Suchanek, Katarzyna; Bartkowiak, Amanda; Gdowik, Agnieszka; Perzanowski, Marcin; Kąc, Sławomir; Szaraniec, Barbara; Suchanek, Mateusz; Marszałek, Marta
2015-06-01
Hydroxyapatite coatings were successfully produced on modified titanium substrates via hydrothermal synthesis in a Ca(EDTA)(2-) and (NH4)2HPO4 solution. The morphology of modified titanium substrates as well as hydroxyapatite coatings was studied using scanning electron microcopy and phase identification by X-ray diffraction, and Raman and FTIR spectroscopy. The results show that the nucleation and growth of hydroxyapatite needle-like crystals with hexagonal symmetry occurred only on titanium substrates both chemically and thermally treated. No hydroxyapatite phase was detected on only acid etched Ti metal. This finding demonstrates that only a particular titanium surface treatment can effectively induce the apatite nucleation under hydrothermal conditions. Copyright © 2015 Elsevier B.V. All rights reserved.
Sprayable titanium composition
Tracy, Chester E.; Kern, Werner; Vibronek, Robert D.
1980-01-01
The addition of 2-ethyl-1-hexanol to an organometallic titanium compound dissolved in a diluent and optionally containing a lower aliphatic alcohol spreading modifier, produces a solution that can be sprayed onto a substrate and cured to form an antireflection titanium oxide coating having a refractive index of from about 2.0 to 2.2.
Biofunctionalization of a “Clickable” Organic Layer Photochemically Grafted on Titanium Substrates
Li, Yan; Zhao, Meirong; Wang, Jun; Liu, Kai; Cai, Chengzhi
2011-01-01
We have developed a general method combining photochemical grafting and copper-catalyzed click chemistry for biofunctionalization of titanium substrates. The UV-activated grafting of an α,ω-alkenyne onto TiO2/Ti substrates provided a “clickable” thin film platform. The selective attachment of the vinyl end of the molecule to the surface was achieved by masking the alkynyl end with a trimethylgermanyl (TMG) protecting group. Subsequently, various oligo(ethylene glycol) (OEG) derivatives terminated with an azido group were attached to the TMG-alkynyl modified titanium surface via a one-pot deprotection/click reaction. The films were characterized by X-ray photoelectron spectroscopy (XPS), contact angle goniometry, ellipsometry, and atomic force microscopy (AFM). We showed that the titanium surface presenting click-immobilized OEG substantially suppressed the nonspecific attachment of protein and cells as compared to the unmodified titanium substrate. Furthermore, glycine-arginine-glycine-aspartate (GRGD), a cell adhesion peptide, was coimmobilized with OEG on the platform. We demonstrated that the resultant GRGD-presenting thin film on Ti substrates can promote the specific adhesion and spreading of AsPC-1 cells. PMID:21417429
Surface modification of titanium nitride film by a picosecond Nd:YAG laser
NASA Astrophysics Data System (ADS)
Gakovic, B.; Trtica, M.; Batani, D.; Desai, T.; Panjan, P.; Vasiljevic-Radovic, D.
2007-06-01
The interaction of a picosecond Nd:YAG laser (wavelength 532 nm, pulse duration 40 ps) with a polycrystalline titanium nitride (TiN) film was studied. The TiN thin film was deposited by physical vapour deposition on a silicon substrate. The titanium nitride/silicon system was modified with an energy fluence from 0.2 to 5.9 J cm-2. Multi-pulse irradiation was performed in air by a focused laser beam. Surface modifications were analysed after 1 100 successive laser pulses. Depending on the laser pulse energy and pulse count, the following phenomena were observed: (i) increased surface roughness, (ii) titanium nitride film cracking, (iii) silicon substrate modification, (iv) film exfoliation and (v) laser-induced periodical surface structures on nano- (NPSS) and micro-dimensions (MPSS).
NASA Astrophysics Data System (ADS)
Parada-Gamboa, N. J.; Pedraza-Avella, J. A.; Meléndez, A. M.
2017-01-01
To investigate whether different metal surface treatments, performed on meshes of stainless steel 304 and titanium, affect the photocatalytic activity (PCA) of supported modified anodic TiO2 films, metallic substrates were coated with titanium isopropoxide sol-gel precursor modified with thiourea. Substrates were pretreated by some of the following techniques: a) sandblasting, b) pickling, c) hydroxylation and d) passivation. The as-prepared electrode materials were characterized by X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), and voltammetry in the dark and under light UVA irradiation. PCA of modified N-S-TiO2 electrodes was evaluated by electrochemically assisted photocatalytic degradation of methyl orange. The results of XPS revealed that N and S were incorporated into the lattice of TiO2. FESEM showed that surface roughness and thickness of films varies depending on surface treatment. Voltammetric and XPS characterization of N-S co-doped TiO2 films supported on stainless steel revealed that their surface contains alpha-Fe2O3/FeOOH. Accordingly, iron contamination of the films coming from stainless steel was detrimental to the degradation of methyl orange. Prior to sol-gel coating process, sandblasting followed by nitric acid passivation for stainless steel or hydrofluoric acid pickling process in the case of titanium improved the PCA of N-S co-doped TiO2 films.
Characterization of ion beam modified ceramic wear surfaces using Auger electron spectroscopy
NASA Technical Reports Server (NTRS)
Wei, W.; Lankford, J.
1987-01-01
An investigation of the surface chemistry and morphology of the wear surfaces of ceramic material surfaces modified by ion beam mixing has been conducted using Auger electron spectroscopy and secondary electron microscopy. Studies have been conducted on ceramic/ceramic friction and wear couples made up of TiC and NiMo-bonded TiC cermet pins run against Si3N4 and partially stabilized zirconia disc surfaces modified by the ion beam mixing of titanium and nickel, as well as ummodified ceramic/ceramic couples in order to determine the types of surface changes leading to the improved friction and wear behavior of the surface modified ceramics in simulated diesel environments. The results of the surface analyses indicate that the formation of a lubricating oxide layer of titanium and nickel, is responsible for the improvement in ceramic friction and wear behavior. The beneficial effect of this oxide layer depends on several factors, including the adherence of the surface modified layer or subsequently formed oxide layer to the disc substrate, the substrate materials, the conditions of ion beam mixing, and the environmental conditions.
Sun, Yuhua; Tan, Jing; Wu, Baohua; Wang, Jianxin; Qu, Shuxin; Weng, Jie; Feng, Bo
2016-10-01
Acid-alkali treatment is one of means widely used for preparing bioactive titanium surfaces. Peptides with specific affinity to titanium surface modified by acid-alkali two-steps treatment were obtained via phage display technology. Out of the eight new unique peptides, titanium-binding peptide 54 displayed by monoclonal M13 phage at its pIII coat protein (TBP54-M13 phage) was proved to have higher binding affinity to the substrate. The binding interaction occurred at the domain from phenylalanine at position 1 to arginine at position 6 in the sequences of TBP54 (FAETHRGFHFSF) mainly via the reaction of these residues with the Ti surface. Together the coordination and electrostatic interactions controlled the specific binding of the phage to the substrate. The binding affinity was dependent on the surface basic hydroxyl group content. In addition, the phage showed a different interaction way with the Ti surface without acid-alkali treatment along with an impaired affinity. This study could provide more understanding of the interaction mechanism between the selected peptide and its specific substrate, and develop a promising method for the biofunctionalization of titanium. Copyright © 2016 Elsevier B.V. All rights reserved.
Bioactive borate glass coatings for titanium alloys.
Peddi, Laxmikanth; Brow, Richard K; Brown, Roger F
2008-09-01
Bioactive borate glass coatings have been developed for titanium and titanium alloys. Glasses from the Na(2)O-CaO-B(2)O(3) system, modified by additions of SiO(2), Al(2)O(3), and P(2)O(5), were characterized and compositions with thermal expansion matches to titanium were identified. Infrared and X-ray diffraction analyses indicate that a hydroxyapatite surface layer forms on the borate glasses after exposure to a simulated body fluid for 2 weeks at 37 degrees C; similar layers form on 45S5 Bioglass((R)) exposed to the same conditions. Assays with MC3T3-E1 pre-osteoblastic cells show the borate glasses exhibit in vitro biocompatibility similar to that of the 45S5 Bioglass((R)). An enameling technique was developed to form adherent borate glass coatings on Ti6Al4V alloy, with adhesive strengths of 36 +/- 2 MPa on polished substrates. The results show these new borate glasses to be promising candidates for forming bioactive coatings on titanium substrates.
Thermo-mechanical modeling of laser treatment on titanium cold-spray coatings
NASA Astrophysics Data System (ADS)
Paradiso, V.; Rubino, F.; Tucci, F.; Astarita, A.; Carlone, P.
2018-05-01
Titanium coatings are very attractive to several industrial fields, especially aeronautics, due to the enhanced corrosion resistance and wear properties as well as improved compatibility with carbon fiber reinforced plastic (CFRP) materials. Cold sprayed titanium coatings, among the others deposition processes, are finding a widespread use in high performance applications, whereas post-deposition treatments are often used to modify the microstructure of the cold-sprayed layer. Laser treatments allow one to noticeably increase the superficial properties of titanium coatings when the process parameters are properly set. On the other hand, the high heat input required to melt titanium particles may result in excessive temperature increase even in the substrate. This paper introduces a thermo-mechanical model to simulate the laser treatment effects on a cold sprayed titanium coating as well as the aluminium substrate. The proposed thermo-mechanical finite element model considers the transient temperature field due to the laser source and applied boundary conditions using them as input loads for the subsequent stress-strain analysis. Numerical outcomes highlighted the relevance of thermal gradients and thermally induced stresses and strains in promoting the damage of the coating.
Hu, Xuefeng; Neoh, Koon-Gee; Shi, Zhilong; Kang, En-Tang; Poh, Chyekhoon; Wang, Wilson
2010-12-01
The long-term success of orthopedic implants may be compromised by defective osseointegration and bacterial infection. An effective approach to minimize implant failure would be to modify the surface of the implant to make it habitable for bone-forming cells and anti-infective at the same time. In this in vitro study, the surfaces of titanium (Ti) substrates were functionalized by first covalently grafting either dopamine followed by carboxymethyl chitosan (CMCS) or hyaluronic acid-catechol (HAC). Vascular endothelial growth factor (VEGF) was then conjugated to the polysaccharide-grafted surface. Antibacterial assay with Staphylococcus aureus (S. aureus) showed that the polysaccharide-modified substrates significantly decrease bacterial adhesion. The CMCS-functionalized Ti demonstrated better antibacterial property than the HAC-functionalized Ti since CMCS is bactericidal while HA only inhibits the adhesion of bacteria without killing them. Osteoblast attachment, as well as alkaline phosphatase (ALP) activity and calcium deposition were enhanced by the immobilized VEGF on the polysaccharide-grafted Ti. Thus, Ti substrates modified with polysaccharides conjugated with VEGF can promote osteoblast functions and concurrently reduce bacterial adhesion. Since VEGF is also known to enhance angiogenesis, the VEGF-polysaccharide functionalized substrates will have promising applications in the orthopedic field. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Fei; Li, Bin; Sun, Junying; Li, Hongwei; Wang, Bing; Zhang, Shailin
2012-03-01
We report here a new method of titanium surface modification through ammonia (NH3) plasma immersion ion implantation (PIII) technique and its effect on the cellular behaviors of MC3T3-E1 osteoblastic cells. The NH3 PIII-treated titanium substrates (NH3-Ti) were characterized by X-ray photoelectron (XPS), which showed that NH3-Ti had a nitrogen-rich surface. However, there was no significant difference between the surface morphology of NH3-Ti and unmodified Ti. When MC3T3-E1 cells were cultured on NH3-Ti substrates, it was found that cell proliferation was accelerated at 4 and 7 days of culture. Meanwhile, cell differentiation was evaluated using type I collagen (COL I), osteocalcin (OC) and bone sialoprotein (BSP) as differentiation markers. It was found that expression of COL I and OC genes was up-regulated on NH3-Ti substrates. However, no significant difference was found in BSP gene expression between NH3-Ti and unmodified Ti substrates. Therefore, findings from this study indicate that surface modification of titanium through NH3 PIII favors osteoblastic proliferation and differentiation and as a result, it may be used to improve the biocompatibility of Ti implants in vivo.
Peng, Ping; Kumar, Sunil; Voelcker, Nicolas H; Szili, Endre; Smart, Roger St C; Griesser, Hans J
2006-02-01
Adherent and optically semitransparent thin calcium phosphate (CaP) films were electrochemically deposited on titanium substrates in a modified simulated body fluid at 37 degrees C. Coatings deposited by using periodic pulsed potentials showed better adhesion and better mechanical properties than coatings deposited with use of a constant potential. Scanning electron microscopy was used to study the morphology of the coatings. The coatings displayed a polydispersed porous structure with pores in the range of a few nanometers to 1 mum. Furthermore, X-ray diffractometry and the O(1s) satellite peaks in X-ray photoelectron spectroscopy indicated that the coatings possessed a similar surface chemistry to that of natural bone minerals. These results were confirmed by inductively coupled plasma optical emission spectrometry, which yielded a Ca:P ratio of 1.65, close to that of hydroxyapatite. Contact mode atomic force microscopy (AFM) showed the average thickness of the coatings was in the order of 200 nm. Root-mean-square (RMS) roughness values, also derived by AFM, were shown to be much higher on the titanium-CaP surfaces in comparison with untreated titanium substrates, with RMS values of about 300 and 110 nm, respectively. Cell culture experiments showed that the CaP surfaces are nontoxic to MG63 osteoblastic cells in vitro and were able to support cell growth for up to 4 days, outperforming the untreated titanium surface in a direct comparison. These easily prepared coatings show promise for hard-tissue biomaterials. (c) 2005 Wiley Periodicals, Inc.
Zorn, Gilad; Baio, Joe E.; Weidner, Tobias; Migonney, Veronique; Castner, David G.
2011-01-01
Biointegration of titanium implants in the body is controlled by their surface properties. Improving surface properties by coating with a bioactive polymer is a promising approach to improve the biological performance of titanium implants. To optimize the grafting processes, it is important to fully understand the composition and structure of the modified surfaces. The main focus of this study is to provide a detailed, multi-technique characterization of a bioactive poly(sodium styrene sulfonate) (pNaSS) thin film grafted from titanium surfaces via a two-step procedure. Thin titanium films (~50 nm thick with an average surface roughness of 0.9±0.2nm) prepared by evaporation onto silicon wafers were used as smooth model substrates. X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) showed that the titanium film was covered with a TiO2 layer that was at least 10nm thick and contained hydroxyl groups present at the outermost surface. These hydroxyl groups were first modified with a 3-methacryloxypropyltrimethoxysilane (MPS) cross linker. XPS and ToF-SIMS showed that a monolayer of the MPS molecules were successfully attached onto the titanium surfaces. The pNaSS film was grafted from the MPS modified titanium through atom transfer radical polymerization. Again, XPS and ToF-SIMS were used to verify that the pNaSS molecules were successfully grafted onto the modified surfaces. Atomic force microscopy analysis showed that the film was smooth and uniformly covered the surface. Fourier transform infrared spectroscopy indicated an ordered array of grafted NaSS molecules were present on the titanium surfaces. Sum frequency generation vibration spectroscopy and near edge X-ray absorption fine structure spectroscopy illustrated that the NaSS molecules were grafted onto the titanium surface with a substantial degree of orientational order in the styrene rings. PMID:21892821
Kuroda, Kensuke; Okido, Masazumi
2012-01-01
Many techniques for the surface modification of titanium and its alloys have been proposed from the viewpoint of improving bioactivity. This paper contains an overview of surface treatment methods, including coating with hydroxyapatite (HAp), an osteoconductive compound. There are two types of coating methods: pyroprocessing and hydroprocessing. In this paper, hydroprocessing for coating on the titanium substrate with HAp, carbonate apatite (CO(3)-Ap), a CO(3)-Ap/CaCO(3) composite, HAp/collagen, and a HAp/gelatin composite is outlined. Moreover, evaluation by implantation of surface-modified samples in rat tibiae is described.
Kuroda, Kensuke; Okido, Masazumi
2012-01-01
Many techniques for the surface modification of titanium and its alloys have been proposed from the viewpoint of improving bioactivity. This paper contains an overview of surface treatment methods, including coating with hydroxyapatite (HAp), an osteoconductive compound. There are two types of coating methods: pyroprocessing and hydroprocessing. In this paper, hydroprocessing for coating on the titanium substrate with HAp, carbonate apatite (CO3–Ap), a CO3–Ap/CaCO3 composite, HAp/collagen, and a HAp/gelatin composite is outlined. Moreover, evaluation by implantation of surface-modified samples in rat tibiae is described. PMID:22400015
Gonçalves, Juliana P L; Shaikh, Afnan Q; Reitzig, Manuela; Kovalenko, Daria A; Michael, Jan; Beutner, René; Cuniberti, Gianaurelio; Scharnweber, Dieter; Opitz, Jörg
2014-01-01
Due to their outstanding properties nanodiamonds are a promising nanoscale material in various applications such as microelectronics, polishing, optical monitoring, medicine and biotechnology. Beyond the typical diamond characteristics like extreme hardness or high thermal conductivity, they have additional benefits as intrinsic fluorescence due to lattice defects without photobleaching, obtained during the high pressure high temperature process. Further the carbon surface and its various functional groups in consequence of the synthesis, facilitate additional chemical and biological modification. In this work we present our recent results on chemical modification of the nanodiamond surface with phosphate groups and their electrochemically assisted immobilization on titanium-based materials to increase adhesion at biomaterial surfaces. The starting material is detonation nanodiamond, which exhibits a heterogeneous surface due to the functional groups resulting from the nitrogen-rich explosives and the subsequent purification steps after detonation synthesis. Nanodiamond surfaces are chemically homogenized before proceeding with further functionalization. Suspensions of resulting surface-modified nanodiamonds are applied to the titanium alloy surfaces and the nanodiamonds subsequently fixed by electrochemical immobilization. Titanium and its alloys have been widely used in bone and dental implants for being a metal that is biocompatible with body tissues and able to bind with adjacent bone during healing. In order to improve titanium material properties towards biomedical applications the authors aim to increase adhesion to bone material by incorporating nanodiamonds into the implant surface, namely the anodically grown titanium dioxide layer. Differently functionalized nanodiamonds are characterized by infrared spectroscopy and the modified titanium alloys surfaces by scanning and transmission electron microscopy. The process described shows an adsorption and immobilization of modified nanodiamonds on titanium; where aminosilanized nanodiamonds coupled with O-phosphorylethanolamine show a homogeneous interaction with the titanium substrate.
Topography and nanostructural evaluation of chemically and thermally modified titanium substrates.
Salemi, Hoda; Behnamghader, Aliasghar; Afshar, Abdollah
2016-10-01
In this research, the effects of chemical and thermal treatment on the morphological and compositional aspects of titanium substrates and so, potentially, on development of biomimetic bone like layers formation during simulated body fluid (SBF) soaking was investigated. The HF, HF/HNO3 and NaOH solutions were used for chemical treatment and some of alkali-treated samples followed a heat treatment at 600°C. The treated samples before and after soaking were subjected to material characterization tests using scanning electron microscopy (SEM), X-ray diffraction (XRD) and atomic force microscopy (AFM). White light interferometry (WLI) was used to determine the roughness parameters such as Ra, Rq, RKu and Rsk. The significance of the obtained data was assessed using ANOVA variance analysis between all samples. It was observed that the reaction at grain boundaries and sodium titanate intermediate layers play a great role in the nucleation of calcium phosphate layers. Based on the obtained results in this work, the calcium phosphate microstructure deposited on titanium substrates was more affected by chemical modification than surface topography.
NASA Astrophysics Data System (ADS)
Wang, R. M.; Chu, C. L.; Hu, T.; Dong, Y. S.; Guo, C.; Sheng, X. B.; Lin, P. H.; Chung, C. Y.; Chu, P. K.
2007-08-01
Surface structure of NiTi shape memory alloy (SMA) was modified by advanced oxidation processes (AOP) in an ultraviolet (UV)/H 2O 2 photocatalytic system, and then systematically characterized with x-ray photoelectron spectroscopy (XPS). It is found that the AOP in UV/H 2O 2 photocatalytic system leads to formation of titanium oxides film on NiTi substrate. Depth profiles of O, Ni and Ti show such a film possesses a graded interface structure to NiTi substrate and there is no intermediate Ni-rich layer like that produced in conventional high temperature oxidation. Except TiO 2 phase, some titanium suboxides (TiO, Ti 2O 3) may also exist in the titanium oxides film. Oxygen mainly presents in metal oxides and some chemisorbed water and OH - are found in titanium oxides film. Ni nearly reaches zero on the upper surface and relatively depleted in the whole titanium oxides film. The work indicates the AOP in UV/H 2O 2 photocatalytic system is a promising way to favor the widespread application of biomedical NiTi SMA by improving its biocompatibility.
Wear evaluation of flank in burins of high speed steel modified with titanium ions
NASA Astrophysics Data System (ADS)
E Caballero, J.; V-Niño, E. D.
2017-12-01
This report shows the results obtained researching the flank wearing resistance performed by the high-speed steel (HSS) burins without any surface treatment (reference substrate) and others with surface treatment based on Titanium ions. The flank wearing was carried out by means of an industrial process by chip removal with repetitive tests of dry finished turning of AISI/SAE 1045 steel bars. The useful service life of the burins was evaluated according to ISO 3685:1993, and it was found that the burins treated with Titanium ions showed an increase in the flank wearing resistance with respect to the ones used as reference.
Catauro, M; Papale, F; Bollino, F
2016-01-01
The objective of this study has been to develop low temperature sol-gel coatings to modify the surface of commercially pure titanium grade 4 (a material generally used in dental application) and to evaluate their bioactivity and biocompatibility on the substrate. Glasses of composition expressed by the following general formula xCaO · (1 - x)SiO2 (0.0
NASA Astrophysics Data System (ADS)
Chen, Huiqing; Li, Xiaojing; Zhao, Yuancong; Li, Jingan; Chen, Jiang; Yang, Ping; Maitz, Manfred F.; Huang, Nan
2015-08-01
A phospholipid/peptide polymer (PMMDP) with phosphorylcholine groups, endothelial progenitor cell (EPC)-specific peptides and catechol groups was anchored onto a titanium (Ti) surface to fabricate a biomimetic multifunctional surface. The PMMDP coating was characterized by X-ray photoelectron spectroscopy (XPS), water contact angle measurements and atomic force microscopy (AFM), respectively. The amount of PMMDP coating on the Ti surface was quantified by using the quartz crystal microbalance with dissipation (QCM-D). Interactions between blood components and the coated and bare Ti substrates were evaluated by platelet adhesion and activation assays and fibrinogen denaturation test using platelet rich plasma (PRP). The results revealed that the PMMDP-modified surface inhibited fibrinogen denaturation and reduced platelet adhesion and activation. EPC cell culture on the PMMDP-modified surface showed increased adhesion and proliferation of EPCs when compared to the cells cultured on untreated Ti surface. The inhibition of fibrinogen denaturation and platelet adhesion and support of EPCs attachment and proliferation indicated that this coating might be beneficial for future applications in blood-contacting implants, such as vascular stents.
[Corrosion resistant properties of different anodized microtopographies on titanium surfaces].
Fangjun, Huo; Li, Xie; Xingye, Tong; Yueting, Wang; Weihua, Guo; Weidong, Tian
2015-12-01
To investigate the corrosion resistant properties of titanium samples prepared by anodic oxidation with different surface morphologies. Pure titanium substrates were treated by anodic oxidation to obtain porous titanium films in micron, submicron, and micron-submicron scales. The surface morphologies, coating cross-sectional morphologies, crystalline structures, and surface roughness of these samples were characterized. Electrochemical technique was used to measure the corrosion potential (Ecorr), current density of corrosion (Icorr), and polarization resistance (Rp) of these samples in a simulated body fluid. Pure titanium could be modified to exhibit different surface morphologies by the anodic oxidation technique. The Tafel curve results showed that the technique can improve the corrosion resistance of pure titanium. Furthermore, the corrosion resistance varied with different surface morphologies. The submicron porous surface sample demonstrated the best corrosion resistance, with maximal Ecorr and Rp and minimal Icorr. Anodic oxidation technology can improve the corrosion resistance of pure titanium in a simulated body fluid. The submicron porous surface sample exhibited the best corrosion resistance because of its small surface area and thick barrier layer.
Titanium disilicide formation by sputtering of titanium on heated silicon substrate
NASA Astrophysics Data System (ADS)
Tanielian, M.; Blackstone, S.
1984-09-01
We have sputter deposited titanium on bare silicon substrates at elevated temperatures. We find that at a substrate temperature of about 515 °C titanium silicide is formed due to the reaction of the titanium with the Si. The resistivity of the silicide is about 15 μΩ cm and it is not etchable in a selective titanium etch. This process can have applications in low-temperature, metal-oxide-semiconductor self-aligned silicide formation for very large scale integrated
NASA Astrophysics Data System (ADS)
Eldred, Benjamin Todd
This dissertation consists of two major sections. The first section concerns the wetting of single crystal mullite by borosilicate and yttrium-aluminosilicate glasses. The borosilicate glass showed poor wetting and interacted only moderately with the substrate. The yttrium-aluminosilicate glass interacted strongly with mullite and showed very good wetting. Balanced chemical equations between each glass and mullite were derived from EDS data. Wetting was found to be dependent on the crystallographic orientation of the substrate, in agreement with previous studies of the surface energy of mullite. The second section concerns the wetting phenomena of steels containing aluminum and titanium. A modified sessile drop technique was used to investigate the wetting of steels containing aluminum and/or titanium as a function of furnace atmosphere. It was found that the steel chemistry and furnace atmosphere had little effect on wetting except in the case of a particular ultra-low carbon steel containing both aluminum and titanium. This steel was found to show significantly lower contact angles than any other steel tested when it was in an atmosphere of pure hydrogen. As nitrogen was added to the atmosphere, the contact angle increased monotonically and irreversibly. The interaction between aluminum, titanium, and nitrogen is explained in terms of first-order interaction coefficients available in thermodynamic literature.
Toughened and corrosion- and wear-resistant composite structures and fabrication methods thereof
Seals, Roland D; Ripley, Edward B; Hallman, Russell L
2014-04-08
Composite structures having a reinforced material interjoined with a substrate and methods of creating a composite material interjoined with a substrate. In some embodiments the composite structure may be a line or a spot or formed by reinforced material interjoined with the substrate. The methods typically include disposing a precursor material comprising titanium diboride and/or titanium monoboride on at least a portion of the substrate and heating the precursor material and the at least a portion of the substrate in the presence of an oxidation preventative until at least a portion of the precursor material forms reinforced material interjoined with the substrate. The precursor material may be disposed on the substrate as a sheet or a tape or a slurry or a paste. Localized surface heating may be used to heat the precursor material. The reinforced material typically comprises a titanium boron compound, such as titanium monoboride, and preferably comprises .beta.-titanium. The substrate is typically titanium-bearing, iron-bearing, or aluminum-bearing. A welding rod is provided as an embodiment. The welding rod includes a metal electrode and a precursor material is disposed adjacent at least a portion of the metal electrode. A material for use in forming a composite structure is provided. The material typically includes a precursor material that includes one or more materials selected from the following group: titanium diboride and titanium monoboride. The material also typically includes a flux.
Modified surface of titanium dioxide nanoparticles-based biosensor for DNA detection
NASA Astrophysics Data System (ADS)
Nadzirah, Sh.; Hashim, U.; Rusop, M.
2018-05-01
A new technique was used to develop a simple and selective picoammeter DNA biosensor for identification of E. coli O157:H7. This biosensor was fabricated from titanium dioxide nanoparticles that was synthesized by sol-gel method and spin-coated on silicon dioxide substrate via spinner. 3-Aminopropyl triethoxy silane (APTES) was used to modify the surface of TiO2. Simple surface modification approach has been applied; which is single dropping of APTES onto the TiO2 nanoparticles surface. Carboxyl modified probe DNA has been bind onto the surface of APTES/TiO2 without any amplifier element. Electrical signal has been used as the indicator to differentiate each step (surface modification of TiO2 and probe DNA immobilization). The I-V measurements indicate extremely low current (pico-ampere) flow through the device which is 2.8138E-10 A for pure TiO2 nanoparticles, 2.8124E-10 A after APTES modification and 3.5949E-10 A after probe DNA immobilization.
Okada, Masahiro; Yasuda, Shoji; Kimura, Tsuyoshi; Iwasaki, Mitsunobu; Ito, Seishiro; Kishida, Akio; Furuzono, Tsutomu
2006-01-01
A composite consisting of titanium dioxide (TiO2) particle, the surface of which was modified with amino groups, and a silicone substrate through covalent bonding at their interface was developed, and antibacterial and cell adhesion activities of the composite were evaluated. The density of the amino groups on the TiO2 particle surface was controlled by the reaction time of the modification reaction. The degradation rate of CH3CHO in the presence of the TiO2 particles under UV irradiation decreased with an increase in the amino group density on the TiO2 surface. On the other hand, the number of L929 cells adhering on the TiO2/silicone composite increased with an increase in the amino group density. From the above two results, the optimum density of amino groups for both photoreactivity and cell adhesiveness was estimated to be 2.0-4.0 molecules/nm2. The optimum amino group-modified TiO2/silicone composite sheet (amino group density, 3.0 molecules/nm2) showed an effective antibacterial activity for Escherichia coli bacteria under UV irradiation. (c) 2005 Wiley Periodicals, Inc
Baskaran, Suresh; Graff, Gordon L.; Song, Lin
1998-01-01
The invention provides a method for synthesizing a titanium oxide-containing film comprising the following steps: (a) preparing an aqueous solution of a titanium chelate with a titanium molarity in the range of 0.01M to 0.6M. (b) immersing a substrate in the prepared solution, (c) decomposing the titanium chelate to deposit a film on the substrate. The titanium chelate maybe decomposed acid, base, temperature or other means. A preferred method provides for the deposit of adherent titanium oxide films from C2 to C5 hydroxy carboxylic acids. In another aspect the invention is a novel article of manufacture having a titanium coating which protects the substrate against ultraviolet damage. In another aspect the invention provides novel semipermeable gas separation membranes, and a method for producing them.
Fe-C-Si ternary composite coating on CP-titanium and its tribological properties
NASA Astrophysics Data System (ADS)
Maleque, M. A.; Saffina, W.; Ahmed, A. S.; Ali, M. Y.
2017-03-01
This study focused on the development of ternary composite coating through incorporation of Fe-C-Si ternary powder mixtures on CP-Ti substrate and characterizes the microstructure, hardness and wears behavior in presence of Jatropha oil. In this work, the surface of commercial purity titanium (CP-Ti) was modified using a tungsten inert gas (TIG) surface melting technique. The wear behavior of coated CP-titanium was performed using pin-on-disk machine. The results showed that the melt track has dendritic microstructure which was homogenously distributed throughout the melt pool. This Fe-C-Si ternary composite coating enhanced the surface hardness of CP-Ti significantly from 175 HV for the untreated substrate to ∼800 HV for the Fe-C-Si coated CP-Ti due to the formation of intermetallic compounds.. The wear results showed that less wear volume loss was observed on the composite coated CP-Ti in presence of Jatropha-biodiesel compared to uncoated CP-Ti. The achievement of this hard Fe-C-Si composite coating on the surface of CP-Ti can broadened new prospect for many engineering applications that use biodiesel under different tribological variables.
Yamamoto, Hiroki; Shibata, Yo; Tachikawa, Tetsuhiko; Miyazaki, Takashi
2006-07-01
This study reports a discharging method for bone-like carbonated HA (cHA)-coating (Ca/P 1.71) and stoichiometric HA (sHA)-coating (Ca/P 1.67) with micrometer order thicknesses on titanium plates, using modified body fluid and acidic calcium phosphate solutions, respectively. In vivo histological performance of the HA coatings prepared by discharging in electrolytes was evaluated. Bone-contact indexes of HA coatings were measured microscopically. Additionally, bone-coating interface was analyzed by scanning electron microscopy and the use of an electron probe microanalyzer. Results demonstrated that there was no significant difference in contact index between HA coatings. However, the cHA coating was practically replaced by immature bone, and the titanium metal substrate was directly connected to the bone structure whereas the sHA coating layer remained and was partially detached from the titanium metal substrate. Since detached coating particles are pathogens, and can cause peri-implantitis, the cHA coating was more favorable than the sHA coating even if contact index was equivalent to that of the sHA coating. It is thought that coating thickness and chemical composition of coatings are important for biological stability of implants. In conclusion, since bone-like thin cHA coating showed high osteoconductivity and bone replacement, bone-like HA is superior to sHA coating for use in dental implants.
Lu, Ran; Wang, Caiyun; Wang, Xin; Wang, Yuji; Wang, Na; Chou, Joshua; Li, Tao; Zhang, Zhenting; Ling, Yunhan; Chen, Su
2018-01-01
Modified titanium (Ti) substrates with titanium dioxide (TiO 2 ) nanotubes have broad usage as implant surface treatments and as drug delivery systems. To improve drug-loading capacity and accelerate bone integration with titanium, in this study, we hydrogenated anodized titanium dioxide nanotubes (TNTs) by a thermal treatment. Three groups were examined, namely: hydrogenated TNTs (H 2 -TNTs, test), unmodified TNTs (air-TNTs, control), and Ti substrates (Ti, control). Our results showed that oxygen vacancies were present in all the nanotubes. The quantity of -OH groups greatly increased after hydrogenation. Furthermore, the protein adsorption and loading capacity of the H 2 -TNTs were considerably enhanced as compared with the properties of the air-TNTs ( P <0.05). Additionally, time-of-flight secondary ion mass spectrometry (TOF-SIMS) was used to investigate the interactions of TNTs with proteins. During the protein-loading process, the H 2 -TNTs not only enabled rapid protein adsorption, but also decreased the rate of protein elution compared with that of the air-TNTs. We found that the H 2 -TNTs exhibited better biocompatibility than the air-TNT and Ti groups. Both cell adhesion activity and alkaline phosphatase activity were significantly improved toward MG-63 human osteoblast-like cells as compared with the control groups ( P <0.05). We conclude that hydrogenated TNTs could greatly improve the loading capacity of bioactive molecules and MG-63 cell proliferation.
Gao, Wenli; Feng, Bo; Lu, Xiong; Wang, Jianxin; Qu, Shuxin; Weng, Jie
2012-08-01
This study describes the fabrication of two types of multilayered films onto titanium by layer-by-layer (LBL) self-assembly, using poly-L-lysine (PLL) as the cationic polyelectrolyte and deoxyribonucleic acid (DNA) as the anionic polyelectrolyte. The assembling process of each component was studied using atomic force microscopy (AFM) and quartz crystal balance (QCM). Zeta potential of the LBL-coated microparticles was measured by dynamic light scattering. Titanium substrates with or without multilayered films were used in osteoblast cell culture experiments to study cell proliferation, viability, differentiation, and morphology. Results of AFM and QCM indicated the progressive build-up of the multilayered coatings. The surface morphology of three types of multilayered films showed elevations in the nanoscale range. The data of zeta potential showed that the surface terminated with PLL displayed positive charge while the surface terminated with DNA displayed negative charge. The proliferation of osteoblasts on modified titanium films was found to be greater than that on control (p < 0.05) after 3 and 7 days culture, respectively. Alamar blue measurement showed that the PLL/DNA-modified films have higher cell viability (p < 0.05) than the control. Still, the alkaline phosphatase activity assay revealed a better differentiated phenotype on three types of multilayered surfaces compared to noncoated controls. Collectively our results suggest that PLL/DNA were successfully used to surface engineer titanium via LBL technique, and enhanced its cell biocompatibility. Copyright © 2012 Wiley Periodicals, Inc.
Osseointegration improvement by plasma electrolytic oxidation of modified titanium alloys surfaces.
Echeverry-Rendón, Mónica; Galvis, Oscar; Quintero Giraldo, David; Pavón, Juan; López-Lacomba, José Luis; Jiménez-Piqué, Emilio; Anglada, Marc; Robledo, Sara M; Castaño, Juan G; Echeverría, Félix
2015-02-01
Titanium (Ti) is a material frequently used in orthopedic applications, due to its good mechanical properties and high corrosion resistance. However, formation of a non-adherent fibrous tissue between material and bone drastically could affect the osseointegration process and, therefore, the mechanical stability of the implant. Modifications of topography and configuration of the tissue/material interface is one of the mechanisms to improve that process by manipulating parameters such as morphology and roughness. There are different techniques that can be used to modify the titanium surface; plasma electrolytic oxidation (PEO) is one of those alternatives, which consists of obtaining porous anodic coatings by controlling parameters such as voltage, current, anodizing solution and time of the reaction. From all of the above factors, and based on previous studies that demonstrated that bone cells sense substrates features to grow new tissue, in this work commercially pure Ti (c.p Ti) and Ti6Al4V alloy samples were modified at their surface by PEO in different anodizing solutions composed of H2SO4 and H3PO4 mixtures. Treated surfaces were characterized and used as platforms to grow osteoblasts; subsequently, cell behavior parameters like adhesion, proliferation and differentiation were also studied. Although the results showed no significant differences in proliferation, differentiation and cell biological activity, overall results showed an important influence of topography of the modified surfaces compared with polished untreated surfaces. Finally, this study offers an alternative protocol to modify surfaces of Ti and their alloys in a controlled and reproducible way in which biocompatibility of the material is not compromised and osseointegration would be improved.
Surface Modifications with Laser Synthesized Mo Modified Coating
NASA Astrophysics Data System (ADS)
Sun, Lu; Chen, Hao; Liu, Bo
2013-01-01
Mg-Cu-Al was first used to improve the surface performance of TA15 titanium alloys by means of laser cladding technique. The synthesis of hard composite coating on TA15 titanium alloy by laser cladding of Mg-Cu-Al-B4C/Mo pre-placed powders was investigated by means of scanning electron microscope, energy dispersive spectrometer and high resolution transmission electron microscope. Experimental results indicated that such composite coating mainly consisted of TiB2, TiB, TiC, Ti3Al and AlCuMg. Compared with TA15 alloy substrate, an improvement of wear resistance was observed for this composite coating due to the actions of fine grain, amorphous and hard phase strengthening.
Visible-Light Responsive Catalysts Using Quantum Dot-Modified TiO2 for Air and Water Purification
NASA Technical Reports Server (NTRS)
Coutts, Janelle L.; Hintze, Paul E.; Clausen, Christian A.; Richards, Jeffrey T.
2014-01-01
Photocatalysis, the oxidation or reduction of contaminants by light-activated catalysts, utilizing titanium dioxide (TiO2) as the catalytic substrate has been widely studied for trace contaminant control in both air and water applications. The interest in this process is due primarily to its low energy consumption and capacity for catalyst regeneration. Titanium dioxide requires ultraviolet light for activation due to its relatively large band gap energy of 3.2 eV. Traditionally, Hg-vapor fluorescent light sources are used in PCO reactors; however, the use of mercury precludes the use of this PCO technology in a spaceflight environment due to concerns over crew Hg exposure.
Method and apparatus for coating substrates using a laser
NASA Technical Reports Server (NTRS)
Zaplatynsky, I. (Inventor)
1984-01-01
Metal substrates, preferably of titanium and titanium alloys, are coated by alloying or forming TiN on a substrate surface. A laser beam strikes the surface of a moving substrate in the presence of purified nitrogen gas. A small area of the substrate surface is quickly heated without melting. This heated area reacts with the nitrogen to form a solid solution. The alloying or formation of TiN occurs by diffusion of nitrogen into the titanium. Only the surface layer of the substrate is heated because of the high power density of the laser beam and short exposure time. The bulk of the substrate is not affected, and melting of the substrate is avoided because it would be detrimental.
Li, Jiaming; Wang, Decheng; He, Zhiliang; Shi, Hao
2018-01-08
To determine the efficacy of modified titanium tension band plus patellar tendon tunnel steel 8 "reduction band" versus titanium cable tension band fixation for the treatment of patellar lower pole fracture. 58 patients with lower patella fracture were enrolled in this study, including 30 patients treated with modified titanium cable tension band plus patellar tibial tunnel wire "8" tension band internal fixation (modified group), and 28 patients with titanium cable tension band fixation. All patients were followed up for 9∼15 months with an average of 11.6 months. Knee flexion was significantly improved in the modified group than in the titanium cable tension band group (111.33 ± 13 degrees versus 98.21 ± 21.70 degrees, P = 0.004). The fracture healing time showed no significant difference. At the end of the follow-up, the improvement excellent rate was 93.33% in the modified group, and 82.14% in the titanium cable tension band group. Titanium cable tension band internal fixation loosening was found in 2 cases, including 1 case of treatment by two surgeries without loose internal fixation. The modified titanium cable tension band with "8" tension band fixation showed better efficacy for lower patella fractures than titanium cable tension band fixation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Catauro, Michelina; Bollino, Flavia; Papale, Ferdinando
When bioactive coatings are applied to medical implants by means of sol-gel dip coating technique, the biological proprieties of the implant surface can be modified to match the properties of the surrounding tissues. In this study organo-inorganic nanocomposites materials were synthesized via sol-gel. They consisted of an inorganic zirconium-based and silica-based matrix, in which a biodegradable polymer (the poly-ε-caprolactone, PCL) was incorporated in different weight percentages. The synthesized materials, in sol phase, were used to dip-coat a substrate of commercially pure titanium grade 4 (CP Ti gr. 4) in order to improve its biological properties. A microstructural analysis of themore » obtained films was carried out by scanning electron microscopy (SEM) and attenuated total reflectance (ATR) Fourier transform infrared spectroscopy (FT-IR). Biological proprieties of the coated substrates were investigated by means of in vitro tests.« less
Hung, Wei-Chiang; Chang, Fang-Mo; Yang, Tzu-Sen; Ou, Keng-Liang; Lin, Che-Tong; Peng, Pei-Wen
2016-11-01
Titanium dioxide (TiO2) layers were prepared on a Ti substrate by using oxygen plasma immersion ion implantation (oxygen PIII). The surface chemical states, structure, and morphology of the layers were studied using X-ray photoelectron spectroscopy, X-ray diffraction, Raman microscopy, atomic force microscopy and scanning electron microscope. The mechanical properties, such as the Young's modulus and hardness, of the layers were investigated using nanoindentation testing. The Ti(4+) chemical state was determined to be present on oxygen-PIII-treated surfaces, which consisted of nanocrystalline TiO2 with a rutile structure. Compared with Ti substrates, the oxygen-PIII-treated surfaces exhibited decreased Young's moduli and hardness. Parameters indicating the blood compatibility of the oxygen-PIII-treated surfaces, including the clotting time and platelet adhesion and activation, were studied in vitro. Clotting time assays indicated that the clotting time of oxygen-PIII-treated surfaces was longer than that of the Ti substrate, which was associated with decreased fibrinogen adsorption. In conclusion, the surface characteristics and the blood compatibility of Ti implants can be modified and improved using oxygen PIII. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhao, Jingming; Hwang, K H; Choi, W S; Shin, S J; Lee, J K
2016-02-01
Titanium as one kind of biomaterials comes in direct contact with the body, making evaluation of biocompatibility an important aspect to biomaterials development. Surface chemistry of titanium plays an important role in osseointegration. Different surface modification alters the surface chemistry and result in different biological response. In this study, three kinds of mixed acid solutions were used to treat Ti specimens to induce Ca-P formation. Following a strong mixed acid activation process, Ca-P coating successfully formed on the Ti surfaces in simulated body fluid. Strong mixed acid increased the roughness of the metal surface, because the porous and rough surface allows better adhesion between Ca-P coatings and substrates. After modification of titanium surface by mixed acidic solution and subsequently H2O2/HCL treatment evaluation of biocompatibility was conducted from hydroxyapatite formation by biomimetic process and cell viability on modified titanium surface. Nano-scale modification of titanium surfaces can alter cellular and tissue responses, which may benefit osseointegration and dental implant therapy. Results from this study indicated that surface treatment methods affect the surface morphology, type of TiO2 layer formed and subsequent apatite deposition and biological responses. The thermo scientific alamarblue cell viability assay reagent is used to quantitatively measure the viability of mammalian cell lines, bacteria and fungi by incorporating a rapid, sensitive and reliable fluorometric/colorimetric growth indicator, without any toxic and side effect to cell line. In addition, mixed acid treatment uses a lower temperature and shorter time period than widely used alkali treatment.
Oxygen diffusion barrier coating
NASA Technical Reports Server (NTRS)
Unnam, Jalaiah (Inventor); Clark, Ronald K. (Inventor)
1987-01-01
A method for coating a titanium panel or foil with aluminum and amorphous silicon to provide an oxygen barrier abrogating oxidation of the substrate metal is developed. The process is accomplished with known inexpensive procedures common in materials research laboratories, i.e., electron beam deposition and sputtering. The procedures are conductive to treating foil gage titanium and result in submicron layers which virtually add no weight to the titanium. There are no costly heating steps. The coatings blend with the substrate titanium until separate mechanical properties are subsumed by those of the substrate without cracking or spallation. This method appreciably increases the ability of titanium to mechanically perform in high thermal environments such as those witnessed on structures of space vehicles during re-entry
Characterization of PEG-Like Macromolecular Coatings on Plasma Modified NiTi Alloy
NASA Astrophysics Data System (ADS)
Yang, Jun; Gao, Jiacheng; Chang, Peng; Wang, Jianhua
2008-04-01
A poly (ethylene glycol) (PEG-like) coating was developed to improve the biocompatibility of Nickel-Titanium (NiTi) alloy implants. The PEG-like macromolecular coatings were deposited on NiTi substrates at a room temperature of 298 K through a ECR (electron-cyclotron resonance) cold-plasma enhanced chemical vapor deposition method using tetraglyme (CH3-O-(CH2-CH2-O)4-CH3) as a precursor. A power supply with a frequency of 2.45 GHz was applied to ignite the plasma with Ar(argon) used as the carrier gas. Based on the atomic force microscopy (AFM) studies, a thin smooth coating on NiTi substrates with highly amorphous functional groups on the modified NiTi surfaces were mainly the same accumulated stoichiometric ratio of C and O with PEG. The vitro studies showed that platelet-rich plasma (PRP) adsorption on the modified NiTi alloy surface was significantly reduced. This study indicated that plasma surface modification changes the surface components of NiTi alloy and subsequently improves its biocompatibility.
NASA Astrophysics Data System (ADS)
Wang, Hong-Yuan; Zhu, Rui-Fu; Lu, Yu-Peng; Xiao, Gui-Yong; He, Kun; Yuan, Y. F.; Ma, Xiao-Ni; Li, Ying
2014-02-01
Sandblasting is one of the most effective methods to modify a metal surface and improve its properties for application. Micro-arc oxidation (MAO) could produce a ceramic coating on a dental implant, facilitating cellular differentiation and osseocomposite on it. This study aims to deposit bioceramic Ca- and P-containing coatings on sandblasted commercially pure titanium by an optimum composite technique to improve the bioactive performance. The effect of sandblasting intensity on microstructures and properties of the implant coatings is examined, and the modified surfaces are characterized in terms of their topography, phase, chemical composition, mechanical properties and hydroxyapatite (HA)-inducing ability. The results show that a moderate sandblasting micromachines the substrate in favorable combination of rough and residual stresses; its MAO coating deposits nano-hydroxyapatite after immersion in simulated body fluid (SBF) for 5 days exhibiting better bioactivity. The further improvement of the implant surface performance is attributed to an optimized composite technique.
Kumar, D Dinesh; Kaliaraj, Gobi Saravanan
2018-01-01
Protecting from wear and corrosion of many medical devices in the biomedical field is an existing scientific challenge. Surface modification with multilayer ZrN/Cu coating was deposited on medical grade stainless steel (SS) and titanium substrates to enhance their surface properties. Structural results revealed that the ZrN/Cu coatings are highly crystalline and uniform microstructure on both the substrates. Dry and wet tribological measurements of the coated titanium substrate exhibit enhanced wear resistance and low friction coefficient due to the improved microstructure. Similarly, the corrosion resistance was exceptionally improved on titanium substrates, resulting from the high inertness of coating to the SBF electrolyte solution. Antibacterial activity and epifluorescence results signify the effective killing of pathogens by means of ion release killing as well as contact killing mechanisms. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dunne, Conor F; Twomey, Barry; O'Neill, Liam; Stanton, Kenneth T
2014-01-01
The aim of this work is to assess the influence of two blast media on the deposition of hydroxyapatite onto a titanium substrate using a novel ambient temperature coating technique named CoBlast. CoBlast was developed to address the problems with high temperature coating techniques. The blasting media used in this study were Al2O3 and a sintered apatite powder. The prepared and coated surfaces were compared to plasma sprayed hydroxyapatite on the same substrates using the same hydroxyapatite feedstock powder. X-ray diffraction analysis revealed the coating crystallinity was the same as the original hydroxyapatite feedstock powder for the CoBlast samples while evidence of amorphous hydroxyapatite phases and β-TCP was observed in the plasma sprayed samples. The blast media type significantly influences the adhesive strength of the coating, surface roughness of both the substrate and coating and the microstructure of the substrate. The coating adhesion increased for the CoBlasted samples from 50 MPa to 60 MPa for sintered apatite powder and alumina, respectively, while plasma spray samples were significantly lower (5 MPa) when tested using a modified pull-test. In conclusion, the choice of blast medium is shown to be a key parameter in the CoBlast process. This study indicates that sintered apatite powder is the most suitable candidate for use as a blast medium in the coating of medical devices.
Sun, Wei; Guo, Yaqing; Ju, Xiaomei; Zhang, Yuanyuan; Wang, Xiuzhen; Sun, Zhenfan
2013-04-15
A biocompatible sensing platform based on graphene (GR) and titanium dioxide (TiO₂) nanorods for the immobilization of hemoglobin (Hb) was adopted in this paper. The GR-TiO₂-Hb composite-modified carbon ionic liquid electrode was constructed through a simple casting method with Nafion as the film forming material. UV-Vis and FT-IR spectra confirmed that Hb retained its native structure in the composite film. Direct electron transfer of Hb incorporated into the composite was realized with a pair of quasi-reversible redox waves appeared, indicating that the presence of GR-TiO₂ nanocomposite on the electrode surface could facilitate the electron transfer rate between the electroactive center of Hb and the substrate electrode. Hb modified electrode showed excellent electrocatalytic activity to the reduction of trichloroacetic acid in the concentration range from 0.6 to 21.0 mmol L⁻¹. These results indicated that GR-TiO₂ nanocomposite could be a friendly biocompatible interface for immobilizing biomolecules and keeping their native structure. The fabricated biosensor displayed the advantages such as high sensitivity, good reproducibility and long-term stability. Copyright © 2012 Elsevier B.V. All rights reserved.
Failure Surface Analysis of Polyimide/Titanium Notched Coating Adhesion Specimens
DOE Office of Scientific and Technical Information (OSTI.GOV)
GIUNTA,RACHEL K.; KANDER,RONALD G.
2000-12-18
Adhesively bonded joints of LaRC{trademark} PETI-5, a phenylethynyl-terminated polyimide, with chromic acid anodized titanium were fabricated and debonded interfacially. The adhesive-substrate failure surfaces were investigated using several surface analysis techniques. From Auger spectroscopy, field emission scanning electron microscopy, and atomic force microscopy studies, polymer appears to be penetrating the pores of the anodized substrate to a depth of approximately 100 nm. From x-ray photoelectron spectroscopy data, the polymer penetrating the pores appears to be in electrical contact with the titanium substrate, leading to differential charging. These analyses confirm that the polymer is becoming mechanically interlocked within the substrate surface.
Li, Wen; Xu, Dawei; Hu, Yan; Cai, Kaiyong; Lin, Yingcheng
2014-06-01
To develop Ti implants with potent antibacterial activity, a novel "sandwich-type" structure of sulfhydrylated chitosan (Chi-SH)/gelatin (Gel) polyelectrolyte multilayer films embedding silver (Ag) nanoparticles was coated onto titanium substrate using a spin-assisted layer-by-layer assembly technique. Ag ions would be enriched in the polyelectrolyte multilayer films via the specific interactions between Ag ions and -HS groups in Chi-HS, thus leading to the formation of Ag nanoparticles in situ by photo-catalytic reaction (ultraviolet irradiation). Contact angle measurement and field emission scanning electron microscopy equipped with energy dispersive X-ray spectroscopy were employed to monitor the construction of Ag-containing multilayer on titanium surface, respectively. The functional multilayered films on titanium substrate [Ti/PEI/(Gel/Chi-SH/Ag) n /Gel] could efficiently inhibit the growth and activity of Bacillus subtitles and Escherichia coli onto titanium surface. Moreover, studies in vitro confirmed that Ti substrates coating with functional multilayer films remained the biological functions of osteoblasts, which was reflected by cell morphology, cell viability and ALP activity measurements. This study provides a simple, versatile and generalized methodology to design functional titanium implants with good cyto-compatibility and antibacterial activity for potential clinical applications.
Maeno, M; Lee, C; Kim, D M; Da Silva, J; Nagai, S; Sugawara, S; Nara, Y; Kihara, H; Nagai, M
2017-06-01
The aim of this study was to evaluate the barrier function of platelet-induced epithelial sheets on titanium surfaces. The lack of functional peri-implant epithelial sealing with basal lamina (BL) attachment at the interface of the implant and the adjacent epithelium allows for bacterial invasion, which may lead to peri-implantitis. Although various approaches have been reported to combat bacterial infection by surface modifications to titanium, none of these have been successful in a clinical application. In our previous study, surface modification with protease-activated receptor 4-activating peptide (PAR4-AP), which induced platelet activation and aggregation, was successful in demonstrating epithelial attachment via BL and epithelial sheet formation on the titanium surface. We hypothesized that the platelet-induced epithelial sheet on PAR4-AP-modified titanium surfaces would reduce bacterial attachment, penetration, and invasion. Titanium surface was modified with PAR4-AP and incubated with platelet-rich plasma (PRP). The aggregated platelets released collagen IV, a critical BL component, onto the PAR4-AP-modified titanium surface. Then, human gingival epithelial cells were seeded on the modified titanium surface and formed epithelial sheets. Green fluorescent protein (GFP)-expressing Escherichia coli was cultured onto PAR4-AP-modified titanium with and without epithelial sheet formation. While Escherichia coli accumulated densely onto the PAR4-AP titanium lacking epithelial sheet, few Escherichia coli were observed on the epithelial sheet on the PAR4-AP surface. No bacterial invasion into the interface of the epithelial sheet and the titanium surface was observed. These in vitro results indicate the efficacy of a platelet-induced epithelial barrier that functions to prevent bacterial attachment, penetration, and invasion on PAR4-AP-modified titanium.
Kojima, Taisuke
2018-01-01
Molecular adsorption on a sensing surface involves molecule-substrate and molecule-molecule interactions. Combining optical systems and a quartz crystal microbalance (QCM) on the same sensing surface allows the quantification of such interactions and reveals the physicochemical properties of the adsorbed molecules. However, low sensitivity of the current reflection-based techniques compared to the QCM technique hinders the quantitative analysis of the adsorption events. Here, a layer-by-layer surface modification of a QCM sensor is studied to increase the optical sensitivity. The intermediate layers of organic-inorganic molecules and metal-metal oxide were explored on a gold (Au) surface of a QCM sensor. First, polyhedral oligomeric silsesquioxane-derivatives that served as the organic-inorganic intermediate layer were synthesized and modified on the Au-QCM surface. Meanwhile, titanium oxide, fabricated by anodic oxidation of titanium, was used as a metal-metal oxide intermediate layer on a titanium-coated QCM surface. The developed technique enabled interrogation of the molecular adsorption owing to the enhanced optical sensitivity.
NASA Astrophysics Data System (ADS)
Cho, Young Jun; Jang, Hanmin; Lee, Kwan-Soo; Kim, Dong Rip
2015-06-01
Superhydrophobic surfaces with anti-corrosion properties have attracted great interest in many industrial fields, particularly to enhance the thermal performance of offshore applications such as heat exchangers, pipelines, power plants, and platform structures. Nanostructures with hydrophobic materials have been widely utilized to realize superhydrophobicity of surfaces, and cerium oxide has been highlighted due to its good corrosion resistive and intrinsically hydrophobic properties. However, few studies of direct growth of cerium oxide nanostructures on diverse substrates have been reported. Herein we report a facile hydrothermal method to directly grow cerium oxide nanorods on diverse substrates, such as aluminum alloy, stainless steel, titanium, and silicon. Diverse substrates with cerium oxide nanorods exhibited superhydrophobicity with no hydrophobic modifiers on their surfaces, and showed good corrosion resistive properties in corrosive medium. We believe our method could pave the way for realization of scalable and sustainable corrosion resistive superhydrophobic surfaces in many industrial fields.
NASA Astrophysics Data System (ADS)
Gao, Wenli; Feng, Bo; Ni, Yuxiang; Yang, Yongli; Lu, Xiong; Weng, Jie
2010-11-01
Titanium and its alloys are frequently used as surgical implants in load bearing situations, such as hip prostheses and dental implants, owing to their biocompatibility, mechanical and physical properties. In this paper, a layer-by-layer (LBL) self-assembly technique, based on the polyelectrolyte-mediated electrostatic adsorption of poly-L-lysine (PLL) and DNA, was used to the formation of multilayer on titanium surfaces. Then bovine serum albumin (BSA) adsorption and biomimetic mineralization of modified surfaces were studied. The chemical composition and wettability of assembled substrates were investigated by X-ray photoelectron spectroscopy (XPS), fluorescence microscopy and water contact angle measurement, respectively. The XPS analysis indicated that the layers were assembled successfully through electrostatic attractions. The measurement with ultraviolet (UV) spectrophotometer revealed that the LBL films enhanced ability of BSA adsorption onto titanium. The adsorption quantity of BSA on the surface terminated with PLL was higher than that of the surface terminated with DNA, and the samples of TiOH/P/D/P absorbed BSA most. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) showed that samples of assembled PLL or/and DNA had better bioactivity in inducing HA formation. Thus the assembling of PLL and DNA onto the surface of titanium in turn via a layer-by-layer self-assembly technology can improve the bioactivity of titanium.
Surface modification of an aluminum alloy by electron beam introducing TiCN nanoparticles
NASA Astrophysics Data System (ADS)
Kolev, M.; Dimitrova, R.; Parshorov, St.; Valkov, St.; Lazarova, R.; Petrov, P.
2018-03-01
TiCN nanopowder deposited in an appropriate way on the surface of an AlSi12Cu2NiMg substrate was incorporated in the matrix using an electron beam technology. The samples were studied by means of light microscopy, SEM, and EDX; their microhardness was also determined. The formation was found of a uniform and dense coating with a thickness of 7 – 10 μgm with a good adherence to the substrate. A modified zone appeared under the coating with a thickness of 100 – 150 μgm containing dendrites of an α-solid solution and a fine eutectic between them, as well as primary silicon crystals. The microhardness of this modified zone was up to 2.4 times higher than that of the matrix. The results of SEM and EDX studies revealed unambiguously the presence of titanium in the coating and in the zones below it. Obviously, the electron beam treatment resulted in the TiCN nanoparticles penetrating into the coating and the substrate immediately below the coating.
NASA Astrophysics Data System (ADS)
Mohanty, M.; Smith, R. W.
1995-12-01
Lightweight coatings based on titanium and titanium carbides produced by plasma spraying can be used to improve and modify the tribomechanical properties of aerospace structural materials. Although plasma-sprayed WC/Co coatings have been applied with success in many cases, such as primary wear-re-sistant materials, their high densities preclude their use in applications that mandate reduction in weight. In the present investigation, the sliding wear resistance of plasma-sprayed, metal-bonded TiC coatings on AI 7075 substrates was studied. Coatings containing 50, 70, and 90 vol% TiC in a Ti matrix produced from physically blended powders of Ti and TiC were compared. Metallographie evaluations showed that dense coatings with good bonding to AI 7075 substrates can be obtained. Coatings from commercial pu-rity (CP) Ti powders sprayed in air under atmospheric conditions, however, indicated considerable oxi-dation of the particles. Under dry sliding conditions, the coefficient of friction (COF) values of the Ti/TiC containing/Al 7075 substrate system were lower than high-velocity oxygen fuel (HVOF) sprayed 75% Cr3C2/25%NiCr coatings on steel and were comparable to coatings of WC/Co. Vacuum plasma-sprayed TiC/Ti coatings with 90 vol% TiC also exhibited better wear resistance than HVOF sprayed 75%Cr3C2/25%NiCr.
Prospects of using titanium nickelide implants with modified surface in dental implantology.
Razdorsky, V V
2008-06-01
Corrosion resistance and biocompatibility of 60 specimens of titanium nickelide with modified surfaces implanted into spongy bone were studied in rabbit experiments. Specimens modified by molybdenum ions exhibited high inertness and favorable tissue reaction. No accumulation of nickel and titanium ions in animal organs was detected.
Methods of repairing a substrate
NASA Technical Reports Server (NTRS)
Riedell, James A. (Inventor); Easler, Timothy E. (Inventor)
2011-01-01
A precursor of a ceramic adhesive suitable for use in a vacuum, thermal, and microgravity environment. The precursor of the ceramic adhesive includes a silicon-based, preceramic polymer and at least one ceramic powder selected from the group consisting of aluminum oxide, aluminum nitride, boron carbide, boron oxide, boron nitride, hafnium boride, hafnium carbide, hafnium oxide, lithium aluminate, molybdenum silicide, niobium carbide, niobium nitride, silicon boride, silicon carbide, silicon oxide, silicon nitride, tin oxide, tantalum boride, tantalum carbide, tantalum oxide, tantalum nitride, titanium boride, titanium carbide, titanium oxide, titanium nitride, yttrium oxide, zirconium boride, zirconium carbide, zirconium oxide, and zirconium silicate. Methods of forming the ceramic adhesive and of repairing a substrate in a vacuum and microgravity environment are also disclosed, as is a substrate repaired with the ceramic adhesive.
Meikle, S. T.; Bianchi, G.; Olivier, G.; Santin, M.
2013-01-01
The lack of direct bonding between the surface of an implant and the mineralized bony tissue is among the main causes of aseptic loosening in titanium-based implants. Surface etching and ceramic coatings have led to improved osteointegration, but their clinical performance is still limited either by partial bonding or by coating delamination. In this work, a solid-phase synthesis method has been optimized to produce poly(ε-lysine) dendrons, the outermost branching generation of which is functionalized by phosphoserine (PS), a known catalyst of the biomineralization process. The dendrons were deposited onto etched titanium oxide surfaces as a near-to-monolayer film able to induce the formation of a homogeneous calcium phosphate phase in a simulated body fluid over 3 days. The dendron films also stimulated MG63 and SAOS-2 osteoblast-like cells to proliferate at a rate significantly higher than etched titanium, with SAOS-2 also showing a higher degree of differentiation over 14 days. PS-tethered dendron films were not affected by various sterilization methods and UV treatment appeared to improve the cell substrate potential of these films, thus suggesting their potential as a surface functionalization method for bone implants. PMID:23193106
De Giglio, E; Cometa, S; Cioffi, N; Torsi, L; Sabbatini, L
2007-12-01
A polyacrylic acid film was synthesized on titanium substrates from aqueous solutions via an electroreductive process for the first time. This work was done in order to develop a versatile coating for titanium-based orthopaedic implants that acts as both an effective bioactive surface and an effective anti-corrosion barrier. The chemical structure of the PAA coating was investigated by X-ray photoelectron spectroscopy (XPS). Scanning electron microscopy (SEM) was employed to evaluate the effect of annealing treatment on the morphology of the coatings in terms of their uniformity and porosity. Inductively coupled plasma mass spectrometry was used to measure ion concentrations in ion release tests performed on Ti-6Al-4V sheets modified with PAA coatings (annealed and unannealed). Results indicate that the annealing process produces coatings that possess considerable anti-corrosion performance. Moreover, the availability and the reactivity of the surface carboxylic groups were exploited in order to graft biological molecules onto the PAA-modified titanium implants. The feasibility of the grafting reaction was tested using a single aminoacid residue. A fluorinated aminoacid was selected, and the grafting reaction was monitored both by XPS, using fluorine as a marker element, and via quartz crystal microbalance (QCM) measurements. The success of the grafting reaction opens the door to the synthesis of a wide variety of PAA-based coatings that are functionalized with selected bioactive molecules and promote positive reactions with the biological system interfacing the implant while considerably reducing ion release into surrounding tissues.
