Science.gov

Sample records for modifies protein complexes

  1. Double emulsions stabilized by a charged complex of modified pectin and whey protein isolate.

    PubMed

    Lutz, Rachel; Aserin, Abraham; Wicker, Louis; Garti, Nissim

    2009-08-01

    Double emulsions based on naturally occurring stabilizers for food applications were studied. Two charged biopolymers, whey protein isolate (WPI) and enzymatic modified pectins, interacted in aqueous solution to form a charge-charge complex that was utilized as a hydrophilic polymeric steric stabilizer improving the double emulsion stability. The main factors that influence the interaction between protein and pectin were investigated in relation to double emulsion stability: creaming, coalescence, and water transport between aqueous phases. The pH determined the size of the complex formed. Thus at pH 6, where a soluble complex was obtained between some molecular positively charged patches on the protein and negatively charged fractions of the hydrocolloids, the double emulsion was the most stable. With the smallest droplet size (ca. 15 microm), the lowest creaming, highest yield, and minimized water transport were obtained. The best concentration and ratio to form the soluble complex are 4 wt% WPI and 0.5 wt% pectin (for 30 wt% of the W/O inner phase). The influence of the charge distribution (degree of order of the carboxylic groups) of the pectin on the associated complex was also investigated, and it was found that the more "ordered" pectin (U63) formed the most stable double emulsion against water transport.

  2. MAGGIE Component 1: Identification and Purification of Native and Recombinant Multiprotein Complexes and Modified Proteins from Pyrococcus furiosus

    SciTech Connect

    Adams, Michael W.; W. W. Adams, Michael

    2014-01-07

    Virtualy all cellular processes are carried out by dynamic molecular assemblies or multiprotein complexes (PCs), the composition of which is largely unknown. Structural genomics efforts have demonstrated that less than 25% of the genes in a given prokaryotic genome will yield stable, soluble proteins when expressed using a one-ORF-at-a-time approach. We proposed that much of the remaining 75% of the genes encode proteins that are part of multiprotein complexes or are modified post-translationally, for example, with metals. The problem is that PCs and metalloproteins (MPs) cannot be accurately predicted on a genome-wide scale. The only solution to this dilemma is to experimentally determine PCs and MPs in biomass of a model organism and to develop analytical tools that can then be applied to the biomass of any other organism. In other words, organisms themselves must be analyzed to identify their PCs and MPs: “native proteomes” must be determined. This information can then be utilized to design multiple ORF expression systems to produce recombinant forms of PCs and MPs. Moreover, the information and utility of this approach can be enhanced by using a hyperthermophile, one that grows optimally at 100°C, as a model organism. By analyzing the native proteome at close to 100 °C below the optimum growth temperature, we will trap reversible and dynamic complexes, thereby enabling their identification, purification, and subsequent characterization. The model organism for the current study is Pyrococcus furiosus, a hyperthermophilic archaeon that grows optimally at 100°C. It is grown up to 600-liter scale and kg quantities of biomass are available. In this project we identified native PCs and MPs using P. furiosus biomass (with MS/MS analyses to identify proteins by component 4). In addition, we provided samples of abundant native PCs and MPs for structural characterization (using SAXS by component 5). We also designed and evaluated generic bioinformatics and

  3. Adhesives from modified soy protein

    DOEpatents

    Sun, Susan; Wang, Donghai; Zhong, Zhikai; Yang, Guang

    2008-08-26

    The, present invention provides useful adhesive compositions having similar adhesive properties to conventional UF and PPF resins. The compositions generally include a protein portion and modifying ingredient portion selected from the group consisting of carboxyl-containing compounds, aldehyde-containing compounds, epoxy group-containing compounds, and mixtures thereof. The composition is preferably prepared at a pH level at or near the isoelectric point of the protein. In other preferred forms, the adhesive composition includes a protein portion and a carboxyl-containing group portion.

  4. Proteins : paradigms of complexity /

    SciTech Connect

    Frauenfelder, Hans,

    2001-01-01

    Proteins are the working machines of living systems. Directed by the DNA, of the order of a few hundred building blocks, selected from twenty different amino acids, are covalently linked into a linear polypeptide chain. In the proper environment, the chain folds into the working protein, often a globule of linear dimensions of a few nanometers. The biologist considers proteins units from which living systems are built. Many physical scientists look at them as systems in which the laws of complexity can be studied better than anywhere else. Some of the results of such studies will be sketched.

  5. Function of the cytoplasmic tail of human calcitonin receptor-like receptor in complex with receptor activity-modifying protein 2

    SciTech Connect

    Kuwasako, Kenji; Kitamura, Kazuo; Nagata, Sayaka; Hikosaka, Tomomi; Kato, Johji

    2010-02-12

    Receptor activity-modifying protein 2 (RAMP2) enables calcitonin receptor-like receptor (CRLR) to form an adrenomedullin (AM)-specific receptor. Here we investigated the function of the cytoplasmic C-terminal tail (C-tail) of human (h)CRLR by co-transfecting its C-terminal mutants into HEK-293 cells stably expressing hRAMP2. Deleting the C-tail from CRLR disrupted AM-evoked cAMP production or receptor internalization, but did not affect [{sup 125}I]AM binding. We found that CRLR residues 428-439 are required for AM-evoked cAMP production, though deleting this region had little effect on receptor internalization. Moreover, pretreatment with pertussis toxin (100 ng/mL) led to significant increases in AM-induced cAMP production via wild-type CRLR/RAMP2 complexes. This effect was canceled by deleting CRLR residues 454-457, suggesting Gi couples to this region. Flow cytometric analysis revealed that CRLR truncation mutants lacking residues in the Ser/Thr-rich region extending from Ser{sup 449} to Ser{sup 467} were unable to undergo AM-induced receptor internalization and, in contrast to the effect on wild-type CRLR, overexpression of GPCR kinases-2, -3 and -4 failed to promote internalization of CRLR mutants lacking residues 449-467. Thus, the hCRLR C-tail is crucial for AM-evoked cAMP production and internalization of the CRLR/RAMP2, while the receptor internalization is dependent on the aforementioned GPCR kinases, but not Gs coupling.

  6. Modified Protein Improves Vitiligo Symptoms in Mice

    MedlinePlus

    ... 2013 (historical) Modified Protein Improves Vitiligo Symptoms in Mice Altering a key protein involved in the development ... pigmentation loss associated with the skin disorder in mice, according to recent research funded by the NIH’s ...

  7. Suppressor of hairy‐wing, modifier of mdg4 and centrosomal protein of 190 gene orthologues of the gypsy insulator complex in the malaria mosquito, Anopheles stephensi

    PubMed Central

    Carballar‐Lejarazú, R.; Brennock, P.

    2016-01-01

    Abstract DNA insulators organize independent gene regulatory domains and can regulate interactions amongst promoter and enhancer elements. They have the potential to be important in genome enhancing and editing technologies because they can mitigate chromosomal position effects on transgenes. The orthologous genes of the Anopheles stephensi putative gypsy‐like insulator protein complex were identified and expression characteristics studied. These genes encode polypeptides with all the expected protein domains (Cysteine 2 Histidine 2 (C2H2) zinc fingers and/or a bric‐a‐brac/poxvirus and zinc finger). The mosquito gypsy transcripts are expressed constitutively and are upregulated in ovaries of blood‐fed females. We have uncovered significant experimental evidence that the gypsy insulator protein complex is widespread in vector mosquitoes. PMID:27110891

  8. Taste-modifying protein from miracle fruit.

    PubMed

    Kurihara, K; Beidler, L M

    1968-09-20

    The active principle of miracle fruit (Synsepalum dulcificum) is a basic glycoprotein with a probable molecular weight of 44,000. Application of the protein to the tongue modifies the taste so that one tastes sour substances as sweet.

  9. Length, protein protein interactions, and complexity

    NASA Astrophysics Data System (ADS)

    Tan, Taison; Frenkel, Daan; Gupta, Vishal; Deem, Michael W.

    2005-05-01

    The evolutionary reason for the increase in gene length from archaea to prokaryotes to eukaryotes observed in large-scale genome sequencing efforts has been unclear. We propose here that the increasing complexity of protein-protein interactions has driven the selection of longer proteins, as they are more able to distinguish among a larger number of distinct interactions due to their greater average surface area. Annotated protein sequences available from the SWISS-PROT database were analyzed for 13 eukaryotes, eight bacteria, and two archaea species. The number of subcellular locations to which each protein is associated is used as a measure of the number of interactions to which a protein participates. Two databases of yeast protein-protein interactions were used as another measure of the number of interactions to which each S. cerevisiae protein participates. Protein length is shown to correlate with both number of subcellular locations to which a protein is associated and number of interactions as measured by yeast two-hybrid experiments. Protein length is also shown to correlate with the probability that the protein is encoded by an essential gene. Interestingly, average protein length and number of subcellular locations are not significantly different between all human proteins and protein targets of known, marketed drugs. Increased protein length appears to be a significant mechanism by which the increasing complexity of protein-protein interaction networks is accommodated within the natural evolution of species. Consideration of protein length may be a valuable tool in drug design, one that predicts different strategies for inhibiting interactions in aberrant and normal pathways.

  10. Proteins, fluctuations and complexity

    SciTech Connect

    Frauenfelder, Hans; Chen, Guo; Fenimore, Paul W

    2008-01-01

    Glasses, supercooled liquids, and proteins share common properties, in particular the existence of two different types of fluctuations, {alpha} and {beta}. While the effect of the {alpha} fluctuations on proteins has been known for a few years, the effect of {beta} fluctuations has not been understood. By comparing neutron scattering data on the protein myoglobin with the {beta} fluctuations in the hydration shell measured by dielectric spectroscopy we show that the internal protein motions are slaved to these fluctuations. We also show that there is no 'dynamic transition' in proteins near 200 K. The rapid increase in the mean square displacement with temperature in many neutron scattering experiments is quantitatively predicted by the {beta} fluctuations in the hydration shell.

  11. Separation of membrane protein complexes by native LDS-PAGE.

    PubMed

    Arnold, Janine; Shapiguzov, Alexey; Fucile, Geoffrey; Rochaix, Jean-David; Goldschmidt-Clermont, Michel; Eichacker, Lutz Andreas

    2014-01-01

    Gel electrophoresis has become one of the most important methods for the analysis of proteins and protein complexes in a molecular weight range of 1-10(7) kDa. The separation of membrane protein complexes remained challenging to standardize until the demonstration of Blue Native PAGE in 1991 [1] and Clear Native PAGE in 1994 [2]. We present a robust protocol for high-resolution separation of photosynthetic complexes from Arabidopsis thaliana using lithium dodecyl sulfate as anion in a modified Blue Native PAGE (LDS-PAGE). Here, non-covalently bound chlorophyll is used as a sensitive probe to characterize the assembly/biogenesis of the pigment-protein complexes essential for photosynthesis. The high fluorescence yield recorded from chlorophyll-binding protein complexes can also be used to establish the separation of native protein complexes as an electrophoretic standard.

  12. Effects of genetically modified maize events expressing Cry34Ab1, Cry35Ab1, Cry1F, and CP4 EPSPS proteins on arthropod complex food webs.

    PubMed

    Pálinkás, Zoltán; Kiss, József; Zalai, Mihály; Szénási, Ágnes; Dorner, Zita; North, Samuel; Woodward, Guy; Balog, Adalbert

    2017-04-01

    Four genetically modified (GM) maize (Zea mays L.) hybrids (coleopteran resistant, coleopteran and lepidopteran resistant, lepidopteran resistant and herbicide tolerant, coleopteran and herbicide tolerant) and its non-GM control maize stands were tested to compare the functional diversity of arthropods and to determine whether genetic modifications alter the structure of arthropods food webs. A total number of 399,239 arthropod individuals were used for analyses. The trophic groups' number and the links between them indicated that neither the higher magnitude of Bt toxins (included resistance against insect, and against both insects and glyphosate) nor the extra glyphosate treatment changed the structure of food webs. However, differences in the average trophic links/trophic groups were detected between GM and non-GM food webs for herbivore groups and plants. Also, differences in characteristic path lengths between GM and non-GM food webs for herbivores were observed. Food webs parameterized based on 2-year in-field assessments, and their properties can be considered a useful and simple tool to evaluate the effects of Bt toxins on non-target organisms.

  13. Purifying protein complexes for mass spectrometry: applications to protein translation.

    PubMed

    Link, Andrew J; Fleischer, Tracey C; Weaver, Connie M; Gerbasi, Vincent R; Jennings, Jennifer L

    2005-03-01

    Proteins control and mediate most of the biological activities in the cell. In most cases, proteins either interact with regulatory proteins or function in large molecular assemblies to carryout biological processes. Understanding the functions of individual proteins requires the identification of these interacting proteins. With its speed and sensitivity, mass spectrometry has become the dominant method for identifying components of protein complexes. This article reviews and discusses various approaches to purify protein complexes and analyze the proteins using mass spectrometry. As examples, methods to isolate and analyze protein complexes responsible for the translation of messenger RNAs into polypeptides are described.

  14. Investigation of modified cottonseed protein adhesives for wood composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several modified cottonseed protein isolates were studied and compared to corresponding soy protein isolates for their adhesive properties when bonded to wood composites. Modifications included treatments with alkali, guanidine hydrochloride, sodium dodecyl sulfate (SDS), and urea. Wood composites...

  15. Analysis of protein complexes using mass spectrometry.

    PubMed

    Gingras, Anne-Claude; Gstaiger, Matthias; Raught, Brian; Aebersold, Ruedi

    2007-08-01

    The versatile combination of affinity purification and mass spectrometry (AP-MS) has recently been applied to the detailed characterization of many protein complexes and large protein-interaction networks. The combination of AP-MS with other techniques, such as biochemical fractionation, intact mass measurement and chemical crosslinking, can help to decipher the supramolecular organization of protein complexes. AP-MS can also be combined with quantitative proteomics approaches to better understand the dynamics of protein-complex assembly.

  16. The Protein-Sparing Modified Fast Diet

    PubMed Central

    Bakhach, Marwan; Shah, Vaishal; Harwood, Tara; Lappe, Sara; Bhesania, Natalie; Mansoor, Sana; Alkhouri, Naim

    2016-01-01

    Objectives: The protein-sparing modified fast (PSMF) is a rigorous way of rapidly losing a large amount of weight. Although adult studies have shown the PSMF to be effective, data in adolescents are lacking. The aim of this study was to determine the efficacy and safety of the PSMF in severely obese adolescents. Methods: 12 subjects who were evaluated in the Obesity Management Program at the Cleveland Clinic from 2011 to 2014 were included. The subjects were initiated on the PSMF after failing other conventional methods of weight loss. Once the goal weight was achieved, subjects were transitioned to the refeeding phase for weight maintenance. Results: Follow-up was scheduled at 3-month (11 patients) and 6-month (6 patients) intervals. At the 6-month follow-up visit, the average weight loss was 11.19 kg (95% confidence interval = -5.4, -27.8, P = .028), with average of 9.8% from baseline. Fifty percent of subjects had >5% weight loss and 20% had >10% weight loss. Four patients were lost to the follow-up (40%). An improvement was noted in total cholesterol and high-density lipoprotein. Due to a small sample size these results were not statistically significant. Side effects reported by subjects were mild dehydration due to nausea (2 patients), decreased energy (1 patient), and transient labile mood (1 patient). No life-threatening side effects were reported. Conclusion: Our results show that the PSMF diet can be used as an effective and safe method in the outpatient setting for rapid weight loss in adolescents with severe obesity. PMID:27335996

  17. Structural Studies of Protein-Surfactant Complexes

    SciTech Connect

    Chodankar, S. N.; Aswal, V. K.; Wagh, A. G.

    2008-03-17

    The structure of protein-surfactant complexes of two proteins bovine serum albumin (BSA) and lysozyme in presence of anionic surfactant sodium dodecyl sulfate (SDS) has been studied using small-angle neutron scattering (SANS). It is observed that these two proteins form different complex structures with the surfactant. While BSA protein undergoes unfolding on addition of surfactant, lysozyme does not show any unfolding even up to very high surfactant concentrations. The unfolding of BSA protein is caused by micelle-like aggregation of surfactant molecules in the complex. On the other hand, for lysozyme protein there is only binding of individual surfactant molecules to protein. Lysozyme in presence of higher surfactant concentrations has protein-surfactant complex structure coexisting with pure surfactant micelles.

  18. Trapping mammalian protein complexes in viral particles

    PubMed Central

    Eyckerman, Sven; Titeca, Kevin; Van Quickelberghe, Emmy; Cloots, Eva; Verhee, Annick; Samyn, Noortje; De Ceuninck, Leentje; Timmerman, Evy; De Sutter, Delphine; Lievens, Sam; Van Calenbergh, Serge; Gevaert, Kris; Tavernier, Jan

    2016-01-01

    Cell lysis is an inevitable step in classical mass spectrometry–based strategies to analyse protein complexes. Complementary lysis conditions, in situ cross-linking strategies and proximal labelling techniques are currently used to reduce lysis effects on the protein complex. We have developed Virotrap, a viral particle sorting approach that obviates the need for cell homogenization and preserves the protein complexes during purification. By fusing a bait protein to the HIV-1 GAG protein, we show that interaction partners become trapped within virus-like particles (VLPs) that bud from mammalian cells. Using an efficient VLP enrichment protocol, Virotrap allows the detection of known binary interactions and MS-based identification of novel protein partners as well. In addition, we show the identification of stimulus-dependent interactions and demonstrate trapping of protein partners for small molecules. Virotrap constitutes an elegant complementary approach to the arsenal of methods to study protein complexes. PMID:27122307

  19. Protein binding properties of surface-modified porous polyethylene membranes.

    PubMed

    Greene, George; Radhakrishna, Harish; Tannenbaum, Rina

    2005-10-01

    In this study, we quantified the adsorption of immunoglobulin G (IgG) protein onto several polyelectrolyte-modified sintered porous polyethylene (PPE) membranes. The polymer surfaces had both cationic and anionic charges obtained via the adsorption of polyethylenimine (PEI) and polyacrylic acid (PAA), respectively, onto plasma-activated PPE. The amount of IgG adsorption was determined by measuring the gamma radiation emitted by [125I]-IgG radio labeled protein. By studying the impact of pH and ionic strength on IgG adsorption, we attempted to characterize the role and nature of the electrostatic interactions involved in the adsorption process to better understand how these interactions were influenced by the charge and structure of immobilized polyelectrolyte complexes at modified membrane surfaces. We were able to show that surface modification of PPE membranes with adsorbed PEI monolayers and PEI-PAA bilayers can greatly improve the IgG binding ability of the membrane under optimized conditions. We also showed that the observed improvement in the IgG binding is derived from electrostatic interactions between IgG and the polyelectrolyte surface. In addition, we found that the greatest IgG adsorption occurred when the IgG and the surface possessed predominantly opposite charges, rather than when the surface possessed the greatest electrostatic charge. Finally, we have found that the molecular weight of the terminating polyelectrolyte has a noticeable effect upon the electrostatic interactions between IgG and the PEI-PAA bilayer-modified PPE surfaces.

  20. Predictions of Protein-Protein Interfaces within Membrane Protein Complexes

    PubMed Central

    Asadabadi, Ebrahim Barzegari; Abdolmaleki, Parviz

    2013-01-01

    Background Prediction of interaction sites within the membrane protein complexes using the sequence data is of a great importance, because it would find applications in modification of molecules transport through membrane, signaling pathways and drug targets of many diseases. Nevertheless, it has gained little attention from the protein structural bioinformatics community. Methods In this study, a wide variety of prediction and classification tools were applied to distinguish the residues at the interfaces of membrane proteins from those not in the interfaces. Results The tuned SVM model achieved the high accuracy of 86.95% and the AUC of 0.812 which outperforms the results of the only previous similar study. Nevertheless, prediction performances obtained using most employed models cannot be used in applied fields and needs more effort to improve. Conclusion Considering the variety of the applied tools in this study, the present investigation could be a good starting point to develop more efficient tools to predict the membrane protein interaction site residues. PMID:23919118

  1. Co-translational assembly of protein complexes.

    PubMed

    Wells, Jonathan N; Bergendahl, L Therese; Marsh, Joseph A

    2015-12-01

    The interaction of biological macromolecules is a fundamental attribute of cellular life. Proteins, in particular, often form stable complexes with one another. Although the importance of protein complexes is widely recognized, we still have only a very limited understanding of the mechanisms underlying their assembly within cells. In this article, we review the available evidence for one such mechanism, namely the coupling of protein complex assembly to translation at the polysome. We discuss research showing that co-translational assembly can occur in both prokaryotic and eukaryotic organisms and can have important implications for the correct functioning of the complexes that result. Co-translational assembly can occur for both homomeric and heteromeric protein complexes and for both proteins that are translated directly into the cytoplasm and those that are translated into or across membranes. Finally, we discuss the properties of proteins that are most likely to be associated with co-translational assembly.

  2. A Protein Complex Map of Trypanosoma brucei

    PubMed Central

    Mehta, Vaibhav; Najafabadi, Hamed S.; Moshiri, Houtan; Jardim, Armando; Salavati, Reza

    2016-01-01

    The functions of the majority of trypanosomatid-specific proteins are unknown, hindering our understanding of the biology and pathogenesis of Trypanosomatida. While protein-protein interactions are highly informative about protein function, a global map of protein interactions and complexes is still lacking for these important human parasites. Here, benefiting from in-depth biochemical fractionation, we systematically interrogated the co-complex interactions of more than 3354 protein groups in procyclic life stage of Trypanosoma brucei, the protozoan parasite responsible for human African trypanosomiasis. Using a rigorous methodology, our analysis led to identification of 128 high-confidence complexes encompassing 716 protein groups, including 635 protein groups that lacked experimental annotation. These complexes correlate well with known pathways as well as for proteins co-expressed across the T. brucei life cycle, and provide potential functions for a large number of previously uncharacterized proteins. We validated the functions of several novel proteins associated with the RNA-editing machinery, identifying a candidate potentially involved in the mitochondrial post-transcriptional regulation of T. brucei. Our data provide an unprecedented view of the protein complex map of T. brucei, and serve as a reliable resource for further characterization of trypanosomatid proteins. The presented results in this study are available at: www.TrypsNetDB.org. PMID:26991453

  3. A Protein Complex Network of Drosophila melanogaster

    PubMed Central

    Guruharsha, K. G.; Rual, J. -F.; Zhai, B.; Mintseris, J.; Vaidya, P.; Vaidya, N.; Beekman, C.; Wong, C.; Rhee, D. Y.; Cenaj, O.; McKillip, E.; Shah, S.; Stapleton, M.; Wan, K. H.; Yu, C.; Parsa, B.; Carlson, J. W.; Chen, X.; Kapadia, B.; VijayRaghavan, K.; Gygi, S. P.; Celniker, S. E.; Obar, R. A.; Artavanis-Tsakonas, S.

    2011-01-01

    SUMMARY Determining the composition of protein complexes is an essential step towards understanding the cell as an integrated system. Using co-affinity purification coupled to mass spectrometry analysis, we examined protein associations involving nearly five thousand individual, FLAG-HA epitope-tagged Drosophila proteins. Stringent analysis of these data, based on a novel statistical framework to define individual protein-protein interactions, led to the generation of a Drosophila Protein interaction Map (DPiM) encompassing 556 protein complexes. The high quality of DPiM and its usefulness as a paradigm for metazoan proteomes is apparent from the recovery of many known complexes, significant enrichment for shared functional attributes and validation in human cells. DPiM defines potential novel members for several important protein complexes and assigns functional links to 586 protein-coding genes lacking previous experimental annotation. DPiM represents, to our knowledge, the largest metazoan protein complex map and provides a valuable resource for analysis of protein complex evolution. PMID:22036573

  4. Preparation and evaluation of tara-modified proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quebracho, a vegetable tannin, can be used to modify gelatin to produce a product that has been applied effectively as a filler in leather processing, as described in our previous report. In this ongoing study, another vegetable tannin tara is examined for its possible application in protein modifi...

  5. [Isolation of proteins with complex forming agents].

    PubMed

    Schwenke, K D; Raab, B; Ender, B

    1975-01-01

    Taking vegetable albumins for models, the authors report of the possibilities of isolating proteins (which cannot be precipitated isoelectrically) by using their property of forming complexes with tannin or poly-anions. The precipitation of proteins with dextran sulphate or polyphosphates, which is due to electrostatic interaction, depends on the pH value and the electrolyte content of the solution. Under appropriate experimental conditions, protein yields of 100% are achieved. By means of tannin, the proteins are completely precipitated in a wide range of pH. The protein component of the poly-anion-containing complexes is isolated by precipitation with salt or by thermal coagulation after dissolving of the complexes. The isolation of protein from the tannin complexes is preferably realized by reaction with coffeine.

  6. Identifying protein complexes in protein-protein interaction networks by using clique seeds and graph entropy.

    PubMed

    Chen, Bolin; Shi, Jinhong; Zhang, Shenggui; Wu, Fang-Xiang

    2013-01-01

    The identification of protein complexes plays a key role in understanding major cellular processes and biological functions. Various computational algorithms have been proposed to identify protein complexes from protein-protein interaction (PPI) networks. In this paper, we first introduce a new seed-selection strategy for seed-growth style algorithms. Cliques rather than individual vertices are employed as initial seeds. After that, a result-modification approach is proposed based on this seed-selection strategy. Predictions generated by higher order clique seeds are employed to modify results that are generated by lower order ones. The performance of this seed-selection strategy and the result-modification approach are tested by using the entropy-based algorithm, which is currently the best seed-growth style algorithm to detect protein complexes from PPI networks. In addition, we investigate four pairs of strategies for this algorithm in order to improve its accuracy. The numerical experiments are conducted on a Saccharomyces cerevisiae PPI network. The group of best predictions consists of 1711 clusters, with the average f-score at 0.68 after removing all similar and redundant clusters. We conclude that higher order clique seeds can generate predictions with higher accuracy and that our improved entropy-based algorithm outputs more reasonable predictions than the original one.

  7. Proteasomal degradation of beta-carotene metabolite--modified proteins.

    PubMed

    Sommerburg, Olaf; Karius, Nicole; Siems, Werner; Langhans, Claus-Dieter; Leichsenring, Michael; Breusing, Nicolle; Grune, Tilman

    2009-01-01

    Free radical attack on beta-carotene results in the formation of high amounts of carotene breakdown products (CBPs) having biological activities. As several of the CBPs are reactive aldehydes, it has to be considered that these compounds are able to modify proteins. Therefore, the aim of the study was to investigate whether CBP-modification of proteins is leading to damaged proteins recognized and degraded by the proteasomal system. We used the model proteins tau and ferritin to test whether CBPs will modify them and whether such modifications lead to enhanced proteasomal degradation. To modify proteins, we used crude CBPs as a mixture obtained after hypochloric acid derived BC degradation, as well as several single compounds, as apo8'-carotenal, retinal, or beta-ionone. The majority of the CBPs found in our reaction mixture are well known metabolites as described earlier after BC degradation using different oxidants. CBPs are able to modify proteins, and in in vitro studies, we were able to demonstrate that the 20S proteasome is able to recognize and degrade CBP-modified proteins preferentially. In testing the proteolytic response of HT22 cells toward CBPs, we could demonstrate an enhanced protein turnover, which is sensitive to lactacystin. Interestingly, the proteasomal activity is resistant to treatment with CBP. On the other hand, we were able to demonstrate that supraphysiological levels of CBPs might lead to the formation of protein-CBP-adducts that are able to inhibit the proteasome. Therefore, the removal of CBP-modified proteins seems to be catalyzed by the proteasomal system and is effective, if the formation of CBPs is not overwhelming and leading to protein aggregates.

  8. Characterization of Native Protein Complexes and Protein Isoform Variation Using Size-fractionation-based Quantitative Proteomics*

    PubMed Central

    Kirkwood, Kathryn J.; Ahmad, Yasmeen; Larance, Mark; Lamond, Angus I.

    2013-01-01

    Proteins form a diverse array of complexes that mediate cellular function and regulation. A largely unexplored feature of such protein complexes is the selective participation of specific protein isoforms and/or post-translationally modified forms. In this study, we combined native size-exclusion chromatography (SEC) with high-throughput proteomic analysis to characterize soluble protein complexes isolated from human osteosarcoma (U2OS) cells. Using this approach, we have identified over 71,500 peptides and 1,600 phosphosites, corresponding to over 8,000 proteins, distributed across 40 SEC fractions. This represents >50% of the predicted U2OS cell proteome, identified with a mean peptide sequence coverage of 27% per protein. Three biological replicates were performed, allowing statistical evaluation of the data and demonstrating a high degree of reproducibility in the SEC fractionation procedure. Specific proteins were detected interacting with multiple independent complexes, as typified by the separation of distinct complexes for the MRFAP1-MORF4L1-MRGBP interaction network. The data also revealed protein isoforms and post-translational modifications that selectively associated with distinct subsets of protein complexes. Surprisingly, there was clear enrichment for specific Gene Ontology terms associated with differential size classes of protein complexes. This study demonstrates that combined SEC/MS analysis can be used for the system-wide annotation of protein complexes and to predict potential isoform-specific interactions. All of these SEC data on the native separation of protein complexes have been integrated within the Encyclopedia of Proteome Dynamics, an online, multidimensional data-sharing resource available to the community. PMID:24043423

  9. Complex lasso: new entangled motifs in proteins

    NASA Astrophysics Data System (ADS)

    Niemyska, Wanda; Dabrowski-Tumanski, Pawel; Kadlof, Michal; Haglund, Ellinor; Sułkowski, Piotr; Sulkowska, Joanna I.

    2016-11-01

    We identify new entangled motifs in proteins that we call complex lassos. Lassos arise in proteins with disulfide bridges (or in proteins with amide linkages), when termini of a protein backbone pierce through an auxiliary surface of minimal area, spanned on a covalent loop. We find that as much as 18% of all proteins with disulfide bridges in a non-redundant subset of PDB form complex lassos, and classify them into six distinct geometric classes, one of which resembles supercoiling known from DNA. Based on biological classification of proteins we find that lassos are much more common in viruses, plants and fungi than in other kingdoms of life. We also discuss how changes in the oxidation/reduction potential may affect the function of proteins with lassos. Lassos and associated surfaces of minimal area provide new, interesting and possessing many potential applications geometric characteristics not only of proteins, but also of other biomolecules.

  10. Complex lasso: new entangled motifs in proteins

    PubMed Central

    Niemyska, Wanda; Dabrowski-Tumanski, Pawel; Kadlof, Michal; Haglund, Ellinor; Sułkowski, Piotr; Sulkowska, Joanna I.

    2016-01-01

    We identify new entangled motifs in proteins that we call complex lassos. Lassos arise in proteins with disulfide bridges (or in proteins with amide linkages), when termini of a protein backbone pierce through an auxiliary surface of minimal area, spanned on a covalent loop. We find that as much as 18% of all proteins with disulfide bridges in a non-redundant subset of PDB form complex lassos, and classify them into six distinct geometric classes, one of which resembles supercoiling known from DNA. Based on biological classification of proteins we find that lassos are much more common in viruses, plants and fungi than in other kingdoms of life. We also discuss how changes in the oxidation/reduction potential may affect the function of proteins with lassos. Lassos and associated surfaces of minimal area provide new, interesting and possessing many potential applications geometric characteristics not only of proteins, but also of other biomolecules. PMID:27874096

  11. Urea modified cottonseed protein adhesive for wood composite products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cottonseed protein has the potential to be used as renewable and environmentally friendly adhesives in wood products industry. However, the industry application was limited by its low mechanical properties, low water resistance and viscosity. In this work, urea modified cottonseed protein adhesive w...

  12. A Modified Tactile Brush Algorithm for Complex Touch Gestures

    SciTech Connect

    Ragan, Eric

    2015-01-01

    Several researchers have investigated phantom tactile sensation (i.e., the perception of a nonexistent actuator between two real actuators) and apparent tactile motion (i.e., the perception of a moving actuator due to time delays between onsets of multiple actuations). Prior work has focused primarily on determining appropriate Durations of Stimulation (DOS) and Stimulus Onset Asynchronies (SOA) for simple touch gestures, such as a single finger stroke. To expand upon this knowledge, we investigated complex touch gestures involving multiple, simultaneous points of contact, such as a whole hand touching the arm. To implement complex touch gestures, we modified the Tactile Brush algorithm to support rectangular areas of tactile stimulation.

  13. An allosteric role for receptor activity-modifying proteins in defining GPCR pharmacology

    PubMed Central

    J Gingell, Joseph; Simms, John; Barwell, James; Poyner, David R; Watkins, Harriet A; Pioszak, Augen A; Sexton, Patrick M; Hay, Debbie L

    2016-01-01

    G protein-coupled receptors are allosteric proteins that control transmission of external signals to regulate cellular response. Although agonist binding promotes canonical G protein signalling transmitted through conformational changes, G protein-coupled receptors also interact with other proteins. These include other G protein-coupled receptors, other receptors and channels, regulatory proteins and receptor-modifying proteins, notably receptor activity-modifying proteins (RAMPs). RAMPs have at least 11 G protein-coupled receptor partners, including many class B G protein-coupled receptors. Prototypic is the calcitonin receptor, with altered ligand specificity when co-expressed with RAMPs. To gain molecular insight into the consequences of this protein–protein interaction, we combined molecular modelling with mutagenesis of the calcitonin receptor extracellular domain, assessed in ligand binding and functional assays. Although some calcitonin receptor residues are universally important for peptide interactions (calcitonin, amylin and calcitonin gene-related peptide) in calcitonin receptor alone or with receptor activity-modifying protein, others have RAMP-dependent effects, whereby mutations decreased amylin/calcitonin gene-related peptide potency substantially only when RAMP was present. Remarkably, the key residues were completely conserved between calcitonin receptor and AMY receptors, and between subtypes of AMY receptor that have different ligand preferences. Mutations at the interface between calcitonin receptor and RAMP affected ligand pharmacology in a RAMP-dependent manner, suggesting that RAMP may allosterically influence the calcitonin receptor conformation. Supporting this, molecular dynamics simulations suggested that the calcitonin receptor extracellular N-terminal domain is more flexible in the presence of receptor activity-modifying protein 1. Thus, RAMPs may act in an allosteric manner to generate a spectrum of unique calcitonin receptor

  14. Complementary Proteomic Analysis of Protein Complexes

    PubMed Central

    Greco, Todd M.; Miteva, Yana; Conlon, Frank L.; Cristea, Ileana M.

    2013-01-01

    Proteomic characterization of protein complexes leverages the versatile platform of liquid chromatography-tandem mass spectrometry to elucidate molecular and cellular signaling processes underlying the dynamic regulation of macromolecular assemblies. Here, we describe a complementary proteomic approach optimized for immunoisolated protein complexes. As the relative complexity, abundance, and physiochemical properties of proteins can vary significantly between samples, we have provided (1) complementary sample preparation workflows, (2) detailed steps for HPLC and mass spectrometric method development, and (3) a bioinformatic workflow that provides confident peptide/protein identification paired with unbiased functional gene ontology analysis. This protocol can also be extended for characterization of larger complexity samples from whole cell or tissue Xenopus proteomes. PMID:22956100

  15. The claudin Megatrachea protein complex.

    PubMed

    Jaspers, Martin H J; Nolde, Kai; Behr, Matthias; Joo, Seol-hee; Plessmann, Uwe; Nikolov, Miroslav; Urlaub, Henning; Schuh, Reinhard

    2012-10-26

    Claudins are integral transmembrane components of the tight junctions forming trans-epithelial barriers in many organs, such as the nervous system, lung, and epidermis. In Drosophila three claudins have been identified that are required for forming the tight junctions analogous structure, the septate junctions (SJs). The lack of claudins results in a disruption of SJ integrity leading to a breakdown of the trans-epithelial barrier and to disturbed epithelial morphogenesis. However, little is known about claudin partners for transport mechanisms and membrane organization. Here we present a comprehensive analysis of the claudin proteome in Drosophila by combining biochemical and physiological approaches. Using specific antibodies against the claudin Megatrachea for immunoprecipitation and mass spectrometry, we identified 142 proteins associated with Megatrachea in embryos. The Megatrachea interacting proteins were analyzed in vivo by tissue-specific knockdown of the corresponding genes using RNA interference. We identified known and novel putative SJ components, such as the gene product of CG3921. Furthermore, our data suggest that the control of secretion processes specific to SJs and dependent on Sec61p may involve Megatrachea interaction with Sec61 subunits. Also, our findings suggest that clathrin-coated vesicles may regulate Megatrachea turnover at the plasma membrane similar to human claudins. As claudins are conserved both in structure and function, our findings offer novel candidate proteins involved in the claudin interactome of vertebrates and invertebrates.

  16. Mechanism-based strategies for trapping and crystallizing complexes of RNA-modifying enzymes.

    PubMed

    Guelorget, Amandine; Golinelli-Pimpaneau, Béatrice

    2011-03-09

    Posttranscriptional chemical modifications of RNA are maturation steps necessary for their correct functioning in translation during protein synthesis. Various structures of RNA-modifying enzymes complexed with RNA fragments or full-length tRNA have been obtained, mimicking several stages along the catalytic cycle such as initial RNA binding, covalent intermediate formation, or RNA-product binding. We summarize here the strategies that have been used to trap and crystallize these stable complexes. Absence of the cosubstrate transferring the chemical group leads to the Michaelis complex, whereas use of a cosubstrate analog to a ternary complex. 5-fluoro-pyrimidine-containing mini RNAs have been used as a general means to trap RNA m(5)U methyltransferase covalent complexes and RNA product/pseudouridine synthase complexes. Altogether, these structures have brought key information about enzyme/RNA recognition and highlighted the details of several catalytic steps of the reactions.

  17. Preparation and characterization modified chitosan by polyelectrolyte complexation

    NASA Astrophysics Data System (ADS)

    Zuhannisa, Nugraheni, Prihati Sih; Budhijanto, Wiratni; Kusumastuti, Yuni

    2017-03-01

    The polyelectrolyte complexes (PECs) of chitosan with various polysaccharides such as alginate, carrageenan, Arabic gum, carboxymethylcellulose (CMC), pectin, and glucomannan were prepared and characterized. The complexation was performed by addition of polysaccharide solution as crosslinking agent into chitosan solution (0.01% and 2 %) under magnetic stirring. The size of the obtained modified chitosan was analyzed by Particle Size Analyzer (PSA). The turbidity and pH were measured to observe the stability of the modified chitosan during the storage. The stability of the complexes was investigated at room temperature (37°C) for 3 weeks. The existence of glucomannan and arabic gum resulted PECs when it reacted with the chitosan solution using ratio 1:1. The changed crosslinker resulted a hydrogel after it blended. The obtained PECs could be affected by the ratio between chitosan and polysaccharide and the molecular weight of both polymers. The crosslinker concentration gave a significantly influenced the obtained particle size at the chitosan concentration 0.01 % and 2%.

  18. The heat-modifiable outer membrane protein of Actinobacillus actinomycetemcomitans: relationship to OmpA proteins.

    PubMed Central

    Wilson, M E

    1991-01-01

    The outer membrane of Actinobacillus actinomycetemcomitans contains a 29-kDa protein which exhibits heat modifiability on sodium dodecyl sulfate-polyacrylamide gels and represents a major target for immunoglobulin G antibody in sera of periodontitis patients colonized by this organism. In the present study, the N-terminal amino acid sequence of the 29-kDa outer membrane protein was determined and compared with reported sequences for other known proteins. The heat-modifiable outer membrane protein of A. actinomycetemcomitans was found to exhibit significant N-terminal homology with the OmpA proteins of other gram-negative bacteria. Moreover, this protein reacted with antiserum raised against the purified OmpA protein of Escherichia coli K-12. Whether the heat-modifiable OMP of A. actinomycetemcomitans also shares functional properties of OmpA proteins, particularly with respect to bacteriophage receptor activity, is presently under investigation. Images PMID:2050416

  19. Proteomics: bases for protein complexity understanding.

    PubMed

    Rotilio, Domenico; Della Corte, Anna; D'Imperio, Marco; Coletta, Walter; Marcone, Simone; Silvestri, Cristian; Giordano, Lucia; Di Michele, Michela; Donati, Maria Benedetta

    2012-03-01

    In the post genomic era we became aware that the genomic sequence and protein functions cannot be correlated. One gene can encode multiple protein functions mainly because of mRNA splice variants, post translational modifications (PTM) and moonlighting functions. To study the whole population of proteins present in a cell to a specific time point and under defined conditions it is necessary to investigate the proteome. Comprehensive analysis of the proteome requires the use of emerging high technologies because of the complexity and wide dynamic range of protein concentrations. Proteomics provides the tools to study protein identification and quantitation, protein-protein interactions, protein modifications and localization. The most widespread strategy for studying global protein expression employs two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) allowing thousands of proteins to be resolved and their expression quantified. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) has emerged as a high throughput technique for protein identification and characterization because of its high sensitivity, precision and accuracy. LC-MS/MS is well suited for accurate quantitation of protein expression levels, post-translational modifications and comparative and absolute quantitative analysis of peptides. Bioinformatic tools are required to elaborate the growing number of proteomic data. Here, we give an overview of the current status of the wide range of technologies that define and characterize the modern proteomics.

  20. Defective Expression of the Mitochondrial-tRNA Modifying Enzyme GTPBP3 Triggers AMPK-Mediated Adaptive Responses Involving Complex I Assembly Factors, Uncoupling Protein 2, and the Mitochondrial Pyruvate Carrier

    PubMed Central

    Esteve, Juan M.; Villarroya, Magda; Aguado, Carmen; Enríquez, J. Antonio; Knecht, Erwin; Armengod, M.-Eugenia

    2015-01-01

    GTPBP3 is an evolutionary conserved protein presumably involved in mitochondrial tRNA (mt-tRNA) modification. In humans, GTPBP3 mutations cause hypertrophic cardiomyopathy with lactic acidosis, and have been associated with a defect in mitochondrial translation, yet the pathomechanism remains unclear. Here we use a GTPBP3 stable-silencing model (shGTPBP3 cells) for a further characterization of the phenotype conferred by the GTPBP3 defect. We experimentally show for the first time that GTPBP3 depletion is associated with an mt-tRNA hypomodification status, as mt-tRNAs from shGTPBP3 cells were more sensitive to digestion by angiogenin than tRNAs from control cells. Despite the effect of stable silencing of GTPBP3 on global mitochondrial translation being rather mild, the steady-state levels and activity of Complex I, and cellular ATP levels were 50% of those found in the controls. Notably, the ATPase activity of Complex V increased by about 40% in GTPBP3 depleted cells suggesting that mitochondria consume ATP to maintain the membrane potential. Moreover, shGTPBP3 cells exhibited enhanced antioxidant capacity and a nearly 2-fold increase in the uncoupling protein UCP2 levels. Our data indicate that stable silencing of GTPBP3 triggers an AMPK-dependent retrograde signaling pathway that down-regulates the expression of the NDUFAF3 and NDUFAF4 Complex I assembly factors and the mitochondrial pyruvate carrier (MPC), while up-regulating the expression of UCP2. We also found that genes involved in glycolysis and oxidation of fatty acids are up-regulated. These data are compatible with a model in which high UCP2 levels, together with a reduction in pyruvate transport due to the down-regulation of MPC, promote a shift from pyruvate to fatty acid oxidation, and to an uncoupling of glycolysis and oxidative phosphorylation. These metabolic alterations, and the low ATP levels, may negatively affect heart function. PMID:26642043

  1. Chitinase modifying proteins from phylogenetically distinct lineages of Brassica pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chitinase modifying proteins (CMPs) are secreted fungal proteases that truncate specific plant class IV chitinases by cleaving peptide bonds in their amino termini. We recently identified a CMP from the Zea mays (maize) pathogen Fusarium verticillioides and found that it is a member of the fungalysi...

  2. Protein-protein interactions in the synaptonemal complex.

    PubMed Central

    Tarsounas, M; Pearlman, R E; Gasser, P J; Park, M S; Moens, P B

    1997-01-01

    In mammalian systems, an approximately M(r) 30,000 Cor1 protein has been identified as a major component of the meiotic prophase chromosome cores, and a M(r) 125,000 Syn1 protein is present between homologue cores where they are synapsed and form the synaptonemal complex (SC). Immunolocalization of these proteins during meiosis suggests possible homo- and heterotypic interactions between the two as well as possible interactions with yet unrecognized proteins. We used the two-hybrid system in the yeast Saccharomyces cerevisiae to detect possible protein-protein associations. Segments of hamsters Cor1 and Syn1 proteins were tested in various combinations for homo- and heterotypic interactions. In the cause of Cor1, homotypic interactions involve regions capable of coiled-coil formation, observation confirmed by in vitro affinity coprecipitation experiments. The two-hybrid assay detects no interaction of Cor1 protein with central and C-terminal fragments of Syn1 protein and no homotypic interactions involving these fragments of Syn1. Hamster Cor1 and Syn1 proteins both associate with the human ubiquitin-conjugation enzyme Hsubc9 as well as with the hamster Ubc9 homologue. The interactions between SC proteins and the Ubc9 protein may be significant for SC disassembly, which coincides with the repulsion of homologs by late prophase I, and also for the termination of sister centromere cohesiveness at anaphase II. Images PMID:9285814

  3. Presence of hypochlorite-modified proteins in human atherosclerotic lesions.

    PubMed Central

    Hazell, L J; Arnold, L; Flowers, D; Waeg, G; Malle, E; Stocker, R

    1996-01-01

    Oxidation of LDL may contribute to atherogenesis, though the nature of the in vivo oxidant(s) remains obscure. Myeloperoxidase, the enzyme responsible for hypochlorous acid/hypochlorite (HOCl) production in vivo, is present in active form in human atherosclerotic lesions, and HOCl aggregates and transforms LDL into a high-uptake form for macrophages in vitro. Here we demonstrate HOCl-modified proteins in human lesions using an mAb raised against HOCl-modified LDL that recognizes HOCl-oxidized proteins but does not cross-react with Cu2+-, malondialdehyde-, or 4-hydroxynonenal-modified LDL. This antibody detected significantly more material in advanced atherosclerotic lesions than normal arteries, even though azide and methionine were included during sample work-up to inhibit myeloperoxidase and to scavenge HOCl. The epitope(s) recognized was predominantly cell associated and present in monocyte/macrophages, smooth muscle, and endothelial cells. The intima and cholesterol clefts stained more heavily than the center of the thickened vessels; adventitial staining was apparent in some cases. Immunostaining was also detected in a very early lesion from an accident victim, beside healthy areas that were unreactive. LDL oxidized by HOCl in vitro, but not native LDL, effectively competed with the epitopes in lesions for antibody binding. Density centrifugation of plaque homogenates and Western blot analysis showed that, in the apo B-containing lipoprotein fraction, the mAb recognized protein(s) of molecular mass greater than apo B, similar to those produced during oxidation of LDL with HOCl in vitro. Three major proteins were recognized by the anti-HOCl-modified protein antibody but not by an anti-apo B antibody in the apo B-free fraction. Together, these results demonstrate HOCl-oxidized proteins in human atherosclerotic lesions, implicating this oxidant in LDL modification in vivo. PMID:8617887

  4. A lycopene β-cyclase/lycopene ε-cyclase/light-harvesting complex-fusion protein from the green alga Ostreococcus lucimarinus can be modified to produce α-carotene and β-carotene at different ratios.

    PubMed

    Blatt, Andreas; Bauch, Matthias E; Pörschke, Yvonne; Lohr, Martin

    2015-05-01

    Biosynthesis of asymmetric carotenoids such as α-carotene and lutein in plants and green algae involves the two enzymes lycopene β-cyclase (LCYB) and lycopene ε-cyclase (LCYE). The two cyclases are closely related and probably resulted from an ancient gene duplication. While in most plants investigated so far the two cyclases are encoded by separate genes, prasinophyte algae of the order Mamiellales contain a single gene encoding a fusion protein comprised of LCYB, LCYE and a C-terminal light-harvesting complex (LHC) domain. Here we show that the lycopene cyclase fusion protein from Ostreococcus lucimarinus catalyzed the simultaneous formation of α-carotene and β-carotene when heterologously expressed in Escherichia coli. The stoichiometry of the two products in E. coli could be altered by gradual truncation of the C-terminus, suggesting that the LHC domain may be involved in modulating the relative activities of the two cyclase domains in the algae. Partial deletions of the linker region between the cyclase domains or replacement of one or both cyclase domains with the corresponding cyclases from the green alga Chlamydomonas reinhardtii resulted in pronounced shifts of the α-carotene-to-β-carotene ratio, indicating that both the relative activities of the cyclase domains and the overall structure of the fusion protein have a strong impact on the product stoichiometry. The possibility to tune the product ratio of the lycopene cyclase fusion protein from Mamiellales renders it useful for the biotechnological production of the asymmetric carotenoids α-carotene or lutein in bacteria or fungi.

  5. Chemical and Biological Tools for the Preparation of Modified Histone Proteins

    PubMed Central

    Howard, Cecil J.; Yu, Ruixuan R.; Gardner, Miranda L.; Shimko, John C.; Ottesen, Jennifer J.

    2016-01-01

    Eukaryotic chromatin is a complex and dynamic system in which the DNA double helix is organized and protected by interactions with histone proteins. This system is regulated through, a large network of dynamic post-translational modifications (PTMs) exists to ensure proper gene transcription, DNA repair, and other processes involving DNA. Homogenous protein samples with precisely characterized modification sites are necessary to better understand the functions of modified histone proteins. Here, we discuss sets of chemical and biological tools that have been developed for the preparation of modified histones, with a focus on the appropriate choice of tool for a given target. We start with genetic approaches for the creation of modified histones, including the incorporation of genetic mimics of histone modifications, chemical installation of modification analogs, and the use of the expanded genetic code to incorporate modified amino acids. Additionally, we will cover the chemical ligation techniques that have been invaluable in the generation of complex modified histones that are indistinguishable from the natural counterparts. Finally, we will end with a prospectus on future directions of synthetic chromatin in living systems. PMID:25863817

  6. Protein-modified nanocrystalline diamond thin films for biosensor applications

    NASA Astrophysics Data System (ADS)

    Härtl, Andreas; Schmich, Evelyn; Garrido, Jose A.; Hernando, Jorge; Catharino, Silvia C. R.; Walter, Stefan; Feulner, Peter; Kromka, Alexander; Steinmüller, Doris; Stutzmann, Martin

    2004-10-01

    Diamond exhibits several special properties, for example good biocompatibility and a large electrochemical potential window, that make it particularly suitable for biofunctionalization and biosensing. Here we show that proteins can be attached covalently to nanocrystalline diamond thin films. Moreover, we show that, although the biomolecules are immobilized at the surface, they are still fully functional and active. Hydrogen-terminated nanocrystalline diamond films were modified by using a photochemical process to generate a surface layer of amino groups, to which proteins were covalently attached. We used green fluorescent protein to reveal the successful coupling directly. After functionalization of nanocrystalline diamond electrodes with the enzyme catalase, a direct electron transfer between the enzyme's redox centre and the diamond electrode was detected. Moreover, the modified electrode was found to be sensitive to hydrogen peroxide. Because of its dual role as a substrate for biofunctionalization and as an electrode, nanocrystalline diamond is a very promising candidate for future biosensor applications.

  7. Quantification of Detergents Complexed with Membrane Proteins

    PubMed Central

    Chaptal, Vincent; Delolme, Frédéric; Kilburg, Arnaud; Magnard, Sandrine; Montigny, Cédric; Picard, Martin; Prier, Charlène; Monticelli, Luca; Bornert, Olivier; Agez, Morgane; Ravaud, Stéphanie; Orelle, Cédric; Wagner, Renaud; Jawhari, Anass; Broutin, Isabelle; Pebay-Peyroula, Eva; Jault, Jean-Michel; Kaback, H. Ronald; le Maire, Marc; Falson, Pierre

    2017-01-01

    Most membrane proteins studies require the use of detergents, but because of the lack of a general, accurate and rapid method to quantify them, many uncertainties remain that hamper proper functional and structural data analyses. To solve this problem, we propose a method based on matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS) that allows quantification of pure or mixed detergents in complex with membrane proteins. We validated the method with a wide variety of detergents and membrane proteins. We automated the process, thereby allowing routine quantification for a broad spectrum of usage. As a first illustration, we show how to obtain information of the amount of detergent in complex with a membrane protein, essential for liposome or nanodiscs reconstitutions. Thanks to the method, we also show how to reliably and easily estimate the detergent corona diameter and select the smallest size, critical for favoring protein-protein contacts and triggering/promoting membrane protein crystallization, and to visualize the detergent belt for Cryo-EM studies. PMID:28176812

  8. Peroxisome protein import: a complex journey

    PubMed Central

    Baker, Alison; Hogg, Thomas Lanyon; Warriner, Stuart L.

    2016-01-01

    The import of proteins into peroxisomes possesses many unusual features such as the ability to import folded proteins, and a surprising diversity of targeting signals with differing affinities that can be recognized by the same receptor. As understanding of the structure and function of many components of the protein import machinery has grown, an increasingly complex network of factors affecting each step of the import pathway has emerged. Structural studies have revealed the presence of additional interactions between cargo proteins and the PEX5 receptor that affect import potential, with a subtle network of cargo-induced conformational changes in PEX5 being involved in the import process. Biochemical studies have also indicated an interdependence of receptor–cargo import with release of unloaded receptor from the peroxisome. Here, we provide an update on recent literature concerning mechanisms of protein import into peroxisomes. PMID:27284042

  9. New Anthocyanin-Human Salivary Protein Complexes.

    PubMed

    Ferrer-Gallego, Raúl; Soares, Susana; Mateus, Nuno; Rivas-Gonzalo, Julián; Escribano-Bailón, M Teresa; de Freitas, Victor

    2015-08-04

    The interaction between phenolic compounds and salivary proteins is considered the basis of the poorly understood phenomenon of astringency. Furthermore, this interaction is an important factor in relation to their bioavailability. In this work, interactions between anthocyanin and human salivary protein fraction were studied by mass spectrometry (MALDI-TOF-MS and FIA-ESI-MS) and saturation-transfer difference (STD) NMR spectroscopy. Anthocyanins were able to interact with saliva proteins. The dissociation constant (KD) between malvidin 3-glucoside and salivary proline-rich proteins was 1.92 mM for the hemiketal form (pH 3.4) and 1.83 mM for the flavylium cation (pH 1.0). New soluble complexes between these salivary proteins and malvidin 3-glucoside were identified for the first time.

  10. Competitive Protein Adsorption on Polysaccharide and Hyaluronate Modified Surfaces

    PubMed Central

    Ombelli, Michela; Costello, Lauren; Postle, Corinne; Anantharaman, Vinod; Meng, Qing Cheng; Composto, Russell J.; Eckmann, David M.

    2011-01-01

    We measured adsorption of bovine serum albumin (BSA) and fibrinogen (Fg) onto six distinct bare and dextran- and hyaluronate-modified silicon surfaces created using two dextran grafting densities and three hyaluronic acid (HA) sodium salts derived from human umbilical cord, rooster comb and streptococcus zooepidemicus. Film thickness and surface morphology depended on HA molecular weight and concentration. BSA coverage was enhanced on surfaces upon competitive adsorption of BSA:Fg mixtures. Dextranization differentially reduced protein adsorption onto surfaces based on oxidation state. Hyaluronization was demonstrated to provide the greatest resistance to protein coverage, equivalent to that of the most resistant dextranized surface. Resistance to protein adsorption was independent of the type of hyaluronic acid utilized. With changing bulk protein concentration from 20 to 40 µg ml−1 for each species, Fg coverage on silicon increased by 4×, whereas both BSA and Fg adsorption on dextran and HA were far less dependent of protein bulk concentration. PMID:21623481

  11. Assembly reflects evolution of protein complexes.

    PubMed

    Levy, Emmanuel D; Boeri Erba, Elisabetta; Robinson, Carol V; Teichmann, Sarah A

    2008-06-26

    A homomer is formed by self-interacting copies of a protein unit. This is functionally important, as in allostery, and structurally crucial because mis-assembly of homomers is implicated in disease. Homomers are widespread, with 50-70% of proteins with a known quaternary state assembling into such structures. Despite their prevalence, their role in the evolution of cellular machinery and the potential for their use in the design of new molecular machines, little is known about the mechanisms that drive formation of homomers at the level of evolution and assembly in the cell. Here we present an analysis of over 5,000 unique atomic structures and show that the quaternary structure of homomers is conserved in over 70% of protein pairs sharing as little as 30% sequence identity. Where quaternary structure is not conserved among the members of a protein family, a detailed investigation revealed well-defined evolutionary pathways by which proteins transit between different quaternary structure types. Furthermore, we show by perturbing subunit interfaces within complexes and by mass spectrometry analysis, that the (dis)assembly pathway mimics the evolutionary pathway. These data represent a molecular analogy to Haeckel's evolutionary paradigm of embryonic development, where an intermediate in the assembly of a complex represents a form that appeared in its own evolutionary history. Our model of self-assembly allows reliable prediction of evolution and assembly of a complex solely from its crystal structure.

  12. Hsp70 Protein Complexes as Drug Targets

    PubMed Central

    Assimon, Victoria A.; Gillies, Anne T.; Rauch, Jennifer N.; Gestwicki, Jason E.

    2013-01-01

    Heat shock protein 70 (Hsp70) plays critical roles in proteostasis and is an emerging target for multiple diseases. However, competitive inhibition of the enzymatic activity of Hsp70 has proven challenging and, in some cases, may not be the most productive way to redirect Hsp70 function. Another approach is to inhibit Hsp70’s interactions with important co-chaperones, such as J proteins, nucleotide exchange factors (NEFs) and tetratricopeptide repeat (TPR) domain-containing proteins. These co-chaperones normally bind Hsp70 and guide its many diverse cellular activities. Complexes between Hsp70 and co-chaperones have been shown to have specific functions, such as pro-folding, pro-degradation and pro-trafficking. Thus, a promising strategy may be to block protein-protein interactions between Hsp70 and its co-chaperones or to target allosteric sites that disrupt these contacts. Such an approach might shift the balance of Hsp70 complexes and re-shape the proteome and it has the potential to restore healthy proteostasis. In this review, we discuss specific challenges and opportunities related to those goals. By pursuing Hsp70 complexes as drug targets, we might not only develop new leads for therapeutic development, but also discover new chemical probes for use in understanding Hsp70 biology. PMID:22920901

  13. Hsp70 protein complexes as drug targets.

    PubMed

    Assimon, Victoria A; Gillies, Anne T; Rauch, Jennifer N; Gestwicki, Jason E

    2013-01-01

    Heat shock protein 70 (Hsp70) plays critical roles in proteostasis and is an emerging target for multiple diseases. However, competitive inhibition of the enzymatic activity of Hsp70 has proven challenging and, in some cases, may not be the most productive way to redirect Hsp70 function. Another approach is to inhibit Hsp70's interactions with important co-chaperones, such as J proteins, nucleotide exchange factors (NEFs) and tetratricopeptide repeat (TPR) domain-containing proteins. These co-chaperones normally bind Hsp70 and guide its many diverse cellular activities. Complexes between Hsp70 and co-chaperones have been shown to have specific functions, including roles in pro-folding, pro-degradation and pro-trafficking pathways. Thus, a promising strategy may be to block protein- protein interactions between Hsp70 and its co-chaperones or to target allosteric sites that disrupt these contacts. Such an approach might shift the balance of Hsp70 complexes and re-shape the proteome and it has the potential to restore healthy proteostasis. In this review, we discuss specific challenges and opportunities related to these goals. By pursuing Hsp70 complexes as drug targets, we might not only develop new leads for therapeutic development, but also discover new chemical probes for use in understanding Hsp70 biology.

  14. Characterization of protein complexes using targeted proteomics.

    PubMed

    Gomez, Yassel Ramos; Gallien, Sebastien; Huerta, Vivian; van Oostrum, Jan; Domon, Bruno; Gonzalez, Luis Javier

    2014-01-01

    Biological systems are not only controlled by the abundance of individual proteins, but also by the formation of complexes and the dynamics of protein-protein interactions. The identification of the components of protein complexes can be obtained by shotgun proteomics using affinity purification coupled to mass spectrometry. Such studies include the analyses of several samples and experimental controls in order to discriminate true specific interactions from unspecific interactions and contaminants. However, shotgun proteomics have limited quantification capabilities for low abundant proteins on large sample sets due to the undersampling and the stochastic precursor ion selection. In this context, targeted proteomics constitutes a powerful analytical tool to systematically detect and quantify peptides in multiple samples, for instance those obtained from affinity purification experiments. Hypothesis-driven strategies have mainly relied on the selected reaction monitoring (SRM) technique performed on triple quadrupole instruments, which enables highly selective and sensitive measurements of peptides, acting as surrogates of the pre-selected proteins, over a wide range of concentrations. More recently, novel quantitative methods based on high resolution instruments, such as the parallel reaction monitoring (PRM) technique implemented on the quadrupole-orbitrap instrument, have arisen and provided alternatives to perform quantitative analyses with enhanced selectivity.The application of targeted proteomics to protein-protein interaction experiments from plasma and other physiological fluid samples and the inclusion of parallel reaction monitoring (PRM), combined with other recent technology developments opens a vast area for clinical application of proteomics. It is anticipated that it will reveal valuable information about specific, individual, responses against drugs, exogenous proteins or pathogens.

  15. Interaction graph mining for protein complexes using local clique merging.

    PubMed

    Li, Xiao-Li; Tan, Soon-Heng; Foo, Chuan-Sheng; Ng, See-Kiong

    2005-01-01

    While recent technological advances have made available large datasets of experimentally-detected pairwise protein-protein interactions, there is still a lack of experimentally-determined protein complex data. To make up for this lack of protein complex data, we explore the mining of existing protein interaction graphs for protein complexes. This paper proposes a novel graph mining algorithm to detect the dense neighborhoods (highly connected regions) in an interaction graph which may correspond to protein complexes. Our algorithm first locates local cliques for each graph vertex (protein) and then merge the detected local cliques according to their affinity to form maximal dense regions. We present experimental results with yeast protein interaction data to demonstrate the effectiveness of our proposed method. Compared with other existing techniques, our predicted complexes can match or overlap significantly better with the known protein complexes in the MIPS benchmark database. Novel protein complexes were also predicted to help biologists in their search for new protein complexes.

  16. Identification of Proteins that Modify Cataract of the Eye Lens

    PubMed Central

    Hoehenwarter, Wolfgang; Tang, Yajun; Ackermann, Renate; Pleissner, Klaus-Peter; Schmid, Monika; Stein, Robert; Zimny-Arndt, Ursula; Kumar, Nalin M.; Jungblut, Peter R.

    2010-01-01

    The occurrence of a nuclear cataract in the eye lens due to disruption of theα3Cx46 connexin gene, Gja3, is dependent on strain background in a mouse model, implicating factors that modify the pathology. The differences upon cataractogenesis in the urea soluble proteins of the lens of two mouse strains, C57BL/6J and 129/SvJ, were analyzed by a comparative proteomics approach. Determination of the complete proteome of an organ offers the opportunity to characterize at a molecular level, differences in gene expression and post-translational modifications occurring during pathology and between individuals. The abundance of 63 protein species was altered between the strains. A unique aspect of this study is the identification of chaperonin subunit 6A, mortalin, ERp29 and syntaxin binding protein 6 in the eye lens. DNA polymorphisms resulting in non-conservative amino acid changes that led to altered physicochemical properties of the proteins were detected for mortalin, chaperonin subunit 6A, annexin A1 and possibly gamma N crystallin. The results show HSP27/25 and/or ERp29 are the likely major modifying factors for cataractogenesis. Extension of the results suggests that small heat shock proteins have a major role for influencing cataract formation in humans. PMID:19003866

  17. Identification of proteins that modify cataract of mouse eye lens.

    PubMed

    Hoehenwarter, Wolfgang; Tang, Yajun; Ackermann, Renate; Pleissner, Klaus-Peter; Schmid, Monika; Stein, Robert; Zimny-Arndt, Ursula; Kumar, Nalin M; Jungblut, Peter R

    2008-12-01

    The occurrence of a nuclear cataract in the eye lens due to disruption of the alpha3Cx46 connexin gene, Gja3, is dependent on strain background in a mouse model, implicating factors that modify the pathology. The differences upon cataractogenesis in the urea soluble proteins of the lens of two mouse strains, C57BL/6J and 129/SvJ, were analyzed by a comparative proteomics approach. Determination of the complete proteome of an organ offers the opportunity to characterize at a molecular level, differences in gene expression and PTMs occurring during pathology and between individuals. The abundance of 63 protein species was altered between the strains. A unique aspect of this study is the identification of chaperonin subunit 6A, mortalin, ERp29, and syntaxin-binding protein 6 in the eye lens. DNA polymorphisms resulting in nonconservative amino acid changes that led to altered physicochemical properties of the proteins were detected for mortalin, chaperonin subunit 6A, annexin A1, and possibly gamma-N crystallin. The results show HSP27/25 and/or ERp29 are the likely major modifying factors for cataractogenesis. Extension of the results suggests that small heat-shock proteins have a major role for influencing cataract formation in humans.

  18. The importance of lipid modified proteins in plants.

    PubMed

    Hemsley, Piers A

    2015-01-01

    Membranes have long been known to act as more than physical barriers within and between plant cells. Trafficking of membrane proteins, signalling from and across membranes, organisation of membranes and transport through membranes are all essential processes for plant cellular function. These processes rely on a myriad array of proteins regulated in a variety of manners and are frequently required to be directly associated with membranes. For integral membrane proteins, the mode of membrane association is readily apparent, but many peripherally associated membrane proteins are outwardly soluble proteins. In these cases the proteins are frequently modified by the addition of lipids allowing direct interaction with the hydrophobic core of membranes. These modifications include N-myristoylation, S-acylation (palmitoylation), prenylation and GPI anchors but until recently little was truly known about their function in plants. New data suggest that these modifications are able to act as more than just membrane anchors, and dynamic S-acylation in particular is emerging as a means of regulating protein function in a similar manner to phosphorylation. This review discusses how these modifications occur, their impact on protein function, how they are regulated, recent advances in the field and technical approaches for studying these modifications.

  19. 40 CFR 721.10089 - Modified salicylic acid, zirconium complex (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Modified salicylic acid, zirconium... Specific Chemical Substances § 721.10089 Modified salicylic acid, zirconium complex (generic). (a) Chemical... as modified salicylic acid, zirconium complex (PMN P-00-552) is subject to reporting under...

  20. 40 CFR 721.10089 - Modified salicylic acid, zirconium complex (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Modified salicylic acid, zirconium... Specific Chemical Substances § 721.10089 Modified salicylic acid, zirconium complex (generic). (a) Chemical... as modified salicylic acid, zirconium complex (PMN P-00-552) is subject to reporting under...

  1. 40 CFR 721.10089 - Modified salicylic acid, zirconium complex (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Modified salicylic acid, zirconium... Specific Chemical Substances § 721.10089 Modified salicylic acid, zirconium complex (generic). (a) Chemical... as modified salicylic acid, zirconium complex (PMN P-00-552) is subject to reporting under...

  2. 40 CFR 721.10089 - Modified salicylic acid, zirconium complex (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Modified salicylic acid, zirconium... Specific Chemical Substances § 721.10089 Modified salicylic acid, zirconium complex (generic). (a) Chemical... as modified salicylic acid, zirconium complex (PMN P-00-552) is subject to reporting under...

  3. 40 CFR 721.10089 - Modified salicylic acid, zirconium complex (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified salicylic acid, zirconium... Specific Chemical Substances § 721.10089 Modified salicylic acid, zirconium complex (generic). (a) Chemical... as modified salicylic acid, zirconium complex (PMN P-00-552) is subject to reporting under...

  4. Affinity filtration coupled with capillary-based affinity purification for the isolation of protein complexes.

    PubMed

    Qureshi, M S; Sheikh, Q I; Hill, R; Brown, P E; Dickman, M J; Tzokov, S B; Rice, D W; Gjerde, D T; Hornby, D P

    2013-08-01

    The isolation of complex macromolecular assemblies at the concentrations required for structural analysis represents a major experimental challenge. Here we present a method that combines the genetic power of site-specific recombination in order to selectively "tag" one or more components of a protein complex with affinity-based rapid filtration and a final step of capillary-based enrichment. This modified form of tandem affinity purification produces highly purified protein complexes at high concentrations in a highly efficient manner. The application of the method is demonstrated for the yeast Arp2/3 heptameric protein complex involved in mediating reorganization of the actin cytoskeleton.

  5. Thermodynamics of interfacial changes in a protein-protein complex.

    PubMed

    Das, Amit; Chakrabarti, Jaydeb; Ghosh, Mahua

    2014-03-04

    Recent experiments with biomacromolecular complexes suggest that structural modifications at the interfaces are vital for stability of the complexes and the functions of the biomacromolecules. Although several qualitative aspects about such interfaces are known from structural data, quantification of the interfacial changes is lacking. In this work, we study the thermodynamic changes at the interface in the complex between an enzyme, Nuclease A (NucA), and a specific inhibitor protein, NuiA. We calculate the conformational free energy and conformational entropy costs from histograms of the dihedral angles generated from all-atom molecular dynamics simulations on the complex and the free proteins. We extract the conformational thermodynamic parameters for changes in the tertiary structure of NuiA. We show that the binding is dominated by the interfacial changes, where the basic residues of NucA and acidic residues of NuiA are highly ordered and stabilized via strong electrostatic interactions. Our results correlate well with known information from structural studies. The tight interfacial structure is reflected in the significant changes in the structure and dynamics of the water molecules at the enzyme-inhibitor interface. The interfacial water molecules contribute significantly to the entropy loss for the overall complexation.

  6. Modified Scaled Hierarchical Equation of Motion Approach for the Study of Quantum Coherence in Photosynthetic Complexes

    SciTech Connect

    Zhu, J.; Kais, S.; Rebentrost, P.; Aspuru-Guzik, Alan

    2011-02-17

    We present a detailed theoretical study of the transfer of electronic excitation energy through the Fenna-Matthews-Olson (FMO) pigment-protein complex, using the newly developed modified scaled hierarchical approach (Shi, Q.; et al. J. Chem. Phys.2009, 130, 084105). We show that this approach is computationally more efficient than the original hierarchical approach. The modified approach reduces the truncation levels of the auxiliary density operators and the correlation function. We provide a systematic study of how the number of auxiliary density operators and the higher-order correlation functions affect the exciton dynamics. The time scales of the coherent beating are consistent with experimental observations. Furthermore, our theoretical results exhibit population beating at physiological temperature. Additionally, the method does not require a low-temperature correction to obtain the correct thermal equilibrium at long times.

  7. Preparation of Modified Films with Protein from Grouper Fish

    PubMed Central

    Tecante, A.; Granados-Navarrete, S.; Martínez-García, C.

    2016-01-01

    A protein concentrate (PC) was obtained from Grouper fish skin and it was used to prepare films with different amounts of sorbitol and glycerol as plasticizers. The best performing films regarding resistance were then modified with various concentrations of CaCl2, CaSO4 (calcium salts), and glucono-δ-lactone (GDL) with the purpose of improving their mechanical and barrier properties. These films were characterized by determining their mechanical properties and permeability to water vapor and oxygen. Formulations with 5% (w/v) protein and 75% sorbitol and 4% (w/v) protein with a mixture of 15% glycerol and 15% sorbitol produced adequate films. Calcium salts and GDL increased the tensile fracture stress but reduced the fracture strain and decreased water vapor permeability compared with control films. The films prepared represent an attractive alternative for being used as food packaging materials. PMID:27597950

  8. Structural insights into yeast histone chaperone Hif1: a scaffold protein recruiting protein complexes to core histones.

