Idowu A.; Inuwa, Hajiya M.; Nok, Andrew J.; Mamman, Aisha I.; Bieker, James J.

    2017-01-01

    Gamma globin induction remains a promising pharmacological therapeutic treatment mode for sickle cell anemia and beta thalassemia, however Hydroxyurea remains the only FDA approved drug which works via this mechanism. In this regard, we assayed the γ-globin inducing capacity of Cis-vaccenic acid (CVA). CVA induced differentiation of K562, JK1 and transgenic mice primary bone marrow hematopoietic progenitor stem cells. CVA also significantly up-regulated γ-globin gene expression in JK-1 and transgenic mice bone marrow erythroid progenitor stem cells (TMbmEPSCs) but not K562 cells without altering cell viability. Increased γ-globin expression was accompanied by KLF1 suppression in CVA induced JK-1 cells. Erythropoietin induced differentiation of JK-1 cells 24 h before CVA induction did not significantly alter CVA induced differentiation and γ-globin expression in JK-1 cells. Inhibition of JK-1 and Transgenic mice bone marrow erythroid progenitor stem cells Fatty acid elongase 5 (Elovl5) and Δ9 desaturase suppressed the γ-globin inductive effects of CVA. CVA treatment failed to rescue γ-globin expression in Elovl5 and Δ9-desaturase inhibited cells 48 h post inhibition in JK-1 cells. The data suggests that CVA directly modulates differentiation of JK-1 and TMbmEPSCs, and indirectly modulates γ-globin gene expression in these cells. Our findings provide important clues for further evaluations of CVA as a potential fetal hemoglobin therapeutic inducer PMID:26879870

  2. Replication of alpha and beta globin DNA sequences occurs during early S phase in murine erythroleukemia cells.

    PubMed Central

    Epner, E; Rifkind, R A; Marks, P A

    1981-01-01

    Murine erythroleukemia cells (MELC) can be induced to express the characteristics of erythroid differentiation by a variety of agents. Previous studies indicate that an action of inducer, occurring during early S phase, may be critical to the expression of differentiated characteristics such as initiation of accumulation of newly synthesized alpha and beta globin mRNAs. In this investigation, the time of replication of globin genes in MELC was studied. DNA was isolated from synchronous populations of cells obtained by centrifugal elutriation. Newly replicated DNA sequences were prepared from synchronized cells cultured for 1 1/2 hr with 5-bromodeoxyuridine; bromodeoxyuridine-containing DNA was isolated by CsCl gradient centrifugation. By employing cloned probes for hybridization to newly synthesized DNA, it was found that alpha and beta globin gene sequences are replicated early in S phase, while ribosomal RNA gene sequences are replicated to about the same extent in early, middle, and late S phases. PMID:6942415

  3. Polymerized and polyethylene glycol-conjugated hemoglobins: a globin-based calibration curve for dynamic light scattering analysis.

    PubMed

    Faggiano, Serena; Ronda, Luca; Bruno, Stefano; Jankevics, Hanna; Mozzarelli, Andrea

    2010-06-15

    Dynamic light scattering (DLS) is a technique capable of determining the hydrodynamic radius of proteins. From this parameter, a molecular weight can be assessed provided that an appropriate calibration curve is available. To this goal, a globin-based calibration curve was used to determine the polymerization state of a recombinant hemoglobin-based oxygen carrier and to assess the equivalent molecular weight of hemoglobins conjugated with polyethylene glycol molecules. The good agreement between DLS values and those obtained from gel filtration chromatography is a consequence of the high similarity in structure, shape, and density within the globin superfamily. Moreover, globins and heme proteins in general share similar spectroscopic properties, thereby reducing possible systematic errors associated with the absorption of the probe radiation by the chromophore.

  4. Gene Therapy of the β-Hemoglobinopathies by Lentiviral Transfer of the βA(T87Q)-Globin Gene

    PubMed Central

    Negre, Olivier; Eggimann, Anne-Virginie; Beuzard, Yves; Ribeil, Jean-Antoine; Bourget, Philippe; Borwornpinyo, Suparerk; Hongeng, Suradej; Hacein-Bey, Salima; Cavazzana, Marina; Leboulch, Philippe; Payen, Emmanuel

    2016-01-01

    β-globin gene disorders are the most prevalent inherited diseases worldwide and result from abnormal β-globin synthesis or structure. Novel therapeutic approaches are being developed in an effort to move beyond palliative management. Gene therapy, by ex vivo lentiviral transfer of a therapeutic β-globin gene derivative (βAT87Q-globin) to hematopoietic stem cells, driven by cis-regulatory elements that confer high, erythroid-specific expression, has been evaluated in human clinical trials over the past 8 years. βAT87Q-globin is used both as a strong inhibitor of HbS polymerization and as a biomarker. While long-term studies are underway in multiple centers in Europe and in the United States, proof-of-principle of efficacy and safety has already been obtained in multiple patients with β-thalassemia and sickle cell disease. PMID:26886832

  5. Gamma-interferon alters globin gene expression in neonatal and adult erythroid cells

    SciTech Connect

    Miller, B.A.; Perrine, S.P.; Antognetti, G.; Perlmutter, D.H.; Emerson, S.G.; Sieff, C.; Faller, D.V.

    1987-06-01

    The effect of gamma-interferon on fetal hemoglobin synthesis by purified cord blood, fetal liver, and adult bone marrow erythroid progenitors was studied with a radioligand assay to measure hemoglobin production by BFU-E-derived erythroblasts. Coculture with recombinant gamma-interferon resulted in a significant and dose-dependent decrease in fetal hemoglobin production by neonatal and adult, but not fetal, BFU-E-derived erythroblasts. Accumulation of fetal hemoglobin by cord blood BFU-E-derived erythroblasts decreased up to 38.1% of control cultures (erythropoietin only). Synthesis of both G gamma/A gamma globin was decreased, since the G gamma/A gamma ratio was unchanged. Picograms fetal hemoglobin per cell was decreased by gamma-interferon addition, but picograms total hemoglobin was unchanged, demonstrating that a reciprocal increase in beta-globin production occurred in cultures treated with gamma-interferon. No toxic effect of gamma-interferon on colony growth was noted. The addition of gamma-interferon to cultures resulted in a decrease in the percentage of HbF produced by adult BFU-E-derived cells to 45.6% of control. Fetal hemoglobin production by cord blood, fetal liver, and adult bone marrow erythroid progenitors, was not significantly affected by the addition of recombinant GM-CSF, recombinant interleukin 1 (IL-1), recombinant IL-2, or recombinant alpha-interferon. Although fetal progenitor cells appear unable to alter their fetal hemoglobin program in response to any of the growth factors added here, the interaction of neonatal and adult erythroid progenitors with gamma-interferon results in an altered expression of globin genes.

  6. Fetal stromal niches enhance human embryonic stem cell-derived hematopoietic differentiation and globin switch.

    PubMed

    Lee, King Yiu; Fong, Benny Shu Pan; Tsang, Kam Sze; Lau, Tze Kin; Ng, Pak Cheung; Lam, Audrey Carmen; Chan, Kathy Yuen Yee; Wang, Chi Chiu; Kung, Hsiang Fu; Li, Chi Kong; Li, Karen

    2011-01-01

    Hematopoiesis during mammalian embryonic development has been perceived as a migratory phenomenon, from the yolk sac blood island to the aorta-gonad-mesonephros (AGM) region, fetal liver (FL), and subsequently, the fetal bone marrow. In this study, we investigated the effects of primary stromal cells from fetal hematopoietic niches and their conditioned media (CM), applied singly or in sequential orders, on induction of human embryonic stem cells, H1, H9, and H14 lines, to hematopoietic cells. Our results demonstrated that stromal support of FL, AGM + FL, and AGM + FL + fetal bone marrow significantly increased the proliferation of embryoid bodies (EB) at day 18 of hematopoietic induction in the presence of thrombopoietin, stem cell factor, and Flt-3 ligand. AGM + FL also increased hematopoietic colony-forming unit (CFU) formation. CM did not enhance EB proliferation but CM of FL and AGM + FL significantly increased the density of total CFU and early erythroid (burst-forming unit) progenitors. Increased commitment to the hematopoietic lineage was demonstrated by enhanced expressions of CD45, alpha-, beta-, and gamma-globins in CFU at day 32, compared with EB at day 18. CM of FL significantly increased these globin expressions, indicating enhanced switches from embryonic to fetal and adult erythropoiesis. Over 50% and 10% of cells derived from CFU expressed CD45 and beta-globin proteins, respectively. Expressions of hematopoietic regulatory genes (Bmi-1, β-Catenin, Hox B4, GATA-1) were increased in EB or CFU cultures supported by FL or sequential CM. Our study has provided a strategy for derivation of hematopoietic cells from embryonic stem cells under the influence of primary hematopoietic niches and CM, particularly the FL.

  7. Repeated evolution of chimeric fusion genes in the β-globin gene family of laurasiatherian mammals.

    PubMed

    Gaudry, Michael J; Storz, Jay F; Butts, Gary Tyler; Campbell, Kevin L; Hoffmann, Federico G

    2014-05-09

    The evolutionary fate of chimeric fusion genes may be strongly influenced by their recombinational mode of origin and the nature of functional divergence between the parental genes. In the β-globin gene family of placental mammals, the two postnatally expressed δ- and β-globin genes (HBD and HBB, respectively) have a propensity for recombinational exchange via gene conversion and unequal crossing-over. In the latter case, there are good reasons to expect differences in retention rates for the reciprocal HBB/HBD and HBD/HBB fusion genes due to thalassemia pathologies associated with the HBD/HBB "Lepore" deletion mutant in humans. Here, we report a comparative genomic analysis of the mammalian β-globin gene cluster, which revealed that chimeric HBB/HBD fusion genes originated independently in four separate lineages of laurasiatherian mammals: Eulipotyphlans (shrews, moles, and hedgehogs), carnivores, microchiropteran bats, and cetaceans. In cases where an independently derived "anti-Lepore" duplication mutant has become fixed, the parental HBD and/or HBB genes have typically been inactivated or deleted, so that the newly created HBB/HBD fusion gene is primarily responsible for synthesizing the β-type subunits of adult and fetal hemoglobin (Hb). Contrary to conventional wisdom that the HBD gene is a vestigial relict that is typically inactivated or expressed at negligible levels, we show that HBD-like genes often encode a substantial fraction (20-100%) of β-chain Hbs in laurasiatherian taxa. Our results indicate that the ascendancy or resuscitation of genes with HBD-like coding sequence requires the secondary acquisition of HBB-like promoter sequence via unequal crossing-over or interparalog gene conversion.

  8. Carbamylated Erythropoietin: A Prospective Drug Candidate for Neuroprotection

    PubMed Central

    Chen, Jianmin; Yang, Zheng; Zhang, Xiao

    2015-01-01

    Carbamylated erythropoietin (cEpo), which is neuroprotective but lacks hematopoietic activity, has been attracting rising concerns. However, the cellular and molecular mechanisms involved in the process of neuroprotection of cEpo are not well known. Based on several recent reports, the neuroprotective effects of cEpo are illustrated, and signaling pathways involved in the different effects of erythropoietin and cEpo are discussed. These newly reported researches may shed new light on the development and application of cEpo, a prospective drug candidate for neuroprotection. PMID:26862298

  9. Oxygen association-dissociation and stability analysis on mouse hemoglobins with mutant alpha- and beta-globins.

    PubMed

    D'Surney, S J; Popp, R A

    1992-10-01

    Oxygen association-dissociation and hemoglobin stability analysis were performed on mouse hemoglobins with amino acid substitutions in an alpha-globin (alpha 89, His to Leu) and a beta-globin (beta 59, Lys to Ile). The variant alpha-globin, designated chain 5m in the Hbag2 haplotype, had an high oxygen affinity and was stable. The variant beta-globin, (beta s2) of the Hbbs2 haplotype, also had an elevated oxygen affinity and in addition was moderately unstable in 19% isopropanol. Hemoglobins from the expected nine (Hbag2/Hbag2;Hbbs/Hbbs x Hbaa/Hbaa;Hbbs2/Hbbs2) F2 genotypes can be grouped into five classes of P50 values characterized by strict additivity and dependency on mutant globin gene dosage; physiologically, both globin variants gave indistinguishable effects on oxygen affinity. The hemoglobin of normal mice (Hbaa/Hbaa;Hbbs/Hbbs) had a P50 = 40 mm Hg and the hemoglobin of Hbag2/Hbag2;Hbbs2/Hbbs2 F2 mice had a P50 = 25 mm Hg (human P50 = 26 mm Hg). Peripheral blood from Hbag2/Hbag2;Hbbs/Hbbs, Hbaa/Hbaa;Hbbs2/Hbbs2 and Hbag2/Hbag2;Hbbs2/Hbbs2 mice exhibited normal hematological values except for a slightly higher hematocrit for Hbag2/Hbag2;Hbbs/Hbbs and Hbag2/Hbag2;Hbbs2/Hbbs2 mice, slightly elevated red cell counts for mice of the three mutant genotypes, and significantly lower values for the mean corpuscular volume and mean corpuscular hemoglobin for Hbag2/Hbag2;Hbbs2/Hbbs2 mice.

  10. Molecular Properties of Globin Channels and Pores: Role of Cholesterol in Ligand Binding and Movement

    PubMed Central

    Morrill, Gene A.; Kostellow, Adele B.

    2016-01-01

    Globins contain one or more cavities that control or affect such functions as ligand movement and ligand binding. Here we report that the extended globin family [cytoglobin (Cygb); neuroglobin (Ngb); myoglobin (Mb); hemoglobin (Hb) subunits Hba(α); and Hbb(β)] contain either a transmembrane (TM) helix or pore-lining region as well as internal cavities. Protein motif/domain analyses indicate that Ngb and Hbb each contain 5 cholesterol- binding (CRAC/CARC) domains and 1 caveolin binding motif, whereas the Cygb dimer has 6 cholesterol-binding domains but lacks caveolin-binding motifs. Mb and Hba each exhibit 2 cholesterol-binding domains and also lack caveolin-binding motifs. The Hb αβ-tetramer contains 14 cholesterol-binding domains. Computer algorithms indicate that Cygb and Ngb cavities display multiple partitions and C-terminal pore-lining regions, whereas Mb has three major cavities plus a C-terminal pore-lining region. The Hb tetramer exhibits a large internal cavity but the subunits differ in that they contain a C-terminal TM helix (Hba) and pore-lining region (Hbb). The cavities include 43 of 190 Cygb residues, 38 of 151 of Ngb residues, 55 of 154 Mb residues, and 137 of 688 residues in the Hb tetramer. Each cavity complex includes 6 to 8 residues of the TM helix or pore-lining region and CRAC/CARC domains exist within all cavities. Erythrocyte Hb αβ-tetramers are largely cytosolic but also bind to a membrane anion exchange protein, “band 3,” which contains a large internal cavity and 12 TM helices (5 being pore-lining regions). The Hba TM helix may be the erythrocyte membrane “band 3” attachment site. “Band 3” contributes 4 caveolin binding motifs and 10 CRAC/CARC domains. Cholesterol binding may create lipid-disordered phases that alter globin cavities and facilitate ligand movement, permitting ion channel formation and conformational changes that orchestrate anion and ligand (O2, CO2, NO) movement within the large internal cavities and

  11. Electrophoretic separation of A gamma and G gamma human globin chains in Nonidet P-40.

    PubMed

    Guerrasio, A; Saglio, G; Mazza, U; Pich, P; Camaschella, C; Ricco, G; Gianazza, E; Righetti, P G

    1979-11-15

    Electrophoresis in cellulose acetate in the presence of 3% Nonidet P-40 can resolve two neutral genetic variants, A gamma and G gamma human fetal globin chains. The ratio of these two chains, determined by densitometry of the electrophoretic strips, is in excellent agreement with the Gly-Ala ratio obtained by chemical analysis of the cyanogen bromide fragment gamma CB3. It is suggested that the detergent binds preferentially to the hydrophobic amino acid segment 133-141 in the A gamma chain, thus masking either a Lys or an Arg residue at the two extremes.

  12. Biophysical Characterisation of Globins and Multi-Heme Cytochromes Using Electron Paramagnetic Resonance and Optical Spectroscopy

    NASA Astrophysics Data System (ADS)

    Desmet, Filip

    Heme proteins of different families were investigated in this work, using a combination of pulsed and continuous-wave electron paramagnetic resonance (EPR) spectroscopy, optical absorption spectroscopy, resonance Raman spectroscopy and laser flash photolysis. The first class of proteins that were investigated, were the globins. The globin-domain of the globin-coupled sensor of the bacterium Geobacter sulfurreducens was studied in detail using different pulsed EPR techniques (HYSCORE and Mims ENDOR). The results of this pulsed EPR study are compared with the results of the optical investigation and the crystal structure of the protein. The second globin, which was studied, is the Protoglobin of Methanosarcina acetivorans, various mutants of this protein were studied using laser flash photolysis and Raman spectroscopy to unravel the link between this protein's unusual structure and its ligand-binding kinetics. In addition to this, the CN -bound form of this protein was investigated using EPR and the influence of the strong deformation of the heme on the unusual low gz values is discussed. Finally, the neuroglobins of three species of fishes, Danio rerio, Dissostichus mawsoni and Chaenocephalus aceratus are studied. The influence of the presence or absence of two cysteine residues in the C-D and D-region of the protein on the EPR spectrum, and the possible formation of a disulfide bond is studied. The second group of proteins that were studied in this thesis belong to the family of the cytochromes. First the Mouse tumor suppressor cytochrome b561 was studied, the results of a Raman and EPR investigation are compared to the Human orthologue of the protein. Secondly, the tonoplast cytochrome b561 of Arabidopsis was investigated in its natural form and in two double-mutant forms, in which the heme at the extravesicular side was removed. The results of this investigation are then compared with two models in literature that predict the localisation of the hemes in this

  13. Molecular Properties of Globin Channels and Pores: Role of Cholesterol in Ligand Binding and Movement.

    PubMed

    Morrill, Gene A; Kostellow, Adele B

    2016-01-01

    Globins contain one or more cavities that control or affect such functions as ligand movement and ligand binding. Here we report that the extended globin family [cytoglobin (Cygb); neuroglobin (Ngb); myoglobin (Mb); hemoglobin (Hb) subunits Hba(α); and Hbb(β)] contain either a transmembrane (TM) helix or pore-lining region as well as internal cavities. Protein motif/domain analyses indicate that Ngb and Hbb each contain 5 cholesterol- binding (CRAC/CARC) domains and 1 caveolin binding motif, whereas the Cygb dimer has 6 cholesterol-binding domains but lacks caveolin-binding motifs. Mb and Hba each exhibit 2 cholesterol-binding domains and also lack caveolin-binding motifs. The Hb αβ-tetramer contains 14 cholesterol-binding domains. Computer algorithms indicate that Cygb and Ngb cavities display multiple partitions and C-terminal pore-lining regions, whereas Mb has three major cavities plus a C-terminal pore-lining region. The Hb tetramer exhibits a large internal cavity but the subunits differ in that they contain a C-terminal TM helix (Hba) and pore-lining region (Hbb). The cavities include 43 of 190 Cygb residues, 38 of 151 of Ngb residues, 55 of 154 Mb residues, and 137 of 688 residues in the Hb tetramer. Each cavity complex includes 6 to 8 residues of the TM helix or pore-lining region and CRAC/CARC domains exist within all cavities. Erythrocyte Hb αβ-tetramers are largely cytosolic but also bind to a membrane anion exchange protein, "band 3," which contains a large internal cavity and 12 TM helices (5 being pore-lining regions). The Hba TM helix may be the erythrocyte membrane "band 3" attachment site. "Band 3" contributes 4 caveolin binding motifs and 10 CRAC/CARC domains. Cholesterol binding may create lipid-disordered phases that alter globin cavities and facilitate ligand movement, permitting ion channel formation and conformational changes that orchestrate anion and ligand (O2, CO2, NO) movement within the large internal cavities and channels of the

  14. Neuroprotection by neuropeptide Y in cell and animal models of Parkinson's disease.

    PubMed

    Decressac, Mickael; Pain, Stéphanie; Chabeauti, Pierre-Yves; Frangeul, Laura; Thiriet, Nathalie; Herzog, Herbert; Vergote, Jackie; Chalon, Sylvie; Jaber, Mohamed; Gaillard, Afsaneh

    2012-09-01

    This study was aimed to investigate the potential neuroprotective effect of neuropeptide Y (NPY) on the survival of dopaminergic cells in both in vitro and in animal models of Parkinson's disease (PD). NPY protected human SH-SY5Y dopaminergic neuroblastoma cells from 6-hydroxydopamine-induced toxicity. In rat and mice models of PD, striatal injection of NPY preserved the nigrostriatal dopamine pathway from degeneration as evidenced by quantification of (1) tyrosine hydroxylase (TH)-positive cells in the substantia nigra pars compacta, levels of (2) striatal tyrosine hydroxylase and dopamine transporter, (3) dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC) as well as (4) rotational behavior. NPY had no neuroprotective effects in mice treated with Y(2) receptor antagonist or in transgenic mice deficient for Y(2) receptor suggesting that NPY effects are mediated through this receptor. Stimulation of Y(2) receptor by NPY triggered the activation of both the ERK1/2 and Akt pathways but did not modify levels of brain derived neurotrophic factor (BDNF) or glial cell line-derived neurotrophic factor. These results open new perspectives in neuroprotective therapies using NPY and suggest potential beneficial effects in PD.

  15. Oral ‘hydrogen water' induces neuroprotective ghrelin secretion in mice

    PubMed Central

    Matsumoto, Akio; Yamafuji, Megumi; Tachibana, Tomoko; Nakabeppu, Yusaku; Noda, Mami; Nakaya, Haruaki

    2013-01-01

    The therapeutic potential of molecular hydrogen (H2) is emerging in a number of human diseases and in their animal models, including in particular Parkinson's disease (PD). H2 supplementation of drinking water has been shown to exert disease-modifying effects in PD patients and neuroprotective effects in experimental PD model mice. However, H2 supplementation does not result in detectable changes in striatal H2 levels, indicating an indirect effect. Here we show that H2 supplementation increases gastric expression of mRNA encoding ghrelin, a growth hormone secretagogue, and ghrelin secretion, which are antagonized by the β1-adrenoceptor blocker, atenolol. Strikingly, the neuroprotective effect of H2 water was abolished by either administration of the ghrelin receptor-antagonist, D-Lys3 GHRP-6, or atenolol. Thus, the neuroprotective effect of H2 in PD is mediated by enhanced production of ghrelin. Our findings point to potential, novel strategies for ameliorating pathophysiology in which a protective effect of H2 supplementation has been demonstrated. PMID:24253616

  16. C-Phycocyanin is neuroprotective against global cerebral ischemia/reperfusion injury in gerbils.

    PubMed

    Pentón-Rol, Giselle; Marín-Prida, Javier; Pardo-Andreu, Gilberto; Martínez-Sánchez, Gregorio; Acosta-Medina, Emilio Felino; Valdivia-Acosta, Alain; Lagumersindez-Denis, Nielsen; Rodríguez-Jiménez, Efraín; Llópiz-Arzuaga, Alexey; López-Saura, Pedro Antonio; Guillén-Nieto, Gerardo; Pentón-Arias, Eduardo

    2011-08-10

    Although the huge economic and social impact and the predicted incidence increase, neuroprotection for ischemic stroke remains as a therapeutically empty niche. In the present study, we investigated the rationale of the C-Phycocyanin (C-PC) treatment on global cerebral ischemia/reperfusion (I/R) injury in gerbils. We demonstrated that C-PC given either prophylactically or therapeutically was able to significantly reduce the infarct volume as assessed by triphenyltetrazolium chloride (TTC) staining and the neurological deficit score 24h post-stroke. In addition, C-PC exhibited a protective effect against hippocampus neuronal cell death, and significantly improved the functional outcome (locomotor behavior) and gerbil survival after 7 days of reperfusion. Malondialdehyde (MDA), peroxidation potential (PP) and ferric reducing ability of plasma (FRAP) were assayed in serum and brain homogenates to evaluate the redox status 24h post-stroke. The treatment with C-PC prevented the lipid peroxidation and the increase of FRAP in both tissue compartments. These results suggest that the protective effects of C-PC are most likely due to its antioxidant activity, although its anti-inflammatory and immuno-modulatory properties reported elsewhere could also contribute to neuroprotection. To our knowledge, this is the first report of the neuroprotective effect of C-PC in an experimental model of global cerebral I/R damage, and strongly indicates that C-PC may represent a potential preventive and acute disease modifying pharmacological agent for stroke therapy.

  17. Niaspan Treatment Induces Neuroprotection After Stroke

    PubMed Central

    Shehadah, Amjad; Chen, Jieli; Zacharek, Alex; Cui, Yisheng; Ion, Madalina; Roberts, Cynthia; Kapke, Alissa; Chopp, Michael

    2010-01-01

    Introduction Niaspan, An Extended-Release Formulation Of Niacin (Vitamin B3), Has Been Widely Used To Increase High Density Lipoprotein (HDL) Cholesterol And To Prevent Cardiovascular Diseases And Stroke. In This Study, We Tested Whether Niaspan Administered Acutely After Stroke Is Neuroprotective. Methods Adult Male Rats (N=8/Group) Were Subjected To 2hs Of Middle Cerebral Artery Occlusion (Mcao) And Treated With Or Without Different Doses Of Niaspan (20mg/Kg, 40mg/Kg Or 80mg/Kg) At 2 Hours And 24 Hours After Mcao. A Battery Of Functional Outcome Tests Was Performed, And Serum HDL And Triglycerides Were Measured. Rats Were Sacrificed At 7 Days After Mcao And Lesion Volumes Were Measured. The Optimal Dose Of Niaspan Treatment Of Stroke Was Chosen For Immunostaining: Deoxynucleotidyl Transferase–Mediated Dutp Nick-End Labeling (TUNEL), Cleaved Caspase-3, Tumor Necrosis Factor Alpha (TNF-Alpha), Vascular Endothelial Growth Factor (VEGF), Phosphorylated Phosphatidylinositol 3-Kinase (P-PI3K). Another Set Of Rats (N=4/Group) Were Killed At 7 Days After Mcao For Western Blot Assay. Results Niaspan Dose-Dependently Reduced Infarct Volume And Improved Functional Outcome After Stroke. No Significant Difference In HDL And Triglyceride Levels Was Detected Between Niaspan Treatments And Mcao Control Groups. Niaspan Treatment Significantly Decreased The Number Of TUNEL-Positive Cells (105±17) And Cleaved Caspase-3 Expression (381±33) In The Ischemic Brain Compared To Mcao Control (165±18; 650±61, Respectively; P<0.05). Niaspan Treatment Significantly Reduced The Expression Of TNF-Alpha (9.7±1.1% Vs. 16±2.2%; P<0.05) And Negative Correlations Were Observed Between The Functional Tests And The Expression Of TNF-Alpha (R=−0.71, P<0.05). Niaspan Treatment Also Significantly Increased The Expression Of VEGF (5.2±0.9%) And PI3K/Akt (0.381±0.04%) In The Ischemic Brain Compared With Non-Treated Mcao Control (2.6±0.4%; 0.24±0.03, Respectively; P<0.05). The Functional

  18. Sulfhydration mediates neuroprotective actions of parkin

    PubMed Central

    Vandiver, M. Scott; Paul, Bindu D.; Xu, Risheng; Karuppagounder, Senthilkumar; Rao, Feng; Snowman, Adele M.; Ko, Han Seok; Lee, Yun Il; Dawson, Valina L.; Dawson, Ted M.; Sen, Nilkantha; Snyder, Solomon H.

    2013-01-01

    Increases in S-nitrosylation and inactivation of the neuroprotective ubiquitin E3 ligase, parkin, in the brains of patients with Parkinson’s Disease (PD) are thought to be pathogenic and suggest a possible mechanism linking parkin to sporadic PD. Here we demonstrate that physiologic modification of parkin by hydrogen sulfide (H2S), termed sulfhydration, enhances its catalytic activity. Sulfhydration sites are identified by mass spectrometry analysis and investigated by site directed mutagenesis. Parkin sulfhydration is markedly depleted in the brains of patients with PD, suggesting that this loss may be pathologic. This implies that H2S donors may be therapeutic. PMID:23535647

  19. Inflammation and Neuroprotection in Traumatic Brain Injury

    PubMed Central

    Corps, Kara N.; Roth, Theodore L.; McGavern, Dorian B.

    2016-01-01

    IMPORTANCE Traumatic brain injury (TBI) is a significant public health concern that affects individuals in all demographics. With increasing interest in the medical and public communities, understanding the inflammatory mechanisms that drive the pathologic and consequent cognitive outcomes can inform future research and clinical decisions for patients with TBI. OBJECTIVES To review known inflammatory mechanisms in TBI and to highlight clinical trials and neuroprotective therapeutic manipulations of pathologic and inflammatory mechanisms of TBI. EVIDENCE REVIEW We searched articles in PubMed published between 1960 and August 1, 2014, using the following keywords: traumatic brain injury, sterile injury, inflammation, astrocytes, microglia, monocytes, macrophages, neutrophils, T cells, reactive oxygen species, alarmins, danger-associated molecular patterns, purinergic receptors, neuroprotection, and clinical trials. Previous clinical trials or therapeutic studies that involved manipulation of the discussed mechanisms were considered for inclusion. The final list of selected studies was assembled based on novelty and direct relevance to the primary focus of this review. FINDINGS Traumatic brain injury is a diverse group of sterile injuries induced by primary and secondary mechanisms that give rise to cell death, inflammation, and neurologic dysfunction in patients of all demographics. Pathogenesis is driven by complex, interacting mechanisms that include reactive oxygen species, ion channel and gap junction signaling, purinergic receptor signaling, excitotoxic neurotransmitter signaling, perturbations in calcium homeostasis, and damage-associated molecular pattern molecules, among others. Central nervous system resident and peripherally derived inflammatory cells respond to TBI and can provide neuroprotection or participate in maladaptive secondary injury reactions. The exact contribution of inflammatory cells to a TBI lesion is dictated by their anatomical positioning

  20. Cerium and yttrium oxide nanoparticles are neuroprotective.

    PubMed

    Schubert, David; Dargusch, Richard; Raitano, Joan; Chan, Siu-Wai

    2006-03-31

    The responses of cells exposed to nanoparticles have been studied with regard to toxicity, but very little attention has been paid to the possibility that some types of particles can protect cells from various forms of lethal stress. It is shown here that nanoparticles composed of cerium oxide or yttrium oxide protect nerve cells from oxidative stress and that the neuroprotection is independent of particle size. The ceria and yttria nanoparticles act as direct antioxidants to limit the amount of reactive oxygen species required to kill the cells. It follows that this group of nanoparticles could be used to modulate oxidative stress in biological systems.

  1. Complexity of the alpha-globin genotypes identified with thalassemia screening in Sardinia.

    PubMed

    Origa, Raffaella; Paglietti, Maria E; Sollaino, Maria C; Desogus, Maria F; Barella, Susanna; Loi, Daniela; Galanello, Renzo

    2014-01-01

    α-Thalassemia commonly results from deletions or point mutations in one or both α-globin genes located on chromosome 16p13.3 giving rise to complex and variable genotypes and phenotypes. Rarely, unusual non-deletion defects or atypical deletions down-regulate the expression of the α-globin gene. In the last decade of the program for β-thalassemia carrier screening and genetic counseling in Sardinia, the association of new techniques of molecular biology such as gene sequencing and Multiplex Ligation-dependent Probe Amplification (MLPA) to conventional methods has allowed to better define several thalassemic genotypes and the complex variability of the α-cluster with its flanking regions, with a high frequency of different genotypes and compound heterozygosity for two α mutations even in the same family. The exact molecular definition of the genotypes resulting from the interactions among the large number of α-thalassemia determinants and with β-thalassemia, is important for a correct correlation of genotype-phenotype and to prevent underdiagnosis of carrier status which could hamper the effectiveness of a screening program particularly in those regions where a high frequency of hemoglobinopathies is present.

  2. Insulation of the Chicken β-Globin Chromosomal Domain from a Chromatin-Condensing Protein, MENT

    PubMed Central

    Istomina, Natalia E.; Shushanov, Sain S.; Springhetti, Evelyn M.; Karpov, Vadim L.; A. Krasheninnikov, Igor; Stevens, Kimberly; Zaret, Kenneth S.; Singh, Prim B.; Grigoryev, Sergei A.

    2003-01-01

    Active genes are insulated from developmentally regulated chromatin condensation in terminally differentiated cells. We mapped the topography of a terminal stage-specific chromatin-condensing protein, MENT, across the active chicken β-globin domain. We observed two sharp transitions of MENT concentration coinciding with the β-globin boundary elements. The MENT distribution profile was opposite to that of acetylated core histones but correlated with that of histone H3 dimethylated at lysine 9 (H3me2K9). Ectopic MENT expression in NIH 3T3 cells caused a large-scale and specific remodeling of chromatin marked by H3me2K9. MENT colocalized with H3me2K9 both in chicken erythrocytes and NIH 3T3 cells. Mutational analysis of MENT and experiments with deacetylase inhibitors revealed the essential role of the reaction center loop domain and an inhibitory affect of histone hyperacetylation on the MENT-induced chromatin remodeling in vivo. In vitro, the elimination of the histone H3 N-terminal peptide containing lysine 9 by trypsin blocked chromatin self-association by MENT, while reconstitution with dimethylated but not acetylated N-terminal domain of histone H3 specifically restored chromatin self-association by MENT. We suggest that histone H3 modification at lysine 9 directly regulates chromatin condensation by recruiting MENT to chromatin in a fashion that is spatially constrained from active genes by gene boundary elements and histone hyperacetylation. PMID:12944473

  3. Mutations in two regions upstream of the A gamma globin gene canonical promoter affect gene expression.

    PubMed Central

    Lloyd, J A; Lee, R F; Lingrel, J B

    1989-01-01

    Two regions upstream of the human fetal (A gamma) globin gene, which interact with protein factors from K562 and HeLa nuclear extracts, have functional significance in gene expression. One binding site (site I) is at a position -290 to -267 bp upstream of the transcription initiation site, the other (site II) is at -182 to -168 bp. Site II includes the octamer sequence (ATGCAAAT) found in an immunoglobulin enhancer and the histone H2b gene promoter. A point mutation (T----C) at -175, within the octamer sequence, is characteristic of a naturally occurring HPFH (hereditary persistence of fetal hemoglobin), and decreases factor binding to an oligonucleotide containing the octamer motif. Expression assays using a A gamma globin promoter-CAT (chloramphenicol acetyl transferase) fusion gene show that the point mutation at -175 increases expression in erythroid, but not non-erythroid cells when compared to a wild-type construct. This correlates with the actual effect of the HPFH mutation in humans. This higher expression may result from a mechanism more complex than reduced binding of a negative regulator. A site I clustered-base substitution gives gamma-CAT activity well below wild-type, suggesting that this factor is a positive regulator. Images PMID:2472607

  4. Insulation of the chicken beta-globin chromosomal domain from a chromatin-condensing protein, MENT.

    PubMed

    Istomina, Natalia E; Shushanov, Sain S; Springhetti, Evelyn M; Karpov, Vadim L; Krasheninnikov, Igor A; Stevens, Kimberly; Zaret, Kenneth S; Singh, Prim B; Grigoryev, Sergei A

    2003-09-01

    Active genes are insulated from developmentally regulated chromatin condensation in terminally differentiated cells. We mapped the topography of a terminal stage-specific chromatin-condensing protein, MENT, across the active chicken beta-globin domain. We observed two sharp transitions of MENT concentration coinciding with the beta-globin boundary elements. The MENT distribution profile was opposite to that of acetylated core histones but correlated with that of histone H3 dimethylated at lysine 9 (H3me2K9). Ectopic MENT expression in NIH 3T3 cells caused a large-scale and specific remodeling of chromatin marked by H3me2K9. MENT colocalized with H3me2K9 both in chicken erythrocytes and NIH 3T3 cells. Mutational analysis of MENT and experiments with deacetylase inhibitors revealed the essential role of the reaction center loop domain and an inhibitory affect of histone hyperacetylation on the MENT-induced chromatin remodeling in vivo. In vitro, the elimination of the histone H3 N-terminal peptide containing lysine 9 by trypsin blocked chromatin self-association by MENT, while reconstitution with dimethylated but not acetylated N-terminal domain of histone H3 specifically restored chromatin self-association by MENT. We suggest that histone H3 modification at lysine 9 directly regulates chromatin condensation by recruiting MENT to chromatin in a fashion that is spatially constrained from active genes by gene boundary elements and histone hyperacetylation.

  5. CRISPR/Cas9 β-globin gene targeting in human haematopoietic stem cells.

    PubMed

    Dever, Daniel P; Bak, Rasmus O; Reinisch, Andreas; Camarena, Joab; Washington, Gabriel; Nicolas, Carmencita E; Pavel-Dinu, Mara; Saxena, Nivi; Wilkens, Alec B; Mantri, Sruthi; Uchida, Nobuko; Hendel, Ayal; Narla, Anupama; Majeti, Ravindra; Weinberg, Kenneth I; Porteus, Matthew H

    2016-11-17

    The β-haemoglobinopathies, such as sickle cell disease and β-thalassaemia, are caused by mutations in the β-globin (HBB) gene and affect millions of people worldwide. Ex vivo gene correction in patient-derived haematopoietic stem cells followed by autologous transplantation could be used to cure β-haemoglobinopathies. Here we present a CRISPR/Cas9 gene-editing system that combines Cas9 ribonucleoproteins and adeno-associated viral vector delivery of a homologous donor to achieve homologous recombination at the HBB gene in haematopoietic stem cells. Notably, we devise an enrichment model to purify a population of haematopoietic stem and progenitor cells with more than 90% targeted integration. We also show efficient correction of the Glu6Val mutation responsible for sickle cell disease by using patient-derived stem and progenitor cells that, after differentiation into erythrocytes, express adult β-globin (HbA) messenger RNA, which confirms intact transcriptional regulation of edited HBB alleles. Collectively, these preclinical studies outline a CRISPR-based methodology for targeting haematopoietic stem cells by homologous recombination at the HBB locus to advance the development of next-generation therapies for β-haemoglobinopathies.

  6. Distribution of beta-globin haplotypes among the tribes of southern Gujarat, India.

    PubMed

    Aggarwal, Aastha; Khurana, Priyanka; Mitra, Siuli; Raicha, Bhavesh; Saraswathy, K N; Italia, Yazdi M; Kshatriya, Gautam K

    2013-06-01

    The present study was carried out in Indo-European speaking tribal population groups of southern Gujarat (India) to elucidate the allelic and haplotypic content of β-globin system in individuals with HbAA genotypes. 6 neutral restriction sites of the β-globin system were analysed and various statistical parameters were estimated to draw meaningful interpretations. All the 6 sites were found to be polymorphic and most were in Hardy-Weinberg Equilibrium in the studied group. Haplotypes were constructed using two different combinations of the 6 restriction sites analysed. Analysis of the 5 sites revealed a set of three predominant haplotypes, '+----', '-++-+' and '-+-++'; and haplotypes '+--', '++-' and '+++' were found to be the most frequent when the 3 sites were used to construct the haplotypes. Haplotypic heterozygosity levels (>83%) observed in the present study group were comparable to those observed in African and Afro-American populations and greater than other world populations. All the ancestral haplotypes, +-----, -++-+, -+-++ and ----+ were found in the study group. The distribution pattern of various haplotypes was consistent with the global pattern. The paucity of comparable data from other Indian populations restricted one from making interpretations about the study group's relationships with other Indian populations but the results were indicative of older population histories or experience of gene flow by the study group and their affinities with populations of southern India.

  7. Mechanism of developmental regulation of alpha pi, the chicken embryonic alpha-globin gene.

    PubMed Central

    Knezetic, J A; Felsenfeld, G

    1993-01-01

    The chicken alpha pi-globin gene is expressed during development only in the primitive erythrocyte lineage and not in the definitive lineage. We show that stage-specific expression is maintained when plasmids containing the alpha pi promoter are transfected into primitive and definitive lineage primary erythroid cells and that the information contained in the promoter is sufficient to confer this specificity. Detailed analysis of binding sites in the promoter for trans-acting factors, together with studies of the effects of mutagenesis on expression, reveals that the factors critical to stage-specific expression are all present in both primitive and definitive lineages, but at various concentrations. We identify three proteins, an NF1 family member, a Y-box factor, and an Sp1-like factor, which interact to stimulate or inhibit transcription. We propose that the concentration-dependent action of these factors, together with the general erythroid factor GATA-1, is responsible for the stage-specific expression of the alpha pi-globin gene. Images PMID:8336706

  8. Structure of cloned delta-globin genes from a normal subject and a patient with delta-thalassemia; sequence polymorphisms found in the delta-globin gene region of Japanese individuals.

    PubMed

    Kimura, A; Matsunaga, E; Ohta, Y; Fujiyoshi, T; Matsuo, T; Nakamura, T; Imamura, T; Yanase, T; Takagi, Y

    1982-10-11

    The delta-globin genes of a normal Japanese and a Japanese patient with homozygous delta-thalassemia were cloned, and the nucleotide sequence of a region including the gene was determined. Comparison of the nucleotide sequences of these two individuals with that of pH delta 1, delta-globin clone from the gene library constructed by Maniatis et al., showed differences in the large intervening sequence (IVS 2), at positions 137, 151, 186, 188, 291, 292 and 540 as one base substitutions, at 339 and 823 as one base additions, at 548 as a one base deletion, and a 9 bp duplication between positions 651 and 659, and differences in the 3'-flanking sequence at 51 and 98 nucleotides 3' to the AATAAA sequence. However, in the region studied, no differences was observed in the nucleotide sequences of the normal subject and the patient with delta-thalassemia. Therefore, these differences may represent polymorphisms of the delta-globin gene present in Japanese individuals. These data suggest that IVS 2 is more divergent than other regions, and that a DNA region(s) other than the globin gene may affect expression of the gene.

  9. Synthesis and characterization of brain penetrant prodrug of neuroprotective D-264: Potential therapeutic application in the treatment of Parkinson's disease.

    PubMed

    Dholkawala, Fahd; Voshavar, Chandrashekhar; Dutta, Aloke K

    2016-06-01

    Parkinson's disease (PD) is one of the major debilitating neurodegenerative disorders affecting millions of people worldwide. Progressive loss of dopamine neurons resulting in development of motor dysfunction and other related non-motor symptoms is the hallmark of PD. Previously, we have reported on the neuroprotective property of a potent D3 preferring agonist D-264. In our goal to increase the bioavailability of D-264 in the brain, we have synthesized a modified cysteine based prodrug of D-264 and evaluated its potential in crossing the blood-brain barrier. Herein, we report the synthesis of a novel modified cysteine conjugated prodrug of potent neuroprotective D3 preferring agonist D-264 and systematic evaluation of the hydrolysis pattern of the prodrug to yield D-264 at different time intervals in rat plasma and brain homogenates using HPLC analysis. Furthermore, we have also performed in vivo experiments with the prodrug to evaluate its enhanced brain penetration ability.

  10. [Neuroprotective effects of peptides bioregulators in people of various age].

    PubMed

    Umnov, R S; Lin'kova, N S; Khavinson, V Kh

    2013-01-01

    The review presents comparative characteristics of 2 peptide neuroprotective groups: polypeptide complexes (cortexin, cerebrolizin) and short peptides (semax, kortagen, pinealon). The data of clinical applying of peptides in elderly and old age people and cellular and molecular mechanisms of their neuroprotective activity is described.

  11. Neuroprotective effects of creatine administration against NMDA and malonate toxicity.

    PubMed

    Malcon, C; Kaddurah-Daouk, R; Beal, M F

    2000-03-31

    We examined whether creatine administration could exert neuroprotective effects against excitotoxicity mediated by N-methyl-D-aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainic acid. Oral administration of 1% creatine significantly attenuated striatal excitotoxic lesions produced by NMDA, but had no effect on lesions produced by AMPA or kainic acid. Both creatine and nicotinamide can exert significant protective effects against malonate-induced striatal lesions. We, therefore, examined whether nicotinamide could exert additive neuroprotective effects with creatine against malonate-induced lesions. Nicotinamide with creatine produced significantly better neuroprotection than creatine alone against malonate-induced lesions. Creatine can, therefore, produce significant neuroprotective effects against NMDA mediated excitotoxic lesions in vivo and the combination of nicotinamide with creatine exerts additive neuroprotective effects.