Kim, In-Hye; Son, Jun-Sik; Kwon, Tae-Yub; Kim, Kyo-Han
2015-01-01
Plasma treatments are becoming a popular method for modifying the characteristics of a range of substrate surfaces. Atmospheric pressure plasma is cost-efficient, safe and simple compared to high-pressure plasma. This study examined the effects of atmospheric pressure plasma to a titanium (Ti) surface on osteoblast-like cell (osteoblast) spreading and cellular networks. The characteristics of the Ti surface before and after the atmospheric plasma treatment were analyzed by X-ray photoemission spectroscopy (XPS), scanning electron microscopy (SEM), contact angle measurements, and an optical 3D profiling system. The morphology of osteoblasts attached to the Ti surfaces was observed by SEM and confocal laser scanning microscopy. The atmospheric pressure plasma made the Ti surfaces more hydrophilic. The osteoblasts that adhered to the untreated surface were round and spherical, whereas the cells covered a larger surface area on the plasma-treated surface. The plasma-treated Ti surface showed enhanced cell spreading and migration with more developed cellular networks. In conclusion, an atmospheric plasma treatment is a potential surface modifying method that can enhance the initial the cell affinity at the early stages in vitro.
NASA Astrophysics Data System (ADS)
Gu, Yuan; Ying, Kang; Shen, Dongsheng; Huang, Lijie; Ying, Xianbin; Huang, Haoqian; Cheng, Kun; Chen, Jiazheng; Zhou, Yuyang; Chen, Ting; Feng, Huajun
2017-12-01
Titanium is under consideration as a potential stable bio-anode because of its high conductivity, suitable mechanical properties, and electrochemical inertness in the operating potential window of bio-electrochemical systems; however, its application is limited by its poor electron-transfer capacity with electroactive bacteria and weak ability to form biofilms on its hydrophobic surface. This study reports an effective and low-cost way to convert a hydrophobic titanium alloy surface into a hydrophilic surface that can be used as a bio-electrode with higher electron-transfer rates. Pyrolytic gas of sewage sludge is used to modify the titanium alloy. The current generation, anodic biofilm formation surface, and hydrophobicity are systematically investigated by comparing bare electrodes with three modified electrodes. Maximum current density (15.80 A/m2), achieved using a modified electrode, is 316-fold higher than that of the bare titanium alloy electrode (0.05 A/m2) and that achieved by titanium alloy electrodes modified by other methods (12.70 A/m2). The pyrolytic gas-modified titanium alloy electrode can be used as a high-performance and scalable bio-anode for bio-electrochemical systems because of its high electron-transfer rates, hydrophilic nature, and ability to achieve high current density.
Zhang, Martin Yi; Ye, Chang; Erasquin, Uriel Joseph; Huynh, Toan; Cai, Chengzhi; Cheng, Gary J
2011-02-01
In this work, laser coating of biphasic calcium phosphate/titanium (BCP/Ti) nanocomposite on Ti-6Al-4 V substrates was developed. A continuous wave neodymium-doped yttrium aluminium garnet (Nd:YAG) laser was used to form a robust multilayer of BCP/Ti nanocomposite starting from hydroxyapatite and titanium nanoparticles. In this process, low power coating is realized because of the strong laser-nanoparticle interaction and good sinterability of nanosized titanium. To guide the optimization of laser processing conditions for the coating process, a multiphysics model coupling electromagnetic module with heat transfer module was developed. This model was validated by laser coating experiments. Important features of the coated samples, including microstructures, chemical compositions, and interfacial bonding strength, were characterized. We found that a multilayer of BCP, consisting of 72% hydroxyapatite (HA) and 28% beta-tricalcium phosphate (β-TCP), and titanium nanocomposite was formed on Ti-6Al-4 V substrates. Significantly, the coating/substrate interfacial bonding strength was found to be two times higher than that of the commercial plasma sprayed coatings. Preliminary cell culture studies showed that the resultant BCP/Ti nanocomposite coating supported the adhesion and proliferation of osteoblast-like UMR-106 cells.
Processing of hydroxylapatite coatings on titanium alloy bone prostheses
Nastasi, M.A.; Levine, T.E.; Mayer, J.W.; Pizziconi, V.B.
1998-10-06
Processing of hydroxylapatite sol-gel films on titanium alloy bone prostheses. A method utilizing non-line-of-sight ion beam implantation and/or rapid thermal processing to provide improved bonding of layers of hydroxylapatite to titanium alloy substrates while encouraging bone ingrowth into the hydroxylapatite layers located away from the substrate, is described for the fabrication of prostheses. The first layer of hydroxylapatite is mixed into the substrate by the ions or rapidly thermally annealed, while subsequent layers are heat treated or densified using ion implantation to form layers of decreasing density and larger crystallization, with the outermost layers being suitable for bone ingrowth.
Processing of hydroxylapatite coatings on titanium alloy bone prostheses
Nastasi, Michael A.; Levine, Timothy E.; Mayer, James W.; Pizziconi, Vincent B.
1998-01-01
Processing of hydroxylapatite sol-gel films on titanium alloy bone prostheses. A method utilizing non-line-of-sight ion beam implantation and/or rapid thermal processing to provide improved bonding of layers of hydroxylapatite to titanium alloy substrates while encouraging bone ingrowth into the hydroxylapatite layers located away from the substrate, is described for the fabrication of prostheses. The first layer of hydroxylapatite is mixed into the substrate by the ions or rapidly thermally annealed, while subsequent layers are heat treated or densified using ion implantation to form layers of decreasing density and larger crystallization, with the outermost layers being suitable for bone ingrowth.
Combinatorial Characterization of TiO2 Chemical Vapor Deposition Utilizing Titanium Isopropoxide.
Reinke, Michael; Ponomarev, Evgeniy; Kuzminykh, Yury; Hoffmann, Patrik
2015-07-13
The combinatorial characterization of the growth kinetics in chemical vapor deposition processes is challenging because precise information about the local precursor flow is usually difficult to access. In consequence, combinatorial chemical vapor deposition techniques are utilized more to study functional properties of thin films as a function of chemical composition, growth rate or crystallinity than to study the growth process itself. We present an experimental procedure which allows the combinatorial study of precursor surface kinetics during the film growth using high vacuum chemical vapor deposition. As consequence of the high vacuum environment, the precursor transport takes place in the molecular flow regime, which allows predicting and modifying precursor impinging rates on the substrate with comparatively little experimental effort. In this contribution, we study the surface kinetics of titanium dioxide formation using titanium tetraisopropoxide as precursor molecule over a large parameter range. We discuss precursor flux and temperature dependent morphology, crystallinity, growth rates, and precursor deposition efficiency. We conclude that the surface reaction of the adsorbed precursor molecules comprises a higher order reaction component with respect to precursor surface coverage.
NASA Astrophysics Data System (ADS)
Lee, Bryan E. J.; Exir, Hourieh; Weck, Arnaud; Grandfield, Kathryn
2018-05-01
Reproducible and controllable methods of modifying titanium surfaces for dental and orthopaedic applications are of interest to prevent poor implant outcomes by improving osseointegration. This study made use of a femtosecond laser to generate laser-induced periodic surface structures with periodicities of 300, 620 and 760 nm on titanium substrates. The reproducible rippled patterns showed consistent submicron scale roughness and relatively hydrophobic surfaces as measured by atomic force microscopy and contact angle, respectively. Transmission electron microscopy and Auger electron spectroscopy identified a thicker oxide layer on ablated surfaces compared to controls. In vitro testing was conducted using osteosarcoma Saos-2 cells. Cell metabolism on the laser-ablated surfaces was comparable to controls and alkaline phosphatase activity was notably increased at late time points for the 620 and 760 nm surfaces compared to controls. Cells showed a more elongated shape on laser-ablated surfaces compared to controls and showed perpendicular alignment to the periodic structures. This work has demonstrated the feasibility of generating submicron features on an implant material with the ability to influence cell response and improve implant outcomes.
Karahan, H Enis; Birer, Özgür; Karakuş, Kerem; Yıldırım, Cansu
2016-07-01
Ultrasound-assisted deposition (USAD) of sol nanoparticles enables the formation of uniform and inherently stable thin films. However, the technique still suffers in coating hard substrates and the use of fast-reacting sol-gel precursors still remains challenging. Here, we report on the deposition of ultrathin titanium and titanium/silicon hybrid oxide coatings using hydroxylated silicon wafers as a model hard substrate. We use acetic acid as the catalyst which also suppresses the reactivity of titanium tetraisopropoxide while increasing the reactivity of tetraethyl orthosilicate through chemical modifications. Taking the advantage of this peculiar behavior, we successfully prepared titanium and titanium/silicon hybrid oxide coatings by USAD. Varying the amount of acetic acid in the reaction media, we managed to modulate thickness and surface roughness of the coatings in nanoscale. Field-emission scanning electron microscopy and atomic force microscopy studies showed the formation of conformal coatings having nanoroughness. Quantitative chemical state maps obtained by x-ray photoelectron spectroscopy (XPS) suggested the formation of ultrathin (<10nm) coatings and thickness measurements by rotating analyzer ellipsometry supported this observation. For the first time, XPS chemical maps revealed the transport effect of ultrasonic waves since coatings were directly cast on rectangular substrates as circular shadows of the horn with clear thickness gradient from the center to the edges. In addition to the progress made in coating hard substrates, employing fast-reacting precursors and achieving hybrid coatings; this report provides the first visual evidence on previously suggested "acceleration and smashing" mechanism as the main driving force of USAD. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Endo, Akito; Kawashima, Norimichi; Takeuchi, Shinichi; Ishikawa, Mutsuo; Kurosawa, Minoru Kuribayashi
2007-07-01
We deposited a lead zirconate titanete (PZT) polycrystalline film on a titanium substrate by the hydrothermal method and fabricated a transducer using the PZT film for use as an ultrasound probe. A 10 MHz miniature one-dimensional-array medical ultrasound probe containing the PZT film was developed. After sputtering titanium on the surface of a hydroxyapatite substrate, the titanium film on the substrate was etched by the photolithography to form a one-dimensional titanium film electrode array. We could thus fabricate a miniature one-dimensional-array ultrasound probe by the hydrothermal method. Transmitted ultrasound pulses from a 10 MHz commercial ultrasound probe were received by the newly fabricated one-dimensional-array ultrasound probe. The fabrication process of the probe and the results of experiments on receiving waveforms were reported in this paper.
Diffusion Bonding of Silicon Carbide for MEMS-LDI Applications
NASA Technical Reports Server (NTRS)
Halbig, Michael C.; Singh, Mrityunjay; Shpargel, Tarah P.; Kiser, J. Douglas
2007-01-01
A robust joining approach is critically needed for a Micro-Electro-Mechanical Systems-Lean Direct Injector (MEMS-LDI) application which requires leak free joints with high temperature mechanical capability. Diffusion bonding is well suited for the MEMS-LDI application. Diffusion bonds were fabricated using titanium interlayers between silicon carbide substrates during hot pressing. The interlayers consisted of either alloyed titanium foil or physically vapor deposited (PVD) titanium coatings. Microscopy shows that well adhered, crack free diffusion bonds are formed under optimal conditions. Under less than optimal conditions, microcracks are present in the bond layer due to the formation of intermetallic phases. Electron microprobe analysis was used to identify the reaction formed phases in the diffusion bond. Various compatibility issues among the phases in the interlayer and substrate are discussed. Also, the effects of temperature, pressure, time, silicon carbide substrate type, and type of titanium interlayer and thickness on the microstructure and composition of joints are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsipas, Sophia A., E-mail: stsipas@ing.uc3m.es; Go
Wear and high temperature oxidation resistance of some titanium-based alloys needs to be enhanced, and this can be effectively accomplished by surface treatment. Molybdenizing is a surface treatment where molybdenum is introduced into the surface of titanium alloys causing the formation of wear-resistant surface layers containing molybdenum, while aluminizing of titanium-based alloys has been reported to improve their high temperature oxidation properties. Whereas pack cementation and other surface modification methods have been used for molybdenizing or aluminizing of wrought and/or cast pure titanium and titanium alloys, such surface treatments have not been reported on titanium alloys produced by powder metallurgymore » (PM). Also a critical understanding of the process parameters for simultaneous one step molybdeno-aluminizing of titanium alloys by pack cementation and the predominant mechanism for this process have not been reported. The current research work describes the surface modification of titanium and Ti-6Al-4V prepared by PM by molybdeno-aluminizing and analyzes thermodynamic aspects of the deposition process. Similar coatings are also deposited to wrought Ti-6Al-4V and compared. Characterization of the coatings was carried out using scanning electron microscopy and x-ray diffraction. For both titanium and Ti-6Al-4V, the use of a powder pack containing ammonium chloride as activator leads to the deposition of molybdenum and aluminium into the surface but also introduces nitrogen causing the formation of a thin titanium nitride layer. In addition, various titanium aluminides and mixed titanium aluminium nitrides are formed. The appropriate conditions for molybdeno-aluminizing as well as the phases expected to be formed were successfully determined by thermodynamic equilibrium calculations. - Highlights: •Simultaneous co-deposition of Mo-Al onto powder metallurgy and wrought Ti alloy •Thermodynamic calculations were used to optimize deposition conditions •External TiN and internal a Mo-rich layer on all alloy substrates •Titanium aluminides and Ti-Al mixed nitrides are formed on Ti-6Al-4V •The presence of Al and V alloying elements modifies the diffusion of Mo.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chuan, Lee Te, E-mail: gd130079@siswa.uthm.edu.my; Abdullah, Hasan Zuhudi, E-mail: hasan@uthm.edu.my; Idris, Maizlinda Izwana, E-mail: izwana@uthm.edu.my
Anodic oxidation is an electrochemical method for the production of ceramic films on a metallic substrate. It had been widely used to deposit the ceramic coatings on the metals surface. This method has been widely used in surface modification of biomaterials especially for dental implants. In this study, the surface morphology, crystallinity and optical properties of titanium foil was modified by anodising in mixture of β-glycerophosphate disodium salt pentahydrate (β-GP) and calcium acetate monohydrate (CA). The experiments were carried out at high voltage (350 V), different anodising time (5 and 10 minutes) and current density (10-70 mA.cm{sup −2}) at room temperature. Anodisedmore » titanium was characterised by using field emission scanning electron microscopy (FESEM), X-ray diffractometer (XRD), and UV-Vis spectrometry. The result of the experiment showed that surface morphology, crystallinity and optical properties depended strongly on the current density and anodising time. More porous surface and large amount of anatase and rutile was produced at higher current density and longer anodising time. Apart from that, it is also revealed that the energy band gap of anodised titanium increases as the increase in current density due to the presence of anatase and rutile TiO{sub 2}.« less
NASA Astrophysics Data System (ADS)
Chuan, Lee Te; Abdullah, Hasan Zuhudi; Idris, Maizlinda Izwana
2015-07-01
Anodic oxidation is an electrochemical method for the production of ceramic films on a metallic substrate. It had been widely used to deposit the ceramic coatings on the metals surface. This method has been widely used in surface modification of biomaterials especially for dental implants. In this study, the surface morphology, crystallinity and optical properties of titanium foil was modified by anodising in mixture of β-glycerophosphate disodium salt pentahydrate (β-GP) and calcium acetate monohydrate (CA). The experiments were carried out at high voltage (350 V), different anodising time (5 and 10 minutes) and current density (10-70 mA.cm-2) at room temperature. Anodised titanium was characterised by using field emission scanning electron microscopy (FESEM), X-ray diffractometer (XRD), and UV-Vis spectrometry. The result of the experiment showed that surface morphology, crystallinity and optical properties depended strongly on the current density and anodising time. More porous surface and large amount of anatase and rutile was produced at higher current density and longer anodising time. Apart from that, it is also revealed that the energy band gap of anodised titanium increases as the increase in current density due to the presence of anatase and rutile TiO2.
Development of Titanium-Sputtered Anodized Aluminum Substrates for Dye-Sensitized Solar Cells
NASA Astrophysics Data System (ADS)
Côté, Marie-Pier; Parsi Benehkohal, Nima; Alpay, Neslihan; Demopoulos, George P.; Brochu, Mathieu
2014-12-01
In this study, anodized aluminum coupons are sputtered with titanium and successfully demonstrated as dye-sensitized solar cell (DSC) electrode substrates in both anode [back-illumination (BI)] and cathode [front-illumination (FI)] configurations. The FI DSCs were found to be significantly more efficient than the BI devices registering an average efficiency of 5.7 vs 2.6 pct. By comparison, the efficiency of benchmark cells built with fluorine-tin oxide-glass was 6.7 and 4.6 pct, respectively. The thickness of the titanium-sputtered film was varied from 0.85 to 1.1 μm with the latter providing a better average efficiency when used as a counter electrode. According to preliminary stability testing, the Ti-sputtered anodized aluminum-based DSC devices exhibited a significant reduction of their efficiency over a period of 10 days that was partly attributed to triiodide redox electrolyte reaction with the aluminum substrate. This points to the need for optimization of the sputtered-titanium coating microstructure in order to completely isolate the aluminum substrate from the liquid electrolyte.
New deposition technique for metal films containing inorganic fullerene-like (IF) nanoparticles.
Goldbart, Ohad; Yoffe, Alexander; Cohen, Sidney R; Rosentsveig, Rita; Feldman, Yishay; Rapoport, Lev; Tenne, Reshef
2013-07-22
This study describes a new method for fabrication of thin composite films using physical vapor deposition (PVD). Titanium (Ti) and hybrid films of titanium containing tungsten disulphide nanoparticles with inorganic fullerene-like structure (Ti/IF-WS2) were fabricated with a modified PVD machine. The evaporation process includes the pulsed deposition of IF-WS2 by a sprayer head. This process results in IF-WS2 nanoparticles embedded in a Ti matrix. The layers were characterized by various techniques, which confirm the composition and structure of the hybrid film. The Ti/IF-WS2 shows better wear resistance and a lower friction coefficient when compared to the Ti layer or Ti substrate. The Ti/IF films show very good antireflective properties in the visible and near-IR region. Such films may find numerous applications, for example, in the aerospace and medical technology. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Li, Yingpin; Wei, Yanan; Feng, Kangning; Hao, Yanzhong; Pei, Juan; Sun, Bao
2018-06-01
Array of TiO2 dendritic structure with nanotubes was constructed on transparent conductive fluorine-doped tin oxide glass (FTO) with titanium potassium oxalate as titanium source. Sb2S3 nanocrystals were successfully deposited on the TiO2 substrate via spin-coating method. Furthermore, TiO2/Sb2S3/P3HT/PEDOT:PSS composite film was prepared by successively spin-coating P3HT and PEDOT:PSS on TiO2/Sb2S3. It was demonstrated that the modification of TiO2 dendritic structure with Sb2S3 could enhance the light absorption in the visible region. The champion hybrid solar cell assembled by TiO2/Sb2S3/P3HT/PEDOT:PSS composite film achieved a power conversion efficiency (PCE) of 1.56%.
Nanolayer formation on titanium by phosphonated gelatin for cell adhesion and growth enhancement
Zhou, Xiaoyue; Park, Shin-Hye; Mao, Hongli; Isoshima, Takashi; Wang, Yi; Ito, Yoshihiro
2015-01-01
Phosphonated gelatin was prepared for surface modification of titanium to stimulate cell functions. The modified gelatin was synthesized by coupling with 3-aminopropylphosphonic acid using water-soluble carbodiimide and characterized by 31P nuclear magnetic resonance and gel permeation chromatography. Circular dichroism revealed no differences in the conformations of unmodified and phosphonated gelatin. However, the gelation temperature was changed by the modification. Even a high concentration of modified gelatin did not form a gel at room temperature. Time-of-flight secondary ion mass spectrometry showed direct bonding between the phosphonated gelatin and the titanium surface after binding. The binding behavior of phosphonated gelatin on the titanium surface was quantitatively analyzed by a quartz crystal microbalance. Ellipsometry showed the formation of a several nanometer layer of gelatin on the surface. Contact angle measurement indicated that the modified titanium surface was hydrophobic. Enhancement of the attachment and spreading of MC-3T3L1 osteoblastic cells was observed on the phosphonated gelatin-modified titanium. These effects on cell adhesion also led to growth enhancement. Phosphonation of gelatin was effective for preparation of a cell-stimulating titanium surface. PMID:26366080
Liu, Zihao; Ma, Shiqing; Duan, Shun; Xuliang, Deng; Sun, Yingchun; Zhang, Xi; Xu, Xinhua; Guan, Binbin; Wang, Chao; Hu, Meilin; Qi, Xingying; Zhang, Xu; Gao, Ping
2016-03-02
Bacterial adhesion and biofilm formation are the primary causes of implant-associated infection, which is difficult to eliminate and may induce failure in dental implants. Chimeric peptides with both binding and antimicrobial motifs may provide a promising alternative to inhibit biofilm formation on titanium surfaces. In this study, chimeric peptides were designed by connecting an antimicrobial motif (JH8194: KRLFRRWQWRMKKY) with a binding motif (minTBP-1: RKLPDA) directly or via flexible/rigid linkers to modify Ti surfaces. We evaluated the binding behavior of peptides using quartz crystal microbalance (QCM) and atomic force microscopy (AFM) techniques and investigated the effect of the modification of titanium surfaces with these peptides on the bioactivity of Streptococcus gordonii (S. gordonii) and Streptococcus sanguis (S. sanguis). Compared with the flexible linker (GGGGS), the rigid linker (PAPAP) significantly increased the adsorption of the chimeric peptide on titanium surfaces (p < 0.05). Concentration-dependent adsorption is consistent with a single Langmuir model, whereas time-dependent adsorption is in line with a two-domain Langmuir model. Additionally, the chimeric peptide with the rigid linker exhibited more effective antimicrobial ability than the peptide with the flexible linker. This finding was ascribed to the ability of the rigid linker to separate functional domains and reduce their interference to the maximum extent. Consequently, the performance of chimeric peptides with specific titanium-binding motifs and antimicrobial motifs against bacteria can be optimized by the proper selection of linkers. This rational design of chimeric peptides provides a promising alternative to inhibit the formation of biofilms on titanium surfaces with the potential to prevent peri-implantitis and peri-implant mucositis.
Chu, C L; Guo, C; Sheng, X B; Dong, Y S; Lin, P H; Yeung, K W K; Chu, Paul K
2009-07-01
A new surface modification protocol encompassing an electropolishing pretreatment (EP) and subsequent photoelectrocatalytic oxidation (PEO) has been developed to improve the surface properties of biomedical nickel titanium (NiTi) shape memory alloy (SMA). Electropolishing is a good way to improve the resistance to localized breakdown of NiTi SMA whereas PEO offers the synergistic effects of advanced oxidation and electrochemical oxidation. Our results indicate that PEO leads to the formation of a sturdy titania film on the EP NiTi substrate. There is an Ni-free zone near the top surface and a graded interface between the titania layer and NiTi substrate, which bodes well for both biocompatibility and mechanical stability. In addition, Ni ion release from the NiTi substrate is suppressed, as confirmed by the 10-week immersion test. The modulus and hardness of the modified NiTi surface increase with larger indentation depths, finally reaching plateau values of about 69 and 3.1GPa, respectively, which are slightly higher than those of the NiTi substrate but much lower than those of a dense amorphous titania film. In comparison, after undergoing only EP, the mechanical properties of NiTi exhibit an inverse change with depth. The deformation mechanism is proposed and discussed. Our results indicate that surface modification by dual EP and PEO can notably suppress Ni ion release and improve the biocompatibility of NiTi SMA while the surface mechanical properties are not compromised, making the treated materials suitable for hard tissue replacements.
Isaac, J; Galtayries, A; Kizuki, T; Kokubo, T; Berda, A; Sautier, J-M
2010-09-28
This study investigated the in vitro effects of bioactive titanium surfaces on osteoblast differentiation. Three titanium substrates were tested: a commercially pure titanium (Cp Ti), an alkali- and heat-treated titanium (AH Ti), and an apatite-formed titanium (Ap Ti) generated by soaking AH Ti in a simulated body fluid. Chemical evaluation of the surface reactivity was analysed at nanometre scale by X-ray photoelectron spectroscopy (XPS), and at micrometre scale by energy dispersive X-ray microanalysis (EDX). It showed that the estimated proportion of the surface covered by adsorbed serum proteins differed between the three substrates and confirmed the bioactivity of AH Ti, illustrated by surface calcium and phosphate deposition when immersed in biological fluids. Mouse calvaria osteoblasts were cultured on the substrates for 15 days with no sign of cytotoxicity. Enzyme immunoassay and Real-Time RT-PCR were used to follow osteoblast differentiation through the production of osteocalcin (OC) and expression of several bone markers. At day 15, a significant up-regulation of Runx2, Osx, Dlx5, ALP, BSP, OC and DMP1 mRNA levels associated with an increase of OC production were observed on AH Ti and Ap Ti when compared to Cp Ti. These results suggest that bioengineered titanium has a great potential for dental applications in enhancing osseointegration.
NASA Astrophysics Data System (ADS)
Wong, Wilson
The cold gas dynamic spraying of commercially pure titanium coatings was investigated. Specifically, the relationship between several key cold spray parameters on the quality of the resulting coatings was studied in order to gain a more thorough understanding of the cold spray process. To achieve this goal, three distinct investigations were performed. The first part of the investigation focussed on the effect of propelling gas, particularly helium and nitrogen, during the cold spraying of titanium coatings. Coatings were characterised by SEM and were evaluated for their deposition efficiency (DE), microhardness, and porosity. In selected conditions, three particle velocities were investigated such that for each condition, the propelling gasses temperature and pressure were attuned to attain similar particle velocities for each gas. In addition, a thick and fully dense cold sprayed titanium coating was achieved with optimised spray parameters and nozzle using helium. The corresponding average particle velocity was 1173 m/s. The second part of the investigation studied the effect of particle morphology (spherical, sponge, and irregular) and size distributions (mean particle sizes of 20, 29, and 36 mum) of commercially pure titanium on the mechanical properties of the resulting cold sprayed coatings. Numerous powder and coating characterisations were performed. From these data, semi-empirical flow (stress-strain) curves were generated based on the Johnson-Cook plasticity model which could be used as a measure of cold sprayability. Cold sprayability can be defined as the ease with which a powder can be cold sprayed. It was found that the sponge and irregular commercially pure titanium powders had higher oxygen content, poorer powder flowability, higher compression ratio, lower powder packing factor, and higher average particle impact velocities compared to the spherical powders. XRD results showed no new phases present when comparing the various feedstock powders to their corresponding coatings. For all feedstock powder morphologies, it was observed that the larger the particle size, the higher the temperature generated on impact. For the spherical powders, the higher the temperature generated on impact, the lower the stress needed to deform the particle. In addition, as the kinetic energy of the impacting particle increased, the flow peak stress decreased while the final strain increased. Furthermore, higher final flow strains were associated with higher coating DeltaHV 10 (between the coatings and the feedstock powders). Similar relationships are expected to exist for the sponge and irregular feedstock powders. Based on porosity, the spherical medium powder was found to have the best cold sprayability. The final part of the investigation focussed on the effect of substrate surface roughness and coating thickness on the adhesion strength of commercially pure titanium cold sprayed coatings onto Steel 1020, Al 6061, and Ti substrates. Adhesion strength was measured by tensile/pull tests according to ASTM C-633-01 standard. Through-thickness residual stresses of selected coatings were measured using the modified layer removal method (MLRM). In addition, mean coating residual stresses were calculated from MLRM results. It was found that adhesion strength increases with increasing substrate surface roughness and decreases with increasing coating thickness. Furthermore, mean coating residual stresses were correlated with adhesion strength and it was suggested that higher adhesion strengths are associated with higher mean compressive stresses and a higher probability for adiabatic shear instability to occur due to the higher particle impact velocities. In general, it was found that under similar cold spray conditions and substrate surface preparation method, adhesion strength was strongest for commercially pure titanium coatings deposited onto Al 6061, followed by Ti, then Steel 1020.
Calcium Phosphate Growth at Electropolished Titanium Surfaces
Ajami, Elnaz; Aguey-Zinsou, Kondo-Francois
2012-01-01
This work investigated the ability of electropolished Ti surface to induce Hydroxyapatite (HA) nucleation and growth in vitro via a biomimetic method in Simulated Body Fluid (SBF). The HA induction ability of Ti surface upon electropolishing was compared to that of Ti substrates modified with common chemical methods including alkali, acidic and hydrogen peroxide treatments. Our results revealed the excellent ability of electropolished Ti surfaces in inducing the formation of bone-like HA at the Ti/SBF interface. The chemical composition, crystallinity and thickness of the HA coating obtained on the electropolished Ti surface was found to be comparable to that achieved on the surface of alkali treated Ti substrate, one of the most effective and popular chemical treatments. The surface characteristics of electropolished Ti contributing to HA growth were discussed thoroughly. PMID:24955535
Understanding Organic Film Behavior on Alloy and Metal Oxides
Raman, Aparna; Quiñones, Rosalynn; Barriger, Lisa; Eastman, Rachel; Parsi, Arash
2010-01-01
Native oxide surfaces of stainless steel 316L and Nitinol alloys and their constituent metal oxides namely, nickel, chromium, molybdenum, manganese, iron and titanium were modified with long chain organic acids to better understand organic film formation. The adhesion and stability of films of octadecylphosphonic acid, octadecylhydroxamic acid, octadecylcarboxylic acid and octadecylsulfonic acid on these substrates was examined in this study. The films formed on these surfaces were analyzed by diffuse reflectance infrared Fourier transform spectroscopy, contact angle goniometry, atomic force microscopy and matrix assisted laser desorption ionization mass spectrometry. The effect of the acidity of the organic moiety and substrate composition on the film characteristics and stability is discussed. Interestingly, on the alloy surfaces, the presence of less reactive metal sites does not inhibit film formation. PMID:20039608
Kalita, V I; Komlev, D I; Komlev, V S; Radyuk, A A
2016-03-01
A plasma spraying process for the deposition of three-dimensional capillary-porous titanium coatings using a wire has been developed. In this process, two additional dc arcs are discharged between plasmatron and both the wire and the substrate, resulting in additional activation of the substrate and the particles, particularly by increasing their temperature. The shear strength of the titanium coating with 46% porosity is 120.6 MPa. A new procedure for estimating the shear strength of porous coatings has been developed. Copyright © 2015 Elsevier B.V. All rights reserved.
Study of Crystallographic Texture During Thermo-Mechanical Processing of Boron Modified Ti-Alloys
2009-07-15
project developed a processing strategy for boron-modified titanium alloy Ti- 6Al - 4V , and developed an understanding of the deformation and...develop the processing strategy for boron modified titanium alloy Ti- 6Al - 4V 2. To understand the deformation and transformation mechanisms as a function...strength-to-weight ratio, excellent mechanical properties and corrosion resistance, titanium (Ti) and its alloys, especially (α+β) alloys like Ti- 6Al - 4V
Two-Dimensional Titanium Carbide (MXene) as Surface-Enhanced Raman Scattering Substrate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarycheva, Asia; Makaryan, Taron; Maleski, Kathleen
Here, noble metal (gold or silver) nanoparticles or patterned films are typically used as substrates for surface-enhanced Raman spectroscopy (SERS). Two-dimensional (2D) carbides and nitrides (MXenes) exhibit unique electronic and optical properties, including metallic conductivity and plasmon resonance in the visible or near-infrared range, making them promising candidates for a wide variety of applications. Herein, we show that 2D titanium carbide, Ti 3C 2T x, enhances Raman signal from organic dyes on a substrate and in solution. As a proof of concept, MXene SERS substrates were manufactured by spray-coating and used to detect several common dyes, with calculated enhancement factorsmore » reaching ~10 6. Titanium carbide MXene demonstrates SERS effect in aqueous colloidal solutions, suggesting the potential for biomedical or environmental applications, where MXene can selectively enhance positively charged molecules.« less
NASA Technical Reports Server (NTRS)
Douglas, F. C.; Paradis, E. L.; Veltri, R. D.
1973-01-01
A radio frequency powered ion-plating system was used to plate protective layers of refractory oxides and carbide onto high strength fiber substrates. Subsequent overplating of these combinations with nickel and titanium was made to determine the effectiveness of such barrier layers in preventing diffusion of the overcoat metal into the fibers with consequent loss of fiber strength. Four substrates, five coatings, and two metal matrix materials were employed for a total of forty material combinations. The substrates were tungsten, niobium, NASA-Hough carbon, and Tyco sapphire. The diffusion-barrier coatings were aluminum oxide, yttrium oxide, titanium carbide, tungsten carbide with 14% cobalt addition, and zirconium carbide. The metal matrix materials were IN 600 nickel and Ti 6/4 titanium. Adhesion of the coatings to all substrates was good except for the NASA-Hough carbon, where flaking off of the oxide coatings in particular was observed.
Durable warmth retention finishing of down using titanium dioxide optimized by RSM
NASA Astrophysics Data System (ADS)
Li, Huihao; Qi, Lu; Li, Jun
2017-03-01
A new product, referred to herein as modified down, was prepared by grafting down fiber with titanium dioxide. Grafting modification brings new functionalities to down Using response surface methodology (RSM); the effect of titanium dioxide concentration, KH550 concentration, and baking temperature on the warmth retention is studied using the response surface method (RSM) to obtain the optimal experimental formula and models. The optimal preparation conditions for modified down were 19.35% titanium dioxide, 15.81% KH550, 10min baking time, and 115 °C temperature. The warmth retention of the modified down was 79.98%, The structure and property of modified down were characterized and analyzed by using Flat Plate Warmth Retaining Tester, FT-IR, and TG. The CLO value increased by 27.28%, the thermal resistance increased by 27.34%. The ultimate residual quantities of the modified down fibers were 30.05%.
NASA Astrophysics Data System (ADS)
Panin, Alexey; Panin, Victor; Kazachenok, Marina; Shugurov, Artur; Sinyakova, Elena; Martynov, Sergey; Rusyaev, Andrey; Kasterov, Artur
2017-12-01
The yttria-stabilized zirconia coatings sprayed on titanium substrates by the electron beam physical vapor deposition were subjected to thermal annealing in air at 1000°C for 1, 30 and 60 min. The delamination and fracture of the coatings are studied by the scanning electron microscopy and X-ray diffraction. It is shown that a magnetron sputtered Al interlayer between the coating and the substrate considerably improves the thermal resistance of ceramic coatings.
Peroxide-modified titanium dioxide: a chemical analog of putative Martian soil oxidants
NASA Technical Reports Server (NTRS)
Quinn, R. C.; Zent, A. P.
1999-01-01
Hydrogen peroxide chemisorbed on titanium dioxide (peroxide-modified titanium dioxide) is investigated as a chemical analog to the putative soil oxidants responsible for the chemical reactivity seen in the Viking biology experiments. When peroxide-modified titanium dioxide (anatase) was exposed to a solution similar to the Viking labeled release (LR) experiment organic medium, CO2 gas was released into the sample cell headspace. Storage of these samples at 10 degrees C for 48 hr prior to exposure to organics resulted in a positive response while storage for 7 days did not. In the Viking LR experiment, storage of the Martian surface samples for 2 sols (approximately 49 hr) resulted in a positive response while storage for 141 sols essentially eliminated the initial rapid release of CO2. Heating the peroxide-modified titanium dioxide to 50 degrees C prior to exposure to organics resulted in a negative response. This is similar to, but not identical to, the Viking samples where heating to approximately 46 degrees C diminished the response by 54-80% and heating to 51.5 apparently eliminated the response. When exposed to water vapor, the peroxide-modified titanium dioxide samples release O2 in a manner similar to the release seen in the Viking gas exchange experiment (GEx). Reactivity is retained upon heating at 50 degrees C for three hours, distinguishing this active agent from the one responsible for the release of CO2 from aqueous organics. The release of CO2 by the peroxide-modified titanium dioxide is attributed to the decomposition of organics by outer-sphere peroxide complexes associated with surface hydroxyl groups, while the release of O2 upon humidification is attributed to more stable inner-sphere peroxide complexes associated with Ti4+ cations. Heating the peroxide-modified titanium dioxide to 145 degrees C inhibited the release of O2, while in the Viking experiments heating to this temperature diminished but did not eliminated the response. Although the thermal stability of the titanium-peroxide complexes in this work is lower than the stability seen in the Viking experiments, it is expected that similar types of complexes will form in titanium containing minerals other than anatase and the stability of these complexes will vary with surface hydroxylation and mineralogy.
NASA Astrophysics Data System (ADS)
He, Wen-Li; Fang, Fang; Ma, Dong-Mei; Chen, Meng; Qian, Dong-Jin; Liu, Minghua
2018-01-01
Multiporphyrin arrays are large, π-conjugated chromophores with high absorption efficiency and strong chemical stability that play an important role in supramolecular and advanced material sciences. Palladium-directed self-assembly of multiporphyrin array ultrathin films was achieved on substrate surfaces using oxo[5,10,15,20-tetra(4-pyridyl)porphyrinato]titanium (IV) complex [TiO(TPyP)] as a linker and sodium tetrachloropalladate (Na2PdCl4) as a connector. The Pd-TiOTPyP films as prepared were characterized by using UV-vis absorption and X-ray photoelectron spectroscopy, as well as by atomic force and scanning electron microscopy. The Soret absorption band of TiOTPyP was observed to red shift by 6 nm when the Pd-TiOTPyP multilayer-modified quartz substrate was immersed in an aqueous solution containing hydrogen peroxide. This was attributed to the formation of a TiO2TPyP monoperoxo complex. This oxidation reaction could be accelerated in an acidic solution. Furthermore, the immobilized Pd-TiOTPyP multilayers could act as light-harvesting units for photocurrent generation and photochromism of viologens, with strong stability, reproducibility, and recyclability. The photocurrent density could be enhanced in electrolyte solutions containing electron donors such as triethanolamine, or electron acceptors such as viologens. Finally, photoinduced reduction (photochromism) of viologens was investigated using the Pd-TiOTPyP multilayers as light sensitizers and EDTA as the electron donors.
Scale-Up of a Titanium Carbonitride Coating System for Titanium Alloys.
1980-07-01
Ti-Cote C on JT12 Compressor 7th-Stage Airfoil -Optical Photomicrograph Porosity in Ti-Cote C Titanium 6AI- 4V Substrate - -- Mag: 1000OX FD 171506...30 21 TiCN Coating on Titanium 6A1- 4V ...indication of any corrosive damage to the titanium 6A1- 4V . This had been a matter of concern due to the corrosive nature of the reactive gases and
Kawai, Hiroyuki; Shibata, Yo; Miyazaki, Takashi
2004-05-01
Despite the fact that several reports have demonstrated osteoclast activity on various bioactive ceramics, osteoclast functions on surface-modified titanium have not come under focus. This study aimed to examine whether the increasing surface energy of glow discharge plasma (GDP) involved in protein adhesion containing the RGD (Arg-Gly-Asp) sequence affects osteoclast responses on titanium plates. We examined osteoclast differentiation and survival rates on titanium plates with and without GDP. The amounts of osteoclasts on titanium plates were not increased by GDP after 1 week. However, osteoclast differentiation was greatly activated by GDP pretreatment, as tartrate-resistant acid phosphatase synthesis significantly increased on the titanium plates with GDP. Additionally, since the presence of osteoclasts was detected only on the titanium plates with GDP, even after 4h cultivation in a coculture test, the osteoclasts survival rate was increased by GDP pretreatment. As osteoclast responses were affected even on surface modified metallic materials, we concluded that novel approaches are needed not only for osteoclastic resorption on ceramic materials but also for osteoclast responses on surface-modified metallic materials.
The crevice corrosion of cathodically modified titanium in chloride solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lingen, E. van der
1995-12-01
The susceptibility of titanium to crevice corrosion in low-pH chloride solutions at elevated temperatures can result in major practical problems. Although Grade 7 titanium is considered the most crevice-corrosion resistant material available for these environments, the price increase of palladium has limited the utilization of this alloy. A cost-effective titanium alloy, containing 0.2% ruthenium by mass, has been developed for use in environments of increased chloride concentration and temperature. The crevice corrosion resistance of the Ti-0.2% Ru alloy has been evaluated and compared with that of ASTM commercially pure Grade 2 titanium, Grade 7 titanium (Ti-0.12 to 0.25% palladium bymore » mass) and Grade 12 titanium (Ti-0.8% Ni-0.3% Mo). The results indicated that the cathodically modified titanium alloys, Ti-0.2% Ru and Grade 7 titanium, showed similar resistance to crevice corrosion attack in all the solutions tested, and that their behavior was significantly better than that of Grade 2 and Grade 12 titanium.« less
Gentamicin-Eluting Titanium Dioxide Nanotubes Grown on the Ultrafine-Grained Titanium.
Nemati, Sima Hashemi; Hadjizadeh, Afra
2017-08-01
Titanium (Ti)-based materials is the most appropriate choices for the applications as orthopedic and dental implants. In this regard, ultrafine-grained (UFG) titanium with an enhanced mechanical properties and surface energy has attracted more attention. Titanium dioxide (TiO 2 ) nanotubes grown on the titanium could enhance bone bonding, cellular response and are good reservoirs for loading drugs and antibacterial agents. This article investigates gentamicin loading into and release from the TiO 2 nanotubes, grown on the UFG compared to coarse-grained (CG) titanium substrate surfaces. Equal Channel Angular Pressing (ECAP) was employed to produce the UFG structure titanium. TiO 2 nanotubes were grown by the anodizing technique on both UFG and CG titanium substrate surfaces. Scanning electron microscopy (SEM) imaging confirmed TiO 2 nanotube growth on the surface. The UV-vis spectroscopy analysis results show that the amount of gentamicin load-release in the anodized UFG titanium sample is higher than that of CG one which can be explained in terms of thicker TiO 2 nanotube arrays layer formed on UFG sample. Moreover, the anodized UFG titanium samples released the drug in a longer time than CG (1 day for the UFG titanium vs. 3 h for the CG one). Regarding wettability analysis, anodized UFG titanium sample showed more enhanced hydrophilicity than CG counterpart. Therefore, the significantly smaller grain size of pure titanium provided by the ECAP technique coupled with appropriate subsequent anodization treatment not only offers a good combination of biocompatibility and adequate mechanical properties but also it provides a delayed release condition for gentamicin.
Hybrid Calcium Phosphate Coatings for Titanium Implants
NASA Astrophysics Data System (ADS)
Kharapudchenko, E.; Ignatov, V.; Ivanov, V.; Tverdokhlebov, S.
2017-01-01
Hybrid multilayer coatings were obtained on titanium substrates by the combination of two methods: the micro-arc oxidation in phosphoric acid solution with the addition of calcium compounds to high supersaturated state and RF magnetron sputtering of the target made of synthetic hydroxyapatite. 16 different groups of coatings were formed on titanium substrates and in vitro studies were conducted in accordance with ISO 23317 in the solution simulating body fluid. The studies using SEM, XRD of the coatings of the samples before and after exposure to SBF were performed. The features of morphology, chemical and phase composition of the studied coatings are shown.
Ochsenbein, Anne; Chai, Feng; Winter, Stefan; Traisnel, Michel; Breme, Jürgen; Hildebrand, Hartmut F
2008-09-01
In order to improve the osseointegration of endosseous implants made from titanium, the structure and composition of the surface were modified. Mirror-polished commercially pure (cp) titanium substrates were coated by the sol-gel process with different oxides: TiO(2), SiO(2), Nb(2)O(5) and SiO(2)-TiO(2). The coatings were physically and biologically characterized. Infrared spectroscopy confirmed the absence of organic residues. Ellipsometry determined the thickness of layers to be approximately 100nm. High resolution scanning electron microscopy (SEM) and atomice force microscopy revealed a nanoporous structure in the TiO(2) and Nb(2)O(5) layers, whereas the SiO(2) and SiO(2)-TiO(2) layers appeared almost smooth. The R(a) values, as determined by white-light interferometry, ranged from 20 to 50nm. The surface energy determined by the sessile-drop contact angle method revealed the highest polar component for SiO(2) (30.7mJm(-2)) and the lowest for cp-Ti and 316L stainless steel (6.7mJm(-2)). Cytocompatibility of the oxide layers was investigated with MC3T3-E1 osteoblasts in vitro (proliferation, vitality, morphology and cytochemical/immunolabelling of actin and vinculin). Higher cell proliferation rates were found in SiO(2)-TiO(2) and TiO(2), and lower in Nb(2)O(5) and SiO(2); whereas the vitality rates increased for cp-Ti and Nb(2)O(5). Cytochemical assays showed that all substrates induced a normal cytoskeleton and well-developed focal adhesion contacts. SEM revealed good cell attachment for all coating layers. In conclusion, the sol-gel-derived oxide layers were thin, pure and nanostructured; consequent different osteoblast responses to those coatings are explained by the mutual action and coadjustment of different interrelated surface parameters.
A new pulsed laser deposition technique: scanning multi-component pulsed laser deposition method.
Fischer, D; de la Fuente, G F; Jansen, M
2012-04-01
The scanning multi-component pulsed laser deposition (PLD) method realizes uniform depositions of desired coatings by a modified pulsed laser deposition process, preferably with a femto-second laser-system. Multi-component coatings (single or multilayered) are thus deposited onto substrates via laser induced ablation of segmented targets. This is achieved via horizontal line-scanning of a focused laser beam over a uniformly moving target's surface. This process allows to deposit the desired composition of the coating simultaneously, starting from the different segments of the target and adjusting the scan line as a function of target geometry. The sequence and thickness of multilayers can easily be adjusted by target architecture and motion, enabling inter/intra layer concentration gradients and thus functional gradient coatings. This new, simple PLD method enables the achievement of uniform, large-area coatings. Case studies were performed with segmented targets containing aluminum, titanium, and niobium. Under the laser irradiation conditions applied, all three metals were uniformly ablated. The elemental composition within the rough coatings obtained was fixed by the scanned area to Ti-Al-Nb = 1:1:1. Crystalline aluminum, titanium, and niobium were found to coexist side by side at room temperature within the substrate, without alloy formation up to 600 °C. © 2012 American Institute of Physics
Laser Cladding of γ-TiAl Intermetallic Alloy on Titanium Alloy Substrates
NASA Astrophysics Data System (ADS)
Maliutina, Iuliia Nikolaevna; Si-Mohand, Hocine; Piolet, Romain; Missemer, Florent; Popelyukh, Albert Igorevich; Belousova, Natalya Sergeevna; Bertrand, Philippe
2016-01-01
The enhancement of titanium and titanium alloy's tribological properties is of major interest in many applications such as the aerospace and automotive industry. Therefore, the current research paper investigates the laser cladding of Ti48Al2Cr2Nb powder onto Ti6242 titanium alloy substrates. The work was carried out in two steps. First, the optimal deposition parameters were defined using the so-called "combined parameters," i.e., the specific energy E specific and powder density G. Thus, the results show that those combined parameters have a significant influence on the geometry, microstructure, and microhardness of titanium aluminide-formed tracks. Then, the formation of dense, homogeneous, and defect-free coatings based on optimal parameters has been investigated. Optical and scanning electron microscopy techniques as well as energy-dispersive spectroscopy and X-ray diffraction analyses have shown that a duplex structure consisting of γ-TiAl and α 2-Ti3Al phases was obtained in the coatings during laser cladding. Moreover, it was shown that produced coatings exhibit higher values of microhardness (477 ± 9 Hv0.3) and wear resistance (average friction coefficient is 0.31 and volume of worn material is 5 mm3 after 400 m) compared to those obtained with bare titanium alloy substrates (353 Hv0.3, average friction coefficient is 0.57 and a volume of worn material after 400 m is 35 mm3).
Rapid prototyped porous nickel–titanium scaffolds as bone substitutes
Hoffmann, Waldemar; Bormann, Therese; Rossi, Antonella; Müller, Bert; Schumacher, Ralf; Martin, Ivan; Wendt, David
2014-01-01
While calcium phosphate–based ceramics are currently the most widely used materials in bone repair, they generally lack tensile strength for initial load bearing. Bulk titanium is the gold standard of metallic implant materials, but does not match the mechanical properties of the surrounding bone, potentially leading to problems of fixation and bone resorption. As an alternative, nickel–titanium alloys possess a unique combination of mechanical properties including a relatively low elastic modulus, pseudoelasticity, and high damping capacity, matching the properties of bone better than any other metallic material. With the ultimate goal of fabricating porous implants for spinal, orthopedic and dental applications, nickel–titanium substrates were fabricated by means of selective laser melting. The response of human mesenchymal stromal cells to the nickel–titanium substrates was compared to mesenchymal stromal cells cultured on clinically used titanium. Selective laser melted titanium as well as surface-treated nickel–titanium and titanium served as controls. Mesenchymal stromal cells had similar proliferation rates when cultured on selective laser melted nickel–titanium, clinically used titanium, or controls. Osteogenic differentiation was similar for mesenchymal stromal cells cultured on the selected materials, as indicated by similar gene expression levels of bone sialoprotein and osteocalcin. Mesenchymal stromal cells seeded and cultured on porous three-dimensional selective laser melted nickel–titanium scaffolds homogeneously colonized the scaffold, and following osteogenic induction, filled the scaffold’s pore volume with extracellular matrix. The combination of bone-related mechanical properties of selective laser melted nickel–titanium with its cytocompatibility and support of osteogenic differentiation of mesenchymal stromal cells highlights its potential as a superior bone substitute as compared to clinically used titanium. PMID:25383165
Tebbe, David; Thull, Roger; Gbureck, Uwe
2007-01-01
Background Chemical bonding of the drug onto surfaces by means of spacer molecules is accompanied with a reduction of the biological activity of the drug due to a constricted mobility since normally only short spacer molecule like aminopropyltrimethoxysilane (APMS) are used for drug coupling. This work aimed to study covalent attachment of heparin to titanium(oxide) surfaces by varying the length of the silane coupling agent, which should affect the biological potency of the drug due to a higher mobility with longer spacer chains. Methods Covalent attachment of heparin to titanium metal and TiO2 powder was carried out using the coupling agents 3-(Trimethoxysilyl)-propylamine (APMS), N- [3-(Trimethoxysilyl)propyl]ethylenediamine (Diamino-APMS) and N1- [3-(Trimethoxy-silyl)-propyl]diethylenetriamine (Triamino-APMS). The amount of bound coupling agent and heparin was quantified photometrically by the ninhydrin reaction and the tolidine-blue test. The biological potency of heparin was determined photometrically by the chromogenic substrate Chromozym TH and fibrinogen adsorption to the modified surfaces was researched using the QCM-D (Quartz Crystal Microbalance with Dissipation Monitoring) technique. Results Zeta-potential measurements confirmed the successful coupling reaction; the potential of the unmodified anatase surface (approx. -26 mV) shifted into the positive range (> + 40 mV) after silanisation. Binding of heparin results in a strongly negatively charged surface with zeta-potentials of approx. -39 mV. The retaining biological activity of heparin was highest for the spacer molecule Triamino-APMS. QCM-D measurements showed a lower viscosity for adsorbed fibrinogen films on heparinised surfaces by means of Triamino-APMS. Conclusion The remaining activity of heparin was found to be highest for the covalent attachment with Triamino-APMS as coupling agent due to the long chain of this spacer molecule and therefore the highest mobility of the drug. Furthermore, the adsorption of fibrinogen on the differently heparinised surfaces in real time demonstrated that with longer spacer chains the ΔD/Δf ratios became higher, which is also associated with better biocompatible properties of the substrates in contact with a biosystem. PMID:17640335
An improved biofunction of titanium for keratoprosthesis by hydroxyapatite-coating.
Dong, Ying; Yang, Jingxin; Wang, Liqiang; Ma, Xiao; Huang, Yifei; Qiu, Zhiye; Cui, Fuzhai
2014-03-01
Titanium framework keratoprosthesis has been commonly used in the severe corneal blindness, but the tissue melting occurred frequently around titanium. Since hydroxyapatite has been approved to possess a good tissue integration characteristic, nanostructured hydroxyapatite was coated on the surface of titanium through the aerosol deposition method. In this study, nanostructured hydroxyapatite coating was characterized by X-ray diffraction, scanning electron microscopy, atomic force microscopy, and auger electronic spectrometer. Biological evaluations were performed with rabbit cornea fibroblast in vitro and an animal model in vivo. The outcomes showed the coating had a grain-like surface topography and a good atomic mixed area with substrate. The rabbit cornea fibroblasts appeared a good adhesion on the surface of nanostructured hydroxyapatite in vitro. In the animal model, nanostructured hydroxyapatite-titanium implants were stably retained in the rabbit cornea, and by contrast, the corneal stroma became thinner anterior to the implants in the control. Therefore, our findings proved that nanostructured hydroxyapatite-titanium could not only provide an improved bond for substrate but also enhance the tissue integration with implants in host. As a promising material, nanostructured hydroxyapatite-titanium-based keratoprosthesis prepared by the aerosol deposition method could be utilized for the corneal blindness treatment.
Ao, Haiyong; Xie, Youtao; Qin, An; Ji, Heng; Yang, Shengbing; Huang, Liping; Zheng, Xuebin; Tang, Tingting
2014-01-01
In the present study, hyaluronic acid (HyA) was covalently immobilized onto titanium coatings to improve their biological properties. Diffuse reflectance Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy were employed to characterize the HyA-modified titanium coating. HyA-modified titanium coatings possess better cell-material interaction, and human mesenchymal stem cells present good adhesive morphologies on the surface of TC-AAH. The results of subsequent cellular evaluation showed that the immobilization of HyA on titanium coatings could improve hMSC attachment, proliferation, and differentiation. In vivo evaluation of implants in rabbit femur condyle defect model showed improvements of early osseointegration and bone-to-implant contact of TC-AAH. In conclusion, immobilization of HyA could improve biological properties of titanium coatings.
Code of Federal Regulations, 2012 CFR
2012-04-01
... substrates, beads of the same alloy, and in the case of Ti-6Al-4V substrates, fibers of commercially pure titanium or Ti-6Al-4V alloy. The porous coating has a volume porosity between 30 and 70 percent, an average... titanium-aluminum-vanadium (Ti-6Al-4V) alloy and an acetabular component composed of an ultra-high...
Code of Federal Regulations, 2011 CFR
2011-04-01
... substrates, beads of the same alloy, and in the case of Ti-6Al-4V substrates, fibers of commercially pure titanium or Ti-6Al-4V alloy. The porous coating has a volume porosity between 30 and 70 percent, an average... titanium-aluminum-vanadium (Ti-6Al-4V) alloy and an acetabular component composed of an ultra-high...
Code of Federal Regulations, 2014 CFR
2014-04-01
... substrates, beads of the same alloy, and in the case of Ti-6Al-4V substrates, fibers of commercially pure titanium or Ti-6Al-4V alloy. The porous coating has a volume porosity between 30 and 70 percent, an average... titanium-aluminum-vanadium (Ti-6Al-4V) alloy and an acetabular component composed of an ultra-high...
Code of Federal Regulations, 2013 CFR
2013-04-01
... substrates, beads of the same alloy, and in the case of Ti-6Al-4V substrates, fibers of commercially pure titanium or Ti-6Al-4V alloy. The porous coating has a volume porosity between 30 and 70 percent, an average... titanium-aluminum-vanadium (Ti-6Al-4V) alloy and an acetabular component composed of an ultra-high...
Reality of Dental Implant Surface Modification: A Short Literature Review
Yeo, In-Sung
2014-01-01
Screw-shaped endosseous implants that have a turned surface of commercially pure titanium have a disadvantage of requiring a long time for osseointegration while those implants have shown long-term clinical success in single and multiple restorations. Titanium implant surfaces have been modified in various ways to improve biocompatibility and accelerate osseointegration, which results in a shorter edentulous period for a patient. This article reviewed some important modified titanium surfaces, exploring the in vitro, in vivo and clinical results that numerous comparison studies reported. Several methods are widely used to modify the topography or chemistry of titanium surface, including blasting, acid etching, anodic oxidation, fluoride treatment, and calcium phosphate coating. Such modified surfaces demonstrate faster and stronger osseointegration than the turned commercially pure titanium surface. However, there have been many studies finding no significant differences in in vivo bone responses among the modified surfaces. Considering those in vivo results, physical properties like roughening by sandblasting and acid etching may be major contributors to favorable bone response in biological environments over chemical properties obtained from various modifications including fluoride treatment and calcium phosphate application. Recently, hydrophilic properties added to the roughened surfaces or some osteogenic peptides coated on the surfaces have shown higher biocompatibility and have induced faster osseointegration, compared to the existing modified surfaces. However, the long-term clinical studies about those innovative surfaces are still lacking. PMID:25400716
Preparation of lead-zirconium-titanium film and powder by electrodeposition
Bhattacharya, Raghu N.; Ginley, David S.
1995-01-01
A process for the preparation of lead-zirconium-titanium (PZT) film and powder compositions. The process comprises the steps of providing an electrodeposition bath, providing soluble salts of lead, zirconium and titanium metals to this bath, electrically energizing the bath to thereby direct ions of each respective metal to a substrate electrode and cause formation of metallic particles as a recoverable film of PZT powder on the electrode, and also recovering the resultant film as a powder. Recovery of the PZT powder can be accomplished by continually energizing the bath to thereby cause powder initially deposited on the substrate-electrode to drop therefrom into the bath from which it is subsequently removed. A second recovery alternative comprises energizing the bath for a period of time sufficient to cause PZT powder deposition on the substrate-electrode only, from which it is subsequently recovered. PZT film and powder so produced can be employed directly in electronic applications, or the film and powder can be subsequently oxidized as by an annealing process to thereby produce lead-zirconium-titanium oxide for use in electronic applications.
Preparation of lead-zirconium-titanium film and powder by electrodeposition
Bhattacharya, R.N.; Ginley, D.S.
1995-10-31
A process is disclosed for the preparation of lead-zirconium-titanium (PZT) film and powder compositions. The process comprises the steps of providing an electrodeposition bath, providing soluble salts of lead, zirconium and titanium metals to this bath, electrically energizing the bath to thereby direct ions of each respective metal to a substrate electrode and cause formation of metallic particles as a recoverable film of PZT powder on the electrode, and also recovering the resultant film as a powder. Recovery of the PZT powder can be accomplished by continually energizing the bath to thereby cause powder initially deposited on the substrate-electrode to drop therefrom into the bath from which it is subsequently removed. A second recovery alternative comprises energizing the bath for a period of time sufficient to cause PZT powder deposition on the substrate-electrode only, from which it is subsequently recovered. PZT film and powder so produced can be employed directly in electronic applications, or the film and powder can be subsequently oxidized as by an annealing process to thereby produce lead-zirconium-titanium oxide for use in electronic applications. 4 figs.
Erosion-resistant composite material
Finch, C.B.; Tennery, V.J.; Curlee, R.M.
A highly erosion-resistant composite material is formed of chemical vapor-deposited titanium diboride on a sintered titanium diboride-nickel substrate. This material may be suitable for use in cutting tools, coal liquefaction systems, etc.
Electrodeposited silk coatings for bone implants.
Elia, Roberto; Michelson, Courtney D; Perera, Austin L; Brunner, Teresa F; Harsono, Masly; Leisk, Gray G; Kugel, Gerard; Kaplan, David L
2015-11-01
The aim of this study was to characterize the mechanical properties and drug elution features of silk protein-based electrodeposited dental implant coatings. Silk processing conditions were modified to obtain coatings with a range of mechanical properties on titanium studs. These coatings were assessed for adhesive strength and dissolution, with properties tuned using water vapor annealing or glycerol incorporation to modulate crystalline content. Coating reproducibility was demonstrated over a range of silk concentrations from 1% to 10%. Surface roughness of titanium substrates was altered using industry relevant acid etching and grit blasting, and the effect of surface topography on silk coating adhesion was assessed. Florescent compounds were incorporated into the silk coatings, which were modulated for crystalline content, to achieve four days of sustained release of the compounds. This silk electrogelation technique offers a safe and relatively simple approach to generate mechanically robust, biocompatible, and degradable implant coatings that can also be functionalized with bioactive compounds to modulate the local regenerative tissue environment. © 2014 Wiley Periodicals, Inc.
Electrodeposited silk coatings for bone implants
Elia, Roberto; Michelson, Courtney D.; Perera, Austin L.; Brunner, Teresa F.; Harsono, Masly; Leisk, Gray G.; Kugel, Gerard; Kaplan, David L.
2014-01-01
The aim of this study was to characterize the mechanical properties and drug elution features of silk protein-based electrodeposited dental implant coatings. Silk processing conditions were modified to obtain coatings with a range of mechanical properties on titanium studs. These coatings were assessed for adhesive strength and dissolution, with properties tuned using water vapor annealing or glycerol incorporation to modulate crystalline content. Coating reproducibility was demonstrated over a range of silk concentrations from 1 to 10%. Surface roughness of titanium substrates was altered using industry relevant acid etching and grit blasting, and the effect of surface topography on silk coating adhesion was assessed. Florescent compounds were incorporated into the silk coatings, which were modulated for crystalline content, to achieve four days of sustained release of the compounds. This silk electrogelation technique offers a safe and relatively simple approach to generate mechanically robust, biocompatible and degradable implant coatings that can also be functionalized with bioactive compounds to modulate the local regenerative tissue environment. PMID:25545462
The bonding of protective films of amorphic diamond to titanium
NASA Astrophysics Data System (ADS)
Collins, C. B.; Davanloo, F.; Lee, T. J.; Jander, D. R.; You, J. H.; Park, H.; Pivin, J. C.
1992-04-01
Films of amorphic diamond can be deposited from laser plasma ions without the use of catalysts such as hydrogen or fluorine. Prepared without columnar patterns of growth, the layers of this material have been reported to have ``bulk'' values of mechanical properties that have suggested their usage as protective coatings for metals. Described here is a study of the bonding and properties realized in one such example, the deposition of amorphic diamond on titanium. Measurements with Rutherford backscattering spectrometry and transmission electron microscopy showed that the diamond coatings deposited from laser plasmas were chemically bonded to Ti substrates in 100-200-Å-thick interfacial layers containing some crystalline precipitates of TiC. Resistance to wear was estimated with a modified sand blaster and in all cases the coating was worn away without any rupture or deterioration of the bonding layer. Such wear was greatly reduced and lifetimes of the coated samples were increased by a factor of better than 300 with only 2.7 μm of amorphic diamond.
NASA Astrophysics Data System (ADS)
Zhou, Xiaowei; Ouyang, Chun
2017-05-01
In order to make large improvements of surface toughness and wear resistance for pure titanium (Ti) substrate, anodic titanium oxide (ATO) surface with nanoporous structure was coated with the Ni-CeO2 nanocomposite coatings. Regarding TiO2 barrier layer on Ti surface to inhibit its electrochemical activity, pre-treatments were successively processed with anodizing, sensitizing, activating, and then followed by electroless Ni-P film to be acted as an activated layer for electroplating Ni-CeO2 deposits. The existing Pd atoms around ATO nanopores were expected as the heterogeneous nucleation sites for supporting the growing locations of electroless Ni-P film. The innovative of interface design using porous structure was introduced for bonding pinholes to achieve a metallurgical adhesion interface between Ti substrate and surface coatings. Besides the objectives of this work were to elucidate how effects by the adding CeO2 nanoparticles on modifying microstructures and wear mechanisms of Ni-CeO2 nanocomposite coatings. Many efforts of XRD, FE-SEM, TEM and Nanoindentation tests were devoted to comparing different wear behaviors of Ni-CeO2 coatings relative to pure nickel. Results indicated that uniform-distributed Ti nanopores with an average diameter size of ∼200 nm was achieved using the Phosphate-type anodizing solution at DC 150 V. A worn surface without fatigue cracks was observed for TAO surface coated with Ni-CeO2 deposits, showing the existing Ce-rich worn products to be acted as a solid lubricant phase for making a self-healing effect on de-lamination failures. More important, this finding will be the guidelines for Ce-rich precipitations to be expected as the strengthening phase in anodized porous of Ti, Al and Mg alloys for intensifying their surface properties.
Formation of Titania Submicron-Scale Rod Arrays on Titanium Substrate and In Vitro Biocompatibility
2005-01-01
vitro bioactivity. INTRODUCTION Commercially available pure titanium (c.p. Ti) and its alloys are widely used for dental and orthopedic implants because...days. DISCUSSION The submicron-scale rod arrays of rutile can be obtained on titanium surfaces after the heat treatment when the alkali- borate glass ...modification of titanium implants have been already developed or proposed to provide them with the ability of direct bonding to bone tissues. Note
Cytocompatibility of Direct Laser Interference-patterned Titanium Surfaces for Implants.