    PubMed

    Liu, Hejun; Zhang, Mengying; He, Wei; Zhu, Zhongliang; Teng, Maikun; Gao, Yongxiang; Niu, Liwen

    2014-09-15

    Yeast Hif1 [Hat1 (histone acetyltransferase 1)-interacting factor], a homologue of human NASP (nuclear autoantigenic sperm protein), is a histone chaperone that is involved in various protein complexes which modify histones during telomeric silencing and chromatin reassembly. For elucidating the structural basis of Hif1, in the present paper we demonstrate the crystal structure of Hif1 consisting of a superhelixed TPR (tetratricopeptide repeat) domain and an extended acid loop covering the rear of TPR domain, which represent typical characteristics of SHNi-TPR [Sim3 (start independent of mitosis 3)-Hif1-NASP interrupted TPR] proteins. Our binding assay indicates that Hif1 could bind to the histone octamer via histones H3 and H4. The acid loop is shown to be crucial for the binding of histones and may also change the conformation of the TPR groove. By binding to the core histone complex Hif1 may recruit functional protein complexes to modify histones during chromatin reassembly.

  9. Genetically modified photosynthetic antenna complexes with blueshifted absorbance bands.

    PubMed

    Fowler, G J; Visschers, R W; Grief, G G; van Grondelle, R; Hunter, C N

    1992-02-27

    Light energy for photosynthesis is collected by the antenna system, creating an excited state which migrates energetically 'downhill'. To achieve efficient migration of energy the antenna is populated with a series of pigments absorbing at progressively redshifted wavelengths. This variety in absorbing species in vivo has been created in a biosynthetically economical fashion by modulating the absorbance behaviour of one kind of (bacterio)chlorophyll molecule. This modulation is poorly understood but has been ascribed to pigment-pigment and pigment-protein interactions. We have examined the relationship between aromatic residues in antenna polypeptides and pigment absorption, by studying the effects of site-directed mutagenesis on a bacterial antenna complex. A clear correlation was observed between the absorbance of bacteriochlorophyll a and the presence of two tyrosine residues, alpha Tyr44 and alpha Tyr45, in the alpha subunit of the peripheral light-harvesting complex of Rhodobacter sphaeroides, a purple photosynthetic bacterium that provides a well characterized system for site-specific mutagenesis. By constructing single (alpha Tyr44, alpha Tyr45----PheTyr) and then double (alpha Tyr44, alpha Tyr45----PheLeu) site-specific mutants, the absorbance of bacteriochlorophyll was blueshifted by 11 and 24 nm at 77 K, respectively. The results suggest that there is a close approach of tyrosine residues to bacteriochlorophyll, and that this proximity may promote redshifts in vivo.

  10. Proteomic analysis of 4-hydroxynonenal and nitrotyrosine modified proteins in RTT fibroblasts.

    PubMed

    Pecorelli, Alessandra; Cervellati, Carlo; Cortelazzo, Alessio; Cervellati, Franco; Sticozzi, Claudia; Mirasole, Cristiana; Guerranti, Roberto; Trentini, Alessandro; Zolla, Lello; Savelli, Vinno; Hayek, Joussef; Valacchi, Giuseppe

    2016-12-01

    Rett syndrome (RTT) is a pervasive developmental disorder, primarily affecting girls with a prevalence of 1 in every 10,000 births. A clear etiological factor present in more than 90% of classical RTT cases is the mutation of the gene encoding methyl-CpG-binding protein 2 (MECP2). Recent work from our group was able to shown a systemic oxidative stress (OxS) in these patients that correlates with the gravity of the clinical features. Using freshly isolated skin fibroblasts from RTT patients and healthy subjects, we have performed a two-dimensional gel electrophoresis in order to evidence the oxidative modifications of proteins with special focus on the formation of protein adducts with 4-hydroxynonenal (4-HNE PAs)-a major secondary product of lipid peroxidation- and Nitrotyrosine, a marker derived from the biochemical interaction of nitric oxide (NO) or nitric oxide-derived secondary products with reactive oxygen species (ROS). Then, oxidatively modified spots were identified by mass spectrometry, LC-ESI-CID-MS/MS. Our results showed that 15 protein spots presented 4-HNE PAs and/or nitrotyrosine adducts in fibroblasts proteome from RTT patients compared to healthy control cells. Post-translationally modified proteins were related to several functional categories, in particular to cytoskeleton structure and protein folding. In addition, clear upregulated expression of the inducible NO synthase (iNOS) with high nitrite levels were observed in RTT fibroblasts, justifying the increased nitrotyrosine protein modifications. The present work describes not only the proteomic profile in RTT fibroblasts, but also identifies the modified proteins by 4-HNE and nitrotyrosine. Of note, for the first time, it appears that a dysregulation of NO pathway can be associated to RTT pathophysiology. In conclusion, the evidence of a wide range of proteins able to forms adducts with 4-HNE, Nitrotyrosine or with both confirms the possible alteration of several aspects of cellular functions

  11. Exopolysaccharides modify functional properties of whey protein concentrate.

    PubMed

    Deep, G; Hassan, A N; Metzger, L

    2012-11-01

    The objective of this research was to produce whey protein concentrate (WPC) with modified functionality using exopolysaccharide- (EPS) producing cultures. Two different EPS-producing cultures, Lactococcus lactis ssp. cremoris JFR and Streptococcus thermophilus, producing EPS1 and EPS2 respectively, were used in this study. One EPS-nonproducing commercial cheese culture (DVS 850; Chr. Hansen, Milwaukee, WI) was used as the control. Reconstituted sweet whey powder was used in this study to eliminate variations from fresh whey. Cultures grown overnight in reconstituted WPC (10% wt/vol) were added, directly or after overnight cooling (cooled EPS), at 2% (wt/vol) to 6% (wt/wt) solution of reconstituted whey. Whey was then high-temperature, short-time pasteurized at 75 °C for 35s and ultrafiltered to a volume reduction factor of 5. Ultrafiltered whey (retentate) was spray dried at inlet and outlet air temperatures of 200 and 90 °C, respectively, to obtain WPC. In general, the solubility of WPC was higher at pH 7 than at pH 3. Whey protein concentrate containing EPS2 exhibited higher protein solubility than did WPC containing no EPS. Also, the presence of EPS in WPC decreased protein denaturation. The emulsifying ability of WPC containing EPS was higher than that in control. Addition of EPS to WPC significantly enhanced its gelling ability. Foam overrun and hydrophobicity of WPC were not affected by addition of EPS. In conclusion, data obtained from this study show that EPS modify WPC functionality. The extent of modification depends on the type of EPS. Cooling of culture containing EPS before its addition to whey further reduced WPC protein denaturation and increased its solubility at pH 7 and gel hardness.

  12. Differential Measurements of Oxidatively Modified Proteins in Colorectal Adenopolyps

    PubMed Central

    Mehrabi, Sharifeh; Wallace, Lashanale; Cohen, Shakeria; Yao, Xuebiao; Aikhionbare, Felix O.

    2015-01-01

    Introduction Adenopolyps patients have a three-fold higher risk of colon cancer over the general population, which increases to six-fold if the polyps are multiple and with lower survival among African American population. Currently, 6% of CRC can be ascribed to mutations in particular genes. Moreover, the optimal management of patients with colorectal adenopolyps depends on the accuracy of appropriate staging strategies because patients with similar colorectal adenocarcinoma architecture display heterogeneity in the course and outcome of the disease. Oxidative stress, due to an imbalance between reactive oxygen species (ROS) and antioxidant capacities as well as a disruption of redox signaling, causes a wide range of damage to DNA, proteins, and lipids which promote tumor formation. Objective/Method This study applied spectrophotometric, dinitrophenylhydrazone (DNPH) assay, two-dimensional gel electrophoresis, and western blot analyses to assess the levels of oxidatively modified proteins in 41 pairs of primary colorectal tissues including normal/surrounding, adenopolyps (tubular, tubulovillous, villous, polypvillous) and carcinoma. Analysis of variance (ANOVA) and Student’s t-tests were utilized for the resulting data set. Results Our data showed that the levels of reactive protein carbonyl groups significantly increased as colorectal adenopolyps progresses to malignancy. No significant differences were found in the levels of carbonyl proteins between gender samples analyzed. For African American patients, there were, relative to Caucasians, 10% higher levels of reactive carbonyls in proteins of tubulovillous tissue samples (P < 0.05) and over 36% higher in levels in adenocarcinomas (P < 0.05). In normal tissues and tubular, there were no significant differences between the two groups in levels of protein carbonyls. Differences in the levels of protein carbonyl expression within individual patient samples with different number of tumor cells were notably

  13. Factors affecting protein transfer into surfactant-isooctane solution: a case study of extraction behavior of chemically modified cytochrome c.

    PubMed

    Ono, T; Goto, M

    1998-01-01

    The extraction mechanism of proteins by surfactant molecules in an organic solvent has been investigated using a chemically modified protein. We conducted guanidylation on lysine residues of cytochrome c by replacing their amino groups with homoarginine to enhance the protein-surfactant interaction. Results have shown that guanidylated cytochrome c readily forms a hydrophobic complex with dioleyl phosphoric acid (DOLPA) through hydrogen bonding between the phosphate moiety and the guanidinium groups. Although improved protein-surfactant interaction activated the formation of a hydrophobic complex at the interface, it could not improve the protein transfer in isooctane. It has been established that the protein extraction mechanism using surfactant molecules is mainly governed by two processes: formation of an interfacial complex at the oil-water interface and the subsequent solubilization of the complex into the organic phase. In addition, a kinetic study demonstrated that guanidylation of lysine accelerated the initial extraction rate of cytochrome c. This fact implies that the protein transferability from aqueous phase into organic phase depends on the protein-surfactant interaction which can be modified by protein surface engineering.

  14. How do ncRNAs guide chromatin-modifying complexes to specific locations within the nucleus?

    PubMed

    Scott, Maxwell J; Li, Fang

    2008-01-01

    Transcriptome analyses have led to the realization that eukaryotic cells make a large number of noncoding RNAs (ncRNAs). It appears that some of these are involved in guiding chromatin-modifying complexes to specific locations within the nucleus. How such ncRNAs function is largely unknown but various models have been proposed. Here we briefly discuss the evidence supporting two such models; that ncRNAs function by annealing either with nascent transcripts or with homologous DNA sequences. We then review a third model that is based on our recent work on the role of the noncoding roX RNAs in the localization of the MSL complex to sites on the X chromosome in Drosophila. Our results suggest that the MSL1 and MSL2 proteins bind to chromatin but it is the incorporation of the roX RNAs into the complex that somehow alters the binding specificity of the MSL1/MSL2 proteins to recognize sites on the X chromosome.

  15. Analysis of DNA-protein complexes induced by chemical carcinogens

    SciTech Connect

    Costa, M. )

    1990-11-01

    DNA-protein complexes induced in intact cells by chromate have been isolated and compared with those formed by other agents such as cis-platinum. Actin has been identified as one of the major proteins that is complexed to the DNA by chromate based upon a number of criteria including, a molecular weight and isoelectric point identical to actin, positive reaction with actin polyclonal antibody, and proteolytic mapping. Chromate and cis-platinum both complex proteins of very similar molecular weight and isoelectric points and these complexes can be disrupted by exposure to chelating or reducing agents. These results suggest that the metal itself is participating in rather than catalyzing the formation of a DNA-protein complex. An antiserum which was raised to chromate-induced DNA-protein complexes reacted primarily with a 97,000 protein that could not be detected by silver staining. Western blots and slot blots were utilized to detect p97 DNA-protein complexes formed by cis-platinum, UV, formaldehyde, and chromate. Other work in this area, involving studying whether DNA-protein complexes are formed in actively transcribed DNA compared with genetically inactive DNA, is discussed. Methods to detect DNA-protein complexes, the stability and repair of these lesions, and characterization of DNA-protein complexes are reviewed. Nuclear matrix proteins have been identified as a major substrate for the formation of DNA-protein complexes and these findings are also reviewed.

  16. Using Synthetically Modified Proteins to Make New Materials

    PubMed Central

    Witus, Leah S.; Francis, Matthew B.

    2011-01-01

    CONSPECTUS The uniquely diverse structures and functions of proteins offer many exciting opportunities for creating new materials with advanced properties. Exploiting these capabilities requires a set of versatile chemical reactions that can attach nonnatural groups to specific locations on protein surfaces. Over the years, we and others have developed a series of new techniques for protein bioconjugation, with a particular emphasis on achieving high site selectivity and yield. Using these reactions, we have been able to prepare a number of new materials with functions that depend on both the natural and the synthetic components. In this Account, we discuss our progress in protein bioconjugation over the past decade, focusing on three distinct projects. We first consider our work to harness sunlight artificially by mimicking features of the photosynthetic apparatus, with its beautifully integrated system of chromophores, electron transfer groups, and catalytic centers. Central to these photosystems are light-harvesting antennae having hundreds of precisely aligned chromophores with positions that are dictated by the proteins within the arrays. Our approach to generating similar arrangements involves the self-assembly of tobacco mosaic virus coat proteins bearing synthetic chromophore groups. These systems offer efficient light collection, are easy to prepare, and can be used to build complex photocatalytic systems through the modification of multiple sites on the protein surfaces. We then discuss protein-based carriers that can deliver drugs and imaging agents to diseased tissues. The nanoscale agents we have built for this purpose are based on the hollow protein shell of bacteriophage MS2. These 27 nm capsids have 32 pores, which allow the entry of relatively large organic molecules into the protein shell without requiring disassembly. Our group has developed a series of chemical strategies that can install dyes, radiolabels, MRI contrast agents, and anti

  17. Polyethyleneimine-modified graphene oxide nanocomposites for effective protein functionalization

    NASA Astrophysics Data System (ADS)

    Weng, Yejing; Jiang, Bo; Yang, Kaiguang; Sui, Zhigang; Zhang, Lihua; Zhang, Yukui

    2015-08-01

    A facile method to prepare a biocompatible graphene oxide (GO)-based substrate for protein immobilization was developed to overcome the drawbacks of GO, such as the strong electrostatic and hydrophobic interactions which could potentially alter the conformation and biological activity of proteins. The GO was coated with hydrophilic branched polyethyleneimine (BPEI), while Concanavalin A (Con A) as a model lectin protein was employed to fabricate the functionalized composites to evaluate the feasibility of this strategy. The composites exhibit an extremely high binding capacity for glycoproteins (i.e. IgG 538.3 mg g-1), which are superior to other immobilized materials. Moreover, they can work well in 500-fold non-glycoprotein interference and even in complex biological samples. All these data suggest that the GO@BPEI composites will have great potential as scaffolds for proteins fully exerting their biofunctions.A facile method to prepare a biocompatible graphene oxide (GO)-based substrate for protein immobilization was developed to overcome the drawbacks of GO, such as the strong electrostatic and hydrophobic interactions which could potentially alter the conformation and biological activity of proteins. The GO was coated with hydrophilic branched polyethyleneimine (BPEI), while Concanavalin A (Con A) as a model lectin protein was employed to fabricate the functionalized composites to evaluate the feasibility of this strategy. The composites exhibit an extremely high binding capacity for glycoproteins (i.e. IgG 538.3 mg g-1), which are superior to other immobilized materials. Moreover, they can work well in 500-fold non-glycoprotein interference and even in complex biological samples. All these data suggest that the GO@BPEI composites will have great potential as scaffolds for proteins fully exerting their biofunctions. Electronic supplementary information (ESI) available: Cell viability assay, enrichment of standard glycoprotein, pretreatment and analysis of real

  18. Proteomic analysis of exported chaperone/co-chaperone complexes of P. falciparum reveals an array of complex protein-protein interactions

    PubMed Central

    Zhang, Qi; Ma, Cheng; Oberli, Alexander; Zinz, Astrid; Engels, Sonja; Przyborski, Jude M.

    2017-01-01

    Malaria parasites modify their human host cell, the mature erythrocyte. This modification is mediated by a large number of parasite proteins that are exported to the host cell, and is also the underlying cause for the pathology caused by malaria infection. Amongst these proteins are many Hsp40 co-chaperones, and a single Hsp70. These proteins have been implicated in several processes in the host cell, including a potential role in protein transport, however the further molecular players in this process remain obscure. To address this, we have utilized chemical cross-linking followed by mass spectrometry and immunoblotting to isolate and characterize proteins complexes containing an exported Hsp40 (PFE55), and the only known exported Hsp70 (PfHsp70x). Our data reveal that both of these proteins are contained in high molecular weight protein complexes. These complexes are found both in the infected erythrocyte, and within the parasite-derived compartment referred to as the parasitophorous vacuole. Surprisingly, our data also reveal an association of PfHsp70x with components of PTEX, a putative protein translocon within the membrane of the parasitophorous vacuole. Our results suggest that the P. falciparum- infected human erythrocyte contains numerous high molecular weight protein complexes, which may potentially be involved in host cell modification. PMID:28218284

  19. Engineering of complex protein sialylation in plants

    PubMed Central

    Kallolimath, Somanath; Castilho, Alexandra; Strasser, Richard; Grünwald-Gruber, Clemens; Altmann, Friedrich; Strubl, Sebastian; Galuska, Christina Elisabeth; Zlatina, Kristina; Galuska, Sebastian Peter; Werner, Stefan; Thiesler, Hauke; Werneburg, Sebastian; Hildebrandt, Herbert; Gerardy-Schahn, Rita; Steinkellner, Herta

    2016-01-01

    Sialic acids (Sias) are abundant terminal modifications of protein-linked glycans. A unique feature of Sia, compared with other monosaccharides, is the formation of linear homo-polymers, with its most complex form polysialic acid (polySia). Sia and polySia mediate diverse biological functions and have great potential for therapeutic use. However, technological hurdles in producing defined protein sialylation due to the enormous structural diversity render their precise investigation a challenge. Here, we describe a plant-based expression platform that enables the controlled in vivo synthesis of sialylated structures with different interlinkages and degree of polymerization (DP). The approach relies on a combination of stably transformed plants with transient expression modules. By the introduction of multigene vectors carrying the human sialylation pathway into glycosylation-destructed mutants, transgenic plants that sialylate glycoproteins in α2,6- or α2,3-linkage were generated. Moreover, by the transient coexpression of human α2,8-polysialyltransferases, polySia structures with a DP >40 were synthesized in these plants. Importantly, plant-derived polySia are functionally active, as demonstrated by a cell-based cytotoxicity assay and inhibition of microglia activation. This pathway engineering approach enables experimental investigations of defined sialylation and facilitates a rational design of glycan structures with optimized biotechnological functions. PMID:27444013

  20. Detecting overlapping protein complexes by rough-fuzzy clustering in protein-protein interaction networks.

    PubMed

    Wu, Hao; Gao, Lin; Dong, Jihua; Yang, Xiaofei

    2014-01-01

    In this paper, we present a novel rough-fuzzy clustering (RFC) method to detect overlapping protein complexes in protein-protein interaction (PPI) networks. RFC focuses on fuzzy relation model rather than graph model by integrating fuzzy sets and rough sets, employs the upper and lower approximations of rough sets to deal with overlapping complexes, and calculates the number of complexes automatically. Fuzzy relation between proteins is established and then transformed into fuzzy equivalence relation. Non-overlapping complexes correspond to equivalence classes satisfying certain equivalence relation. To obtain overlapping complexes, we calculate the similarity between one protein and each complex, and then determine whether the protein belongs to one or multiple complexes by computing the ratio of each similarity to maximum similarity. To validate RFC quantitatively, we test it in Gavin, Collins, Krogan and BioGRID datasets. Experiment results show that there is a good correspondence to reference complexes in MIPS and SGD databases. Then we compare RFC with several previous methods, including ClusterONE, CMC, MCL, GCE, OSLOM and CFinder. Results show the precision, sensitivity and separation are 32.4%, 42.9% and 81.9% higher than mean of the five methods in four weighted networks, and are 0.5%, 11.2% and 66.1% higher than mean of the six methods in five unweighted networks. Our method RFC works well for protein complexes detection and provides a new insight of network division, and it can also be applied to identify overlapping community structure in social networks and LFR benchmark networks.

  1. Probing protein complexes inside living cells using a silicon nanowire-based pull-down assay

    NASA Astrophysics Data System (ADS)

    Choi, Sojoong; Kim, Hyunju; Kim, So Yeon; Yang, Eun Gyeong

    2016-06-01

    Most proteins perform their functions as interacting complexes. Here we propose a novel method for capturing an intracellular protein and its interacting partner out of living cells by utilizing intracellular access of antibody modified vertical silicon nanowire arrays whose surface is covered with a polyethylene glycol layer to prevent strong cell adhesion. Such a feature facilitates the removal of cells by simple washing, enabling subsequent detection of a pulled-down protein and its interacting partner, and further assessment of a drug-induced change in the interacting complex. Our new SiNW-based tool is thus suitable for authentication of protein networks inside living cells.Most proteins perform their functions as interacting complexes. Here we propose a novel method for capturing an intracellular protein and its interacting partner out of living cells by utilizing intracellular access of antibody modified vertical silicon nanowire arrays whose surface is covered with a polyethylene glycol layer to prevent strong cell adhesion. Such a feature facilitates the removal of cells by simple washing, enabling subsequent detection of a pulled-down protein and its interacting partner, and further assessment of a drug-induced change in the interacting complex. Our new SiNW-based tool is thus suitable for authentication of protein networks inside living cells. Electronic supplementary information (ESI) available: Materials, experimental methods and Fig. S1-S8. See DOI: 10.1039/c6nr00171h

  2. Fast Photochemical Oxidation of Proteins (FPOP) for Comparing Structures of Protein/Ligand Complexes: The Calmodulin-peptide Model System

    PubMed Central

    Zhang, Hao; Gau, Brian C.; Jones, Lisa M.; Vidavsky, Ilan; Gross, Michael L.

    2010-01-01

    Fast Photochemical Oxidation of Proteins (FPOP) is a mass-spectrometry-based protein footprinting method that modifies proteins on the microsecond time scale. Highly reactive •OH, produced by laser photolysis of hydrogen peroxide, oxidatively modifies the side chains of approximately one half the common amino acids on this time scale. Owing to the short labeling exposure, only solvent-accessible residues are sampled. Quantification of the modification extent for the apo and holo states of a protein-ligand complex should provide structurally sensitive information at the amino-acid level to compare the structures of unknown protein complexes with known ones. We report here the use of FPOP to monitor the structural changes of calmodulin in its established binding to M13 of the skeletal muscle myosin light chain kinase. We use the outcome to establish the unknown structures resulting from binding with melittin and mastoparan. The structural comparison follows from a comprehensive examination of the extent of FPOP modifications as measured by proteolysis and LC-MS/MS for each protein-ligand equilibrium. The results not only show that the three calmodulin-peptide complexes have similar structures but also reveal those regions of the protein that became more or less solvent-accessible upon binding. This approach has the potential for relatively high throughput, information-dense characterization of a series of protein-ligand complexes in biochemistry and drug discovery when the structure of one reference complex is known, as is the case for calmodulin and M13 of the skeletal muscle myosin light chain kinase, and the structures of related complexes are not,. PMID:21142124

  3. Construction of ontology augmented networks for protein complex prediction.

    PubMed

    Zhang, Yijia; Lin, Hongfei; Yang, Zhihao; Wang, Jian

    2013-01-01

    Protein complexes are of great importance in understanding the principles of cellular organization and function. The increase in available protein-protein interaction data, gene ontology and other resources make it possible to develop computational methods for protein complex prediction. Most existing methods focus mainly on the topological structure of protein-protein interaction networks, and largely ignore the gene ontology annotation information. In this article, we constructed ontology augmented networks with protein-protein interaction data and gene ontology, which effectively unified the topological structure of protein-protein interaction networks and the similarity of gene ontology annotations into unified distance measures. After constructing ontology augmented networks, a novel method (clustering based on ontology augmented networks) was proposed to predict protein complexes, which was capable of taking into account the topological structure of the protein-protein interaction network, as well as the similarity of gene ontology annotations. Our method was applied to two different yeast protein-protein interaction datasets and predicted many well-known complexes. The experimental results showed that (i) ontology augmented networks and the unified distance measure can effectively combine the structure closeness and gene ontology annotation similarity; (ii) our method is valuable in predicting protein complexes and has higher F1 and accuracy compared to other competing methods.

  4. Modified gamma-cyclodextrins and their rocuronium complexes.

    PubMed

    Cameron, K S; Clark, J K; Cooper, A; Fielding, L; Palin, R; Rutherford, S J; Zhang, M-Q

    2002-10-03

    A series of per-6-substituted cyclodextrin derivatives was synthesized as synthetic host molecules for rocuronium, a steroidal muscle relaxant. By forming host-guest complexes with rocuronium, these cyclodextrin derivatives reverse the muscle relaxation induced by rocuronium in vitro and in vivo. The isothermal microcalorimetry data are consistent with the biological data supporting the encapsulation mechanism of action. Binary and biphasic complexes are reported with NMR experiments clearly showing free and bound rocuronium. [structure: see text

  5. Enhancing recombinant protein solubility with ubiquitin-like small archeal modifying protein fusion partners.

    PubMed

    Varga, Sándor; Pathare, Ganesh Ramnath; Baka, Erzsébet; Boicu, Marius; Kriszt, Balázs; Székács, András; Zinzula, Luca; Kukolya, József; Nagy, István

    2015-11-01

    A variety of protein expression tags with different biochemical properties has been used to enhance the yield and solubility of recombinant proteins. Ubiquitin, SUMO (small ubiquitin-like modifier) and prokaryotic ubiquitin like MoaD (molybdopterin synthase, small subunit) fusion tags are getting more popular because of their small size. In this paper we report on the use of ubiquitin-like small archaeal modifier proteins (SAMPs) as fusion tags since they proved to increase expression yield, stability and solubility in our experiments. Equally important, they did not co-purify with proteins of the expression host and there was information that their specific JAB1/MPN/Mov34 metalloenzyme (JAMM) protease can recognize the C-terminal VSGG sequence when SAMPs fused, either branched or linearly to target proteins, and cleave it specifically. SAMPs and JAMM proteases from Haloferax volcanii, Thermoplasma acidophilum, Methanococcoides burtonii and Nitrosopumilus maritimus were selected, cloned, expressed heterologously in Escherichia coli and tested as fusion tags and cleaving proteases, respectively. Investigated SAMPs enhanced protein expression and solubility on a wide scale. T. acidophilum SAMPs Ta0895 and Ta01019 were the best performing tags and their effect was comparable to the widely used maltose binding protein (MBP) and N utilization substance protein A (NusA) tags. Moreover, H. volcanii SAMP Hvo_2619 contribution was mediocre, whereas M. burtonii Mbur_1415 could not be expressed. Out of four investigated JAMM proteases, only Hvo_2505 could cleave fusion tags. Interestingly, it was found active not only on its own partner substrate Hvo_2619, but it also cleaved off Ta0895.

  6. Antifreeze Proteins Modify the Freezing Process In Planta12

    PubMed Central

    Griffith, Marilyn; Lumb, Chelsey; Wiseman, Steven B.; Wisniewski, Michael; Johnson, Robert W.; Marangoni, Alejandro G.

    2005-01-01

    During cold acclimation, winter rye (Secale cereale L. cv Musketeer) plants accumulate antifreeze proteins (AFPs) in the apoplast of leaves and crowns. The goal of this study was to determine whether these AFPs influence survival at subzero temperatures by modifying the freezing process or by acting as cryoprotectants. In order to inhibit the growth of ice, AFPs must be mobile so that they can bind to specific sites on the ice crystal lattice. Guttate obtained from cold-acclimated winter rye leaves exhibited antifreeze activity, indicating that the AFPs are free in solution. Infrared video thermography was used to observe freezing in winter rye leaves. In the absence of an ice nucleator, AFPs had no effect on the supercooling temperature of the leaves. However, in the presence of an ice nucleator, AFPs lowered the temperature at which the leaves froze by 0.3°C to 1.2°C. In vitro studies showed that apoplastic proteins extracted from cold-acclimated winter rye leaves inhibited the recrystallization of ice and also slowed the rate of migration of ice through solution-saturated filter paper. When we examined the possible role of winter rye AFPs in cryoprotection, we found that lactate dehydrogenase activity was higher after freezing in the presence of AFPs compared with buffer, but the same effect was obtained by adding bovine serum albumin. AFPs had no effect on unstacked thylakoid volume after freezing, but did inhibit stacking of the thylakoids, thus indicating a loss of thylakoid function. We conclude that rye AFPs have no specific cryoprotective activity; rather, they interact directly with ice in planta and reduce freezing injury by slowing the growth and recrystallization of ice. PMID:15805474

  7. The Chediak-Higashi protein interacts with SNARE complex and signal transduction proteins.

    PubMed Central

    Tchernev, Velizar T.; Mansfield, Traci A.; Giot, Loic; Kumar, A. Madan; Nandabalan, Krishnan; Li, Ying; Mishra, Vishnu S.; Detter, John C.; Rothberg, Jonathan M.; Wallace, Margaret R.; Southwick, Frederick S.; Kingsmore, Stephen F.

    2002-01-01

    BACKGROUND:Chediak-Higashi syndrome (CHS) is an inherited immunodeficiency disease characterized by giant lysosomes and impaired leukocyte degranulation. CHS results from mutations in the lysosomal trafficking regulator (LYST) gene, which encodes a 425-kD cytoplasmic protein of unknown function. The goal of this study was to identify proteins that interact with LYST as a first step in understanding how LYST modulates lysosomal exocytosis. MATERIALS AND METHODS: Fourteen cDNA fragments, covering the entire coding domain of LYST, were used as baits to screen five human cDNA libraries by a yeast two-hybrid method, modified to allow screening in the activation and the binding domain, three selectable markers, and more stringent confirmation procedures. Five of the interactions were confirmed by an in vitro binding assay. RESULTS: Twenty-one proteins that interact with LYST were identified in yeast two-hybrid screens. Four interactions, confirmed directly, were with proteins important in vesicular transport and signal transduction (the SNARE-complex protein HRS, 14-3-3, and casein kinase II). CONCLUSIONS:On the basis of protein interactions, LYST appears to function as an adapter protein that may juxtapose proteins that mediate intracellular membrane fusion reactions. The pathologic manifestations observed in CHS patients and in mice with the homologous mutation beige suggest that understanding the role of LYST may be relevant to the treatment of not only CHS but also of diseases such as asthma, urticaria, and lupus, as well as to the molecular dissection of the CHS-associated cancer predisposition. PMID:11984006

  8. The activity of the Drosophila Vestigial protein is modified by Scalloped-dependent phosphorylation.

    PubMed

    Pimmett, Virginia L; Deng, Hua; Haskins, Julie A; Mercier, Rebecca J; LaPointe, Paul; Simmonds, Andrew J

    2017-03-18

    The Drosophila vestigial gene is required for proliferation and differentiation of the adult wing and for differentiation of larval and adult muscle identity. Vestigial is part of a multi-protein transcription factor complex, which includes Scalloped, a TEAD-class DNA binding protein. Binding Scalloped is necessary for translocation of Vestigial into the nucleus. We show that Vestigial is extensively post-translationally modified and at least one of these modifications is required for proper function during development. We have shown that there is p38-dependent phosphorylation of Serine 215 in the carboxyl-terminal region of Vestigial. Phosphorylation of Serine 215 occurs in the nucleus and requires the presence of Scalloped. Comparison of a phosphomimetic and non-phosphorylatable mutant forms of Vestigial shows differences in the ability to rescue the wing and muscle phenotypes associated with a null vestigial allele.

  9. Hyper-Rayleigh scattering of protein-modified gold nanoparticles.

    PubMed

    Zhang, Chun Xiu; Zhang, Yu; Wang, Xin; Tang, Zu Ming; Lu, Zu Hong

    2003-09-01

    The nonlinear optical properties of protein-modified gold nanoparticles has been studied by the hyper-Rayleigh scattering (HRS) technique. HRS signals from the nanoparticles coated with goat-anti-human IgG have been obtained when pumped with a laser pulse with a wavelength of 1064 nm. The HRS signals of gold nanoparticles with IgG were larger than those of bare gold nanoparticles. This can be explained by a noncentrosymmetric effect. It was also found that the HRS signals from the IgG-coated gold nanoparticles could be greatly increased when the antigen was added due to gold nanoparticle aggregation. Our experiment found that the HRS method could produce a measurable signal with 10 microg/ml antigen added, while the colorimetric method using UV spectrum detection required 100 microg/ml of added antigen. The results show that the HRS measurement of immunogold nanoparticles could become a potential immunoassay in determining small levels of antigen in aqueous samples.

  10. Structure, dynamics, assembly, and evolution of protein complexes.

    PubMed

    Marsh, Joseph A; Teichmann, Sarah A

    2015-01-01

    The assembly of individual proteins into functional complexes is fundamental to nearly all biological processes. In recent decades, many thousands of homomeric and heteromeric protein complex structures have been determined, greatly improving our understanding of the fundamental principles that control symmetric and asymmetric quaternary structure organization. Furthermore, our conception of protein complexes has moved beyond static representations to include dynamic aspects of quaternary structure, including conformational changes upon binding, multistep ordered assembly pathways, and structural fluctuations occurring within fully assembled complexes. Finally, major advances have been made in our understanding of protein complex evolution, both in reconstructing evolutionary histories of specific complexes and in elucidating general mechanisms that explain how quaternary structure tends to evolve. The evolution of quaternary structure occurs via changes in self-assembly state or through the gain or loss of protein subunits, and these processes can be driven by both adaptive and nonadaptive influences.

  11. Solving structures of protein complexes by molecular replacement with Phaser

    SciTech Connect

    McCoy, Airlie J.

    2007-01-01

    Four case studies in using maximum-likelihood molecular replacement, as implemented in the program Phaser, to solve structures of protein complexes are described. Molecular replacement (MR) generally becomes more difficult as the number of components in the asymmetric unit requiring separate MR models (i.e. the dimensionality of the search) increases. When the proportion of the total scattering contributed by each search component is small, the signal in the search for each component in isolation is weak or non-existent. Maximum-likelihood MR functions enable complex asymmetric units to be built up from individual components with a ‘tree search with pruning’ approach. This method, as implemented in the automated search procedure of the program Phaser, has been very successful in solving many previously intractable MR problems. However, there are a number of cases in which the automated search procedure of Phaser is suboptimal or encounters difficulties. These include cases where there are a large number of copies of the same component in the asymmetric unit or where the components of the asymmetric unit have greatly varying B factors. Two case studies are presented to illustrate how Phaser can be used to best advantage in the standard ‘automated MR’ mode and two case studies are used to show how to modify the automated search strategy for problematic cases.

  12. Thermal isoelectric precipitation of alpha-lactalbumin from a whey protein concentrate: Influence of protein-calcium complexation.

    PubMed

    Bramaud, C; Aimar, P; Daufin, G

    1995-07-20

    The selective precipitation of alpha-lactalbumin (alpha-LA) at a pH around its isoelectric point (4.2) under heat treatment is the basis for a fractionation process of whey proteins. As precipitation is a phenomenon dependent on the protein hydrophobicity, and as the release of the tightly bound calcium occurring at pH around 4 modifies the alpha-LA hydrophobicity, the specific role of calcium on isoelectric precipitation is investigated. A study of the extent of alpha-LA precipitation in a whey protein concentrate under various operating conditions of pH, temperature, protein concentration, and calcium content is presented. We propose a mechanism for this phenomenon as a combination of a complexation equilibrium and of an irreversible precipitation, to account for the influence of temperature, alpha-LA concentration total ionic content, and calcium concentration, and also to estimate the complexation equilibrium constant. (c) 1995 John Wiley & Sons, Inc.

  13. Hysteresis as a Marker for Complex, Overlapping Landscapes in Proteins

    PubMed Central

    Andrews, Benjamin T.; Capraro, Dominique T.; Sulkowska, Joanna I.; Onuchic, José N.; Jennings, Patricia A.

    2013-01-01

    Topologically complex proteins fold by multiple routes as a result of hard-to-fold regions of the proteins. Oftentimes these regions are introduced into the protein scaffold for function and increase frustration in the otherwise smooth-funneled landscape. Interestingly, while functional regions add complexity to folding landscapes, they may also contribute to a unique behavior referred to as hysteresis. While hysteresis is predicted to be rare, it is observed in various proteins, including proteins containing a unique peptide cyclization to form a fluorescent chromophore as well as proteins containing a knotted topology in their native fold. Here, hysteresis is demonstrated to be a consequence of the decoupling of unfolding events from the isomerization or hula-twist of a chromophore in one protein and the untying of the knot in a second protein system. The question now is- can hysteresis be a marker for the interplay of landscapes where complex folding and functional regions overlap? PMID:23525263

  14. A proteomic strategy for global analysis of plant protein complexes.

    PubMed

    Aryal, Uma K; Xiong, Yi; McBride, Zachary; Kihara, Daisuke; Xie, Jun; Hall, Mark C; Szymanski, Daniel B

    2014-10-01

    Global analyses of protein complex assembly, composition, and location are needed to fully understand how cells coordinate diverse metabolic, mechanical, and developmental activities. The most common methods for proteome-wide analysis of protein complexes rely on affinity purification-mass spectrometry or yeast two-hybrid approaches. These methods are time consuming and are not suitable for many plant species that are refractory to transformation or genome-wide cloning of open reading frames. Here, we describe the proof of concept for a method allowing simultaneous global analysis of endogenous protein complexes that begins with intact leaves and combines chromatographic separation of extracts from subcellular fractions with quantitative label-free protein abundance profiling by liquid chromatography-coupled mass spectrometry. Applying this approach to the crude cytosolic fraction of Arabidopsis thaliana leaves using size exclusion chromatography, we identified hundreds of cytosolic proteins that appeared to exist as components of stable protein complexes. The reliability of the method was validated by protein immunoblot analysis and comparisons with published size exclusion chromatography data and the masses of known complexes. The method can be implemented with appropriate instrumentation, is applicable to any biological system, and has the potential to be further developed to characterize the composition of protein complexes and measure the dynamics of protein complex localization and assembly under different conditions.

  15. Visualization of coupled protein folding and binding in bacteria and purification of the heterodimeric complex

    PubMed Central

    Wang, Haoyong; Chong, Shaorong

    2003-01-01

    During overexpression of recombinant proteins in Escherichia coli, misfolded proteins often aggregate and form inclusion bodies. If an aggregation-prone recombinant protein is fused upstream (as an N-terminal fusion) to GFP, aggregation of the recombinant protein domain also leads to misfolding of the downstream GFP domain, resulting in a decrease or loss of fluorescence. We investigated whether the GFP domain could fold correctly if aggregation of the upstream protein domain was prevented in vivo by a coupled protein folding and binding interaction. Such interaction has been previously shown to occur between the E. coli integration host factors α and β, and between the domains of the general transcriptional coactivator cAMP response element binding protein (CREB)-binding protein and the activator for thyroid hormone and retinoid receptors. In this study, fusion of integration host factor β or the CREB-binding protein domain upstream to GFP resulted in aggregation of the fusion protein. Coexpression of their respective partners, on the other hand, allowed soluble expression of the fusion protein and a dramatic increase in fluorescence. The study demonstrated that coupled protein folding and binding could be correlated to GFP fluorescence. A modified miniintein containing an affinity tag was inserted between the upstream protein domain and GFP to allow rapid purification and identification of the heterodimeric complex. The GFP coexpression fusion system may be used to identify novel protein–protein interactions that involve coupled folding and binding or protein partners that can solubilize aggregation-prone recombinant proteins. PMID:12515863

  16. Design and characterization of complex protein films

    NASA Astrophysics Data System (ADS)

    Bui, Holt P.

    Once a biomaterial is implanted into biological system, a layer of protein is immediately deposited on the surface of that material. The newly formed protein film will dictate how the implanted material will interact with the surrounding biological environment and lead to either the acceptance or rejection of the biomaterial. One method to enhance performance involves the activation the surface of the biomaterial with one or more proteins to direct specific interactions with the host environment. The focus of my dissertation was to develop and characterize model biomaterials surfaces that are activated with one or more proteins to help understand how the protein films may affect biological processes and a biomaterial's performance. One model system consisted of a patterned film of two proteins on a gold surface. Characterization of this protein pattern indicated that patterning protein films with a focused ion beam produced protein patterns with high biological contrast and high spatial control. The second model protein film involved the adsorption of fibronectin on surfaces with different surface energies. The characterization of the adsorbed fibronectin films suggest that fibronectin adsorbed on a hydrophilic surface is in an orientation that projects hydrophilic amino acid residues towards surface of the protein and dehydration causes reorientation to project hydrophobic amino acids towards the surface. In contrast, fibronectin is adsorbed onto a hydrophobic surface in a manner that resulted in dehydration and denaturation during the adsorption process. The last model protein film studied in this work consisted of fibronectin patterned in a manner so that the film consisted of spatially controlled domains of fibronectin adsorbed onto a hydrophilic surface as well as a hydrophobic surface. Lateral characterization of this pattern demonstrated a difference in secondary structure of fibronectin adsorbed on the two domains with varying surface energies.

  17. Modified spontaneous emissions of europium complex in weak PMMA opals.

    PubMed

    Wang, Wei; Song, Hongwei; Bai, Xue; Liu, Qiong; Zhu, Yongsheng

    2011-10-28

    Engineering spontaneous emission by means of photonic crystals (PHC) is under extensive study. However PHC modification of line emissions of rare earth (RE) ions has not been thoroughly understood, especially in cases of weak opal PHCs and while emitters are well dispersed into dielectric media. In this study, poly-methyl methacrylate (PMMA) opal PHCs containing uniformly dispersed europium chelate were fabricated with finely controlled photonic stop band (PSB) positions. Measurements of luminescent dynamics and angle resolved/integrated emission spectra as well as numerical calculations of total densities of states (DOS) were performed. We determined that in weak opals, the total spontaneous emission rate (SER) of Σ(5)D(0)-(7)F(J) for Eu(3+) was independent of PSB positions but was higher than that of the disordered powder sample, which was attributed to higher effective refractive indices in the PHC rather than PSB effect. Branch SER of (5)D(0)-(7)F(2) for Eu(3+) in the PHCs, on the other hand, was spatially redistributed, suppressed or enhanced in directions of elevated or reduced optical modes, keeping the angle-integrated total unchanged. All the results are in agreement with total DOS approximation. Our paper addressed two unstudied issues regarding modified narrow line emission in weak opal PHCs: firstly whether PSB could change the SER of emitters and whether there exist, apart from PSB, other reasons to change SERs; secondly, while directional enhancement and suppression by PSB has been confirmed, whether the angle-integrated overall effect is enhancing or suppressing.

  18. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae.

    PubMed

    Krogan, Nevan J; Cagney, Gerard; Yu, Haiyuan; Zhong, Gouqing; Guo, Xinghua; Ignatchenko, Alexandr; Li, Joyce; Pu, Shuye; Datta, Nira; Tikuisis, Aaron P; Punna, Thanuja; Peregrín-Alvarez, José M; Shales, Michael; Zhang, Xin; Davey, Michael; Robinson, Mark D; Paccanaro, Alberto; Bray, James E; Sheung, Anthony; Beattie, Bryan; Richards, Dawn P; Canadien, Veronica; Lalev, Atanas; Mena, Frank; Wong, Peter; Starostine, Andrei; Canete, Myra M; Vlasblom, James; Wu, Samuel; Orsi, Chris; Collins, Sean R; Chandran, Shamanta; Haw, Robin; Rilstone, Jennifer J; Gandi, Kiran; Thompson, Natalie J; Musso, Gabe; St Onge, Peter; Ghanny, Shaun; Lam, Mandy H Y; Butland, Gareth; Altaf-Ul, Amin M; Kanaya, Shigehiko; Shilatifard, Ali; O'Shea, Erin; Weissman, Jonathan S; Ingles, C James; Hughes, Timothy R; Parkinson, John; Gerstein, Mark; Wodak, Shoshana J; Emili, Andrew; Greenblatt, Jack F

    2006-03-30

    Identification of protein-protein interactions often provides insight into protein function, and many cellular processes are performed by stable protein complexes. We used tandem affinity purification to process 4,562 different tagged proteins of the yeast Saccharomyces cerevisiae. Each preparation was analysed by both matrix-assisted laser desorption/ionization-time of flight mass spectrometry and liquid chromatography tandem mass spectrometry to increase coverage and accuracy. Machine learning was used to integrate the mass spectrometry scores and assign probabilities to the protein-protein interactions. Among 4,087 different proteins identified with high confidence by mass spectrometry from 2,357 successful purifications, our core data set (median precision of 0.69) comprises 7,123 protein-protein interactions involving 2,708 proteins. A Markov clustering algorithm organized these interactions into 547 protein complexes averaging 4.9 subunits per complex, about half of them absent from the MIPS database, as well as 429 additional interactions between pairs of complexes. The data (all of which are available online) will help future studies on individual proteins as well as functional genomics and systems biology.

  19. Principles of assembly reveal a periodic table of protein complexes.

    PubMed

    Ahnert, Sebastian E; Marsh, Joseph A; Hernández, Helena; Robinson, Carol V; Teichmann, Sarah A

    2015-12-11

    Structural insights into protein complexes have had a broad impact on our understanding of biological function and evolution. In this work, we sought a comprehensive understanding of the general principles underlying quaternary structure organization in protein complexes. We first examined the fundamental steps by which protein complexes can assemble, using experimental and structure-based characterization of assembly pathways. Most assembly transitions can be classified into three basic types, which can then be used to exhaustively enumerate a large set of possible quaternary structure topologies. These topologies, which include the vast majority of observed protein complex structures, enable a natural organization of protein complexes into a periodic table. On the basis of this table, we can accurately predict the expected frequencies of quaternary structure topologies, including those not yet observed. These results have important implications for quaternary structure prediction, modeling, and engineering.

  20. Recording information on protein complexes in an information management system.

    PubMed

    Savitsky, Marc; Diprose, Jonathan M; Morris, Chris; Griffiths, Susanne L; Daniel, Edward; Lin, Bill; Daenke, Susan; Bishop, Benjamin; Siebold, Christian; Wilson, Keith S; Blake, Richard; Stuart, David I; Esnouf, Robert M

    2011-08-01

    The Protein Information Management System (PiMS) is a laboratory information management system (LIMS) designed for use with the production of proteins in a research environment. The software is distributed under the CCP4 licence, and so is available free of charge to academic laboratories. Like most LIMS, the underlying PiMS data model originally had no support for protein-protein complexes. To support the SPINE2-Complexes project the developers have extended PiMS to meet these requirements. The modifications to PiMS, described here, include data model changes, additional protocols, some user interface changes and functionality to detect when an experiment may have formed a complex. Example data are shown for the production of a crystal of a protein complex. Integration with SPINE2-Complexes Target Tracker application is also described.

  1. Multi-LZerD: Multiple protein docking for asymmetric complexes

    PubMed Central

    Esquivel-Rodríguez, Juan; Yang, Yifeng David; Kihara, Daisuke

    2012-01-01

    The tertiary structures of protein complexes provide a crucial insight about the molecular mechanisms that regulate their functions and assembly. However, solving protein complex structures by experimental methods is often more difficult than single protein structures. Here, we have developed a novel computational multiple protein docking algorithm, Multi-LZerD, that builds models of multimeric complexes by effectively reusing pairwise docking predictions of component proteins. A genetic algorithm is applied to explore the conformational space followed by a structure refinement procedure. Benchmark on eleven hetero-multimeric complexes resulted in near native conformations for all but one of them (a root mean square deviation smaller than 2.5Å). We also show that our method copes with unbound docking cases well, outperforming the methodology that can be directly compared to our approach. Multi-LZerD was able to predict near native structures for multimeric complexes of various topologies. PMID:22488467

  2. Native Mass Spectrometry of Photosynthetic Pigment-Protein Complexes

    PubMed Central

    Zhang, Hao; Cui, Weidong; Gross, Michael L.; Blankenship, Robert E.

    2013-01-01

    Native mass spectrometry, or as is sometimes called “native electrospray (ESI)” allows proteins in their native or near-native protein in solution to be introduced into gas phase and interrogated by MS. This approach is now a powerful tool to investigate protein complexes. This article reviews the background of native MS of protein complexes and describes its strengths, taking photosynthetic pigment-protein complexes as examples. Native MS can be utilized in combination with other MS-based approaches to obtain complementary information to that provided by tools such as X-ray crystallography and NMR spectroscopy to understand the structure-function relationships of protein complexes. When additional information beyond that provided by native MS is required, other MS-based strategies can be successfully applied to augment the results of native MS. PMID:23337874

  3. Advances in protein complex analysis using mass spectrometry

    PubMed Central

    Gingras, Anne-Claude; Aebersold, Ruedi; Raught, Brian

    2005-01-01

    Proteins often function as components of larger complexes to perform a specific function, and formation of these complexes may be regulated. For example, intracellular signalling events often require transient and/or regulated protein–protein interactions for propagation, and protein binding to a specific DNA sequence, RNA molecule or metabolite is often regulated to modulate a particular cellular function. Thus, characterizing protein complexes can offer important insights into protein function. This review describes recent important advances in mass spectrometry (MS)-based techniques for the analysis of protein complexes. Following brief descriptions of how proteins are identified using MS, and general protein complex purification approaches, we address two of the most important issues in these types of studies: specificity and background protein contaminants. Two basic strategies for increasing specificity and decreasing background are presented: whereas (1) tandem affinity purification (TAP) of tagged proteins of interest can dramatically improve the signal-to-noise ratio via the generation of cleaner samples, (2) stable isotopic labelling of proteins may be used to discriminate between contaminants and bona fide binding partners using quantitative MS techniques. Examples, as well as advantages and disadvantages of each approach, are presented. PMID:15611014

  4. Luminogenic "clickable" lanthanide complexes for protein labeling.

    PubMed

    Candelon, Nicolas; Hădade, Niculina D; Matache, Mihaela; Canet, Jean-Louis; Cisnetti, Federico; Funeriu, Daniel P; Nauton, Lionel; Gautier, Arnaud

    2013-10-14

    Development of lanthanide-based luminescent "switch-on" systems via azide-alkyne [3+2] cycloaddition is described. We used these for non-specific protein labeling and as tags for specific and selective activity-based protein labeling.

  5. Multiscale Model for the Assembly Kinetics of Protein Complexes.

    PubMed

    Xie, Zhong-Ru; Chen, Jiawen; Wu, Yinghao

    2016-02-04

    The assembly of proteins into high-order complexes is a general mechanism for these biomolecules to implement their versatile functions in cells. Natural evolution has developed various assembling pathways for specific protein complexes to maintain their stability and proper activities. Previous studies have provided numerous examples of the misassembly of protein complexes leading to severe biological consequences. Although the research focusing on protein complexes has started to move beyond the static representation of quaternary structures to the dynamic aspect of their assembly, the current understanding of the assembly mechanism of protein complexes is still largely limited. To tackle this problem, we developed a new multiscale modeling framework. This framework combines a lower-resolution rigid-body-based simulation with a higher-resolution Cα-based simulation method so that protein complexes can be assembled with both structural details and computational efficiency. We applied this model to a homotrimer and a heterotetramer as simple test systems. Consistent with experimental observations, our simulations indicated very different kinetics between protein oligomerization and dimerization. The formation of protein oligomers is a multistep process that is much slower than dimerization but thermodynamically more stable. Moreover, we showed that even the same protein quaternary structure can have very diverse assembly pathways under different binding constants between subunits, which is important for regulating the functions of protein complexes. Finally, we revealed that the binding between subunits in a complex can be synergistically strengthened during assembly without considering allosteric regulation or conformational changes. Therefore, our model provides a useful tool to understand the general principles of protein complex assembly.

  6. Physicochemical properties of protein-modified silver nanoparticles in seawater

    NASA Astrophysics Data System (ADS)

    Zhong, Hangyue

    2013-10-01

    This study investigated the physicochemical properties of silver nanoparticles stabilized with casein protein in seawater. UV?vis spectrometry, dynamic light scattering (DLS), and transmission electron microscopy (TEM) were applied to measure the stability of silver nanoparticles in seawater samples. The obtained results show an increased aggregation tendency of silver nanoparticles in seawater, which could be attributed its relatively high cation concentration that could neutralize the negatively charges adsorbed on the surface of silver nanoparticles and reduce the electrostatic repulsion forces between nanoparticles. Similarly, due to the surface charge screening process, the zeta potential of silver nanoparticles in seawater decreased. This observation further supported the aggregation behavior of silver nanoparticles. This study also investigated the dissolution of silver nanoparticles in seawater. Result shows that the silver nanoparticle dissolution in DI water is lower than in seawater, which is attributed to the high Cl? concentration present in seawater. As Cl? can react with silver and form soluble AgCl complex, dissolution of silver nanoparticles was enhanced. Finally, this study demonstrated that silver nanoparticles are destabilized in seawater condition. These results may be helpful in understanding the environmental risk of discharged silver nanoparticles in seawater conditions.

  7. Protein-protein interactions in complex cosolvent solutions.

    PubMed

    Javid, Nadeem; Vogtt, Karsten; Krywka, Chris; Tolan, Metin; Winter, Roland

    2007-04-02

    The effects of various kosmotropic and chaotropic cosolvents and salts on the intermolecular interaction potential of positively charged lysozyme is evaluated at varying protein concentrations by using synchrotron small-angle X-ray scattering in combination with liquid-state theoretical approaches. The experimentally derived static structure factors S(Q) obtained without and with added cosolvents and salts are analysed with a statistical mechanical model based on the Derjaguin-Landau-Verwey-Overbeek (DLVO) potential, which accounts for repulsive and attractive interactions between the protein molecules. Different cosolvents and salts influence the interactions between protein molecules differently as a result of changes in the hydration level or solvation, in charge screening, specific adsorption of the additives at the protein surface, or increased hydrophobic interactions. Intermolecular interaction effects are significant above protein concentrations of 1 wt %, and with increasing protein concentration, the repulsive nature of the intermolecular pair potential V(r) increases markedly. Kosmotropic cosolvents like glycerol and sucrose exhibit strong concentration-dependent effects on the interaction potential, leading to an increase of repulsive forces between the protein molecules at low to medium high osmolyte concentrations. Addition of trifluoroethanol exhibits a multiphasic effect on V(r) when changing its concentration. Salts like sodium chloride and potassium sulfate exhibit strong concentration-dependent changes of the interaction potential due to charge screening of the positively charged protein molecules. Guanidinium chloride (GdmCl) at low concentrations exhibits a similar charge-screening effect, resulting in increased attractive interactions between the protein molecules. At higher GdmCl concentrations, V(r) becomes more repulsive in nature due to the presence of high concentrations of Gdm(+) ions binding to the protein molecules. Our findings also

  8. Safety assessment of a modified acetolactate synthase protein (GM-HRA) used as a selectable marker in genetically modified soybeans.

    PubMed

    Mathesius, C A; Barnett, J F; Cressman, R F; Ding, J; Carpenter, C; Ladics, G S; Schmidt, J; Layton, R J; Zhang, J X Q; Appenzeller, L M; Carlson, G; Ballou, S; Delaney, B

    2009-12-01

    Acetolactate synthase (ALS) enzymes have been isolated from numerous organisms including soybeans (Glycine max; GM-ALS) and catalyze the first common step in biosynthesis of branched chain amino acids. Expression of an ALS protein (GM-HRA) with two amino acid changes relative to native GM-ALS protein in genetically modified soybeans confers tolerance to herbicidal active ingredients and can be used as a selectable transformation marker. The safety assessment of the GM-HRA protein is discussed. Bioinformatics comparison of the amino acid sequence did not identify similarities to known allergenic or toxic proteins. In vitro studies demonstrated rapid degradation in simulated gastric fluid (<30s) and intestinal fluid (<1min). The enzymatic activity was completely inactivated at 50 degrees C for 15 min demonstrating heat lability. The protein expressed in planta is not glycosylated and genetically modified soybeans expressing the GM-HRA protein produced similar protein/allergen profiles as its non-transgenic parental isoline. No adverse effects were observed in mice following acute oral exposure at a dose of at least 436 mg/kg of body weight or in a 28-day repeated dose dietary toxicity study at doses up to 1247 mg/kg of body weight/day. The results demonstrate GM-HRA protein safety when used in agricultural biotechnology.

  9. Measurement of protein-ligand complex formation.

    PubMed

    Lowe, Peter N; Vaughan, Cara K; Daviter, Tina

    2013-01-01

    Experimental approaches to detect, measure, and quantify protein-ligand binding, along with their theoretical bases, are described. A range of methods for detection of protein-ligand interactions is summarized. Specific protocols are provided for a nonequilibrium procedure pull-down assay, for an equilibrium direct binding method and its modification into a competition-based measurement and for steady-state measurements based on the effects of ligands on enzyme catalysis.

  10. Recording information on protein complexes in an information management system

    PubMed Central

    Savitsky, Marc; Diprose, Jonathan M.; Morris, Chris; Griffiths, Susanne L.; Daniel, Edward; Lin, Bill; Daenke, Susan; Bishop, Benjamin; Siebold, Christian; Wilson, Keith S.; Blake, Richard; Stuart, David I.; Esnouf, Robert M.

    2011-01-01

    The Protein Information Management System (PiMS) is a laboratory information management system (LIMS) designed for use with the production of proteins in a research environment. The software is distributed under the CCP4 licence, and so is available free of charge to academic laboratories. Like most LIMS, the underlying PiMS data model originally had no support for protein–protein complexes. To support the SPINE2-Complexes project the developers have extended PiMS to meet these requirements. The modifications to PiMS, described here, include data model changes, additional protocols, some user interface changes and functionality to detect when an experiment may have formed a complex. Example data are shown for the production of a crystal of a protein complex. Integration with SPINE2-Complexes Target Tracker application is also described. PMID:21605682

  11. Conservation of Telomere protein complexes: Shuffling through Evolution

    PubMed Central

    Linger, Benjamin R.; Price, Carolyn M.

    2009-01-01

    The rapid evolution of telomere proteins has hindered identification of orthologs from diverse species and created the impression that certain groups of eukaryotes have largely non-overlapping sets of telomere proteins. However, the recent identification of additional telomere proteins from various model organisms has dispelled this notion by expanding our understanding of the composition, architecture and range of telomere protein complexes present in individual species. It is now apparent that versions of the budding yeast CST complex and mammalian shelterin are present in multiple phyla. While the precise subunit composition and architecture of these complexes vary between species, the general function is often conserved. Despite the overall conservation of telomere protein complexes, there is still considerable species specific variation, with some organisms having lost a particular subunit or even an entire complex. In some cases, complex components appear to have migrated between the telomere and the telomerase RNP. Finally, gene duplication has created telomere protein paralogs with novel functions. While one paralog may be part of a conserved telomere protein complex and have the expected function, the other paralog may serve in a completely different aspect of telomere biology. PMID:19839711

  12. The retromer complex - endosomal protein recycling and beyond.

    PubMed

    Seaman, Matthew N J

    2012-10-15

    The retromer complex is a vital element of the endosomal protein sorting machinery that is conserved across all eukaryotes. Retromer is most closely associated with the endosome-to-Golgi retrieval pathway and is necessary to maintain an active pool of hydrolase receptors in the trans-Golgi network. Recent progress in studies of retromer have identified new retromer-interacting proteins, including the WASH complex and cargo such as the Wntless/MIG-14 protein, which now extends the role of retromer beyond the endosome-to-Golgi pathway and has revealed that retromer is required for aspects of endosome-to-plasma membrane sorting and regulation of signalling events. The interactions between the retromer complex and other macromolecular protein complexes now show how endosomal protein sorting is coordinated with actin assembly and movement along microtubules, and place retromer squarely at the centre of a complex set of protein machinery that governs endosomal protein sorting. Dysregulation of retromer-mediated endosomal protein sorting leads to various pathologies, including neurodegenerative diseases such as Alzheimer disease and spastic paraplegia and the mechanisms underlying these pathologies are starting to be understood. In this Commentary, I will highlight recent advances in the understanding of retromer-mediated endosomal protein sorting and discuss how retromer contributes to a diverse set of physiological processes.

  13. Operon Gene Order Is Optimized for Ordered Protein Complex Assembly.

    PubMed

    Wells, Jonathan N; Bergendahl, L Therese; Marsh, Joseph A

    2016-02-02

    The assembly of heteromeric protein complexes is an inherently stochastic process in which multiple genes are expressed separately into proteins, which must then somehow find each other within the cell. Here, we considered one of the ways by which prokaryotic organisms have attempted to maximize the efficiency of protein complex assembly: the organization of subunit-encoding genes into operons. Using structure-based assembly predictions, we show that operon gene order has been optimized to match the order in which protein subunits assemble. Exceptions to this are almost entirely highly expressed proteins for which assembly is less stochastic and for which precisely ordered translation offers less benefit. Overall, these results show that ordered protein complex assembly pathways are of significant biological importance and represent a major evolutionary constraint on operon gene organization.

  14. Mass Spectrometry of Protein Complexes: From Origins to Applications

    NASA Astrophysics Data System (ADS)

    Mehmood, Shahid; Allison, Timothy M.; Robinson, Carol V.

    2015-04-01

    Now routine is the ability to investigate soluble and membrane protein complexes in the gas phase of a mass spectrometer while preserving folded structure and ligand-binding properties. Several recent transformative developments have occurred to arrive at this point. These include advances in mass spectrometry instrumentation, particularly with respect to resolution; the ability to study intact membrane protein complexes released from detergent micelles; and the use of protein unfolding in the gas phase to obtain stability parameters. Together, these discoveries are providing unprecedented information on the compositional heterogeneity of biomacromolecules, the unfolding trajectories of multidomain proteins, and the stability imparted by ligand binding to both soluble and membrane-embedded protein complexes. We review these recent breakthroughs, highlighting the challenges that had to be overcome and the physicochemical insight that can now be gained from studying proteins and their assemblies in the gas phase.

  15. Computational approaches for detecting protein complexes from protein interaction networks: a survey

    PubMed Central

    2010-01-01

    Background Most proteins form macromolecular complexes to perform their biological functions. However, experimentally determined protein complex data, especially of those involving more than two protein partners, are relatively limited in the current state-of-the-art high-throughput experimental techniques. Nevertheless, many techniques (such as yeast-two-hybrid) have enabled systematic screening of pairwise protein-protein interactions en masse. Thus computational approaches for detecting protein complexes from protein interaction data are useful complements to the limited experimental methods. They can be used together with the experimental methods for mapping the interactions of proteins to understand how different proteins are organized into higher-level substructures to perform various cellular functions. Results Given the abundance of pairwise protein interaction data from high-throughput genome-wide experimental screenings, a protein interaction network can be constructed from protein interaction data by considering individual proteins as the nodes, and the existence of a physical interaction between a pair of proteins as a link. This binary protein interaction graph can then be used for detecting protein complexes using graph clustering techniques. In this paper, we review and evaluate the state-of-the-art techniques for computational detection of protein complexes, and discuss some promising research directions in this field. Conclusions Experimental results with yeast protein interaction data show that the interaction subgraphs discovered by various computational methods matched well with actual protein complexes. In addition, the computational approaches have also improved in performance over the years. Further improvements could be achieved if the quality of the underlying protein interaction data can be considered adequately to minimize the undesirable effects from the irrelevant and noisy sources, and the various biological evidences can be better

  16. Strategies for crystallization of large membrane protein complexes

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Shinya; Shinzawa-Itoh, Kyoko; Ueda, Hidefumi; Tsukihara, Tomitake; Fukumoto, Yoshihisa; Kubota, Tomomi; Kawamoto, Masahide; Fukuyama, Keiichi; Matsubara, Hiroshi

    1992-08-01

    Crystalline cytochrome c oxidase and ubiquinol: cytochrome c oxidoreductase which diffracted X-rays at 7-8A˚resolution were obtained from bovine heart mitochondria. The methods for the purification and crystallization of these enzymes indicate that large membrane protein complexes are easier to purify and crystallize than smaller homologous membrane protein complexes, because the former have more hydrophilic surface than the latter. Bulky and polydispersed detergents such as Brij-35 and Tween 20 attached to the isolated complex are not always obstructive to crystallization if they are effective for stabilizing the complexes.

  17. Ethanol Metabolism Modifies Hepatic Protein Acylation in Mice

    PubMed Central

    Fritz, Kristofer S.; Green, Michelle F.; Petersen, Dennis R.; Hirschey, Matthew D.

    2013-01-01

    Mitochondrial protein acetylation increases in response to chronic ethanol ingestion in mice, and is thought to reduce mitochondrial function and contribute to the pathogenesis of alcoholic liver disease. The mitochondrial deacetylase SIRT3 regulates the acetylation status of several mitochondrial proteins, including those involved in ethanol metabolism. The newly discovered desuccinylase activity of the mitochondrial sirtuin SIRT5 suggests that protein succinylation could be an important post-translational modification regulating mitochondrial metabolism. To assess the possible role of protein succinylation in ethanol metabolism, we surveyed hepatic sub-cellular protein fractions from mice fed a control or ethanol-supplemented diet for succinyl-lysine, as well as acetyl-, propionyl-, and butyryl-lysine post-translational modifications. We found mitochondrial protein propionylation increases, similar to mitochondrial protein acetylation. In contrast, mitochondrial protein succinylation is reduced. These mitochondrial protein modifications appear to be primarily driven by ethanol metabolism, and not by changes in mitochondrial sirtuin levels. Similar trends in acyl modifications were observed in the nucleus. However, comparatively fewer acyl modifications were observed in the cytoplasmic or the microsomal compartments, and were generally unchanged by ethanol metabolism. Using a mass spectrometry proteomics approach, we identified several candidate acetylated, propionylated, and succinylated proteins, which were enriched using antibodies against each modification. Additionally, we identified several acetyl and propionyl lysine residues on the same sites for a number of proteins and supports the idea of the overlapping nature of lysine-specific acylation. Thus, we show that novel post-translational modifications are present in hepatic mitochondrial, nuclear, cytoplasmic, and microsomal compartments and ethanol ingestion, and its associated metabolism, induce specific

  18. Expanding the chemical toolbox for the synthesis of large and uniquely modified proteins

    NASA Astrophysics Data System (ADS)

    Bondalapati, Somasekhar; Jbara, Muhammad; Brik, Ashraf

    2016-05-01

    Methods to prepare proteins that include a specific modification at a desired position are essential for understanding their cellular functions and physical properties in living systems. Chemical protein synthesis, which relies on the chemoselective ligation of unprotected peptides, enables the preparation of modified proteins that are not easily fabricated by other methods. In contrast to recombinant approaches, chemical synthesis can be used to prepare protein analogues such as D-proteins, which are useful in protein structure determination and the discovery of novel therapeutics. Post-translationally modifying proteins is another example where chemical protein synthesis proved itself as a powerful approach for preparing samples with high homogeneity and in workable quantities. In this Review, we discuss the basic principles of the field, focusing on novel chemoselective peptide ligation approaches such as native chemical ligation and the recent advances based on this method with a proven record of success in the synthesis of highly important protein targets.

  19. SUMO meets meiosis: an encounter at the synaptonemal complex: SUMO chains and sumoylated proteins suggest that heterogeneous and complex interactions lie at the centre of the synaptonemal complex.

    PubMed

    Watts, Felicity Z; Hoffmann, Eva

    2011-07-01

    Recent discoveries have identified the small ubiquitin-like modifier (SUMO) as the potential 'missing link' that could explain how the synaptonemal complex (SC) is formed during meiosis. The SC is important for a variety of chromosome interactions during meiosis and appears ladder-like. It is formed when 'axes' of the two homologous chromosomes become connected by the deposition of transverse filaments, forming the steps of the ladder. Although several components of axial and transverse elements have been identified, how the two are connected to form the SC has remained an enigma. Recent discoveries suggest that SUMO modification underlies protein-protein interactions within the SC of budding yeast. The versatility of SUMO in regulating protein-protein interactions adds an exciting new dimension to our understanding of the SC and suggests that SCs are not homogenous structures throughout the nucleus. We propose that this heterogeneity may allow differential regulation of chromosome structure and function.

  20. A modified gelatin zymography technique incorporating total protein normalization.

    PubMed

    Raykin, Julia; Snider, Eric; Bheri, Sruti; Mulvihill, John; Ethier, C Ross

    2017-03-15

    Gelatinase zymography is a commonly used laboratory procedure; however, variability in sample loading and concentration reduce the accuracy of quantitative results obtained from this technique. To facilitate normalization of gelatinase activity by loaded protein amount, we developed a protocol using the trihalocompound 2,2,2-trichloroethanol to allow for gelatin zymography and total protein labeling within the same gel. We showed that detected protein levels increased linearly with loading, and describe a loading concentration range over which normalized gelatinase activity was constant. We conclude that in-gel total protein detection is feasible in gelatin zymography and greatly improves comparison of gelatinase activity between samples.

  1. Sizing Large Proteins and Protein Complexes by Electrospray Ionization Mass Spectrometry and Ion Mobility

    PubMed Central

    Kaddis, Catherine S.; Lomeli, Shirley H.; Yin, Sheng; Berhane, Beniam; Apostol, Marcin I.; Kickhoefer, Valerie A.; Rome, Leonard H.; Loo, Joseph A.

    2009-01-01

    Mass spectrometry (MS) and ion mobility with electrospray ionization (ESI) have the capability to measure and detect large noncovalent protein-ligand and protein-protein complexes. Using an ion mobility method termed GEMMA (Gas-Phase Electrophoretic Mobility Molecular Analysis), protein particles representing a range of sizes can be separated by their electrophoretic mobility in air. Highly charged particles produced from a protein complex solution using electrospray can be manipulated to produce singly charged ions which can be separated and quantified by their electrophoretic mobility. Results from ESI-GEMMA analysis from our laboratory and others were compared to other experimental and theoretically determined parameters, such as molecular mass and cryoelectron microscopy and x-ray crystal structure dimensions. There is a strong correlation between the electrophoretic mobility diameter determined from GEMMA analysis and the molecular mass for protein complexes up to 12 MDa, including the 93 kDa enolase dimer, the 480 kDa ferritin 24-mer complex, the 4.6 MDa cowpea chlorotic mottle virus (CCMV), and the 9 MDa MVP-vault assembly. ESI-GEMMA is used to differentiate a number of similarly sized vault complexes that are composed of different N-terminal protein tags on the MVP subunit. The average effective density of the proteins and protein complexes studied was 0.6 g/cm3. Moreover, there is evidence that proteins and protein complexes collapse or become more compact in the gas phase in the absence of water. PMID:17434746

  2. Nanoparticle-protein complexes mimicking corona formation in ocular environment.

    PubMed

    Jo, Dong Hyun; Kim, Jin Hyoung; Son, Jin Gyeong; Dan, Ki Soon; Song, Sang Hoon; Lee, Tae Geol; Kim, Jeong Hun

    2016-12-01

    Nanoparticles adsorb biomolecules to form corona upon entering the biological environment. In this study, tissue-specific corona formation is provided as a way of controlling protein interaction with nanoparticles in vivo. In the vitreous, the composition of the corona was determined by the electrostatic and hydrophobic properties of the associated proteins, regardless of the material (gold and silica) or size (20- and 100-nm diameter) of the nanoparticles. To control protein adsorption, we pre-incubate 20-nm gold nanoparticles with 5 selectively enriched proteins from the corona, formed in the vitreous, to produce nanoparticle-protein complexes. Compared to bare nanoparticles, nanoparticle-protein complexes demonstrate improved binding to vascular endothelial growth factor (VEGF) in the vitreous. Furthermore, nanoparticle-protein complexes retain in vitro anti-angiogenic properties of bare nanoparticles. In particular, priming the nanoparticles (gold and silica) with tissue-specific corona proteins allows nanoparticle-protein complexes to exert better in vivo therapeutic effects by higher binding to VEGF than bare nanoparticles. These results suggest that controlled corona formation that mimics in vivo processes may be useful in the therapeutic use of nanomaterials in local environment.