  12. Novel Inducers of Fetal Globin Identified through High Throughput Screening (HTS) Are Active In Vivo in Anemic Baboons and Transgenic Mice.

    PubMed

    Boosalis, Michael S; Sangerman, Jose I; White, Gary L; Wolf, Roman F; Shen, Ling; Dai, Yan; White, Emily; Makala, Levi H; Li, Biaoru; Pace, Betty S; Nouraie, Mehdi; Faller, Douglas V; Perrine, Susan P

    2015-01-01

    High-level fetal (γ) globin expression ameliorates clinical severity of the beta (β) hemoglobinopathies, and safe, orally-bioavailable γ-globin inducing agents would benefit many patients. We adapted a LCR-γ-globin promoter-GFP reporter assay to a high-throughput robotic system to evaluate five diverse chemical libraries for this activity. Multiple structurally- and functionally-diverse compounds were identified which activate the γ-globin gene promoter at nanomolar concentrations, including some therapeutics approved for other conditions. Three candidates with established safety profiles were further evaluated in erythroid progenitors, anemic baboons and transgenic mice, with significant induction of γ-globin expression observed in vivo. A lead candidate, Benserazide, emerged which demonstrated > 20-fold induction of γ-globin mRNA expression in anemic baboons and increased F-cell proportions by 3.5-fold in transgenic mice. Benserazide has been used chronically to inhibit amino acid decarboxylase to enhance plasma levels of L-dopa. These studies confirm the utility of high-throughput screening and identify previously unrecognized fetal globin inducing candidates which can be developed expediently for treatment of hemoglobinopathies.

  13. Characterization of the 5'-to-5'linked adult alpha- and beta-globin genes from three sciaenid fish species (Pseudosciaena crocea, Sciaenops ocellatus, Nibea miichthioides).

    PubMed

    Chu, Wuying; Wei, Yongwei; Qian, Ronghua; Yu, Xiameng; Yu, Lian

    2006-09-01

    Recently, we cloned the adult alpha-globin genes from large yellow croaker Pseudosciaena crocea, cuneate drum Nibea miichthioides and red drum Sciaenops ocellatus. All these alpha-globins have a unique Gly insertion at the 47th residue. In this paper, the three sciaenid globin complexes were identified and compared in detail. Linkage analysis indicated that the sciaenid alpha- and beta-globin genes were oriented head-to-head relative to each other. The sciaenid intergenic regions between the linked alpha- and beta-globin genes were the smallest in reported fish globin gene complexes to date. Classical promoter elements were condensed and the CCAAT box unstable duplication was found in these regions. The promoter function of the intergenic region from large yellow croaker was tested by transient expression of EGFP in Vero cells. We also described a method for studying luciferase reporter gene transient expression in primary fish erythrocytes. We used the method to assess the promoter strength of the three intergenic regions between the sciaenid alpha- and beta-globin genes.

  14. Novel Inducers of Fetal Globin Identified through High Throughput Screening (HTS) Are Active In Vivo in Anemic Baboons and Transgenic Mice

    PubMed Central

    Boosalis, Michael S.; Sangerman, Jose I.; White, Gary L.; Wolf, Roman F.; Shen, Ling; Dai, Yan; White, Emily; Makala, Levi H.; Li, Biaoru; Pace, Betty S.; Nouraie, Mehdi; Faller, Douglas V.; Perrine, Susan P.

    2015-01-01

    High-level fetal (γ) globin expression ameliorates clinical severity of the beta (β) hemoglobinopathies, and safe, orally-bioavailable γ-globin inducing agents would benefit many patients. We adapted a LCR-γ-globin promoter-GFP reporter assay to a high-throughput robotic system to evaluate five diverse chemical libraries for this activity. Multiple structurally- and functionally-diverse compounds were identified which activate the γ-globin gene promoter at nanomolar concentrations, including some therapeutics approved for other conditions. Three candidates with established safety profiles were further evaluated in erythroid progenitors, anemic baboons and transgenic mice, with significant induction of γ-globin expression observed in vivo. A lead candidate, Benserazide, emerged which demonstrated > 20-fold induction of γ-globin mRNA expression in anemic baboons and increased F-cell proportions by 3.5-fold in transgenic mice. Benserazide has been used chronically to inhibit amino acid decarboxylase to enhance plasma levels of L-dopa. These studies confirm the utility of high-throughput screening and identify previously unrecognized fetal globin inducing candidates which can be developed expediently for treatment of hemoglobinopathies. PMID:26713848

  15. Sardinian delta beta zero-thalassemia: a further example of a C to T substitution at position -196 of the A gamma globin gene promoter.

    PubMed

    Ottolenghi, S; Giglioni, B; Pulazzini, A; Comi, P; Camaschella, C; Serra, A; Guerrasio, A; Saglio, G

    1987-04-01

    Selective overexpression (50- to 100-fold) in adult erythroid cells of either G gamma or A gamma fetal globin gene is observed in hereditary conditions known as delta beta zero-thalassemia and hereditary persistence of fetal hemoglobin (HPFH). Recently, a C----T change at position -196 of an overexpressed A gamma globin gene from an Italian HPFH was hypothesized, on the basis of indirect evidence, to represent the cause of the functional defect. We now show that the same mutation is present in a different overexpressed A gamma-globin gene from a Sardinian patient with a different syndrome (delta beta zero-thalassemia). The Sardinian A gamma globin gene differs from both the HPFH and the normal A gamma globin gene at nucleotide 1,560 in the noncoding portion of the third exon, where an A is deleted. In addition, the mutant -196 A gamma-globin gene is linked to a normal beta globin gene in HPFH, and to a beta-thalassemic gene (beta 39CAG----TAG) in delta beta zero-thalassemia. These data strengthen the suggestion that -196 mutation is causally linked to the abnormal phenotype and raise the question of whether the same or multiple mutational events are responsible for the appearance of the -196 mutation in different syndromes.

  16. Multiple linked β and α globin genes in Atlantic cod: A PCR based strategy of genomic exploration.

    PubMed

    Halldórsdóttir, Katrín; Arnason, Einar

    2009-01-01

    Allozyme variation in Atlantic cod hemoglobins shows various signs of natural selection. We report a genomic exploration of globin genes in this non-model organism. Applying a PCR based strategy with a strict criterion of phylogenetically informative sites we estimate the number of linked β and α globin genes. We estimate PCR error rate by PCR of cloned DNA and recloning and by analysis of singleton variable sites among clones. Based on the error rate we exclude variable sites so that the remaining variation meets successively stricter criteria of doubleton and triplet variable site. Applying these criteria we find ten clusters of linked β/α globin genes in the genome of Atlantic cod. Six variable amino acid changes in both genes were found in linkage disequilibrium with silent nucleotide substitutions. A phylogenetic tree, based on our strictly phylogenetically informative sites among 57 clones from 19 individuals, is split into two major branches by an amino acid change in a β gene. This change is supported by extensive linkage disequilibrium between the amino acid change and numerous other phylogenetically informative silent nucleotide sites. The different gene sets in the genome may represent different loci encoding different globins and/or allelic variation at some loci.

  17. Versatile Cosmid Vectors for the Isolation, Expression, and Rescue of Gene Sequences: Studies with the Human α -globin Gene Cluster

    NASA Astrophysics Data System (ADS)

    Lau, Yun-Fai; Kan, Yuet Wai

    1983-09-01

    We have developed a series of cosmids that can be used as vectors for genomic recombinant DNA library preparations, as expression vectors in mammalian cells for both transient and stable transformations, and as shuttle vectors between bacteria and mammalian cells. These cosmids were constructed by inserting one of the SV2-derived selectable gene markers-SV2-gpt, SV2-DHFR, and SV2-neo-in cosmid pJB8. High efficiency of genomic cloning was obtained with these cosmids and the size of the inserts was 30-42 kilobases. We isolated recombinant cosmids containing the human α -globin gene cluster from these genomic libraries. The simian virus 40 DNA in these selectable gene markers provides the origin of replication and enhancer sequences necessary for replication in permissive cells such as COS 7 cells and thereby allows transient expression of α -globin genes in these cells. These cosmids and their recombinants could also be stably transformed into mammalian cells by using the respective selection systems. Both of the adult α -globin genes were more actively expressed than the embryonic zeta -globin genes in these transformed cell lines. Because of the presence of the cohesive ends of the Charon 4A phage in the cosmids, the transforming DNA sequences could readily be rescued from these stably transformed cells into bacteria by in vitro packaging of total cellular DNA. Thus, these cosmid vectors are potentially useful for direct isolation of structural genes.

  18. Bergamot (Citrus bergamia Risso) fruit extracts as γ-globin gene expression inducers: phytochemical and functional perspectives.

    PubMed

    Guerrini, Alessandra; Lampronti, Ilaria; Bianchi, Nicoletta; Zuccato, Cristina; Breveglieri, Giulia; Salvatori, Francesca; Mancini, Irene; Rossi, Damiano; Potenza, Rocco; Chiavilli, Francesco; Sacchetti, Gianni; Gambari, Roberto; Borgatti, Monica

    2009-05-27

    Epicarps of Citrus bergamia fruits from organic farming were extracted with the objective of obtaining derived products differently rich in coumarins and psoralens. The extracts were chemically characterized by (1)H nuclear magnetic resonance (NMR), gas chromatography-flame ionization detection (GC-FID), gas chromatography-mass spectrometry (GC-MS), and high-pressure liquid chromatography (HPLC) for detecting and quantifying the main constituents. Both bergamot extracts and chemical standards corresponding to the main constituents detected were then assayed for their capacity to increase erythroid differentiation of K562 cells and expression of γ-globin genes in human erythroid precursor cells. Three experimental cell systems were employed: (a) the human leukemic K562 cell line, (b) K562 cell clones stably transfected with a pCCL construct carrying green-enhanced green fluorescence protein (EGFP) under the γ-globin gene promoter, and (c) the two-phase liquid culture of human erythroid progenitors isolated from healthy donors. The results suggest that citropten and bergapten are powerful inducers of differentiation and γ-globin gene expression in human erythroid cells. These data could have practical relevance, because pharmacologically mediated regulation of human γ-globin gene expression, with the consequent induction of fetal hemoglobin, is considered to be a potential therapeutic approach in hematological disorders, including β-thalassemia and sickle cell anemia.

  19. A long non-coding RNA promotes full activation of adult gene expression in the chicken α-globin domain.

    PubMed

    Arriaga-Canon, Cristian; Fonseca-Guzmán, Yael; Valdes-Quezada, Christian; Arzate-Mejía, Rodrigo; Guerrero, Georgina; Recillas-Targa, Félix

    2014-01-01

    Long non-coding RNAs (lncRNAs) were recently shown to regulate chromatin remodelling activities. Their function in regulating gene expression switching during specific developmental stages is poorly understood. Here we describe a nuclear, non-coding transcript responsive for the stage-specific activation of the chicken adult α(D) globin gene. This non-coding transcript, named α-globin transcript long non-coding RNA (lncRNA-αGT) is transcriptionally upregulated in late stages of chicken development, when active chromatin marks the adult α(D) gene promoter. Accordingly, the lncRNA-αGT promoter drives erythroid-specific transcription. Furthermore, loss of function experiments showed that lncRNA-αGT is required for full activation of the α(D) adult gene and maintenance of transcriptionally active chromatin. These findings uncovered lncRNA-αGT as an important part of the switching from embryonic to adult α-globin gene expression, and suggest a function of lncRNA-αGT in contributing to the maintenance of adult α-globin gene expression by promoting an active chromatin structure.

  20. An insulator embedded in the chicken α-globin locus regulates chromatin domain configuration and differential gene expression.

    PubMed

    Furlan-Magaril, Mayra; Rebollar, Eria; Guerrero, Georgina; Fernández, Almudena; Moltó, Eduardo; González-Buendía, Edgar; Cantero, Marta; Montoliu, Lluís; Recillas-Targa, Félix

    2011-01-01

    Genome organization into transcriptionally active domains denotes one of the first levels of gene expression regulation. Although the chromatin domain concept is generally accepted, only little is known on how domain organization impacts the regulation of differential gene expression. Insulators might hold answers to address this issue as they delimit and organize chromatin domains. We have previously identified a CTCF-dependent insulator with enhancer-blocking activity embedded in the 5' non-coding region of the chicken α-globin domain. Here, we demonstrate that this element, called the αEHS-1.4 insulator, protects a transgene against chromosomal position effects in stably transfected cell lines and transgenic mice. We found that this insulator can create a regulated chromatin environment that coincides with the onset of adult α-globin gene expression. Furthermore, such activity is in part dependent on the in vivo regulated occupancy of CTCF at the αEHS-1.4 element. Insulator function is also regulated by CTCF poly(ADP-ribosyl)ation. Our results suggest that the αEHS-1.4 insulator contributes in organizing the chromatin structure of the α-globin gene domain and prevents activation of adult α-globin gene expression at the erythroblast stage via CTCF.

  1. Conservation of position and sequence of a novel, widely expressed gene containing the major human {alpha}-globin regulatory element

    SciTech Connect

    Vyas, P.; Vickers, M.A.; Picketts, D.J.; Higgs, D.R.

    1995-10-10

    We have determined the cDNA and genomic structure of a gene (-14 gene) that lies adjacent to the human {alpha}-globin cluster. Although it is expressed in a wide range of cell lines and tissues, a previously described erythroid-specific regulatory element that controls expression of the {alpha}-globin genes lies within intron 5 of this gene. Analysis of the -14 gene promoter shows that it is GC rich and associated with a constitutively expressed DNase 1 hypersensitive site; unlike the {alpha}-globin promoter, it does not contain a TATA or CCAAT box. These and other differences in promoter structure may explain why the erythroid regulatory element interacts specifically with the {alpha}-globin promoters and not the -14 gene promoter, which lies between the {alpha} promoters and their regulatory element. Interspecies comparisons demonstrate that the sequence and location of the -14 gene adjacent to the a cluster have been maintained since the bird/mammal divergence, 270 million years ago. 38 refs., 6 figs.

  2. A mutation of the beta-globin gene initiation codon, ATG-->AAG, found in a French Caucasian man.

    PubMed

    Lacan, Philippe; Aubry, Martine; Couprie, Nicole; Francina, Alain

    2005-01-01

    A new mutation of the beta-globin gene initiation codon, ATG-->AAG (Met-->Tyr), is reported in a man originating from the southeast of France. Typical hematological findings of beta-thalassemia (thal) trait were found. We emphasize the importance of characterizing uncommon beta-thal mutations for genetic counseling.

  3. The First Report of a 290-bp Deletion in β-Globin Gene in the South of Iran

    PubMed Central

    Hamid, Mohammad; Nejad, Ladan Dawoody; Shariati, Gholamreza; Galehdari, Hamid; Saberi, Alihossein; Mohammadi-Anaei, Marziye

    2017-01-01

    Background: β-thalassemia is one of the most widespread diseases in the world, including Iran. In this study, we reported, for the first time, a 290-bp β-globin gene deletion in the south of Iran. Methods: Four individuals from three unrelated families with Arabic ethnic background were studied in Khuzestan Province. Red blood cell indices and hemoglobin analysis were carried out according to the standard methods. Genomic DNA was obtained from peripheral blood cells by salting out procedures. β-globin gene amplification, multiplex ligation-dependent probe amplification (MLPA), and DNA sequencing were performed. Results: The PCR followed by sequencing and MLPA test of the β-globin gene confirmed the presence of a 290-bp deletion in the heterozygous form, along with -88C>A mutation. All the individuals had elevated hemoglobin A2 and normal fetal hemoglobin levels. Conclusions: This mutation causes β0-thalassemia and can be highly useful for prenatal diagnosis in compound heterozygous condition with different β-globin gene mutations. PMID:26948378

  4. Inter-ethnic polymorphism of the beta-globin gene locus control region (LCR) in sickle-cell anemia patients.

    PubMed

    Périchon, B; Ragusa, A; Lapouméroulie, C; Romand, A; Moi, P; Ikuta, T; Labie, D; Elion, J; Krishnamoorthy, R

    1993-06-01

    Sequence polymorphisms within the 5'HS2 segment of human locus control region is described among sickle cell anemia patients. Distinct polymorphic patterns of a simple sequence repeat are observed in strong linkage disequilibrium with each of the five major beta s haplotypes. Potential functional relevance of this polymorphic region in globin gene expression is discussed.

  5. 2,5-diketopiperazines as neuroprotective agents.

    PubMed

    Cornacchia, C; Cacciatore, I; Baldassarre, L; Mollica, A; Feliciani, F; Pinnen, F

    2012-01-01

    2,5-diketopiperazines are the simplest cyclic peptides found in nature, commonly biosynthesized from amino acids by different organisms, and represent a promising class of biologically active natural products. Their peculiar heterocyclic structure confers high stability against the proteolysis and constitutes a structural requirement for the active intestinal absorption. Furthermore, the diketopiperazine-based motif is considered as a novel brain shuttle for the delivery of drugs with limited ability to cross the blood-brain barrier (BBB) and can be proposed as an ideal candidate for the rational development of new therapeutic agents. Although these cyclic peptides have been known since the beginning of the 20th century, only recently have they attracted substantial interest with respect to the wide spectrum of their biological properties, including antitumor, antiviral, antifungal, antibacterial and antihyperglycemic activities. In addition to these, the most challenging function of the diketopiperazine derivatives is related with their remarkable neuroprotective and nootropic activity. The aim of the present paper is to provide an overview of the two major classes of diketopiperazines, the TRH-related and the unsaturated derivatives both characterized by a significant ability to protect against neurotoxicity in several experimental models. The neuroprotective profile of these compounds suggests that they may have a future utility in the therapy of neuronal degeneration in vivo, potentially through several different mechanisms.

  6. Neuroprotective effects of lutein in the retina.

    PubMed

    Ozawa, Yoko; Sasaki, Mariko; Takahashi, Noriko; Kamoshita, Mamoru; Miyake, Seiji; Tsubota, Kazuo

    2012-01-01

    Although a large variety of pharmaceutical therapies for treating disease have been developed in recent years, there has been little progress in disease prevention. In particular, the protection of neural tissue is essential, because it is hardly regenerated. The use of nutraceuticals for maintaining the health has been supported by several clinical studies, including cross-sectional and interventional studies for age-related macular disease. However, mechanistic evidence for their effects at the molecular level has been very limited. In this review, we focus on lutein, which is a xanthophyll type of carotenoid. Lutein is not synthesized in mammals, and must be obtained from the diet. It is delivered to the retina, and in humans, it is concentrated in the macula. Here, we describe the neuroprotective effects of lutein and their underlying molecular mechanisms in animal models of vision-threatening diseases, such as innate retinal inflammation, diabetic retinopathy, and light-induced retinal degeneration. In lutein-treated mouse ocular disease models, oxidative stress in the retina is reduced, and its downstream pathological signals are inhibited. Furthermore, degradation of the functional proteins, rhodopsin (a visual substance) and synaptophysin (a synaptic vesicle protein also influenced in other neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease), the depletion of brain-derived neurotrophic factor (BDNF), and DNA damage are prevented by lutein, which preserves visual function. We discuss the possibility of using lutein, an antioxidant, as a neuroprotective treatment for humans.

  7. Mitochondrial preconditioning: a potential neuroprotective strategy.

    PubMed

    Correia, Sónia C; Carvalho, Cristina; Cardoso, Susana; Santos, Renato X; Santos, Maria S; Oliveira, Catarina R; Perry, George; Zhu, Xiongwei; Smith, Mark A; Moreira, Paula I

    2010-01-01

    Mitochondria have long been known as the powerhouse of the cell. However, these organelles are also pivotal players in neuronal cell death. Mitochondrial dysfunction is a prominent feature of chronic brain disorders, including Alzheimer's disease (AD) and Parkinson's disease (PD), and cerebral ischemic stroke. Data derived from morphologic, biochemical, and molecular genetic studies indicate that mitochondria constitute a convergence point for neurodegeneration. Conversely, mitochondria have also been implicated in the neuroprotective signaling processes of preconditioning. Despite the precise molecular mechanisms underlying preconditioning-induced brain tolerance are still unclear, mitochondrial reactive oxygen species generation and mitochondrial ATP-sensitive potassium channels activation have been shown to be involved in the preconditioning phenomenon. This review intends to discuss how mitochondrial malfunction contributes to the onset and progression of cerebral ischemic stroke and AD and PD, two major neurodegenerative disorders. The role of mitochondrial mechanisms involved in the preconditioning-mediated neuroprotective events will be also discussed. Mitochondrial targeted preconditioning may represent a promising therapeutic weapon to fight neurodegeneration.

  8. Neuroprotective Mechanisms Mediated by CDK5 Inhibition

    PubMed Central

    Mushtaq, Gohar; Greig, Nigel H.; Anwar, Firoz; Al-Abbasi, Fahad A.; Zamzami, Mazin A.; Al-Talhi, Hasan A.; Kamal, Mohammad A.

    2016-01-01

    Cyclin-dependent kinase 5 (CDK5) is a proline-directed serine/threonine kinase belonging to the family of cyclin-dependent kinases. In addition to maintaining the neuronal architecture, CDK5 plays an important role in the regulation of synaptic plasticity, neurotransmitter release, neuron migration and neurite outgrowth. Although various reports have shown links between neurodegeneration and deregulation of cyclin-dependent kinases, the specific role of CDK5 inhibition in causing neuroprotection in cases of neuronal insult or in neurodegenerative diseases is not well-understood. This article discusses current evidence for the involvement of CDK5 deregulation in neurodegenerative disorders and neurodegeneration associated with stroke through various mechanisms. These include upregulation of cyclin D1 and overactivation of CDK5 mediated neuronal cell death pathways, aberrant hyperphosphorylation of human tau proteins and/or neurofilament proteins, formation of neurofibrillary lesions, excitotoxicity, cytoskeletal disruption, motor neuron death (due to abnormally high levels of CDK5/p25) and colchicine-induced apoptosis in cerebellar granule neurons. A better understanding of the role of CDK5 inhibition in neuroprotective mechanisms will help scientists and researchers to develop selective, safe and efficacious pharmacological inhibitors of CDK5 for therapeutic use against human neurodegenerative disorders, such as Alzheimer’s disease, amyotrophic lateral sclerosis and neuronal loss associated with stroke. PMID:26601962

  9. Neuroprotective Effects of Lutein in the Retina

    PubMed Central

    Ozawa, Yoko; Sasaki, Mariko; Takahashi, Noriko; Kamoshita, Mamoru; Miyake, Seiji; Tsubota, Kazuo

    2012-01-01

    Although a large variety of pharmaceutical therapies for treating disease have been developed in recent years, there has been little progress in disease prevention. In particular, the protection of neural tissue is essential, because it is hardly regenerated. The use of nutraceuticals for maintaining the health has been supported by several clinical studies, including cross-sectional and interventional studies for age-related macular disease. However, mechanistic evidence for their effects at the molecular level has been very limited. In this review, we focus on lutein, which is a xanthophyll type of carotenoid. Lutein is not synthesized in mammals, and must be obtained from the diet. It is delivered to the retina, and in humans, it is concentrated in the macula. Here, we describe the neuroprotective effects of lutein and their underlying molecular mechanisms in animal models of vision-threatening diseases, such as innate retinal inflammation, diabetic retinopathy, and light-induced retinal degeneration. In lutein-treated mouse ocular disease models, oxidative stress in the retina is reduced, and its downstream pathological signals are inhibited. Furthermore, degradation of the functional proteins, rhodopsin (a visual substance) and synaptophysin (a synaptic vesicle protein also influenced in other neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease), the depletion of brain-derived neurotrophic factor (BDNF), and DNA damage are prevented by lutein, which preserves visual function. We discuss the possibility of using lutein, an antioxidant, as a neuroprotective treatment for humans. PMID:22211688

  10. Unraveling the neuroprotective mechanisms of PrPC in excitotoxicity

    PubMed Central

    Llorens, Franc; del Río, José Antonio

    2012-01-01

    Knowledge of the natural roles of cellular prion protein (PrPC) is essential to an understanding of the molecular basis of prion pathologies. This GPI-anchored protein has been described in synaptic contacts, and loss of its synaptic function in complex systems may contribute to the synaptic loss and neuronal degeneration observed in prionopathy. In addition, Prnp knockout mice show enhanced susceptibility to several excitotoxic insults, GABAA receptor-mediated fast inhibition was weakened, LTP was modified and cellular stress increased. Although little is known about how PrPC exerts its function at the synapse or the downstream events leading to PrPC-mediated neuroprotection against excitotoxic insults, PrPC has recently been reported to interact with two glutamate receptor subunits (NR2D and GluR6/7). In both cases the presence of PrPC blocks the neurotoxicity induced by NMDA and Kainate respectively. Furthermore, signals for seizure and neuronal cell death in response to Kainate in Prnp knockout mouse are associated with JNK3 activity, through enhancing the interaction of GluR6 with PSD-95. In combination with previous data, these results shed light on the molecular mechanisms behind the role of PrPC in excitotoxicity. Future experimental approaches are suggested and discussed. PMID:22437735

  11. Genotyping of β-globin gene mutations in single lymphocytes: a preliminary study for preimplantation genetic diagnosis of monogenic disorders.

    PubMed

    Durmaz, Burak; Ozkinay, Ferda; Onay, Huseyin; Karaca, Emin; Aydinok, Yesim; Tavmergen, Erol; Vrettou, Christina; Traeger-Synodinos, Jan; Kanavakis, Emmanuel

    2012-01-01

    Hemoglobinopathies, especially β-thalassemia (β-thal), represent an important health burden in Mediterranean countries like Turkey. Some couples prefer the option of preimplantation genetic diagnosis (PGD). However, clinical application of PGD, especially for the monogenic disorders is technically demanding. To ensure reliable results, protocols need to be robust and well standardized. Ideally PGD-PCR (polymerase chain reaction) protocols should be based on multiplex and fluorescent PCR for analysis of the disease-causing mutation(s) along with linked markers across the disease-associated locus. In this study, we aimed to constitute a protocol in single cells involving first round multiplex PCR with primers to amplify the region of the β-globin gene containing the most common mutations. Two microsatellites linked to the β-globin gene cluster (D11S4891, D11S2362) and two unlinked (D13S314, GABRB3) microsatellite markers, were used to rule out allele dropout (ADO) and contamination; followed by nested real-time PCR for genotyping the β-globin mutations. We also investigated the allele frequencies and heterozygote rates of these microsatellites in the Turkish population that have not been reported to date. This protocol was tested in 100 single lymphocytes from heterozygotes with known β-globin mutations. Amplification failure was detected in one lymphocyte (1%) and ADO was observed in two lymphocytes (2%). No contamination was detected. All results were concordant with the genotypes of the patients. Overall, this protocol was demonstrated to be sensitive, accurate, reliable and rapid for the detection of β-globin mutations in single cells and shows potential for the clinical application of PGD for hemoglobinopathies in the Turkish population.

  12. Total beta-globin gene deletion has high frequency in Filipinos

    SciTech Connect

    Patrick, N.; Miyakawa, F.; Hunt, J.A.

    1994-09-01

    The distribution of {beta}-thalassemia [{beta}{sup Th}] mutations is unique to each ethnic group. Most mutations affect one or a few bases; large deletions have been rare. Among families screened in Hawaii, [{beta}{sup Th}] heterozygotes were diagnosed by microcytosis, absence of abnormal hemoglobins on isoelectric focusing, and raised Hb A{sub 2} by chromatography. Gene frequency for {beta}{sup Th} was 0.02 in Filipinos. In Filipinos, polymerase chain reaction [PCR] with denaturing gradient gel electrophoresis for {beta}{sup Th} mutations detected a mutation in only 6 of 42 {beta}{sup Th} heterozygotes; an IVS2-666 C/T polymorphism showed non-heterozygosity in 37 and heterozygosity in only 5 of these {beta}{sup Th} heterozygotes. One {beta}{sup Th}/{beta}{sup Th} major patient and his mother had no mutation detected by allele-specific oligomer hybridization; PCR failed to amplify any DNA from his {beta}-globin gene. After a total {beta}-globin gene deletion [{beta}{sup Del}] was found in a Filipino family in Ontario, specific PCR amplification for {beta}{sup Del} detected this in 43 of 53 {beta}{sup Th} Filipino samples tested; the above {beta}{sup Th}/{beta}{sup Th} patient was a ({beta}{sup Del}/{beta}{sup Del}) homozygote. The {beta}{sup Del} may account for over 60% of all {beta}{sup Th} alleles in Filipinos; this is the highest proportion of a deletion {beta}{sup Th} mutation reported from any population. Most but not all {beta}{sup Del} heterozygotes had high Hb F [5.13 {plus_minus} 3.94 mean {plus_minus} 1 s.d.] compared to the codon 41/42 four base deletion common in Chinese [2.30 {plus_minus} 0.86], or to {beta}{sup Th} heterozygotes with normal {alpha}-globin genes [2.23 {plus_minus} 0.80].

  13. A novel mechanism of non-feminizing estrogens in neuroprotection.

    PubMed

    Engler-Chiurazzi, Elizabeth B; Covey, Douglas F; Simpkins, James W

    2016-11-03

    Estrogens are potent and efficacious neuroprotectants both in vitro and in vivo in a variety of models of neurotoxicity. We determined the structural requirements for neuroprotection in an in vitro assay using a panel of >70 novel estratrienes, synthesized to reduce or eliminate estrogen receptor (ER) binding. We observed that neuroprotection could be enhanced by as much as 200-fold through modifications that positioned a large bulky group at the C2 or C4 position of the phenolic A ring of the estratriene. Further, substitutions on the B, C or D rings either reduced or did not markedly change neuroprotection. Collectively, there was a negative correlation between binding to ERs and neuroprotection with the more potent compounds showing no ER binding. In an in vivo model for neuroprotection, transient cerebral ischemia, efficacious compounds were active in protection of brain tissue from this pro-oxidant insult. We demonstrated that these non-feminizing estrogens engage in a redox cycle with glutathione, using the hexose monophosphate shunt to apply cytosolic reducing potential to cellular membranes. Together, these results demonstrate that non-feminizing estrogens are neuroprotective and protect brain from the induction of ischemic- and Alzheimer's disease (AD)-like neuropathology in an animal model. These features of non-feminizing estrogens make them attractive compounds for assessment of efficacy in AD and stroke, as they are not expected to show the side effects of chronic estrogen therapy that are mediated by ER actions in the liver, uterus and breast.

  14. [Neuroprotective therapy for the treatment of acute ischemic stroke].

    PubMed

    Naritomi, H

    2001-12-01

    Following cerebral ischemia, various biochemical reactions are provoked in a stepwise manner leading neuronal cells to ischemic death. The prevention of these biochemical reactions may exert neuroprotective actions and consequently reduce the magnitude of ischemic cerebral injury. On the basis of such a view, numerous neuroprotective drugs have been developed during the last decade. Quite a few drugs were found effective in reducing the infarct volume in experimental studies, and more than 15 of them were subjected to clinical phase III trials to see a therapeutic effectiveness. However, the results of phase III trials were disappointing in the majority drugs. Only three drugs, nicaravene, ebselen and edaravone, all radical scavengers, were judged effective by small-sized trials with a wide therapeutic window, 48-72 hours after stroke, in Japan. The fact suggests that a one-point prevention of biochemical reactions by single drug is unable to rescue ischemic neuronal cells. Ischemic insult causes damages of vascular wall including the endothelium which play an important role in the development of hemorrhagic changes or cerebral edema. Vascular protection is considered as important as neuroprotection in treatment of clinical stroke. Mild hypothermia has neuroprotective and vascular protective actions and hence may be more effective than neuroprotective drugs for the treatment of stroke. The prevention of fever, which often occurs in severe stroke, may exert the similar effect as hypothermia in neuroprotection. Neuroprotective therapy in the future should proceed toward the simultaneous protections of neurons and vessels using combination of multiple drugs.

  15. The neuroprotective activities of heteropolysaccharides extracted from Saccharina japonica.

    PubMed

    Jin, Weihua; Wang, Jing; Jiang, Hong; Song, Ning; Zhang, Wenjing; Zhang, Quanbin

    2013-08-14

    Crude fucoidan extracted from Saccharina japonica was separated by anion-exchange chromatography. Then, the neuroprotective activities of the crude fucoidan (J) and its fractions (J0.4, J0.5, J1 and J2) were tested. J, J0.4 and J0.5 were shown to have neuroprotective effects. To simplify the structural features of the compounds, crude fucoidan was degraded to obtain low molecular weight fucoidan (DJ). DJ was further fractionated into DJ0.5, DJ1 and DJ2, and the neuroprotective activities of these fractions were determined. This analysis revealed that DJ and DJ0.5 retained the neuroprotective activity. However, the DJ0.5 fraction remained very complex. Thus, DJ0.5 was further separated into six fractions (F0.1, F0.2, F0.3, F0.4, F0.5 and F1). Finally, it was concluded that the anion-exchange fractions F0.1, F0.2 and F0.3 exhibited neuroprotective activities. These results suggest that heteropolysaccharides might contribute to the neuroprotective activity. Moreover, the neuroprotective heteropolysaccharide fractions contained relatively low fucose (less than 20%) and sulfate (25%), high UA content (more than 10%) and a high molar ratio of all other monosaccharides.

  16. Stroke neuroprotection revisited: Intra-arterial verapamil is profoundly neuroprotective in experimental acute ischemic stroke.

    PubMed

    Maniskas, Michael E; Roberts, Jill M; Aron, Ishi; Fraser, Justin F; Bix, Gregory J

    2016-04-01

    While clinical trials have now solidified the role of thrombectomy in emergent large vessel occlusive stroke, additional therapies are needed to optimize patient outcome. Using our previously described experimental ischemic stroke model for evaluating adjunctive intra-arterial drug therapy after vessel recanalization, we studied the potential neuroprotective effects of verapamil. A calcium channel blocker, verapamil is often infused intra-arterially by neurointerventionalists to treat cerebral vasospasm. Such a direct route of administration allows for both focused targeting of stroke-impacted brain tissue and minimizes potential systemic side effects. Intra-arterial administration of verapamil at a flow rate of 2.5 µl/min and injection volume of 10 µl immediately after middle cerebral artery recanalization in C57/Bl6 mice was shown to be profoundly neuroprotective as compared to intra-arterial vehicle-treated stroke controls. Specifically, we noted a significant (P ≤ 0.05) decrease in infarct volume, astrogliosis, and cellular apoptosis as well as a significant increase in neuronal survival and functional outcome over seven days. Furthermore, intra-arterial administration of verapamil was well tolerated with no hemorrhage, systemic side effects, or increased mortality. Thus, verapamil administered intra-arterially immediately following recanalization in experimental ischemic stroke is both safe and neuroprotective and merits further study as a potential therapeutic adjunct to thrombectomy.

  17. Genetic dissection of the α-globin super-enhancer in vivo

    PubMed Central

    Hay, Deborah; Hughes, Jim R.; Rode, Christina; Li, Pik-Shan; Pennacchio, Len A.; Sloane-Stanley, Jacqueline A.; Ayyub, Helena; Butler, Sue; Sauka-Spengler, Tatjana; Gibbons, Richard J.; Smith, Andrew J.H.; Wood, William G.; Higgs, Douglas R.

    2016-01-01

    Many genes determining cell identity are regulated by clusters of mediator-bound enhancer elements collectively referred to as super-enhancers. These have been proposed to manifest higher-order properties important in development and disease. Here, we report a comprehensive functional dissection of one of the strongest putative super-enhancers in erythroid cells. By generating a series of mouse models, deleting each of the five regulatory elements of the α-globin super-enhancer singly and in informative combinations, we demonstrate that each constituent enhancer appears to act independently and in an additive fashion with respect to hematologic phenotype, gene expression, chromatin structure and chromosome conformation, without clear evidence of synergistic or higher-order effects. Our study highlights the importance of functional genetic analyses for the identification of new concepts in transcriptional regulation. PMID:27376235

  18. Globin chain analysis: an important tool in phenotype study of hemoglobin disorders.

    PubMed

    Wajcman, Henri; Riou, Jean

    2009-12-01

    Phenotype studies still occupy a key position in the diagnosis of hemoglobin (Hb) disorders. An additional dimension to the methods for diagnosis of Hb disorders which are mostly based on difference in charge of the Hb molecules may be brought by studying some properties of the globin chains. Among the methods proposed, reversed-phase liquid-chromatography (RP-LC) reveals differences in hydrophobicity allowing to discriminate between variants displaying identical charges. Thus, abnormal Hbs responsible for hematological disorders, such as chronic hemolytic anemia, erythrocytosis, or thalassemia like presentation, but with a charge similar to HbA or to that of a common variant may be revealed. Also RP-LC, which discriminates between the two types of gamma chains, may be of interest for diagnosis of hereditary persistence of fetal hemoglobin (HPFH) or for suggesting a haplotype in the case of sickle cell anemia.

  19. Phylogenetic relationships within the genus Equus and the evolution of alpha and theta globin genes.

    PubMed

    Oakenfull, E A; Clegg, J B

    1998-12-01

    Sequences of the alpha1, alpha2 and theta globin genes from six equid species have been determined to investigate relationships within the genus Equus. Analyses using standard phylogenetic methods, or an approach designed to account for the effects of gene conversion between the alpha genes, gave broadly similar results and show that the horses diverged from the zebra/ass ancestor approximately 2.4 million years ago and that the zebra and ass species arose in a rapid radiation approximately 0.9 million years ago. These results from the alpha genes are corroborated by theta gene data and are in contrast to mitochondrial DNA studies of the phylogeny of this genus, which suggest a more gradual set of speciation events.

  20. Modeling Emergence in Neuroprotective Regulatory Networks

    SciTech Connect

    Sanfilippo, Antonio P.; Haack, Jereme N.; McDermott, Jason E.; Stevens, S.L.; Stenzel-Poore, Mary

    2013-01-05

    The use of predictive modeling in the analysis of gene expression data can greatly accelerate the pace of scientific discovery in biomedical research by enabling in silico experimentation to test disease triggers and potential drug therapies. Techniques that focus on modeling emergence, such as agent-based modeling and multi-agent simulations, are of particular interest as they support the discovery of pathways that may have never been observed in the past. Thus far, these techniques have been primarily applied at the multi-cellular level, or have focused on signaling and metabolic networks. We present an approach where emergence modeling is extended to regulatory networks and demonstrate its application to the discovery of neuroprotective pathways. An initial evaluation of the approach indicates that emergence modeling provides novel insights for the analysis of regulatory networks that can advance the discovery of acute treatments for stroke and other diseases.

  1. Revisiting the Term Neuroprotection in Chronic and Degenerative Diseases

    PubMed Central

    Orsini, Marco; Nascimento, Osvaldo J.M.; Matta, Andre P.C.; Reis, Carlos Henrique Melo; de Souza, Olivia Gameiro; Bastos, Victor Hugo; Moreira, Rayele; Ribeiro, Pedro; Fiorelli, Stenio; Novellino, Pietro; Pessoa, Bruno; Cunha, Mariana; Pupe, Camila; Morales, Pedro S.; Filho, Pedro F. Moreira; Trajano, Eduardo Lima; Oliveira, Acary Bulle

    2016-01-01

    Thanks to the development of several new researches, the lifetime presented a significant increase, even so, we still have many obstacles to overcome – among them, manage and get responses regarding neurodegenerative diseases. Where we are in the understanding of neuroprotection? Do we really have protective therapies for diseases considered degeneratives such as amyotrophic lateral sclerosis and its variants, Parkinson’s disease, Alzheimer’s disease and many others? Neuroprotection is defined by many researches as interactions and interventions that can slow down or even inhibit the progression of neuronal degeneration process. We make some considerations on this neuroprotective effect. PMID:27127599

  2. Understanding the contrasting spatial haplotype patterns of malaria-protective β-globin polymorphisms

    PubMed Central

    Hockham, Carinna; Piel, Frédéric B.; Gupta, Sunetra; Penman, Bridget S.

    2015-01-01

    The malaria-protective β-globin polymorphisms, sickle-cell (βS) and β0-thalassaemia, are canonical examples of human adaptation to infectious disease. Occurring on distinct genetic backgrounds, they vary markedly in their patterns of linked genetic variation at the population level, suggesting different evolutionary histories. βS is associated with five classical restriction fragment length polymorphism haplotypes that exhibit remarkable specificity in their geographical distributions; by contrast, β0-thalassaemia mutations are found on haplotypes whose distributions overlap considerably. Here, we explore why these two polymorphisms display contrasting spatial haplotypic distributions, despite having malaria as a common selective pressure. We present a meta-population genetic model, incorporating individual-based processes, which tracks the evolution of β-globin polymorphisms on different haplotypic backgrounds. Our simulations reveal that, depending on the rate of mutation, a large population size and/or high population growth rate are required for both the βS- and the β0-thalassaemia-like patterns. However, whilst the βS-like pattern is more likely when population subdivision is high, migration low and long-distance migration absent, the opposite is true for β0-thalassaemia. Including gene conversion has little effect on the overall probability of each pattern; however, when inter-haplotype fitness variation exists, gene conversion is more likely to have contributed to the diversity of haplotypes actually present in the population. Our findings highlight how the contrasting spatial haplotype patterns exhibited by βS and β0-thalassaemia may provide important indications as to the evolution of these adaptive alleles and the demographic history of the populations in which they have evolved. PMID:26394108

  3. Accuracy of Reverse Dot-Blot PCR in Detection of Different β-Globin Gene Mutations.

    PubMed

    El-Fadaly, N; Abd-Elhameed, A; Abd-Elbar, E; El-Shanshory, M

    2016-06-01

    Prevention programs for β-thalassemia based on molecular diagnosis of heterozygous carriers and/or patients require the use of reliable mutation screening methods. The aim of this study was to compare between direct DNA sequencing, and reverse dot-blot PCR in detection of different β-globin gene mutations in Egyptian children with β-thalassemia. Forty children with β-thalassemia were subjected to mutation analysis, performed by both direct DNA sequencing and β-globin Strip Assay MED™ (based on reverse dot-blot PCR). The most frequent mutant alleles detected by reverse dot-blot PCR were; IVSI-110 G>A (31.25 %), IVS I-6 T > C (21.25 %), and IVS I-1 G>A (20 %). Relatively less frequent mutant alleles detected by reverse dot-blot PCR were "IVSII-1 G>A (5 %), IVSII-745 C>G (5 %), IVSII-848 C>A (2.5 %), IVSI-5 G>C (2.5 %), -87 C>G(2.5 %), and cd39 C>T (2.5 %)", While the genotypes of three patients (6 alleles 7.5 %) were not detected by reverse dot-blot PCR. Mutant alleles detected by direct DNA sequencing were the same as reverse dot-blot PCR method except it revealed the genotypes of 3 undetected patients (one patient was homozygous IVSI-110 G>A, and two patients were homozygous IVS I-1 G>A. Sensitivity of the reverse dot-blot PCR was 92.5 % when compared to direct DNA sequencing for detecting β-thalassemia mutations. Our results therefore suggest that, direct DNA sequencing may be preferred over reverse dot-blot PCR in critical diagnostic situations like genetic counseling for prenatal diagnosis.