Hartjen, Philip; Nada, Ola; Silva, Thiago Gundelwein; Precht, Clarissa; Henningsen, Anders; Holthaus, Marzellus GROßE; Gulow, Nikolai; Friedrich, Reinhard E; Hanken, Henning; Heiland, Max; Zwahr, Christoph; Smeets, Ralf; Jung, Ole
2017-01-01
In an effort to generate titanium surfaces for implants with improved osseointegration, we used direct laser interference patterning (DLIP) to modify the surface of pure titanium grade 4 of four different structures. We assessed in vitro cytoxicity and cell attachment, as well as the viability and proliferation of cells cultured directly on the surfaces. Attachment of the cells to the modified surfaces was comparably good compared to that of cells on grit-blasted and acid-etched reference titanium surfaces. In concordance with this, viability and proliferation of the cells directly cultured on the specimens were similar on all the titanium surfaces, regardless of the laser modification, indicating good cytocompatibility. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Toughened and corrosion- and wear-resistant composite structures and fabrication methods thereof
Seals, Roland D.; Ripley, Edward B.; Hallman, Russell L.
2017-06-20
Composite structures having a reinforced material interjoined with a substrate, wherein the reinforced material comprises a compound selected from the group consisting of titanium monoboride, titanium diboride, and combinations thereof.
He, Ronghan; Lu, Yunxiang; Ren, Jianhua; Wang, Zhe; Huang, Junqi; Zhu, Lei; Wang, Kun
2017-07-01
Orthopedic implants, using materials such as titanium, are extensively used in clinical surgeries. Despite its popularity, titanium is still inadequate to reliable osseointegration due to aseptic loosing. Fibrous encapsulation on the titanium implant interface prevents osseointegration and leads to the loosing of orthopedic implant. In this study, decorin was loaded on titanium surface by polydopamine film to examine fibrous encapsulation inhibition and bone growth acceleration. The coating of decorin was evaluated by X-ray photoelectron spectroscopy (XPS) and fluorescence microscopy. Quantitative analysis showed increased decorin coating on titanium surface when decorin in the loading solution increases. To test the effect of decorin modification, fibroblast and osteoblast cultures were utilized in vitro. The results showed that the functions of fibroblasts (proliferation, migration and collagen synthesis) were significantly attenuated on the decorin-modified surfaces and this anti-fibrous effect could be due to fibrotic gene suppression by decorin. In contrast, osteoblastic activities, such as calcium deposition and alkaline phosphatase (ALP) activity, were enhanced by the modified decorin. These results suggest that decorin coating on titanium surface inhibited proliferation and function of fibroblasts and improved that of osteoblasts. Therefore, this study is potentially useful for enhancing orthopedic implant. Copyright © 2017 Elsevier B.V. All rights reserved.
Tian, Yun; Zhou, Fang; Ji, Hongquan; Zhang, Zhishan; Guo, Yan
2011-12-01
Although the modified tension band technique (eg, tension band supplemented by longitudinal Kirschner wires) has long been the mainstay for fixation of transverse fractures of the patella, it has shortcomings, such as bad reduction, loosening of implants, and skin irritation. We conducted a retrospective comparison of the modified tension band technique and the titanium cable-cannulated screw tension band technique. We retrospectively reviewed 101 patients aged 22 to 85 years (mean, 56.6 years) with AO/OTA 34-C1 fractures (n = 68) and 34-C2 fractures (n = 33). Fifty-two patients were in the modified tension band group and 49 were in the titanium cable-cannulated screw tension band group. Followup was at least 1 year (range, 1-3 years). Comparison criteria were fracture reduction, fracture healing time, and the Iowa score for knee function. The titanium cable-cannulated screw tension band group showed improved fracture reduction, reduced healing time, and better Iowa score, compared with the modified tension band group. In the modified tension band group, eight patients experienced wire migration, three of these requiring a second operation. There were no complications in the titanium cable-cannulated screw tension band group. The titanium cable-cannulated screw tension band technique showed superior results and should be considered as an alternative method for treatment of transverse patellar fractures. Level III, therapeutic study. See the Guidelines for Authors for a complete description of levels of evidence.
Laser bioengineering of glass-titanium implants surface
NASA Astrophysics Data System (ADS)
Lusquiños, F.; Arias-González, F.; Penide, J.; del Val, J.; Comesaña, R.; Quintero, F.; Riveiro, A.; Boutinguiza, M.; Pascual, M. J.; Durán, A.; Pou, J.
2013-11-01
Osseointegration is the mean challenge when surgical treatments fight against load-bearing bone diseases. Absolute bone replacement by a synthetic implant has to be completed not only from the mechanics point of view, but also from a biological approach. Suitable strength, resilience and stress distribution of titanium alloy implants are spoiled by the lack of optimal biological characteristics. The inert quality of extra low interstitial titanium alloy, which make it the most attractive metallic alloy for biomedical applications, oppose to an ideal surface with bone cell affinity, and capable to stimulate bone attachment bone growth. Diverse laser treatments have been proven as effective tools to modify surface properties, such as wettability in contact to physiological fluids, or osteoblast guided and slightly enhanced attachment. The laser surface cladding can go beyond by providing titanium alloy surfaces with osteoconduction and osteoinduction properties. In this research work, the laser radiation is used to produce bioactive glass coatings on Ti6Al4V alloy substrates. Specific silicate bioactive glass compositions has been investigated to achieve suitable surface tension and viscosity temperature behavior during processing, and to provide with the required release of bone growth gene up regulation agents in the course of resorption mediated by physiological fluids. The produced coatings and interfaces, the surface osteoconduction properties, and the chemical species release in simulated physiological fluid were characterized by scanning electron microscopy (SEM), hot stage microscopy (HSM), X-ray diffraction (XRD), X ray fluorescence (XRF), and Fourier transform infrared spectroscopy (FTIR).
Advincula, Maria C; Petersen, Don; Rahemtulla, Firoz; Advincula, Rigoberto; Lemons, Jack E
2007-01-01
Surfaces of biocompatible alloys used as implants play a significant role in their osseointegration. Surface sol-gel processing (SSP), a variant of the bulk sol-gel technique, is a relatively new process to prepare bioreactive nanostructured titanium oxide for thin film coatings. The surface topography, roughness, and composition of sol-gel processed Ti6Al4V titanium alloy coatings was investigated by atomic force microscopy (AFM) and X-ray electron spectroscopy (XPS). This was correlated with corrosion properties, adhesive strength, and bioreactivity in simulated body fluids (SBF). Electroimpedance spectroscopy (EIS) and polarization studies indicated similar advantageous corrosion properties between sol-gel coated and uncoated Ti6Al4V, which was attributed to the stable TiO2 composition, topography, and adhesive strength of the sol-gel coating. In addition, inductive coupled plasma (ICP) and scanning electron microscopy with energy dispersive spectrometry (SEM-EDS) analysis of substrates immersed in SBF revealed higher deposition of calcium and phosphate and low release rates of alloying elements from the sol-gel modified alloys. The equivalent corrosion behavior and the definite increase in nucleation of calcium apatite indicate the potential of the sol-gel coating for enhanced bioimplant applications. 2006 Wiley Periodicals, Inc.
2007-03-01
Cushman, Infoscitex Corporation, 303 Bear Hill Road, Waltham, MA 02451 Aluminum and titanium alloys are used as replacements for steel in gear...assess the susceptibility of selected substrates to wear. Initial testing utilized M50 steel rings as the counter surface to uncoated aluminum and...were recorded and plotted over the 4500 cycles, as shown in the right of Figure 3, depicting results of the best performing test substrate, M50 Steel
NASA Technical Reports Server (NTRS)
Riedell, James A. (Inventor); Easler, Timothy E. (Inventor)
2009-01-01
A precursor of a ceramic adhesive suitable for use in a vacuum, thermal, and microgravity environment. The precursor of the ceramic adhesive includes a silicon-based, preceramic polymer and at least one ceramic powder selected from the group consisting of aluminum oxide, aluminum nitride, boron carbide, boron oxide, boron nitride, hafnium boride, hafnium carbide, hafnium oxide, lithium aluminate, molybdenum silicide, niobium carbide, niobium nitride, silicon boride, silicon carbide, silicon oxide, silicon nitride, tin oxide, tantalum boride, tantalum carbide, tantalum oxide, tantalum nitride, titanium boride, titanium carbide, titanium oxide, titanium nitride, yttrium oxide, zirconium diboride, zirconium carbide, zirconium oxide, and zirconium silicate. Methods of forming the ceramic adhesive and of repairing a substrate in a vacuum and microgravity environment are also disclosed, as is a substrate repaired with the ceramic adhesive.
NASA Astrophysics Data System (ADS)
Zhang, Baosen; Dong, Qiangsheng; Ba, Zhixin; Wang, Zhangzhong; Shi, Hancheng; Xue, Yanting
2018-01-01
Plasma nitriding was conducted as post-treatment for surface texture on pure titanium to obtain a continuous nitriding layer. Supersonic fine particles bombarding (SFPB) was carried out to prepare surface texture. The surface morphologies and chemical composition were analyzed using scanning electron microscope and energy disperse spectroscopy. The microstructures of modified layers were characterized by transmission electron microscope. The tribological properties of surface-textured and duplex-treated pure titanium under oil lubrication condition were systematically investigated in the ball-on-plate reciprocating mode. The effects of applied load and sliding velocity on the tribological behavior were analyzed. The results show that after duplex treatments, the grains size in modified layer becomes slightly larger, and hardness is obviously improved. Wear resistance of duplex-treated pure titanium is significantly improved referenced to untreated and surface-textured pure titanium, which is 3.22 times as much as untreated pure titanium and 2.15 times of that for surface-textured pure titanium, respectively.
Effect of cathodic polarization on coating doxycycline on titanium surfaces.
Geißler, Sebastian; Tiainen, Hanna; Haugen, Håvard J
2016-06-01
Cathodic polarization has been reported to enhance the ability of titanium based implant materials to interact with biomolecules by forming titanium hydride at the outermost surface layer. Although this hydride layer has recently been suggested to allow the immobilization of the broad spectrum antibiotic doxycycline on titanium surfaces, the involvement of hydride in binding the biomolecule onto titanium remains poorly understood. To gain better understanding of the influence this immobilization process has on titanium surfaces, mirror-polished commercially pure titanium surfaces were cathodically polarized in the presence of doxycycline and the modified surfaces were thoroughly characterized using atomic force microscopy, electron microscopy, secondary ion mass spectrometry, and angle-resolved X-ray spectroscopy. We demonstrated that no hydride was created during the polarization process. Doxycycline was found to be attached to an oxide layer that was modified during the electrochemical process. A bacterial assay using bioluminescent Staphylococcus epidermidis Xen43 showed the ability of the coating to reduce bacterial colonization and planktonic bacterial growth. Copyright © 2016 Elsevier B.V. All rights reserved.
Atomistic modeling of metallic thin films by modified embedded atom method
NASA Astrophysics Data System (ADS)
Hao, Huali; Lau, Denvid
2017-11-01
Molecular dynamics simulation is applied to investigate the deposition process of metallic thin films. Eight metals, titanium, vanadium, iron, cobalt, nickel, copper, tungsten, and gold, are chosen to be deposited on the aluminum substrate. The second nearest-neighbor modified embedded atom method potential is adopted to predict their thermal and mechanical properties. When quantifying the screening parameters of the potential, the error for Young's modulus and coefficient of thermal expansion between the simulated results and the experimental measurements is less than 15%, demonstrating the reliability of the potential to predict metallic behaviors related to thermal and mechanical properties. A set of potential parameters which governs the interactions between aluminum and other metals in a binary system is also generated from ab initio calculation. The details of interfacial structures between the chosen films and substrate are successfully simulated with the help of these parameters. Our results indicate that the preferred orientation of film growth depends on the film crystal structure, and the inter-diffusion at the interface is correlated the cohesive energy parameter of potential for the binary system. Such finding provides an important basis to further understand the interfacial science, which contributes to the improvement of the mechanical properties, reliability and durability of films.
Thin sol-gel-derived silica coatings on dental pure titanium casting.
Yoshida, K; Kamada, K; Sato, K; Hatada, R; Baba, K; Atsuta, M
1999-01-01
The sol-gel dipping process, in which liquid silicon alkoxide is transformed into a solid silicon-oxygen network, can produce a thin film coating of silica (SiO(2)). The features of this method are high homogeneity and purity of the thin SiO(2) film and a low sinter temperature, which are important in the preparation of coating films that can protect metallic ion release from the metal substrate and prevent attachment of dental plaque. We evaluated the surface properties of dental pure titanium casting coated with a thin SiO(2) or SiO(2)/F-hybrid film by the sol-gel dipping process. The metal specimens were pretreated by dipping in isopropylalcohol solution containing 10 wt% 3-aminopropyl trimethoxysilane and treated by dipping in the silica precursor solution for 5 min, withdrawal at a speed of 2 mm/min, air-drying for 20 min at room temperature, heating at 120 degrees C for 20 min, and then storing at room temperature. Both SiO(2) and SiO(2)/F films bonded strongly (above 55 MPa) to pure titanium substrate by a tensile test. SiO(2(-)) and SiO(2)/F-coated specimens immersed in 1 wt% of lactic acid solution for two weeks showed significantly less release of titanium ions (30. 5 ppb/cm(2) and 9.5 ppb/cm(2), respectively) from the substrate than noncoated specimens (235.2 ppb/cm(2)). Hydrophobilization of SiO(2(-)) and SiO(2)/F-coated surfaces resulted in significant increases of contact angle of water (81.6 degrees and 105.7 degrees, respectively) compared with noncoated metal specimens (62.1 degrees ). The formation of both thin SiO(2) and SiO(2)/F-hybrid films by the sol-gel dipping process on the surface of dental pure titanium casting may be useful clinically in enhancing the bond strength of dental resin cements to titanium, preventing titanium ions release from the substrate, and reducing the accumulation of dental plaque attaching to intraoral dental restorations. Copyright 1999 John Wiley & Sons, Inc.
Studies of the micromorphology of sputtered TiN thin films by autocorrelation techniques
NASA Astrophysics Data System (ADS)
Smagoń, Kamil; Stach, Sebastian; Ţălu, Ştefan; Arman, Ali; Achour, Amine; Luna, Carlos; Ghobadi, Nader; Mardani, Mohsen; Hafezi, Fatemeh; Ahmadpourian, Azin; Ganji, Mohsen; Grayeli Korpi, Alireza
2017-12-01
Autocorrelation techniques are crucial tools for the study of the micromorphology of surfaces: They provide the description of anisotropic properties and the identification of repeated patterns on the surface, facilitating the comparison of samples. In the present investigation, some fundamental concepts of these techniques including the autocorrelation function and autocorrelation length have been reviewed and applied in the study of titanium nitride thin films by atomic force microscopy (AFM). The studied samples were grown on glass substrates by reactive magnetron sputtering at different substrate temperatures (from 25 {}°C to 400 {}°C , and their micromorphology was studied by AFM. The obtained AFM data were analyzed using MountainsMap Premium software obtaining the correlation function, the structure of isotropy and the spatial parameters according to ISO 25178 and EUR 15178N. These studies indicated that the substrate temperature during the deposition process is an important parameter to modify the micromorphology of sputtered TiN thin films and to find optimized surface properties. For instance, the autocorrelation length exhibited a maximum value for the sample prepared at a substrate temperature of 300 {}°C , and the sample obtained at 400 {}°C presented a maximum angle of the direction of the surface structure.
Liou, Je-Wen; Chang, Hsin-Hou
2012-08-01
This review focuses on the antibacterial activities of visible light-responsive titanium dioxide (TiO(2)) photocatalysts. These photocatalysts have a range of applications including disinfection, air and water cleaning, deodorization, and pollution and environmental control. Titanium dioxide is a chemically stable and inert material, and can continuously exert antimicrobial effects when illuminated. The energy source could be solar light; therefore, TiO(2) photocatalysts are also useful in remote areas where electricity is insufficient. However, because of its large band gap for excitation, only biohazardous ultraviolet (UV) light irradiation can excite TiO(2), which limits its application in the living environment. To extend its application, impurity doping, through metal coating and controlled calcination, has successfully modified the substrates of TiO(2) to expand its absorption wavelengths to the visible light region. Previous studies have investigated the antibacterial abilities of visible light-responsive photocatalysts using the model bacteria Escherichia coli and human pathogens. The modified TiO(2) photocatalysts significantly reduced the numbers of surviving bacterial cells in response to visible light illumination. They also significantly reduced the activity of bacterial endospores; reducing their toxicity while retaining their germinating abilities. It is suggested that the photocatalytic killing mechanism initially damages the surfaces weak points of the bacterial cells, before totally breakage of the cell membranes. The internal bacterial components then leak from the cells through the damaged sites. Finally, the photocatalytic reaction oxidizes the cell debris. In summary, visible light-responsive TiO(2) photocatalysts are more convenient than the traditional UV light-responsive TiO(2) photocatalysts because they do not require harmful UV light irradiation to function. These photocatalysts, thus, provide a promising and feasible approach for disinfection of pathogenic bacteria; facilitating the prevention of infectious diseases.
Oxygen-Barrier Coating for Titanium
NASA Technical Reports Server (NTRS)
Clark, Ronald K.; Unnam, Jalaiah
1987-01-01
Oxygen-barrier coating for titanium developed to provide effective and low-cost means for protecting titanium alloys from oxygen in environment when alloys used in high-temperature mechanical or structural applications. Provides protective surface layer, which reduces extent of surface oxidation of alloy and forms barrier to diffusion of oxygen, limiting contamination of substrate alloy by oxygen. Consists of submicron layer of aluminum deposited on surface of titanium by electron-beam evaporation, with submicron layer of dioxide sputtered onto aluminum to form coat.
Zhang, Wenjie; Li, Zihui; Huang, Qingfeng; Xu, Ling; Li, Jinhua; Jin, Yuqin; Wang, Guifang; Liu, Xuanyong; Jiang, Xinquan
2013-01-01
Various methods have been used to modify titanium implant surfaces with the aim of achieving better osseointegration. In this study, we fabricated a clustered nanorod structure on an acid-etched, microstructured titanium plate surface using hydrogen peroxide. We also evaluated biofunctionalization of the hybrid micro/nanorod topography on rat bone marrow mesenchymal stem cells. Scanning electron microscopy and x-ray diffraction were used to investigate the surface topography and phase composition of the modified titanium plate. Rat bone marrow mesenchymal stem cells were cultured and seeded on the plate. The adhesion ability of the cells was then assayed by cell counting at one, 4, and 24 hours after cell seeding, and expression of adhesion-related protein integrin β1 was detected by immunofluorescence. In addition, a polymerase chain reaction assay, alkaline phosphatase and Alizarin Red S staining assays, and osteopontin and osteocalcin immunofluorescence analyses were used to evaluate the osteogenic differentiation behavior of the cells. The hybrid micro/nanoscale texture formed on the titanium surface enhanced the initial adhesion activity of the rat bone marrow mesenchymal stem cells. Importantly, the hierarchical structure promoted osteogenic differentiation of these cells. This study suggests that a hybrid micro/nanorod topography on a titanium surface fabricated by treatment with hydrogen peroxide followed by acid etching might facilitate osseointegration of a titanium implant in vivo.
Substrate-insensitive atomic layer deposition of plasmonic titanium nitride films
Yu, Ing-Song; Cheng, Hsyi-En; Chang, Chun-Chieh; ...
2017-02-06
The plasmonic properties of titanium nitride (TiN) films depend on the type of substrate when using typical deposition methods such as sputtering. We show atomic layer deposition (ALD) of TiN films with very weak dependence of plasmonic properties on the substrate, which also suggests the prediction and evaluation of plasmonic performance of TiN nanostructures on arbitrary substrates under a given deposition condition. Our results also observe that substrates with more nitrogen-terminated (N-terminated) surfaces will have significant impact on the deposition rate as well as the film plasmonic properties. Furthermore, we illustrate that the plasmonic properties of ALD TiN films canmore » be tailored by simply adjusting the deposition and/or post-deposition annealing temperatures. These characteristics and the capability of conformal coating make ALD TiN films on templates ideal for applications that require the fabrication of complex 3D plasmonic nanostructures.« less
NASA Astrophysics Data System (ADS)
See, Tian Long; Chantzis, Dimitrios; Royer, Raphael; Metsios, Ioannis; Antar, Mohammad; Marimuthu, Sundar
2017-09-01
This paper presents an investigation on the titanium aluminium nitride (TiAlN) coating removal from tungsten carbide (WC-Co) substrate using a diode pump solid state (DPSS) ultraviolet (UV) laser with maximum average power of 90 W, wavelength of 355 nm and pulse width of 50 ns. The TiAlN coating of 1.5 μm thickness is removed from the WC-Co substrate with laser fluence of 2.71 J/cm2 at 285.6 number of pulses (NOP) and with NOP of 117.6 at 3.38 J/cm2 fluence. Titanium oxide formation was observed on the ablated surface due to the re-deposition of ablated titanium residue and also attributed to the high temperature observed during the laser ablation process. Crack width of around 0.2 μm was observed over both TiAlN coating and WC-Co substrate. The crack depth ranging from 1 to 10 μm was observed and is related to the thickness of the melted carbide. The crack formation is a result of the thermal induced stresses caused by the laser beam interaction with the material as well as the higher thermal conductivity of cobalt compared to WC. Two cleaning regions are observed and is a consequence of the Gaussian distribution of the laser beam energy. The surface roughness of the ablated WC-Co increased with increasing laser fluence and NOP.
Enhanced-Adhesion Multi-Walled Carbon Nanotubes on Titanium Substrates for Stray Light Control
NASA Technical Reports Server (NTRS)
Hagopian, John; Getty, Stephanie; Quijada, Manuel
2012-01-01
Carbon nanotubes previously grown on silicon have extremely low reflectance, making them a good candidate for stray light suppression. Silicon, however, is not a good structural material for stray light components such as tubes, stops, and baffles. Titanium is a good structural material and can tolerate the 700 C nanotube growth process. The ability to grow carbon nanotubes on a titanium substrate that are ten times blacker than the current NASA state-of-the-art paints in the visible to near infrared spectra has been achieved. This innovation will allow significant improvement of stray light performance in scientific instruments or any other optical system. This innovation is a refinement of the utilization of multiwalled carbon nano tubes for stray light suppression in spaceflight instruments. The innovation is a process to make the surface darker and improve the adhesion to the substrate, improving robustness for spaceflight use. Bright objects such as clouds or ice scatter light off of instrument structures and components and make it difficult to see dim objects in Earth observations. A darker material to suppress this stray light has multiple benefits to these observations, including enabling scientific observations not currently possible, increasing observational efficiencies in high-contrast scenes, and simplifying instruments and lowering their cost by utilizing fewer stray light components and achieving equivalent performance. The prior art was to use commercially available black paint, which resulted in approximately 4% of the light being reflected (hemispherical reflectance or total integrated scatter, or TIS). Use of multiwalled carbon nanotubes on titanium components such as baffles, entrance aperture, tubes, and stops, can decrease this scattered light by a factor of ten per bounce over the 200-nm to 2,500-nm wavelength range. This can improve system stray light performance by orders of magnitude. The purpose of the innovation is to provide an enhanced stray light control capability by making a blacker surface treatment for typical stray light control components. Since baffles, stops, and tubes used in scientific observations often undergo loads such as vibration, it was critical to develop this surface treatment on structural materials. The innovation is to optimize the carbon nanotube growth for titanium, which is a strong, lightweight structural material suitable for spaceflight use. The titanium substrate carbon nanotubes are more robust than those grown on silicon and allow for easier utilization. They are darker than current surface treatments over larger angles and larger wavelength range. The primary advantage of titanium substrate is that it is a good structural material, and not as brittle as silicon.
Bressel, Tatiana A B; de Queiroz, Jana Dara Freires; Gomes Moreira, Susana Margarida; da Fonseca, Jéssyca T; Filho, Edson A; Guastaldi, Antônio Carlos; Batistuzzo de Medeiros, Silvia Regina
2017-11-28
Titanium surfaces have been modified by various approaches with the aim of improving the stimulation of osseointegration. Laser beam (Yb-YAG) treatment is a controllable and flexible approach to modifying surfaces. It creates a complex surface topography with micro and nano-scaled patterns, and an oxide layer that can improve the osseointegration of implants, increasing their usefulness as bone implant materials. Laser beam irradiation at various fluences (132, 210, or 235 J/cm 2 ) was used to treat commercially pure titanium discs to create complex surface topographies. The titanium discs were investigated by scanning electron microscopy, X-ray diffraction, and measurement of contact angles. The surface generated at a fluence of 235 J/cm 2 was used in the biological assays. The behavior of mesenchymal stem cells from an umbilical cord vein was evaluated using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, a mineralization assay, and an alkaline phosphatase activity assay and by carrying out a quantitative real-time polymerase chain reaction for osteogenic markers. CHO-k1 cells were also exposed to titanium discs in the MTT assay. The best titanium surface was that produced by laser beam irradiation at 235 J/cm 2 fluence. Cell proliferation analysis revealed that the CHO-k1 and mesenchymal stem cells behaved differently. The laser-processed titanium surface increased the proliferation of CHO-k1 cells, reduced the proliferation of mesenchymal stem cells, upregulated the expression of the osteogenic markers, and enhanced alkaline phosphatase activity. The laser-treated titanium surface modulated cellular behavior depending on the cell type, and stimulated osteogenic differentiation. This evidence supports the potential use of laser-processed titanium surfaces as bone implant materials, and their use in regenerative medicine could promote better outcomes.
Catauro, Michelina; Bollino, Flavia; Papale, Ferdinando
2014-02-01
When surface-reactive (bioactive) coatings are applied to medical implants by means of the sol-gel dip-coating technique, the biological proprieties of the surface of the implant can be locally modified to match the properties of the surrounding tissues to provide a firm fixation of the implant. The aim of this study has been to synthesize, via sol-gel, organoinorganic nanoporous materials and to dip-coat a substrate to use in dental applications. Different systems have been prepared consisting of an inorganic zirconium-based matrix, in which a biodegradable polymer, the poly-ε-caprolactone was incorporated in different percentages. The materials synthesized by the sol-gel process, before gelation, when they were still in sol phase, have been used to coat a titanium grade 4 (Ti-4) substrate to change its surface biological properties. Thin films have been obtained by means of the dip-coating technique. A microstructural analysis of the obtained coatings was performed using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy. The biological proprieties have been investigated by means of tests in vitro. The bone-bonding capability of the nanocomposite films has been evaluated by examining the appearance of apatite on their surface when plunged in a simulated body fluid (SBF) with ion concentrations nearly equal to those of human blood plasma. The examination of apatite formation on the nanocomposites, after immersion in SBF, has been carried out by SEM equipped with energy-dispersive X-ray spectroscopy. To evaluate cells-materials interaction, human osteosarcoma cell line (Saos-2) has been seeded on specimens and cell vitality evaluated by WST-8 assay. © 2013 Wiley Periodicals, Inc.
Xiao, Xiu Feng; Liu, Rong Fang; Tang, Xiao Lian
2008-01-01
Silicon Substituted Hydroxyapatite (Si-HA) coatings were prepared on titanium substrates by electrophoretic deposition (EPD). The stability of Si-HA suspension in n-butanol and chloroform mixture has been studied by electricity conductivity and sedimentation test. The microstructure, shear strength and bioactivity in vitro has been tested. The stability of Si-HA suspension containing n-butanol and chloroform mixture as medium is better than that of pure n-butanol as medium. The good adhesion of the particles with the substrate and good cohesion between the particles were obtained in n-butanol and chloroform mixture. Adding triethanolamine (TEA) as additive into the suspension is in favor of the formation of uniform and compact Si-HA coatings on the titanium substrates by EPD. The shear strength of the coatings can reach 20.43 MPa after sintering at 700 degrees C for 2 h, when the volume ratio of n-butanol: chloroform is 2:1 and the concentration of TEA is 15 ml/L. Titanium substrates etched in H(2)O(2)/NH(3) solution help to improve the shear strength of the coatings. After immersion in simulated body fluid for 7 days, Si-HA coatings have the ability to induce the bone-like apatite formation.
Diamond Composite Films for Protective Coatings on Metals and Method of Formation
NASA Technical Reports Server (NTRS)
Ong, Tiong P. (Inventor); Shing, Yuh-Han (Inventor)
1997-01-01
Composite films consisting of diamond crystallites and hard amorphous films such as diamond-like carbon, titanium nitride, and titanium oxide are provided as protective coatings for metal substrates against extremely harsh environments. A composite layer having diamond crystallites and a hard amorphous film is affixed to a metal substrate via an interlayer including a bottom metal silicide film and a top silicon carbide film. The interlayer is formed either by depositing metal silicide and silicon carbide directly onto the metal substrate, or by first depositing an amorphous silicon film, then allowing top and bottom portions of the amorphous silicon to react during deposition of the diamond crystallites, to yield the desired interlayer structure.
Custom-made laser-welded titanium implant prosthetic abutment.
Iglesia-Puig, Miguel A
2005-10-01
A technique to create an individually modified implant prosthetic abutment is described. An overcasting is waxed onto a machined titanium abutment, cast in titanium, and joined to it with laser welding. With the proposed technique, a custom-made titanium implant prosthetic abutment is created with adequate volume and contour of metal to support a screw-retained, metal-ceramic implant-supported crown.
Laser induced single spot oxidation of titanium
NASA Astrophysics Data System (ADS)
Jwad, Tahseen; Deng, Sunan; Butt, Haider; Dimov, S.
2016-11-01
Titanium oxides have a wide range of applications in industry, and they can be formed on pure titanium using different methods. Laser-induced oxidation is one of the most reliable methods due to its controllability and selectivity. Colour marking is one of the main applications of the oxidation process. However, the colourizing process based on laser scanning strategies is limited by the relative large processing area in comparison to the beam size. Single spot oxidation of titanium substrates is proposed in this research in order to increase the resolution of the processed area and also to address the requirements of potential new applications. The method is applied to produce oxide films with different thicknesses and hence colours on titanium substrates. High resolution colour image is imprinted on a sheet of pure titanium by converting its pixels' colours into laser parameter settings. Optical and morphological periodic surface structures are also produced by an array of oxide spots and then analysed. Two colours have been coded into one field and the dependencies of the reflected colours on incident and azimuthal angles of the light are discussed. The findings are of interest to a range of application areas, as they can be used to imprint optical devices such as diffusers and Fresnel lenses on metallic surfaces as well as for colour marking.
The comparison of phosphate-titanate-silicate layers on the titanium and Ti6Al4V alloy base.
Rokita, M
2011-08-15
The studied layers were composed of two parts: titanate-silicate underlayer for better adhesion and titanate-phosphate-silicate layers for potential bioparameters. The layers with different amounts of hydroxyapatite were deposited on titanium and Ti6Al4V alloy substrates using dipping sol-gel method and electrophoresis. The selection of sol/suspension composition, deposition time and heat treatment conditions have the decisive influence on the layers parameters. The obtained layers should be very thin and almost amorphous. The specific nature of ceramic layers on the metal substrates excludes the use of some measurements methods or makes it difficult to interpret the measurement results. All the obtained samples were compared using XRD analysis data (GID technique), SEM with EDX measurements and FTIR spectroscopy (transmission and reflection techniques) before and after soaking in simulated body fluid. FTIR spectroscopy with mathematical treatment of the spectra (BIO-RAD Win-IR program, Arithmetic-subtract function) was used to detect the increase or decrease of any phosphate phases during SBF soaking. Based on the FTIR results the processes of hydroxyapatite (HAp) growth or layer dissolution were estimated. The layers deposited on titanium substrate are more crystalline then the ones deposited on Ti6Al4V. During SBF soaking process the growth of small amount of microcrystalline carbonate hydroxyapatite was observed on titanium substrate. The layer on Ti6Al4V base contained amorphous carbonate apatite. During heating treatment above about 870-920 K this apatite transforms into carbonate hydroxyapatite. The Ti6Al4V substrate seems to be more advantageous in context of potentially bioactive materials obtaining. Copyright © 2010 Elsevier B.V. All rights reserved.
Vasconcelos, R A; Arias, A; Peters, O A
2018-05-01
To isolate the effect of metallurgy in lateral and axial cutting efficacy against plastic and bovine dentine substrates by comparing two rotary systems with identical design but manufactured with either conventional nickel-titanium or heat-treated gold alloy. A total of 258 ProTaper Universal (PTU) and ProTaper Gold (PTG) Shaping instruments were used. Bending behaviour was assessed to determine the appropriate displacement associated with a 2 N force in lateral cutting. Ten instruments of each type were used in lateral action for 60 s against bovine dentine or plastic substrates four consecutive times producing four notches in each specimen. Ten further instruments of each type were used in on axial action in four standardized simulated root canals fabricated from 4-mm thick plastic or dentine discs. Both tests were performed at 300 rpm in a computer-controlled testing platform. Notch area and torsional load were compared with Student's t-tests. Repeated measures ANOVA was used to compare cutting efficiency across the four different time-points. Pearson correlation coefficients between substrates were also determined. For lateral action, all three PTG instruments cut significantly more effectively (P < 0.05) than PTU on the plastic substrate. S1 and S2 PTG cut significantly more after 120 and 180 s (P < 0.05) on bovine dentine substrate. For axial action, S1 and S2 PTG were significantly more efficient in cutting at 180 s on plastic and 120 s on bovine dentine (P < 0.05). Instruments made from heat-treated nickel-titanium gold alloy had equal or greater cutting efficiency when compared to those made from conventional nickel-titanium. © 2017 International Endodontic Journal. Published by John Wiley & Sons Ltd.
The comparison of phosphate-titanate-silicate layers on the titanium and Ti6Al4V alloy base
NASA Astrophysics Data System (ADS)
Rokita, M.
2011-08-01
The studied layers were composed of two parts: titanate-silicate underlayer for better adhesion and titanate-phosphate-silicate layers for potential bioparameters. The layers with different amounts of hydroxyapatite were deposited on titanium and Ti6Al4V alloy substrates using dipping sol-gel method and electrophoresis. The selection of sol/suspension composition, deposition time and heat treatment conditions have the decisive influence on the layers parameters. The obtained layers should be very thin and almost amorphous. The specific nature of ceramic layers on the metal substrates excludes the use of some measurements methods or makes it difficult to interpret the measurement results. All the obtained samples were compared using XRD analysis data (GID technique), SEM with EDX measurements and FTIR spectroscopy (transmission and reflection techniques) before and after soaking in simulated body fluid. FTIR spectroscopy with mathematical treatment of the spectra (BIO-RAD Win-IR program, Arithmetic-subtract function) was used to detect the increase or decrease of any phosphate phases during SBF soaking. Based on the FTIR results the processes of hydroxyapatite (HAp) growth or layer dissolution were estimated. The layers deposited on titanium substrate are more crystalline then the ones deposited on Ti6Al4V. During SBF soaking process the growth of small amount of microcrystalline carbonate hydroxyapatite was observed on titanium substrate. The layer on Ti6Al4V base contained amorphous carbonate apatite. During heating treatment above about 870-920 K this apatite transforms into carbonate hydroxyapatite. The Ti6Al4V substrate seems to be more advantageous in context of potentially bioactive materials obtaining.
Li, Ning-Bo; Xu, Wen-Hua; Xiao, Gui-Yong; Zhao, Jun-Han; Lu, Yu-Peng
2017-11-01
Thermal oxidation technology was widely investigated as one of effective surface modification method for improving the bioactivity and biocompatibility of titanium and its alloys. In this work, the induction heat oxidization method, a fast, efficient, economical and environmental protective technology, was applied to prepare the submicron-morphological oxide coating with variable rutile TiO 2 equiaxed crystallites on the surface of pure Ti substrates after cold-drawing with 10-20% deformations. The results showed the plastic-deformed Ti cylinders recrystallized during induction heating treatment (IHT) for 10-20s which resulted in evolution of microstructures as well as slight improvement of microhardness. The surface characteristics of TiO 2 crystallites in oxidation layers were determined by the microstructural evolutions of Ti substrate in terms of the nucleation and growth of TiO 2 crystallites. Specially, the oxidized surface with 50-75nm roughness and more uniform and finer equiaxed oxide grains remarkablely improved the apatite deposition after bioactive evaluation in 1.5 × SBF for 7 days. This work provided a potential method to create controlled bioactive oxide coatings with submicro-/nano-scaled TiO 2 crystallites on titanium substrate in terms of the role of metallographic microstructure in the formation process of titanium oxides. Copyright © 2017 Elsevier Ltd. All rights reserved.
Shen, Juan; Qi, Yongcheng; Jin, Bo; Wang, Xiaoyan; Hu, Yamin; Jiang, Qiying
2017-01-01
Self-assembly technique was applied to introduce functional groups and form hydroxyl-, amine-, and carboxyl-terminal self-assembled monolayers (SAMs). The SAMs were grafted onto titanium substrates to obtain a molecularly smooth functional surface. Subsequent hydrothermal crystal growth formed homogeneous and crack-free crystalline hydroxyapatite (HA) coatings on these substrates. AFM and XPS were used to characterize the SAM surfaces, and XRD, SEM, and TEM were used to characterize the HA coatings. Results show that highly crystalline, dense, and oriented HA coatings can be formed on the OH-, NH 2 -, and COOH-SAM surfaces. The SAM surface with -COOH exhibited stronger nucleating ability than that with -OH and -NH 2 . The nucleation and growth processes of HA coatings were effectively controlled by varying reaction time, pH, and temperature. By using this method, highly crystalline, dense, and adherent HA coatings were obtained. In addition, in vitro cell evaluation demonstrated that HA coatings improved cell adhesion as compared with pristine titanium substrate. The proposed method is considerably effective in introducing the HA coatings on titanium surfaces for various biomedical applications and further usage in other industries. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 124-135, 2017. © 2015 Wiley Periodicals, Inc.
Cadmium Telluride-Titanium Dioxide Nanocomposite for Photodegradation of Organic Substance.
Ontam, Areeporn; Khaorapapong, Nithima; Ogawa, Makoto
2015-12-01
Cadmium telluride-titanium dioxide nanocomposite was prepared by hydrothermal reaction of sol-gel derived titanium dioxide and organically modified cadmium telluride. The crystallinity of titanium dioxide in the nanocomposite was higher than that of pure titanium dioxide obtained by the reaction under the same temperature and pressure conditions, showing that cadmium telluride induced the crystallization of titanium dioxide. Diffuse reflectance spectrum of the nanocomposite showed the higher absorption efficiency in the UV-visible region due to band-gap excitation of titanium dioxide. The nanocomposite significantly showed the improvement of photocatalytic activity for 4-chlorophenol with UV light.
Synthesis of transparent BaTiO3 nanoparticle/polymer composite film using DC field
NASA Astrophysics Data System (ADS)
Kondo, Yusuke; Okumura, Yasuko; Oi, Chifumi; Sakamoto, Wataru; Yogo, Toshinobu
2008-10-01
Transparent BaTiO3 nanoparticle/polymer composite films were synthesized from titanium-organic film and barium ion in aqueous solution under direct current (DC) field. Titanium-organic precursor was synthesized from titanium isopropoxide, acetylacetone and methacrylate derivative. The UV treatment was effective to increase the anti-solubility of the titanium-organic film during DC processing. BaTiO3 nanoparticles were crystallized in the precursor films on stainless substrates without high temperature process, as low as 40°C. The crystallite size of BaTiO3 increased with increasing reaction temperature from 40 to 50 °C at 3.0 V/cm. BaTiO3 nanoparticles also grew in size with increasing reaction time from 15 min to 45 min at 3.0 V/cm and 50 °C. Transparent BaTiO3 nanoparticle/polymer films were synthesized on stainless substrates at 3.0 V/cm and 50°C for 45 min.
Modification of electrochemically deposited apatite using supercritical water.
Ban, S; Hasegawa, J
2001-12-01
Supercritical water was used as a modification method of electrochemically deposited apatite on pure titanium. The apatites were coated on a commercially pure titanium plate using a hydrothermal-electrochemical method. A constant direct current at 12.5 mA/cm2 was loaded for 1 hr at 25, 60, 100, 150 and 200 degrees C in an electrolyte containing calcium and phosphate ions. The deposited apatite on the titanium substrate was stored in supercritical water at 450 degrees C under 45 MPa for 8 hr. With this treatment, the crystallinity of the apatites increased, sharp edges of the deposited apatites were rounded off, and the bonding strength of the titanium substrate to the deposited apatites significantly increased. On the other hand, weight loss in 0.01 N HCl decreased and the weight gain rate in a simulated body fluid also decreased with this treatment. It is suggested that the modification using supercritical water improved the mechanical strength of the deposited apatite, but worsened its bioactivity.
Nanoscale Visualization of Elastic Inhomogeneities at TiN Coatings Using Ultrasonic Force Microscopy
NASA Astrophysics Data System (ADS)
Hidalgo, J. A.; Montero-Ocampo, C.; Cuberes, M. T.
2009-12-01
Ultrasonic force microscopy has been applied to the characterization of titanium nitride coatings deposited by physical vapor deposition dc magnetron sputtering on stainless steel substrates. The titanium nitride layers exhibit a rich variety of elastic contrast in the ultrasonic force microscopy images. Nanoscale inhomogeneities in stiffness on the titanium nitride films have been attributed to softer substoichiometric titanium nitride species and/or trapped subsurface gas. The results show that increasing the sputtering power at the Ti cathode increases the elastic homogeneity of the titanium nitride layers on the nanometer scale. Ultrasonic force microscopy elastic mapping on titanium nitride layers demonstrates the capability of the technique to provide information of high value for the engineering of improved coatings.
High power RF window deposition apparatus, method, and device
Ives, Lawrence R.; Lucovsky, Gerald; Zeller, Daniel
2017-07-04
A process for forming a coating for an RF window which has improved secondary electron emission and reduced multipactor for high power RF waveguides is formed from a substrate with low loss tangent and desirable mechanical characteristics. The substrate has an RPAO deposition layer applied which oxygenates the surface of the substrate to remove carbon impurities, thereafter has an RPAN deposition layer applied to nitrogen activate the surface of the substrate, after which a TiN deposition layer is applied using Titanium tert-butoxide. The TiN deposition layer is capped with a final RPAN deposition layer of nitridation to reduce the bound oxygen in the TiN deposition layer. The resulting RF window has greatly improved titanium layer adhesion, reduced multipactor, and is able to withstand greater RF power levels than provided by the prior art.
Wong, Ming-Show; Chu, Wen-Chen; Sun, Der-Shan; Huang, Hsuan-Shun; Chen, Jiann-Hwa; Tsai, Pei-Jane; Lin, Nien-Tsung; Yu, Mei-Shiuan; Hsu, Shang-Feng; Wang, Shih-Lien; Chang, Hsin-Hou
2006-01-01
The antibacterial activity of photocatalytic titanium dioxide (TiO2) substrates is induced primarily by UV light irradiation. Recently, nitrogen- and carbon-doped TiO2 substrates were shown to exhibit photocatalytic activities under visible-light illumination. Their antibacterial activity, however, remains to be quantified. In this study, we demonstrated that nitrogen-doped TiO2 substrates have superior visible-light-induced bactericidal activity against Escherichia coli compared to pure TiO2 and carbon-doped TiO2 substrates. We also found that protein- and light-absorbing contaminants partially reduce the bactericidal activity of nitrogen-doped TiO2 substrates due to their light-shielding effects. In the pathogen-killing experiment, a significantly higher proportion of all tested pathogens, including Shigella flexneri, Listeria monocytogenes, Vibrio parahaemolyticus, Staphylococcus aureus, Streptococcus pyogenes, and Acinetobacter baumannii, were killed by visible-light-illuminated nitrogen-doped TiO2 substrates than by pure TiO2 substrates. These findings suggest that nitrogen-doped TiO2 has potential application in the development of alternative disinfectants for environmental and medical usages. PMID:16957236
[Cr-Ti-Al-N complex coating on titanium to strengthen Ti/porcelain bonding].
Zhang, Hui; Guo, Tian-wen; Li, Jun-ming; Pan, Jing-guang; Dang, Yong-gang; Tong, Yu
2006-02-01
To study the feasibility of magnetron sputtering Cr-Ti-Al-N complex coating as an interlayer on titanium to enhance the titanium-ceramic binding strength. With a three-point bending test according to ISO 9693, the binding strength of Duceratin (Degussa) to titanium substrate prepared with 4 different surface treatments (polishing, polishing and megnetron sputtering Cr, Ti, Al, and N complex coating, sandblasting, sandblasting and coating) was evaluated. Ti/porcelain interface and fractured Ti surface were examined using scanning electron microscopy with energy-dispersive spectrometry (EDS). The binding strength of polished and coated titanium/Duceratin was significantly higher than polished titanium group (P<0.05). The binding strength of sandblasted and coated titanium/Duceratin did not differ significantly from that of sandblasted titanium group (P>0.05), and the strength in the two sandblasted titanium groups was significantly higher than that in polished and coated titanium group (P<0.05). Megnetron sputtering Cr-Ti-Al-N complex on polished titanium can increase the titanium/porcelain binding strength. Megnetron sputtering coating is a promising Ti/porcelain interlayer.
Microstructure and corrosion resistance of sputter-deposited titanium-chromium alloy coatings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landolt, D.; Robyr, C.; Mettraux, P.
1998-10-01
Titanium, chromium, and titanium-chromium alloy coatings were sputter-deposited to study their corrosion behaviors in relation to microstructure and composition. Silicon substrates were used to study the effect of alloying on intrinsic corrosion resistance of the coating materials, and brass substrates were used to study the effect of alloying on the penetrating porosity of the coatings. Corrosion behavior was characterized using linear sweep voltammetry. The crystal structure of the coatings was examined by x-ray diffraction (XRD) and the microstructure by scanning electron microscopy (SEM). Electrochemical impedance spectroscopy (EIS) was used to estimate the real surface area of the coatings. Results showedmore » alloying of titanium with chromium greatly influenced microstructure of the coatings. Alloying led to deposits of higher apparent density and, in some cases, to an x-ray amorphous structure. Alloy coatings showed significantly lower corrosion currents than the constituting metals. The effect was attributed to a smoother surface topography. When corrected of differences in real surface area, the intrinsic corrosion rate of the alloy coatings did not differ significantly from that of the constituting metals. Alloy coatings deposited on brass exhibited a lower porosity than titanium or chromium metal coatings produced under identical conditions.« less
A Strontium-Modified Titanium Surface Produced by a New Method and Its Biocompatibility In Vitro
Liu, Chundong; Zhang, Yanli; Wang, Lichao; Zhang, Xinhua; Chen, Qiuyue; Wu, Buling
2015-01-01
Objective To present a new and effective method of producing titanium surfaces modified with strontium and to investigate the surface characteristics and in vitro biocompatibility of titanium (Ti) surfaces modified with strontium (Sr) for bone implant applications. Materials and Methods Sr-modified Ti surfaces were produced by sequential treatments with NaOH, strontium acetate, heat and water. The surface characteristics and the concentration of the Sr ions released from the samples were examined. Cell adhesion, morphology and growth were investigated using osteoblasts isolated from the calvaria of neonatal Sprague-Dawley rats. Expression of osteogenesis-related genes and proteins was examined to assess the effect of the Sr-modified Ti surfaces on osteoblasts. Results The modified titanium surface had a mesh structure with significantly greater porosity, and approximately5.37±0.35at.% of Sr was incorporated into the surface. The hydrophilicity was enhanced by the incorporation of Sr ions and water treatment. The average amounts of Sr released from the Sr-modified plates subjected to water treatment were slight higher than the plates without water treatment. Sr promoted cellular adhesion, spreading and growth compared with untreated Ti surfaces. The Sr-modified Ti plates also promoted expression of osteogenesis-related genes,and expression of OPN and COL-І by osteoblasts. Ti plates heat treated at 700°C showed increased bioactivity in comparison with those treated at 600°C. Water treatment upregulated the expression of osteogenesis-related genes. Conclusions These results show that Sr-modification of Ti surfaces may improve bioactivity in vitro. Water treatment has enhanced the response of osteoblasts. The Sr-modified Ti heat-treated at 700°C exhibited better bioactivity compared with that heated at 600°C. PMID:26529234
A Strontium-Modified Titanium Surface Produced by a New Method and Its Biocompatibility In Vitro.
Liu, Chundong; Zhang, Yanli; Wang, Lichao; Zhang, Xinhua; Chen, Qiuyue; Wu, Buling
2015-01-01
To present a new and effective method of producing titanium surfaces modified with strontium and to investigate the surface characteristics and in vitro biocompatibility of titanium (Ti) surfaces modified with strontium (Sr) for bone implant applications. Sr-modified Ti surfaces were produced by sequential treatments with NaOH, strontium acetate, heat and water. The surface characteristics and the concentration of the Sr ions released from the samples were examined. Cell adhesion, morphology and growth were investigated using osteoblasts isolated from the calvaria of neonatal Sprague-Dawley rats. Expression of osteogenesis-related genes and proteins was examined to assess the effect of the Sr-modified Ti surfaces on osteoblasts. The modified titanium surface had a mesh structure with significantly greater porosity, and approximately5.37±0.35at.% of Sr was incorporated into the surface. The hydrophilicity was enhanced by the incorporation of Sr ions and water treatment. The average amounts of Sr released from the Sr-modified plates subjected to water treatment were slight higher than the plates without water treatment. Sr promoted cellular adhesion, spreading and growth compared with untreated Ti surfaces. The Sr-modified Ti plates also promoted expression of osteogenesis-related genes,and expression of OPN and COL-І by osteoblasts. Ti plates heat treated at 700°C showed increased bioactivity in comparison with those treated at 600°C. Water treatment upregulated the expression of osteogenesis-related genes. These results show that Sr-modification of Ti surfaces may improve bioactivity in vitro. Water treatment has enhanced the response of osteoblasts. The Sr-modified Ti heat-treated at 700°C exhibited better bioactivity compared with that heated at 600°C.
Surface Modification of C17200 Copper-Beryllium Alloy by Plasma Nitriding of Cu-Ti Gradient Film
NASA Astrophysics Data System (ADS)
Zhu, Y. D.; Yan, M. F.; Zhang, Y. X.; Zhang, C. S.
2018-03-01
In the present work, a copper-titanium film of gradient composition was firstly fabricated by the dual magnetron sputtering through power control and plasma nitriding of the film was then conducted to modify C17200 Cu alloy. The results showed that the prepared gradient Cu-Ti film by magnetron sputtering was amorphous. After plasma nitriding at 650 °C, crystalline Cu-Ti intermetallics appeared in the multi-phase coating, including CuTi2, Cu3Ti, Cu3Ti2 and CuTi. Moreover, even though the plasma nitriding duration of the gradient Cu-Ti film was only 0.5 h, the mechanical properties of the modified Cu surface were obviously improved, with the surface hardness enhanced to be 417 HV0.01, the wear rate to be 0.32 × 10-14 m3/Nm and the friction coefficient to be 0.075 at the load of 10 N, which are all more excellent than the C17200 Cu alloy. In addition, the wear mechanism also changed from adhesion wear for C17200 Cu substrate to abrasive wear for the modified surface.
Hamlet, Stephen; Ivanovski, Saso
2011-05-01
Nanoscale surface modification of titanium dental implants with calcium phosphate (CaP) has been shown to achieve superior bone wound healing and osseointegration compared with smooth or microrough titanium surfaces alone. As bone healing has been shown to be influenced by the action of cytokines, this study examined whether changes in cytokine gene expression from RAW 264.7 cells cultured on commercially pure and titanium alloy (Ti-6Al-4V) microrough or nanoscale crystalline CaP-modified surfaces, may influence downstream events in bone wound healing and osseointegration. Whilst no significant difference in the attachment or proliferation of RAW 264.7 cells was observed, the nanoscale CaP-modified surface elicited a gene expression profile with marked down-regulation of a number of pro-inflammatory cytokines and chemokines. Inflammatory cytokine gene expression was further influenced by chemical composition, with lower levels of pro-inflammatory markers noted following exposure of the macrophage-like cells to titanium alloy (Ti-6Al-4V) compared with the commercially pure titanium surface. Down-regulation of pro-inflammatory cytokine gene expression (confirmed at the protein level for TNFα and CCL5), may thus facilitate the enhanced bone wound healing and osseointegration observed clinically with nanoscale calcium phosphate-modified implant surfaces. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Rutile titanium dioxide films deposited with a vacuum arc at different temperatures
NASA Astrophysics Data System (ADS)
Arias, L. Franco; Kleiman, A.; Heredia, E.; Márquez, A.
2012-06-01
Rutile crystalline phase of TiO2 has been one of the most investigated materials for medical applications. Its implementation as a surface layer on biomedical implants has shown to improve hemocompatibility and biocompatibility. In this work, titanium dioxide coatings were deposited on glass and steel 316L substrates using cathodic arc deposition. The coatings were obtained at different substrate temperatures; varying from room temperature to 600°C. The crystalline structure of the films was identified by glancing angle X-ray diffraction. Depending on the substrate material and on its temperature during the deposition process, anatase, anatse+rutile and rutile structures were observed. It was determined that rutile films can be obtained below 600 °C with this deposition method.
NASA Technical Reports Server (NTRS)
Dellacorte, Christopher; Pepper, Stephen V.; Honecy, Frank S.
1993-01-01
Outer layer of silver lubricates, while intermediate layer of titanium ensures adhesion. Lubricating outer films of silver deposited on thin intermediate films of titanium on alumina substrates found to reduce sliding friction and wear. Films provide effective lubrication for ceramic seals, bearings, and other hot sliding components in advanced high-temperature engines.
Inoue, Ippei; Yamauchi, Hirofumi; Okamoto, Naofumi; Toyoda, Kenichi; Horita, Masahiro; Ishikawa, Yasuaki; Yasueda, Hisashi; Uraoka, Yukiharu; Yamashita, Ichiro
2015-07-17
We produced a thermostable TiO2-(anatase)-coated multi-walled-carbon-nanotube (MWNT) nanocomposite for use in dye-sensitized solar cells (DSSCs) using biological supuramolecules as catalysts. We synthesized two different sizes of iron oxide nanoparticles (NPs) and arrayed the NPs on a silicon substrate utilizing two kinds of genetically modified cage-shaped proteins with silicon-binding peptide aptamers on their outer surfaces. Chemical vapor deposition (CVD) with the vapor-liquid-solid phase (VLS) method was applied to the substrate, and thermostable MWNTs with a diameter of 6 ± 1 nm were produced. Using a genetically modified cage-shaped protein with carbon-nanomaterials binding and Ti-mineralizing peptides as a catalyst, we were able to mineralize a titanium compound around the surface of the MWNT. The products were sintered, and thin TiO2-layer-coated MWNTs nanocomoposites were successfully produced. Addition of a 0.2 wt% TiO2-coated MWNT nanocomposite to a DSSC photoelectrode improved current density by 11% and decreased electric resistance by 20% compared to MWNT-free reference DSSCs. These results indicate that a nanoscale TiO2-layer-coated thermostable MWNT structure produced by our mutant proteins works as a superior electron transfer highway within TiO2 photoelectrodes.
NASA Astrophysics Data System (ADS)
Inoue, Ippei; Yamauchi, Hirofumi; Okamoto, Naofumi; Toyoda, Kenichi; Horita, Masahiro; Ishikawa, Yasuaki; Yasueda, Hisashi; Uraoka, Yukiharu; Yamashita, Ichiro
2015-07-01
We produced a thermostable TiO2-(anatase)-coated multi-walled-carbon-nanotube (MWNT) nanocomposite for use in dye-sensitized solar cells (DSSCs) using biological supuramolecules as catalysts. We synthesized two different sizes of iron oxide nanoparticles (NPs) and arrayed the NPs on a silicon substrate utilizing two kinds of genetically modified cage-shaped proteins with silicon-binding peptide aptamers on their outer surfaces. Chemical vapor deposition (CVD) with the vapor-liquid-solid phase (VLS) method was applied to the substrate, and thermostable MWNTs with a diameter of 6 ± 1 nm were produced. Using a genetically modified cage-shaped protein with carbon-nanomaterials binding and Ti-mineralizing peptides as a catalyst, we were able to mineralize a titanium compound around the surface of the MWNT. The products were sintered, and thin TiO2-layer-coated MWNTs nanocomoposites were successfully produced. Addition of a 0.2 wt% TiO2-coated MWNT nanocomposite to a DSSC photoelectrode improved current density by 11% and decreased electric resistance by 20% compared to MWNT-free reference DSSCs. These results indicate that a nanoscale TiO2-layer-coated thermostable MWNT structure produced by our mutant proteins works as a superior electron transfer highway within TiO2 photoelectrodes.
Enhanced the hydrophobic surface and the photo-activity of TiO2-SiO2 composites
NASA Astrophysics Data System (ADS)
Wahyuni, S.; Prasetya, A. T.
2017-02-01
The aim of this research is to develop nanomaterials for coating applications. This research studied the effect of various TiO2-SiO2 composites in acrylic paint to enhance the hydrophobic properties of the substrate. Titanium dioxide containing silica in the range 20-35 mol% has been synthesized using sol-gel route. The XRD’s spectra show that increasing SiO2 content in the composite, decreasing its crystalline properties but increasing the surface area. TiO2-SiO2 composite was dispersed in acrylic paint in 2% composition by weight. The largest contact angle was 70, which produced by the substrate coated with TS-35-modified acrylic paint. This study also investigated the enhanced photo-activity of TiO2-SiO2 modified with poly-aniline. The XRD spectra show that the treatment does not change the crystal structure of TiO2. The photo-activity of the composite was evaluated by degradation of Rhodamine-B with visible light. The best performance of the degradation process was handled by the composite treated with 0.1mL anilines per gram of TiO2-SiO2 composite (TSP-A). On the other side, the contact angle 70 has not shown an excellent hydrophobic activity. However, the AFM spectra showed that nanoroughness has started to form on the surface of acrylic paint modified with TiO2-SiO2 than acrylic alone.
Yamawaki, I; Taguchi, Y; Komasa, S; Tanaka, A; Umeda, M
2017-08-01
Diabetes mellitus (DM) is a common disease worldwide. Patients with DM have an increased risk of losing their teeth compared with other individuals. Dental implants are a standard of care for treating partial or full edentulism, and various implant surface treatments have recently been developed to increase dental implant stability. However, some studies have reported that DM reduces osseointegration and the success rate of dental implants. The purpose of this study was to determine the effects of high glucose levels for hard tissue formation on a nano-scale modified titanium surface. Titanium disks were heated at 600°C for 1 h after treatment with or without 10 m NaOH solution. All disks were incubated with type II DM rat bone marrow-derived mesenchymal stromal cells before exposure to one of four concentrations of glucose (5.5, 8.0, 12.0 or 24.0 mm). The effect of different glucose concentrations on bone marrow-derived mesenchymal stromal cell osteogenesis and inflammatory cytokines on the nano-scale modified titanium surface was evaluated. Alkaline phosphatase activity decreased with increasing glucose concentration. In contrast, osteocalcin production and calcium deposition were significantly decreased at 8.0 mm glucose, but increased with glucose concentrations over 8.0 mm. Differences in calcium/phosphate ratio associated with the various glucose concentrations were similar to osteocalcin production and calcium deposition. Inflammatory cytokines were expressed at high glucose concentrations, but the nano-scale modified titanium surface inhibited the effect of high glucose concentrations. High glucose concentration increased hard tissue formation, but the quality of the mineralized tissue decreased. Furthermore, the nano-scale modified titanium surface increased mineralized tissue formation and anti-inflammation, but the quality of hard tissue was dependent on glucose concentration. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Architecture for coated conductors
Foltyn, Stephen R.; Arendt, Paul N.; Wang, Haiyan; Stan, Liliana
2010-06-01
Articles are provided including a base substrate having a layer of an oriented cubic oxide material with a rock-salt-like structure layer thereon, and, a layer of epitaxial titanium nitride upon the layer of an oriented cubic oxide material having a rock-salt-like structure. Such articles can further include thin films of high temperature superconductive oxides such as YBCO upon the layer of epitaxial titanium nitride or upon a intermediate buffer layer upon the layer of epitaxial titanium nitride.
Grafting titanium nitride surfaces with sodium styrene sulfonate thin films
Zorn, Gilad; Migonney, Véronique; Castner, David G.
2014-01-01
The importance of titanium nitride lies in its high hardness and its remarkable resistance to wear and corrosion, which has led to its use as a coating for the heads of hip prostheses, dental implants and dental surgery tools. However, the usefulness of titanium nitride coatings for biomedical applications could be significantly enhanced by modifying their surface with a bioactive polymer film. The main focus of the present work was to graft a bioactive poly(sodium styrene sulfonate) (pNaSS) thin film from titanium nitride surfaces via a two-step procedure: first modifying the surface with 3-methacryloxypropyltrimethoxysilane (MPS) and then grafting the pNaSS film from the MPS modified titanium through free radical polymerization. X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) were used after each step to characterize success and completeness of each reaction. The surface region of the titanium nitride prior to MPS functionalization and NaSS grafting contained a mixture of titanium nitride, oxy-nitride, oxide species as well as adventitious surface contaminants. After MPS functionalization, Si was detected by XPS, and characteristic MPS fragments were detected by ToF-SIMS. After NaSS grafting, Na and S were detected by XPS and characteristic NaSS fragments were detected by ToF-SIMS. The XPS determined thicknesses of the MPS and NaSS overlayers were ∼1.5 and ∼1.7 nm, respectively. The pNaSS film density was estimated by the toluidine blue colorimetric assay to be 260 ± 70 ng/cm2. PMID:25280842
Wettability of Thin Silicate-Containing Hydroxyapatite Films Formed by RF-Magnetron Sputtering
NASA Astrophysics Data System (ADS)
Gorodzha, S. N.; Surmeneva, M. A.; Surmenev, R. A.; Gribennikov, M. V.; Pichugin, V. F.; Sharonova, A. A.; Pustovalova, A. A.; Prymack, O.; Epple, M.; Wittmar, A.; Ulbricht, M.; Gogolinskii, K. V.; Kravchuk, K. S.
2014-02-01
Using the methods of electron and atomic force microscopy, X-ray structural analysis and measurements of the wetting angle, the features of morphology, structure, contact angle and free surface energy of silicon-containing calcium-phosphate coatings formed on the substrates made from titanium VT1-0 and stainless steel 12Cr18Ni10Ti are investigated. It is shown that the coating - substrate system possesses bimodal roughness formed by the substrate microrelief and coating nanostructure, whose principal crystalline phase is represented by silicon-substituted hydroxiapatite with the size of the coherent scattering region (CSR) 18-26 nm. It is found out that the formation of a nanostructured coating on the surface of rough substrates makes them hydrophilic. The limiting angle of water wetting for the coatings formed on titanium and steel acquires the values in the following ranges: 90-92 and 101-104°, respectively, and decreases with time.
Highly efficient TiO2-based microreactor for photocatalytic applications.
Krivec, Matic; Žagar, Kristina; Suhadolnik, Luka; Čeh, Miran; Dražić, Goran
2013-09-25
A photocatalytic, TiO2-based microreactor is designed and fabricated on a metal-titanium foil. The microchannel is mechanically engraved in the substrate foil, and a double-layered TiO2 anatase film is immobilized on its inner walls with a two-step synthesis, which included anodization and a hydrothermal treatment. X-ray diffraction (XRD) and scanning electron microscopy (SEM) confirm the presence of an approximately 10-μm-thick layer of titania nanotubes and anatase nanoparticles. The SEM and transmission electron microscopy (TEM) of the cross sections show a dense interface between the titanium substrate and the TiO2 nanotubes. An additional layer of TiO2-anatase nanoparticles on the top of the film provides a large, photocatalytic surface area. The metal-titanium substrate with a functionalized serpentine channel is sealed with UV-transparent Plexiglas, and four 0.8-mW UV LEDs combined with a power controller on a small printed-circuit board are fixed over the substrate. The photocatalytic activity and the kinetic properties for the degradation of caffeine are provided, and the longer-term stability of the TiO2 film is evaluated. The results show that after 6 months of use and 3600 working cycles the microreactor still exhibits 60% of its initial efficiency.
Siuzdak, K; Sawczak, M; Klein, M; Nowaczyk, G; Jurga, S; Cenian, A
2014-08-07
We report on the preparation method of nanocrystalline titanium dioxide modified with platinum by using nanosecond laser ablation in liquid (LAL). Titania in the form of anatase crystals has been prepared in a two-stage process. Initially, irradiation by laser beam of a titanium metal plate fixed in a glass container filled with deionized water was conducted. After that, the ablation process was continued, with the use of a platinum target placed in a freshly obtained titania colloid. In this work, characterization of the obtained nanoparticles, based on spectroscopic techniques--Raman, X-ray photoelectron and UV-vis reflectance spectroscopy--is given. High resolution transmission electron microscopy was used to describe particle morphology. On the basis of photocatalytic studies we observed the rate of degradation process of methylene blue (MB) (a model organic pollution) in the presence of Pt modified titania in comparison to pure TiO2--as a reference case. Physical and chemical mechanisms of the formation of platinum modified titania are also discussed here. Stable colloidal suspensions containing Pt modified titanium dioxide crystalline anatase particles show an almost perfect spherical shape with diameters ranging from 5 to 30 nm. The TiO2 nanoparticles decorated with platinum exhibit much higher (up to 30%) photocatalytic activity towards the degradation of MB under UV illumination than pure titania.