  3. Unwinding protein complexes in ALTernative telomere maintenance.

    PubMed

    Bhattacharyya, Saumitri; Sandy, April; Groden, Joanna

    2010-01-01

    Telomeres are composed of specialized chromatin that includes DNA repair/recombination proteins, telomere DNA-binding proteins and a number of three dimensional nucleic acid structures including G-quartets and D-loops. A number of studies suggest that the BLM and WRN recQ-like helicases play important roles in recombination-mediated mechanisms of telomere elongation or Alternative Lengthening of Telomeres (ALT), processes that maintain/elongate telomeres in the absence of telomerase. BLM and WRN localize within ALT-associated nuclear bodies in telomerase-negative immortalized cell lines and interact with the telomere-specific proteins POT1, TRF1 and TRF2. Helicase activity is modulated by these interactions. BLM functions in DNA double-strand break repair processes such as non-homologous end joining, homologous recombination-mediated repair, resolution of stalled replication forks and synthesis-dependent strand annealing, although its precise functions at the telomeres are speculative. WRN also functions in DNA replication, recombination and repair, and in addition to its helicase domain, includes an exonuclease domain not found in other recQ-like helicases. The biochemical properties of BLM and WRN are, therefore, important in biological processes other than DNA replication, recombination and repair. In this review, we discuss some previous and recent findings of human rec-Q-like helicases and their role in telomere elongation during ALT processes.

  4. Treatment of hides with tara-modified protein products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In prior research, we demonstrated that gelatin could be modified with quebracho to produce products whose physicochemical properties would enable them to be used effectively as fillers in leather processing, and that leather resulting from this treatment had improved subjective properties with litt...

  5. A gene encoding a protein modified by the phytohormone indoleacetic acid

    PubMed Central

    Walz, Alexander; Park, Seijin; Slovin, Janet P.; Ludwig-Müller, Jutta; Momonoki, Yoshie S.; Cohen, Jerry D.

    2002-01-01

    We show that the expression of an indole-3-acetic acid (IAA)-modified protein from bean seed, IAP1, is correlated to the developmental period of rapid growth during seed development. Moreover, this protein undergoes rapid degradation during germination. The gene for IAP1, the most abundant protein covalently modified by IAA (iap1, GenBank accession no. AF293023) was isolated and cloned from bush bean (Phaseolus vulgaris) seeds. The 957-bp sequence encodes a 35-kDa polypeptide. IAA-modified proteins represent a distinct class of conjugated phytohormones and appear in bean to be the major form of auxin in seeds. IAA proteins also are found at other stages of development in bean plants. Our immunological and analytical data suggest that auxin modification of a small class of proteins may be a feature common to many plants. PMID:11830675

  6. Characterizing Protein Complexes with UV absorption, Light Scattering, and Refractive Index Detection.

    NASA Astrophysics Data System (ADS)

    Trainoff, Steven

    2009-03-01

    Many modern pharmaceuticals and naturally occurring biomolecules consist of complexes of proteins and polyethylene glycol or carbohydrates. In the case of vaccine development, these complexes are often used to induce or amplify immune responses. For protein therapeutics they are used to modify solubility and function, or to control the rate of degradation and elimination of a drug from the body. Characterizing the stoichiometry of these complexes is an important industrial problem that presents a formidable challenge to analytical instrument designers. Traditional analytical methods, such as using florescent tagging, chemical assays, and mass spectrometry perturb the system so dramatically that the complexes are often destroyed or uncontrollably modified by the measurement. A solution to this problem consists of fractionating the samples and then measuring the fractions using sequential non-invasive detectors that are sensitive to different components of the complex. We present results using UV absorption, which is primarily sensitive to the protein fraction, Light Scattering, which measures the total weight average molar mass, and Refractive Index detection, which measures the net concentration. We also present a solution of the problem inter-detector band-broadening problem that has heretofore made this approach impractical. Presented will be instrumentation and an analysis method that overcome these obstacles and make this technique a reliable and robust way of non-invasively characterizing these industrially important compounds.

  7. From quantitative protein complex analysis to disease mechanism.

    PubMed

    Texier, Y; Kinkl, N; Boldt, K; Ueffing, M

    2012-12-15

    Interest in the field of cilia biology and cilia-associated diseases - ciliopathies - has strongly increased over the last few years. Proteomic technologies, especially protein complex analysis by affinity purification-based methods, have been used to decipher various basic but also disease-associated mechanisms. This review focusses on some selected recent studies using affinity purification-based protein complex analysis, thereby exemplifying the great possibilities this technology offers.

  8. Characteristics and safety assessment of intractable proteins in genetically modified crops.

    PubMed

    Bushey, Dean F; Bannon, Gary A; Delaney, Bryan F; Graser, Gerson; Hefford, Mary; Jiang, Xiaoxu; Lee, Thomas C; Madduri, Krishna M; Pariza, Michael; Privalle, Laura S; Ranjan, Rakesh; Saab-Rincon, Gloria; Schafer, Barry W; Thelen, Jay J; Zhang, John X Q; Harper, Marc S

    2014-07-01

    Genetically modified (GM) crops may contain newly expressed proteins that are described as "intractable". Safety assessment of these proteins may require some adaptations to the current assessment procedures. Intractable proteins are defined here as those proteins with properties that make it extremely difficult or impossible with current methods to express in heterologous systems; isolate, purify, or concentrate; quantify (due to low levels); demonstrate biological activity; or prove equivalency with plant proteins. Five classes of intractable proteins are discussed here: (1) membrane proteins, (2) signaling proteins, (3) transcription factors, (4) N-glycosylated proteins, and (5) resistance proteins (R-proteins, plant pathogen recognition proteins that activate innate immune responses). While the basic tiered weight-of-evidence approach for assessing the safety of GM crops proposed by the International Life Sciences Institute (ILSI) in 2008 is applicable to intractable proteins, new or modified methods may be required. For example, the first two steps in Tier I (hazard identification) analysis, gathering of applicable history of safe use (HOSU) information and bioinformatics analysis, do not require protein isolation. The extremely low level of expression of most intractable proteins should be taken into account while assessing safety of the intractable protein in GM crops. If Tier II (hazard characterization) analyses requiring animal feeding are judged to be necessary, alternatives to feeding high doses of pure protein may be needed. These alternatives are discussed here.

  9. Membrane stiffness is modified by integral membrane proteins.

    PubMed

    Fowler, Philip W; Hélie, Jean; Duncan, Anna; Chavent, Matthieu; Koldsø, Heidi; Sansom, Mark S P

    2016-09-20

    The ease with which a cell membrane can bend and deform is important for a wide range of biological functions. Peripheral proteins that induce curvature in membranes (e.g. BAR domains) have been studied for a number of years. Little is known, however, about the effect of integral membrane proteins on the stiffness of a membrane (characterised by the bending rigidity, Kc). We demonstrate by computer simulation that adding integral membrane proteins at physiological densities alters the stiffness of the membrane. First we establish that the coarse-grained MARTINI forcefield is able to accurately reproduce the bending rigidity of a small patch of 1500 phosphatidyl choline lipids by comparing the calculated value to both experiment and an atomistic simulation of the same system. This enables us to simulate the dynamics of large (ca. 50 000 lipids) patches of membrane using the MARTINI coarse-grained description. We find that altering the lipid composition changes the bending rigidity. Adding integral membrane proteins to lipid bilayers also changes the bending rigidity, whilst adding a simple peripheral membrane protein has no effect. Our results suggest that integral membrane proteins can have different effects, and in the case of the bacterial outer membrane protein, BtuB, the greater the density of protein, the larger the reduction in stiffness.

  10. Dystrophin complex functions as a scaffold for signalling proteins.

    PubMed

    Constantin, Bruno

    2014-02-01

    Dystrophin is a 427kDa sub-membrane cytoskeletal protein, associated with the inner surface membrane and incorporated in a large macromolecular complex of proteins, the dystrophin-associated protein complex (DAPC). In addition to dystrophin the DAPC is composed of dystroglycans, sarcoglycans, sarcospan, dystrobrevins and syntrophin. This complex is thought to play a structural role in ensuring membrane stability and force transduction during muscle contraction. The multiple binding sites and domains present in the DAPC confer the scaffold of various signalling and channel proteins, which may implicate the DAPC in regulation of signalling processes. The DAPC is thought for instance to anchor a variety of signalling molecules near their sites of action. The dystroglycan complex may participate in the transduction of extracellular-mediated signals to the muscle cytoskeleton, and β-dystroglycan was shown to be involved in MAPK and Rac1 small GTPase signalling. More generally, dystroglycan is view as a cell surface receptor for extracellular matrix proteins. The adaptor proteins syntrophin contribute to recruit and regulate various signalling proteins such as ion channels, into a macromolecular complex. Although dystrophin and dystroglycan can be directly involved in signalling pathways, syntrophins play a central role in organizing signalplex anchored to the dystrophin scaffold. The dystrophin associated complex, can bind up to four syntrophin through binding domains of dystrophin and dystrobrevin, allowing the scaffold of multiple signalling proteins in close proximity. Multiple interactions mediated by PH and PDZ domains of syntrophin also contribute to build a complete signalplex which may include ion channels, such as voltage-gated sodium channels or TRPC cation channels, together with, trimeric G protein, G protein-coupled receptor, plasma membrane calcium pump, and NOS, to enable efficient and regulated signal transduction and ion transport. This article is part

  11. Mass Spectrometry of Protein-Ligand Complexes: Enhanced Gas Phase Stability of Ribonuclease-Nucleotide Complexes

    PubMed Central

    Yin, Sheng; Xie, Yongming; Loo, Joseph A.

    2008-01-01

    Noncovalent protein-ligand complexes are readily detected by electrospray ionization mass spectrometry (ESI-MS). Ligand binding stoichiometry can be determined easily by the ESI-MS method. The ability to detect noncovalent protein-ligand complexes depends, however, on the stability of the complexes in the gas phase environment. Solution binding affinities may or may not be accurate predictors of their stability in vacuo. Complexes composed of cytidine nucleotides bound to ribonuclease A (RNase A) and ribonuclease S (RNase S) were detected by ESI-MS and were further analyzed by MS/MS. RNase A and RNase S share similar structures and biological activity. Subtilisin-cleavage of RNase A yields an S-peptide and an S-protein; the S-peptide and S-protein interact through hydrophobic interactions with a solution binding constant in the nanomolar range to generate an active RNase S. Cytidine nucleotides bind to the ribonucleases through electrostatic interactions with a solution binding constant in the micromolar range. Collisionally activated dissociation (CAD) of the 1:1 RNase A-CDP and CTP complexes yields cleavage of the covalent phosphate bonds of the nucleotide ligands, releasing CMP from the complex. CAD of the RNase S-CDP and CTP complexes dissociates the S-peptide from the remaining S-protein/nucleotide complex; further dissociation of the S-protein/nucleotide complex fragments a covalent phosphate bond of the nucleotide with subsequent release of CMP. Despite a solution binding constant favoring the S-protein/S-peptide complex, CDP/CTP remains electrostatically bound to the S-protein in the gas phase dissociation experiment. This study highlights the intrinsic stability of electrostatic interactions in the gas phase and the significant differences in solution and gas phase stabilities of noncovalent complexes that can result. PMID:18565758

  12. Method For Determining And Modifying Protein/Peptide Solubilty

    SciTech Connect

    Waldo, Geoffrey S.

    2005-03-15

    A solubility reporter for measuring a protein's solubility in vivo or in vitro is described. The reporter, which can be used in a single living cell, gives a specific signal suitable for determining whether the cell bears a soluble version of the protein of interest. A pool of random mutants of an arbitrary protein, generated using error-prone in vitro recombination, may also be screened for more soluble versions using the reporter, and these versions may be recombined to yield variants having further-enhanced solubility. The method of the present invention includes "irrational" (random mutagenesis) methods, which do not require a priori knowledge of the three-dimensional structure of the protein of interest. Multiple sequences of mutation/genetic recombination and selection for improved solubility are demonstrated to yield versions of the protein which display enhanced solubility.

  13. Comprehensive inventory of protein complexes in the Protein Data Bank from consistent classification of interfaces

    SciTech Connect

    Bordner, Andrew J.; Gorin, Andrey A.

    2008-05-12

    Here, protein-protein interactions are ubiquitous and essential for cellular processes. High-resolution X-ray crystallographic structures of protein complexes can elucidate the details of their function and provide a basis for many computational and experimental approaches. Here we demonstrate that existing annotations of protein complexes, including those provided by the Protein Data Bank (PDB) itself, contain a significant fraction of incorrect annotations. Results: We have developed a method for identifying protein complexes in the PDB X-ray structures by a four step procedure: (1) comprehensively collecting all protein-protein interfaces; (2) clustering similar protein-protein interfaces together; (3) estimating the probability that each cluster is relevant based on a diverse set of properties; and (4) finally combining these scores for each entry in order to predict the complex structure. Unlike previous annotation methods, consistent prediction of complexes with identical or almost identical protein content is insured. The resulting clusters of biologically relevant interfaces provide a reliable catalog of evolutionary conserved protein-protein interactions.

  14. Comprehensive inventory of protein complexes in the Protein Data Bank from consistent classification of interfaces

    DOE PAGES

    Bordner, Andrew J.; Gorin, Andrey A.

    2008-05-12

    Here, protein-protein interactions are ubiquitous and essential for cellular processes. High-resolution X-ray crystallographic structures of protein complexes can elucidate the details of their function and provide a basis for many computational and experimental approaches. Here we demonstrate that existing annotations of protein complexes, including those provided by the Protein Data Bank (PDB) itself, contain a significant fraction of incorrect annotations. Results: We have developed a method for identifying protein complexes in the PDB X-ray structures by a four step procedure: (1) comprehensively collecting all protein-protein interfaces; (2) clustering similar protein-protein interfaces together; (3) estimating the probability that each cluster ismore » relevant based on a diverse set of properties; and (4) finally combining these scores for each entry in order to predict the complex structure. Unlike previous annotation methods, consistent prediction of complexes with identical or almost identical protein content is insured. The resulting clusters of biologically relevant interfaces provide a reliable catalog of evolutionary conserved protein-protein interactions.« less

  15. Effect of protein modification by malondialdehyde on the interaction between the oxygen-evolving complex 33 kDa protein and photosystem II core proteins.

    PubMed

    Yamauchi, Yasuo; Sugimoto, Yukihiro

    2010-04-01

    Previously we observed that the oxygen-evolving complex 33 kDa protein (OEC33) which stabilizes the Mn cluster in photosystem II (PSII), was modified with malondialdehyde (MDA), an end-product of peroxidized polyunsaturated fatty acids, and the modification increased in heat-stressed plants (Yamauchi et al. 2008). In this study, we examined whether the modification of OEC33 with MDA affects its binding to the PSII complex and causes inactivation of the oxygen-evolving complex. Purified OEC33 and PSII membranes that had been removed of extrinsic proteins of the oxygen-evolving complex (PSIIOEE) of spinach (Spinacia oleracea) were separately treated with MDA. The binding was diminished when both OEC33 and PSIIOEE were modified, but when only OEC33 or PSIIOEE was treated, the binding was not impaired. In the experiment using thylakoid membranes, release of OEC33 from PSII and corresponding loss of oxygen-evolving activity were observed when thylakoid membranes were treated with MDA at 40 degrees C but not at 25 degrees C. In spinach leaves treated at 40 degrees C under light, maximal efficiency of PSII photochemistry (F(v)/F(m) ratio of chlorophyll fluorescence) and oxygen-evolving activity decreased. Simultaneously, MDA contents in heat-stressed leaves increased, and OEC33 and PSII core proteins including 47 and 43 kDa chlorophyll-binding proteins were modified with MDA. In contrast, these changes were to a lesser extent at 40 degrees C in the dark. These results suggest that MDA modification of PSII proteins causes release of OEC33 from PSII and it is promoted in heat and oxidative conditions.

  16. Protein interaction module-assisted function X (PIMAX) approach to producing challenging proteins including hyperphosphorylated tau and active CDK5/p25 kinase complex.

    PubMed

    Sui, Dexin; Xu, Xinjing; Ye, Xuemei; Liu, Mengyu; Mianecki, Maxwell; Rattanasinchai, Chotirat; Buehl, Christopher; Deng, Xiexiong; Kuo, Min-Hao

    2015-01-01

    Many biomedically critical proteins are underrepresented in proteomics and biochemical studies because of the difficulty of their production in Escherichia coli. These proteins might possess posttranslational modifications vital to their functions, tend to misfold and be partitioned into bacterial inclusion bodies, or act only in a stoichiometric dimeric complex. Successful production of these proteins requires efficient interaction between these proteins and a specific "facilitator," such as a protein-modifying enzyme, a molecular chaperone, or a natural physical partner within the dimeric complex. Here we report the design and application of a protein interaction module-assisted function X (PIMAX) system that effectively overcomes these hurdles. By fusing two proteins of interest to a pair of well-studied protein-protein interaction modules, we were able to potentiate the association of these two proteins, resulting in successful production of an enzymatically active cyclin-dependent kinase complex and hyperphosphorylated tau protein, which is intimately linked to Alzheimer disease. Furthermore, using tau isoforms quantitatively phosphorylated by GSK-3β and CDK5 kinases via PIMAX, we demonstrated the hyperphosphorylation-stimulated tau oligomerization in vitro, paving the way for new Alzheimer disease drug discoveries. Vectors for PIMAX can be easily modified to meet the needs of different applications. This approach thus provides a convenient and modular suite with broad implications for proteomics and biomedical research.

  17. Surgical correction of blepharoptosis using a modified levator aponeurosis-Müller muscle complex reinsertion technique.

    PubMed

    Liu, Haipeng; Shao, Ying; Zhang, Duo

    2014-01-01

    The purpose of this study was to evaluate the outcomes after ptosis correction surgery using a modified levator aponeurosis-Müller muscle complex reinsertion technique. In this clinical study, 75 eyelids of 49 patients with congenital blepharoptosis were treated with the modified technique. The results, including complications, were followed up and evaluated. Operation was performed via anterior transcutaneous incision. After separating the preseptal orbicularis oculi muscle, the levator complex, including Müller muscle and the levator aponeurosis, was visualized. The levator complex was cut into 2 parts at the top of the conjunctival fornix to create an upper portion and a lower portion. The detached lower portion of the complex flap combined with the tarsal plate was advanced superiorly and reinserted into the posterior aspect of the upper portion of the complex flap by using 3 horizontal mattress sutures. Preoperative ptosis severity was compared with the degree of ptosis correction using the Cochran-Mantel-Haenszel test. Preoperative levator function was compared with the degree of ptosis correction and the postoperative levator function using Fisher exact test for paired data. Sufficient postoperative correction of ptosis was achieved in 78.7% of eyelids. Postoperative levator function of more than 4 mm was achieved in 82.7% of all eyelids that underwent surgery. We conclude that the modified levator aponeurosis-Müller muscle complex reinsertion technique is effective for correcting congenital blepharoptosis, especially in patients with fair to good (>4 mm) preoperative levator function.

  18. Sonochemical synthesis of (3-aminopropyl)triethoxysilane-modified monodispersed silica nanoparticles for protein immobilization

    SciTech Connect

    Shen, Shou-Cang; Ng, Wai Kiong; Chia, Leonard; Dong, Yuan-Cai; Tan, Reginald B.H.

    2011-10-15

    Graphical abstract: 3-Aminopropyltriethoxysilane modified monodispersed silica nanoparticles were synthesized by rapid sonochemical co-condensation to achieve high capability for protein immobilization. Highlights: {yields} Amino-modified monodispersed silica nanoparticles were synthesized by rapid co-condensation. {yields} Strong positive charge was created by aminopropyl-modification. {yields} Capability for immobilization of negatively charged protein was enhanced. {yields} Electrostatic interaction between proteins and surface contributed to the enhanced adsorption. -- Abstract: 3-Aminopropyltriethoxysilane modified monodispersed silica nanoparticles were synthesized by a rapid sonochemical co-condensation synthesis procedure. The chemical nature of surface organic modifier on the obtained modified silica nanoparticle was characterized by {sup 13}C and {sup 29}Si MAS Nuclear Magnetic Resonance (NMR) spectroscopies, Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA)- differential scanning calorimetry (DSC). Due to the strengthened positive surface charge of the silica nanoparticles by the modification with aminopropyl groups, the capability for bovine serum albumin (BSA) adsorption was significantly increased as compared with bare silica nanoparticles. 80 mg/g BSA was adsorbed on modified silica nanoparticles, whereas only 20 mg/g BSA could be loaded on pure silica nanoparticles. The enhanced positive surface charge repelled proteins with net positive charge and the modified silica nanoparticles exhibited negligible adsorption of lysozyme, thus a selective adsorption of proteins could be achieved.

  19. Adenosine deaminase complexing protein in cancer studies.

    PubMed

    Ten Kate, J; Dinjens, W N; Meera Khan, P; Bosman, F T

    1986-01-01

    ADCP is a dimeric glycoprotein of about 200KD, for which the physiological role is still obscure. This protein occurs mainly in a membrane bound form in various human tissues. In this paper we review the current literature on ADCP in cancer studies. Soluble ADCP was described to be consistently decreased or absent in cancers of lung, liver, kidney and colon. These findings could not be confirmed by immunohistochemical and quantitative biochemical studies in a series of colorectal-, prostatic-, and renal carcinomas. Only in a third of these tumors a decrease could be demonstrated, whereas in the other cases unaltered or even increased amounts were observed. However, in virally transformed human fibroblasts a consistent decrease or complete absence of ADCP was seen, while primary fibroblasts were found to contain high amounts of this protein. Recently, the use of ADCP as a differentiation marker in colonic cancer has been advocated. Furthermore the presence of ADCP in the serum of renal adenocarcinoma patients was found to be indicative of a better chance of five year survival. These studies suggest that ADCP may be a differentiation marker useful for immunohistochemical characterization of colonic and renal carcinomas as well as a serum marker useful for follow-up studies of these types of cancer, analogous to CEA. Finally, ADCP has been found to be selectively expressed by certain T-cell subsets and henceforth may be useful in the studies on leukemias.

  20. Morphine Withdrawal Modifies Prion Protein Expression in Rat Hippocampus

    PubMed Central

    Mattei, Vincenzo; Martellucci, Stefano; Santilli, Francesca; Manganelli, Valeria; Garofalo, Tina; Candelise, Niccolò; Caruso, Alessandra; Sorice, Maurizio; Scaccianoce, Sergio

    2017-01-01

    The hippocampus is a vulnerable brain structure susceptible to damage during aging and chronic stress. Repeated exposure to opioids may alter the brain so that it functions normally when the drugs are present, thus, a prolonged withdrawal might lead to homeostatic changes headed for the restoration of the physiological state. Abuse of morphine may lead to Reacting Oxygen Species-induced neurodegeneration and apoptosis. It has been proposed that during morphine withdrawal, stress responses might be responsible, at least in part, for long-term changes of hippocampal plasticity. Since prion protein is involved in both, Reacting Oxygen Species mediated stress responses and synaptic plasticity, in this work we investigate the effect of opiate withdrawal in rats after morphine treatment. We hypothesize that stressful stimuli induced by opiate withdrawal, and the subsequent long-term homeostatic changes in hippocampal plasticity, might modulate the Prion protein expression. Our results indicate that abstinence from the opiate induced a time-dependent and region-specific modification in Prion protein content, indeed during morphine withdrawal a selective unbalance of hippocampal Prion Protein is observable. Moreover, Prion protein overexpression in hippocampal tissue seems to generate a dimeric structure of Prion protein and α-cleavage at the hydrophobic domain. Stress factors or toxic insults can induce cytosolic dimerization of Prion Protein through the hydrophobic domain, which in turn, it stimulates the α-cleavage and the production of neuroprotective Prion protein fragments. We speculate that this might be the mechanism by which stressful stimuli induced by opiate withdrawal and the subsequent long-term homeostatic changes in hippocampal plasticity, modulate the expression and the dynamics of Prion protein. PMID:28081197

  1. 1-Soliton solutions of complex modified KdV equation with time-dependent coefficients

    NASA Astrophysics Data System (ADS)

    Kumar, H.; Chand, F.

    2013-09-01

    In this paper, we have obtained exact 1-soliton solutions of complex modified KdV equation with variable—coefficients using solitary wave ansatz. Restrictions on parameters of the soliton have been observed in course of the derivation of soliton solutions. Finally, a few numerical simulations of dark and bright solitons have been given.

  2. A Local Discontinuous Galerkin Method for the Complex Modified KdV Equation

    SciTech Connect

    Li Wenting; Jiang Kun

    2010-09-30

    In this paper, we develop a local discontinuous Galerkin(LDG) method for solving complex modified KdV(CMKdV) equation. The LDG method has the flexibility for arbitrary h and p adaptivity. We prove the L{sup 2} stability for general solutions.

  3. Biochemical isolation of Argonaute protein complexes by Ago-APP

    PubMed Central

    Hauptmann, Judith; Schraivogel, Daniel; Bruckmann, Astrid; Manickavel, Sudhir; Jakob, Leonhard; Eichner, Norbert; Pfaff, Janina; Urban, Marc; Sprunck, Stefanie; Hafner, Markus; Tuschl, Thomas; Deutzmann, Rainer; Meister, Gunter

    2015-01-01

    During microRNA (miRNA)-guided gene silencing, Argonaute (Ago) proteins interact with a member of the TNRC6/GW protein family. Here we used a short GW protein-derived peptide fused to GST and demonstrate that it binds to Ago proteins with high affinity. This allows for the simultaneous isolation of all Ago protein complexes expressed in diverse species to identify associated proteins, small RNAs, or target mRNAs. We refer to our method as “Ago protein Affinity Purification by Peptides“ (Ago-APP). Furthermore, expression of this peptide competes for endogenous TNRC6 proteins, leading to global inhibition of miRNA function in mammalian cells. PMID:26351695

  4. A comprehensive analytical strategy to identify malondialdehyde-modified proteins and peptides.

    PubMed

    Weißer, Juliane; Ctortecka, Claudia; Busch, Clara J; Austin, Shane R; Nowikovsky, Karin; Uchida, Koji; Binder, Christoph J; Bennett, Keiryn L

    2017-03-01

    Mass spectrometric-based proteomics is a powerful tool to analyse post-translationally modified proteins. Carbonylation modifications that result from oxidative lipid breakdown are a class of post-translational modifications that are poorly charac-terised with respect to protein targets and function. This is partly due to the lack of dedicated mass spectrometry-based technologies to facilitate the analysis of these modifications. Here, we present a comprehensive approach to identify malondialdehyde-modified proteins and peptides. Malondialdehyde is amongst the most abundant of the lipid peroxidation products; and malondialdehyde-derived adducts on proteins have been implicated in cardiovascular diseases, neurodegenerative disorders and other clinical conditions. Our integrated approach targets three levels of the overall proteomic workflow: (i) sample preparation, by employing a targeted enrichment strategy; (ii) high-performance liquid chromatography, by using a gradient optimised for the separation of the modified peptides; and (iii) tandem mass spectrometry, by improving the spectral quality of very low-abundance peptides. By applying the optimised procedure to a whole cell lysate spiked with a low amount of malondialdehyde-modified proteins, we were able to identify up to 350 different modified peptides and localise the modification to a specific lysine residue. This methodology allows the comprehensive analysis of malondialdehyde-modified proteins.

  5. Chromatographic and traditional albumin isotherms on cellulose: a model for wound protein adsorption on modified cotton.

    PubMed

    Edwards, J Vincent; Castro, Nathan J; Condon, Brian; Costable, Carmen; Goheen, Steven C

    2012-05-01

    Albumin is the most abundant protein found in healing wounds. Traditional and chromatographic protein isotherms of albumin binding on modified cotton fibers are useful in understanding albumin binding to cellulose wound dressings. An important consideration in the design of cellulosic wound dressings is adsorption and accumulation of proteins like albumin at the solid-liquid interface of the biological fluid and wound dressing fiber. To better understand the effect of fiber charge and molecular modifications in cellulose-containing fibers on the binding of serum albumin as observed in protease sequestrant dressings, albumin binding to modified cotton fibers was compared with traditional and chromatographic isotherms. Modified cotton including carboxymethylated, citrate-crosslinked, dialdehyde and phosphorylated cotton, which sequester elastase and collagenase, were compared for their albumin binding isotherms. Albumin isotherms on citrate-cellulose, cross-linked cotton demonstrated a two-fold increased binding affinity over untreated cotton. A comparison of albumin binding between traditional, solution isotherms and chromatographic isotherms on modified cellulose yielded similar equilibrium constants. Application of the binding affinity of albumin obtained in the in vitro protein isotherm to the in vivo wound dressing uptake of the protein is discussed. The chromatographic approach to assessment of albumin isotherms on modified cellulose offers a more rapid approach to evaluating protein binding on modified cellulose over traditional solution approaches.

  6. Complexation-triggerable liposome mixed with silk protein and chitosan.

    PubMed

    Hong, Yeon-Ji; Kim, Jin-Chul

    2015-01-01

    Complexation-triggerable liposomes were prepared by modifying the surface of egg phosphatidylcholine (EPC) liposomes with hydrophobicized silk fibroin (HmSF) and hydrophobicized chitosan (HmCh). Maximum complexation, determined by measuring the diameter of complexation, was found when the ratio of HmSF to HmCh was 14:1, so they were immobilized on the surface of liposomes at the same ratio. The degree of fluorescence quenching of calcein in liposomal suspension was as high as 68% when the ratio of surface modifier (HmSF + HmCh) to EPC was 1:15. When the ratio was increased to 1:5, the degree of quenching decreased to 32%, indicating the inefficient formation of liposome. Liposome mixed with the surface modifier was multi-lamellar vesicle on TEM photo. And, the mean diameter was larger than those of liposome mixed with either HmSF or HmCh, possibly due to insoluble complex on the liposomal surface. The liposome exhibited a pH-sensitive release and triggered the release at pH 5.5 and 6.0. It is believed that complexation is responsible for the promoted release at those pH values.

  7. Quantitative proteomic analysis of protein complexes: concurrent identification of interactors and their state of phosphorylation.

    PubMed

    Pflieger, Delphine; Jünger, Martin A; Müller, Markus; Rinner, Oliver; Lee, Hookeun; Gehrig, Peter M; Gstaiger, Matthias; Aebersold, Ruedi

    2008-02-01

    Protein complexes have largely been studied by immunoaffinity purification and (mass spectrometric) analysis. Although this approach has been widely and successfully used it is limited because it has difficulties reliably discriminating true from false protein complex components, identifying post-translational modifications, and detecting quantitative changes in complex composition or state of modification of complex components. We have developed a protocol that enables us to determine, in a single LC-MALDI-TOF/TOF analysis, the true protein constituents of a complex, to detect changes in the complex composition, and to localize phosphorylation sites and estimate their respective stoichiometry. The method is based on the combination of fourplex iTRAQ (isobaric tags for relative and absolute quantification) isobaric labeling and protein phosphatase treatment of substrates. It was evaluated on model peptides and proteins and on the complex Ccl1-Kin28-Tfb3 isolated by tandem affinity purification from yeast cells. The two known phosphosites in Kin28 and Tfb3 could be reproducibly shown to be fully modified. The protocol was then applied to the analysis of samples immunopurified from Drosophila melanogaster cells expressing an epitope-tagged form of the insulin receptor substrate homologue Chico. These experiments allowed us to identify 14-3-3epsilon, 14-3-3zeta, and the insulin receptor as specific Chico interactors. In a further experiment, we compared the immunopurified materials obtained from tagged Chico-expressing cells that were either treated with insulin or left unstimulated. This analysis showed that hormone stimulation increases the association of 14-3-3 proteins with Chico and modulates several phosphorylation sites of the bait, some of which are located within predicted recognition motives of 14-3-3 proteins.

  8. Proteome-wide enrichment of proteins modified by lysine methylation

    PubMed Central

    Carlson, Scott M; Moore, Kaitlyn E; Green, Erin M; Martín, Glòria Mas; Gozani, Or

    2015-01-01

    We present a protocol for using the triple malignant brain tumor domains of L3MBTL1 (3×MBT), which bind to mono- and di-methylated lysine with minimal sequence specificity, in order to enrich for such methylated lysine from cell lysates. Cells in culture are grown with amino acids containing light or heavy stable isotopic labels. Methylated proteins are enriched by incubating cell lysates with 3×MBT, or with the binding-null D355N mutant as a negative control. Quantitative liquid chromatography and tandem mass spectrometry (LC-MS/MS) are then used to identify proteins that are specifically enriched by 3×MBT pull-down. The addition of a third isotopic label allows the comparison of protein lysine methylation between different biological conditions. Unlike most approaches, our strategy does not require a prior hypothesis of candidate methylated proteins, and it recognizes a wider range of methylated proteins than any available method using antibodies. Cells are prepared by growing in isotopic labeling medium for about 7 d; the process of enriching methylated proteins takes 3 d and analysis by LC-MS/MS takes another 1–2 d. PMID:24309976

  9. Luminescent iridium(III) complexes as novel protein staining agents.

    PubMed

    Jia, Junli; Fei, Hao; Zhou, Ming

    2012-05-01

    This article reports a new class of luminescent metal complexes, biscyclometalated iridium(III) complexes with an ancillary bathophenanthroline disulfonate ligand, for staining protein bands that are separated by electrophoresis. The performances of these novel staining agents have been studied in comparison with tris(bathophenanthroline disulfonate) ruthenium(II) tetrasodium salt (i.e. RuBPS) using a commercially available imaging system. The staining agents showed different limits of detection, linear dynamic ranges, and protein-to-protein variations. The overall performances of all three stains were found to be better than or equivalent to RuBPS under the experimental conditions.

  10. Protein Complex Production from the Drug Discovery Standpoint.

    PubMed

    Moarefi, Ismail

    2016-01-01

    Small molecule drug discovery critically depends on the availability of meaningful in vitro assays to guide medicinal chemistry programs that are aimed at optimizing drug potency and selectivity. As it becomes increasingly evident, most disease relevant drug targets do not act as a single protein. In the body, they are instead generally found in complex with protein cofactors that are highly relevant for their correct function and regulation. This review highlights selected examples of the increasing trend to use biologically relevant protein complexes for rational drug discovery to reduce costly late phase attritions due to lack of efficacy or toxicity.

  11. Proteins associated with RNase E in a multicomponent ribonucleolytic complex.

    PubMed Central

    Miczak, A; Kaberdin, V R; Wei, C L; Lin-Chao, S

    1996-01-01

    The Escherichia coli endoribonuclease RNase E is essential for RNA processing and degradation. Earlier work provided evidence that RNase E exists intracellularly as part of a multicomponent complex and that one of the components of this complex is a 3'-to-5' exoribonuclease, polynucleotide phosphorylase (EC 2.7.7.8). To isolate and identify other components of the RNase E complex, FLAG-epitope-tagged RNase E (FLAG-Rne) fusion protein was purified on a monoclonal antibody-conjugated agarose column. The FLAG-Rne fusion protein, eluted by competition with the synthetic FLAG peptide, was found to be associated with other proteins. N-terminal sequencing of these proteins revealed the presence in the RNase E complex not only of polynucleotide phosphorylase but also of DnaK, RNA helicase, and enolase (EC 4.2.1.11). Another protein associated only with epitope-tagged temperature-sensitive (Rne-3071) mutant RNase E but not with the wild-type enzyme is GroEL. The FLAG-Rne complex has RNase E activity in vivo and in vitro. The relative amount of proteins associated with wild-type and Rne-3071 expressed at an elevated temperature differed. Images Fig. 1 Fig. 2 PMID:8632981

  12. Identification of Essential Proteins Based on a New Combination of Local Interaction Density and Protein Complexes

    PubMed Central

    Luo, Jiawei; Qi, Yi

    2015-01-01

    Background Computational approaches aided by computer science have been used to predict essential proteins and are faster than expensive, time-consuming, laborious experimental approaches. However, the performance of such approaches is still poor, making practical applications of computational approaches difficult in some fields. Hence, the development of more suitable and efficient computing methods is necessary for identification of essential proteins. Method In this paper, we propose a new method for predicting essential proteins in a protein interaction network, local interaction density combined with protein complexes (LIDC), based on statistical analyses of essential proteins and protein complexes. First, we introduce a new local topological centrality, local interaction density (LID), of the yeast PPI network; second, we discuss a new integration strategy for multiple bioinformatics. The LIDC method was then developed through a combination of LID and protein complex information based on our new integration strategy. The purpose of LIDC is discovery of important features of essential proteins with their neighbors in real protein complexes, thereby improving the efficiency of identification. Results Experimental results based on three different PPI(protein-protein interaction) networks of Saccharomyces cerevisiae and Escherichia coli showed that LIDC outperformed classical topological centrality measures and some recent combinational methods. Moreover, when predicting MIPS datasets, the better improvement of performance obtained by LIDC is over all nine reference methods (i.e., DC, BC, NC, LID, PeC, CoEWC, WDC, ION, and UC). Conclusions LIDC is more effective for the prediction of essential proteins than other recently developed methods. PMID:26125187

  13. Capillary Isoelectric Focusing-Mass Spectrometry of Proteins and Protein Complexes

    SciTech Connect

    Martinovic, Suzana; Pasa-Tolic, Liljiana; Smith, Richard D.

    2004-10-01

    Complex proteome samples require efficient separation and detection methods in order to characterize their protein components. On-line combination of capillary isoelectric focusing (CIEF) with electrospray ionization (ESI) mass spectrometry (MS) is shown as an effective method to analyze complex protein mixtures. Our experience with several microorganisms allowed us to establish successful experimental protocol. Here we use the example of E. coli whole cell lysate for the CIEF separation and MS detection on the intact protein level. The protocol was further adapted for the analysis of the mixture of non-covalent complexes on the intact complex level.

  14. Evaluation of small ligand-protein interaction by ligation reaction with DNA-modified ligand.

    PubMed

    Sugita, Rie; Mie, Masayasu; Funabashi, Hisakage; Kobatake, Eiry

    2010-01-01

    A method for the evaluation of interactions between protein and ligand using DNA-modified ligands, including signal enhancement of the DNA ligation reactions, is described. For proof of principle, a DNA probe modified by biotin was used. Two DNA probes were prepared with complementary sticky-ends. While one DNA probe was modified at the 5'-end of the sticky-end, the other was not modified. The probes could be ligated together by T4 DNA ligase along the strand without biotin modification. However, in the presence of streptavidin or anti-biotin Fab, the ligation reaction joining the two probes could not occur on either strand.

  15. Protein- and Peptide-Modified Synthetic Polymeric Biomaterials

    PubMed Central

    Krishna, Ohm D.; Kiick, Kristi L.

    2015-01-01

    This review presents an overview on biohybrid approaches of integrating the structural and functional features of proteins and peptides with synthetic polymers and the resulting unique properties in such hybrids, with a focus on bioresponsive/bioactive systems with biomaterials applications. The review is divided in two broad sections. First, we describe several examples of biohybrids produced by combining versatile synthetic polymers with proteins/enzymes and drugs that have resulted in (1) hybrid materials based on responsive polymers, (2) responsive hydrogels based on enzyme-catalyzed reactions, protein–protein interactions and protein–drug sensing, and (3) dynamic hydrogels based on conformational changes of a protein. Next, we present hybrids produced by combining synthetic polymers with peptides, classified based on the properties of the peptide domain: (1) peptides with different conformations, such as α-helical, coiled-coil, and β-sheet; (2) peptides derived from structural protein domains such as silk, elastin, titin, and collagen; and (3) peptides with other biofunctional properties such as cell-binding domains and enzyme-recognized degradation domains. PMID:20091878

  16. Molecular Design of Bisphosphonate-Modified Proteins for Efficient Bone Targeting In Vivo

    PubMed Central

    Katsumi, Hidemasa; Sano, Jun-ichi; Nishikawa, Makiya; Hanzawa, Keiko; Sakane, Toshiyasu; Yamamoto, Akira

    2015-01-01

    To establish a rational molecular design for bisphosphonate (BP)-modified proteins for efficient bone targeting, a pharmacokinetic study was performed using a series of alendronate (ALN), a nitrogen-containing BP, modified proteins with various molecular weights and varying degrees of modification. Four proteins with different molecular weight—yeast glutathione reductase (GR; MW: 112,000 Da), bovine serum albumin (BSA; MW: 67,000 Da), recombinant human superoxide dismutase (SOD; MW: 32,000 Da), and chicken egg white lysozyme (LZM; MW: 14,000 Da)—were modified with ALN to obtain ALN-modified proteins. Pharmacokinetic analysis of the tissue distribution of the ALN-modified and unmodified proteins was performed after radiolabeling them with indium-111 (111In) by using a bifunctional chelating agent. Calculation of tissue uptake clearances revealed that the bone uptake clearances of 111In-ALN-modified proteins were proportional to the degree of ALN modification. 111In-GR-ALN and BSA-ALN, the two high-molecular-weight proteins, efficiently accumulated in bones, regardless of the degree of ALN modification. Approximately 36 and 34% of the dose, respectively, was calculated to be delivered to the bones. In contrast, the maximum amounts taken up by bone were 18 and 13% of the dose for 111In-SOD-ALN(32) and LZM-ALN(9), respectively, because of their high renal clearance. 111In-SOD modified with both polyethylene glycol (PEG) and ALN (111In-PEG-SOD-ALN) was efficiently delivered to the bone. Approximately 36% of the dose was estimated to be delivered to the bones. In an experimental bone metastasis mouse model, treatment with PEG-SOD-ALN significantly reduced the number of tumor cells in the bone of the mice. These results indicate that the combination of PEG and ALN modification is a promising approach for efficient bone targeting of proteins with a high total-body clearance. PMID:26287482

  17. Global landscape of HIV-human protein complexes.

    PubMed

    Jäger, Stefanie; Cimermancic, Peter; Gulbahce, Natali; Johnson, Jeffrey R; McGovern, Kathryn E; Clarke, Starlynn C; Shales, Michael; Mercenne, Gaelle; Pache, Lars; Li, Kathy; Hernandez, Hilda; Jang, Gwendolyn M; Roth, Shoshannah L; Akiva, Eyal; Marlett, John; Stephens, Melanie; D'Orso, Iván; Fernandes, Jason; Fahey, Marie; Mahon, Cathal; O'Donoghue, Anthony J; Todorovic, Aleksandar; Morris, John H; Maltby, David A; Alber, Tom; Cagney, Gerard; Bushman, Frederic D; Young, John A; Chanda, Sumit K; Sundquist, Wesley I; Kortemme, Tanja; Hernandez, Ryan D; Craik, Charles S; Burlingame, Alma; Sali, Andrej; Frankel, Alan D; Krogan, Nevan J

    2011-12-21

    Human immunodeficiency virus (HIV) has a small genome and therefore relies heavily on the host cellular machinery to replicate. Identifying which host proteins and complexes come into physical contact with the viral proteins is crucial for a comprehensive understanding of how HIV rewires the host's cellular machinery during the course of infection. Here we report the use of affinity tagging and purification mass spectrometry to determine systematically the physical interactions of all 18 HIV-1 proteins and polyproteins with host proteins in two different human cell lines (HEK293 and Jurkat). Using a quantitative scoring system that we call MiST, we identified with high confidence 497 HIV-human protein-protein interactions involving 435 individual human proteins, with ∼40% of the interactions being identified in both cell types. We found that the host proteins hijacked by HIV, especially those found interacting in both cell types, are highly conserved across primates. We uncovered a number of host complexes targeted by viral proteins, including the finding that HIV protease cleaves eIF3d, a subunit of eukaryotic translation initiation factor 3. This host protein is one of eleven identified in this analysis that act to inhibit HIV replication. This data set facilitates a more comprehensive and detailed understanding of how the host machinery is manipulated during the course of HIV infection.

  18. Systemic delivery of recombinant proteins by genetically modified myoblasts

    SciTech Connect

    Barr, E.; Leiden, J.M. )

    1991-12-06

    The ability to stably deliver recombinant proteins to the systemic circulation would facilitate the treatment of a variety of acquired and inherited diseases. To explore the feasibility of the use of genetically engineered myoblasts as a recombinant protein delivery system, stable transfectants of the murine C2C12 myoblast cell line were produced that synthesize and secrete high levels of human growth hormone (hGH) in vitro. Mice injected with hGH-transfected myoblasts had significant levels of hGH in both muscle and serum that were stable for at least 3 weeks after injection. Histological examination of muscles injected with {beta}-galactosidase-expressing C2C12 myoblasts demonstrated that many of the injected cells had fused to form multinucleated myotubes. Thus, genetically engineered myoblasts can be used for the stable delivery of recombinant proteins into the circulation.

  19. Whey protein coating efficiency on surfactant-modified hydrophobic surfaces.

    PubMed

    Lin, Shih-Yu D; Krochta, John M

    2005-06-15

    Whey protein oxygen-barrier coatings on peanuts are not effective, due to incomplete peanut-surface coverage, as well as some cracking and flaking of the coating. Addition of sorbitan laurate (Span 20) in the whey protein coating solution up to the critical micelle concentration (cmc) of 0.05% (w/w) significantly improved coating coverage to 88% of the peanut surface. Increasing the Span 20 concentration in the coating solution to 3 times the cmc (0.15% w/w) produced a substantial increase in peanut surface energy (>70 dyn/cm), indicating adsorption of the surfactant to the peanut surface. With this level of Span 20, the whey protein coating coverage on peanuts increased to 95%. These results suggest that a concentration of surfactant above the cmc in the coating solution is required for formation of self-assembled structures of surfactant molecules on peanut surfaces, which significantly increases the hydrophilicity, and thus coatability, of peanut surfaces.

  20. Negative Ions Enhance Survival of Membrane Protein Complexes

    NASA Astrophysics Data System (ADS)

    Liko, Idlir; Hopper, Jonathan T. S.; Allison, Timothy M.; Benesch, Justin L. P.; Robinson, Carol V.

    2016-06-01

    Membrane protein complexes are commonly introduced to the mass spectrometer solubilized in detergent micelles. The collisional activation used to remove the detergent, however, often causes protein unfolding and dissociation. As in the case for soluble proteins, electrospray in the positive ion mode is most commonly used for the study of membrane proteins. Here we show several distinct advantages of employing the negative ion mode. Negative polarity can yield lower average charge states for membrane proteins solubilized in saccharide detergents, with enhanced peak resolution and reduced adduct formation. Most importantly, we demonstrate that negative ion mode electrospray ionization (ESI) minimizes subunit dissociation in the gas phase, allowing access to biologically relevant oligomeric states. Together, these properties mean that intact membrane protein ions can be generated in a greater range of solubilizing detergents. The formation of negative ions, therefore, greatly expands the possibilities of using mass spectrometry on this intractable class of protein.

  1. Effect of Phthalic Anhydride Modified Soy Protein on Viscoelastic Properties of Polymer Composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phthalic anhydride (PA) modified soy protein isolates (SPI), both hydrolyzed and un-hydrolyzed, are investigated as reinforcement fillers in styrene-butadiene (SB) composites. The modification of SPI by PA increases the number of carboxylic acid functional groups on the protein surface and therefor...

  2. Chromatographic and traditional albumin isotherms on cellulose: a model for wound protein adsorption on modified cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Albumin is the most abundant protein found in healing wounds. Traditional and chromatogrpahic protein isotherms of albumin binding on modified cotton fibers are useful in understanding albumin binding to cellulose wound dressings. An important consideration in the design of cellulosic wound dressin...

  3. Effect of microfluidized and stearic acid modified soy protein in natural rubber

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microfluidized and stearic acid modified soy protein aggregates were used to reinforced natural rubber. The size of soy protein particles was reduced with a microfluidizing and ball milling process. Filler size reduction with longer ball milling time tends to increase tensile strength of the rubber ...

  4. Modification of recombinant maize ChitA chitinase by fungal chitinase-modifying proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In commercial maize, there are at least two different alleles of the chiA gene that encode alloforms of ChitA chitinase, a protein that is abundant in developing seed. Both known alloforms are modified by Bz-cmp, a protein secreted by the fungal pathogen Bipolaris zeicola. One alloform (ChitA-B73) i...

  5. Chimeric Protein Complexes in Hybrid Species Generate Novel Phenotypes

    PubMed Central

    Piatkowska, Elzbieta M.; Naseeb, Samina; Knight, David; Delneri, Daniela

    2013-01-01

    Hybridization between species is an important mechanism for the origin of novel lineages and adaptation to new environments. Increased allelic variation and modification of the transcriptional network are the two recognized forces currently deemed to be responsible for the phenotypic properties seen in hybrids. However, since the majority of the biological functions in a cell are carried out by protein complexes, inter-specific protein assemblies therefore represent another important source of natural variation upon which evolutionary forces can act. Here we studied the composition of six protein complexes in two different Saccharomyces “sensu stricto” hybrids, to understand whether chimeric interactions can be freely formed in the cell in spite of species-specific co-evolutionary forces, and whether the different types of complexes cause a change in hybrid fitness. The protein assemblies were isolated from the hybrids via affinity chromatography and identified via mass spectrometry. We found evidence of spontaneous chimericity for four of the six protein assemblies tested and we showed that different types of complexes can cause a variety of phenotypes in selected environments. In the case of TRP2/TRP3 complex, the effect of such chimeric formation resulted in the fitness advantage of the hybrid in an environment lacking tryptophan, while only one type of parental combination of the MBF complex allowed the hybrid to grow under respiratory conditions. These phenotypes were dependent on both genetic and environmental backgrounds. This study provides empirical evidence that chimeric protein complexes can freely assemble in cells and reveals a new mechanism to generate phenotypic novelty and plasticity in hybrids to complement the genomic innovation resulting from gene duplication. The ability to exchange orthologous members has also important implications for the adaptation and subsequent genome evolution of the hybrids in terms of pattern of gene loss. PMID

  6. Models for the Binary Complex of Bacteriophage T4 Gp59 Helicase Loading Protein. GP32 Single-Stranded DNA-Binding Protein and Ternary Complex with Pseudo-Y Junction DNA

    SciTech Connect

    Hinerman, Jennifer M.; Dignam, J. David; Mueser, Timothy C.

    2012-04-05

    The bacteriophage T4 gp59 helicase assembly protein (gp59) is required for loading of gp41 replicative helicase onto DNA protected by gp32 single-stranded DNA-binding protein. The gp59 protein recognizes branched DNA structures found at replication and recombination sites. Binding of gp32 protein (full-length and deletion constructs) to gp59 protein measured by isothermal titration calorimetry demonstrates that the gp32 protein C-terminal A-domain is essential for protein-protein interaction in the absence of DNA. Sedimentation velocity experiments with gp59 protein and gp32ΔB protein (an N-terminal B-domain deletion) show that these proteins are monomers but form a 1:1 complex with a dissociation constant comparable with that determined by isothermal titration calorimetry. Small angle x-ray scattering (SAXS) studies indicate that the gp59 protein is a prolate monomer, consistent with the crystal structure and hydrodynamic properties determined from sedimentation velocity experiments. SAXS experiments also demonstrate that gp32ΔB protein is a prolate monomer with an elongated A-domain protruding from the core. Moreover, fitting structures of gp59 protein and the gp32 core into the SAXS-derived molecular envelope supports a model for the gp59 protein-gp32ΔB protein complex. Our earlier work demonstrated that gp59 protein attracts full-length gp32 protein to pseudo-Y junctions. A model of the gp59 protein-DNA complex, modified to accommodate new SAXS data for the binary complex together with mutational analysis of gp59 protein, is presented in the accompanying article (Dolezal, D., Jones, C. E., Lai, X., Brister, J. R., Mueser, T. C., Nossal, N. G., and Hinton, D. M. (2012) J. Biol. Chem. 287, 18596–18607).

  7. Machine Learning Approaches for Predicting Protein Complex Similarity.

    PubMed

    Farhoodi, Roshanak; Akbal-Delibas, Bahar; Haspel, Nurit

    2017-01-01

    Discriminating native-like structures from false positives with high accuracy is one of the biggest challenges in protein-protein docking. While there is an agreement on the existence of a relationship between various favorable intermolecular interactions (e.g., Van der Waals, electrostatic, and desolvation forces) and the similarity of a conformation to its native structure, the precise nature of this relationship is not known. Existing protein-protein docking methods typically formulate this relationship as a weighted sum of selected terms and calibrate their weights by using a training set to evaluate and rank candidate complexes. Despite improvements in the predictive power of recent docking methods, producing a large number of false positives by even state-of-the-art methods often leads to failure in predicting the correct binding of many complexes. With the aid of machine learning methods, we tested several approaches that not only rank candidate structures relative to each other but also predict how similar each candidate is to the native conformation. We trained a two-layer neural network, a multilayer neural network, and a network of Restricted Boltzmann Machines against extensive data sets of unbound complexes generated by RosettaDock and PyDock. We validated these methods with a set of refinement candidate structures. We were able to predict the root mean squared deviations (RMSDs) of protein complexes with a very small, often less than 1.5 Å, error margin when trained with structures that have RMSD values of up to 7 Å. In our most recent experiments with the protein samples having RMSD values up to 27 Å, the average prediction error was still relatively small, attesting to the potential of our approach in predicting the correct binding of protein-protein complexes.

  8. Biocontainment of genetically modified organisms by synthetic protein design

    NASA Astrophysics Data System (ADS)

    Mandell, Daniel J.; Lajoie, Marc J.; Mee, Michael T.; Takeuchi, Ryo; Kuznetsov, Gleb; Norville, Julie E.; Gregg, Christopher J.; Stoddard, Barry L.; Church, George M.

    2015-02-01

    Genetically modified organisms (GMOs) are increasingly deployed at large scales and in open environments. Genetic biocontainment strategies are needed to prevent unintended proliferation of GMOs in natural ecosystems. Existing biocontainment methods are insufficient because they impose evolutionary pressure on the organism to eject the safeguard by spontaneous mutagenesis or horizontal gene transfer, or because they can be circumvented by environmentally available compounds. Here we computationally redesign essential enzymes in the first organism possessing an altered genetic code (Escherichia coli strain C321.ΔA) to confer metabolic dependence on non-standard amino acids for survival. The resulting GMOs cannot metabolically bypass their biocontainment mechanisms using known environmental compounds, and they exhibit unprecedented resistance to evolutionary escape through mutagenesis and horizontal gene transfer. This work provides a foundation for safer GMOs that are isolated from natural ecosystems by a reliance on synthetic metabolites.

  9. Biocontainment of genetically modified organisms by synthetic protein design.

    PubMed

    Mandell, Daniel J; Lajoie, Marc J; Mee, Michael T; Takeuchi, Ryo; Kuznetsov, Gleb; Norville, Julie E; Gregg, Christopher J; Stoddard, Barry L; Church, George M

    2015-02-05

    Genetically modified organisms (GMOs) are increasingly deployed at large scales and in open environments. Genetic biocontainment strategies are needed to prevent unintended proliferation of GMOs in natural ecosystems. Existing biocontainment methods are insufficient because they impose evolutionary pressure on the organism to eject the safeguard by spontaneous mutagenesis or horizontal gene transfer, or because they can be circumvented by environmentally available compounds. Here we computationally redesign essential enzymes in the first organism possessing an altered genetic code (Escherichia coli strain C321.ΔA) to confer metabolic dependence on non-standard amino acids for survival. The resulting GMOs cannot metabolically bypass their biocontainment mechanisms using known environmental compounds, and they exhibit unprecedented resistance to evolutionary escape through mutagenesis and horizontal gene transfer. This work provides a foundation for safer GMOs that are isolated from natural ecosystems by a reliance on synthetic metabolites.

  10. Biocontainment of genetically modified organisms by synthetic protein design

    PubMed Central

    Mandell, Daniel J.; Lajoie, Marc J.; Mee, Michael T.; Takeuchi, Ryo; Kuznetsov, Gleb; Norville, Julie E.; Gregg, Christopher J.; Stoddard, Barry L.; Church, George M.

    2015-01-01

    Genetically modified organisms (GMOs) are increasingly deployed at large scales and in open environments. Genetic biocontainment strategies are needed to prevent unintended proliferation of GMOs in natural ecosystems. Existing biocontainment methods are insufficient either because they impose evolutionary pressure on the organism to eject the safeguard, because they can be circumvented by environmentally available compounds, or because they can be overcome by horizontal gene transfer (HGT). Here we computationally redesign essential enzymes in the first organism possessing an altered genetic code to confer metabolic dependence on nonstandard amino acids for survival. The resulting GMOs cannot metabolically circumvent their biocontainment mechanisms using environmentally available compounds, and they exhibit unprecedented resistance to evolutionary escape via mutagenesis and HGT. This work provides a foundation for safer GMOs that are isolated from natural ecosystems by reliance on synthetic metabolites. PMID:25607366

  11. Biocontainment of genetically modified organisms by synthetic protein design

    DOE PAGES

    Mandell, Daniel J.; Lajoie, Marc J.; Mee, Michael T.; ...

    2015-01-21

    Genetically modified organisms (GMOs) are increasingly deployed at large scales and in open environments. Genetic biocontainment strategies are needed to prevent unintended proliferation of GMOs in natural ecosystems. Existing biocontainment methods are insufficient because they impose evolutionary pressure on the organism to eject the safeguard by spontaneous mutagenesis or horizontal gene transfer, or because they can be circumvented by environmentally available compounds. In this paper, we computationally redesign essential enzymes in the first organism possessing an altered genetic code (Escherichia coli strain C321.ΔA) to confer metabolic dependence on non-standard amino acids for survival. The resulting GMOs cannot metabolically bypass theirmore » biocontainment mechanisms using known environmental compounds, and they exhibit unprecedented resistance to evolutionary escape through mutagenesis and horizontal gene transfer. Finally, this work provides a foundation for safer GMOs that are isolated from natural ecosystems by a reliance on synthetic metabolites.« less

  12. Biocontainment of genetically modified organisms by synthetic protein design

    SciTech Connect

    Mandell, Daniel J.; Lajoie, Marc J.; Mee, Michael T.; Takeuchi, Ryo; Kuznetsov, Gleb; Norville, Julie E.; Gregg, Christopher J.; Stoddard, Barry L.; Church, George M.

    2015-01-21

    Genetically modified organisms (GMOs) are increasingly deployed at large scales and in open environments. Genetic biocontainment strategies are needed to prevent unintended proliferation of GMOs in natural ecosystems. Existing biocontainment methods are insufficient because they impose evolutionary pressure on the organism to eject the safeguard by spontaneous mutagenesis or horizontal gene transfer, or because they can be circumvented by environmentally available compounds. In this paper, we computationally redesign essential enzymes in the first organism possessing an altered genetic code (Escherichia coli strain C321.ΔA) to confer metabolic dependence on non-standard amino acids for survival. The resulting GMOs cannot metabolically bypass their biocontainment mechanisms using known environmental compounds, and they exhibit unprecedented resistance to evolutionary escape through mutagenesis and horizontal gene transfer. Finally, this work provides a foundation for safer GMOs that are isolated from natural ecosystems by a reliance on synthetic metabolites.

  13. Functional expression of the taste-modifying protein, miraculin, in transgenic lettuce.

    PubMed

    Sun, Hyeon-Jin; Cui, Min-Long; Ma, Biao; Ezura, Hiroshi

    2006-01-23

    Taste-modifying proteins are a natural alternative to artificial sweeteners and flavor enhancers and have been used in some cultures for centuries. The taste-modifying protein, miraculin, has the unusual property of being able to modify a sour taste into a sweet taste. Here, we report the use of a plant expression system for the production of miraculin. A synthetic gene encoding miraculin was placed under the control of constitutive promoters and transferred to lettuce. Expression of this gene in transgenic lettuce resulted in the accumulation of significant amounts of miraculin protein in the leaves. The miraculin expressed in transgenic lettuce possessed sweetness-inducing activity. These results demonstrate that the production of miraculin in edible plants can be a good alternative strategy to enhance the availability of this protein.

  14. Analyzing modifiers of protein aggregation in C. elegans by native agarose gel electrophoresis.

    PubMed

    Holmberg, Mats; Nollen, Ellen A A

    2013-01-01

    The accumulation of specific aggregation-prone proteins during aging is thought to be involved in several diseases, most notably Alzheimer's and Parkinson's disease as well as polyglutamine expansion disorders such as Huntington's disease. Caenorhabditis elegans disease models with transgenic expression of fluorescently tagged aggregation-prone proteins have been used to screen for genetic modifiers of aggregation. To establish the role of modifying factors in the generation of aggregation intermediates, a method has been developed using native agarose gel electrophoresis (NAGE) that enables parallel screening of aggregation patterns of fluorescently labeled aggregation-prone proteins. Together with microscopy-based genetic screens this method can be used to identify modifiers of protein aggregation and characterize their molecular function. Although described here for analyzing aggregates in C. elegans, NAGE can be adjusted for use in other model organisms as well as for cultured cells.

  15. Denoising performance of modified dual-tree complex wavelet transform for processing quadrature embolic Doppler signals.

    PubMed

    Serbes, Gorkem; Aydin, Nizamettin

    2014-01-01

    Quadrature signals are dual-channel signals obtained from the systems employing quadrature demodulation. Embolic Doppler ultrasound signals obtained from stroke-prone patients by using Doppler ultrasound systems are quadrature signals caused by emboli, which are particles bigger than red blood cells within circulatory system. Detection of emboli is an important step in diagnosing stroke. Most widely used parameter in detection of emboli is embolic signal-to-background signal ratio. Therefore, in order to increase this ratio, denoising techniques are employed in detection systems. Discrete wavelet transform has been used for denoising of embolic signals, but it lacks shift invariance property. Instead, dual-tree complex wavelet transform having near-shift invariance property can be used. However, it is computationally expensive as two wavelet trees are required. Recently proposed modified dual-tree complex wavelet transform, which reduces the computational complexity, can also be used. In this study, the denoising performance of this method is extensively evaluated and compared with the others by using simulated and real quadrature signals. The quantitative results demonstrated that the modified dual-tree-complex-wavelet-transform-based denoising outperforms the conventional discrete wavelet transform with the same level of computational complexity and exhibits almost equal performance to the dual-tree complex wavelet transform with almost half computational cost.

  16. Electron transfer dissociation of modified peptides and proteins.

    PubMed

    Zhou, Yuping; Dong, Jia; Vachet, Richard W

    2011-10-01

    Mass spectrometry is the method of choice for sequencing peptides and proteins and is the preferred choice for characterizing post-translational modifications (PTMs). The most commonly used dissociation method to characterize peptides (i.e. collision-induced dissociation (CID)), however, has some limitations when it comes to analyzing many PTMs. Because CID chemistry is influenced by amino acid side-chains, some modifications can alter or inhibit dissociation along the peptide backbone, thereby limiting sequence information and hindering identification of the modification site. Electron transfer dissociation (ETD) has emerged as an alternate dissociation technique that, in most cases, overcomes these limitations of CID because it is less affected by side chain chemistry. Here, we review recent applications of ETD for characterizing peptide and protein PTMs with a particular emphasis on the advantages of ETD over CID, the ways in which ETD and CID have been used in a complementary manner, and how peptide modifications can still influence ETD dissociation pathways.

  17. β-Barrel membrane protein assembly by the Bam complex.

    PubMed

    Hagan, Christine L; Silhavy, Thomas J; Kahne, Daniel

    2011-01-01

    β-barrel membrane proteins perform important functions in the outer membranes (OMs) of Gram-negative bacteria and of the mitochondria and chloroplasts of eukaryotes. The protein complexes that assemble these proteins in their respective membranes have been identified and shown to contain a component that has been conserved from bacteria to humans. β-barrel proteins are handled differently from α-helical membrane proteins in the cell in order to efficiently transport them to their final locations in unfolded but folding-competent states. The mechanism by which the assembly complex then binds, folds, and inserts β-barrels into the membrane is not well understood, but recent structural, biochemical, and genetic studies have begun to elucidate elements of how the complex provides a facilitated pathway for β-barrel assembly. Ultimately, studies of the mechanism of β-barrel assembly and comparison to the better-understood process of α-helical membrane protein assembly will reveal whether there are general principles that guide the folding and insertion of all membrane proteins.

  18. Protein-complex structure completion using IPCAS (Iterative Protein Crystal structure Automatic Solution).

    PubMed

    Zhang, Weizhe; Zhang, Hongmin; Zhang, Tao; Fan, Haifu; Hao, Quan

    2015-07-01

    Protein complexes are essential components in many cellular processes. In this study, a procedure to determine the protein-complex structure from a partial molecular-replacement (MR) solution is demonstrated using a direct-method-aided dual-space iterative phasing and model-building program suite, IPCAS (Iterative Protein Crystal structure Automatic Solution). The IPCAS iteration procedure involves (i) real-space model building and refinement, (ii) direct-method-aided reciprocal-space phase refinement and (iii) phase improvement through density modification. The procedure has been tested with four protein complexes, including two previously unknown structures. It was possible to use IPCAS to build the whole complex structure from one or less than one subunit once the molecular-replacement method was able to give a partial solution. In the most challenging case, IPCAS was able to extend to the full length starting from less than 30% of the complex structure, while conventional model-building procedures were unsuccessful.

  19. Applicability of the modified universal calibration of gel permeation chromatography on proteins.

    PubMed

    Dondos, Anastasios

    2006-09-15

    The modified universal calibration of gel permeation chromatography (GPC) has been applied in the case of native proteins. Plotting log([eta]M/Phi) versus elution volume, instead of log[eta]M versus elution volume used till now, we obtain unique curves with different proteins and non-proteonic polymers ([eta]: intrinsic viscosity, M: molecular mass, Phi: Flory's parameter). The values of Flory's parameter Phi are calculated for each protein using an indirect method based on GPC.

  20. Complexation with tolbutamide modifies the physicochemical and tableting properties of hydroxypropyl-beta-cyclodextrin.

    PubMed

    Suihko, E; Korhonen, O; Järvinen, T; Ketolainen, J; Jarho, P; Laine, E; Paronen, P

    2001-03-14

    The physicochemical and tableting properties of hydroxypropyl-beta-cyclodextrin (HP-beta-CD) and its tolbutamide (TBM) complex were studied. The kinetics of TBM/HP-beta-CD inclusion complex formation in solution were determined by the phase solubility method. Solid complexes were prepared by freeze-drying and spray-drying. Water sorption-desorption behaviour of the materials were studied and compacts were made using a compaction simulator. TBM and HP-beta-CD formed 1:1 inclusion complexes in aqueous solution with an apparent stability constant of 63 M(-1). HP-beta-CDs and TBM/HP-beta-CD complexes were amorphous whereas the freeze-dried and spray-dried TBMs were polymorphic forms II and I, respectively. Sorption-desorption studies showed that HP-beta-CDs were deliquescent at high relative humidities. TBM/HP-beta-CD complexes had slightly lower water contents at low relative humidities than the physical mixtures. However, at high humidities their water sorption and desorption behaviours were similar to those of corresponding physical mixtures, indicating a glass transition of the complexed materials. TBM/HP-beta-CD complexes demonstrated a worse compactability than similarly prepared HP-beta-CDs or physical mixtures. Also particle properties that resulted from these preparation methods affected the compactability of the materials. In conclusion, the physicochemical and tableting properties of HP-beta-CD were modified by complexation it with TBM.

  1. A novel voltammetric sensor for amoxicillin based on nickel-curcumin complex modified carbon paste electrode.

    PubMed

    Ojani, Reza; Raoof, Jahan-Bakhsh; Zamani, Saeed

    2012-06-01

    The electrocatalytic oxidation of amoxicillin was investigated on a nickel-based (Ni(II)-curcumin) chemically modified electrode. This modified electrode was prepared by electropolymerization of complex (curcumin = 1,7-bis[4-hydroxyl-3-methoxyphenyl]-1,6-heptadiene-3,5-dione) in alkaline solution. For the first time, the catalytic oxidation of amoxicillin was demonstrated by cyclic voltammetry, chronoamperometry, chronocoulometry and amperometry methods at the surface of this modified carbon paste electrode. The obtained results showed that NiOOH acts as an electrocatalyst for oxidation of amoxicillin. This electrocatalytic oxidation exhibited a good linear response for amoxicillin concentration over the range of 8 × 10⁻⁶-1×10⁻⁴ M with a detection limit of 5 × 10⁻⁶ M. Therefore, this electrocatalytic method was used as a simple, selective and rapid method able to determine amoxicillin in pharmaceutical preparations and biological media.

  2. Emergence of Complexity in Protein Functions and Metabolic Networks

    NASA Technical Reports Server (NTRS)

    Pohorille, Andzej

    2009-01-01

    In modern organisms proteins perform a majority of cellular functions, such as chemical catalysis, energy transduction and transport of material across cell walls. Although great strides have been made towards understanding protein evolution, a meaningful extrapolation from contemporary proteins to their earliest ancestors is virtually impossible. In an alternative approach, the origin of water-soluble proteins was probed through the synthesis of very large libraries of random amino acid sequences and subsequently subjecting them to in vitro evolution. In combination with computer modeling and simulations, these experiments allow us to address a number of fundamental questions about the origins of proteins. Can functionality emerge from random sequences of proteins? How did the initial repertoire of functional proteins diversify to facilitate new functions? Did this diversification proceed primarily through drawing novel functionalities from random sequences or through evolution of already existing proto-enzymes? Did protein evolution start from a pool of proteins defined by a frozen accident and other collections of proteins could start a different evolutionary pathway? Although we do not have definitive answers to these questions, important clues have been uncovered. Considerable progress has been also achieved in understanding the origins of membrane proteins. We will address this issue in the example of ion channels - proteins that mediate transport of ions across cell walls. Remarkably, despite overall complexity of these proteins in contemporary cells, their structural motifs are quite simple, with -helices being most common. By combining results of experimental and computer simulation studies on synthetic models and simple, natural channels, I will show that, even though architectures of membrane proteins are not nearly as diverse as those of water-soluble proteins, they are sufficiently flexible to adapt readily to the functional demands arising during

  3. Methylated-antibody affinity purification to improve proteomic identification of plant RNA polymerase Pol V complex and the interacting proteins

    PubMed Central

    Qin, Guochen; Ma, Jun; Chen, Xiaomei; Chu, Zhaoqing; She, Yi-Min

    2017-01-01

    Affinity purification followed by enzymatic digestion and mass spectrometry has been widely utilized for the sensitive detection of interacting proteins and protein complexes in various organisms. In plants, the method is technically challenging due to the low abundance proteins, non-specific binding and difficulties of eluting interacting proteins from antibody beads. In this report, we describe a strategy to modify antibodies by reductive methylation of lysines without affecting their binding properties, followed by on-bead digestion of bound proteins with endoproteinase Lys-C. By this method, the antibody remains intact and does not interfere with the downstream identification of interacting proteins. Non-specific binding proteins were excluded using 14N/15N-metabolic labeling of wild-type and the transgenic plant counterparts. The method was employed to identify 12 co-immunoprecipitated protein subunits in Pol V complex and to discover 17 potential interacting protein targets in Arabidopsis. Our results demonstrated that the modification of antibodies by reductive dimethylation can improve the reliability and sensitivity of identifying low-abundance proteins through on-bead digestion and mass spectrometry. We also show that coupling this technique with chemical crosslinking enables in-depth characterization of endogenous protein complexes and the protein-protein interaction networks including mapping the surface topology and post-translational modifications of interacting proteins. PMID:28224978

  4. Methylated-antibody affinity purification to improve proteomic identification of plant RNA polymerase Pol V complex and the interacting proteins.

    PubMed

    Qin, Guochen; Ma, Jun; Chen, Xiaomei; Chu, Zhaoqing; She, Yi-Min

    2017-02-22

    Affinity purification followed by enzymatic digestion and mass spectrometry has been widely utilized for the sensitive detection of interacting proteins and protein complexes in various organisms. In plants, the method is technically challenging due to the low abundance proteins, non-specific binding and difficulties of eluting interacting proteins from antibody beads. In this report, we describe a strategy to modify antibodies by reductive methylation of lysines without affecting their binding properties, followed by on-bead digestion of bound proteins with endoproteinase Lys-C. By this method, the antibody remains intact and does not interfere with the downstream identification of interacting proteins. Non-specific binding proteins were excluded using (14)N/(15)N-metabolic labeling of wild-type and the transgenic plant counterparts. The method was employed to identify 12 co-immunoprecipitated protein subunits in Pol V complex and to discover 17 potential interacting protein targets in Arabidopsis. Our results demonstrated that the modification of antibodies by reductive dimethylation can improve the reliability and sensitivity of identifying low-abundance proteins through on-bead digestion and mass spectrometry. We also show that coupling this technique with chemical crosslinking enables in-depth characterization of endogenous protein complexes and the protein-protein interaction networks including mapping the surface topology and post-translational modifications of interacting proteins.