  4. Induction of erythroid differentiation and increased globin mRNA production with furocoumarins and their photoproducts

    PubMed Central

    Salvador, Alessia; Brognara, Eleonora; Vedaldi, Daniela; Castagliuolo, Ignazio; Brun, Paola; Zuccato, Cristina; Lampronti, Ilaria; Gambari, Roberto

    2013-01-01

    Differentiation-therapy is an important approach in the treatment of cancer, as in the case of erythroid induction in chronic myelogenous leukemia. Moreover, an important therapeutic strategy for treating beta-thalassemia and sickle-cell anemia could be the use of drugs able to induce erythroid differentiation and fetal hemoglobin (HbF) accumulation: in fact, the increased production of this type of hemoglobin can reduce the clinical symptoms and the frequency of transfusions. An important class of erythroid differentiating compounds and HbF inducers is composed by DNA-binding chemotherapeutics: however, they are not used in most instances considering their possible devastating side effects. In this contest, we approached the study of erythrodifferentiating properties of furocoumarins. In fact, upon UV-A irradiation, they are able to covalently bind DNA. Thus, the erythrodifferentiation activity of some linear and angular furocoumarins was evaluated in the experimental K562 cellular model system. Quantitative real-time reverse transcription polymerase-chain reaction assay was employed to evaluate the accumulation of different globin mRNAs. The results demonstrated that both linear and angular furocoumarins are strong inducers of erythroid differentiation of K562 cells. From a preliminary screening, we selected the most active compounds and investigated the role of DNA photodamage in their erythroid inducing activity and mechanism of action. Moreover, some cytofluorimetric experiments were carried out to better study cell cycle modifications and the mitochondrial involvement. A further development of the work was carried out studying the erythroid differentiation of photolysis products of these molecules. 5,5′-Dimethylpsoralen photoproducts induced an important increase in γ-globin gene transcription in K562 cells. PMID:23518160

  5. Understanding the contrasting spatial haplotype patterns of malaria-protective β-globin polymorphisms.

    PubMed

    Hockham, Carinna; Piel, Frédéric B; Gupta, Sunetra; Penman, Bridget S

    2015-12-01

    The malaria-protective β-globin polymorphisms, sickle-cell (β(S)) and β(0)-thalassaemia, are canonical examples of human adaptation to infectious disease. Occurring on distinct genetic backgrounds, they vary markedly in their patterns of linked genetic variation at the population level, suggesting different evolutionary histories. β(S) is associated with five classical restriction fragment length polymorphism haplotypes that exhibit remarkable specificity in their geographical distributions; by contrast, β(0)-thalassaemia mutations are found on haplotypes whose distributions overlap considerably. Here, we explore why these two polymorphisms display contrasting spatial haplotypic distributions, despite having malaria as a common selective pressure. We present a meta-population genetic model, incorporating individual-based processes, which tracks the evolution of β-globin polymorphisms on different haplotypic backgrounds. Our simulations reveal that, depending on the rate of mutation, a large population size and/or high population growth rate are required for both the β(S)- and the β(0)-thalassaemia-like patterns. However, whilst the β(S)-like pattern is more likely when population subdivision is high, migration low and long-distance migration absent, the opposite is true for β(0)-thalassaemia. Including gene conversion has little effect on the overall probability of each pattern; however, when inter-haplotype fitness variation exists, gene conversion is more likely to have contributed to the diversity of haplotypes actually present in the population. Our findings highlight how the contrasting spatial haplotype patterns exhibited by β(S) and β(0)-thalassaemia may provide important indications as to the evolution of these adaptive alleles and the demographic history of the populations in which they have evolved.

  6. A 21 Nucleotide Duplication on the α1- and α2-Globin Genes Involves a Variety of Hypochromic Microcytic Anemias, From Mild to Hb H Disease.

    PubMed

    Farashi, Samaneh; Faramarzi Garous, Negin; Zeinali, Fatemeh; Vakili, Shadi; Ashki, Mehri; Imanian, Hashem; Najmabadi, Hossein; Azarkeivan, Azita; Tamaddoni, Ahmad

    2015-01-01

    α-Thalassemia (α-thal) is a common genetic disorder in Iran and many parts of the world. Genetic defects in the α-globin gene cluster can result in α-thal that may develop into a clinical phenotype varying from almost asymptomatic to a lethal hemolytic anemia. Loss of one functional α gene, indicated as heterozygous α(+)-thal, shows minor hematological abnormalities. Homozygosity for α(+)- or heterozygosity for α(0)-thal have more severe hematological abnormalities due to a markedly reduced α chain output. At the molecular level, the absence of three α-globin genes resulting from the compound heterozygous state for α(0)- and α(+)-thal, lead to Hb H disease. Here we present a 21 nucleotide (nt) duplication consisting of six amino acids and 3 bp of intronic sequence at the exon-intron boundary, in both the α-globin genes, detected by direct DNA sequencing. This duplication was identified in three patients originating from two different Iranian ethnic groups and one Arab during more than 12 years. The clinical presentation of these individuals varies widely from a mild asymptomatic anemia (heterozygote in α1-globin gene) to a severely anemic state, diagnosed as an Hb H individual requiring blood transfusion (duplication on the α2-globin gene in combination with the - -(MED) double α-globin gene deletion). The third individual, who was homozygous for this nt duplication on the α1-globin gene, showed severe hypochromic microcytic anemia and splenomegaly. In the last decade, numerous α-globin mutations have demonstrated the necessity of prenatal diagnosis (PND) for α-thal, and this study has contributed another mutation as important enough that needs to be considered.

  7. Recombinant adeno-associated virus (rAAV)-mediated expression of a human gamma-globin gene in human progenitor-derived erythroid cells.

    PubMed Central

    Miller, J L; Donahue, R E; Sellers, S E; Samulski, R J; Young, N S; Nienhuis, A W

    1994-01-01

    Effective gene therapy for the severe hemoglobin (Hb) disorders, sickle-cell anemia and thalassemia, will require an efficient method to transfer, integrate, and express a globin gene in primary erythroid cells. To evaluate recombinant adeno-associated virus (rAAV) for this purpose, we constructed a rAAV vector encoding a human gamma-globin gene (pJM24/vHS432A gamma). Its 4725-nucleotide genome consists of two 180-bp AAV inverted terminal repeats flanking the core elements of hypersensitive sites 2, 3, and 4 from the locus control region of the beta-globin gene cluster, linked to a mutationally marked A gamma-globin gene (A gamma) containing native promoter and RNA processing signals. CD34+ human hematopoietic cells were exposed to rAAV particles at a multiplicity of infection of 500-1000 and cultured in semisolid medium containing several cytokines. A reverse transcriptase polymerase chain reaction assay distinguished mRNA signals derived from transduced and endogenous human gamma-globin genes. Twenty to 40% of human erythroid burst-forming unit-derived colonies expressed the rAAV-transduced A gamma-globin gene at levels 4-71% that of the endogenous gamma-globin genes. The HbF content of pooled control colonies was 26%, whereas HbF was 40% of the total in pooled colonies derived from rAAV transduced progenitors. These data establish that rAAV containing elements from the locus control region linked to a gamma-globin gene are capable of transferring and expressing that gene in primary human hematopoietic cells resulting in a substantial increase in HbF content. Images PMID:7524085

  8. DNA polymorphisms at the BCL11A, HBS1L-MYB, and beta-globin loci associate with fetal hemoglobin levels and pain crises in sickle cell disease.

    PubMed

    Lettre, Guillaume; Sankaran, Vijay G; Bezerra, Marcos André C; Araújo, Aderson S; Uda, Manuela; Sanna, Serena; Cao, Antonio; Schlessinger, David; Costa, Fernando F; Hirschhorn, Joel N; Orkin, Stuart H

    2008-08-19

    Sickle cell disease (SCD) is a debilitating monogenic blood disorder with a highly variable phenotype characterized by severe pain crises, acute clinical events, and early mortality. Interindividual variation in fetal hemoglobin (HbF) expression is a known and potentially heritable modifier of SCD severity. High HbF levels are correlated with reduced morbidity and mortality. Common single nucleotide polymorphisms (SNPs) at the BCL11A and HBS1L-MYB loci have been implicated previously in HbF level variation in nonanemic European populations. We recently demonstrated an association between a BCL11A SNP and HbF levels in one SCD cohort [Uda M, et al. (2008) Proc Natl Acad Sci USA 105:1620-1625]. Here, we genotyped additional BCL11A SNPs, HBS1L-MYB SNPs, and an SNP upstream of (G)gamma-globin (HBG2; the XmnI polymorphism), in two independent SCD cohorts: the African American Cooperative Study of Sickle Cell Disease (CSSCD) and an SCD cohort from Brazil. We studied the effect of these SNPs on HbF levels and on a measure of SCD-related morbidity (pain crisis rate). We strongly replicated the association between these SNPs and HbF level variation (in the CSSCD, P values range from 0.04 to 2 x 10(-42)). Together, common SNPs at the BCL11A, HBS1L-MYB, and beta-globin (HBB) loci account for >20% of the variation in HbF levels in SCD patients. We also have shown that HbF-associated SNPs associate with pain crisis rate in SCD patients. These results provide a clear example of inherited common sequence variants modifying the severity of a monogenic disease.

  9. Neuroprotective Activity of Hypericum perforatum and Its Major Components.

    PubMed

    Oliveira, Ana I; Pinho, Cláudia; Sarmento, Bruno; Dias, Alberto C P

    2016-01-01

    Hypericum perforatum is a perennial plant, with worldwide distribution, commonly known as St. John's wort. It has been used for centuries in traditional medicine for the treatment of several disorders, such as minor burns, anxiety, and mild to moderate depression. In the past years, its antidepressant properties have been extensively studied. Despite that, other H. perforatum biological activities, as its neuroprotective properties have also been evaluated. The present review aims to provide a comprehensive summary of the main biologically active compounds of H. perforatum, as for its chemistry, pharmacological activities, drug interactions and adverse reactions and gather scattered information about its neuroprotective abilities. As for this, it has been demonstrated that H. perforatum extracts and several of its major molecular components have the ability to protect against toxic insults, either directly, through neuroprotective mechanisms, or indirectly, through is antioxidant properties. H. perforatum has therefore the potential to become an effective neuroprotective therapeutic agent, despite further studies that need to be carried out.

  10. Neuroprotection in acute ischemic stroke – current status

    PubMed Central

    Auriel, E; Bornstein, NM

    2010-01-01

    Abstract With the growing understanding of the mechanism of cell death in ischemia, new approaches for treatment such as neuroprotection have emerged. The basic aim of this strategy is to interfere with the events of the ischemic cascade, blocking the pathological processes and preventing the death of nerve cells in the ischemic penumebra. This concept involves inhibition of the pathological molecular events which eventually leads to the influx of calcium, activation of free radicals and neuronal death. Despite encouraging data from experimental animal models, all clinical trials of neuroprotective therapies have to date been unsuccessful. This article reviews some of the reasons for the failure of neuroprotection in the clinical trials so far. Despite all the negative reports, we believe it would be wrong to give up at this point, since there is still reasonable hope of finding an effective neuroprotection for stroke. PMID:20716132

  11. Production of β-globin and adult hemoglobin following G418 treatment of erythroid precursor cells from homozygous β039 thalassemia patients

    PubMed Central

    Salvatori, Francesca; Breveglieri, Giulia; Zuccato, Cristina; Finotti, Alessia; Bianchi, Nicoletta; Borgatti, Monica; Feriotto, Giordana; Destro, Federica; Canella, Alessandro; Brognara, Eleonora; Lampronti, Ilaria; Breda, Laura; Rivella, Stefano; Gambari, Roberto

    2013-01-01

    In several types of thalassemia (including β039-thalassemia), stop codon mutations lead to premature translation termination and to mRNA destabilization through nonsense-mediated decay. Drugs (for instance aminoglycosides) can be designed to suppress premature termination, inducing a ribosomal readthrough. These findings have introduced new hopes for the development of a pharmacologic approach to the cure of this disease. However, the effects of aminoglycosides on globin mRNA carrying β-thalassemia stop mutations have not yet been investigated. In this study, we have used a lentiviral construct containing the β039- thalassemia globin gene under control of the β-globin promoter and a LCR cassette. We demonstrated by fluorescence-activated cell sorting (FACS) analysis the production of β-globin by K562 cell clones expressing the β039-thalassemia globin gene and treated with G418. More importantly, after FACS and high-performance liquid chromatography (HPLC) analyses, erythroid precursor cells from β039-thalassemia patients were demonstrated to be able to produce β-globin and adult hemoglobin after treatment with G418. This study strongly suggests that ribosomal readthrough should be considered a strategy for developing experimental strategies for the treatment of β0-thalassemia caused by stop codon mutations. PMID:19810011

  12. Bivalent Compound 17MN Exerts Neuroprotection through Interaction at Multiple Sites in a Cellular Model of Alzheimer's Disease.

    PubMed

    Liu, Kai; Chojnacki, Jeremy E; Wade, Emily E; Saathoff, John M; Lesnefsky, Edward J; Chen, Qun; Zhang, Shijun

    2015-01-01

    Multiple pathogenic factors have been suggested to play a role in the development of Alzheimer's disease (AD). The multifactorial nature of AD also suggests the potential use of compounds with polypharmacology as effective disease-modifying agents. Recently, we have developed a bivalent strategy to include cell membrane anchorage into the molecular design. Our results demonstrated that the bivalent compounds exhibited multifunctional properties and potent neuroprotection in a cellular AD model. Herein, we report the mechanistic exploration of one of the representative bivalent compounds, 17MN, in MC65 cells. Our results established that MC65 cells die through a necroptotic mechanism upon the removal of tetracycline (TC). Furthermore, we have shown that mitochondrial membrane potential and cytosolic Ca2+ levels are increased upon removal of TC. Our bivalent compound 17MN can reverse such changes and protect MC65 cells from TC removal induced cytotoxicity. The results also suggest that 17MN may function between the Aβ species and RIPK1 in producing its neuroprotection. Colocalization studies employing a fluorescent analog of 17MN and confocal microscopy demonstrated the interactions of 17MN with both mitochondria and endoplasmic reticulum, thus suggesting that 17MN exerts its neuroprotection via a multiple-site mechanism in MC65 cells. Collectively, these results strongly support our original design rationale of bivalent compounds and encourage further optimization of this bivalent strategy to develop more potent analogs as novel disease-modifying agents for AD.

  13. Morphinan neuroprotection: new insight into the therapy of neurodegeneration.

    PubMed

    Zhang, Wei; Hong, Jau-Shyong; Kim, Hyoung-Chun; Zhang, Wanqin; Block, Michelle L

    2004-01-01

    Neuro-inflammation plays a pivotal role in numerous neurodegenerative disorders, such as Parkinson's disease (PD). Traditional anti-inflammatory drugs have limited therapeutic use because of their narrow spectrum and severe side effects after long-term use. Morphinans are a class of compounds containing the basic morphine structure. The following review will describe novel neuroprotective effects of several morphinans in multiple inflammatory disease models. The potential therapeutic utility and underlying mechanisms of morphinan neuroprotection are discussed.

  14. Neuroprotection and Anti-Epileptogenesis with Mitochondria-Targeted Antioxidant

    DTIC Science & Technology

    2015-10-01

    to test the neuroprotective properties of carbonyl cyanide 4-trifluromethoxyphenylhydrazone (FCCP), a mitochondrial uncoupler in the PILO model of... cyanide 4-trifluro-methoxy-phenylhydrazone (FCCP), a mitochondrial uncoupler in the PILO model of SE. The decision to test FCCP was agreed to by Captain...experiments designed to test the neuroprotective efficacy of carbonyl cyanide 4-trifluro-methoxy- phenylhydrazone (FCCP), a mitochondrial uncoupler in the

  15. Disease Modifying Therapy in Multiple Sclerosis

    PubMed Central

    Williams, U. E.; Oparah, S. K.; Philip-Ephraim, E. E.

    2014-01-01

    Multiple sclerosis is an autoimmune disease of the central nervous system characterized by inflammatory demyelination and axonal degeneration. It is the commonest cause of permanent disability in young adults. Environmental and genetic factors have been suggested in its etiology. Currently available disease modifying drugs are only effective in controlling inflammation but not prevention of neurodegeneration or accumulation of disability. Search for an effective neuroprotective therapy is at the forefront of multiple sclerosis research. PMID:27355035

  16. GABAA receptor inhibition triggers a nicotinic neuroprotective mechanism

    PubMed Central

    Ferchmin, P. A; Pérez, Dinely; Alvarez, William Castro; Penzo, Mario A.; Maldonado, Héctor M.; Eterovic, Vesna A.

    2014-01-01

    Nicotinic acetylcholine receptor (nAChR)-mediated neuroprotection has been implicated in the treatment of neurodegenerative disorders such as Alzheimer’s, Parkinson’s and hypoxic ischemic events, as well as other diseases hallmarked by excitotoxic and apoptotic neuronal death. Several modalities of nicotinic neuroprotection have been reported. However, although this process generally involves α4β2 and α7 subtypes, the underlying mechanisms are largely unknown. Interestingly, both activation and inhibition of α7 nAChRs have been reported to be neuroprotective. We have shown that inhibition of α7 nAChRs protects the function of acute hippocampal slices against excitotoxicity in a α4β2-dependent manner. Neuroprotection was assessed as the prevention of the NMDA-dependent loss of the area of population spikes (PSs) in the CA1 area of acute hippocampal slices. Our results support a model in which α7 AChRs control the release of GABA. Blocking either α7 or GABAA receptors reduces the inhibitory tone on cholinergic terminals, thereby promoting α4β2 activation, which in turn mediates neuroprotection. These results shed light on how α7 nAChR inhibition can be neuroprotective through a mechanism mediated by activation of α4β2 nAChRs. PMID:23280428

  17. Self-catalytic DNA Depurination Underlies Human β-Globin Gene Mutations at Codon 6 That Cause Anemias and Thalassemias*

    PubMed Central

    Alvarez-Dominguez, Juan R.; Amosova, Olga; Fresco, Jacques R.

    2013-01-01

    The human β-globin gene contains an 18-nucleotide coding strand sequence centered at codon 6 and capable of forming a stem-loop structure that can self-catalyze depurination of the 5′G residue of that codon. The resultant apurinic lesion is subject to error-prone repair, consistent with the occurrence about this codon of mutations responsible for 6 anemias and β-thalassemias and additional substitutions without clinical consequences. The 4-residue loop of this stem-loop-forming sequence shows the highest incidence of mutation across the gene. The loop and first stem base pair-forming residues appeared early in the mammalian clade. The other stem-forming segments evolved more recently among primates, thereby conferring self-depurination capacity at codon 6. These observations indicate a conserved molecular mechanism leading to β-globin variants underlying phenotypic diversity and disease. PMID:23457306

  18. Synthesis of globin mRNA in relation to the cell cycle during induced murine erythroleukemia differentiation.

    PubMed Central

    Gambari, R; Terada, M; Bank, A; Rifkind, R A; Marks, P A

    1978-01-01

    The relationship between the synthesis of globin mRNA and the phase of cell cycle was examined in synchronized murine erythroleukemia cells. Cells were synchronized with respect to the cell division cycle either by culture with 2 mM thymidine or 2 mM thymidine followed by 0.5 mM hydroxyurea, which caused cells to accumulate in late G1 or early S (referred to as G1/S boundary). Cells were induced to erythroid differentiation by culture with 280 mM dimethyl sulfoxide or 4 mM hexamethylene bisacetamide. These inducers do not alter the progression of cells from the G1/S boundary through S, G2, and M, but do cause prolongation of the subsequent G1 phase. Accumulation of newly synthesized globin mRNA is first detected when cells are in this G1 phase. PMID:278991

  19. Self-catalytic DNA depurination underlies human β-globin gene mutations at codon 6 that cause anemias and thalassemias.

    PubMed

    Alvarez-Dominguez, Juan R; Amosova, Olga; Fresco, Jacques R

    2013-04-19

    The human β-globin gene contains an 18-nucleotide coding strand sequence centered at codon 6 and capable of forming a stem-loop structure that can self-catalyze depurination of the 5'G residue of that codon. The resultant apurinic lesion is subject to error-prone repair, consistent with the occurrence about this codon of mutations responsible for 6 anemias and β-thalassemias and additional substitutions without clinical consequences. The 4-residue loop of this stem-loop-forming sequence shows the highest incidence of mutation across the gene. The loop and first stem base pair-forming residues appeared early in the mammalian clade. The other stem-forming segments evolved more recently among primates, thereby conferring self-depurination capacity at codon 6. These observations indicate a conserved molecular mechanism leading to β-globin variants underlying phenotypic diversity and disease.

  20. The Role of Crowding Forces in Juxtaposing β-Globin Gene Domain Remote Regulatory Elements in Mouse Erythroid Cells

    PubMed Central

    Golov, Arkadiy K.; Gavrilov, Alexey A.; Razin, Sergey V.

    2015-01-01

    The extremely high concentration of macromolecules in a eukaryotic cell nucleus indicates that the nucleoplasm is a crowded macromolecular solution in which large objects tend to gather together due to crowding forces. It has been shown experimentally that crowding forces support the integrity of various nuclear compartments. However, little is known about their role in control of chromatin dynamics in vivo. Here, we experimentally addressed the possible role of crowding forces in spatial organization of the eukaryotic genome. Using the mouse β-globin domain as a model, we demonstrated that spatial juxtaposition of the remote regulatory elements of this domain in globin-expressing cells may be lost and restored by manipulation of the level of macromolecular crowding. In addition to proving the role of crowding forces in shaping interphase chromatin, our results suggest that the folding of the chromatin fiber is a major determinant in juxtaposing remote genomic elements. PMID:26436546

  1. Translational recognition of the 5'-terminal 7-methylguanosine of globin messenger RNA as a function of ionic strength.

    PubMed

    Chu, L Y; Rhoads, R E

    1978-06-13

    The translation of rabbit globin mRNA in cell-free systems derived from either wheat germ or rabbit reticulocyte was studied in the presence of various analogues of the methylated 5' terminus (cap) as a function of ionic strength. Inhibition by these analogues was strongly enhanced by increasing concentrations of KCl, K(OAc), Na(OAc), or NH4(OAc). At appropriate concentrations of K(OAc), both cell-free systems were equally sensitive to inhibition by m7GTP. At 50 mM K(OAc), the reticulocyte system was not sensitive to m7GMP or m7GTP, but at higher concentrations up to 200 mM K(OAc), both nucleotides caused strong inhibition. The compound in m7G5'ppp5'Am was inhibitory at all concentrations of K(OAc) ranging from 50 to 200 mM, although more strongly so at the higher concentrations. Over the same range of nucleotide concentrations, the compounds GMP, GTP, and G5'ppp5'Am were not inhibitors. The mobility on sodium dodecyl sulfate-polyacrylamide electrophoresis of the translation product was that of globin at all K(OAc) concentrations in the presence of m7GTP. Globin mRNA from which the terminal m7GTP group had been removed by chemical treatment (periodate-cyclohexylamine-alkaline phosphatase) or enzymatic treatment (tobacco acid pyrophosphatase-alkaline phosphatase) was translated less efficiently than untreated globin mRNA at higher K(OAc) concentrations, but retained appreciable activity at low K(OAc) concentrations.

  2. Genomic organization and differential signature of positive selection in the alpha and beta globin gene clusters in two cetacean species.

    PubMed

    Nery, Mariana F; Arroyo, José Ignacio; Opazo, Juan C

    2013-01-01

    The hemoglobin of jawed vertebrates is a heterotetramer protein that contains two α- and two β-chains, which are encoded by members of α- and β-globin gene families. Given the hemoglobin role in mediating an adaptive response to chronic hypoxia, it is likely that this molecule may have experienced a selective pressure during the evolution of cetaceans, which have to deal with hypoxia tolerance during prolonged diving. This selective pressure could have generated a complex history of gene turnover in these clusters and/or changes in protein structure themselves. Accordingly, we aimed to characterize the genomic organization of α- and β-globin gene clusters in two cetacean species and to detect a possible role of positive selection on them using a phylogenetic framework. Maximum likelihood and Bayesian phylogeny reconstructions revealed that both cetacean species had retained a similar complement of putatively functional genes. For the α-globin gene cluster, the killer whale presents a complement of genes composed of HBZ, HBK, and two functional copies of HBA and HBQ genes, whereas the dolphin possesses HBZ, HBK, HBA and HBQ genes, and one HBA pseudogene. For the β-globin gene cluster, both species retained a complement of four genes, two early expressed genes-HBE and HBH-and two adult expressed genes-HBD and HBB. Our natural selection analysis detected two positively selected sites in the HBB gene (56 and 62) and four in HBA (15, 21, 49, 120). Interestingly, only the genes that are expressed during the adulthood showed the signature of positive selection.

  3. Pridopidine, a dopamine stabilizer, improves motor performance and shows neuroprotective effects in Huntington disease R6/2 mouse model

    PubMed Central

    Squitieri, Ferdinando; Di Pardo, Alba; Favellato, Mariagrazia; Amico, Enrico; Maglione, Vittorio; Frati, Luigi

    2015-01-01

    Huntington disease (HD) is a neurodegenerative disorder for which new treatments are urgently needed. Pridopidine is a new dopaminergic stabilizer, recently developed for the treatment of motor symptoms associated with HD. The therapeutic effect of pridopidine in patients with HD has been determined in two double-blind randomized clinical trials, however, whether pridopidine exerts neuroprotection remains to be addressed. The main goal of this study was to define the potential neuroprotective effect of pridopidine, in HD in vivo and in vitro models, thus providing evidence that might support a potential disease-modifying action of the drug and possibly clarifying other aspects of pridopidine mode-of-action. Our data corroborated the hypothesis of neuroprotective action of pridopidine in HD experimental models. Administration of pridopidine protected cells from apoptosis, and resulted in highly improved motor performance in R6/2 mice. The anti-apoptotic effect observed in the in vitro system highlighted neuroprotective properties of the drug, and advanced the idea of sigma-1-receptor as an additional molecular target implicated in the mechanism of action of pridopidine. Coherent with protective effects, pridopidine-mediated beneficial effects in R6/2 mice were associated with an increased expression of pro-survival and neurostimulatory molecules, such as brain derived neurotrophic factor and DARPP32, and with a reduction in the size of mHtt aggregates in striatal tissues. Taken together, these findings support the theory of pridopidine as molecule with disease-modifying properties in HD and advance the idea of a valuable therapeutic strategy for effectively treating the disease. PMID:26094900

  4. Replication initiation patterns in the beta-globin loci of totipotent and differentiated murine cells: evidence for multiple initiation regions.

    PubMed

    Aladjem, Mirit I; Rodewald, Luo Wei; Lin, Chii Mai; Bowman, Sarah; Cimbora, Daniel M; Brody, Linnea L; Epner, Elliot M; Groudine, Mark; Wahl, Geoffrey M

    2002-01-01

    The replication initiation pattern of the murine beta-globin locus was analyzed in totipotent embryonic stem cells and in differentiated cell lines. Initiation events in the murine beta-globin locus were detected in a region extending from the embryonic Ey gene to the adult betaminor gene, unlike the restricted initiation observed in the human locus. Totipotent and differentiated cells exhibited similar initiation patterns. Deletion of the region between the adult globin genes did not prevent initiation in the remainder of the locus, suggesting that the potential to initiate DNA replication was not contained exclusively within the primary sequence of the deleted region. In addition, a deletion encompassing the six identified 5' hypersensitive sites in the mouse locus control region had no effect on initiation from within the locus. As this deletion also did not affect the chromatin structure of the locus, we propose that the sequences determining both chromatin structure and replication initiation lie outside the hypersensitive sites removed by the deletion.

  5. The proton permeability of self-assembled polymersomes and their neuroprotection by enhancing a neuroprotective peptide across the blood-brain barrier after modification with lactoferrin

    NASA Astrophysics Data System (ADS)

    Yu, Yuan; Jiang, Xinguo; Gong, Shuyu; Feng, Liang; Zhong, Yanqiang; Pang, Zhiqing

    2014-02-01

    Biotherapeutics such as peptides possess strong potential for the treatment of intractable neurological disorders. However, because of their low stability and the impermeability of the blood-brain barrier (BBB), biotherapeutics are difficult to transport into brain parenchyma via intravenous injection. Herein, we present a novel poly(ethylene glycol)-poly(d,l-lactic-co-glycolic acid) polymersome-based nanomedicine with self-assembled bilayers, which was functionalized with lactoferrin (Lf-POS) to facilitate the transport of a neuroprotective peptide into the brain. The apparent diffusion coefficient (D*) of H+ through the polymersome membrane was 5.659 × 10-26 cm2 s-1, while that of liposomes was 1.017 × 10-24 cm2 s-1. The stability of the polymersome membrane was much higher than that of liposomes. The uptake of polymersomes by mouse brain capillary endothelial cells proved that the optimal density of lactoferrin was 101 molecules per polymersome. Fluorescence imaging indicated that Lf101-POS was effectively transferred into the brain. In pharmacokinetics, compared with transferrin-modified polymersomes and cationic bovine serum albumin-modified polymersomes, Lf-POS obtained the greatest BBB permeability surface area and percentage of injected dose per gram (%ID per g). Furthermore, Lf-POS holding S14G-humanin protected against learning and memory impairment induced by amyloid-β25-35 in rats. Western blotting revealed that the nanomedicine provided neuroprotection against over-expression of apoptotic proteins exhibiting neurofibrillary tangle pathology in neurons. The results indicated that polymersomes can be exploited as a promising non-invasive nanomedicine capable of mediating peptide therapeutic delivery and controlling the release of drugs to the central nervous system.

  6. Neuroprotective effects of tetrandrine against vascular dementia

    PubMed Central

    Lv, Yan-ling; Wu, Ze-zhi; Chen, Li-xue; Wu, Bai-xue; Chen, Lian-lian; Qin, Guang-cheng; Gui, Bei; Zhou, Ji-ying

    2016-01-01

    Tetrandrine is one of the major active ingredients in Menispermaceae Stephania tetrandra S. Moore, and has specific therapeutic effects in ischemic cerebrovascular disease. Its use in vascular dementia has not been studied fully. Here, we investigated whether tetrandrine would improve behavioral and cellular impairments in a two-vessel occlusion rat model of chronic vascular dementia. Eight weeks after model establishment, rats were injected intraperitoneally with 10 or 30 mg/kg tetrandrine every other day for 4 weeks. Behavioral assessment in the Morris water maze showed that model rats had longer escape latencies in training trials, and spent less time swimming in the target quadrant in probe trials, than sham-operated rats. However, rats that had received tetrandrine showed shorter escape latencies and longer target quadrant swimming time than untreated model rats. Hematoxylin-eosin and Nissl staining revealed less neuronal necrosis and pathological damage, and more living cells, in the hippocampus of rats treated with tetrandrine than in untreated model rats. Western blot assay showed that interleukin-1β expression, and phosphorylation of the N-methyl-D-aspartate 2B receptor at tyrosine 1472, were lower in model rats that received tetrandrine than in those that did not. The present findings suggest that tetrandrine may be neuroprotective in chronic vascular dementia by reducing interleukin-1β expression, N-methyl-D-aspartate receptor 2B phosphorylation at tyrosine 1472, and neuronal necrosis. PMID:27127485

  7. Electrical stimulation and tinnitus: neuroplasticity, neuromodulation, neuroprotection.

    PubMed

    Abraham, Shulman; Barbara, Goldstein; Arnold, Strashun

    2013-01-01

    Neuroplasticity (NPL), neuromodulation (NM), and neuroprotection (NPT) are ongoing biophysiological processes that are linked together in sensory systems, the goal being the maintenance of a homeostasis of normal sensory function in the central nervous system. It is hypothesized that when the balance between excitatory - inhibitory action is broken in sensory systems, predominantly due to neuromodulatory activity with reduced induced inhibition and excitation predominates, sensory circuits become plastic with adaptation at synaptic levels to environmental inputs(1). Tinnitus an aberrant auditory sensation, for all clinical types, is clinically considered to reflect a failure of NPL, NM, and NPT to maintain normal auditory function at synaptic levels in sensory cortex and projected to downstream levels in the central auditory system in brain and sensorineural elements in ear. Clinically, the tinnitus sensation becomes behaviorally manifest with varying degrees of annoyance, reflecting a principle of sensory physiology that each sensation has components, i.e. sensory, affect/behavior, psychomotor and memory. Modalities of tinnitus therapies, eg instrumentation, pharmacology, surgery, target a particular component of tinnitus, with resultant activation of neuromodulators at multiple neuromodulatory centers in brain and ear. Effective neuromodulation at sensory neuronal synaptic levels results in NPL in sensory cortex, NPT and tinnitus relief. Functional brain imaging, metabolic (PET brain) and electrophysiology quantitative electroencephalography (QEEG) data in a cochlear implant soft failure patient demonstrates what is clinically considered to reflect NPL, NM, NPT. The reader is provided with a rationale for tinnitus diagnosis and treatment, with a focus on ES, reflecting the biology underlying NPL, NM, NPT.

  8. Neuroprotective strategies and neuroprognostication after cardiac arrest.

    PubMed

    Taccone, Fabio Silvio; Crippa, Ilaria Alice; Dell'Anna, Antonio Maria; Scolletta, Sabino

    2015-12-01

    Neurocognitive disturbances are common among survivors of cardiac arrest (CA). Although initial management of CA, including bystander cardiopulmonary resuscitation, optimal chest compression, and early defibrillation, has been implemented continuously over the last years, few therapeutic interventions are available to minimize or attenuate the extent of brain injury occurring after the return of spontaneous circulation. In this review, we discuss several promising drugs that could provide some potential benefits for neurological recovery after CA. Most of these drugs have been investigated exclusively in experimental CA models and only limited clinical data are available. Further research, which also considers combined neuroprotective strategies that target multiple pathways involved in the pathophysiology of postanoxic brain injury, is certainly needed to demonstrate the effectiveness of these interventions in this setting. Moreover, the evaluation of neurological prognosis of comatose patients after CA remains an important challenge that requires the accurate use of several tools. As most patients with CA are currently treated with targeted temperature management (TTM), combined with sedative drug therapy, especially during the hypothermic phase, the reliability of neurological examination in evaluating these patients is delayed to 72-96 h after admission. Thus, additional tests, including electrophysiological examinations, brain imaging and biomarkers, have been largely implemented to evaluate earlier the extent of brain damage in these patients.

  9. Spectrum of Beta Globin Gene Mutations in Egyptian Children with β-Thalassemia

    PubMed Central

    El-Shanshory, MR; Hagag, AA; Shebl, SS; Badria, IM; Abd Elhameed, AH; Abd El-Bar, ES; Al-Tonbary, Y; Mansour, A; Hassab, H; Hamdy, M; Alfy, M; Sherief, L; Sharaf, E

    2014-01-01

    Background The molecular defects resulting in a β-thalassemia phenotype, in the Egyptian population, show a clear heterogenic mutations pattern. PCR-based techniques, including direct DNA sequencing are effective on the molecular detection and characterization of these mutations. The molecular characterization of β-thalassemia is necessary for carrier screening, genetic counseling, and to offer prenatal diagnosis. The aim of the work was to evaluate the different β-globin gene mutations in two hundred β-thalassemic Egyptian children. Subjects and Methods This study was carried out on two hundred β-thalassemic Egyptian children covering most Egyptian Governorates including 158 (79%) children with thalassemia major (TM) and 42 (21%) children with thalassemia intermedia(TI). All patients were subjected to meticulous history taking, clinical examination, complete blood count, hemoglobin electrophoresis, serum ferritin and direct fluorescent DNA sequencing of the β-globin gene to detect the frequency of different mutations. Results The most common mutations among patients were IVS I-110(G>A) 48%, IVS I-6(T>C) 40%, IVS I-1(G>A) 24%, IVS I-5(G>C)10%, IVS II-848 (C>A) 9%, IVS II-745(C>G) 8%, IVS II-1(G>A) 7%, codon “Cd”39(C> T) 4%, −87(C>G) 3% and the rare mutations were: Cd37 (G>A), Cd8 (−AA), Cd29(−G), Cd5 (−CT), Cd6(−A), Cd8/9(+G), Cd 106/107(+G), Cd27(C>T), IVS II-16(G> C), Cd 28 (−C), Cap+1(A>C), −88(C>A), all of these rare mutations were present in 1%. There was a considerable variation in phenotypic severity among patients resulting from the interaction of different β∘ and β+mutations. Furthermore, no genotype-phenotype association was found both among the cases with thalassemia major and the cases with thalassemia intermedia. Conclusion Direct DNA sequencing provides insights for the frequency of different mutations in patients with β-thalassemia including rare and/or unknown ones. The most common mutations in Egyptian children with

  10. Ghrelin is neuroprotective in Parkinson's disease: molecular mechanisms of metabolic neuroprotection.

    PubMed

    Bayliss, Jacqueline A; Andrews, Zane B

    2013-02-01

    Ghrelin is a circulating orexigenic signal that rises with prolonged fasting and falls postprandially. Ghrelin regulates energy homeostasis by stimulating appetite and body weight; however, it also has many nonmetabolic functions including enhanced learning and memory, anxiolytic effects as well as being neuroprotective. In Parkinson's disease, ghrelin enhances dopaminergic survival via reduced microglial and caspase activation and improved mitochondrial function. As mitochondrial dysfunction contributes to Parkinson's disease, any agent that enhances mitochondrial function could be a potential therapeutic target. We propose that ghrelin provides neuroprotective effects via AMPK (5' adenosine monophosphate-activated protein kinase) activation and enhanced mitophagy (removal of damaged mitochondria) to ultimately enhance mitochondrial bioenergetics. AMPK activation shifts energy balance from a negative to a neutral state and has a role in regulating mitochondrial biogenesis and reducing reactive oxygen species production. Mitophagy is important in Parkinson's disease because damaged mitochondria produce reactive oxygen species resulting in damage to intracellular proteins, lipids and DNA predisposing them to neurodegeneration. Many genetic mutations linked to Parkinson's disease are due to abnormal mitochondrial function and mitophagy, for example LRRK2, PINK1 and Parkin. An interaction between ghrelin and these classic Parkinson's disease markers has not been observed, however by enhancing mitochondrial function, ghrelin or AMPK is a potential therapeutic target for slowing the progression of Parkinson's disease symptoms, both motor and nonmotor.

  11. Nonsense codons in human beta-globin mRNA result in the production of mRNA degradation products.

    PubMed Central

    Lim, S K; Sigmund, C D; Gross, K W; Maquat, L E

    1992-01-01

    Human beta zero-thalassemic beta-globin genes harboring either a frameshift or a nonsense mutation that results in the premature termination of beta-globin mRNA translation have been previously introduced into the germ line of mice (S.-K. Lim, J.J. Mullins, C.-M. Chen, K. Gross, and L.E. Maquat, EMBO J. 8:2613-2619, 1989). Each transgene produces properly processed albeit abnormally unstable mRNA as well as several smaller RNAs in erythroid cells. These smaller RNAs are detected only in the cytoplasm and, relative to mRNA, are longer-lived and are missing sequences from either exon I or exons I and II. In this communication, we show by using genetics and S1 nuclease transcript mapping that the premature termination of beta-globin mRNA translation is mechanistically required for the abnormal RNA metabolism. We also provide evidence that generation of the smaller RNAs is a cytoplasmic process: the 5' ends of intron 1-containing pre-mRNAs were normal, the rates of removal of introns 1 and 2 were normal, and studies inhibiting RNA synthesis with actinomycin D demonstrated a precursor-product relationship between full-length mRNA and the smaller RNAs. In vivo, about 50% of the full-length species that undergo decay are degraded to the smaller RNAs and the rest are degraded to undetectable products. Exposure of erythroid cells that expressed a normal human beta-globin transgene to either cycloheximide or puromycin did not result in the generation of the smaller RNAs. Therefore, a drug-induced reduction in cellular protein synthesis does not reproduce this aspect of cytoplasmic mRNA metabolism. These data suggest that the premature termination of beta-globin mRNA translation in either exon I or exon II results in the cytoplasmic generation of discrete mRNA degradation products that are missing sequences from exon I or exons I and II. Since these degradation products appear to be the same for all nonsense codons tested, there is no correlation between the position of

  12. Globin's structure and function in vesicomyid bivalves from the Gulf of Guinea cold seeps as an adaptation to life in reduced sediments.

    PubMed

    Decker, C; Zorn, N; Potier, N; Leize-Wagner, E; Lallier, F H; Olu, K; Andersen, A C

    2014-01-01

    Vesicomyid bivalves form dense clam beds in both deep-sea cold seeps and hydrothermal vents. The species diversity within this family raises questions about niche separation and specific adaptations. To compare their abilities to withstand hypoxia, we have studied the structure and function of erythrocyte hemoglobin (Hb) and foot myoglobin (Mb) from two vesicomyid species, Christineconcha regab and Laubiericoncha chuni, collected from the Regab pockmark in the Gulf of Guinea at a depth of 3,000 m. Laubiericoncha chuni possesses three monomeric globins, G1 (15,361 Da), G2 (15,668 Da), and G3 (15,682 Da) in circulating erythrocytes (Hb), and also three globins, G1, G3, and G4 (14,786 Da) in foot muscle (Mb). Therefore, globins G2 and G4 appear to be specific for erythrocytes and muscle, respectively, but globins G1 and G3 are common. In contrast, C. regab lacks erythrocyte Hb completely and possesses only globin monomers G1' (14,941 Da), G2' (15,169 Da), and G3' (15,683 Da) in foot muscle. Thus, these two vesicomyid species, C. regab and L. chuni, show a remarkable diversity in globin expression when examined by electrospray ionization mass spectrometry. Oxygen-binding affinities reveal extremely high oxygen affinities (P50 < 1 Torr, from 5° to 15°C at pH 7.5), in particular L. chuni globins, which might be an advantage allowing L. chuni to dig deeply for sulfides and remain buried for long periods in reduced sediments.

  13. Recent advances in globin research using genome-wide association studies and gene editing

    PubMed Central

    Orkin, Stuart H.

    2015-01-01

    A long-sought goal in the hemoglobin field has been an improved understanding of the mechanisms that regulate the switch from fetal (HbF) to adult (HbA) hemoglobin during development. With such knowledge, the hope is that strategies for directed reactivation of HbF in adults could be devised as an approach to therapy for the β-hemoglobinopathies thalassemia and sickle cell disease. Recent genome-wide association studies led to identification of three loci (BCL11A, HBS1L-Myb, and the β-globin cluster itself) in which natural genetic variation is correlated with different HbF levels in populations. Here, the central role of BCL11A in control of HbF is reviewed from the perspective of how findings may be translated to gene therapy in the not-too-distant future. This summary traces the evolution of recent studies from the initial recognition of BCL11A through GWAS to identification of critical sequences in an enhancer required for its erythroid-specific expression, thereby highlighting an Achilles heel for genome editing. PMID:26866328

  14. Evaluation of Signaling Pathways Involved in γ-Globin Gene Induction Using Fetal Hemoglobin Inducer Drugs.

    PubMed

    Rahim, Fakher; Allahmoradi, Hossein; Salari, Fatemeh; Shahjahani, Mohammad; Fard, Ali Dehghani; Hosseini, Seyed Ahmad; Mousakhani, Hadi

    2013-01-01

    Potent induction of fetal hemoglobin (HbF) production results in alleviating the complications of β-thalassemia and sickle cell disease (SCD). HbF inducer agents can trigger several molecular signaling pathways critical for erythropoiesis. Janus kinase/Signal transducer and activator of transcription (JAK/STAT), mitogen activated protein kinas (MAPK) and Phosphoinositide 3-kinase (PI3K) are considered as main signaling pathways, which may play a significant role in HbF induction. All these signaling pathways are triggered by erythropoietin (EPO) as the main growth factor inducing erythroid differentiation, when it binds to its cell surface receptor, erythropoietin receptor (EPO-R) HbF inducer agents have been shown to upregulate HbF production level by triggering certain signaling pathways. As a result, understanding the pivotal signaling pathways influencing HbF induction leads to effective upregulation of HbF. In this mini review article, we try to consider the correlation between HbF inducer agents and their molecular mechanisms of γ-globin upregulation. Several studies suggest that activating P38 MAPK, RAS and STAT5 signaling pathways result in efficient HbF induction. Nevertheless, the role of other erythroid signaling pathways in HbF induction seems to be indispensible and should be emphasized.