Pulsed Laser Deposition Processing of Improved Titanium Nitride Coatings for Implant Applications
NASA Astrophysics Data System (ADS)
Haywood, Talisha M.
Recently surface coating technology has attracted considerable attention of researchers to develop novel coatings with enhanced functional properties such as hardness, biocompatibility, wear and corrosion resistance for medical devices and surgical tools. The materials currently being used for surgical implants include predominantly stainless steel (316L), cobalt chromium (Co-Cr), titanium and its alloys. Some of the limitations of these implants include improper mechanical properties, corrosion resistance, cytotoxicity and bonding with bone. One of the ways to improve the performance and biocompatibility of these implants is to coat their surfaces with biocompatible materials. Among the various coating materials, titanium nitride (TiN) shows excellent mechanical properties, corrosion resistance and low cytotoxicity. In the present work, a systematic study of pulsed laser ablation processing of TiN coatings was conducted. TiN thin film coatings were grown on commercially pure titanium (Ti) and stainless steel (316L) substrates at different substrate temperatures and different nitrogen partial pressures using the pulsed laser deposition (PLD) technique. Microstructural, surface, mechanical, chemical, corrosion and biological analysis techniques were applied to characterize the TiN thin film coatings. The PLD processed TiN thin film coatings showed improvements in mechanical strength, corrosion resistance and biocompatibility when compared to the bare substrates. The enhanced performance properties of the TiN thin film coatings were a result of the changing and varying of the deposition parameters.
Barry, J N; Cowley, A; McNally, P J; Dowling, D P
2014-03-01
Hydroxyapatite (HA) coatings are applied widely to enhance the level of osteointegration onto orthopedic implants. Atmospheric plasma spray (APS) is typically used for the deposition of these coatings; however, HA crystalline changes regularly occur during this high-thermal process. This article reports on the evaluation of a novel low-temperature (<47°C) HA deposition technique, called CoBlast, for the application of crystalline HA coatings. To-date, reports on the CoBlast technique have been limited to titanium alloy substrates. This study addresses the suitability of the CoBlast technique for the deposition of HA coatings on a number of alternative metal alloys utilized in the fabrication of orthopedic devices. In addition to titanium grade 5, both cobalt chromium and stainless steel 316 were investigated. In this study, HA coatings were deposited using both the CoBlast and the plasma sprayed techniques, and the resultant HA coating and substrate properties were evaluated and compared. The CoBlast-deposited HA coatings were found to present similar surface morphologies, interfacial properties, and composition irrespective of the substrate alloy type. Coating thickness however displayed some variation with the substrate alloy, ranging from 2.0 to 3.0 μm. This perhaps is associated with the electronegativity of the metal alloys. The APS-treated samples exhibited evidence of both coating, and significantly, substrate phase alterations for two metal alloys; titanium grade 5 and cobalt chrome. Conversely, the CoBlast-processed samples exhibited no phase changes in the substrates after depositions. The APS alterations were attributed to the brief, but high-intensity temperatures experienced during processing. Copyright © 2013 Wiley Periodicals, Inc.
Oxidation-Resistant Coating For Bipolar Lead/Acid Battery
NASA Technical Reports Server (NTRS)
Bolstad, James J.
1993-01-01
Cathode side of bipolar substrate coated with nonoxidizable conductive layer. Coating prepared as water slurry of aqueous dispersion of polyethylene copolymer plus such conductive fillers as tin oxide, titanium, tantalum, or tungsten oxide. Applied easily to substrate of polyethylene carbon plastic. As slurry dries, conductive, oxidation-resistant coating forms on positive side of substrate.
NASA Astrophysics Data System (ADS)
Prosolov, Konstantin A.; Belyavskaya, Olga A.; Muehle, Uwe; Sharkeev, Yurii P.
2018-02-01
Nanocrystalline Zn substituted hydroxyapatite coatings were deposited by radiofrequency magnetron sputtering on the surface of ultrafine-grained titanium substrates. Cross section transmission electron microscopy provided information about the morphology and texture of the thin film while in-column energy dispersive X-ray analysis confirmed the presence of Zn in the coating. The Zn substituted hydroxyapatite coating was formed by an equiaxed polycrystalline grain structure. Effect of substrate crystallinity on the structure of deposited coating is discussed. An amorphous TiO2 sublayer of 8 nm thickness was detected in the interface between the polycrystalline coating and the Ti substrate. Its appearance in the amorphous state is attributed to prior to deposition etching of the substrate and subsequent condensation of oxygen-containing species sputtered from the target. This layer contributes to the high coating-to-substrate adhesion. The major P-O vibrational modes of high intensity were detected by Raman spectroscopy. The Zn substituted hydroxyapatite could be a material of choice when antibacterial osteoconductive coating with a possibility of withstanding mechanical stress during implantation and service is needed.
Cleaning of titanium substrates after application in a bioreactor.
Fingerle, Mathias; Köhler, Oliver; Rösch, Christina; Kratz, Fabian; Scheibe, Christian; Davoudi, Neda; Müller-Renno, Christine; Ziegler, Christiane; Huster, Manuel; Schlegel, Christin; Ulber, Roland; Bohley, Martin; Aurich, Jan C
2015-03-10
Plain and microstructured cp-titanium samples were studied as possible biofilm reactor substrates. The biofilms were grown by exposition of the titanium samples to bacteria in a flow cell. As bacteria the rod shaped gram negative Pseudomonas fluorescens and the spherical gram negative Paracoccus seriniphilus were chosen. Afterward, the samples were cleaned in subsequent steps: First, with a standard solvent based cleaning procedure with acetone, isopropanol, and ultrapure water and second by oxygen plasma sputtering. It will be demonstrated by means of x-ray photoelectron spectroscopy, fluorescence microscopy, and confocal laser scanning microscopy that oxygen plasma cleaning is a necessary and reliant tool to fully clean and restore titanium surfaces contaminated with a biofilm. The microstructured surfaces act beneficial to biofilm growth, while still being fully restorable after biofilm contamination. Scanning electron microscopy images additionally show, that the plasma process does not affect the microstructures. The presented data show the importance of the cleaning procedure. Just using solvents does not remove the biofilm and all its components reliably while a cleaning process by oxygen plasma regenerates the surfaces.
S. sanguinis adhesion on rough titanium surfaces: effect of culture media.
Rodríguez-Hernández, Ana G; Muñoz-Tabares, José A; Godoy-Gallardo, Maria; Juárez, Antonio; Gil, Francisco-Javier
2013-03-01
Bacterial colonization plays a key role in dental implant failure, because they attach directly on implant surface upon implantation. Between different types of bacteria associated with the oral environment, Streptococcus sanguinis is essential in this process since it is an early colonizer. In this work the relationship between titanium surfaces modified by shot blasting treatment and S. sanguinis adhesion; have been studied in approached human mouth environment. Bacteria pre-inoculated with routinary solution were put in contact with titanium samples, shot-blasted with alumina and silicon carbide, and adhesion results were compared with those obtained when bacteria were pre-inoculated with modified artificial saliva medium and on saliva pre-coated titanium samples. Our results showed that bacterial adhesion on titanium samples was influenced by culture conditions. When S. sanguinis was inoculated in routinary culture media, colonies forming unities per square millimeter presented an increment correlated with roughness and surface energy, but separated by the type of particle used during shot-blasting treatment; whereas in modified artificial saliva only a relationship between bacteria adhered and the increment in both roughness and surface energy were observed, regardless of the particle type. Finally, on human saliva pre-coated samples no significant differences were observed among roughness, surface energy or particle. Copyright © 2012 Elsevier B.V. All rights reserved.
Osseointegration of zirconia implants: an SEM observation of the bone-implant interface.
Depprich, Rita; Zipprich, Holger; Ommerborn, Michelle; Mahn, Eduardo; Lammers, Lydia; Handschel, Jörg; Naujoks, Christian; Wiesmann, Hans-Peter; Kübler, Norbert R; Meyer, Ulrich
2008-11-06
The successful use of zirconia ceramics in orthopedic surgery led to a demand for dental zirconium-based implant systems. Because of its excellent biomechanical characteristics, biocompatibility, and bright tooth-like color, zirconia (zirconium dioxide, ZrO2) has the potential to become a substitute for titanium as dental implant material. The present study aimed at investigating the osseointegration of zirconia implants with modified ablative surface at an ultrastructural level. A total of 24 zirconia implants with modified ablative surfaces and 24 titanium implants all of similar shape and surface structure were inserted into the tibia of 12 Göttinger minipigs. Block biopsies were harvested 1 week, 4 weeks or 12 weeks (four animals each) after surgery. Scanning electron microscopy (SEM) analysis was performed at the bone implant interface. Remarkable bone attachment was already seen after 1 week which increased further to intimate bone contact after 4 weeks, observed on both zirconia and titanium implant surfaces. After 12 weeks, osseointegration without interposition of an interfacial layer was detected. At the ultrastructural level, there was no obvious difference between the osseointegration of zirconia implants with modified ablative surfaces and titanium implants with a similar surface topography. The results of this study indicate similar osseointegration of zirconia and titanium implants at the ultrastructural level.
Nguyen, Phuong Khanh Quoc; Lunsford, Suzanne K
2012-11-15
A novel carbon modified electrode was developed by incorporating titanium dioxide/zirconium dioxide into the graphite carbon paste electrode to detect heavy metals-cadmium and lead. In this work, the development of the novel titanium dioxide/zirconium dioxide modified carbon paste electrode was studied to determine the optimum synthesis conditions related to the temperature, heating duration, amount and ratio of titanium dioxide/zirconium dioxide, and amount of surfactant, to create the most reproducible results. Using cyclic voltammetric (CV) analysis, this study has proven that the novel titanium dioxide/zirconium dioxide can be utilized to detect heavy metals-lead and cadmium, at relatively low concentrations (7.6×10(-6) M and 1.1×10(-5) M for Pb and Cd, respectively) at optimum pH value (pH=3). From analyzing CV data the optimal electrodes surface area was estimated to be 0.028 (±0.003) cm(2). Also, under the specific experimental conditions, electron transfer coefficients were estimated to be 0.44 and 0.33 along with the heterogeneous electron transfer rate constants of 5.64×10(-3) and 2.42×10(-3) (cm/s) for Pb and Cd, respectively. Copyright © 2012 Elsevier B.V. All rights reserved.
Grafting strategy to develop single site titanium on an amorphous silica surface.
Capel-Sanchez, M C; Blanco-Brieva, G; Campos-Martin, J M; de Frutos, M P; Wen, W; Rodriguez, J A; Fierro, J L G
2009-06-16
Titanium/silica systems were prepared by grafting a titanium alkoxide (titanium isopropoxide and titanium (triethanolaminate) isopropoxide) precursor onto amorphous silica. The grafting process, which consisted of the hydrolysis of the Ti precursor by the hydroxyl groups on the silica surface, yielded samples containing Ti-loadings of 1-1.6 wt %. The as synthesized and calcined TiO(2)-SiO(2) samples were characterized by UV-vis, FTIR, XPS, and XANES spectroscopic techniques. These systems were tested in the liquid-phase epoxidation of oct-1-ene with hydrogen peroxide reaction. Spectroscopic data indicated that titanium anchoring takes place by reaction between the alkoxide precursor and surface OH groups of the silica substrate. The nature of surface titanium species generated by chemical grafting depends largely on the titanium precursor employed. Thus, the titanium isopropoxide precursor yields tetrahedrally coordinated polymeric titanium species, which give rise to a low-efficiency catalyst. However, if an atrane precursor (titanium (triethanolaminate) isopropoxide) is employed, isolated titanium species are obtained. The fact that these species remain isolated even after calcination is due to the protective effect of the triethanolaminate ligand that avoids titanium polymerization. These differences in the titanium environment have a pivotal role in the performance of these systems in the epoxidation of alkenes with hydrogen peroxide.
Grafting Strategy to Develop Single Site Titanium on an Amorphous Silica Surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capel-Sanchez, M.; Blanco-Brieva, G; Campos-Martin, J
2009-01-01
Titanium/silica systems were prepared by grafting a titanium alkoxide (titanium isopropoxide and titanium (triethanolaminate) isopropoxide) precursor onto amorphous silica. The grafting process, which consisted of the hydrolysis of the Ti precursor by the hydroxyl groups on the silica surface, yielded samples containing Ti-loadings of 1-1.6 wt %. The as synthesized and calcined TiO2-SiO2 samples were characterized by UV-vis, FTIR, XPS, and XANES spectroscopic techniques. These systems were tested in the liquid-phase epoxidation of oct-1-ene with hydrogen peroxide reaction. Spectroscopic data indicated that titanium anchoring takes place by reaction between the alkoxide precursor and surface OH groups of the silica substrate.more » The nature of surface titanium species generated by chemical grafting depends largely on the titanium precursor employed. Thus, the titanium isopropoxide precursor yields tetrahedrally coordinated polymeric titanium species, which give rise to a low-efficiency catalyst. However, if an atrane precursor (titanium (triethanolaminate) isopropoxide) is employed, isolated titanium species are obtained. The fact that these species remain isolated even after calcination is due to the protective effect of the triethanolaminate ligand that avoids titanium polymerization. These differences in the titanium environment have a pivotal role in the performance of these systems in the epoxidation of alkenes with hydrogen peroxide.« less
Flexible anodized aluminum oxide membranes with customizable back contact materials
NASA Astrophysics Data System (ADS)
Nadimpally, B.; Jarro, C. A.; Mangu, R.; Rajaputra, S.; Singh, V. P.
2016-12-01
Anodized aluminum oxide (AAO) membranes were fabricated using flexible substrate/carrier material. This method facilitates the use of AAO templates with many different materials as substrates that are otherwise incompatible with most anodization techniques. Thin titanium (Ti) and tungsten (W) layers were employed as interlayer materials. Titanium enhances adhesion. Tungsten not only helps eliminate the barrier layer but also plays a critical role in enabling the use of flexible substrates. The resulting flexible templates provide new, exciting opportunities in photovoltaic and other device applications. CuInSe2 nanowires were electrochemically deposited into porous AAO templates with molybdenum (Mo) as the back contact material. The feasibility of using any material to form a contact with semiconductor nanowires has been demonstrated for the first time enabling new avenues in photovoltaic applications.
Corrosion resistance of nanostructured titanium.
Garbacz, H; Pisarek, M; Kurzydłowski, K J
2007-11-01
The present work reports results of studies of corrosion resistance of pure nano-Ti-Grade 2 after hydrostatic extrusion. The grain size of the examined samples was below 90 nm. Surface analytical technique including AES combined with Ar(+) ion sputtering, were used to investigate the chemical composition and thicknesses of the oxides formed on nano-Ti. It has been found that the grain size of the titanium substrate did not influence the thickness of oxide formed on the titanium. The thickness of the oxide observed on the titanium samples before and after hydrostatic extrusion was about 6 nm. Tests carried out in a NaCl solution revealed a slightly lower corrosion resistance of nano-Ti in comparison with the titanium with micrometric grain size.
Conversion treatment of thin titanium layer deposited on carbon steel
NASA Astrophysics Data System (ADS)
Benarioua, Younes; Wendler, Bogdan; Chicot, Didier
2018-05-01
The present study has been conducted in order to obtain titanium carbide layer using a conversion treatment consisting of two main steps. In the first step a thin pure titanium layer was deposited on 120C4 carbon steel by PVD. In the second step, the carbon atoms from the substrate diffuse to the titanium coating due to a vacuum annealing treatment and the Ti coating transforms into titanium carbide. Depending on the annealing temperature a partial or complete conversion into TiC is obtained. The hardness of the layer can be expected to differ depending on the processing temperatures. By a systematic study of the hardness as a function of the applied load, we confirm the process of growth of the layer.
Calcium phosphate-based coatings on titanium and its alloys.
Narayanan, R; Seshadri, S K; Kwon, T Y; Kim, K H
2008-04-01
Use of titanium as biomaterial is possible because of its very favorable biocompatibility with living tissue. Titanium implants having calcium phosphate coatings on their surface show good fixation to the bone. This review covers briefly the requirements of typical biomaterials and narrowly focuses on the works on titanium. Calcium phosphate ceramics for use in implants are introduced and various methods of producing calcium phosphate coating on titanium substrates are elaborated. Advantages and disadvantages of each type of coating from the view point of process simplicity, cost-effectiveness, stability of the coatings, coating integration with the bone, cell behavior, and so forth are highlighted. Taking into account all these factors, the efficient method(s) of producing these coatings are indicated finally.
Osteoblastlike cell adhesion on titanium surfaces modified by plasma nitriding.
da Silva, Jose Sandro Pereira; Amico, Sandro Campos; Rodrigues, Almir Olegario Neves; Barboza, Carlos Augusto Galvao; Alves, Clodomiro; Croci, Alberto Tesconi
2011-01-01
The aim of this study was to evaluate the characteristics of various titanium surfaces modified by cold plasma nitriding in terms of adhesion and proliferation of rat osteoblastlike cells. Samples of grade 2 titanium were subjected to three different surface modification processes: polishing, nitriding by plasma direct current, and nitriding by cathodic cage discharge. To evaluate the effect of the surface treatment on the cellular response, the adhesion and proliferation of osteoblastlike cells (MC3T3) were quantified and the results were analyzed by Kruskal-Wallis and Friedman statistical tests. Cellular morphology was observed by scanning electron microscopy. There was more MC3T3 cell attachment on the rougher surfaces produced by cathodic cage discharge compared with polished samples (P < .05). Plasma nitriding improves titanium surface roughness and wettability, leading to osteoblastlike cell adhesion.
Besinis, A; Hadi, S D; Le, H R; Tredwin, C; Handy, R D
2017-04-01
One of the most common causes of implant failure is peri-implantitis, which is caused by bacterial biofilm formation on the surfaces of dental implants. Modification of the surface nanotopography has been suggested to affect bacterial adherence to implants. Silver nanoparticles are also known for their antibacterial properties. In this study, titanium alloy implants were surface modified following silver plating, anodisation and sintering techniques to create a combination of silver, titanium dioxide and hydroxyapatite (HA) nanocoatings. Their antibacterial performance was quantitatively assessed by measuring the growth of Streptococcus sanguinis, proportion of live/dead cells and lactate production by the microbes over 24 h. Application of a dual layered silver-HA nanocoating to the surface of implants successfully inhibited bacterial growth in the surrounding media (100% mortality), whereas the formation of bacterial biofilm on the implant surfaces was reduced by 97.5%. Uncoated controls and titanium dioxide nanocoatings showed no antibacterial effect. Both silver and HA nanocoatings were found to be very stable in biological fluids with material loss, as a result of dissolution, to be less than 0.07% for the silver nanocoatings after 24 h in a modified Krebs-Ringer bicarbonate buffer. No dissolution was detected for the HA nanocoatings. Thus, application of a dual layered silver-HA nanocoating to titanium alloy implants creates a surface with antibiofilm properties without compromising the HA biocompatibility required for successful osseointegration and accelerated bone healing.
Rolling contact fatigue of surface modified 440C using a 'Ge-Polymet' type disc rod test rig
NASA Technical Reports Server (NTRS)
Thom, Robert L.
1989-01-01
Through hardened 440 C martensitic stainless steel test specimens were surface modified and tested for changes in rolling contact fatigue using a disc on rod test rig. The surface modifications consisted of nitrogen, boron, titanium, chromium, tantalum, carbon, or molybdenum ion implantation at various ion fluences and energies. Tests were also performed on specimens reactively sputtered with titanium nitride.
Verraedt, Els; Braem, Annabel; Chaudhari, Amol; Thevissen, Karin; Adams, Erwin; Van Mellaert, Lieve; Cammue, Bruno P A; Duyck, Joke; Anné, Jozef; Vleugels, Jef; Martens, Johan A
2011-10-31
Amorphous microporous silica (AMS) serving as a reservoir for controlled release of a bioactive agent was applied in the open porosity of a titanium coating on a Ti-6Al-4V metal substrate. The pores of the AMS emptied by calcination were loaded with chlorhexidine diacetate (CHX) via incipient wetness impregnation with CHX solution, followed by solvent evaporation. Using this CHX loaded AMS system on titanium substrate sustained release of CHX into physiological medium was obtained over a 10 day-period. CHX released from the AMS coating was demonstrated to be effective in killing planktonic cultures of the human pathogens Candida albicans and Staphylococcus epidermidis. This surface modification of titanium bodies with AMS controlled release functionality for a bioactive compound potentially can be applied on dental and orthopaedic implants to abate implant-associated microbial infection. Copyright © 2011 Elsevier B.V. All rights reserved.
Silver Nanowire Top Electrodes in Flexible Perovskite Solar Cells using Titanium Metal as Substrate.
Lee, Minoh; Ko, Yohan; Min, Byoung Koun; Jun, Yongseok
2016-01-08
Flexible perovskite solar cells (FPSCs) have various applications such as wearable electronic textiles and portable devices. In this work, we demonstrate FPSCs on a titanium metal substrate employing solution-processed silver nanowires (Ag NWs) as the top electrode. The Ag NW electrodes were deposited on top of the spiro-MeOTAD hole transport layer by a carefully controlled spray-coating method at moderate temperatures. The power conversion efficiency (PCE) reached 7.45 % under AM 1.5 100 mW cm(-2) illumination. Moreover, the efficiency for titanium-based FPSCs decreased only slightly (by 2.6 % of the initial value) after the devices were bent 100 times. With this and other advances, fully solution-based indium-free flexible photovoltaics, advantageous in terms of price and processing, have the potential to be scaled into commercial production. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hayakawa, Satoshi; Matsumoto, Yuko; Uetsuki, Keita; Shirosaki, Yuki; Osaka, Akiyoshi
2015-06-01
Pure titanium substrates were chemically oxidized with H2O2 and subsequent thermally oxidized at 400 °C in air to form anatase-type titania layer on their surface. The chemically and thermally oxidized titanium substrate (CHT) was aligned parallel to the counter specimen such as commercially pure titanium (cpTi), titanium alloy (Ti6Al4V) popularly used as implant materials or Al substrate with 0.3-mm gap. Then, they were soaked in Kokubo's simulated body fluid (SBF, pH 7.4, 36.5 °C) for 7 days. XRD and SEM analysis showed that the in vitro apatite-forming ability of the contact surface of the CHT specimen decreased in the order: cpTi > Ti6Al4V > Al. EDX and XPS surface analysis showed that aluminum species were present on the contact surface of the CHT specimen aligned parallel to the counter specimen such as Ti6Al4V and Al. This result indicated that Ti6Al4V or Al specimens released the aluminum species into the SBF under the spatial gap. The released aluminum species might be positively or negatively charged in the SBF and thus can interact with calcium or phosphate species as well as titania layer, causing the suppression of the primary heterogeneous nucleation and growth of apatite on the contact surface of the CHT specimen under the spatial gap. The diffusion and adsorption of aluminum species derived from the half-sized counter specimen under the spatial gap resulted in two dimensionally area-selective deposition of apatite particles on the contact surfaces of the CHT specimen.
Dispersion toughened ceramic composites and method for making same
Stinton, David P.; Lackey, Walter J.; Lauf, Robert J.
1986-01-01
Ceramic composites exhibiting increased fracture toughness are produced by the simultaneous codeposition of silicon carbide and titanium disilicide by chemical vapor deposition. A mixture of hydrogen, methyltrichlorosilane and titanium tetrachloride is introduced into a furnace containing a substrate such as graphite or silicon carbide. The thermal decomposition of the methyltrichlorosilane provides a silicon carbide matrix phase and the decomposition of the titanium tetrachloride provides a uniformly dispersed second phase of the intermetallic titanium disilicide within the matrix phase. The fracture toughness of the ceramic composite is in the range of about 6.5 to 7.0 MPa.sqroot.m which represents a significant increase over that of silicon carbide.
Dispersion toughened ceramic composites and method for making same
Stinton, D.P.; Lackey, W.J.; Lauf, R.J.
1984-09-28
Ceramic composites exhibiting increased fracture toughness are produced by the simultaneous codeposition of silicon carbide and titanium disilicide by chemical vapor deposition. A mixture of hydrogen, methyltrichlorosilane and titanium tetrachloride is introduced into a furnace containing a substrate such as graphite or silicon carbide. The thermal decomposition of the methyltrichlorosilane provides a silicon carbide matrix phase and the decomposition of the titanium tetrachloride provides a uniformly dispersed second phase of the intermetallic titanium disilicide within the matrix phase. The fracture toughness of the ceramic composite is in the range of about 6.5 to 7.0 MPa..sqrt..m which represents a significant increase over that of silicon carbide.
Lin, Jin-Shyong; Tsai, Tzung-Bau; Say, Wen-Ching; Chiu, Chun; Chen, Shih-Hsun
2017-04-04
Titanium and its alloys have been widely used as orthopedic and dental implants for several decades due to their superior mechanical properties, corrosion resistance and biocompatibility. Recently, many researches revealed that the hydroxyapatite coatings on biomedical materials can further improve their biocompatibility and bioactivity. However, hydroxyapatite coatings are easily decomposed, weakening the bonding between implants and bone tissues and resulting in a high dissolution rate in the biological environment. Prolonging the lifetime of hydroxyapatite in implants is valuable for improving postoperative quality. Hydroxyapatite is the primary inorganic component of bones and teeth. A suitable amount of fluoride ions would be beneficial for the formation of fluoridated hydroxyapatite, which can enhance bone-cell response and the acid resistance of enamel. In this study, G-II titanium substrate was anodized to form a TiO 2 interlayer with a nanotube structure. An electrolyte composed of fluoride, calcium and phosphorus ions was prepared for electroplating fluoridated hydroxyapatite (FHA) coatings onto anodized G-II titanium substrates at a constant voltage. The obtained coatings were examined for their microstructure, mechanical properties; moreover, the changes of apatite structure, surface morphology and corrosion resistance were further investigated after immersion in simulated body fluid (SBF) for a number of weeks. The results show that FHA coatings have a higher surface roughness and hardness than plain hydroxyapatite. After immersion in SBF, the FHA coatings induced the nucleation and growth of apatite on the surface and increased their crystallinity. In a potentiodynamic polarization test, FHA coatings exhibited a better anti-corrosion ability than bare G-II titanium substrate in SBF. Additionally, the anodized TiO 2 nanotube improved the adhesion and corrosion resistance of FHA as well.
[Effect of surface modification using laser on wear resistance of titanium].
Sato, Yohei
2005-02-01
Severe wear of cast commercial pure (CP) titanium teeth was observed in a clinical survey. This study evaluated the wear resistance of cast CP titanium and titanium alloy teeth after the surface was modified using laser technology. Teeth patterns were duplicated from artificial first molars (Livdent FB30, GC, Japan). All teeth specimens were cast with CP Ti grade 3 (T-Alloy H, GC) and Ti-6Al-7Nb (T-Alloy Tough, GC). After the occlusal surface was blasted with Al(2)O(3), the occlusal contact points were modified using a laser (Neo laser L, Girrbach, Germany) at the following irradiation conditions (voltage: 260 V; pulse: 7 ms; focus: 1.5 mm). These parameters were determined by preliminary study. As a control, Type IV gold alloy (PGA-3, Ishifuku, Japan) was also cast conventionally. Both maxillary and mandibular teeth were worn using an in vitro two-body wear testing apparatus that simulated chewing function (60 strokes/min; grinding distance: 2 mm under flowing water). Wear resistance was assessed as volume loss (mm(3)) at 5 kgf (grinding force) after 50,000 strokes. The results (n=5) were analyzed by ANOVA/Scheffé's test (alpha=0.05). The gold alloy showed the best wear resistance of all the metals tested. Of all the titanium specimens tested, the modified surface indicated significantly greater wear resistance than did conventional titanium teeth without surface modification (p<0.05). Wear resistance was increased by modification of the surface using a laser. If severe wear of titanium teeth was observed clinically, little wear occurred when the occlusal facets were irradiated using a laser.
NASA Astrophysics Data System (ADS)
Tan, A. W.; Ismail, R.; Chua, K. H.; Ahmad, R.; Akbar, S. A.; Pingguan-Murphy, B.
2014-11-01
Titanium dioxide (TiO2) nanowire surface structures were fabricated in situ by a thermal oxidation process, and their ability to enhance the osteogenic potential of primary osteoblasts was investigated. Human osteoblasts were isolated from nasal bone and cultured on a TiO2 nanowires coated substrate to assess its in vitro cellular interaction. Bare featureless Ti-6Al-4V substrate was used as a control surface. Initial cell adhesion, cell proliferation, cell differentiation, cell mineralization, and osteogenic related gene expression were examined on the TiO2 nanowire surfaces as compared to the control surfaces after 2 weeks of culturing. Cell adhesion and cell proliferation were assayed by field emission scanning electron microscope (FESEM) and Alamar Blue reduction assay, respectively. The nanowire surfaces promoted better cell adhesion and spreading than the control surface, as well as leading to higher cell proliferation. Our results showed that osteoblasts grown onto the TiO2 nanowire surfaces displayed significantly higher production levels of alkaline phosphatase (ALP), extracellular (ECM) mineralization and genes expression of runt-related transcription factor (Runx2), bone sialoprotein (BSP), ostoepontin (OPN) and osteocalcin (OCN) compared to the control surfaces. This suggests the potential use of such surface modification on Ti-6Al-4V substrates as a promising means to improve the osteointegration of titanium based implants.
Microstructures of plasma-sprayed hydroxyapatite-coated Ti-6Al-4V dental implants.
Tufekci, E; Brantley, W A; Mitchell, J C; McGlumphy, E A
1997-01-01
The purpose of this study was to investigate the microstructure of plasma-sprayed hydroxyapatite coatings and the elemental composition near the coating-substrate interface for two commercial implants, using the scanning electron microscope. Both coating surfaces and cross-sectioned specimens were examined. The results indicated that while the surface microstructures of both implants were consistent with the plasma-spraying process, the scale of the constituents was much finer for one product. In cross-section, both coatings exhibited minimal porosity and intimate contact with the titanium alloy substrate. It was found that limited interdiffusion of titanium and calcium occurred near the interface.
Oxygen plasma ashing effects on aluminum and titanium space protective coatings
NASA Technical Reports Server (NTRS)
Synowicki, R.; Kubik, R. D.; Hale, J. S.; Peterkin, Jane; Nafis, S.; Woollam, John A.; Zaat, S.
1991-01-01
Using variable angle spectroscopic ellipsometry and atomic force microscopy (AFM), the surface roughness and oxidation of aluminum and titanium thin films have been studied as a function of substrate deposition temperature and oxygen plasma exposure. Increasing substrate deposition temperatures affect film microstructure by greatly increasing grain size. Short exposures to an oxygen plasma environment produce sharp spikes rising rapidly above the surface as seen by AFM. Ellipsometric measurements were made over a wide range of plasma exposure times, and results at longer exposure times suggest that the surface is greater than 30% void. This is qualitatively verified by the AFM images.
Burnat, B; Dercz, G; Blaszczyk, T
2014-03-01
The aim of this study was to demonstrate the relationship between the structural and corrosion properties of an ISO 5832-9 biomedical alloy modified with titanium dioxide (TiO2) layers. These layers were obtained via the sol-gel method by acid-catalyzed hydrolysis of titanium isopropoxide in isopropanol solution. To obtain TiO2 layers with different structural properties, the coated samples were annealed at temperatures of 200, 300, 400, 450, 500, 600 and 800 °C for 2 h. For all the prepared samples, accelerated corrosion measurements were performed in Tyrode's physiological solution using electrochemical methods. The most important corrosion parameters were determined: corrosion potential, polarization resistance, corrosion rate, breakdown and repassivation potentials. Corrosion damage was analyzed using scanning electron microscopy. Structural analysis was carried out for selected TiO2 coatings annealed at 200, 400, 600 and 800 °C. In addition, the morphology, chemical composition, crystallinity, thickness and density of the deposited TiO2 layers were determined using suitable electron and X-ray measurement methods. It was shown that the structure and character of interactions between substrate and deposited TiO2 layers depended on annealing temperature. All the obtained TiO2 coatings exhibit anticorrosion properties, but these properties are related to the crystalline structure and character of substrate-layer interaction. From the point of view of corrosion, the best TiO2 sol-gel coatings for stainless steel intended for biomedical applications seem to be those obtained at 400 °C.
Oliveira, Weslley F; Silva, Germana M M; Cabral Filho, Paulo E; Fontes, Adriana; Oliveira, Maria D L; Andrade, César A S; Silva, Márcia V; Coelho, Luana C B B; Machado, Giovanna; Correia, Maria T S
2018-09-01
An alternative to accelerate the osseointegration on titanium dioxide nanotubes (TNTs) used in osseointegrated implants is through the functionalization of these nanostructured surfaces with biomolecules. In this work, we immobilized a lectin with recognized mitogenic activity, the Cramoll lectin, extracted from Cratylia mollis seeds, on surfaces modified by TNTs. For the immobilization of Cramoll on TNTs surfaces, we used the Layer-by-Layer technique (LbL) by growing five alternate layers of poly(allylamine) hydrochloride (PAH) and poly(acrylic) acid (PAA); lastly we incubated the lectin, at different concentrations, with the TNTs-LbL. Before and after the immobilization procedures, the substrate surfaces were characterized by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), and, electrochemical impedance spectroscopy (EIS). We also evaluated the Cramoll activity after immobilization on TNTs by using the lectin interaction with ovalbumin. The lectin did not lose its biological activity, even after immobilization onto nanotubular arrays. In addition, we observed an increase osteoblast-like cell adhesion on the TNTs-LbL-Cramoll system when compared to the bare TNTs surfaces. Moreover, a significative cell proliferation was identified on the substrates when Cramoll was immobilized at concentrations of 80, 160 and 320 μg/mL after 48 h of incubation by using the resazurin assay. Our results suggest that Cramoll was efficiently immobilized on a nanotubular array and this new platform presents a great potential to be tested in implantology. Copyright © 2018 Elsevier B.V. All rights reserved.
Surface modified stainless steels for PEM fuel cell bipolar plates
Brady, Michael P [Oak Ridge, TN; Wang, Heli [Littleton, CO; Turner, John A [Littleton, CO
2007-07-24
A nitridation treated stainless steel article (such as a bipolar plate for a proton exchange membrane fuel cell) having lower interfacial contact electrical resistance and better corrosion resistance than an untreated stainless steel article is disclosed. The treated stainless steel article has a surface layer including nitrogen-modified chromium-base oxide and precipitates of chromium nitride formed during nitridation wherein oxygen is present in the surface layer at a greater concentration than nitrogen. The surface layer may further include precipitates of titanium nitride and/or aluminum oxide. The surface layer in the treated article is chemically heterogeneous surface rather than a uniform or semi-uniform surface layer exclusively rich in chromium, titanium or aluminum. The precipitates of titanium nitride and/or aluminum oxide are formed by the nitriding treatment wherein titanium and/or aluminum in the stainless steel are segregated to the surface layer in forms that exhibit a low contact resistance and good corrosion resistance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Chao; Gray, Matthew H.; Tirawat, Robert
Thin oxide and metal films deposited on polymer substrates is an emerging technology for advanced reflectors for concentrated solar power applications, due to their unique combination of light weight, flexibility and inexpensive manufacture. Thus far, there is little knowledge on the mechanical integrity or structural persistence of such multi-layer thin film systems under long-term environmental aging. In this paper, the cracking of a brittle titanium dioxide layer deposited onto elasto-plastic poly(ethylene terephthalate) (PET) substrate is studied through a combination of experiment and modeling. In-situ fragmentation tests have been conducted to monitor the onset and evolution of cracks both on pristinemore » and on samples aged with ultraviolet (UV) light. An analytical model is presented to simulate the cracking behavior and to predict the effects of UV aging. Based on preliminary experimental observation, the effect of aging is divided into three aspects and analyzed independently: mechanical property degradation of the polymer substrate; degradation of the interlayer between substrate and oxide coating; and internal stress-induced cracks on the oxide coating.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korol, A.A.; Korol, Y.A.; Kasich-Pilipenko, I.Y.
Melted slip coatings were obtained and the structural changes in the coatings and their substrates upon simultaneous heating by concentrated solar radiant energy fluxes were studied. Well known wear and corrosion resistant TiC-Ni-B and WC-Ni-B coatings 50 to 300 microns thick applied by the slip method to flat or cylindrical stainless steel and titanium specimens were examined. The specimens were heated in an SGU-5 solar heating installation with a 2 m diameter parabolic mirror concentrator in a process chamber with a quartz window under a vacuum. Metallographic analysis revealed a finely dispersed heterogeneous structure with no visible porosity, good bondingmore » of coating to substrate, and uniform distribution of carbide phase in the metal matrix of the TiC-Ni-B coatings on titanium. Results were similar for the other coatings, indicating that concentrated solar energy can produce coatings with satisfactory surface quality, good density, and a framework structure. The coating interacted with the substrate by diffusion. Most of the volume of the substrate underwent no significant changes, indicating good bond strength between coatings and substrate.« less
Electrophoretic Deposition of Hydroxyapatite Film Containing Re-Doped MoS₂ Nanoparticles.
Shalom, Hila; Feldman, Yishay; Rosentsveig, Rita; Pinkas, Iddo; Kaplan-Ashiri, Ifat; Moshkovich, Alexey; Perfilyev, Vladislav; Rapoport, Lev; Tenne, Reshef
2018-02-26
Films combining hydroxyapatite (HA) with minute amounts (ca. 1 weight %) of (rhenium doped) fullerene-like MoS₂ (IF) nanoparticles were deposited onto porous titanium substrate through electrophoretic process (EPD). The films were analyzed by scanning electron microscopy (SEM), X-ray diffraction and Raman spectroscopy. The SEM analysis showed relatively uniform coatings of the HA + IF on the titanium substrate. Chemical composition analysis using energy dispersive X-ray spectroscopy (EDS) of the coatings revealed the presence of calcium phosphate minerals like hydroxyapatite, as a majority phase. Tribological tests were undertaken showing that the IF nanoparticles endow the HA film very low friction and wear characteristics. Such films could be of interest for various medical technologies. Means for improving the adhesion of the film to the underlying substrate and its fracture toughness, without compromising its biocompatibility are discussed at the end.
Adherence of sputtered titanium carbides
NASA Technical Reports Server (NTRS)
Brainard, W. A.; Wheeler, D. R.
1979-01-01
The study searches for interface treatment that would increase the adhesion of TiC coating to nickel- and titanium-base alloys. Rene 41 (19 wt percent Cr, 11 wt percent Mo, 3 wt percent Ti, balance Ni) and Ti-6Al-4V (6 wt percent Al, 4 wt percent V, balance Ti) are considered. Adhesion of the coatings is evaluated in pin-and disk friction tests. The coatings and interface regions are examined by X-ray photoelectron spectroscopy. Results suggest that sputtered refractory compound coatings adhere best when a mixed compound of coating and substrate metals is formed in the interfacial region. The most effective type of refractory compound interface appears to depend on both substrate and coating material. A combination of metallic interlayer deposition and mixed compound interface formation may be more effective for some substrate coating combinations than either alone.
Jazwiecka-Koscielniak, Ewa; Kozakiewicz, Marcin
2014-10-01
Orbital reconstruction makes higher demands on symmetry and axial precision than other parts of the skull, because the position of the eye globe determines proper vision. The aim of this study is to evaluate titanium surface marking of polymers (UHMW-PE and PA6) to check implants position in CT examination and clinical application of such modified individual implant. One hundred and twenty-four polymer blocks were prepared. New method of ultrasounds welding to connect the titanium markers to the polymer surface was developed and tested. Titanium marked polymer blocks were examined by CT to evaluate the quality of the cover. Then, two modified UHMW-PE individual implants were applied clinically and implant position was checked by CT. The biggest titanium cover was in PA6 [25 ± 18% of processed surface] and for UHMW-PE [19 ± 12%] without significance [p = 0.14]. Both covers were visible in CT. Clinical application revealed proper reconstruction, uneventful post-operational outcome and well visible surface of the implants in CT. The conducted tests make it possible to determine the suitability of ultrasonic technology for the deposition of titanium markers in polymer. The clinical use of modified individual implants allows to confirm the correct position of the implants because they are accurate visible in CT. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Park, Jong Hwan; Jung, Youngsuk; Yang, Yooseong; Shin, Hyun Suk; Kwon, Soonchul
2016-10-05
For efficient solar cells based on organic semiconductors, a good mixture of photoactive materials in the bulk heterojunction on the length scale of several tens of nanometers is an important requirement to prevent exciton recombination. Herein, we demonstrate that nanoporous titanium dioxide inverse opal structures fabricated using a self-assembled monolayer method and with enhanced infiltration of electron-donating polymers is an efficient electron-extracting layer, which enhances the photovoltaic performance. A calcination process generates an inverse opal structure of titanium dioxide (<70 nm of pore diameters) providing three-dimensional (3D) electron transport pathways. Hole-transporting polymers was successfully infiltrated into the pores of the surface-modified titanium dioxide under vacuum conditions at 200 °C. The resulting geometry expands the interfacial area between hole- and electron-transport materials, increasing the thickness of the active layer. The controlled polymer-coating process over titanium dioxide materials enhanced photocurrent of the solar cell device. Density functional theory calculations show improved interfacial adhesion between the self-assembled monolayer-modified surface and polymer molecules, supporting the experimental result of enhanced polymer infiltration into the voids. These results suggest that the 3D inverse opal structure of the surface-modified titanium dioxide can serve as a favorable electron-extracting layer in further enhancing optoelectronic performance based on organic or organic-inorganic hybrid solar cell.
Oxidation Resistant Ti-Al-Fe Diffusion Barrier for FeCrAlY Coatings on Titanium Aluminides
NASA Technical Reports Server (NTRS)
Brady, Michael P. (Inventor); Smialke, James L. (Inventor); Brindley, William J. (Inventor)
1996-01-01
A diffusion barrier to help protect titanium aluminide alloys, including the coated alloys of the TiAl gamma + Ti3Al (alpha2) class, from oxidative attack and interstitial embrittlement at temperatures up to at least 1000 C is disclosed. The coating may comprise FeCrAlX alloys. The diffusion barrier comprises titanium, aluminum, and iron in the following approximate atomic percent: Ti-(50-55)Al-(9-20)Fe. This alloy is also suitable as an oxidative or structural coating for such substrates.
Ultrasound assisted deposition of silica coatings on titanium
NASA Astrophysics Data System (ADS)
Kaş, Recep; Ertaş, Fatma Sinem; Birer, Özgür
2012-10-01
We present a novel ultrasound assisted method for silica coating of titanium surfaces. The coatings are formed by “smashing” silica nanoparticles onto activated titanium surface in solution using intense ultrasonic field. Homogeneous silica coatings are formed by deposition of dense multiple layers of silica nanoparticles. Since the nanoparticles also grow during the reaction, the layers of the coatings have smaller particles on the substrate and larger particles towards the surface. The thickness of the coatings can be controlled with several experimental parameters. Silica layers with thickness over 200 nm are readily obtained.
NASA Astrophysics Data System (ADS)
Morales, M.; Droppa, R., Jr.; de Mello, S. R. S.; Figueroa, C. A.; Zanatta, A. R.; Alvarez, F.
2018-01-01
In this work we report an experimental approach by combining in situ sequential top-down and bottom-up processes to induce the organization of nanosized nickel particles. The top-down process consists in xenon ion bombardment of a crystalline silicon substrate to generate a pattern, followed by depositing a ˜15 nm titanium oxynitride thin film to act as a metallic diffusion barrier. Then, metallic nanoparticles are deposited by argon ion sputtering a pure nickel target, and the sample is annealed to promote the organization of the nickel nanoparticles (a bottom-up process). According to the experimental results, the surface pattern and the substrate biaxial surface strain are the driving forces behind the alignment and organization of the nickel nanoparticles. Moreover, the ratio between the F of metallic atoms arriving at the substrate relative to its surface diffusion mobility determines the nucleation regime of the nickel nanoparticles. These features are presented and discussed considering the existing technical literature on the subject.
Synthesis of embedded titanium dioxide nanoparticles by oxygen ion implantation in titanium films
NASA Astrophysics Data System (ADS)
Rukade, Deepti. A.; Desai, C. A.; Kulkarni, Nilesh; Tribedi, L. C.; Bhattacharyya, Varsha
2013-02-01
Thin films of titanium of 100nm thickness are deposited on fused silica substrates. These films are implanted by oxygen ions with implantation energy of 60keV obtained from ECR based highly charged ion accelerator. The implanted films are later annealed in a tube furnace to establish nanophase formation. The post implanted annealed films are characterized by UV-Visible Spectroscopy and Glancing Angle X-ray Diffraction technique (GAXRD). The phase formed and particle size is determined by GAXRD. Nanoparticle formation is confirmed by the UV-VIS spectroscopic analysis that shows quantum size effects in the form of a blue shift in the band-gap energy of titanium-oxide.
NASA Astrophysics Data System (ADS)
Bolbasov, E. N.; Antonova, L. V.; Stankevich, K. S.; Ashrafov, A.; Matveeva, V. G.; Velikanova, E. A.; Khodyrevskaya, Yu. I.; Kudryavtseva, Yu. A.; Anissimov, Y. G.; Tverdokhlebov, S. I.; Barbarash, L. S.
2017-03-01
The deposition of thin titanium coatings using magnetron spattering on the surface of bioresorbable fibrous scaffolds produced by electrospinning was investigated. Parameters that allow the surface modification without damaging the "macro" structure of scaffolds were determined. Physicochemical properties of the modified scaffolds were described using SEM, EDS, DSC, optical goniometry, and mechanical testing. It was shown that plasma treatment has a significant influence on the scaffolds' fiber surface relief. The modification process leads to a slight decrease of the scaffold mechanical performance mainly caused by polymer crystallization. Increasing the deposition time increases the amount of titanium on the surface. The biocompatibility of the modified scaffolds was studied using hybridoma of the endothelial cells of human umbilical vein and human lung carcinoma (EA.hy 926 cell line). Cell adhesion, viability, and secretion of interleukin-6 (IL6), interleukin-8 (IL8), and vascular endothelial growth factor (VEGF) were investigated. It was demonstrated that the deposition of thin titanium coatings on the fibrous scaffolds' surface enhances cell adhesion. Additionally, it was determined that modified scaffolds have proangiogenic activity.
NASA Astrophysics Data System (ADS)
Nupangtha, W.; Boonyawan, D.
2017-09-01
Titanium nitride (TiN) coatings have been used very successfully in a variety of applications because of their excellent properties, such as the high hardness meaning good wear resistance and also used for covering medical implants. Hydroxyapatite is a bioactive ceramic that contributes to the restoration of bone tissue, which together with titanium nitride may contribute to obtaining a superior composite in terms of mechanical and bone tissue interaction matters. This paper aims to explain how to optimize deposition conditions for films synthesis on PEEK by varying sputtering parameters such as nitrogen flow rate and direction, deposition time, d-s (target-to-substrate distance) and 13.56 MHz RF power. The plasma conditions used to deposit films were monitored by the optical emission spectroscopy (OES). Titanium nitride/Hydroxyapatite composite films were performed by gas mixture with nitrogen and argon ratio of 1:3 and target-to-substrate distance at 8 cm. The gold colour, as-deposited film was found on PEEK with high hardness and higher surface energy than uncoated PEEK. X-ray diffraction characterization study was carried to study the crystal structural properties of these composites.
NASA Astrophysics Data System (ADS)
Rogers, Daniel M.
The research is aimed to evaluate thermal spray coatings to address material issues in supercritical and ultra-supercritical Rankine cycles. The primary purpose of the research is to test, evaluate, and eventually implement a coating to improve corrosion resistance and increase efficiency of coal fired power plants. The research is performed as part of a comprehensive project to evaluate the ability of titanium, titanium carbide, or titanium diboride powders to provide fireside corrosion resistance in supercritical and ultra-supercritical steam boilers, specifically, coal driven boilers in Illinois that must utilize high sulfur and high chlorine content coal. [1] The powder coatings that were tested are nano-sized titanium carbide (TiC) and titanium di-boride (TiB2) powders that were synthesized by a patented process at Southern Illinois University. The powders were then sent to Gas Technology Institute in Chicago to coat steel coupons by HVOF (High Velocity Oxy-Fuel) thermal spray technique. The powders were coated on an austenitic 304H stainless steel substrate which is commonly found in high temperature boilers, pipelines, and heat exchangers. The samples then went through various tests for various lengths of time under subcritical, supercritical, and ultra-supercritical conditions. The samples were examined using a scanning electron microscope and x-ray diffraction techniques to study microstructural changes and then determined which coating performed best.
NASA Astrophysics Data System (ADS)
Bataev, V. A.; Golkovski, M. G.; Samoylenko, V. V.; Ruktuev, A. A.; Polyakov, I. A.; Kuksanov, N. K.
2018-04-01
The study has been conducted in line with the current approach to investigation of materials obtained by considerably deep surface alloying of the titanium substrate with Ta, Nb, and Zr. The thickness of the resulting alloyed layer was equal to 2 mm. The coating was formed through weld deposition of a powder with the use of a high-voltage electron beam in the air. It has been lately demonstrated that manufactured such a way alloyed layers possess corrosion resistance which is significantly higher than the resistance of titanium substrates. It has already been shown that such two-layered materials are weldable. The study objective is to investigate the feasibility of rolling for necking the sheets with the Ti-Ta-Nb anticorrosion coating with further fourfold decrease in their thickness. The research is also aimed at investigation of the material properties after rolling. Anticorrosion layers were formed both on CP-titanium and on VT14 (Ti-4Al-3Mo-1 V) durable titanium alloy. The results of chemical composition determination, structure examination, X-ray phase analysis and mechanical properties observations (including bending properties of the alloyed layers) are presented in the paper. The combination of welding, rolling, and bending enables the manufacture of corrosion-resistant vessels and process pipes which are made from the developed material and find technological application.
NASA Astrophysics Data System (ADS)
Surmenev, Roman A.; Surmeneva, Maria A.; Grubova, Irina Yu.; Chernozem, Roman V.; Krause, Bärbel; Baumbach, Tilo; Loza, Kateryna; Epple, Matthias
2017-08-01
A pure hydroxyapatite (HA) target was used to prepare the biocompatible coating of HA on the surface of a polytetrafluorethylene (PTFE) substrate, which was placed on the same substrate holder with technically pure titanium (Ti) in the single deposition runs by radio-frequency (RF) magnetron sputtering. The XPS, XRD and FTIR analyses of the obtained surfaces showed that for all substrates, instead of the HA coating deposition, the coating of a mixture of calcium carbonate and calcium fluoride was grown. According to SEM investigations, the surface of PTFE was etched, and the surface topography of uncoated Ti was preserved after the depositions. The FTIR results reveal no phosphate bonds; only calcium tracks were observed in the EDX-spectra on the surface of the coated PTFE substrates. Phosphate oxide (V), which originated from the target, could be removed using a vacuum pump system, or no phosphate-containing bonds could be formed on the substrate surface because of the severe substrate bombardment process, which prevented the HA coating deposition. The observed results may be connected with the surface re-sputtering effect of the growing film by high-energy negatively charged ions (most probably oxygen or fluorine), which are accelerated in the cathode dark sheath.
Crystallography and Morphology of MC Carbides in Niobium-Titanium Modified As-Cast HP Alloys
NASA Astrophysics Data System (ADS)
Buchanan, Karl G.; Kral, Milo V.; Bishop, Catherine M.
2014-07-01
The microstructures of two as-cast heats of HP alloy stainless steels modified with niobium and titanium were examined with particular attention paid to the interdendritic niobium-titanium-rich carbides formed during solidification of these alloys. Generally, these precipitates obtain a blocky morphology in the as-cast condition. However, the (NbTi)C precipitates may obtain a nodular morphology. To provide further insight to the origin of the two different morphologies obtained by the (NbTi)C precipitates in the HP-NbTi alloy, the microstructure and crystallography of each have been studied in detail using scanning electron microscopy, transmission electron microscopy, various electron diffraction methods (EBSD, SAD, and CBED), and energy-dispersive X-ray spectroscopy.
NASA Astrophysics Data System (ADS)
Qi, F.; Leng, Y. X.; Huang, N.; Bai, B.; Zhang, P. Ch.
2007-04-01
17-4PH stainless steel was modified by direct current (DC) plasma nitriding and titanium nitride film duplex treatment in this study. The microstructure, wear resistance and corrosion resistance were characterized by X-ray diffraction (XRD), pin-on-disk tribological test and polarization experiment. The results revealed that the DC plasma nitriding pretreatment was in favor of improving properties of titanium nitride film. The corrosion resistance and wear resistance of duplex treatment specimen was more superior to that of only coated titanium nitride film.
Investigating the Mechanisms and Potential of Silk Fiber Metallization
2013-09-30
in an ALD process, when using the modified metal infiltration process as outlined by Lee et al., the titanium isopropoxide (TIP) precursor...these fibers exhibited >2-fold increase in strain to breakage, and >4.5-fold increase in strength when infiltrated with zinc, titanium , or aluminum...fibers exhibited >2-fold increase in strain to breakage, and >4.5-fold increase in strength when infiltrated with zinc, titanium , or aluminum
Enhanced Cellular Adhesion on Titanium by Silk Functionalized with titanium binding and RGD peptides
Vidal, Guillaume; Blanchi, Thomas; Mieszawska, Aneta J.; Calabrese, Rossella; Rossi, Claire; Vigneron, Pascale; Duval, Jean-Luc; Kaplan, David L.; Egles, Christophe
2012-01-01
Soft tissue adhesion on titanium represents a challenge for implantable materials. In order to improve adhesion at the cell/material interface we used a new approach based on the molecular recognition of titanium by specific peptides. Silk fibroin protein was chemically grafted with titanium binding peptide (TiBP) to increase adsorption of these chimeric proteins to the metal surface. Quartz Crystal Microbalance was used to quantify the specific adsorption of TiBP-functionalized silk and an increase in protein deposition by more than 35% was demonstrated due to the presence of the binding peptide. A silk protein grafted with TiBP and fibronectin-derived RGD peptide was then prepared. The adherence of fibroblasts on the titanium surface modified with the multifunctional silk coating demonstrated an increase in the number of adhering cells by 60%. The improved adhesion was demonstrated by Scanning Electron Microscopy and immunocytochemical staining of focal contact points. Chick embryo organotypic culture also revealed strong adhesion of endothelial cells expanding on the multifunctional silk-peptide coating. These results demonstrated that silk functionalized with TiBP and RGD represents a promising approach to modify cell-biomaterial interfaces, opening new perspectives for implantable medical devices, especially when reendothelialization is required. PMID:22975628
Method for production of free-standing polycrystalline boron phosphide film
Baughman, Richard J.; Ginley, David S.
1985-01-01
A process for producing a free-standing polycrystalline boron phosphide film comprises growing a film of boron phosphide in a vertical growth apparatus on a metal substrate. The metal substrate has a coefficient of thermal expansion sufficiently different from that of boron phosphide that the film separates cleanly from the substrate upon cooling thereof, and the substrate is preferably titanium. The invention also comprises a free-standing polycrystalline boron phosphide film for use in electronic device fabrication.
Electrophoretic Deposition of Hydroxyapatite Film Containing Re-Doped MoS2 Nanoparticles
Shalom, Hila; Feldman, Yishay; Rosentsveig, Rita; Pinkas, Iddo; Kaplan-Ashiri, Ifat; Moshkovich, Alexey; Perfilyev, Vladislav; Rapoport, Lev
2018-01-01
Films combining hydroxyapatite (HA) with minute amounts (ca. 1 weight %) of (rhenium doped) fullerene-like MoS2 (IF) nanoparticles were deposited onto porous titanium substrate through electrophoretic process (EPD). The films were analyzed by scanning electron microscopy (SEM), X-ray diffraction and Raman spectroscopy. The SEM analysis showed relatively uniform coatings of the HA + IF on the titanium substrate. Chemical composition analysis using energy dispersive X-ray spectroscopy (EDS) of the coatings revealed the presence of calcium phosphate minerals like hydroxyapatite, as a majority phase. Tribological tests were undertaken showing that the IF nanoparticles endow the HA film very low friction and wear characteristics. Such films could be of interest for various medical technologies. Means for improving the adhesion of the film to the underlying substrate and its fracture toughness, without compromising its biocompatibility are discussed at the end. PMID:29495394
Effect of substrate nature on the electrochemical deposition of calcium-deficient hydroxyapatites
NASA Astrophysics Data System (ADS)
Gualdrón-Reyes, A. F.; Domínguez-Vélez, V.; Morales-Morales, J. A.; Cabanzo, R.; Meléndez, A. M.
2017-01-01
Calcium phosphates were obtained by reducing nitrate ions to produce hydroxide ions on TiO2/stainless steel and TiO2/titanium electrodes. TiO2 coatings on metallic substrates were prepared by sol-gel dip-coating method. The morphology of deposits was observed by FESEM. Chemical nature of calcium phosphate deposits was identified by Raman micro-spectroscopy and FESEM/EDS microanalysis. Electrochemical behavior of nitrate and nitrite reduction on stainless steel and titanium electrodes was studied by linear sweep voltammetry. In addition, voltammetric study of the calcium phosphate electrodeposition on both electrodes was performed. From these measurements was selected the potential to form a calcium phosphate. A catalytic current associated to nitrate reduction reaction was obtained for stainless steel electrode, leading to significant deposition of calcium phosphate. Ca/P ratio for both substrates was less than 1.67. The formation of calcium deficient hydroxyapatite was confirmed by Raman spectroscopy.
Samorodnitzky-Naveh, Gili R; Redlich, Meir; Rapoport, Lev; Feldman, Yishay; Tenne, Reshef
2009-12-01
To fabricate a friction-reducing coating onto different nickel-titanium (NiTi) substrates using inorganic fullerene-like tungsten disulfide (IF-WS(2)) nanoparticles and to estimate in vitro friction reducing extent of the coating. Different NiTi substrates were coated with cobalt and IF-WS(2) nanoparticles film by the electrodeposition procedure. Coating composition analyses was made by scanning-electron microscopy, energy dispersive x-ray spectroscopy, x-ray powder diffractometry and x-ray photoelectron spectroscopy. Friction evaluation was carried out using standard tribological tests and an Instron system. Stable and well-adhered cobalt + IF-WS(2) coating of the NiTi substrates was obtained. Friction tests presented up to 66% reduction of the friction coefficient. NiTi alloy is widely used for many medical appliances; hence, this unique friction-reducing coating could be implemented to provide better manipulation and lower piercing rates.
Effect of power and type of substrate on calcium-phosphate coating morphology and microhardness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulyashova, Ksenia, E-mail: kseniya@ispms.tsc.ru; Glushko, Yurii, E-mail: glushko@ispms.tsc.ru; Sharkeev, Yurii, E-mail: sharkeev@ispms.tsc.ru
2015-10-27
As known, the influence of the different sputtering process parameters and type of substrate on structure of the deposited coating is important to identify, because these parameters are significantly affected on structure of coating. The studies of the morphology and microhardness of calcium-phosphate (CaP) coatings formed and obtained on the surface of titanium, zirconium, titanium and niobium alloy for different values of the power of radio frequency discharge are presented. The increase in the radio frequency (rf) magnetron discharge leads to the formation of a larger grain structure of the coating. The critical depths of indentation for coatings determining themore » value of their microhardness have been estimated. Mechanical properties of the composite material on the basis of the bioinert substrate metal and CaP coatings are superior to the properties of the separate components that make up this composite material.« less
The promotion of osseointegration of titanium surfaces by coating with silk protein sericin.
Nayak, Sunita; Dey, Tuli; Naskar, Deboki; Kundu, Subhas C
2013-04-01
A promising strategy to influence the osseointegration process around orthopaedic titanium implants is the immobilization of bioactive molecules. This recruits appropriate interaction between the surface and the tissue by directing cells adhesion, proliferation, differentiation and active matrix remodelling. In this study, we aimed to investigate the functionalization of metallic implant titanium with silk protein sericin. Titanium surface was immobilized with non-mulberry Antheraea mylitta sericin using glutaraldehyde as crosslinker. To analyse combinatorial effects the sericin immobilized titanium was further conjugated with integrin binding peptide sequence Arg-Gly-Asp (RGD) using ethyl (dimethylaminopropyl) carbodiimide and N-hydroxysulfosuccinimide as coupling agents. The surface of sericin immobilized titanium was characterized biophysically. Osteoblast-like cells were cultured on sericin and sericin/RGD functionalized titanium and found to be more viable than those on pristine titanium. The enhanced adhesion, proliferation, and differentiation of osteoblast cells were observed. RT-PCR analysis showed that mRNA expressions of bone sialoprotein, osteocalcin and alkaline phosphatase were upregulated in osteoblast cells cultured on sericin and sericin/RGD immobilized titanium substrates. Additionally, no significant amount of pro-inflammatory cytokines TNF-α, IL-1β and nitric oxide production were recorded when macrophages cells and osteoblast-macrophages co culture cells were grown on sericin immobilized titanium. The findings demonstrate that the sericin immobilized titanium surfaces are potentially useful bioactive coated materials for titanium-based medical implants. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Nguyen, Chuong L.; Preston, Andrew; Tran, Anh T. T.; Dickinson, Michelle; Metson, James B.
2016-07-01
Aluminum casting alloys have excellent castability, high strength and good corrosion resistance. However, the presence of silicon in these alloys prevents surface finishing with conventional methods such as anodizing. Hard coating with titanium nitride can provide wear and corrosion resistances, as well as the aesthetic finish. A critical factor for a durable hard coating is its bonding with the underlying substrate. In this study, a titanium nitride layer was coated on LM25 casting alloy and a reference high purity aluminum substrate using Ion Assisted Deposition. Characterization of the coating and the critical interface was carried out by a range of complementing techniques, including SIMS, XPS, TEM, SEM/EDS and nano-indentation. It was observed that the coating on the aluminum alloy is stronger compared to that on the pure aluminum counterpart. Silicon particles in the alloy offers the reinforcement though mechanical interlocking at microscopic level, even with nano-scale height difference. This reinforcement overcomes the adverse effect caused by surface segregation of magnesium in aluminum casting alloys.
Carbon Nanotubes on Titanium Substrates for Stray Light Suppression
NASA Technical Reports Server (NTRS)
Hagopian, John; Getty, Stephanie; Quijada, Manuel
2011-01-01
A method has been developed for growing carbon nanotubes on a titanium substrate, which makes the nano tubes ten times blacker than the current state-of-the-art paints in the visible to near infrared. This will allow for significant improvement of stray light performance in scientific instruments, or any other optical system. Because baffles, stops, and tubes used in scientific observations often undergo loads such as vibration, it is critical to develop this surface treatment on structural materials. This innovation optimizes the carbon nano - tube growth for titanium, which is a strong, lightweight structural material suitable for spaceflight use. The steps required to grow the nanotubes require the preparation of the surface by lapping, and the deposition of an iron catalyst over an alumina stiction layer by e-beam evaporation. In operation, the stray light controls are fabricated, and nanotubes (multi-walled 100 microns in length) are grown on the surface. They are then installed in the instruments or other optical devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Virginia R.; Cavanagh, Andrew S.; Abdulagatov, Aziz I.