  5. Subcellular localization of RNA degrading proteins and protein complexes in prokaryotes.

    PubMed

    Evguenieva-Hackenberg, Elena; Roppelt, Verena; Lassek, Christian; Klug, Gabriele

    2011-01-01

    The archaeal exosome is a prokaryotic protein complex with RNA processing and degrading activities. Recently it was shown that the exosome is localized at the periphery of the cell in the thermoacidophilic archaeon Sulfolobus solfataricus. This localization is most likely mediated by the archaeal DnaG protein and depends on (direct or indirect) hydrophobic interactions with the membrane. A localization of RNA degrading proteins and protein complexes was also demonstrated in several bacteria. In bacteria a subcellular localization was also shown for substrates of these proteins and protein complexes, i.e. chromosomally encoded mRNAs and a small RNA. Thus, despite the missing compartmentalization, a spatial organization of RNA processing and degradation exists in prokaryotic cells. Recent data suggest that the spatial organization contributes to the temporal regulation of these processes.

  6. Synthetic RNA-protein complex shaped like an equilateral triangle

    NASA Astrophysics Data System (ADS)

    Ohno, Hirohisa; Kobayashi, Tetsuhiro; Kabata, Rinko; Endo, Kei; Iwasa, Takuma; Yoshimura, Shige H.; Takeyasu, Kunio; Inoue, Tan; Saito, Hirohide

    2011-02-01

    Synthetic nanostructures consisting of biomacromolecules such as nucleic acids have been constructed using bottom-up approaches. In particular, Watson-Crick base pairing has been used to construct a variety of two- and three-dimensional DNA nanostructures. Here, we show that RNA and the ribosomal protein L7Ae can form a nanostructure shaped like an equilateral triangle that consists of three proteins bound to an RNA scaffold. The construction of the complex relies on the proteins binding to kink-turn (K-turn) motifs in the RNA, which allows the RNA to bend by ~60° at three positions to form a triangle. Functional RNA-protein complexes constructed with this approach could have applications in nanomedicine and synthetic biology.

  7. Structural and evolutionary versatility in protein complexes with uneven stoichiometry.

    PubMed

    Marsh, Joseph A; Rees, Holly A; Ahnert, Sebastian E; Teichmann, Sarah A

    2015-03-16

    Proteins assemble into complexes with diverse quaternary structures. Although most heteromeric complexes of known structure have even stoichiometry, a significant minority have uneven stoichiometry--that is, differing numbers of each subunit type. To adopt this uneven stoichiometry, sequence-identical subunits must be asymmetric with respect to each other, forming different interactions within the complex. Here we first investigate the occurrence of uneven stoichiometry, demonstrating that it is common in vitro and is likely to be common in vivo. Next, we elucidate the structural determinants of uneven stoichiometry, identifying six different mechanisms by which it can be achieved. Finally, we study the frequency of uneven stoichiometry across evolution, observing a significant enrichment in bacteria compared with eukaryotes. We show that this arises due to a general increased tendency for bacterial proteins to self-assemble and form homomeric interactions, even within the context of a heteromeric complex.

  8. Conformation of DNA in chromatin protein-DNA complexes studied by infrared spectroscopy.

    PubMed Central

    Liquier, J; Gadenne, M C; Taillandier, E; Defer, N; Favatier, F; Kruh, J

    1979-01-01

    The following observations concerning the DNA secondary structures in various nucleohistone complexes were made by infrared spectroscopy: 1/ in chromatin, chromatin extracted by 0.6 M NaCl, nucleosomes, and histone-DNA reconstituted complexes, the DNA remains in a B type conformation at low relative hygrometry; 2/ in chromatin extracted by tRNA and in non histone protein-DNA reconstituted complexes, the DNA can adopt an A type conformation. Infrared linear dichroism data show that in NHP-DNA complexes the low relative hygrometry conformation of DNA may be modified and that the infrared parameter -1090 is close to that measured for RNA's or DNA-RNA hybrids. It is concluded that the histones block the DNA in a B form and that some of the NHP could be involved in the control of the secondary structure of DNA in chromatin. Images PMID:450704

  9. Molecular dynamics simulations of a membrane protein/amphipol complex.

    PubMed

    Perlmutter, Jason D; Popot, Jean-Luc; Sachs, Jonathan N

    2014-10-01

    Amphipathic polymers known as "amphipols" provide a highly stabilizing environment for handling membrane proteins in aqueous solutions. A8-35, an amphipol with a polyacrylate backbone and hydrophobic grafts, has been extensively characterized and widely employed for structural and functional studies of membrane proteins using biochemical and biophysical approaches. Given the sensitivity of membrane proteins to their environment, it is important to examine what effects amphipols may have on the structure and dynamics of the proteins they complex. Here we present the first molecular dynamics study of an amphipol-stabilized membrane protein, using Escherichia coli OmpX as a model. We begin by describing the structure of the complexes formed by supplementing OmpX with increasing amounts of A8-35, in order to determine how the amphipol interacts with the transmembrane and extramembrane surfaces of the protein. We then compare the dynamics of the protein in either A8-35, a detergent, or a lipid bilayer. We find that protein dynamics on all accessible length scales is restrained by A8-35, which provides a basis to understanding some of the stabilizing and functional effects of amphipols that have been experimentally observed.

  10. 40 CFR 174.529 - Bacillus thuringiensis modified Cry1Ab protein as identified under OECD Unique Identifier SYN...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus thuringiensis modified Cry1Ab... Tolerance Exemptions § 174.529 Bacillus thuringiensis modified Cry1Ab protein as identified under OECD... Bacillus thuringiensis modified Cry1Ab protein as identified under OECD Unique Identifier SYN-IR67B-1...

  11. Photoinduced DNA damage and cytotoxicity by a triphenylamine-modified platinum-diimine complex.

    PubMed

    Zhang, Zhigang; Dai, Ruihui; Ma, Jiajia; Wang, Shuying; Wei, Xuehong; Wang, Hongfei

    2015-02-01

    Many planar photosensitizers tend to self-aggregate via van der Waals interactions between π-conjugated systems. The self-aggregation of the photosensitizer may reduce the efficiency of the photosensitizer to generate singlet oxygen, thereby diminishing its photodynamic activity. Efforts have been made to improve the photodynamic activity of bis-(o-diiminobenzosemiquinonato)platinum(II) which has planar geometry by the introduction of the sterically hindered triphenylamine moiety into the ligand. Herein we report the photoinduced DNA damage and cytotoxicity by a triphenylamine-modified platinum-diimine complex in red light studied by fluorescence spectra, agarose gel assay and cell viability assay. The results suggest that the triphenylamine-modified platinum-diimine complex has better capability to generate singlet oxygen than bis-(o-diiminobenzosemiquinonato)platinum(II), and it can induce DNA damage in red light, causing high photocytotoxicity in HepG-2 cells in vitro.

  12. Biclustering Protein Complex Interactions with a Biclique FindingAlgorithm

    SciTech Connect

    Ding, Chris; Zhang, Anne Ya; Holbrook, Stephen

    2006-12-01

    Biclustering has many applications in text mining, web clickstream mining, and bioinformatics. When data entries are binary, the tightest biclusters become bicliques. We propose a flexible and highly efficient algorithm to compute bicliques. We first generalize the Motzkin-Straus formalism for computing the maximal clique from L{sub 1} constraint to L{sub p} constraint, which enables us to provide a generalized Motzkin-Straus formalism for computing maximal-edge bicliques. By adjusting parameters, the algorithm can favor biclusters with more rows less columns, or vice verse, thus increasing the flexibility of the targeted biclusters. We then propose an algorithm to solve the generalized Motzkin-Straus optimization problem. The algorithm is provably convergent and has a computational complexity of O(|E|) where |E| is the number of edges. It relies on a matrix vector multiplication and runs efficiently on most current computer architectures. Using this algorithm, we bicluster the yeast protein complex interaction network. We find that biclustering protein complexes at the protein level does not clearly reflect the functional linkage among protein complexes in many cases, while biclustering at protein domain level can reveal many underlying linkages. We show several new biologically significant results.

  13. Architecture and function of IFT complex proteins in ciliogenesis.

    PubMed

    Taschner, Michael; Bhogaraju, Sagar; Lorentzen, Esben

    2012-02-01

    Cilia and flagella (interchangeable terms) are evolutionarily conserved organelles found on many different types of eukaryotic cells where they fulfill important functions in motility, sensory reception and signaling. The process of Intraflagellar Transport (IFT) is of central importance for both the assembly and maintenance of cilia, as it delivers building blocks from their site of synthesis in the cell body to the ciliary assembly site at the tip of the cilium. A key player in this process is the multi-subunit IFT-complex, which acts as an adapter between the motor proteins required for movement and the ciliary cargo proteins. Since the discovery of IFT more than 15 years ago, considerable effort has gone into the purification and characterization of the IFT complex proteins. Even though this has led to very interesting findings and has greatly improved our knowledge of the IFT process, we still know very little about the overall architecture of the IFT complex and the specific functions of the various subunits. In this review we will give an update on the knowledge of the structure and function of individual IFT proteins, and the way these proteins interact to form the complex that facilitates IFT.

  14. Modified Hilbert transform pair and Kramers-Kronig relations for complex permittivities

    NASA Technical Reports Server (NTRS)

    Cockrell, C. R.

    1990-01-01

    Modified versions of the Hilbert transform pair and the Kramers-Kronig relations are derived for the complex permittivity of a plasma/dielectric medium which is singular at the frequency of the applied electric field equal to 0. Such a complex permittivity exists when the plasma/dielectric model allows a loss term but no restoring term. Permittivity, in which both loss and restoring terms are included, is shown to satisfy the standard Hilbert transform pair and, thus, the Kramers-Kronig relations.

  15. Single-protein study of photoresistance of pigment-protein complex in lipid bilayer

    NASA Astrophysics Data System (ADS)

    Uchiyama, Daisuke; Hoshino, Hajime; Otomo, Kohei; Kato, Taro; Onda, Ken-ichi; Watanabe, Akira; Oikawa, Hiroyuki; Fujiyoshi, Satoru; Matsushita, Michio; Nango, Mamoru; Watanabe, Natsuko; Sumino, Ayumi; Dewa, Takehisa

    2011-07-01

    Photoresistance of a pigment-binding membrane protein, light-harvesting 2 (LH2) complex from the photosynthetic bacterium, Rhodopseudomonas acidophila, was investigated by fluorescence of single LH2 complexes at a temperature of 296 K. Before irreversibly stopping fluorescence, a single LH2 complex in phospholipid bilayer of dimyristoylphosphatidylcholine (DMPC) emitted on average 4 times more fluorescence photons than a complex in detergent micelle of octylglucopyranoside (OG). Fluorescence-excitation spectrum of single LH2 complexes taken at 5 K showed that the LH2 complex is structurally less perturbed in DMPC bilayer than in OG micelle, suggesting that structural instability reduces photoresistance of LH2.

  16. Heat capacity changes in carbohydrates and protein-carbohydrate complexes.

    PubMed

    Chavelas, Eneas A; García-Hernández, Enrique

    2009-05-13

    Carbohydrates are crucial for living cells, playing myriads of functional roles that range from being structural or energy-storage devices to molecular labels that, through non-covalent interaction with proteins, impart exquisite selectivity in processes such as molecular trafficking and cellular recognition. The molecular bases that govern the recognition between carbohydrates and proteins have not been fully understood yet. In the present study, we have obtained a surface-area-based model for the formation heat capacity of protein-carbohydrate complexes, which includes separate terms for the contributions of the two molecular types. The carbohydrate model, which was calibrated using carbohydrate dissolution data, indicates that the heat capacity contribution of a given group surface depends on its position in the saccharide molecule, a picture that is consistent with previous experimental and theoretical studies showing that the high abundance of hydroxy groups in carbohydrates yields particular solvation properties. This model was used to estimate the carbohydrate's contribution in the formation of a protein-carbohydrate complex, which in turn was used to obtain the heat capacity change associated with the protein's binding site. The model is able to account for protein-carbohydrate complexes that cannot be explained using a previous model that only considered the overall contribution of polar and apolar groups, while allowing a more detailed dissection of the elementary contributions that give rise to the formation heat capacity effects of these adducts.

  17. A new synthesis route for Os-complex modified redox polymers for potential biofuel cell applications.

    PubMed

    Pöller, Sascha; Beyl, Yvonne; Vivekananthan, Jeevanthi; Guschin, Dmitrii A; Schuhmann, Wolfgang

    2012-10-01

    A new synthesis route for Os-complex modified redox polymers was developed. Instead of ligand exchange reactions for coordinative binding of suitable precursor Os-complexes at the polymer, Os-complexes already exhibiting the final ligand shell containing a suitable functional group were bound to the polymer via an epoxide opening reaction. By separation of the polymer synthesis from the ligand exchange reaction at the Os-complex, the modification of the same polymer backbone with different Os-complexes or the binding of the same Os-complex to a number of different polymer backbones becomes feasible. In addition, the Os-complex can be purified and characterized prior to its binding to the polymer. In order to further understand and optimize suitable enzyme/redox polymer systems concerning their potential application in biosensors or biofuel cells, a series of redox polymers was synthesized and used as immobilization matrix for Trametes hirsuta laccase. The properties of the obtained biofuel cell cathodes were compared with similar biocatalytic interfaces derived from redox polymers obtained via ligand exchange reaction of the parent Os-complex with a ligand integrated into the polymer backbone during the polymer synthesis.

  18. A modified anterior temporal approach for low-position aneurysms of the upper basilar complex

    PubMed Central

    Katsuno, Makoto; Tanikawa, Rokuya; Izumi, Naoto; Hashimoto, Masaaki

    2015-01-01

    Background: Although surgery for aneurysms of the upper basilar complex is generally accomplished by a pterional or subtemporal approach, both techniques have disadvantages. Therefore, attempts have been made to combine both the approaches, such as an anterior temporal approach, which exposes the anterior aspect of the temporal lobe during standard fronto-temporal craniotomy. However, in all these techniques, the temporal vein is sacrificed to allow posterior retraction of the temporal lobe, which may cause venous infarction in the temporal lobe. Methods: Our institutional review board approved this prospective study. We modified the anterior temporal approach for low-position aneurysms of the upper basilar complex by performing posterior clinoidectomy as necessary, thereby preventing the sacrifice of all vessels. Results: From 2007 to 2014, seven patients were operated on using this modified approach, and four patients underwent additional posterior clinoidectomy. Complete clip ligation was performed for all aneurysms without sacrificing any vessels, and there were no permanent complications attributable to manipulation for clipping or posterior clinoidectomy. Conclusions: The modified anterior temporal approach allows a wider operating field within the retro-carotid space, without sacrificing any vessels, and permits safer posterior clinoidectomy and aneurysm clipping in patients with low-position aneurysms of the basilar complex. PMID:25657863

  19. Histone modifying proteins Gcn5 and Hda1 affect flocculation in Saccharomyces cerevisiae during high-gravity fermentation.

    PubMed

    Dietvorst, Judith; Brandt, Anders

    2010-02-01

    The performance of yeast is often limited by the constantly changing environmental conditions present during high-gravity fermentation. Poor yeast performance contributes to incomplete and slow utilization of the main fermentable sugars which can lead to flavour problems in beer production. The expression of the FLO and MAL genes, which are important for the performance of yeast during industrial fermentations, is affected by complex proteins associated with Set1 (COMPASS) resulting in the induction of flocculation and improved maltose fermentation capacity during the early stages of high-gravity fermentation. In this study, we investigated a possible role for other histone modifying proteins. To this end, we tested a number of histone deacetylases (HDACs) and histone acetyltransferases and we report that flocculation is induced in absence of the histone deacetylase Hda1 or the histone acetyltransferase Gcn5 during high-gravity fermentation. The absence of Gcn5 protein also improved utilization of high concentrations of maltose. Deletion of SIR2 encoding the HDA of the silent informator regulator complex, did not affect flocculation under high-gravity fermentation conditions. Despite the obvious roles for Hda1 and Gcn5 in flocculation, this work indicates that COMPASS mediated silencing is the most important amongst the histone modifying components to control the expression of the FLO genes during high-gravity fermentation.

  20. Maltodextrin-modified magnetic microspheres for selective enrichment of maltose binding proteins.

    PubMed

    Zheng, Jin; Ma, Chongjun; Sun, Yangfei; Pan, Miaorong; Li, Li; Hu, Xiaojian; Yang, Wuli

    2014-03-12

    In this work, maltodextrin-modified magnetic microspheres Fe3O4@SiO2-Maltodextrin (Fe3O4@SiO2-MD) with uniform size and fine morphology were synthesized through a facile and low-cost method. As the maltodextrins on the surface of microspheres were combined with maltose binding proteins (MBP), the magnetic microspheres could be applied to enriching standard MBP fused proteins. Then, the application of Fe3O4@SiO2-MD in one-step purification and immobilization of MBP fused proteins was demonstrated. For the model protein we examined, Fe3O4@SiO2-MD showed excellent binding selectivity and capacity against other Escherichia coli proteins in the crude cell lysate. Additionally, the maltodextrin-modified magnetic microspheres can be recycled for several times without significant loss of binding capacity.

  1. Improvement on the modified Lowry method against interference of divalent cations in soluble protein measurement.

    PubMed

    Shen, Yue-Xiao; Xiao, Kang; Liang, Peng; Ma, Yi-Wei; Huang, Xia

    2013-05-01

    This paper systematically investigated the interference of calcium and magnesium in protein measurement with a modified Lowry method first proposed by Frølund et al. (Appl Microbiol Biotechnol 43:755-761, 1995). This interference has in the past been largely ignored resulting in variable and unreliable results when applied to natural water matrices. We discovered significant formation of calcium and magnesium precipitates that lead to a decline in light absorbance at 750 nm during protein determination. Underestimation of protein concentration (sometimes even yielding negative concentrations) and low experiment reproducibility were demonstrated at high concentrations of divalent cations (e.g., [Ca(2+)] over 1 mmol L(-1)). To eliminate interference from calcium and magnesium, two pretreatment strategies were established based on cation exchange and dialysis. These pretreatments were convenient and were found to be highly effective in removing calcium and magnesium in protein samples. By using the modified Lowry method with these pretreatments, proteins in standard solutions and in wastewater samples were successfully quantified with good reliability and reproducibility. In addition, we demonstrated that simultaneous quantification of humic substances with the modified Lowry method was not affected by the two pretreatments. These approaches are expected to be applicable to protein and humic substance determination in different research fields, in cases where the modified Lowry method is sensitive to divalent cation concentrations.

  2. Electrophoretic separation of proteins via complexation with a polyelectrolyte

    NASA Astrophysics Data System (ADS)

    Baskin, E. M.; Shklovskii, B. I.; Zilberstein, G. V.

    2003-01-01

    We suggest to augment standard isoelectric focusing for separation of proteins in a gradient of pH by a similar focusing in the presence of a strongly charged polyelectrolyte (PE). Proteins which have the same isoelectric point but different “hidden” charges of both signs in this point make complexes with PE, which focus in different pH. This is a result of charge inversion of such proteins by adsorbed PE molecules, which is sensitive to the hidden charge. Hence, the hidden charge is a new separation parameter.

  3. N6-methyladenosine alters RNA structure to regulate binding of a low-complexity protein.

    PubMed

    Liu, Nian; Zhou, Katherine I; Parisien, Marc; Dai, Qing; Diatchenko, Luda; Pan, Tao

    2017-02-25

    N6-methyladenosine (m6A) is the most abundant internal modification in eukaryotic messenger RNA (mRNA), and affects almost every stage of the mRNA life cycle. The YTH-domain proteins can specifically recognize m6A modification to control mRNA maturation, translation and decay. m6A can also alter RNA structures to affect RNA-protein interactions in cells. Here, we show that m6A increases the accessibility of its surrounding RNA sequence to bind heterogeneous nuclear ribonucleoprotein G (HNRNPG). Furthermore, HNRNPG binds m6A-methylated RNAs through its C-terminal low-complexity region, which self-assembles into large particles in vitro. The Arg-Gly-Gly repeats within the low-complexity region are required for binding to the RNA motif exposed by m6A methylation. We identified 13,191 m6A sites in the transcriptome that regulate RNA-HNRNPG interaction and thereby alter the expression and alternative splicing pattern of target mRNAs. Low-complexity regions are pervasive among mRNA binding proteins. Our results show that m6A-dependent RNA structural alterations can promote direct binding of m6A-modified RNAs to low-complexity regions in RNA binding proteins.

  4. ATPase-coupled release control from polyion complex capsules encapsulating muscle proteins.

    PubMed

    Sugiura, Kousuke; Ohkawa, Kousaku; Hirai, Toshihiro; Fujii, Toshihiro

    2007-04-10

    In the present study, a muscle contractile protein complex, actomyosin, has been successfully encapsulated into gellan-chitosan polyion complex (PIC) capsules. The recovery of the myosin-ATPase activity is approximately 50% and the Mg2+-ATPase activity is stimulated by the presence of F-actin, which implies the formation of the actomyosin complex inside the capsule. Furthermore, encapsulation could protect the myosin, F-actin, and actomyosin inside from hydrolysis by proteases. Two small proteins, myoglobin and cytochrome c, have been used in the release tests. The release of myoglobin is not affected by the ionic strength of the external solution, while the release of cytochrome c increases with increasing ionic strength. The maximal releases are found in the external pH solution close to the isoelectric points of each protein. The Mg2+-ATP complex itself reduces the release percentages of the small proteins from the PIC capsule. The release amounts further decrease when coexisting with Mg2+-ATP and the encapsulated actomyosin, which indicates the release regulation by actomyosin. The present study suggests that the ATPase-coupled sliding motion of the myosin-F-actin filaments modifies the pore size of the polymer networks in the PIC capsule membranes.

  5. Metal ion affinity-based biomolecular recognition and conjugation inside synthetic polymer nanopores modified with iron-terpyridine complexes.

    PubMed

    Ali, Mubarak; Nasir, Saima; Nguyen, Quoc Hung; Sahoo, Jugal Kishore; Tahir, Muhammad Nawaz; Tremel, Wolfgang; Ensinger, Wolfgang

    2011-11-02

    Here we demonstrate a novel biosensing platform for the detection of lactoferrin (LFN) via metal-organic frameworks, in which the metal ions have accessible free coordination sites for binding, inside the single conical nanopores fabricated in polymeric membrane. First, monolayer of amine-terminated terpyridine (metal-chelating ligand) is covalently immobilized on the inner walls of the nanopore via carbodiimide coupling chemistry. Second, iron-terpyridine (iron-terPy) complexes are obtained by treating the terpyridine modified-nanopores with ferrous sulfate solution. The immobilized iron-terPy complexes can be used as recognition elements to fabricate biosensing nanodevice. The working principle of the proposed biosensor is based on specific noncovalent interactions between LFN and chelated metal ions in the immobilized terpyridine monolayer, leading to the selective detection of analyte protein. In addition, control experiments proved that the designed biosensor exhibits excellent biospecificity and nonfouling properties. Furthermore, complementary experiments are conducted with multipore membranes containing an array of cylindrical nanopores. We demonstrate that in the presence of LFN in the feed solution, permeation of methyl viologen (MV(2+)) and 1,5-naphthalenedisulphate (NDS(2-)) is drastically suppressed across the iron-terPy modified membranes. On the basis of these findings, we envision that apart from conventional ligand-receptor interactions, the designing and immobilization of alternative functional ligands inside the synthetic nanopores would extend this method for the construction of new metal ion affinity-based biomimetic systems for the specific binding and recognition of other biomolecules.

  6. Unwrapping of DNA-protein complexes under external stretching.

    PubMed

    Sakaue, Takahiro; Löwen, Hartmut

    2004-08-01

    A DNA-protein complex modeled by a semiflexible chain and an attractive spherical core is studied in the situation when an external stretching force is acting on one end monomer of the chain while the other end monomer is kept fixed in space. Without a stretching force, the chain is wrapped around the core. By applying an external stretching force, unwrapping of the complex is induced. We study the statics and dynamics of the unwrapping process by computer simulations and simple phenomenological theory. We find two different scenarios depending on the chain stiffness: For a flexible chain, the extension of the complex scales linearly with the external force applied. The sphere-chain complex is disordered; i.e., there is no clear winding of the chain around the sphere. For a stiff chain, on the other hand, the complex structure is ordered, which is reminiscent of nucleosome. There is a clear winding number, and the unwrapping process under external stretching is discontinuous with jumps of the distance-force curve. This is associated with discrete unwinding processes of the complex. Our predictions are of relevance for experiments, which measure force-extension curves of DNA-protein complexes, such as nucleosome, using optical tweezers.

  7. Protein corona - from molecular adsorption to physiological complexity.

    PubMed

    Treuel, Lennart; Docter, Dominic; Maskos, Michael; Stauber, Roland H

    2015-01-01

    In biological environments, nanoparticles are enshrouded by a layer of biomolecules, predominantly proteins, mediating its subsequent interactions with cells. Detecting this protein corona, understanding its formation with regards to nanoparticle (NP) and protein properties, and elucidating its biological implications were central aims of bio-related nano-research throughout the past years. Here, we discuss the mechanistic parameters that are involved in the protein corona formation and the consequences of this corona formation for both, the particle, and the protein. We review consequences of corona formation for colloidal stability and discuss the role of functional groups and NP surface functionalities in shaping NP-protein interactions. We also elaborate the recent advances demonstrating the strong involvement of Coulomb-type interactions between NPs and charged patches on the protein surface. Moreover, we discuss novel aspects related to the complexity of the protein corona forming under physiological conditions in full serum. Specifically, we address the relation between particle size and corona composition and the latest findings that help to shed light on temporal evolution of the full serum corona for the first time. Finally, we discuss the most recent advances regarding the molecular-scale mechanistic role of the protein corona in cellular uptake of NPs.

  8. Protein corona – from molecular adsorption to physiological complexity

    PubMed Central

    Docter, Dominic; Maskos, Michael

    2015-01-01

    Summary In biological environments, nanoparticles are enshrouded by a layer of biomolecules, predominantly proteins, mediating its subsequent interactions with cells. Detecting this protein corona, understanding its formation with regards to nanoparticle (NP) and protein properties, and elucidating its biological implications were central aims of bio-related nano-research throughout the past years. Here, we discuss the mechanistic parameters that are involved in the protein corona formation and the consequences of this corona formation for both, the particle, and the protein. We review consequences of corona formation for colloidal stability and discuss the role of functional groups and NP surface functionalities in shaping NP–protein interactions. We also elaborate the recent advances demonstrating the strong involvement of Coulomb-type interactions between NPs and charged patches on the protein surface. Moreover, we discuss novel aspects related to the complexity of the protein corona forming under physiological conditions in full serum. Specifically, we address the relation between particle size and corona composition and the latest findings that help to shed light on temporal evolution of the full serum corona for the first time. Finally, we discuss the most recent advances regarding the molecular-scale mechanistic role of the protein corona in cellular uptake of NPs. PMID:25977856

  9. Identification of a chitinase modifying protein from Fusarium verticillioides: truncation of a host resistance protein by a fungalysin metalloprotease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chitinase modifying proteins (cmps) are proteases, secreted by fungal pathogens, which truncate the plant class IV chitinases ChitA and ChitB during maize ear rot. Cmp activity has been characterized for Bipolaris zeicola and Stenocarpella maydis, but the identities of the proteases are not known. H...

  10. Immunoprecipitation and Characterization of Membrane Protein Complexes from Yeast

    ERIC Educational Resources Information Center

    Parra-Belky, Karlett; McCulloch, Kathryn; Wick, Nicole; Shircliff, Rebecca; Croft, Nicolas; Margalef, Katrina; Brown, Jamie; Crabill, Todd; Jankord, Ryan; Waldo, Eric

    2005-01-01

    In this undergraduate biochemistry laboratory experiment, the vacuolar ATPase protein complex is purified from yeast cell extracts by doing immunoprecipitations under nondenaturing conditions. Immunoprecipitations are performed using monoclonal antibodies to facilitate data interpretation, and subunits are separated on the basis of their molecular…

  11. Identification of liver protein targets modified by tienilic acid metabolites using a two-dimensional Western blot-mass spectrometry approach

    NASA Astrophysics Data System (ADS)

    Methogo, Ruth Menque; Dansette, Patrick M.; Klarskov, Klaus

    2007-12-01

    A combined approach based on two-dimensional electrophoresis-immuno-blotting and nanoliquid chromatography coupled on-line with electrospray ionization mass spectrometry (nLC-MS/MS) was used to identify proteins modified by a reactive intermediate of tienilic acid (TA). Liver homogenates from rats exposed to TA were fractionated using ultra centrifugation; four fractions were obtained and subjected to 2D electrophoresis. Following transfer to PVDF membranes, modified proteins were visualized after India ink staining, using an anti-serum raised against TA and ECL detection. Immuno-reactive spots were localized on the PVDF membrane by superposition of the ECL image, protein spots of interest were excised, digested on the membrane with trypsin followed by nLC-MS/MS analysis and protein identification. A total of 15 proteins were identified as likely targets modified by a TA reactive metabolite. These include selenium binding protein 2, senescence marker protein SMP-30, adenosine kinase, Acy1 protein, adenosylhomocysteinase, capping protein (actin filament), protein disulfide isomerase, fumarylacetoacetase, arginase chain A, ketohexokinase, proteasome endopeptidase complex, triosephosphate isomerase, superoxide dismutase, dna-type molecular chaperone hsc73 and malate dehydrogenase.

  12. Genetic polymorphisms of the Pmo1 and Pmo2 salivary proteins detected by the modified protein staining method.

    PubMed

    Minaguchi, K; Suzuki, K

    1988-07-01

    Two polymorphic proteins, Pmo1 and Pmo2, were found in human parotid saliva by modifying the protein staining method of Sung & Smithies (1969). The inheritance of each polymorphism was controlled by a dominant allele at an autosomal locus. This hypothesis was supported by studies in 50 families including 103 children. The gene frequencies were Pmo1+ = 0.308, Pmo1- = 0.692, Pmo2+ = 0.026, Pmo2- = 0.974. The Pmo1 and Pmo2 proteins reacted immunologically with antisera prepared to salivary proline-rich proteins (Pr and Gl). The isoelectric point was in excess of 8.58. These results showed that the Pmo1 and Pmo2 proteins belong to the basic proline-rich proteins in human parotid saliva.

  13. Genetic Modifier Screens Reveal New Components that Interact with the Drosophila Dystroglycan-Dystrophin Complex

    PubMed Central

    Yatsenko, Andriy S.; Shcherbata, Halyna R.; Fischer, Karin A.; Maksymiv, Dariya V.; Chernyk, Yaroslava I.; Ruohola-Baker, Hannele

    2008-01-01

    The Dystroglycan-Dystrophin (Dg-Dys) complex has a capacity to transmit information from the extracellular matrix to the cytoskeleton inside the cell. It is proposed that this interaction is under tight regulation; however the signaling/regulatory components of Dg-Dys complex remain elusive. Understanding the regulation of the complex is critical since defects in this complex cause muscular dystrophy in humans. To reveal new regulators of the Dg-Dys complex, we used a model organism Drosophila melanogaster and performed genetic interaction screens to identify modifiers of Dg and Dys mutants in Drosophila wing veins. These mutant screens revealed that the Dg-Dys complex interacts with genes involved in muscle function and components of Notch, TGF-β and EGFR signaling pathways. In addition, components of pathways that are required for cellular and/or axonal migration through cytoskeletal regulation, such as Semaphorin-Plexin, Frazzled-Netrin and Slit-Robo pathways show interactions with Dys and/or Dg. These data suggest that the Dg-Dys complex and the other pathways regulating extracellular information transfer to the cytoskeletal dynamics are more intercalated than previously thought. PMID:18545683

  14. A modified paper-binding procedure for the assay of nucleus-associated protein phosphokinases.

    PubMed

    Goueli, S A; Slungaard, R; Wilson, M J; Ahmed, K

    1980-05-01

    Previously existing paper-binding assay procedures gave results with large variations when employed for the measurement of nucleus-associated protein phosphokinase activities. However, a modified method, utilizing the binding of 32P-labeled phosphoprotein substrates to paper and employing washing procedures in 20% trichloroacetic acid at 60 degrees to 70 degrees C, gave highly reproducible results. This modified procedure was satisfactory with either chromatin or a nonhistone protein fraction derived therefrom as a source of enzyme, and dephosphophosvitin, lysine-rich histones, or casein as phosphoprotein substrates.

  15. Cell separation by immunoaffinity partitioning with polyethylene glycol-modified Protein A in aqueous polymer two-phase systems

    NASA Technical Reports Server (NTRS)

    Karr, Laurel J.; Van Alstine, James M.; Snyder, Robert S.; Shafer, Steven G.; Harris, J. Milton

    1988-01-01

    Previous work has shown that polyethylene glycol (PEG)-bound antibodies can be used as affinity ligands in PEG-dextran two-phase systems to provide selective partitioning of cells to the PEG-rich phase. In the present work it is shown that immunoaffinity partitioning can be simplified by use of PEG-modified Protein A which complexes with unmodified antibody and cells and shifts their partitioning into the PEG-rich phase, thus eliminating the need to prepare a PEG-modified antibody for each cell type. In addition, the paper provides a more rigorous test of the original technique with PEG-bound antibodies by showing that it is effective at shifting the partitioning of either cell type of a mixture of two cell populations.

  16. A high-throughput immobilized bead screen for stable proteins and multi-protein complexes

    PubMed Central

    Lockard, Meghan A.; Listwan, Pawel; Pedelacq, Jean-Denis; Cabantous, Stéphanie; Nguyen, Hau B.; Terwilliger, Thomas C.; Waldo, Geoffrey S.

    2011-01-01

    We describe an in vitro colony screen to identify Escherichia coli expressing soluble proteins and stable, assembled multiprotein complexes. Proteins with an N-terminal 6His tag and C-terminal green fluorescent protein (GFP) S11 tag are fluorescently labeled in cells by complementation with a coexpressed GFP 1–10 fragment. After partial colony lysis, the fluorescent soluble proteins or complexes diffuse through a supporting filtration membrane and are captured on Talon® resin metal affinity beads immobilized in agarose. Images of the fluorescent colonies convey total expression and the level of fluorescence bound to the beads indicates how much protein is soluble. Both pieces of information can be used together when selecting clones. After the assay, colonies can be picked and propagated, eliminating the need to make replica plates. We used the method to screen a DNA fragment library of the human protein p85 and preferentially obtained clones expressing the full-length ‘breakpoint cluster region-homology' and NSH2 domains. The assay also distinguished clones expressing stable multi-protein complexes from those that are unstable due to missing subunits. Clones expressing stable, intact heterotrimeric E.coli YheNML complexes were readily identified in libraries dominated by complexes of YheML missing the N subunit. PMID:21642284

  17. A high-throughput immobilized bead screen for stable proteins and multi-protein complexes.

    PubMed

    Lockard, Meghan A; Listwan, Pawel; Pedelacq, Jean-Denis; Cabantous, Stéphanie; Nguyen, Hau B; Terwilliger, Thomas C; Waldo, Geoffrey S

    2011-07-01

    We describe an in vitro colony screen to identify Escherichia coli expressing soluble proteins and stable, assembled multiprotein complexes. Proteins with an N-terminal 6His tag and C-terminal green fluorescent protein (GFP) S11 tag are fluorescently labeled in cells by complementation with a coexpressed GFP 1-10 fragment. After partial colony lysis, the fluorescent soluble proteins or complexes diffuse through a supporting filtration membrane and are captured on Talon(®) resin metal affinity beads immobilized in agarose. Images of the fluorescent colonies convey total expression and the level of fluorescence bound to the beads indicates how much protein is soluble. Both pieces of information can be used together when selecting clones. After the assay, colonies can be picked and propagated, eliminating the need to make replica plates. We used the method to screen a DNA fragment library of the human protein p85 and preferentially obtained clones expressing the full-length 'breakpoint cluster region-homology' and NSH2 domains. The assay also distinguished clones expressing stable multi-protein complexes from those that are unstable due to missing subunits. Clones expressing stable, intact heterotrimeric E.coli YheNML complexes were readily identified in libraries dominated by complexes of YheML missing the N subunit.

  18. Receptor component protein (RCP): a member of a multi-protein complex required for G-protein-coupled signal transduction.

    PubMed

    Prado, M A; Evans-Bain, B; Dickerson, I M

    2002-08-01

    The calcitonin-gene-related peptide (CGRP) receptor component protein (RCP) is a 148-amino-acid intracellular protein that is required for G-protein-coupled signal transduction at receptors for the neuropeptide CGRP. RCP works in conjunction with two other proteins to constitute a functional CGRP receptor: calcitonin-receptor-like receptor (CRLR) and receptor-activity-modifying protein 1 (RAMP1). CRLR has the stereotypical seven-transmembrane topology of a G-protein-coupled receptor; it requires RAMP1 for trafficking to the cell surface and for ligand specificity, and requires RCP for coupling to the cellular signal transduction pathway. We have made cell lines that expressed an antisense construct of RCP and determined that CGRP-mediated signal transduction was reduced, while CGRP binding was unaffected. Furthermore, signalling at two other endogenous G-protein-coupled receptors was unaffected, suggesting that RCP was specific for a limited subset of receptors.

  19. Structural study of asparagine-linked oligosaccharide moiety of taste-modifying protein, miraculin.

    PubMed

    Takahashi, N; Hitotsuya, H; Hanzawa, H; Arata, Y; Kurihara, Y

    1990-05-15

    The structures of the N-linked oligosaccharides of miraculin, which is a taste modifying glycoprotein isolated from miracle fruits, berries of Richadella dulcifica, are reported. Asparagine-linked oligosaccharides were released from the protein by glycopeptidase (almond) digestion. The reducing ends of the oligosaccharide chains thus obtained were aminated with a fluorescent reagent, 2-aminopyridine, and the mixture of pyridylamino derivatives of the oligosaccharides was separated by high performance liquid chromatography (HPLC) on an ODS-silica column. More than five kinds of oligosaccharide fractions were separated by the one chromatographic run. The structure of each oligosaccharide thus isolated was analyzed by a combination of sequential exoglycosidase digestion and another kind of HPLC with an amidesilica column. Furthermore, high resolution proton nuclear magnetic resonance (1H NMR) measurements were carried out. It was found that 1) five oligosaccharides obtained are a series of compounds with xylose-containing common structural core, Xyl beta 1----2 (Man alpha 1----6) Man beta 1----4-GlcNAc beta 1----4 (Fuca1----3)GlcNAc, 2) a variety of oligosaccharide structures are significant for two glycosylation sites, Asn-42 and Asn-186, and 3) two new oligosaccharides, B and D, with unusual structures containing monoantennary complex-type were characterized. (formula; see text)

  20. Modulation of immune function by a modified bovine whey protein concentrate.

    PubMed

    Cross, M L; Gill, H S

    1999-08-01

    The commercial preparation of dairy foodstuffs generates large volumes of by-products, many of which have as yet undocumented effects on mammalian immune function. In the present report, a modified whey protein concentrate (mWPC), derived as a by-product from the commercial manufacture of cheese, was tested for its ability to modulate murine immune function in vitro. The mWPC suppressed T and B lymphocyte proliferative responses to mitogens in a dose-dependent fashion. The mWPC also suppressed alloantigen-induced lymphocyte proliferation during a mixed leucocyte reaction, but showed no suppressive effect against IL-2-sustained proliferation of mitogen-activated T cell blasts. Other indices of lymphocyte activation, such as cytokine secretion and the formation of activated (CD25+) T cell blasts, were suppressed by the mWPC, suggesting that the mode of suppression may be to inhibit the lymphocyte activation process. Enzymatic digestion by pepsin and pancreatin, under physiologically realistic conditions in vitro, ablated the immunomodulatory function of the mWPC. These results are discussed in relation to the potential development of complex-mixture dairy products into health-modulating products.

  1. Comparative Study of Elastic Network Model and Protein Contact Network for Protein Complexes: The Hemoglobin Case

    PubMed Central

    Di Paola, Luisa; Liang, Zhongjie; Giuliani, Alessandro

    2017-01-01

    The overall topology and interfacial interactions play key roles in understanding structural and functional principles of protein complexes. Elastic Network Model (ENM) and Protein Contact Network (PCN) are two widely used methods for high throughput investigation of structures and interactions within protein complexes. In this work, the comparative analysis of ENM and PCN relative to hemoglobin (Hb) was taken as case study. We examine four types of structural and dynamical paradigms, namely, conformational change between different states of Hbs, modular analysis, allosteric mechanisms studies, and interface characterization of an Hb. The comparative study shows that ENM has an advantage in studying dynamical properties and protein-protein interfaces, while PCN is better for describing protein structures quantitatively both from local and from global levels. We suggest that the integration of ENM and PCN would give a potential but powerful tool in structural systems biology. PMID:28243596

  2. Simultaneous complexation of organic compounds and heavy metals by a modified cyclodextrin

    SciTech Connect

    Wang, X.; Brusseau, M.L.

    1995-10-01

    The cleanup of contaminated soil and groundwater at hazardous waste sites has become a major focus of research and policy debate. A major factor complicating the cleanup of many sites is the cooccurrence of organic compounds and heavy metals, the so-called mixed wastes. We investigated the ability of a modified cyclodextrin to simultaneously complex low-polarity organic compounds and heavy metals. The results of the experiments showed that carboxymethyl-{beta}-cyclodextrin could simultaneously increase the apparent aqueous solubilities of the selected organic compounds (anthracene, trichlorobenzene; biphenyl, and ODT) and complex with Cd{sup 2+}. This complexation was not significantly affected by changes in pH or by the presence of relatively high concentrations of Ca{sup 2+}. It is possible that this reagent can be used successfully to remediate hazardous waste sites contaminated by mixed wastes. 11 refs., 7 figs.

  3. Cellulose derivatives modified by sodium tellurate and a chromium(III) tellurate complex.

    PubMed

    Butler, Ian S; El-Sherbeny, Heba Allah M; Kenawy, Ibrahim; Mostafa, Sahar I

    2016-07-01

    A novel cellulose (Cell) derivative, sodium-tellurato (Cell-TeO(OH)4(ONa)/Cell-Cl), has been synthesized from the reaction of 6-chloro-6-deoxycellulose (Cell-Cl) with telluric acid in the presence of sodium hydroxide. The subsequent reaction of this polymeric material with chromium(III) in aqueous solution yields the [Cr(Cell-TeO3(OH)3/Cell-Cl)(Cell-TeO2(OH)4/Cell-Cl)(H2O)3] complex. The molecular structures and morphology of the new polymer and the Cr(III) complex have been examined using elemental analysis, solid-state (13)C NMR, UV-vis, XRD and FTIR spectroscopy, and SEM-EDX, TGA and magnetic measurements. The results are considered to be consistent with the formulations proposed. The deprotonation constants of the modified cellulose and the stability constant of the Cr(III) complex have been determined by pH-metric measurements.

  4. Structural Characterization of Native Proteins and Protein Complexes by Electron Ionization Dissociation-Mass Spectrometry.

    PubMed

    Li, Huilin; Sheng, Yuewei; McGee, William; Cammarata, Michael; Holden, Dustin; Loo, Joseph A

    2017-03-07

    Mass spectrometry (MS) has played an increasingly important role in the identification and structural and functional characterization of proteins. In particular, the use of tandem mass spectrometry has afforded one of the most versatile methods to acquire structural information for proteins and protein complexes. The unique nature of electron capture dissociation (ECD) for cleaving protein backbone bonds while preserving noncovalent interactions has made it especially suitable for the study of native protein structures. However, the intra- and intermolecular interactions stabilized by hydrogen bonds and salt bridges can hinder the separation of fragments even with preactivation, which has become particularly problematic for the study of large macromolecular proteins and protein complexes. Here, we describe the capabilities of another activation method, 30 eV electron ionization dissociation (EID), for the top-down MS characterization of native protein-ligand and protein-protein complexes. Rich structural information that cannot be delivered by ECD can be generated by EID. EID allowed for the comparison of the gas-phase and the solution-phase structural stability and unfolding process of human carbonic anhydrase I (HCA-I). In addition, the EID fragmentation patterns reflect the structural similarities and differences among apo-, Zn-, and Cu,Zn-superoxide dismutase (SOD1) dimers. In particular, the structural changes due to Cu-binding and a point mutation (G41D) were revealed by EID-MS. The performance of EID was also compared to that of 193 nm ultraviolet photodissociation (UVPD), which allowed us to explore their qualitative similarities and differences as potential valuable tools for the MS study of native proteins and protein complexes.

  5. Transmembrane protein 147 (TMEM147) is a novel component of the Nicalin-NOMO protein complex.

    PubMed

    Dettmer, Ulf; Kuhn, Peer-Hendrik; Abou-Ajram, Claudia; Lichtenthaler, Stefan F; Krüger, Marcus; Kremmer, Elisabeth; Haass, Christian; Haffner, Christof

    2010-08-20

    Nicastrin and its relative Nicalin (Nicastrin-like protein) are both members of larger protein complexes, namely gamma-secretase and the Nicalin-NOMO (Nodal modulator) complex. The gamma-secretase complex, which contains Presenilin, APH-1, and PEN-2 in addition to Nicastrin, catalyzes the proteolytic cleavage of the transmembrane domain of various proteins including the beta-amyloid precursor protein and Notch. Nicalin and its binding partner NOMO form a complex that was shown to modulate Nodal signaling in developing zebrafish embryos. Because its experimentally determined native size (200-220 kDa) could not be satisfyingly explained by the molecular masses of Nicalin (60 kDa) and NOMO (130 kDa), we searched in affinity-purified complex preparations for additional components in the low molecular mass range. A approximately 22-kDa protein was isolated and identified by mass spectrometry as transmembrane protein 147 (TMEM147), a novel, highly conserved membrane protein with a putative topology similar to APH-1. Like Nicalin and NOMO, it localizes to the endoplasmic reticulum and is expressed during early zebrafish development. Overexpression and knockdown experiments in cultured cells demonstrate a close relationship between the three proteins and suggest that they are components of the same complex. We present evidence that, similar to gamma-secretase, its assembly is hierarchical starting with the formation of a Nicalin-NOMO intermediate. Nicalin appears to represent the limiting factor regulating the assembly rate by stabilizing the other two components. We conclude that TMEM147 is a novel core component of the Nicalin-NOMO complex, further emphasizing its similarity with gamma-secretase.

  6. Transmembrane Protein 147 (TMEM147) Is a Novel Component of the Nicalin-NOMO Protein Complex*

    PubMed Central

    Dettmer, Ulf; Kuhn, Peer-Hendrik; Abou-Ajram, Claudia; Lichtenthaler, Stefan F.; Krüger, Marcus; Kremmer, Elisabeth; Haass, Christian; Haffner, Christof

    2010-01-01

    Nicastrin and its relative Nicalin (Nicastrin-like protein) are both members of larger protein complexes, namely γ-secretase and the Nicalin-NOMO (Nodal modulator) complex. The γ-secretase complex, which contains Presenilin, APH-1, and PEN-2 in addition to Nicastrin, catalyzes the proteolytic cleavage of the transmembrane domain of various proteins including the β-amyloid precursor protein and Notch. Nicalin and its binding partner NOMO form a complex that was shown to modulate Nodal signaling in developing zebrafish embryos. Because its experimentally determined native size (200–220 kDa) could not be satisfyingly explained by the molecular masses of Nicalin (60 kDa) and NOMO (130 kDa), we searched in affinity-purified complex preparations for additional components in the low molecular mass range. A ∼22-kDa protein was isolated and identified by mass spectrometry as transmembrane protein 147 (TMEM147), a novel, highly conserved membrane protein with a putative topology similar to APH-1. Like Nicalin and NOMO, it localizes to the endoplasmic reticulum and is expressed during early zebrafish development. Overexpression and knockdown experiments in cultured cells demonstrate a close relationship between the three proteins and suggest that they are components of the same complex. We present evidence that, similar to γ-secretase, its assembly is hierarchical starting with the formation of a Nicalin-NOMO intermediate. Nicalin appears to represent the limiting factor regulating the assembly rate by stabilizing the other two components. We conclude that TMEM147 is a novel core component of the Nicalin-NOMO complex, further emphasizing its similarity with γ-secretase. PMID:20538592

  7. Modeling of Protein Binary Complexes Using Structural Mass Spectrometry Data

    SciTech Connect

    Amisha Kamal,J.; Chance, M.

    2008-01-01

    In this article, we describe a general approach to modeling the structure of binary protein complexes using structural mass spectrometry data combined with molecular docking. In the first step, hydroxyl radical mediated oxidative protein footprinting is used to identify residues that experience conformational reorganization due to binding or participate in the binding interface. In the second step, a three-dimensional atomic structure of the complex is derived by computational modeling. Homology modeling approaches are used to define the structures of the individual proteins if footprinting detects significant conformational reorganization as a function of complex formation. A three-dimensional model of the complex is constructed from these binary partners using the ClusPro program, which is composed of docking, energy filtering, and clustering steps. Footprinting data are used to incorporate constraints--positive and/or negative--in the docking step and are also used to decide the type of energy filter--electrostatics or desolvation--in the successive energy-filtering step. By using this approach, we examine the structure of a number of binary complexes of monomeric actin and compare the results to crystallographic data. Based on docking alone, a number of competing models with widely varying structures are observed, one of which is likely to agree with crystallographic data. When the docking steps are guided by footprinting data, accurate models emerge as top scoring. We demonstrate this method with the actin/gelsolin segment-1 complex. We also provide a structural model for the actin/cofilin complex using this approach which does not have a crystal or NMR structure.

  8. Detection and Analysis of Proteins Modified by O-Linked N-Acetylglucosamine

    PubMed Central

    Zachara, Natasha E.; Vosseller, Keith; Hart, Gerald W.

    2012-01-01

    O-GlcNAc is a common post-translational modification of nuclear, mitochondrial and cytoplasmic proteins, that is implicated in the etiology of type II diabetes and Alzheimer’s disease, as well as cardioprotection. This unit covers simple and comprehensive techniques for identifying proteins modified by O-GlcNAc, studying the enzymes that add and remove O-GlcNAc, and mapping O-GlcNAc modification sites. PMID:21732316

  9. Detection and Analysis of Proteins Modified by O-Linked N-Acetylglucosamine

    PubMed Central

    Zachara, Natasha E.; Vosseller, Keith; Hart, Gerald W.

    2012-01-01

    O-GlcNAc is a common post-translational modification of nuclear, mitochondrial and cytoplasmic proteins, that is implicated in the etiology of type II diabetes and Alzheimer’s disease, as well as cardioprotection. This unit covers simple and comprehensive techniques for identifying proteins modified by O-GlcNAc, studying the enzymes that add and remove O-GlcNAc, and mapping O-GlcNAc modification sites. PMID:22045558

  10. Exploration of the Dynamic Properties of Protein Complexes Predicted from Spatially Constrained Protein-Protein Interaction Networks

    PubMed Central

    Yen, Eric A.; Tsay, Aaron; Waldispuhl, Jerome; Vogel, Jackie

    2014-01-01

    Protein complexes are not static, but rather highly dynamic with subunits that undergo 1-dimensional diffusion with respect to each other. Interactions within protein complexes are modulated through regulatory inputs that alter interactions and introduce new components and deplete existing components through exchange. While it is clear that the structure and function of any given protein complex is coupled to its dynamical properties, it remains a challenge to predict the possible conformations that complexes can adopt. Protein-fragment Complementation Assays detect physical interactions between protein pairs constrained to ≤8 nm from each other in living cells. This method has been used to build networks composed of 1000s of pair-wise interactions. Significantly, these networks contain a wealth of dynamic information, as the assay is fully reversible and the proteins are expressed in their natural context. In this study, we describe a method that extracts this valuable information in the form of predicted conformations, allowing the user to explore the conformational landscape, to search for structures that correlate with an activity state, and estimate the abundance of conformations in the living cell. The generator is based on a Markov Chain Monte Carlo simulation that uses the interaction dataset as input and is constrained by the physical resolution of the assay. We applied this method to an 18-member protein complex composed of the seven core proteins of the budding yeast Arp2/3 complex and 11 associated regulators and effector proteins. We generated 20,480 output structures and identified conformational states using principle component analysis. We interrogated the conformation landscape and found evidence of symmetry breaking, a mixture of likely active and inactive conformational states and dynamic exchange of the core protein Arc15 between core and regulatory components. Our method provides a novel tool for prediction and visualization of the hidden

  11. Modifying the catalytic preference of tributyrin in Bacillus thermocatenulatus lipase through in-silico modeling of enzyme-substrate complex.

    PubMed

    Durmaz, Emel; Kuyucak, Serdar; Sezerman, Ugur O

    2013-05-01

    In this study, rational design for Bacillus thermocatenulatus lipase (BTL2) was carried out to lower the activation barrier for hydrolysis of short-chain substrates. In this design, we used computational models for the enzyme-substrate (ES) complexes of tributyrin (C4) and tricaprylin (C8), which were generated through docking and molecular dynamics (MD) simulations. These ES complexes were employed in steered MD (SMD) simulations with Jarzynski's equality to estimate their relative binding free energies. Potential mutation sites for modifying the chain-length selectivity of BTL2 were found by inspecting the SMD trajectories and fine-tuning the volume and hydrophobicity of the cleft. Seven mutations (F17A, L57F, V175A, V175F, I320A, I320F and L360F) were performed to cover three binding pockets for sn-1, sn-2 and sn-3 acyl chains. The relative binding free energies of the mutant ES complexes formed by C4 and C8 ligands were calculated similarly. The experimental routines of protein engineering including site-directed mutagenesis, heterologous protein expression and purification were performed for all lipases. Steady-state specific activities towards C4 and C8 were determined for wild-type and mutant lipases, which gave an estimate of the relative change in the binding free energy of transition state complex (ES(‡)). The chain-length selectivity of mutants was determined from the relative changes in the activation barrier of hydrolysis of C4 and C8 triacylglycerol with respect to wild-type using computational and experimental findings. The most promising mutant for C4 over C8 preference was found to be L360F. We suggest that L360F may be at a critical position to lower the activation barrier for C4 and elevate it for C8 hydrolysis.

  12. Molecular Signatures of Membrane Protein Complexes Underlying Muscular Dystrophy*

    PubMed Central

    Turk, Rolf; Hsiao, Jordy J.; Smits, Melinda M.; Ng, Brandon H.; Pospisil, Tyler C.; Jones, Kayla S.; Campbell, Kevin P.; Wright, Michael E.

    2016-01-01

    Mutations in genes encoding components of the sarcolemmal dystrophin-glycoprotein complex (DGC) are responsible for a large number of muscular dystrophies. As such, molecular dissection of the DGC is expected to both reveal pathological mechanisms, and provides a biological framework for validating new DGC components. Establishment of the molecular composition of plasma-membrane protein complexes has been hampered by a lack of suitable biochemical approaches. Here we present an analytical workflow based upon the principles of protein correlation profiling that has enabled us to model the molecular composition of the DGC in mouse skeletal muscle. We also report our analysis of protein complexes in mice harboring mutations in DGC components. Bioinformatic analyses suggested that cell-adhesion pathways were under the transcriptional control of NFκB in DGC mutant mice, which is a finding that is supported by previous studies that showed NFκB-regulated pathways underlie the pathophysiology of DGC-related muscular dystrophies. Moreover, the bioinformatic analyses suggested that inflammatory and compensatory mechanisms were activated in skeletal muscle of DGC mutant mice. Additionally, this proteomic study provides a molecular framework to refine our understanding of the DGC, identification of protein biomarkers of neuromuscular disease, and pharmacological interrogation of the DGC in adult skeletal muscle https://www.mda.org/disease/congenital-muscular-dystrophy/research. PMID:27099343

  13. Heterodimeric Drosophila gap gene protein complexes acting as transcriptional repressors.

    PubMed Central

    Sauer, F; Jäckle, H

    1995-01-01

    The Drosophila gap gene Krüppel (Kr) encodes a transcriptional regulator. It acts both as an integral part of the Drosophila segmentation gene in the early blastoderm and in a variety of tissues and organs at later stages of embryogenesis. In transfected tissue culture cells, the Kr protein (Kr) was shown to both activate and repress gene expression in a concentration-dependent manner when acting from a single binding site close to the promoter. Here we show that KR can associate with the transcription factors encoded by the gap genes knirps (kni) and hunchback (hb) which affect KR-dependent gene expression in Drosophila tissue culture cells. The association of DNA-bound hb protein or free kni protein with distinct but different regions of KR results in the formation of DNA-bound transcriptional repressor complexes. Our results suggest that individual transcription factors can associate to form protein complexes which act as direct repressors of transcription. The interactions shown here add an unexpected level of complexity to the control of gene expression. Images PMID:7588607

  14. Characterization of the human GARP (Golgi associated retrograde protein) complex

    SciTech Connect

    Liewen, Heike; Meinhold-Heerlein, Ivo; Oliveira, Vasco; Schwarzenbacher, Robert; Luo Guorong; Wadle, Andreas; Jung, Martin; Pfreundschuh, Michael; Stenner-Liewen, Frank . E-mail: stenlie@t-online.de

    2005-05-15

    The Golgi associated retrograde protein complex (GARP) or Vps fifty-three (VFT) complex is part of cellular inter-compartmental transport systems. Here we report the identification of the VFT tethering factor complex and its interactions in mammalian cells. Subcellular fractionation shows that human Vps proteins are found in the smooth membrane/Golgi fraction but not in the cytosol. Immunostaining of human Vps proteins displays a vesicular distribution most concentrated at the perinuclear envelope. Co-staining experiments with endosomal markers imply an endosomal origin of these vesicles. Significant accumulation of VFT complex positive endosomes is found in the vicinity of the Trans Golgi Network area. This is in accordance with a putative role in Golgi associated transport processes. In Saccharomyces cerevisiae, GARP is the main effector of the small GTPase Ypt6p and interacts with the SNARE Tlg1p to facilitate membrane fusion. Accordingly, the human homologue of Ypt6p, Rab6, specifically binds hVps52. In human cells, the 'orphan' SNARE Syntaxin 10 is the genuine binding partner of GARP mediated by hVps52. This reveals a previously unknown function of human Syntaxin 10 in membrane docking and fusion events at the Golgi. Taken together, GARP shows significant conservation between various species but diversification and specialization result in important differences in human cells.

  15. Changes in protein structure at the interface accompanying complex formation.

    PubMed

    Chakravarty, Devlina; Janin, Joël; Robert, Charles H; Chakrabarti, Pinak

    2015-11-01

    Protein interactions are essential in all biological processes. The changes brought about in the structure when a free component forms a complex with another molecule need to be characterized for a proper understanding of molecular recognition as well as for the successful implementation of docking algorithms. Here, unbound (U) and bound (B) forms of protein structures from the Protein-Protein Interaction Affinity Database are compared in order to enumerate the changes that occur at the interface atoms/residues in terms of the solvent-accessible surface area (ASA), secondary structure, temperature factors (B factors) and disorder-to-order transitions. It is found that the interface atoms optimize contacts with the atoms in the partner protein, which leads to an increase in their ASA in the bound interface in the majority (69%) of the proteins when compared with the unbound interface, and this is independent of the root-mean-square deviation between the U and B forms. Changes in secondary structure during the transition indicate a likely extension of helices and strands at the expense of turns and coils. A reduction in flexibility during complex formation is reflected in the decrease in B factors of the interface residues on going from the U form to the B form. There is, however, no distinction in flexibility between the interface and the surface in the monomeric structure, thereby highlighting the potential problem of using B factors for the prediction of binding sites in the unbound form for docking another protein. 16% of the proteins have missing (disordered) residues in the U form which are observed (ordered) in the B form, mostly with an irregular conformation; the data set also shows differences in the composition of interface and non-interface residues in the disordered polypeptide segments as well as differences in their surface burial.

  16. Modifying Charge and Hydrophilicity of Simple Ru(II) Polypyridyl Complexes Radically Alters Biological Activities: Old Complexes, Surprising New Tricks

    PubMed Central

    2015-01-01

    Compounds capable of light-triggered cytotoxicity are appealing potential therapeutics, because they can provide spatial and temporal control over cell killing to reduce side effects in cancer therapy. Two simple homoleptic Ru(II) polypyridyl complexes with almost-identical photophysical properties but radically different physiochemical properties were investigated as agents for photodynamic therapy (PDT). The two complexes were identical, except for the incorporation of six sulfonic acids into the ligands of one complex, resulting in a compound carrying an overall −4 charge. The negatively charged compound exhibited significant light-mediated cytotoxicity, and, importantly, the negative charges resulted in radical alterations of the biological activity, compared to the positively charged analogue, including complete abrogation of toxicity in the dark. The charges also altered the subcellular localization properties, mechanism of action, and even the mechanism of cell death. The incorporation of negative charged ligands provides a simple chemical approach to modify the biological properties of light-activated Ru(II) cytotoxic agents. PMID:25249443

  17. The Drosophila EKC/KEOPS complex: roles in protein synthesis homeostasis and animal growth.

    PubMed

    Rojas-Benítez, Diego; Ibar, Consuelo; Glavic, Álvaro

    2013-01-01

    The TOR signaling pathway is crucial in the translation of nutritional inputs into the protein synthesis machinery regulation, allowing animal growth. We recently identified the Bud32 (yeast)/PRPK (human) ortholog in Drosophila, Prpk (p53-related protein kinase), and found that it is required for TOR kinase activity. Bud32/PRPK is an ancient and atypical kinase conserved in evolution from Archeae to humans, being essential for Archeae. It has been linked with p53 stabilization in human cell culture and its absence in yeast causes a slow-growth phenotype. This protein has been associated to KEOPS (kinase, putative endopeptidase and other proteins of small size) complex together with Kae1p (ATPase), Cgi-121 and Pcc1p. This complex has been implicated in telomere maintenance, transcriptional regulation, bud site selection and chemical modification of tRNAs (tRNAs). Bud32p and Kae1p have been related with N6-threonylcarbamoyladenosine (t (6)A) synthesis, a particular chemical modification that occurs at position 37 of tRNAs that pair A-starting codons, required for proper translation in most species. Lack of this modification causes mistranslations and open reading frame shifts in yeast. The core constituents of the KEOPS complex are present in Drosophila, but their physical interaction has not been reported yet. Here, we present a review of the findings regarding the function of this complex in different organisms and new evidence that extends our recent observations of Prpk function in animal growth showing that depletion of Kae1 or Prpk, in accordance with their role in translation in yeast, is able to induce the unfolded protein response (UPR) in Drosophila. We suggest that EKC/KEOPS complex could be integrating t (6)A-modified tRNA availability with translational rates, which are ultimately reflected in animal growth.

  18. Effective capture of proteins inside living cells by antibodies indirectly linked to a novel cell-penetrating polymer-modified protein A derivative.

    PubMed

    Itakura, Shoko; Hama, Susumu; Ikeda, Hisafumi; Mitsuhashi, Naoto; Majima, Eiji; Kogure, Kentaro

    2015-01-01

    Antibodies against cytoplasmic proteins are useful tools that can control cellular function and clarify signaling mechanisms. However, it is difficult to capture proteins inside living cells, and thus appropriate methods for antibody delivery to the cytoplasm of living cells are required. Cell-penetrating materials, such as the TAT-peptide, have received attention for their ability to deliver various cargos into living cells. However, the direct modification of cargos with cell-penetrating materials is time-consuming and lacks versatility. Therefore, we conceived that protein A, which can bind to the fragment crystallizable region of an antibody, could indirectly link antibodies with cell-penetrating materials, creating an efficient and simple antibody delivery system. Here, we constructed a novel antibody delivery system using a cell-penetrating polymer-modified protein A derivative (CPP-pAd). Living cells treated with CPP-pAd/antibody complexes showed significantly higher antibody levels than those achieved with the commercially available reagent HVJ-E. Pre-treatment with sucrose prevented cellular uptake of the CPP-pAd/antibody complex, suggesting that the CPP-pAd/antibody internalization mechanism occurs through clathrin-dependent endocytosis. Interestingly, intracellularly delivered antibodies did not colocalize with endosome/lysosome markers, further suggesting that antibodies were delivered to the cytoplasm by escape from endosome/lysosome. Moreover, we observed that anti-nuclear pore complex antibodies, delivered to cells using CPP-pAd, localized to the nuclear membrane and inhibited nuclear factor κB dependent luciferase activity. Together, these results suggest that the antibodies delivered by CPP-pAd captured functional proteins, making CPP-pAd a promising strategy for effective capture of proteins inside living cells.

  19. The RCP-Rab11 complex regulates endocytic protein sorting.

    PubMed

    Peden, Andrew A; Schonteich, Eric; Chun, John; Junutula, Jagath R; Scheller, Richard H; Prekeris, Rytis

    2004-08-01

    Rab 11 GTPase is an important regulator of endocytic membrane traffic. Recently, we and others have identified a novel family of Rab11 binding proteins, known as Rab11-family interacting proteins (FIPs). One of the family members, Rab coupling protein (RCP), was identified as a protein binding to both Rab4 and Rab11 GTPases. RCP was therefore suggested to serve a dual function as Rab4 and Rab11 binding protein. In this study, we characterized the cellular functions of RCP and mapped its interactions with Rab4 and Rab11. Our data show that RCP interacts only weakly with Rab4 in vitro and does not play the role of coupling Rab11 and Rab4 in vivo. Furthermore, our data indicate that the RCP-Rab11 complex regulates the sorting of transferrin receptors from the degradative to the recycling pathway. We therefore propose that RCP functions primarily as a Rab11 binding protein that regulates protein sorting in tubular endosomes.

  20. 2D depiction of nonbonding interactions for protein complexes.

    PubMed

    Zhou, Peng; Tian, Feifei; Shang, Zhicai

    2009-04-30

    A program called the 2D-GraLab is described for automatically generating schematic representation of nonbonding interactions across the protein binding interfaces. The input file of this program takes the standard PDB format, and the outputs are two-dimensional PostScript diagrams giving intuitive and informative description of the protein-protein interactions and their energetics properties, including hydrogen bond, salt bridge, van der Waals interaction, hydrophobic contact, pi-pi stacking, disulfide bond, desolvation effect, and loss of conformational entropy. To ensure these interaction information are determined accurately and reliably, methods and standalone programs employed in the 2D-GraLab are all widely used in the chemistry and biology community. The generated diagrams allow intuitive visualization of the interaction mode and binding specificity between two subunits in protein complexes, and by providing information on nonbonding energetics and geometric characteristics, the program offers the possibility of comparing different protein binding profiles in a detailed, objective, and quantitative manner. We expect that this 2D molecular graphics tool could be useful for the experimentalists and theoreticians interested in protein structure and protein engineering.

  1. Effect of Fillers Prepared from Enzymatically Modified Proteins on Mechanical Properties of Leather

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In an environment where petroleum feedstuffs are becoming increasingly too expensive for a good cost-effective return, utilization of renewable resources makes economic sense, particularly when these substrates are waste proteins. We have thus proposed the application of enzymatically modified wast...

  2. Maize Seed Chitinase is Modified by a Protein Secreted by Bipolaris zeicola

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plants contain defense mechanisms that prevent infection by most fungi. Some specialized fungi have the ability to overcome plant defenses. The Zea mays (maize) seed chitinase ChitA has been previously reported as an antifungal protein. Here we report that ChitA is converted to a modified form by...

  3. Homology modelling of protein-protein complexes: a simple method and its possibilities and limitations

    PubMed Central

    Launay, Guillaume; Simonson, Thomas

    2008-01-01

    Background Structure-based computational methods are needed to help identify and characterize protein-protein complexes and their function. For individual proteins, the most successful technique is homology modelling. We investigate a simple extension of this technique to protein-protein complexes. We consider a large set of complexes of known structures, involving pairs of single-domain proteins. The complexes are compared with each other to establish their sequence and structural similarities and the relation between the two. Compared to earlier studies, a simpler dataset, a simpler structural alignment procedure, and an additional energy criterion are used. Next, we compare the Xray structures to models obtained by threading the native sequence onto other, homologous complexes. An elementary requirement for a successful energy function is to rank the native structure above any threaded structure. We use the DFIREβ energy function, whose quality and complexity are typical of the models used today. Finally, we compare near-native models to distinctly non-native models. Results If weakly stable complexes are excluded (defined by a binding energy cutoff), as well as a few unusual complexes, a simple homology principle holds: complexes that share more than 35% sequence identity share similar structures and interaction modes; this principle was less clearcut in earlier studies. The energy function was then tested for its ability to identify experimental structures among sets of decoys, produced by a simple threading procedure. On average, the experimental structure is ranked above 92% of the alternate structures. Thus, discrimination of the native structure is good but not perfect. The discrimination of near-native structures is fair. Typically, a single, alternate, non-native binding mode exists that has a native-like energy. Some of the associated failures may correspond to genuine, alternate binding modes and/or native complexes that are artefacts of the crystal

  4. A Bacillus megaterium System for the Production of Recombinant Proteins and Protein Complexes.

    PubMed

    Biedendieck, Rebekka

    2016-01-01

    For many years the Gram-positive bacterium Bacillus megaterium has been used for the production and secretion of recombinant proteins. For this purpose it was systematically optimized. Plasmids with different inducible promoter systems, with different compatible origins, with small tags for protein purification and with various specific signals for protein secretion were combined with genetically improved host strains. Finally, the development of appropriate cultivation conditions for the production strains established this organism as a bacterial cell factory even for large proteins. Along with the overproduction of individual proteins the organism is now also used for the simultaneous coproduction of up to 14 recombinant proteins, multiple subsequently interacting or forming protein complexes. Some of these recombinant strains are successfully used for bioconversion or the biosynthesis of valuable components including vitamins. The titers in the g per liter scale for the intra- and extracellular recombinant protein production prove the high potential of B. megaterium for industrial applications. It is currently further enhanced for the production of recombinant proteins and multi-subunit protein complexes using directed genetic engineering approaches based on transcriptome, proteome, metabolome and fluxome data.

  5. Identification of SUMO-2/3-modified proteins associated with mitotic chromosomes.

    PubMed

    Cubeñas-Potts, Caelin; Srikumar, Tharan; Lee, Christine; Osula, Omoruyi; Subramonian, Divya; Zhang, Xiang-Dong; Cotter, Robert J; Raught, Brian; Matunis, Michael J

    2015-02-01

    Sumoylation is essential for progression through mitosis, but the specific protein targets and functions remain poorly understood. In this study, we used chromosome spreads to more precisely define the localization of SUMO-2/3 (small ubiquitin-related modifier) to the inner centromere and protein scaffold of mitotic chromosomes. We also developed methods to immunopurify proteins modified by endogenous, untagged SUMO-2/3 from mitotic chromosomes. Using these methods, we identified 149 chromosome-associated SUMO-2/3 substrates by nLC-ESI-MS/MS. Approximately one-third of the identified proteins have reported functions in mitosis. Consistent with SUMO-2/3 immunolocalization, we identified known centromere- and kinetochore-associated proteins, as well as chromosome scaffold associated proteins. Notably, >30 proteins involved in chromatin modification or remodeling were identified. Our results provide insights into the roles of sumoylation as a regulator of chromatin structure and other diverse processes in mitosis. Furthermore, our purification and fractionation methodologies represent an important compliment to existing approaches to identify sumoylated proteins using exogenously expressed and tagged SUMOs.

  6. Chemiluminescence enzyme immunoassay using ProteinA-bacterial magnetite complex

    NASA Astrophysics Data System (ADS)

    Matsunaga, Tadashi; Sato, Rika; Kamiya, Shinji; Tanaka, Tsuyosi; Takeyama, Haruko

    1999-04-01

    Bacterial magnetic particles (BMPs) which have ProteinA expressed on their surface were constructed using magA which is a key gene in BMP biosynthesis in the magnetic bacterium Magnetospirillum sp. AMB-1. Homogenous chemiluminescence enzyme immunoassay using antibody bound ProteinA-BMP complexes was developed for detection of human IgG. A good correlation between the luminescence yield and the concentration of human IgG was obtained in the range of 1-10 3 ng/ml.