  15. Protection against telomeric position effects by the chicken cHS4 β-globin insulator

    PubMed Central

    Rincón-Arano, Héctor; Furlan-Magaril, Mayra; Recillas-Targa, Félix

    2007-01-01

    Epigenetic silencing of genes relocated near telomeres, termed telomeric position effect, has been extensively studied in yeast and more recently in vertebrates. However, protection of a transgene against telomeric position effects by chromatin insulators has not yet been addressed. In this work we investigated the capacity of the chicken β-globin insulator cHS4 to shield a transgene against silencing by telomeric heterochromatin. Using telomeric repeats, we targeted transgene integration into telomeres of the chicken cell line HD3. When the chicken cHS4 insulator is incorporated to the transgene, we observe a sustained gene expression of single-copy integrants that can be maintained for >100 days of continuous culture. However, uninsulated single-copy clones showed an accelerated gene expression extinction profile. Unexpectedly, telomeric silencing was not reversed with trichostatin A or nicotidamine. In contrast, significant reactivation was obtained with 5-aza-2′-deoxycytidine, consistent with the subtelomeric DNA methylation status. Strikingly, insulated transgenes integrated into telomeric regions were enriched in histone methylation, such as H3K4me2 and H3K79me2, but not in histone acetylation. Furthermore, the cHS4 insulator counteracts telomeric position effects in an upstream stimulatory factor-independent manner. Our results suggest that this insulator has the capacity to adapt to different chromatin propagation signals in distinct insertional epigenome environments. PMID:17715059

  16. Allele-specific enzymatic amplification of. beta. -globin genomic DNA for diagnosis of sickle cell anemia

    SciTech Connect

    Wu, D.Y.; Ugozzoli, L.; Pal, B.K.; Wallace, B. )

    1989-04-01

    A rapid nonradioactive approach to the diagnosis of sickle cell anemia is described based on an allele-specific polymerase chain reaction (ASPCR). This method allows direct detection of the normal or the sickle cell {beta}-globin allele in genomic DNA without additional steps of probe hybridization, ligation, or restriction enzyme cleavage. Two allele-specific oligonucleotide primers, one specific for the sickle cell allele and one specific for the normal allele, together with another primer complementary to both alleles were used in the polymerase chain reaction with genomic DNA templates. The allele-specific primers differed from each other in their terminal 3{prime} nucleotide. Under the proper annealing temperature and polymerase chain reaction conditions, these primers only directed amplification on their complementary allele. In a single blind study of DNA samples from 12 individuals, this method correctly and unambiguously allowed for the determination of the genotypes with no false negatives or positives. If ASPCR is able to discriminate all allelic variation (both transition and transversion mutations), this method has the potential to be a powerful approach for genetic disease diagnosis, carrier screening, HLA typing, human gene mapping, forensics, and paternity testing.

  17. Analysis of a mouse. cap alpha. -globin gene mutation induced by ethylnitrosourea

    SciTech Connect

    Popp, R.A.; Bailiff, E.G.; Skow, L.C.; Johnson, F.M.; Lewis, S.E.

    1983-09-01

    A DBA/2 mouse treated with ethylnitrosourea sired an offspring whose hemoglobin showed an extra band following starch gel electrophoresis. The variant hemoglobin migrated to a more cathodal posititon in starch gel. Isoelectric focusing indicated that chain 5 of the mutant hemoglobin migrated to a more cathodal position than the normal chain 5 from DBA/2 mice and that the other ..cap alpha..-globin, chain 1, was not affected. On focusing gels the phenotype of the mutant allele, Hba/sup y9/, was expressed without dominance to normal chain 5, and Hba/sup y9/ / Hba/sup y9/ homozygotes were fully viable in the laboratory. The molecular basis for the germinal mutation was investigated by analyzing the amino acid sequence of chain 5/sup y9/, the mutant form of ..cap alpha..-chain 5. A single amino acid substitution (His ..-->.. Leu) at position 89 was found in chain 5/sup y9/. The authors propose that ethylnitrosourea induced an A ..-->.. T transversion in the histidine codon at position 89 (CAC ..-->.. CTC). This mutation has apparently not been observed previously in humans, mice or other mammals, and its novel occurrence may be indicative of other unusual mutational events that do not ordinarily occur in the absence of specific mutagen exposure.

  18. YY1 and GATA-1 interaction modulate the chicken 3'-side alpha-globin enhancer activity.

    PubMed

    Rincón-Arano, Héctor; Valadez-Graham, Viviana; Guerrero, Georgina; Escamilla-Del-Arenal, Martín; Recillas-Targa, Félix

    2005-06-24

    Studying the chicken alpha-globin domain as a model system of gene regulation, we have previously identified contiguous silencer-enhancer elements located on the 3'-side of the domain. To better characterize the enhancer we performed a systematic functional analysis to define its expression influence range and the ubiquitous and stage-specific transcriptional regulators interacting with this control element. In contrast to previous reports, we found that, in addition to a core element that includes three GATA-1 binding sites, the enhancer incorporates a 120 base-pair DNA fragment where EKLF, NF-E2 and a fourth GATA-1 factor could interact. Functional experiments demonstrate that the enhancer activity over the adult alpha(D) promoter is differentially regulated. We found that the transcriptional factor Ying Yang 1 (YY1) binds to the 120 base-pair DNA fragment and its effect over the enhancer activity is GATA-1-dependent. In addition, we characterize a novel physical interaction between GATA-1 and YY1 that influences the enhancer function. Experiments using a histone deacetylation inhibitor indicate that, in pre-erythroblasts, the enhancer down-regulation could be influenced by a closed chromatin conformation. Our observations show that the originally defined enhancer possesses a more complex composition than previously assumed. We propose that its activity is modulated through differential nuclear factor interactions and chromatin modifications at distinct erythroid stages.

  19. High diversity of {alpha}-globin haplotypes in a senegalese population, including many previously unreported variants

    SciTech Connect

    Martinson, J.J.; Swinburn, C.; Clegg, J.B.

    1995-11-01

    RFLP haplotypes at the {alpha}-globin gene complex have been examined in 190 individuals from the Niokolo Mandenka population of Senegal: haplotypes were assigned unambiguously for 210 chromosomes. The Mandenka share with other African populations a sample size-independent haplotype diversity that is much greater than that in any non-African population: the number of haplotypes observed in the Mandenka is typically twice that seen in the non-African populations sampled to date. Of these haplotypes, 17.3% had not been observed in any previous surveys, and a further 19.1% have previously been reported only in African populations. The haplotype distribution shows clear differences between African and non-African peoples, but this is on the basis of population-specific haplotypes combined with haplotypes common to all. The relationship of the newly reported haplotypes to those previously recorded suggests that several mutation processes, particularly recombination as homologous exchange or gene conversion, have been involved in their production. A computer program based on the expectation-maximization (EM) algorithm was used to obtain maximum-likelihood estimates of haplotype frequencies for the entire data set: good concordance between the unambiguous and EM-derived sets was seen for the overall haplotype frequencies. Some of the low-frequency haplotypes reported by the estimation algorithm differ greatly, in structure, from those haplotypes known to be present in human populations, and they may not represent haplotypes actually present in the sample. 43 refs., 4 figs., 4 tabs.

  20. Recent advances in globin research using genome-wide association studies and gene editing.

    PubMed

    Orkin, Stuart H

    2016-03-01

    A long-sought goal in the hemoglobin field has been an improved understanding of the mechanisms that regulate the switch from fetal (HbF) to adult (HbA) hemoglobin during development. With such knowledge, the hope is that strategies for directed reactivation of HbF in adults could be devised as an approach to therapy for the β-hemoglobinopathies thalassemia and sickle cell disease. Recent genome-wide association studies (GWAS) led to identification of three loci (BCL11A, HBS1L-MYB, and the β-globin cluster itself) in which natural genetic variation is correlated with different HbF levels in populations. Here, the central role of BCL11A in control of HbF is reviewed from the perspective of how findings may be translated to gene therapy in the not-too-distant future. This summary traces the evolution of recent studies from the initial recognition of BCL11A through GWAS to identification of critical sequences in an enhancer required for its erythroid-specific expression, thereby highlighting an Achilles heel for genome editing.

  1. Spectrum of alpha-globin gene mutations among premarital Baluch couples in southeastern Iran

    PubMed Central

    Miri-Moghaddam, Ebrahim; Nikravesh, Abass; Gasemzadeh, Negin; Badaksh, Mahin; Rakhshi, Nahid

    2015-01-01

    Background: Alpha thalassemia (α-thal) is one of the most common hemoglobinopathies worldwide. The aim of this study was to investigate the spectrum of α-thal mutations among premarital Baluch couples in southeastern Iran. Subjects and Methods: We assessed 1215 individuals by multiplex gap polymerase chain reaction (gap-PCR) and amplification refractory mutation system (ARMS-PCR). Results: Of the 1215 participants with mean age of 23±5.7 years, 62.3% lived in urban areas, and the rate of consanguineous marriage was 68.1%. Five mutations were identified, the most frequent one was –α3.7 (rightward) with a frequency of 76.5%, followed by α−5 nt (16.8%), α2/ Codon 19(-G) (4%), –α4.2 (leftward)(2.4%), – –MED (0.3%) among mutated alleles of the α -globin gene. Conclusion : Knowing the alpha-genotype is helpful for genetic counseling, microcytic anemia discrimination and hemoglobinopathy prevention. PMID:26261699

  2. Globin gene-associated restriction-fragment-length polymorphisms in southern African peoples.

    PubMed Central

    Ramsay, M; Jenkins, T

    1987-01-01

    The combination of polymorphic restriction-enzyme sites in the 3' region of the beta-globin gene cluster shows very little variation in southern-African Bantu-speaking black and Kalahari !Kung San populations. The sites of the 5' region, on the other hand, show marked variation, and two common haplotypes are present--the "Negro" type (- - - - +) and the "San" type (- + - - +)--in frequencies of .404 and .106, respectively, in the Bantu-speakers and .262 and .405, respectively, in the San. Twenty of 23 beta s-associated haplotypes in southern-African Bantu-speaking black subjects were the same as that found commonly in the Central African Republic (CAR)--i.e., the "Bantu" type--a finding providing the first convincing biological evidence for the common ancestry of geographically widely separated speakers of languages belonging to the Bantu family. The (-alpha) haplotype has a frequency of .21 in the Venda, .07 in both the Sotho-Tswana and the Nguni, and .06 among the !Kung San. These data are interpreted in the light of Plasmodium falciparum malaria selection and population movements in the African subcontinent. PMID:2891298

  3. High diversity of alpha-globin haplotypes in a Senegalese population, including many previously unreported variants.

    PubMed Central

    Martinson, J J; Excoffier, L; Swinburn, C; Boyce, A J; Harding, R M; Langaney, A; Clegg, J B

    1995-01-01

    RFLP haplotypes at the alpha-globin gene complex have been examined in 190 individuals from the Niokolo Mandenka population of Senegal: haplotypes were assigned unambiguously for 210 chromosomes. The Mandenka share with other African populations a sample size-independent haplotype diversity that is much greater than that in any non-African population: the number of haplotypes observed in the Mandenka is typically twice that seen in the non-African populations sampled to date. Of these haplotypes, 17.3% had not been observed in any previous surveys, and a further 19.1% have previously been reported only in African populations. The haplotype distribution shows clear differences between African and non-African peoples, but this is on the basis of population-specific haplotypes combined with haplotypes common to all. The relationship of the newly reported haplotypes to those previously recorded suggests that several mutation processes, particularly recombination as homologous exchange or gene conversion, have been involved in their production. A computer program based on the expectation-maximization (EM) algorithm was used to obtain maximum-likelihood estimates of haplotype frequencies for the entire data set: good concordance between the unambiguous and EM-derived sets was seen for the overall haplotype frequencies. Some of the low-frequency haplotypes reported by the estimation algorithm differ greatly, in structure, from those haplotypes known to be present in human populations, and they may not represent haplotypes actually present in the sample. PMID:7485171

  4. Genomic organization and characterization of a three-gene rat adult beta-globin haplotype.

    PubMed

    Au, D M; Wong, W M; Tam, J W; Cheng, L Y; Lam, V M

    1995-11-20

    The isolation and detailed characterization of a three-beta-globin gene (GloB) haplotype in the Sprague-Dawley (S-D) rat is described. An enriched library, lambda SDHelib, was screened with a human GloB probe, humbg44, and from which a beta minor gene, Rathbbz, was isolated, sequenced and characterized. A S-D rat GloB-specific probe, Ratbgze12, derived from the Rathbbz gene, was then used to screen a S-D rat genomic library, lambda SDglib. The clone T1510 was isolated and identified to include the entire Rathbbz gene and part of another GloB gene, Rathbby, which was 5' upstream from Rathbbz. Chromosomal walking upstream using the riboprobe, rnaT71, led to the isolation of an overlapping clone, Ta49, which was shown to include two full-length GloB genes; the most 5' was Rathbbx followed by Rathbby. Sequence data suggests that Rathbbx is a beta major gene, whereas Rathbby is a hybrid gene of Rathbbx and Rathbbz. Genomic hybridization confirmed this particular three-gene haplotype in the S-D rat. This haplotype, a1, may be the prototype of the GloB cluster in rat.

  5. Neuroprotective Effects of Garlic A Review

    PubMed Central

    Mathew, BC; Biju, RS

    2008-01-01

    Garlic has been investigated extensively for health benefits, resulting in more than one thousand publications over the last decade alone. It is considered one of the best disease preventive foods, based on its potent and varied effects. Midlife risk factors for cardiovascular diseases, such as high serum total cholesterol, raised LDL, increased LDL oxidation, increased platelet aggregation, impaired fibrinolysis, hypertension and homocystinemia are important risk factors for dementia in later years. These risk factors play a major role in the genesis of atherosclerosis of vital arteries causing both cardiovascular and cerebrovascular disease. Garlic is best known for its lipid lowering and anti-atherogenic effects. Possible mechanisms of action include inhibition of the hepatic activities of lipogenic and cholesterogenic enzymes that are thought to be the genesis for dyslipidemias, increased excretion of cholesterol and suppression of LDL-oxidation. Oxidative stress caused by increased accumulation of reactive oxygen species (ROS) in cells has been implicated in the pathophysiology of several neurodegenerative diseases including Alzheimer's disease (AD). Several studies have demonstrated the antioxidant properties of garlic and its different preparations including Aged Garlic Extract (AGE). AGE and S-allyl-cysteines (SAC), a bioactive and bioavailable component in garlic preparations have been shown in a number of in vitro studies to protect neuronal cells against beta-amyloid (A) toxicity and apoptosis. Thus the broad range of anti-atherogenic, antioxidant and anti-apoptotic protection afforded by garlic may be extended to its neuroprotective action, helping to reduce the risk of dementia, including vascular dementia and AD. PMID:21499478

  6. Endocannabinoids in Synaptic Plasticity and Neuroprotection

    PubMed Central

    Xu, Jian-Yi; Chen, Chu

    2014-01-01

    Endocannabinoids (eCBs) are endogenous lipid mediators involved in a variety of physiological, pharmacological, and pathological processes. While activation of the eCB system primarily induces inhibitory effects on both GABAergic and glutamatergic synaptic transmission and plasticity through acting on presynaptically-expressed CB1 receptors in the brain, accumulated information suggests that eCB signaling is also capable of facilitating or potentiating excitatory synaptic transmission in the hippocampus. Recent studies show that a long-lasting potentiation of excitatory synaptic transmission at Schaffer collateral (SC)-CA1 synapses is induced by spatiotemporally primed inputs, accompanying with a long-term depression of inhibitory synaptic transmission (I-LTD) in hippocampal CA1 pyramidal neurons. This input-timing-dependent long-lasting synaptic potentiation at SC-CA1 synapses is mediated by 2-arachidonoylglycerol (2-AG) signaling triggered by activation of postsynaptic NMDA receptors, group I metabotropic glutamate receptors (mGluRs), and a concurrent rise in intracellular Ca2+. Emerging evidence now also indicates that 2-AG is an important signaling mediator keeping brain homeostasis by exerting its anti-inflammatory and neuroprotective effects in response to harmful insults through CB1/2 receptor-dependent and/or independent mechanisms. Activation of the nuclear receptor protein peroxisome proliferator-activated receptor-γ (PPARγ) apparently is one of the important mechanisms in resolving neuroinflammation and protecting neurons produced by 2-AG signaling. Thus, the information summarized in this review suggests that the role of eCB signaling in maintaining integrity of brain function is greater than what we thought previously. PMID:24571856

  7. Neurodegeneration and neuroprotection in diabetic retinopathy.

    PubMed

    Ola, Mohammad Shamsul; Nawaz, Mohd Imtiaz; Khan, Haseeb A; Alhomida, Abdullah S

    2013-01-28

    Diabetic retinopathy is widely considered to be a neurovascular disease. This is in contrast to its previous identity as solely a vascular disease. Early in the disease progression of diabetes, the major cells in the neuronal component of the retina consist of retinal ganglion cells and glial cells, both of which have been found to be compromised. A number of retinal function tests also indicated a functional deficit in diabetic retina, which further supports dysfunction of neuronal cells. As an endocrinological disorder, diabetes alters metabolism both systemically and locally in several body organs, including the retina. A growing body of evidences indicates increased levels of excitotoxic metabolites, including glutamate, branched chain amino acids and homocysteine in cases of diabetic retinopathy. Also present, early in the disease, are decreased levels of folic acid and vitamin-B12, which are potential metabolites capable of damaging neurons. These altered levels of metabolites are found to activate several metabolic pathways, leading to increases in oxidative stress and decreases in the level of neurotrophic factors. As a consequence, they may damage retinal neurons in diabetic patients. In this review, we have discussed those potential excitotoxic metabolites and their implications in neuronal damage. Possible therapeutic targets to protect neurons are also discussed. However, further research is needed to understand the exact molecular mechanism of neurodegeneration so that effective neuroprotection strategies can be developed. By protecting retinal neurons early in diabetic retinopathy cases, damage of retinal vessels can be protected, thereby helping to ameliorate the progression of diabetic retinopathy, a leading cause of blindness worldwide.

  8. Determinants that contribute to cytoplasmic stability of human c-fos and. beta. -globin mRNAs are located at several sites in each mRNA

    SciTech Connect

    Kabnick, K.S.; Housman, D.E.

    1988-08-01

    The authors have analyzed the contributions to cytoplasmic stability in an mRNA species with a very short half-life (human c-fos) and an mRNA species with a very long half-life (human ..beta..-globin). When the human c-fos promoter was used to drive the expression of human c-fos, ..beta..-globin, and chimeric DNAs between c-fos and ..beta..-globin in transfected cells, a pulse of mRNA synthesis was obtained following induction of transcription by refeeding quiescent cells with medium containing 15% calf serum. The mRNA half-life was determined by using Northern (RNA) blot analysis of mRNAs prepared at various times following the pulse of transcription. Under these conditions human c-fos mRNA exhibited a half-life of 6.6 min and human ..beta..-globin mRNA exhibited a half-life of 17.5 h. Replacement of the 3' end of the c-fos mRNA with the 3' end of the ..beta..-globin mRNA increased the half-life of the resultant RNA from 6.6 to 34 min. The reciprocal chimera had a half-life of 34.6 min compared with the 17.5-half-life of ..beta..-globin mRNA. These results suggest that sequences which make a major contribution to mRNA stability reside in the 3' end of either or both molecules. A chimera in which the 5' untranslated region of globin was replaced by part of the 5' untranslated region of fos led to destabilization of the encoded mRNA. This construct produced an mRNA with a half-life of 6.8 h instead of the 17.5-h half-life of globin. This result suggests that additional determinants of stability reside in the 5' end of these mRNA molecules. Substitution of part of the 5' untranslated region of fox by the 5' untranslated region of ..beta..-globin yielded an mRNA with stability similar to fos mRNA. These results suggest that interactions among sequences within each mRNA contribute to the stability of the respective molecules.

  9. Neuroprotective Effects of Mitochondria-Targeted Plastoquinone and Thymoquinone in a Rat Model of Brain Ischemia/Reperfusion Injury.

    PubMed

    Silachev, Denis N; Plotnikov, Egor Y; Zorova, Ljubava D; Pevzner, Irina B; Sumbatyan, Natalia V; Korshunova, Galina A; Gulyaev, Mikhail V; Pirogov, Yury A; Skulachev, Vladimir P; Zorov, Dmitry B

    2015-08-11

    We explored the neuroprotective properties of natural plant-derived antioxidants plastoquinone and thymoquinone (2-demethylplastoquinone derivative) modified to be specifically accumulated in mitochondria. The modification was performed through chemical conjugation of the quinones with penetrating cations: Rhodamine 19 or tetraphenylphosphonium. Neuroprotective properties were evaluated in a model of middle cerebral artery occlusion. We demonstrate that the mitochondria-targeted compounds, introduced immediately after reperfusion, possess various neuroprotective potencies as judged by the lower brain damage and higher neurological status. Plastoquinone derivatives conjugated with rhodamine were the most efficient, and the least efficiency was shown by antioxidants conjugated with tetraphenylphosphonium. Antioxidants were administered intraperitoneally or intranasally with the latter demonstrating a high level of penetration into the brain tissue. The therapeutic effects of both ways of administration were similar. Long-term administration of antioxidants in low doses reduced the neurological deficit, but had no effect on the volume of brain damage. At present, cationic decylrhodamine derivatives of plastoquinone appear to be the most promising anti-ischemic mitochondria-targeted drugs of the quinone family. We suggest these antioxidants could be potentially used for a stroke treatment.

  10. Lack of neighborhood effects from a transcriptionally active phosphoglycerate kinase-neo cassette located between the murine beta-major and beta-minor globin genes.

    PubMed

    Kaufman, R M; Lu, Z H; Behl, R; Holt, J M; Ackers, G K; Ley, T J

    2001-07-01

    For the treatment of beta-globin gene defects, a homologous recombination-mediated gene correction approach would provide advantages over random integration-based gene therapy strategies. However, "neighborhood effects" from retained selectable marker genes in the targeted locus are among the key issues that must be taken into consideration for any attempt to use this strategy for gene correction. An Ala-to-Ile mutation was created in the beta6 position of the mouse beta-major globin gene (beta(6I)) as a step toward the development of a murine model system that could serve as a platform for therapeutic gene correction studies. The marked beta-major gene can be tracked at the level of DNA, RNA, and protein, allowing investigation of the impact of a retained phosphoglycerate kinase (PGK)-neo cassette located between the mutant beta-major and beta-minor globin genes on expression of these 2 neighboring genes. Although the PGK-neo cassette was expressed at high levels in adult erythroid cells, the abundance of the beta(6I) mRNA was indistinguishable from that of the wild-type counterpart in bone marrow cells. Similarly, the output from the beta-minor globin gene was also normal. Therefore, in this specific location, the retained, transcriptionally active PGK-neo cassette does not disrupt the regulated expression of the adult beta-globin genes. (Blood. 2001;98:65-73)

  11. Definition of the minimal requirements within the human beta-globin gene and the dominant control region for high level expression.

    PubMed Central

    Collis, P; Antoniou, M; Grosveld, F

    1990-01-01

    The human beta-globin dominant control region (DCR) was previously identified as a region from the 5' end of the human beta-globin locus which directs high level, site of integration-independent, copy number-dependent expression on a linked human beta-globin gene in transgenic mice and stably transfected mouse erythroleukaemia (MEL) cells. We have now analysed the elements comprising the DCR by systematic deletion mutagenesis in stable MEL transfectants. We have identified two independent elements within the DNase I hypersensitive sites 2 and 3, containing fragments which direct strong transcriptional inducibility of a beta-globin gene. Whilst the remaining two hypersensitive sites do not direct significant transcriptional induction, our data suggest that all four sites may be necessary for the fully regulated expression conferred by the DCR. We have also tested a number of beta-globin minigene constructs under the control of the DCR to assess if any of the local sequences from the gene may be removed without loss of expression. We find that the 3' enhancer may be removed without affecting expression, but there is an absolute requirement for the presence of the second intron, not related to the enhancer present in that intron. Images Fig. 2. Fig. 3. Fig. 4. Fig. 5. PMID:2295312

  12. Oxygen and Bis(3',5')-cyclic Dimeric Guanosine Monophosphate Binding Control Oligomerization State Equilibria of Diguanylate Cyclase-Containing Globin Coupled Sensors.

    PubMed

    Burns, Justin L; Rivera, Shannon; Deer, D Douglas; Joynt, Shawnna C; Dvorak, David; Weinert, Emily E

    2016-12-06

    Bacteria sense their environment to alter phenotypes, including biofilm formation, to survive changing conditions. Heme proteins play important roles in sensing the bacterial gaseous environment and controlling the switch between motile and sessile (biofilm) states. Globin coupled sensors (GCS), a family of heme proteins consisting of a globin domain linked by a central domain to an output domain, are often found with diguanylate cyclase output domains that synthesize c-di-GMP, a major regulator of biofilm formation. Characterization of diguanylate cyclase-containing GCS proteins from Bordetella pertussis and Pectobacterium carotovorum demonstrated that cyclase activity is controlled by ligand binding to the heme within the globin domain. Both O2 binding to the heme within the globin domain and c-di-GMP binding to a product-binding inhibitory site (I-site) within the cyclase domain control oligomerization states of the enzymes. Changes in oligomerization state caused by c-di-GMP binding to the I-site also affect O2 kinetics within the globin domain, suggesting that shifting the oligomer equilibrium leads to broad rearrangements throughout the protein. In addition, mutations within the I-site that eliminate product inhibition result in changes to the accessible oligomerization states and decreased catalytic activity. These studies provide insight into the mechanism by which ligand binding to the heme and I-site controls activity of GCS proteins and suggests a role for oligomerization-dependent activity in vivo.

  13. Target-based drug discovery for [Formula: see text]-globin disorders: drug target prediction using quantitative modeling with hybrid functional Petri nets.

    PubMed

    Mehraei, Mani; Bashirov, Rza; Tüzmen, Şükrü

    2016-10-01

    Recent molecular studies provide important clues into treatment of [Formula: see text]-thalassemia, sickle-cell anaemia and other [Formula: see text]-globin disorders revealing that increased production of fetal hemoglobin, that is normally suppressed in adulthood, can ameliorate the severity of these diseases. In this paper, we present a novel approach for drug prediction for [Formula: see text]-globin disorders. Our approach is centered upon quantitative modeling of interactions in human fetal-to-adult hemoglobin switch network using hybrid functional Petri nets. In accordance with the reverse pharmacology approach, we pose a hypothesis regarding modulation of specific protein targets that induce [Formula: see text]-globin and consequently fetal hemoglobin. Comparison of simulation results for the proposed strategy with the ones obtained for already existing drugs shows that our strategy is the optimal as it leads to highest level of [Formula: see text]-globin induction and thereby has potential beneficial therapeutic effects on [Formula: see text]-globin disorders. Simulation results enable verification of model coherence demonstrating that it is consistent with qPCR data available for known strategies and/or drugs.

  14. The sequence and phylogenesis of the ?-globin genes of Barbary sheep (Ammotragus lervia), goat (Capra hircus), European mouflon (Ovis aries musimon) and Cyprus mouflon (Ovis aries ophion).

    PubMed

    Pirastru, Monica; Multineddu, Chiara; Mereu, Paolo; Sannai, Mara; El Sherbini, El Said; Hadjisterkotis, Eleftherios; Nàhlik, Andràs; Franceschi, Paul; Manca, Laura; Masala, Bruno

    2009-09-01

    In order to investigate the polymorphism of ?-globin chain of hemoglobin amongst caprines, the linked (I)? and (II)? globin genes of Barbary sheep (Ammotragus lervia), goat (Capra hircus), European mouflon (Ovis aries musimon), and Cyprus mouflon (Ovis aries ophion) were completely sequenced, including the 5? and 3? untranslated regions. European and Cyprus mouflons, which do not show polymorphic ? globin chains, had almost identical ? globin genes, whereas Barbary sheep exhibit two different chains encoded by two nonallelic genes. Four different ? genes were observed and sequenced in goat, validating previous observations of the existence of allelic and nonallelic polymorphism. As in other vertebrates, interchromosomal gene conversion appears to be responsible for such polymorphism. Evaluation of nucleotide sequences at the level of molecular evolution of the (I)?-globin gene family in the caprine taxa suggests a closer relationship between the genus Ammotragus and Capra. Molecular clock estimates suggest sheep-mouflon, goat-aoudad, and ancestor-caprine divergences of 2.8, 5.7, and 7.1 MYBP, respectively.

  15. Linker scanning mutagenesis of the 5'-flanking region of the mouse beta-major-globin gene: sequence requirements for transcription in erythroid and nonerythroid cells.

    PubMed

    Charnay, P; Mellon, P; Maniatis, T

    1985-06-01

    We analyzed the sequences required for transcription of the mouse beta-major-globin gene by introducing deletion and linker scanning mutations into the 5'-flanking region and then studying the effects of these mutations on beta-globin gene transcription in a HeLa cell transient expression assay or after stable introduction into mouse erythroleukemia cells. Consistent with earlier studies, we found that three distinct regions upstream from the RNA capping site are required for efficient beta-globin gene transcription in HeLa cells: the ATA box located 30 base pairs upstream from the mRNA capping site (-30), the CCAAT box located at -75, and the distal sequence element CCACACCC located at -90. In the ATA and CAAT box regions, the sequences necessary for efficient transcription extend beyond the limits of the canonical sequences. Mutations in the sequences located between the three transcriptional control elements do not significantly affect transcription in HeLa cells. Although the promoter defined in HeLa cell transfection experiments is also required for efficient transcription in mouse erythroleukemia cells, none of the mutations tested affects the regulation of beta-globin gene transcription during mouse erythroleukemia cell differentiation. Thus, DNA sequences downstream from the mRNA cap site appear to be sufficient for the regulation of beta-globin gene expression during the differentiation of mouse erythroleukemia cells in culture.

  16. [Neuroprotective mechanisms of cannabinoids in brain ischemia and neurodegenerative disorders].

    PubMed

    Osuna-Zazuetal, Marcela Amparo; Ponce-Gómez, Juan Antonio; Pérez-Neri, Iván

    2015-06-01

    One of the most important causes of morbidity and mortality is neurologic dysfunction; its high incidence has led to an intense research of the mechanisms that protect the central nervous system from hypoxia and ischemia. The mayor challenge is to block the biochemical events leading to neuronal death. This may be achieved by neuroprotective mechanisms that avoid the metabolic and immunologic cascades that follow a neurological damage. When it occurs, several pathophysiological events develop including cytokine release, oxidative stress and excitotoxicity. Neuroprotective effects of cannabinoids to all those mechanisms have been reported in animal models of brain ischemia, excitotoxicity, brain trauma and neurodegenerative disorders. Some endocannabinoid analogs are being tested in clinical studies (I-III phase) for acute disorders involving neuronal death (brain trauma and ischemia). The study of the cannabinoid system may allow the discovery of effective neuroprotective drugs for the treatment of neurological disorders.

  17. On the horizon: possible neuroprotective role for glatiramer acetate.

    PubMed

    Kreitman, Rivka Riven; Blanchette, François

    2004-06-01

    Inflammation and neurodegeneration characterize the pathogenesis of multiple sclerosis (MS). Slow axonal degeneration, rather than acute inflammation, is considered the cause of chronic disability in MS. The signs of acute axonal damage and loss have been shown to occur early in the lesion development of patients with chronic MS and often correlate with demyelination and inflammation. While immune activity in the central nervous system has traditionally been considered to be a detrimental event in MS, recent studies have found that autoimmune T cells may play an important role in protecting neurons from the ongoing spreading damage. Neuroprotection in MS is a new and evolving concept, and many questions remain with regard to potential targets for therapeutic intervention. Preliminary studies, both in animals and in humans, have suggested that glatiramer acetate (GA) may confer neuroprotective activity in addition to bystander suppression. Additional research is needed to determine if these promising neuroprotective effects correlated with the long-term effect of GA in MS.

  18. Neuroprotective Effects of Intravenous Anesthetics: A New Critical Perspective

    PubMed Central

    Bilotta, Federico; Stazi, Elisabetta; Zlotnik, Alexander; Gruenbaum, Shaun E.; Rosa, Giovanni

    2015-01-01

    Perioperative cerebral damage can result in various clinical sequela ranging from minor neurocognitive deficits to catastrophic neurological morbidity with permanent impairment and death. The goal of neuroprotective treatments is to reduce the clinical effects of cerebral damage through two major mechanisms: increased tolerance of neurological tissue to ischemia and changes in intra-cellular responses to energy supply deprivation. In this review, we present the clinical evidence of intravenous anesthetics on perioperative neuroprotection, and we also provide a critical perspective for future studies. The neuroprotective efficacy of the intravenous anesthetics thiopental, propofol and etomidate is unproven. Lidocaine may be neuroprotective in non-diabetic patients who have undergoing cardiac surgery with cardiopulmonary bypass (CBP) or with a 48-hour infusion, but conclusive data are lacking. There are several limitations of clinical studies that evaluate postoperative cognitive dysfunction (POCD), including difficulties in identifying patients at high-risk and a lack of consensus for defining the “gold-standard” neuropsychological testing. Although a battery of neurocognitive tests remains the primary method for diagnosing POCD, recent evidence suggests a role for novel biomarkers and neuroimaging to preemptively identify patients more susceptible to cognitive decline in the perioperative period. Current evidence, while inconclusive, suggest that intravenous anesthetics may be both neuroprotective and neurotoxic in the perioperative period. A critical analysis on data recorded from randomized control trials (RCTs) is essential in identifying patients who may benefit or be harmed by a particular anesthetic. RCTs will also contribute to defining methodologies for future studies on the neuroprotective effects of intravenous anesthetics. PMID:24669972

  19. Therapeutic window of opportunity for the neuroprotective effect of valproate versus the competitive AMPA receptor antagonist NS1209 following status epilepticus in rats.

    PubMed

    Langer, Melanie; Brandt, Claudia; Zellinger, Christina; Löscher, Wolfgang

    2011-01-01

    Epileptogenesis, i.e., the process leading to epilepsy, is a presumed consequence of brain insults including head trauma, stroke, infections, tumors, status epilepticus (SE), and complex febrile seizures. Typically, brain insults produce morphological and functional alterations in the hippocampal formation, including neurodegeneration in CA1, CA3, and, most consistently, the dentate hilus. Most of these alterations develop gradually, over several days, after the insult, providing a therapeutic window of opportunity for neuroprotective agents in the immediate post-injury period. We have previously reported that prolonged (four weeks) treatment with the antiepileptic drug valproate (VPA) after SE prevents hippocampal damage and most of the behavioral alterations that occur after brain insult, but not the development of spontaneously occurring seizures. These data indicated that VPA, although not preventing epilepsy, might be an effective disease-modifying treatment following brain insult. The present study was designed to (1) determine the therapeutic window for the neuroprotective effect of VPA after SE; (2) compare the efficacy of different intermittent i.p. versus continuous i.v. VPA treatment protocols; and (3) compare VPA with the glutamate (AMPA) receptor antagonist NS1209. As in our previous study with VPA, SE was induced by sustained electrical stimulation of the basolateral amygdala in rats and terminated after 4 h by diazepam. In vehicle controls, >90% of the animals developed significant neurodegeneration in the dentate hilus, whereas damage in CA1 and CA3 was more variable. Hilar parvalbumin-expressing interneurons were more sensitive to the effects of seizures than somatostatin-stained hilar interneurons or hilar mossy cells. Among the various VPA treatment protocols, continuous infusion of VPA for 24 immediately following the SE was the most effective neuroprotective treatment, preventing most of the neuronal damage. Infusion with NS1209 for 24 h

  20. Hyperbaric oxygen preconditioning: a reliable option for neuroprotection

    PubMed Central

    Hu, Qin; Manaenko, Anatol; Matei, Nathanael; Guo, Zhenni; Xu, Ting; Tang, Jiping; Zhang, John H.

    2016-01-01

    Brain injury is the leading cause of death and disability worldwide and clinically there is no effective therapy for neuroprotection. Hyperbaric oxygen preconditioning (HBO-PC) has been experimentally demonstrated to be neuroprotective in several models and has shown efficiency in patients undergoing on-pump coronary artery bypass graft (CABG) surgery. Compared with other preconditioning stimuli, HBO is benign and has clinically translational potential. In this review, we will summarize the results in experimental brain injury and clinical studies, elaborate the mechanisms of HBO-PC, and discuss regimes and opinions for future interventions in acute brain injury. PMID:27826420

  1. Implications of the genetic epidemiology of globin haplotypes linked to the sickle cell gene in southern Iran.

    PubMed

    Rahimi, Zohreh; Merat, Ahmad; Gerard, Nathalie; Krishnamoorthy, Rajagopal; Nagel, Ronald L

    2006-12-01

    To determine the origin of sickle cell mutation in different ethnic groups living in southern Iran, we studied the haplotype background of the betaS and betaA genes in subjects from the provinces of Fars, Khuzestan, Bushehr, Hormozgan, and Kerman and from the islands of Khark and Qeshm. beta-globin gene cluster haplotypes were determined using the PCR-RFLP technique. Detection of -alpha 3.7 deletion and beta-thalassemia mutations were defined by PCR and reverse dot blot techniques, respectively. The framework of the beta-globin gene was determined using denaturing gradient gel electrophoresis. We found that the betaS mutation in southern Iran is associated with multiple mutational events. Most of the patients were from two ethnic groups: Farsi speakers (presumably Persian in origin) from Fars province and patients of Arab origin from Khuzestan province. In both ethnic groups the Arab-Indian haplotype was the most prevalent. The frequencies of the Arab-Indian and African haplotypes in sickle cell anemia patients from the provinces of Fars and Khuzestan were similar. Among betaA chromosomes the Bantu A2 haplotype was the most prevalent. The decrease in alpha-globin production in SS patients and AS individuals appeared to be related to the reduction in mean cell volume and mean cell hemoglobin. The Arab-Indian haplotype gene flow into this region of Iran can be traced to the Sassanian Empire. It is likely that the influx of betaS genes linked to the Benin and Bantu haplotypes, of African origin, must have occurred during the Arab slave trade.

  2. Origin and Ascendancy of a Chimeric Fusion Gene: The β/δ-Globin Gene of Paenungulate Mammals

    PubMed Central

    Opazo, Juan C.; Sloan, Angela M.; Campbell, Kevin L.

    2009-01-01

    The δ-globin gene (HBD) of eutherian mammals exhibits a propensity for recombinational exchange with the closely linked β-globin gene (HBB) and has been independently converted by the HBB gene in multiple lineages. Here we report the presence of a chimeric β/δ fusion gene in the African elephant (Loxodonta africana) that was created by unequal crossing-over between misaligned HBD and HBB paralogs. The recombinant chromosome that harbors the β/δ fusion gene in elephants is structurally similar to the “anti-Lepore” duplication mutant of humans (the reciprocal exchange product of the hemoglobin Lepore deletion mutant). However, the situation in the African elephant is unique in that the chimeric β/δ fusion gene supplanted the parental HBB gene and is therefore solely responsible for synthesizing the β-chain subunits of adult hemoglobin. A phylogenetic survey of β-like globin genes in afrotherian and xenarthran mammals revealed that the origin of the chimeric β/δ fusion gene and the concomitant inactivation of the HBB gene predated the radiation of “Paenungulata,” a clade of afrotherian mammals that includes three orders: Proboscidea (elephants), Sirenia (dugongs and manatees), and Hyracoidea (hyraxes). The reduced fitness of the human Hb Lepore deletion mutant helps to explain why independently derived β/δ fusion genes (which occur on an anti-Lepore chromosome) have been fixed in a number of mammalian lineages, whereas the reciprocal δ/β fusion gene (which occurs on a Lepore chromosome) has yet to be documented in any nonhuman mammal. This illustrates how the evolutionary fates of chimeric fusion genes can be strongly influenced by their recombinational mode of origin. PMID:19332641

  3. β-globin haplotypes in normal and hemoglobinopathic individuals from Reconcavo Baiano, State of Bahia, Brazil

    PubMed Central

    2010-01-01

    Five restriction site polymorphisms in the β-globin gene cluster (HincII-5‘ ε, HindIII-G γ, HindIII-A γ, HincII- ψβ1 and HincII-3‘ ψβ1) were analyzed in three populations (n = 114) from Reconcavo Baiano, State of Bahia, Brazil. The groups included two urban populations from the towns of Cachoeira and Maragojipe and one rural Afro-descendant population, known as the “quilombo community”, from Cachoeira municipality. The number of haplotypes found in the populations ranged from 10 to 13, which indicated higher diversity than in the parental populations. The haplotypes 2 (+ - - - -), 3 (- - - - +), 4 (- + - - +) and 6 (- + + - +) on the βA chromosomes were the most common, and two haplotypes, 9 (- + + + +) and 14 (+ + - - +), were found exclusively in the Maragojipe population. The other haplotypes (1, 5, 9, 11, 12, 13, 14 and 16) had lower frequencies. Restriction site analysis and the derived haplotypes indicated homogeneity among the populations. Thirty-two individuals with hemoglobinopathies (17 sickle cell disease, 12 HbSC disease and 3 HbCC disease) were also analyzed. The haplotype frequencies of these patients differed significantly from those of the general population. In the sickle cell disease subgroup, the predominant haplotypes were BEN (Benin) and CAR (Central African Republic), with frequencies of 52.9% and 32.4%, respectively. The high frequency of the BEN haplotype agreed with the historical origin of the afro-descendant population in the state of Bahia. However, this frequency differed from that of Salvador, the state capital, where the CAR and BEN haplotypes have similar frequencies, probably as a consequence of domestic slave trade and subsequent internal migrations to other regions of Brazil. PMID:21637405

  4. Haptoglobin Binding Stabilizes Hemoglobin Ferryl Iron and the Globin Radical on Tyrosine β145

    PubMed Central

    Schaer, Dominik J.; Buehler, Paul W.; Wilson, Michael T.; Reeder, Brandon J.; Silkstone, Gary; Svistunenko, Dimitri A.; Bulow, Leif; Alayash, Abdu I.

    2013-01-01

    Abstract Aim: Hemoglobin (Hb) becomes toxic when released from the erythrocyte. The acute phase protein haptoglobin (Hp) binds avidly to Hb and decreases oxidative damage to Hb itself and to the surrounding proteins and lipids. However, the molecular mechanism underpinning Hp protection is to date unclear. The aim of this study was to use electron paramagnetic resonance (EPR) spectroscopy, stopped flow optical spectrophotometry, and site-directed mutagenesis to explore the mechanism and specifically the role of specific tyrosine residues in this protection. Results: Following peroxide challenge Hb produces reactive oxidative intermediates in the form of ferryl heme and globin free radicals. Hp binding increases the steady state level of ferryl formation during Hb-catalyzed lipid peroxidation, while at the same time dramatically inhibiting the overall reaction rate. This enhanced ferryl stability is also seen in the absence of lipids and in the presence of external reductants. Hp binding is not accompanied by a decrease in the pK of ferryl protonation; the protonated ferryl species still forms, but is intrinsically less reactive. Ferryl stabilization is accompanied by a significant increase in the concentration of the peroxide-induced tyrosine free radical. EPR spectral parameters and mutagenesis studies suggest that this radical is located on tyrosine 145, the penultimate C-terminal amino acid on the beta Hb subunit. Innovation: Hp binding decreases both the ferryl iron and free radical reactivity of Hb. Conclusion: Hp protects against Hb-induced damage in the vasculature, not by preventing the primary reactivity of heme oxidants, but by rendering the resultant protein products less damaging. Antioxid. Redox Signal. 18, 2264–2273. PMID:22702311

  5. β-globin haplotypes in normal and hemoglobinopathic individuals from Reconcavo Baiano, State of Bahia, Brazil.

    PubMed

    Dos Santos Silva, Wellington; de Nazaré Klautau-Guimarães, Maria; Grisolia, Cesar Koppe

    2010-07-01

    Five restriction site polymorphisms in the β-globin gene cluster (HincII-5' ε, HindIII-(G) γ, HindIII-(A) γ, HincII- ψβ1 and HincII-3' ψβ1) were analyzed in three populations (n = 114) from Reconcavo Baiano, State of Bahia, Brazil. The groups included two urban populations from the towns of Cachoeira and Maragojipe and one rural Afro-descendant population, known as the "quilombo community", from Cachoeira municipality. The number of haplotypes found in the populations ranged from 10 to 13, which indicated higher diversity than in the parental populations. The haplotypes 2 (+ - - - -), 3 (- - - - +), 4 (- + - - +) and 6 (- + + - +) on the β(A) chromosomes were the most common, and two haplotypes, 9 (- + + + +) and 14 (+ + - - +), were found exclusively in the Maragojipe population. The other haplotypes (1, 5, 9, 11, 12, 13, 14 and 16) had lower frequencies. Restriction site analysis and the derived haplotypes indicated homogeneity among the populations. Thirty-two individuals with hemoglobinopathies (17 sickle cell disease, 12 HbSC disease and 3 HbCC disease) were also analyzed. The haplotype frequencies of these patients differed significantly from those of the general population. In the sickle cell disease subgroup, the predominant haplotypes were BEN (Benin) and CAR (Central African Republic), with frequencies of 52.9% and 32.4%, respectively. The high frequency of the BEN haplotype agreed with the historical origin of the afro-descendant population in the state of Bahia. However, this frequency differed from that of Salvador, the state capital, where the CAR and BEN haplotypes have similar frequencies, probably as a consequence of domestic slave trade and subsequent internal migrations to other regions of Brazil.