2014-01-15
The surface chemistry for TiO{sub 2} atomic layer deposition (ALD) typically utilizes water or other oxidants that can oxidize underlying substrates such as magnetic disks or semiconductors. To avoid this oxidation, waterless or oxidant-free surface chemistry can be used that involves titanium halides and titanium alkoxides. In this study, waterless TiO{sub 2} ALD was accomplished using titanium tetrachloride (TiCl{sub 4}) and titanium tetraisopropoxide (TTIP). In situ transmission Fourier transform infrared (FTIR) studies were employed to study the surface species and the reactions during waterless TiO{sub 2} ALD. At low temperatures between 125 and 225 °C, the FTIR absorbance spectra revealed thatmore » the isopropoxide species remained on the surface after TTIP exposures. The TiCl{sub 4} exposures then removed the isopropoxide species and deposited additional titanium species. At high temperatures between 250 and 300 °C, the isopropoxide species were converted to hydroxyl species by β-hydride elimination. The observation of propene gaseous reaction product by quadrupole mass spectrometry (QMS) confirmed the β-hydride elimination reaction pathway. The TiCl{sub 4} exposures then easily reacted with the hydroxyl species. QMS studies also observed the 2-chloropropane and HCl gaseous reaction products and monitored the self-limiting nature of the TTIP reaction. Additional studies examined the waterless TiO{sub 2} ALD growth at low and high temperature. Quartz crystal microbalance measurements observed growth rates of ∼3 ng/cm{sup 2} at a low temperature of 150 °C. Much higher growth rates of ∼15 ng/cm{sup 2} were measured at a higher temperature of 250 °C under similar reaction conditions. X-ray reflectivity analysis measured a growth rate of 0.55 ± 0.05 Å/cycle at 250 °C. X-ray photoelectron depth-profile studies showed that the TiO{sub 2} films contained low Cl concentrations <1 at. %. This waterless TiO{sub 2} ALD process using TiCl{sub 4} and TTIP should be valuable to prevent substrate oxidation during TiO{sub 2} ALD on oxygen-sensitive substrates.« less
NASA Astrophysics Data System (ADS)
Herbertz, S.; Welk, D.; Heinzel, T.
2018-05-01
Titanium microstripes on silicon dioxide substrates are oxidized locally by applying voltages on-chip to lateral electrodes under ambient conditions. This technique enables profound modifications of the electronic circuit. As an example, we transform Ti films decorated by a sub-monolayer of platinum into hydrogen gas microsensors in an otherwise completed device by a silicon-MOS compatible process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pérez, E.; Dueñas, S.; Castán, H.
2015-12-28
The energy levels created in supersaturated n-type silicon substrates with titanium implantation in the attempt to create an intermediate band in their band-gap are studied in detail. Two titanium ion implantation doses (10{sup 13 }cm{sup -2} and 10{sup 14 }cm{sup -2}) are studied in this work by conductance transient technique and admittance spectroscopy. Conductance transients have been measured at temperatures of around 100 K. The particular shape of these transients is due to the formation of energy barriers in the conduction band, as a consequence of the band-gap narrowing induced by the high titanium concentration. Moreover, stationary admittance spectroscopy results suggest the existencemore » of different energy level configuration, depending on the local titanium concentration. A continuum energy level band is formed when titanium concentration is over the Mott limit. On the other hand, when titanium concentration is lower than the Mott limit, but much higher than the donor impurity density, a quasi-continuum energy level distribution appears. Finally, a single deep center appears for low titanium concentration. At the n-type substrate, the experimental results obtained by means of thermal admittance spectroscopy at high reverse bias reveal the presence of single levels located at around E{sub c}-425 and E{sub c}-275 meV for implantation doses of 10{sup 13 }cm{sup −2} and 10{sup 14 }cm{sup −2}, respectively. At low reverse bias voltage, quasi-continuously distributed energy levels between the minimum of the conduction bands, E{sub c} and E{sub c}-450 meV, are obtained for both doses. Conductance transients detected at low temperatures reveal that the high impurity concentration induces a band gap narrowing which leads to the formation of a barrier in the conduction band. Besides, the relationship between the activation energy and the capture cross section values of all the energy levels fits very well to the Meyer-Neldel rule. As it is known, the Meyer-Neldel rule typically appears in processes involving multiple excitations, like carrier capture and emission in deep levels, and it is generally observed in disordered systems. The obtained Meyer-Neldel energy value, 15.19 meV, is very close to the value obtained in multicrystalline silicon samples contaminated with iron (13.65 meV), meaning that this energy value could be associated to the phonons energy in this kind of substrates.« less
Romero, Luz; Binions, Russell
2013-11-05
Titanium dioxide thin films were deposited on fluorine doped tin oxide glass substrate from the electric field assisted aerosol chemical vapor deposition (EACVD) reaction of titanium isopropoxide (TTIP, Ti(OC3H7)4) in toluene on glass substrates at a temperature of 450 °C. DC electric fields were generated by applying a potential difference between the electrodes of the transparent coated oxide coated glass substrates during the deposition. The deposited films were characterized using scanning electron microscopy, X-ray diffraction, atomic force microscopy, Raman spectroscopy, and UV-vis spectroscopy. The photoactivity and hydrophilicity of the deposited films were also analyzed using a dye-ink test and water-contact angle measurements. The characterization work revealed that the incorporation of DC electric fields produced significant reproducible changes in the film microstructure, preferred crystallographic orientation, roughness, and film thickness. Photocatalytic activity was calculated from the half-time (t1/2) or time taken to degrade 50% of the initial resazurin dye concentration. A large improvement in photocatalytic activity was observed for films deposited using an electric field with a strong orientation in the (004) direction (t1/2 17 min) as compared to a film deposited with no electric field (t1/2 40 min).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atanasov, Sarah E.; Kalanyan, Berç; Parsons, Gregory N., E-mail: gnp@ncsu.edu
2016-01-15
Titanium dioxide atomic layer deposition (ALD) is shown to proceed selectively on oxidized surfaces with minimal deposition on hydrogen-terminated silicon using titanium tetrachloride (TiCl{sub 4}) and titanium tetra-isopropoxide [Ti(OCH(CH{sub 3}){sub 2}){sub 4}, TTIP] precursors. Ex situ x-ray photoelectron spectroscopy shows a more rapid ALD nucleation rate on both Si–OH and Si–H surfaces when water is the oxygen source. Eliminating water delays the oxidation of the hydrogen-terminated silicon, thereby impeding TiO{sub 2} film growth. For deposition at 170 °C, the authors achieve ∼2 nm of TiO{sub 2} on SiO{sub 2} before substantial growth takes place on Si–H. On both Si–H and Si–OH, themore » surface reactions proceed during the first few TiCl{sub 4}/TTIP ALD exposure steps where the resulting products act to impede subsequent growth, especially on Si–H surfaces. Insight from this work helps expand understanding of “inherent” substrate selective ALD, where native differences in substrate surface reaction chemistry are used to promote desired selective-area growth.« less
A long-lived tritiated titanium target for fast neutron production
NASA Astrophysics Data System (ADS)
Hughey, B. J.
1995-03-01
Diagnostic techniques using neutron beams have a broad spectrum of applications in advanced manufacturing, explosives and contraband detection, medicine, and industry. The most suitable nuclear reaction for producing large fluxes of fast neutrons at low bombarding energy is the H(d,n)-3 He-4, i.e. d-T, reaction. The lifetime of currently used d-T neutron generators is limited by the gradual evolution of tritium gas from the target during bombardment. This paper is a report of work in progress to develop a method for inhibiting the replacement of tritium with beam deuterons and thus preventing the evolution of tritium gas leading to reduced neutron yield. It is anticipated that tritiated target lifetime can be increased by at least an order of magnitude by using a range-thin tritiated titanium target mounted on a substrate with a high hydrogen diffusivity, such as niobium. Lifetime can be further enhanced by increasing the deuteron beam bombarding energy from the typical value of 200 keV to 600 keV. The results of experiments demonstrating the effect of hydrogen diffusion coefficient on concentration of implanted beam deuterons in candidate substrate materials (Cu, Pd, and Nb) are presented, and issues relevant to the fabrication of a tritiated titanium target on a niobium substrate are discussed.
Lilja, Mirjam; Genvad, Axel; Astrand, Maria; Strømme, Maria; Enqvist, Håkan
2011-12-01
Functionalisation of biomedical implants via surface modifications for tailored tissue response is a growing field of research. Crystalline TiO(2) has been proven to be a bone bioactive, non-resorbable material. In contact with body fluids a hydroxyapaptite (HA) layer forms on its surface facilitating the bone contact. Thus, the path of improving biomedical implants via deposition of crystalline TiO(2) on the surface is interesting to follow. In this study we have evaluated the influence of microstructure and chemical composition of sputter deposited titanium oxide thin films on the in vitro bioactivity. We find that both substrate bias, topography and the flow ratio of the gases used during sputtering affect the HA layer formed on the films after immersion in simulated body fluid at 37°C. A random distribution of anatase and rutile crystals, formed at negative substrate bias and low Ar to O(2) gas flow ratios, are shown to favor the growth of flat HA crystal structures whereas higher flow ratios and positive substrate bias induced growth of more spherical HA structures. These findings should provide valuable information when optimizing the bioactivity of titanium oxide coatings as well as for tailoring process parameters for sputtered-based production of bioactive titanium oxide implant surfaces.
NASA Astrophysics Data System (ADS)
Fernández-Pradas, J. M.; García-Cuenca, M. V.; Clèries, L.; Sardin, G.; Morenza, J. L.
2002-07-01
Hydroxyapatite (HA) coatings were deposited on Ti-6Al-4V substrates by laser ablation with a KrF excimer laser. Depositions were performed at 45 Pa of water vapour and at a substrate temperature of 575 °C. After 7 min of deposition, coatings were left at this temperature for different times before cooling down. The samples morphology and structure were characterised by scanning electron microscopy, X-ray diffractometry and Raman spectroscopy. The mechanical performance of the coatings was evaluated through the scratch-test technique. The coatings do not present important differences between them. However, there is an interface layer between the coating and the substrate that indeed presents an evolution with the heating time. This interface layer is constituted by two different species: titanium oxide and Ti-6Al-4V with oxygen diffused in its lattice. Its thickness increases during the first minutes of heating after deposition. An evolution of the titanium oxide phases with the time of heating has been detected by Raman spectroscopy. The samples fail at lower loads in the scratch-test as longer is the time that they remained at high temperature. The mode of failure of the samples suggests that failure occurs at the interface.
Molaei, A; Amadeh, A; Yari, M; Reza Afshar, M
2016-02-01
In this study chitosan/halloysite nanotube composite (CS/HNT) coatings were deposited by electrophoretic deposition (EPD) on titanium substrate. Using HNT particles were investigated as new substituents for carbon nanotubes (CNTs) in chitosan matrix coatings. The ability of chitosan as a stabilizing, charging, and blending agent for HNT particles was exploited. Furthermore, the effects of pH, electrophoretic bath, and sonicating duration were studied on the deposition of suspensions containing HNT particles. Microstructure properties of coatings showed uniform distribution of HNT particles in chitosan matrix to form smooth nanocomposite coatings. The zeta potential results revealed that at pH around 3 there is an isoelectric point for HNT and it would have cathodic and anionic states at pH values less and more than 3, respectively. Therefore, CS/HNT composite deposits were produced in the pH range of 2.5 to 3. The apatite inducing ability of chitosan-HNT composite coating assigned that HNT particles were biocompatible because they formed carbonated hydroxyapatite particles on CS/HNT coating in corrected simulated body fluid (C-SBF). Finally, electrochemical corrosion characterizations determined that corrosion resistance in CS/HNT coating has been improved compared to bare titanium substrate. Copyright © 2015 Elsevier B.V. All rights reserved.
Stanton, Kenneth T; O'Flynn, Kevin P; Nakahara, Shohei; Vanhumbeeck, Jean-François; Delucca, John M; Hooghan, Bobby
2009-04-01
Glass of generic composition SiO(2) . Al(2)O(3) . P(2)O(5) . CaO . CaF(2) will crystallise predominantly to apatite and mullite upon heat-treatment. Such ceramics are bioactive, osseoconductive, and have a high resistance to fracture. As a result, they are under investigation for use as biomedical device coatings, and in particular for orthopaedic implants. Previous work has shown that the material can be successfully enamelled to titanium with an interfacial reaction zone produced during heat treatment. The present study uses high angle annular dark field transmission electron microscopy (HAADF-TEM) to conduct a detailed examination of this region. Results show evidence of complex interfacial reactions following the diffusion of titanium into an intermediate layer and the production of titanium silicides and titanium phosphides. These results confirm previously hypothesised mechanisms for the bonding of silicate bioceramics with titanium alloys.
In vitro characterization of peptide-modified p(AAm-co-EG/AAc) IPN-coated titanium implants.
Barber, Thomas A; Gamble, Lara J; Castner, David G; Healy, Kevin E
2006-07-01
Interpenetrating polymer networks (IPNs) of poly(acrylamide-co-ethylene glycol/acrylic acid) [p(AAm-co-EG/AAc)] functionalized with an -Arg-Gly-Asp- containing peptide derived from rat bone sialoprotein [bsp-RGD(15)] were grafted to titanium implants in an effort to modulate osteoblast behavior in vitro. Surface characterization data were consistent with the presence of an IPN, and ligand density measurements established that the range of peptide density on the modified implants spanned three orders of magnitude (0.01-20 pmol/cm2). In vitro biological characterization of the modified implants employing the primary rat calvarial osteoblast (RCO) model resulted in the identification of a critical ligand density (0.01
Zhong, Xue; Song, Yunjia; Yang, Peng; Wang, Yao; Jiang, Shaoyun; Zhang, Xu; Li, Changyi
2016-01-01
The formation of biofilm around implants, which is induced by immediate bacterial colonization after installation, is the primary cause of post-operation infection. Initial surface modification is usually required to incorporate antibacterial agents on titanium (Ti) surfaces to inhibit biofilm formation. However, simple and effective priming methods are still lacking for the development of an initial functional layer as a base for subsequent coatings on titanium surfaces. The purpose of our work was to establish a novel initial layer on Ti surfaces using phase-transited lysozyme (PTL), on which multilayer coatings can incorporate silver nanoparticles (AgNP) using chitosan (CS) and hyaluronic acid (HA) via a layer-by-layer (LbL) self-assembly technique. In this study, the surfaces of Ti substrates were primed by dipping into a mixture of lysozyme and tris(2-carboxyethyl)phosphine (TCEP) to obtain PTL-functionalized Ti substrates. The subsequent alternating coatings of HA and chitosan loaded with AgNP onto the precursor layer of PTL were carried out via LbL self-assembly to construct multilayer coatings on Ti substrates. The results of SEM and XPS indicated that the necklace-like PTL and self-assembled multilayer were successfully immobilized on the Ti substrates. The multilayer coatings loaded with AgNP can kill planktonic and adherent bacteria to 100% during the first 4 days. The antibacterial efficacy of the samples against planktonic and adherent bacteria achieved 65%-90% after 14 days. The sustained release of Ag over 14 days can prevent bacterial invasion until mucosa healing. Although the AgNP-containing structure showed some cytotoxicity, the toxicity can be reduced by controlling the Ag release rate and concentration. The PTL priming method provides a promising strategy for fabricating long-term antibacterial multilayer coatings on titanium surfaces via the LbL self-assembly technique, which is effective in preventing implant-associated infections in the early stage.
2016-01-01
Background The cathodic polarization seems to be an electrochemical method capable of modifying and coat biomolecules on titanium surfaces, improving the surface activity and promoting better biological responses. Objective The aim of the systematic review is to assess the scientific literature to evaluate the cellular response produced by treatment of titanium surfaces by applying the cathodic polarization technique. Data, Sources, and Selection The literature search was performed in several databases including PubMed, Web of Science, Scopus, Science Direct, Scielo and EBSCO Host, until June 2016, with no limits used. Eligibility criteria were used and quality assessment was performed following slightly modified ARRIVE and SYRCLE guidelines for cellular studies and animal research. Results Thirteen studies accomplished the inclusion criteria and were considered in the review. The quality of reporting studies in animal models was low and for the in vitro studies it was high. The in vitro and in vivo results reported that the use of cathodic polarization promoted hydride surfaces, effective deposition, and adhesion of the coated biomolecules. In the experimental groups that used the electrochemical method, cellular viability, proliferation, adhesion, differentiation, or bone growth were better or comparable with the control groups. Conclusions The use of the cathodic polarization method to modify titanium surfaces seems to be an interesting method that could produce active layers and consequently enhance cellular response, in vitro and in vivo animal model studies. PMID:27441840
Catauro, Michelina; Bollino, Flavia; Giovanardi, Roberto; Veronesi, Paolo
2017-05-01
Surface modification of metallic implants is a promising strategy to improve tissue tolerance, osseointegration and corrosion resistance of them. In the present work, bioactive and biocompatible organic-inorganic hybrid coatings were prepared using a sol-gel dip coating route. They consist of an inorganic TiO 2 matrix in which different percentages of poly(ε-caprolactone) (PCL), a biodegradable and biocompatible polymer, were incorporated. The coatings were used to modify the surface of Ti6Al4V substrates in order to improve their wear and corrosion resistance. The chemical structure of the coatings was analyzed by attenuated total reflectance (ATR) Fourier transform infrared (FTIR) spectroscopy. Coating microstructure, mechanical properties and ability to inhibit the corrosion of the substrates were evaluated as a function of the PCL amount. Scanning electron microscopy (SEM) showed that the polymer allows to obtain crack-free coatings, but when high percentages were added uncoated areas appear. Nano-indentation tests revealed that, as expected, surface hardness and elastic modulus decrease as the percentage of polymeric matrix increases, but scratch testing demonstrated that the coatings are effective in preventing scratching of the underlying metallic substrate, at least for PCL contents up to 20wt%. The electrochemical tests (polarization curves acquired in order to evaluate the corrosion resistance) allowed to asses that the coatings have a significant effect in term of corrosion potential (E corr ) but they do not significantly affect the passivation process that titanium undergoes in contact with the test solution used (modified Dulbecco's phosphate-buffered saline or DPBS). Copyright © 2016 Elsevier B.V. All rights reserved.
Effect of Ti Substrate Ion Implantation on the Physical Properties of Anodic TiO2 Nanotubes
NASA Astrophysics Data System (ADS)
Jedi-Soltanabadi, Zahra; Ghoranneviss, Mahmood; Ghorannevis, Zohreh; Akbari, Hossein
2018-03-01
The influence of nitrogen-ion implantation on the titanium (Ti) surface is studied. The nontreated Ti and the Ti treated with ion implantation were anodized in an ethylene-glycol-based electrolyte solution containing 0.3 wt% ammonium fluoride (NH4F) and 3 vol% deionized (DI) water at a potential of 60 V for 1 h at room temperature. The current density during the growth of the TiO2 nanotubes was monitored in-situ. The surface roughnesses of the Ti substrates before and after the ion implantation were investigated with atomic force microscopy (AFM). The surface roughness was lower for the treated Ti substrate. The morphology of the anodic TiO2 nanotubes was studied by using field-emission scanning electron microscopy (FESEM). Clearly, the titanium nanotubes grown on the treated substrate were longer. In addition, some ribs were observed on their walls. The optical band gap of the anodic TiO2 nanotubes was characterized by using a diffuse reflection spectral (DRS) analysis. The anodic TiO2 nanotubes grown on the treated Ti substrate revealed a band gap energy of approximately 3.02 eV.
Free-standing polycrystalline boron phosphide film and method for production thereof
Baughman, R.J.; Ginley, D.S.
1982-09-09
A process for producing a free-standing polycrystalline boron phosphide film comprises growing a film of boron phosphide in a vertical growth apparatus on a metal substrate. The metal substrate has a coefficient of thermal expansion sufficiently different from that of boron phosphide that the film separates cleanly from the substrate upon cooling thereof, and the substrate is preferably titanium. The invention also comprises a free-standing polycrystalline boron phosphide film for use in electronic device fabrication.
Implantable devices having ceramic coating applied via an atomic layer deposition method
Liang, Xinhua; Weimer, Alan W.; Bryant, Stephanie J.
2016-03-08
Substrates coated with films of a ceramic material such as aluminum oxides and titanium oxides are biocompatible, and can be used in a variety of applications in which they are implanted in a living body. The substrate is preferably a porous polymer, and may be biodegradable. An important application for the ceramic-coated substrates is as a tissue engineering scaffold for forming artificial tissue.
Hindy, Ahmed; Farahmand, Farzam; Tabatabaei, Fahimeh Sadat
2017-07-01
There are numerous functions for laser in modern implant dentistry including surface treatment, surface coating, and implant manufacturing. As laser application may potentially improve osseointegration of dental implants, we systematically reviewed the literature for in vitro biological responses to laser-modified or processed titanium dental implants. The literature was searched in PubMed, ISI Web, and Scopus, using keywords "titanium dental implants," "laser," "biocompatibility," and their synonyms. After screening the 136 references obtained, 28 articles met the inclusion criteria. We found that Nd:YAG laser was the most commonly used lasers in the treatment or processing of titanium dental implants. Most of the experiments used cell attachment and cell proliferation to investigate bioresponses of the implants. The most commonly used cells in these assays were osteoblast-like cells. Only one study was conducted in stem cells. These in vitro studies reported higher biocompatibility in laser-modified titanium implants. It seems that laser radiation plays a vital role in cell response to dental implants; however, it is necessary to accomplish more studies using different laser types and parameters on various cells to offer a more conclusive result.
Mesoporous titanosilicates with high loading of titanium synthesized in mild acidic buffer solution.
Tang, Jianting; Liu, Jian; Yang, Jie; Feng, Zhaochi; Fan, Fengtao; Yang, Qihua
2009-07-15
Mesoporous titanosilicates with high titanium content were synthesized under mild acidic conditions (pH=4.4, HAc-NaAc buffer solution) by co-condensation of acetylacetone-modified titanium isopropoxide (Ti(OBu(n))(3) (acac)) and mixture of sodium silicate with tetramethoxysilane (TMOS) or tetraethoxysilane (TEOS) or tetrakis(2-hydroxyethyl)orthosilicate (EGMS), using block copolymer Pluronic P123 as template. The combined results of XRD, N(2) sorption and TEM show that the highly regular structure of the mesoporous titanosilicates can still be obtained when Ti/Si molar ratio in the final product is as high as 0.059. The results of UV-vis diffuse reflectance spectra and UV resonance Raman spectra show that the framework titanium species are predominant in the mesoporous titanosilicates when Ti/Si molar ratio in the final product is less than 0.042. The mixture of sodium silicate and EGMS was proved to be the best silicon source for the synthesis of titanosilicates with ordered mesostructure and high titanium content. The efficiency of this synthetic method may be attributed to the mild acidic medium as well as the modified hydrolysis-condensation rate and hydrophility of the precursors.
NASA Astrophysics Data System (ADS)
Lu, Yao; Xu, Wenji; Song, Jinlong; Liu, Xin; Xing, Yingjie; Sun, Jing
2012-12-01
The preparation of superhydrophobic surfaces on hydrophilic metal substrates depends on both surface microstructures and low surface energy modification. In this study, a simple and inexpensive electrochemical method for preparing robust superhydrophobic titanium surfaces is reported. The neutral sodium chloride solution is used as electrolyte. Fluoroalkylsilane (FAS) was used to reduce the surface energy of the electrochemically etched surface. Scanning electron microscopy (SEM) images, energy-dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR) spectra, and contact angle measurement are performed to characterize the morphological features, chemical composition, and wettability of the titanium surfaces. Stability and friction tests indicate that the prepared titanium surfaces are robust. The analysis of electrolyte, reaction process, and products demonstrates that the electrochemical processing is very inexpensive and environment-friendly. This method is believed to be easily adaptable for use in large-scale industry productions to promote the application of superhydrophobic titanium surfaces in aviation, aerospace, shipbuilding, and the military industry.
Structural characterization of oxidized titanium surfaces
NASA Astrophysics Data System (ADS)
Jobin, M.; Taborelli, M.; Descouts, P.
1995-05-01
Oxidized titanium surfaces resulting from various processes have been structurally characterized by means of scanning force microscopy, x-ray photoemission spectroscopy (XPS), x-ray diffraction, and electron energy-loss spectroscopy (EELS) with losses in the 0-100 eV range. It has been found that the surface morphology has a granular structure for electropolished titanium and for titanium evaporated on mica at low substrate temperature (570 K), but changes to flat terraces for the films evaporated at higher temperature (770 K). Angular-dependent XPS has revealed the presence of a Ti2O3 suboxide at the Ti/TiO2 interface for electropolished titanium. Dry oxidation has been performed at 770 and 970 K on both weakly and highly crystallized evaporated titanium films oriented along (0001). In the case of underlying crystallized metallic titanium, the resulting TiO2 films are crystallized with the anatase (004) orientation for oxidation at 770 K and with rutile (200) orientation for oxidation at 970 K. EELS spectra interpreted in terms of the molecular orbitals of a (TiO6)8- cluster show that the local octahedral environment of titanium atoms is preserved on native oxides, even if these oxides are not crystallized.
Design for low-cost gas metal arc weld-based aluminum 3-D printing
NASA Astrophysics Data System (ADS)
Haselhuhn, Amberlee S.
Additive manufacturing, commonly known as 3-D printing, has the potential to change the state of manufacturing across the globe. Parts are made, or printed, layer by layer using only the materials required to form the part, resulting in much less waste than traditional manufacturing methods. Additive manufacturing has been implemented in a wide variety of industries including aerospace, medical, consumer products, and fashion, using metals, ceramics, polymers, composites, and even organic tissues. However, traditional 3-D printing technologies, particularly those used to print metals, can be prohibitively expensive for small enterprises and the average consumer. A low-cost open-source metal 3-D printer has been developed based upon gas metal arc weld (GMAW) technology. Using this technology, substrate release mechanisms have been developed, allowing the user to remove a printed metal part from a metal substrate by hand. The mechanical and microstructural properties of commercially available weld alloys were characterized and used to guide alloy development in 4000 series aluminum-silicon alloys. Wedge casting experiments were performed to screen magnesium, strontium, and titanium boride alloying additions in hypoeutectic aluminum-silicon alloys for their properties and the ease with which they could be printed. Finally, the top performing alloys, which were approximately 11.6% Si modified with strontium and titanium boride were cast, extruded, and drawn into wire. These wires were printed and the mechanical and microstructural properties were compared with those of commercially available alloys. This work resulted in an easier-to-print aluminum-silicon-strontium alloy that exhibited lower porosity, equivalent yield and tensile strengths, yet nearly twice the ductility compared to commercial alloys.
Lai, Min; Jin, Ziyang; Su, Zhiguo
2017-04-01
To investigate the influence of surface-biofunctionalized substrates on osteoblast behavior, a layer of aligned TiO 2 nanotubes with a diameter of around 70nm was fabricated on titanium surface by anodization, and then osteogenic growth peptide (OGP) was conjugated onto TiO 2 nanotubes through the intermediate layer of polydopamine. The morphology, composition and wettability of different surfaces were characterized by field-emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and contact angle measurements, respectively. The effects of OGP-modified TiO 2 nanotube substrates on the morphology, proliferation and differentiation of osteoblasts were examined in vitro. Immunofluorescence staining revealed that the OGP-functionalized TiO 2 nanotubes were favorable for cell spreading. However, there was no significant difference in cell proliferation observed among the different groups. Cells grown onto OGP-functionalized TiO 2 nanotubes showed significantly higher (p<0.05 or p<0.01) levels of alkaline phosphatase (ALP) and mineralization after 4, 7 and 14days of culture, respectively. Cells grown on OGP-functionalized TiO 2 nanotubes had significantly higher (p<0.05 or p<0.01) expression of osteogenic-related genes including runt related transcription factor 2 (Runx2), ALP, collagen type I (Col I), osteopontin (OPN) and osteocalcin (OC) after 14days of culture. These data suggest that surface functionalization of TiO 2 nanotubes with OGP was beneficial for cell spreading and differentiation. This study provides a novel platform for the development and fabrication of titanium-based implants that enhance the propensity for osseointegration between the native tissue and implant interface. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Etminanfar, M. R.; Khalil-Allafi, J.
2016-02-01
In this study, a combination of surface modification process and the electrochemical deposition of Ca-P coatings was used for the modification of the Nitinol shape memory alloy. DSC, SEM, GIB-XRD, FT-Raman, XPS, and FTIR measurements were performed for the characterization of the samples. Results indicated that chemical etching and boiling of the samples in distilled water formed TiO film on the surface. After the chemical modification, subsequent aging of the sample, at 470 °C for 30 min, converted the oxide film to a stable structure of titanium dioxide. In that case, the treated substrate indicated a superelastic behavior. At the same electrochemical condition, the treated substrate revealed more stable and uniform Ca-P coatings in comparison with the abraded Nitinol substrate. This difference was attributed to the presence of hydroxyl groups on the titanium dioxide surface. Also, after soaking the sample in SBF, the needle-like coating on the treated substrate was completely covered with the hydroxyapatite phase which shows a good bioactivity of the coating.
Precision replenishable grinding tool and manufacturing process
Makowiecki, D.M.; Kerns, J.A.; Blaedel, K.L.; Colella, N.J.; Davis, P.J.; Juntz, R.S.
1998-06-09
A reusable grinding tool consisting of a replaceable single layer of abrasive particles intimately bonded to a precisely configured tool substrate, and a process for manufacturing the grinding tool are disclosed. The tool substrate may be ceramic or metal and the abrasive particles are preferably diamond, but may be cubic boron nitride. The manufacturing process involves: coating a configured tool substrate with layers of metals, such as titanium, copper and titanium, by physical vapor deposition (PVD); applying the abrasive particles to the coated surface by a slurry technique; and brazing the abrasive particles to the tool substrate by alloying the metal layers. The precision control of the composition and thickness of the metal layers enables the bonding of a single layer or several layers of micron size abrasive particles to the tool surface. By the incorporation of an easily dissolved metal layer in the composition such allows the removal and replacement of the abrasive particles, thereby providing a process for replenishing a precisely machined grinding tool with fine abrasive particles, thus greatly reducing costs as compared to replacing expensive grinding tools. 11 figs.
Precision replenishable grinding tool and manufacturing process
Makowiecki, Daniel M.; Kerns, John A.; Blaedel, Kenneth L.; Colella, Nicholas J.; Davis, Pete J.; Juntz, Robert S.
1998-01-01
A reusable grinding tool consisting of a replaceable single layer of abrasive particles intimately bonded to a precisely configured tool substrate, and a process for manufacturing the grinding tool. The tool substrate may be ceramic or metal and the abrasive particles are preferably diamond, but may be cubic boron nitride. The manufacturing process involves: coating a configured tool substrate with layers of metals, such as titanium, copper and titanium, by physical vapor deposition (PVD); applying the abrasive particles to the coated surface by a slurry technique; and brazing the abrasive particles to the tool substrate by alloying the metal layers. The precision control of the composition and thickness of the metal layers enables the bonding of a single layer or several layers of micron size abrasive particles to the tool surface. By the incorporation of an easily dissolved metal layer in the composition such allows the removal and replacement of the abrasive particles, thereby providing a process for replenishing a precisely machined grinding tool with fine abrasive particles, thus greatly reducing costs as compared to replacing expensive grinding tools.
Fabrication and deformation behaviour of multilayer Al2O3/Ti/TiO2 nanotube arrays.
Baradaran, S; Basirun, W J; Zalnezhad, E; Hamdi, M; Sarhan, Ahmed A D; Alias, Y
2013-04-01
In this study, titanium thin films were deposited on alumina substrates by radio frequency (RF) magnetron sputtering. The mechanical properties of the Ti coatings were evaluated in terms of adhesion strength at various RF powers, temperatures, and substrate bias voltages. The coating conditions of 400W of RF power, 250°C, and a 75V substrate bias voltage produced the strongest coating adhesion, as obtained by the Taguchi optimisation method. TiO2 nanotube arrays were grown as a second layer on the Ti substrates using electrochemical anodisation at a constant potential of 20V and anodisation times of 15min, 45min, and 75min in a NH4F electrolyte solution (75 ethylene glycol: 25 water). The anodised titanium was annealed at 450°C and 650°C in a N2 gas furnace to obtain different phases of titania, anatase and rutile, respectively. The mechanical properties of the anodised layer were investigated by nanoindentation. The results indicate that Young's modulus and hardness increased with annealing temperature to 650°C. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Surmeneva, Maria A.; Surmenev, Roman A.; Nikonova, Yulia A.; Selezneva, Irina I.; Ivanova, Anna A.; Putlyaev, Valery I.; Prymak, Oleg; Epple, Matthias
2014-10-01
A series of nanostructured low-crystalline hydroxyapatite (HA) coatings averaging 170, 250, and 440 nm in thickness were deposited onto previously etched titanium substrates through radio-frequency (RF) magnetron sputtering. The HA coatings were analyzed using infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning and transmission electron microscopy (SEM and TEM). Cross sections of the thin specimens were prepared by FIB to study the microstructure of the coatings by TEM. The deposition process formed nano-scale grains, generating an amorphous layer at the substrate/coating interface and inducing the growth of a columnar grain structure perpendicular to the substrate surface. A microstructural analysis of the film confirmed that the grain size and crystallinity increased when increasing the deposition time. The nanostructured HA coatings were not cytotoxic, as proven by in vitro assays using primary dental pulp stem cells and mouse fibroblast NCTC clone L929 cells. Low-crystallinity HA coatings with different thicknesses stimulated cells to attach, proliferate and form mineralized nodules on the surface better than uncoated titanium substrates.
NASA Astrophysics Data System (ADS)
Guo, Lili; Qin, Lin; Kong, Fanyou; Yi, Hong; Tang, Bin
2016-12-01
Molybdenum, an alloying element, was deposited and diffused on Ti-5Zr-3Sn-5Mo-15Nb (TLM) substrate by double glow plasma surface alloying technology at 900, 950 and 1000 °C. The microstructure, composition distribution and micro-hardness of the Mo modified layers were analyzed. Contact angles on deionized water and wear behaviors of the samples against corundum balls in simulated human body fluids were investigated. Results show that the surface microhardness is significantly enhanced after alloying and increases with treated temperature rising, and the contact angles are lowered to some extent. More importantly, compared to as-received TLM alloy, the Mo modified samples, especially the one treated at 1000 °C, exhibit the significant improvement of tribological properties in reciprocating wear tests, with lower specific wear rate and friction coefficient. To conclude, Mo alloying treatment is an effective approach to obtain excellent comprehensive properties including optimal wear resistance and improved wettability, which ensure the lasting and safety application for titanium alloys as the biomedical implants.
Electrical and optical properties of sol-gel derived La modified PbTiO 3 thin films
NASA Astrophysics Data System (ADS)
Chopra, Sonalee; Sharma, Seema; Goel, T. C.; Mendiratta, R. G.
2004-09-01
Lanthanum modified lead titanate (Pb 1- xLa xTi 1- x/4 O 3) PLT x ( x=0.08 i.e. PLT8) sol-gel derived thin films have been prepared on indium tin oxide (ITO) coated glass and quartz substrates using lead acetate trihydrate, lanthanum acetate hydrate and titanium isopropoxide as precursors along with 2-methoxyethanol as solvent and acetic acid as catalyst by spin coating method. The microstructure and surface morphology of the films annealed at 650 °C have been studied by X-ray diffraction technique and atomic force microscope (AFM). XRD has shown a single phase with tetragonal structure and AFM images have confirmed a smooth and crack-free surface with low surface roughness. The dependence of leakage current on applied voltage show ohmic behavior at low field region with a space charge conduction mechanism at high fields. The wavelength dispersion curve of thin films obtained from the transmission spectrum of thin films show that the films have high optical transparency in the visible region.
NASA Technical Reports Server (NTRS)
Distefano, S.; Rameshan, R.; Fitzgerald, D. J.
1991-01-01
Amorphous iron and titanium-based alloys containing various amounts of chromium, phosphorus, and boron exhibit high corrosion resistance. Some physical properties of Fe and Ti-based metallic alloy films deposited on a glass substrate by a dc-magnetron sputtering technique are reported. The films were characterized using differential scanning calorimetry, stress analysis, SEM, XRD, SIMS, electron microprobe, and potentiodynamic polarization techniques.
NASA Astrophysics Data System (ADS)
Hu, Nan; Gao, Nong; Starink, Marco J.
2016-11-01
Anodic titanium dioxide nanotube (TNT) arrays have wide applications in photocatalytic, catalysis, electronics, solar cells and biomedical implants. When TNT coatings are combined with severe plastic deformation (SPD), metal processing techniques which efficiently improve the strength of metals, a new generation of biomedical implant is made possible with both improved bulk and surface properties. This work investigated the effect of processing by high pressure torsion (HPT) and different mechanical preparations on the substrate and subsequently on the morphology of TNT layers. HPT processing was applied to refine the grain size of commercially pure titanium samples and substantially improved their strength and hardness. Subsequent anodization at 30 V in 0.25 wt.% NH4F for 2 h to form TNT layers on sample surfaces prepared with different mechanical preparation methods was carried out. It appeared that the local roughness of the titanium surface on a microscopic level affected the TNT morphology more than the macroscopic surface roughness. For HPT-processed sample, the substrate has to be pre-treated by a mechanical preparation finer than 4000 grit for HPT to have a significant influence on TNTs. During the formation of TNT layers the oxide dissolution rate was increased for the ultrafine-grained microstructure formed due to HPT processing.
Spontaneous Differentiation of Dental Pulp stem cells on Dental polymers
NASA Astrophysics Data System (ADS)
Bherwani, Aneel; Suarato, Giulia; Qin, Sisi; Chang, Chung-Cheh; Akhavan, Aaron; Spiegel, Joseph; Jurukovski, Vladimir; Rafailovich, Miriam; Simon, Marcia
2012-02-01
Dental pulp stem cells were plated on two dentally relevant materials i.e. PMMA commonly used for denture and Titanium used for implants. In both cases, we probed for the role of surface interaction and substrate morphology. Different films of PMMA were spun cast directly onto Si wafers; PMMA fibers of different diameters were electro spun onto some of these substrates. Titanium metal was evaporated onto Si surfaces using an electron beam evaporator. In addition, on some surfaces, P4VP nanofibers were spun cast. DPSC were grown in alpha-MEM supplemented with 10% fetal bovine serum, 0.2mM L-ascorbic acid 2-phosphate, 2mm glutamine and 10mM beta-glycerol phosphate either with or without 10nM dexamethasone. After 21 days samples were examined using confocal microscopy of cells and by scanning electron microscopy (SEM) and Energy dispersive X-ray Analysis (EDAX). In the case of Titanium biomineralization was observed independent of dexamethasone, where the deposits were templated along the fibers. Minimal biomineralization was observed on flat Titanium and PMMA samples. Markers of osteogenesis and specific signaling pathways are being evaluated by RT-PCR, which are up regulated on each surface, to understand the fundamental manner in which surfaces interact with cell differentiation.
Larsson Wexell, C.; Thomsen, P.; Aronsson, B.-O.; Tengvall, P.; Rodahl, M.; Lausmaa, J.; Kasemo, B.; Ericson, L. E.
2013-01-01
In a series of experimental studies, the bone formation around systematically modified titanium implants is analyzed. In the present study, three different surface modifications were prepared and evaluated. Glow-discharge cleaning and oxidizing resulted in a highly stoichiometric TiO2 surface, while a glow-discharge treatment in nitrogen gas resulted in implants with essentially a surface of titanium nitride, covered with a very thin titanium oxide. Finally, hydrogen peroxide treatment of implants resulted in an almost stoichiometric TiO2, rich in hydroxyl groups on the surface. Machined commercially pure titanium implants served as controls. Scanning Auger Electron Spectroscopy, Scanning Electron Microscopy, and Atomic Force Microscopy revealed no significant differences in oxide thickness or surface roughness parameters, but differences in the surface chemical composition and apparent topography were observed. After surface preparation, the implants were inserted in cortical bone of rabbits and evaluated after 1, 3, and 6 weeks. Light microscopic evaluation of the tissue response showed that all implants were in contact with bone and had a large proportion of newly formed bone within the threads after 6 weeks. There were no morphological differences between the four groups. Our study shows that a high degree of bone contact and bone formation can be achieved with titanium implants of different surface composition and topography. PMID:24174936
NASA Astrophysics Data System (ADS)
Shabanov, N. S.; Isaev, A. B.; Orudzhev, F. F.; Murliev, E. K.
2018-01-01
The solar-energy conversion in eosin-sensitized solar cells based on cobalt and yttrium modified TiO2 nanotubes has been studied.It is established that the doping with metal ions shifts the absorption edge for Co and Y doped titanium dioxide samples to longer and shorter wavelengths, respectively. The efficiency of solar energy conversion depends on the wide bandgap of the semiconductor anode and reaches a maximum (4.4%) for yttrium-doped TiO2 in comparison to that (4.1%) for pure titanium dioxide.
Wang, Huiju; Song, Wenlan; Zhang, Min; Zhen, Qi; Guo, Mei; Zhang, Yida; Du, Xinzhen
2016-10-14
A novel titanium and nickel oxide composite nanosheets (TiO 2 /NiOCNSs) coating was in situ grown on a Nitinol (NiTi) wire by direct hydrothermal treatment and modified by self-assembly of trichlorophenylsilane for solid phase microextraction (SPME). TiO 2 /NiOCNSs were radially oriented and chemically bonded to the NiTi substrate with double-faced open access sites. Moreover the phenyl modified TiO 2 /NiOCNSs (TiO 2 /NiOCNSs-Ph) coating exhibited original surface supporting framework favorable for effective SPME. The extraction performance of TiO 2 /NiOCNSs-Ph coated NiTi (NiTi-TiO 2 /NiOCNSs-Ph) fiber was investigated for the concentration and detection of ultraviolet (UV) filters, polycyclic aromatic hydrocarbons (PAHs), phthalate acid esters and polychlorinated biphenyls coupled to HPLC with UV detection. The novel fiber exhibited better selectivity for UV filters and PAHs and presented greater extraction capability compared to commercial polydimethylsiloxane and polyacrylate fibers. Under the optimized conditions for SPME of UV filters, the proposed method presented linear ranges from 0.1 to 300μg/L with correlation coefficients of higher than 0.999 and limits of detection from 0.030μg/L to 0.064μg/L. Relative standard deviations (RSDs) were below 7.16% and 8.42% for intra-day and inter-day measurements with the single fiber, respectively. Furthermore RSDs for fiber-to-fiber reproducibility from 6.57% to 8.93% were achieved. The NiTi-TiO 2 /NiOCNSs-Ph fiber can be used up to 200 times. The proposed method was successfully applied to the preconcentration and determination of trace target UV filters in different environmental water samples. The relative recoveries from 87.3% to 104% were obtained with RSDs less than 8.7%. Copyright © 2016 Elsevier B.V. All rights reserved.
Effect of titanium on the creep deformation behaviour of 14Cr-15Ni-Ti stainless steel
NASA Astrophysics Data System (ADS)
Latha, S.; Mathew, M. D.; Parameswaran, P.; Nandagopal, M.; Mannan, S. L.
2011-02-01
14Cr-15Ni-Ti modified stainless steel alloyed with additions of phosphorus and silicon is a potential candidate material for the future cores of Prototype Fast Breeder Reactor. In order to optimise the titanium content in this steel, creep tests have been conducted on the heats with different titanium contents of 0.18, 0.23, 0.25 and 0.36 wt.% at 973 K at various stress levels. The stress exponents indicated that the rate controlling deformation mechanism was dislocation creep. A peak in the variation of rupture life with titanium content was observed around 0.23 wt.% titanium and the peak was more pronounced at lower stresses. The variation in creep strength with titanium content was correlated with transmission electron microscopic investigations. The peak in creep strength exhibited by the material with 0.23 wt.% titanium is attributed to the higher volume fraction of fine secondary titanium carbide (TiC) precipitates.
Optical properties of spin-on deposited low temperature titanium oxide thin films
NASA Astrophysics Data System (ADS)
Rantala, J. T.; Kärkkäinen, A. H. O.
2003-06-01
This letter presents a method to fabricate high quality, high refractive index titanium oxide thin films by applying liquid phase spin-on deposition combined with low temperature annealing. The synthesis of the liquid form titanium oxide material is carried out using a sol-gel synthesis technique. The material can be annealed at low temperature (150 C°) to achieve relatively high refractive index of 1.94 at 632.8 nm wavelength, whereas annealing at 350 C° results in index of 2.03 at 632.8 nm. Film depositions are demonstrated on silicon substrates with 0.5% uniformity in thickness. Refractive indices and extinction coefficients are characterized over a broad wavelength range to demonstrate the optical performance of this novel aqueous phase spin-on deposited hybrid titanium oxide material.
Medical equipment bio-capability processes using the atmospheric plasma-sprayed titanium coating
NASA Astrophysics Data System (ADS)
Rezaei, F.; Saviz, S.; Ghoranneviss, M.
2017-12-01
Antibacterial surfaces such as titanium coatings are able to have capability in the human body environment. In this study, titanium coatings are deposited on the 316 stainless steel substrates by a handmade plasma spray system. Some mechanical, chemical properties and microstructure of the created titanium layer are determined to evaluate the quality of coating. The XRD, SEM, adhesion tests from cross cut and corrosion test by potentiodynamic are used. During the different stages, some of the parameters are changed in different samples to achieve the best quality in the coating. It is shown that by increasing the spray time, the production of nanoparticles begins. On the other hand, the best layers are created when the spray main gas flow rate has a certain amount.
Characterization of Ti and Co based biomaterials processed via laser based additive manufacturing
NASA Astrophysics Data System (ADS)
Sahasrabudhe, Himanshu
Titanium and Cobalt based metallic materials are currently the most ideal materials for load-bearing metallic bio medical applications. However, the long term tribological degradation of these materials still remains a problem that needs a solution. To improve the tribological performance of these two metallic systems, three different research approaches were adapted, stemming out four different research projects. First, the simplicity of laser gas nitriding was utilized with a modern LENS(TM) technology to form an in situ nitride rich later in titanium substrate material. This nitride rich composite coating improved the hardness by as much as fifteen times and reduced the wear rate by more than a magnitude. The leaching of metallic ions during wear was also reduced by four times. In the second research project, a mixture of titanium and silicon were processed on a titanium substrate in a nitrogen rich environment. The results of this reactive, in situ additive manufacturing process were Ti-Si-Nitride coatings that were harder than the titanium substrate by more than twenty times. These coatings also reduced the wear rate by more than two magnitudes. In the third research approach, composites of CoCrMo alloy and Calcium phosphate (CaP) bio ceramic were processed using LENS(TM) based additive manufacturing. These composites were effective in reducing the wear in the CoCrMo alloy by more than three times as well as reduce the leaching of cobalt and chromium ions during wear. The novel composite materials were found to develop a tribofilm during wear. In the final project, a combination of hard nitride coating and addition of CaP bioceramic was investigated by processing a mixture of Ti6Al4V alloy and CaP in a nitrogen rich environment using the LENS(TM) technology. The resultant Ti64-CaP-Nitride coatings significantly reduced the wear damage on the substrate. There was also a drastic reduction in the metal ions leached during wear. The results indicate that the three tested approaches for reducing the wear damage in Ti and Co based were successful. These approaches and the associated research investigations could pave the way for future work in alleviating wear and corrosion related damage, especially via the additive manufacturing route.
Córdoba, Alba; Satué, María; Gómez-Florit, Manuel; Hierro-Oliva, Margarita; Petzold, Christiane; Lyngstadaas, Staale P; González-Martín, María Luisa; Monjo, Marta; Ramis, Joana M
2015-03-11
Flavonoids are small polyphenolic molecules of natural origin with antioxidant, anti-inflammatory, and antibacterial properties. Here, a bioactive surface based on the covalent immobilization of flavonoids taxifolin and quercitrin on titanium substrates is presented, using (3-aminopropyl)triethoxysilane (APTES) as coupling agent. FTIR and XPS measurements confirm the grafting of the flavonoids to the surfaces. Using 2-aminoethyl diphenylborinate (DPBA, a flavonoid-specific dye), the modified surfaces are imaged by fluorescence microscopy. The bioactivity of the flavonoid-modified surfaces is evaluated in vitro with human umbilical cord derived mesenchymal stem cells (hUC-MSCs) and human gingival fibroblasts (HGFs) and compared to that of simple flavonoid coatings prepared by drop casting. Flavonoid-modified surfaces show anti-inflammatory and anti-fibrotic potential on HGF. In addition, Ti surfaces covalently functionalized with flavonoids promote the differentiation of hUC-MSCs to osteoblasts--enhancing the expression of osteogenic markers, increasing alkaline phosphatase activity and calcium deposition; while drop-casted surfaces do not. These findings could have a high impact in the development of advanced implantable medical devices like bone implants. Given the broad range of bioactivities of flavonoid compounds, these surfaces are ready to be explored for other biomedical applications, e.g., as stent surface or tumor-targeted functionalized nanoparticles for cardiovascular or cancer therapies. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effect of plastic-covered ultrasonic scalers on titanium implant surfaces.
Mann, M; Parmar, D; Walmsley, A D; Lea, S C
2012-01-01
Maintaining oral health around titanium implants is essential. The formation of a biofilm on the titanium surface will influence the continuing success of the implant. These concerns have led to modified ultrasonic scaler instruments that look to reduce implant damage while maximising the cleaning effect. This study aimed to assess the effect of instrumentation, with traditional and modified ultrasonic scalers, on titanium implant surfaces and to correlate this with the oscillations of the instruments. Two ultrasonic insert designs (metallic TFI-10 and a plastic-tipped implant insert) were selected. Each scaler probe was scanned using a scanning laser vibrometer, under loaded and unloaded conditions, to determine their oscillation characteristics. Loads were applied against a titanium implant (100g and 200 g) for 10 s. The resulting implant surfaces were then scanned using laser profilometry and scanning electron microscopy (SEM). Insert probes oscillated with an elliptical motion with the maximum amplitude at the probe tip. Laser profilometry detected defects in the titanium surface only for the metallic scaler insert. Defect widths at 200 g high power were significantly larger than all other load/power conditions (P<0.02). Using SEM, it was observed that modifications to the implant surface had occurred following instrumentation with the plastic-tipped insert. Debris was also visible around the defects. Metal scalers produce defects in titanium implant surfaces and load and power are important factors in the damage caused. Plastic-coated scaler probes cause minimal damage to implant surfaces and have a polishing action but can leave plastic deposits behind on the implant surface. © 2011 John Wiley & Sons A/S.
Taxt-Lamolle, Sébastien F; Rubert, Marina; Haugen, Håvard J; Lyngstadaas, Ståle Petter; Ellingsen, Jan Eirik; Monjo, Marta
2010-03-01
Previous studies have shown that bone-to-implant attachment of titanium implants to cortical bone is improved when the surface is modified with hydrofluoric acid. The aim of this study was to investigate if biological factors are involved in the improved retention of these implants. Fluoride was implemented in implant surfaces by cathodic reduction with increasing concentrations of HF in the electrolyte. The modified implants were placed in the cortical bone in the tibias of New Zealand white rabbits. After 4 weeks of healing, wound fluid collected from the implant site showed lower lactate dehydrogenase activity and less bleeding in fluoride-modified implants compared to control. A significant increase in gene expression levels of osteocalcin and tartrate-resistant acid phosphatase (TRAP) was found in the cortical bone attached to Ti implants modified with 0.001 and 0.01 vol.% HF, while Ti implants modified with 0.1% HF showed only induced TRAP mRNA levels. These results were supported by the performed micro-CT analyses. The volumetric bone mineral density of the cortical bone hosting Ti implants modified with 0.001% and 0.01% HF was higher both in the newly woven bone (<100 microm from the interface) and in the older Haversian bone (>100 microm). In conclusion, the modulation of these biological factors by surface modification of titanium implants with low concentrations of HF using cathodic reduction may explain their improved osseointegration properties. Copyright 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kato, Zenta; Kashima, Ryo; Tatsumi, Kohei; Fukuyama, Shinnosuke; Izumiya, Koichi; Kumagai, Naokazu; Hashimoto, Koji
2016-12-01
For oxygen formation without forming chlorine in seawater electrolysis for hydrogen production we have been using the anode consisting of three layers of MnO2-type multiple oxide catalyst, intermediate layer and titanium substrate. The intermediate layer was used for prevention of oxidation of the titanium substrate during anodic polarization for oxygen evolution and was prepared by calcination of butanol solutions of H2IrCl6 and SnCl4 coated on titanium. The protectiveness of Ir1-xSnxO2 layer formed was directly examined using Ir1-xSnxO2/Ti anodes in H2SO4 solution changing the preparation conditions of the layer. When the sum of Ir4+ and Sn4+ was 0.1 M, the highest protectiveness was observed at 0.06 M Sn4+. Although an increase in calcination temperature led to the formation of Ir1-x-ySnxTiyO2 triple oxide with a slightly lower catalytic activity for oxygen evolution, the anode calcined at 450 °C showed the highest protectiveness.
NASA Astrophysics Data System (ADS)
Thanka Rajan, S.; Karthika, M.; Bendavid, Avi; Subramanian, B.
2016-04-01
The bioactivity of magnetron sputtered thin film metallic glasses (TFMGs) of Zr48Cu36Al8Ag8 (at.%) on titanium substrates was tested for bio implant applications. The structural and elemental compositions of TFMGs were analyzed by XRD, XPS and EDAX. X-ray diffraction analysis displayed a broad hump around the incident angle of 30-50°, suggesting that the coatings possess a glassy structure. An in situ crystal growth of hydroxyapatite was observed by soaking the sputtered specimen in simulated body fluid (SBF). The nucleation and growth of a calcium phosphate (Ca-P) bone-like hydroxyapatite on Zr48Cu36Al8Ag8 (at.%) TFMG from SBF was investigated by using XRD, AFM and SEM. The presence of calcium and phosphorus elements was confirmed by EDAX and XPS. In vitro electrochemical corrosion studies indicated that the Zr-based TFMG coating sustain in the stimulated body-fluid (SBF), exhibiting superior corrosion resistance with a lower corrosion penetration rate and electrochemical stability than the bare crystalline titanium substrate.
NASA Astrophysics Data System (ADS)
Liu, Fencheng; Mao, Yuqing; Lin, Xin; Zhou, Baosheng; Qian, Tao
2016-09-01
To improve the high temperature oxidation resistance of TA2 titanium alloy, a gradient Ni-Ti coating was laser cladded on the surface of the TA2 titanium alloy substrate, and the microstructure and oxidation behavior of the laser cladded coating were investigated experimentally. The gradient coating with a thickness of about 420-490 μm contains two different layers, e.g. a bright layer with coarse equiaxed grain and a dark layer with fine and columnar dendrites, and a transition layer with a thickness of about 10 μm exists between the substrate and the cladded coating. NiTi, NiTi2 and Ni3Ti intermetallic compounds are the main constructive phases of the laser cladded coating. The appearance of these phases enhances the microhardness, and the dense structure of the coating improves its oxidation resistance. The solidification procedure of the gradient coating is analyzed and different kinds of solidification processes occur due to the heat dissipation during the laser cladding process.
Xu, Gaoqiang; Shen, Xinkun; Dai, Liangliang; Ran, Qichun; Ma, Pingping; Cai, Kaiyong
2017-01-01
Bacterial infection is one of the most severe postoperative complications leading to implantation failure. The early bacterial stage (4-6h) was proved to be the "decisive period" for long-term bacteria-related infection. Thus, to endow potential early antibacterial capacity for a titanium (Ti) based implant, an effective antiseptic agent of octenidine dihydrochloride (OCT) was effectively loaded on the mesoporous silica nanoparticles (MSNs)-incorporated titania coating which was fabricated by an electrophoretic-enhanced micro-arc oxidation technique. The surface characteristic of the coatings were characterized by various methods (SEM, AFM, XPS, XRD, etc.), and its corrosion resistance was also examined by the potentiodynamic polarization curves. The composite coating without OCT loading not only displayed good cytocompatibility but also exhibited certain anti-bacterial property. After loading with OCT, its antibacterial efficiency of the titanium substrates with composite coating was greatly enhanced without compromising their cytocompatibility. The study provides an approach for the fabrication of anti-bacterial Ti implant for potential orthopedic application. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Cen; Kong, Xiangdong; Zhang, Sheng-Min; Lee, In-Seop
2015-04-01
Nanocomposite layers of mineral/osteogenic growth peptide (OGP) were synthesized on calcium phosphate coated titanium substrates by immersing in calcium-phosphate buffer solution containing OGP. Peptide incorporated mineral was characterized by determining quantity loaded, effects on mineral morphology and structure. Also, the biological activity was investigated by cell adhesion, proliferation assay, and measurement of alkaline phosphatase (ALP) activity. X-ray photoelectron spectroscopy (XPS) and micro-bicinchoninic acid (BCA) assay revealed that OGP was successfully incorporated with mineral and the amount was increased with immersion time. Incorporated OGP changed the mineral morphology from sharp plate-like shape to more rounded one, and the octacalcium phosphate structure of the mineral was gradually transformed into apatite. With confocal microscopy to examine the incorporation of fluorescently labeled peptide, OGP was evenly distributed throughout mineral layers. Mineral/OGP nanocomposites promoted cell adhesion and proliferation, and also increased ALP activity of mesenchymal stem cells (MSCs). Results presented here indicated that the mineral/OGP nanocomposites formed on titanium substrates had the potential for applications in dental implants.
Energy levels distribution in supersaturated silicon with titanium for photovoltaic applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pérez, E., E-mail: eduper@ele.uva.es; Castán, H.; García, H.
2015-01-12
In the attempt to form an intermediate band in the bandgap of silicon substrates to give it the capability to absorb infrared radiation, we studied the deep levels in supersaturated silicon with titanium. The technique used to characterize the energy levels was the thermal admittance spectroscopy. Our experimental results showed that in samples with titanium concentration just under Mott limit there was a relationship among the activation energy value and the capture cross section value. This relationship obeys to the well known Meyer-Neldel rule, which typically appears in processes involving multiple excitations, like carrier capture/emission in deep levels, and itmore » is generally observed in disordered systems. The obtained characteristic Meyer-Neldel parameters were Tmn = 176 K and kTmn = 15 meV. The energy value could be associated to the typical energy of the phonons in the substrate. The almost perfect adjust of all experimental data to the same straight line provides further evidence of the validity of the Meyer Neldel rule, and may contribute to obtain a deeper insight on the ultimate meaning of this phenomenon.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, S. K.; Mohan, S.; Bysakh, S.
The formation of surface oxide layer as well as compositional changes along the thickness for NiTi shape memory alloy thin films deposited by direct current magnetron sputtering at substrate temperature of 300 °C in the as-deposited condition as well as in the postannealed (at 600 °C) condition have been thoroughly studied by using secondary ion mass spectroscopy, x-ray photoelectron spectroscopy, and scanning transmission electron microscopy-energy dispersive x-ray spectroscopy techniques. Formation of titanium oxide (predominantly titanium dioxide) layer was observed in both as-deposited and postannealed NiTi films, although the oxide layer was much thinner (8 nm) in as-deposited condition. The depletionmore » of Ti and enrichment of Ni below the oxide layer in postannealed films also resulted in the formation of a graded microstructure consisting of titanium oxide, Ni{sub 3}Ti, and B2 NiTi. A uniform composition of B2 NiTi was obtained in the postannealed film only below a depth of 200–250 nm from the surface. Postannealed film also exhibited formation of a ternary silicide (Ni{sub x}Ti{sub y}Si) at the film–substrate interface, whereas no silicide was seen in the as-deposited film. The formation of silicide also caused a depletion of Ni in the film in a region ∼250–300 nm just above the film substrate interface.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Universal Common Communication Substrate (UCCS) is a low-level communication substrate that exposes high-performance communication primitives, while providing network interoperability. It is intended to support multiple upper layer protocol (ULPs) or programming models including SHMEM,UPC,Titanium,Co-Array Fortran,Global Arrays,MPI,GASNet, and File I/O. it provides various communication operations including one-sided and two-sided point-to-point, collectives, and remote atomic operations. In addition to operations for ULPs, it provides an out-of-band communication channel required typically required to wire-up communication libraries.
Excimer laser decoating of chromium titanium aluminium nitride to facilitate re-use of cutting tools
NASA Astrophysics Data System (ADS)
Sundar, M.; Whitehead, D.; Mativenga, P. T.; Li, L.; Cooke, K. E.
2009-11-01
This work reports on the technical feasibility and establishment of a process window for removing chromium titanium aluminium nitride (CrTiAlN) coating from steel substrates by laser irradiation. CrTiAlN coating has high hardness and oxidation resistance, with applications for use with cutting tools. The motivation for removing such coatings is to facilitate re-use of tooling by enabling regrinding or reshaping of a worn tool and hence promote sustainable material usage. In this work, laser decoating was performed using an excimer laser. The effect of laser fluence, number of pulses, frequency, scanning speed and laser beam overlap on the decoating performance was investigated in detail. The minimum threshold laser fluence for removing the CrTiAlN coating was lower than that of the steel substrate and this factor is beneficial in controlling the decoating process. Successful laser removal of CrTiAlN coating without noticeable damage to the steel substrate was demonstrated.
Bear, Joseph C; Gomez, Virginia; Kefallinos, Nikolaos S; McGettrick, James D; Barron, Andrew R; Dunnill, Charles W
2015-12-15
Titanium dioxide (TiO2) bi-phasic powders with individual particles containing an anatase and rutile hetero-junction have been prepared using a sequential layer sol-gel deposition technique to soluble substrates. Sequential thin films of rutile and subsequently anatase TiO2 were deposited onto sodium chloride substrates yielding extremely fragile composite layered discs that fractured into "Janus-like" like powders on substrate dissolution. Nitrogen doped and platinum sputtered analogues were also prepared, and analysed for photocatalytic potential using the photodegradation of Rhodamine B, a model organic pollutant under UV and visible light irradiation. The materials were characterised using X-ray diffraction, X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy, Raman spectroscopy and scanning electron microscopy. This paper sheds light on the relationship between anatase and rutile materials when in direct contact and demonstrates a robust method for the synthesis of bi-phasic nanoparticles, ostensibly of any two materials, for photocatalytic reactions or otherwise. Copyright © 2015 Elsevier Inc. All rights reserved.
Sol-gel-derived hydroxyapatite-carbon nanotube/titania coatings on titanium substrates.
Ji, Xiaoli; Lou, Weiwei; Wang, Qi; Ma, Jianfeng; Xu, Haihong; Bai, Qing; Liu, Chuantong; Liu, Jinsong
2012-01-01
In this paper, hydroxyapatite-carbon nanotube/titania (HA-CNT/TiO(2)) double layer coatings were successfully developed on titanium (Ti) substrates intended for biomedical applications. A TiO(2) coating was firstly developed by anodization to improve bonding between HA and Ti, and then the layer of HA and CNTs was coated on the surface by the sol-gel process to improve the biocompatibility and mechanical properties of Ti. The surfaces of double layer coatings were uniform and crack-free with a thickness of about 7 μm. The bonding strength of the HA-CNT/TiO(2) coating was higher than that of the pure HA and HA-CNT coatings. Additionally, in vitro cell experiments showed that CNTs promoted the adhesion of preosteoblasts on the HA-CNT/TiO(2) double layer coatings. These unique surfaces combined with the osteoconductive properties of HA exhibited the excellent mechanical properties of CNTs. Therefore, the developed HA-CNT/TiO(2) coatings on Ti substrates might be a promising material for bone replacement.
Mesoporous TiO2 and copper-modified TiO2 nanoparticles: A case study
NASA Astrophysics Data System (ADS)
Ajay Kumar, R.; Vasavi Dutt, V. G.; Rajesh, Ch.
2018-02-01
In this paper we report the synthesis of mesoporous titanium dioxide (M-TiO2) nanoparticles (NPs) and copper (Cu)-modified M-TiO2 NPs by the hydrothermal method at relatively low temperatures using cetyltrimethylammonium bromide (CTAB) as a template. In order to get ordered spherical particles and better interaction between cationic and anionic precursor, we have used titanium isopropoxide (TTIP) as titanium source and CTAB as surfactant. The process of modification by copper to M-TiO2 follows the impregnation method. The change in structural and optical properties of NPs were estimated using different characterization techniques like X-ray diffraction, field emission scanning electron microscopy, Brunner-Emmett-Teller curve and UV-Vis absorption analysis. M-TiO2 and Cu-modified M-TiO2 exhibit pure anatase crystalline phase and shows no evidence of CuO formation. Nitrogen adsorption-desorption hysteresis reveals that the material is mesoporous. Several samples synthesized at different process temperature were further studied in order to make them suitable for a wide range of applications.
Enhancing antimicrobial activity of TiO2/Ti by torularhodin bioinspired surface modification.
Ungureanu, Camelia; Dumitriu, Cristina; Popescu, Simona; Enculescu, Monica; Tofan, Vlad; Popescu, Marian; Pirvu, Cristian
2016-02-01
Implant-associated infections are a major cause of morbidity and mortality. This study was performed using titanium samples coated by anodization with a titanium dioxide (TiO2) shielded nanotube layer. TiO2/Ti surface was modified by simple immersion in torularhodin solution and by using a mussel-inspired method based on polydopamine as bio adhesive for torularhodin immobilization. SEM analysis revealed tubular microstructures of torularhodin and the PDA ability to function as a catchy anchor between torularhodin and TiO2 surface. Corrosion resistance was associated with TiO2 barrier oxide layer and nano-organized oxide layer and the torularhodin surface modification does not bring significant changes in resistance of the oxide layer. Our results demonstrated that the torularhodin modified TiO2/Ti surface could effectively prevent adhesion and proliferation of Escherichia coli, Staphylococcus aureus, Enterococcus faecalis, Bacillus subtilis, and Pseudomonas aeruginosa. The new modified titanium surface showed good biocompatibility and well-behaved haemocompatibility. This biomaterial with enhanced antimicrobial activity holds great potential for future biomedical applications. Copyright © 2015 Elsevier B.V. All rights reserved.