  7. A complex of nuclear proteins mediates SR protein binding to a purine-rich splicing enhancer.

    PubMed Central

    Yeakley, J M; Morfin, J P; Rosenfeld, M G; Fu, X D

    1996-01-01

    A purine-rich splicing enhancer from a constitutive exon has been shown to shift the alternative splicing of calcitonin/CGRP pre-mRNA in vivo. Here, we demonstrate that the native repetitive GAA sequence comprises the optimal enhancer element and specifically binds a saturable complex of proteins required for general splicing in vitro. This complex contains a 37-kDa protein that directly binds the repetitive GAA sequence and SRp40, a member of the SR family of non-snRNP splicing factors. While purified SR proteins do not stably bind the repetitive GAA element, exogenous SR proteins become associated with the GAA element in the presence of nuclear extracts and stimulate GAA-dependent splicing. These results suggest that repetitive GAA sequences enhance splicing by binding a protein complex containing a sequence-specific RNA binding protein and a general splicing activator that, in turn, recruit additional SR proteins. This type of mechanism resembles the tra/tra-2-dependent recruitment of SR proteins to the Drosophila doublesex alternative splicing regulatory element. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8755518

  8. Patagonfibrase modifies protein expression of tissue factor and protein disulfide isomerase in rat skin.

    PubMed

    Peichoto, María Elisa; Santoro, Marcelo Larami

    2016-09-01

    Patagonfibrase is a hemorrhagic metalloproteinase isolated from the venom of the South American rear-fanged snake Philodryas patagoniensis, and is an important contributor to local lesions inflicted by this species. The tissue factor (TF)-factor VIIa complex, besides triggering the coagulation cascade, has been demonstrated to be involved in inflammatory events. Our aim was to determine whether patagonfibrase affects the expression of TF and protein disulfide isomerase (PDI), an enzyme that controls TF biological activity, at the site of patagonfibrase injection, and thus if they may play a role in hemostatic and inflammatory events induced by snake venoms. Patagonfibrase (60 μg/kg) was administered s.c. to rats, and after 3 h blood was collected to evaluate hemostasis parameters, and skin fragments close to the site of injection were taken to assess TF and PDI expression. Patagonfibrase did not alter blood cell counts, plasma fibrinogen levels, or levels of TF activity in plasma. However, by semiquantitative Western blotting, patagonfibrase increased TF expression by 2-fold, and decreased PDI expression by 3-fold in skin samples. In agreement, by immunohistochemical analyses, prominent TF expression was observed in the subcutaneous tissue. Thus, patagonfibrase affects the local expression of TF and PDI without inducing any systemic hemostatic disturbance, although that they may be involved in the local inflammatory events induced by hemorrhagic metalloproteinases. Once antivenom therapy is not totally effective to treat the local injury induced by snake venoms, modulation of the activity and expression of TF and/or PDI might become a strategy for treating snake envenomation.

  9. Changes in protein structure at the interface accompanying complex formation

    PubMed Central

    Chakravarty, Devlina; Janin, Joël; Robert, Charles H.; Chakrabarti, Pinak

    2015-01-01

    Protein interactions are essential in all biological processes. The changes brought about in the structure when a free component forms a complex with another molecule need to be characterized for a proper understanding of molecular recognition as well as for the successful implementation of docking algorithms. Here, unbound (U) and bound (B) forms of protein structures from the Protein–Protein Interaction Affinity Database are compared in order to enumerate the changes that occur at the interface atoms/residues in terms of the solvent-accessible surface area (ASA), secondary structure, temperature factors (B factors) and disorder-to-order transitions. It is found that the interface atoms optimize contacts with the atoms in the partner protein, which leads to an increase in their ASA in the bound interface in the majority (69%) of the proteins when compared with the unbound interface, and this is independent of the root-mean-square deviation between the U and B forms. Changes in secondary structure during the transition indicate a likely extension of helices and strands at the expense of turns and coils. A reduction in flexibility during complex formation is reflected in the decrease in B factors of the interface residues on going from the U form to the B form. There is, however, no distinction in flexibility between the interface and the surface in the monomeric structure, thereby highlighting the potential problem of using B factors for the prediction of binding sites in the unbound form for docking another protein. 16% of the proteins have missing (disordered) residues in the U form which are observed (ordered) in the B form, mostly with an irregular conformation; the data set also shows differences in the composition of interface and non-interface residues in the disordered polypeptide segments as well as differences in their surface burial. PMID:26594372

  10. Protein Complex Affinity Capture from Cryomilled Mammalian Cells.

    PubMed

    LaCava, John; Jiang, Hua; Rout, Michael P

    2016-12-09

    Affinity capture is an effective technique for isolating endogenous protein complexes for further study. When used in conjunction with an antibody, this technique is also frequently referred to as immunoprecipitation. Affinity capture can be applied in a bench-scale and in a high-throughput context. When coupled with protein mass spectrometry, affinity capture has proven to be a workhorse of interactome analysis. Although there are potentially many ways to execute the numerous steps involved, the following protocols implement our favored methods. Two features are distinctive: the use of cryomilled cell powder to produce cell extracts, and antibody-coupled paramagnetic beads as the affinity medium. In many cases, we have obtained superior results to those obtained with more conventional affinity capture practices. Cryomilling avoids numerous problems associated with other forms of cell breakage. It provides efficient breakage of the material, while avoiding denaturation issues associated with heating or foaming. It retains the native protein concentration up to the point of extraction, mitigating macromolecular dissociation. It reduces the time extracted proteins spend in solution, limiting deleterious enzymatic activities, and it may reduce the non-specific adsorption of proteins by the affinity medium. Micron-scale magnetic affinity media have become more commonplace over the last several years, increasingly replacing the traditional agarose- and Sepharose-based media. Primary benefits of magnetic media include typically lower non-specific protein adsorption; no size exclusion limit because protein complex binding occurs on the bead surface rather than within pores; and ease of manipulation and handling using magnets.

  11. Protein Complex Affinity Capture from Cryomilled Mammalian Cells

    PubMed Central

    LaCava, John; Jiang, Hua; Rout, Michael P.

    2016-01-01

    Affinity capture is an effective technique for isolating endogenous protein complexes for further study. When used in conjunction with an antibody, this technique is also frequently referred to as immunoprecipitation. Affinity capture can be applied in a bench-scale and in a high-throughput context. When coupled with protein mass spectrometry, affinity capture has proven to be a workhorse of interactome analysis. Although there are potentially many ways to execute the numerous steps involved, the following protocols implement our favored methods. Two features are distinctive: the use of cryomilled cell powder to produce cell extracts, and antibody-coupled paramagnetic beads as the affinity medium. In many cases, we have obtained superior results to those obtained with more conventional affinity capture practices. Cryomilling avoids numerous problems associated with other forms of cell breakage. It provides efficient breakage of the material, while avoiding denaturation issues associated with heating or foaming. It retains the native protein concentration up to the point of extraction, mitigating macromolecular dissociation. It reduces the time extracted proteins spend in solution, limiting deleterious enzymatic activities, and it may reduce the non-specific adsorption of proteins by the affinity medium. Micron-scale magnetic affinity media have become more commonplace over the last several years, increasingly replacing the traditional agarose- and Sepharose-based media. Primary benefits of magnetic media include typically lower non-specific protein adsorption; no size exclusion limit because protein complex binding occurs on the bead surface rather than within pores; and ease of manipulation and handling using magnets. PMID:28060343

  12. Membrane protein architects: the role of the BAM complex in outer membrane protein assembly.

    PubMed

    Knowles, Timothy J; Scott-Tucker, Anthony; Overduin, Michael; Henderson, Ian R

    2009-03-01

    The folding of transmembrane proteins into the outer membrane presents formidable challenges to Gram-negative bacteria. These proteins must migrate from the cytoplasm, through the inner membrane and into the periplasm, before being recognized by the beta-barrel assembly machinery, which mediates efficient insertion of folded beta-barrels into the outer membrane. Recent discoveries of component structures and accessory interactions of this complex are yielding insights into how cells fold membrane proteins. Here, we discuss how these structures illuminate the mechanisms responsible for the biogenesis of outer membrane proteins.

  13. FIE, a nuclear PRC2 protein, forms cytoplasmic complexes in Arabidopsis thaliana.

    PubMed

    Oliva, Moran; Butenko, Yana; Hsieh, Tzung-Fu; Hakim, Ofir; Katz, Aviva; Smorodinsky, Nechama I; Michaeli, Daphna; Fischer, Robert L; Ohad, Nir

    2016-11-01

    Polycomb group (PcG) proteins are evolutionarily conserved chromatin modifiers that regulate developmental pathways in plants. PcGs form nuclear multi-subunit Polycomb Repressive Complexes (PRCs). The PRC2 complex mediates gene repression via methylation of lysine 27 on histone H3, which consequently leads to chromatin condensation. In Arabidopsis thaliana, several PRC2 complexes with different compositions were identified, each controlling a particular developmental program.The core subunit FIE is crucial for PRC2 function throughout the plant life cycle, yet accurate information on its spatial and temporal localization was absent. This study focused on identifying FIE accumulation patterns, using microscopy and biochemical approaches. Analysing endogenous FIE and transgenic gFIE-green fluorescent protein fusion protein (gFIE-GFP) showed that FIE accumulates in the nuclei of every cell type examined. Interestingly, gFIE-GFP, as well as the endogenous FIE, also localized to the cytoplasm in all examined tissues. In both vegetative and reproductive organs, FIE formed cytoplasmic high-molecular-mass complexes, in parallel to the nuclear PRC2 complexes. Moreover, size-exclusion chromatography and bimolecular fluorescence complementation assays indicated that in inflorescences FIE formed a cytoplasmic complex with MEA, a PRC2 histone methyltransferase subunit. In contrast, CLF and SWN histone methyltransferases were strictly nuclear. Presence of PRC2 subunits in cytoplasmic complexes has not been previously described in plants. Our findings are in agreement with accumulating evidence demonstrating cytoplasmic localization and function of PcGs in metazoa. The cytosolic accumulation of PRC2 components in plants supports the model that PcGs have alternative non-nuclear functions that go beyond chromatin methylation.

  14. FIE, a nuclear PRC2 protein, forms cytoplasmic complexes in Arabidopsis thaliana

    PubMed Central

    Oliva, Moran; Butenko, Yana; Hsieh, Tzung-Fu; Hakim, Ofir; Katz, Aviva; Smorodinsky, Nechama I.; Michaeli, Daphna; Fischer, Robert L.; Ohad, Nir

    2016-01-01

    Polycomb group (PcG) proteins are evolutionarily conserved chromatin modifiers that regulate developmental pathways in plants. PcGs form nuclear multi-subunit Polycomb Repressive Complexes (PRCs). The PRC2 complex mediates gene repression via methylation of lysine 27 on histone H3, which consequently leads to chromatin condensation. In Arabidopsis thaliana, several PRC2 complexes with different compositions were identified, each controlling a particular developmental program. The core subunit FIE is crucial for PRC2 function throughout the plant life cycle, yet accurate information on its spatial and temporal localization was absent. This study focused on identifying FIE accumulation patterns, using microscopy and biochemical approaches. Analysing endogenous FIE and transgenic gFIE–green fluorescent protein fusion protein (gFIE-GFP) showed that FIE accumulates in the nuclei of every cell type examined. Interestingly, gFIE-GFP, as well as the endogenous FIE, also localized to the cytoplasm in all examined tissues. In both vegetative and reproductive organs, FIE formed cytoplasmic high-molecular-mass complexes, in parallel to the nuclear PRC2 complexes. Moreover, size-exclusion chromatography and bimolecular fluorescence complementation assays indicated that in inflorescences FIE formed a cytoplasmic complex with MEA, a PRC2 histone methyltransferase subunit. In contrast, CLF and SWN histone methyltransferases were strictly nuclear. Presence of PRC2 subunits in cytoplasmic complexes has not been previously described in plants. Our findings are in agreement with accumulating evidence demonstrating cytoplasmic localization and function of PcGs in metazoa. The cytosolic accumulation of PRC2 components in plants supports the model that PcGs have alternative non-nuclear functions that go beyond chromatin methylation. PMID:27811080

  15. Trajectory-Based Complexity (TBX): A Modified Aircraft Count to Predict Sector Complexity During Trajectory-Based Operations

    NASA Technical Reports Server (NTRS)

    Prevot, Thomas; Lee, Paul U.

    2011-01-01

    In this paper we introduce a new complexity metric to predict -in real-time- sector complexity for trajectory-based operations (TBO). TBO will be implemented in the Next Generation Air Transportation System (NextGen). Trajectory-Based Complexity (TBX) is a modified aircraft count that can easily be computed and communicated in a TBO environment based upon predictions of aircraft and weather trajectories. TBX is scaled to aircraft count and represents an alternate and additional means to manage air traffic demand and capacity with more consideration of dynamic factors such as weather, aircraft equipage or predicted separation violations, as well as static factors such as sector size. We have developed and evaluated TBX in the Airspace Operations Laboratory (AOL) at the NASA Ames Research Center during human-in-the-loop studies of trajectory-based concepts since 2009. In this paper we will describe the TBX computation in detail and present the underlying algorithm. Next, we will describe the specific TBX used in an experiment at NASA's AOL. We will evaluate the performance of this metric using data collected during a controller-inthe- loop study on trajectory-based operations at different equipage levels. In this study controllers were prompted at regular intervals to rate their current workload on a numeric scale. When comparing this real-time workload rating to the TBX values predicted for these time periods we demonstrate that TBX is a better predictor of workload than aircraft count. Furthermore we demonstrate that TBX is well suited to be used for complexity management in TBO and can easily be adjusted to future operational concepts.

  16. Supercharging Protein Complexes from Aqueous Solution Disrupts their Native Conformations

    NASA Astrophysics Data System (ADS)

    Sterling, Harry J.; Kintzer, Alexander F.; Feld, Geoffrey K.; Cassou, Catherine A.; Krantz, Bryan A.; Williams, Evan R.

    2012-02-01

    The effects of aqueous solution supercharging on the solution- and gas-phase structures of two protein complexes were investigated using traveling-wave ion mobility-mass spectrometry (TWIMS-MS). Low initial concentrations of m-nitrobenzyl alcohol ( m-NBA) in the electrospray ionization (ESI) solution can effectively increase the charge of concanavalin A dimers and tetramers, but at higher m-NBA concentrations, the increases in charge are accompanied by solution-phase dissociation of the dimers and up to a ~22% increase in the collision cross section (CCS) of the tetramers. With just 0.8% m-NBA added to the ESI solution of a ~630 kDa anthrax toxin octamer complex, the average charge is increased by only ~4% compared with the "native" complex, but it is sufficiently destabilized so that extensive gas-phase fragmentation occurs in the relatively high pressure regions of the TWIMS device. Anthrax toxin complexes exist in either a prechannel or a transmembrane channel state. With m-NBA, the prechannel state of the complex has the same CCS/charge ratio in the gas phase as the transmembrane channel state of the same complex formed without m-NBA, yet undergoes extensive dissociation, indicating that destabilization from supercharging occurs in the ESI droplet prior to ion formation and is not a result of Coulombic destabilization in the gas phase as a result of higher charging. These results demonstrate that the supercharging of large protein complexes is the result of conformational changes induced by the reagents in the ESI droplets, where enrichment of the supercharging reagent during droplet evaporation occurs.

  17. A profile of protein-protein interaction: Crystal structure of a lectin-lectin complex.

    PubMed

    Surya, Sukumaran; Abhilash, Joseph; Geethanandan, Krishnan; Sadasivan, Chittalakkottu; Haridas, Madhathilkovilakathu

    2016-06-01

    Proteins may utilize complex networks of interactions to create/proceed signaling pathways of highly adaptive responses such as programmed cell death. Direct binary interactions study of proteins may help propose models for protein-protein interaction. Towards this goal we applied a combination of thermodynamic kinetics and crystal structure analyses to elucidate the complexity and diversity in such interactions. By determining the heat change on the association of two galactose-specific legume lectins from Butea monosperma (BML) and Spatholobus parviflorus (SPL) belonging to Fabaceae family helped to compute the binding equilibrium. It was extended further by X-ray structural analysis of BML-SPL binary complex. In order to chart the proteins interacting mainly through their interfaces, identification of the nature of forces which stabilized the association of the lectin-lectin complex was examined. Comprehensive analysis of the BMLSPL complex by isothermal titration calorimetry and X-ray crystal structure threw new light on the lectin-lectin interactions suggesting of their use in diverse areas of glycobiology.

  18. De novo DNA methyltransferase DNMT3b interacts with NEDD8-modified proteins.

    PubMed

    Shamay, Meir; Greenway, Melanie; Liao, Gangling; Ambinder, Richard F; Hayward, S Diane

    2010-11-19

    DNA methylation and histone modifications play an important role in transcription regulation. In cancer cells, many promoters become aberrantly methylated through the activity of the de novo DNA methyltransferases DNMT3a and DNMT3b and acquire repressive chromatin marks. NEDD8 is a ubiquitin-like protein modifier that is conjugated to target proteins, such as cullins, to regulate their activity, and cullin 4A (CUL4A) in its NEDD8-modified form is essential for repressive chromatin formation. We found that DNMT3b associates with NEDD8-modified proteins. Whereas DNMT3b interacts directly in vitro with NEDD8, conjugation of NEDD8 to target proteins enhances this interaction in vivo. DNMT3b immunoprecipitated two major bands of endogenously NEDDylated proteins at the size of NEDDylated cullins, and indeed DNMT3b interacted with CUL1, CUL2, CUL3, CUL4A, and CUL5. Moreover, DNMT3b preferentially immunoprecipitated the NEDDylated form of endogenous CUL4A. NEDD8 enhanced DNMT3b-dependent DNA methylation. Chromatin immunoprecipitation assays suggest that DNMT3b recruits CUL4A and NEDD8 to chromatin, whereas deletion of Dnmt3b reduces the association of CUL4A and NEDD8 at a repressed promoter in a cancer cell line.

  19. Characterization of known protein complexes using k-connectivity and other topological measures

    PubMed Central

    Gallagher, Suzanne R; Goldberg, Debra S

    2015-01-01

    Many protein complexes are densely packed, so proteins within complexes often interact with several other proteins in the complex. Steric constraints prevent most proteins from simultaneously binding more than a handful of other proteins, regardless of the number of proteins in the complex. Because of this, as complex size increases, several measures of the complex decrease within protein-protein interaction networks. However, k-connectivity, the number of vertices or edges that need to be removed in order to disconnect a graph, may be consistently high for protein complexes. The property of k-connectivity has been little used previously in the investigation of protein-protein interactions. To understand the discriminative power of k-connectivity and other topological measures for identifying unknown protein complexes, we characterized these properties in known Saccharomyces cerevisiae protein complexes in networks generated both from highly accurate X-ray crystallography experiments which give an accurate model of each complex, and also as the complexes appear in high-throughput yeast 2-hybrid studies in which new complexes may be discovered. We also computed these properties for appropriate random subgraphs.We found that clustering coefficient, mutual clustering coefficient, and k-connectivity are better indicators of known protein complexes than edge density, degree, or betweenness. This suggests new directions for future protein complex-finding algorithms. PMID:26913183

  20. Receptor Activity-modifying Protein-directed G Protein Signaling Specificity for the Calcitonin Gene-related Peptide Family of Receptors*

    PubMed Central

    Weston, Cathryn; Winfield, Ian; Harris, Matthew; Hodgson, Rose; Shah, Archna; Dowell, Simon J.; Mobarec, Juan Carlos; Woodlock, David A.; Reynolds, Christopher A.; Poyner, David R.; Watkins, Harriet A.; Ladds, Graham

    2016-01-01

    The calcitonin gene-related peptide (CGRP) family of G protein-coupled receptors (GPCRs) is formed through the association of the calcitonin receptor-like receptor (CLR) and one of three receptor activity-modifying proteins (RAMPs). Binding of one of the three peptide ligands, CGRP, adrenomedullin (AM), and intermedin/adrenomedullin 2 (AM2), is well known to result in a Gαs-mediated increase in cAMP. Here we used modified yeast strains that couple receptor activation to cell growth, via chimeric yeast/Gα subunits, and HEK-293 cells to characterize the effect of different RAMP and ligand combinations on this pathway. We not only demonstrate functional couplings to both Gαs and Gαq but also identify a Gαi component to CLR signaling in both yeast and HEK-293 cells, which is absent in HEK-293S cells. We show that the CGRP family of receptors displays both ligand- and RAMP-dependent signaling bias among the Gαs, Gαi, and Gαq/11 pathways. The results are discussed in the context of RAMP interactions probed through molecular modeling and molecular dynamics simulations of the RAMP-GPCR-G protein complexes. This study further highlights the importance of RAMPs to CLR pharmacology and to bias in general, as well as identifying the importance of choosing an appropriate model system for the study of GPCR pharmacology. PMID:27566546

  1. Complex dynamics and enhanced photosensitivity in a modified Belousov-Zhabotinsky reaction

    NASA Astrophysics Data System (ADS)

    Li, Nan; Zhao, Jinpei; Wang, Jichang

    2008-06-01

    This study presents an experimental investigation of nonlinear dynamics in a modified Belousov-Zhabotinsky (BZ) reaction, in which the addition of 1,4-benzoquinone induced various complex behaviors such as mixed-mode oscillations and consecutive period-adding bifurcations. In addition, the presence of 1,4-benzoquinone significantly enhanced the photosensitivity of the ferroin-catalyzed BZ system, in which light-induced transitions between simple and complex oscillations have been achieved. Mechanistic study suggests that the influence of benzoquinone may arise from its interactions with the metal catalyst ferroin/ferriin, where cyclic voltammograms illustrate that the presence of benzoquinone causes an increase in the redox potential of ferroin/ferriin couple, which may consequently alternate the oxidation and reduction paths of the catalyst.

  2. DMS Footprinting of Structured RNAs and RNA-Protein Complexes

    PubMed Central

    Tijerina, Pilar; Mohr, Sabine; Russell, Rick

    2008-01-01

    We describe a protocol in which dimethyl sulfate (DMS) modification of the base-pairing faces of unpaired adenosine and cytidine nucleotides is used for structural analysis of RNAs and RNA-protein complexes (RNPs). The protocol is optimized for RNAs of small to moderate size (≤500 nucleotides). The RNA or RNP is first exposed to DMS under conditions that promote formation of the folded structure or complex, as well as ‘control’ conditions that do not allow folding or complex formation. The positions and extents of modification are then determined by primer extension, polyacrylamide gel electrophoresis (PAGE), and quantitative analysis. From changes in the extent of modification upon folding or protein binding (appearance of a ‘footprint’), it is possible to detect local changes in RNA secondary and tertiary structure, as well as the formation of RNA-protein contacts. This protocol takes 1.5–3 days to complete, depending on the type of analysis used. PMID:17948004

  3. Protein fragment bimolecular fluorescence complementation analyses for the in vivo study of protein-protein interactions and cellular protein complex localizations

    PubMed Central

    Waadt, Rainer; Schlücking, Kathrin; Schroeder, Julian I.; Kudla, Jörg

    2014-01-01

    Summary The analyses of protein-protein interactions is crucial for understanding cellular processes including signal transduction, protein trafficking and movement. Protein fragment complementation assays are based on the reconstitution of protein function when non-active protein fragments are brought together by interacting proteins that were genetically fused to these protein fragments. Bimolecular fluorescence complementation (BiFC) relies on the reconstitution of fluorescent proteins and enables both the analysis of protein-protein interactions and the visualization of protein complex formations in vivo. Transient expression of proteins is a convenient approach to study protein functions in planta or in other organisms, and minimizes the need for time-consuming generation of stably expressing transgenic organisms. Here we describe protocols for BiFC analyses in Nicotiana benthamiana and Arabidopsis thaliana leaves transiently transformed by Agrobacterium infiltration. Further we discuss different BiFC applications and provide examples for proper BiFC analyses in planta. PMID:24057390

  4. Development of Polyclonal Antibodies for the Detection of Styrene Oxide Modified Proteins

    PubMed Central

    Yuan, Wei; Chung, Jouku; Gee, Shirley; Hammock, Bruce D.; Zheng, Jiang

    2008-01-01

    Styrene is widely used as one of the most important industrial materials for the production of synthetic rubbers, plastic, insulation, fiberglass, and automobile parts. Inhaled styrene has been reported to produce respiratory toxicity in humans and animals. Styrene oxide, a reactive metabolite of styrene formed via cytochrome P450 enzymes, has been reported to form covalent bonds with proteins, such as albumin and hemoglobin. Among all of the amino acids, cysteine is the most reactive amino acid to be modified by electrophilic species. The purpose of this study is to develop polyclonal antibodies for the detection of styrene oxide cysteinyl protein adducts. Two immunogens were designed, synthesized, and used to induce polyclonal antibodies in rabbits. Immune responses were observed from the raised antibodies by antiserum dilution tests. Competitive ELISA demonstrated that the resulting antibodies specifically recognized the styrene oxide-derived N-acetylcysteine adduct. Western blot results showed that the antibodies recognize styrene oxide-modified albumin. The binding was found to depend on the amount of protein adducts blotted and hapten loading in protein adducts. No cross reaction was observed from the native protein. Competitive Western blots further indicated that these antibodies specifically recognized styrene oxide cysteinyl–protein adducts. Immunoblots revealed the presence of several bands at a molecular weight ranging from 50 to 80 kDa in rat nasal mucosa treated with styrene. In conclusion, we successfully raised polyclonal antibodies to detect styrene oxide-derived protein/cysteine adducts. PMID:17266334

  5. Electrochemical sensor for ranitidine determination based on carbon paste electrode modified with oxovanadium (IV) salen complex.

    PubMed

    Raymundo-Pereira, Paulo A; Teixeira, Marcos F S; Fatibello-Filho, Orlando; Dockal, Edward R; Bonifácio, Viviane Gomes; Marcolino, Luiz H

    2013-10-01

    The preparation and electrochemical characterization of a carbon paste electrode modified with the N,N-ethylene-bis(salicyllideneiminato)oxovanadium (IV) complex ([VO(salen)]) as well as its application for ranitidine determination are described. The electrochemical behavior of the modified electrode for the electroreduction of ranitidine was investigated using cyclic voltammetry, and analytical curves were obtained for ranitidine using linear sweep voltammetry (LSV) under optimized conditions. The best voltammetric response was obtained for an electrode composition of 20% (m/m) [VO(salen)] in the paste, 0.10 mol L(-1) of KCl solution (pH 5.5 adjusted with HCl) as supporting electrolyte and scan rate of 25 mV s(-1). A sensitive linear voltammetric response for ranitidine was obtained in the concentration range from 9.9×10(-5) to 1.0×10(-3) mol L(-1), with a detection limit of 6.6×10(-5) mol L(-1) using linear sweep voltammetry. These results demonstrated the viability of this modified electrode as a sensor for determination, quality control and routine analysis of ranitidine in pharmaceutical formulations.

  6. Radioprotection by polyethylene glycol-protein complexes in mice

    SciTech Connect

    Gray, B.H.; Stull, R.W.

    1983-03-01

    Polyethylene glycol of about 5000 D was activated with cyanuric chloride, and the activated compound was complexed to each of three proteins. Polyethylene glycol-superoxide dismutase and polyethylene glycol-catalase were each radioprotectants when administered prophylactically to female B6CBF1 mice before irradiation. The dose reduction factor for these mice was 1.2 when 5000 units of polyethylene glycol-catalase was administered before /sup 60/Co irradiation. Female B6CBF1 mice administered prophylactic intravenous injections of catalase, polyethylene glycol-albumin, or heat-denatured polyethylene glycol-catalase had survival rates similar to phosphate-buffered saline-injected control mice following /sup 60/Co irradiation. Polyethylene glycol-superoxide dismutase and polyethylene glycol-catalase have radioprotective activity in B6CBF1 mice, which appears to depend in part on enzymatic activities of the complex. However, no radioprotective effect was observed in male C57BL/6 mice injected with each polyethylene glycol-protein complex at either 3 or 24 hr before irradiation. The mechanism for radioprotection by these complexes may depend in part on other factors.

  7. Small-Angle X-Ray Scattering From RNA, Proteins, And Protein Complexes

    SciTech Connect

    Lipfert, Jan; Doniach, Sebastian; /Stanford U., Phys. Dept. /Stanford U., Appl. Phys. Dept. /SLAC, SSRL

    2007-09-18

    Small-angle X-ray scattering (SAXS) is increasingly used to characterize the structure and interactions of biological macromolecules and their complexes in solution. Although still a low-resolution technique, the advent of high-flux synchrotron sources and the development of algorithms for the reconstruction of 3-D electron density maps from 1-D scattering profiles have made possible the generation of useful low-resolution molecular models from SAXS data. Furthermore, SAXS is well suited for the study of unfolded or partially folded conformational ensembles as a function of time or solution conditions. Here, we review recently developed algorithms for 3-D structure modeling and applications to protein complexes. Furthermore, we discuss the emerging use of SAXS as a tool to study membrane protein-detergent complexes. SAXS is proving useful to study the folding of functional RNA molecules, and finally we discuss uses of SAXS to study ensembles of denatured proteins.

  8. A quantitative immunopolymerase chain reaction method for detection of vegetative insecticidal protein in genetically modified crops.

    PubMed

    Kumar, Rajesh

    2011-10-12

    Vegetative insecticidal protein (Vip) is being employed for transgenic expression in selected crops such as cotton, brinjal, and corn. For regulatory compliance, there is a need for a sensitive and reliable detection method, which can distinguish between approved and nonapproved genetically modified (GM) events and quantify GM contents as well. A quantitative immunopolymerase chain reaction (IPCR) method has been developed for the detection and quantification of Vip protein in GM crops. The developed assay displayed a detection limit of 1 ng/mL (1 ppb) and linear quantification range between 10 and 1000 ng/mL of Vip-S protein. The sensitivity of the assay was found to be 10 times higher than an analogous enzyme-linked immunosorbent assay for Vip-S protein. The results suggest that IPCR has the potential to become a standard method to quantify GM proteins.

  9. Integrating computational methods and experimental data for understanding the recognition mechanism and binding affinity of protein-protein complexes.

    PubMed

    Gromiha, M Michael; Yugandhar, K

    2017-01-07

    Protein-protein interactions perform several functions inside the cell. Understanding the recognition mechanism and binding affinity of protein-protein complexes is a challenging problem in experimental and computational biology. In this review, we focus on two aspects (i) understanding the recognition mechanism and (ii) predicting the binding affinity. The first part deals with computational techniques for identifying the binding site residues and the contribution of important interactions for understanding the recognition mechanism of protein-protein complexes in comparison with experimental observations. The second part is devoted to the methods developed for discriminating high and low affinity complexes, and predicting the binding affinity of protein-protein complexes using three-dimensional structural information and just from the amino acid sequence. The overall view enhances our understanding of the integration of experimental data and computational methods, recognition mechanism of protein-protein complexes and the binding affinity.

  10. Preparation and properties of enzyme-modified cassava starch-zinc complexes.

    PubMed

    Luo, Zhigang; Cheng, Weiwei; Chen, Haiming; Fu, Xiong; Peng, Xichun; Luo, Faxing; Nie, Lihong

    2013-05-15

    Starch-zinc complexes were synthesized by reaction of enzyme-modified starch with zinc acetate. The effect of reaction parameters such as hydrolysis rate, reaction temperature, reaction time, pH value, and concentration of zinc acetate on the zinc content and zinc conversion rate was studied. The zinc content and conversion rate of the product prepared under optimal conditions were 100.24 mg/g and 87.06%, respectively. The results of scanning electron microscopy (SEM) demonstrated that the obtained starch-zinc complexes displayed a porous appearance. The results of Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and (13)C cross-polarization/magic-angle spinning nuclear magnetic resonance ((13)C CP/MAS NMR) showed that zinc was mainly coordinated to the oxygen atoms of the glucose unit 6-CH2OH. The formation of starch-zinc complexes was also indirectly confirmed by the results of conductivity measurements. Thermal properties of the complexes were influenced by the zincatation process. This study revealed that nonallergenic starch might be used effectively as a carrier of zinc for zinc supplementation purpose.

  11. Drosophila Heterochromatin Protein 1 (HP1)/Origin Recognition Complex (ORC) Protein Is Associated with HP1 and ORC and Functions in Heterochromatin-induced Silencing

    PubMed Central

    Shareef, Mohammed Momin; King, Chadwick; Damaj, Mona; Badagu, RamaKrishna; Huang, Da Wei; Kellum, Rebecca

    2001-01-01

    Heterochromatin protein 1 (HP1) is a conserved component of the highly compact chromatin of higher eukaryotic centromeres and telomeres. Cytogenetic experiments in Drosophila have shown that HP1 localization into this chromatin is perturbed in mutants for the origin recognition complex (ORC) 2 subunit. ORC has a multisubunit DNA-binding activity that binds origins of DNA replication where it is required for origin firing. The DNA-binding activity of ORC is also used in the recruitment of the Sir1 protein to silence nucleation sites flanking silent copies of the mating-type genes in Saccharomyces cerevisiae. A fraction of HP1 in the maternally loaded cytoplasm of the early Drosophila embryo is associated with a multiprotein complex containing Drosophila melanogaster ORC subunits. This complex appears to be poised to function in heterochromatin assembly later in embryonic development. Here we report the identification of a novel component of this complex, the HP1/ORC-associated protein. This protein contains similarity to DNA sequence-specific HMG proteins and is shown to bind specific satellite sequences and the telomere-associated sequence in vitro. The protein is shown to have heterochromatic localization in both diploid interphase and mitotic chromosomes and polytene chromosomes. Moreover, the gene encoding HP1/ORC-associated protein was found to display reciprocal dose-dependent variegation modifier phenotypes, similar to those for mutants in HP1 and the ORC 2 subunit. PMID:11408576

  12. Complete amino acid sequence and structure characterization of the taste-modifying protein, miraculin.

    PubMed

    Theerasilp, S; Hitotsuya, H; Nakajo, S; Nakaya, K; Nakamura, Y; Kurihara, Y

    1989-04-25

    The taste-modifying protein, miraculin, has the unusual property of modifying sour taste into sweet taste. The complete amino acid sequence of miraculin purified from miracle fruits by a newly developed method (Theerasilp, S., and Kurihara, Y. (1988) J. Biol. Chem. 263, 11536-11539) was determined by an automatic Edman degradation method. Miraculin was a single polypeptide with 191 amino acid residues. The calculated molecular weight based on the amino acid sequence and the carbohydrate content (13.9%) was 24,600. Asn-42 and Asn-186 were linked N-glycosidically to carbohydrate chains. High homology was found between the amino acid sequences of miraculin and soybean trypsin inhibitor.

  13. [The effect of modified nano-diamonds of detonation synthesis on the protein fractions of human blood].

    PubMed

    Botvich, Iu A; Olkhovskiĭ, I A; Baron, I I; Puzyr', A P; Baron, A V; Bondar', V S

    2013-11-01

    It is established that the modified nano-diamonds of detonation synthesis are able to bind serum proteins of human blood. The relative selectivity is established concerning the effect of modified nano-diamonds of detonation synthesis on beta2- and gamma-globulin fractions of serum. The evidence of concentration dependence of effect of modified nano-diamonds of detonation synthesis from serum proteins is established. The study results make it possible to consider modified nano-diamonds of detonation synthesis as a potential sorbent in technologies of hemodialysis, plasmapheresis, isolation of blood proteins and as a foundation for development of new systems of laboratory diagnostic.

  14. Nonprotein Based Enrichment Method to Analyze Peptide Cross-Linking in Protein Complexes

    PubMed Central

    Yan, Funing; Che, Fa-Yun; Rykunov, Dmitry; Nieves, Edward; Fiser, Andras; Weiss, Louis M.; Angeletti, Ruth Hogue

    2009-01-01

    Cross-linking analysis of protein complexes and structures by tandem mass spectrometry (MS/MS) has advantages in speed, sensitivity, specificity, and the capability of handling complicated protein assemblies. However, detection and accurate assignment of the cross-linked peptides are often challenging due to their low abundance and complicated fragmentation behavior in collision-induced dissociation (CID). To simplify the MS analysis and improve the signal-to-noise ratio of the cross-linked peptides, we developed a novel peptide enrichment strategy that utilizes a cross-linker with a cryptic thiol group and using beads modified with a photocleavable cross-linker. The functional cross-linkers were designed to react with the primary amino groups in proteins. Human serum albumin was used as a model protein to detect intra- and intermolecular cross-linkages. Use of this protein-free selective retrieval method eliminates the contamination that can result from avidin–biotin based retrieval systems and simplifies data analysis. These features may make the method suitable to investigate protein–protein interactions in biological samples. PMID:19642656

  15. Modification of the protein corona-nanoparticle complex by physiological factors.

    PubMed

    Braun, Nicholas J; DeBrosse, Madeleine C; Hussain, Saber M; Comfort, Kristen K

    2016-07-01

    Nanoparticle (NP) effects in a biological system are driven through the formation and structure of the protein corona-NP complex, which is dynamic by nature and dependent upon factors from both the local environment and NP physicochemical parameters. To date, considerable data has been gathered regarding the structure and behavior of the protein corona in blood, plasma, and traditional cell culture medium. However, there exists a knowledge gap pertaining to the protein corona in additional biological fluids and following incubation in a dynamic environment. Using 13nm gold NPs (AuNPs), functionalized with either polyethylene glycol or tannic acid, we demonstrated that both particle characteristics and the associated protein corona were altered when exposed to artificial physiological fluids and under dynamic flow. Furthermore, the magnitude of observed behavioral shifts were dependent upon AuNP surface chemistry. Lastly, we revealed that exposure to interstitial fluid produced protein corona modifications, reshaping of the nano-cellular interface, modified AuNP dosimetry, and induction of previously unseen cytotoxicity. This study highlights the need to elucidate both NP and protein corona behavior in biologically representative environments in an effort to increase accurate interpretation of data and transfer of this knowledge to efficacy, behavior, and safety of nano-based applications.

  16. Losses, Expansions, and Novel Subunit Discovery of Adaptor Protein Complexes in Haptophyte Algae.

    PubMed

    Lee, Laura J Y; Klute, Mary J; Herman, Emily K; Read, Betsy; Dacks, Joel B

    2015-11-01

    The phylum Haptophyta (Diaphoratickes) contains marine algae that perform biomineralization, extruding large, distinctive calcium carbonate scales (coccoliths) that completely cover the cell. Coccolith production is an important part of global carbon cycling; however, the membrane trafficking pathway by which they are secreted has not yet been elucidated. In most eukaryotes, post-Golgi membrane trafficking involves five heterotetrameric adaptor protein (AP) complexes, which impart cargo selection specificity. To better understand coccolith secretion, we performed comparative genomic, phylogenetic, and transcriptomic analyses of the AP complexes in Emiliania huxleyi strains 92A, Van556, EH2, and CCMP1516, and related haptophytes Gephyrocapsa oceanica and Isochrysis galbana; the latter has lost the ability to biomineralize. We show that haptophytes have a modified membrane trafficking system (MTS), as we found both AP subunit losses and duplications. Additionally, we identified a single conserved subunit of the AP-related TSET complex, whose expression suggests a functional role in membrane trafficking. Finally, we detected novel alpha adaptin ear and gamma adaptin ear proteins, the first of their kind to be described outside of opisthokonts. These novel ear proteins and the sculpting of the MTS may support the capacity for biomineralization in haptophytes, enhancing their ability to perform this highly specialized form of secretion.

  17. Optimization and dynamics of protein-protein complexes using B-splines.

    PubMed

    Gillilan, Richard E; Lilien, Ryan H

    2004-10-01

    A moving-grid approach for optimization and dynamics of protein-protein complexes is introduced, which utilizes cubic B-spline interpolation for rapid energy and force evaluation. The method allows for the efficient use of full electrostatic potentials joined smoothly to multipoles at long distance so that multiprotein simulation is possible. Using a recently published benchmark of 58 protein complexes, we examine the performance and quality of the grid approximation, refining cocrystallized complexes to within 0.68 A RMSD of interface atoms, close to the optimum 0.63 A produced by the underlying MMFF94 force field. We quantify the theoretical statistical advantage of using minimization in a stochastic search in the case of two rigid bodies, and contrast it with the underlying cost of conjugate gradient minimization using B-splines. The volumes of conjugate gradient minimization basins of attraction in cocrystallized systems are generally orders of magnitude larger than well volumes based on energy thresholds needed to discriminate native from nonnative states; nonetheless, computational cost is significant. Molecular dynamics using B-splines is doubly efficient due to the combined advantages of rapid force evaluation and large simulation step sizes. Large basins localized around the native state and other possible binding sites are identifiable during simulations of protein-protein motion. In addition to providing increased modeling detail, B-splines offer new algorithmic possibilities that should be valuable in refining docking candidates and studying global complex behavior.

  18. Redox proteomics identification of oxidatively modified myocardial proteins in human heart failure: implications for protein function.

    PubMed

    Brioschi, Maura; Polvani, Gianluca; Fratto, Pasquale; Parolari, Alessandro; Agostoni, Piergiuseppe; Tremoli, Elena; Banfi, Cristina

    2012-01-01

    Increased oxidative stress in a failing heart may contribute to the pathogenesis of heart failure (HF). The aim of this study was to identify the oxidised proteins in the myocardium of HF patients and analyse the consequences of oxidation on protein function. The carbonylated proteins in left ventricular tissue from failing (n = 14) and non-failing human hearts (n = 13) were measured by immunoassay and identified by proteomics. HL-1 cardiomyocytes were incubated in the presence of stimuli relevant for HF in order to assess the generation of reactive oxygen species (ROS), the induction of protein carbonylation, and its consequences on protein function. The levels of carbonylated proteins were significantly higher in the HF patients than in the controls (p<0.01). We identified two proteins that mainly underwent carbonylation: M-type creatine kinase (M-CK), whose activity is impaired, and, to a lesser extent, α-cardiac actin. Exposure of cardiomyocytes to angiotensin II and norepinephrine led to ROS generation and M-CK carbonylation with loss of its enzymatic activity. Our findings indicate that protein carbonylation is increased in the myocardium during HF and that these oxidative changes may help to explain the decreased CK activity and consequent defects in energy metabolism observed in HF.

  19. Redox Proteomics Identification of Oxidatively Modified Myocardial Proteins in Human Heart Failure: Implications for Protein Function

    PubMed Central

    Brioschi, Maura; Polvani, Gianluca; Fratto, Pasquale; Parolari, Alessandro; Agostoni, Piergiuseppe; Tremoli, Elena; Banfi, Cristina

    2012-01-01

    Increased oxidative stress in a failing heart may contribute to the pathogenesis of heart failure (HF). The aim of this study was to identify the oxidised proteins in the myocardium of HF patients and analyse the consequences of oxidation on protein function. The carbonylated proteins in left ventricular tissue from failing (n = 14) and non-failing human hearts (n = 13) were measured by immunoassay and identified by proteomics. HL-1 cardiomyocytes were incubated in the presence of stimuli relevant for HF in order to assess the generation of reactive oxygen species (ROS), the induction of protein carbonylation, and its consequences on protein function. The levels of carbonylated proteins were significantly higher in the HF patients than in the controls (p<0.01). We identified two proteins that mainly underwent carbonylation: M-type creatine kinase (M-CK), whose activity is impaired, and, to a lesser extent, α-cardiac actin. Exposure of cardiomyocytes to angiotensin II and norepinephrine led to ROS generation and M-CK carbonylation with loss of its enzymatic activity. Our findings indicate that protein carbonylation is increased in the myocardium during HF and that these oxidative changes may help to explain the decreased CK activity and consequent defects in energy metabolism observed in HF. PMID:22606238

  20. Accumulation of isolevuglandin-modified protein in normal and fibrotic lung

    PubMed Central

    Mont, Stacey; Davies, Sean S.; Roberts second, L. Jackson; Mernaugh, Raymond L.; McDonald, W. Hayes; Segal, Brahm H.; Zackert, William; Kropski, Jonathan A.; Blackwell, Timothy S.; Sekhar, Konjeti R.; Galligan, James J.; Massion, Pierre P.; Marnett, Lawrence J.; Travis, Elizabeth L.; Freeman, Michael L.

    2016-01-01

    Protein lysine modification by γ-ketoaldehyde isomers derived from arachidonic acid, termed isolevuglandins (IsoLGs), is emerging as a mechanistic link between pathogenic reactive oxygen species and disease progression. However, the questions of whether covalent modification of proteins by IsoLGs are subject to genetic regulation and the identity of IsoLG-modified proteins remain unclear. Herein we show that Nrf2 and Nox2 are key regulators of IsoLG modification in pulmonary tissue and report on the identity of proteins analyzed by LC-MS following immunoaffinity purification of IsoLG-modified proteins. Gene ontology analysis revealed that proteins in numerous cellular pathways are susceptible to IsoLG modification. Although cells tolerate basal levels of modification, exceeding them induces apoptosis. We found prominent modification in a murine model of radiation-induced pulmonary fibrosis and in idiopathic pulmonary fibrosis, two diseases considered to be promoted by gene-regulated oxidant stress. Based on these results we hypothesize that IsoLG modification is a hitherto unrecognized sequelae that contributes to radiation-induced pulmonary injury and IPF. PMID:27118599

  1. Potential allergenicity research of Cry1C protein from genetically modified rice.

    PubMed

    Cao, Sishuo; He, Xiaoyun; Xu, Wentao; Luo, Yunbo; Ran, Wenjun; Liang, Lixing; Dai, Yunqing; Huang, Kunlun

    2012-07-01

    With the development of genetically modified crops, there has been a growing interest in available approaches to assess the potential allergenicity of novel gene products. We were not sure whether Cry1C could induce allergy. We examined the protein with three other proteins to determine the potential allergenicity of Cry1C protein from genetically modified rice. Female Brown Norway (BN) rats received 0.1 mg peanut agglutinin (PNA), 1mg potato acid phosphatase (PAP), 1mg ovalbumin (OVA) or 5 mg purified Cry1C protein dissolved in 1 mL water by daily gavage for 42 days to test potential allergenicity. Ten days after the last gavage, rats were orally challenged with antigens, and physiologic and immunologic responses were studied. In contrast to sensitization with PNA, PAP and OVA Cry1C protein did not induce antigen-specific IgG2a in BN rats. Cytokine expression, serum IgE and histamine levels and the number of eosinophils and mast cells in the blood of Cry1C group rats were comparable to the control group rats, which were treated with water alone. As Cry1C did not show any allergenicity, we make the following conclusion that the protein could be safety used in rice or other plants.

  2. Controlled release of NELL-1 protein from chitosan/hydroxyapatite-modified TCP particles.

    PubMed

    Zhang, Yulong; Dong, Rui; Park, Yujin; Bohner, Marc; Zhang, Xinli; Ting, Kang; Soo, Chia; Wu, Benjamin M

    2016-09-10

    NEL-like molecule-1 (NELL-1) is a novel osteogenic protein that showing high specificity to osteochondral cells. It was widely used in bone regeneration research by loading onto carriers such as tricalcium phosphate (TCP) particles. However, there has been little research on protein controlled release from this material and its potential application. In this study, TCP was first modified with a hydroxyapatite coating followed by a chitosan coating to prepare chitosan/hydroxyapatite-coated TCP particles (Chi/HA-TCP). The preparation was characterized by SEM, EDX, FTIR, XRD, FM and Zeta potential measurements. The NELL-1 loaded Chi/HA-TCP particles and the release kinetics were investigated in vitro. It was observed that the Chi/HA-TCP particles prepared with the 0.3% (wt/wt) chitosan solution were able to successfully control the release of NELL-1 and maintain a slow, steady release for up to 28 days. Furthermore, more than 78% of the loaded protein's bioactivity was preserved in Chi/HA-TCP particles over the period of the investigation, which was significantly higher than that of the protein released from hydroxyapatite coated TCP (HA-TCP) particles. Collectively, this study suggests that the osteogenic protein NELL-1 showed a sustained release pattern after being encapsulated into the modified Chi/HA-TCP particles, and the NELL-1 integrated composite of Chi/HA-TCP showed a potential to function as a protein delivery carrier and as an improved bone matrix for use in bone regeneration research.

  3. Profiling of Protein N-Termini and Their Modifications in Complex Samples.

    PubMed

    Demir, Fatih; Niedermaier, Stefan; Kizhakkedathu, Jayachandran N; Huesgen, Pitter F

    2017-01-01

    Protein N termini are a unique window to the functional state of the proteome, revealing translation initiation sites, co-translation truncation and modification, posttranslational maturation, and further proteolytic processing into different proteoforms with distinct functions. As a direct readout of proteolytic activity, protein N termini further reveal proteolytic regulation of diverse biological processes and provide a route to determine specific substrates and hence the physiological functions for any protease of interest. Here, we describe our current protocol of the successful Terminal Amine Isotope Labeling of Substrates (TAILS) technique, which enriches protein N-terminal peptides from complex proteome samples by negative selection. Genome-encoded N termini, protease-generated neo-N termini, and endogenously modified N termini are all enriched simultaneously. Subsequent mass spectrometric analysis therefore profiles all protein N termini and their modifications present in a complex sample in a single experiment. We further provide a detailed protocol for the TAILS-compatible proteome preparation from plant material and discuss specific considerations for N terminome data analysis and annotation.

  4. The Slx5-Slx8 complex affects sumoylation of DNA repair proteins and negatively regulates recombination.

    PubMed

    Burgess, Rebecca C; Rahman, Sadia; Lisby, Michael; Rothstein, Rodney; Zhao, Xiaolan

    2007-09-01

    Recombination is important for repairing DNA lesions, yet it can also lead to genomic rearrangements. This process must be regulated, and recently, sumoylation-mediated mechanisms were found to inhibit Rad51-dependent recombination. Here, we report that the absence of the Slx5-Slx8 complex, a newly identified player in the SUMO (small ubiquitin-like modifier) pathway, led to increased Rad51-dependent and Rad51-independent recombination. The increases were most striking during S phase, suggesting an accumulation of DNA lesions during replication. Consistent with this view, Slx8 protein localized to replication centers. In addition, like SUMO E2 mutants, slx8Delta mutants exhibited clonal lethality, which was due to the overamplification of 2 microm, an extrachromosomal plasmid. Interestingly, in both SUMO E2 and slx8Delta mutants, clonal lethality was rescued by deleting genes required for Rad51-independent recombination but not those involved in Rad51-dependent events. These results suggest that sumoylation negatively regulates Rad51-independent recombination, and indeed, the Slx5-Slx8 complex affected the sumoylation of several enzymes involved in early steps of Rad51-independent recombination. We propose that, during replication, the Slx5-Slx8 complex helps prevent DNA lesions that are acted upon by recombination. In addition, the complex inhibits Rad51-independent recombination via modulating the sumoylation of DNA repair proteins.

  5. Brown pigment formation in heated sugar-protein mixed suspensions containing unmodified and peptically modified whey protein concentrates.

    PubMed

    Rongsirikul, Narumol; Hongsprabhas, Parichat

    2016-01-01

    Commercial whey protein concentrate (WPC) was modified by heating the acidified protein suspensions (pH 2.0) at 80 °C for 30 min and treating with pepsin at 37 °C for 60 min. Prior to spray-drying, such modification did not change the molecular weights (MWs) of whey proteins determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). After spray-drying the modified whey protein concentrate with trehalose excipient (MWPC-TH), it was found that the α-lactalbumin (α-La) was the major protein that was further hydrolyzed the most. The reconstituted MWPC-TH contained β-lactoglobulin (β-Lg) as the major protein and small molecular weight (MW) peptides of less than 6.5 kDa. The reconstituted MWPC-TH had higher NH2 group, Trolox equivalent antioxidant capacity (TEAC), lower exposed aromatic ring and thiol (SH) contents than did the commercial WPC. Kinetic studies revealed that the addition of MWPC-TH in fructose-glycine solution was able to reduce brown pigment formation in the mixtures heated at 80 to 95 °C by increasing the activation energy (Ea) of brown pigment formation due to the retardation of fluoresced advanced glycation end product (AGEs) formation. The addition of MWPC to reducing sugar-glycine/commercial WPC was also able to lower brown pigment formation in the sterilized (121 °C, 15 min) mixed suspensions containing 0.1 M reducing sugar and 0.5-1.0 % glycine and/or commercial (P < 0.05). It was demonstrated that the modification investigated in this study selectively hydrolyzed α-La and retained β-Lg for the production of antibrowning whey protein concentrate.

  6. Influence of the organic complex concentration on adsorption of herbicide in organic modified montmorillonite

    NASA Astrophysics Data System (ADS)

    Kaludjerovic, Lazar; Tomic, Zorica; Djurovic, Rada; Milosevic, Maja

    2016-04-01

    Pesticides are recognized as an important source of potential pollution to soil and water due to their mobility and degradation in soils. Results presented in this paper show impact of the organic complex concentration on the adsorption of herbicides (acetochlor) at the surface of the organic modified montmorillonite. In this work, natural montmorillonite from Bogovina, located near Boljevac municipality, was used for organic modification. Cation-exchange capacity of this montmorillonite was determined by extraction with ammonium acetate (86 mmol/100g of clay). Montmorillonite have been modified first with NaCl and than with two organic complexes, hexadecyltrimethylammonium bromide (HDTMA) and phenyltrimethylammonium chloride (PTMA). For both organic complexes, three saturation concentrations were selected for monitoring of the herbicide adsorption (43 mmol/100g of clay (0.5 CEC), 86 mmol/100g of clay (1 CEC) and 129 mmol/100g of clay (1.5 CEC)). Changes in the properties of the inorganic and organic bentonite have been examined using the X-ray powder diffraction (XRPD) and batch equilibrium method. Increase in basal spacing (d) of montmorillonites saturated with 1.5 CEC of organic cation indicate that sorption of PTMA and HDTMA can exceed the saturation of 1 CEC. Both organic montmorillonites have shown higher uptake of the herbicide, compared to the inorganic montmorillonite. Comparing the values Freundlich coefficients in batch equilibrium method, (presented in the form of log Kf and 1/n), it can be seen that the sorption decreases in the series: 0.5CEC> 1CEC> 1.5CEC> NaM, for both organic montmorillonites.

  7. Biodegradation of the chitin-protein complex in crustacean cuticle

    USGS Publications Warehouse

    Artur, Stankiewicz B.; Mastalerz, Maria; Hof, C.H.J.; Bierstedt, A.; Flannery, M.B.; Briggs, D.E.G.; Evershed, R.P.

    1998-01-01

    Arthropod cuticles consist predominantly of chitin cross-linked with proteins. While there is some experimental evidence that this chitin-protein complex may resist decay, the chemical changes that occur during degradation have not been investigated in detail. The stomatopod crustacean Neogonodactylus oerstedii was decayed in the laboratory under anoxic conditions. A combination of pyrolysis-gas chromatography/mass spectrometry and FTIR revealed extensive chemical changes after just 2 weeks that resulted in a cuticle composition dominated by chitin. Quantitative analysis of amino acids (by HPLC) and chitin showed that the major loss of proteins and chitin occurred between weeks 1 and 2. After 8 weeks tyrosine, tryptophan and valine are the most prominent amino acid moieties, showing their resistance to degradation. The presence of cyclic ketones in the pyrolysates indicates that mucopolysaccharides or other bound non-chitinous carbohydrates are also resistant to decay. There is no evidence of structural degradation of chitin prior to 8 weeks when FTIR revealed a reduction in chitin-specific bands. The chemical changes are paralleled by structural changes in the cuticle, which becomes an increasingly open structure consisting of loose chitinous fibres. The rapid rate of decay in the experiments suggests that where chitin and protein are preserved in fossil cuticles degradation must have been inhibited.Arthropod cuticles consist predominantly of chitin cross-linked with proteins. While there is some experimental evidence that this chitin-protein complex may resist decay, the chemical changes that occur during degradation have not been investigated in detail. The stomatopod crustacean Neogonodactylus oerstedii was decayed in the laboratory under anoxic conditions. A combination of pyrolysis-gas chromatography/mass spectrometry and FTIR revealed extensive chemical changes after just 2 weeks that resulted in a cuticle composition dominated by chitin. Quantitative

  8. Protein Complexes are Central in the Yeast Genetic Landscape

    PubMed Central

    Michaut, Magali; Baryshnikova, Anastasia; Costanzo, Michael; Myers, Chad L.; Andrews, Brenda J.; Boone, Charles; Bader, Gary D.

    2011-01-01

    If perturbing two genes together has a stronger or weaker effect than expected, they are said to genetically interact. Genetic interactions are important because they help map gene function, and functionally related genes have similar genetic interaction patterns. Mapping quantitative (positive and negative) genetic interactions on a global scale has recently become possible. This data clearly shows groups of genes connected by predominantly positive or negative interactions, termed monochromatic groups. These groups often correspond to functional modules, like biological processes or complexes, or connections between modules. However it is not yet known how these patterns globally relate to known functional modules. Here we systematically study the monochromatic nature of known biological processes using the largest quantitative genetic interaction data set available, which includes fitness measurements for ∼5.4 million gene pairs in the yeast Saccharomyces cerevisiae. We find that only 10% of biological processes, as defined by Gene Ontology annotations, and less than 1% of inter-process connections are monochromatic. Further, we show that protein complexes are responsible for a surprisingly large fraction of these patterns. This suggests that complexes play a central role in shaping the monochromatic landscape of biological processes. Altogether this work shows that both positive and negative monochromatic patterns are found in known biological processes and in their connections and that protein complexes play an important role in these patterns. The monochromatic processes, complexes and connections we find chart a hierarchical and modular map of sensitive and redundant biological systems in the yeast cell that will be useful for gene function prediction and comparison across phenotypes and organisms. Furthermore the analysis methods we develop are applicable to other species for which genetic interactions will progressively become more available. PMID

  9. Analytical reduction of combinatorial complexity arising from multiple protein modification sites

    PubMed Central

    Birtwistle, Marc R.

    2015-01-01

    Combinatorial complexity is a major obstacle to ordinary differential equation (ODE) modelling of biochemical networks. For example, a protein with 10 sites that can each be unphosphorylated, phosphorylated or bound to adaptor protein requires 310 ODEs. This problem is often dealt with by making ad hoc assumptions which have unclear validity and disallow modelling of site-specific dynamics. Such site-specific dynamics, however, are important in many biological systems. We show here that for a common biological situation where adaptors bind modified sites, binding is slow relative to modification/demodification, and binding to one modified site hinders binding to other sites, for a protein with n modification sites and m adaptor proteins the number of ODEs needed to simulate the site-specific dynamics of biologically relevant, lumped bound adaptor states is independent of the number of modification sites and equal to m + 1, giving a significant reduction in system size. These considerations can be relaxed considerably while retaining reasonably accurate descriptions of the true system dynamics. We apply the theory to model, using only 11 ODEs, the dynamics of ligand-induced phosphorylation of nine tyrosines on epidermal growth factor receptor (EGFR) and primary recruitment of six signalling proteins (Grb2, PI3K, PLCγ1, SHP2, RasA1 and Shc1). The model quantitatively accounts for experimentally determined site-specific phosphorylation and dephosphorylation rates, differential affinities of binding proteins for the phosphorylated sites and binding protein expression levels. Analysis suggests that local concentration of site-specific phosphatases such as SHP2 in membrane subdomains by a factor of approximately 107 is critical for effective site-specific regulation. We further show how our framework can be extended with minimal effort to consider binding cooperativity between Grb2 and c-Cbl, which is important for receptor trafficking. Our theory has potentially broad

  10. High-resolution diffraction from crystals of a membrane-protein complex: bacterial outer membrane protein OmpC complexed with the antibacterial eukaryotic protein lactoferrin

    SciTech Connect

    Sundara Baalaji, N.; Acharya, K. Ravi; Singh, T. P.; Krishnaswamy, S. E-mail: mkukrishna@rediffmail.com

    2005-08-01

    Crystals of the complex formed between the bacterial membrane protein OmpC and the antibacterial protein lactoferrin suitable for high-resolution structure determination have been obtained. The crystals belong to the hexagonal space group P6, with unit-cell parameters a = b = 116.3, c = 152.4 Å. Crystals of the complex formed between the outer membrane protein OmpC from Escherichia coli and the eukaryotic antibacterial protein lactoferrin from Camelus dromedarius (camel) have been obtained using a detergent environment. Initial data processing suggests that the crystals belong to the hexagonal space group P6, with unit-cell parameters a = b = 116.3, c = 152.4 Å, α = β = 90, γ = 120°. This indicated a Matthews coefficient (V{sub M}) of 3.3 Å{sup 3} Da{sup −1}, corresponding to a possible molecular complex involving four molecules of lactoferrin and two porin trimers in the unit cell (4832 amino acids; 533.8 kDa) with 63% solvent content. A complete set of diffraction data was collected to 3 Å resolution at 100 K. Structure determination by molecular replacement is in progress. Structural study of this first surface-exposed membrane-protein complex with an antibacterial protein will provide insights into the mechanism of action of OmpC as well as lactoferrin.

  11. Spectroscopic analysis of protein Fe-NO complexes.

    PubMed

    Bellota-Antón, César; Munnoch, John; Robb, Kirsty; Adamczyk, Katrin; Candelaresi, Marco; Parker, Anthony W; Dixon, Ray; Hutchings, Matthew I; Hunt, Neil T; Tucker, Nicholas P

    2011-10-01

    The toxic free radical NO (nitric oxide) has diverse biological roles in eukaryotes and bacteria, being involved in signalling, vasodilation, blood clotting and immunity, and as an intermediate in microbial denitrification. The predominant biological mechanism of detecting NO is through the formation of iron nitrosyl complexes, although this is a deleterious process for other iron-containing enzymes. We have previously applied techniques such as UV-visible and EPR spectroscopy to the analysis of protein Fe-NO complex formation in order to study how NO controls the activity of the bacterial transcriptional regulators NorR and NsrR. These studies have analysed NO-dependent biological activity both in vitro and in vivo using diverse biochemical, molecular and spectroscopic methods. Recently, we have applied ultrafast 2D-IR (two-dimensional IR) spectroscopy to the analysis of NO-protein interactions using Mb (myoglobin) and Cc (cytochrome c) as model haem proteins. The ultrafast fluctuations of Cc and Mb show marked differences, indicating altered flexibility of the haem pockets. We have extended this analysis to bacterial catalase enzymes that are known to play a role in the nitrosative stress response by detoxifying peroxynitrite. The first 2D-IR analysis of haem nitrosylation and perspectives for the future are discussed.

  12. Inferring drug-disease associations based on known protein complexes.

    PubMed

    Yu, Liang; Huang, Jianbin; Ma, Zhixin; Zhang, Jing; Zou, Yapeng; Gao, Lin

    2015-01-01

    Inferring drug-disease associations is critical in unveiling disease mechanisms, as well as discovering novel functions of available drugs, or drug repositioning. Previous work is primarily based on drug-gene-disease relationship, which throws away many important information since genes execute their functions through interacting others. To overcome this issue, we propose a novel methodology that discover the drug-disease association based on protein complexes. Firstly, the integrated heterogeneous network consisting of drugs, protein complexes, and disease are constructed, where we assign weights to the drug-disease association by using probability. Then, from the tripartite network, we get the indirect weighted relationships between drugs and diseases. The larger the weight, the higher the reliability of the correlation. We apply our method to mental disorders and hypertension, and validate the result by using comparative toxicogenomics database. Our ranked results can be directly reinforced by existing biomedical literature, suggesting that our proposed method obtains higher specificity and sensitivity. The proposed method offers new insight into drug-disease discovery. Our method is publicly available at http://1.complexdrug.sinaapp.com/Drug_Complex_Disease/Data_Download.html.

  13. Inferring drug-disease associations based on known protein complexes

    PubMed Central

    2015-01-01

    Inferring drug-disease associations is critical in unveiling disease mechanisms, as well as discovering novel functions of available drugs, or drug repositioning. Previous work is primarily based on drug-gene-disease relationship, which throws away many important information since genes execute their functions through interacting others. To overcome this issue, we propose a novel methodology that discover the drug-disease association based on protein complexes. Firstly, the integrated heterogeneous network consisting of drugs, protein complexes, and disease are constructed, where we assign weights to the drug-disease association by using probability. Then, from the tripartite network, we get the indirect weighted relationships between drugs and diseases. The larger the weight, the higher the reliability of the correlation. We apply our method to mental disorders and hypertension, and validate the result by using comparative toxicogenomics database. Our ranked results can be directly reinforced by existing biomedical literature, suggesting that our proposed method obtains higher specificity and sensitivity. The proposed method offers new insight into drug-disease discovery. Our method is publicly available at http://1.complexdrug.sinaapp.com/Drug_Complex_Disease/Data_Download.html. PMID:26044949

  14. Purification of plant complex protein extracts in non-denaturing conditions by in-solution isoelectric focusing.

    PubMed

    Ferreira, R A; Martins-Dias, S

    2016-09-15

    An alternative approach for plant complex protein extracts pre-purification by in-solution isoelectric focusing in non-denaturing conditions is presented. The separation of biologically active proteins, in narrow ranges of isoelectric point (pI) was obtained by a modified OFFGEL electrophoresis. Two different water-soluble protein extracts from Phragmites leaves were fractionated into 24 fractions within a 3-10 pI range at 10 °C in the absence of denaturing/reducing agents. One-dimensional electrophoretic analysis revealed different protein distribution patterns and the effective fractionation of both protein extracts. Peroxidase activity of each fraction confirmed that proteins remained active and pre-purification occurred. Biological triplicates assured the needed reproducibility.

  15. Anticancer osmium complex inhibitors of the HIF-1α and p300 protein-protein interaction

    PubMed Central

    Yang, Chao; Wang, Wanhe; Li, Guo-Dong; Zhong, Hai-Jing; Dong, Zhen-Zhen; Wong, Chun-Yuen; Kwong, Daniel W. J.; Ma, Dik-Lung; Leung, Chung-Hang

    2017-01-01

    The hypoxia inducible factor (HIF) pathway has been considered to be an attractive anti-cancer target. One strategy to inhibit HIF activity is through the disruption of the HIF-1α–p300 protein-protein interaction. We report herein the identification of an osmium(II) complex as the first metal-based inhibitor of the HIF-1α–p300 interaction. We evaluated the effect of complex 1 on HIF-1α signaling pathway in vitro and in cellulo by using the dual luciferase reporter assay, co-immunoprecipitation assay, and immunoblot assay. Complex 1 exhibited a dose-dependent inhibition of HRE-driven luciferase activity, with an IC50 value of 1.22 μM. Complex 1 interfered with the HIF-1α–p300 interaction as revealed by a dose-dependent reduction of p300 co-precipitated with HIF-1α as the concentration of complex 1 was increased. Complex 1 repressed the phosphorylation of SRC, AKT and STAT3, and had no discernible effect on the activity of NF-κB. We anticipate that complex 1 could be utilized as a promising scaffold for the further development of more potent HIF-1α inhibitors for anti-cancer treatment. PMID:28225008

  16. The presence of antibodies to oxidative modified proteins in serum from polycystic ovary syndrome patients

    PubMed Central

    Palacio, J R; Iborra, A; Ulcova-Gallova, Z; Badia, R; Martínez, P

    2006-01-01

    Polycystic ovary syndrome (PCOS) affects 5–10% of women of reproductive age. Free radicals, as a product of oxidative stress, impair cells and tissue properties related to human fertility. These free radicals, together with the oxidized molecules, may have a cytotoxic or deleterious effects on sperm and oocytes, on early embryo development or on the endometrium. Aldehyde-modified proteins are highly immunogenic and circulating autoantibodies to new epitopes, such as malondialdehyde (MDA), may affect the reproductive system. Autoantibodies or elevated reactive oxygen species (ROS) in serum are often associated with inflammatory response. The purpose of this work is to investigate whether PCOS women show increased levels of oxidized proteins (protein–MDA) and anti-endometrial antibodies (AEA) in their sera, compared with control patients, and to determine whether AEA specificity is related to oxidized protein derivatives. Sera from 31 women [10 patients with PCOS (PCOS group) and 21 women with male factor of infertility (control group)] were chosen from patients attending for infertility. Anti-endometrial antibodies were determined by enzyme-linked immunosorbent assay (ELISA) with an endometrial cell line (RL-95). Antibodies against MDA modified human serum albumin (HSA–MDA) were also determined by ELISA. Oxidized proteins (protein–MDA) in serum were determined by a colorimetric assay. Patients with PCOS have significantly higher levels of AEA and anti-HSA–MDA, as well as oxidized proteins (protein–MDA) in serum than control patients. For the first time, we describe an autoimmune response in PCOS patients, in terms of AEA. The evidence of protein–MDA in the serum of these patients, together with the increased antibody reactivity to MDA-modified proteins (HSA–MDA) in vitro, supports the conclusion that oxidative stress may be one of the important causes for abnormal endometrial environment with poor embryo receptivity in PCOS patients. PMID:16634794

  17. Analysis of the interface variability in NMR structure ensembles of protein-protein complexes.

    PubMed

    Calvanese, Luisa; D'Auria, Gabriella; Vangone, Anna; Falcigno, Lucia; Oliva, Romina

    2016-06-01

    NMR structures consist in ensembles of conformers, all satisfying the experimental restraints, which exhibit a certain degree of structural variability. We analyzed here the interface in NMR ensembles of protein-protein heterodimeric complexes and found it to span a wide range of different conservations. The different exhibited conservations do not simply correlate with the size of the systems/interfaces, and are most probably the result of an interplay between different factors, including the quality of experimental data and the intrinsic complex flexibility. In any case, this information is not to be missed when NMR structures of protein-protein complexes are analyzed; especially considering that, as we also show here, the first NMR conformer is usually not the one which best reflects the overall interface. To quantify the interface conservation and to analyze it, we used an approach originally conceived for the analysis and ranking of ensembles of docking models, which has now been extended to directly deal with NMR ensembles. We propose this approach, based on the conservation of the inter-residue contacts at the interface, both for the analysis of the interface in whole ensembles of NMR complexes and for the possible selection of a single conformer as the best representative of the overall interface. In order to make the analyses automatic and fast, we made the protocol available as a web tool at: https://www.molnac.unisa.it/BioTools/consrank/consrank-nmr.html.

  18. Retention of Proteins and Metalloproteins in Open Tubular Capillary Electrochromatography with Etched Chemically Modified Columns

    PubMed Central

    Pesek, Joseph J.; Matyska, Maria T.; Salgotra, Vasudha

    2010-01-01

    Etched chemically modified capillaries with two different bonded groups (pentyl and octadecyl) are compared for their migration behavior of several common proteins and metalloproteins as well as metalloproteinases. Migration times, efficiency and peak shape are evaluated over the pH range of 2.1 to 8.1 to determine any effects of the bonded group on the electrochromatographic behavior of these compounds. One goal was to determine if the relative hydrophobicity of the stationary phase has a significant effect on proteins in the open tubular format of capillary electrochromatography as it does in HPLC. Reproducibility of the migration times is also investigated. PMID:18850653

  19. Cloning and sequencing of a cDNA encoding a taste-modifying protein, miraculin.

    PubMed

    Masuda, Y; Nirasawa, S; Nakaya, K; Kurihara, Y

    1995-08-19

    A cDNA clone encoding a taste-modifying protein, miraculin (MIR), was isolated and sequenced. The encoded precursor to MIR was composed of 220 amino acid (aa) residues, including a possible signal sequence of 29 aa. Northern blot analysis showed that the mRNA encoding MIR was already expressed in fruits of Richadella dulcifica at 3 weeks after pollination and was present specifically in the pulp.