  6. Efficient Generation of β-Globin-Expressing Erythroid Cells Using Stromal Cell-Derived Induced Pluripotent Stem Cells from Patients with Sickle Cell Disease.

    PubMed

    Uchida, Naoya; Haro-Mora, Juan J; Fujita, Atsushi; Lee, Duck-Yeon; Winkler, Thomas; Hsieh, Matthew M; Tisdale, John F

    2017-03-01

    Human embryonic stem (ES) cells and induced pluripotent stem (iPS) cells represent an ideal source for in vitro modeling of erythropoiesis and a potential alternative source for red blood cell transfusions. However, iPS cell-derived erythroid cells predominantly produce ε- and γ-globin without β-globin production. We recently demonstrated that ES cell-derived sacs (ES sacs), known to express hemangioblast markers, allow for efficient erythroid cell generation with β-globin production. In this study, we generated several iPS cell lines derived from bone marrow stromal cells (MSCs) and peripheral blood erythroid progenitors (EPs) from sickle cell disease patients, and evaluated hematopoietic stem/progenitor cell (HSPC) generation after iPS sac induction as well as subsequent erythroid differentiation. MSC-derived iPS sacs yielded greater amounts of immature hematopoietic progenitors (VEGFR2 + GPA-), definitive HSPCs (CD34 + CD45+), and megakaryoerythroid progenitors (GPA + CD41a+), as compared to EP-derived iPS sacs. Erythroid differentiation from MSC-derived iPS sacs resulted in greater amounts of erythroid cells (GPA+) and higher β-globin (and βS-globin) expression, comparable to ES sac-derived cells. These data demonstrate that human MSC-derived iPS sacs allow for more efficient erythroid cell generation with higher β-globin production, likely due to heightened emergence of immature progenitors. Our findings should be important for iPS cell-derived erythroid cell generation. Stem Cells 2017;35:586-596.

  7. Molecular Study of Deletional and Nondeletional Mutations on the α-Globin Locus in the Azeri Population of Northwestern Iran.

    PubMed

    Derakhshan, Sima M; Khaniani, Mahmoud S; Afkhami, Fateme; PourFeizi, Abbasali H

    2016-09-01

    The aim of this study was to determine the molecular spectrum and frequency of deletional and nondeletional α-thalassemia (α-thal) mutations and the genotype-phenotype correlation in common mutations in the Azeri population of Northwestern Iran. A total of 1256 potential carriers with microcytic and hypochromic anemia and normal Hb A2 levels (<3.5%) and without iron deficiency anemia plus three fetuses were identified. Multiplex gap-polymerase chain reaction (gap-PCR) and sequencing for α-thal mutations were carried out. In 606 individuals, the α-globin gene was normal, but in 650 persons (51.6%) and three fetuses, 10 different mutations were detected. The most frequent deletional genotypes were as follows: αα/-α(3.7) (61.7%), -α(3.7)/-α(3.7) (11.9%), αα/-α(4.2) (4.6%), αα/- -(MED) (4.3%) and αα/-(α)(20.5) (3.8%). The most frequent nondeletional genotypes were αα/α(IVS-I (-5 nt))α (HBA2: c.95+2_95+6delTGAGG) and αα/α(Poly A2)α [polyadenylation signal (polyA2) (AATAAA>AATGAA); HBA2: c.*96G>A] with frequencies of 1.08% and 0.92%, respectively. Meanwhile, 7.71% of individuals with a proven β-thalassemia (β-thal) mutation were found to also carry an α-thal mutation. Persons having two functional α-globin genes showed lower mean corpuscular volume (MCV) and mean corpuscular hemoglobin (Hb) (MCH) values compared to those with one mutated α-globin gene, provided that they had normal β-globin genes. Overall, the incidence of α-thal was 2.7% in the Azeri population in Northwestern Iran. Our results showed that the variability of α-thal mutations are high in the Azeri population and that α-thal mutations are highly heterogeneous in both deletional and nondeletional genotype aspects.

  8. Neuroprotective Activity of Hypericum perforatum and Its Major Components

    PubMed Central

    Oliveira, Ana I.; Pinho, Cláudia; Sarmento, Bruno; Dias, Alberto C. P.

    2016-01-01

    Hypericum perforatum is a perennial plant, with worldwide distribution, commonly known as St. John’s wort. It has been used for centuries in traditional medicine for the treatment of several disorders, such as minor burns, anxiety, and mild to moderate depression. In the past years, its antidepressant properties have been extensively studied. Despite that, other H. perforatum biological activities, as its neuroprotective properties have also been evaluated. The present review aims to provide a comprehensive summary of the main biologically active compounds of H. perforatum, as for its chemistry, pharmacological activities, drug interactions and adverse reactions and gather scattered information about its neuroprotective abilities. As for this, it has been demonstrated that H. perforatum extracts and several of its major molecular components have the ability to protect against toxic insults, either directly, through neuroprotective mechanisms, or indirectly, through is antioxidant properties. H. perforatum has therefore the potential to become an effective neuroprotective therapeutic agent, despite further studies that need to be carried out. PMID:27462333

  9. T-type Calcium Channel Blockers as Neuroprotective Agents

    PubMed Central

    Kopecky, Benjamin J.; Liang, Ruqiang; Bao, Jianxin

    2014-01-01

    T-type calcium channels are expressed in many diverse tissues, including neuronal, cardiovascular, and endocrine. T-type calcium channels are known to play roles in the development, maintenance, and repair of these tissues but have also been implicated in disease when not properly regulated. Calcium channel blockers have been developed to treat various diseases and their use clinically is widespread due to both their efficacy as well as their safety. Aside from their established clinical applications, recent studies have suggested neuroprotective effects of T-type calcium channels blockers. Many of the current T-type calcium channel blockers could act on other molecular targets besides T-type calcium channels making it uncertain whether their neuroprotective effects are solely due to blocking of T-type calcium channels. In this review, we discuss these drugs as well as newly developed chemical compounds that are designed to be more selective for T-type calcium channels. We review in vitro and in vivo evidence of neuroprotective effects by these T-type calcium channel blockers. We conclude by discussing possible molecular mechanisms underlying neuroprotective effects by T-type calcium channel blockers. PMID:24563219

  10. Neuroprotection as a Therapeutic Target for Diabetic Retinopathy

    PubMed Central

    Hernández, Cristina; Simó, Rafael

    2016-01-01

    Diabetic retinopathy (DR) is a multifactorial progressive disease of the retina and a leading cause of vision loss. DR has long been regarded as a vascular disorder, although neuronal death and visual impairment appear before vascular lesions, suggesting an important role played by neurodegeneration in DR and the appropriateness of neuroprotective strategies. Upregulation of vascular endothelial growth factor (VEGF), the main target of current therapies, is likely to be one of the first responses to retinal hyperglycemic stress and VEGF may represent an important survival factor in early phases of DR. Of central importance for clinical trials is the detection of retinal neurodegeneration in the clinical setting, and spectral domain optical coherence tomography seems the most indicated technique. Many substances have been tested in animal studies for their neuroprotective properties and for possible use in humans. Perhaps, the most intriguing perspective is the use of endogenous neuroprotective substances or nutraceuticals. Together, the data point to the central role of neurodegeneration in the pathogenesis of DR and indicate neuroprotection as an effective strategy for treating this disease. However, clinical trials to determine not only the effectiveness and safety but also the compliance of a noninvasive route of drug administration are needed. PMID:27123463

  11. Anesthetic neuroprotection: antecedents and an appraisal of preclinical and clinical data quality.

    PubMed

    Ishida, Kazuyoshi; Berger, Miles; Nadler, Jacob; Warner, David S

    2014-01-01

    Anesthetics have been studied for nearly fifty years as potential neuroprotective compounds in both perioperative and resuscitation medicine. Although anesthetics present pharmacologic properties consistent with preservation of brain viability in the context of an ischemic insult, no anesthetic has been proven efficacious for neuroprotection in humans. After such effort, it could be concluded that anesthetics are simply not neuroprotective in humans. Moreover, pharmacologic neuroprotection with non-anesthetic drugs has also repeatedly failed to be demonstrated in human acute brain injury. Recent focus has been on rectification of promising preclinical neuroprotection data and subsequent failed clinical trials. This has led to consensus guidelines for the process of transferring purported therapeutics from bench to bedside. In this review we first examined the history of anesthetic neuroprotection research. Then, a systematic review was performed to identify major clinical trials of anesthetic neuroprotection. Both the preclinical neuroprotection portfolio cited to justify a clinical trial and the design and conduct of that clinical trial were evaluated using modern standards that include the Stroke Therapy Academic Industry Roundtable (STAIR) and Consolidated Standards of Reporting Trials (CONSORT) guidelines. In publications intended to define anesthetic neuroprotection, we found overall poor quality of both preclinical efficacy analysis portfolios and clinical trial designs and conduct. Hence, using current translational research standards, it was not possible to conclude from existing data whether anesthetics ameliorate perioperative ischemic brain injury. Incorporation of advances in translational neuroprotection research conduct may provide a basis for more definitive and potentially successful clinical trials of anesthetics as neuroprotectants.

  12. Amelioration of murine sickle cell disease by nonablative conditioning and γ-globin gene-corrected bone marrow cells.

    PubMed

    Pestina, Tamara I; Hargrove, Phillip W; Zhao, Huifen; Mead, Paul E; Smeltzer, Matthew P; Weiss, Mitchell J; Wilber, Andrew; Persons, Derek A

    2015-01-01

    Patients with severe sickle cell disease (SCD) are candidates for gene therapy using autologous hematopoietic stem cells (HSCs), but concomitant multi-organ disease may contraindicate pretransplant conditioning with full myeloablation. We tested whether nonmyeloablative conditioning, a regimen used successfully for allogeneic bone marrow transplantation of adult SCD patients, allows engraftment of γ-globin gene-corrected cells to a therapeutic level in the Berkeley mouse model of SCD. Animals transplanted according to this regimen averaged 35% engraftment of transduced hematopoietic stem cells with an average vector copy < 2.0. Fetal hemoglobin (HbF) levels ranged from 20 to 44% of total hemoglobin and approximately two-thirds of circulating red blood cells expressed HbF detected by immunofluorescence (F-cells). Gene therapy treatment of SCD mice ameliorated anemia, reduced hyperleukocytosis, improved renal function, and reduced iron accumulation in liver, spleen, and kidneys. Thus, modest levels of chimerism with donor cells expressing high levels of HbF from an insulated γ-globin lentiviral vector can improve the pathology of SCD in mice, thereby illustrating a potentially safe and effective strategy for gene therapy in humans.

  13. The beta-globin gene cluster haplotypes in sickle cell anemia patients from Northeast Brazil: a clinical and molecular view.

    PubMed

    Adorno, Elisângela Vitória; Zanette, Angela; Lyra, Isa; Souza, Cyntia Cajado; Santos, Leandro Ferraz; Menezes, Joelma Figueiredo; Dupuit, Marie France; Almeida, Mari Ney Tavares; Reis, Mitermayer Galvão; Gonçalves, Marilda Souza

    2004-08-01

    The beta(S)-globin haplotypes were studied in 78 sickle cell Brazilian patients from Bahia, Northeast Brazil, that has a large population of African origin. Hemoglobin (Hb) profiles were developed by high-performance liquid chromatography (HPLC), and beta(S)-globin gene haplotypes were determined by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) techniques. We identified 44 (55.0%) patients with the CAR/Ben (Central African Republic/Benin) genotype, 16 (20.0%) Ben/Ben, 13 (16.2%) CAR/CAR and seven (8.8%) with other genotypes. Analyses of the phenotypes showed clinical differences related only to Hb F levels and blood transfusion therapy; the presence of -alpha(-3.7)-thalassemia (thal) demonstrated statistical significance when associated with hematocrit (p=0.044), MCV (p=0.0007), MCH (p=0.012) and spleen sequestration events. The haplotype diversity found in the present study can be justified by information about the origin of the slave traffic period in Bahia during the 19th century. The specific characteristics described among the Bahian sickle cell patients could be confirmed by increasing the number of patients with specific genotypes and further studies of genetic markers.

  14. Amelioration of murine sickle cell disease by nonablative conditioning and γ-globin gene-corrected bone marrow cells

    PubMed Central

    Pestina, Tamara I; Hargrove, Phillip W; Zhao, Huifen; Mead, Paul E; Smeltzer, Matthew P; Weiss, Mitchell J; Wilber, Andrew; Persons, Derek A

    2015-01-01

    Patients with severe sickle cell disease (SCD) are candidates for gene therapy using autologous hematopoietic stem cells (HSCs), but concomitant multi-organ disease may contraindicate pretransplant conditioning with full myeloablation. We tested whether nonmyeloablative conditioning, a regimen used successfully for allogeneic bone marrow transplantation of adult SCD patients, allows engraftment of γ-globin gene-corrected cells to a therapeutic level in the Berkeley mouse model of SCD. Animals transplanted according to this regimen averaged 35% engraftment of transduced hematopoietic stem cells with an average vector copy < 2.0. Fetal hemoglobin (HbF) levels ranged from 20 to 44% of total hemoglobin and approximately two-thirds of circulating red blood cells expressed HbF detected by immunofluorescence (F-cells). Gene therapy treatment of SCD mice ameliorated anemia, reduced hyperleukocytosis, improved renal function, and reduced iron accumulation in liver, spleen, and kidneys. Thus, modest levels of chimerism with donor cells expressing high levels of HbF from an insulated γ-globin lentiviral vector can improve the pathology of SCD in mice, thereby illustrating a potentially safe and effective strategy for gene therapy in humans. PMID:26665131

  15. A novel deletion/insertion caused by a replication error in the β-globin gene locus control region.

    PubMed

    Joly, Philippe; Lacan, Philippe; Garcia, Caroline; Meley, Roland; Pondarré, Corinne; Francina, Alain

    2011-01-01

    Deletions in the β-globin locus control region (β-LCR) lead to (εγδβ)(0)-thalassemia [(εγδβ)(0)-thal]. In patients suffering from these rare deletions, a normal hemoglobin (Hb), phenotype is found, contrasting with a hematological thalassemic phenotype. Multiplex-ligation probe amplification (MLPA) is an efficient tool to detect β-LCR deletions combined with long-range polymerase chain reaction (PCR) and DNA sequencing to pinpoint deletion breakpoints. We present here a novel 11,155 bp β-LCR deletion found in a French Caucasian patient which removes DNase I hypersensitive site 2 (HS2) to HS4 of the β-LCR. Interestingly, a 197 bp insertion of two inverted sequences issued from the HS2-HS3 inter-region is present and suggests a complex rearrangement during replication. Carriers of this type of thalassemia can be misdiagnosed as an α-thal trait. Consequently, a complete α- and β-globin gene cluster analysis is required to prevent a potentially damaging misdiagnosis in genetic counselling.

  16. Role of the duplicated CCAAT box region in gamma-globin gene regulation and hereditary persistence of fetal haemoglobin.

    PubMed Central

    Ronchi, A; Berry, M; Raguz, S; Imam, A; Yannoutsos, N; Ottolenghi, S; Grosveld, F; Dillon, N

    1996-01-01

    Hereditary persistence of fetal haemoglobin (HPFH) is a clinically important condition in which a change in the developmental specificity of the gamma-globin genes results in varying levels of expression of fetal haemoglobin in the adult. The condition is benign and can significantly alleviate the symptoms of thalassaemia or sickle cell anaemia when co-inherited with these disorders. We have examined structure-function relationships in the -117 HPFH gamma promoter by analysing the effect of mutating specific promoter elements on the functioning of the wild-type and HPFH promoters. We find that CCAAT box mutants dramatically affect expression from the HPFH promoter in adult blood but have little effect on embryonic/fetal expression from the wild-type promoter. Our results suggest that there are substantial differences in the structure of the wild-type gamma promoter expressed early in development and the adult HPFH promoter. Together with previous results, this suggests that gamma silencing is a complex multifactorial phenomenon rather than being the result of a simple repressor binding to the promoter. We present a model for gamma-globin gene silencing that has significant implications for attempts to reactivate the gamma promoters in human adults by pharmacological means. Images PMID:8598197

  17. Normal and mutant human beta-globin pre-mRNAs are faithfully and efficiently spliced in vitro.

    PubMed

    Krainer, A R; Maniatis, T; Ruskin, B; Green, M R

    1984-04-01

    Human beta-globin mRNA precursors (pre-mRNAs) synthesized in vitro from a bacteriophage SP6 promoter/beta-globin gene fusion are accurately and efficiently spliced when added to a HeLa cell nuclear extract. Under optimal conditions, the first intervening sequence (IVS 1) is removed by splicing in up to 90% of the input pre-mRNA. Splicing requires ATP and in its absence the pre-mRNA is neither spliced nor cleaved at splice junctions. Splicing does not require that the pre-mRNA contain a correct 5' or 3' end, a 3' poly A tail, or a 5'-terminal cap structure. However, capping of the pre-mRNA significantly affects the specificity of in vitro processing. In the absence of a cap approximately 30%-40% of the pre-mRNA is accurately spliced, and a number of aberrantly cleaved RNAs are also detected. In contrast, capped pre-mRNAs are spliced more efficiently and produce fewer aberrant RNA species. The specificity of splice-site selection in vitro was tested by analyzing pre-mRNAs that contain beta-thalassemia splicing mutations in IVS 1. Remarkably, these mutations cause the same abnormal splicing events in vitro and in vivo. The ability to synthesize mutant pre-mRNAs and study their splicing in a faithful in vitro system provides a powerful approach to determine the mechanisms of RNA splice-site selection.

  18. The effects of old and recent migration waves in the distribution of HBB*S globin gene haplotypes

    PubMed Central

    Lindenau, Juliana D.; Wagner, Sandrine C.; de Castro, Simone M.; Hutz, Mara H.

    2016-01-01

    Abstract Sickle cell hemoglobin is the result of a mutation at the sixth amino acid position of the beta (β) globin chain. The HBB*S gene is in linkage disequilibrium with five main haplotypes in the β-globin-like gene cluster named according to their ethnic and geographic origins: Bantu (CAR), Benin (BEN), Senegal (SEN), Cameroon (CAM) and Arabian-Indian (ARAB). These haplotypes demonstrated that the sickle cell mutation arose independently at least five times in human history. The distribution of βS haplotypes among Brazilian populations showed a predominance of the CAR haplotype. American populations were clustered in two groups defined by CAR or BEN haplotype frequencies. This scenario is compatible with historical records about the slave trade in the Americas. When all world populations where the sickle cell gene occurs were analyzed, three clusters were disclosed based on CAR, BEN or ARAB haplotype predominance. These patterns may change in the next decades due to recent migrations waves. Since these haplotypes show different clinical characteristics, these recent migrations events raise the necessity to develop optimized public health programs for sickle cell disease screening and management. PMID:27706371

  19. The effects of old and recent migration waves in the distribution of HBB*S globin gene haplotypes.

    PubMed

    Lindenau, Juliana D; Wagner, Sandrine C; Castro, Simone M de; Hutz, Mara H

    2016-01-01

    Sickle cell hemoglobin is the result of a mutation at the sixth amino acid position of the beta (β) globin chain. The HBB*S gene is in linkage disequilibrium with five main haplotypes in the β-globin-like gene cluster named according to their ethnic and geographic origins: Bantu (CAR), Benin (BEN), Senegal (SEN), Cameroon (CAM) and Arabian-Indian (ARAB). These haplotypes demonstrated that the sickle cell mutation arose independently at least five times in human history. The distribution of βS haplotypes among Brazilian populations showed a predominance of the CAR haplotype. American populations were clustered in two groups defined by CAR or BEN haplotype frequencies. This scenario is compatible with historical records about the slave trade in the Americas. When all world populations where the sickle cell gene occurs were analyzed, three clusters were disclosed based on CAR, BEN or ARAB haplotype predominance. These patterns may change in the next decades due to recent migrations waves. Since these haplotypes show different clinical characteristics, these recent migrations events raise the necessity to develop optimized public health programs for sickle cell disease screening and management.

  20. Analysis of 5' flanking regions of the gamma globin genes from major African haplotype backgrounds associated with sickle cell disease.

    PubMed

    Month, S R; Wood, R W; Trifillis, P T; Orchowski, P J; Sharon, B; Ballas, S K; Surrey, S; Schwartz, E

    1990-02-01

    There are at least three major African haplotype backgrounds on which the beta s mutation arises. Sequence changes in the immediate 5' flanking area of the gamma-globin genes may account for differences in fetal hemoglobin expression among the three haplotypes. We determined the sequence from -350 to 10 bp 5' of the G gamma and A gamma fetal globin genes from one beta s-containing chromosome on each of the three major haplotype backgrounds. The Senegal chromosome had a T at -158 5' to the G gamma gene; the Benin (BEN) chromosome had an A to G change at -309 5' to the G gamma gene; and the Central African Republic (CAR) chromosome had a C to T change at -271 5' to the A gamma gene. Genomic DNA from patients with sickle cell disease was analyzed using the polymerase chain reaction and radiolabeled allele-specific oligonucleotide probes. The -309 G variant 5' to the G gamma gene is associated with BEN chromosomes, and the -271 T variant 5' to A gamma with CAR. The -309 change was also found on beta A-containing chromosomes, while the -271 change was not. The -309 change may have predated the beta s mutation on the BEN chromosome.

  1. Modified cyanobacteria

    SciTech Connect

    Vermaas, Willem F J.

    2014-06-17

    Disclosed is a modified photoautotrophic bacterium comprising genes of interest that are modified in terms of their expression and/or coding region sequence, wherein modification of the genes of interest increases production of a desired product in the bacterium relative to the amount of the desired product production in a photoautotrophic bacterium that is not modified with respect to the genes of interest.

  2. Influence of quaternary structure of the globin on thermal spin equilibria in different methemoglobin derivatives.

    PubMed

    Messana, C; Cerdonio, M; Shenkin, P; Noble, R W; Fermi, G; Perutz, R N; Perutz, M F

    1978-08-22

    L/mol heme for carp azide methemoglobins in the R and T structures, respectively, and to -12.5 mL/mol heme for azide metmyoglobin. These volume contractions are larger than those of about -4 mL/mol Fe found in synthetic iron chelates. Apparently stereochemical changes of the globin surrounding the heme also contribute to the volume changes; these must be larger in the T than in the R structure. The significance of these observations for the mechanism of heme-heme interaction is discussed.

  3. DNaseI hypersensitive sites 1, 2 and 3 of the human beta-globin dominant control region direct position-independent expression.

    PubMed Central

    Fraser, P; Hurst, J; Collis, P; Grosveld, F

    1990-01-01

    The human beta-globin dominant control region (DCR) which flanks the multigene beta-globin locus directs high level, site of integration independent, copy number dependent expression on a linked human beta-globin gene in transgenic mice and stably transfected mouse erythroleukemia (MEL) cells. We have assayed each of the individual DNaseI hypersensitive regions present in the full 15kb DCR for position independence and copy number dependence of a linked beta-globin gene in transgenic mice. The results show that at least three of the individual DNaseI hypersensitive site regions (sites 1, 2 and 3), though expressing at lower levels than the full DCR, are capable of position independent, copy number dependent expression. Site 2 alone directs the highest level of expression of the single site constructs, producing nearly 70% of the level of the full DCR. Sites 1 and 3 each provide 30% of the full activity. Deletion of either site 2 or 3 from the complete set significantly reduces the level of expression, but does not effect position independence or copy number dependence. This demonstrates that sites 2 and 3 are required for full expression and suggests that all the sites are required for the full expression of even a single gene from this multigene locus. Images PMID:2362805

  4. Splicing and 3' end formation in the definition of nonsense-mediated decay-competent human beta-globin mRNPs.

    PubMed

    Neu-Yilik, G; Gehring, N H; Thermann, R; Frede, U; Hentze, M W; Kulozik, A E

    2001-02-01

    Premature translation termination codons are common causes of genetic disorders. mRNAs with such mutations are degraded by a surveillance mechanism termed nonsense-mediated decay (NMD), which represents a phylogenetically widely conserved post-transcriptional mechanism for the quality control of gene expression. How NMD-competent mRNPs are formed and specified remains a central question. Here, we have used human beta-globin mRNA as a model system to address the role of splicing and polyadenylation for human NMD. We show that (i) splicing is an indispensable component of the human beta-globin NMD pathway, which cannot be compensated for by exonic beta-globin 'failsafe' sequences; (ii) the spatial requirements of human beta-globin NMD, as signified by the maximal distance of the nonsense mutation to the final exon-exon junction, are less constrained than in yeast; and (iii) non-polyadenylated mRNAs with a histone 3' end are NMD competent. Thus, the formation of NMD-competent mRNP particles critically depends on splicing but does not require the presence of a poly(A) tail.

  5. Secondary structure model for mouse beta Maj globin mRNA derived from enzymatic digestion data, comparative sequence and computer analysis.

    PubMed Central

    Lockard, R E; Currey, K; Browner, M; Lawrence, C; Maizel, J

    1986-01-01

    A model for the secondary structure of mouse beta Maj globin messenger RNA is presented based on enzymatic digestion data, comparative sequence and computer analysis. Using 5'-32P-end-labeled beta globin mRNA as a substrate, single-stranded regions were determined with S1 and T1 nucleases and double-stranded regions with V1 ribonuclease from cobra venom. The structure data obtained for ca. 75% of the molecule was introduced into a computer algorithm which predicts secondary structures of minimum free energy consistent with the enzymatic data. Two prominent base paired regions independently derived by phylogenetic analysis were also present in the computer generated structure lending support for the model. An interesting feature of the model is the presence of long-range base pairing interactions which permit the beta globin mRNA to fold back on itself, thereby bringing the 5'- and 3'-noncoding regions within close proximity. This feature is consistent with data from other laboratories suggesting an interaction of the 5'- and 3'-domains in the mammalian globin mRNAs. Images PMID:3737415

  6. A new Frameshift mutation on the α2-globin gene causing α⁺-thalassemia: codon 43 (TTC>-TC or TTC>T-C).

    PubMed

    Joly, Philippe; Lacan, Philippe; Garcia, Caroline; Barro, Claire; Francina, Alain

    2012-01-01

    We report a new mutation on the α2-globin gene causing α(+)-thalassemia (α(+)-thal) with a deletion of a single nucleotide (T) at amino acid residue 43 [HBA2:c.130delT or HBA2:c.131delT]. This frameshift deletion gives rise to a premature termination codon at codon 47.

  7. Accumulation of gamma-globin mRNA and induction of irreversible erythroid differentiation after treatment of CML cell line K562 with new doxorubicin derivatives.

    PubMed

    Szulawska, Agata; Arkusinska, Justyna; Czyz, Malgorzata

    2007-01-15

    Human chronic myelogenous leukemia (CML) cell line K562 can be chemically induced to differentiate and express embryonic and fetal globin genes. In this study, the effects of doxorubicin (DOX), an inducer of K562 cell erythroid differentiation, with those of epidoxorubicin (EDOX) as well as newly synthesized derivatives of both drugs (DOXM, DOXH, and EDOXM) on cell growth and differentiation were compared. Our results revealed that DOX, EDOX and their derivatives caused irreversible differentiation of K562 cells into more mature hemoglobin-containing cells. This phenomenon was linked to time-dependent inhibition of cell proliferation. Considering the impact of the structure of newly synthesized anthracyclines on their cellular activity, our data clearly indicated that among tested anthracyclines DOXM, a morpholine derivative of DOX exerted the highest antiproliferative and differentiating activity. An increase of gamma-globin mRNA level caused both by high transcription rate and by mRNA stabilization, as well as an enhancement of expression but not activity of erythroid transcription factor GATA-1 were observed. Therefore, a high level of hemoglobin-containing cells in the presence of DOXM resulted from transcriptional and post-transcriptional events on gamma-globin gene regulation. The same morpholine modification introduced to EDOX did not cause, however, similar effects on cellular level. Characterization of new powerful inducers of erythroid differentiation may contribute to the development of novel compounds for pharmacological approach by differentiation therapy to leukemia or to beta-globin disorder, beta-thalassemia.

  8. Why the DNA self-depurination mechanism operates in HB-β but not in β-globin paralogs HB-δ, HB-ɛ1, HB-γ1 and HB-γ2.

    PubMed

    Amosova, Olga; Alvarez-Dominguez, Juan R; Fresco, Jacques R

    2015-08-01

    The human β-globin, δ-globin and ɛ-globin genes contain almost identical coding strand sequences centered about codon 6 having potential to form a stem-loop with a 5'GAGG loop. Provided with a sufficiently stable stem, such a structure can self-catalyze depurination of the loop 5'G residue, leading to a potential mutation hotspot. Previously, we showed that such a hotspot exists about codon 6 of β-globin, with by far the highest incidence of mutations across the gene, including those responsible for 6 anemias (notably Sickle Cell Anemia) and β-thalassemias. In contrast, we show here that despite identical loop sequences, there is no mutational hotspot in the δ- or ɛ1-globin potential self-depurination sites, which differ by only one or two base pairs in the stem region from that of the β-globin gene. These differences result in either one or two additional mismatches in the potential 7-base pair-forming stem region, thereby weakening its stability, so that either DNA cruciform extrusion from the duplex is rendered ineffective or the lifetime of the stem-loop becomes too short to permit self-catalysis to occur. Having that same loop sequence, paralogs HB-γ1 and HB-γ2 totally lack stem-forming potential. Hence the absence in δ- and ɛ1-globin genes of a mutational hotspot in what must now be viewed as non-functional homologs of the self-depurination site in β-globin. Such stem-destabilizing variants appeared early among vertebrates and remained conserved among mammals and primates. Thus, this study has revealed conserved sequence determinants of self-catalytic DNA depurination associated with variability of mutation incidence among human β-globin paralogs.

  9. Post-ischemic salubrinal treatment results in a neuroprotective role in global cerebral ischemia.

    PubMed

    Anuncibay-Soto, Berta; Pérez-Rodríguez, Diego; Santos-Galdiano, María; Font, Enrique; Regueiro-Purriños, Marta; Fernández-López, Arsenio

    2016-07-01

    This study describes the neuroprotective effect of treatment with salubrinal 1 and 24 h following 15 min of ischemia in a two-vessel occlusion model of global cerebral ischemia. The purpose of this study was to determine if salubrinal, an enhancer of the unfolded protein response, reduces the neural damage modulating the inflammatory response. The study was performed in CA1 and CA3 hippocampal areas as well as in the cerebral cortex whose different vulnerability to ischemic damage is widely described. Characterization of proteins was made by western blot, immunofluorescence, and ELISA, whereas mRNA levels were measured by Quantitative PCR. The salubrinal treatment decreased the cell demise in CA1 at 7 days as well as the levels of matrix metalloprotease 9 (MMP-9) in CA1 and cerebral cortex at 48 h and ICAM-1 and VCAM-1 cell adhesion molecules. However, increases in tumor necrosis factor α and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) inflammatory markers were observed at 24 h. Glial fibrillary acidic protein levels were not modified by salubrinal treatment in CA1 and cerebral cortex. We describe a neuroprotective effect of the post-ischemic treatment with salubrinal, measured as a decrease both in CA1 cell demise and in the blood-brain barrier impairment. We hypothesize that the ability of salubrinal to counteract the CA1 cell demise is because of a reduced ability of this structure to elicit unfolded protein response which would account for its greater ischemic vulnerability. Data of both treated and non-treated animals suggest that the neurovascular unit present a structure-dependent response to ischemia and a different course time for CA1/cerebral cortex compared with CA3. Finally, our study reveals a high responsiveness of endothelial cells to salubrinal in contrast to the limited responsiveness of astrocytes. The alleviation of ER stress by enhancing UPR with salubrinal treatment reduces the ischemic damage. This effect

  10. 17α-Oestradiol-induced neuroprotection in the brain of spontaneously hypertensive rats.

    PubMed

    Pietranera, L; Brocca, M E; Roig, P; Lima, A; Garcia-Segura, L M; De Nicola, A F

    2014-05-01

    17β-oestradiol is a powerful neuroprotective factor for the brain abnormalities of spontaneously hypertensive rats (SHR). 17α-Oestradiol, a nonfeminising isomer showing low affinity for oestrogen receptors, is also endowed with neuroprotective effects in vivo and in vitro. We therefore investigated whether treatment with 17α-oestradiol prevented pathological changes of the hippocampus and hypothalamus of SHR. We used 20-week-old male SHR with a blood pressure of approximately 170 mmHg receiving s.c. a single 800 μg pellet of 17α-oestradiol dissolved in cholesterol or vehicle only for 2 weeks Normotensive Wistar-Kyoto (WKY) rats were used as controls. 17α-Oestradiol did not modify blood pressure, serum prolactin, 17β-oestradiol levels or the weight of the testis and pituitary of SHR. In the brain, we analysed steroid effects on hippocampus Ki67+ proliferating cells, doublecortin (DCX) positive neuroblasts, glial fibrillary acidic protein (GFAP)+ astrocyte density, aromatase immunostaining and brain-derived neurotrophic factor (BDNF) mRNA. In the hypothalamus, we determined arginine vasopressin (AVP) mRNA. Treatment of SHR with 17α-oestradiol enhanced the number of Ki67+ in the subgranular zone and DCX+ cells in the inner granule cell layer of the dentate gyrus, increased BDNF mRNA in the CA1 region and gyrus dentatus, decreased GFAP+ astrogliosis in the CA1 subfield, and decreased hypothalamic AVP mRNA. Aromatase expression was unmodified. By contrast to SHR, normotensive WKY rats were unresponsive to 17α-oestradiol. These data indicate a role for 17α-oestradiol as a protective factor for the treatment of hypertensive encephalopathy. Furthermore, 17α-oestradiol is weakly oestrogenic in the periphery and can be used in males.

  11. The neuroprotective effect exerted by oligodendroglial progenitors on ischemically impaired hippocampal cells.

    PubMed

    Sypecka, Joanna; Sarnowska, Anna

    2014-04-01

    Oligodendrocyte progenitor cells (OPCs) are the focus of intense research for the purpose of cell replacement therapies in acquired or inherited neurodegenerative disorders, accompanied by ongoing hypo/demyelination. Recently, it has been postulated that these glia-committed cells exhibit certain properties of neural stem cells. Advances in stem cell biology have shown that their therapeutic effect could be attributed to their ability to secret numerous active compounds which modify the local microenvironment making it more susceptible to restorative processes. To verify this hypothesis, we set up an ex vivo co-culture system of OPCs isolated from neonatal rat brain with organotypic hippocampal slices (OHC) injured by oxygen-glucose deprivation (OGD). The presence of OPCs in such co-cultures resulted in a significant neuroprotective effect manifesting itself as a decrease in cell death rate and as an extension of newly formed cells in ischemically impaired hippocampal slices. A microarray analysis of broad spectrum of trophic factors and cytokines expressed by OPCs was performed for the purpose of finding the factor(s) contributing to the observed effect. Three of them-BDNF, IL-10 and SCF-were selected for the subsequent functional assays. Our data revealed that BDNF released by OPCs is the potent factor that stimulates cell proliferation and survival in OHC subjected to OGD injury. At the same time, it was observed that IL-10 attenuates inflammatory processes by promoting the formation of the cells associated with the immunological response. Those neuroprotective qualities of oligodendroglia-biased progenitors significantly contribute to anticipating a successful cell replacement therapy.

  12. Cytokine therapy‐mediated neuroprotection in a Friedreich's ataxia mouse model

    PubMed Central

    Cerminara, Nadia; Hares, Kelly; Redondo, Juliana; Cook, Amelia J.; Haynes, Harry R.; Burton, Bronwen R.; Pook, Mark; Apps, Richard; Scolding, Neil J.; Wilkins, Alastair

    2017-01-01

    Objectives Friedreich's ataxia is a devastating neurological disease currently lacking any proven treatment. We studied the neuroprotective effects of the cytokines, granulocyte‐colony stimulating factor (G‐CSF) and stem cell factor (SCF) in a humanized murine model of Friedreich's ataxia. Methods Mice received monthly subcutaneous infusions of cytokines while also being assessed at monthly time points using an extensive range of behavioral motor performance tests. After 6 months of treatment, neurophysiological evaluation of both sensory and motor nerve conduction was performed. Subsequently, mice were sacrificed for messenger RNA, protein, and histological analysis of the dorsal root ganglia, spinal cord, and cerebellum. Results Cytokine administration resulted in significant reversal of biochemical, neuropathological, neurophysiological, and behavioural deficits associated with Friedreich's ataxia. Both G‐CSF and SCF had pronounced effects on frataxin levels (the primary molecular defect in the pathogenesis of the disease) and a regulators of frataxin expression. Sustained improvements in motor coordination and locomotor activity were observed, even after onset of neurological symptoms. Treatment also restored the duration of sensory nerve compound potentials. Improvements in peripheral nerve conduction positively correlated with cytokine‐induced increases in frataxin expression, providing a link between increases in frataxin and neurophysiological function. Abrogation of disease‐related pathology was also evident, with reductions in inflammation/gliosis and increased neural stem cell numbers in areas of tissue injury. Interpretation These experiments show that cytokines already clinically used in other conditions offer the prospect of a novel, rapidly translatable, disease‐modifying, and neuroprotective treatment for Friedreich's ataxia. Ann Neurol 2017;81:212–226 PMID:28009062

  13. Growth factor independence 1b (gfi1b) is important for the maturation of erythroid cells and the regulation of embryonic globin expression.

    PubMed

    Vassen, Lothar; Beauchemin, Hugues; Lemsaddek, Wafaa; Krongold, Joseph; Trudel, Marie; Möröy, Tarik

    2014-01-01

    Growth factor independence 1b (GFI1B) is a DNA binding repressor of transcription with vital functions in hematopoiesis. Gfi1b-null embryos die at midgestation very likely due to defects in erythro- and megakaryopoiesis. To analyze the full functionality of Gfi1b, we used conditionally deficient mice that harbor floxed Gfi1b alleles and inducible (Mx-Cre, Cre-ERT) or erythroid specific (EpoR-Cre) Cre expressing transgenes. In contrast to the germline knockout, EpoR-Cre mediated erythroid specific ablation of Gfi1b allows full gestation, but causes perinatal lethality with very few mice surviving to adulthood. Both the embryonic deletion of Gfi1b by EpoR-Cre and the deletion in adult mice by Mx-Cre or Cre-ERT leads to reduced numbers of erythroid precursors, perturbed and delayed erythroid maturation, anemia and extramedullary erythropoiesis. Global expression analyses showed that the Hba-x, Hbb-bh1 and Hbb-y embryonic globin genes were upregulated in Gfi1b deficient TER119+ fetal liver cells over the gestation period from day 12.5-17.5 p.c. and an increased level of Hbb-bh1 and Hbb-y embryonic globin gene expression was even maintained in adult Gfi1b deficient mice. While the expression of Bcl11a, a regulator of embryonic globin expression was not affected by Gfi1b deficiency, the expression of Gata1 was reduced and the expression of Sox6, also involved in globin switch, was almost entirely lost when Gfi1b was absent. These findings establish Gfi1b as a regulator of embryonic globin expression and embryonic and adult erythroid maturation.

  14. In vitro Splicing of Influenza Viral NS1 mRNA and NS1-β -globin Chimeras: Possible Mechanisms for the Control of Viral mRNA Splicing

    NASA Astrophysics Data System (ADS)

    Plotch, Stephen J.; Krug, Robert M.

    1986-08-01

    In influenza virus-infected cells, the splicing of the viral NS1 mRNA catalyzed by host nuclear enzymes is controlled so that the steady-state amount of the spliced NS2 mRNA is only 5-10% of that of the unspliced NS1 mRNA. Here we examine the splicing of NS1 mRNA in vitro, using nuclear extracts from HeLa cells. We show that in addition to its consensus 5' and 3' splice sites, NS1 mRNA has an intron branch-point adenosine residue that was functional in lariat formation. Nonetheless, this RNA was not detectably spliced in vitro under conditions in which a human β -globin precursor was efficiently spliced. Using chimeric RNA precursors containing both NS1 and β -globin sequences, we show that the NS1 5' splice site was effectively utilized by the β -globin branch-point sequence and 3' splice site to form a spliced RNA, whereas the NS1 3' splice site did not function in detectable splicing in vitro, even in the presence of the β -globin branch-point sequence or in the presence of both the branch-point sequence and 5' exon and splice site from β -globin With the chimeric precursors that were not detectably spliced, as with NS1 mRNA itself, a low level of a lariat structure containing only intron and not 3' exon sequences was formed. The inability of the consensus 3' splice site of NS1 mRNA to function effectively in in vitro splicing suggests that this site is structurally inaccessible to components of the splicing machinery. Based on these results, we propose two mechanisms whereby NS1 mRNA splicing in infected cells is controlled via the accessibility of its 3' splice site.

  15. Neuroprotective effects of resveratrol in Alzheimer disease pathology

    PubMed Central

    Rege, Shraddha D.; Geetha, Thangiah; Griffin, Gerald D.; Broderick, Tom L.; Babu, Jeganathan Ramesh

    2014-01-01

    Alzheimer’s disease is a chronic neurodegenerative disorder characterized by a progressive loss of cognitive and behavioral abilities. Extracellular senile plaques and intracellular neurofibrillary tangles are hallmarks of AD. Researchers aim to analyze the molecular mechanisms underlying AD pathogenesis; however, the therapeutic options available to treat this disease are inadequate. In the past few years, several studies have reported interesting insights about the neuroprotective properties of the polyphenolic compound resveratrol (3, 5, 4′-trihydroxy-trans-stilbene) when used with in vitro and in vivo models of AD. The aim of this review is to focus on the neuroprotective and antioxidant effects of resveratrol on AD and its multiple potential mechanisms of action. In addition, because the naturally occurring forms of resveratrol have a very limited half-life in plasma, a description of potential analogs aimed at increasing the bioavailability in plasma is also discussed. PMID:25309423

  16. Sigma receptors as potential therapeutic targets for neuroprotection.

    PubMed

    Nguyen, Linda; Kaushal, Nidhi; Robson, Matthew J; Matsumoto, Rae R

    2014-11-15

    Sigma receptors comprise a unique family of proteins that have been implicated in the pathophysiology and treatment of many central nervous system disorders, consistent with their high level of expression in the brain and spinal cord. Mounting evidence indicate that targeting sigma receptors may be particularly beneficial in a number of neurodegenerative conditions including Alzheimer׳s disease, Parkinson׳s disease, stroke, methamphetamine neurotoxicity, Huntington׳s disease, amyotrophic lateral sclerosis, and retinal degeneration. In this perspective, a brief overview is given on sigma receptors, followed by a focus on common mechanisms of neurodegeneration that appear amenable to modulation by sigma receptor ligands to convey neuroprotective effects and/or restorative functions. Within each of the major mechanisms discussed herein, the neuroprotective effects of sigma ligands are summarized, and when known, the specific sigma receptor subtype(s) involved are identified. Together, the literature suggests sigma receptors may provide a novel target for combatting neurodegenerative diseases through both neuronal and glial mechanisms.

  17. Neuroprotective effects of vagus nerve stimulation on traumatic brain injury.

    PubMed

    Zhou, Long; Lin, Jinhuang; Lin, Junming; Kui, Guoju; Zhang, Jianhua; Yu, Yigang

    2014-09-01

    Previous studies have shown that vagus nerve stimulation can improve the prognosis of traumatic brain injury. The aim of this study was to elucidate the mechanism of the neuroprotective effects of vagus nerve stimulation in rabbits with brain explosive injury. Rabbits with brain explosive injury received continuous stimulation (10 V, 5 Hz, 5 ms, 20 minutes) of the right cervical vagus nerve. Tumor necrosis factor-α, interleukin-1β and interleukin-10 concentrations were detected in serum and brain tissues, and water content in brain tissues was measured. Results showed that vagus nerve stimulation could reduce the degree of brain edema, decrease tumor necrosis factor-α and interleukin-1β concentrations, and increase interleukin-10 concentration after brain explosive injury in rabbits. These data suggest that vagus nerve stimulation may exert neuroprotective effects against explosive injury via regulating the expression of tumor necrosis factor-α, interleukin-1β and interleukin-10 in the serum and brain tissue.