The Growth Behavior of Titanium Boride Layers in α and β Phase Fields of Titanium
NASA Astrophysics Data System (ADS)
Lv, Xiaojun; Hu, Lingyun; Shuang, Yajing; Liu, Jianhua; Lai, Yanqing; Jiang, Liangxing; Li, Jie
2016-07-01
In this study, the commercially pure titanium was successfully electrochemical borided in a borax-based electrolyte. The process was carried out at a constant cathodic current density of 300 mA cm-2 and at temperatures of 1123 K and 1223 K (850 °C and 950 °C) for 0.5, 1, 2, 3, and 5 hours. The growth behavior of titanium boride layers in the α phase field of titanium was compared with that in the β phase field. After boriding, the presence of both the TiB2 top layer and TiB whisker sub-layer was confirmed by the X-ray diffraction (XRD) and scanning electron microscope. The relationship between the thickness of boride layers and boriding time was found to have a parabolic character in both α and β phase fields of titanium. The TiB whiskers showed ultra-fast growth rate in the β phase field. Its growth rate constant was found to be as high as 3.2002 × 10-13 m2 s-1. Besides, the chemical resistance of the TiB2 layer on the surface of titanium substrate was characterized by immersion tests in molten aluminum.
Evaluation of modified titanium surfaces physical and chemical characteristics
NASA Astrophysics Data System (ADS)
Lukaszewska-Kuska, Magdalena; Leda, Bartosz; Gajdus, Przemyslaw; Hedzelek, Wieslaw
2017-11-01
Development of dental implantology is focused, among other things, on devising active surface of the implant, conditioning acceleration of the implant's integration with the bone. Increased roughness, characteristic for group of implants with developed surface, altered topography and chemically modified implant's surface determines increased implants stability. In this study four different titanium surfaces modifications: turned (TS); aluminium oxide-blasted (Al2O3); resorbable material blasted (RBM); sandblast and then etched with a mixture of acids (SAE), were evaluated in terms of surfaces topography and chemical composition prior to in vivo analysis. Topography analysis revealed two groups: one with smooth, anisotropic, undeveloped TS surface and the second group with remaining surfaces presenting rough, isotropic, developed surfaces with added during blasting procedure aluminium for Al2O3 and calcium and phosphorus for RBM. Physical and chemical modifications of titanium surface change its microstructure (typical for SAE) and increase its roughness (highest for Al2O3-blasted and RBM surfaces). The introduced modifications develop titanium surface - 10 times for SAE surfaces, 16 times for Al2O3-blasted surfaces, and 20 times for RBM surfaces.
NASA Astrophysics Data System (ADS)
Shaban, Yasser A.; El Sayed, Mohamed A.; El Maradny, Amr A.; Al Farawati, Radwan Kh.; Al Zobidi, Mosa I.; Khan, Shahed U. M.
2016-03-01
In this work, the sonicated sol-gel method was used for synthesizing carbon-modified titanium oxide nanoparticles. Carbon incorporation was achieved by using titanium (IV) isopropoxide as a titanium and carbon-containing precursor. The photocatalytic efficiency of the synthesized photocatalyst was assessed by examining the photocatalytic removal of polychlorinated biphenyls (PCBs) from aqueous solution. For comparison, unmodified (regular) titanium dioxide (n-TiO2) was used as a reference catalyst. To confirm the carbon incorporation in CM-n-TiO2 nanoparticles, energy dispersive spectroscopy (EDS) analysis was used. Significantly, the bandgap energy was found to be reduced from 2.99 eV for n-TiO2 to 1.8 eV for CM-n-TiO2, which in turn improved the performance of CM-n-TiO2 toward the photocatalytic removal of PCBs. The effects of CM-n-TiO2 loading, PCBs concentration, and pH of the solution on the photodegradation rate of PCBs were investigated. The highest removal rate was found to be at pH 5 and CM-n-TiO2 loading of 0.5 g L-1. According to Langmuir-Hinshelwood model, the photodegradation of PCBs using CM-n-TiO2 followed a pseudo-first order reaction kinetics.
NASA Astrophysics Data System (ADS)
Gokcen Buldu, Dilara; Cantas, Ayten; Turkoglu, Fulya; Gulsah Akca, Fatime; Meric, Ece; Ozdemir, Mehtap; Tarhan, Enver; Ozyuzer, Lutfi; Aygun, Gulnur
2018-02-01
In this study, the effect of sulfurization temperature on the morphology, composition and structure of Cu2ZnSnS4 (CZTS) thin films grown on titanium (Ti) substrates has been investigated. Since Ti foils are flexible, they were preferred as a substrate. As a result of their flexibility, they allow large area manufacturing and roll-to-roll processes. To understand the effects of sulfurization temperature on the CZTS formation on Ti foils, CZTS films fabricated with various sulfurization temperatures were investigated with several analyses including x-ray diffraction (XRD), scanning electron microscopy (SEM), x-ray photoelectron spectroscopy and Raman scattering. XRD measurements showed a sharp and intense peak coming from the (112) planes of the kesterite type lattice structure (KS), which is strong evidence for good crystallinity. The surface morphologies of our thin films were investigated using SEM. Electron dispersive spectroscopy was also used for the compositional analysis of the thin films. According to these analysis, it is observed that Ti foils were suitable as substrates for the growth of CZTS thin films with desired properties and the sulfurization temperature plays a crucial role for producing good quality CZTS thin films on Ti foil substrates.
Raie, Diana S.; Mhatre, Eisha; El-Desouki, Doaa S.; Labena, Ahmed; El-Ghannam, Gamal; Farahat, Laila A.; Youssef, Tareq; Fritzsche, Wolfgang; Kovács, Ákos T.
2018-01-01
The present work was targeted to design a surface against cell seeding and adhering of bacteria, Bacillus subtilis. A multi-walled carbon nanotube/titanium dioxide nano-power was produced via simple mixing of carbon nanotube and titanium dioxide nanoparticles during the sol-gel process followed by heat treatment. Successfully, quercetin was immobilized on the nanocomposite via physical adsorption to form a quercetin/multi-walled carbon nanotube/titanium dioxide nanocomposite. The adhesion of bacteria on the coated-slides was verified after 24 h using confocal laser-scanning microscopy. Results indicated that the quercetin/multi-walled carbon nanotube/titanium dioxide nanocomposite had more negativity and higher recovery by glass surfaces than its counterpart. Moreover, coating surfaces with the quercetin-modified nanocomposite lowered both hydrophilicity and surface-attached bacteria compared to surfaces coated with the multi-walled carbon nanotubes/titanium dioxide nanocomposite. PMID:29346268
Improvement in Microstructure Performance of the NiCrBSi Reinforced Coating on TA15 Titanium Alloy
NASA Astrophysics Data System (ADS)
Peng, Li
2012-10-01
This work is based on the dry sliding wear of NiCrBSi reinforced coating deposited on TA15 titanium alloy using the laser cladding technique, the parameters of which were such as to provide almost crack-free coatings with minimum dilution and very low porosity. SEM results indicated that a laser clad coating with metallurgical joint to the substrate was formed. Compared with TA15 substrate, an improvement of the micro-hardness and wear resistance was observed for this composite coating. Rare earth oxide Y2O3 was beneficial in producing of the amorphous phases in laser clad coating. With addition of Y2O3, more amorphous alloys were produced, which increased the micro-hardness and wear resistance of the coating.
NASA Technical Reports Server (NTRS)
Brainard, W. A.; Wheeler, D. R.
1977-01-01
Radiofrequency sputtered coatings of titanium carbide, molybdenum carbide and titanium boride were tested as wear resistant coatings on stainless steel in a pin on disk apparatus. X-ray photoelectron spectroscopy (XPS) was used to analyze the sputtered films with regard to both bulk and interface composition in order to obtain maximum film performance. Significant improvements in friction behavior were obtained when properly biased films were deposited on deliberately preoxidized substrates. XPS depth profile data showed thick graded interfaces for bias deposited films even when adherence was poor. The addition of 10 percent hydrogen to the sputtering gas produced coatings with thin poorly adherent interfaces. Results suggest that some of the common practices in the field of sputtering may be detrimental to achieving maximum adherence and optimum composition for these refractory compounds.
Diffusion Bonding of Silicon Carbide Ceramics using Titanium Interlayers
NASA Technical Reports Server (NTRS)
Halbig, Michael C.; Singh, Mrityunjay; Shpargel, Tarah P.; Kiser, James D.
2006-01-01
Robust joining approaches for silicon carbide ceramics are critically needed to fabricate leak free joints with high temperature mechanical capability. In this study, titanium foils and physical vapor deposited (PVD) titanium coatings were used to form diffusion bonds between SiC ceramics using hot pressing. Silicon carbide substrate materials used for bonding include sintered SiC and two types of CVD SiC. Microscopy results show the formation of well adhered diffusion bonds. The bond strengths as determined from pull tests are on the order of several ksi, which is much higher than required for a proposed application. Microprobe results show the distribution of silicon, carbon, titanium, and other minor elements across the diffusion bond. Compositions of several phases formed in the joint region were identified. Potential issues of material compatibility and optimal bond formation will also be discussed.
Moradi, Sona; Hadjesfandiari, Narges; Toosi, Salma Fallah; Kizhakkedathu, Jayachandran N; Hatzikiriakos, Savvas G
2016-07-13
In order to design antithrombotic implants, the effect of extreme wettability (superhydrophilicity to superhydrophobicity) on the biocompatibility of the metallic substrates (stainless steel and titanium) was investigated. The wettability of the surface was altered by chemical treatments and laser ablation methods. The chemical treatments generated different functionality groups and chemical composition as evident from XPS analysis. The micro/nanopatterning by laser ablation resulted in three different pattern geometry and different surface roughness and consequently wettability. The patterned surface were further modified with chemical treatments to generate a wide range of surface wettability. The influence of chemical functional groups, pattern geometry, and surface wettability on protein adsorption and platelet adhesion was studied. On chemically treated flat surfaces, the type of hydrophilic treatment was shown to be a contributing factor that determines the platelet adhesion, since the hydrophilic oxidized substrates exhibit less platelet adhesion in comparison to the control untreated or acid treated surfaces. Also, the surface morphology, surface roughness, and superhydrophobic character of the surfaces are contributing factors to platelet adhesion on the surface. Our results show that superhydrophobic cauliflower-like patterns are highly resistant to platelet adhesion possibly due to the stability of Cassie-Baxter state for this pattern compared to others. Our results also show that simple surface treatments on metals offer a novel way to improve the hemocompatibility of metallic substrates.
NASA Astrophysics Data System (ADS)
Amirnejad, M.; Afshar, A.; Salehi, S.
2018-05-01
Composite coatings of Hydroxyapatite (HA) with ceramics, polymers and metals are used to modify the surface structure of implants. In this research, HA/TiO2 composite coating was fabricated by electrophoretic deposition (EPD) on 316 stainless steel substrate. HA/TiO2 composite coatings with 5, 10 and 20 wt.% of TiO2, deposited at 40 V and 90 s as an optimum condition. The samples coated at this condition led to an adherent, continuous and crack-free coating. The influence of TiO2 content was studied by performing different characterization methods such as scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDS), corrosion resistance in simulated body fluid (SBF), coating's dissolution rate in physiological solution and bond strength to the substrate. The results showed that the higher amount of TiO2 in the composite coating led to increase in bond strength of coating to stainless steel substrate from 3 MPa for HA coating to 5.5 MPa for HA-20 wt.% TiO2 composite coating. In addition, it caused to reduction of corrosion current density of samples in the SBF solution from 18.92 μA/cm2 for HA coating to 6.35 μA/cm2 for HA-20 wt.% TiO2 composite coating.
NASA Astrophysics Data System (ADS)
Amirnejad, M.; Afshar, A.; Salehi, S.
2018-04-01
Composite coatings of Hydroxyapatite (HA) with ceramics, polymers and metals are used to modify the surface structure of implants. In this research, HA/TiO2 composite coating was fabricated by electrophoretic deposition (EPD) on 316 stainless steel substrate. HA/TiO2 composite coatings with 5, 10 and 20 wt.% of TiO2, deposited at 40 V and 90 s as an optimum condition. The samples coated at this condition led to an adherent, continuous and crack-free coating. The influence of TiO2 content was studied by performing different characterization methods such as scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDS), corrosion resistance in simulated body fluid (SBF), coating's dissolution rate in physiological solution and bond strength to the substrate. The results showed that the higher amount of TiO2 in the composite coating led to increase in bond strength of coating to stainless steel substrate from 3 MPa for HA coating to 5.5 MPa for HA-20 wt.% TiO2 composite coating. In addition, it caused to reduction of corrosion current density of samples in the SBF solution from 18.92 μA/cm2 for HA coating to 6.35 μA/cm2 for HA-20 wt.% TiO2 composite coating.
Benvidi, Ali; Banaei, Maryam; Tezerjani, Marzieh Dehghan; Molahosseini, Hosein; Jahanbani, Shahriar
2017-12-14
This article describes an impedimetric aptasensor for the prostate specific antigen (PSA), a widely accepted prostate cancer biomarker. A glassy carbon electrode (GCE) was modified with titanium oxide nanoparticles (TiO 2 ) and silk fibroin nanofiber (SF) composite. The aptasensor was obtained by immobilizing a PSA-binding aptamer on the AuNP-modified with 6-mercapto-1-hexanol. The single fabrication steps were characterized by cyclic voltammetry and electrochemical impedance spectroscopy. The assay has two linear response ranges (from 2.5 fg.mL -1 to 25 pg.mL -1 , and from 25 pg.mL -1 to 25 ng.mL -1 ) and a 0.8 fg.mL -1 detection limit. After optimization of experimental conditions, the sensor is highly selective for PSA over bovine serum albumin and lysozyme. It was successfully applied to the detection of PSA in spiked serum samples. Graphical abstract Schematic of the fabrication of an aptasensor for the prostate specific antigen (PSA). It is based on the use of a glassy carbon electrode modified with gold nanoparticles and titanium oxide-silk fibroin. The immobilization process of aptamer and interaction with PSA were followed by electrochemical impedance spectroscopy technique.
Effects of different titanium zirconium implant surfaces on initial supragingival plaque formation.
John, Gordon; Becker, Jürgen; Schwarz, Frank
2017-07-01
The aim of the current study was the evaluation of biofilm development on different implant surfaces. Initial biofilm formation was investigated on five different implant surfaces, machined titanium (MTi), modified machined acid-etched titanium (modMATi), machined titanium zirconium (MTiZr), modified machined and acid-etched titanium zirconium (modMATiZr) and sandblasted large grid and acid-etched titanium zirconium surface (SLATiZr) for 24 and 48 h. Biocompatibility was tested after tooth brushing of the samples via cell viability testing with human gingival fibroblasts. After 24 h of biofilm collection, mean plaque surface was detected in the following descending order: After 24 h: MTiZr > MTi > SLATiZr > modMATiZr > modMATi. Both M surfaces showed significant higher biofilm formation than the other groups. After 48 h: MTiZr > MTi > SLATiZr > modMATiZr > modMATi. After tooth brushing: SLATiZr > modMATi > modMATiZr > MTi > MTiZr. All native samples depicted significant higher cell viability than their corresponding surfaces after biofilm removal procedure. The TiZr groups especially the modMATiZr group showed slower and less biofilm formation. In combination with the good biocompatibility, both modMA surfaces seem to be interesting candidates for surfaces in transgingival implant design. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Nijhuis, Arnold W G; van den Beucken, Jeroen J J P; Jansen, John A; Leeuwenburgh, Sander C G
2014-04-01
Immobilization of biomolecules onto implant surfaces is one of the most straightforward strategies to control the interaction between an implant and its biological environment. Recently, it was shown that the enzyme alkaline phosphatase (ALP) could be efficiently immobilized onto titanium implants in a single step using polydopamine. We hypothesized that such polydopamine-ALP coatings can enhance the early attachment of cells and increase mineralization. Therefore, the current study aimed at immobilization of ALP onto titanium by means of either one- or two-step polydopamine-assisted immobilization or electrospray deposition, the comparative characterization of these experimental substrates and subsequent cell behavioral analysis using primary osteoblast-like cells. Uncoated titanium and ALP-free polydopamine coatings served as controls. Despite significant ALP surface activity and lower water contact for angles ALP-containing surface modifications, only marginal effects on early cell behavior (i.e., cell spreading) and osteogenic differentiation (i.e., proliferation, differentiation and mineralization) were observed in comparison to uncoated titanium. Copyright © 2013 Wiley Periodicals, Inc.
Nucleophilic stabilization of water-based reactive ink for titania-based thin film inkjet printing
NASA Astrophysics Data System (ADS)
Gadea, C.; Marani, D.; Esposito, V.
2017-02-01
Drop on demand deposition (DoD) of titanium oxide thin films (<500 nm) is performed via a novel titanium-alkoxide-based solution that is tailored as a reactive ink for inkjet printing. The ink is developed as water-based solution by a combined use of titanium isopropoxide and n-methyldiethanolamine (MDEA) used as nucleophilic ligand. The function of the ligand is to control the fast hydrolysis/condensation reactions in water for the metal alkoxide before deposition, leading to formation of the TiO2 only after the jet process. The evolution of the titanium-ligand interactions at increasing amount of MDEA is here elucidated in terms of long term stability. The ink printability parameter (Z) is optimized, resulting in a reactive solution with printability, Z, >1, and chemical stability up to 600 h. Thin titanium oxide films (<500 nm) are proved on different substrates. Pure anatase phase is obtained after annealing at low temperature (ca. 400 °C).
NASA Astrophysics Data System (ADS)
Suarez Anzorena, Manuel; Bertolo, Alma A.; Gagetti, Leonardo; Gaviola, Pedro A.; del Grosso, Mariela F.; Kreiner, Andrés J.
2018-06-01
Titanium deuteride thin films have been manufactured under different conditions specified by deuterium gas pressure, substrate temperature and time. The films were characterized by different techniques to evaluate the deuterium content and the homogeneity of such films. Samples with different concentrations of deuterium, including non deuterated samples, were irradiated with a 150 keV proton beam. Both deposits, pristine and irradiated, were characterized by optical profilometry and scanning electron microscopy.
Litvinova, L S; Shupletsova, V V; Dunets, N A; Khaziakhmatova, O G; Yurova, K A; Khlusova, M Yu; Slepchenko, G B; Cherempey, E G; Sharkeev, Yu P; Komarova, E G; Sedelnikova, M B; Khlusov, I A
2017-01-01
Morphofunctional response of Jurkat T cells that were cultured for 24 h on substrates prepared from commercially pure titanium with relief microarc bilateral calcium phosphate coating containing copper or zinc was studied. Changes in the concentration of essential trace elements contained in this coating can cause significant imbalance of molecular processes of differentiation, secretion, apoptosis, and necrosis and reduce tumor cell survival.
Corrosion behavior and mechanical properties of bioactive sol-gel coatings on titanium implants.
Catauro, M; Bollino, F; Papale, F; Giovanardi, R; Veronesi, P
2014-10-01
Organic-inorganic hybrid coatings based on zirconia and poly (ε-caprolactone) (PCL) were prepared by means of sol-gel dip-coating technique and used to coat titanium grade 4 implants (Ti-4) in order to improve their wear and corrosion resistance. The coating chemical composition has been analysed by ATR-FTIR. The influence of the PCL amount has been investigated on the microstructure, mechanical properties of the coatings and their ability to inhibit the corrosion of titanium. SEM analysis has shown that all coatings have a nanostructured nature and that the films with high PCL content are crack-free. Mechanical properties of the coatings have been studied using scratch and nano-indentation tests. The results have shown that the Young's modulus of the coatings decreases in presence of large amounts of the organic phase, and that PCL content affects also the adhesion of the coatings to the underlying Ti-4 substrate. However, the presence of cracks on the PCL-free coatings affects severely the mechanical response of the samples at high loads. The electrochemical behavior and corrosion resistance of the coated and uncoated substrate has been investigated by polarization tests. The results have shown that both the coatings with or without PCL don't affect significantly the already excellent passivation properties of titanium. Copyright © 2014. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Bonse, J.; Kirner, S. V.; Koter, R.; Pentzien, S.; Spaltmann, D.; Krüger, J.
2017-10-01
Titanium nitride (TiN) was coated on different substrate materials, namely pure titanium (Ti), titanium alloy (Ti6Al4V) and steel (100Cr6), generating 2.5 μm thick TiN layers. Using femtosecond laser pulses (30 fs, 790 nm, 1 kHz pulse repetition rate), large surface areas (5 mm × 5 mm) of laser-induced periodic surface structures (LIPSS) with sub-wavelength periods ranging between 470 nm and 600 nm were generated and characterized by optical microscopy (OM), white light interference microscopy (WLIM) and scanning electron microscopy (SEM). In tribological tests, coefficients of friction (COF) of the nanostructured surfaces were determined under reciprocating sliding conditions (1 Hz, 1.0 N normal load) against a 10-mm diameter ball of hardened 100Cr6 steel during 1000 cycles using two different lubricants, namely paraffin oil and engine oil. It turned out that the substrate material, the laser fluence and the lubricant are crucial for the tribological performance. However, friction and wear could not be significantly reduced by LIPSS on TiN layers in comparison to unstructured TiN surfaces. Finally, the resulting wear tracks on the nanostructured surfaces were investigated with respect to their morphology (OM, SEM), depth (WLIM) and chemical composition by energy dispersive X-ray spectroscopy (EDX) and, on one hand, compared with each other, on the other hand, with non-structured TiN surfaces.
Morais, Lais S R; Jardim, Isabel C S F
2005-05-06
Titanium oxide-modified silica was prepared by reaction of silica with titanium tetrabutoxide and then was used as support in the preparation of stationary phases with self-immobilized polybutadiene (PBD) and PBD immobilized through microwave radiation. Chromatographic performance of the stationary phases was evaluated in terms of the efficiency (plates/m), asymmetry (A(s)), retention factor (k) and resolution (R(s)) of two standard sample mixtures, one of then containing the basic compound N,N-dimethylaniline. A microwave irradiation of 30 min at 520 W gave the best efficiency (86,500 N m(-1)), greater than that of a 6-day self immobilized phase (69,500 N m(-1)). Self-immobilized stationary phases prepared with bare silica were also studied for comparison. These resulted in lower chromatographic performance, 43,800 N m(-1), when compared to the self-immobilized phase prepared with titanized silica.
Low void content autoclave molded titanium alloy and polyimide graphite composite structures.
NASA Technical Reports Server (NTRS)
Vaughan, R. W.; Jones, R. J.; Creedon, J. F.
1972-01-01
This paper discusses a resin developed for use in autoclave molding of polyimide graphite composite stiffened, titanium alloy structures. Both primary and secondary bonded structures were evaluated that were produced by autoclave processing. Details of composite processing, adhesive formulary, and bonding processes are provided in this paper, together with mechanical property data for structures. These data include -65 F, room temperature, and 600 F shear strengths; strength retention after aging; and stress rupture properties at 600 F under various stress levels for up to 1000 hours duration. Typically, shear strengths in excess of 16 ksi at room temperature with over 60% strength retention at 600 F were obtained with titanium alloy substrates.
Metal alloy coatings and methods for applying
Merz, Martin D.; Knoll, Robert W.
1991-01-01
A method of coating a substrate comprises plasma spraying a prealloyed feed powder onto a substrate, where the prealloyed feed powder comprises a significant amount of an alloy of stainless steel and at least one refractory element selected from the group consisting of titanium, zirconium, hafnium, niobium, tantalum, molybdenum, and tungsten. The plasma spraying of such a feed powder is conducted in an oxygen containing atmosphere and forms an adherent, corrosion resistant, and substantially homogenous metallic refractory alloy coating on the substrate.
NASA Technical Reports Server (NTRS)
Riley, T.; Mahuson, T. C.; Seibert, K.
1979-01-01
A procedure is described for using argon and oxygen plasmas to promote adhesion of parylene coatings upon many difficult-to-bond substrates. Substrates investigated were gold, nickel, kovar, teflon (FEP), kapton, silicon, tantalum, titanium, and tungsten. Without plasma treatment, 180 deg peel tests yield a few g/cm (oz/in) strengths. With dc plasma treatment in the deposition chamber, followed by coating, peel strengths are increased by one to two orders of magnitude.
Ten agronomic plant species were exposed to different concentrations of nano titanium dioxide (nTiO2) or nano cerium oxide (nCeO2) (0, 250, 500 and 1000 mg/L) to examine potential effects on germination and early seedling development. We modified a standard test protocol develop...
Li, Jianlin; Han, Tao; Wei, Nannan; Du, Jiangyan; Zhao, Xiangwei
2009-12-15
Gold nanoparticles have been introduced into the wall framework of titanium dioxide photonic crystals by the colloidal crystal template technique. The three-dimensionally ordered macroporous gold-nanoparticle-doped titanium dioxide (3DOM GTD) film was modified on the indium-tin oxide (ITO) electrode surface and used for the hydrogen peroxide biosensor. The direct electron transfer and electrocatalysis of horseradish peroxidase (HRP) immobilized on this film have been investigated. The 3DOM GTD film could provide a good microenvironment for retaining the biological bioactivity, large internal area, and superior conductivity. The HRP/3DOM GTD/ITO electrode exhibited two couples of redox peaks corresponding to the HRP intercalated in the mesopores and adsorbed on the external surface of the film with the formal potential of -0.19 and -0.52V in 0.1M PBS (pH 7.4), respectively. The HRP intercalated in the mesopores showed a surface-controlled process with a single proton transfer. The direct electron transfer between the adsorbed HRP and the electrode is achieved without the aid of an electron mediator. The H(2)O(2) biosensor displayed a rapid eletrocatalytic response (less than 3s), a wide linear range from 0.5 microM to 1.4mM with a detection limit of 0.2 microM, high sensitivity (179.9 microAmM(-1)), good stability and reproducibility. Compared with the free-Au doped titanium dioxide photonic crystals modified electrode, the GTD modified electrode could greatly enhance the response current signal, linear detection range and higher sensitivity. The 3DOM GTD provided a new matrix for protein immobilization and direct transfer study and opened a way for low conductivity electrode biosensor.
Venkatasubbu, Gopinath Devanand; Ramasamy, S; Gaddam, Pramod Reddy; Kumar, J
2015-01-01
Nanoparticles are widely used for targeted drug delivery applications. Surface modification with appropriate polymer and ligands is carried out to target the drug to the affected area. Toxicity analysis is carried out to evaluate the safety of the surface modified nanoparticles. In this study, paclitaxel attached, folic acid functionalized, polyethylene glycol modified hydroxyapatite and titanium dioxide nanoparticles were used for targeted drug delivery system. The toxicological behavior of the system was studied in vivo in rats and mice. Acute and subchronic studies were carried out. Biochemical, hematological, and histopathological analysis was also done. There were no significant alterations in the biochemical parameters at a low dosage. There was a small change in alkaline phosphatase (ALP) level at a high dosage. The results indicate a safe toxicological profile.
Process for forming epitaxial perovskite thin film layers using halide precursors
Clem, Paul G.; Rodriguez, Mark A.; Voigt, James A.; Ashley, Carol S.
2001-01-01
A process for forming an epitaxial perovskite-phase thin film on a substrate. This thin film can act as a buffer layer between a Ni substrate and a YBa.sub.2 Cu.sub.3 O.sub.7-x superconductor layer. The process utilizes alkali or alkaline metal acetates dissolved in halogenated organic acid along with titanium isopropoxide to dip or spin-coat the substrate which is then heated to about 700.degree. C. in an inert gas atmosphere to form the epitaxial film on the substrate. The YBCO superconductor can then be deposited on the layer formed by this invention.
2015-11-18
thickness of the film, or substrate. In this work, we report calculations for titanium nitride ( TiN ), a promising material for plasmonic applications...stoichiometric bulk TiN , as well as of the TiN (100), TiN (110), and TiN (111) outermost surfaces. Density functional theory (DFT) and many-body GW methods...and the band structure for bulk TiN were shown to be consistent with previous work. Calculated dielectric functions, plasma frequencies, reflectivity
Surface Modifications and Their Effects on Titanium Dental Implants
Jemat, A.; Ghazali, M. J.; Razali, M.; Otsuka, Y.
2015-01-01
This review covers several basic methodologies of surface treatment and their effects on titanium (Ti) implants. The importance of each treatment and its effects will be discussed in detail in order to compare their effectiveness in promoting osseointegration. Published literature for the last 18 years was selected with the use of keywords like titanium dental implant, surface roughness, coating, and osseointegration. Significant surface roughness played an important role in providing effective surface for bone implant contact, cell proliferation, and removal torque, despite having good mechanical properties. Overall, published studies indicated that an acid etched surface-modified and a coating application on commercial pure titanium implant was most preferable in producing the good surface roughness. Thus, a combination of a good surface roughness and mechanical properties of titanium could lead to successful dental implants. PMID:26436097
NASA Astrophysics Data System (ADS)
Malyutina, Yulia N.; Lazurenko, Daria V.; Bataev, Ivan A.; Movtchan, Igor A.
2015-10-01
In this paper an influence of the tantalum content on the structure and properties of surface layers of the titanium alloy doped using a laser treatment technology was investigated. It was found that an increase of a quantity of filler powder per one millimeter of a track length contributed to a rise of the content of undissolved particles in coatings. The maximum thickness of a cladded layer was reached at the mass of powder per the length unit equaled to 5.5 g/cm. Coatings were characterized by the formation of a dendrite structure with attributes of segregation. The width of a quenched fusion zone grew with an increase in the rate of powder feed to the treated area. Significant strengthening of the titanium surface layer alloyed with tantalum was not observed; however, the presence of undissolved tantalum particles can decrease the hardness of titanium surface layers.
NASA Astrophysics Data System (ADS)
Sorge, Judith D.
As the world's energy needs continue to grow, next generation photovoltaic cells are in high demand because they offer the possibility of an inexpensive alternative to current energy production techniques. Dye sensitized solar cells (DSSC's), utilize common materials and low cost commercialization techniques, which make them a compelling choice for research in this area. This research focuses on the titanium dioxide coating, which transfers electrons from the photoactive dye to the electrode. 3-4% efficient DSSC's using doctor bladed titanium dioxide coatings with a specific surface area of 55-60m2/g have been demonstrated in our laboratory. To enhance the efficiency of these cells, both the surface area and the electron conduction of the titania layer must be optimized. This has been done by utilizing high aspect ratio nanoparticles of titania instead of mesoporous layers formed with spherical particles. Anodization of titanium metal or anodic alumina membrane templating are common ways to produce nanorods, but involve complex processes leading toward expensive commercialization. This research instead focuses on the hydrothermal growth of nanofibrous titania on a titanium metal substrate, removing the need for dispersion and deposition procedures as well as using a low temperature processing method. Depending upon the formulation utilized, a variety of structures can be produced, from thick carpets of nanofiber strands to large platelets. The composition and morphology of the products have been characterized with respect to the growth conditions using electron microscopy, energy dispersive spectroscopy and x-ray diffraction. The compositional analysis is used to investigate the complicated reaction mechanisms in the system. Coatings of titania nanotubes were then tested in the DSSC's, as were those with the titanium metal substrate acting as the photo anode. Modeling the geometric parameters of the different pore structures of the coatings helps us to understand the advantages afforded by these new cells.
A new method for production of titanium vapor and synthesis of titanium nitride coatings
NASA Astrophysics Data System (ADS)
Grigoriev, Sergey N.; Melnik, Yury A.; Metel, Alexander S.; Volosova, Marina A.
2018-03-01
It is proposed to synthesize on machine parts and cutting tools wear-resistant titanium nitride coatings with the help of the hollow-cathode glow discharge, a molybdenum crucible for titanium evaporation being used as the anode of the discharge and a process vacuum chamber being used as the hollow cathode. The research revealed that at the anode surface area less than a critical value S* = (2m/M)1/2S, where S is the area of the chamber walls, m is the mass of electrons and M is the mass of ions, the anode fall of potential is positive and grows from ˜50 V at argon pressure p = 0.2 Pa to ˜2 kV at p = 0.02 Pa. At the discharge current I = 0.6 A electrons accelerated by the anode fall of 0.9 kV transport into the crucible with the inner diameter of 12 mm the power of ˜0.54 kW, which allows the titanium evaporation and the coating deposition rate of 5 µm·h-1 on a substrate distanced from the crucible at 100 mm. After the argon is replaced with the nitrogen, titanium nitride coating without titanium droplets is synthesized the deposition rate amounting to about the same value.
Cui, Xinyu; Kim, Hyun-Min; Kawashita, Masakazu; Wang, Longbao; Xiong, Tianying; Kokubo, Tadashi; Nakamura, Takashi
2008-04-01
Titanium and its alloys have been widely used for orthopedic implants because of their good biocompatibility. We have previously shown that the crystalline titania layers formed on the surface of titanium metal via anodic oxidation can induce apatite formation in simulated body fluid, whereas amorphous titania layers do not possess apatite-forming ability. In this study, hot water and heat treatments were applied to transform the titania layers from an amorphous structure into a crystalline structure after titanium metal had been anodized in acetic acid solution. The apatite-forming ability of titania layers subjected to the above treatments in simulated body fluid was investigated. The XRD and SEM results indicated hot water and/or heat treatment could greatly transform the crystal structure of titania layers from an amorphous structure into anatase, or a mixture of anatase and rutile. The abundance of Ti-OH groups formed by hot water treatment could contribute to apatite formation on the surface of titanium metals, and subsequent heat treatment would enhance the bond strength between the apatite layers and the titanium substrates. Thus, bioactive titanium metals could be prepared via anodic oxidation and subsequent hot water and heat treatment that would be suitable for applications under load-bearing conditions.
Plasma-Sprayed Ti6Al4V Alloy Composite Coatings Reinforced with In Situ Formed TiB-TiN
NASA Astrophysics Data System (ADS)
Anand, Akrity; Das, Mitun; Kundu, Biswanath; Balla, Vamsi Krishna; Bodhak, Subhadip; Gangadharan, S.
2017-12-01
Plasma spraying was used to deposit premixed Ti6Al4V + 15 wt.% BN powder on titanium substrate to fabricate Ti6Al4V matrix composite coatings reinforced with in situ synthesized TiB-TiN. The formation of in situ TiB-TiN reinforcements increased with plasma power. The in situ reaction appears to be complete under present experimental conditions but with considerable oxidation of Ti in the composite coatings. The hardness of composite coatings was 7 times higher (855HV), and the in vitro wear rate (2.4 × 10-5 mm3/N m) was one order of magnitude less than that of titanium substrate. However, the microstructural non-uniformity decreased the corrosion resistance of these composite coatings in Hank's balanced salt solution.
Epitaxial titanium diboride films grown by pulsed-laser deposition
NASA Astrophysics Data System (ADS)
Zhai, H. Y.; Christen, H. M.; Cantoni, C.; Goyal, A.; Lowndes, D. H.
2002-03-01
Epitaxial, smooth, and low-resistivity titanium diboride (TiB2) films have been grown on SiC substrates using pulsed-laser deposition. Combined studies from ex situ x-ray diffraction and in situ reflection high-energy electron diffraction indicate the crystallographic alignment between TiB2 and SiC both parallel and normal to the substrate. Atomic force microscopy and scanning electron microscopy studies show that these epitaxial films have a smooth surface, and the resistivity of these films is comparable to that of single-crystal TiB2. Growth of these films is motivated by this material's structural and chemical similarity and lattice match to the newly discovered superconductor MgB2, both to gain further insight into the physical mechanisms of diborides in general and, more specifically, as a component of MgB2-based thin-film heterostructures.
NASA Technical Reports Server (NTRS)
Pohlchuck, Bobby; Zeller, Mary V.
1992-01-01
The adhesive bond between ceramic cement and a titanium matrix composite substrate to be used in the National Aerospace Plane program is evaluated. Two commercially available adhesion testers, the Sebastian Adherence Tester and the CSEM REVETEST Scratch Tester, are evaluated to determine their suitability for quantitatively measuring adhesion strength. Various thicknesses of cements are applied to several substrates, and bond strengths are determined with both testers. The Sabastian Adherence Tester has provided limited data due to an interference from the sample mounting procedure, and has been shown to be incapable of distinguishing adhesion strength from tensile and shear properties of the cement itself. The data from the scratch tester has been found to be difficult to interpret due to the porosity and hardness of the cement. Recommendations are proposed for a more reliable adhesion test method.
High capacity electrode materials for batteries and process for their manufacture
Johnson, Christopher S.; Xiong, Hui; Rajh, Tijana; Shevchenko, Elena; Tepavcevic, Sanja
2018-04-03
The present invention provides a nanostructured metal oxide material for use as a component of an electrode in a lithium-ion or sodium-ion battery. The material comprises a nanostructured titanium oxide or vanadium oxide film on a metal foil substrate, produced by depositing or forming a nanostructured titanium dioxide or vanadium oxide material on the substrate, and then charging and discharging the material in an electrochemical cell from a high voltage in the range of about 2.8 to 3.8 V, to a low voltage in the range of about 0.8 to 1.4 V over a period of about 1/30 of an hour or less. Lithium-ion and sodium-ion electrochemical cells comprising electrodes formed from the nanostructured metal oxide materials, as well as batteries formed from the cells, also are provided.
Foster, Rami N; Johansson, Patrik K; Tom, Nicole R; Koelsch, Patrick; Castner, David G
2015-09-01
A 2 4 factorial design was used to optimize the activators regenerated by electron transfer-atom transfer radical polymerization (ARGET-ATRP) grafting of sodium styrene sulfonate (NaSS) films from trichlorosilane/10-undecen-1-yl 2-bromo-2-methylpropionate (ester ClSi) functionalized titanium substrates. The process variables explored were: (1) ATRP initiator surface functionalization reaction time; (2) grafting reaction time; (3) CuBr 2 concentration; and (4) reducing agent (vitamin C) concentration. All samples were characterized using x-ray photoelectron spectroscopy (XPS). Two statistical methods were used to analyze the results: (1) analysis of variance with [Formula: see text], using average [Formula: see text] XPS atomic percent as the response; and (2) principal component analysis using a peak list compiled from all the XPS composition results. Through this analysis combined with follow-up studies, the following conclusions are reached: (1) ATRP-initiator surface functionalization reaction times have no discernable effect on NaSS film quality; (2) minimum (≤24 h for this system) grafting reaction times should be used on titanium substrates since NaSS film quality decreased and variability increased with increasing reaction times; (3) minimum (≤0.5 mg cm -2 for this system) CuBr 2 concentrations should be used to graft thicker NaSS films; and (4) no deleterious effects were detected with increasing vitamin C concentration.
Raman study of TiO2 coatings modified by UV pulsed laser
NASA Astrophysics Data System (ADS)
Belka, Radosław; Keczkowska, Justyna; Sek, Piotr
2016-12-01
The TiO2 coatings were prepared by simple sol-gel method and modified by UV pulsed laser. TiO2, also know as titania, is a ceramic compound, existing in numerous polymorphic forms, mainly as tetragonal rutile and anatase, and rhomboidal brookite. Rutile is the most stable form of titanium dioxide, whereas anatase is a metastable form, created in lower temperatures than rutile. Anatase is marked with higher specific surface area, porosity and a higher number of surface hydroxyl groups as compared to rutile. The unique optical and electronic properties of TiO2 results in its use as semiconductors dielectric mirrors, sunscreen and UV-blocking pigments and especially as photocatalyst. In this paper, the tetraisopropoxide was used as Ti precursor according to sol-gel method. An organic base was applied during sol preparation. Prepared gel was coated on glass substrates and calcined in low temperature to obtain amorphous phase of titania. Prepared coatings were modified by UV picosecond pulse laser with different pulse repetition rate and pulse power. Physical modification of the coatings using laser pulses was intended in order change the phase content of the produced material. Raman spectroscopy (RS) method was applied to studies of modified coatings as it is one of the basic analytical techniques, supporting the identification of compounds and obtaining information about the structure. Especially, RS is a useful method for distinguishing the anatase and rutile phases. In these studies, anatase to rutile transformation was observed, depending on laser parameters.
NASA Astrophysics Data System (ADS)
AlArfaj, Esam
2016-05-01
In this article, titanium dioxide and silver nanostructures were deposited on glass substrates using modified sol-gel methods and dip-coating technique. The films were characterised chemically and physically using different techniques (TLC, UV-Vis and XRD) and tested for environmental applications regarding degradation of aromatic hydrocarbons. The photocatalytic activity of the TiO2 nanostructures is tested with different small concentrations of phenol in water and reaction mechanisms discussed. Considerable enhancement is observed in the photodegradation activity of Ag-modified (3 wt.%) TiO2 compared to unmodified TiO2 nanostructures for phenol concentrations within the pseudo-first-order Langmuir-Hinshelwood (LH) model for reaction kinetics. The pseudo-first-order global degradation rate constant increased from <0.005 min-1 for TiO2 to 0.013 min-1 for 3 mol% Ag-modified TiO2. The enhancement is attributed to the incorporation of Ag which promotes the generation of reactive oxygen species and increases the carrier recombination life-time. In addition, Ag has been observed to extend the absorption to the visible region by its surface plasmon resonances and to suppress the anatase-rutile phase transformation. Moreover, TiO2 grain size prepared was found to be 10 nm which maximises the active surface area. For phenol initial concentrations as low as 0.0002 M, saturation trend in the degradation process occurred at 0.00014 M and the reaction rate can be fitted with half-order LH kinetics.
Chlorhexidine Uptake and Release From Modified Titanium Surfaces and Its Antimicrobial Activity.
Ryu, Hyo-Sook; Kim, Yoon-Il; Lim, Bum-Soon; Lim, Young-Jun; Ahn, Sug-Joon
2015-11-01
Decontamination by adjunctive antiseptic agents such as chlorhexidine (CHX) is often recommended for the treatment of peri-implant infections. However, its action on the titanium implant surface needs further research. This study is designed to evaluate the ability of modified titanium surfaces to release chlorhexidine after periodic CHX exposure. Four titanium surfaces were prepared: 1) no surface treatment control (machined surface [MA]); 2) an acid mix of 10% HNO3 and 5% HF (HNF); 3) resorbable blast media (RBM); and 4) sandblasting and acid etching (SLA). Each surface was analyzed using a confocal laser scanning microscope and a scanning electron microscope. Each sample was incubated with whole saliva or phosphate-buffered saline for 2 hours. Measurements of CHX release were performed using spectrometry on days 1, 2, and 5 after 1-minute exposure to 0.5% chlorhexidine digluconate solution during a 5-day cycle. CHX-releasing experiments were repeated three consecutive times for 15 days. The antimicrobial activity of CHX-adsorbed disks was determined by a disk diffusion test using Streptococcus gordonii. The CHX-adsorbed titanium surfaces exhibited a short-term release of CHX, and CHX levels dropped rapidly within 3 days. SLA and RBM with smaller and narrower depressions released more CHX than HNF and MA, specifically in the saliva-coated group. The disk diffusion test revealed that after CHX uptake, saliva-coated SLA and RBM showed the highest antimicrobial activity. This study suggests that CHX release is significantly influenced by titanium surface modifications and that SLA and RBM might provide effective CHX uptake capacity in the saliva-filled oral cavity.
Yan, Danhua; Tao, Jing; Kisslinger, Kim; ...
2015-10-13
Here we develop a novel technique for preparing high quality Ti-doped hematite thin films for photoelectrochemical (PEC) water splitting, through sputtering deposition of metallic iron films from an iron target embedded with titanium (dopants) pellets, followed by a thermal oxidation step that turns the metal films into doped hematite. It is found that the hematite domain size can be tuned from ~10 nm to over 100 nm by adjusting the sputtering atmosphere from more oxidative to mostly inert. The better crystallinity at a larger domain size ensures excellent PEC water splitting performance, leading to record high photocurrent from pure planarmore » hematite thin films on FTO substrates. Titanium doping further enhances the PEC performance of hematite photoanodes. The photocurrent is improved by 50%, with a titanium dopant concentration as low as 0.5 atom%. As a result, it is also found that the role of the titanium dopant in improving the PEC performance is not apparently related to the films’ electrical conductivity which had been widely believed, but is more likely due to the passivation of surface defects by the titanium dopants.« less
NASA Astrophysics Data System (ADS)
Ananda, P.; Vedanayakam, S. Victor; Thyagarajan, K.; Nandakumar, N.
2018-05-01
A brief review of Titanium doped Aluminum film has many attractive properties such as thermal properties and 1/f noise is highlighted. The thin film devices of Titanium doped alluminium are specially used in aerospace technology, automotive, biomedical fields also in microelectronics. In this paper, we discus on 1/f noise and nonlinear effects in titanium doped alluminium thin films deposited on glass substrate using electron beam evaporation for different current densities on varying temperatures of the film. The plots are dawn for 1/f noise of the films at different temperatures ranging from 300°C to 450°C and the slopes are determined. The studies shows a higher order increment in FFT amplitude of low frequency 1/f noise in thin films at annealing temperature 400°C. In this technology used in aerospace has been the major field of application of titanium doped alluminium, being one of the major challenges of the development of new alloys with improved strength at high temperature, wide chord Titanium doped alluminium fan blades increases the efficiency while reducing 1/f noise. Structural properties of XRD is identified.
dos Santos, Amanda; Araujo, Joyce R; Landi, Sandra M; Kuznetsov, Alexei; Granjeiro, José M; de Sena, Lidia Ágata; Achete, Carlos Alberto
2014-07-01
In this work, a porous and homogeneous titanium dioxide layer was grown on commercially pure titanium substrate using a micro-arc oxidation (MAO) process and Ca-P-based electrolyte. The structure and morphology of the TiO2 coatings were characterized by X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy, and profilometry. The chemical properties were studied using electron dispersive X-ray spectroscopy (SEM-EDS) and X-ray photoelectron spectroscopy. The wettability of the coating was evaluated using contact angle measurements. During the MAO process, Ca and P ions were incorporated into the oxide layer. The TiO2 coating was composed of a mixture of crystalline and amorphous structures. The crystalline part of the sample consisted of a major anatase phase and a minor rutile phase. A cross-sectional image of the coating-substrate interface reveals the presence of voids elongated along the interface. An osteoblast culture was performed to verify the cytocompatibility of the anodized surface. The results of the cytotoxicity tests show satisfactory cell viability of the titanium dioxide films produced in this study.
Titanium oxide as substrate for neural cell growth.
Carballo-Vila, Mónica; Moreno-Burriel, Berta; Chinarro, Eva; Jurado, José R; Casañ-Pastor, Nieves; Collazos-Castro, Jorge E
2009-07-01
Titanium oxide has antiinflammatory activity and tunable electrochemical behavior that make it an attractive material for the fabrication of implantable devices. The most stable composition is TiO2 and occurs mainly in three polymorphs, namely, anatase, rutile, and brookite, which differ in its crystallochemical properties. Here, we report the preparation of rutile surfaces that permit good adherence and axonal growth of cultured rat cerebral cortex neurons. Rutile disks were obtained by sinterization of TiO2 powders of commercial origin or precipitated from hydrolysis of Ti(IV)-isopropoxide. Commercial powders sintered at 1300-1600 degrees C produced rutile surfaces with abnormal grain growth, probably because of impurities of the powders. Neurons cultured on those surfaces survived in variable numbers and showed fewer neurites than on control materials. On the other hand, rutile sintered from precipitated powders had less contaminants and more homogenous grain growth. By adjusting the thermal treatment it was possible to obtain surfaces performing well as substrate for neuron survival for at least 10 days. Some surfaces permitted normal axonal elongation, whereas dendrite growth was generally impaired. These findings support the potential use of titanium oxide in neuroprostheses and other devices demanding materials with enhanced properties in terms of biocompatibility and axon growth promotion.
Yin, Chengcheng; Zhang, Yanjing; Cai, Qing; Li, Baosheng; Yang, Hua; Wang, Heling; Qi, Hua; Zhou, Yanmin; Meng, Weiyan
2017-03-01
In clinical applications, osseointegration is essential for the long-term stability of dental implants. Inspired by the hierarchical structure of natural bone, we applied the electrochemical etching (EC) technique to form a micro-nano structure on a titanium alloy (Ti6Al4V) substrate, called EC surface. Sand blasting and acid etching (SLA) and machined (M) methods were employed to generate micro and smooth textures, respectively, as the control groups. The surface topographies of the three substrates were characterized using scanning electron microscopy (SEM). Then, human osteoblast-like cells (MG63) were cultured on substrates, and adhesion, proliferation, morphology, alkaline phosphatase activity (ALP), and gene expression levels of Runt-related transcription factor 2 (RUNX2), osteocalcin (OCN), osteopontin (OPN), and type I collagen (COLIA 1) were analyzed. MG63 cells cultured on the EC Ti alloy substrates displayed better cell adhesion, significant proliferation, and a higher production level of ALP, gene expressions of RUNX2, OCN, OPN and COLIA 1 (p < 0.01 or p < 0.05) compared with those of SLA and M substrates. These results indicate that the micro-nano structure fabricated by electrochemical etching method is beneficial for the biological functions of MG63 cells and may be a promising candidate in dental implants. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 757-769, 2017. © 2016 Wiley Periodicals, Inc.
Effect of modification substrate on the microstructure of hydroxyapatite coating
NASA Astrophysics Data System (ADS)
Realpe-Jaramillo, J.; Morales-Morales, J. A.; González-Sánchez, J. A.; Cabanzo, R.; Mejía-Ospino, E.; Rodríguez-Pereira, J.
2017-01-01
Bioactive hydroxyapatite (HA) coatings were fabricated by a precipitation, sol-gel and dip-coating method. The effects of the aging time and the base used to adjust pH and substrate materials on the phases and microstructures of HA coatings were studied by field emission scanning electron microscopy FESEM, energy dispersive spectroscopy EDS, X-ray photoelectron spectroscopy XPS, and the vibrations of the phosphate groups were determined by Raman spectroscopy. The results showed that all the films were composed of the phases of TiO2 and HA. With coated titanium substrate with TiO2, the crystallinity of the HA coating increases, the structure became more compact and the Ca/P ratio increased because of the loss of P in the films. The addition of sodium hydroxide (adjusting the pH level to about 10) can increase the HA content in the coating. XPS and EDS results for steel substrate and titanium showed poor calcium content as obtained with a Ca/P ratio of 1.38 and 1.58, respectively, composition is similar to that of natural apatite. However, spectroscopic results suggest the presence of a mixture of hydroxyapatite and octacalcium phosphate. The different substrate materials have a high influence on the microstructure of the separated double films. However, hydroxyapatite nanopowders coatings were obtained using a simple method, with potential biomedical applications.
He, Ye; Zhang, Yangyang; Shen, Xinkun; Tao, Bailong; Liu, Ju; Yuan, Zhang; Cai, Kaiyong
2018-05-31
Bacterial infection commonly occurs in clinical settings when the procedure involves a medical implant. Thus, the fabrication of antimicrobial medical materials has attracted much attention in recent years. To improve the antibacterial properties of titanium (Ti)-based biomedical materials, surface microporous structures, with antimicrobial peptide coatings, were employed in this study. Native Ti substrates were endowed with a certain level of antibacterial activity after treatment with the micro-arc oxidation (MAO). A multilayer consisting of polydopamine, cationic antimicrobial peptides LL-37, and phospholipid (POPC) was coated onto MAO substrates, leading to antibacterial activity against both Gram-positive (S. aureus) and Gram-negative (E. coli) bacteria. The combination of polydopamine-LL-37-POPC was found to alleviate the burst release of LL-37 in the initial phase. This multilayer coated onto microporous Ti substrates also showed favorable cytocompatibility to both mesenchymal stem cells (MSCs) and osteoblasts. These findings illustrate a novel strategy for the development of antibacterial Ti-based implants. Copyright © 2018 Elsevier B.V. All rights reserved.
Ciobanu, Gabriela; Ciobanu, Octavian
2013-04-01
This study uses an in vitro experimental approach to investigate the roles of collagen and vitamins in regulating the deposition of hydroxyapatite layer on the pure titanium surface. Titanium implants were coated with a hydroxyapatite layer under biomimetic conditions by using a supersaturated calcification solution (SCS), modified by adding vitamins A and D3, and collagen. The hydroxyapatite deposits on titanium were investigated by means of scanning electron microscopy (SEM) coupled with X-ray analysis (EDX), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and Fourier transformed infrared (FTIR) spectroscopy. The results obtained have shown that hydroxyapatite coatings were produced in vitro under vitamins and collagen influence. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Hill, S. G.; Sheppard, C. H.; Johnson, J. C.
1980-01-01
A LARC-13 type adhesive system was developed and property data obtained that demonstrated improved thermomechanical properties superior to base LARC-13 adhesive. An improved adhesive for 589 K (600 F) use was developed by physical or chemical modification of LARC-13. The adhesive was optimized for titanium and composite bonding, and a compatible surface preparation for titanium and composite substrates was identified. The data obtained with the improved adhesive system indicated it would meet the 589 K (600 F) properties desired for application on space shuttle components. Average titanium lap shear data were: (1) 21.1 MPa (3355 psi) at RT, (2) 13.0 MPa (1881 psi) at 600 F, and (3) 16.4 MPa (2335) after aging 125 hours at 600 F and tested at 600 F.
NASA Astrophysics Data System (ADS)
Mokhtari, H.; Ghasemi, Z.; Kharaziha, M.; Karimzadeh, F.; Alihosseini, F.
2018-05-01
Bacterial infection and insignificant osseointegration have been recognized as the main reasons of the failures of titanium based implants. The aim of this study was to apply titanium oxide nanotube (TNT) array on titanium using electrochemical anodization process as a more appropriate substrate for chitosan and chitosan-58S bioactive glass (BG) (58S-BG-Chitosan) nanocomposite coatings covered TNTs (TNT/Chiosan, TNT/58S-BG-Chitosan, respectively) through a conventional dip-coating process. Results showed that a TNT layer with average inner diameter of 82 ± 19 nm and wall's thickness of 23 ± 9 nm was developed on titanium surface using electrochemical anodization process. Roughness and contact angle measurement showed that TNT with Ra = 449 nm had highest roughness and hydrophilicity which then reduced to 86 nm and 143 nm for TNT/Chitosan and TNT/58S-BG-Chitosan, respectively. In vitro bioactivity evaluation in simulated buffer fluid (SBF) solution and antibacterial activity assay predicted that TNT/58S-BG-Chitosan was superior in bone like apatite formation and antibacterial activity against both gram-positive and gram-negative bacteria compared to Ti, TNT and TNT/Chitosan samples, respectively. Results revealed the noticeable MG63 cell attachment and proliferation on TNT/58S-BG-Chitosan coating compared to those of uncoated TNTs. These results confirmed the positive effect of using TNT substrate for natural polymer coating on improved bioactivity of implant.
Titanium based flat heat pipes for computer chip cooling
NASA Astrophysics Data System (ADS)
Soni, Gaurav; Ding, Changsong; Sigurdson, Marin; Bozorgi, Payam; Piorek, Brian; MacDonald, Noel; Meinhart, Carl
2008-11-01
We are developing a highly conductive flat heat pipe (called Thermal Ground Plane or TGP) for cooling computer chips. Conventional heat pipes have circular cross sections and thus can't make good contact with chip surface. The flatness of our TGP will enable conformal contact with the chip surface and thus enhance cooling efficiency. Another limiting factor in conventional heat pipes is the capillary flow of the working fluid through a wick structure. In order to overcome this limitation we have created a highly porous wick structure on a flat titanium substrate by using micro fabrication technology. We first etch titanium to create very tall micro pillars with a diameter of 5 μm, a height of 40 μm and a pitch of 10 μm. We then grow a very fine nano structured titania (NST) hairs on all surfaces of the pillars by oxidation in H202. In this way we achieve a wick structure which utilizes multiple length scales to yield high performance wicking of water. It's capable of wicking water at an average velocity of 1 cm/s over a distance of several cm. A titanium cavity is laser-welded onto the wicking substrate and a small quantity of water is hermetically sealed inside the cavity to achieve a TGP. The thermal conductivity of our preliminary TGP was measured to be 350 W/m-K, but has the potential to be several orders of magnitude higher.
Adhesion, friction, and deformation of ion-beam-deposited boron nitride films
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa; Buckley, Donald H.; Alterovitz, Samuel A.; Pouch, John J.; Liu, David C.
1987-01-01
The tribological properties and mechanical strength of boron nitride films were investigated. The BN films were predominantly amorphous and nonstoichiometric and contained small amounts of oxides and carbides. It was found that the yield pressure at full plasticity, the critical load to fracture, and the shear strength of interfacial adhesive bonds (considered as adhesion) depended on the type of metallic substrate on which the BN was deposited. The harder the substrate, the greater the critical load and the adhesion. The yield pressures of the BN film were 12 GPa for the 440C stainless steel substrate, 4.1 GPa for the 304 stainless steel substrate, and 3.3 GPa for the titanium substrate.
Adhesion, friction and deformation of ion-beam-deposited boron nitride films
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Buckley, D. H.; Alterovitz, S. A.; Pouch, J. J.; Liu, D. C.
1987-01-01
The tribological properties and mechanical strength of boron nitride films were investigated. The BN films were predominantly amorphous and nonstoichiometric and contained small amounts of oxides and carbides. It was found that the yield pressure at full plasticity, the critical load to fracture, and the shear strength of interfacial adhesive bonds (considered as adhesion) depended on the type of metallic substrate on which the BN was deposited. The harder the substrate, the greater the critical load and the adhesion. The yield pressures of the BN film were 12 GPa for the 440C stainless steel substrate, 4.1 GPa for the 304 stainless steel substrate, and 3.3 GPa for the titanium substrate.
System configured for applying a modifying agent to a non-equidimensional substrate
Janikowski,; Stuart K. , Argyle; Mark D. , Fox; Robert V. , Propp; W Alan, Toth [Idaho Falls, ID; William J. , Ginosar; Daniel M. , Allen; Charles A. , Miller; David, L [Idaho Falls, ID
2007-07-10
The present invention is related to systems and methods for modifying various non-equidimensional substrates with modifying agents. The system comprises a processing chamber configured for passing the non-equidimensional substrate therethrough, wherein the processing chamber is further configured to accept a treatment mixture into the chamber during movement of the non-equidimensional substrate through the processing chamber. The treatment mixture can comprise of the modifying agent in a carrier medium, wherein the carrier medium is selected from the group consisting of a supercritical fluid, a near-critical fluid, a superheated fluid, a superheated liquid, and a liquefied gas. Thus, the modifying agent can be applied to the non-equidimensional substrate upon contact between the treatment mixture and the non-equidimensional substrate.
System configured for applying a modifying agent to a non-equidimensional substrate
Janikowski, Stuart K.; Toth, William J.; Ginosar, Daniel M.; Allen, Charles A.; Argyle, Mark D.; Fox, Robert V.; Propp, W. Alan; Miller, David L.
2003-09-23
The present invention is related to systems and methods for modifying various non-equidimensional substrates with modifying agents. The system comprises a processing chamber configured for passing the non-equidimensional substrate therethrough, wherein the processing chamber is further configured to accept a treatment mixture into the chamber during movement of the non-equidimensional substrate through the processing chamber. The treatment mixture can comprise of the modifying agent in a carrier medium, wherein the carrier medium is selected from the group consisting of a supercritical fluid, a near-critical fluid, a superheated fluid, a superheated liquid, and a liquefied gas. Thus, the modifying agent can be applied to the non-equidimensional substrate upon contact between the treatment mixture and the non-equidimensional substrate.
NASA Astrophysics Data System (ADS)
Zhang, Xiaowei; Liu, Hongxi; Wang, Chuanqi; Zeng, Weihua; Jiang, Yehua
2010-11-01
A high-temperature oxidation resistant TiN embedded in Ti3Al intermetallic matrix composite coating was fabricated on titanium alloy Ti6Al4V surface by 6kW transverse-flow CO2 laser apparatus. The composition, morphology and microstructure of the laser clad TiN/Ti3Al intermetallic matrix composite coating were characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). In order to evaluate the high-temperature oxidation resistance of the composite coatings and the titanium alloy substrate, isothermal oxidation test was performed in a conventional high-temperature resistance furnace at 600°C and 800°C respectively. The result shows that the laser clad intermetallic composite coating has a rapidly solidified fine microstructure consisting of TiN primary phase (granular-like, flake-like, and dendrites), and uniformly distributed in the Ti3Al matrix. It indicates that a physical and chemical reaction between the Ti powder and AlN powder occurred completely under the laser irradiation. In addition, the microhardness of the TiN/Ti3Al intermetallic matrix composite coating is 844HV0.2, 3.4 times higher than that of the titanium alloy substrate. The high-temperature oxidation resistance test reveals that TiN/Ti3Al intermetallic matrix composite coating results in the better modification of high-temperature oxidation behavior than the titanium substrate. The excellent high-temperature oxidation resistance of the laser cladding layer is attributed to the formation of the reinforced phase TiN and Al2O3, TiO2 hybrid oxide. Therefore, the laser cladding TiN/Ti3Al intermetallic matrix composite coating is anticipated to be a promising oxidation resistance surface modification technique for Ti6Al4V alloy.
Venkatasubbu, Gopinath Devanand; Ramasamy, S; Gaddam, Pramod Reddy; Kumar, J
2015-01-01
Nanoparticles are widely used for targeted drug delivery applications. Surface modification with appropriate polymer and ligands is carried out to target the drug to the affected area. Toxicity analysis is carried out to evaluate the safety of the surface modified nanoparticles. In this study, paclitaxel attached, folic acid functionalized, polyethylene glycol modified hydroxyapatite and titanium dioxide nanoparticles were used for targeted drug delivery system. The toxicological behavior of the system was studied in vivo in rats and mice. Acute and subchronic studies were carried out. Biochemical, hematological, and histopathological analysis was also done. There were no significant alterations in the biochemical parameters at a low dosage. There was a small change in alkaline phosphatase (ALP) level at a high dosage. The results indicate a safe toxicological profile. PMID:26491315
Facile hydrothermal preparation of titanium dioxide decorated reduced graphene oxide nanocomposite
Chang, Betty Yea Sze; Huang, Nay Ming; An’amt, Mohd Nor; Marlinda, Abdul Rahman; Norazriena, Yusoff; Muhamad, Muhamad Rasat; Harrison, Ian; Lim, Hong Ngee; Chia, Chin Hua
2012-01-01
A simple single-stage approach, based on the hydrothermal technique, has been introduced to synthesize reduced graphene oxide/titanium dioxide nanocomposites. The titanium dioxide nanoparticles are formed at the same time as the graphene oxide is reduced to graphene. The triethanolamine used in the process has two roles. It acts as a reducing agent for the graphene oxide as well as a capping agent, allowing the formation of titanium dioxide nanoparticles with a narrow size distribution (~20 nm). Transmission electron micrographs show that the nanoparticles are uniformly distributed on the reduced graphene oxide nanosheet. Thermogravimetric analysis shows the nanocomposites have an enhanced thermal stability over the original components. The potential applications for this technology were demonstrated by the use of a reduced graphene oxide/titanium dioxide nanocomposite-modified glassy carbon electrode, which enhanced the electrochemical performance compared to a conventional glassy carbon electrode when interacting with mercury(II) ions in potassium chloride electrolyte. PMID:22848166
Environmental protection to 922K (1200 F) for titanium alloys
NASA Technical Reports Server (NTRS)
Groves, M. T.
1973-01-01
Evaluations are presented of potential coating systems for protection of titanium alloys from hot-salt stress-corrosion up to temperatures of 755 K (900 F) and from oxidation embrittlement up to temperature of 922 K (1200 F). Diffusion type coatings containing Si, Al, Cr, Ni or Fe as single coating elements or in various combinations were evaluated for oxidation protection, hot-salt stress-corrosion (HSSC) resistance, effects on tensile properties, fatigue properties, erosion resistance and ballistic impact resistance on an alpha and beta phase titanium alloy (Ti-6Al-2Sn-4Zr-2Mo). All of the coatings investigated demonstrated excellent oxidation protectiveness, but none of the coatings provided protection from hot-salt stress-corrosion. Experimental results indicated that both the aluminide and silicide types of coatings actually decreased the HSSC resistance of the substrate alloy. The types of coatings which have typically been used for oxidation protection of refractory metals and nickel base superalloys are not suitable for titanium alloys because they increase the susceptibility to hot-salt stress-corrosion, and that entirely new coating concepts must be developed for titanium alloy protection in advanced turbine engines.