  20. Force-induced remodelling of proteins and their complexes

    PubMed Central

    Chen, Yun; Radford, Sheena E; Brockwell, David J

    2015-01-01

    Force can drive conformational changes in proteins, as well as modulate their stability and the affinity of their complexes, allowing a mechanical input to be converted into a biochemical output. These properties have been utilised by nature and force is now recognised to be widely used at the cellular level. The effects of force on the biophysical properties of biological systems can be large and varied. As these effects are only apparent in the presence of force, studies on the same proteins using traditional ensemble biophysical methods can yield apparently conflicting results. Where appropriate, therefore, force measurements should be integrated with other experimental approaches to understand the physiological context of the system under study. PMID:25710390

  1. Computational allergenicity prediction of transgenic proteins expressed in genetically modified crops.

    PubMed

    Verma, Alok Kumar; Misra, Amita; Subash, Swarna; Das, Mukul; Dwivedi, Premendra D

    2011-09-01

    Development of genetically modified (GM) crops is on increase to improve food quality, increase harvest yields, and reduce the dependency on chemical pesticides. Before their release in marketplace, they should be scrutinized for their safety. Several guidelines of different regulatory agencies like ILSI, WHO Codex, OECD, and so on for allergenicity evaluation of transgenics are available and sequence homology analysis is the first test to determine the allergenic potential of inserted proteins. Therefore, to test and validate, 312 allergenic, 100 non-allergenic, and 48 inserted proteins were assessed for sequence similarity using 8-mer, 80-mer, and full FASTA search. On performing sequence homology studies, ~94% the allergenic proteins gave exact matches for 8-mer and 80-mer homology. However, 20 allergenic proteins showed non-allergenic behavior. Out of 100 non-allergenic proteins, seven qualified as allergens. None of the inserted proteins demonstrated allergenic behavior. In order to improve the predictability, proteins showing anomalous behavior were tested by Algpred and ADFS separately. Use of Algpred and ADFS softwares reduced the tendency of false prediction to a great extent (74-78%). In conclusion, routine sequence homology needs to be coupled with some other bioinformatic method like ADFS/Algpred to reduce false allergenicity prediction of novel proteins.

  2. Predicting Cell Association of Surface-Modified Nanoparticles Using Protein Corona Structure - Activity Relationships (PCSAR).

    PubMed

    Kamath, Padmaja; Fernandez, Alberto; Giralt, Francesc; Rallo, Robert

    2015-01-01

    Nanoparticles are likely to interact in real-case application scenarios with mixtures of proteins and biomolecules that will absorb onto their surface forming the so-called protein corona. Information related to the composition of the protein corona and net cell association was collected from literature for a library of surface-modified gold and silver nanoparticles. For each protein in the corona, sequence information was extracted and used to calculate physicochemical properties and statistical descriptors. Data cleaning and preprocessing techniques including statistical analysis and feature selection methods were applied to remove highly correlated, redundant and non-significant features. A weighting technique was applied to construct specific signatures that represent the corona composition for each nanoparticle. Using this basic set of protein descriptors, a new Protein Corona Structure-Activity Relationship (PCSAR) that relates net cell association with the physicochemical descriptors of the proteins that form the corona was developed and validated. The features that resulted from the feature selection were in line with already published literature, and the computational model constructed on these features had a good accuracy (R(2)LOO=0.76 and R(2)LMO(25%)=0.72) and stability, with the advantage that the fingerprints based on physicochemical descriptors were independent of the specific proteins that form the corona.

  3. Evidence for a protein-protein complex during iron loading into ferritin by ceruloplasmin.

    PubMed

    Reilly, C A; Sorlie, M; Aust, S D

    1998-06-01

    The formation of a protein-protein complex for the loading of iron into ferritin by ceruloplasmin was investigated. Ferritin stimulated the ferroxidase activity of ceruloplasmin unless the ferritin was fully loaded, in which case it inhibited the ferroxidase activity of ceruloplasmin. The apparent association constant for the interaction of ferritin and ceruloplasmin was 24 nM. Isothermal titration calorimetry indicated that the interaction of ceruloplasmin and ferritin was endothermic, driven by positive changes in entropy. The association constants for complex formation between ferritin and ceruloplasmin were 4.5 +/- 0.7 x 10(5) and 9.5 +/- 0.3 x 10(4) M-1 for the reduced and oxidized forms of ceruloplasmin, respectively. The oxidized form of ceruloplasmin was retained on an affinity column with ferritin immobilized as the ligand and remained bound to the column with mobile phases of increased hydrophobicity, but was eluted with increased ionic strength. The ability of ceruloplasmin to remain bound to the affinity resin was affected by the species from which ceruloplasmin was isolated. Gradient ultracentrifugation also provided evidence that the two proteins were associated, since ferritin promoted migration of ceruloplasmin through the gradient. Including ferrous iron in the gradient resulted in reduction of ceruloplasmin and increased the mobility of ceruloplasmin with ferritin. These data provide evidence that ferritin and ceruloplasmin form a protein-protein complex during iron loading into ferritin, which may limit redox cycling of iron in vivo.

  4. Rediscovery of halogen bonds in protein-ligand complexes.

    PubMed

    Zhou, P; Tian, F; Zou, J; Shang, Z

    2010-04-01

    Although the halogen bond has attracted much interest in chemistry and material science communities, its implications for drug design are just now coming to light. The protein-ligand interactions through short halogen-oxygen/nitrogen/sulfur contacts have been observed in crystal structures for a long time, but only in recent years, with the experimental and theoretical progress in weak biological interactions, especially the pioneering works contributed by Ho and co-workers (Auffinger, P.; Hays, F. A.; Westhof, E.; Ho, P. S. Proc. Natl. Acad. Sci. USA 2004, 101, 16789-16794), these short contacts involving halogens in biomolecules were rediscovered and re-recognized as halogen bonds to stress their shared similarities with hydrogen bonds in strength and directionality. Crystal structure determinations of protein complexes with halogenated ligands preliminarily unveiled the functionality of halogen bonds in protein-ligand recogni-tion. Database surveys further revealed a considerable number of short halogen-oxygen contacts between proteins and halogenated ligands. Theoretical calculations on model and real systems eventually gave a quantitative pronouncement for the substantial contribution of halogen bonds to ligand binding. All of these works forebode that the halogen bond can be exploited as a new and versatile tool for rational drug design and bio-crystal engineering.

  5. Quantitative analysis of polyethylene glycol (PEG) in PEG-modified proteins/cytokines by aqueous two-phase systems.

    PubMed

    Delgado, C; Malik, F; Selisko, B; Fisher, D; Francis, G E

    1994-12-01

    Covalent attachment of poly(ethylene glycol) (PEG) to proteins produces conjugates with altered/improved physicochemical and biological properties which depend upon the number of PEG chains linked. Quantification of the attached PEG is however not a trivial issue. The partition coefficient, K, of the PEG-protein conjugate in PEG/dextran two-phase systems provides a quantitative measure for the degree of modification. A linear relationship between log K and the number of PEG chains was observed in fractionated PEG-modified-granulocyte-macrophage colony stimulating factor conjugates having 1 to 3 substitutions. Furthermore, in mixtures of PEG-bovine-serum-albumin conjugates with increasing degrees of modification, a linear relationship was found between log K and n, the average substitution. The increment in log K per PEG chain added is protein specific and this suggests that the interactions between the PEG-protein conjugate and the polymers in the phase system are more complex than just a simple affinity of the PEG for the PEG-rich top phase. Increasing the polymer concentration in the phase system produces larger increments in log K per PEG molecule attached and the proportionality between log K and number of PEG molecules is only compromised for conjugates with high degree of substitution when partitioned in biphasic systems of high concentration of polymers.

  6. An all-aqueous route to polymer brush-modified membranes with remarkable permeabilites and protein capture rates

    PubMed Central

    Anuraj, Nishotha; Bhattacharjee, Somnath; Geiger, James H.; Baker, Gregory L.; Bruening, Merlin L.

    2011-01-01

    Microporous membranes are attractive for protein purification because convection rapidly brings proteins to binding sites. However, the low binding capacity of such membranes limits their applications. This work reports a rapid, aqueous procedure to create highly permeable, polymer brush-modified membranes that bind large amounts of protein. The synthetic method includes a 10-min adsorption of a macroinitiator in a hydroxylated nylon membrane and a subsequent 5-min aqueous atom transfer radical polymerization of 2-(methacryloyloxy)ethyl succinate from the immobilized initiator to form poly(acid) brushes. This procedure likely leads to more swollen, less dense brushes than polymerization from silane initiators, and thus requires less polymer to achieve the same binding capacity. The hydraulic permeability of the poly(acid) membranes is 4-fold higher than that of similar membranes prepared by growing brushes from immobilized silane initiators. These brush-containing nylon membranes bind 120 mg/cm3 of lysozyme using solution residence times as short as 35 ms, and when functionalized with nitrilotriacetate (NTA)-Ni2+ complexes, they capture 85 mg/cm3 of histidine6-tagged (His-tagged) Ubiquitin. Additionally the NTA-Ni2+-functionalized membranes isolate His-tagged myo-inositol-1-phosphate synthase directly from cell extracts and show >90% recovery of His-tagged proteins. PMID:22287817

  7. The 14-3-3 protein forms a molecular complex with heat shock protein Hsp60 and cellular prion protein.

    PubMed

    Satoh, Jun-ichi; Onoue, Hiroyuki; Arima, Kunimasa; Yamamura, Takashi

    2005-10-01

    The 14-3-3 protein family consists of acidic 30-kDa proteins composed of 7 isoforms expressed abundantly in neurons and glial cells of the central nervous system (CNS). The 14-3-3 protein identified in the cerebrospinal fluid provides a surrogate marker for premortem diagnosis of Creutzfeldt-Jakob disease, although an active involvement of 14-3-3 in the pathogenesis of prion diseases remains unknown. By protein overlay and mass spectrometric analysis of protein extract of NTera2-derived differentiated neurons, we identified heat shock protein Hsp60 as a 14-3-3-interacting protein. The 14-3-3zeta and gamma isoforms interacted with Hsp60, suggesting that the interaction is not isoform-specific. Furthermore, the interaction was identified in SK-N-SH neuroblastoma, U-373MG astrocytoma, and HeLa cervical carcinoma cells. The cellular prion protein (PrPC) along with Hsp60 was coimmunoprecipitated with 14-3-3 in the human brain protein extract. By protein overlay, 14-3-3 interacted with both recombinant human Hsp60 and PrPC produced by Escherichia coli, indicating that the molecular interaction is phosphorylation-independent. The 14-3-3-binding domain was located in the N-terminal half (NTF) of Hsp60 spanning amino acid residues 27-287 and the NTF of PrPC spanning amino acid residues 23-137. By immunostaining, the 14-3-3 protein Hsp60 and PrPC were colocalized chiefly in the mitochondria of human neuronal progenitor cells in culture, and were coexpressed most prominently in neurons and reactive astrocytes in the human brain. These observations indicate that the 14-3-3 protein forms a molecular complex with Hsp60 and PrPC in the human CNS under physiological conditions and suggest that this complex might become disintegrated in the pathologic process of prion diseases.

  8. Structure and fractal dimension of protein-detergent complexes

    NASA Astrophysics Data System (ADS)

    Chen, Sow-Hsin; Teixeira, José

    1986-11-01

    Small-angle neutron-scattering experiments were made on bovine serum albumin (BSA)-lithium dodecyl sulfate (LDS) complexes in buffer solutions. As increasing amounts of LDS are added, the scattering data indicate that BSA molecules are successively transformed into random coil conformations with LDS forming globular micelles randomly decorating the polypeptide backbones. A cross-section formula is developed which successfully fits small-angle neutron-scattering spectra over the entire Q range. The fractal dimension, the micellar size, and the extent of the denatured protein are simultaneously extracted.

  9. Structure and function analysis of protein-nucleic acid complexes

    NASA Astrophysics Data System (ADS)

    Kuznetsova, S. A.; Oretskaya, T. S.

    2016-05-01

    The review summarizes published data on the results and achievements in the field of structure and function analysis of protein-nucleic acid complexes by means of main physical and biochemical methods, including X-ray diffraction, nuclear magnetic resonance spectroscopy, electron and atomic force microscopy, small-angle X-ray and neutron scattering, footprinting and cross-linking. Special attention is given to combined approaches. The advantages and limitations of each method are considered, and the prospects of their application for wide-scale structural studies in vivo are discussed. The bibliography includes 145 references.

  10. Detection of Protein-Protein Interaction Within an RNA-Protein Complex Via Unnatural-Amino-Acid-Mediated Photochemical Crosslinking.

    PubMed

    Yeh, Fu-Lung; Tung, Luh; Chang, Tien-Hsien

    2016-01-01

    Although DExD/H-box proteins are known to unwind RNA duplexes and modulate RNA structures in vitro, it is highly plausible that, in vivo, some may function to remodel RNA-protein complexes. Precisely how the latter is achieved remains a mystery. We investigated this critical issue by using yeast Prp28p, an evolutionarily conserved DExD/H-box splicing factor, as a model system. To probe how Prp28p interacts with spliceosome, we strategically placed p-benzoyl-phenylalanine (BPA), a photoactivatable unnatural amino acid, along the body of Prp28p in vivo. Extracts prepared from these engineered strains were then used to assemble in vitro splicing reactions for BPA-mediated protein-protein crosslinkings. This enabled us, for the first time, to "capture" Prp28p in action. This approach may be applicable to studying the roles of other DExD/H-box proteins functioning in diverse RNA-related pathways, as well as to investigating protein-protein contacts within an RNA-protein complex.

  11. Exact Group Invariant Solutions and Conservation Laws of the Complex Modified Korteweg-de Vries Equation

    NASA Astrophysics Data System (ADS)

    Johnpillai, Andrew G.; Kara, Abdul H.; Biswas, Anjan

    2013-09-01

    We study the scalar complex modified Korteweg-de Vries (cmKdV) equation by analyzing a system of partial differential equations (PDEs) from the Lie symmetry point of view. These systems of PDEs are obtained by decomposing the underlying cmKdV equation into real and imaginary components. We derive the Lie point symmetry generators of the system of PDEs and classify them to get the optimal system of one-dimensional subalgebras of the Lie symmetry algebra of the system of PDEs. These subalgebras are then used to construct a number of symmetry reductions and exact group invariant solutions to the system of PDEs. Finally, using the Lie symmetry approach, a couple of new conservation laws are constructed. Subsequently, respective conserved quantities from their respective conserved densities are computed.

  12. The coat protein complex II, COPII, protein Sec13 directly interacts with presenilin-1

    SciTech Connect

    Nielsen, Anders Lade

    2009-10-23

    Mutations in the human gene encoding presenilin-1, PS1, account for most cases of early-onset familial Alzheimer's disease. PS1 has nine transmembrane domains and a large loop orientated towards the cytoplasm. PS1 locates to cellular compartments as endoplasmic reticulum (ER), Golgi apparatus, vesicular structures, and plasma membrane, and is an integral member of {gamma}-secretase, a protein protease complex with specificity for intra-membranous cleavage of substrates such as {beta}-amyloid precursor protein. Here, an interaction between PS1 and the Sec13 protein is described. Sec13 takes part in coat protein complex II, COPII, vesicular trafficking, nuclear pore function, and ER directed protein sequestering and degradation control. The interaction maps to the N-terminal part of the large hydrophilic PS1 loop and the first of the six WD40-repeats present in Sec13. The identified Sec13 interaction to PS1 is a new candidate interaction for linking PS1 to secretory and protein degrading vesicular circuits.

  13. New reagents for increasing ESI multiple charging of proteins and protein complexes.

    PubMed

    Lomeli, Shirley H; Peng, Ivory X; Yin, Sheng; Loo, Rachel R Ogorzalek; Loo, Joseph A

    2010-01-01

    The addition of m-nitrobenzyl alcohol (m-NBA) was shown previously (Lomeli et al., J. Am. Soc. Mass Spectrom. 2009, 20, 593-596) to enhance multiple charging of native proteins and noncovalent protein complexes in electrospray ionization (ESI) mass spectra. Additional new reagents have been found to "supercharge" proteins from nondenaturing solutions; several of these reagents are shown to be more effective than m-NBA for increasing positive charging. Using the myoglobin protein-protoporphyrin IX (heme) complex, the following reagents were shown to increase ESI charging: benzyl alcohol, m-nitroacetophenone, m-nitrobenzonitrile, o-NBA, m-NBA, p-NBA, m-nitrophenyl ethanol, sulfolane (tetramethylene sulfone), and m-(trifluoromethyl)-benzyl alcohol. Based on average charge state, sulfolane displayed a greater charge increase (61%) than m-NBA (21%) for myoglobin in aqueous solutions. The reagents that promote higher ESI charging appear to have low solution-phase basicities and relatively low gas-phase basicities, and are less volatile than water. Another feature of mass spectra from some of the active reagents is that adducts are present on higher charge states, suggesting that a mechanism by which proteins acquire additional charge involves direct interaction with the reagent, in addition to other factors such as surface tension and protein denaturation.

  14. Surface-modified complex SU-8 microstructures for indirect optical manipulation of single cells

    PubMed Central

    Aekbote, Badri L.; Fekete, Tamás; Jacak, Jaroslaw; Vizsnyiczai, Gaszton; Ormos, Pál; Kelemen, Lóránd

    2015-01-01

    We introduce a method that combines two-photon polymerization (TPP) and surface functionalization to enable the indirect optical manipulation of live cells. TPP-made 3D microstructures were coated specifically with a multilayer of the protein streptavidin and non-specifically with IgG antibody using polyethylene glycol diamine as a linker molecule. Protein density on their surfaces was quantified for various coating methods. The streptavidin-coated structures were shown to attach to biotinated cells reproducibly. We performed basic indirect optical micromanipulation tasks with attached structure-cell couples using complex structures and a multi-focus optical trap. The use of such extended manipulators for indirect optical trapping ensures to keep a safe distance between the trapping beams and the sensitive cell and enables their 6 degrees of freedom actuation. PMID:26819816

  15. Proteomics-Based Analysis of Protein Complexes in Pluripotent Stem Cells and Cancer Biology

    PubMed Central

    Sudhir, Putty-Reddy; Chen, Chung-Hsuan

    2016-01-01

    A protein complex consists of two or more proteins that are linked together through protein–protein interactions. The proteins show stable/transient and direct/indirect interactions within the protein complex or between the protein complexes. Protein complexes are involved in regulation of most of the cellular processes and molecular functions. The delineation of protein complexes is important to expand our knowledge on proteins functional roles in physiological and pathological conditions. The genetic yeast-2-hybrid method has been extensively used to characterize protein-protein interactions. Alternatively, a biochemical-based affinity purification coupled with mass spectrometry (AP-MS) approach has been widely used to characterize the protein complexes. In the AP-MS method, a protein complex of a target protein of interest is purified using a specific antibody or an affinity tag (e.g., DYKDDDDK peptide (FLAG) and polyhistidine (His)) and is subsequently analyzed by means of MS. Tandem affinity purification, a two-step purification system, coupled with MS has been widely used mainly to reduce the contaminants. We review here a general principle for AP-MS-based characterization of protein complexes and we explore several protein complexes identified in pluripotent stem cell biology and cancer biology as examples. PMID:27011181

  16. Miraculin, a taste-modifying protein is secreted into intercellular spaces in plant cells.

    PubMed

    Hirai, Tadayoshi; Sato, Mayuko; Toyooka, Kiminari; Sun, Hyeon-Jin; Yano, Megumu; Ezura, Hiroshi

    2010-02-15

    A taste-modifying protein, miraculin, is highly accumulated in ripe fruit of miracle fruit (Richadella dulcifica) and the content can reach up to 10% of the total soluble protein in these fruits. Although speculated for decades that miraculin is secreted into intercellular spaces in miracle fruit, no evidence exists of its cellular localization. To study the cellular localization of miraculin in plant cells, using miracle fruit and transgenic tomato that constitutively express miraculin, immunoelectron microscopy, imaging GFP fusion proteins, and immunological detection of secreted proteins in culture medium of transgenic tomato were carried out. Immunoelectron microscopy showed the specific accumulation of miraculin in the intercellular layers of both miracle fruit and transgenic tomato. Imaging GFP fusion protein demonstrated that the miraculin-GFP fusion protein was accumulated in the intercellular spaces of tomato epidermal cells. Immunological detection of secreted proteins in culture medium of transgenic tomato indicated that miraculin was secreted from the roots of transgenic tomato expressing miraculin. This study firstly showed the evidences of the intercellular localization of miraculin, and provided a new insight of biological roles of miraculin in plants.

  17. Chlorophyll ring deformation modulates Qy electronic energy in chlorophyll-protein complexes and generates spectral forms.

    PubMed

    Zucchelli, Giuseppe; Brogioli, Doriano; Casazza, Anna Paola; Garlaschi, Flavio M; Jennings, Robert C

    2007-09-15

    The possibility that the chlorophyll (chl) ring distortions observed in the crystal structures of chl-protein complexes are involved in the transition energy modulation, giving rise to the spectral forms, is investigated. The out-of-plane chl-macrocycle distortions are described using an orthonormal set of deformations, defined by the displacements along the six lowest-frequency, out-of-plane normal coordinates. The total chl-ring deformation is the linear combination of these six deformations. The two higher occupied and the two lower unoccupied chl molecular orbitals, which define the Q(y) electronic transition, have the same symmetry as four of the six out-of-plane lowest frequency modes. We assume that a deformation along the normal-coordinate having the same symmetry as a given molecular orbital will perturb that orbital and modify its energy. The changes in the chl Q(y) transition energies are evaluated in the Peridinin-Chl-Protein complex and in light harvesting complex II (LHCII), using crystallographic data. The macrocycle deformations induce a distribution of the chl Q(y) electronic energy transitions which, for LHCII, is broader for chla than for chlb. This provides the physical mechanism to explain the long-held view that the chla spectral forms in LHCII are both more numerous and cover a wider energy range than those of chlb.

  18. Small Cofactors May Assist Protein Emergence from RNA World: Clues from RNA-Protein Complexes

    PubMed Central

    Shen, Liang; Ji, Hong-Fang

    2011-01-01

    It is now widely accepted that at an early stage in the evolution of life an RNA world arose, in which RNAs both served as the genetic material and catalyzed diverse biochemical reactions. Then, proteins have gradually replaced RNAs because of their superior catalytic properties in catalysis over time. Therefore, it is important to investigate how primitive functional proteins emerged from RNA world, which can shed light on the evolutionary pathway of life from RNA world to the modern world. In this work, we proposed that the emergence of most primitive functional proteins are assisted by the early primitive nucleotide cofactors, while only a minority are induced directly by RNAs based on the analysis of RNA-protein complexes. Furthermore, the present findings have significant implication for exploring the composition of primitive RNA, i.e., adenine base as principal building blocks. PMID:21789260

  19. Serotonergic chemosensory neurons modify the C. elegans immune response by regulating G-protein signaling in epithelial cells.

    PubMed

    Anderson, Alexandra; Laurenson-Schafer, Henry; Partridge, Frederick A; Hodgkin, Jonathan; McMullan, Rachel

    2013-01-01

    The nervous and immune systems influence each other, allowing animals to rapidly protect themselves from changes in their internal and external environment. However, the complex nature of these systems in mammals makes it difficult to determine how neuronal signaling influences the immune response. Here we show that serotonin, synthesized in Caenorhabditis elegans chemosensory neurons, modulates the immune response. Serotonin released from these cells acts, directly or indirectly, to regulate G-protein signaling in epithelial cells. Signaling in these cells is required for the immune response to infection by the natural pathogen Microbacterium nematophilum. Here we show that serotonin signaling suppresses the innate immune response and limits the rate of pathogen clearance. We show that C. elegans uses classical neurotransmitters to alter the immune response. Serotonin released from sensory neurons may function to modify the immune system in response to changes in the animal's external environment such as the availability, or quality, of food.

  20. CE separation of proteins and yeasts dynamically modified by PEG pyrenebutanoate with fluorescence detection.

    PubMed

    Horká, Marie; Růzicka, Filip; Holá, Veronika; Slais, Karel

    2007-07-01

    The optimized protocols of the bioanalytes separation, proteins and yeasts, dynamically modified by the nonionogenic tenside PEG pyrenebutanoate, were applied in CZE and CIEF with the acidic gradient in pH range 2-5.5, both with fluorescence detection. PEG pyrenebutanoate was used as a buffer additive for a dynamic modification of proteins and/or yeast samples. The narrow peaks of modified analytes were detected. The values of the pI's of the labeled proteins were calculated using new fluorescent pI markers in CIEF and they were found to be comparable with pI's of the native compounds. As an example of the possible use of the suggested CIEF technique, the mixed cultures of yeasts, Candida albicans, Candida glabrata, Candida kefyr, Candida krusei, Candida lusitaniae, Candida parapsilosis, Candida tropicalis, Candida zeylanoides, Geotrichum candidum, Saccharomyces cerevisiae, Trichosporon asahii and Yarrowia lipolytica, were reproducibly focused and separated with high sensitivity. Using UV excitation for the on-column fluorometric detection, the minimum detectable amounts of analytes, femtograms of proteins and down to ten cells injected on the separation capillary, were estimated.

  1. Pseudomonas aeruginosa PA1006 Is a Persulfide-Modified Protein That Is Critical for Molybdenum Homeostasis

    PubMed Central

    Tombline, Gregory; Schwingel, Johanna M.; Lapek, John D.; Friedman, Alan E.; Darrah, Thomas; Maguire, Michael; Van Alst, Nadine E.; Filiatrault, Melanie J.; Iglewski, Barbara H.

    2013-01-01

    A companion manuscript revealed that deletion of the Pseudomonas aeruginosa (Pae) PA1006 gene caused pleiotropic defects in metabolism including a loss of all nitrate reductase activities, biofilm maturation, and virulence. Herein, several complementary approaches indicate that PA1006 protein serves as a persulfide-modified protein that is critical for molybdenum homeostasis in Pae. Mutation of a highly conserved Cys22 to Ala or Ser resulted in a loss of PA1006 activity. Yeast-two-hybrid and a green-fluorescent protein fragment complementation assay (GFP-PFCA) in Pae itself revealed that PA1006 interacts with Pae PA3667/CsdA and PA3814/IscS Cys desulfurase enzymes. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) “top-down” analysis of PA1006 purified from Pae revealed that conserved Cys22 is post-translationally modified in vivo in the form a persulfide. Inductively-coupled-plasma (ICP)-MS analysis of ΔPA1006 mutant extracts revealed that the mutant cells contain significantly reduced levels of molybdenum compared to wild-type. GFP-PFCA also revealed that PA1006 interacts with several molybdenum cofactor (MoCo) biosynthesis proteins as well as nitrate reductase maturation factor NarJ and component NarH. These data indicate that a loss of PA1006 protein’s persulfide sulfur and a reduced availability of molybdenum contribute to the phenotype of a ΔPA1006 mutant. PMID:23409003

  2. Unique motifs and hydrophobic interactions shape the binding of modified DNA ligands to protein targets

    PubMed Central

    Davies, Douglas R.; Gelinas, Amy D.; Zhang, Chi; Rohloff, John C.; Carter, Jeffrey D.; O’Connell, Daniel; Waugh, Sheela M.; Wolk, Steven K.; Mayfield, Wesley S.; Burgin, Alex B.; Edwards, Thomas E.; Stewart, Lance J.; Gold, Larry; Janjic, Nebojsa; Jarvis, Thale C.

    2012-01-01

    Selection of aptamers from nucleic acid libraries by in vitro evolution represents a powerful method of identifying high-affinity ligands for a broad range of molecular targets. Nevertheless, a sizeable fraction of proteins remain difficult targets due to inherently limited chemical diversity of nucleic acids. We have exploited synthetic nucleotide modifications that confer protein-like diversity on a nucleic acid scaffold, resulting in a new generation of binding reagents called SOMAmers (Slow Off-rate Modified Aptamers). Here we report a unique crystal structure of a SOMAmer bound to its target, platelet-derived growth factor B (PDGF-BB). The SOMAmer folds into a compact structure and exhibits a hydrophobic binding surface that mimics the interface between PDGF-BB and its receptor, contrasting sharply with mainly polar interactions seen in traditional protein-binding aptamers. The modified nucleotides circumvent the intrinsic diversity constraints of natural nucleic acids, thereby greatly expanding the structural vocabulary of nucleic acid ligands and considerably broadening the range of accessible protein targets. PMID:23139410

  3. Determination of protein-ligand interactions using accelerator mass spectrometry: modified crosslinking assay.

    PubMed

    Hah, Sang Soo

    2009-05-01

    A highly sensitive detection method for the determination of protein-ligand interactions has been developed. Radiocarbon-labeled 17beta-estradiol was incubated with estrogen receptor-alpha; as a selective binding partner, and covalently attached using crosslinking agents, to form covalently linked protein-ligand complexes. After separation using a denaturing gel, the (14)C content in the sliced gels was identified by accelerator mass spectrometry. The obtained data demonstrated specific binding of the small molecule to its binding partner. In theory, this method can be applied to most protein-ligand interaction studies.

  4. Yeast mitochondrial protein-protein interactions reveal diverse complexes and disease-relevant functional relationships.

    PubMed

    Jin, Ke; Musso, Gabriel; Vlasblom, James; Jessulat, Matthew; Deineko, Viktor; Negroni, Jacopo; Mosca, Roberto; Malty, Ramy; Nguyen-Tran, Diem-Hang; Aoki, Hiroyuki; Minic, Zoran; Freywald, Tanya; Phanse, Sadhna; Xiang, Qian; Freywald, Andrew; Aloy, Patrick; Zhang, Zhaolei; Babu, Mohan

    2015-02-06

    Although detailed, focused, and mechanistic analyses of associations among mitochondrial proteins (MPs) have identified their importance in varied biological processes, a systematic understanding of how MPs function in concert both with one another and with extra-mitochondrial proteins remains incomplete. Consequently, many questions regarding the role of mitochondrial dysfunction in the development of human disease remain unanswered. To address this, we compiled all existing mitochondrial physical interaction data for over 1200 experimentally defined yeast MPs and, through bioinformatic analysis, identified hundreds of heteromeric MP complexes having extensive associations both within and outside the mitochondria. We provide support for these complexes through structure prediction analysis, morphological comparisons of deletion strains, and protein co-immunoprecipitation. The integration of these MP complexes with reported genetic interaction data reveals substantial crosstalk between MPs and non-MPs and identifies novel factors in endoplasmic reticulum-mitochondrial organization, membrane structure, and mitochondrial lipid homeostasis. More than one-third of these MP complexes are conserved in humans, with many containing members linked to clinical pathologies, enabling us to identify genes with putative disease function through guilt-by-association. Although still remaining incomplete, existing mitochondrial interaction data suggests that the relevant molecular machinery is modular, yet highly integrated with non-mitochondrial processes.

  5. Protein-Protein Interaction Investigated by Steered Molecular Dynamics: The TCR-pMHC Complex

    PubMed Central

    Cuendet, Michel A.; Michielin, Olivier

    2008-01-01

    We present a novel steered molecular dynamics scheme to induce the dissociation of large protein-protein complexes. We apply this scheme to study the interaction of a T cell receptor (TCR) with a major histocompatibility complex (MHC) presenting a peptide (p). Two TCR-pMHC complexes are considered, which only differ by the mutation of a single amino acid on the peptide; one is a strong agonist that produces T cell activation in vivo, while the other is an antagonist. We investigate the interaction mechanism from a large number of unbinding trajectories by analyzing van der Waals and electrostatic interactions and by computing energy changes in proteins and solvent. In addition, dissociation potentials of mean force are calculated with the Jarzynski identity, using an averaging method developed for our steering scheme. We analyze the convergence of the Jarzynski exponential average, which is hampered by the large amount of dissipative work involved and the complexity of the system. The resulting dissociation free energies largely underestimate experimental values, but the simulations are able to clearly differentiate between wild-type and mutated TCR-pMHC and give insights into the dissociation mechanism. PMID:18621828

  6. Evolution of protein complexity: the blue copper-containing oxidases and related proteins.

    PubMed

    Rydén, L G; Hunt, L T

    1993-01-01

    The blue copper proteins and their relatives have been compared by sequence alignments, by comparison of three-dimensional structures, and by construction of phylogenetic trees. The group contains proteins varying in size from 100 residues to over 2,300 residues in a single chain, containing from zero to nine copper atoms, and with a broad variation in function ranging from electron carrier proteins and oxidases to the blood coagulation factors V and VIII. Difference matrices show the sequence difference to be over 90% for many pairs in the group, yet alignment scores and other evidence suggest that they all evolved from a common ancestor. We have attempted to delineate how this evolution took place and in particular to define the mechanisms by which these proteins acquired an ever-increasing complexity in structure and function. We find evidence for six such mechanisms in this group of proteins: domain enlargement, in which a single domain increases in size from about 100 residues up to 210; domain duplication, which allows for a size increase from about 170 to about 1,000 residues; segment elongation, in which a small segment undergoes multiple successive duplications that can increase the chain size 50-fold; domain recruitment, in which a domain coded elsewhere in the genome is added on to the peptide chain; subunit formation, to form multisubunit proteins; and glycosylation, which in some cases doubles the size of the protein molecule. Size increase allows for the evolution of new catalytic properties, in particular the oxidase function, and for the formation of coagulation factors with multiple interaction sites and regulatory properties. The blood coagulation system is examined as an example in which a system of interacting proteins evolved by successive duplications of larger parts of the genome. The evolution of size, functionality, and diversity is compared with the general question of increase in size and complexity in biology.

  7. Surface hydrophobization by electrostatic deposition of hydrophobically modified poly(acrylates) and their complexes with surfactants

    NASA Astrophysics Data System (ADS)

    Gîfu, Ioana Cătălina; Maxim, Monica Elisabeta; Iovescu, Alina; Simion, Elena Livia; Aricov, Ludmila; Anastasescu, Mihai; Munteanu, Cornel; Anghel, Dan-Florin

    2016-05-01

    The present study demonstrates the hydrophobic effect of poly(electrolyte) multilayer films when they are alkyl-grafted and complexed or not with surfactants. For this purpose, sodium hydrophobically modified poly(acrylates) (PACnNa, n = 10, 18) or their anionic complexes with alkyltrimethylammonium bromides (CxTAB, x = 10, 12, 14, 18), and the cationic poly(diallyldimethyldiammonium chloride) (PDDAMAC) are assembled by layer-by-layer deposition on a glass substrate. Contact angle (CA) measurements reveal that films constructed with PACnNa-CxTAB/PDADMAC are superior water repellants than those of PACnNa/PDADMAC. For example, the highest CA is obtained for the PAC18Na-C18TAB/PDADMAC. Moreover, it has been observed that the CA increases with the alkyl chain length of PACnNa and of surfactant. The film roughness and thickness have the same trend as wettability. Thinner and less coarse films are obtained by NaCl addition, as witnessed by SEM and AFM.

  8. Few-cycle optical rogue waves: complex modified Korteweg-de Vries equation.

    PubMed

    He, Jingsong; Wang, Lihong; Li, Linjing; Porsezian, K; Erdélyi, R

    2014-06-01

    In this paper, we consider the complex modified Korteweg-de Vries (mKdV) equation as a model of few-cycle optical pulses. Using the Lax pair, we construct a generalized Darboux transformation and systematically generate the first-, second-, and third-order rogue wave solutions and analyze the nature of evolution of higher-order rogue waves in detail. Based on detailed numerical and analytical investigations, we classify the higher-order rogue waves with respect to their intrinsic structure, namely, fundamental pattern, triangular pattern, and ring pattern. We also present several new patterns of the rogue wave according to the standard and nonstandard decomposition. The results of this paper explain the generalization of higher-order rogue waves in terms of rational solutions. We apply the contour line method to obtain the analytical formulas of the length and width of the first-order rogue wave of the complex mKdV and the nonlinear Schrödinger equations. In nonlinear optics, the higher-order rogue wave solutions found here will be very useful to generate high-power few-cycle optical pulses which will be applicable in the area of ultrashort pulse technology.

  9. A Repressor Protein Complex Regulates Leaf Growth in Arabidopsis

    PubMed Central

    Gonzalez, Nathalie; Pauwels, Laurens; Baekelandt, Alexandra; De Milde, Liesbeth; Van Leene, Jelle; Besbrugge, Nienke; Heyndrickx, Ken S.; Pérez, Amparo Cuéllar; Durand, Astrid Nagels; De Clercq, Rebecca; Van De Slijke, Eveline; Vanden Bossche, Robin; Eeckhout, Dominique; Gevaert, Kris; Vandepoele, Klaas; De Jaeger, Geert; Goossens, Alain; Inzé, Dirk

    2015-01-01

    Cell number is an important determinant of final organ size. In the leaf, a large proportion of cells are derived from the stomatal lineage. Meristemoids, which are stem cell-like precursor cells, undergo asymmetric divisions, generating several pavement cells adjacent to the two guard cells. However, the mechanism controlling the asymmetric divisions of these stem cells prior to differentiation is not well understood. Here, we characterized PEAPOD (PPD) proteins, the only transcriptional regulators known to negatively regulate meristemoid division. PPD proteins interact with KIX8 and KIX9, which act as adaptor proteins for the corepressor TOPLESS. D3-type cyclin encoding genes were identified among direct targets of PPD2, being negatively regulated by PPDs and KIX8/9. Accordingly, kix8 kix9 mutants phenocopied PPD loss-of-function producing larger leaves resulting from increased meristemoid amplifying divisions. The identified conserved complex might be specific for leaf growth in the second dimension, since it is not present in Poaceae (grasses), which also lack the developmental program it controls. PMID:26232487

  10. CCT complex restricts neuropathogenic protein aggregation via autophagy

    PubMed Central

    Pavel, Mariana; Imarisio, Sara; Menzies, Fiona M.; Jimenez-Sanchez, Maria; Siddiqi, Farah H.; Wu, Xiaoting; Renna, Maurizio; O'Kane, Cahir J.; Crowther, Damian C.; Rubinsztein, David C.

    2016-01-01

    Aberrant protein aggregation is controlled by various chaperones, including CCT (chaperonin containing TCP-1)/TCP-1/TRiC. Mutated CCT4/5 subunits cause sensory neuropathy and CCT5 expression is decreased in Alzheimer's disease. Here, we show that CCT integrity is essential for autophagosome degradation in cells or Drosophila and this phenomenon is orchestrated by the actin cytoskeleton. When autophagic flux is reduced by compromise of individual CCT subunits, various disease-relevant autophagy substrates accumulate and aggregate. The aggregation of proteins like mutant huntingtin, ATXN3 or p62 after CCT2/5/7 depletion is predominantly autophagy dependent, and does not further increase with CCT knockdown in autophagy-defective cells/organisms, implying surprisingly that the effect of loss-of-CCT activity on mutant ATXN3 or huntingtin oligomerization/aggregation is primarily a consequence of autophagy inhibition rather than loss of physiological anti-aggregation activity for these proteins. Thus, our findings reveal an essential partnership between two key components of the proteostasis network and implicate autophagy defects in diseases with compromised CCT complex activity. PMID:27929117

  11. Distribution of adenosine deaminase complexing protein (ADCP) in human tissues.

    PubMed

    Dinjens, W N; ten Kate, J; van der Linden, E P; Wijnen, J T; Khan, P M; Bosman, F T

    1989-12-01

    The normal distribution of adenosine deaminase complexing protein (ADCP) in the human body was investigated quantitatively by ADCP-specific radioimmunoassay (RIA) and qualitatively by immunohistochemistry. In these studies we used a specific rabbit anti-human ADCP antiserum. In all 19 investigated tissues, except erythrocytes, ADCP was found by RIA in the soluble and membrane fractions. From all tissues the membrane fractions contained more ADCP (expressed per mg protein) than the soluble fractions. High membrane ADCP concentrations were found in skin, renal cortex, gastrointestinal tract, and prostate. Immunoperoxidase staining confirmed the predominant membrane-associated localization of the protein. In serous sweat glands, convoluted tubules of renal cortex, bile canaliculi, gastrointestinal tract, lung, pancreas, prostate gland, salivary gland, gallbladder, mammary gland, and uterus, ADCP immunoreactivity was found confined to the luminal membranes of the epithelial cells. These data demonstrate that ADCP is present predominantly in exocrine glands and absorptive epithelia. The localization of ADCP at the secretory or absorptive apex of the cells suggests that the function of ADCP is related to the secretory and/or absorptive process.

  12. Protein-Protein Interactions of the Baculovirus Per Os Infectivity Factors in the PIF Complex.

    PubMed

    Zheng, Qin; Shen, Yunwang; Kon, Xiangshuo; Zhang, Jianjia; Feng, Min; Wu, Xiaofeng

    2017-01-28

    After ingestion of occlusion bodies, the occlusion-derived viruses (ODVs) of baculoviruses establish the first round of infection within the larval host midgut cells. Several ODV envelope proteins, called per os infectivity factors (PIFs), have been shown to be essential for oral infection. Eight PIFs have been identified to date, including P74, PIFs1-6, and Ac110. At least six PIFs: P74, PIFs1-4, PIF6, together with three other ODV-specific proteins: Ac5, P95 (Ac83), and Ac108, have been reported to form a complex on the ODV surface. In this study, in order to understand the interactions of these PIFs, the direct protein-protein interactions of the nine components of the Autographa californica multiple nucleopolyhedrovirus (AcMNPV) PIF complex were investigated using yeast two-hybrid (Y2H) combined with bimolecular fluorescence complementation (BiFC) assay. Six direct interactions comprising PIF1-PIF2, PIF1-PIF3, PIF1-PIF4, PIF1-P95, PIF2-PIF3, and PIF3-PIF4, were identified in Y2H analysis, and these results were further verified by BiFC. For P74, PIF6, Ac5 and Ac108, no direct interaction was identified. P95 (Ac83) was identified to interact with PIF1 and further Y2H analysis of the truncations and deletion mutants showed that the predicted P95 chitin-binding domain and PIF1 100-200aa were responsible for P95 interaction with PIF1. Furthermore, a summary of the protein-protein interactions of PIFs reported so far, comprising 10 reciprocal interactions and 2 self-interactions, is presented, which will facilitate our understanding of the characteristic of PIF complex.

  13. CircRNA-protein complexes: IMP3 protein component defines subfamily of circRNPs

    PubMed Central

    Schneider, Tim; Hung, Lee-Hsueh; Schreiner, Silke; Starke, Stefan; Eckhof , Heinrich; Rossbach, Oliver; Reich, Stefan; Medenbach, Jan; Bindereif , Albrecht

    2016-01-01

    Circular RNAs (circRNAs) constitute a new class of noncoding RNAs in higher eukaryotes generated from pre-mRNAs by alternative splicing. Here we investigated in mammalian cells the association of circRNAs with proteins. Using glycerol gradient centrifugation, we characterized in cell lysates circRNA-protein complexes (circRNPs) of distinct sizes. By polysome-gradient fractionation we found no evidence for efficient translation of a set of abundant circRNAs in HeLa cells. To identify circRNPs with a specific protein component, we focused on IMP3 (IGF2BP3, insulin-like growth factor 2 binding protein 3), a known tumor marker and RNA-binding protein. Combining RNA-seq analysis of IMP3-co-immunoprecipitated RNA and filtering for circular-junction reads identified a set of IMP3-associated circRNAs, which were validated and characterized. In sum, our data suggest that specific circRNP families exist defined by a common protein component. In addition, this provides a general approach to identify circRNPs with a given protein component. PMID:27510448

  14. Hierarchical structures made of proteins. The complex architecture of spider webs and their constituent silk proteins.

    PubMed

    Heim, Markus; Römer, Lin; Scheibel, Thomas

    2010-01-01

    Biopolymers fulfil a variety of different functions in nature. They conduct various processes inside and outside cells and organisms, with a functionality ranging from storage of information to stabilization, protection, shaping, transport, cellular division, or movement of whole organisms. Within the plethora of biopolymers, the most sophisticated group is of proteinaceous origin: the cytoskeleton of a cell is made of protein filaments that aid in pivotal processes like intracellular transport, movement, and cell division; geckos use a distinct arrangement of keratin-like filaments on their toes which enable them to walk up smooth surfaces, such as walls, and even upside down across ceilings; and spiders spin silks that are extra-corporally used for protection of offspring and construction of complex prey traps. The following tutorial review describes the hierarchical organization of protein fibers, using spider dragline silk as an example. The properties of a dragline silk thread originate from the strictly controlled assembly of the underlying protein chains. The assembly procedure leads to protein fibers showing a complex hierarchical organization comprising three different structural phases. This structural organization is responsible for the outstanding mechanical properties of individual fibers, which out-compete even those of high-performance artificial fibers like Kevlar. Web-weaving spiders produce, in addition to dragline silk, other silks with distinct properties, based on slightly variant constituent proteins--a feature that allows construction of highly sophisticated spider webs with well designed architectures and with optimal mechanical properties for catching prey.

  15. Quaternary complexes modified from pDNA and poly-l-lysine complexes to enhance pH-buffering effect and suppress cytotoxicity.

    PubMed

    Kodama, Yukinobu; Yatsugi, Yuiko; Kitahara, Takashi; Kurosaki, Tomoaki; Egashira, Kanoko; Nakashima, Mikiro; Muro, Takahiro; Nakagawa, Hiroo; Higuchi, Norihide; Nakamura, Tadahiro; Sasaki, Hitoshi

    2015-04-01

    We developed a modified complex of pDNA and poly-l-lysine (PLL) by the addition of poly-l-histidine (PLH) and γ-polyglutamic acid (γ-PGA) to enhance its pH-buffering effect and suppress cytotoxicity. The binary and ternary complexes of pDNA with PLL or/and PLH showed particle sizes of approximately 52-76 nm with cationic surface charge. The ternary complexes showed much higher gene expression than the binary complexes with PLL. The mixed solution of PLL and PLH showed higher buffering capacity than PLL solution. The high gene expression of ternary complexes was reduced by bafilomycin A1 . These results indicated the addition of PLH to PLL complexes promoted endosomal escape by enhancing the pH-buffering effect. The binary and ternary complexes showed cytotoxicity and blood agglutination because of their cationic surface charge. We therefore developed quaternary complexes by the addition of anionic γ-PGA, which was reported to decrease the toxicity of cationic complexes. In fact, quaternary complexes showed no cytotoxicity and blood agglutination. Also, quaternary complexes showed higher gene expression than ternary complexes regardless of their anionic surface charge. Quaternary complexes showed selectively high gene expression in the spleen after their intravenous administration. Thus, we successfully developed the quaternary complexes with high gene expression and no toxicity.

  16. Cloning and analysis of the Saccharomyces cerevisiae MNN9 and MNN1 genes required for complex glycosylation of secreted proteins.

    PubMed Central

    Yip, C L; Welch, S K; Klebl, F; Gilbert, T; Seidel, P; Grant, F J; O'Hara, P J; MacKay, V L

    1994-01-01

    Proteins secreted by the yeast Saccharomyces cerevisiae are usually modified by the addition at asparagine-linked glycosylation sites of large heterogeneous mannan units that are highly immunogenic. Secreted proteins from mnn1 mnn9 mutant strains, in contrast, have homogeneous Man10GlcNAc2 oligosaccharides that lack the immunogenic alpha 1,3-mannose linkages. We have cloned and sequenced the MNN9 and MNN1 genes, both of which encode proteins with the characteristics of type II membrane proteins. Mnn9p is a membrane-associated protein with unknown function that is required for the addition of the long alpha 1,6-mannose backbone of the complex mannan, whereas Mnn1p is most likely the alpha 1,3-mannosyltransferase located in the Golgi apparatus. Images PMID:8146181

  17. Molecular mechanisms of the action of miraculin, a taste-modifying protein.

    PubMed

    Misaka, Takumi

    2013-03-01

    Miraculin (MCL) is a homodimeric protein isolated from the fruits of Richadella dulcifica, a shrub native to West Africa. Although it is flat in taste at neutral pH, MCL has taste-modifying activity in which sour stimuli produce a sweet perception. Once MCL enters the mouth, strong sweetness can be detected for more than 1 h each time we taste a sour solution. While the human sweet taste receptor (hT1R2-hT1R3) has been identified, the molecular mechanisms underlying the taste-modifying activity of MCL remain unclear. Recently, experimental evidence has been published demonstrating the successful quantitative evaluation of the acid-induced sweetness of MCL using a cell-based assay system. The results strongly suggested that MCL binds hT1R2-hT1R3 as an antagonist at neutral pH and functionally changes into an agonist at acidic pH. Since sweet-tasting proteins may be used as low-calorie sweeteners because they contain almost no calories, it is expected that MCL will be used in the near future as a new low-calorie sweetener or to modify the taste of sour fruits.

  18. Feature selection and classification of protein-protein complexes based on their binding affinities using machine learning approaches.

    PubMed

    Yugandhar, K; Gromiha, M Michael

    2014-09-01

    Protein-protein interactions are intrinsic to virtually every cellular process. Predicting the binding affinity of protein-protein complexes is one of the challenging problems in computational and molecular biology. In this work, we related sequence features of protein-protein complexes with their binding affinities using machine learning approaches. We set up a database of 185 protein-protein complexes for which the interacting pairs are heterodimers and their experimental binding affinities are available. On the other hand, we have developed a set of 610 features from the sequences of protein complexes and utilized Ranker search method, which is the combination of Attribute evaluator and Ranker method for selecting specific features. We have analyzed several machine learning algorithms to discriminate protein-protein complexes into high and low affinity groups based on their Kd values. Our results showed a 10-fold cross-validation accuracy of 76.1% with the combination of nine features using support vector machines. Further, we observed accuracy of 83.3% on an independent test set of 30 complexes. We suggest that our method would serve as an effective tool for identifying the interacting partners in protein-protein interaction networks and human-pathogen interactions based on the strength of interactions.

  19. An activity in rat tissues that modifies nitrotyrosine-containing proteins

    PubMed Central

    Kamisaki, Yoshinori; Wada, Kouichirou; Bian, Ka; Balabanli, Barbaros; Davis, Karen; Martin, Emil; Behbod, Fariba; Lee, Yu-Chen; Murad, Ferid

    1998-01-01

    Homogenates from rat spleen and lung could modify nitrotyrosine-containing BSA. With incubation, nitrotyrosine-containing BSA lost its epitope to a monoclonal antibody that selectively recognized nitrotyrosine-containing proteins. In the presence of protease inhibitors, the loss of the nitrotyrosine epitope occurred without protein degradation and hydrolysis. This activity was found in supernatant but not particulate fractions of spleen homogenates. The factor was heat labile, was sensitive to trypsin treatment, and was retained after passage through a membrane with a 10-kDa retention. The activity was time- and protein-concentration dependent. The activity increased about 2-fold in spleen extracts with endotoxin (bacterial lipopolysaccharide) treatment of animals, suggesting that the activity is inducible or regulatable. Other nitrotyrosine-containing proteins also served as substrates, while free nitrotyrosine and some endogenous nitrotyrosine-containing proteins in tissue extracts were poor substrates. Although the product and possible cofactors for this reaction have not yet been identified, this activity may be a “nitrotyrosine denitrase” that reverses protein nitration and, thus, decreases peroxynitrite toxicity. This activity was not observed in homogenates from rat liver or kidney, suggesting that there may also be some tissue specificity for the apparent denitrase activity. PMID:9751709

  20. Transient Protein-Protein Interaction of the SH3-Peptide Complex via Closely Located Multiple Binding Sites

    PubMed Central

    Hahn, Seungsoo; Kim, Dongsup

    2012-01-01

    Protein-protein interactions play an essential role in cellular processes. Certain proteins form stable complexes with their partner proteins, whereas others function by forming transient complexes. The conventional protein-protein interaction model describes an interaction between two proteins under the assumption that a protein binds to its partner protein through a single binding site. In this study, we improved the conventional interaction model by developing a Multiple-Site (MS) model in which a protein binds to its partner protein through closely located multiple binding sites on a surface of the partner protein by transiently docking at each binding site with individual binding free energies. To test this model, we used the protein-protein interaction mediated by Src homology 3 (SH3) domains. SH3 domains recognize their partners via a weak, transient interaction and are therefore promiscuous in nature. Because the MS model requires large amounts of data compared with the conventional interaction model, we used experimental data from the positionally addressable syntheses of peptides on cellulose membranes (SPOT-synthesis) technique. From the analysis of the experimental data, individual binding free energies for each binding site of peptides were extracted. A comparison of the individual binding free energies from the analysis with those from atomistic force fields gave a correlation coefficient of 0.66. Furthermore, application of the MS model to 10 SH3 domains lowers the prediction error by up to 9% compared with the conventional interaction model. This improvement in prediction originates from a more realistic description of complex formation than the conventional interaction model. The results suggested that, in many cases, SH3 domains increased the protein complex population through multiple binding sites of their partner proteins. Our study indicates that the consideration of general complex formation is important for the accurate description of

  1. ML3 is a NEDD8- and ubiquitin-modified protein.

    PubMed

    Hakenjos, Jana P; Bejai, Sarosh; Ranftl, Quirin; Behringer, Carina; Vlot, A Corina; Absmanner, Birgit; Hammes, Ulrich; Heinzlmeir, Stephanie; Kuster, Bernhard; Schwechheimer, Claus

    2013-09-01

    NEDD8 (NEURAL PRECURSOR CELL-EXPRESSED, DEVELOPMENTALLY DOWN-REGULATED PROTEIN8) is an evolutionarily conserved 8-kD protein that is closely related to ubiquitin and that can be conjugated like ubiquitin to specific lysine residues of target proteins in eukaryotes. In contrast to ubiquitin, for which a broad range of substrate proteins are known, only a very limited number of NEDD8 target proteins have been identified to date. Best understood, and also evolutionarily conserved, is the NEDD8 modification (neddylation) of cullins, core subunits of the cullin-RING-type E3 ubiquitin ligases that promote the polyubiquitylation of degradation targets in eukaryotes. Here, we show that Myeloid differentiation factor-2-related lipid-recognition domain protein ML3 is an NEDD8- as well as ubiquitin-modified protein in Arabidopsis (Arabidopsis thaliana) and examine the functional role of ML3 in the plant cell. Our analysis indicates that ML3 resides in the vacuole as well as in endoplasmic reticulum (ER) bodies. ER bodies are Brassicales-specific ER-derived organelles and, similar to other ER body proteins, ML3 orthologs can only be identified in this order of flowering plants. ML3 gene expression is promoted by wounding as well as by the phytohormone jasmonic acid and repressed by ethylene, signals that are known to induce and repress ER body formation, respectively. Furthermore, ML3 protein abundance is dependent on NAI1, a master regulator of ER body formation in Arabidopsis. The regulation of ML3 expression and the localization of ML3 in ER bodies and the vacuole is in agreement with a demonstrated importance of ML3 in the defense to herbivore attack. Here, we extend the spectrum of ML3 biological functions by demonstrating a role in the response to microbial pathogens.

  2. Excitation energy transfer in photosynthetic protein-pigment complexes

    NASA Astrophysics Data System (ADS)

    Yeh, Shu-Hao

    Quantum biology is a relatively new research area which investigates the rules that quantum mechanics plays in biology. One of the most intriguing systems in this field is the coherent excitation energy transport (EET) in photosynthesis. In this document I will discuss the theories that are suitable for describing the photosynthetic EET process and the corresponding numerical results on several photosynthetic protein-pigment complexes (PPCs). In some photosynthetic EET processes, because of the electronic coupling between the chromophores within the system is about the same order of magnitude as system-bath coupling (electron-phonon coupling), a non-perturbative method called hierarchy equation of motion (HEOM) is applied to study the EET dynamics. The first part of this thesis includes brief introduction and derivation to the HEOM approach. The second part of this thesis the HEOM method will be applied to investigate the EET process within the B850 ring of the light harvesting complex 2 (LH2) from purple bacteria, Rhodopseudomonas acidophila. The dynamics of the exciton population and coherence will be analyzed under different initial excitation configurations and temperatures. Finally, how HEOM can be implemented to simulate the two-dimensional electronic spectra of photosynthetic PPCs will be discussed. Two-dimensional electronic spectroscopy is a crucial experimental technique to probe EET dynamics in multi-chromophoric systems. The system we are interested in is the 7-chromophore Fenna-Matthews-Olson (FMO) complex from green sulfur bacteria, Prosthecochloris aestuarii. Recent crystallographic studies report the existence of an additional (eighth) chromophore in some of the FMO monomers. By applying HEOM we are able to calculate the two-dimensional electronic spectra of the 7-site and 8-site FMO complexes and investigate the functionality of the eighth chromophore.

  3. The Search Engine for Multi-Proteoform Complexes: An Online Tool for the Identification and Stoichiometry Determination of Protein Complexes.

    PubMed

    Skinner, Owen S; Schachner, Luis F; Kelleher, Neil L

    2016-12-08

    Recent advances in top-down mass spectrometry using native electrospray now enable the analysis of intact protein complexes with relatively small sample amounts in an untargeted mode. Here, we describe how to characterize both homo- and heteropolymeric complexes with high molecular specificity using input data produced by tandem mass spectrometry of whole protein assemblies. The tool described is a "search engine for multi-proteoform complexes," (SEMPC) and is available for free online. The output is a list of candidate multi-proteoform complexes and scoring metrics, which are used to define a distinct set of one or more unique protein subunits, their overall stoichiometry in the intact complex, and their pre- and post-translational modifications. Thus, we present an approach for the identification and characterization of intact protein complexes from native mass spectrometry data. © 2016 by John Wiley & Sons, Inc.

  4. Pathogenic role of modified LDL antibodies and immune complexes in atherosclerosis.

    PubMed

    Lopes-Virella, Maria F; Virella, Gabriel

    2013-01-01

    There is strong evidence supporting a key role of the adaptive immune response in atherosclerosis, given that both activated Th cells producing predominantly interferon-γ and oxidized LDL (oxLDL) and the corresponding antibodies have been isolated from atheromatous plaques. Studies carried out using immune complexes (IC) prepared with human LDL and rabbit antibodies have demonstrated proatherogenic and pro-inflammatory properties, mostly dependent on the engagement of Fcγ receptors Ⅰ and Ⅱ in macrophages and macrophage-like cell lines. Following the development of a methodology for isolating modified LDL (mLDL) antibodies from serum and isolated IC, it was confirmed that antibodies reacting with oxLDL and advanced glycation end product-modified LDL are predominantly IgG of subtypes 1 and 3 and that mLDL IC prepared with human reagents possesses pro-inflammatory and proatherogenic properties. In previous studies, LDL separated from isolated IC has been analyzed for its modifications, and the reactivity of antibodies isolated from the same IC with different LDL modifications has been tested. Recently, we obtained strong evidence suggesting that the effects of mLDL IC on phagocytic cells are modulated by the composition of the mLDL. Clinical studies have shown that the level of mLDL in circulating IC is a strong predictor of cardiovascular disease (CVD) and, in diabetic patients, other significant complications, such as nephropathy and retinopathy. In conclusion, there is convincing ex vivo and clinical data supporting the hypothesis that, in humans, the humoral immune response to mLDL is pathogenic rather than protective.

  5. AuNPs modified, disposable, ITO based biosensor: Early diagnosis of heat shock protein 70.

    PubMed

    Sonuç Karaboğa, Münteha Nur; Şimşek, Çiğdem Sayıklı; Sezgintürk, Mustafa Kemal

    2016-10-15

    This paper describes a novel, simple, and disposable immunosensor based on indium-tin oxide (ITO) sheets modified with gold nanoparticles to sensitively analyze heat shock protein 70 (HSP70), a potential biomarker that could be evaluated in diagnosis of some carcinomas. Disposable ITO coated Polyethylene terephthalate (PET) electrodes were used and modified with gold nanoparticles in order to construct the biosensors. Optimization and characterization steps were analyzed by electrochemical techniques such as electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). Surface morphology of the biosensor was also identified by electrochemical methods, scanning electron microscopy (SEM), and atomic force microscopy (AFM). To interpret binding characterization of HSP70 to anti-HSP70 single frequency impedance method was successfully operated. Moreover, the proposed HSP70 immunosensor acquired good stability, repeatability, and reproducibility. Ultimately, proposed biosensor was introduced to real human serum samples to determine HSP70 sensitively and accurately.

  6. Pepsin immobilization on an aldehyde-modified polymethacrylate monolith and its application for protein analysis.

    PubMed

    Han, Wenjuan; Yamauchi, Mika; Hasegawa, Urara; Noda, Masanori; Fukui, Kiichi; van der Vlies, André J; Uchiyama, Susumu; Uyama, Hiroshi

    2015-05-01

    Polymer-based monoliths with interconnected porous structure have attracted much attention as a high-performance stationary phase for online digestion liquid chromatography-mass spectrometry (LC-MS) system. In this study, a poly(glycidyl methacrylate-co-methyl methacrylate) (PGM) monolith prepared via thermally induced phase separation (TIPS) was used as a solid support to covalently immobilize pepsin. The PGM monolith was modified with aminoacetal to yield an aldehyde-bearing (PGM-CHO) monolith. Pepsin was immobilized onto the PGM-CHO monolith via reductive amination. The immobilized pepsin showed better pH and thermal stability compared with free pepsin. Furthermore, the PGM-CHO monolith modified with pepsin was applied for online protein digestion followed by LC-MS and LC-MS/MS analyses. As a result, a larger number of peptides are reproducibly identified compared to those by polystyrene/divinylbenzene particle (POROS)-based online pepsin column.

  7. Heterodimeric protein complex identification by naïve Bayes classifiers

    PubMed Central

    2013-01-01

    Background Protein complexes are basic cellular entities that carry out the functions of their components. It can be found that in databases of protein complexes of yeast like CYC2008, the major type of known protein complexes is heterodimeric complexes. Although a number of methods for trying to predict sets of proteins that form arbitrary types of protein complexes simultaneously have been proposed, it can be found that they often fail to predict heterodimeric complexes. Results In this paper, we have designed several features characterizing heterodimeric protein complexes based on genomic data sets, and proposed a supervised-learning method for the prediction of heterodimeric protein complexes. This method learns the parameters of the features, which are embedded in the naïve Bayes classifier. The log-likelihood ratio derived from the naïve Bayes classifier with the parameter values obtained by maximum likelihood estimation gives the score of a given pair of proteins to predict whether the pair is a heterodimeric complex or not. A five-fold cross-validation shows good performance on yeast. The trained classifiers also show higher predictability than various existing algorithms on yeast data sets with approximate and exact matching criteria. Conclusions Heterodimeric protein complex prediction is a rather harder problem than heteromeric protein complex prediction because heterodimeric protein complex is topologically simpler. However, it turns out that by designing features specialized for heterodimeric protein complexes, predictability of them can be improved. Thus, the design of more sophisticate features for heterodimeric protein complexes as well as the accumulation of more accurate and useful genome-wide data sets will lead to higher predictability of heterodimeric protein complexes. Our tool can be downloaded from http://imi.kyushu-u.ac.jp/~om/. PMID:24299017

  8. Serum tolerance and endosomal escape capacity of histidine-modified pDNA-loaded complexes based on polyamidoamine dendrimer derivatives.

    PubMed

    Wen, Yuting; Guo, Zhenhuan; Du, Zhuo; Fang, Rong; Wu, Hongmei; Zeng, Xin; Wang, Chi; Feng, Min; Pan, Shirong

    2012-11-01

    Aiming to aid polyamidoamine (PAMAM, generation 4, PG4) to overcome gene delivery barriers like extrinsic serum inhibition, intrinsic cytotoxicity and lysosome digestion, histidine motifs modified PAMAM was prepared. The histidine activated PAMAM generation 4 (HPG4) was synthesized via aminolysis reaction and characterized by 1H NMR spectrum and MALDI-TOF-MS. Cytotoxicity profiles of HPG4 on MD-MB-231 cells were significantly improved in the form of polymer and polymer/DNA complexes comparing to PG4. The luciferase protein expression level of HPG4 was 20-, 2.7- and 1.2- fold higher than that of PG4, SuperFect and PEI 25k. Most importantly, flow cytometry and gene transfection studies showed that histidine motifs of HPG4 not only acted as enhancer for faster cellular uptake, but also played an important role on enhancing serum tolerance of the system on cellular uptake and transfection. Among the serum concentrations of 10%-50%, HPG4 showed 10-100 folds higher transfection efficiency than PG4. Intracellular fate observation conducted by confocal microscope provided visual and quantitative evidence that endsomal escape efficiency of HPG4 system was higher than that of PG4. Lastly, the endosomal escape mechanism of HPG4 system was analyzed by endosome destabilization and proton pump inhibition treatment. Collectively, compared to PG4/pDNA, HPG4/pDNA showed improvement on cellular uptake, serum tolerance, cytotoxicity profile, and endosomal escape.

  9. Favorable Influence of Hydrophobic Surfaces on Protein Structure in Porous Organically-modified Silica Glasses

    PubMed Central

    Menaa, Bouzid; Herrero, Mar; Rives, Vicente; Lavrenko, Mayya; Eggers, Daryl K.

    2008-01-01

    Organically-modified siloxanes were used as host materials to examine the influence of surface chemistry on protein conformation in a crowded environment. The sol-gel materials were prepared from tetramethoxysilane and a series of monosubstituted alkoxysilanes, RSi(OR′)3, featuring alkyl groups of increasing chain length in the R-position. Using circular dichroism spectroscopy in the far-UV region, apomyoglobin was found to transit from an unfolded state to a native-like helical state as the content of the hydrophobic precursor increased from 0–15%. At a fixed molar content of 5% RSi(OR’)3, the helical structure of apomyoglobin increased with the chain length of the R-group, i.e. methyl < ethyl < n-propyl < n-butyl < n-hexyl. This trend also was observed for the tertiary structure of ribonuclease A, suggesting that protein folding and biological activity are sensitive to the hydrophilic/hydrophobic balance of neighboring surfaces. The observed changes in protein structure did not correlate with total surface area or the average pore size of the modified glasses, but scanning electron microscopy images revealed an interesting relationship between surface morphology and alkyl chain length. The unexpected benefit of incorporating a low content of hydrophobic groups into a hydrophilic surface may lead to materials with improved biocompatibility for use in biosensors and implanted devices. PMID:18359512

  10. Aldehyde-modified proteins as mediators of early inflammation in atherosclerotic disease.

    PubMed

    Antoniak, Derrick T; Duryee, Michael J; Mikuls, Ted R; Thiele, Geoffrey M; Anderson, Daniel R

    2015-12-01

    Inflammation is widely accepted to play a major role in atherosclerosis and other cardiovascular diseases. However, the exact mechanism(s) by which inflammation exerts its pathogenic effect remains poorly understood. A number of oxidatively modified proteins have been associated with cardiovascular disease. Recently, attention has been given to the oxidative compound of malondialdehyde and acetaldehyde, two reactive aldehydes known to covalently bind and adduct macromolecules. These products have been shown to form stable malondialdehyde-acetaldehyde (MAA) adducts that are reactive and induce immune responses. These adducts have been found in inflamed and diseased cardiovascular tissue of patients. Antibodies to these adducted proteins are measurable in the serum of diseased patients. The isotypes involved in the immune response to MAA (i.e., IgM, IgG, and IgA) are predictive of atherosclerotic disease progression and cardiovascular events such as an acute myocardial infarction or coronary artery bypass grafting. Therefore, it is the purpose of this article to review the past and current knowledge of aldehyde-modified proteins and their role in cardiovascular disease.

  11. Solution behavior of synthetic silk peptides and modified recombinant silk proteins

    NASA Astrophysics Data System (ADS)

    Foo, C. Wong Po; Bini, E.; Huang, J.; Lee, S. Y.; Kaplan, D. L.

    2006-02-01

    Spider dragline silk from Nephila clavipes possesses impressive mechanical properties derived in part from repetitive primary sequence containing polyalanine regions that self-assemble into crystalline β-sheets. In the present study, we have sought to understand more details of redox responses related to conformational transitions of modified silk peptides and a recombinant protein containing encoded methionine triggers. Regardless of the position of the methionine trigger relative to the polyalanine domain, chemical oxidation was rapid and slight increases in the α-helical structure and decreases in the β-sheet and random coil content were observed by CD and FTIR in the assembled silk-like peptides and the recombinant protein. CD results indicated that the decrease in β-sheet and random coil conformations, coupled with the increase in helical content during oxidation, occurred during the first 30 min of the reaction. No further conformational changes occurred after this time and the response was independent of methionine trigger location relative to the penta-alanine domain. These results were confirmed with fluorescence studies. The design, processing and utility of these modified redox triggered silk-like peptides and proteins suggest a range of potential utility, from biomaterials to engineered surface coatings with chemically alterable secondary structure and, thus, properties.

  12. Synthesis and Antiproliferative Activity of New Ruthenium Complexes with Ethacrynic-Acid-Modified Pyridine and Triphenylphosphine Ligands.

    PubMed

    Agonigi, Gabriele; Riedel, Tina; Zacchini, Stefano; Păunescu, Emilia; Pampaloni, Guido; Bartalucci, Niccolò; Dyson, Paul J; Marchetti, Fabio

    2015-07-06

    Pyridine- and phosphine-based ligands modified with ethacrynic acid (a broad acting glutathione transferase inhibitor) were prepared and coordinated to ruthenium(II)-arene complexes and to a ruthenium(III) NAMI-A type complex. All the compounds (ligands and complexes) were fully characterized by analytical and spectroscopic methods and, in one case, by single-crystal X-ray diffraction. The in vitro anticancer activity of the compounds was studied, with the compounds displaying moderate cytotoxicity toward the human ovarian cancer cell lines. All the complexes led to similar levels of residual GST activity in the different cell lines, irrespective of the stability of the Ru-ligand bond.

  13. Weak conservation of structural features in the interfaces of homologous transient protein-protein complexes.

    PubMed

    Sudha, Govindarajan; Singh, Prashant; Swapna, Lakshmipuram S; Srinivasan, Narayanaswamy

    2015-11-01

    Residue types at the interface of protein-protein complexes (PPCs) are known to be reasonably well conserved. However, we show, using a dataset of known 3-D structures of homologous transient PPCs, that the 3-D location of interfacial residues and their interaction patterns are only moderately and poorly conserved, respectively. Another surprising observation is that a residue at the interface that is conserved is not necessarily in the interface in the homolog. Such differences in homologous complexes are manifested by substitution of the residues that are spatially proximal to the conserved residue and structural differences at the interfaces as well as differences in spatial orientations of the interacting proteins. Conservation of interface location and the interaction pattern at the core of the interfaces is higher than at the periphery of the interface patch. Extents of variability of various structural features reported here for homologous transient PPCs are higher than the variation in homologous permanent homomers. Our findings suggest that straightforward extrapolation of interfacial nature and inter-residue interaction patterns from template to target could lead to serious errors in the modeled complex structure. Understanding the evolution of interfaces provides insights to improve comparative modeling of PPC structures.

  14. Atomistic Simulation of Lignocellulosic Biomass and Associated Cellulosomal Protein Complexes

    SciTech Connect

    Petridis, Loukas; Crowley, Michael F; Smith, Jeremy C

    2010-01-01

    Computer simulations have been performed to obtain an atomic-level understanding of lignocellulose structure and the assembly of its associated cellulosomal protein complexes. First, a CHARMM molecular mechanics force field for lignin is derived and validated by performing a molecular dynamics simulation of a crystal of a lignin fragment molecule and comparing simulation-derived structural features with experimental results. Together with the existing force field for polysaccharides, this work provides the basis for full simulations of lignocellulose. Second, the underlying molecular mechanism governing the assembly of various cellulosomal modules is investigated by performing a novel free-energy calculation of the cohesin-dockerin dissociation. Our calculation indicates a free-energy barrier of ~17 kcal/mol and further reveals a stepwise dissociation pathway involving both the central -sheet interface and its adjacent solvent-exposed loop/turn regions clustered at both ends of the -barrel structure.