  18. [Similarity of cycloprolylglycine to piracetam in antihypoxic and neuroprotective effects].

    PubMed

    Kolisnikova, K N; Gudasheva, T A; Nazarova, G A; Antipov, T A; Voronina, T A; Seredenin, S B

    2012-01-01

    The antihypoxic activity of the endogenous cyclic dipeptide cycloprolylglycine (CPG) has been studied on a model of normobaric hypoxia with hypercapnia and its neuroprotective activity has been studied on a model of human neuroblastoma SH-SY5Y cell damage by 6-hydroxydopamine. It is established that CPG exhibits the antihypoxic activity at doses of 0.5 and 1.0 mg/kg (i.p.) on outbred and BALB/c mice, but not on C57B1/6 mice. The neuroprotective activity of CPG was detected in 10(-5) - 10(-8) M concentration range only when the treatment was carried out 24h before toxin introduction. The obtained data confirm the hypothesis that piracetam is a mimetic of the endogenous CPG neuropeptide.

  19. Neuroprotection by Alpha 2-Adrenergic Agonists in Cerebral Ischemia

    PubMed Central

    Zhang, Yonghua; Kimelberg, Harold K.

    2005-01-01

    Ischemic brain injury is implicated in the pathophysiology of stroke and brain trauma, which are among the top killers worldwide, and intensive studies have been performed to reduce neural cell death after cerebral ischemia. Alpha 2-adrenergic agonists have been shown to improve the histomorphological and neurological outcome after cerebral ischemic injury when administered during ischemia, and recent studies have provided considerable evidence that alpha 2-adrenergic agonists can protect the brain from ischemia/reperfusion injury. Thus, alpha 2-adrenergic agonists are promising potential drugs in preventing cerebral ischemic injury, but the mechanisms by which alpha 2-adrenergic agonists exert their neuroprotective effect are unclear. Activation of both the alpha 2-adrenergic receptor and imidazoline receptor may be involved. This mini review examines the recent progress in alpha 2-adrenergic agonists - induced neuroprotection and its proposed mechanisms in cerebral ischemic injury. PMID:18369397

  20. Control of Intracellular Calcium Signaling as a Neuroprotective Strategy

    PubMed Central

    Duncan, R. Scott; Goad, Daryl L.; Grillo, Michael A.; Kaja, Simon; Payne, Andrew J.; Koulen, Peter

    2010-01-01

    Both acute and chronic degenerative diseases of the nervous system reduce the viability and function of neurons through changes in intracellular calcium signaling. In particular, pathological increases in the intracellular calcium concentration promote such pathogenesis. Disease involvement of numerous regulators of intracellular calcium signaling located on the plasma membrane and intracellular organelles has been documented. Diverse groups of chemical compounds targeting ion channels, G-protein coupled receptors, pumps and enzymes have been identified as potential neuroprotectants. The present review summarizes the discovery, mechanisms and biological activity of neuroprotective molecules targeting proteins that control intracellular calcium signaling to preserve or restore structure and function of the nervous system. Disease relevance, clinical applications and new technologies for the identification of such molecules are being discussed. PMID:20335972

  1. Bioactive Compounds and Their Neuroprotective Effects in Diabetic Complications

    PubMed Central

    Oh, Yoon Sin

    2016-01-01

    Hyperglycemia, hyperlipidemia and impaired insulin signaling during the development of diabetes can cause diabetic complications, such as diabetic neuropathy, resulting in significant morbidity and mortality. Although various therapeutics are available for the treatment of diabetic neuropathy, no absolute cure exists, and additional research is necessary to comprehensively understand the underlying pathophysiological pathways. A number of studies have demonstrated the potential health benefits of bioactive compounds, i.e., flavonoids and vitamins, which may be effective as supplementary treatments for diabetes and its complications. In this review, we highlight the most recent reports about the mechanisms of action of bioactive compounds (flavonoids and vitamins) possessing potential neuroprotective properties in diabetic conditions. Additional clinical studies are required to determine the appropriate dose and duration of bioactive compound supplementation for neuroprotection in diabetic patients. PMID:27483315

  2. Nicotine neuroprotection against nigrostriatal damage: importance of the animal model.

    PubMed

    Quik, Maryka; O'Neill, Michael; Perez, Xiomara A

    2007-05-01

    Parkinson's disease is a neurodegenerative movement disorder that is characterized by a loss of nigrostriatal dopamine-containing neurons. Unexpectedly, there is a reduced incidence of Parkinson's disease in tobacco users. This finding is important because the identification of the component(s) responsible for this effect could lead to therapeutic strategies to slow down or halt the progression of Parkinson's disease. Results from cell culture models consistently show that nicotine protects against neurotoxicity. However, data from animal models of nigrostriatal damage are conflicting, thus raising questions about a neuroprotective role of nicotine. Accumulating evidence indicates that discrepancies are observed primarily in mouse models of the disease. By contrast, reproducible protection occurs in rat models and in a nonhuman primate parkinsonian model that closely resembles the human disease. These findings highlight the need to use the appropriate animal model and treatment conditions when testing putative neuroprotective agents.

  3. Neuroprotective effects of vagus nerve stimulation on traumatic brain injury

    PubMed Central

    Zhou, Long; Lin, Jinhuang; Lin, Junming; Kui, Guoju; Zhang, Jianhua; Yu, Yigang

    2014-01-01

    Previous studies have shown that vagus nerve stimulation can improve the prognosis of traumatic brain injury. The aim of this study was to elucidate the mechanism of the neuroprotective effects of vagus nerve stimulation in rabbits with brain explosive injury. Rabbits with brain explosive injury received continuous stimulation (10 V, 5 Hz, 5 ms, 20 minutes) of the right cervical vagus nerve. Tumor necrosis factor-α, interleukin-1β and interleukin-10 concentrations were detected in serum and brain tissues, and water content in brain tissues was measured. Results showed that vagus nerve stimulation could reduce the degree of brain edema, decrease tumor necrosis factor-α and interleukin-1β concentrations, and increase interleukin-10 concentration after brain explosive injury in rabbits. These data suggest that vagus nerve stimulation may exert neuroprotective effects against explosive injury via regulating the expression of tumor necrosis factor-α, interleukin-1β and interleukin-10 in the serum and brain tissue. PMID:25368644

  4. 5th Annual Global College of Neuroprotection and Neuroregeneration.

    PubMed

    Sharma, Hari Shanker

    2008-06-01

    The 5th Global College of Neuroprotection and Neuroregeneration (GCNN) was held in the historic charming capital city of Bucharest, Romania in JW Marriott Grand Hotel on 3-6 March, 2008. The meeting was a unique blend of basic researchers and clinicians across the Globe presenting their recent findings in neuroprotection and neuroregeneration in a beautiful exotic ambience. More than 300 students and researchers attended the congress and participated in deliberations. Over 60 representatives from various pharmaceutical industries from all over the world supported this event. This meeting was held for the first time as a joint venture with GCNN and the Society for study on Neuroproetction and Neuroplasticity (SSNN), and was a grand success both scientifically and socially. Thus, these joint meetings of the two societies (GCNN and SSNN) will continue in future in different European cities for the coming 5 years.

  5. Resveratrol Neuroprotection in Stroke and Traumatic CNS injury

    PubMed Central

    Lopez, Mary; Dempsey, Robert J; Vemuganti, Raghu

    2015-01-01

    Resveratrol, a stilbene formed in many plants in response to various stressors, elicits multiple beneficial effects in vertebrates. Particularly, resveratrol was shown to have therapeutic properties in cancer, atherosclerosis and neurodegeneration. Resveratrol-induced benefits are modulated by multiple synergistic pathways that control oxidative stress, inflammation and cell death. Despite the lack of a definitive mechanism, both in vivo and in vitro studies suggest that resveratrol can induce a neuroprotective state when administered acutely or prior to experimental injury to the CNS. In this review, we discuss the neuroprotective potential of resveratrol in stroke, traumatic brain injury and spinal cord injury, with a focus on the molecular pathways responsible for this protection. PMID:26277384

  6. Astaxanthin as a Potential Neuroprotective Agent for Neurological Diseases

    PubMed Central

    Wu, Haijian; Niu, Huanjiang; Shao, Anwen; Wu, Cheng; Dixon, Brandon J.; Zhang, Jianmin; Yang, Shuxu; Wang, Yirong

    2015-01-01

    Neurological diseases, which consist of acute injuries and chronic neurodegeneration, are the leading causes of human death and disability. However, the pathophysiology of these diseases have not been fully elucidated, and effective treatments are still lacking. Astaxanthin, a member of the xanthophyll group, is a red-orange carotenoid with unique cell membrane actions and diverse biological activities. More importantly, there is evidence demonstrating that astaxanthin confers neuroprotective effects in experimental models of acute injuries, chronic neurodegenerative disorders, and neurological diseases. The beneficial effects of astaxanthin are linked to its oxidative, anti-inflammatory, and anti-apoptotic characteristics. In this review, we will focus on the neuroprotective properties of astaxanthin and explore the underlying mechanisms in the setting of neurological diseases. PMID:26378548

  7. Olesoxime (TRO19622): A Novel Mitochondrial-Targeted Neuroprotective Compound

    PubMed Central

    Bordet, Thierry; Berna, Patrick; Abitbol, Jean-Louis; Pruss, Rebecca M.

    2010-01-01

    Olesoxime (TRO19622) is a novel mitochondrial-targeted neuroprotective compound undergoing a pivotal clinical efficacy study in Amyotrophic Lateral Sclerosis (ALS) and also in development for Spinal Muscular Atrophy (SMA). It belongs to a new family of cholesterol-oximes identified for its survival-promoting activity on purified motor neurons deprived of neurotrophic factors. Olesoxime targets proteins of the outer mitochondrial membrane, concentrates at the mitochondria and prevents permeability transition pore opening mediated by, among other things, oxidative stress. Olesoxime has been shown to exert a potent neuroprotective effect in various in vitro and in vivo models. In particular olesoxime provided significant protection in experimental animal models of motor neuron disorders and more particularly ALS. Olesoxime is orally active, crosses the blood brain barrier, and is well tolerated. Collectively, its pharmacological properties designate olesoxime as a promising drug candidate for motor neuron diseases. PMID:27713255

  8. Neuroprotective effect of thalidomide on MPTP-induced toxicity.

    PubMed

    Palencia, Guadalupe; Garcia, Esperanza; Osorio-Rico, Laura; Trejo-Solís, Cristina; Escamilla-Ramírez, Angel; Sotelo, Julio

    2015-03-01

    Thalidomide is a sedative with unique pharmacological properties; studies on epilepsy and brain ischemia have shown intense neuroprotective effects. We analyzed the effect of thalidomide treatment on the neurotoxicity caused by the administration of 1-methyl-4-phenyl-1,2,3,6-tetrahidropyridine (MPTP) in mice. Thalidomide was administered at two times; before and after the exposure to MPTP. In both circumstances thalidomide improved the neurotoxicity induced by MPTP as seen by a significant raise of the striatal contents of dopamine and simultaneous decrease of monoamine-oxidase-B (MAO-B). These results indicate that in the experimental model of Parkinson's disease the administration of thalidomide improves the functional damage on the nigrostriatal cell substratum as seen by the production of dopamine. This neuroprotective effect seems to be mediated by inhibition of excitotoxicity. Our results suggest that thalidomide could be investigated as potential adjuvant therapy for Parkinson's disease.

  9. Bioactive Compounds and Their Neuroprotective Effects in Diabetic Complications.

    PubMed

    Oh, Yoon Sin

    2016-07-30

    Hyperglycemia, hyperlipidemia and impaired insulin signaling during the development of diabetes can cause diabetic complications, such as diabetic neuropathy, resulting in significant morbidity and mortality. Although various therapeutics are available for the treatment of diabetic neuropathy, no absolute cure exists, and additional research is necessary to comprehensively understand the underlying pathophysiological pathways. A number of studies have demonstrated the potential health benefits of bioactive compounds, i.e., flavonoids and vitamins, which may be effective as supplementary treatments for diabetes and its complications. In this review, we highlight the most recent reports about the mechanisms of action of bioactive compounds (flavonoids and vitamins) possessing potential neuroprotective properties in diabetic conditions. Additional clinical studies are required to determine the appropriate dose and duration of bioactive compound supplementation for neuroprotection in diabetic patients.

  10. Neuroprotective and Antioxidant Effects of Novel Benzofuran-2-Carboxamide Derivatives

    PubMed Central

    Cho, Jungsook; Park, Chowee; Lee, Youngmun; Kim, Sunyoung; Bose, Shambhunath; Choi, Minho; Kumar, Arepalli Sateesh; Jung, Jae-Kyung; Lee, Heesoon

    2015-01-01

    In the present study, we synthesized a series of novel 7-methoxy-N-(substituted phenyl)benzofuran-2-carboxamide derivatives in moderate to good yields and evaluated their neuroprotective and antioxidant activities using primary cultured rat cortical neuronal cells and in vitro cell-free bioassays. Based on our primary screening data with eighteen synthesized derivatives, nine compounds (1a, 1c, 1f, 1i, 1j, 1l, 1p, 1q and 1r) exhibiting considerable protection against the NMDA-induced excitotoxic neuronal cell damage at the concentration of 100 μM were selected for further evaluation. Among the selected derivatives, compound 1f (with -CH3 substitution at R2 position) exhibited the most potent and efficacious neuroprotective action against the NMDA-induced excitotoxicity. Its neuroprotective effect was almost comparable to that of memantine, a well-known NMDA antagonist, at 30 μM concentration. In addition to 1f, compound 1j (with -OH substitution at R3 position) also showed marked anti-excitotoxic effects at both 100 and 300 μM concentrations. These findings suggest that -CH3 substitution at R2 position and, to a lesser degree, -OH substitution at R3 position may be important for exhibiting neuroprotective action against excitotoxic damage. Compound 1j was also found to scavenge 1,1-diphenyl-2-picrylhydrazyl radicals and inhibit in vitro lipid peroxidation in rat brain homogenate in moderate and appreciable degrees. Taken together, our structure-activity relationship studies suggest that the compound with -CH3 substitution at R2 and -OH substitution at R3 positions of the benzofuran moiety might serve as the lead exhibiting potent anti-excitotoxic, ROS scavenging, and antioxidant activities. Further synthesis and evaluation will be necessary to confirm this possibility. PMID:25995827

  11. A case for neuroprotection in ophthalmology: developments in translational research.

    PubMed

    Payne, Andrew J; Kaja, Simon; Sabates, Nelson R; Koulen, Peter

    2013-01-01

    Cellular aging occurs by the lifelong accumulation of oxidative damage leading to neuronal apoptosis, termed 'neurodegeneration', and the functional deficits of aging. Loss of visual function is one of the most important quality of life measures for older adults. We discuss recent clinical and laboratory advances in the neuroprotective treatment of the aging eye with particular emphasis on the three major ocular neurodegenerative conditions: glaucoma, age-related macular degeneration (AMD), and diabetic retinopathy (DR).

  12. Neuroprotective 2-(2-phenylethyl)chromones of Imperata cylindrica.

    PubMed

    Yoon, Jeong Seon; Lee, Mi Kyeong; Sung, Sang Hyun; Kim, Young Choong

    2006-02-01

    Bioactivity-guided fractionation of the methanolic extract of the rhizomes of Imperata cylindrica afforded a new compound, 5-hydroxy-2-(2-phenylethyl)chromone (1), together with three known compounds, 5-hydroxy-2-[2-(2-hydroxyphenyl)ethyl]chromone (2), flidersiachromone (3), and 5-hydroxy-2-styrylchromone (4). Among these four compounds, 1 and 2 showed significant neuroprotective activity against glutamate-induced neurotoxicity in primary cultures of rat cortical cells.

  13. Polycyclic propargylamine and acetylene derivatives as multifunctional neuroprotective agents.

    PubMed

    Zindo, Frank T; Barber, Quinton R; Joubert, Jacques; Bergh, Jacobus J; Petzer, Jacobus P; Malan, Sarel F

    2014-06-10

    The aim of this study was to design drug-like molecules with multiple neuroprotective mechanisms which would ultimately inhibit N-methyl-D-aspartate (NMDA) receptors, block L-type voltage gated calcium channels (VGCC) and inhibit apoptotic processes as well as the monoamine oxidase-B (MAO-B) enzyme in the central nervous system. These types of compounds may act as neuroprotective and symptomatic drugs for disorders such as Alzheimer's and Parkinson's disease. In designing the compounds we focused on the structures of rasagiline and selegiline, two well known MAO-B inhibitors and proposed neuroprotective agents. Based on this consideration, the compounds synthesised all contain the propargylamine functional group of rasagiline and selegiline or a derivative thereof, conjugated to various polycyclic cage moieties. Being non-polar, these polycyclic moieties have been shown to aid in the transport of conjugated compounds across the blood-brain barrier, as well as cell membranes and have secondary positive neuroprotective effects. All novel synthesised polycyclic derivatives proved to have significant anti-apoptotic activity (p < 0.05) which was comparable to the positive control, selegiline. Four compounds (12, 15 and 16) showed promising VGCC and NMDA receptor channel inhibitory activity ranging from 18% to 59% in micromolar concentrations and compared favourably to the reference compounds. In the MAO-B assay, 8-phenyl-ethynyl-8-hydroxypentacycloundecane (10), exhibited MAO-B inhibition of 73.32% at 300 μM. This compound also reduced the percentage of apoptotic cells by as much as 40% when compared to the control experiments.

  14. Neuronal Changes in the Diabetic Cornea: Perspectives for Neuroprotection

    PubMed Central

    Yamamoto, Shuichi

    2016-01-01

    Diabetic neuropathy is associated with neurotrophic ulcerations of the skin and cornea. Decreased corneal sensitivity and impaired innervation lead to weakened epithelial wound healing predisposing patients to ocular complications such as corneal infections, stromal opacification, and surface irregularity. This review presents recent findings on impaired corneal innervation in diabetic individuals, and the findings suggest that corneal neuropathy might be an early indicator of diabetic neuropathy. Additionally, the recent findings for neuroprotective and regenerative therapy for diabetic keratopathy are presented. PMID:28044131

  15. [Advances in research on neuroprotective effects of inert gas].

    PubMed

    Chen, Sheng; Guo, Song-xue; Hong, Yuan; Zhang, Jian-min

    2011-01-01

    Inert gas is a group of rare gases with very low activity, their application in medical field has increasingly drawn attentions. It is known that inert gases helium, xenon and argon have protective effects on nervous system and the mechanisms are related to eradicating free radicals, anti-inflammation, suppressing apoptosis, influencing ion channels and so on. Further study on the neuroprotective effect of inert gas will shed light on a new approach to treat neurological diseases.

  16. Neuroprotective Treatment of Laser-Induced Retinal Injuries

    DTIC Science & Technology

    2001-10-01

    to evaluate the neuroprotective effect of dextromethorphan, memantine and brimonidine in our rat model of laser- induced retinal-lesions Methods: Argon...dextromethorphan, memantine or brimonidine . The control groups (18 rats for each compound) received the solvent at the same volume and schedule as...size and the magnitude of photoreceptor nuclei loss within the lesions. Conclusions: Systemic treatments with dextromethorphan, memantine or brimonidine

  17. Recent Updates in Neuroprotective and Neuroregenerative Potential of Centella asiatica

    PubMed Central

    Lokanathan, Yogeswaran; Omar, Norazzila; Ahmad Puzi, Nur Nabilah; Saim, Aminuddin; Hj Idrus, Ruszymah

    2016-01-01

    Centella asiatica, locally well known in Malaysia as pegaga, is a traditional herb that has been used widely in Ayurvedic medicine, traditional Chinese medicine, and in the traditional medicine of other Southeast Asian countries including Malaysia. Although consumption of the plant is indicated for various illnesses, its potential neuroprotective properties have been well studied and documented. In addition to past studies, recent studies also discovered and/or reconfirmed that C. asiatica acts as an antioxidant, reducing the effect of oxidative stress in vitro and in vivo. At the in vitro level, C. asiatica promotes dendrite arborisation and elongation, and also protects the neurons from apoptosis. In vivo studies have shown that the whole extract and also individual compounds of C. asiatica have a protective effect against various neurological diseases. Most of the in vivo studies on neuroprotective effects have focused on Alzheimer’s disease, Parkinson’s disease, learning and memory enhancement, neurotoxicity and other mental illnesses such as depression and anxiety, and epilepsy. Recent studies have embarked on finding the molecular mechanism of neuroprotection by C. asiatica extract. However, the capability of C. asiatica in enhancing neuroregeneration has not been studied much and is limited to the regeneration of crushed sciatic nerves and protection from neuronal injury in hypoxia conditions. More studies are still needed to identify the compounds and the mechanism of action of C. asiatica that are particularly involved in neuroprotection and neuroregeneration. Furthermore, the extraction method, biochemical profile and dosage information of the C. asiatica extract need to be standardised to enhance the economic value of this traditional herb and to accelerate the entry of C. asiatica extracts into modern medicine. PMID:27540320

  18. Curcumin: a potential neuroprotective agent in Parkinson's disease.

    PubMed

    Mythri, R B; Bharath, M M Srinivas

    2012-01-01

    Parkinson's disease (PD) is an age-associated neurodegenerative disease clinically characterized as a movement disorder. The motor symptoms in PD arise due to selective degeneration of dopaminergic neurons in the substantia nigra of the ventral midbrain thereby depleting the dopamine levels in the striatum. Most of the current pharmacotherapeutic approaches in PD are aimed at replenishing the striatal dopamine. Although these drugs provide symptomatic relief during early PD, many patients develop motor complications with long-term treatment. Further, PD medications do not effectively tackle tremor, postural instability and cognitive deficits. Most importantly, most of these drugs do not exhibit neuroprotective effects in patients. Consequently, novel therapies involving natural antioxidants and plant products/molecules with neuroprotective properties are being exploited for adjunctive therapy. Curcumin is a polyphenol and an active component of turmeric (Curcuma longa), a dietary spice used in Indian cuisine and medicine. Curcumin exhibits antioxidant, anti-inflammatory and anti-cancer properties, crosses the blood-brain barrier and is neuroprotective in neurological disorders. Several studies in different experimental models of PD strongly support the clinical application of curcumin in PD. The current review explores the therapeutic potential of curcumin in PD.

  19. Tsc1 (hamartin) confers neuroprotection against ischemia by inducing autophagy

    PubMed Central

    Papadakis, Michalis; Hadley, Gina; Xilouri, Maria; Hoyte, Lisa C.; Nagel, Simon; McMenamin, M Mary; Tsaknakis, Grigorios; Watt, Suzanne M.; Drakesmith, Cynthia Wright; Chen, Ruoli; Wood, Matthew J A; Zhao, Zonghang; Kessler, Benedikt; Vekrellis, Kostas; Buchan, Alastair M.

    2013-01-01

    Previous attempts to identify neuroprotective targets by studying the ischemic cascade and devising ways to suppress it have failed to translate to efficacious therapies for acute ischemic stroke1. We hypothesized that studying the molecular determinants of endogenous neuroprotection in two well-established paradigms, the resistance of CA3 hippocampal neurons to global ischemia2 and the tolerance conferred by ischemic preconditioning (IPC)3, would reveal new neuroprotective targets. We found that the product of the tuberous sclerosis complex 1 gene (TSC1), hamartin, is selectively induced by ischemia in hippocampal CA3 neurons. In CA1 neurons, hamartin was unaffected by ischemia but was upregulated by IPC preceding ischemia, which protects the otherwise vulnerable CA1 cells. Suppression of hamartin expression with TSC1 shRNA viral vectors both in vitro and in vivo increased the vulnerability of neurons to cell death following oxygen glucose deprivation (OGD) and ischemia. In vivo suppression of TSC1 expression increased locomotor activity and decreased habituation in a hippocampal-dependent task. Overexpression of hamartin increased resistance to OGD by inducing productive autophagy through an mTORC1-dependent mechanism. PMID:23435171

  20. The neuroprotective roles of BDNF in hypoxic ischemic brain injury

    PubMed Central

    CHEN, AI; XIONG, LI-JING; TONG, YU; MAO, MENG

    2013-01-01

    Hypoxia-ischemia (H/I) brain injury results in various degrees of damage to the body, and the immature brain is particularly fragile to oxygen deprivation. Hypothermia and erythropoietin (EPO) have long been known to be neuroprotective in ischemic brain injury. Brain-derived neurotrophic factor (BDNF) has recently been recognized as a potent modulator capable of regulating a wide repertoire of neuronal functions. This review was based on studies concerning the involvement of BDNF in the protection of H/I brain injury following a search in PubMed between 1995 and December, 2011. We initially examined the background of BDNF, and then focused on its neuroprotective mechanisms against ischemic brain injury, including its involvement in promoting neural regeneration/cognition/memory rehabilitation, angiogenesis within ischemic penumbra and the inhibition of the inflammatory process, neurotoxicity, epilepsy and apoptosis. We also provided a literature overview of experimental studies, discussing the safety and the potential clinical application of BDNF as a neuroprotective agent in the ischemic brain injury. PMID:24648914

  1. Role of Methylene Blue in Trauma Neuroprotection and Neuropsychiatric Diseases.

    PubMed

    Batista-Filho, Mário Márcio Vasconcelos; Kandratavicius, Ludmyla; Nunes, Emerson Arcoverde; Tumas, Vitor; Colli, Benedicto O; Hallak, Jaime E C; Maia-de-Oliveira, João Paulo; Evora, Paulo Roberto B

    2016-01-01

    The prevalence of central nervous system trauma, neurodegenerative and psychiatric diseases has significantly increased in recent years. Most of these diseases show multifactorial causes and several progression mechanisms. The search for a medication which positively interferes in these mechanisms and thereby changes the course of these diseases is of great scientific interest. The aim of the present review is to assess current literature on the possible role of methylene blue (MB) in the central nervous system due to the increasing number of citations in spite of the few articles available on the subject which suggest growing interest in the protective effects of MB on the central nervous system. Searches were performed on PubMed and Thomson Reuters Web of Knowledge. Therefore, we provide an overview of existing articles concerning: 1) MB actions; 2) MB neuroprotection and cardiac arrest; 3) MB neuroprotection and degenerative brain diseases; 4) MB neuroprotection and psychiatric diseases. PubMed was chosen because it holds the highest number of articles on the subject, Thomson Reuters was chosen due to its functionality which evaluates citations through analytic graphs. We conclude that MB has a beneficial effect and acts through many mechanisms and pathways of the central nervous system, being a potential alternative for the treatment of many neurodegenerative and psychiatric diseases.

  2. Argon gas: a potential neuroprotectant and promising medical therapy

    PubMed Central

    2014-01-01

    Argon is a noble gas element that has demonstrated narcotic and protective abilities that may prove useful in the medical field. The earliest records of argon gas have exposed its ability to exhibit narcotic symptoms at hyperbaric pressures greater than 10 atmospheres with more recent evidence seeking to display argon as a potential neuroprotective agent. The high availability and low cost of argon provide a distinct advantage over using similarly acting treatments such as xenon gas. Argon gas treatments in models of brain injury such as in vitro Oxygen-Glucose-Deprivation (OGD) and Traumatic Brain Injury (TBI), as well as in vivo Middle Cerebral Artery Occlusion (MCAO) have largely demonstrated positive neuroprotective behavior. On the other hand, some warning has been made to potential negative effects of argon treatments in cases of ischemic brain injury, where increases of damage in the sub-cortical region of the brain have been uncovered. Further support for argon use in the medical field has been demonstrated in its use in combination with tPA, its ability as an organoprotectant, and its surgical applications. This review seeks to summarize the history and development of argon gas use in medical research as mainly a neuroprotective agent, to summarize the mechanisms associated with its biological effects, and to elucidate its future potential. PMID:24533741

  3. Microglia trigger astrocyte-mediated neuroprotection via purinergic gliotransmission

    NASA Astrophysics Data System (ADS)

    Shinozaki, Youichi; Nomura, Masatoshi; Iwatsuki, Ken; Moriyama, Yoshinori; Gachet, Christian; Koizumi, Schuichi

    2014-03-01

    Microglia are highly sensitive to even small changes in the brain environment, such as invasion of non-hazardous toxicants or the presymptomatic state of diseases. However, the physiological or pathophysiological consequences of their responses remain unknown. Here, we report that cultured microglia sense low concentrations of the neurotoxicant methylmercury (MeHglow) and provide neuroprotection against MeHg, for which astrocytes are also required. When exposed to MeHglow, microglia exocytosed ATP via p38 MAPK- and vesicular nucleotide transporter (VNUT)-dependent mechanisms. Astrocytes responded to the microglia-derived ATP via P2Y1 receptors and released interleukin-6 (IL-6), thereby protecting neurons against MeHglow. These neuroprotective actions were also observed in organotypic hippocampal slices from wild-type mice, but not in slices prepared from VNUT knockout or P2Y1 receptor knockout mice. These findings suggest that microglia sense and respond to even non-hazardous toxicants such as MeHglow and change their phenotype into a neuroprotective one, for which astrocytic support is required.

  4. Activating transcription factor 6 derepression mediates neuroprotection in Huntington disease.

    PubMed

    Naranjo, José R; Zhang, Hongyu; Villar, Diego; González, Paz; Dopazo, Xose M; Morón-Oset, Javier; Higueras, Elena; Oliveros, Juan C; Arrabal, María D; Prieto, Angela; Cercós, Pilar; González, Teresa; De la Cruz, Alicia; Casado-Vela, Juan; Rábano, Alberto; Valenzuela, Carmen; Gutierrez-Rodriguez, Marta; Li, Jia-Yi; Mellström, Britt

    2016-02-01

    Deregulated protein and Ca2+ homeostasis underlie synaptic dysfunction and neurodegeneration in Huntington disease (HD); however, the factors that disrupt homeostasis are not fully understood. Here, we determined that expression of downstream regulatory element antagonist modulator (DREAM), a multifunctional Ca2+-binding protein, is reduced in murine in vivo and in vitro HD models and in HD patients. DREAM downregulation was observed early after birth and was associated with endogenous neuroprotection. In the R6/2 mouse HD model, induced DREAM haplodeficiency or blockade of DREAM activity by chronic administration of the drug repaglinide delayed onset of motor dysfunction, reduced striatal atrophy, and prolonged life span. DREAM-related neuroprotection was linked to an interaction between DREAM and the unfolded protein response (UPR) sensor activating transcription factor 6 (ATF6). Repaglinide blocked this interaction and enhanced ATF6 processing and nuclear accumulation of transcriptionally active ATF6, improving prosurvival UPR function in striatal neurons. Together, our results identify a role for DREAM silencing in the activation of ATF6 signaling, which promotes early neuroprotection in HD.

  5. Activating transcription factor 6 derepression mediates neuroprotection in Huntington disease

    PubMed Central

    Naranjo, José R.; Zhang, Hongyu; Villar, Diego; González, Paz; Dopazo, Xose M.; Morón-Oset, Javier; Higueras, Elena; Oliveros, Juan C.; Arrabal, María D.; Prieto, Angela; Cercós, Pilar; González, Teresa; De la Cruz, Alicia; Casado-Vela, Juan; Rábano, Alberto; Valenzuela, Carmen; Gutierrez-Rodriguez, Marta; Li, Jia-Yi; Mellström, Britt

    2016-01-01

    Deregulated protein and Ca2+ homeostasis underlie synaptic dysfunction and neurodegeneration in Huntington disease (HD); however, the factors that disrupt homeostasis are not fully understood. Here, we determined that expression of downstream regulatory element antagonist modulator (DREAM), a multifunctional Ca2+-binding protein, is reduced in murine in vivo and in vitro HD models and in HD patients. DREAM downregulation was observed early after birth and was associated with endogenous neuroprotection. In the R6/2 mouse HD model, induced DREAM haplodeficiency or blockade of DREAM activity by chronic administration of the drug repaglinide delayed onset of motor dysfunction, reduced striatal atrophy, and prolonged life span. DREAM-related neuroprotection was linked to an interaction between DREAM and the unfolded protein response (UPR) sensor activating transcription factor 6 (ATF6). Repaglinide blocked this interaction and enhanced ATF6 processing and nuclear accumulation of transcriptionally active ATF6, improving prosurvival UPR function in striatal neurons. Together, our results identify a role for DREAM silencing in the activation of ATF6 signaling, which promotes early neuroprotection in HD. PMID:26752648

  6. New horizons for newborn brain protection: enhancing endogenous neuroprotection

    PubMed Central

    Hassell, K Jane; Ezzati, Mojgan; Alonso-Alconada, Daniel; Hausenloy, Derek J; Robertson, Nicola J

    2015-01-01

    Intrapartum-related events are the third leading cause of childhood mortality worldwide and result in one million neurodisabled survivors each year. Infants exposed to a perinatal insult typically present with neonatal encephalopathy (NE). The contribution of pure hypoxia-ischaemia (HI) to NE has been debated; over the last decade, the sensitising effect of inflammation in the aetiology of NE and neurodisability is recognised. Therapeutic hypothermia is standard care for NE in high-income countries; however, its benefit in encephalopathic babies with sepsis or in those born following chorioamnionitis is unclear. It is now recognised that the phases of brain injury extend into a tertiary phase, which lasts for weeks to years after the initial insult and opens up new possibilities for therapy. There has been a recent focus on understanding endogenous neuroprotection and how to boost it or to supplement its effectors therapeutically once damage to the brain has occurred as in NE. In this review, we focus on strategies that can augment the body's own endogenous neuroprotection. We discuss in particular remote ischaemic postconditioning whereby endogenous brain tolerance can be activated through hypoxia/reperfusion stimuli started immediately after the index hypoxic-ischaemic insult. Therapeutic hypothermia, melatonin, erythropoietin and cannabinoids are examples of ways we can supplement the endogenous response to HI to obtain its full neuroprotective potential. Achieving the correct balance of interventions at the correct time in relation to the nature and stage of injury will be a significant challenge in the next decade. PMID:26063194

  7. Tsc1 (hamartin) confers neuroprotection against ischemia by inducing autophagy.

    PubMed

    Papadakis, Michalis; Hadley, Gina; Xilouri, Maria; Hoyte, Lisa C; Nagel, Simon; McMenamin, M Mary; Tsaknakis, Grigorios; Watt, Suzanne M; Drakesmith, Cynthia Wright; Chen, Ruoli; Wood, Matthew J A; Zhao, Zonghang; Kessler, Benedikt; Vekrellis, Kostas; Buchan, Alastair M

    2013-03-01

    Previous attempts to identify neuroprotective targets by studying the ischemic cascade and devising ways to suppress it have failed to translate to efficacious therapies for acute ischemic stroke. We hypothesized that studying the molecular determinants of endogenous neuroprotection in two well-established paradigms, the resistance of CA3 hippocampal neurons to global ischemia and the tolerance conferred by ischemic preconditioning (IPC), would reveal new neuroprotective targets. We found that the product of the tuberous sclerosis complex 1 gene (TSC1), hamartin, is selectively induced by ischemia in hippocampal CA3 neurons. In CA1 neurons, hamartin was unaffected by ischemia but was upregulated by IPC preceding ischemia, which protects the otherwise vulnerable CA1 cells. Suppression of hamartin expression with TSC1 shRNA viral vectors both in vitro and in vivo increased the vulnerability of neurons to cell death following oxygen glucose deprivation (OGD) and ischemia. In vivo, suppression of TSC1 expression increased locomotor activity and decreased habituation in a hippocampal-dependent task. Overexpression of hamartin increased resistance to OGD by inducing productive autophagy through an mTORC1-dependent mechanism.

  8. Glaucoma: Focus on mitochondria in relation to pathogenesis and neuroprotection.

    PubMed

    Osborne, Neville N; Núñez-Álvarez, Claudia; Joglar, Belen; Del Olmo-Aguado, Susana

    2016-09-15

    Primary open-angle glaucoma (POAG) is a common form of glaucoma in which retinal ganglion cells (RGCs) die at varying intervals. Primary open-angle glaucoma is often associated with an increased intraocular pressure (IOP), which when reduced, can slow down the progression of the disease. However, it is essential to develop better modes of treatments for glaucoma patients. In this overview, we discuss the hypothesis that RGC mitochondria are affected during the initiation of POAG, by becoming gradually weakened, but at different rates because of their specific receptor profiles. With this in mind, we argue that neuroprotection in the context of glaucoma should focus on preserving RGC mitochondrial function and suggest a number of ways by which this can theoretically be achieved. Since POAG is a chronic disease, any neuroprotective treatment strategy must be tolerated over many years. Theoretically, topically applied substances should have the fewest side effects, but it is questionable whether sufficient compounds can reach RGC mitochondria to be effective. Therefore, other delivery procedures that might result in greater concentrations of neuroprotectants reaching RGC mitochondria are being developed. Red-light therapy represents another therapeutic alternative for enhancing RGC mitochondrial functions and has the advantage of being both non-toxic and non-invasive.

  9. Mechanisms of Neuroprotection by Quercetin: Counteracting Oxidative Stress and More

    PubMed Central

    Costa, Lucio G.; Garrick, Jacqueline M.; Roquè, Pamela J.; Pellacani, Claudia

    2016-01-01

    Increasing interest has recently focused on determining whether several natural compounds, collectively referred to as nutraceuticals, may exert neuroprotective actions in the developing, adult, and aging nervous system. Quercetin, a polyphenol widely present in nature, has received the most attention in this regard. Several studies in vitro, in experimental animals and in humans, have provided supportive evidence for neuroprotective effects of quercetin, either against neurotoxic chemicals or in various models of neuronal injury and neurodegenerative diseases. The exact mechanisms of such protective effects remain elusive, though many hypotheses have been formulated. In addition to a possible direct antioxidant effect, quercetin may also act by stimulating cellular defenses against oxidative stress. Two such pathways include the induction of Nrf2-ARE and induction of the antioxidant/anti-inflammatory enzyme paraoxonase 2 (PON2). In addition, quercetin has been shown to activate sirtuins (SIRT1), to induce autophagy, and to act as a phytoestrogen, all mechanisms by which quercetin may provide its neuroprotection. PMID:26904161

  10. Non-Coding RNAs in Stroke and Neuroprotection

    PubMed Central

    Saugstad, Julie A.

    2015-01-01

    This review will focus on the current state of knowledge regarding non-coding RNAs (ncRNA) in stroke and neuroprotection. There will be a brief introduction to microRNAs (miRNA), long ncRNAs (lncRNA), and piwi-interacting RNAs (piRNA), followed by evidence for the regulation of ncRNAs in ischemia. This review will also discuss the effect of neuroprotection induced by a sublethal duration of ischemia or other stimuli given before a stroke (preconditioning) on miRNA expression and the role of miRNAs in preconditioning-induced neuroprotection. Experimental manipulation of miRNAs and/or their targets to induce pre- or post-stroke protection will also be presented, as well as discussion on miRNA responses to current post-stroke therapies. This review will conclude with a brief discussion of future directions for ncRNAs studies in stroke, such as new approaches to model complex ncRNA datasets, challenges in ncRNA studies, and the impact of extracellular RNAs on human diseases such as stroke. PMID:25821444

  11. Neurotropic and neuroprotective activities of the earthworm peptide Lumbricusin

    SciTech Connect

    Kim, Dae Hong; Lee, Ik Hwan; Nam, Seung Taek; Hong, Ji; Zhang, Peng; Hwang, Jae Sam; Seok, Heon; Choi, Hyemin; Lee, Dong Gun; Kim, Jae Il; Kim, Ho

    2014-06-06

    Highlights: • 11-mer peptide Lumbricusin, a defensin like peptide, is isolated from earthworm. • We here demonstrated that Lumbricusin has neurotropic and neuroprotective effects. • p27 degradation by Lumbricusin mediates effects of Lumbricusin on neuronal cells. - Abstract: We recently isolated a polypeptide from the earthworm Lumbricus terrestris that is structurally similar to defensin, a well-known antibacterial peptide. An 11-mer antibacterial peptide (NH{sub 2}-RNRRWCIDQQA), designated Lumbricusin, was synthesized based on the amino acid sequence of the isolated polypeptide. Since we previously reported that CopA3, a dung beetle peptide, enhanced neuronal cell proliferation, we here examined whether Lumbricusin exerted neurotropic and/or neuroprotective effects. Lumbricusin treatment induced a time-dependent increase (∼51%) in the proliferation of human neuroblastoma SH-SY5Y cells. Lumbricusin also significantly inhibited the apoptosis and decreased viability induced by treatment with 6-hydroxy dopamine, a Parkinson’s disease-mimicking agent. Immunoblot analyses revealed that Lumbricusin treatment increased ubiquitination of p27{sup Kip1} protein, a negative regulator of cell-cycle progression, in SH-SY5Y cells, and markedly promoted its degradation. Notably, adenoviral-mediated over-expression of p27{sup Kip1} significantly blocked the antiapoptotic effect of Lumbricusin in 6-hydroxy dopamine-treated SH-SY5Y cells. These results suggest that promotion of p27{sup Kip1} degradation may be the main mechanism underlying the neuroprotective and neurotropic effects of Lumbricusin.

  12. Advanced neuroprotection for brain ischemia: an alternative approach to minimize stroke damage.

    PubMed

    Ayuso, Maria Irene; Montaner, Joan

    2015-01-01

    Despite decades of research on neuroprotectants in the fight against ischemic stroke, no successful results have been obtained and new alternative approaches are urgently needed. Translation of effective candidate drugs in experimental studies to patients has systematically failed. However, some of those treatments or neuroprotectant diets which demonstrated only beneficial effects if given before (but not after) ischemia induction and discarded for conventional neuroprotection, could be rescued in order to apply an 'advanced neuroprotection strategy' (ADNES). Herein, the authors discuss how re-profiling those neuroprotective candidate drugs and diets with the best potential, some of which are mentioned in this article as an ADNES, may be a good approach for developing successful treatments that protect the brain against ischemic damage. This novel approach would try to protect the brain of patients who are at high risk of suffering a stroke, before damage occurs, in order to minimize brain injury by having the neuroprotectant drug or diet 'on board' if unfortunately stroke occurs.

  13. Neuroprotection (and lack of neuroprotection) afforded by a series of noble gases in an in vitro model of neuronal injury.

    PubMed

    Jawad, Noorulhuda; Rizvi, Maleeha; Gu, Jianteng; Adeyi, Olar; Tao, Guocai; Maze, Mervyn; Ma, Daqing

    2009-09-04

    Xenon-induced neuroprotection has been well studied both in vivo and in vitro. In this study, the neuroprotective properties of the other noble gases, namely, krypton, argon, neon and helium, were explored in an in vitro model of neuronal injury. Pure neuronal cultures, derived from foetal BALB/c mice cortices, were provoked into injury by oxygen and glucose deprivation (OGD). Cultures were exposed to either nitrogen hypoxia or noble gas hypoxia in balanced salt solution devoid of glucose for 90min. The cultures were allowed to recover in normal culture medium for a further 24h in nitrogen or noble gas. The effect of noble gases on cell reducing ability in the absence of OGD was also investigated. Cell reducing ability was quantified via an MTT assay and expressed as a ratio of the control. The OGD caused a reduction in cell reducing ability to 0.56+/-0.04 of the control in the absence of noble gas (p<0.001). Like xenon (0.92+/-0.10; p<0.001), neuroprotection was afforded by argon (0.71+/-0.05; p<0.01). Neon and krypton did not have a protective effect under our experimental conditions. Helium had a detrimental effect on the cells. In the absence of OGD, krypton reduced the reducing ability of uninjured cells to 0.84+/-0.09 (p<0.01), but argon showed an improvement in reducing ability to 1.15+/-0.11 (p<0.05). Our data suggest that the cheap and widely available noble gas argon may have potential as a neuroprotectant for the future.

  14. Ghrelin-AMPK Signaling Mediates the Neuroprotective Effects of Calorie Restriction in Parkinson's Disease

    PubMed Central

    Bayliss, Jacqueline A.; Lemus, Moyra B.; Stark, Romana; Santos, Vanessa V.; Thompson, Aiysha; Rees, Daniel J.; Galic, Sandra; Elsworth, John D.; Kemp, Bruce E.; Davies, Jeffrey S.