Biasotto, M; Ricceri, R; Scuor, N; Schmid, C; Sandrucci, M A; Di Lenarda, R; Matteazzi, P
2003-01-01
This study concerns a novel powder metallurgy method for producing porous titanium (pTi) exhibiting high mechanical properties. The preparation procedure consisted of the following stages: first, the preparation of Ti and titanium hydride (TiH2) powder mixtures and their consolidation with a cold isostatic press, followed by a sintering of the green bodies performed with hot isostatic press (HIP) equipment. Thermal decomposition in controlled environment of the TiH2 phase results in the foam structure. The resulting porosity percolates with a volume fraction of approximately 20%. The final material exhibits interesting mechanical properties, comparable to those of full density titanium (between grade 2 and grade 3), with the advantage of a minor density. The samples produced were tested to verify their biological response by studying the effectiveness of osteoblast adhesion and growth. In this preliminary study, osteoblastic cell morphology was investigated and compared to that observed on fully dense commercially pure titanium (Ti-cp) (ASTM, grade 3). The preliminary results were promising regarding cellular adhesion and spreading. (Journal of Applied Biomaterials & Biomechanics 2003; 1: 172-7).
Enhanced human bone marrow mesenchymal stem cell functions on cathodic arc plasma-treated titanium.
Zhu, Wei; Teel, George; O'Brien, Christopher M; Zhuang, Taisen; Keidar, Michael; Zhang, Lijie Grace
2015-01-01
Surface modification of titanium for use in orthopedics has been explored for years; however, an ideal method of integrating titanium with native bone is still required to this day. Since human bone cells directly interact with nanostructured extracellular matrices, one of the most promising methods of improving titanium's osseointegration involves inducing bio-mimetic nanotopography to enhance cell-implant interaction. In this regard, we explored an approach to functionalize the surface of titanium by depositing a thin film of textured titanium nanoparticles via a cathodic arc discharge plasma. The aim is to improve human bone marrow mesenchymal stem cell (MSC) attachment and differentiation and to reduce deleterious effects of more complex surface modification methods. Surface functionalization was analyzed by scanning electron microscopy, atomic force microscopy, contact angle testing, and specific protein adsorption. Scanning electron microscopy and atomic force microscopy examination demonstrate the deposition of titanium nanoparticles and the surface roughness change after coating. The specific fibronectin adsorption was enhanced on the modified titanium surface that associates with the improved hydrophilicity. MSC adhesion and proliferation were significantly promoted on the nanocoated surface. More importantly, compared to bare titanium, greater production of total protein, deposition of calcium mineral, and synthesis of alkaline phosphatase were observed from MSCs on nanocoated titanium after 21 days. The method described herein presents a promising alternative method for inducing more cell favorable nanosurface for improved orthopedic applications.
NASA Technical Reports Server (NTRS)
Lipkis, R. R.; Vehrencamp, J. E. (Inventor)
1965-01-01
A solar energy collector and infrared energy reflector is described which comprises a vacuum deposited layer of aluminum of approximately 200 to 400 Angstroms thick on one side of a substrate. An adherent layer of titanium with a thickness of between 800 and 1000 Angstroms is vacuum deposited on the aluminum substrate and is substantially opaque to solar energy and substantially transparent to infrared energy.
Portan, D V; Deligianni, D D; Deligianni, K; Kroustalli, A A; Tyllianakis, M; Papanicolaou, G C
2018-03-01
A goal of current implantology research is to design devices that induce controlled, guided, and rapid healing. Nanoscale structured substrates [e.g., titania nanotubes (TNTs) or carbon nanotubes (CNTs)] dramatically improve the functions of conventional biomaterials. The present investigation evaluated the behavior of osteoblasts cells cultured on smooth and nanostructured substrates, by measuring osteoblasts specific biomarkers [alkaline phosphatase (AP) and total protein] and cells adhesion strength to substrates, followed by semi-empirical modeling to predict the experimental results. Findings were in total agreement with the current state of the art. The proliferation, as well as the AP and total protein levels were higher on the nanostructure phases (TNTs, CNTs) comparing to the smooth ones (plastic and pure titanium). Cells adhesion strength measured was found higher on the nanostructured materials. This coincided with a higher value of proteins which are directly implicated in the process of adherence. Results were accurately predicted through the Viscoelastic Hybrid Interphase Model. A gradual adherence of bone cells to implants using multilayered biomaterials that involve biodegradable polymeric films and a nanoscale modification of titanium surface is suggested to improve performance through an interphase-mediated osteointegration of orthopedic implants. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 621-628, 2018. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
de Aguiar, Kelen R.; Rischka, Klaus; Gätjen, Linda; Noeske, Paul-Ludwig Michael; Cavalcanti, Welchy Leite; Rodrigues-Filho, Ubirajara P.
2018-01-01
The aim of this work was to synthesize a non-isocyanate poly(dimethylsiloxane) hydroxyurethane with biomimetic terminal catechol moieties, as a candidate for inorganic and metallic surface modification. Such surface modifier is capable to strongly attach onto metallic and inorganic substrates forming layers and, in addition, providing water-repellent surfaces. The non-isocyanate route is based on carbon dioxide cycloaddition into bis-epoxide, resulting in a precursor bis(cyclic carbonate)-polydimethylsiloxane (CCPDMS), thus fully replacing isocyanate in the manufacture process. A biomimetic approach was chosen with the molecular composition being inspired by terminal peptides present in adhesive proteins of mussels, like Mefp (Mytilus edulis foot protein), which bear catechol moieties and are strong adhesives even under natural and saline water. The catechol terminal groups were grafted by aminolysis reaction into a polydimethylsiloxane backbone. The product, PDMSUr-Dopamine, presented high affinity towards inhomogeneous alloy surfaces terminated by native oxide layers as demonstrated by quartz crystal microbalance (QCM-D), as well as stability against desorption by rinsing with ethanol. As revealed by QCM-D, X-ray photoelectron spectroscopy (XPS) and computational studies, the thickness and composition of the resulting nanolayers indicated an attachment of PDMSUr-Dopamine molecules to the substrate through both terminal catechol groups, with the adsorbate exposing the hydrophobic PDMS backbone. This hypothesis was investigated by classical molecular dynamic simulation (MD) of pure PDMSUr-Dopamine molecules on SiO2 surfaces. The computationally obtained PDMSUr-Dopamine assembly is in agreement with the conclusions from the experiments regarding the conformation of PDMSUr-Dopamine towards the surface. The tendency of the terminal catechol groups to approach the surface is in agreement with proposed model for the attachment PDMSUr-Dopamine. Remarkably, the versatile PDMSUr-Dopamine modifier facilitates such functionalization for various substrates such as titanium alloy, steel and ceramic surfaces.
Manipulation of the osteoblast response to a Ti 6Al 4V titanium alloy using a high power diode laser
NASA Astrophysics Data System (ADS)
Hao, L.; Lawrence, J.; Li, L.
2005-07-01
To improve the bone integration of titanium-based implants a high power diode laser (HPDL) was used to modify the material for improved osteoblast cell response. The surface properties of un-treated and HPDL treated samples were characterized. Contact angles for the un-treated and the HPDL modified titanium alloy (Ti-6Al-4V) were determined with selected biological liquids by the sessile drop technique. The analysis revealed that the wettability of the Ti-6Al-4V improved after HPDL laser treatment, indicating that better interaction with the biological liquids occurred. Moreover, an in vitro human fetal osteoblast cells (hFOB 1.19) evaluation revealed a more favourable cell response on the HPDL laser treated Ti-6Al-4V alloy than on either un-treated sample or a mechanically roughened sample. It was consequently determined that the HPDL provides more a controllable and effective technique to improve the biocompatibility of bio-metals.
How, Gregory Thien Soon; Pandikumar, Alagarsamy; Ming, Huang Nay; Ngee, Lim Hong
2014-05-23
Titanium dioxide (TiO2) with highly exposed {001} facets was synthesized through a facile solvo-thermal method and its surface was decorated by using reduced graphene oxide (rGO) sheets. The morphology and chemical composition of the prepared rGO/TiO2 {001} nanocomposite were examined by using suitable characterization techniques. The rGO/TiO2 {001} nanocomposite was used to modify glassy carbon electrode (GCE), which showed higher electrocatalytic activity towards the oxidation of dopamine (DA) and ascorbic acid (AA), when compared to unmodified GCE. The differential pulse voltammetric studies revealed good sensitivity and selectivity nature of the rGO/TiO2 {001} nanocomposite modified GCE for the detection of DA in the presence of AA. The modified GCE exhibited a low electrochemical detection limit of 6 μM over the linear range of 2-60 μM. Overall, this work provides a simple platform for the development of GCE modified with rGO/TiO2 {001} nanocomposite with highly exposed {001} facets for potential electrochemical sensing applications.
NASA Astrophysics Data System (ADS)
How, Gregory Thien Soon; Pandikumar, Alagarsamy; Ming, Huang Nay; Ngee, Lim Hong
2014-05-01
Titanium dioxide (TiO2) with highly exposed {001} facets was synthesized through a facile solvo-thermal method and its surface was decorated by using reduced graphene oxide (rGO) sheets. The morphology and chemical composition of the prepared rGO/TiO2 {001} nanocomposite were examined by using suitable characterization techniques. The rGO/TiO2 {001} nanocomposite was used to modify glassy carbon electrode (GCE), which showed higher electrocatalytic activity towards the oxidation of dopamine (DA) and ascorbic acid (AA), when compared to unmodified GCE. The differential pulse voltammetric studies revealed good sensitivity and selectivity nature of the rGO/TiO2 {001} nanocomposite modified GCE for the detection of DA in the presence of AA. The modified GCE exhibited a low electrochemical detection limit of 6 μM over the linear range of 2-60 μM. Overall, this work provides a simple platform for the development of GCE modified with rGO/TiO2 {001} nanocomposite with highly exposed {001} facets for potential electrochemical sensing applications.
How, Gregory Thien Soon; Pandikumar, Alagarsamy; Ming, Huang Nay; Ngee, Lim Hong
2014-01-01
Titanium dioxide (TiO2) with highly exposed {001} facets was synthesized through a facile solvo-thermal method and its surface was decorated by using reduced graphene oxide (rGO) sheets. The morphology and chemical composition of the prepared rGO/TiO2 {001} nanocomposite were examined by using suitable characterization techniques. The rGO/TiO2 {001} nanocomposite was used to modify glassy carbon electrode (GCE), which showed higher electrocatalytic activity towards the oxidation of dopamine (DA) and ascorbic acid (AA), when compared to unmodified GCE. The differential pulse voltammetric studies revealed good sensitivity and selectivity nature of the rGO/TiO2 {001} nanocomposite modified GCE for the detection of DA in the presence of AA. The modified GCE exhibited a low electrochemical detection limit of 6 μM over the linear range of 2–60 μM. Overall, this work provides a simple platform for the development of GCE modified with rGO/TiO2 {001} nanocomposite with highly exposed {001} facets for potential electrochemical sensing applications. PMID:24853929
Coated article and method of making
NASA Technical Reports Server (NTRS)
Wang, Hongyu (Inventor); Lee, Kang Neung (Inventor)
2003-01-01
An article includes a silicon-containing substrate and a modified mullite coating. The modified mullite coating comprises mullite and a modifier component that reduces cracks in the modified mullite coating. The article can further comprise a thermal barrier coating applied to the modified mullite coating. The modified mullite coating functions as a bond coating between the external environmental/thermal barrier coating and the silicon-containing substrate. In a method of forming an article, a silicon-containing substrate is formed and a modified mullite coating is applied. The modified mullite coating comprises mullite and a modifier component that reduces cracks in the modified mullite coating.
Coated article and method of making
NASA Technical Reports Server (NTRS)
Wang, Hongyu (Inventor); Lee, Kang Neung (Inventor)
2002-01-01
An article includes a silicon-containing substrate and a modified mullite coating. The modified mullite coating comprises mullite and a modifier component that reduces cracks in the modified mullite coating. The article can further comprise a thermal barrier coating applied to the modified mullite coating. The modified mullite coating functions as a bond coating between the external environmental/thermal barrier coating and the silicon-containing substrate. In a method of forming an article, a silicon-containing substrate is formed and a modified mullite coating is applied. The modified mullite coating comprises mullite and a modifier component that reduces cracks in the modified mullite coating.
Bacterial adherence to anodized titanium alloy
NASA Astrophysics Data System (ADS)
Pérez-Jorge Peremarch, C.; Pérez Tanoira, R.; Arenas, M. A.; Matykina, E.; Conde, A.; De Damborenea, J. J.; Gómez Barrena, E.; Esteban, J.
2010-11-01
The aim of this study was to evaluate Staphylococcus sp adhesion to modified surfaces of anodized titanium alloy (Ti-6Al-4V). Surface modification involved generation of fluoride-containing titanium oxide nanotube films. Specimens of Ti-6Al-4V alloy 6-4 ELI-grade 23- meets the requirements of ASTM F136 2002A (AMS 2631B class A1) were anodized in a mixture of sulphuric/hydrofluoric acid at 20 V for 5 and 60 min to form a 100 nm-thick porous film of 20 nm pore diameter and 230 nm-thick nanotube films of 100 nm in diameter. The amount of fluorine in the oxide films was of 6% and of 4%, respectively. Collection strains and six clinical strains each of Staphylococcus aureus and Staphylococcus epidermidis were studied. The adherence study was performed using a previously published protocol by Kinnari et al. The experiments were performed in triplicates. As a result, lower adherence was detected for collection strains in modified materials than in unmodified controls. Differences between clinical strains were detected for both species (p<0.0001, Kruskal-Wallis test), although global data showed similar results to that of collection strains (p<0.0001, Kruskal-Wallis test). Adherence of bacteria to modified surfaces was decreased for both species. The results also reflect a difference in the adherence between S. aureus and S. epidermidis to the modified material. As a conclusion, not only we were able to confirm the decrease of adherence in the modified surface, but also the need to test multiple clinical strains to obtain more realistic microbiological results due to intraspecies differences.
Laser-driven high-frequency vibrations of metal blister surface
NASA Astrophysics Data System (ADS)
Kononenko, T. V.; Sinyavsky, M. N.; Konov, V. I.; Sentis, M.
2013-09-01
Time-resolved interferometric microscopy was applied to investigate laser-induced blistering of a titanium film on a silica substrate. Ablation of the titanium/silica interface by single 0.7 ns pulses within a certain fluence range results in local exfoliation of the metal film from the substrate avoiding, however, complete film destruction. Time-dependent transformation of the metal surface profile was reconstructed from the interference patterns within 0-13 ns time delay range. Transverse annular waves with typical amplitude of one hundred of nanometers and estimated traveling speed of few kilometers per second were revealed on the blister surface. The wave occurrence was attributed to fast inhomogeneous bending of the film covering the expanding blister. The resultant high-frequency (˜1 GHz) vibrations of the metal surface provide intensive inertial forces when such metalized target is used for blister-based laser-induced forward transfer of nanopowders and organic molecules.
Characterization of a Surface-Flashover Ion Source with 10-250 ns Pulse Widths
NASA Astrophysics Data System (ADS)
Falabella, S.; Guethlein, G.; Kerr, P. L.; Meyer, G. A.; Morse, J. D.; Sampayan, S.; Tang, V.
2009-03-01
As a step towards developing an ultra compact D-D neutron source for various defense and homeland security applications, a compact ion source is needed. Towards that end, we are testing a pulsed, surface flashover source, with deuterated titanium films deposited on alumina substrates as the electrodes. An electrochemically-etched mask was used to define the electrode areas on the substrate during the sputtered deposition of the titanium films. Deuterium loading of the films was performed in an all metal-sealed vacuum chamber containing a heated stage. Deuterium ion current from the source was determined by measuring the neutrons produced when the ions impacted a deuterium-loaded target held at -90 kV. As the duration of the arc current is varied, it was observed that the integrated deuteron current per pulse initially increases rapidly, then reaches a maximum near a pulse length of 100 ns.
Cathodic cage plasma deposition of TiN and TiO{sub 2} thin films on silicon substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sousa, Romulo R. M. de; Sato, Patricia S.; Nascente, Pedro A. P., E-mail: nascente@ufscar.br
2015-07-15
Cathodic cage plasma deposition (CCPD) was used for growing titanium nitride (TiN) and titanium dioxide (TiO{sub 2}) thin films on silicon substrates. The main advantages of the CCPD technique are the uniformity, tridimensionality, and high rate of the film deposition that occurs at higher pressures, lower temperatures, and lower treatment times than those used in conventional nitriding treatments. In this work, the influence of the temperature and gas atmosphere upon the characteristics of the deposited films was investigated. The TiN and TiO{sub 2} thin films were characterized by x-ray diffraction, scanning electron microscopy, and Raman spectroscopy to analyze their chemical,more » structural, and morphological characteristics, and the combination of these results indicates that the low-cost CCPD technique can be used to produce even and highly crystalline TiN and TiO{sub 2} films.« less
Laser cladding of bioactive glass coatings.
Comesaña, R; Quintero, F; Lusquiños, F; Pascual, M J; Boutinguiza, M; Durán, A; Pou, J
2010-03-01
Laser cladding by powder injection has been used to produce bioactive glass coatings on titanium alloy (Ti6Al4V) substrates. Bioactive glass compositions alternative to 45S5 Bioglass were demonstrated to exhibit a gradual wetting angle-temperature evolution and therefore a more homogeneous deposition of the coating over the substrate was achieved. Among the different compositions studied, the S520 bioactive glass showed smoother wetting angle-temperature behavior and was successfully used as precursor material to produce bioactive coatings. Coatings processed using a Nd:YAG laser presented calcium silicate crystallization at the surface, with a uniform composition along the coating cross-section, and no significant dilution of the titanium alloy was observed. These coatings maintain similar bioactivity to that of the precursor material as demonstrated by immersion in simulated body fluid. Copyright 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Tritium target manufacturing for use in accelerators
NASA Astrophysics Data System (ADS)
Bach, P.; Monnin, C.; Van Rompay, M.; Ballanger, A.
2001-07-01
As a neutron tube manufacturer, SODERN is now in charge of manufacturing tritium targets for accelerators, in cooperation with CEA/DAM/DTMN in Valduc. Specific deuterium and tritium targets are manufactured on request, according to the requirements of the users, starting from titanium target on copper substrate, and going to more sophisticated devices. A wide range of possible uses is covered, including thin targets for neutron calibration, thick targets with controlled loading of deuterium and tritium, rotating targets for higher lifetimes, or large size rotating targets for accelerators used in boron neutron therapy. Activity of targets lies in the 1 to 1000 Curie, diameter of targets being up to 30 cm. Special targets are also considered, including surface layer targets for lowering tritium desorption under irradiation, or those made from different kinds of occluders such as titanium, zirconium, erbium, scandium, with different substrates. It is then possible to optimize either neutron output, or lifetime and stability, or thermal behavior.
Yuan, Xiaohui; Tan, Fei; Xu, Haitao; Zhang, Shaojun; Qu, Fuzhen; Liu, Jie
2017-07-01
The aim of this study is to investigate the effects of different electrolytes on the titanium-porcelain bond strength after micro-arc oxidation (MAO) treatment. Three electrolytes at the same concentration were used as MAO reaction solutions: Na 2 SiO 3 , KF, and MgSiF 6 . Blasting treatment was chosen as a control. After MAO treatment in each electrolyte, the titanium-porcelain bond strengths were measured by the three-point bending test, as described in ISO 9693. The morphologies and elemental compositions of the MAO coating on the titanium substrate were evaluated by scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS). The interface between the titanium and porcelain was also observed by SEM and EDS. The MAO coatings created in different electrolytes exhibited completely different morphologies and compositions. The bond strengths of the Na 2 SiO 3 and MgSiF 6 groups were significantly higher than those of the other groups (p<0.05). Additionally, the titanium-porcelain interfaces were compact in the former two groups, whereas pores and cracks were visible at the interfaces in the other groups. These results indicate that MAO treatment with an appropriate electrolyte could be an effective method to increase the titanium-porcelain bonding strength. According to ISO 9693, titanium-porcelain restorations subjected to MAO treatment with an appropriate electrolyte could be appropriate for clinical use. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
Correlation of Critical Temperatures and Electrical Properties in Titanium Films
NASA Astrophysics Data System (ADS)
Gandini, C.; Lacquaniti, V.; Monticone, E.; Portesi, C.; Rajteri, M.; Rastello, M. L.; Pasca, E.; Ventura, G.
Recently transition-edge sensors (TES) have obtained an increasing interest as light detectors due to their high energy resolution and broadband response. Titanium (Ti), with transition temperature up to 0.5 K, is among the suitable materials for TES application. In this work we investigate Ti films obtained from two materials of different purity deposited by e-gun on silicon nitride. Films with different thickness and deposition substrate temperature have been measured. Critical temperatures, electrical resistivities and structural properties obtained from x-ray are related to each other.
Sputter deposited titanium disilicide at high substrate temperatures
NASA Astrophysics Data System (ADS)
Tanielian, M.; Blackstone, S.; Lajos, R.
1984-08-01
Titanium disilicide films were sputter deposited from a composite TiSi2.1 target on <111> bare silicon wafers both at room temperature and at 600 °C. The room temperature as-deposited films require a 900 °C sintering step to reduce their resistivity. On the other hand, the as-deposited 600 °C films are fully reacted, polycrystalline, have no oxygen contamination, large grain sizes, and are oxidation resistant. Further annealing of these films at 900 °C produces no changes in their crystal structure, composition, resistivity, or grain size.
Balan, Daniela; Adolfsson, Hans
2002-04-05
The direct formation of alpha-methylene-beta-amino acid derivatives is achieved using the aza version of the Baylis-Hillman protocol. The products are readily formed in a three-component one-pot reaction between arylaldehydes, sulfonamides, and alpha,beta-unsaturated carbonyl compounds. The reaction is efficiently catalyzed by titanium isopropoxide and 2-hydroxyquinuclidine in the presence of molecular sieves. The protocol allows for structural variation of the substrates, tolerating electron-poor and electron-rich arylaldehydes and various Michael acceptors.
NASA Astrophysics Data System (ADS)
Vautherin, B.; Planche, M.-P.; Quet, A.; Bianchi, L.; Montavon, G.
2014-11-01
Very Low Pressure Plasma Spraying (VLPPS) is an emerging spray process nowadays intensively studied by many research centers in the World. To date, studies are mostly focused on the manufacturing of ceramic or metallic coatings. None refers to composite coatings manufacturing by reactive plasma spraying under very low pressure (i.e., ~150 Pa). This paper aims at presenting the carried-out developments and some results concerning the manufacturing of composite coatings by reactive spraying. Titanium was selected as metallic material in order to deposit titanium-nitride titanium coatings (Ti-TiN). Nitrogen was used as plasma gas and was injected along an Ar-H2-N2 plasma jet via a secondary injector in order to reach the nitrogen content on the substrate surface. Thus, different kind of reactive mechanisms were highlighted. Resulting coatings were characterized by Scanning Electron Microscopy (SEM) observations. Porous microstructures are clearly identified and the deposits exhibit condensed vapours and molten particles. Glow Discharge Optical Emission Spectroscopy (GDOES) analysis evidenced nitrogen inside the deposits and X-Ray Diffraction (XRD) analysis confirmed the formation of titanium nitride phases, such as TiN and Ti2N, depending upon the location of the nitrogen injection. Microhardness values as high as 800 VHN were measured on manufactured samples (to be compared to 220 VHN for pure titanium VLPPS-manufactured coatings).
NASA Astrophysics Data System (ADS)
Szabo, Gyorgy; Kovacs, Lajos; Barabas, Jozsef; Nemeth, Zsolt; Maironna, Carlo
2001-11-01
The purpose of this paper is to discuss the background to advanced surface modification technologies and to present a new technique, involving the formation of a titanium oxide ceramic coating, with relatively long-term results of its clinical utilization. Three general techniques are used to modify surfaces: the addition or removal of material and the change of material already present. Surface properties can also be changed without the addition or removal of material, through the laser or electron beam thermal treatment. The new technique outlined in this paper relates to the production of a corrosion-resistant 2000-2500 A thick, ceramic oxide layer with a coherent crystalline structure on the surface of titanium implants. The layer is grown electrochemically from the bulk of the metal and is modified by heat treatment. Such oxide ceramic-coated implants have a number of advantageous properties relative to implants covered with various other coatings: a higher external hardness, a greater force of adherence between the titanium and the oxide ceramic coating, a virtually perfect insulation between the organism and the metal (no possibility of metal allergy), etc. The coated implants were subjected to various physical, chemical, electronmicroscopic, etc. tests for a qualitative characterization. Finally, these implants (plates, screws for maxillofacial osteosynthesis and dental root implants) were applied in surgical practice for a period of 10 years. Tests and the experience acquired demonstrated the good properties of the titanium oxide ceramic-coated implants.
Numerical and experimental study of electron-beam coatings with modifying particles FeB and FeTi
NASA Astrophysics Data System (ADS)
Kryukova, Olga; Kolesnikova, Kseniya; Gal'chenko, Nina
2016-07-01
An experimental study of wear-resistant composite coatings based on titanium borides synthesized in the process of electron-beam welding of components thermo-reacting powders are composed of boron-containing mixture. A model of the process of electron beam coating with modifying particles of boron and titanium based on physical-chemical transformations is supposed. The dissolution process is described on the basis of formal kinetic approach. The result of numerical solution is the phase and chemical composition of the coating under nonequilibrium conditions, which is one of the important characteristics of the coating forming during electron beam processing. Qualitative agreement numerical calculations with experimental data was shown.
PET fiber fabrics modified with bioactive titanium oxide for bone substitutes.
Kokubo, Tadashi; Ueda, Takahiro; Kawashita, Masakazu; Ikuhara, Yuichi; Takaoka, Gikan H; Nakamura, Takashi
2008-02-01
A rectangular specimen of polyethylene terephthalate (PET) was soaked in a titania solution composed of titanium isopropoxide, water, ethanol and nitric acid at 25 degrees C for 1 h. An amorphous titanium oxide was formed uniformly on the surface of PET specimen, but did not form an apatite on its surface in a simulated body fluid (SBF) within 3 d. The PET plate formed with the amorphous titanium oxide was subsequently soaked in water or HCl solutions with different concentrations at 80 degrees C for different periods of time. The titanium oxide on PET was transformed into nano-sized anatase by the water treatment and into nano-sized brookite by 0.10 M HCl treatment at 80 degrees C for 8 d. The former did not form the apatite on its surface in SBF within 3 d, whereas the latter formed the apatite uniformly on its surface. Adhesive strength of the titanium oxide and apatite layers to PET plate was increased by pre-treatment of PET with 2 wt% NaOH solution at 40 degrees C for 2 h. A two-dimensional fabric of PET fibers 24 microm in diameter was subjected to the NaOH pre-treatment at 40 degrees C, titania solution treatment at 25 degrees C and subsequent 0.10 M HCl treatment at 80 degrees C. Thus treated PET fabric formed the apatite uniformly on surfaces of individual fibers constituting the fabric in SBF within 3 d. Two or three dimensional PET fabrics modified with the nano-sized brookite on surfaces of the individual fibers constituting the fabric by the present method are believed to be useful as flexible bone substitutes, since they could be integrated with living bone through the apatite formed on their constituent fibers.
[The bonding characteristic of titanium and RG experiment porcelain].
Ren, Wei-hong; Guo, Tian-wen; Tian, Jie-mo; Zhang, Yun-long
2003-07-01
To study the bonding characteristic of Titanium and RG experiment porcelain. 5 specimens with a size of 10 mm x 5 mm x 1.4 mm were cast from pure titanium. Then 1 mm of RG experiment opaque and body porcelain were fused on the surface of the titanium specimens. The interface of titanium and porcelain was analyzed with a scanning electron microscope with energy-despersive spectrometry; 6 metal specimens with the size of 25 mm x 3 mm x 0.5 mm were cast from Ni-Cr alloy and a uniform thickness of 1 mm of VMK 99 porcelain was veneered on the central area of 8 mm x 3 mm 18 metal specimens as the same size were cast from pure titanium. The uniform thickness of 1 mm of VITA TITANKERAMIK porcelain, of Noritake super porcelain Ti-22 and of RG experiment porcelain were veneered on every 6 specimens respectively in the central area of 8 mm x 3 mm. The specimens were subjected to a three-point bending test on a load-test machine with a span of 20 mm, then the failure loads were recorded and statistically analysised. The RG porcelain/titanium crown was fabricated by fusing RG opaque porcelain and body porcelain to cast titanium substrate crown. The SEM results show no porosity and crackle were found in the interface. The energy-dispersive spectrometry show that there are Si, Ti and O in the 1 micro m layer between porcelain and titanium, which suggesting titanium and experiment porcelain bonding well. The three point test showed the fracture force for the combinations of titanium/VITA TITANKERAMIK porcelain, titanium/Noritake super porcelain Ti-22 and titanium/RG experiment porcelain were (7.233 +/- 2.539) N, (5.533 +/- 1.199) N and (6.316 +/- 1.433) N respectively. There were not statistically significant differences among them (t test, P < 0.01). The fracture force for the Ni-Cr alloy/VMK99 porcelain combination (12.733 +/- 3.297) N was significantly greater than those of the cast titanium/porcelain (t test, P > 0.05). The crown was translucent with no crack. RG porcelain is well compatible with titanium.
Preparation and in vitro evaluation of plasma-sprayed Mg(2)SiO(4) coating on titanium alloy.
Xie, Youtao; Zhai, Wanyin; Chen, Lei; Chang, Jiang; Zheng, Xuebin; Ding, Chuanxian
2009-07-01
In this paper, chemically synthesized Mg(2)SiO(4) (MS) powder was plasma-sprayed onto a titanium alloy substrate to evaluate its application potentials in biomedicine. The phase composition and surface morphology of the MS coating were analyzed. Results showed that the MS coating was composed mainly of Mg(2)SiO(4) phase, with a small amount of MgO and glass phases. Mechanical testing showed that the coating exhibited good adhesion strength to the substrate due to the close thermal expansion coefficient between the MS ceramic and the titanium alloy substrate. The measured bonding strength was as high as 41.5+/-5.3MPa, which is much higher than the traditional HA coating. In vitro cytocompatibility evaluation of the MS coating was performed using canine bone marrow stem cells (MSCs). The MSCs exhibited good adhesion, proliferation and differentiation behavior on the MS coating surface, which can be explained by the high protein adsorption capability of the MS coating, as well as the stimulatory effects of Mg and Si ions released from the coating. The proliferation rate of the MSCs on MS coating was very close to that on the hydroxylapatite (HA) coating. Alkaline phosphatase (ALP) activity analysis demonstrated that the ALP level of the MSCs on the MS coating remained high even after 21days, implying that the surface characteristics of the coating are beneficial for the differentiation of MSCs. In summary, our results suggest that MS coating might be a new approach to prepare bone implants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reynoso, F; Washington University School of Medicine, St. Louis, MO; Munro, J
2016-06-15
Purpose: To determine the AAPM TG-43 brachytherapy dosimetry parameters of a new titanium-encapsulated Yb-169 source designed to maximize the dose enhancement during gold nanoparticle-aided radiation therapy (GNRT). Methods: An existing Monte Carlo (MC) model of the titanium-encapsulated Yb-169 source, which was described in the current investigators’ published MC optimization study, was modified based on the source manufacturer’s detailed specifications, resulting in an accurate model of the titanium-encapsulated Yb-169 source that was actually manufactured. MC calculations were then performed using the MCNP5 code system and the modified source model, in order to obtain a complete set of the AAPM TG-43 parametersmore » for the new Yb-169 source. Results: The MC-calculated dose rate constant for the new titanium-encapsulated Yb-169 source was 1.05 ± 0.03 cGy per hr U, indicating about 10% decrease from the values reported for the conventional stainless steel-encapsulated Yb-169 sources. The source anisotropy and radial dose function for the new source were found similar to those reported for the conventional Yb-169 sources. Conclusion: In this study, the AAPM TG-43 brachytherapy dosimetry parameters of a new titanium-encapsulated Yb-169 source were determined by MC calculations. The current results suggested that the use of titanium, instead of stainless steel, to encapsulate the Yb-169 core would not lead to any major change in the dosimetric characteristics of the Yb-169 source, while it would allow more low energy photons being transmitted through the source filter thereby leading to an increased dose enhancement during GNRT. Supported by DOD/PCRP grant W81XWH-12-1-0198 This investigation was supported by DOD/PCRP grant W81XWH-12-1- 0198.« less
Brushite coatings on titanium for orthopedic implants: Studies on deposition and transformation
NASA Astrophysics Data System (ADS)
Kumar, Mukesh
Hydroxyapatite (HA, Ca5(PO4)3OH) coating on the metallic substrate is expected to assist bone growth and implant integration. However, HA is quite stable in physiological solution and the use of other more reactive calcium phosphate ceramics (CPC) could induce faster bone growth by providing calcium and phosphate ions to the interacting physiological solution. This study utilized a non-line of sight electrodeposition process to achieve brushite (CaHPO4.2H2O) coatings. The uses of potassium or sodium chloride as a conducting electrolyte in the depositing bath enhanced deposition rates and altered the morphology of the coatings. Analysis suggested a strained deposit with sight specific substitution of cations from the conducting electrolyte. Such a deposit (modified brushite) was determined to have CaHPO 4.2H2O and CaY2(1-x)HPO4•2H 2O (x ˜0.95) with Y as Na0 or K. Whereas normal brushite was obtained from unsupported baths. The deposited mass of brushite increased with charge consumed and bonding to the substrate decreased with increasing deposition time. Though inconclusive. in-situ studies on electrodeposition did not rule out the possibility of ionic species responsible for the deposit. Transformations of both forms of brushite were investigated in calcium free Hank's type simulated body fluid. Modified brushite showed periodic appearance of freshly precipitated, but poorly crystalline HA, without the benefit of monetite (CaHPO4) as an intermediate. However, normal brushite transformation showed nonstoichiometric HA with monetite as an intermediate. Normal brushite demonstrated a slower transformation to HA when compared to the transformation kinetics of modified brushite. It is shown that lattice strain due to localized ion incorporation could be used to after the properties of brushite coatings to adjust the kinetics of transformation and indirectly the amount of calcium and phosphate ions released into the surrounding.
Zhong, Zhenyu; Ma, Jun
2017-09-01
Zinc substituted hydroxyapatite/silk fibroin composite coatings were deposited on titanium substrates at room temperature by electrophoretic deposition. Microscopic characterization of the synthesized composite nanoparticles revealed that the particle size ranged 50-200 nm, which increased a little after zinc substitution. The obtained coatings maintained the phase of hydroxyapatite and they could induce fast apatite formation in simulated body fluid, indicating high bone activity. The cell culturing results showed that the biomimetic hydroxyapatite coatings could regulate adhesion, spreading, and proliferation of osteoblastic cells. Furthermore, the biological behavior of the zinc substituted hydroxyapatite coatings was found to be better than the bare titanium without coatings and hydroxyapatite coatings without zinc, increasing MC3T1-E1 cell differentiation in alkaline phosphatase expression.
Sol-gel synthesis and optical properties of titanium dioxide thin film
NASA Astrophysics Data System (ADS)
Ullah, Irfan; Khattak, Shaukat Ali; Ahmad, Tanveer; Saman; Ludhi, Nayab Ali
2018-03-01
The titanium dioxide (TiO2) is synthesized by sol-gel method using titanium-tetra-iso-propoxide (TTIP) as a starting material, and deposited on the pre-cleaned glass substrate using spin coating technique at optimized parameters. Energy dispersive X-ray (EDX) spectroscopy confirms successful TiO2 growth. The optical properties concerning the transmission and absorption spectra show 85% transparency and 3.28 eV wide optical band gap for indirect transition, calculated from absorbance. The exponential behavior of absorption edge is observed and attributed to the localized states electronic transitions, curtailed in the indirect band gap of the thin film. The film reveals decreasing refractive index with increasing wavelength. The photoluminescence (PL) study ascertains that luminescent properties are due to the surface defects.
Polycrystalline Diamond Coating of Additively Manufactured Titanium for Biomedical Applications.
Rifai, Aaqil; Tran, Nhiem; Lau, Desmond W; Elbourne, Aaron; Zhan, Hualin; Stacey, Alastair D; Mayes, Edwin L H; Sarker, Avik; Ivanova, Elena P; Crawford, Russell J; Tran, Phong A; Gibson, Brant C; Greentree, Andrew D; Pirogova, Elena; Fox, Kate
2018-03-14
Additive manufacturing using selective laser melted titanium (SLM-Ti) is used to create bespoke items across many diverse fields such as medicine, defense, and aerospace. Despite great progress in orthopedic implant applications, such as for "just in time" implants, significant challenges remain with regards to material osseointegration and the susceptibility to bacterial colonization on the implant. Here, we show that polycrystalline diamond coatings on these titanium samples can enhance biological scaffold interaction improving medical implant applicability. The highly conformable coating exhibited excellent bonding to the substrate. Relative to uncoated SLM-Ti, the diamond coated samples showed enhanced mammalian cell growth, enriched apatite deposition, and reduced microbial S. aureus activity. These results open new opportunities for novel coatings on SLM-Ti devices in general and especially show promise for improved biomedical implants.
NASA Astrophysics Data System (ADS)
Bansal, Rajesh; Singh, J. K.; Singh, Vakil; Singh, D. D. N.; Das, Parimal
2017-03-01
Thermal oxidation of commercially pure titanium (cp-Ti) was carried out at different temperatures, ranging from 200 to 900 °C to achieve optimum corrosion resistance of the thermally treated surface in simulated body fluid. Scanning electron microscopy, x-ray diffraction, Raman spectroscopy and electrochemical impedance spectroscopy techniques were used to characterize the oxides and assess their protective properties exposed in the test electrolyte. Maximum resistance toward corrosion was observed for samples oxidized at 500 °C. This was attributed to the formation of a composite layer of oxides at this temperature comprising Ti2O3 (titanium sesquioxide), anatase and rutile phases of TiO2 on the surface of cp-Ti. Formation of an intact and pore-free oxide-substrate interface also improved its corrosion resistance.
PEM Anchorage on Titanium Using Catechol Grafting
Marie, Hélène; Barrere, Amélie; Schoentstein, Frédérique; Chavanne, Marie-Hélène; Grosgogeat, Brigitte; Mora, Laurence
2012-01-01
Background This study deals with the anchorage of polyelectrolyte films onto titanium surfaces via a cathecol-based linker for biomedical applications. Methodology The following study uses a molecule functionalized with a catechol and a carboxylic acid: 3-(3,4-dihydroxyphenyl)propanoic acid. This molecule is anchored to the TiO2 substrate via the catechol while the carboxylic acid reacts with polymers bearing amine groups. By providing a film anchorage of chemisorption type, it makes possible to deposit polyelectrolytes on the surface of titanium. Principal Findings Infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), contact angle and atomic force microscopy (AFM) measurements show that the different steps of grafting have been successfully performed. Conclusions This method based on catechol anchorage of polyelectrolytes open a window towards large possibilities of clinical applications. PMID:23226262
Drevet, Richard; Benhayoune, Hicham
2013-10-01
Strontium-substituted calcium phosphate coatings are synthesized by pulsed electrodeposition on titanium alloy (Ti6Al4V) substrates. Experimental conditions of the process are optimized in order to obtain a coating with a 5% atomic substitution of calcium by strontium which corresponds to the best observations on the osteoblast cells activity and on the osteoclast cells proliferation. The physical and chemical characterizations of the obtained coating are carried out by scanning electron microscopy associated to energy dispersive X-ray spectroscopy (EDXS) for X-ray microanalysis and the structural characterization of the coating is carried out by X-ray diffraction. The in vitro dissolution/precipitation properties of the coated substrates are investigated by immersion into Dulbecco's Modified Eagle Medium (DMEM) from 1h to 14 days. The calcium, phosphorus and strontium concentrations variations in the biological liquid are assessed by Induced Coupled Plasma - Atomic Emission Spectroscopy for each immersion time. The results show that under specific experimental conditions, the electrodeposition process is suitable to synthesize strontium-substituted calcium phosphate coatings. Moreover, the addition of hydrogen peroxide (H2O2) into the electrolytic solution used in the process allows us to observe a control of the strontium release during the immersion of the prosthetic materials into DMEM. © 2013.
NASA Astrophysics Data System (ADS)
Chuan, Lee Te; Rathi, Muhammad Fareez Mohamad; Abidin, Muhamad Yusuf Zainal; Abdullah, Hasan Zuhudi; Idris, Maizlinda Izwana
2015-07-01
Anodic oxidation is a surface modification method which combines electric field driven metal and oxygen ion diffusion for formation of oxide layer on the anode surface. This method has been widely used to modify the surface morphology of biomaterial especially titanium. This study aimed to investigate the effect of applied voltage on titanium. Specifically, the titanium foil was anodised in mixture of β-glycerophosphate disodium salt pentahydrate (β-GP) and calcium acetate monohydrate (CA) with different applied voltage (50-350 V), electrolyte concentration (0.04 M β-GP + 0.4 M CA), anodising time (10minutes) and current density (50 and 70 mA.cm-2) at room temperature. Surface oxide properties of anodised titanium were characterised by digital single-lens reflex camera (DSLR camera), field emission scanning electron microscope (FESEM) and atomic force microscopy (AFM). At lower applied voltage (≤150 V), surface of titanium foils were relatively smooth. With increasing applied voltage (≥250 V), the oxide layer became more porous and donut-shaped pores were formed on the surface of titanium foils. The AFM results indicated that the surface roughness of anodised titanium increases with increasing of applied voltage. The porous and rough surface is able to promote the osseointegration and reduce the suffering time of patient.
Cochis, A; Azzimonti, B; Della Valle, C; De Giglio, E; Bloise, N; Visai, L; Cometa, S; Rimondini, L; Chiesa, R
2016-02-01
Implant-related infection of biomaterials is one of the main causes of arthroplasty and osteosynthesis failure. Bacteria, such as the rapidly-emerging Multi Drug Resistant (MDR) pathogen Acinetobacter Baumannii, initiate the infection by adhering to biomaterials and forming a biofilm. Since the implant surface plays a crucial role in early bacterial adhesion phases, titanium was electrochemically modified by an Anodic Spark Deposition (ASD) treatment, developed previously and thought to provide osseo-integrative properties. In this study, the treatment was modified to insert gallium or silver onto the titanium surface, to provide antibacterial properties. The material was characterized morphologically, chemically, and mechanically; biological properties were investigated by direct cytocompatibility assay, Alkaline Phosphatase (ALP) activity, Scanning Electron Microscopy (SEM), and Immunofluorescent (IF) analysis; antibacterial activity was determined by counting Colony Forming Units, and viability assay. The various ASD-treated surfaces showed similar morphology, micrometric pore size, and uniform pore distribution. Of the treatments studied, gallium-doped specimens showed the best ALP synthesis and antibacterial properties. This study demonstrates the possibility of successfully doping the surface of titanium with gallium or silver, using the ASD technique; this approach can provide antibacterial properties and maintain high osseo-integrative potential. Copyright © 2015 Elsevier Ltd. All rights reserved.
Modified titanium implant as a gateway to the human body: the implant mediated drug delivery system.
Park, Young-Seok; Cho, Joo-Youn; Lee, Shin-Jae; Hwang, Chee Il
2014-01-01
The aim of this study was to investigate the efficacy of a proposed new implant mediated drug delivery system (IMDDS) in rabbits. The drug delivery system is applied through a modified titanium implant that is configured to be implanted into bone. The implant is hollow and has multiple microholes that can continuously deliver therapeutic agents into the systematic body. To examine the efficacy and feasibility of the IMDDS, we investigated the pharmacokinetic behavior of dexamethasone in plasma after a single dose was delivered via the modified implant placed in the rabbit tibia. After measuring the plasma concentration, the areas under the curve showed that the IMDDS provided a sustained release for a relatively long period. The result suggests that the IMDDS can deliver a sustained release of certain drug components with a high bioavailability. Accordingly, the IMDDS may provide the basis for a novel approach to treating patients with chronic diseases.
Laser modification of thermally sprayed coatings
NASA Astrophysics Data System (ADS)
Uglov, A. A.; Fomin, A. D.; Naumkin, A. O.; Pekshev, P. Iu.; Smurov, I. Iu.
1987-08-01
Experimental results are reported on the modification of thermally sprayed coatings on steels and aluminum alloys using pulsed YAG and CW CO2 lasers. In particular, results obtained for self-fluxing Ni9CrBSi powders, ZRO2 ceramic, and titanium are examined. It is shown that the laser treatment of thermally sprayed coatings significantly improves their physicomechanical properties; it also makes it possible to obtain refractory coatings on low-melting substrates with good coating-substrate adhesion.
NASA Astrophysics Data System (ADS)
Covarrubias, Cristian; Mattmann, Matías; Von Marttens, Alfredo; Caviedes, Pablo; Arriagada, Cristián; Valenzuela, Francisco; Rodríguez, Juan Pablo; Corral, Camila
2016-02-01
The fabrication of a nanoporous silica coating loaded with bioactive glass nanoparticles (nBG/NSC) on titanium dental implant surface and its in vitro and in vivo evaluation is presented. The coating was produced by a combined sol-gel and evaporation induced self-assembly process. In vitro bioactivity was assessed in simulated body fluid (SBF) and investigating the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). A rat tibial model was employed to analyze the bone response to nBG/NSC-modified titanium implant surface in vivo. The nBG/NSC coating was confirmed at nano level to be constituted by a highly ordered nanoporous silica structure. The coating nanotopography in conjunction with the bioactivity of the BG particles accelerate the in vitro apatite formation and promote the osteogenic differentiation of hBMSCs in absence of osteogenic supplements. These properties accelerate the formation of bone tissue in the periphery of the implant after 3 weeks of implantation. Backscattered scanning electron microscopy images revealed the presence of gaps and soft tissue in the unmodified implant after 6 weeks, whereas the nBG/NSC-modified implant showed mature bone in intimate contact with the implant surface. The nBG/NSC coating appears promising for accelerating the osseointegration of dental implants.
Enhanced human bone marrow mesenchymal stem cell functions on cathodic arc plasma-treated titanium
Zhu, Wei; Teel, George; O’Brien, Christopher M; Zhuang, Taisen; Keidar, Michael; Zhang, Lijie Grace
2015-01-01
Surface modification of titanium for use in orthopedics has been explored for years; however, an ideal method of integrating titanium with native bone is still required to this day. Since human bone cells directly interact with nanostructured extracellular matrices, one of the most promising methods of improving titanium’s osseointegration involves inducing bio-mimetic nanotopography to enhance cell–implant interaction. In this regard, we explored an approach to functionalize the surface of titanium by depositing a thin film of textured titanium nanoparticles via a cathodic arc discharge plasma. The aim is to improve human bone marrow mesenchymal stem cell (MSC) attachment and differentiation and to reduce deleterious effects of more complex surface modification methods. Surface functionalization was analyzed by scanning electron microscopy, atomic force microscopy, contact angle testing, and specific protein adsorption. Scanning electron microscopy and atomic force microscopy examination demonstrate the deposition of titanium nanoparticles and the surface roughness change after coating. The specific fibronectin adsorption was enhanced on the modified titanium surface that associates with the improved hydrophilicity. MSC adhesion and proliferation were significantly promoted on the nanocoated surface. More importantly, compared to bare titanium, greater production of total protein, deposition of calcium mineral, and synthesis of alkaline phosphatase were observed from MSCs on nanocoated titanium after 21 days. The method described herein presents a promising alternative method for inducing more cell favorable nanosurface for improved orthopedic applications. PMID:26677327
Establishment of Epithelial Attachment on Titanium Surface Coated with Platelet Activating Peptide
Sugawara, Shiho; Maeno, Masahiko; Lee, Cliff; Nagai, Shigemi; Kim, David M.; Da Silva, John; Kondo, Hisatomo
2016-01-01
The aim of this study was to produce epithelial attachment on a typical implant abutment surface of smooth titanium. A challenging complication that hinders the success of dental implants is peri-implantitis. A common cause of peri-implantitis may results from the lack of epithelial sealing at the peri-implant collar. Histologically, epithelial sealing is recognized as the attachment of the basement membrane (BM). BM-attachment is promoted by activated platelet aggregates at surgical wound sites. On the other hand, platelets did not aggregate on smooth titanium, the surface typical of the implant abutment. We then hypothesized that epithelial BM-attachment was produced when titanium surface was modified to allow platelet aggregation. Titanium surfaces were coated with a protease activated receptor 4-activating peptide (PAR4-AP). PAR4-AP coating yielded rapid aggregation of platelets on the titanium surface. Platelet aggregates released robust amount of epithelial chemoattractants (IGF-I, TGF-β) and growth factors (EGF, VEGF) on the titanium surface. Human gingival epithelial cells, when they were co-cultured on the platelet aggregates, successfully attached to the PAR4-AP coated titanium surface with spread laminin5 positive BM and consecutive staining of the epithelial tight junction component ZO1, indicating the formation of complete epithelial sheet. These in-vitro results indicate the establishment of epithelial BM-attachment to the titanium surface. PMID:27741287
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malyutina, Yulia N., E-mail: iuliiamaliutina@gmail.ru; Lazurenko, Daria V., E-mail: pavlyukova-87@mail.ru; Bataev, Ivan A., E-mail: ivanbataev@ngs.ru
2015-10-27
In this paper an influence of the tantalum content on the structure and properties of surface layers of the titanium alloy doped using a laser treatment technology was investigated. It was found that an increase of a quantity of filler powder per one millimeter of a track length contributed to a rise of the content of undissolved particles in coatings. The maximum thickness of a cladded layer was reached at the mass of powder per the length unit equaled to 5.5 g/cm. Coatings were characterized by the formation of a dendrite structure with attributes of segregation. The width of a quenchedmore » fusion zone grew with an increase in the rate of powder feed to the treated area. Significant strengthening of the titanium surface layer alloyed with tantalum was not observed; however, the presence of undissolved tantalum particles can decrease the hardness of titanium surface layers.« less
Effect of alloy chemistry and exposure conditions on the oxidation of titanium
NASA Technical Reports Server (NTRS)
Unnam, J.; Shenoy, R. N.; Clark, R. K.
1984-01-01
Multiwall is a new thermal protection system concept for advanced space transportation vehicles. The system consists of discrete panels made up of multiple layers of foil gage metal. Titanium is the proposed candidate metal for multiwall panels in the reentry temperature range up to 675 C. Oxidation and embrittlement are the principal concerns related to the use of Ti in heat shield applications. The results of a broad study on the oxidation kinetics of several titanium alloys subjected to different exposure conditions are described. The alloys include commercially pure titanium, Ti-6Al-4V, and Ti-6Al-2Sn-4Zr-2Mo. Oxidation studies were performed on these alloys exposed at 704 C in 5-760 torr air pressure and 0 to 50% relative humidity. The resulting weight gains were correlated with oxide thickness and substrate contamination. The contamination depth and weight gains due to solid solutioning were obtained from microhardness depth profiles and hardness versus weight percent oxygen calibration data.
Nanotubular topography enhances the bioactivity of titanium implants.
Huang, Jingyan; Zhang, Xinchun; Yan, Wangxiang; Chen, Zhipei; Shuai, Xintao; Wang, Anxun; Wang, Yan
2017-08-01
Surface modification on titanium implants plays an important role in promoting mesenchymal stem cell (MSC) response to enhance osseointegration persistently. In this study, nano-scale TiO 2 nanotube topography (TNT), micro-scale sand blasted-acid etched topography (SLA), and hybrid sand blasted-acid etched/nanotube topography (SLA/TNT) were fabricated on the surfaces of titanium implants. Although the initial cell adherence at 60 min among TNT, SLA and TNT/SLA was not different, SLA and SLA/TNT presented to be rougher and suppressed the proliferation of MSC. TNT showed hydrophilic surface and balanced promotion of cellular functions. After being implanted in rabbit femur models, TNT displayed the best osteogenesis inducing ability as well as strong bonding strength to the substrate. These results indicate that nano-scale TNT provides favorable surface topography for improving the clinical performance of endosseous implants compared with micro and hybrid micro/nano surfaces, suggesting a promising and reliable surface modification strategy of titanium implants for clinical application. Copyright © 2017 Elsevier Inc. All rights reserved.
Plasma-Sprayed Titanium Patterns for Enhancing Early Cell Responses
NASA Astrophysics Data System (ADS)
Shi, Yunqi; Xie, Youtao; Pan, Houhua; Zheng, Xuebin; Huang, Liping; Ji, Fang; Li, Kai
2016-06-01
Titanium coating has been widely used as a biocompatible metal in biomedical applications. However, the early cell responses and long-term fixation of titanium implants are not satisfied. To obviate these defects, in this paper, micro-post arrays with various widths (150-1000 μm) and intervals (100-300 μm) were fabricated on the titanium substrate by template-assisted plasma spraying technology. In vitro cell culture experiments showed that MC3T3-E1 cells exhibited significantly higher osteogenic differentiation as well as slightly improved adhesion and proliferation on the micro-patterned coatings compared with the traditional one. The cell number on the pattern with 1000 µm width reached 130% after 6 days of incubation, and the expressions of osteopontin (OPN) as well as osteocalcin (OC) were doubled. No obvious difference was found in cell adhesion on various size patterns. The present micro-patterned coatings proposed a new modification method for the traditional plasma spraying technology to enhance the early cell responses and convenience for the bone in-growth.
NASA Astrophysics Data System (ADS)
Komlev, Anton A.; Minzhulina, Ekaterina A.; Smirnov, Vladislav V.; Shapovalov, Viktor I.
2018-01-01
The paper describes physical characteristics of the hot target sputtering process, which have not been known before. To switch a magnetron over to the hot target regime, a titanium disk of 1 mm thick with a 1-mm-gap was attached on a 4-mm-thick copper plate cooled by running water. A thermocouple sensor was used to investigate the thermal processes occurring in substrates. The study was performed at the discharge current density of 20-40 mA/cm2 and argon pressure of 3-7 mTorr. The accuracy of temperature measurement appeared to be within ± 5%, due the application of a chromel-copel thermocouple. The study reveals that under these conditions the heating curves have the inflection points positioned proportionally to the discharge current density and argon pressure on a time axis. The inflection point appears in the kinetic curves due to the finite value of the target heating time constant. The study shows that the substrate fixed temperature and substrate heating time constant depend on the argon pressure and relate to the current density by the polynomials of the first and second degrees, respectively. The influence of a target on the substrate heating kinetics is considered in an analytical description by the introduction of a multiplier in the form of an exponential function of time. The results of the research make a novel contribution to the field of the sputtering process.
The effect of current reversal on coated titanium electrodes
NASA Astrophysics Data System (ADS)
Elnathan, Francis
Coated titanium electrodes have applications in the electrochemical industry, including water treatment and swimming pool chlorination. Current/polarity reverse electrolysis is a technique used for "self-cleaning" of the coated titanium anodes employed in water disinfection and treatment. However, the literature holds very little information about the effects of polarity reversal on these anodes. The present work appears to be the first to investigate coated titanium anodes in polarity reversal in a systematic method. Two commercial titanium electrodes (RuTi and IrTa) were studied. Polarity reversal was the main electrochemical technique employing a current density of 1200 A/m 2, except when current density was studied. The effects of NO 3-, SO42-, ClO4 -, HPO42-, CO32-, Mg2+ and Ca2+ on electrode lifetime were examined. Analysis of the electrochemical results showed that plateau time (tau p), for gas evolution, is highly important to the lifetime of the coated titanium anodes. The effects of three electrolysis variables on the coated titanium anode life were examined. Current density was observed to have an inverse relationship with anode life while reversal cycle time had a direct relation with lifetime. NaCl concentration had no discernible effect. In general, the RuTi electrode exhibited longer lifetimes than IrTa except for a few specific conditions. The influence of the concentration of five anions (NO3-, SO42-, ClO 4-, HPO42-, and CO3 2-) was determined. Changing the composition and concentration of anions affected the lifetimes of the two electrodes, especially nitrate, hydrogen phosphate and carbonate. The lifetime of IrTa was highest in nitrate, and increased as a function of nitrate concentration. The service life of RuTi was highest in hydrogen phosphate, and increased with increasing hydrogen phosphate concentration. Lifetime of both anodes decreased with increasing carbonate ions. The effects of Mg2+ and Ca2+ on electrode lifetime were examined with three anions (NO3-, HPO42-, ClO4-) electrolytes. While there were numerous effects and interactions between Mg2+ or Ca2+ and anions on lifetime, these effects were found to mainly affect the amount of time the electrodes spent in the charging and discharging reactions. The times related to gas evolution (which is the plateau time, tau p) were found to be strikingly similar. The charging times (tau C) which are related to adsorption and desorption of species were not also any significantly different. Coating dissolution, substrate and/or coating passivation mechanisms were identified as being responsible for coated titanium anode failure in current reverse and hard water electrolysis. IrTa is believed to have failed predominantly by the dissolution mechanism in nitrate, hydrogen phosphate and perchlorate. RuTi failed predominantly by substrate and/or coating passivation in hydrogen phosphate, nitrate and carbonate. Anode failure is believed to be the result of plateau (taup) and charging (tauC)reactions occurring at the coating/electrolyte and/or substrate/coating interface. The tau p and tauC are useful determinants for the process of anode failure.
Fabrication of Titanium Bonded Joint Specimens for High Temperature Testing
NASA Technical Reports Server (NTRS)
Smeltzer, Stanley S., III; Kovach, Michael P.; Hudson, Wanda
2005-01-01
Four sets of adhesively bonded, titanium lap-shear coupon specimens were fabricated for ultimate strength testing according to the ASTM D1002 and D3165 standards. Important features of the fabrication methods, processing details, and lap-shear test results are presented for specimens fabricated using a modified bismaleimide adhesive, EA 9673, on titanium. Surface treatment of the titanium was performed using surface abrasion followed by one of two separate chemical etching processes. Although cure cycle requirements are different among most adhesives, a single surface preparation method was sought as the preferred method for conditioning the titanium specimens prior to bonding and curing. A fabrication process using a combination of low-pressure grit-blasting of the titanium surface followed by anodization with a sodium hydroxide solution applied to the D1002 specimen geometry provided the highest lapshear strengths in the study. Additionally, difficulties documented during the fabrication process of the D3165 specimens along with features of the D3165 geometry were identified as factors that contributed to lower lap-shear strength results for the D3165 specimens as compared to the results for the D1002 specimens.
Nie, X; Leyland, A; Matthews, A; Jiang, J C; Meletis, E I
2001-12-15
Hydroxyapatite (HA) coatings can be deposited using a hybrid process of plasma electrolysis and electrophoresis, called plasma-assisted electrophoretic deposition (PEPD). HA aqueous suspensions with various pH values were prepared using a modified ultrasonic cleaning bath as an agitator/stirrer. Both DC and unbalanced AC power supplies were used to bias the titanium alloy substrate materials employed in this work. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffractometry (XRD), and Fourier transform infrared spectroscopy (FTIR) were used to observe and analyze coating morphology and microstructure. It was shown that the morphology and composition of the calcium phosphate coatings were significantly influenced by solution pH values; the level of "pure" HA in the coatings' composition corresponded to both solution pH and the type of power supply employed. Loss of hydroxyl radials (i.e., dehydroxylation), which degrades the performance of the hydroxyapatite coating in terms of long-term chemical and mechanical stability, can be virtually eliminated by a combination of high pH and unbalanced AC plasma power. In addition, the underlying TiO2 coatings used to support the HA layer (preproduced by plasma electrolysis process) have a nanoscaled (10-20 nm) polycrystalline structure. TEM studies also revealed a dense, continuous amorphous titania layer (10 nm in thickness) at the interface between the Ti alloy substrate and the TiO2 layer, which may play a role in improving the corrosion resistance of the substrate. Such a nanophase TiO2 layer (if used as a coating alone) may also provide a further improvement in osteoinductive properties, compared to a conventional TiO2 coating on the Ti alloy substrate. Copyright 2001 John Wiley & Sons, Inc. J Biomed Mater Res 57: 612-618, 2001
Es-haghi, Ali; Hosseini, Seyed Maryam; Khoshhesab, Zahra Monsef
2012-09-12
Novel solid-phase microextraction fibers were prepared based on sol-gel technique. Commonly used fused silica substrate was replaced by titanium wire which provided high strength and longer fiber life cycle. Titanium isopropoxide was employed as the precursor which provides a sol solution containing Ti-OH groups and shows more tendencies to the molecularly similar group on the substrate. Three different polymers, poly (dimethylsiloxane) (PDMS), poly(ethylenepropyleneglycol)-monobutyl ether (Ucon) and polyethylene glycol (PEG) were employed as coating polymer in preparing three different fibers. The applicability of these fibers was assessed for the headspace SPME (HS-SPME) of benzene, toluene, ethylbenzene and xylenes (BTEX) from water sample followed by gas chromatography-mass spectrometry (GC-MS). Effects of different parameters such as fiber coating type, extraction condition, desorption condition were investigated and optimized. Under the optimized conditions, LODs and LOQs of 0.75-10 μg L(-1) (S/N=3) and 1-20 μg L(-1) (S/N=10) were respectively obtained. The method showed linearity in the range of 10-25,000 μg L(-1) with correlation coefficient of >0.99. The relative standard deviation was less than 8%. Copyright © 2012 Elsevier B.V. All rights reserved.
Renoud, Pauline; Toury, Bérangère; Benayoun, Stéphane; Attik, Ghania; Grosgogeat, Brigitte
2012-01-01
Complications in dentistry and orthopaedic surgery are mainly induced by peri-implant bacterial infections and current implant devices do not prevent such infections. The coating of antibacterial molecules such as chitosan on its surface would give the implant bioactive properties. The major challenge of this type of coating is the attachment of chitosan to a metal substrate. In this study, we propose to investigate the functionalization of titanium with chitosan via a silanation. Firstly, the surface chemistry and mechanical properties of such coating were evaluated. We also verified if the coated chitosan retained its biocompatibility with the peri-implant cells, as well as its antibacterial properties. FTIR and Tof-SIMS analyses confirmed the presence of chitosan on the titanium surface. This coating showed great scratch resistance and was strongly adhesive to the substrate. These mechanical properties were consistent with an implantology application. The Chitosan-coated surfaces showed strong inhibition of Actinomyces naeslundii growth; they nonetheless showed a non significant inhibition against Porphyromonas gingivalis after 32 hours in liquid media. The chitosan-coating also demonstrated good biocompatibility to NIH3T3 fibroblasts. Thus this method of covalent coating provides a biocompatible material with improved bioactive properties. These results proved that covalent coating of chitosan has significant potential in biomedical device implantation. PMID:22859940
Panda, Manas K; Shaikh, Mobin M; Ghosh, Prasenjit
2010-03-07
Controlled oxidation of organic sulfides to sulfoxides under ambient conditions has been achieved by a series of titanium isopropoxide complexes that use environmentally benign H(2)O(2) as a primary oxidant. Specifically, the [N,N'-bis(2-oxo-3-R(1)-5-R(2)-phenylmethyl)-N,N'-bis(methylene-R(3))-ethylenediamine]Ti(O(i)Pr)(2) [R(1) = t-Bu, R(2) = Me, R(3) = C(7)H(5)O(2) (1b); R(1) = R(2) = t-Bu, R(3) = C(7)H(5)O(2) (2b); R(1) = R(2) = Cl, R(3) = C(7)H(5)O(2) (3b) and R(1) = R(2) = Cl, R(3) = C(6)H(5) (4b)] complexes efficiently catalyzed the sulfoxidation reactions of organic sulfides to sulfoxides at room temperature within 30 min of the reaction time using aqueous H(2)O(2) as an oxidant. A mechanistic pathway, modeled using density functional theory for a representative thioanisole substrate catalyzed by 4b, suggested that the reaction proceeds via a titanium peroxo intermediate 4c', which displays an activation barrier of 22.5 kcal mol(-1) (DeltaG(++)) for the overall catalytic cycle in undergoing an attack by the S atom of the thioanisole substrate at its sigma*-orbital of the peroxo moiety. The formation of the titanium peroxo intermediate was experimentally corroborated by a mild ionization atmospheric pressure chemical ionization (APCI) mass spectrometric technique.
Microstructure and corrosion behavior of porous coatings on titanium alloy by vacuum-brazed method.