  15. The complex kinetics of protein folding in wide temperature ranges.

    PubMed

    Wang, Jin

    2004-10-01

    The complex protein folding kinetics in wide temperature ranges is studied through diffusive dynamics on the underlying energy landscape. The well-known kinetic chevron rollover behavior is recovered from the mean first passage time, with the U-shape dependence on temperature. The fastest folding temperature T0 is found to be smaller than the folding transition temperature Tf. We found that the fluctuations of the kinetics through the distribution of first passage time show rather universal behavior, from high-temperature exponential Poissonian kinetics to the relatively low-temperature highly non-exponential kinetics. The transition temperature is at Tk and T0 < Tk < Tf. In certain low-temperature regimes, a power law behavior at long time emerges. At very low temperatures (lower than trapping transition temperature T < T0/(4 approximately 6)), the kinetics is an exponential Poissonian process again.

  16. Protein adsorption from flowing solutions on pure and maleic acid copolymer modified glass particles.

    PubMed

    Klose, Theresia; Welzel, Petra B; Werner, Carsten

    2006-08-01

    The adsorption of human serum albumin (HSA) and lysozyme (LSZ) on pure as well as maleic acid (MA) copolymer coated spherical soda lime glass particles was investigated under flowing conditions. Coating the glass particles with two different maleic acid copolymers alters the properties of the particle surface concerning its charge and hydrophobicity in a well-defined gradation. Frontal chromatography was used to determine the surface concentration of the adsorbed proteins and to establish adsorption isotherms. The introduced methodology was demonstrated to provide a powerful means to study protein adsorption at solid/liquid interfaces. Investigations with virginal and protein-preadsorbed glass particles revealed that even under streaming conditions HSA is irreversibly adsorbed, whereas LSZ partially desorbs. For LSZ and HSA the adsorbed amounts and the isotherms strongly depend on the surface "history", i.e. the presence or absence of preadsorbed protein layers, and the kind of surface modification of the glass. Compared to the soda lime glass surface the adsorption of HSA was strongly increased on surfaces modified with a hydrophobic maleic acid copolymer indicating a strong hydrophobic protein-surface interaction. By coating the surface with a hydrophilic and more negatively charged maleic acid copolymer the adsorption of HSA to that surface was lower and comparable to the adsorption onto plain glass due to the electrostatic repulsion between HSA and the modified surface. In contrast the affinity to any of the investigated particle surfaces was generally higher for LSZ than for HSA which can be mainly attributed to the electrostatic attraction between LZS and the surface. The adsorbed amount of LSZ on the copolymer coated particle surfaces was much higher than on the pure soda lime glass particles indicating superposed hydrophobic interactions in the case of the hydrophobic MA copolymer layer and an increased density of anionic sites as well as interactions of

  17. The EED protein-protein interaction inhibitor A-395 inactivates the PRC2 complex.

    PubMed

    He, Yupeng; Selvaraju, Sujatha; Curtin, Michael L; Jakob, Clarissa G; Zhu, Haizhong; Comess, Kenneth M; Shaw, Bailin; The, Juliana; Lima-Fernandes, Evelyne; Szewczyk, Magdalena M; Cheng, Dong; Klinge, Kelly L; Li, Huan-Qiu; Pliushchev, Marina; Algire, Mikkel A; Maag, David; Guo, Jun; Dietrich, Justin; Panchal, Sanjay C; Petros, Andrew M; Sweis, Ramzi F; Torrent, Maricel; Bigelow, Lance J; Senisterra, Guillermo; Li, Fengling; Kennedy, Steven; Wu, Qin; Osterling, Donald J; Lindley, David J; Gao, Wenqing; Galasinski, Scott; Barsyte-Lovejoy, Dalia; Vedadi, Masoud; Buchanan, Fritz G; Arrowsmith, Cheryl H; Chiang, Gary G; Sun, Chaohong; Pappano, William N

    2017-04-01

    Polycomb repressive complex 2 (PRC2) is a regulator of epigenetic states required for development and homeostasis. PRC2 trimethylates histone H3 at lysine 27 (H3K27me3), which leads to gene silencing, and is dysregulated in many cancers. The embryonic ectoderm development (EED) protein is an essential subunit of PRC2 that has both a scaffolding function and an H3K27me3-binding function. Here we report the identification of A-395, a potent antagonist of the H3K27me3 binding functions of EED. Structural studies demonstrate that A-395 binds to EED in the H3K27me3-binding pocket, thereby preventing allosteric activation of the catalytic activity of PRC2. Phenotypic effects observed in vitro and in vivo are similar to those of known PRC2 enzymatic inhibitors; however, A-395 retains potent activity against cell lines resistant to the catalytic inhibitors. A-395 represents a first-in-class antagonist of PRC2 protein-protein interactions (PPI) for use as a chemical probe to investigate the roles of EED-containing protein complexes.

  18. Structural Interface Forms and Their Involvement in Stabilization of Multidomain Proteins or Protein Complexes

    PubMed Central

    Dygut, Jacek; Kalinowska, Barbara; Banach, Mateusz; Piwowar, Monika; Konieczny, Leszek; Roterman, Irena

    2016-01-01

    The presented analysis concerns the inter-domain and inter-protein interface in protein complexes. We propose extending the traditional understanding of the protein domain as a function of local compactness with an additional criterion which refers to the presence of a well-defined hydrophobic core. Interface areas in selected homodimers vary with respect to their contribution to share as well as individual (domain-specific) hydrophobic cores. The basic definition of a protein domain, i.e., a structural unit characterized by tighter packing than its immediate environment, is extended in order to acknowledge the role of a structured hydrophobic core, which includes the interface area. The hydrophobic properties of interfaces vary depending on the status of interacting domains—In this context we can distinguish: (1) Shared hydrophobic cores (spanning the whole dimer); (2) Individual hydrophobic cores present in each monomer irrespective of whether the dimer contains a shared core. Analysis of interfaces in dystrophin and utrophin indicates the presence of an additional quasi-domain with a prominent hydrophobic core, consisting of fragments contributed by both monomers. In addition, we have also attempted to determine the relationship between the type of interface (as categorized above) and the biological function of each complex. This analysis is entirely based on the fuzzy oil drop model. PMID:27763556

  19. Structural Interface Forms and Their Involvement in Stabilization of Multidomain Proteins or Protein Complexes.

    PubMed

    Dygut, Jacek; Kalinowska, Barbara; Banach, Mateusz; Piwowar, Monika; Konieczny, Leszek; Roterman, Irena

    2016-10-18

    The presented analysis concerns the inter-domain and inter-protein interface in protein complexes. We propose extending the traditional understanding of the protein domain as a function of local compactness with an additional criterion which refers to the presence of a well-defined hydrophobic core. Interface areas in selected homodimers vary with respect to their contribution to share as well as individual (domain-specific) hydrophobic cores. The basic definition of a protein domain, i.e., a structural unit characterized by tighter packing than its immediate environment, is extended in order to acknowledge the role of a structured hydrophobic core, which includes the interface area. The hydrophobic properties of interfaces vary depending on the status of interacting domains-In this context we can distinguish: (1) Shared hydrophobic cores (spanning the whole dimer); (2) Individual hydrophobic cores present in each monomer irrespective of whether the dimer contains a shared core. Analysis of interfaces in dystrophin and utrophin indicates the presence of an additional quasi-domain with a prominent hydrophobic core, consisting of fragments contributed by both monomers. In addition, we have also attempted to determine the relationship between the type of interface (as categorized above) and the biological function of each complex. This analysis is entirely based on the fuzzy oil drop model.

  20. Computational and biophysical approaches to protein-protein interaction inhibition of Plasmodium falciparum AMA1/RON2 complex

    NASA Astrophysics Data System (ADS)

    Pihan, Emilie; Delgadillo, Roberto F.; Tonkin, Michelle L.; Pugnière, Martine; Lebrun, Maryse; Boulanger, Martin J.; Douguet, Dominique

    2015-06-01

    Invasion of the red blood cell by Plasmodium falciparum parasites requires formation of an electron dense circumferential ring called the Moving Junction (MJ). The MJ is anchored by a high affinity complex of two parasite proteins: Apical Membrane Antigen 1 ( PfAMA1) displayed on the surface of the parasite and Rhoptry Neck Protein 2 that is discharged from the parasite and imbedded in the membrane of the host cell. Structural studies of PfAMA1 revealed a conserved hydrophobic groove localized to the apical surface that coordinates RON2 and invasion inhibitory peptides. In the present work, we employed computational and biophysical methods to identify competitive P. falciparum AMA1-RON2 inhibitors with the goal of exploring the `druggability' of this attractive antimalarial target. A virtual screen followed by molecular docking with the PfAMA1 crystal structure was performed using an eight million compound collection that included commercial molecules, the ChEMBL malaria library and approved drugs. The consensus approach resulted in the selection of inhibitor candidates. We also developed a fluorescence anisotropy assay using a modified inhibitory peptide to experimentally validate the ability of the selected compounds to inhibit the AMA1-RON2 interaction. Among those, we identified one compound that displayed significant inhibition. This study offers interesting clues to improve the throughput and reliability of screening for new drug leads.

  1. Absolute quantitation of isoforms of post-translationally modified proteins in transgenic organism.

    PubMed

    Li, Yaojun; Shu, Yiwei; Peng, Changchao; Zhu, Lin; Guo, Guangyu; Li, Ning

    2012-08-01

    Post-translational modification isoforms of a protein are known to play versatile biological functions in diverse cellular processes. To measure the molar amount of each post-translational modification isoform (P(isf)) of a target protein present in the total protein extract using mass spectrometry, a quantitative proteomic protocol, absolute quantitation of isoforms of post-translationally modified proteins (AQUIP), was developed. A recombinant ERF110 gene overexpression transgenic Arabidopsis plant was used as the model organism for demonstration of the proof of concept. Both Ser-62-independent (14)N-coded synthetic peptide standards and (15)N-coded ERF110 protein standard isolated from the heavy nitrogen-labeled transgenic plants were employed simultaneously to determine the concentration of all isoforms (T(isf)) of ERF110 in the whole plant cell lysate, whereas a pair of Ser-62-dependent synthetic peptide standards were used to quantitate the Ser-62 phosphosite occupancy (R(aqu)). The P(isf) was finally determined by integrating the two empirically measured variables using the following equation: P(isf) = T(isf) · R(aqu). The absolute amount of Ser-62-phosphorylated isoform of ERF110 determined using AQUIP was substantiated with a stable isotope labeling in Arabidopsis-based relative and accurate quantitative proteomic approach. The biological role of the Ser-62-phosphorylated isoform was demonstrated in transgenic plants.

  2. Maltose- and maltotriose-modified, hyperbranched poly(ethylene imine)s (OM-PEIs): Physicochemical and biological properties of DNA and siRNA complexes.

    PubMed

    Höbel, Sabrina; Loos, Andrea; Appelhans, Dietmar; Schwarz, Simona; Seidel, Jürgen; Voit, Brigitte; Aigner, Achim

    2011-01-20

    Polycationic non-viral polymers are widely employed as delivery platforms of plasmid DNA, or of small interfering RNAs (siRNAs) for the induction of RNA interference (RNAi). Among those, poly(ethylene imine)s (PEIs) take a prominent position due to their relatively high efficacy; however, their biodistribution profiles upon systemic delivery and their toxicity pose limitations which can be addressed by the introduction of PEI modifications. In this paper, we systematically analyse physicochemical and biological properties of DNA and siRNA complexes prepared from a set of maltose-, maltotriose- or maltoheptaose-modified hyperbranched PEIs (termed (oligo-)maltose-modified PEIs; OM-PEIs). We show that pH-dependent charge densities of the OM-PEIs correlate with the structure and degree of grafting, and the length of the oligomaltose. Decreased zeta potentials of OM-PEI-based complexes and changes in the thermodynamics of DNA complex formation are observed, while the complex sizes are largely unaffected by maltose grafting and the presence of serum proteins. Furthermore, although complexation efficacies of siRNAs are not altered, complex stabilities are markedly increased in OM-PEI complexes. DNA complex uptake and transfection kinetics are slowed down upon maltose-grafting of the PEI which can be attributed to decreased zeta potentials, and alterations in the uptake mechanisms (clathrin-dependent/clathrin-independent endocytosis) are observed. Independent of the maltose architecture, DNA and siRNA complexes based on maltose-grafted PEI show considerably lower cytotoxicity as compared to PEI complexes. While maltose grafting generally leads to reduced in vitro transfection efficacies, this effect is less profound in some OM-PEI/siRNA complexes as compared to OM-PEI/DNA complexes. Importantly, upon their systemic application in vivo, OM-PEI/siRNA complexes show marked differences in the siRNA biodistribution profile with e.g. substantially decreased siRNA levels in the

  3. Retroviral integrase protein and intasome nucleoprotein complex structures

    PubMed Central

    Grawenhoff, Julia; Engelman, Alan N

    2017-01-01

    Retroviral replication proceeds through the integration of a DNA copy of the viral RNA genome into the host cellular genome, a process that is mediated by the viral integrase (IN) protein. IN catalyzes two distinct chemical reactions: 3’-processing, whereby the viral DNA is recessed by a di- or trinucleotide at its 3’-ends, and strand transfer, in which the processed viral DNA ends are inserted into host chromosomal DNA. Although IN has been studied as a recombinant protein since the 1980s, detailed structural understanding of its catalytic functions awaited high resolution structures of functional IN-DNA complexes or intasomes, initially obtained in 2010 for the spumavirus prototype foamy virus (PFV). Since then, two additional retroviral intasome structures, from the α-retrovirus Rous sarcoma virus (RSV) and β-retrovirus mouse mammary tumor virus (MMTV), have emerged. Here, we briefly review the history of IN structural biology prior to the intasome era, and then compare the intasome structures of PFV, MMTV and RSV in detail. Whereas the PFV intasome is characterized by a tetrameric assembly of IN around the viral DNA ends, the newer structures harbor octameric IN assemblies. Although the higher order architectures of MMTV and RSV intasomes differ from that of the PFV intasome, they possess remarkably similar intasomal core structures. Thus, retroviral integration machineries have adapted evolutionarily to utilize disparate IN elements to construct convergent intasome core structures for catalytic function. PMID:28289517

  4. Arabidopsis flower development--of protein complexes, targets, and transport.

    PubMed

    Becker, Annette; Ehlers, Katrin

    2016-03-01

    Tremendous progress has been achieved over the past 25 years or more of research on the molecular mechanisms of floral organ identity, patterning, and development. While collections of floral homeotic mutants of Antirrhinum majus laid the foundation already at the beginning of the previous century, it was the genetic analysis of these mutants in A. majus and Arabidopsis thaliana that led to the development of the ABC model of floral organ identity more than 20 years ago. This intuitive model kick-started research focused on the genetic mechanisms regulating flower development, using mainly A. thaliana as a model plant. In recent years, interactions among floral homeotic proteins have been elucidated, and their direct and indirect target genes are known to a large extent. Here, we provide an overview over the advances in understanding the molecular mechanism orchestrating A. thaliana flower development. We focus on floral homeotic protein complexes, their target genes, evidence for their transport in floral primordia, and how these new results advance our view on the processes downstream of floral organ identity, such as organ boundary formation or floral organ patterning.

  5. Cell-surface Attachment of Bacterial Multienzyme Complexes Involves Highly Dynamic Protein-Protein Anchors*

    PubMed Central

    Cameron, Kate; Najmudin, Shabir; Alves, Victor D.; Bayer, Edward A.; Smith, Steven P.; Bule, Pedro; Waller, Helen; Ferreira, Luís M. A.; Gilbert, Harry J.; Fontes, Carlos M. G. A.

    2015-01-01

    Protein-protein interactions play a pivotal role in the assembly of the cellulosome, one of nature's most intricate nanomachines dedicated to the depolymerization of complex carbohydrates. The integration of cellulosomal components usually occurs through the binding of type I dockerin modules located at the C terminus of the enzymes to cohesin modules located in the primary scaffoldin subunit. Cellulosomes are typically recruited to the cell surface via type II cohesin-dockerin interactions established between primary and cell-surface anchoring scaffoldin subunits. In contrast with type II interactions, type I dockerins usually display a dual binding mode that may allow increased conformational flexibility during cellulosome assembly. Acetivibrio cellulolyticus produces a highly complex cellulosome comprising an unusual adaptor scaffoldin, ScaB, which mediates the interaction between the primary scaffoldin, ScaA, through type II cohesin-dockerin interactions and the anchoring scaffoldin, ScaC, via type I cohesin-dockerin interactions. Here, we report the crystal structure of the type I ScaB dockerin in complex with a type I ScaC cohesin in two distinct orientations. The data show that the ScaB dockerin displays structural symmetry, reflected by the presence of two essentially identical binding surfaces. The complex interface is more extensive than those observed in other type I complexes, which results in an ultra-high affinity interaction (Ka ∼1012 m). A subset of ScaB dockerin residues was also identified as modulating the specificity of type I cohesin-dockerin interactions in A. cellulolyticus. This report reveals that recruitment of cellulosomes onto the cell surface may involve dockerins presenting a dual binding mode to incorporate additional flexibility into the quaternary structure of highly populated multienzyme complexes. PMID:25855788

  6. Use of a mutant OGA for detecting O-GlcNAc modified proteins.

    PubMed

    Chalkley, Robert J

    2015-12-01

    In the previous issue of Biochemical Journal Mariappa et al. [(2015) Biochem J. 470,: 255-262] demonstrate a new method for visualizing O-linked N-acetylglucosamine (O-GlcNAc) modified proteins by making use of a catalytically dead version of the enzyme that normally removes this modification. They show their approach has broader specificity than current antibody-based techniques and higher specificity than lectin and chemical biology-based labelling approaches. This commentary discusses methods for O-GlcNAc detection and the significance of this work for characterizing this common, but currently poorly understood regulatory modification.

  7. Modified Protein Expression in the Tectorial Membrane of the Cochlea Reveals Roles for the Striated Sheet Matrix

    PubMed Central

    Jones, Gareth P.; Elliott, Stephen J.; Russell, Ian J.; Lukashkin, Andrei N.

    2015-01-01

    The tectorial membrane (TM) of the mammalian cochlea is a complex extracellular matrix which, in response to acoustic stimulation, displaces the hair bundles of outer hair cells (OHCs), thereby initiating sensory transduction and amplification. Here, using TM segments from the basal, high-frequency region of the cochleae of genetically modified mice (including models of human hereditary deafness) with missing or modified TM proteins, we demonstrate that frequency-dependent stiffening is associated with the striated sheet matrix (SSM). Frequency-dependent stiffening largely disappeared in all three TM mutations studied where the SSM was absent either entirely or at least from the stiffest part of the TM overlying the OHCs. In all three TM mutations, dissipation of energy is decreased at low (<8 kHz) and increased at high (>8 kHz) stimulus frequencies. The SSM is composed of polypeptides carrying fixed charges, and electrostatic interaction between them may account for frequency-dependent stiffness changes in the material properties of the TM. Through comparison with previous in vivo measurements, it is proposed that implementation of frequency-dependent stiffening of the TM in the OHC attachment region facilitates interaction among tones, backward transmission of energy, and amplification in the cochlea. PMID:25564867

  8. Modified protein expression in the tectorial membrane of the cochlea reveals roles for the striated sheet matrix.

    PubMed

    Jones, Gareth P; Elliott, Stephen J; Russell, Ian J; Lukashkin, Andrei N

    2015-01-06

    The tectorial membrane (TM) of the mammalian cochlea is a complex extracellular matrix which, in response to acoustic stimulation, displaces the hair bundles of outer hair cells (OHCs), thereby initiating sensory transduction and amplification. Here, using TM segments from the basal, high-frequency region of the cochleae of genetically modified mice (including models of human hereditary deafness) with missing or modified TM proteins, we demonstrate that frequency-dependent stiffening is associated with the striated sheet matrix (SSM). Frequency-dependent stiffening largely disappeared in all three TM mutations studied where the SSM was absent either entirely or at least from the stiffest part of the TM overlying the OHCs. In all three TM mutations, dissipation of energy is decreased at low (<8 kHz) and increased at high (>8 kHz) stimulus frequencies. The SSM is composed of polypeptides carrying fixed charges, and electrostatic interaction between them may account for frequency-dependent stiffness changes in the material properties of the TM. Through comparison with previous in vivo measurements, it is proposed that implementation of frequency-dependent stiffening of the TM in the OHC attachment region facilitates interaction among tones, backward transmission of energy, and amplification in the cochlea.

  9. Water Dynamics at Protein-Protein Interfaces: Molecular Dynamics Study of Virus-Host Receptor Complexes.

    PubMed

    Dutta, Priyanka; Botlani, Mohsen; Varma, Sameer

    2014-12-26

    The dynamical properties of water at protein-water interfaces are unlike those in the bulk. Here we utilize molecular dynamics simulations to study water dynamics in interstitial regions between two proteins. We consider two natural protein-protein complexes, one in which the Nipah virus G protein binds to cellular ephrin B2 and the other in which the same G protein binds to ephrin B3. While the two complexes are structurally similar, the two ephrins share only a modest sequence identity of ∼50%. X-ray crystallography also suggests that these interfaces are fairly extensive and contain exceptionally large amounts of waters. We find that while the interstitial waters tend to occupy crystallographic sites, almost all waters exhibit residence times of less than hundred picoseconds in the interstitial region. We also find that while the differences in the sequence of the two ephrins result in quantitative differences in the dynamics of interstitial waters, the trends in the shifts with respect to bulk values are similar. Despite the high wetness of the protein-protein interfaces, the dynamics of interstitial waters are considerably slower compared to the bulk-the interstitial waters diffuse an order of magnitude slower and have 2-3 fold longer hydrogen bond lifetimes and 2-1000 fold slower dipole relaxation rates. To understand the role of interstitial waters, we examine how implicit solvent models compare against explicit solvent models in producing ephrin-induced shifts in the G conformational density. Ephrin-induced shifts in the G conformational density are critical to the allosteric activation of another viral protein that mediates fusion. We find that in comparison with the explicit solvent model, the implicit solvent model predicts a more compact G-B2 interface, presumably because of the absence of discrete waters at the G-B2 interface. Simultaneously, we find that the two models yield strikingly different induced changes in the G conformational density, even

  10. Thiazole/oxazole-modified microcins: complex natural products from ribosomal templates

    PubMed Central

    Melby, Joel O.; Nard, Nathan J.; Mitchell, Douglas A.

    2014-01-01

    With billions of years of evolution under its belt, Nature has been expanding and optimizing its biosynthetic capabilities. Chemically complex secondary metabolites continue to challenge and inspire today’s most talented synthetic chemists. A brief glance at these natural products, especially the substantial structural variation within a class of compounds, clearly demonstrates that Nature has long played the role of medicinal chemist. The recent explosion in genome sequencing has expanded our appreciation of natural product space and the vastness of uncharted territory that remains. One small corner of natural product chemical space is occupied by the recently dubbed thiazole/oxazole-modified microcins (TOMMs), which are ribosomally produced peptides with posttranslationally installed heterocycles derived from cysteine, serine and threonine residues. As with other classes of natural products, the genetic capacity to synthesize TOMMs has been widely disseminated among bacteria. Over the evolutionary timescale, Nature has tested countless random mutations and selected for gain of function in TOMM biosynthetic gene clusters, yielding several privileged molecular scaffolds. Today, this burgeoning class of natural products encompasses a structurally and functionally diverse set of molecules (i.e. microcin B17, cyanobactins, and thiopeptides). TOMMs presumably provide their producers with an ecological advantage. This advantage can include chemical weapons wielded in the battle for nutrients, disease-promoting virulence factors, or compounds presumably beneficial for symbiosis. Despite this plethora of functions, many TOMMs await experimental interrogation. This review will focus on the biosynthesis and natural combinatorial diversity of the TOMM family. PMID:21429787

  11. Application of the Protein Semisynthesis Strategy to the Generation of Modified Chromatin

    PubMed Central

    Holt, Matthew; Muir, Tom

    2016-01-01

    Histone proteins are subject to a host of posttranslational modifications (PTMs) that modulate chromatin structure and function. Such control is achieved by the direct alteration of the intrinsic physical properties of the chromatin fiber or by regulating the recruitment and activity of a host of trans-acting nuclear factors. The sheer number of histone PTMs presents a formidable barrier to understanding the molecular mechanisms at the heart of epigenetic regulation of eukaryotic genomes. One aspect of this multifarious problem, namely how to access homogeneously modified chromatin for biochemical studies, is well suited to the sensibilities of the organic chemist. Indeed, recent years have witnessed a critical role for synthetic protein chemistry methods in generating the raw materials needed for studying how histone PTMs regulate chromatin biochemistry. This review focuses on what is arguably the most powerful, and widely employed, of these chemical strategies, namely histone semisynthesis via the chemical ligation of peptide fragments. PMID:25784050

  12. Using contrast patterns between true complexes and random subgraphs in PPI networks to predict unknown protein complexes

    PubMed Central

    Liu, Quanzhong; Song, Jiangning; Li, Jinyan

    2016-01-01

    Most protein complex detection methods utilize unsupervised techniques to cluster densely connected nodes in a protein-protein interaction (PPI) network, in spite of the fact that many true complexes are not dense subgraphs. Supervised methods have been proposed recently, but they do not answer why a group of proteins are predicted as a complex, and they have not investigated how to detect new complexes of one species by training the model on the PPI data of another species. We propose a novel supervised method to address these issues. The key idea is to discover emerging patterns (EPs), a type of contrast pattern, which can clearly distinguish true complexes from random subgraphs in a PPI network. An integrative score of EPs is defined to measure how likely a subgraph of proteins can form a complex. New complexes thus can grow from our seed proteins by iteratively updating this score. The performance of our method is tested on eight benchmark PPI datasets and compared with seven unsupervised methods, two supervised and one semi-supervised methods under five standards to assess the quality of the predicted complexes. The results show that in most cases our method achieved a better performance, sometimes significantly. PMID:26868667

  13. A New Method for Identifying Essential Proteins Based on Network Topology Properties and Protein Complexes

    PubMed Central

    Qin, Chao; Sun, Yongqi; Dong, Yadong

    2016-01-01

    Essential proteins are indispensable to the viability and reproduction of an organism. The identification of essential proteins is necessary not only for understanding the molecular mechanisms of cellular life but also for disease diagnosis, medical treatments and drug design. Many computational methods have been proposed for discovering essential proteins, but the precision of the prediction of essential proteins remains to be improved. In this paper, we propose a new method, LBCC, which is based on the combination of local density, betweenness centrality (BC) and in-degree centrality of complex (IDC). First, we introduce the common centrality measures; second, we propose the densities Den1(v) and Den2(v) of a node v to describe its local properties in the network; and finally, the combined strategy of Den1, Den2, BC and IDC is developed to improve the prediction precision. The experimental results demonstrate that LBCC outperforms traditional topological measures for predicting essential proteins, including degree centrality (DC), BC, subgraph centrality (SC), eigenvector centrality (EC), network centrality (NC), and the local average connectivity-based method (LAC). LBCC also improves the prediction precision by approximately 10 percent on the YMIPS and YMBD datasets compared to the most recently developed method, LIDC. PMID:27529423

  14. Delta(9)-tetrahydrocannabinol regulates the p53 post-translational modifiers Murine double minute 2 and the Small Ubiquitin MOdifier protein in the rat brain.

    PubMed

    Gowran, Aoife; Murphy, Carrie E; Campbell, Veronica A

    2009-11-03

    The phytocannabinoid Delta(9)-Tetrahydrocannabinol (Delta(9)-THC), the main psychoactive cannabinoid in cannabis, activates a number of signalling cascades including p53. This study examines the role of Delta(9)-THC in regulating the p53 post-translational modifier proteins, Murine double minute (Mdm2) and Small Ubquitin-like MOdifier protein 1 (SUMO-1) in cortical neurons. Delta(9)-THC increased both Mdm2 and SUMO-1 protein expression and induced the deSUMOylation of p53 in a cannabinoid receptor type 1 (CB(1))-receptor dependent manner. We demonstrate that Delta(9)-THC decreased the SUMOylation of the CB(1) receptor. The data reveal a novel role for cannabinoid receptor activation in modulating the SUMO regulatory system.

  15. Carboxymethylchitosan covalently modified capillary column for open tubular capillary electrochromatography of basic proteins and opium alkaloids.

    PubMed

    Zhou, Sunying; Tan, Jingjing; Chen, Qinhua; Lin, Xucong; Lü, Haixia; Xie, Zenghong

    2010-12-24

    A novel open tubular (OT) column covalently modified with hydrophilic polysaccharide, carboxymethylchitosan (CMC) as stationary phase has been developed, and employed for the separations of basic proteins and opium alkaloids by capillary electrochromatography (CEC). With the procedures including the silanization of 3-aminopropyltrimethoxysilane (APTS) and the combination of glutaraldehyde with amino-silylated silica surface and CMC, CMC was covalently bonded on the capillary inner wall and exhibited a remarkable tolerance and chemical stability against 0.1 mol/L HCl, 0.1 mol/L NaOH or some organic solvents. By varying the pH values of running buffer, a cathodic or anodic EOF could be gained in CMC modified column. With anodic EOF mode (pH<4.3), favorable separations of basic proteins (trypsin, ribonuclease A, lysozyme and cytochrome C) were successfully achieved with high column efficiencies ranging from 97,000 to 182,000 plates/m, and the undesired adsorptions of basic proteins on the inter-wall of capillary could be avoided. Good repeatability was gained with RSD of the migration time less than 1.3% for run-to-run (n=5) and less than 3.2% for day-to-day (n=3), RSD of peak area was less than 5.6% for run-to-run (n=5) and less than 8.8% for day-to-day (n=3). With cathodic EOF mode (pH>4.3), four opium alkaloids were also baseline separated in phosphate buffer (50 mmol/L, pH 6.0) with column efficiencies ranging from 92,000 to 132,000 plates/m. CMC-bonded OT capillary column might be used as an alternative medium for the further analysis of basic proteins and alkaline analytes.

  16. Deregulation of polycomb repressor complex 1 modifier AUTS2 in T-cell leukemia

    PubMed Central

    Nagel, Stefan; Pommerenke, Claudia; Meyer, Corinna; Kaufmann, Maren; Drexler, Hans G.; MacLeod, Roderick A.F.

    2016-01-01

    Recently, we identified deregulated expression of the B-cell specific transcription factor MEF2C in T-cell acute lymphoid leukemia (T-ALL). Here, we performed sequence analysis of a regulatory upstream section of MEF2C in T-ALL cell lines which, however, proved devoid of mutations. Unexpectedly, we found strong conservation between the regulatory upstream region of MEF2C (located at chromosomal band 5q14) and an intergenic stretch at 7q11 located between STAG3L4 and AUTS2, covering nearly 20 kb. While the non-coding gene STAG3L4 was inconspicuously expressed, AUTS2 was aberrantly upregulated in 6% of T-ALL patients (public dataset GSE42038) and in 3/24 T-ALL cell lines, two of which represented very immature differentiation stages. AUTS2 expression was higher in normal B-cells than in T-cells, indicating lineage-specific activity in lymphopoiesis. While excluding chromosomal aberrations, examinations of AUTS2 transcriptional regulation in T-ALL cells revealed activation by IL7-IL7R-STAT5-signalling and MEF2C. AUTS2 protein has been shown to interact with polycomb repressor complex 1 subtype 5 (PRC1.5), transforming this particular complex into an activator. Accordingly, expression profiling and functional analyses demonstrated that AUTS2 activated while PCGF5 repressed transcription of NKL homeobox gene MSX1 in T-ALL cells. Forced expression and pharmacological inhibition of EZH2 in addition to H3K27me3 analysis indicated that PRC2 repressed MSX1 as well. Taken together, we found that AUTS2 and MEF2C, despite lying on different chromosomes, share strikingly similar regulatory upstream regions and aberrant expression in T-ALL subsets. Our data implicate chromatin complexes PRC1/AUTS2 and PRC2 in a gene network in T-ALL regulating early lymphoid differentiation. PMID:27322685

  17. Ion-Ion Reactions with Fixed-Charge Modified Proteins to Produce Ions in a Single, Very High Charge State.

    PubMed

    Frey, Brian L; Krusemark, Casey J; Ledvina, Aaron R; Coon, Joshua J; Belshaw, Peter J; Smith, Lloyd M

    2008-10-01

    Electrospray ionization (ESI) of denatured proteins produces a mass spectrum with a broad distribution of multiply charged ions. Attaching fixed positive charges, specifically quaternary ammonium groups, to proteins at their carboxylic acid groups generates substantially higher charge states compared to the corresponding unmodified proteins in positive-mode ESI. Ion-ion reactions of these modified proteins with reagent anions leads to charge reduction by proton transfer. These proton transfer reactions cannot remove charge from the quaternary ammonium groups, which do not have a proton to transfer to the anion. Thus, one might expect charge reduction to stop at a single charge state equal to the number of fixed charges on the modified protein. However, ion-ion reactions yield charge states lower than this number of fixed charges due to anion attachment (adduction) to the proteins. Charge reduction via ion-molecule reactions involving gas-phase bases also give adducts on the modified protein ions in low charge states. Such adducts are avoided by keeping the ions in charge states well above the number of fixed charges. In the present work protein ions were selectively "parked" within an ion trap mass spectrometer in a high charge state by mild radiofrequency excitation that dramatically slows their ion-ion reaction rate-a technique termed "ion parking". The combination of ion parking with the fixed-charge modified proteins permits generation of a large population of ions in a single, very high charge state.

  18. Ion-Ion Reactions with Fixed-Charge Modified Proteins to Produce Ions in a Single, Very High Charge State

    PubMed Central

    Frey, Brian L.; Krusemark, Casey J.; Ledvina, Aaron R.; Coon, Joshua J.; Belshaw, Peter J.

    2008-01-01

    Electrospray ionization (ESI) of denatured proteins produces a mass spectrum with a broad distribution of multiply charged ions. Attaching fixed positive charges, specifically quaternary ammonium groups, to proteins at their carboxylic acid groups generates substantially higher charge states compared to the corresponding unmodified proteins in positive-mode ESI. Ion-ion reactions of these modified proteins with reagent anions leads to charge reduction by proton transfer. These proton transfer reactions cannot remove charge from the quaternary ammonium groups, which do not have a proton to transfer to the anion. Thus, one might expect charge reduction to stop at a single charge state equal to the number of fixed charges on the modified protein. However, ion-ion reactions yield charge states lower than this number of fixed charges due to anion attachment (adduction) to the proteins. Charge reduction via ion-molecule reactions involving gas-phase bases also give adducts on the modified protein ions in low charge states. Such adducts are avoided by keeping the ions in charge states well above the number of fixed charges. In the present work protein ions were selectively “parked” within an ion trap mass spectrometer in a high charge state by mild radiofrequency excitation that dramatically slows their ion-ion reaction rate—a technique termed “ion parking”. The combination of ion parking with the fixed-charge modified proteins permits generation of a large population of ions in a single, very high charge state. PMID:19802328

  19. The zinc finger protein ZPR1 is a potential modifier of spinal muscular atrophy

    PubMed Central

    Ahmad, Saif; Wang, Yi; Shaik, Gouse M.; Burghes, Arthur H.; Gangwani, Laxman

    2012-01-01

    Spinal muscular atrophy (SMA) is caused by mutation of the Survival Motor Neurons 1 (SMN1) gene and is characterized by degeneration of spinal motor neurons. The severity of SMA is primarily influenced by the copy number of the SMN2 gene. Additional modifier genes that lie outside the SMA locus exist and one gene that could modify SMA is the Zinc Finger Protein (ZPR1) gene. To test the significance of ZPR1 downregulation in SMA, we examined the effect of reduced ZPR1 expression in mice with mild and severe SMA. We report that the reduced ZPR1 expression causes increase in the loss of motor neurons, hypermyelination in phrenic nerves, increase in respiratory distress and disease severity and reduces the lifespan of SMA mice. The deficiency of SMN-containing sub-nuclear bodies correlates with the severity of SMA. ZPR1 is required for the accumulation of SMN in sub-nuclear bodies. Further, we report that ZPR1 overexpression increases levels of SMN and promotes accumulation of SMN in sub-nuclear bodies in SMA patient fibroblasts. ZPR1 stimulates neurite growth and rescues axonal growth defects in SMN-deficient spinal cord neurons from SMA mice. These data suggest that the severity of disease correlates negatively with ZPR1 levels and ZPR1 may be a protective modifier of SMA. PMID:22422766

  20. A Three-protein Charge Zipper Stabilizes a Complex Modulating Bacterial Gene Silencing*

    PubMed Central

    Cordeiro, Tiago N.; García, Jesús; Bernadó, Pau; Millet, Oscar; Pons, Miquel

    2015-01-01

    The Hha/YmoA nucleoid-associated proteins help selectively silence horizontally acquired genetic material, including pathogenicity and antibiotic resistance genes and their maintenance in the absence of selective pressure. Members of the Hha family contribute to gene silencing by binding to the N-terminal dimerization domain of H-NS and modifying its selectivity. Hha-like proteins and the H-NS N-terminal domain are unusually rich in charged residues, and their interaction is mostly electrostatic-driven but, nonetheless, highly selective. The NMR-based structural model of the complex between Hha/YmoA and the H-NS N-terminal dimerization domain reveals that the origin of the selectivity is the formation of a three-protein charge zipper with interdigitated complementary charged residues from Hha and the two units of the H-NS dimer. The free form of YmoA shows collective microsecond-millisecond dynamics that can by measured by NMR relaxation dispersion experiments and shows a linear dependence with the salt concentration. The number of residues sensing the collective dynamics and the population of the minor form increased in the presence of H-NS. Additionally, a single residue mutation in YmoA (D43N) abolished H-NS binding and the dynamics of the apo-form, suggesting the dynamics and binding are functionally related. PMID:26085102

  1. Heterologous Protein Secretion in Lactobacilli with Modified pSIP Vectors

    PubMed Central

    Karlskås, Ingrid Lea; Maudal, Kristina; Axelsson, Lars; Rud, Ida; Eijsink, Vincent G. H.; Mathiesen, Geir

    2014-01-01

    We describe new variants of the modular pSIP-vectors for inducible gene expression and protein secretion in lactobacilli. The basic functionality of the pSIP system was tested in Lactobacillus strains representing 14 species using pSIP411, which harbors the broad-host-range Lactococcus lactis SH71rep replicon and a β-glucuronidase encoding reporter gene. In 10 species, the inducible gene expression system was functional. Based on these results, three pSIP vectors with different signal peptides were modified by replacing their narrow-host-range L. plantarum 256rep replicon with SH71rep and transformed into strains of five different species of Lactobacillus. All recombinant strains secreted the target protein NucA, albeit with varying production levels and secretion efficiencies. The Lp_3050 derived signal peptide generally resulted in the highest levels of secreted NucA. These modified pSIP vectors are useful tools for engineering a wide variety of Lactobacillus species. PMID:24614815

  2. Variants within the SP110 nuclear body protein modify risk of canine degenerative myelopathy

    PubMed Central

    Ivansson, Emma L.; Kozyrev, Sergey V.; Murén, Eva; Körberg, Izabella Baranowska; Swofford, Ross; Koltookian, Michele; Tonomura, Noriko; Zeng, Rong; Kolicheski, Ana L.; Hansen, Liz; Katz, Martin L.; Johnson, Gayle C.; Johnson, Gary S.; Coates, Joan R.; Lindblad-Toh, Kerstin

    2016-01-01

    Canine degenerative myelopathy (DM) is a naturally occurring neurodegenerative disease with similarities to some forms of amyotrophic lateral sclerosis (ALS). Most dogs that develop DM are homozygous for a common superoxide dismutase 1 gene (SOD1) mutation. However, not all dogs homozygous for this mutation develop disease. We performed a genome-wide association analysis in the Pembroke Welsh Corgi (PWC) breed comparing DM-affected and -unaffected dogs homozygous for the SOD1 mutation. The analysis revealed a modifier locus on canine chromosome 25. A haplotype within the SP110 nuclear body protein (SP110) was present in 40% of affected compared with 4% of unaffected dogs (P = 1.5 × 10−5), and was associated with increased probability of developing DM (P = 4.8 × 10−6) and earlier onset of disease (P = 1.7 × 10−5). SP110 is a nuclear body protein involved in the regulation of gene transcription. Our findings suggest that variations in SP110-mediated gene transcription may underlie, at least in part, the variability in risk for developing DM among PWCs that are homozygous for the disease-related SOD1 mutation. Further studies are warranted to clarify the effect of this modifier across dog breeds. PMID:27185954

  3. Human-Modified Permafrost Complexes in Urbanized Areas of the Russian North

    NASA Astrophysics Data System (ADS)

    Grebenets, V. I.; Streletskiy, D. A.

    2013-12-01

    Economic development in permafrost regions is accompanied by modification of natural geocryological conditions. Drastic landscape transformations in urbanized areas on permafrost are characterized by changes of heat and moisture exchange in permafrost - atmosphere system, and by engineering and technogenic influence upon the frozen ground, leading to alteration of its physical, thermal and mechanical properties. In northern cities this leads to overall increase of ground temperature relative to undisturbed areas and intensification of hazardous cryogenic processes in areas under engineering development, which together leads to reduction in stability of geotechnical environment. For example, deformations of structures in Norilsk district, Northern Siberia, in the last 15 years, became much more abundant than those revealed throughout the previous 50 years. About 250 large buildings in the local towns were deformed considerably due to deterioration of geocryological conditions, about 100 structures were functioning in emergency state, and almost 50 nine- and five-storey houses, built in the 1960-80s, have been recently disassembled. Increase in accident risk for various facilities (water and oil pipelines, industrial enterprises, etc.) enhances the technogenic pressure on permafrost, leading to the new milestone of changes in permafrost characteristics, i.e. to creation of 'another reality' of geocryological conditions. Social and natural factors dictate clustered spatial pattern of industrial development in permafrost regions. Cryogenic processes within the urban areas on permafrost are seldom similar with those under the natural conditions as intensity, duration and extent of the processes changes under technogenic impacts. Moreover, new cryogenic processes and phenomena may occur, which have not been typical for a given region. This makes mapping and characterization of these processes difficult task. Peculiar natural-technogenic geocryological complexes (NTGC

  4. The ionic liquid isopropylammonium formate as a mobile phase modifier to improve protein stability during reversed phase liquid chromatography.

    PubMed

    Zhou, Ling; Danielson, Neil D

    2013-12-01

    The room temperature ionic liquid isopropylammonium formate (IPAF) is studied as a reversed phase HPLC mobile phase modifier for separation of native proteins using a polymeric column and the protein stability is compared to that using acetonitrile (MeCN) as the standard organic mobile phase modifier. A variety of important proteins with different numbers of subunits are investigated, including non-subunit proteins: albumin, and amyloglucosidase (AMY); a two subunit protein: thyroglobulin (THY); and four subunit proteins: glutamate dehydrogenase (GDH) and lactate dehydrogenase (LDH). A significant enhancement in protein stability is observed in the chromatograms upon using IPAF as a mobile phase modifier. The first sharper peak at about 2min represented protein in primarily the native form and a second broader peak more retained at about 5-6min represented substantially denatured or possibly aggregated protein. The investigated proteins (except LDH) could maintain the native form within up to 50% IPAF, while a mobile phase, with as low as 10% MeCN, induced protein denaturation. The assay for pyruvate using LDH has further shown that enzymatic activity can be maintained up to 30% IPAF in water in contrast to no activity using 30% MeCN.

  5. Computational prediction of methylation types of covalently modified lysine and arginine residues in proteins.

    PubMed

    Deng, Wankun; Wang, Yongbo; Ma, Lili; Zhang, Ying; Ullah, Shahid; Xue, Yu

    2016-05-30

    Protein methylation is an essential posttranslational modification (PTM) mostly occurs at lysine and arginine residues, and regulates a variety of cellular processes. Owing to the rapid progresses in the large-scale identification of methylation sites, the available data set was dramatically expanded, and more attention has been paid on the identification of specific methylation types of modification residues. Here, we briefly summarized the current progresses in computational prediction of methylation sites, which provided an accurate, rapid and efficient approach in contrast with labor-intensive experiments. We collected 5421 methyllysines and methylarginines in 2592 proteins from the literature, and classified most of the sites into different types. Data analyses demonstrated that different types of methylated proteins were preferentially involved in different biological processes and pathways, whereas a unique sequence preference was observed for each type of methylation sites. Thus, we developed a predictor of GPS-MSP, which can predict mono-, di- and tri-methylation types for specific lysines, and mono-, symmetric di- and asymmetrical di-methylation types for specific arginines. We critically evaluated the performance of GPS-MSP, and compared it with other existing tools. The satisfying results exhibited that the classification of methylation sites into different types for training can considerably improve the prediction accuracy. Taken together, we anticipate that our study provides a new lead for future computational analysis of protein methylation, and the prediction of methylation types of covalently modified lysine and arginine residues can generate more useful information for further experimental manipulation.

  6. Methods for protein complex prediction and their contributions towards understanding the organisation, function and dynamics of complexes.

    PubMed

    Srihari, Sriganesh; Yong, Chern Han; Patil, Ashwini; Wong, Limsoon

    2015-09-14

    Complexes of physically interacting proteins constitute fundamental functional units responsible for driving biological processes within cells. A faithful reconstruction of the entire set of complexes is therefore essential to understand the functional organisation of cells. In this review, we discuss the key contributions of computational methods developed till date (approximately between 2003 and 2015) for identifying complexes from the network of interacting proteins (PPI network). We evaluate in depth the performance of these methods on PPI datasets from yeast, and highlight their limitations and challenges, in particular at detecting sparse and small or sub-complexes and discerning overlapping complexes. We describe methods for integrating diverse information including expression profiles and 3D structures of proteins with PPI networks to understand the dynamics of complex formation, for instance, of time-based assembly of complex subunits and formation of fuzzy complexes from intrinsically disordered proteins. Finally, we discuss methods for identifying dysfunctional complexes in human diseases, an application that is proving invaluable to understand disease mechanisms and to discover novel therapeutic targets. We hope this review aptly commemorates a decade of research on computational prediction of complexes and constitutes a valuable reference for further advancements in this exciting area.

  7. Assembly of Photosynthetic Antenna Protein / Pigments Complexes from Algae and Plants for Development of Nanobiodevices

    DTIC Science & Technology

    2012-07-10

    Assembly of Photosynthetic Antenna Protein / Pigments Complexes from Algae and Plants for Development of Nanobiodevices Key...Assembly of Photosynthetic Antenna Protein / Pigments Complexes from Algae and Plants for Development of Nanobiodevices 5a. CONTRACT NUMBER...unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT This is the report of a project to use photosynthetic antenna pigment complexes from algae and plants as

  8. Sampling small-scale and large-scale conformational changes in proteins and molecular complexes

    NASA Astrophysics Data System (ADS)

    Yun, Mi-Ran; Mousseau, N.; Derreumaux, P.

    2007-03-01

    Sampling of small-scale and large-scale motions is important in various computational tasks, such as protein-protein docking and ligand binding. Here, we report further development and applications of the activation-relaxation technique for internal coordinate space trajectories (ARTIST). This method generates conformational moves of any complexity and size by identifying and crossing well-defined saddle points connecting energy minima. Simulations on two all-atom proteins and three protein complexes containing between 70 and 300 amino acids indicate that ARTIST opens the door to the full treatment of all degrees of freedom in dense systems such as protein-protein complexes.

  9. The cellular uptake of meta-tetra(hydroxyphenyl)chlorin entrapped in organically modified silica nanoparticles is mediated by serum proteins

    NASA Astrophysics Data System (ADS)

    Compagnin, Chiara; Baù, Luca; Mognato, Maddalena; Celotti, Lucia; Miotto, Giovanni; Arduini, Maria; Moret, Francesca; Fede, Caterina; Selvestrel, Francesco; Rio Echevarria, Iria M.; Mancin, Fabrizio; Reddi, Elena

    2009-08-01

    Nanosized objects made of various materials are gaining increasing attention as promising vehicles for the delivery of therapeutic and diagnostic agents for cancer. Photodynamic therapy (PDT) appears to offer a very attractive opportunity to implement drug delivery systems since no release of the sensitizer is needed to obtain the therapeutic effect and the design of the nanovehicle should be much easier. The aim of our study was to investigate the use of organic-modified silica nanoparticles (NPs) for the delivery of the second-generation photosensitizer meta-tetra(hydroxyphenyl)chlorin (mTHPC) to cancer cells in vitro. mTHPC was entrapped in NPs (~33 nm diameter) in a monomeric form which produced singlet oxygen with a high efficiency. In aqueous media with high salt concentrations, the NPs underwent aggregation and precipitation but their stability could be preserved in the presence of foetal bovine serum. The cellular uptake, localization and phototoxic activity of mTHPC was determined comparatively in human oesophageal cancer cells after its delivery by the NPs and the standard solvent ethanol/poly(ethylene glycol) 400/water (20:30:50, by vol). The NP formulation reduced the cellular uptake of mTHPC by about 50% in comparison to standard solvent while it did not affect the concentration-dependent photokilling activity of mTHPC and its intracellular localization. Fluorescence resonance energy transfer measurements, using NPs with mTHPC physically entrapped and a cyanine covalently linked, and ultracentrifugation experiments indicated that mTHPC is transferred from NPs to serum proteins when present in the medium. However, the coating of the NP surface with poly(ethylene glycol) largely prevented the transfer to proteins. In conclusion, mTHPC is rapidly transferred from the uncoated nanoparticles to the serum proteins and then internalized by the cells as a protein complex, irrespective of its modality of delivery.

  10. EssE Promotes Staphylococcus aureus ESS-Dependent Protein Secretion To Modify Host Immune Responses during Infection.

    PubMed

    Anderson, Mark; Ohr, Ryan Jay; Aly, Khaled A; Nocadello, Salvatore; Kim, Hwan K; Schneewind, Chloe E; Schneewind, Olaf; Missiakas, Dominique

    2017-01-01

    Staphylococcus aureus, an invasive pathogen of humans and animals, requires a specialized ESS pathway to secrete proteins (EsxA, EsxB, EsxC, and EsxD) during infection. Expression of ess genes is required for S. aureus establishment of persistent abscess lesions following bloodstream infection; however, the mechanisms whereby effectors of the ESS pathway implement their virulence strategies were heretofore not known. Here, we show that EssE forms a complex with other members of the ESS secretion pathway and its substrates, promoting the secretion of EsxA, EsxB, EsxC, EsxD, and EssD. During bloodstream infection of mice, the S. aureus essE mutant displays defects in host cytokine responses, specifically in the production of interleukin-12 (IL-12) (p40/p70) and the suppression of RANTES (CCL5), activators of TH1 T cell responses and immune cell chemotaxis, respectively. Thus, essE-mediated secretion of protein effectors via the ESS pathway may enable S. aureus to manipulate host immune responses by modifying the production of cytokines.

  11. Synaptonemal Complex Protein 3 Transcript Analysis in Breast Cancer

    PubMed Central

    MOBASHERI, Maryam Beigom; SHIRKOOHI, Reza; MODARRESSI, Mohammad Hossein

    2016-01-01

    Background: Breast cancer is the most frequent cancer in women. Cancer/Testis antigens are immunogenic proteins ectopically expressed in human neoplasms. Synaptonemal complex protein 3 (SYCP3) belongs to cancer/testis genes family involved in meiotic events and spermatogenesis. The aim of this study was to express analysis of SYCP3 in breast cancer and validate it as a breast cancer biomarker. Methods: Expression of SYCP3 transcripts in 47 breast tumors, 6 breast cancer cell lines (MCF7, SKBR3, T47D, BT474, MDA-MB-231 and MDA-MB 468), 5 normal breast and 2 testis tissues was studied by Real Time RT-PCR reaction. The reference genes phosphoglucomutase 1 and hypoxanthine guanine phosphoribosyl transferase were used as reactions normalizers. The software tool REST 2009 was applied for statistical analysis of the data. The research was conducted from Apr 2014 to August 2015 in Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran. Results: All of the studied breast cancer cell lines showed very high levels of SYCP3 overexpression in comparison to normal breast (P=0.001) and even to normal testis (P=0.001), except for MCF7 cell line. Breast tumors showed moderately increasing in transcript changes in comparison to normal breast. Conclusion: SYCP3 is a known testis-specific gene, but interestingly five out of six studied breast cancer of cell lines showed higher expression levels of SYCP3 in comparison to normal testis and normal breast tissues. SYCP3 has critical role in cell division with known interaction with the tumor suppressor genes, BRCA1 and BRCA2, which are critical genes in breast cancer. PMID:28053928

  12. Sequential peptide affinity purification system for the systematic isolation and identification of protein complexes from Escherichia coli.

    PubMed

    Babu, Mohan; Butland, Gareth; Pogoutse, Oxana; Li, Joyce; Greenblatt, Jack F; Emili, Andrew

    2009-01-01

    Biochemical purification of affinity-tagged proteins in combination with mass spectrometry methods is increasingly seen as a cornerstone of systems biology, as it allows for the systematic genome-scale characterization of macromolecular protein complexes, representing demarcated sets of stably interacting protein partners. Accurate and sensitive identification of both the specific and shared polypeptide components of distinct complexes requires purification to near homogeneity. To this end, a sequential peptide affinity (SPA) purification system was developed to enable the rapid and efficient isolation of native Escherichia coli protein complexes (J Proteome Res 3:463-468, 2004). SPA purification makes use of a dual-affinity tag, consisting of three modified FLAG sequences (3X FLAG) and a calmodulin binding peptide (CBP), spaced by a cleavage site for tobacco etch virus (TEV) protease (J Proteome Res 3:463-468, 2004). Using the lambda-phage Red homologous recombination system (PNAS 97:5978-5983, 2000), a DNA cassette, encoding the SPA-tag and a selectable marker flanked by gene-specific targeting sequences, is introduced into a selected locus in the E. coli chromosome so as to create a C-terminal fusion with the protein of interest. This procedure aims for near-endogenous levels of tagged protein production in the recombinant bacteria to avoid spurious, non-specific protein associations (J Proteome Res 3:463-468, 2004). In this chapter, we describe a detailed, optimized protocol for the tagging, purification, and subsequent mass spectrometry-based identification of the subunits of even low-abundance bacterial protein complexes isolated as part of an ongoing large-scale proteomic study in E. coli (Nature 433:531-537, 2005).

  13. Glucose, fructose and sucrose increase the solubility of protein-tannin complexes and at high concentration, glucose and sucrose interfere with bisulphite bleaching of wine pigments.

    PubMed

    Harbertson, James F; Yuan, Chunlong; Mireles, Maria S; Hanlin, Rachel L; Downey, Mark O

    2013-05-01

    Wines were modified with increasing sugar concentrations and decreasing tannin concentrations and analysed by a combination of protein precipitation and bisulphite bleaching. Increasing sugar concentration decreased the precipitation of tannin and protein-precipitable polymeric pigments (PPP). The use of a hydrogen bond disruptor (urea) to reduce protein-tannin and protein-pigment complex formation showed that the effect of sugar concentration occurred by increasing the solubility of the tannin-protein complex, not by interfering with protein-tannin complex formation. By increasing the solubility of pigment-protein complexes, non-protein-precipitable polymeric pigments (nPPP) appeared to increase. There was also an increase in total polymeric pigments at each tannin concentration with increasing glucose and sucrose concentration, indicating that sugar concentration might also affect bisulphite bleaching of wine pigments. While a significant effect of sugar concentration on tannin-protein complex solubility was observed, these effects were greatest at sugar concentrations far in excess of normal wine making conditions. Under normal wine making conditions, sugar concentration will have a negligible effect on protein-precipitable tannin, PPP and nPPP concentrations.

  14. Trace analysis of cefotaxime at carbon paste electrode modified with novel Schiff base Zn(II) complex.

    PubMed

    Nigam, Preeti; Mohan, Swati; Kundu, Subir; Prakash, Rajiv

    2009-02-15

    Cefotaxime a third generation cephalosporin drug estimation in nanomolar concentration range is demonstrated for the first time in aqueous and human blood samples using novel Schiff base octahedral Zn(II) complex. The cefotaxime electrochemistry is studied over graphite paste and Zn(II) complex modified graphite paste capillary electrodes in H(2)SO(4) (pH 2.3) using cyclic voltammetry and differential pulse voltammetry. Cefotaxime enrichment is observed over Zn(II) complex modified graphite paste electrode probably due to interaction of functional groups of cefotaxime with Zn(II) complex. Possible interactions between metal complex and cefotaxime drug is examined by UV-vis and electrochemical quartz crystal microbalance (EQCM) techniques and further supported by voltammetric analysis. Differential pulse voltammetry (DPV) with modified electrode is applied for the determination of cefotaxime in acidified aqueous and blood samples. Cefotaxime estimation is successfully demonstrated in the range of 1-500 nM for aqueous samples and 0.1-100 microM in human blood samples. Reproducibility, accuracy and repeatability of the method are checked by triplicate reading for large number of samples. The variation in the measurements is obtained less than 10% without any interference of electrolyte or blood constituents.

  15. Targeting a dynamic protein-protein interaction: fragment screening against the malaria myosin A motor complex.

    PubMed

    Douse, Christopher H; Vrielink, Nina; Wenlin, Zhang; Cota, Ernesto; Tate, Edward W

    2015-01-01

    Motility is a vital feature of the complex life cycle of Plasmodium falciparum, the apicomplexan parasite that causes human malaria. Processes such as host cell invasion are thought to be powered by a conserved actomyosin motor (containing myosin A or myoA), correct localization of which is dependent on a tight interaction with myosin A tail domain interacting protein (MTIP) at the inner membrane of the parasite. Although disruption of this protein-protein interaction represents an attractive means to investigate the putative roles of myoA-based motility and to inhibit the parasitic life cycle, no small molecules have been identified that bind to MTIP. Furthermore, it has not been possible to obtain a crystal structure of the free protein, which is highly dynamic and unstable in the absence of its natural myoA tail partner. Herein we report the de novo identification of the first molecules that bind to and stabilize MTIP via a fragment-based, integrated biophysical approach and structural investigations to examine the binding modes of hit compounds. The challenges of targeting such a dynamic system with traditional fragment screening workflows are addressed throughout.

  16. Transient weak protein-protein complexes transfer heme across the cell wall of Staphylococcus aureus.

    PubMed

    Villareal, Valerie A; Spirig, Thomas; Robson, Scott A; Liu, Mengyao; Lei, Benfang; Clubb, Robert T

    2011-09-14

    Iron is an essential nutrient for the bacterial pathogen Staphylococcus aureus . Heme in hemoglobin (Hb) is the most abundant source of iron in the human body and during infections is captured by S. aureus using iron-regulated surface determinant (Isd) proteins. A central step in this process is the transfer of heme between the cell wall associated IsdA and IsdC hemoproteins. Biochemical evidence indicates that heme is transferred via an activated IsdA:heme:IsdC heme complex. Transfer is rapid and occurs up to 70,000 times faster than indirect mechanisms in which heme is released into the solvent. To gain insight into the mechanism of transfer, we modeled the structure of the complex using NMR paramagnetic relaxation enhancement (PRE) methods. Our results indicate that IsdA and IsdC transfer heme via an ultraweak affinity "handclasp" complex that juxtaposes their respective 3(10) helices and β7/β8 loops. Interestingly, PRE also identified a set of transient complexes that could represent high-energy pre-equilibrium encounter species that form prior to the stereospecific handclasp complex. Targeted amino acid mutagenesis and stopped-flow measurements substantiate the functional relevance of a PRE-derived model, as mutation of interfacial side chains significantly slows the rate of transfer. IsdA and IsdC bind heme using NEAr Transporter (NEAT) domains that are conserved in many species of pathogenic Gram-positive bacteria. Heme transfer in these microbes may also occur through structurally similar transient stereospecific complexes.

  17. Experimental Reactivation of Pulmonary Mycobacterium avium Complex Infection in a Modified Cornell-Like Murine Model

    PubMed Central

    Kim, Woo Sik; Kim, Jong-Seok; Kim, Hong Min; Kwon, Kee Woong; Cho, Sang-Nae; Shin, Sung Jae; Koh, Won-Jung

    2015-01-01

    The latency and reactivation of Mycobacterium tuberculosis infection has been well studied. However, there have been few studies of the latency and reactivation of Mycobacterium avium complex (MAC), the most common etiological non-tuberculous Mycobacterium species next to M. tuberculosis in humans worldwide. We hypothesized that latent MAC infections can be reactivated following immunosuppression after combination chemotherapy with clarithromycin and rifampicin under experimental conditions. To this end, we employed a modified Cornell-like murine model of tuberculosis and investigated six strains consisting of two type strains and four clinical isolates of M. avium and M. intracellulare. After aerosol infection of each MAC strain, five to six mice per group were euthanized at 2, 4, 10, 18, 28 and 35 weeks post-infection, and lungs were sampled to analyze bacterial burden and histopathology. One strain of each species maintained a culture-negative state for 10 weeks after completion of 6 weeks of chemotherapy, but was reactivated after 5 weeks of immunosuppression in the lungs with dexamethasone (three out of six mice in M. avium infection) or sulfasalazine (four out of six mice in both M. avium and M. intracellulare infection). The four remaining MAC strains exhibited decreased bacterial loads in response to chemotherapy; however, they remained at detectable levels and underwent regrowth after immunosuppression. In addition, the exacerbated lung pathology demonstrated a correlation with bacterial burden after reactivation. In conclusion, our results suggest the possibility of MAC reactivation in an experimental mouse model, and experimentally demonstrate that a compromised immune status can induce reactivation and/or regrowth of MAC infection. PMID:26406237

  18. High-throughput isolation and characterization of untagged membrane protein complexes: outer membrane complexes of Desulfovibrio vulgaris.

    PubMed

    Walian, Peter J; Allen, Simon; Shatsky, Maxim; Zeng, Lucy; Szakal, Evelin D; Liu, Haichuan; Hall, Steven C; Fisher, Susan J; Lam, Bonita R; Singer, Mary E; Geller, Jil T; Brenner, Steven E; Chandonia, John-Marc; Hazen, Terry C; Witkowska, H Ewa; Biggin, Mark D; Jap, Bing K

    2012-12-07

    Cell membranes represent the "front line" of cellular defense and the interface between a cell and its environment. To determine the range of proteins and protein complexes that are present in the cell membranes of a target organism, we have utilized a "tagless" process for the system-wide isolation and identification of native membrane protein complexes. As an initial subject for study, we have chosen the Gram-negative sulfate-reducing bacterium Desulfovibrio vulgaris. With this tagless methodology, we have identified about two-thirds of the outer membrane- associated proteins anticipated. Approximately three-fourths of these appear to form homomeric complexes. Statistical and machine-learning methods used to analyze data compiled over multiple experiments revealed networks of additional protein-protein interactions providing insight into heteromeric contacts made between proteins across this region of the cell. Taken together, these results establish a D. vulgaris outer membrane protein data set that will be essential for the detection and characterization of environment-driven changes in the outer membrane proteome and in the modeling of stress response pathways. The workflow utilized here should be effective for the global characterization of membrane protein complexes in a wide range of organisms.

  19. PCE-FR: A Novel Method for Identifying Overlapping Protein Complexes in Weighted Protein-Protein Interaction Networks Using Pseudo-Clique Extension Based on Fuzzy Relation.

    PubMed

    Cao, Buwen; Luo, Jiawei; Liang, Cheng; Wang, Shulin; Ding, Pingjian

    2016-10-01

    Identifying overlapping protein complexes in protein-protein interaction (PPI) networks can provide insight into cellular functional organization and thus elucidate underlying cellular mechanisms. Recently, various algorithms for protein complexes detection have been developed for PPI networks. However, majority of algorithms primarily depend on network topological feature and/or gene expression profile, failing to consider the inherent biological meanings between protein pairs. In this paper, we propose a novel method to detect protein complexes using pseudo-clique extension based on fuzzy relation (PCE-FR). Our algorithm operates in three stages: it first forms the nonoverlapping protein substructure based on fuzzy relation and then expands each substructure by adding neighbor proteins to maximize the cohesive score. Finally, highly overlapped candidate protein complexes are merged to form the final protein complex set. Particularly, our algorithm employs the biological significance hidden in protein pairs to construct edge weight for protein interaction networks. The experiment results show that our method can not only outperform classical algorithms such as CFinder, ClusterONE, CMC, RRW, HC-PIN, and ProRank +, but also achieve ideal overall performance in most of the yeast PPI datasets in terms of composite score consisting of precision, accuracy, and separation. We further apply our method to a human PPI network from the HPRD dataset and demonstrate it is very effective in detecting protein complexes compared to other algorithms.

  20. HAMLET - A protein-lipid complex with broad tumoricidal activity.

    PubMed

    Ho, James C S; Nadeem, Aftab; Svanborg, Catharina

    2017-01-15

    HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells) is a tumoricidal protein-lipid complex with broad effects against cancer cells of different origin. The therapeutic potential is emphasized by a high degree of specificity for tumor tissue. Here we review early studies of HAMLET, in collaboration with the Orrenius laboratory, and some key features of the subsequent development of the HAMLET project. The early studies focused on the apoptotic response that accompanies death in HAMLET treated tumor cells and the role of mitochondria in this process. In subsequent studies, we have identified a sequence of interactions that starts with the membrane integration of HAMLET and the activation of ion fluxes followed by HAMLET internalization, progressive inhibition of MAPK kinases and GTPases and sorting of HAMLET to different cellular compartments, including the nuclei. Therapeutic efficacy of HAMLET has been demonstrated in animal models of glioblastoma, bladder cancer and intestinal cancer. In clinical studies, HAMLET has been shown to target skin papillomas and bladder cancers. The findings identify HAMLET as a new drug candidate with promising selectivity for cancer cells and a strong therapeutic potential.

  1. Adenosine deaminase complexing protein (ADCP) immunoreactivity in colorectal adenocarcinoma.

    PubMed

    ten Kate, J; van den Ingh, H F; Khan, P M; Bosman, F T

    1986-04-15

    Immunoreactive adenosine deaminase complexing protein (ADCP) was studied in 91 human colorectal adenocarcinomas. The expression of ADCP was correlated with that of secretory component (SC) and carcinoembryonic antigen (CEA), with the histological grade and the Dukes' stage of the carcinomas. The histological grade was scored semi-quantitatively according to 5 structural and 4 cytological variables. ADCP expression was observed in 3 different staining patterns, namely: (1) diffuse cytoplasmic (77% of the carcinomas); (2) granular cytoplasmic (13%); and (3) membrane-associated (66%). These patterns were observed alone or in combination. Eleven percent of the carcinomas exhibited no ADCP immunoreactivity. Linear regression analysis showed that the expression of ADCP correlates with that of SC and CEA. However, no significant correlation emerged between the histological parameters or the Dukes' stage and any of the immunohistological parameters. Comparison of the histological characteristics of carcinomas exhibiting little or no ADCP immunoreactivity with those showing extensive immunoreactivity, showed that membranous ADCP immunoreactivity occurs more frequently in well-differentiated carcinomas. Structural parameters showed a better correlation with membranous ADCP expression than the cytological variables. It is concluded that membranous expression of ADCP and CEA are indicators of a high level of differentiation as reflected primarily in the structural characteristics of the tumor.

  2. Morphological remodeling of C. elegans neurons during aging is modified by compromised protein homeostasis.

    PubMed

    Vayndorf, Elena M; Scerbak, Courtney; Hunter, Skyler; Neuswanger, Jason R; Toth, Marton; Parker, J Alex; Neri, Christian; Driscoll, Monica; Taylor, Barbara E

    Understanding cellular outcomes, such as neuronal remodeling, that are common to both healthy and diseased aging brains is essential to the development of successful brain aging strategies. Here, we used Caenorhabdits elegans to investigate how the expression of proteotoxic triggers, such as polyglutamine (polyQ)-expanded huntingtin and silencing of proteostasis regulators, such as the ubiquitin-proteasome system (UPS) and protein clearance components, may impact the morphological remodeling of individual neurons as animals age. We examined the effects of disrupted proteostasis on the integrity of neuronal cytoarchitecture by imaging a transgenic C. elegans strain in which touch receptor neurons express the first 57 amino acids of the human huntingtin (Htt) gene with expanded polyQs (128Q) and by using neuron-targeted RNA interference in adult wild-type neurons to knockdown genes encoding proteins involved in proteostasis. We found that proteostatic challenges conferred by polyQ-expanded Htt and knockdown of specific genes involved in protein homeostasis can lead to morphological changes that are restricted to specific domains of specific neurons. The age-associated branching of PLM neurons is suppressed by N-ter polyQ-expanded Htt expression, whereas ALM neurons with polyQ-expanded Htt accumulate extended outgrowths and other soma abnormalities. Furthermore, knockdown of genes important for ubiquitin-mediated degradation, lysosomal function, and autophagy modulated these age-related morphological changes in otherwise normal neurons. Our results show that the expression of misfolded proteins in neurodegenerative disease such as Huntington's disease modifies the morphological remodeling that is normally associated with neuronal aging. Our results also show that morphological remodeling of healthy neurons during aging can be regulated by the UPS and other proteostasis pathways. Collectively, our data highlight a model in which morphological remodeling during neuronal

  3. Morphological remodeling of C. elegans neurons during aging is modified by compromised protein homeostasis

    PubMed Central

    Vayndorf, Elena M; Scerbak, Courtney; Hunter, Skyler; Neuswanger, Jason R; Toth, Marton; Parker, J Alex; Neri, Christian; Driscoll, Monica; Taylor, Barbara E

    2016-01-01

    Understanding cellular outcomes, such as neuronal remodeling, that are common to both healthy and diseased aging brains is essential to the development of successful brain aging strategies. Here, we used Caenorhabdits elegans to investigate how the expression of proteotoxic triggers, such as polyglutamine (polyQ)-expanded huntingtin and silencing of proteostasis regulators, such as the ubiquitin–proteasome system (UPS) and protein clearance components, may impact the morphological remodeling of individual neurons as animals age. We examined the effects of disrupted proteostasis on the integrity of neuronal cytoarchitecture by imaging a transgenic C. elegans strain in which touch receptor neurons express the first 57 amino acids of the human huntingtin (Htt) gene with expanded polyQs (128Q) and by using neuron-targeted RNA interference in adult wild-type neurons to knockdown genes encoding proteins involved in proteostasis. We found that proteostatic challenges conferred by polyQ-expanded Htt and knockdown of specific genes involved in protein homeostasis can lead to morphological changes that are restricted to specific domains of specific neurons. The age-associated branching of PLM neurons is suppressed by N-ter polyQ-expanded Htt expression, whereas ALM neurons with polyQ-expanded Htt accumulate extended outgrowths and other soma abnormalities. Furthermore, knockdown of genes important for ubiquitin-mediated degradation, lysosomal function, and autophagy modulated these age-related morphological changes in otherwise normal neurons. Our results show that the expression of misfolded proteins in neurodegenerative disease such as Huntington’s disease modifies the morphological remodeling that is normally associated with neuronal aging. Our results also show that morphological remodeling of healthy neurons during aging can be regulated by the UPS and other proteostasis pathways. Collectively, our data highlight a model in which morphological remodeling during

  4. Saliva proteins of vector Culicoides modify structure and infectivity of bluetongue virus particles.

    PubMed

    Darpel, Karin E; Langner, Kathrin F A; Nimtz, Manfred; Anthony, Simon J; Brownlie, Joe; Takamatsu, Haru-Hisa; Mellor, Philip S; Mertens, Peter P C

    2011-03-14

    Bluetongue virus (BTV) and epizootic haemorrhagic disease virus (EHDV) are related orbiviruses, transmitted between their ruminant hosts primarily by certain haematophagous midge vectors (Culicoides spp.). The larger of the BTV outer-capsid proteins, 'VP2', can be cleaved by proteases (including trypsin or chymotrypsin), forming infectious subviral particles (ISVP) which have enhanced infectivity for adult Culicoides, or KC cells (a cell-line derived from C. sonorensis). We demonstrate that VP2 present on purified virus particles from 3 different BTV strains can also be cleaved by treatment with saliva from adult Culicoides. The saliva proteins from C. sonorensis (a competent BTV vector), cleaved BTV-VP2 more efficiently than those from C. nubeculosus (a less competent/non-vector species). Electrophoresis and mass spectrometry identified a trypsin-like protease in C. sonorensis saliva, which was significantly reduced or absent from C. nubeculosus saliva. Incubating purified BTV-1 with C. sonorensis saliva proteins also increased their infectivity for KC cells ∼10 fold, while infectivity for BHK cells was reduced by 2-6 fold. Treatment of an 'eastern' strain of EHDV-2 with saliva proteins of either C. sonorensis or C. nubeculosus cleaved VP2, but a 'western' strain of EHDV-2 remained unmodified. These results indicate that temperature, strain of virus and protein composition of Culicoides saliva (particularly its protease content which is dependent upon vector species), can all play a significant role in the efficiency of VP2 cleavage, influencing virus infectivity. Saliva of several other arthropod species has previously been shown to increase transmission, infectivity and virulence of certain arboviruses, by modulating and/or suppressing the mammalian immune response. The findings presented here, however, demonstrate a novel mechanism by which proteases in Culicoides saliva can also directly modify the orbivirus particle structure, leading to increased

  5. Chemically modified diamond-like carbon (DLC) for protein enrichment and profiling by MALDI-MS.

    PubMed

    Najam-ul-Haq, M; Rainer, M; Huck, C W; Ashiq, M N; Bonn, G K

    2012-08-01

    The development of new high throughput methods based on different materials with chemical modifications for protein profiling of complex mixtures leads towards biomarkers; used particularly for early diagnosis of a disease. In this work, diamond-like carbon (DLC) is developed and optimized for serum protein profiling by matrix-assisted laser/desorption ionization mass spectrometry (MALDI-MS). This study is carried out in connection with a material-based approach, termed as material-enhanced laser desorption ionization mass spectrometry. DLC is selected as carrier surface which provides large surface to volume ratio and offers high sensitivity. DLC has a dual role of working as MALDI target while acting as an interface for protein profiling by specifically binding peptides and proteins out of serum samples. Serum constituents are bound through immobilized metal ion affinity chromatography (IMAC) functionality, created through glycidyl methacrylate polymerization under ultraviolet light followed by further derivatization with iminodiacetic acid and copper ion loading. Scanning electron microscopy highlights the morphological characteristics of DLC surface. It could be demonstrated that IMAC functionalized DLC coatings represent a powerful material in trapping biomolecules for their further analysis by MALDI-MS resulting in improved sensitivity, specificity and capacity in comparison to other protein-profiling methods.