    2016-01-01

    Calorie restriction (CR) is neuroprotective in Parkinson's disease (PD) although the mechanisms are unknown. In this study we hypothesized that elevated ghrelin, a gut hormone with neuroprotective properties, during CR prevents neurodegeneration in an 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD. CR attenuated the MPTP-induced loss of substantia nigra (SN) dopamine neurons and striatal dopamine turnover in ghrelin WT but not KO mice, demonstrating that ghrelin mediates CR's neuroprotective effect. CR elevated phosphorylated AMPK and ACC levels in the striatum of WT but not KO mice suggesting that AMPK is a target for ghrelin-induced neuroprotection. Indeed, exogenous ghrelin significantly increased pAMPK in the SN. Genetic deletion of AMPKβ1 and 2 subunits only in dopamine neurons prevented ghrelin-induced AMPK phosphorylation and neuroprotection. Hence, ghrelin signaling through AMPK in SN dopamine neurons mediates CR's neuroprotective effects. We consider targeting AMPK in dopamine neurons may recapitulate neuroprotective effects of CR without requiring dietary intervention. SIGNIFICANCE STATEMENT The neuroprotective mechanisms of calorie restriction (CR) in Parkinson's disease are unknown. Indeed, the difficulty to adhere to CR necessitates an alternative method to recapitulate the neuroprotective benefits of CR while bypassing dietary constraints. Here we show that CR increases plasma ghrelin, which targets substantia nigra dopamine to maintain neuronal survival. Selective deletion on AMPK beta1 and beta2 subunits only in DAT cre-expressing neurons shows that the ghrelin-induced neuroprotection requires activation of AMPK in substantia nigra dopamine neurons. We have discovered ghrelin as a key metabolic signal, and AMPK in dopamine neurons as its target, which links calorie restriction with neuroprotection in Parkinson's disease. Thus, targeting AMPK in dopamine neurons may provide novel neuroprotective benefits in Parkinson's disease. PMID

  15. BBB-Permeable, Neuroprotective, and Neurotrophic Polysaccharide, Midi-GAGR

    PubMed Central

    Makani, Vishruti; Jang, Yong-gil; Christopher, Kevin; Judy, Wesley; Eckstein, Jacob; Hensley, Kenneth; Chiaia, Nicolas; Kim, Dong-Shik; Park, Joshua

    2016-01-01

    An enormous amount of efforts have been poured to find an effective therapeutic agent for the treatment of neurodegenerative diseases including Alzheimer’s disease (AD). Among those, neurotrophic peptides that regenerate neuronal structures and increase neuron survival show a promise in slowing neurodegeneration. However, the short plasma half-life and poor blood-brain-barrier (BBB)-permeability of neurotrophic peptides limit their in vivo efficacy. Thus, an alternative neurotrophic agent that has longer plasma half-life and better BBB-permeability has been sought for. Based on the recent findings of neuroprotective polysaccharides, we searched for a BBB-permeable neuroprotective polysaccharide among natural polysaccharides that are approved for human use. Then, we discovered midi-GAGR, a BBB-permeable, long plasma half-life, strong neuroprotective and neurotrophic polysaccharide. Midi-GAGR is a 4.7kD cleavage product of low acyl gellan gum that is approved by FDA for human use. Midi-GAGR protected rodent cortical neurons not only from the pathological concentrations of co-/post-treated free reactive radicals and Aβ42 peptide but also from activated microglial cells. Moreover, midi-GAGR showed a good neurotrophic effect; it enhanced neurite outgrowth and increased phosphorylated cAMP-responsive element binding protein (pCREB) in the nuclei of primary cortical neurons. Furthermore, intra-nasally administered midi-GAGR penetrated the BBB and exerted its neurotrophic effect inside the brain for 24 h after one-time administration. Midi-GAGR appears to activate fibroblast growth factor receptor 1 (FGFR1) and its downstream neurotrophic signaling pathway for neuroprotection and CREB activation. Additionally, 14-day intranasal administration of midi-GAGR not only increased neuronal activity markers but also decreased hyperphosphorylated tau, a precursor of neurofibrillary tangle, in the brains of the AD mouse model, 3xTg-AD. Taken together, midi-GAGR with good BBB

  16. BBB-Permeable, Neuroprotective, and Neurotrophic Polysaccharide, Midi-GAGR.

    PubMed

    Makani, Vishruti; Jang, Yong-Gil; Christopher, Kevin; Judy, Wesley; Eckstein, Jacob; Hensley, Kenneth; Chiaia, Nicolas; Kim, Dong-Shik; Park, Joshua

    2016-01-01

    An enormous amount of efforts have been poured to find an effective therapeutic agent for the treatment of neurodegenerative diseases including Alzheimer's disease (AD). Among those, neurotrophic peptides that regenerate neuronal structures and increase neuron survival show a promise in slowing neurodegeneration. However, the short plasma half-life and poor blood-brain-barrier (BBB)-permeability of neurotrophic peptides limit their in vivo efficacy. Thus, an alternative neurotrophic agent that has longer plasma half-life and better BBB-permeability has been sought for. Based on the recent findings of neuroprotective polysaccharides, we searched for a BBB-permeable neuroprotective polysaccharide among natural polysaccharides that are approved for human use. Then, we discovered midi-GAGR, a BBB-permeable, long plasma half-life, strong neuroprotective and neurotrophic polysaccharide. Midi-GAGR is a 4.7kD cleavage product of low acyl gellan gum that is approved by FDA for human use. Midi-GAGR protected rodent cortical neurons not only from the pathological concentrations of co-/post-treated free reactive radicals and Aβ42 peptide but also from activated microglial cells. Moreover, midi-GAGR showed a good neurotrophic effect; it enhanced neurite outgrowth and increased phosphorylated cAMP-responsive element binding protein (pCREB) in the nuclei of primary cortical neurons. Furthermore, intra-nasally administered midi-GAGR penetrated the BBB and exerted its neurotrophic effect inside the brain for 24 h after one-time administration. Midi-GAGR appears to activate fibroblast growth factor receptor 1 (FGFR1) and its downstream neurotrophic signaling pathway for neuroprotection and CREB activation. Additionally, 14-day intranasal administration of midi-GAGR not only increased neuronal activity markers but also decreased hyperphosphorylated tau, a precursor of neurofibrillary tangle, in the brains of the AD mouse model, 3xTg-AD. Taken together, midi-GAGR with good BBB

  17. Electrophoretic separation of a class of nucleosomes enriched in HMG 14 and 17 and actively transcribed globin genes.

    PubMed Central

    Albanese, I; Weintraub, H

    1980-01-01

    Monomer nucleosomes from chick erythrocytes can be fractionated according to their electrophoretic mobility in (comparatively) high salt acrylamide gels. We show that the fractionation is based predominantly on differences in charge. The monomer heterogeneity persists even when the nucleosomes are trimmed down to 145 bp with Exo III or when H1 and H5 are removed. The slowest migrating monomers are associated with HMG 14 and 17; however, we do not believe that these proteins are entirely responsible for the altered mobility since the nucleosome heterogeneity persists even after removal of HMG 14 and 17. The DNA associated with the HMG 14 and 17 containing nucleosomes is shown to be enriched in actively transcribed globin sequences. Images PMID:6448987

  18. Core histone hyperacetylation co-maps with generalized DNase I sensitivity in the chicken beta-globin chromosomal domain.

    PubMed Central

    Hebbes, T R; Clayton, A L; Thorne, A W; Crane-Robinson, C

    1994-01-01

    The distribution of core histone acetylation across the chicken beta-globin locus has been mapped in 15 day chicken embryo erythrocytes by immunoprecipitation of mononucleosomes with an antibody recognizing acetylated histones, followed by hybridization probing at several points in the locus. A continuum of acetylation was observed, covering both genes and intergenic regions. Using the same probes, the generalized sensitivity to DNase I was mapped by monitoring the disappearance of intact genomic restriction fragments from Southern transfers. Close correspondence between the 33 kb of sensitive chromatin and the extent of acetylation indicates that one role of the modification could be the generation and/or maintenance of the open conformation. The precision of acetylation mapping makes it a possible approach to the definition of chromosomal domain boundaries. Images PMID:8168481

  19. Beta-globin gene cluster haplotypes and alpha-thalassemia in sickle cell disease patients from Trinidad.

    PubMed

    Jones-Lecointe, Altheia; Smith, Erskine; Romana, Marc; Gilbert, Marie-Georges; Charles, Waveney P; Saint-Martin, Christian; Kéclard, Lisiane

    2008-01-01

    In this study, we have determined the frequency of beta(S) haplotypes in 163 sickle cell disease patients from Trinidad. The alpha(3.7) globin gene deletion status was also studied with an observed gene frequency of 0.17. Among the 283 beta(S) chromosomes analyzed, the Benin haplotype was the most prevalent (61.8%) followed by Bantu (17.3%), Senegal (8.5%), Cameroon (3.5%), and Arab-Indian (3.2%), while 5.7% of them were atypical. This beta(S) haplotypes distribution differed from those previously described in other Caribbean islands (Jamaica, Guadeloupe, and Cuba), in agreement with the known involvement of the major colonial powers (Spain, France, and Great Britain) in the slave trade in Trinidad and documented an Indian origin of the beta(S) gene.

  20. A novel approach to rapid determination of betaS-globin haplotypes: sequencing of the Agamma-IVS-II region.

    PubMed

    Vinson, Amy E; Walker, Aisha; Elam, Dedrey; Glendenning, Michele; Kutlar, Ferdane; Clair, Betsy; Harbin, Jeanette; Kutlar, Abdullah

    2004-01-01

    beta-Globin gene cluster haplotypes were originally determined by restriction endonuclease mapping with Southern blots of polymorphic sites around the gene cluster. Over the years, haplotyping has been found to be useful, not only in population genetics but also in predicting the severity of hemoglobinopathies such as sickle cell disease. The sickle mutation occurs on five distinct haplotypes. The hitherto used methods are cumbersome and time-consuming, making haplotype determination a tedious procedure. We report our experience with a novel, rapid approach to haplotyping based on sequence polymorphisms in the Agamma-IVS-II region. We provide an algorithm that allows rapid assignment of the four African haplotypes carrying the sickle mutation.

  1. Identification through high-throughput screening of 4'-methoxyflavone and 3',4'-dimethoxyflavone as novel neuroprotective inhibitors of parthanatos

    PubMed Central

    Fatokun, A A; Liu, J O; Dawson, V L; Dawson, T M

    2013-01-01

    Background and Purpose The current lack of disease-modifying therapeutics to manage neurological and neurodegenerative conditions justifies the development of more efficacious agents. One distinct pathway leading to neuronal death in these conditions and which represents a very promising and attractive therapeutic target is parthanatos, involving overactivation of PARP-1. We therefore sought to identify small molecules that could be neuroprotective by targeting the pathway. Experimental Approach Using HeLa cells, we developed and optimized an assay for high-throughput screening of about 5120 small molecules. Structure–activity relationship (SAR) study was carried out in HeLa and SH-SY5Y cells for molecules related to the initial active compound. The neuroprotective ability of each active compound was tested in cortical neuronal cultures. Key Results 4'-Methoxyflavone (4MF) showed activity by preventing the decrease in cell viability of HeLa and SH-SY5Y cells caused by the DNA-alkylating agent, N-methyl-N‘-nitro-N-nitrosoguanidine (MNNG), which induces parthanatos. A similar compound from the SAR study, 3',4'-dimethoxyflavone (DMF), also showed significant activity. Both compounds reduced the synthesis and accumulation of poly (ADP-ribose) polymer and protected cortical neurones against cell death induced by NMDA. Conclusions and Implications Our data reveal additional neuroprotective members of the flavone class of flavonoids and show that methoxylation of the parent flavone structure at position 4′ confers parthanatos-inhibiting activity while additional methoxylation at position 3′, reported by others to improve metabolic stability, does not destroy the activity. These molecules may therefore serve as leads for the development of novel neurotherapeutics for the management of neurological and neurodegenerative conditions. PMID:23550801

  2. NF-E2 disrupts chromatin structure at human beta-globin locus control region hypersensitive site 2 in vitro.

    PubMed Central

    Armstrong, J A; Emerson, B M

    1996-01-01

    The human beta-globin locus control region (LCR) is responsible for forming an active chromatin structure extending over the 100-kb locus, allowing expression of the beta-globin gene family. The LCR consists of four erythroid-cell-specific DNase I hypersensitive sites (HS1 to -4). DNase I hypersensitive sites are thought to represent nucleosome-free regions of DNA which are bound by trans-acting factors. Of the four hypersensitive sites only HS2 acts as a transcriptional enhancer. In this study, we examine the binding of an erythroid protein to its site within HS2 in chromatin in vitro. NF-E2 is a transcriptional activator consisting of two subunits, the hematopoietic cell-specific p45 and the ubiquitous DNA-binding subunit, p18. NF-E2 binds two tandem AP1-like sites in HS2 which form the core of its enhancer activity. In this study, we show that when bound to in vitro-reconstituted chromatin, NF-E2 forms a DNase I hypersensitive site at HS2 similar to the site observed in vivo. Moreover, NF-E2 binding in vitro results in a disruption of nucleosome structure which can be detected 200 bp away. Although NF-E2 can disrupt nucleosomes when added to preformed chromatin, the disruption is more pronounced when NF-E2 is added to DNA prior to chromatin assembly. Interestingly, the hematopoietic cell-specific subunit, p45, is necessary for binding to chromatin but not to naked DNA. Interaction of NF-E2 with its site in chromatin-reconstituted HS2 allows a second erythroid factor, GATA-1, to bind its nearby sites. Lastly, nucleosome disruption by NF-E2 is an ATP-dependent process, suggesting the involvement of energy-dependent nucleosome remodeling factors. PMID:8816476

  3. Transfer of nonselectable genes into mouse teratocarcinoma cells and transcription of the transferred human. beta. -globin gene

    SciTech Connect

    Wagner, E.F.; Mintz, B.

    1982-02-01

    Teratocarcinoma (TCC) stem cells can function as vehicles for the introduction of specific recombinant genes into mice. Because most genes do not code for a selectable marker, the authors investigated the transformation efficiency of vectors with a linked selectable gene. In one series, TCC cells first selected for thymidine kinase deficiency were treated with DNA from the plasmid vector PtkH..beta..1 containing the human genomic ..beta..-globin gene and the thymidine kinase gene of herpes simplex virus. A high transformation frequency was obtained after selection in hypoxanthine-aminopterin-thymidine medium. Hybridization tests revealed that the majority of transformants had intact copies of the human gene among three to six total copies per cell. These were associated with cellular DNA sequences as judged from the presence of additional new restriction fragments and from stability of the sequences in tumors produced by injecting the cells subcutaneously. Total polyadenylate-containing RNA from cell cultures of two out of four transformants examined showed hybridization to the human gene probe: one RNA species resembled mature human ..beta..-globin mRNA transcripts; the others were of larger size. In differentiating tumors, various tissues, including hematopoietic cells of TCC provenance could be found. In a second model set of experiments, wild-type TCC cells were used to test a dominant-selection scheme with pSV-gpt vectors. Numerous transformants were isolated, and their transfected DNA was apparently stably integrated. Thus, any gene of choice can be transferred into TCC stem cells even without mutagenesis of the cells, and selected cell clones can be characterized. Cells of interest may then be introduced into early embryos to produce new mouse strains with predetermined genetic changes.

  4. Prenatal diagnosis of hemoglobinopathies: evaluation of techniques for analysing globin-chain synthesis in blood samples obtained by fetoscopy.

    PubMed Central

    Congote, L. F.; Hamilton, E. F.; Chow, J. C.; Perry, T. B.

    1982-01-01

    Three techniques for analysing hemoglobin synthesis in blood samples obtained by fetoscopy were evaluated. Of the fetuses studied, 12 were not at risk of genetic disorders, 10 were at risk of beta-thalassemia, 2 were at risk of sickle cell anemia and 1 was at risk of both diseases. The conventional method of prenatal diagnosis of hemoglobinopathies, involving the separation of globin chains labelled with a radioactive isotope on carboxymethyl cellulose (CMC) columns, was compared with a method involving globin-chain separation by high-pressure liquid chromatography (HPLC) and with direct analysis of labelled hemoglobin tetramers obtained from cell lysates by chromatography on ion-exchange columns. The last method is technically the simplest and can be used for diagnosing beta-thalassemia and sickle cell anemia. However, it gives spuriously high levels of adult hemoglobin in samples containing nonlabelled adult hemoglobin. HPLC is the fastest method for prenatal diagnosis of beta-thalassemia and may prove as reliable as the CMC method. Of the 13 fetuses at risk for hemoglobinopathies, 1 was predicted to be affected, and the diagnosis was confirmed in the abortus. Of 12 predicted to be unaffected, 1 was aborted spontaneously and was unavailable for confirmatory studies, as were 3 of the infants; however, the diagnosis was confirmed in seven cases and is awaiting confirmation when the infant in 6 months old in one case. Couples at risk of bearing a child with a hemoglobinopathy should be referred for genetic counselling before pregnancy or, at the latest, by the 12th week of gestation so that prenatal diagnosis can be attempted by amniocentesis, safer procedure, with restriction endonuclease analysis of the amniotic fluid cells. PMID:7139502

  5. Promoter region sequence differences in the A and G gamma globin genes of Brazilian sickle cell anemia patients.

    PubMed

    Barbosa, C G; Goncalves-Santos, N J; Souza-Ribeiro, S B; Moura-Neto, J P; Takahashi, D; Silva, D O; Hurtado-Guerrero, A F; Reis, M G; Goncalves, M S

    2010-08-01

    Fetal hemoglobin (HbF), encoded by the HBG2 and HBG1 genes, is the best-known genetic modulator of sickle cell anemia, varying dramatically in concentration in the blood of these patients. This variation is partially associated with polymorphisms located in the promoter region of the HBG2 and HBG1 genes. In order to explore known and unknown polymorphisms in these genes, the sequences of their promoter regions were screened in sickle cell anemia patients and correlated with both their HbF levels and their betaS-globin haplotypes. Additionally, the sequences were compared with genes from 2 healthy groups, a reference one (N = 104) and an Afro-descendant one (N = 98), to identify polymorphisms linked to the ethnic background.The reference group was composed by healthy individuals from the general population. Four polymorphisms were identified in the promoter region of HBG2 and 8 in the promoter region of HBG1 among the studied groups. Four novel single nucleotide polymorphisms (SNP) located at positions -324, -317, -309 and -307 were identified in the reference group. A deletion located between -396 and -391 in the HBG2 promoter region and the SNP -271 C-->T in the HBG1 promoter region were associated with the Central African Republic betaS-globin haplotype. In contrast, the -369 C-->G and 309 A-->G SNPs in the HBG2 promoter region were correlated to the Benin haplotype. The polymorphisms -396_-391 del HBG2, -369 SNP HBG2 and -271 SNP HBG1 correlated with HbF levels. Hence, we suggest an important role of HBG2 and HBG1 gene polymorphisms on the HbF synthesis.

  6. Amino acid sequence of myoglobin from the chiton Liolophura japonica and a phylogenetic tree for molluscan globins.

    PubMed

    Suzuki, T; Furukohri, T; Okamoto, S

    1993-02-01

    Myoglobin was isolated from the radular muscle of the chiton Liolophura japonica, a primitive archigastropodic mollusc. Liolophura contains three monomeric myoglobins (I, II, and III), and the complete amino acid sequence of myoglobin I has been determined. It is composed of 145 amino acid residues, and the molecular mass was calculated to be 16,070 D. The E7 distal histidine, which is replaced by valine or glutamine in several molluscan globins, is conserved in Liolophura myoglobin. The autoxidation rate at physiological conditions indicated that Liolophura oxymyoglobin is fairly stable when compared with other molluscan myoglobins. The amino acid sequence of Liolophura myoglobin shows low homology (11-21%) with molluscan dimeric myoglobins and hemoglobins, but shows higher homology (26-29%) with monomeric myoglobins from the gastropodic molluscs Aplysia, Dolabella, and Bursatella. A phylogenetic tree was constructed from 19 molluscan globin sequences. The tree separated them into two distinct clusters, a cluster for muscle myoglobins and a cluster for erythrocyte or gill hemoglobins. The myoglobin cluster is divided further into two subclusters, corresponding to monomeric and dimeric myoglobins, respectively. Liolophura myoglobin was placed on the branch of monomeric myoglobin lineage, showing that it diverged earlier from other monomeric myoglobins. The hemoglobin cluster is also divided into two subclusters. One cluster contains homodimeric, heterodimeric, tetrameric, and didomain chains of erythrocyte hemoglobins of the blood clams Anadara, Scapharca, and Barbatia. Of special interest is the other subcluster. It consists of three hemoglobin chains derived from the bacterial symbiontharboring clams Calyptogena and Lucina, in which hemoglobins are supposed to play an important role in maintaining the symbiosis with sulfide bacteria.

  7. Effect of beta-globin gene cluster haplotype on the hematological and clinical features of sickle cell anemia.

    PubMed

    Rieder, R F; Safaya, S; Gillette, P; Fryd, S; Hsu, H; Adams, J G; Steinberg, M H

    1991-03-01

    In 113 black American adults with sickle cell anemia (HbSS), we examined nine polymorphic restriction sites, including the Xmnl site 5' to the G gamma gene, to see whether haplotype is related to the level of HbF and the proportion of G gamma chains or if it influences the hematological and clinical features of the disease. Seventy-five percent of the patients were homozygous or heterozygous for the Benin (no. 19) or Central African Republic (Bantu, no. 20) haplotypes; 13.3% were homozygous or heterozygous for the Senegal (no. 3) haplotype, while 11.5% had other genotypes. Of the subjects, 14.2% were either homozygous or heterozygous for the Xmnl restriction site 5' to the G gamma gene. We found no effect of haplotype on HbF levels. The level of G gamma chains was 60.5% +/- 17.0% in individuals heterozygous or homozygous for haplotype no. 3 and was 46.9% +/- 11.6% in individuals with other haplotypes. Subjects with the Xmnl site 5' to the G gamma gene had G gamma globin levels of 59.5% +/- 16.7% while those lacking that site had an average of 47.2% +/- 12.1%. There were no significant differences among these groups in hemoglobin concentration, packed cell volume, mean cell volume, or clinical indicators of vaso-occlusive severity, including crises, hospitalizations per year, aseptic bone necrosis, acute chest syndrome, or leg ulcers. While the presence of haplotype 3 and the 5' G gamma Xmnl site were associated with increased G gamma chains, there was no effect on HbF level or other hematological and clinical features that might reflect disease severity. It is likely that determinants unrelated to haplotype, linked or unlinked to the beta-globin gene cluster, are the major effectors of differences in the levels of HbF in American patients with sickle cell anemia.

  8. Neuroprotective Effects of Inhibiting Fyn S-Nitrosylation on Cerebral Ischemia/Reperfusion-Induced Damage to CA1 Hippocampal Neurons

    PubMed Central

    Hao, Lingyun; Wei, Xuewen; Guo, Peng; Zhang, Guangyi; Qi, Suhua

    2016-01-01

    Nitric oxide (NO) can regulate signaling pathways via S-nitrosylation. Fyn can be post-translationally modified in many biological processes. In the present study, using a rat four-vessel-occlusion ischemic model, we aimed to assess whether Fyn could be S-nitrosylated and to evaluate the effects of Fyn S-nitrosylation on brain damage. In vitro, Fyn could be S-nitrosylated by S-nitrosoglutathione (GSNO, an exogenous NO donor), and in vivo, endogenous NO synthesized by NO synthases (NOS) could enhance Fyn S-nitrosylation. Application of GSNO, 7-nitroindazole (7-NI, an inhibitor of neuronal NOS) and hydrogen maleate (MK-801, the N-methyl-d-aspartate receptor (NMDAR) antagonist) could decrease the S-nitrosylation and phosphorylation of Fyn induced by cerebral ischemia/reperfusion (I/R). Cresyl violet staining validated that these compounds exerted neuroprotective effects against the cerebral I/R-induced damage to hippocampal CA1 neurons. Taken together, in this study, we demonstrated that Fyn can be S-nitrosylated both in vitro and in vivo and that inhibiting S-nitrosylation can exert neuroprotective effects against cerebral I/R injury, potentially via NMDAR-mediated mechanisms. These findings may lead to a new field of inquiry to investigate the underlying pathogenesis of stroke and the development of novel treatment strategies. PMID:27420046

  9. Sigma-1 Receptors and Neurodegenerative Diseases: Towards a Hypothesis of Sigma-1 Receptors as Amplifiers of Neurodegeneration and Neuroprotection.

    PubMed

    Nguyen, Linda; Lucke-Wold, Brandon P; Mookerjee, Shona; Kaushal, Nidhi; Matsumoto, Rae R

    2017-01-01

    Sigma-1 receptors are molecular chaperones that may act as pathological mediators and targets for novel therapeutic applications in neurodegenerative diseases. Accumulating evidence indicates that sigma-1 ligands can either directly or indirectly modulate multiple neurodegenerative processes, including excitotoxicity, calcium dysregulation, mitochondrial and endoplasmic reticulum dysfunction, inflammation, and astrogliosis. In addition, sigma-1 ligands may act as disease-modifying agents in the treatment for central nervous system (CNS) diseases by promoting the activity of neurotrophic factors and neural plasticity. Here, we summarize their neuroprotective and neurorestorative effects in different animal models of acute brain injury and chronic neurodegenerative diseases, and highlight their potential role in mitigating disease. Notably, current data suggest that sigma-1 receptor dysfunction worsens disease progression, whereas enhancement amplifies pre-existing functional mechanisms of neuroprotection and/or restoration to slow disease progression. Collectively, the data support a model of the sigma-1 receptor as an amplifier of intracellular signaling, and suggest future clinical applications of sigma-1 ligands as part of multi-therapy approaches to treat neurodegenerative diseases.

  10. Neuroprotective Effects of Inhibiting Fyn S-Nitrosylation on Cerebral Ischemia/Reperfusion-Induced Damage to CA1 Hippocampal Neurons.

    PubMed

    Hao, Lingyun; Wei, Xuewen; Guo, Peng; Zhang, Guangyi; Qi, Suhua

    2016-07-12

    Nitric oxide (NO) can regulate signaling pathways via S-nitrosylation. Fyn can be post-translationally modified in many biological processes. In the present study, using a rat four-vessel-occlusion ischemic model, we aimed to assess whether Fyn could be S-nitrosylated and to evaluate the effects of Fyn S-nitrosylation on brain damage. In vitro, Fyn could be S-nitrosylated by S-nitrosoglutathione (GSNO, an exogenous NO donor), and in vivo, endogenous NO synthesized by NO synthases (NOS) could enhance Fyn S-nitrosylation. Application of GSNO, 7-nitroindazole (7-NI, an inhibitor of neuronal NOS) and hydrogen maleate (MK-801, the N-methyl-d-aspartate receptor (NMDAR) antagonist) could decrease the S-nitrosylation and phosphorylation of Fyn induced by cerebral ischemia/reperfusion (I/R). Cresyl violet staining validated that these compounds exerted neuroprotective effects against the cerebral I/R-induced damage to hippocampal CA1 neurons. Taken together, in this study, we demonstrated that Fyn can be S-nitrosylated both in vitro and in vivo and that inhibiting S-nitrosylation can exert neuroprotective effects against cerebral I/R injury, potentially via NMDAR-mediated mechanisms. These findings may lead to a new field of inquiry to investigate the underlying pathogenesis of stroke and the development of novel treatment strategies.

  11. Neuroprotective efficacy of a proneurogenic compound after traumatic brain injury.

    PubMed

    Blaya, Meghan O; Bramlett, Helen M; Naidoo, Jacinth; Pieper, Andrew A; Dietrich, W Dalton

    2014-03-01

    Traumatic brain injury (TBI) is characterized by histopathological damage and long-term sensorimotor and cognitive dysfunction. Recent studies have reported the discovery of the P7C3 class of aminopropyl carbazole agents with potent neuroprotective properties for both newborn neural precursor cells in the adult hippocampus and mature neurons in other regions of the central nervous system. This study tested, for the first time, whether the highly active P7C3-A20 compound would be neuroprotective, promote hippocampal neurogenesis, and improve functional outcomes after experimental TBI. Sprague-Dawley rats subjected to moderate fluid percussion brain injury were evaluated for quantitative immunohistochemical and behavioral changes after trauma. P7C3-A20 (10 mg/kg) or vehicle was initiated intraperitoneally 30 min postsurgery and twice per day every day thereafter for 7 days. Administration of P7C3-A20 significantly reduced overall contusion volume, preserved vulnerable anti-neuronal nuclei (NeuN)-positive pericontusional cortical neurons, and improved sensorimotor function 1 week after trauma. P7C3-A20 treatment also significantly increased both bromodeoxyuridine (BrdU)- and doublecortin (DCX)-positive cells within the subgranular zone of the ipsilateral dentate gyrus 1 week after TBI. Five weeks after TBI, animals treated with P7C3-A20 showed significantly increased BrdU/NeuN double-labeled neurons and improved cognitive function in the Morris water maze, compared to TBI-control animals. These results suggest that P7C3-A20 is neuroprotective and promotes endogenous reparative strategies after TBI. We propose that the chemical scaffold represented by P7C3-A20 provides a basis for optimizing and advancing new pharmacological agents for protecting patients against the early and chronic consequences of TBI.

  12. Progesterone neuroprotection in traumatic CNS injury and motoneuron degeneration.

    PubMed

    De Nicola, Alejandro F; Labombarda, Florencia; Gonzalez Deniselle, Maria Claudia; Gonzalez, Susana L; Garay, Laura; Meyer, Maria; Gargiulo, Gisella; Guennoun, Rachida; Schumacher, Michael

    2009-07-01

    Studies on the neuroprotective and promyelinating effects of progesterone in the nervous system are of great interest due to their potential clinical connotations. In peripheral neuropathies, progesterone and reduced derivatives promote remyelination, axonal regeneration and the recovery of function. In traumatic brain injury (TBI), progesterone has the ability to reduce edema and inflammatory cytokines, prevent neuronal loss and improve functional outcomes. Clinical trials have shown that short-and long-term progesterone treatment induces a significant improvement in the level of disability among patients with brain injury. In experimental spinal cord injury (SCI), molecular markers of functional motoneurons become impaired, including brain-derived neurotrophic factor (BDNF) mRNA, Na,K-ATPase mRNA, microtubule-associated protein 2 and choline acetyltransferase (ChAT). SCI also produces motoneuron chromatolysis. Progesterone treatment restores the expression of these molecules while chromatolysis subsided. SCI also causes oligodendrocyte loss and demyelination. In this case, a short progesterone treatment enhances proliferation and differentiation of oligodendrocyte progenitors into mature myelin-producing cells, whereas prolonged treatment increases a transcription factor (Olig1) needed to repair injury-induced demyelination. Progesterone neuroprotection has also been shown in motoneuron neurodegeneration. In Wobbler mice spinal cord, progesterone reverses the impaired expression of BDNF, ChAT and Na,K-ATPase, prevents vacuolar motoneuron degeneration and the development of mitochondrial abnormalities, while functionally increases muscle strength and the survival of Wobbler mice. Multiple mechanisms contribute to these progesterone effects, and the role played by classical nuclear receptors, extra nuclear receptors, membrane receptors, and the reduced metabolites of progesterone in neuroprotection and myelin formation remain an exciting field worth of exploration.

  13. Encapsulation of curcumin in polyelectrolyte nanocapsules and their neuroprotective activity

    NASA Astrophysics Data System (ADS)

    Szczepanowicz, Krzysztof; Jantas, Danuta; Piotrowski, Marek; Staroń, Jakub; Leśkiewicz, Monika; Regulska, Magdalena; Lasoń, Władysław; Warszyński, Piotr

    2016-09-01

    Poor water solubility and low bioavailability of lipophilic drugs can be potentially improved with the use of delivery systems. In this study, encapsulation of nanoemulsion droplets was utilized to prepare curcumin nanocarriers. Nanosize droplets containing the drug were encapsulated in polyelectrolyte shells formed by the layer-by-layer (LbL) adsorption of biocompatible polyelectrolytes: poly-L-lysine (PLL) and poly-L-glutamic acid (PGA). The size of synthesized nanocapsules was around 100 nm. Their biocompatibility and neuroprotective effects were evaluated on the SH-SY5Y human neuroblastoma cell line using cell viability/toxicity assays (MTT reduction, LDH release). Statistically significant toxic effect was clearly observed for PLL coated nanocapsules (reduction in cell viability about 20%-60%), while nanocapsules with PLL/PGA coating did not evoke any detrimental effects on SH-SY5Y cells. Curcumin encapsulated in PLL/PGA showed similar neuroprotective activity against hydrogen peroxide (H2O2)-induced cell damage, as did 5 μM curcumin pre-dissolved in DMSO (about 16% of protection). Determination of concentration of curcumin in cell lysate confirmed that curcumin in nanocapsules has cell protective effect in lower concentrations (at least 20 times) than when given alone. Intracellular mechanisms of encapsulated curcumin-mediated protection engaged the prevention of the H2O2-induced decrease in mitochondrial membrane potential (MMP) but did not attenuate Reactive Oxygen Species (ROS) formation. The obtained results indicate the utility of PLL/PGA shell nanocapsules as a promising, alternative way of curcumin delivery for neuroprotective purposes with improved efficiency and reduced toxicity.

  14. Encapsulation of curcumin in polyelectrolyte nanocapsules and their neuroprotective activity.

    PubMed

    Szczepanowicz, Krzysztof; Jantas, Danuta; Piotrowski, Marek; Staroń, Jakub; Leśkiewicz, Monika; Regulska, Magdalena; Lasoń, Władysław; Warszyński, Piotr

    2016-09-02

    Poor water solubility and low bioavailability of lipophilic drugs can be potentially improved with the use of delivery systems. In this study, encapsulation of nanoemulsion droplets was utilized to prepare curcumin nanocarriers. Nanosize droplets containing the drug were encapsulated in polyelectrolyte shells formed by the layer-by-layer (LbL) adsorption of biocompatible polyelectrolytes: poly-L-lysine (PLL) and poly-L-glutamic acid (PGA). The size of synthesized nanocapsules was around 100 nm. Their biocompatibility and neuroprotective effects were evaluated on the SH-SY5Y human neuroblastoma cell line using cell viability/toxicity assays (MTT reduction, LDH release). Statistically significant toxic effect was clearly observed for PLL coated nanocapsules (reduction in cell viability about 20%-60%), while nanocapsules with PLL/PGA coating did not evoke any detrimental effects on SH-SY5Y cells. Curcumin encapsulated in PLL/PGA showed similar neuroprotective activity against hydrogen peroxide (H2O2)-induced cell damage, as did 5 μM curcumin pre-dissolved in DMSO (about 16% of protection). Determination of concentration of curcumin in cell lysate confirmed that curcumin in nanocapsules has cell protective effect in lower concentrations (at least 20 times) than when given alone. Intracellular mechanisms of encapsulated curcumin-mediated protection engaged the prevention of the H2O2-induced decrease in mitochondrial membrane potential (MMP) but did not attenuate Reactive Oxygen Species (ROS) formation. The obtained results indicate the utility of PLL/PGA shell nanocapsules as a promising, alternative way of curcumin delivery for neuroprotective purposes with improved efficiency and reduced toxicity.

  15. Microglial Regulation of Immunological and Neuroprotective Functions of Astroglia

    PubMed Central

    Chen, Shih-Heng; Oyarzabal, Esteban A.; Sung, Yueh-Feng; Chu, Chun-Hsien; Wang, Qingshan; Chen, Shiou-Lan; Lu, Ru-Band; Hong, Jau-Shyong

    2014-01-01

    Microglia and astroglia play critical roles in the development, function and survival of neurons in the CNS. However, under inflammatory conditions the role of astrogliosis in the inflammatory process and its effects on neurons remains unclear. Here, we used several types of cell cultures treated with the bacterial inflammogen LPS to address these questions. We found that the presence of astroglia reduced inflammation-driven neurotoxicity, suggesting that astrogliosis is principally neuroprotective. Neutralization of supernatant glial cell line-derived neurotrophic factor (GDNF) released from astroglia significantly reduced this neuroprotective effect during inflammation. To determine the immunological role of astroglia, we optimized a highly-enriched astroglial culture protocol and demonstrated that LPS failed to induce the synthesis and release of TNF-α and iNOS/NO. Instead we found significant enhancement of TNF-α and iNOS expression in highly-enriched astroglial cultures required the presence of 0.5 to 1% microglia, respectively. Thus suggesting that microglial-astroglial interactions are required for LPS to induce the expression of pro-inflammatory factors and GDNF from astroglia. Specifically, we found that microglia-derived TNF-α plays a pivotal role as a paracrine signal to regulate the neuroprotective functions of astrogliosis. Taken together, these findings suggest that astroglia may not possess the ability to directly recognize the innate immune stimuli LPS, but rather depend on cross-talk with microglia to elicit release of neurotrophic factors as a counterbalance to support neuronal survival from the collateral damage generated by activated microglia during neuroinflammation. PMID:25130274

  16. Neuroprotective Efficacy of a Proneurogenic Compound after Traumatic Brain Injury

    PubMed Central

    Blaya, Meghan O.; Bramlett, Helen M.; Naidoo, Jacinth

    2014-01-01

    Abstract Traumatic brain injury (TBI) is characterized by histopathological damage and long-term sensorimotor and cognitive dysfunction. Recent studies have reported the discovery of the P7C3 class of aminopropyl carbazole agents with potent neuroprotective properties for both newborn neural precursor cells in the adult hippocampus and mature neurons in other regions of the central nervous system. This study tested, for the first time, whether the highly active P7C3-A20 compound would be neuroprotective, promote hippocampal neurogenesis, and improve functional outcomes after experimental TBI. Sprague-Dawley rats subjected to moderate fluid percussion brain injury were evaluated for quantitative immunohistochemical and behavioral changes after trauma. P7C3-A20 (10 mg/kg) or vehicle was initiated intraperitoneally 30 min postsurgery and twice per day every day thereafter for 7 days. Administration of P7C3-A20 significantly reduced overall contusion volume, preserved vulnerable anti-neuronal nuclei (NeuN)-positive pericontusional cortical neurons, and improved sensorimotor function 1 week after trauma. P7C3-A20 treatment also significantly increased both bromodeoxyuridine (BrdU)- and doublecortin (DCX)-positive cells within the subgranular zone of the ipsilateral dentate gyrus 1 week after TBI. Five weeks after TBI, animals treated with P7C3-A20 showed significantly increased BrdU/NeuN double-labeled neurons and improved cognitive function in the Morris water maze, compared to TBI-control animals. These results suggest that P7C3-A20 is neuroprotective and promotes endogenous reparative strategies after TBI. We propose that the chemical scaffold represented by P7C3-A20 provides a basis for optimizing and advancing new pharmacological agents for protecting patients against the early and chronic consequences of TBI. PMID:24070637

  17. The Role of Ghrelin in Neuroprotection after Ischemic Brain Injury

    PubMed Central

    Spencer, Sarah J.; Miller, Alyson A.; Andrews, Zane B.

    2013-01-01

    Ghrelin, a gastrointestinal peptide with a major role in regulating feeding and metabolism, has recently been investigated for its neuroprotective effects. In this review we discuss pre-clinical evidence suggesting ghrelin may be a useful therapeutic in protecting the brain against injury after ischemic stroke. Specifically, we will discuss evidence showing ghrelin administration can improve neuronal cell survival in animal models of focal cerebral ischemia, as well as rescue memory deficits. We will also discuss its proposed mechanisms of action, including anti-apoptotic and anti-inflammatory effects, and suggest ghrelin treatment may be a useful intervention after stroke in the clinic. PMID:24961317

  18. Clinical Neuroprotective Drugs for Treatment and Prevention of Stroke

    PubMed Central

    Kikuchi, Kiyoshi; Uchikado, Hisaaki; Morioka, Motohiro; Murai, Yoshinaka; Tanaka, Eiichiro

    2012-01-01

    Stroke is an enormous public health problem with an imperative need for more effective therapies. In therapies for ischemic stroke, tissue plasminogen activators, antiplatelet agents and anticoagulants are used mainly for their antithrombotic effects. However, free radical scavengers, minocycline and growth factors have shown neuroprotective effects in the treatment of stroke, while antihypertensive drugs, lipid-lowering drugs and hypoglycemic drugs have shown beneficial effects for the prevention of stroke. In the present review, we evaluate the treatment and prevention of stroke in light of clinical studies and discuss new anti-stroke effects other than the main effects of drugs, focusing on optimal pharmacotherapy. PMID:22837724

  19. A new alpha-globin variant with increased oxygen affinity in a Swiss family: Hb Frauenfeld [alpha 138(H21)Ser-->Phe, TCC>TTC (alpha 2)].

    PubMed

    Hochuli, Michel; Zurbriggen, Karin; Schmid, Marlis; Speer, Oliver; Rochat, Philippe; Frauchiger, Beat; Kleinert, Peter; Schmugge, Markus; Troxler, Heinz

    2009-01-01

    A new alpha-globin mutation [alpha 138(H21)Ser-->Phe] was found in a 55-year-old male proband with an erythrocytosis known since his youth. Cation exchange high performance liquid chromatography (HPLC) revealed an additional peak eluting slightly before Hb A indicating the presence of a variant. The peak area of the variant was approximately one-third that of Hb A suggesting an alpha-globin variant. Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry analysis confirmed the mutation at the protein level. The variant is also detectable with isoelectric focusing and reversed phase HPLC. DNA analysis revealed a heterozygous sequence mutation at codon 138 of the alpha2 gene. A C>T transition at the second nucleotide of the codon indicated a Ser-->Phe exchange. The variant showed increased oxygen affinity and was named Hb Frauenfeld.

  20. The beta -globin recombinational hotspot reduces the effects of strong selection around HbC, a recently arisen mutation providing resistance to malaria.

    PubMed

    Wood, Elizabeth T; Stover, Daryn A; Slatkin, Montgomery; Nachman, Michael W; Hammer, Michael F

    2005-10-01

    Recombination is expected to reduce the effect of selection on the extent of linkage disequilibrium (LD), but the impact that recombinational hotspots have on sites linked to selected mutations has not been investigated. We empirically determine chromosomal linkage phase for 5.2 kb spanning the beta -globin gene and hotspot. We estimate that the HbC mutation, which is positively selected because of malaria, originated <5,000 years ago and that selection coefficients are 0.04-0.09. Despite strong selection and the recent origin of the HbC allele, recombination (crossing-over or gene conversion) is observed within 1 kb 5' of the selected site on more than one-third of the HbC chromosomes sampled. The rapid decay in LD upstream of the HbC allele demonstrates the large effect the ss-globin hotspot has in mitigating the effects of positive selection on linked variation.

  1. A novel 26 bp deletion [HBB: c.20_45del26bp] in exon 1 of the β-globin gene causing β-thalassemia major.

    PubMed

    Edison, Eunice S; Venkatesan, Rajkumar S; Govindanattar, Sankari Devi; George, Biju; Shaji, Ramachandran V

    2012-01-01

    Molecular characterization of β-thalassemia (β-thal) is essential in prevention and in understanding the biology of the disease. Deletion mutations are relatively uncommon in β-thal. In this report, we describe a novel 26 bp deletion from codon 6 to codon 14 in the β-globin in a consanguineous family from Tamil Nadu, India. This novel mutation causes a shift in the normal reading frame of the β-globin coding sequence, and consequently, a premature chain termination of translation due to the creation of a stop codon at the position of codon 21. The identification of this novel deletional mutation adds to the repertoire of β-thal mutations in India.

  2. Novel Neuroprotective Effects of Melanin-Concentrating Hormone in Parkinson's Disease.

    PubMed

    Park, Ji-Yeun; Kim, Seung-Nam; Yoo, Junsang; Jang, Jaehwan; Lee, Ahreum; Oh, Ju-Young; Kim, Hongwon; Oh, Seung Tack; Park, Seong-Uk; Kim, Jongpil; Park, Hi-Joon; Jeon, Songhee

    2016-11-14

    Acupuncture has shown the therapeutic effect on various neurodegenerative disorders including Parkinson's disease (PD). While investigating the neuroprotective mechanism of acupuncture, we firstly found the novel function of melanin-concentrating hormone (MCH) as a potent neuroprotective candidate. Here, we explored whether hypothalamic MCH mediates the neuroprotective action of acupuncture. In addition, we aimed at evaluating the neuroprotective effects of MCH and elucidating underlying mechanism in vitro and in vivo PD models. First, we tested whether hypothalamic MCH mediates the neuroprotective effects of acupuncture by challenging MCH-R1 antagonist (i.p.) in mice PD model. We also investigated whether MCH has a beneficial role in dopaminergic neuronal protection in vitro primary midbrain and human neuronal cultures and in vivo MPTP-induced, Pitx3(-/-), and A53T mutant mice PD models. Transcriptomics followed by quantitative PCR and western blot analyses were performed to reveal the neuroprotective mechanism of MCH. We first found that hypothalamic MCH biosynthesis was directly activated by acupuncture treatment and that administration of an MCH-R1 antagonist reverses the neuroprotective effects of acupuncture. A novel finding is that MCH showed a beneficial role in dopaminergic neuron protection via downstream pathways related to neuronal survival. This is the first study to suggest the novel neuroprotective action of MCH as well as the involvement of hypothalamic MCH in the acupuncture effects in PD, which holds great promise for the application of MCH in the therapy of neurodegenerative diseases.

  3. Role of histidine/histamine in carnosine-induced neuroprotection during ischemic brain damage.

    PubMed

    Bae, Ok-Nam; Majid, Arshad

    2013-08-21

    Urgent need exists for new therapeutic options in ischemic stroke. We recently demonstrated that carnosine, an endogenous dipeptide consisting of alanine and histidine, is robustly neuroprotective in ischemic brain injury and has a wide clinically relevant therapeutic time window. The precise mechanistic pathways that mediate this neuroprotective effect are not known. Following in vivo administration, carnosine is hydrolyzed into histidine, a precursor of histamine. It has been hypothesized that carnosine may exert its neuroprotective activities through the histidine/histamine pathway. Herein, we investigated whether the neuroprotective effect of carnosine is mediated by the histidine/histamine pathway using in vitro primary astrocytes and cortical neurons, and an in vivo rat model of ischemic stroke. In primary astrocytes, carnosine significantly reduced ischemic cell death after oxygen-glucose deprivation, and this effect was abolished by histamine receptor type I antagonist. However, histidine or histamine did not exhibit a protective effect on ischemic astrocytic cell death. In primary neuronal cultures, carnosine was found to be neuroprotective but histamine receptor antagonists had no effect on the extent of neuroprotection. The in vivo effect of histidine and carnosine was compared using a rat model of ischemic stroke; only carnosine exhibited neuroprotection. Taken together, our data demonstrate that although the protective effects of carnosine may be partially mediated by activity at the histamine type 1 receptor on astrocytes, the histidine/histamine pathway does not appear to play a critical role in carnosine induced neuroprotection.

  4. Genetic modifiers of sickle cell anemia in the BABY HUG cohort: influence on laboratory and clinical phenotypes.

    PubMed

    Sheehan, Vivien A; Luo, Zhaoyu; Flanagan, Jonathan M; Howard, Thad A; Thompson, Bruce W; Wang, Winfred C; Kutlar, Abdullah; Ware, Russell E

    2013-07-01

    The recently completed BABY HUG trial investigated the safety and efficacy of hydroxyurea in infants with sickle cell anemia (SCA). To investigate the effects of known genetic modifiers, genomic DNA on 190 randomized subjects were analyzed for alpha thalassemia, beta-globin haplotype, polymorphisms affecting endogenous fetal hemoglobin (HbF) levels (XmnI, BCL11A, and HBS1L-MYB), UGT1A1 promoter polymorphisms, and the common G6PD A(-) mutation. At study entry, infants with alpha thalassemia trait had significantly lower mean corpuscular volume, total bilirubin, and absolute reticulocyte count. Beta-globin haplotypes associated with milder disease had significantly higher hemoglobin and %HbF. BCL11A and XmnI polymorphisms had significant effects on baseline HbF, while UGT1A1 promoter polymorphisms significantly influenced baseline serum bilirubin. At study exit, subjects randomized to placebo still exhibited laboratory effects of alpha thalassemia and other modifiers, while those assigned hydroxyurea had treatment effects that exceeded most genetic influences. The pain phenotype was influenced by HbF modifiers in both treatment groups. These data document that genetic polymorphisms do modify laboratory and clinical phenotypes even in very young patients with SCA. The hydroxyurea effects are more potent, however, indicating that treatment criteria should not be limited to certain genetic subsets, and supporting the use of hydroxyurea for all young patients with SCA.

  5. Pegylated granulocyte colony-stimulating factor conveys long-term neuroprotection and improves functional outcome in a model of Parkinson's disease.

    PubMed

    Frank, Tobias; Klinker, Florian; Falkenburger, Björn H; Laage, Rico; Lühder, Fred; Göricke, Bettina; Schneider, Armin; Neurath, Hartmud; Desel, Herbert; Liebetanz, David; Bähr, Mathias; Weishaupt, Jochen H

    2012-06-01

    Recent proof-of-principle data showed that the haematopoietic growth factor granulocyte colony-stimulating factor (filgrastim) mediates neuroprotection in rodent models of Parkinson's disease. In preparation for future clinical trials, we performed a preclinical characterization of a pegylated derivative of granulocyte colony-stimulating factor (pegfilgrastim) in the mouse 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease. We determined serum and cerebrospinal fluid drug levels after subcutaneous injection. A single injection of pegfilgrastim was shown to achieve stable levels of granulocyte colony-stimulating factor in both serum and cerebrospinal fluid with substantially higher levels compared to repetitive filgrastim injections. Leucocyte blood counts were only transiently increased after repeated injections. We demonstrated substantial dose-dependent long-term neuroprotection by pegfilgrastim in both young and aged mice, using bodyweight-adjusted doses that are applicable in clinical settings. Importantly, we found evidence for the functionally relevant preservation of nigrostriatal projections by pegfilgrastim in our model of Parkinson's disease, which resulted in improved motor performance. The more stable levels of pegylated neuroprotective proteins in serum and cerebrospinal fluid may represent a general advantage in the treatment of chronic neurodegenerative diseases and the resulting longer injection intervals are likely to improve patient compliance. In summary, we found that pegylation of a neuroprotective growth factor improved its pharmacokinetic profile over its non-modified counterpart in an in vivo model of Parkinson's disease. As the clinical safety profile of pegfilgrastim is already established, these data suggest that evaluation of pegfilgrastim in further Parkinson's disease models and ultimately clinical feasibility studies are warranted.

  6. Domains of α- and β-globin genes in the context of the structural-functional organization of the eukaryotic genome.

    PubMed

    Razin, S V; Ulianov, S V; Ioudinkova, E S; Gushchanskaya, E S; Gavrilov, A A; Iarovaia, O V

    2012-12-01

    The eukaryotic cell genome has a multilevel regulatory system of gene expression that includes stages of preliminary activation of genes or of extended genomic regions (switching them to potentially active states) and stages of final activation of promoters and maintaining their active status in cells of a certain lineage. Current views on the regulatory systems of transcription in eukaryotes have been formed based on results of systematic studies on a limited number of model systems, in particular, on the α- and β-globin gene domains of vertebrates. Unexpectedly, these genomic domains harboring genes responsible for the synthesis of different subunits of the same protein were found to have a fundamentally different organization inside chromatin. In this review, we analyze specific features of the organization of the α- and β-globin gene domains in vertebrates, as well as principles of activities of the regulatory systems in these domains. In the final part of the review, we attempt to answer the question how the evolution of α- and β-globin genes has led to segregation of these genes into two distinct types of chromatin domains situated on different chromosomes.

  7. Development of a High-Resolution Melting Approach for Scanning Beta Globin Gene Point Mutations in the Greek and Other Mediterranean Populations.

    PubMed

    Chassanidis, Christos; Boutou, Effrossyni; Voskaridou, Ersi; Balassopoulou, Angeliki

    2016-01-01

    Beta-thalassaemia is one of the most common autosomal recessive disorders worldwide. The disease's high incidence, which is observed in the broader Mediterranean area has led to the establishment of molecular diagnostics' assays to prevent affected births. Therefore, the development of a reliable, cost-effective and rapid scanning method for β globin gene point mutations, easily adapted to a routine laboratory, is absolutely essential. Here, we describe, for the first time, the development of a High-Resolution Melting Analysis (HRMA) approach, suitable for scanning the particularly heterogeneous beta globin gene mutations present in the Greek population, and thus adaptable to the Mediterranean and other areas where these mutations have been identified. Within this context, β globin gene regions containing mutations frequently identified in the Greek population were divided in ten overlapping amplicons. Our reactions' setup allowed for the simultaneous amplification of multiple primer sets and partial multiplexing, thereby resulting in significant reduction of the experimental time. DNA samples from β-thalassaemia patients/carriers with defined genotypes were tested. Distinct genotypes displayed distinguishable melting curves, enabling accurate detection of mutations. The described HRMA can be adapted to a high-throughput level. It represents a rapid, simple, cost-effective, reliable, highly feasible and sensitive method for β-thalassaemia gene scanning.

  8. Beta-globin gene cluster haplotypes and HbF levels are not the only modulators of sickle cell disease in Lebanon.

    PubMed

    Inati, A; Taher, A; Bou Alawi, W; Koussa, S; Kaspar, H; Shbaklo, H; Zalloua, P A

    2003-02-01

    Sickle cell disease (SCD) is an inherited autosomal recessive disorder of the beta-globin chain. Despite the fact that all subjects with SCD have the same single base pair mutation, the severity of the clinical and hematological manifestations is extremely variable. This study examined for the first time in Lebanon the correlation between the clinical manifestation of SCD and the beta-globin gene haplotypes. The haplotypes of 50 patients diagnosed with SCD were determined using polymerase chain reaction amplification of fragments containing nine polymorphic restriction sites around and within the epsilon-Ggamma-Agamma-psibeta-delta-beta-globin gene complex. Most reported haplotypes were found in our population with the Benin haplotype as the most prevalent one. When the patients were divided according to their HbF levels into three groups (Group A: HbF < 5%, Group B: HbF between 5 and 15%, and Group C: HbF > 15%), surprisingly, the highest levels of HbF were associated with the most severe clinical cases. Our findings suggest that fetal hemoglobin levels are important but not the only parameters that affect the severity of the disease. In addition, the high levels of HbF in patients with CAR haplotypes did not seem to ameliorate the severity of symptoms, suggesting that genetic factors other than haplotypes are the major determinants of increased HbF levels in Lebanon.

  9. Expression from herpesvirus promoters does not relieve the intron requirement for cytoplasmic accumulation of human beta-globin mRNA.

    PubMed Central

    Yu, X M; Gelembiuk, G W; Wang, C Y; Ryu, W S; Mertz, J E

    1991-01-01

    Expression plasmids were constructed in which the human beta-globin gene or a variant of it precisely lacking its two introns was transcribed from its own promoter, the herpes simplex virus type 1 thymidine kinase (HSV-tk) promoter, or the immediate early promoter of human cytomegalovirus (CMV-IE). Forty two hours after transfection of these plasmids into monkey kidney cells, nuclear and cytoplasmic RNA were isolated. Quantitative S1 nuclease mapping and primer extension analysis were used to determine the relative abundances, cellular locations, and leader sizes of the accumulated beta-globin RNAs. Whereas transcripts of all of the intron-containing genes accumulated in the cytoplasm to high levels, transcripts of their cDNA variants were neither stably maintained in the nucleus nor accumulated in the cytoplasm, irrespective of the promoter from which transcription was driven. We conclude that the intron requirement for cytoplasmic accumulation of beta-globin RNA can not be circumvented by synthesis from either the promoter of the intronless HSV-tk gene or the CMV-IE promoter. Images PMID:1662815

  10. Erythroid differentiation of mouse erythroleukemia cells results in reorganization of protein-DNA complexes in the mouse beta maj globin promoter but not its distal enhancer.

    PubMed Central

    Reddy, P M; Shen, C K

    1993-01-01

    Dimethyl sulfoxide (DMSO) induction of mouse erythroleukemia (MEL) cells represents a well-defined in vitro system of terminal erythroid differentiation. We have studied the molecular mechanisms of transcriptional activation of the mouse beta maj globin gene during MEL cell differentiation by analyzing nuclear factor-DNA interactions in vivo at the gene's upstream promoter and a distal enhancer, 5'HS-2. Genomic footprinting data indicate that three motifs, CAC, NF-E2/AP1, and GATA-1, of the 5'HS-2 enhancer are bound with nuclear factors in MEL cells both prior to and after DMSO induction. No obvious conformational change of these nuclear factor-DNA complexes could be detected upon terminal differentiation of MEL cells. On the other hand, DMSO induction of MEL cells leads to the formation of specific nuclear factor-DNA complexes at several transcriptional regulatory elements of the mouse beta maj globin upstream promoter. Our genomic footprinting data have interesting implications with respect to the molecular mechanisms of transcriptional regulation and chromatin change of the mouse beta maj globin gene during erythroid differentiation. Images PMID:8423777

  11. In vitro neuroprotective activities of compounds from Angelica shikokiana Makino.

    PubMed

    Mira, Amira; Yamashita, Shuntaro; Katakura, Yoshinori; Shimizu, Kuniyoshi

    2015-03-16

    Angelica shikokiana is widely marketed in Japan as a dietary food supplement. With a focus on neurodegenerative conditions such as Alzheimer's disease, the aerial part was extracted and through bio-guided fractionation, fifteen compounds [α-glutinol, β-amyrin, kaempferol, luteolin, quercetin, kaempferol-3-O-glucoside, kaempferol-3-O-rutinoside, methyl chlorogenate, chlorogenic acid, hyuganin E, 5-(hydroxymethyl)-2-furaldehyde, β-sitosterol-3-O-glucoside, adenosine (isolated for the first time from A. shikokiana), isoepoxypteryxin and isopteryxin] were isolated. Isolated compounds were evaluated for in vitro neuroprotection using acetylcholine esterase inhibitory, protection against hydrogen peroxide and amyloid β peptide (Aβ25-35)-induced neurotoxicity in neuro-2A cells, scavenging of hydroxyl radicals and intracellular reactive oxygen species and thioflavin T assays. Quercetin showed the strongest AChE inhibition (IC50 value = 35.5 µM) through binding to His-440 and Tyr-70 residues at the catalytic and anionic sites of acetylcholine esterase, respectively. Chlorogenic acid, its methyl ester, quercetin and luteolin could significantly protect neuro-2A cells against H2O2-induced neurotoxicity and scavenge hydroxyl radical and intracellular reactive oxygen species. Kaempferol-3-O-rutinoiside, hyuganin E and isoepoxypteryxin significantly decreased Aβ25-35-induced neurotoxicity and Th-T fluorescence. To the best of our knowledge, this is the first report about neuroprotection of hyuganin E and isoepoxypteryxin against Aβ25-35-induced neurotoxicity.

  12. TASK channels contribute to neuroprotective action of inhalational anesthetics

    PubMed Central

    Yao, Chengye; Li, Yu; Shu, Shaofang; Yao, Shanglong; Lynch, Carl; Bayliss, Douglas A.; Chen, Xiangdong

    2017-01-01

    Postconditioning with inhalational anesthetics can reduce ischemia-reperfusion brain injury, although the cellular mechanisms for this effect have not been determined. The current study was designed to test if TASK channels contribute to their neuroprotective actions. Whole cell recordings were used to examine effects of volatile anesthetic on TASK currents in cortical neurons and to verify loss of anesthetic-activated TASK currents from TASK−/− mice. A transient middle cerebral artery occlusion (tMCAO) model was used to establish brain ischemia-reperfusion injury. Quantitative RT-PCR analysis revealed that TASK mRNA was reduced by >90% in cortex and hippocampus of TASK−/− mice. The TASK−/− mice showed a much larger region of infarction than C57BL/6 J mice after tMCAO challenge. Isoflurane or sevoflurane administered after the ischemic insult reduced brain infarct percentage and neurological deficit scores in C57BL/6 J mice, these effect were reduced in TASK−/− mice. Whole cell recordings revealed that the isoflurane-activated background potassium current observed in cortical pyramidal neurons from wild type mice was conspicuously reduced in TASK−/− mice. Our studies demonstrate that TASK channels can limit ischemia-reperfusion damage in the cortex, and postconditioning with volatile anesthetics provides neuroprotective actions that depend, in part, on activation of TASK currents in cortical neurons. PMID:28276488

  13. Neuronal networks provide rapid neuroprotection against spreading toxicity

    PubMed Central

    Samson, Andrew J.; Robertson, Graham; Zagnoni, Michele; Connolly, Christopher N.

    2016-01-01

    Acute secondary neuronal cell death, as seen in neurodegenerative disease, cerebral ischemia (stroke) and traumatic brain injury (TBI), drives spreading neurotoxicity into surrounding, undamaged, brain areas. This spreading toxicity occurs via two mechanisms, synaptic toxicity through hyperactivity, and excitotoxicity following the accumulation of extracellular glutamate. To date, there are no fast-acting therapeutic tools capable of terminating secondary spreading toxicity within a time frame relevant to the emergency treatment of stroke or TBI patients. Here, using hippocampal neurons (DIV 15–20) cultured in microfluidic devices in order to deliver a localized excitotoxic insult, we replicate secondary spreading toxicity and demonstrate that this process is driven by GluN2B receptors. In addition to the modeling of spreading toxicity, this approach has uncovered a previously unknown, fast acting, GluN2A-dependent neuroprotective signaling mechanism. This mechanism utilizes the innate capacity of surrounding neuronal networks to provide protection against both forms of spreading neuronal toxicity, synaptic hyperactivity and direct glutamate excitotoxicity. Importantly, network neuroprotection against spreading toxicity can be effectively stimulated after an excitotoxic insult has been delivered, and may identify a new therapeutic window to limit brain damage. PMID:27650924

  14. Chlorpromazine confers neuroprotection against brain ischemia by activating BKCa channel.

    PubMed

    Li, Hua-Juan; Zhang, Yu-Jiao; Zhou, Li; Han, Feng; Wang, Ming-Yan; Xue, Mao-Qiang; Qi, Zhi

    2014-07-15

    Chlorpromazine (CPZ) is a well-known antipsychotic drug, still widely being used to treat symptoms of schizophrenia, psychotic depression and organic psychoses. We have previously reported that CPZ activates the BKCa (KCa1.1) channel at whole cell level. In the present study, we demonstrated that CPZ increased the single channel open probability of the BKCa channels without changing its single channel amplitude. As BKCa channel is one of the molecular targets of brain ischemia, we explored a possible new use of this old drug on ischemic brain injury. In middle cerebral artery occlusion (MCAO) focal cerebral ischemia, a single intraperitoneal injection of CPZ at several dosages (5mg/kg, 10mg/kg and 20mg/kg) could exert a significant neuroprotective effect on the brain damage in a dose- and time-dependent manner. Furthermore, blockade of BKCa channels abolished the neuroprotective effect of CPZ on MCAO, suggesting that the effect of CPZ is mediated by activation of the BKCa channel. These results demonstrate that CPZ could reduce focal cerebral ischemic damage through activating BKCa channels and merits exploration as a potential therapeutic agent for treating ischemic stroke.

  15. [Neuroprotection of herbs promoting EPO on cerebral ischemia].

    PubMed

    Li, Xu; Bai, Zhen-ya; Zhang, Fei-yan; Xu, Xiao-yu

    2015-06-01

    Amounts of researches show that EPO is characterized with neurotrophic and neuroprotective manner, especially in brain stroke, which attracts a large numbers of researchers to study it. With the accumulating researches on its neuroprotection, many related mechanisms were revealed, such as antioxidant, anti-apoptosis, angiogenesis, anti-inflammatory, which suggests a multiple targets role of EPO on brain stroke. However, because of the high risk of thromboembolism in clinical administration of rhEPO and its analogs, the herbs are potential to be a replacer for its less side effects. Many researchers suggested that a larger of herbs were founded having the action of increasing the endogenous EPO in the model of anemia and cerebral ischemia. At the same time, there herbs were also proved that they had the action of against cerebral ischemia while some without considering the role of EPO in the reports. Considering of the action of promoting EPO of these herbs and the neural protection of EPO, this essay mainly summarizes the studies of herbs promoting EPO in the cerebral ischemia and discusses the mechanism of regulating the EPO of these herbs, for the aim of finding the potential drugs against cerebral ischemia.

  16. Levetiracetam as an antiepileptic, neuroprotective, and hyperalgesic drug.

    PubMed

    Cortes-Altamirano, J L; Olmos-Hernández, A; Bonilla-Jaime, H; Bandala, C; González-Maciel, A; Alfaro-Rodríguez, A

    2016-01-01

    The main purpose of this review was to expound upon the mechanism of action of Levetiracetam (LEV) as an antiepileptic, neuroprotective, and hyperalgesic drug. LEV is a second-generation anti-epileptic drug (AED) that is approved for clinical use as monotherapy and may also be used for adjunctive treatment of patients with seizures. Several researchers have recommended LEV as a treatment option in different diseases causing neuronal damage, and recently, LEV has been used as an antihyperalgesic drug. LEV exhibits favorable characteristics, including a low potential for interaction, a short elimination half-life, and has neither active metabolites nor major negative effects on cognition. This has generated many new research avenues for the utilization of this drug. However, the precise mechanism of action of LEV has not been fully elucidated. In this review, a search was conducted on PubMed, ProQuest, EBSCO, and the Science Citation index for studies evaluating the effects of LEV as an antiepileptic, neuroprotective, and hyperalgesic drug. A total of 32 studies related to the use of LEV suggested different mechanisms of action, such as binding to the synaptic vesicle glycoprotein 2A (SV2A) protein, inhibition of Ca2+ N-type channels, and its presence as a neuromodulator. These studies concluded that the pharmacodynamics of LEV should be viewed as a single pathway, and should not be based on specific molecular targets that depend on the physiological or pathological conditions prevalent at that time.

  17. The neurotrophic and neuroprotective effects of psychotropic agents

    PubMed Central

    Hunsberger, Joshua; Austin, Daniel R.; Henter, Ioline D.; Chen, Guang

    2009-01-01

    Accumulating evidence suggests that psychotropic agents such as mood stabilizers, antidepressants, and antipsychotics realize their neurotrophic/neuroprotective effects by activating the mitogen activated protein kinaselextracellular signal-related kinase, PI3-kinase, and winglesslglycogen synthase kinase (GSK) 3 signaling pathways. These agents also upregulate the expression of trophic/protective molecules such as brain-derived neurotrophic factor, nerve growth factor, B-cell lymphoma 2, serine-threonine kinase, and Bcl-2 associated athanogene 1, and inactivate proapoptotic molecules such as GSK-3, They also promote neurogenesis and are protective in models of neurodegenerative diseases and ischemia. Most if not all, of this evidence was collected from animal studies that used clinically relevant treatment regimens. Furthermore, human imaging studies have found that these agents increase the volume and density of brain tissue, as well as levels of N-acetyl aspartate and glutamate in selected brain regions. Taken together, these data suggest that the neurotrophic/neuroprotective effects of these agents have broad therapeutic potential in the treatment, not only of mood disorders and schizophrenia, but also neurodegenerative diseases and ischemia. PMID:19877500

  18. Chemical Modification of the Multi-Target Neuroprotective Compound Fisetin

    PubMed Central

    Chiruta, Chandramouli; Schubert, David; Dargusch, Richard; Maher, Pamela

    2012-01-01

    Many factors are implicated in age-related CNS disorders making it unlikely that modulating only a single factor will provide effective treatment. Perhaps a better approach is to identify small molecules that have multiple biological activities relevant to the maintenance of brain function. Recently, we identified an orally active, neuroprotective and cognition-enhancing molecule, the flavonoid fisetin, that is effective in several animal models of CNS disorders. Fisetin has direct antioxidant activity and can also increase the intracellular levels of glutathione (GSH), the major endogenous antioxidant. In addition, fisetin has both neurotrophic and anti-inflammatory activity. However, its relatively high EC50 in cell based assays, low lipophilicity, high tPSA and poor bioavailability suggest that there is room for medicinal chemical improvement. Here we describe a multi-tiered approach to screening that has allowed us to identify fisetin derivatives with significantly enhanced activity in an in vitro neuroprotection model while at the same time maintaining other key activities. PMID:22192055

  19. Neuroprotection for the new millennium. Matchmaking pharmacology and technology

    NASA Technical Reports Server (NTRS)

    Andrews, R. J.

    2001-01-01

    A major theme of the 1990s in the pathophysiology of nervous system injury has been the multifactorial etiology of irreversible injury. Multiple causes imply multiple opportunities for therapeutic intervention--hence the abandonment of the "magic bullet" single pharmacologic agent for neuroprotection in favor of pharmacologic "cocktails". A second theme of the 1990s has been the progress in technology for neuroprotection, minimally- or non-invasive monitoring as well as treatment. Cardiac stenting has eliminated the need, in many cases, for open heart surgery; deep brain stimulation for Parkinson's disease has offered significant improvement in quality of life for many who had exhausted cocktail drug treatment for their disease. Deep brain stimulation of the subthalamic nucleus offers a novel treatment for Parkinson's disease where a technological advance may actually be an intervention with effects that are normally expected from pharmacologic agents. Rather than merely "jamming" the nervous system circuits involved in Parkinson's disease, deep brain stimulation of the subthalamic nucleus appears to improve the neurotransmitter imbalance that lies at the heart of Parkinson's disease. It may also slow the progression of the disease. Given the example of deep brain stimulation of the subthalamic nucleus for Parkinson's disease, in future one may expect other technological or "hardware" interventions to influence the programming or "software" of the nervous system's physiologic response in certain disease states.

  20. Neuroprotective effects of adenosine deaminase in the striatum

    PubMed Central

    Tamura, Risa; Satoh, Yasushi; Nonoyama, Shigeaki; Nishida, Yasuhiro; Nibuya, Masashi

    2016-01-01

    Adenosine deaminase (ADA) is a ubiquitous enzyme that catabolizes adenosine and deoxyadenosine. During cerebral ischemia, extracellular adenosine levels increase acutely and adenosine deaminase catabolizes the increased levels of adenosine. Since adenosine is a known neuroprotective agent, adenosine deaminase was thought to have a negative effect during ischemia. In this study, however, we demonstrate that adenosine deaminase has substantial neuroprotective effects in the striatum, which is especially vulnerable during cerebral ischemia. We used temporary oxygen/glucose deprivation (OGD) to simulate ischemia in rat corticostriatal brain slices. We used field potentials as the primary measure of neuronal damage. For stable and efficient electrophysiological assessment, we used transgenic rats expressing channelrhodopsin-2, which depolarizes neurons in response to blue light. Time courses of electrically evoked striatal field potential (eFP) and optogenetically evoked striatal field potential (optFP) were recorded during and after oxygen/glucose deprivation. The levels of both eFP and optFP decreased after 10 min of oxygen/glucose deprivation. Bath-application of 10 µg/ml adenosine deaminase during oxygen/glucose deprivation significantly attenuated the oxygen/glucose deprivation-induced reduction in levels of eFP and optFP. The number of injured cells decreased significantly, and western blot analysis indicated a significant decrease of autophagic signaling in the adenosine deaminase-treated oxygen/glucose deprivation slices. These results indicate that adenosine deaminase has protective effects in the striatum. PMID:26746865

  1. Plant-derived neuroprotective agents in Parkinson’s disease

    PubMed Central

    Fu, Wenyu; Zhuang, Wenxin; Zhou, Shuanhu; Wang, Xin

    2015-01-01

    Parkinson’s disease (PD) is one of the most common degenerative disorders of the central nervous system among the elderly. The disease is caused by the slow deterioration of the dopaminergic neurons in the substantia nigra. Treatment strategies to protect dopaminergic neurons from progressive damage have received much attention. However there is no effective treatment for PD. Traditional Chinese medicines have shown potential clinical efficacy in attenuating the progression of PD. Increasing evidence indicates that constituents of some Chinese herbs include resveratrol, curcumin, and ginsenoside can be neuroprotective. Since pathologic processes in PD including inflammation, oxidative stress, apoptosis, mitochondrial dysfunction, and genetic factors lead to neuronal degeneration, and these Chinese herbs can protect dopaminergic neurons from neuronal degeneration, in this article, we review the neuroprotective roles of these herbs and summarize their anti-inflammatory, antioxidant, and anti-apoptotic effects in PD. In addition, we discuss their possible mechanisms of action in in vivo and in vitro models of PD. Traditional Chinese medicinal herbs, with their low toxicity and side-effects, have become the potential therapeutic interventions for prevention and treatment of PD and other neurodegenerative diseases. PMID:26328004

  2. Neuroprotective effects of rutaecarpine on cerebral ischemia reperfusion injury

    PubMed Central

    Yan, Chunlin; Zhang, Ji; Wang, Shu; Xue, Guiping; Hou, Yong

    2013-01-01

    Rutaecarpine, an active component of the traditional Chinese medicine Tetradium ruticarpum, has been shown to improve myocardial ischemia reperfusion injury. Because both cardiovascular and cerebrovascular diseases are forms of ischemic vascular disease, they are closely related. We hypothesized that rutaecarpine also has neuroprotective effects on cerebral ischemia reperfusion injury. A cerebral ischemia reperfusion model was established after 84, 252 and 504 μg/kg carpine were given to mice via intraperitoneal injection, daily for 7 days. Results of the step through test, 2,3,5-triphenyl tetrazolium chloride dyeing and oxidative stress indicators showed that rutaecarpine could improve learning and memory ability, neurological symptoms and reduce infarction volume and cerebral water content in mice with cerebral ischemia reperfusion injury. Rutaecarpine could significantly decrease the malondialdehyde content and increase the activities of superoxide dismutase and glutathione peroxidase in mouse brain. Therefore, rutaecarpine could improve neurological function following injury induced by cerebral ischemia reperfusion, and the mechanism of this improvement may be associated with oxidative stress. These results verify that rutaecarpine has neuroprotective effects on cerebral ischemia reperfusion in mice. PMID:25206511

  3. Heme oxygenase-2 is neuroprotective in cerebral ischemia.

    PubMed Central

    Doré, S.; Sampei, K.; Goto, S.; Alkayed, N. J.; Guastella, D.; Blackshaw, S.; Gallagher, M.; Traystman, R. J.; Hurn, P. D.; Koehler, R. C.; Snyder, S. H.

    1999-01-01

    Heme oxygenase (HO) is believed to be a potent antioxidant enzyme in the nervous system; it degrades heme from heme-containing proteins, giving rise to carbon monoxide, iron, and biliverdin, which is rapidly reduced to bilirubin. The first identified isoform of the enzyme, HO1, is an inducible heat-shock protein expressed in high levels in peripheral organs and barely detectable under normal conditions in the brain, whereas HO2 is constitutive and most highly concentrated in the brain. Interestingly, although HO2 is constitutively expressed, its activity can be modulated by phosphorylation. We demonstrated that bilirubin, formed from HO2, is neuroprotectant, as neurotoxicity is augmented in neuronal cultures from mice with targeted deletion of HO2 (HO2(-/-)) and reversed by low concentrations of bilirubin. We now show that neural damage following middle cerebral artery occlusion (MCAO) and reperfusion, a model of focal ischemia of vascular stroke, is substantially worsened in HO2(-/-) animals. By contrast, stroke damage is not significantly altered in HO1(-/-) mice, despite their greater debility. Neural damage following intracranial injections of N-methyl-d-aspartate (NMDA) is also accentuated in HO2(-/-) animals. These findings establish HO2 as an endogenous neuroprotective system in the brain whose pharmacologic manipulation may have therapeutic relevance. Images Fig. 1 Fig. 2 Fig. 3 Fig. 5 PMID:10602774

  4. Antidepressants for neuroprotection in Huntington's disease: A review.

    PubMed

    Jamwal, Sumit; Kumar, Puneet

    2015-12-15

    Huntington Disease (HD), which is characterized by abnormal dance-like movements, is a neurodegenerative disorder caused by a genetic mutation that results in an expanded polyglutamine stretch in the NH2 terminus of huntingtin protein (HTT). The principal neuropathological hallmarks of disease include loss of striatal and cortical projection neurons. HTT is ubiquitously expressed and is implicated in several cellular functions including neurogenesis, cell trafficking and brain-derived neurotrophic factor (BDNF) production. Major depression is the most common symptom among pre-symptomatic HD carriers and numerous pieces of preclinical evidence have suggested the use of antidepressants in HD not only elevates mood but also slows down the disease progression by activating different neuroprotective mechanism like BDNF/TrkB pathway, MAPK/ERK signalling, neurogenesis and Wnt signalling. HTT plays major role in neurogenesis, a physiological phenomenon that is implicated in some of the behavioral effects of antidepressants. Currently, there is no clinically available treatment that can halt or slow down the progression of HD except tetrabenazine (the only FDA approved drug); however, this drug also induces depression and sedation in patients. In this review, a brief discussion has been made about the mutant HTT that induced various cellular and molecular mechanisms underlying behavioral disorders in HD. Further, an attempt has been made to understand the various cellular mechanisms involved in mediating the neuroprotective effects of antidepressants in HD.

  5. Neuroprotective measures in children with traumatic brain injury

    PubMed Central

    Agrawal, Shruti; Branco, Ricardo Garcia

    2016-01-01

    Traumatic brain injury (TBI) is a major cause of death and disability in children. Severe TBI is a leading cause of death and often leads to life changing disabilities in survivors. The modern management of severe TBI in children on intensive care unit focuses on preventing secondary brain injury to improve outcome. Standard neuroprotective measures are based on management of intracranial pressure (ICP) and cerebral perfusion pressure (CPP) to optimize the cerebral blood flow and oxygenation, with the intention to avoid and minimise secondary brain injury. In this article, we review the current trends in management of severe TBI in children, detailing the general and specific measures followed to achieve the desired ICP and CPP goals. We discuss the often limited evidence for these therapeutic interventions in children, extrapolation of data from adults, and current recommendation from paediatric guidelines. We also review the recent advances in understanding the intracranial physiology and neuroprotective therapies, the current research focus on advanced and multi-modal neuromonitoring, and potential new therapeutic and prognostic targets. PMID:26855892

  6. Neuroprotective role of the TREK-1 channel in decompression sickness.

    PubMed

    Vallee, Nicolas; Meckler, Cédric; Risso, Jean-Jacques; Blatteau, Jean-Eric

    2012-04-01

    Nitrogen supersaturation and bubble formation can occur in the vascular system after diving, leading to death and nervous disorders from decompression sickness (DCS). Bubbles alter the vascular endothelium, activate platelets, and lead to focal ischemia with neurological damage mediated by the mechanosensitive TREK-1 neuronal potassium ion channel that sets pre- and postsynaptic resting membrane potentials. We report a neuroprotective effect associated with TREK-1. C57Bl6 mice were subjected to decompression from a simulated 90 msw dive. Of 143 mice that were wild type (WT) for TREK-1, 51.7% showed no DCS, 27.3% failed a grip test, and 21.0% died. Of 88 TREK-1 knockouts (KO), 26.1% showed no DCS, 42.0% failed a grip test, and 31.8% died. Mice that did not express TREK-1 had lower DCS resistance and were more likely to develop neurological symptoms. We conclude that the TREK-1 potassium channel was neuroprotective for DCS.

  7. Microvascular protection is essential for successful neuroprotection in stroke.

    PubMed

    Gursoy-Ozdemir, Yasemin; Yemisci, Muge; Dalkara, Turgay

    2012-11-01

    Currently, the best way of neuroprotection for acute ischemic stroke appears to be restoration of blood flow to the ischemic area by thrombolysis. Unfortunately, a short therapeutic time window as well as thrombolysis-induced bleeding and edema limit the use of recanalization therapies. Here, we review the evidence suggesting that ischemia/reperfusion-induced microvascular injury plays a critical role in determining tissue survival after recanalization in focal cerebral ischemia by disrupting the blood-brain barrier integrity and promoting microcirculatory clogging. Among many complex mechanisms of the ischemia-reperfusion injury, overproduction of oxygen and nitrogen radicals on the microvascular wall appears to significantly contribute to these pathological processes. These developments bring about the exciting possibility that effective suppression of oxidative/nitrative stress during pharmacological or interventional re-opening of the occluded artery may significantly improve the outcome of recanalization therapies in stroke patients by improving microcirculatory reflow as well as by preventing hemorrhagic conversion and vasogenic edema. They also point to the critical (but partly neglected) importance of the microcirculation in neuroprotection.

  8. Ethoxyquin provides neuroprotection against cisplatin-induced neurotoxicity

    PubMed Central

    Zhu, Jing; Carozzi, Valentina Alda; Reed, Nicole; Mi, Ruifa; Marmiroli, Paola; Cavaletti, Guido; Hoke, Ahmet

    2016-01-01

    Ethoxyquin was recently identified as a neuroprotective compound against toxic neuropathies and efficacy was demonstrated against paclitaxel-induced neurotoxicity in vivo. In this study we examined the efficacy of ethoxyquin in preventing neurotoxicity of cisplatin in rodent models of chemotherapy-induced peripheral neuropathy and explored its mechanism of action. Ethoxyquin prevented neurotoxicity of cisplatin in vitro in a sensory neuronal cell line and primary rat dorsal root ganglion neurons. In vivo, chronic co-administration of ethoxyquin partially abrogated cisplatin-induced behavioral, electrophysiological and morphological abnormalities. Furthermore, ethoxyquin did not interfere with cisplatin’s ability to induce tumor cell death in ovarian cancer cell line in vitro and in vivo. Finally, ethoxyquin reduced the levels of two client proteins (SF3B2 and ataxin-2) of a chaperone protein, heat shock protein 90 (Hsp90) when co-administered with cisplatin in vitro. These results implied that the neuroprotective effect of ethoxyquin is mediated through these two client proteins of Hsp90. In fact, reducing levels of SF3B2 in tissue-cultured neurons was effective against neurotoxicity of cisplatin. These findings suggest that ethoxyquin or other compounds that inhibit chaperone activity of Hsp90 and reduce levels of its client protein, SF3B2 may be developed as an adjuvant therapy to prevent neurotoxicity in cisplatin-based chemotherapy protocols. PMID:27350330

  9. Progesterone-induced neuroprotection: factors that may predict therapeutic efficacy.

    PubMed

    Singh, Meharvan; Su, Chang

    2013-06-13

    Both progesterone and estradiol have well-described neuroprotective effects against numerous insults in a variety of cell culture models, animal models and in humans. However, the efficacy of these hormones may depend on a variety of factors, including the type of hormone used (ex. progesterone versus medroxyprogesterone acetate), the duration of the postmenopausal period prior to initiating the hormone intervention, and potentially, the age of the subject. The latter two factors relate to the proposed existence of a "window of therapeutic opportunity" for steroid hormones in the brain. While such a window of opportunity has been described for estrogen, there is a paucity of information to address whether such a window of opportunity exists for progesterone and its related progestins. Here, we review known cellular mechanisms likely to underlie the protective effects of progesterone and furthermore, describe key differences in the neurobiology of progesterone and the synthetic progestin, medroxyprogesterone acetate (MPA). Based on the latter, we offer a model that defines some of the key cellular and molecular players that predict the neuroprotective efficacy of progesterone. Accordingly, we suggest how changes in the expression or function of these cellular and molecular targets of progesterone with age or prolonged duration of hormone withdrawal (such as following surgical or natural menopause) may impact the efficacy of progesterone. This article is part of a Special Issue entitled Hormone Therapy.

  10. Neuroprotection in a Novel Mouse Model of Multiple Sclerosis

    PubMed Central

    Lidster, Katie; Jackson, Samuel J.; Ahmed, Zubair; Munro, Peter; Coffey, Pete; Giovannoni, Gavin; Baker, Mark D.; Baker, David

    2013-01-01

    Multiple sclerosis is an immune-mediated, demyelinating and neurodegenerative disease that currently lacks any neuroprotective treatments. Innovative neuroprotective trial designs are required to hasten the translational process of drug development. An ideal target to monitor the efficacy of strategies aimed at treating multiple sclerosis is the visual system, which is the most accessible part of the human central nervous system. A novel C57BL/6 mouse line was generated that expressed transgenes for a myelin oligodendrocyte glycoprotein-specific T cell receptor and a retinal ganglion cell restricted-Thy1 promoter-controlled cyan fluorescent protein. This model develops spontaneous or induced optic neuritis, in the absence of paralytic disease normally associated with most rodent autoimmune models of multiple sclerosis. Demyelination and neurodegeneration could be monitored longitudinally in the living animal using electrophysiology, visual sensitivity, confocal scanning laser ophthalmoscopy and optical coherence tomography all of which are relevant to human trials. This model offers many advantages, from a 3Rs, economic and scientific perspective, over classical experimental autoimmune encephalomyelitis models that are associated with substantial suffering of animals. Optic neuritis in this model led to inflammatory damage of axons in the optic nerve and subsequent loss of retinal ganglion cells in the retina. This was inhibited by the systemic administration of a sodium channel blocker (oxcarbazepine) or intraocular treatment with siRNA targeting caspase-2. These novel approaches have relevance to the future treatment of neurodegeneration of MS, which has so far evaded treatment. PMID:24223903

  11. Neuronal networks provide rapid neuroprotection against spreading toxicity.

    PubMed

    Samson, Andrew J; Robertson, Graham; Zagnoni, Michele; Connolly, Christopher N

    2016-09-21

    Acute secondary neuronal cell death, as seen in neurodegenerative disease, cerebral ischemia (stroke) and traumatic brain injury (TBI), drives spreading neurotoxicity into surrounding, undamaged, brain areas. This spreading toxicity occurs via two mechanisms, synaptic toxicity through hyperactivity, and excitotoxicity following the accumulation of extracellular glutamate. To date, there are no fast-acting therapeutic tools capable of terminating secondary spreading toxicity within a time frame relevant to the emergency treatment of stroke or TBI patients. Here, using hippocampal neurons (DIV 15-20) cultured in microfluidic devices in order to deliver a localized excitotoxic insult, we replicate secondary spreading toxicity and demonstrate that this process is driven by GluN2B receptors. In addition to the modeling of spreading toxicity, this approach has uncovered a previously unknown, fast acting, GluN2A-dependent neuroprotective signaling mechanism. This mechanism utilizes the innate capacity of surrounding neuronal networks to provide protection against both forms of spreading neuronal toxicity, synaptic hyperactivity and direct glutamate excitotoxicity. Importantly, network neuroprotection against spreading toxicity can be effectively stimulated after an excitotoxic insult has been delivered, and may identify a new therapeutic window to limit brain damage.

  12. Antivasoconstrictor effect of the neuroprotective agent dexrazoxane in rat aorta.

    PubMed

    Vidrio, Horacio; Carrasco, Omar F; Rodríguez, Rodolfo

    2006-12-14

    Dexrazoxane is used clinically to reduce the cardiotoxicity of anthracycline cancer chemotherapeutic agents, acting by an iron-chelating antioxidant mechanism. In a study designed to explore the possible mechanism of the recently described neuroprotective effect of the drug in cerebral ischemia, its influence on vascular reactivity was determined in rat aortic rings. Dexrazoxane was found to be devoid of direct contractile or relaxant activity and to have no influence on responses to acetylcholine or histamine (relaxation), or to angiotensin or serotonin (contraction). In contrast, it decreased contractions to norepinephrine, as evidenced by rightward displacement of the concentration-response curves. The effect was prevented by the removal of the endothelium and by the alpha(2)-adrenoceptor antagonist yohimbine; it was partially antagonized by the endothelium-derived depolarizing factor inhibitor clotrimazole, but was not affected by L-NAME or indomethacin, inhibitors of endothelial nitric oxide and prostacyclin production. The anti-contractile effect did not occur in rings stimulated with the alpha(1)-adrenoceptor agonist phenylephrine. It was concluded that dexrazoxane opposes norepinephrine vascular contraction by enhancing endothelial alpha(2)-adrenoceptor-mediated release of relaxing factor(s). The drug could thus offset the deleterious vasoconstriction elicited by the increased circulating catecholamines present during cerebral ischemia, and by this mechanism produce neuroprotection.