  6. Functional Properties of Pea (Pisum sativum, L.) Protein Isolates Modified with Chymosin

    PubMed Central

    Barać, Miroljub; Čabrilo, Slavica; Pešić, Mirjana; Stanojević, Slađana; Pavlićević, Milica; Maćej, Ognjen; Ristić, Nikola

    2011-01-01

    In this paper, the effects of limited hydrolysis on functional properties, as well as on protein composition of laboratory-prepared pea protein isolates, were investigated. Pea protein isolates were hydrolyzed for either 15, 30 and 60 min with recombined chymosin (Maxiren). The effect of enzymatic action on solubility, emulsifying and foaming properties at different pH values (3.0; 5.0; 7.0 and 8.0) was monitored. Chymosin can be a very useful agent for improvement of functional properties of isolates. Action of this enzyme caused a low degree of hydrolysis (3.9–4.7%), but improved significantly functional properties of pea protein isolates (PPI), especially at lower pH values (3.0–5.0). At these pH values all hydrolysates had better solubility, emulsifying activity and foaming stability, while longer-treated samples (60 min) formed more stable emulsions at higher pH values (7.0, 8.0) than initial isolates. Also, regardless of pH value, all hydrolysates showed improved foaming ability. A moderate positive correlation between solubility and emulsifying activity index (EAI) (0.74) and negative correlation between solubility and foam stability (−0.60) as well as between foam stability (FS) and EAI (−0.77) were observed. Detected enhancement in functional properties was a result of partial hydrolysis of insoluble protein complexes. PMID:22272078

  7. Stability and Immunogenicity of Hypoallergenic Peanut Protein-Polyphenol Complexes During In Vitro Pepsin Digestion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Allergenic peanut proteins are relatively resistant to digestion, and if digested, metabolized peptides tend to remain large and immunoreactive, triggering allergic reactions in sensitive individuals. In this study, the stability of hypoallergenic peanut protein-polyphenol complexes was evaluated d...

  8. Design and construction of self-assembling supramolecular protein complexes using artificial and fusion proteins as nanoscale building blocks.

    PubMed

    Kobayashi, Naoya; Arai, Ryoichi

    2017-02-01

    The central goal of nanobiotechnology is to design and construct novel biomaterials of nanometer sizes. In this short review, we describe recent progress of several approaches for designing and creating artificial self-assembling protein complexes and primarily focus on the following biotechnological strategies for using artificial and fusion proteins as nanoscale building blocks: fusion proteins designed for symmetrical self-assembly; three-dimensional domain-swapped oligomers; self-assembling designed coiled-coil peptide modules; metal-directed self-assembling engineered proteins; computationally designed self-assembling de novo proteins; and self-assembling protein nanobuilding blocks (PN-Blocks) using an intermolecularly folded dimeric de novo protein. These state-of-the-art nanobiotechnologies for designing supramolecular protein complexes will facilitate the development of novel functional nanobiomaterials.

  9. Spectroscopic detection of fluorescent protein marker gene activity in genetically modified plants

    NASA Astrophysics Data System (ADS)

    Liew, O. W.; Chong, Jenny P. C.; Asundi, Anand K.

    2005-04-01

    This work focuses on developing a portable fibre optic fluorescence analyser for rapid identification of genetically modified plants tagged with a fluorescent marker gene. Independent transgenic tobacco plant lines expressing the enhanced green fluorescence protein (EGFP) gene were regenerated following Agrobacterium-mediated gene transfer. Molecular characterisation of these plant lines was carried out at the DNA level by PCR screening to confirm their transgenic status. Conventional transgene expression analysis was then carried out at the RNA level by RT-PCR and at the protein level by Western blotting using anti-GFP rabbit antiserum. The amount of plant-expressed EGFP on a Western blot was quantified against known amounts of purified EGFP by scanning densitometry. The expression level of EGFP in transformed plants was found to range from 0.1 - 0.6% of total extractable protein. A comparison between conventional western analysis of transformants and direct spectroscopic quantification using the fibre optic fluorescence analyser was made. The results showed that spectroscopic measurements of fluorescence emission from strong EGFP expressors correlated positively with Western blot data. However, the fluorescence analyser was also able to identify weakly expressing plant transformants below the detection limit of colorimetric Western blotting.

  10. A Genetically Modified Protein-Based Hydrogel for 3D Culture of AD293 Cells

    PubMed Central

    Du, Xiao; Wang, Jingyu; Diao, Wentao; Wang, Ling; Long, Jiafu; Zhou, Hao

    2014-01-01

    Hydrogels have strong application prospects for drug delivery, tissue engineering and cell therapy because of their excellent biocompatibility and abundant availability as scaffolds for drugs and cells. In this study, we created hybrid hydrogels based on a genetically modified tax interactive protein-1 (TIP1) by introducing two or four cysteine residues in the primary structure of TIP1. The introduced cysteine residues were crosslinked with a four-armed poly (ethylene glycol) having their arm ends capped with maleimide residues (4-armed-PEG-Mal) to form hydrogels. In one form of the genetically modification, we incorporated a peptide sequence ‘GRGDSP’ to introduce bioactivity to the protein, and the resultant hydrogel could provide an excellent environment for a three dimensional cell culture of AD293 cells. The AD293 cells continued to divide and displayed a polyhedron or spindle-shape during the 3-day culture period. Besides, AD293 cells could be easily separated from the cell-gel constructs for future large-scale culture after being cultured for 3 days and treating hydrogel with trypsinase. This work significantly expands the toolbox of recombinant proteins for hydrogel formation, and we believe that our hydrogel will be of considerable interest to those working in cell therapy and controlled drug delivery. PMID:25233088

  11. Extracellular Release and Signaling by Heat Shock Protein 27: Role in Modifying Vascular Inflammation

    PubMed Central

    Batulan, Zarah; Pulakazhi Venu, Vivek Krishna; Li, Yumei; Koumbadinga, Geremy; Alvarez-Olmedo, Daiana Gisela; Shi, Chunhua; O’Brien, Edward R.

    2016-01-01

    Heat shock protein 27 (HSP27) is traditionally viewed as an intracellular chaperone protein with anti-apoptotic properties. However, recent data indicate that a number of heat shock proteins, including HSP27, are also found in the extracellular space where they may signal via membrane receptors to alter gene transcription and cellular function. Therefore, there is increasing interest in better understanding how HSP27 is released from cells, its levels and composition in the extracellular space, and the cognate cell membrane receptors involved in effecting cell signaling. In this paper, the knowledge to date, as well as some emerging paradigms about the extracellular function of HSP27 is presented. Of particular interest is the role of HSP27 in attenuating atherogenesis by modifying lipid uptake and inflammation in the plaque. Moreover, the abundance of HSP27 in serum is an emerging new biomarker for ischemic events. Finally, HSP27 replacement therapy may represent a novel therapeutic opportunity for chronic inflammatory disorders, such as atherosclerosis. PMID:27507972

  12. Biotin-Streptavidin Affinity Purification of RNA-Protein Complexes Assembled In Vitro.

    PubMed

    Hou, Shuai; Shi, Lei; Lei, Haixin

    2016-01-01

    RNA-protein complexes are essential for the function of different RNAs, yet purification of specific RNA-protein complexes can be complicated and is a major obstacle in understanding the mechanism of regulatory RNAs. Here we present a protocol to purify RNA-protein complexes assembled in vitro based on biotin-streptavidin affinity. In vitro transcribed RNA is labeled with (32)P and biotin, ribonucleoprotein particles or RNPs are assembled by incubation of RNA in nuclear extract and fractionated using gel filtration, and RNP fractions are pooled for biotin-streptavidin affinity purification. The amount of RNA-protein complexes purified following this protocol is sufficient for mass spectrometry.

  13. Qualitative and Quantitative Protein Complex Prediction Through Proteome-Wide Simulations.

    PubMed

    Rizzetto, Simone; Priami, Corrado; Csikász-Nagy, Attila

    2015-10-01

    Despite recent progress in proteomics most protein complexes are still unknown. Identification of these complexes will help us understand cellular regulatory mechanisms and support development of new drugs. Therefore it is really important to establish detailed information about the composition and the abundance of protein complexes but existing algorithms can only give qualitative predictions. Herein, we propose a new approach based on stochastic simulations of protein complex formation that integrates multi-source data--such as protein abundances, domain-domain interactions and functional annotations--to predict alternative forms of protein complexes together with their abundances. This method, called SiComPre (Simulation based Complex Prediction), achieves better qualitative prediction of yeast and human protein complexes than existing methods and is the first to predict protein complex abundances. Furthermore, we show that SiComPre can be used to predict complexome changes upon drug treatment with the example of bortezomib. SiComPre is the first method to produce quantitative predictions on the abundance of molecular complexes while performing the best qualitative predictions. With new data on tissue specific protein complexes becoming available SiComPre will be able to predict qualitative and quantitative differences in the complexome in various tissue types and under various conditions.

  14. Stabilization of a binary protein complex by intein-mediated cyclization.

    PubMed

    Jeffries, Cy M; Graham, Stephen C; Stokes, Philippa H; Collyer, Charles A; Guss, J Mitchell; Matthews, Jacqueline M

    2006-11-01

    The study of protein-protein interactions can be hampered by the instability of one or more of the protein complex components. In this study, we showed that intein-mediated cyclization can be used to engineer an artificial intramolecular cyclic protein complex between two interacting proteins: the largely unstable LIM-only protein 4 (LMO4) and an unstructured domain of LIM domain binding protein 1 (ldb1). The X-ray structure of the cyclic complex is identical to noncyclized versions of the complex. Chemical and thermal denaturation assays using intrinsic tryptophan fluorescence and dynamic light scattering were used to compare the relative stabilities of the cyclized complex, the intermolecular (or free) complex, and two linear versions of the intramolecular complex (in which the interacting domains of LMO4 and ldb1 were fused, via a flexible linker, in either orientation). In terms of resistance to denaturation, the cyclic complex is the most stable variant and the intermolecular complex is the least stable; however, the two linear intramolecular variants show significant differences in stability. These differences appear to be related to the relative contact order (the average distance in sequence between residues that make contacts within a structure) of key binding residues at the interface of the two proteins. Thus, the restriction of the more stable component of a complex may enhance stability to a greater extent than restraining less stable components.

  15. High-throughput Isolation and Characterization of Untagged Membrane Protein Complexes: Outer Membrane Complexes of Desulfovibrio vulgaris

    PubMed Central

    2012-01-01

    Cell membranes represent the “front line” of cellular defense and the interface between a cell and its environment. To determine the range of proteins and protein complexes that are present in the cell membranes of a target organism, we have utilized a “tagless” process for the system-wide isolation and identification of native membrane protein complexes. As an initial subject for study, we have chosen the Gram-negative sulfate-reducing bacterium Desulfovibrio vulgaris. With this tagless methodology, we have identified about two-thirds of the outer membrane- associated proteins anticipated. Approximately three-fourths of these appear to form homomeric complexes. Statistical and machine-learning methods used to analyze data compiled over multiple experiments revealed networks of additional protein–protein interactions providing insight into heteromeric contacts made between proteins across this region of the cell. Taken together, these results establish a D. vulgaris outer membrane protein data set that will be essential for the detection and characterization of environment-driven changes in the outer membrane proteome and in the modeling of stress response pathways. The workflow utilized here should be effective for the global characterization of membrane protein complexes in a wide range of organisms. PMID:23098413

  16. Site specific chemoselective labelling of proteins with robust and highly sensitive Ru(II) bathophenanthroline complexes.

    PubMed

    Uzagare, Matthew C; Claussnitzer, Iris; Gerrits, Michael; Bannwarth, Willi

    2012-03-21

    The bioorthogonal and chemoselective fluorescence labelling of several cell-free synthesized proteins containing a site-specifically incorporated azido amino acid was possible using different alkyne-functionalized Ru(II) bathophenanthroline complexes. We were able to achieve a selective labelling even in complex mixtures of proteins despite the fact that ruthenium dyes normally show a high tendency for unspecific interactions with proteins and are commonly used for total staining of proteins. Since the employed Ru complexes are extremely robust, photo-stable and highly sensitive, the approach should be applicable to the production of labelled proteins for single molecule spectroscopy and fluorescence-based interaction studies.

  17. Affinity proteomics to study endogenous protein complexes: Pointers, pitfalls, preferences and perspectives

    PubMed Central

    LaCava, John; Molloy, Kelly R.; Taylor, Martin S.; Domanski, Michal; Chait, Brian T.; Rout, Michael P.

    2015-01-01

    Dissecting and studying cellular systems requires the ability to specifically isolate distinct proteins along with the co-assembled constituents of their associated complexes. Affinity capture techniques leverage high affinity, high specificity reagents to target and capture proteins of interest along with specifically associated proteins from cell extracts. Affinity capture coupled to mass spectrometry (MS)-based proteomic analyses has enabled the isolation and characterization of a wide range of endogenous protein complexes. Here, we outline effective procedures for the affinity capture of protein complexes, highlighting best practices and common pitfalls. PMID:25757543

  18. Determination of disulfide array and subunit structure of taste-modifying protein, miraculin.

    PubMed

    Igeta, H; Tamura, Y; Nakaya, K; Nakamura, Y; Kurihara, Y

    1991-09-20

    The taste-modifying protein, miraculin (Theerasilp, S. et al. (1989) J. Biol. Chem. 264, 6655-6659) has seven cysteine residues in a molecule composed of 191 amino acid residues. The formation of three intrachain disulfide bridges at Cys-47-Cys-92, Cys-148-Cys-159 and Cys-152-Cys-155 and one interchain disulfide bridge at Cys-138 was determined by amino acid sequencing and composition analysis of cystine-containing peptides isolated by HPLC. The presence of an interchain disulfide bridge was also supported by the fact that the cystine peptide containing Cys-138 showed a negative color test for the free sulfhydryl group and a positive test after reduction with dithiothreitol. The molecular mass of non-reduced miraculin (43 kDa) in sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was nearly twice the calculated molecular mass based on the amino acid sequence and the carbohydrate content of reduced miraculin (25 kDa). The molecular mass of native miraculin determined by low-angle laser light scattering was 90 kDa. Application of a crude extract of miraculin to a Sephadex G-75 column indicated that the taste-modifying activity appears at 52 kDa. It was concluded that native miraculin in pure form is a tetramer of the 25 kDa-peptide and native miraculin in crude state or denatured, non-reduced miraculin in pure form is a dimer of the peptide. Both tetramer miraculin and native dimer miraculin in crude state had the taste-modifying activity.

  19. Expression of domains for protein-protein interaction of nucleotide excision repair proteins modifies cancer cell sensitivity to platinum derivatives and genomic stability.

    PubMed

    Jordheim, Lars Petter; Cros-Perrial, Emeline; Matera, Eva-Laure; Bouledrak, Karima; Dumontet, Charles

    2014-10-01

    Nucleotide excision repair (NER) is involved in the repair of DNA damage caused by platinum derivatives and has been shown to decrease the cytotoxic activity of these drugs. Because protein-protein interactions are essential for NER activity, we transfected human cancer cell lines (A549 and HCT116) with plasmids coding the amino acid sequences corresponding to the interacting domains between excision repair cross-complementation group 1 (ERCC1) and xeroderma pigmentosum, complementation group A (XPA), as well as ERCC1 and xeroderma pigmentosum, complementation group F (XPF), all NER proteins. Using the 3-(4,5-dimethyl-2 thiazoyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and annexin V staining, we showed that transfected A549 cells were sensitized 1.2-2.2-fold to carboplatin and that transfected HCT116 cells were sensitized 1.4-5.4-fold to oxaliplatin in vitro. In addition, transfected cells exhibited modified in vivo sensitivity to the same drugs. Finally, in particular cell models of the interaction between ERCC1 and XPF, DNA repair was decreased, as evidenced by increased phosphorylation of the histone 2AX after exposure to mitomycin C, and genomic instability was increased, as determined by comparative genomic hybridization studies. The results indicate that the interacting peptides act as dominant negatives and decrease NER activity through inhibition of protein-protein interactions.

  20. Protein determination using graphene oxide-aptamer modified gold nanoparticles in combination with Tween 80.

    PubMed

    Gao, Li; Li, Qin; Li, Raoqi; Deng, Zebin; Brady, Brendan; Xia, Ni; Chen, Guimin; Zhou, Yang; Xia, Hengchuan; Chen, Keping; Shi, Haixia

    2016-10-19

    Recently, graphene oxide (GO) has shown superiority for disease detection arising from its unique physical and chemical properties. However, proteins adsorbed on the surface of GO prevent sensitivity improvement in fluorescence-based detection methods. In this paper, a label-free method based on aptamer modified gold nanoparticles (GNPs) combined with Tween 80 was shown to solve this problem using the detection of thrombin as an example. An aptamer was designed and bound to thrombin by changing its conformation. Tween 80 was used for rapid and reproducible synthesis of stable DNA-functionalized GNPs and prevented the thrombin from nonspecific binding to GO. Thrombin was detected with a limit of 0.68 pM by taking advantage of the efficient cross-linking effect of aptamer-GNPs to GO. The sensor was validated by determining thrombin concentration in human blood serum samples. The results indicate that this method has promising analytical application in medical diagnostic.

  1. Imaging murine NALT following intranasal immunization with flagellin-modified circumsporozoite protein malaria vaccines

    PubMed Central

    Nacer, Adéla; Carapau, Daniel; Mitchell, Robert; Meltzer, Abby; Shaw, Alan; Frevert, Ute; Nardin, Elizabeth H

    2013-01-01

    Intranasal (IN) immunization with a Plasmodium circumsporozoite (CS) protein conjugated to flagellin, a TLR5 agonist, was found to elicit antibody mediated protective immunity in our previous murine studies. To better understand IN elicited immune responses, we examined the nasopharynx-associated lymphoid tissue (NALT) in immunized mice and the interaction of flagellin-modified CS with murine dendritic cells (DC) in vitro. NALT of immunized mice contained a predominance of germinal center (GC) B cells and increased numbers of CD11c+ DC localized beneath the epithelium and within the GC T cell area. We detected microfold (M) cells distributed throughout the NALT epithelial cell layer and DC dendrites extending into the nasal cavity which could potentially function in luminal CS antigen uptake. Flagellin-modified CS taken up by DC in vitro was initially localized within intracellular vesicles followed by a cytosolic distribution. Vaccine modifications to enhance delivery to the NALT and specifically target NALT APC populations will advance development of an efficacious needle-free vaccine for the 40% of the world's population at risk of malaria. PMID:23820750

  2. Complete purification and characterization of the taste-modifying protein, miraculin, from miracle fruit.

    PubMed

    Theerasilp, S; Kurihara, Y

    1988-08-15

    The taste-modifying protein, miraculin, has the unusual property of modifying a sour taste into a sweet taste. Previous attempts to isolate miraculin from deeply colored alkaline extracts of the miracle fruit were unsuccessful. We found that miraculin is extracted with 0.5 M NaCl solution. The extracted solution is colorless and shows the strong sweet-inducing activity. Miraculin was purified from the extracted solution by ammonium sulfate fractionation, CM-Sepharose ion-exchange chromatography, and concanavalin A-Sepharose affinity chromatography. The purified miraculin thus obtained gave a single sharp peak in reverse phase high performance liquid chromatography, indicating that it is highly pure. The sample also gave a single band having molecular weight 28,000 in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This value was much lower than the values reported previously (40,000-48,000). The amino acid composition of the purified miraculin was determined. Sequence analysis of the purified miraculin indicated that it is composed of a pure single polypeptide and identified 20 amino-terminal amino acids. The purified miraculin contained as much as 13.9% of sugars, which consisted of glucosamine, mannose, galactose, xylose, and fucose in a molar ratio of 3.03:3.00:0.69:0.96:2.12.

  3. Protein-modified shear mode film bulk acoustic resonator for bio-sensing applications

    NASA Astrophysics Data System (ADS)

    Wang, Jingjing; Liu, Weihui; Xu, Yan; Chen, Da; Li, Dehua; Zhang, Luyin

    2014-09-01

    In this paper, we present a shear mode film bulk acoustic biosensor based on micro-electromechanical technology. The film bulk acoustic biosensor is a diaphragmatic structure consisting of a lateral field excited ZnO piezoelectric film piezoelectric stack built on an Si3N4 membrane. The device works at near 1.6 GHz with Q factors of 579 in water and 428 in glycerol. A frequency shift of 5.4 MHz and a small decline in the amplitude are found for the measurements in glycerol compared with those in water because of the viscous damping derived from the adjacent glycerol. For bio-sensing demonstration, the resonator was modified with biotin molecule to detect protein-ligand interactions in real-time and in situ. The resonant frequency of the biotin-modified device drops rapidly and gradually reaches equilibrium when exposed to the streptavidin solution due to the biotin-streptavidin interaction. The proposed film bulk acoustic biosensor shows promising applications for disease diagnostics, prognosis, and drug discovery.

  4. Isotope coded protein labeling coupled immunoprecipitation (ICPL-IP): a novel approach for quantitative protein complex analysis from native tissue.

    PubMed

    Vogt, Andreas; Fuerholzner, Bettina; Kinkl, Norbert; Boldt, Karsten; Ueffing, Marius

    2013-05-01

    High confidence definition of protein interactions is an important objective toward the understanding of biological systems. Isotope labeling in combination with affinity-based isolation of protein complexes has increased in accuracy and reproducibility, yet, larger organisms--including humans--are hardly accessible to metabolic labeling and thus, a major limitation has been its restriction to small animals, cell lines, and yeast. As composition as well as the stoichiometry of protein complexes can significantly differ in primary tissues, there is a great demand for methods capable to combine the selectivity of affinity-based isolation as well as the accuracy and reproducibility of isotope-based labeling with its application toward analysis of protein interactions from intact tissue. Toward this goal, we combined isotope coded protein labeling (ICPL)(1) with immunoprecipitation (IP) and quantitative mass spectrometry (MS). ICPL-IP allows sensitive and accurate analysis of protein interactions from primary tissue. We applied ICPL-IP to immuno-isolate protein complexes from bovine retinal tissue. Protein complexes of immunoprecipitated β-tubulin, a highly abundant protein with known interactors as well as the lowly expressed small GTPase RhoA were analyzed. The results of both analyses demonstrate sensitive and selective identification of known as well as new protein interactions by our method.

  5. Modified C-reactive protein interacts with platelet glycoprotein Ibα.

    PubMed

    Boncler, Magdalena; Rywaniak, Joanna; Szymański, Jacek; Potempa, Lawrence A; Rychlik, Błażej; Watała, Cezary

    2011-01-01

    Herein, we investigated the possible mechanisms by which recombinant modified CRP(m(r)CRP) modulates blood platelet function. Modified CRP could activate blood platelets and stimulate their adhesion and aggregation in the absence of any other physiological stimuli. Preincubation of isolated blood platelets with m(r)CRP at a concentration as low as 2 μg/ml resulted in significant platelet degranulation (fraction of CD62-positive platelets increased 2-fold, p < 0.0002), and at concentrations of 20 μg/ml and 100 μg/ml, increased exposure of the platelet procoagulant surface was observed (expression of annexin V-positive platelets increased to 5.7 ± 1.0% and 10.4 ± 2.2%, respectively, p < 0.03, vs. 2.9 ± 0.2% in control). Furthermore, m(r)CRP (100 μg/ml) strongly augmented spontaneous and ADP-induced fibrinogen binding to platelets (p < 0.05), platelet adhesion to fibrinogen and platelet aggregation. Using the Biacore™ surface plasmon resonance technique and glycoprotein Ibα (GPIbα) immobilized on the sensor surface, we demonstrated direct binding between platelet GPIbα and m(r)CRP. Binding of m(r)CRP to GPIbα and C1q was also observed by ELISA, irrespective of the immobilized ligand. These outcomes strongly support a role of the GPIb-IX-V complex in the interactions of m(r)CRP with blood platelets.

  6. Observation of two different fractal structures in nanoparticle, protein and surfactant complexes

    SciTech Connect

    Mehan, Sumit Kumar, Sugam Aswal, V. K.

    2014-04-24

    Small angle neutron scattering has been carried out from a complex of nanoparticle, protein and surfactant. Although all the components are similarly (anionic) charged, we have observed strong interactions in their complex formation. It is characterized by the coexistence of two different mass fractal structures. The first fractal structure is originated from the protein and surfactant interaction and second from the depletion effect of first fractal structure leading the nanoparticle aggregation. The fractal structure of protein-surfactant complex represents to bead necklace structure of micelle-like clusters of surfactant formed along the unfolded protein chain. Its fractal dimension depends on the surfactant to protein ratio (r) and decreases with the increase in r. However, fractal dimension of nanoparticle aggregates in nanoparticle-protein complex is found to be independent of protein concentration and governed by the diffusion limited aggregation like morphology.

  7. Solid-phase N-terminal peptide enrichment study by optimizing trypsin proteolysis on homoarginine modified proteins by mass spectrometry

    PubMed Central

    Chowdhury, Saiful M.; Munske, Gerhard R.; Yang, Jonathon; Zhukova, Daria; Nguen, Hamilton; Bruce, James E.

    2014-01-01

    Rationale Proteolytic cleavages generate active precursor proteins by creating new N-termini in the proteins. A number of strategies recently published regarding the enrichment of original or newly formed N-terminal peptides using guanidination of lysine residues and amine reactive reagents. For effective enrichment of N-terminal peptides, the efficiency of trypsin proteolysis on homoarginine (guanidinated) modified proteins must be understood and simple and versatile solid-phase N-terminal capture strategies should be developed. Methods We present here a mass spectrometry-based study to evaluate and optimize the trypsin proteolysis on a guanidinated modified protein. Trypsin proteolysis was studied using different amount of trypsin to modified protein ratios. To capture the original N-termini, after guanidination of proteins, original N-termini were acetylated and the proteins were digested with trypsin. The newly formed N-terminal tryptic peptides were captured with a new amine reactive acid-cleavable solid-phase reagent. The original N-terminal peptides were then collected from the supernatant of the solution. Results We demonstrated a detailed study of the efficiency of enzyme trypsin on homoarginine modified proteins. We observed that the rate of hydrolysis of homoarginine residues compared to their lysine/arginine counter parts were slower but generally cleaved after an overnight digestion period depending on the protein to protease concentration ratios. Selectivity of the solid-phase N-terminal reagent was studied by enrichment of original N-terminal peptides from two standard proteins, ubiquitin and RNaseS. Conclusion We found enzyme trypsin is active in guanidinated form of protein depending on enzyme to protein concentrations, time and the proximity of arginine residues in the sequence. The novel solid-phase capture reagent also successfully enriched N-terminal peptides from the standard protein mixtures. We believe this trypsin proteolysis study on

  8. Modified diglycol-amides for actinide separation: solvent extraction and time-resolved laser fluorescence spectroscopy complexation studies

    SciTech Connect

    Wilden, A.; Modolo, G.; Lange, S.; Sadowski, F.; Bosbach, D.; Beele, B.B.; Panak, P.J.; Skerencak-Frech, A.; Geist, A.; Iqbal, M.; Verboom, W.

    2013-07-01

    In this work, the back-bone of the diglycolamide-structure of the TODGA extractant was modified by adding one or two methyl groups to the central methylene carbon-atoms. The influence of these structural modifications on the extraction behavior of trivalent actinides and lanthanides and other fission products was studied in solvent extraction experiments. The addition of methyl groups to the central methylene carbon atoms leads to reduced distribution ratios, also for Sr(II). This reduced extraction efficiency for Sr(II) is beneficial for process applications, as the co-extraction of Sr(II) can be avoided, resulting in an easier process design. The use of these modified diglycol-amides in solvent extraction processes is discussed. Furthermore, the complexation of Cm(III) and Eu(III) to the ligands was studied using Time-Resolved-Laser-Fluorescence-Spectroscopy (TRLFS). The complexes were characterized by slope analysis and conditional stability constants were determined.

  9. Identifying subcellular localizations of mammalian protein complexes based on graph theory with a random forest algorithm.

    PubMed

    Li, Zhan-Chao; Lai, Yan-Hua; Chen, Li-Li; Chen, Chao; Xie, Yun; Dai, Zong; Zou, Xiao-Yong

    2013-04-05

    In the post-genome era, one of the most important and challenging tasks is to identify the subcellular localizations of protein complexes, and further elucidate their functions in human health with applications to understand disease mechanisms, diagnosis and therapy. Although various experimental approaches have been developed and employed to identify the subcellular localizations of protein complexes, the laboratory technologies fall far behind the rapid accumulation of protein complexes. Therefore, it is highly desirable to develop a computational method to rapidly and reliably identify the subcellular localizations of protein complexes. In this study, a novel method is proposed for predicting subcellular localizations of mammalian protein complexes based on graph theory with a random forest algorithm. Protein complexes are modeled as weighted graphs containing nodes and edges, where nodes represent proteins, edges represent protein-protein interactions and weights are descriptors of protein primary structures. Some topological structure features are proposed and adopted to characterize protein complexes based on graph theory. Random forest is employed to construct a model and predict subcellular localizations of protein complexes. Accuracies on a training set by a 10-fold cross-validation test for predicting plasma membrane/membrane attached, cytoplasm and nucleus are 84.78%, 71.30%, and 82.00%, respectively. And accuracies for the independent test set are 81.31%, 69.95% and 81.00%, respectively. These high prediction accuracies exhibit the state-of-the-art performance of the current method. It is anticipated that the proposed method may become a useful high-throughput tool and plays a complementary role to the existing experimental techniques in identifying subcellular localizations of mammalian protein complexes. The source code of Matlab and the dataset can be obtained freely on request from the authors.

  10. Detection and analysis of protein-protein interactions in organellar and prokaryotic proteomes by native gel electrophoresis: (Membrane) protein complexes and supercomplexes.

    PubMed

    Krause, Frank

    2006-07-01

    It is an essential and challenging task to unravel protein-protein interactions in their actual in vivo context. Native gel systems provide a separation platform allowing the analysis of protein complexes on a rather proteome-wide scale in a single experiment. This review focus on blue-native (BN)-PAGE as the most versatile and successful gel-based approach to separate soluble and membrane protein complexes of intricate protein mixtures derived from all biological sources. BN-PAGE is a charge-shift method with a running pH of 7.5 relying on the gentle binding of anionic CBB dye to all membrane and many soluble protein complexes, leading to separation of protein species essentially according to their size and superior resolution than other fractionation techniques can offer. The closely related colorless-native (CN)-PAGE, whose applicability is restricted to protein species with intrinsic negative net charge, proved to provide an especially mild separation capable of preserving weak protein-protein interactions better than BN-PAGE. The essential conditions determining the success of detecting protein-protein interactions are the sample preparations, e.g. the efficiency/mildness of the detergent solubilization of membrane protein complexes. A broad overview about the achievements of BN- and CN-PAGE studies to elucidate protein-protein interactions in organelles and prokaryotes is presented, e.g. the mitochondrial protein import machinery and oxidative phosphorylation supercomplexes. In many cases, solubilization with digitonin was demonstrated to facilitate an efficient and particularly gentle extraction of membrane protein complexes prone to dissociation by treatment with other detergents. In general, analyses of protein interactomes should be carried out by both BN- and CN-PAGE.

  11. Assembly of phage phi 29 genome with viral protein p6 into a compact complex.

    PubMed Central

    Gutiérrez, C; Freire, R; Salas, M; Hermoso, J M

    1994-01-01

    The formation of a multimeric nucleoprotein complex by the phage phi 29 dsDNA binding protein p6 at the phi 29 DNA replication origins, leads to activation of viral DNA replication. In the present study, we have analysed protein p6-DNA complexes formed in vitro along the 19.3 kb phi 29 genome by electron microscopy and micrococcal nuclease digestion, and estimated binding parameters. Under conditions that greatly favour protein-DNA interaction, the saturated phi 29 DNA-protein p6 complex appears as a rigid, rod-like, homogeneous structure. Complex formation was analysed also by a psoralen crosslinking procedure that did not disrupt complexes. The whole phi 29 genome appears, under saturating conditions, as an irregularly spaced array of complexes approximately 200-300 bp long; however, the size of these complexes varies from approximately 2 kb to 130 bp. The minimal size of the complexes, confirmed by micrococcal nuclease digestion, probably reflects a structural requirement for stability. The values obtained for the affinity constant (K(eff) approximately 10(5) M-1) and the cooperativity parameter (omega approximately 100) indicate that the complex is highly dynamic. These results, together with the high abundance of protein p6 in infected cells, lead us to propose that protein p6-DNA complexes could have, at least at some stages, during infection, a structural role in the organization of the phi 29 genome into a nucleoid-type, compact nucleoprotein complex. Images PMID:8306969

  12. The orthopoxvirus 68-kilodalton ankyrin-like protein is essential for DNA replication and complete gene expression of modified vaccinia virus Ankara in nonpermissive human and murine cells.

    PubMed

    Sperling, Karin M; Schwantes, Astrid; Staib, Caroline; Schnierle, Barbara S; Sutter, Gerd

    2009-06-01

    Modified vaccinia virus Ankara (MVA) is a highly attenuated and replication-deficient vaccinia virus (VACV) that is being evaluated as replacement smallpox vaccine and candidate viral vector. MVA lacks many genes associated with virulence and/or regulation of virus tropism. The 68-kDa ankyrin-like protein (68k-ank) is the only ankyrin repeat-containing protein that is encoded by the MVA genome and is highly conserved throughout the Orthopoxvirus genus. We showed previously that 68k-ank is composed of ankyrin repeats and an F-box-like domain and forms an SCF ubiquitin ligase complex together with the cellular proteins Skp1a and Cullin-1. We now report that 68k-ank (MVA open reading frame 186R) is an essential factor for completion of the MVA intracellular life cycle in nonpermissive human and murine cells. Infection of mouse NIH 3T3 and human HaCaT cells with MVA with a deletion of the 68k-ank gene (MVA-Delta68k-ank) was characterized by an extensive reduction of viral intermediate RNA and protein, as well as late transcripts and drastically impaired late protein synthesis. Furthermore, infections with MVA-Delta68k-ank failed to induce the host protein shutoff that is characteristic of VACV infections. Although we demonstrated that proteasome function in general is essential for the completion of the MVA molecular life cycle, we found that a mutant 68k-ank protein with a deletion of the F-box-like domain was able to fully complement the deficiency of MVA-Delta68k-ank to express all classes of viral genes. Thus, our data demonstrate that the 68k-ank protein contains another critical domain that may function independently of SCF ubiquitin ligase complex formation, suggesting multiple activities of this interesting regulatory protein.

  13. Development of an innovative immunoassay for CP4EPSPS and Cry1AB genetically modified protein detection and quantification.

    PubMed

    Ermolli, M; Prospero, A; Balla, B; Querci, M; Mazzeo, A; Van Den Eede, G

    2006-09-01

    An innovative immunoassay, called enzyme-linked immunoabsorbant assay (ELISA) Reverse, based on a new conformation of the solid phase, was developed. The solid support was expressly designed to be immersed directly in liquid samples to detect the presence of protein targets. Its application is proposed in those cases where a large number of samples have to be screened simultaneously or when the simultaneous detection of different proteins is required. As a first application, a quantitative immunoassay for Cry1AB protein in genetically modified maize was optimized. The method was tested using genetically modified organism concentrations from 0.1 to 2.0%. The limit of detection and limit of quantitation of the method were determined as 0.0056 and 0.0168 (expressed as the percentage of genetically modified organisms content), respectively. A qualitative multiplex assay to assess the presence of two genetically modified proteins simultaneously was also established for the case of the Cry1AB and the CP4EPSPS (5-enolpyruvylshikimate-3-phosphate synthase) present in genetically modified maize and soy, respectively.

  14. Toluene 4-Monooxygenase and its Complex with Effector Protein T4moD

    SciTech Connect

    Bailey, Lucas J.; Fox, Brian G.

    2012-10-16

    Toluene 4-monooxygenase (T4MO) is a multiprotein diiron enzyme complex that catalyzes the regiospecific oxidation of toluene to p-cresol. Catalytic function requires the presence of a small protein, called the effector protein. Effector protein exerts substantial control on the diiron hydroxylase catalytic cycle through protein-protein interactions. High-resolution crystal structures of the stoichometric hydroxylase and effector protein complex described here reveal how protein-protein interactions and reduction of the diiron center produce an active site configuration poised for reaction with O{sub 2}. Further information from crystal structures of mutated isoforms of the hydroxylase and a peroxo adduct is combined with catalytic results to give a fuller picture of the geometry of the enzyme-substrate complex used for the high fidelity oxidation of hydrocarbon substrates.

  15. Modified gas chromatographic/mass spectrometric method for determination of daminozide in high protein food products.

    PubMed

    Faughnan, K T; Woodruff, M A

    1991-01-01

    A modified version of the Conditt and Baumgardner gas chromatographic/mass spectroscopic (GC/MS) method for determination of daminozide in peanut butter and raw peanuts is described. Daminozide in the food product is hydrolyzed to unsymmetrical dimethylhydrazine (UDMH) by sodium hydroxide digestion. The generated UDMH is distilled from the food matrix and captured by reaction with salicylaldehyde in a condensation trap. Resulting high pH distillates generated by peanuts and peanut products are adjusted back to a pH of 5-6 through addition of glacial acetic acid. After thermal incubation and extraction into methylene chloride, salicylaldehyde dimethylhydrazone is separated from interferences by capillary GC and quantitated by MS using the selective ion monitoring (SIM) mode. Quantitation of daminozide is based on the ratio of the salicylaldehyde dimethylhydrazone molecular ion (m/z 164) to the molecular ion (m/z 153) of the internal standard, 4-nitroanisole. Confirmation of daminozide identity is determined by relative intensity of the m/z 164 ion to the m/z 120 (C7H4ON) ion. Improved m/z 164 ion intensity and reduction of neighboring interferences due to acetic acid treatment permitted a daminozide detection limit of 0.005 ppm in a 50 g sample and an associated 0.02 ppm limit of quantitation. This modification is specific for high protein samples that generate high pH distillates such as peanuts and peanut products and is not specifically intended for analysis of low protein samples.

  16. Capillary isoelectric focusing of proteins and microorganisms in dynamically modified fused silica with UV detection.

    PubMed

    Horká, Marie; Růzicka, Filip; Horký, Jaroslav; Holá, Veronika; Slais, Karel

    2006-09-01

    We suggest a method for the reproducible and efficient capillary isoelectric focusing of proteins and microorganisms in the pH gradient 3-10. The method involves the segmental injection of the simple ampholytes, the solution of the selected electrolytes, and the sample mixture of bioanalytes and carrier ampholytes to the fused silica capillaries dynamically modified by poly(ethylene glycol), PEG 4000, which is added to the catholyte, the anolyte and injected solutions. In order to receive the reproducible results, the capillaries were rinsed by the mixture of acetone/ethanol between analyses. For the tracing of the pH gradients the low-molecular-mass pI markers were used. The simple proteins and the mixed cultures of microorganisms, Saccharomyces cerevisiae CCM 8191, Escherichia coli CCM 3954, Candida albicans CCM 8180, Candida parapsilosis, Candida krusei, Staphylococcus aureus, Streptococcus agalactiae CCM 6187, Enterococcus faecalis CCM 4224, Staphylococcus epidermidis CCM 4418 and Stenotrophomonas maltophilia, were focused and separated by the method suggested. The minimum detectable number of microbial cells was 5x10(2) to 1x10(3) with on-column UV detection at 280 nm.

  17. Synthesis, characterization, and protein labeling of difunctional magnetic nanoparticles modified with thiazole orange dye

    NASA Astrophysics Data System (ADS)

    Fei, Xuening; Zhu, Huifang; Zhou, Jianguo; Yu, Lu

    2014-03-01

    A dual functional nanoparticle was designed and synthesized by encapsulating magnetic core inside silica particles and subsequently a thiazole orange (TO) dye derivative was modified on the surface of the nanoparticles. The obtained particles were characterized by Fourier transform infrared spectroscope, Uv-Vis spectrophotometer, fluorescence spectrophotometer, transmission electron microscope, dynamic light scattering, etc. The size of preliminary magnetic particles is ca. 7 nm, but after coating a silica layer and dye, the size of particles is increased to ca. 60 nm. The hydrodynamic diameter, water dispersibility, and zeta potential were also determined. The hydrodynamic diameter of particles with silica and dye is 65.2 and 70.5 nm, respectively, with positive zeta potential (25.1, 38.5 mV). Furthermore magnetic properties of the particles were measured and the experimental results suggested that it could meet the requirement of application as magnetic resonance imaging agent. Finally to verify the availability of the particles as fluorescent labeling, protein labeling experiment was performed using bovine serum albumin (BSA) protein and the results showed that the dual functional particle has higher affinity with BSA than TO molecule itself.

  18. Xanthomonas axonopodis pv. citri uses a plant natriuretic peptide-like protein to modify host homeostasis.

    PubMed

    Gottig, Natalia; Garavaglia, Betiana S; Daurelio, Lucas D; Valentine, Alex; Gehring, Chris; Orellano, Elena G; Ottado, Jorgelina

    2008-11-25

    Plant natriuretic peptides (PNPs) are a class of extracellular, systemically mobile molecules that elicit a number of plant responses important in homeostasis and growth. The bacterial citrus pathogen, Xanthomonas axonopodis pv. citri, also contains a gene encoding a PNP-like protein, XacPNP, that shares significant sequence similarity and identical domain organization with plant PNPs but has no homologues in other bacteria. We have expressed and purified XacPNP and demonstrated that the bacterial protein alters physiological responses including stomatal opening in plants. Although XacPNP is not expressed under standard nutrient rich culture conditions, it is strongly induced under conditions that mimic the nutrient poor intercellular apoplastic environment of leaves, as well as in infected tissue, suggesting that XacPNP transcription can respond to the host environment. To characterize the role of XacPNP during bacterial infection, we constructed a XacPNP deletion mutant. The lesions caused by this mutant were more necrotic than those observed with the wild-type, and bacterial cell death occurred earlier in the mutant. Moreover, when we expressed XacPNP in Xanthomonas axonopodis pv. vesicatoria, the transgenic bacteria caused less necrotic lesions in the host than the wild-type. In conclusion, we present evidence that a plant-like bacterial PNP can enable a plant pathogen to modify host responses to create conditions favorable to its own survival.

  19. Selective nanopatterning using citrate-stabilized Au nanoparticles and cystein-modified amphiphilic protein.

    PubMed

    Laaksonen, Päivi; Kivioja, Jani; Paananen, Arja; Kainlauri, Markku; Kontturi, Kyösti; Ahopelto, Jouni; Linder, Markus B

    2009-05-05

    We present an approach where biomolecular self-assembly is used in combination with lithography to produce patterns of metallic nanoparticles on a silicon substrate. This is achieved through a two-step method, resulting in attachment of nanoparticles on desired sites on the sample surfaces, which allowed a detailed characterization. First, a genetically modified hydrophobin protein, NCysHFBI, was attached by self-assembly on a hydrophobic surface or a surface patterned with hydrophobic and hydrophilic domains. The next step was to label the protein layers with 17.8 nm gold nanoparticles, to allow microscopic characterization of the films. Kinetics and extent of attachment of nanoparticles were characterized by UV-vis spectroscopy and transmission electron microscopy. It was shown that the attachment of citrate-stabilized gold nanoparticles was strongly dependent on the electrostatic properties of the capping ligand layer and the density of nanoparticles in the monolayer could be controlled via pH. The resulting nanoparticle assemblies followed the original pattern created by optical lithography in high accuracy. We demonstrate that combining bottom-up and top-down nanotechnological approaches in a good balance can provide very effective ways to produce nanoscale components providing a functional interface between electronics and the biological world.

  20. Leaf Treatments with a Protein-Based Resistance Inducer Partially Modify Phyllosphere Microbial Communities of Grapevine

    PubMed Central

    Cappelletti, Martina; Perazzolli, Michele; Antonielli, Livio; Nesler, Andrea; Torboli, Esmeralda; Bianchedi, Pier L.; Pindo, Massimo; Puopolo, Gerardo; Pertot, Ilaria

    2016-01-01

    Protein derivatives and carbohydrates can stimulate plant growth, increase stress tolerance, and activate plant defense mechanisms. However, these molecules can also act as a nutritional substrate for microbial communities living on the plant phyllosphere and possibly affect their biocontrol activity against pathogens. We investigated the mechanisms of action of a protein derivative (nutrient broth, NB) against grapevine downy mildew, specifically focusing on the effects of foliar treatments on plant defense stimulation and on the composition and biocontrol features of the phyllosphere microbial populations. NB reduced downy mildew symptoms and induced the expression of defense-related genes in greenhouse- and in vitro-grown plants, indicating the activation of grapevine resistance mechanisms. Furthermore, NB increased the number of culturable phyllosphere bacteria and altered the composition of bacterial and fungal populations on leaves of greenhouse-grown plants. Although, NB-induced changes on microbial populations were affected by the structure of indigenous communities originally residing on grapevine leaves, degrees of disease reduction and defense gene modulation were consistent among the experiments. Thus, modifications in the structure of phyllosphere populations caused by NB application could partially contribute to downy mildew control by competition for space or other biocontrol strategies. Particularly, changes in the abundance of phyllosphere microorganisms may provide a contribution to resistance induction, partially affecting the hormone-mediated signaling pathways involved. Modifying phyllosphere populations by increasing natural biocontrol agents with the application of selected nutritional factors can open new opportunities in terms of sustainable plant protection strategies. PMID:27486468

  1. Translationally controlled tumor protein supplemented chitosan modified glass ionomer cement promotes osteoblast proliferation and function.

    PubMed

    Sangsuwan, Jiraporn; Wanichpakorn, Supreya; Kedjarune-Leggat, Ureporn

    2015-09-01

    The objective of this study was to evaluate the effect of translationally controlled tumor protein (TCTP) supplemented in a novel glass ionomer cement (BIO-GIC) on normal human osteoblasts (NHost cells). BIO-GIC was a glass ionomer cement (GIC) modified by adding chitosan and albumin to promote the release of TCTP. NHost cells were seeded on specimens of GIC, GIC+TCTP, BIO-GIC and BIO-GIC+TCTP. Cell proliferation was determined by BrdU assay. It was found that BIO-GIC+TCTP had significantly higher proliferation of cells than other specimens. Bone morphogenetic protein-2 (BMP-2) and osteopontin (OPN) gene expressions assessed by quantitative real time PCR and alkaline phosphatase (ALP) activity were used to determine cell differentiation. Bone cell function was investigated by calcium deposition using alizarin assay. Both BMP-2 and OPN gene expressions of cells cultured on specimens with added TCTP increased gradually up-regulation after day 1 and reached the highest on day 3 then down-regulation on day 7. The ALP activity of cells cultured on BIO-GIC+TCTP for 7 days and calcium content after 14 days were significantly higher than other groups. BIO-GIC+TCTP can promote osteoblast cells proliferation, differentiation and function.

  2. KRIT1 protein depletion modifies endothelial cell behavior via increased vascular endothelial growth factor (VEGF) signaling.

    PubMed

    DiStefano, Peter V; Kuebel, Julia M; Sarelius, Ingrid H; Glading, Angela J

    2014-11-21

    Disruption of endothelial cell-cell contact is a key event in many cardiovascular diseases and a characteristic of pathologically activated vascular endothelium. The CCM (cerebral cavernous malformation) family of proteins (KRIT1 (Krev-interaction trapped 1), PDCD10, and CCM2) are critical regulators of endothelial cell-cell contact and vascular homeostasis. Here we show novel regulation of vascular endothelial growth factor (VEGF) signaling in KRIT1-depleted endothelial cells. Loss of KRIT1 and PDCD10, but not CCM2, increases nuclear β-catenin signaling and up-regulates VEGF-A protein expression. In KRIT1-depleted cells, increased VEGF-A levels led to increased VEGF receptor 2 (VEGFR2) activation and subsequent alteration of cytoskeletal organization, migration, and barrier function and to in vivo endothelial permeability in KRIT1-deficient animals. VEGFR2 activation also increases β-catenin phosphorylation but is only partially responsible for KRIT1 depletion-dependent disruption of cell-cell contacts. Thus, VEGF signaling contributes to modifying endothelial function in KRIT1-deficient cells and microvessel permeability in Krit1(+/-) mice; however, VEGF signaling is likely not the only contributor to disrupted endothelial cell-cell contacts in the absence of KRIT1.

  3. Development of Cy5.5-Labeled Hydrophobically Modified Glycol Chitosan Nanoparticles for Protein Delivery

    NASA Astrophysics Data System (ADS)

    Chin, Amanda

    Therapeutic proteins are often highly susceptible to enzymatic degradation, thus restricting their in vivo stability. To overcome this limitation, delivery systems designed to promote uptake and reduce degradation kinetics have undergone a rapid shift from macro-scale systems to nanomaterial based carriers. Many of these nanomaterials, however, elicit immune responses and may have cytotoxic effects both in vitro and in vivo. The naturally derived polysaccharide chitosan has emerged as a promising biodegradable material and has been utilized for many biomedical applications; nevertheless, its function is often constrained by poor solubility. Glycol chitosan, a derivative of chitosan, can be hydrophobically modified to impart amphiphilic properties that enable the self-assembly into nanoparticles in aqueous media at neutral pH. This nanoparticle system has shown initial success as a therapeutic agent in several model cell culture systems, but little is known about its stability against enzymatic degradation. Therefore, the goal of this research was to investigate the resistance of hydrophobically modified glycol chitosan against enzyme-catalyzed degradation using an in vivo simulated system containing lysozyme. To synthesize the nanoparticles, hydrophobic cholanic acid was first covalently conjugated to glycol chitosan using of N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS). Conjugates were purified by dialysis, lyophilized, and ultra-sonicated to form nanoparticles. Fourier transform infrared (FT-IR) spectroscopy confirmed the binding of 5beta-cholanic acid to the glycol chitosan. Particle size and stability over time were determined with dynamic light scattering (DLS), and particle morphology was evaluated by transmission electron microscopy (TEM). The average diameter of the nanoparticles was approximately 200 nm, which remained stable at 4°C for up to 10 days. Additionally, a near infrared fluorescent (NIRF) dye

  4. 40 CFR 174.505 - Bacillus thuringiensis modified Cry3A protein (mCry3A) in corn; exemption from the requirement of...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... protein (mCry3A) in corn; exemption from the requirement of a tolerance. 174.505 Section 174.505... thuringiensis modified Cry3A protein (mCry3A) in corn; exemption from the requirement of a tolerance. Residues of Bacillus thuringiensis modified Cry3A protein (mCry3A) in corn are exempt from the requirement...

  5. 40 CFR 174.505 - Bacillus thuringiensis modified Cry3A protein (mCry3A) in corn; exemption from the requirement of...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... protein (mCry3A) in corn; exemption from the requirement of a tolerance. 174.505 Section 174.505... thuringiensis modified Cry3A protein (mCry3A) in corn; exemption from the requirement of a tolerance. Residues of Bacillus thuringiensis modified Cry3A protein (mCry3A) in corn are exempt from the requirement...

  6. 40 CFR 174.505 - Bacillus thuringiensis modified Cry3A protein (mCry3A) in corn; exemption from the requirement of...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... protein (mCry3A) in corn; exemption from the requirement of a tolerance. 174.505 Section 174.505... thuringiensis modified Cry3A protein (mCry3A) in corn; exemption from the requirement of a tolerance. Residues of Bacillus thuringiensis modified Cry3A protein (mCry3A) in corn are exempt from the requirement...

  7. 40 CFR 174.505 - Bacillus thuringiensis modified Cry3A protein (mCry3A) in corn; exemption from the requirement of...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... protein (mCry3A) in corn; exemption from the requirement of a tolerance. 174.505 Section 174.505... thuringiensis modified Cry3A protein (mCry3A) in corn; exemption from the requirement of a tolerance. Residues of Bacillus thuringiensis modified Cry3A protein (mCry3A) in corn are exempt from the requirement...

  8. Tuning structure of oppositely charged nanoparticle and protein complexes

    SciTech Connect

    Kumar, Sugam Aswal, V. K.; Callow, P.

    2014-04-24

    Small-angle neutron scattering (SANS) has been used to probe the structures of anionic silica nanoparticles (LS30) and cationic lyszyme protein (M.W. 14.7kD, I.P. ∼ 11.4) by tuning their interaction through the pH variation. The protein adsorption on nanoparticles is found to be increasing with pH and determined by the electrostatic attraction between two components as well as repulsion between protein molecules. We show the strong electrostatic attraction between nanoparticles and protein molecules leads to protein-mediated aggregation of nanoparticles which are characterized by fractal structures. At pH 5, the protein adsorption gives rise to nanoparticle aggregation having surface fractal morphology with close packing of nanoparticles. The surface fractals transform to open structures of mass fractal morphology at higher pH (7 and 9) on approaching isoelectric point (I.P.)

  9. Adenosine deaminase complexing protein (ADCP): a transformation sensitive protein with potentials of a cancer marker.

    PubMed

    Herbschleb-Voogt, E; Ten Kate, J; Meera Khan, P

    1983-01-01

    Several observations by independent investigators in the past have indicated that adenosine deaminase complexing protein (ADCP), present in considerable quantities in certain human tissues, was absent or decreased in the cancers originated from them. During the present study, electrophoretic analysis of adenosine deaminase (ADA) isozymes and radioimmunoassay for ADCP in the primary fibroblasts and the transformed as well as certain tumor derived cell lines have demonstrated that ADCP present in large quantities in the primary cells was absent or nearly absent in the transformed or tumor-derived cell lines. Though the mechanisms involved are not yet clear, the above observations indicate that ADCP has the potentials of a useful marker in the studies on transformed cells and cancer tissues.

  10. Assembly of alphavirus replication complexes from RNA and protein components in a novel trans-replication system in mammalian cells.

    PubMed

    Spuul, Pirjo; Balistreri, Giuseppe; Hellström, Kirsi; Golubtsov, Andrey V; Jokitalo, Eija; Ahola, Tero

    2011-05-01

    For positive-strand RNA viruses, the viral genomic RNA also acts as an mRNA directing the translation of the replicase proteins of the virus. Replication takes place in association with cytoplasmic membranes, which are heavily modified to create specific replication compartments. Here we have expressed by plasmid DNA transfection the large replicase polyprotein of Semliki Forest virus (SFV) in mammalian cells from a nonreplicating mRNA and provided a separate RNA containing the replication signals. The replicase proteins were able to efficiently and specifically replicate the template in trans, leading to accumulation of RNA and marker gene products expressed from the template RNA. The replicase proteins and double-stranded RNA replication intermediates localized to structures similar to those seen in SFV-infected cells. Using correlative light electron microscopy (CLEM) with fluorescent marker proteins to relocate those transfected cells, in which active replication was ongoing, abundant membrane modifications, representing the replication complex spherules, were observed both at the plasma membrane and in intracellular endolysosomes. Thus, replication complexes are faithfully assembled and localized in the trans-replication system. We demonstrated, using CLEM, that the replication proteins alone or a polymerase-negative polyprotein mutant together with the template did not give rise to spherule formation. Thus, the trans-replication system is suitable for cell biological dissection and examination in a mammalian cell environment, and similar systems may be possible for other positive-strand RNA viruses.

  11. Regulation of the nucleocytoplasmic trafficking of viral and cellular proteins by ubiquitin and small ubiquitin-related modifiers

    PubMed Central

    Wang, Yao E.; Pernet, Olivier; Lee, Benhur

    2013-01-01

    Nucleocytoplasmic trafficking of many cellular proteins is regulated by nuclear import/export signals as well as post-translational modifications such as covalent conjugation of ubiquitin and small ubiquitin-related modifiers (SUMOs). Ubiquitination and SUMOylation are rapid and reversible ways to modulate the intracellular localisation and function of substrate proteins. These pathways have been co-opted by some viruses, which depend on the host cell machinery to transport their proteins in and out of the nucleus. In this review, we will summarise our current knowledge on the ubiquitin/SUMO-regulated nuclear/subnuclear trafficking of cellular proteins and describe examples of viral exploitation of these pathways. PMID:22188262

  12. Web application for studying the free energy of binding and protonation states of protein-ligand complexes based on HINT

    NASA Astrophysics Data System (ADS)

    Bayden, Alexander S.; Fornabaio, Micaela; Scarsdale, J. Neel; Kellogg, Glen E.

    2009-09-01

    A public web server performing computational titration at the active site in a protein-ligand complex has been implemented. This calculation is based on the Hydropathic interaction noncovalent force field. From 3D coordinate data for the protein, ligand and bridging waters (if available), the server predicts the best combination of protonation states for each ionizable residue and/or ligand functional group as well as the Gibbs free energy of binding for the ionization-optimized protein-ligand complex. The 3D structure for the modified molecules is available as output. In addition, a graph depicting how this energy changes with acidity, i.e., as a function of added protons, can be obtained. This data may prove to be of use in preparing models for virtual screening and molecular docking. A few illustrative examples are presented. In β secretase (2va7) computational titration flipped the amide groups of Gln12 and Asn37 and protonated a ligand amine yielding an improvement of 6.37 kcal mol-1 in the protein-ligand binding score. Protonation of Glu139 in mutant HIV-1 reverse transcriptase (2opq) allows a water bridge between the protein and inhibitor that increases the protein-ligand interaction score by 0.16 kcal mol-1. In human sialidase NEU2 complexed with an isobutyl ether mimetic inhibitor (2f11) computational titration suggested that protonating Glu218, deprotonating Arg237, flipping the amide bond on Tyr334, and optimizing the positions of several other polar protons would increase the protein-ligand interaction score by 0.71 kcal mol-1.

  13. Production of modified C-reactive protein in U937-derived macrophages.

    PubMed

    Ciubotaru, Irina; Potempa, Lawrence A; Wander, Rosemary C

    2005-11-01

    Plasma C-reactive protein (CRP) has been proposed to be a strong independent predictor for cardiovascular disease. This circulating form of CRP (native CRP or nCRP) is well described. Recently, the existence of a conformationally distinct isoform of CRP (modified CRP or mCRP) has been reported. The relevance of each CRP isoform to atherosclerotic disease is unknown. The purpose of this study was to examine the natural expression of CRP in undifferentiated, differentiated, and stimulated macrophages, cells known to contribute to atherogenesis in vivo, and to determine whether transcribed CRP was expressed as nCRP or mCRP. Macrophages were generated from U937 monocytes using phorbol 12-myristate 13-acetate. Differentiated macrophages were further stimulated with lipopolysaccharides (LPS). In undifferentiated, differentiated, and stimulated cells, CRP expression was assessed by reverse transcription-polymerase chain reaction, and CRP protein production was measured by fluorescence microscopy and flow cytometry (cellular CRP) or high-sensitivity enzyme-linked immunosorbent assay (secreted CRP). CRP transcript was minimally expressed in undifferentiated cells. Expression increased markedly in macrophages during differentiation and was not affected by LPS at 24 hrs. Cellular CRP protein increased in a time-dependent manner after LPS stimulation, and this induction was mediated via interleukin (IL)-6 and IL-1beta. A small amount of secreted CRP was detected in the media of differentiated cells, but it was not significantly increased after LPS stimulation. Using specific monoclonal antibodies, our data indicate that cellular CRP is directly translated as the mCRP rather than the nCRP isomer. These results indicate that U937-derived macrophages are a good cell model to further study the production of mCRP under conditions relevant for the atherogenic process.

  14. Median Modified Wiener Filter for nonlinear adaptive spatial denoising of protein NMR multidimensional spectra.

    PubMed

    Cannistraci, Carlo Vittorio; Abbas, Ahmed; Gao, Xin

    2015-01-26

    Denoising multidimensional NMR-spectra is a fundamental step in NMR protein structure determination. The state-of-the-art method uses wavelet-denoising, which may suffer when applied to non-stationary signals affected by Gaussian-white-noise mixed with strong impulsive artifacts, like those in multi-dimensional NMR-spectra. Regrettably, Wavelet's performance depends on a combinatorial search of wavelet shapes and parameters; and multi-dimensional extension of wavelet-denoising is highly non-trivial, which hampers its application to multidimensional NMR-spectra. Here, we endorse a diverse philosophy of denoising NMR-spectra: less is more! We consider spatial filters that have only one parameter to tune: the window-size. We propose, for the first time, the 3D extension of the median-modified-Wiener-filter (MMWF), an adaptive variant of the median-filter, and also its novel variation named MMWF*. We test the proposed filters and the Wiener-filter, an adaptive variant of the mean-filter, on a benchmark set that contains 16 two-dimensional and three-dimensional NMR-spectra extracted from eight proteins. Our results demonstrate that the adaptive spatial filters significantly outperform their non-adaptive versions. The performance of the new MMWF* on 2D/3D-spectra is even better than wavelet-denoising. Noticeably, MMWF* produces stable high performance almost invariant for diverse window-size settings: this signifies a consistent advantage in the implementation of automatic pipelines for protein NMR-spectra analysis.

  15. Median Modified Wiener Filter for nonlinear adaptive spatial denoising of protein NMR multidimensional spectra

    PubMed Central

    Cannistraci, Carlo Vittorio; Abbas, Ahmed; Gao, Xin

    2015-01-01

    Denoising multidimensional NMR-spectra is a fundamental step in NMR protein structure determination. The state-of-the-art method uses wavelet-denoising, which may suffer when applied to non-stationary signals affected by Gaussian-white-noise mixed with strong impulsive artifacts, like those in multi-dimensional NMR-spectra. Regrettably, Wavelet's performance depends on a combinatorial search of wavelet shapes and parameters; and multi-dimensional extension of wavelet-denoising is highly non-trivial, which hampers its application to multidimensional NMR-spectra. Here, we endorse a diverse philosophy of denoising NMR-spectra: less is more! We consider spatial filters that have only one parameter to tune: the window-size. We propose, for the first time, the 3D extension of the median-modified-Wiener-filter (MMWF), an adaptive variant of the median-filter, and also its novel variation named MMWF*. We test the proposed filters and the Wiener-filter, an adaptive variant of the mean-filter, on a benchmark set that contains 16 two-dimensional and three-dimensional NMR-spectra extracted from eight proteins. Our results demonstrate that the adaptive spatial filters significantly outperform their non-adaptive versions. The performance of the new MMWF* on 2D/3D-spectra is even better than wavelet-denoising. Noticeably, MMWF* produces stable high performance almost invariant for diverse window-size settings: this signifies a consistent advantage in the implementation of automatic pipelines for protein NMR-spectra analysis. PMID:25619991

  16. Native capillary isoelectric focusing for the separation of protein complex isoforms and subcomplexes

    PubMed Central

    Fonslow, Bryan R.; Kang, Seong A.; Gestaut, Daniel R.; Graczyk, Beth; Davis, Trisha N.; Sabatini, David M.; Yates, John R.

    2010-01-01

    Here we report the use of capillary isoelectric focusing under native conditions for the separation of protein complex isoforms and subcomplexes. Using biologically relevant HIS-tag and FLAG-tag purified protein complexes, we demonstrate the separations of protein complex isoforms of the mammalian target of rapamycin complex (mTORC1 and 2) and the subcomplexes and different phosphorylation states of the Dam1 complex. The high efficiency capillary isoelectric focusing separation allowed for resolution of protein complexes and subcomplexes similar in size and biochemical composition. By performing separations with native buffers and reduced temperature (15°C) we were able to maintain the complex integrity of the more thermolabile mTORC2 during isoelectric focusing and detection (< 45 min). Increasing the separation temperature allowed us to monitor dissociation of the Dam1 complex into its subcomplexes (25°C) and eventually its individual protein components (30°C). The separation of two different phosphorylation states of the Dam1 complex, generated from an in vitro kinase assay with Mps1 kinase, was straightforward due to the large pI shift upon multiple phosphorylation events. The separation of the protein complex isoforms of mTORC, on the other hand, required the addition of a small pI range (4 – 6.5) of ampholytes to improve resolution and stability of the complexes. We show that native capillary isoelectric focusing is a powerful method for the difficult separations of large, similar, unstable protein complexes. This method shows potential for differentiation of protein complex isoform and subcomplex compositions, post-translational modifications, architectures, stabilities, equilibria, and relative abundances under biologically relevant conditions. PMID:20614870

  17. Native capillary isoelectric focusing for the separation of protein complex isoforms and subcomplexes.

    PubMed

    Fonslow, Bryan R; Kang, Seong A; Gestaut, Daniel R; Graczyk, Beth; Davis, Trisha N; Sabatini, David M; Yates, John R

    2010-08-01

    Here we report the use of capillary isoelectric focusing under native conditions for the separation of protein complex isoforms and subcomplexes. Using biologically relevant HIS-tag and FLAG-tag purified protein complexes, we demonstrate the separations of protein complex isoforms of the mammalian target of rapamycin complex (mTORC1 and 2) and the subcomplexes and different phosphorylation states of the Dam1 complex. The high efficiency capillary isoelectric focusing separation allowed for resolution of protein complexes and subcomplexes similar in size and biochemical composition. By performing separations with native buffers and reduced temperature (15 degrees C) we were able to maintain the complex integrity of the more thermolabile mTORC2 during isoelectric focusing and detection (<45 min). Increasing the separation temperature allowed us to monitor dissociation of the Dam1 complex into its subcomplexes (25 degrees C) and eventually its individual protein components (30 degrees C). The separation of two different phosphorylation states of the Dam1 complex, generated from an in vitro kinase assay with Mps1 kinase, was straightforward due to the large pI shift upon multiple phosphorylation events. The separation of the protein complex isoforms of mTORC, on the other hand, required the addition of a small pI range (4-6.5) of ampholytes to improve resolution and stability of the complexes. We show that native capillary isoelectric focusing is a powerful method for the difficult separations of large, similar, unstable protein complexes. This method shows potential for differentiation of protein complex isoform and subcomplex compositions, post-translational modifications, architectures, stabilities, equilibria, and relative abundances under biologically relevant conditions.

  18. Unravelling the relationship between protein sequence and low-complexity regions entropies: Interactome implications.

    PubMed

    Martins, F; Gonçalves, R; Oliveira, J; Cruz-Monteagudo, M; Nieto-Villar, J M; Paz-y-Miño, C; Rebelo, I; Tejera, E

    2015-10-07

    Low-complexity regions are sub-sequences of biased composition in a protein sequence. The influence of these regions over protein evolution, specific functions and highly interactive capacities is well known. Although protein sequence entropy has been largely studied, its relationship with low-complexity regions and the subsequent effects on protein function remains unclear. In this work we propose a theoretical and empirical model integrating the sequence entropy with local complexity parameters. Our results indicate that the protein sequence entropy is related with the protein length, the entropies inside and outside the low-complexity regions as well as their number and average size. We found a small but significant increment in the sequence entropy of hubs proteins. In agreement with our theoretical model, this increment is highly dependent of the balance between the increment of protein length and average size of the low-complexity regions. Finally, our models and proteins analysis provide evidence supporting that modifications in the average size is more relevant in hubs proteins than changes in the number of low-complexity regions.

  19. Theory of polyelectrolyte adsorption on heterogeneously charged surfaces applied to soluble protein-polyelectrolyte complexes

    NASA Astrophysics Data System (ADS)

    de Vries, R.; Weinbreck, F.; de Kruif, C. G.

    2003-03-01

    Existing theoretical approaches to polymer adsorption on heterogeneous surfaces are applied to the problems of polyelectrolyte and polyampholyte adsorption on randomly charged surfaces. Also, analytical estimates are developed for the critical pH at which weakly charged polyelectrolytes and globular proteins start forming soluble complexes. Below a critical salt concentration, soluble complexes form "on the wrong side" of the protein isoelectric point due to the heterogeneity of the protein surface charge distribution. The analytical estimates are consistent with experimental data on soluble complexes in mixtures of gum arabic and whey protein isolate.

  20. Discovery of protein complexes with core-attachment structures from Tandem Affinity Purification (TAP) data.

    PubMed

    Wu, Min; Li, Xiao-Li; Kwoh, Chee-Keong; Ng, See-Kiong; Wong, Limsoon

    2012-09-01

    Many cellular functions involve protein complexes that are formed by multiple interacting proteins. Tandem Affinity Purification (TAP) is a popular experimental method for detecting such multi-protein interactions. However, current computational methods that predict protein complexes from TAP data require converting the co-complex relationships in TAP data into binary interactions. The resulting pairwise protein-protein interaction (PPI) network is then mined for densely connected regions that are identified as putative protein complexes. Converting the TAP data into PPI data not only introduces errors but also loses useful information about the underlying multi-protein relationships that can be exploited to detect the internal organization (i.e., core-attachment structures) of protein complexes. In this article, we propose a method called CACHET that detects protein complexes with Core-AttaCHment structures directly from bipartitETAP data. CACHET models the TAP data as a bipartite graph in which the two vertex sets are the baits and the preys, respectively. The edges between the two vertex sets represent bait-prey relationships. CACHET first focuses on detecting high-quality protein-complex cores from the bipartite graph. To minimize the effects of false positive interactions, the bait-prey relationships are indexed with reliability scores. Only non-redundant, reliable bicliques computed from the TAP bipartite graph are regarded as protein-complex cores. CACHET constructs protein complexes by including attachment proteins into the cores. We applied CACHET on large-scale TAP datasets and found that CACHET outperformed existing methods in terms of prediction accuracy (i.e., F-measure and functional homogeneity of predicted complexes). In addition, the protein complexes predicted by CACHET are equipped with core-attachment structures that provide useful biological insights into the inherent functional organization of protein complexes. Our supplementary material can

  1. Surfactant-free purification of membrane protein complexes from bacteria: application to the staphylococcal penicillin-binding protein complex PBP2/PBP2a

    NASA Astrophysics Data System (ADS)

    Paulin, Sarah; Jamshad, Mohammed; Dafforn, Timothy R.; Garcia-Lara, Jorge; Foster, Simon J.; Galley, Nicola F.; Roper, David I.; Rosado, Helena; Taylor, Peter W.

    2014-07-01