Lee, T M; Chang, E; Yen, C H
2006-05-01
The microstructural evolution and electrochemical characteristics of brazed porous-coated Ti-6Al-4V alloy were analyzed and compared with respect to the conventionally 1300 degrees C sintering method. The titanium filler metal of low-melting-point (934 degrees C) Ti-15Cu-15Ni was used to braze commercially pure (CP) titanium beads onto the substrate of Ti-6Al-4V alloy at 970 degrees C for 2 and 8 h. Optical microscopy, scanning and transmission electron microscopy, and X-ray diffractometry (XRD) were used to characterize the microstructure and phase of the brazed metal; also, the potentiostat was used for corrosion study. Experimental results indicate that the bead/substrate contact interface of the 970 degrees C brazed specimens show larger contact area and higher radius curvature in comparison with 1300 degrees C sintering method. The microstructure of brazed specimens shows the Widmanstätten structure in the brazed zone and equiaxed alpha plus intergranular beta in the Ti-6Al-4V substrate. The intermetallic Ti2Ni phase existing in the prior filler metal diminishes, while the Ti2Cu phase can be identified for the substrate at 970 for 2 h, but the latter phase decrease with time. In Hank's solution at 37 degrees C, the corrosion rates of the 1300 degrees C sintering and the 970 degrees C brazed samples are similar at corrosion potential (E(corr)) in potentiodynamic test, and the value of E(corr) for the brazed sample is noble to the sintering samples. The current densities of the brazed specimens do not exceed 100 microA/cm2 at 3.5 V (SCE). These results suggest that the vacuum-brazed method exhibits the potentiality to manufacture the porous-coated specimens for biomedical application. (c) 2005 Wiley Periodicals, Inc.
Interfacial interactions between calcined hydroxyapatite nanocrystals and substrates.
Okada, Masahiro; Furukawa, Keiko; Serizawa, Takeshi; Yanagisawa, Yoshihiko; Tanaka, Hidekazu; Kawai, Tomoji; Furuzono, Tsutomu
2009-06-02
Interfacial interactions between calcined hydroxyapatite (HAp) nanocrystals and surface-modified substrates were investigated by measuring adsorption behavior and adhesion strength with a quartz crystal microbalance (QCM) and a contact-mode atomic force microscope (AFM), respectively. The goal was to develop better control of HAp-nanocrystal coatings on biomedical materials. HAp nanocrystals with rodlike or spherical morphology were prepared by a wet chemical process followed by calcination at 800 degrees C with an antisintering agent to prevent the formation of sintered polycrystals. The substrate surface was modified by chemical reaction with a low-molecular-weight compound, or graft polymerization with a functional monomer. QCM measurement showed that the rodlike HAp nanocrystals adsorbed preferentially onto anionic COOH-modified substrates compared to cationic NH2- or hydrophobic CH3-modified substrates. On the other hand, the spherical nanocrystals adsorbed onto NH2- and COOH-modified substrates, which indicates that the surface properties of the HAp nanocrystals determined their adsorption behavior. The adhesion strength, which was estimated from the force required to move the nanocrystal in contact-mode AFM, on a COOH-grafted substrate prepared by graft polymerization was almost 9 times larger than that on a COOH-modified substrate prepared by chemical reaction with a low-molecular-weight compound, indicating that the long-chain polymer grafted on the substrate mitigated the surface roughness mismatch between the nanocrystal and the substrate. The adhesion strength of the nanocrystal bonded covalently by the coupling reaction to a Si(OCH3)-grafted substrate prepared by graft polymerization was approximately 1.5 times larger than that when adsorbed on the COOH-grafted substrate.
NASA Astrophysics Data System (ADS)
Lee, Dongmyoung; Sun, Juhyun; Kang, Donghan; Shin, Seungyoung; Hong, Juhwa
2014-12-01
Low melting point Zr-based filler metals with melting point depressants (MPDs) such as Cu and Ni elements are used for titanium brazing. However, the phase transition of the filler metals in the titanium joint needs to be explained, since the main element of Zr in the filler metals differs from that of the parent titanium alloys. In addition, since the MPDs easily form brittle intermetallics, that deteriorate joint properties, the phase evolution they cause needs to be studied. Zr-based filler metals having Cu content from 0 to 12 at. pct and Ni content from 12 to 24 at. pct with a melting temperature range of 1062 K to 1082 K (789 °C to 809 °C) were wetting-tested on a titanium plate to investigate the phase transformation and evolution at the interface between the titanium plate and the filler metals. In the interface, the alloys system with Zr, Zr2Ni, and (Ti,Zr)2Ni phases was easily changed to a Ti-based alloy system with Ti, Ti2Ni, and (Ti,Zr)2Ni phases, by the local melting of parent titanium. The dissolution depths of the parent metal were increased with increasing Ni content in the filler metals because Ni has a faster diffusion rate than Cu. Instead, slow diffusion of Cu into titanium substrate leads to the accumulation of Cu at the molten zone of the interface, which could form undesirable Ti x Cu y intermetallics. This study confirmed that Zr-based filler metals are compatible with the parent titanium metal with the minimum content of MPDs.
NASA Astrophysics Data System (ADS)
Himmlova, Lucia; Dostalova, Tatjana; Jelinek, Miroslav; Bartova, Jirina; Pesakova, V.; Adam, M.
1999-02-01
Pulsed laser deposition technique allow to 'tailor' bioceramic coat for metal implants by the change of deposition conditions. Each attribute is influenced by the several deposition parameters and each parameter change several various properties. Problem caused that many parameters has an opposite function and improvement of one property is followed by deterioration of other attribute. This study monitor influence of each single deposition parameter and evaluate its importance form the point of view of coat properties. For deposition KrF excimer laser in stainless-steel deposition chamber was used. Deposition conditions (ambient composition and pressures, metallic substrate temperature, energy density and target-substrate distance) were changed according to the film properties. A non-coated titanium implant was used as a control. Films with promising mechanical quality underwent an in vitro biological tests -- measurement of proliferation activity, observing cell interactions with macrophages, fibroblasts, testing toxicity of percolates, observing a solubility of hydroxyapatite (HA) coat. Deposition conditions corresponding with the optimal mechanical and biochemical properties are: metal temperature 490 degrees Celsius, ambient-mixture of argon and water vapor, energy density 3 Jcm-2, target-substrate distance 7.5 cm.
Characterization of surface roughness of laser deposited titanium alloy and copper using AFM
NASA Astrophysics Data System (ADS)
Erinosho, M. F.; Akinlabi, E. T.; Johnson, O. T.
2018-03-01
Laser Metal Deposition (LMD) is the process of using the laser beam of a nozzle to produce a melt pool on a metal surface usually the substrate and metal powder is been deposited into it thereby creating a fusion bond with the substrate to form a new material layer against the force gravity. A good metal laminate is formed when the wettability between the dropping metal powder and the substrate adheres. This paper reports the surface roughness of laser deposited titanium alloy and copper (Ti6Al4V + Cu) using the Atomic Force Microscopy (AFM). This AFM is employed in order to sense the surface and produce different manipulated images using the micro-fabricated mechanical tip under a probe cartridge of high resolution. The process parameters employed during the deposition routine determines the output of the deposit. A careful attention is given to the laser deposited Ti6Al4V + Cu samples under the AFM probe because of their single tracked layers with semi-circular pattern of deposition. This research work can be applicable in the surface modification of laser deposited samples for the marine industry.
Structure, composition and morphology of bioactive titanate layer on porous titanium surfaces
NASA Astrophysics Data System (ADS)
Li, Jinshan; Wang, Xiaohua; Hu, Rui; Kou, Hongchao
2014-07-01
A bioactive coating was produced on pore surfaces of porous titanium samples by an amendatory alkali-heat treatment method. Porous titanium was prepared by powder metallurgy and its porosity and average size were 45% and 135 μm, respectively. Coating morphology, coating structure and phase constituents were examined by SEM, XPS and XRD. It was found that a micro-network structure with sizes of <200 nm mainly composed of bioactive sodium titanate and rutile phases of TiO2 covered the interior and exterior of porous titanium cells, and redundant Ca ion was detected in the titanate layer. The concentration distribution of Ti, O, Ca and Na in the coating showed a compositional gradient from the intermediate layer toward the outer surface. These compositional gradients indicate that the coating bonded to Ti substrate without a distinct interface. After immersion into the SBF solution for 3 days, a bone-like carbonate-hydroxylapatite showing a good biocompatibility was detected on the coating surface. And the redundant Ca advanced the bioactivity of the coating. Thus, the present modification is expected to allow the use of the bioactive porous titanium as artificial bones even under load-bearing conditions.
Ao, Haiyong; Zong, Jiajia; Nie, Yanjiao; Wan, Yizao; Zheng, Xiebin
2018-03-01
Aseptic loosening of implant is one of the main causes of Ti-based implant failure. In our previous work, a novel stable collagen/hyaluronic acid (Col/HA) multilayer modified titanium coatings (TCs) was developed by layer-by-layer (LBL) covalent immobilization technique, which showed enhanced biological properties compared with TCs that were physically absorbed with Col/HA multilayer in vitro . In this study, a rabbit model with femur condyle defect was employed to compare the osteointegration performance of them. Results indicated that Col/HA multilayer with favourable stability could better facilitate osteogenesis around implants and bone-implant contact. The Col/HA multilayer covalent-immobilized TC may reduce aseptic loosening of implant.
Development of a physical and electronic model for RuO 2 nanorod rectenna devices
NASA Astrophysics Data System (ADS)
Dao, Justin
Ruthenium oxide (RuO2) nanorods are an emergent technology in nanostructure devices. As the physical size of electronics approaches a critical lower limit, alternative solutions to further device miniaturization are currently under investigation. Thin-film nanorod growth is an interesting technology, being investigated for use in wireless communications, sensor systems, and alternative energy applications. In this investigation, self-assembled RuO2 nanorods are grown on a variety of substrates via a high density plasma, reactive sputtering process. Nanorods have been found to grow on substrates that form native oxide layers when exposed to air, namely silicon, aluminum, and titanium. Samples were analyzed with Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) techniques. Conductive Atomic Force Microscopy (C-AFM) measurements were performed on single nanorods to characterize structure and electrical conductivity. The C-AFM probe tip is placed on a single nanorod and I-V characteristics are measured, potentially exhibiting rectifying capabilities. An analysis of these results using fundamental semiconductor physics principles is presented. Experimental data for silicon substrates was most closely approximated by the Simmons model for direct electron tunneling, whereas that of aluminum substrates was well approximated by Fowler-Nordheim tunneling. The native oxide of titanium is regarded as a semiconductor rather than an insulator and its ability to function as a rectifier is not strong. An electronic model for these nanorods is described herein.
Optical and hydrophobic properties of co-sputtered chromium and titanium oxynitride films
NASA Astrophysics Data System (ADS)
Rawal, Sushant K.; Chawla, Amit Kumar; Jayaganthan, R.; Chandra, Ramesh
2011-08-01
The chromium and titanium oxynitride films on glass substrate were deposited by using reactive RF magnetron sputtering in the present work. The structural and optical properties of the chromium and titanium oxynitride films as a function of power variations are investigated. The chromium oxynitride films are crystalline even at low power of Cr target (≥60 W) but the titanium oxynitride films are amorphous at low target power of Ti target (≤90 W) as observed from glancing incidence X-ray diffraction (GIXRD) patterns. The residual stress and strain of the chromium oxynitride films are calculated by sin 2 ψ method, as the average crystallite size decreases with the increase in sputtering power of the Cr target, higher stress and strain values are observed. The chromium oxynitride films changes from hydrophilic to hydrophobic with the increase of contact angle value from 86.4° to 94.1°, but the deposited titanium oxynitride films are hydrophilic as observed from contact angle measurements. The changes in surface energy were calculated using contact angle measurements to substantiate the hydrophobic properties of the films. UV-vis and NIR spectrophotometer were used to obtain the transmission and absorption spectra, and the later was used for determining band gap values of the films, respectively. The refractive index of chromium and titanium oxynitride films increases with film packing density due to formation of crystalline chromium and titanium oxynitride films with the gradual rise in deposition rate as a result of increase in target powers.
Nie, Bin'en; Long, Teng; Ao, Haiyong; Zhou, Jianliang; Tang, Tingting
2016-01-01
ABSTRACT Infection is one of the most important causes of titanium implant failure in vivo. A developing prophylactic method involves the immobilization of antibiotics, especially vancomycin, onto the surface of the titanium implant. However, these methods have a limited effect in curbing multiple bacterial infections due to antibiotic specificity. In the current study, enoxacin was covalently bound to an amine-functionalized Ti surface by use of a polyethylene glycol (PEG) spacer, and the bactericidal effectiveness was investigated in vitro and in vivo. The titanium surface was amine functionalized with 3-aminopropyltriethoxysilane (APTES), through which PEG spacer molecules were covalently immobilized onto the titanium, and then the enoxacin was covalently bound to the PEG, which was confirmed by X-ray photoelectron spectrometry (XPS). A spread plate assay, confocal laser scanning microscopy (CLSM), and scanning electron microscopy (SEM) were used to characterize the antimicrobial activity. For the in vivo study, Ti implants were inoculated with methicillin-resistant Staphylococcus aureus (MRSA) and implanted into the femoral medullary cavity of rats. The degree of infection was assessed by radiography, micro-computed tomography, and determination of the counts of adherent bacteria 3 weeks after surgery. Our data demonstrate that the enoxacin-modified PEGylated Ti surface effectively prevented bacterial colonization without compromising cell viability, adhesion, or proliferation in vitro. Furthermore, it prevented MRSA infection of the Ti implants in vivo. Taken together, our results demonstrate that the use of enoxacin-modified Ti is a potential approach to the alleviation of infections of Ti implants by multiple bacterial species. PMID:27799220
Deployment of titanium thermal barrier for low-temperature carbon nanotube growth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, G.Y.; Poa, C.H.P.; Henley, S.J.
2005-12-19
Chemical vapor-synthesized carbon nanotubes are typically grown at temperatures around 600 deg. C. We report on the deployment of a titanium layer to help elevate the constraints on the substrate temperature during plasma-assisted growth. The growth is possible through the lowering of the hydrocarbon content used in the deposition, with the only source of heat provided by the plasma. The nanotubes synthesized have a small diameter distribution, which deviates from the usual trend that the diameter is determined by the thickness of the catalyst film. Simple thermodynamic simulations also show that the quantity of heat, that can be distributed, ismore » determined by the thickness of the titanium layer. Despite the lower synthesis temperature, it is shown that this technique allows for high growth rates as well as better quality nanotubes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayhew, R.T.; Kohli, D.K.
CYTEC Engineered Materials Inc. has developed several adhesives based on LaRC{trademark} PETI-5 Polyimide Resin for bonding titanium and composite substrates. These adhesives are intended for long term service at 177{degrees}C (350{degrees}F) and are processed at 350{degrees}C (660{degrees}F) in conventional autoclaves under 50 psi pressure. Titanium lap shears range from 48.3MPa (7000 psi) at room temperature to 31MPa (4500 psi) at 177{degrees}C (350{degrees}F). Excellent metal-to-metal peels and honeycomb bonding properties are reported for these products. In addition to film adhesive, primer and paste products have been described. Pilot line quantities of several hundred square feet of the film adhesive have beenmore » produced and sampled under the CYTEC designation FM{reg_sign} x5.« less
Hydroxyapatite coatings produced on commercially pure titanium by micro-arc oxidation.
Huang, Yong; Wang, Yingjun; Ning, Chengyun; Nan, Kaihui; Han, Yong
2007-09-01
A porous hydroxyapatite (HA) coating on commercially pure titanium was prepared by micro-arc oxidation (MAO) in electrolytic solution containing calcium acetate and beta-glycerol phosphate disodium salt pentahydrate (beta-GP). The thickness, phase, composition morphology and biocompatibility of the oxide coating were characterized by x-ray diffraction (XRD), electron probe microanalysis (EPMA), scanning electron microscopy (SEM) with an energy dispersive x-ray spectrometer (EDS) and cell culture. The thickness of the MAO film was about 20 microm, and the coating was porous and uneven without any apparent interface to the titanium substrates. The result of XRD showed that the porous coating was made up of HA film. The favorable osteoblast cell affinity gives HA film good biocompatibility. HA coatings are expected to have significant uses for medical applications such as dental implants and artificial bone joints.
Laboratory Study on the Fatigue Resistance of Asphaltic Concrete Containing Titanium Dioxide
NASA Astrophysics Data System (ADS)
Buhari, Rosnawati; Ezree Abdullah, Mohd; Khairul Ahmad, Mohd; Azhar Tajudin, Saiful; Khatijah Abu Bakar, Siti
2018-03-01
This study aims to evaluate the fatigue performance of modified asphalt mixture using Indirect Tensile Fatigue Test. Titanium Dioxide (TiO2) powder in a form of rutile was used for producing asphalt concrete with lower mixing and compaction temperature compared to conventional hot mix asphalt without reducing its physical and mechanical also resistance to fatigue. The characteristic of the asphalt and modified asphalt was evaluated using penetration test, softening test and rotational viscosity test. Titanium dioxide of 2%, 4%, 6%, 8% and 10% by weight of asphalt has been incorporated into unaged 80/100 asphalt mix in order to improvise its performance and to fulfill the objectives of this experimental study. As a result, TiO2 as an additive is potential to decrease the penetration and increasing the softening point of the asphalt. In terms of fatigue performance testing, addition TiO2 additive does help in improving the fatigue properties as it shows greater result than the control asphalt. In conclusion, TiO2 is great in improving fatigue properties.
Ma, Qianli; Mei, Shenglin; Ji, Kun; Zhang, Yumei; Chu, Paul K
2011-08-01
The objective of this study was to form a rapid and firm soft tissue sealing around dental implants that resists bacterial invasion. We present a novel approach to modify Ti surface by immobilizing Ag nanoparticles/FGF-2 compound bioactive factors onto a titania nanotubular surface. The titanium samples were anodized to form vertically organized TiO(2) nanotube arrays and Ag nanoparticles were electrodeposited onto the nanotubular surface, on which FGF-2 was immobilized with repeated lyophilization. A uniform distribution of Ag nanoparticles/FGF-2 was observed on the TiO(2) nanotubular surface. The L929 cell line was used for cytotoxicity assessment. Human gingival fibroblasts (HGFs) were cultured on the modified surface for cytocompatibility determination. The Ag/FGF-2 immobilized samples displayed excellent cytocompatibility, negligible cytotoxicity, and enhanced HGF functions such as cell attachment, proliferation, and ECM-related gene expression. The Ag nanoparticles also exhibit some bioactivity. In conclusion, this modified TiO(2) nanotubular surface has a large potential for use in dental implant abutment. Copyright © 2011 Wiley Periodicals, Inc.
Wurihan; Yamada, A; Suzuki, D; Shibata, Y; Kamijo, R; Miyazaki, T
2015-05-20
Anodically oxidized titanium surfaces, prepared by spark discharge, have micro-submicron surface topography and nano-scale surface chemistry, such as hydrophilic functional groups or hydroxyl radicals in parallel. The complexity of the surface characteristics makes it difficult to draw a clear conclusion as to which surface characteristic, of anodically oxidized titanium, is critical in each biological event. This study examined the in vitro biological changes, induced by various surface characteristics of anodically oxidized titanium with, or without, release of hydroxyl radicals onto the surface. Anodically oxidized titanium enhanced the expression of genes associated with differentiating osteoblasts and increased the degree of matrix mineralization by these cells in vitro. The phenotypes of cells on the anodically oxidized titanium were the same with, or without, release of hydroxyl radicals. However, the nanomechanical properties of this in vitro mineralized tissue were significantly enhanced on surfaces, with release of hydroxyl radicals by oxidation effects. In addition, the mineralized tissue, produced in the presence of bone morphogenetic protein-2 on bare titanium, had significantly weaker nanomechanical properties, despite there being higher osteogenic gene expression levels. We show that enhanced osteogenic cell differentiation on modified titanium is not a sufficient indicator of enhanced in vitro mineralization. This is based on the inferior mechanical properties of mineralized tissues, without either being cultured on a titanium surface with release of hydroxyl radicals, or being supplemented with lysyl oxidase family members.
Said, R; Ghumman, C A A; Teodoro, M N D; Ahmed, W; Abuazza, A; Gracio, J
2010-04-01
RF-PECVD was used to prepare amorphous of carbon (DLC) onto stainless steel 316 and glass substrates. The substrates were negatively biased at between 100 V to 400 V. Thin films of DLC have been deposited using C2H2 and titanium isopropoxide (TIPOT). Argon was used to generate the plasma in the PECVD system chamber. DEKTAK 8 surface stylus profilometer was used to measure the film thickness and the deposition rate was calculated. Micro Raman spectroscopy was employed to determine the chemical structure and bonding present in the films. Composition analysis of the samples was carried out using VGTOF SIMS (IX23LS) instrument. In addition, X-ray photoelectron spectroscopy (XPS) was used to analyze the composition and chemical state of the films. The wettability of the films was examined using the optical contact angle meter (CAM200) system. Two types of liquids with different polarities were used to study changes in the surface energy. The as-grown films were in the thickness range of 200-400 nm. Raman spectroscopy results showed that the I(D)/I(G) ratio decreased when the bias voltage on the stainless steel substrates was increased. This indicates an increase in the graphitic nature of the film deposited. In contrast, on the glass substrates the I(D)/I(G) ratio increased when the bias voltage was increased indicates a greater degree of diamond like character. Chemical composition determined using XPS showed the presence of carbon and oxygen in both samples on glass and stainless steel substrates. Both coatings the contact angle of the films decreased except for 400 V which showed a slight increase. The oxygen is thought to play an important role on the polar component of a-C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chuan, Lee Te, E-mail: gd130079@siswa.uthm.edu.my; Rathi, Muhammad Fareez Mohamad, E-mail: cd110238@siswa.uthm.edu.my; Abidin, Muhamad Yusuf Zainal, E-mail: cd110221@siswa.uthm.edu.my
Anodic oxidation is a surface modification method which combines electric field driven metal and oxygen ion diffusion for formation of oxide layer on the anode surface. This method has been widely used to modify the surface morphology of biomaterial especially titanium. This study aimed to investigate the effect of applied voltage on titanium. Specifically, the titanium foil was anodised in mixture of β-glycerophosphate disodium salt pentahydrate (β-GP) and calcium acetate monohydrate (CA) with different applied voltage (50-350 V), electrolyte concentration (0.04 M β-GP + 0.4 M CA), anodising time (10minutes) and current density (50 and 70 mA.cm{sup −2}) at room temperature. Surfacemore » oxide properties of anodised titanium were characterised by digital single-lens reflex camera (DSLR camera), field emission scanning electron microscope (FESEM) and atomic force microscopy (AFM). At lower applied voltage (≤150 V), surface of titanium foils were relatively smooth. With increasing applied voltage (≥250 V), the oxide layer became more porous and donut-shaped pores were formed on the surface of titanium foils. The AFM results indicated that the surface roughness of anodised titanium increases with increasing of applied voltage. The porous and rough surface is able to promote the osseointegration and reduce the suffering time of patient.« less
NASA Astrophysics Data System (ADS)
Asmawi, R.; Ibrahim, M. H. I.; Amin, A. M.; Mustafa, N.; Noranai, Z.
2017-08-01
Bioactive apatite, such as hydroxyapatite ceramic (HA), [Ca10(PO4)6(OH)2] has been extensively investigated for biomedical applications due to its excellent biocompatibility and tissue bioactivity properties. Its bioactivity provides direct bonding to the bone tissue. Because of its similarity in chemical composition to the inorganic matrix of bone, HA is widely used as implant materials for bone. Unfortunately, because of its poor mechanical properties,. this bioactive material is not suitable for load bearing applications. In this study, by the assistance of dip-coating technique, HA coatings were deposited on titanium alloy substrates by employing hydrothermal derived HA powder. The produced coatings then were oven-dried at 130°C for 1 hour and calcined at various temperature over the range of 200-800°C for 1 hour. XRD measurement showed that HA was the only phase present in the coatings. However coatings calcined at 800°C comprised a mixture of HA and tri-calcium phosphate (TCP). FTIR measurement showed the existence of hydroxyl, phosphate, and carbonate bands. PO4 - band became sharper and narrower with the increased of calcination temperature. FESEM observation showed that the coating is polycrystalline with individual particles of nano to submicron size and has an average particle size of 35 nm. The thickness of the coating are direcly propotional with the viscosity of coating slurry. It was shown that the more viscous coating slurry would produce a thicker ceramic coating. Mechanical properties of the coating were measured in term of adhesion strength using a Micro Materials Nano Test microscratch testing machine. The result revealed that the coating had a good adhesion to the titanium alloy substrate.
Biofilm formation on titanium implants counteracted by grafting gallium and silver ions.
Cochis, Andrea; Azzimonti, Barbara; Della Valle, Cinzia; Chiesa, Roberto; Arciola, Carla Renata; Rimondini, Lia
2015-03-01
Biofilm-associated infections remain the leading cause of implant failure. Thanks to its established biocompatibility and biomechanical properties, titanium has become one of the most widely used materials for bone implants. Engineered surface modifications of titanium able to thwart biofilm formation while endowing a safe anchorage to eukaryotic cells are being progressively developed. Here surfaces of disks of commercial grade 2 titanium for bone implant were grafted with gallium and silver ions by anodic spark deposition. Scanning electron microscopy of the surface morphology and energy dispersive X-ray spectroscopy were used for characterization. Gallium-grafted titanium was evaluated in comparison with silver-grafted titanium for both in vivo and in vitro antibiofilm properties and for in vitro compatibility with human primary gingival fibroblasts. Surface-modified materials showed: (i) homogeneous porous morphology, with pores of micrometric size; (ii) absence of cytotoxic effects; (iii) ability to support in vitro the adhesion and spreading of gingival fibroblasts; and (iv) antibiofilm properties. Although both silver and gallium exhibited in vitro strong antibacterial properties, in vivo gallium was significantly more effective than silver in reducing number and viability of biofilm bacteria colonies. Gallium-based treatments represent promising titanium antibiofilm coatings to develop new bone implantable devices for oral, maxillofacial, and orthopedic applications. © 2014 Wiley Periodicals, Inc.
Surface characterization of nickel titanium orthodontic arch wires
Krishnan, Manu; Seema, Saraswathy; Tiwari, Brijesh; Sharma, Himanshu S.; Londhe, Sanjay; Arora, Vimal
2015-01-01
Background Surface roughness of nickel titanium orthodontic arch wires poses several clinical challenges. Surface modification with aesthetic/metallic/non metallic materials is therefore a recent innovation, with clinical efficacy yet to be comprehensively evaluated. Methods One conventional and five types of surface modified nickel titanium arch wires were surface characterized with scanning electron microscopy, energy dispersive analysis, Raman spectroscopy, Atomic force microscopy and 3D profilometry. Root mean square roughness values were analyzed by one way analysis of variance and post hoc Duncan's multiple range tests. Results Study groups demonstrated considerable reduction in roughness values from conventional in a material specific pattern: Group I; conventional (578.56 nm) > Group V; Teflon (365.33 nm) > Group III; nitride (301.51 nm) > Group VI (i); rhodium (290.64 nm) > Group VI (ii); silver (252.22 nm) > Group IV; titanium (229.51 nm) > Group II; resin (158.60 nm). It also showed the defects with aesthetic (resin/Teflon) and nitride surfaces and smooth topography achieved with metals; titanium/silver/rhodium. Conclusions Resin, Teflon, titanium, silver, rhodium and nitrides were effective in decreasing surface roughness of nickel titanium arch wires albeit; certain flaws. Findings have clinical implications, considering their potential in lessening biofilm adhesion, reducing friction, improving corrosion resistance and preventing nickel leach and allergic reactions. PMID:26843749
Cavalcanti, Yuri Wanderley; Soare, Rodrigo Villamarim; Leite Assis, Marina Araújo; Zenóbio, Elton Gonçalves; Girundi, Francisco Mauro da Silva
2015-02-01
Some surface treatments performed on titanium can alter the composition of salivary pellicle formed on this abiotic surface. Such treatments modify the titanium's surface properties and can promote higher adsorption of proteins, which allow better integration of titanium to the biotic system. This study aimed to evaluate the interactions between salivary proteins and titanium disks with different surface treatments. Machined titanium disks (n = 48) were divided into four experimental groups (n = 12), according to their surface treatments: surface polishing (SP); acid etching (A); spot-blasting plus acid etching (SB-A); spot-blasting followed by acid etching and nano-functionalization (SB-A-NF). Titanium surfaces were characterized by surface roughness and scanning electron microscopy (SEM). Specimens were incubated with human saliva extracted from submandibular and sublingual glands. Total salivary protein adsorbed to titanium was quantified and samples were submitted to western blotting for mucin glycoprotein 2 (MG2) and lactoferrin identification. Surface roughness was statistically higher for SB-A and SB-A-NF groups. Scanning electron microscopy images confirmed that titanium surface treatments increased surface roughness with higher number of porous and scratches for SB-A and SB-A-NF groups. Total protein adsorption was significantly higher for SB-A and SB-A-NF groups (p < 0.05), which also presented higher interactions with MG2 and lactoferrin proteins. The roughing of titanium surface by spot-blasting plus acid etching treatments contribute to higher interaction with salivary proteins, such as MG2 and lactoferrin. Titanium surface roughing increases the interactions of the substratum with salivary proteins, which can influence the integration of dental implants and their components to the oral environment. However, those treatments should be used carefully intraorally, avoiding increase biofilm formation.
A titanium hydride gun for plasma injection into the T2-reversed field pinch device
NASA Astrophysics Data System (ADS)
Voronin, A. V.; Hellblom, K. G.
1999-02-01
A study of a plasma gun (modified Bostic type) with titanium hydride electrodes has been carried out. The total number of released hydrogen atoms was in the range 1016-1018 and the maximum plasma flow velocity was 2.5×105 m s-1. The ion density near the gun edge reached 1.8×1020 m-3 and the electron temperature was around 40 eV as estimated from probe measurements. No species other than hydrogen or titanium were seen in the plasma line radiation. The plasma injector was successfully used for gas pre-ionization in the Extrap T2 reversed-field pinch device (ohmic heating toroidal experiment (OHTE)).
THE HOT HARDNESS OF TITANIUM AND TITANIUM ALLOYS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larson, F.R.
1958-07-01
The hot hardness of 27 different heats of titanium and titunium alloys was studied. Tests were conducted on a modified Rockwell machine in an argon atmosphere. Results indicate that low alloy heats lose their hardnesses at a fairly high even rate. On thc other hand, high alloy heats hold their hardnesses well up to about 1100 d F, and then the hardness drops off very sharply with increasing temperature. The influence of alloying elements in promoting resistance to softening was evaluated at 900 d F. Iron was found to be the most effective with the other elements being arranged inmore » order of decreasing effect, as follows: manganese, (auth)« less
High-Quality TiS2 For Li/TiS2 Cells
NASA Technical Reports Server (NTRS)
Huang, Chen-Kuo; Surampudi, Subbarao; Shen, David H.; Delgiannis, Fotios; Halpert, Gerald
1992-01-01
Modified process for synthesis of battery-grade titanium sulfide (TiS2) yields substantially improved material for Li/TiS2 electrochemical cells. Includes all-vapor-phase reaction between sulfur and titanium. Product less dense and more homogeneous, consists of smaller particles of higher crystalline quality, and purer. Cells have high cathode utilization and long cycle life performance. Expected to find applications in rechargeable lithium batteries for spacecraft, military equipment, telecommunication systems, automobiles, and consumer products.
Eremenko, A I; Mogil'naia, G M; Giunter, V E; Sakhnov, S N; Stebliuk, A N
2006-01-01
Experimental (23 rabbits) and clinical (42 patients with operated glaucoma) studies were conducted to evaluate the effect of a titanium nickelide implant on ocular tissue in modified deep sclerectomy in order to normalize intraocular pressure. Scleral morphological studies in the area of implant placement revealed the formation of a capsule with "fissures" and vessels. Clinically, there was intraocular pressure compensation in 92.8% of the patients operated on.
Giolando, Dean M.
2003-09-30
Novel ligated compounds of tin, titanium, and zinc are useful as metal oxide CVD precursor compounds without the detriments of extreme reactivity yet maintaining the ability to produce high quality metal oxide coating by contact with heated substrates.
Singh, Ram Kishore; Awasthi, Sharad; Dhayalan, Arunkumar; Ferreira, J M F; Kannan, S
2016-05-01
Pure and five silver-doped (0-5Ag) β-tricalcium phosphate [β-TCP, β-Ca3(PO4)2]/chitosan composite coatings were deposited on Titanium (Ti) substrates and their properties that are relevant for applications in hard tissue replacements were assessed. Silver, β-TCP and chitosan were combined to profit from their salient and complementary antibacterial and biocompatible features.The β-Ca3(PO4)2 powders were synthesized by co-precipitation. The characterization results confirmed the Ag(+) occupancy at the crystal lattice of β-Ca3(PO4)2. The Ag-dopedβ-Ca3(PO4)2/chitosan composite coatings deposited by electrophoresis showed good antibacterial activity and exhibited negative cytotoxic effects towards the human osteosarcoma cell line MG-63. The morphology of the coatings was observed by SEM and their efficiency against corrosion of metallic substrates was determined through potentiodynamic polarization tests. Copyright © 2016 Elsevier B.V. All rights reserved.
Vishwas, M; Rao, K Narasimha; Gowda, K V Arjuna; Chakradhar, R P S
2011-12-01
Titanium dioxide (TiO(2)) and silicon dioxide (SiO(2)) thin films and their mixed films were synthesized by the sol-gel spin coating method using titanium tetra isopropoxide (TTIP) and tetra ethyl ortho silicate (TEOS) as the precursor materials for TiO(2) and SiO(2) respectively. The pure and composite films of TiO(2) and SiO(2) were deposited on glass and silicon substrates. The optical properties were studied for different compositions of TiO(2) and SiO(2) sols and the refractive index and optical band gap energies were estimated. MOS capacitors were fabricated using TiO(2) films on p-silicon (100) substrates. The current-voltage (I-V) and capacitance-voltage (C-V) characteristics were studied and the electrical resistivity and dielectric constant were estimated for the films annealed at 200°C for their possible use in optoelectronic applications. Copyright © 2011 Elsevier B.V. All rights reserved.
Effects of Ti and TiC ceramic powder on laser-cladded Ti-6Al-4V in situ intermetallic composite
NASA Astrophysics Data System (ADS)
Ochonogor, O. F.; Meacock, C.; Abdulwahab, M.; Pityana, S.; Popoola, A. P. I.
2012-12-01
Titanium metal matrix composite (MMCs) was developed on titanium alloy (Ti-6Al-4V) substrate with the aim of improving the hardness and wear properties by laser cladding technique using a Rofin Sinar 4 kW Nd: YAG laser. Wear investigations were carried out with the aid of three body abrasion tester. The resultant microstructure show homogeneous distribution of TiC particles free from cracks and pores. Multiple track deposited systems with 50% overlap revealed micro-hardness increase from 357.3 HV0.1for the substrate reaching a peak as high as 922.2 HV0.1 for 60%Ti + 40%TiC and the least 665.3 HV0.1 for 80%Ti + 20%TiC MMCs. The wear resistance of the materials improved significantly, indicating a fifteen-fold wear rate reduction due to the proper distribution of ceramic particles thereby forming interstitial carbides as revealed by the X-ray diffraction spectrum.
Sleeve Push Technique: A Novel Method of Space Gaining.
Verma, Sanjeev; Bhupali, Nameksh Raj; Gupta, Deepak Kumar; Singh, Sombir; Singh, Satinder Pal
2018-01-01
Space gaining is frequently required in orthodontics. Multiple loops were initially used for space gaining and alignment. The most common used mechanics for space gaining is the use of nickel-titanium open coil springs. The disadvantage of nickel-titanium coil spring is that they cannot be used until the arches are well aligned to receive the stiffer stainless steel wires. Therefore, a new method of gaining space during initial alignment and leveling has been developed and named as sleeve push technique (SPT). The nickel-titanium wires, i.e. 0.012 inches and 0.014 inches along with archwire sleeve (protective tubing) can be used in a modified way to gain space along with alignment. This method helps in gaining space right from day 1 of treatment. The archwire sleeve and nickel-titanium wire in this new SPT act as a mutually synergistic combination and provide the orthodontist with a completely new technique for space opening.
Santander, Sonia; Alcaine, Clara; Lyahyai, Jaber; Pérez, Maria Angeles; Rodellar, Clementina; Doblaré, Manuel; Ochoa, Ignacio
2012-01-01
Interaction between cells and implant surface is crucial for clinical success. This interaction and the associated surface treatment are essential for achieving a fast osseointegration process. Several studies of different topographical or chemical surface modifications have been proposed previously in literature. The Biomimetic Advanced Surface (BAS) topography is a combination of a shot blasting and anodizing procedure. Macroroughness, microporosity of titanium oxide and Calcium/Phosphate ion deposition is obtained. Human mesenchymal stem cells (hMCSs) response in vitro to this treatment has been evaluated. The results obtained show an improved adhesion capacity and a higher proliferation rate when hMSCs are cultured on treated surfaces. This biomimetic modification of the titanium surface induces the expression of osteblastic differentiation markers (RUNX2 and Osteopontin) in the absence of any externally provided differentiation factor. As a main conclusion, our biomimetic surface modification could lead to a substantial improvement in osteoinduction in titanium alloy implants.
Methods of making functionalized nanorods
Gur, Ilan [San Francisco, CA; Milliron, Delia [Berkeley, CA; Alivisatos, A Paul [Oakland, CA; Liu, Haitao [Berkeley, CA
2012-01-10
A process for forming functionalized nanorods. The process includes providing a substrate, modifying the substrate by depositing a self-assembled monolayer of a bi-functional molecule on the substrate, wherein the monolayer is chosen such that one side of the bi-functional molecule binds to the substrate surface and the other side shows an independent affinity for binding to a nanocrystal surface, so as to form a modified substrate. The process further includes contacting the modified substrate with a solution containing nanocrystal colloids, forming a bound monolayer of nanocrystals on the substrate surface, depositing a polymer layer over the monolayer of nanocrystals to partially cover the monolayer of nanocrystals, so as to leave a layer of exposed nanocrystals, functionalizing the exposed nanocrystals, to form functionalized nanocrystals, and then releasing the functionalized nanocrystals from the substrate.
Large area nano-patterning /writing on gold substrate using dip - pen nanolithography (DPN)
NASA Astrophysics Data System (ADS)
Saini, Sudhir Kumar; Vishwakarma, Amit; Agarwal, Pankaj B.; Pesala, Bala; Agarwal, Ajay
2014-10-01
Dip Pen Nanolithography (DPN) is utilized to pattern large area (50μmX50μm) gold substrate for application in fabricating Nano-gratings. For Nano-writing 16-MHA ink coated AFM tip was prepared using double dipping procedure. Gold substrate is fabricated on thermally grown SiO2 substrate by depositing ˜5 nm titanium layer followed by ˜30nm gold using DC pulse sputtering. The gratings were designed using period of 800nm and 25% duty cycle. Acquired AFM images indicate that as the AFM tip proceeds for nano-writing, line width decreases from 190nm to 100nm. This occurs probably due to depreciation of 16-MHA molecules in AFM tip as writing proceeds.
Arakaki, Atsushi; Hideshima, Sho; Nakagawa, Takahito; Niwa, Daisuke; Tanaka, Tsuyoshi; Matsunaga, Tadashi; Osaka, Tetsuya
2004-11-20
For developing a magnetic bioassay system, an investigation to determine the presence of a specific biomolecular interaction between biotin and streptavidin was done using magnetic nanoparticles and a silicon substrate with a self-assembled monolayer. Streptavidin was immobilized on the magnetic particles, and biotin was attached to the monolayer-modified substrate. The reaction of streptavidin-modified magnetic particles on the biotin-modified substrate was clearly observed under an optical microscope. The magnetic signals from the particles were detected using a magnetic force microscope. The results of this study demonstrate that the combination of a monolayer-modified substrate with biomolecule-modified magnetic particles is useful for detecting biomolecular interactions in medical and diagnostic analyses. (c) 2004 Wiley Periodicals, Inc
NASA Astrophysics Data System (ADS)
He, Xiaojing; Li, Meng; Wang, Huizhen; Zhang, Xiangyu; Tang, Bin
2015-05-01
Cu-Cr alloyed layers with different Cu and Cr contents on pure titanium were obtained by means of plasma surface alloying technology. The microstructure, chemical composition and phase composition of Cu-Cr alloyed layers were analyzed by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) and X-ray diffraction (XRD), respectively. The experimental results demonstrate that the alloyed layers are bonded strongly to pure titanium substrate and consist of unbound Ti, CuTi, Cu3Ti, CuTi3 and Cr2Ti. The thickness of Cu5Cr5 and Cu7Cr3 alloyed layer are about 18 μm and 28 μm, respectively. The antibacterial properties against gram-negative Escherichia coli (E.coli, ATCC10536) and gram-positive Staphylococcus aureus (S. aureus, ATCC6538) of untreated pure titanium and Cu-Cr alloyed specimen were investigated by live/dead fluorescence staining method. The study shows that Cu-Cr alloyed layers exhibit excellent antibacterial activities against both E.coli and S.aureus within 24 h, which may be attributed to the formation of Cu-containing phases.
Novel Approach in the Use of Plasma Spray: Preparation of Bulk Titanium for Bone Augmentations
Fousova, Michaela; Vojtech, Dalibor; Jablonska, Eva; Fojt, Jaroslav; Lipov, Jan
2017-01-01
Thermal plasma spray is a common, well-established technology used in various application fields. Nevertheless, in our work, this technology was employed in a completely new way; for the preparation of bulk titanium. The aim was to produce titanium with properties similar to human bone to be used for bone augmentations. Titanium rods sprayed on a thin substrate wire exerted a porosity of about 15%, which yielded a significant decrease of Young′s modulus to the bone range and provided rugged topography for enhanced biological fixation. For the first verification of the suitability of the selected approach, tests of the mechanical properties in terms of compression, bending, and impact were carried out, the surface was characterized, and its compatibility with bone cells was studied. While preserving a high enough compressive strength of 628 MPa, the elastic modulus reached 11.6 GPa, thus preventing a stress-shielding effect, a generally known problem of implantable metals. U-2 OS and Saos-2 cells derived from bone osteosarcoma grown on the plasma-sprayed surface showed good viability. PMID:28837101
NASA Astrophysics Data System (ADS)
Szkoda, Mariusz; Lisowska-Oleksiak, Anna; Grochowska, Katarzyna; Skowroński, Łukasz; Karczewski, Jakub; Siuzdak, Katarzyna
2016-09-01
In a significant amount of cases, the highly ordered TiO2 nanotube arrays grow through anodic oxidation of a titanium metal plate immersed in electrolyte containing fluoride ions. However, for some practical applications, e.g. solar cells or electrochromic windows, the semi-transparent TiO2 formed directly on the transparent, conductive substrate is very much desired. This work shows that high-quality Ti coating could be formed at room temperature using an industrial magnetron sputtering system within 50 min. Under optimized conditions, the anodization process was performed on 2 μm titanium films deposited onto the FTO (fluorine-tin-oxide) support. Depending on the electrolyte type, highly ordered tubular or porous titania layers were obtained. The fabricated samples, after their thermal annealing, were investigated using scanning electron microscopy, Raman spectroscopy and UV-vis spectroscopy in order to investigate their morphology, crystallinity and absorbance ability. The photocurrent response curves indicate that materials are resistant to the photocorrosion process and their activity is strongly connected to optical properties. The most transparent TiO2 films were fabricated when Ti was anodized in water electrolyte, whereas the highest photocurrent densities (12 μA cm-2) were registered for titania received after Ti anodization in ethylene glycol solution. The obtained results are of significant importance in the production of thin, semi-transparent titania nanostructures on a commercial scale.
Holopainen, Jani; Kauppinen, Kyösti; Mizohata, Kenichiro; Santala, Eero; Mikkola, Esa; Heikkilä, Mikko; Kokkonen, Hanna; Leskelä, Markku; Lehenkari, Petri; Tuukkanen, Juha; Ritala, Mikko
2014-09-01
Nanocrystalline hydroxyapatite thin films were fabricated on silicon and titanium by atomic layer deposition (ALD) of CaCO3 and its subsequent conversion to hydroxyapatite by diammonium hydrogen phosphate (DAP) solution. The effects of conversion process parameters to crystallinity and morphology of the films were examined. DAP concentration was found to be critical in controlling the crystal size and homogeneity of the films. The hydroxyapatite phase was identified by XRD. ToF-elastic recoil detection analysis studies revealed that the films are calcium deficient in relation to hydroxyapatite with a Ca/P ratio of 1.39 for films converted with 0.2 M DAP at 95 °C. The coatings prepared on titanium conformally follow the rough surface topography of the substrate, verifying that the good step coverage of the ALD method was maintained in the conversion process. The dissolution tests revealed that the coating was nondissolvable in the cell culture medium. Annealing the coated sample at 700 °C for 1 h seemed to enhance its bonding properties to the substrate. Also, the biocompatibility of the coatings was confirmed by human bone marrow derived cells in vitro. The developed method provides a new possibility to produce thin film coatings on titanium implants with bone-type hydroxyapatite that is biocompatible with human osteoblasts and osteoclasts.
Kinetic and microstructural study of titanium nitride deposited by laser chemical vapor deposition
NASA Astrophysics Data System (ADS)
Egland, Keith Maynard
Titanium nitride (TiN) films were deposited onto Ti-6Al-4V substrates by laser chemical vapor deposition using a cw COsb2 laser and TiClsb4,\\ Nsb2, and Hsb2 reactant gases. In-situ laser induced fluorescence (LIF) and multi-wavelength pyrometry determined relative titanium gas phase atomic number density and deposition temperature, respectively. Deposited films were yellow to gold in color. Transmission electron microscopy on one sample revealed a face-centered cubic structure with a lattice parameter (0.4237 nm) expected for TiN. Auger electron spectroscopy found substoichiometric compositions with a N/Ti ratio between 0.7 and 0.9. Variables decreasing grain size (lower temperature, higher TiClsb4 input) decreased the N/Ti ratio. Higher Nsb2 input increased stoichiometry, while larger Hsb2 input decreased stoichiometry. The deposit substoichiometry is believed to be caused by diffusion of nitrogen through TiN grain boundaries to the titanium alloy substrate. The morphology starts as a dense polycrystalline structure evolving into a columnar structure having facets or nodules at the surface with crystallite sizes ranging from 10-1000 nm. TiClsb4 input had a inverse correlation with crystallite size, while Nsb2:Hsb2 ratio had minimal effect; the crystallite size (G) varied exponentially with temperature (T) for a given irradiation time, i.e., G = C exp (-28000/T), with constant C reflecting substrate roughness and gas composition. Microhardness tests revealed substrate contributions; nevertheless, films appeared to have a minimum hardness of 2000 Hsbv. The deposition apparent activation energy was calculated as 122 ± 9 kJ/mole using growth rates measured by film height and 117 ± 23 kJ/mole using growth rates measured by LIF signals. This puts the process in the surface kinetic growth regime over the temperature range 1370-1610 K. Above Nsb2 and Hsb2 levels of 1.25% and below TiClsb4 input of 4.5%, the growth rate has a half-order dependence on nitrogen and a linear dependence on hydrogen and is approximated by$r = {{kPsb{TiClsb4}Psb{Hsb2}Psbsp{Nsb2}{1/2}exp≤ft({{-}Esb{a}/ {RT}right)}/{1 + Psb{Ar}}}}.Since nitrogen positively affects growth rate (when added to a TiClsb4+Hsb2 mixture), stepwise reduction of TiClsb4 to Ti by hydrogen does not occur. NHsb{x} complexes are clearly involved in the growth mechanism; a likely combination of rate determining steps is the formation of NH and the initial reduction of TiClsb4$ by hydrogen.
Duta, Liviu; Stan, George E.; Popa, Adrian C.; Husanu, Marius A.; Moga, Sorin; Socol, Marcela; Zgura, Irina; Miculescu, Florin; Urzica, Iuliana; Popescu, Andrei C.; Mihailescu, Ion N.
2016-01-01
We report a study on the biocompatibility vs. thickness in the case of titanium nitride (TiN) films synthesized on 410 medical grade stainless steel substrates by pulsed laser deposition. The films were grown in a nitrogen atmosphere, and their in vitro cytotoxicity was assessed according to ISO 10993-5 [1]. Extensive physical-chemical analyses have been carried out on the deposited structures with various thicknesses in order to explain the differences in biological behavior: profilometry, scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction and surface energy measurements. XPS revealed the presence of titanium oxynitride beside TiN in amounts that vary with the film thickness. The cytocompatibility of films seems to be influenced by their TiN surface content. The thinner films seem to be more suitable for medical applications, due to the combined high values of bonding strength and superior cytocompatibility. PMID:28787846
Substrate effects on endothelial cell adherence rates.
Scott, W J; Mann, P
1990-01-01
Endothelial cell attachment to a synthetic substrate was studied using an in vitro model system. Attachment rate was defined as the number of tritium-labeled endothelial cells attached to a synthetic substrate after 30 minutes. The surface of the synthetic substrate was chemically modified with either laminin or fibronectin. Labeled endothelial cells attached more rapidly to synthetic substrate, chemically modified with biomolecules, as compared with the untreated substrate controls. Unlabeled endothelial cells were grown to confluency on a second set of modified and untreated substrates. The cells were removed with 1% Triton, and the rate of re-endothelialization with tritium-labeled endothelial cells was determined. The rate was 11-13 times that of the same cells on untreated substrate. These data confirm that biomolecules increase the attachment rate of endothelial cells to synthetic substrate, and also suggest that endothelial cells may secrete a Triton-insoluble product (Sigma, St. Louis, MO) into subendothelial matrix that increases re-endothelialization.
Fracture surface analysis in composite and titanium bonding: Part 1: Titanium bonding
NASA Technical Reports Server (NTRS)
Sanderson, K. A.; Wightman, J. P.
1985-01-01
Fractured lap shear Ti 6-4 adherends bonded with polyphenyquinoxaline (PPQ) and polysulfone were analyzed. The effects of adherend pretreatment, stress level, thermal aging, anodizing voltage, and modified adhesive of Ti 6-4 adherend bonded with PPQ on lap shear strength were studied. The effect of adherend pretreatment on lap shear strength was investigated for PS samples. Results of scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) used to study the surface topography and surface composition are also discussed.
Reaction layer characterization of the braze joint of silicon nitride to stainless steel
NASA Astrophysics Data System (ADS)
Xu, R.; Indacochea, J. E.
1994-10-01
This investigation studies the role of titanium in the development of the reaction layer in braze joining silicon nitride to stainless steel using titanium-active copper-silver filler metals. This reaction layer formed as a result of titanium diffusing to the filler metal/silicon nitride interface and reacting with the silicon nitride to form the intermetallics, titanium nitride (TiN) and titanium suicide (Ti 5Si3). This reaction layer, as recognized in the literature, allows wetting of the ceramic substrate by the molten filler metal. The reaction layer thickness increases with temperature and time. Its growth rate obeys the parabolic relationship. Activation energies of 220.1 and 210.9 kj/mol were calculated for growth of the reaction layer for the two filler metals used. These values are close to the activation energy of nitrogen in TiN (217.6 kj/mol). Two filler metals were used in this study, Ticusil (68.8 wt% Ag, 26.7 wt% Cu, 4.5 wt% Ti) and CB4 (70.5 wt% Ag, 26.5 wt% Cu, 3.0 wt% Ti). The joints were processed in vacuum at temperatures of 840 to 900 °C at various times. Bonding strength is affected by reaction layer thickness in the absence of Ti-Cu intermetallics in the filler metal matrix.
System Configured For Applying Multiple Modifying Agents To A Substrate.
Propp, W. Alan; Argyle, Mark D.; Janikowski, Stuart K.; Fox, Robert V.; Toth, William J.; Ginosar, Daniel M.; Allen, Charles A.; Miller, David L.
2005-11-08
The present invention is related to the modifying of substrates with multiple modifying agents in a single continuous system. At least two processing chambers are configured for modifying the substrate in a continuous feed system. The processing chambers can be substantially isolated from one another by interstitial seals. Additionally, the two processing chambers can be substantially isolated from the surrounding atmosphere by end seals. Optionally, expansion chambers can be used to separate the seals from the processing chambers.
System configured for applying multiple modifying agents to a substrate
Propp, W. Alan; Argyle, Mark D.; Janikowski, Stuart K.; Fox, Robert V.; Toth, William J.; Ginosar, Daniel M.; Allen, Charles A.; Miller, David L.
2003-11-25
The present invention is related to the modifying of substrates with multiple modifying agents in a single continuous system. At least two processing chambers are configured for modifying the substrate in a continuous feed system. The processing chambers can be substantially isolated from one another by interstitial seals. Additionally, the two processing chambers can be substantially isolated from the surrounding atmosphere by end seals. Optionally, expansion chambers can be used to separate the seals from the processing chambers.
Tribocorrosion behaviour of nanostructured titanium substrates processed by high-pressure torsion
NASA Astrophysics Data System (ADS)
Faghihi, S.; Li, D.; Szpunar, J. A.
2010-12-01
Aseptic loosening induced by wear particles from artificial bearing materials is one of the main causes of malfunctioning in total hip replacements. With the increase in young and active patients, complications in revision surgeries and immense health care costs, there is considerable interest in wear-resistant materials that can endure longer in the harsh and corrosive body environment. Here, the tribological behaviour of nanostructured titanium substrates processed by high-pressure torsion (HPT) is investigated and compared with the coarse-grained samples. The high resolution transmission electron microscopy reveals that a nanostructured sample has a grain size of 5-10 nm compared to that of ~ 10 µm and ~ 50 µm for untreated and annealed substrates, respectively. Dry and wet wear tests were performed using a linear reciprocating ball-on-flat tribometer. Nanostructured samples show the best dry wear resistance and the lowest wear rate in the electrolyte. There was significantly lower plastic deformation and no change in preferred orientation of nanostructured samples attributable to the wear process. Electrochemical impedance spectroscopy (EIS) shows lower corrosion resistance for nanostructured samples. However, under the action of both wear and corrosion the nanostructured samples show superior performance and that makes them an attractive candidate for applications in which wear and corrosion act simultaneously.
Imparting passivity to vapor deposited magnesium alloys
NASA Astrophysics Data System (ADS)
Wolfe, Ryan C.
Magnesium has the lowest density of all structural metals. Utilization of low density materials is advantageous from a design standpoint, because lower weight translates into improved performance of engineered products (i.e., notebook computers are more portable, vehicles achieve better gas mileage, and aircraft can carry more payload). Despite their low density and high strength to weight ratio, however, the widespread implementation of magnesium alloys is currently hindered by their relatively poor corrosion resistance. The objective of this research dissertation is to develop a scientific basis for the creation of a corrosion resistant magnesium alloy. The corrosion resistance of magnesium alloys is affected by several interrelated factors. Among these are alloying, microstructure, impurities, galvanic corrosion effects, and service conditions, among others. Alloying and modification of the microstructure are primary approaches to controlling corrosion. Furthermore, nonequilibrium alloying of magnesium via physical vapor deposition allows for the formation of single-phase magnesium alloys with supersaturated concentrations of passivity-enhancing elements. The microstructure and surface morphology is also modifiable during physical vapor deposition through the variation of evaporation power, pressure, temperature, ion bombardment, and the source-to-substrate distance. Aluminum, titanium, yttrium, and zirconium were initially chosen as candidates likely to impart passivity on vapor deposited magnesium alloys. Prior to this research, alloys of this type have never before been produced, much less studied. All of these metals were observed to afford some degree of corrosion resistance to magnesium. Due to the especially promising results from nonequilibrium alloying of magnesium with yttrium and titanium, the ternary magnesium-yttrium-titanium system was investigated in depth. While all of the alloys are lustrous, surface morphology is observed under the scanning electron microscope. The corrosion rate of the nonequilibrium sputtered alloys, as determined by polarization resistance, is significantly reduced compared to the most corrosion resistant commercial magnesium alloys. The open circuit potentials of the sputter deposited alloys are significantly more noble compared to commercial, equilibrium phase magnesium alloys. Galvanic corrosion susceptibility has also been considerably reduced. Nonequilibrium magnesium-yttrium-titanium alloys have been shown to achieve passivity autonomously by alteration of the composition chemistry of the surface oxide/hydroxide layer. Self-healing properties are also evident, as corrosion propagation can be arrested after initial pitting of the material. A clear relationship exists between the corrosion resistance of sputter vapor deposited magnesium alloys and the amount of ion bombardment incurred by the alloy during deposition. Argon pressure, the distance between the source and the substrate, and alloy morphology play important roles in determining the ability of the alloy to develop a passive film. Thermal effects, both during and after alloy deposition, alter the stress state of the alloys, precipitation of second phases, and the mechanical stability of the passive film. An optimal thermal treatment has been developed in order to maximize the corrosion resistance of the magnesium-yttrium-titanium alloys. The significance of the results includes the acquisition of electrochemical data for these novel materials, as well as expanding the utilization of magnesium alloys by the improvement in their corrosion resistance. The magnesium alloys developed in this work are more corrosion resistant than any commercial magnesium alloy. Structural components comprised of these alloys would therefore exhibit unprecedented corrosion performance. Coatings of these alloys on magnesium components would provide a corrosion resistant yet galvanically-compatible coating. The broad impact of these contributions is that these new low-density, corrosion resistant magnesium alloys can be used to produce engineering components for vehicles that have greater acceleration, longer range, heavier payloads, lower life cycle costs, and longer inspection intervals.
Electrical transport properties of epitaxial titanium nitride nanowire
NASA Astrophysics Data System (ADS)
Makise, K.; Shinozaki, B.
2018-03-01
We have measured the transport properties of epitaxial titanium nitride (TiN) nanowires. Epitaxial TiN layer, deposited by dc magnetron sputtering on MgO(100) substrates at growth temperature T = 1073 K. Samples of nanowire were fabricated by e-beam lithography and reactive ion etching. Although TiN films with 100 nm-thickness have superconducting transition temperature T C ∼ 5 K, nanowires does not appear resistive transition until 0.15 K. The magnetoresistance (MR) are always negative. Furthermore for MR experimental results, we attempt to fit the data using one-dimensional weak localization theory. In addition we observed oscillations of magnetoresistance below 5 K.
Perovskite solar cells in N-I-P structure with four slot-die-coated layers
Burkitt, Daniel; Searle, Justin
2018-01-01
The fabrication of perovskite solar cells in an N-I-P structure with compact titanium dioxide blocking, mesoporous titanium dioxide scaffold, single-step perovskite and hole-transport layers deposited using the slot-die coating technique is reported. Devices on fluorine-doped tin oxide-coated glass substrates with evaporated gold top contacts and four slot-die-coated layers are demonstrated, and best cells reach stabilized power conversion efficiencies of 7%. This work demonstrates the suitability of slot-die coating for the production of layers within this perovskite solar cell stack and the potential to transfer to large area and roll-to-roll manufacturing processes. PMID:29892402
de Tacconi, N R; Chenthamarakshan, C R; Yogeeswaran, G; Watcharenwong, A; de Zoysa, R S; Basit, N A; Rajeshwar, K
2006-12-21
The photoelectrochemical response of nanoporous films, obtained by anodization of Ti and W substrates in a variety of corrosive media and at preselected voltages in the range from 10 to 60 V, was studied. The as-deposited films were subjected to thermal anneal and characterized by scanning electron microscopy and X-ray diffraction. Along with the anodization media developed by previous authors, the effect of poly(ethylene glycol) (PEG 400) or D-mannitol as a modifier to the NH4F electrolyte and glycerol addition to the oxalic acid electrolyte was studied for TiO2 and WO3, respectively. In general, intermediate anodization voltages and film growth times yielded excellent-quality photoelectrochemical response for both TiO2 and WO3 as assessed by linear-sweep photovoltammetry and photoaction spectra. The photooxidation of water and formate species was used as reaction probes to assess the photoresponse quality of the nanoporous oxide semiconductor films. In the presence of formate as an electron donor, the incident photon to electron conversion efficiency (IPCE) ranged from approximately 130% to approximately 200% for both TiO2 and WO3 depending on the film preparation protocol. The best photoactive films were obtained from poly(ethylene glycol) (PEG 400) containing NH4F for TiO2 and from aqueous NaF for WO3.
Environmental protection of titanium alloys at high temperatures
NASA Technical Reports Server (NTRS)
Wright, I. G.; Wood, R. A.; Seltzer, M. S.
1974-01-01
Various concepts were evaluated for protecting titanium alloys from oxygen contamination at 922 K (1200 F) and from hot-salt stress-corrosion at 755 K (900 F). It is indicated that oxygen-contamination resistance can be provided by a number of systems, but for hot-salt stress-corrosion resistance, factors such as coating integrity become very important. Titanium aluminides resist oxygen ingress at 922 K through the formation of alumina (on TiAl3) or modified TiO2 (on Ti3Al, TiAl) scales. TiAl has some resistance to attack by hot salt, but has limited ductility. Ductile Ti-Ni and Ti-Nb-Cr-Al alloys provide limited resistance to oxygen ingress, but are not greatly susceptible to hot-salt stress-corrosion cracking.
Effect of microstructure on the elasto-viscoplastic deformation of dual phase titanium structures
NASA Astrophysics Data System (ADS)
Ozturk, Tugce; Rollett, Anthony D.
2018-02-01
The present study is devoted to the creation of a process-structure-property database for dual phase titanium alloys, through a synthetic microstructure generation method and a mesh-free fast Fourier transform based micromechanical model that operates on a discretized image of the microstructure. A sensitivity analysis is performed as a precursor to determine the statistically representative volume element size for creating 3D synthetic microstructures based on additively manufactured Ti-6Al-4V characteristics, which are further modified to expand the database for features of interest, e.g., lath thickness. Sets of titanium hardening parameters are extracted from literature, and The relative effect of the chosen microstructural features is quantified through comparisons of average and local field distributions.
NASA Technical Reports Server (NTRS)
Masters, J. N.; Bixler, W. D.; Finger, R. W.
1973-01-01
Conditions controlling the growth and fracture of deep surface flaws in aerospace alloys were investigated. Static fracture tests were performed on 7075-T651 and 2219-T87 aluminum, and 6Ai-4V STA titanium . Cyclic flaw growth tests were performed on the two latter alloys, and sustain load tests were performed on the titanium alloy. Both the cyclic and the sustain load tests were performed with and without a prior proof overload cycle to investigate possible growth retardation effects. Variables included in all test series were thickness, flaw depth-to-thickness ratio, and flaw shape. Results were analyzed and compared with previously developed data to determine the limits of applicability of available modified linear elastic fracture solutions.
Surface enhanced raman spectroscopy technique in rapid detection of live and dead salmonella cells
USDA-ARS?s Scientific Manuscript database
Many research proved that Surface Enhanced Raman Spectroscopy (SERS) can detect pathogens rapidly and accurately. In this study, a silver metal substrate was used for the selected common food pathogen Salmonella typhimurium bacteria. Nano silver rods were deposited on a thin titanium coating over t...
Naghizadeh, Ali; Shahabi, Habibeh; Ghasemi, Fatemeh; Zarei, Ahmad
2016-12-01
The main aim of this research was to study the efficiency of modified walnut shell with titanium dioxide (TiO 2 ) and zinc oxide (ZnO) in the adsorption of humic acid from aqueous solutions. This experimental study was carried out in a batch condition to determine the effects of factors such as contact time, pH, humic acid concentration, dose of adsorbents (raw walnut shell, modified walnut shell with TiO 2 and ZnO) on the removal efficiency of humic acid. pH zpc of raw walnut shell, walnut shell modified with TiO 2 and walnut shell modified with ZnO were 7.6, 7.5, and 8, respectively. The maximum adsorption capacity of humic acid at concentration of 30 mg/L, contact time of 30 min at pH = 3 in an adsorbent dose of 0.02 g of walnut shell and ZnO and TiO 2 modified walnut shell were found to be 35.2, 37.9, and 40.2 mg/g, respectively. The results showed that the studied adsorbents tended to fit with the Langmuir model. Walnut shell, due to its availability, cost-effectiveness, and also its high adsorption efficiency, can be proposed as a promising natural adsorbent in the removal of humic acid from aqueous solutions.
Yuen, Clement; Zheng, Wei; Huang, Zhiwei
2008-01-01
We report a novel postgrowth microwave heating implementation by selectively modifying hierarchical polystyrene (PS) bead substrates coated with gold (Au) films to effectively improve the surface-enhanced Raman scattering (SERS) effect on the analytes. The SERS signal of probe molecule rhodamine 6G (Rh 6G) on the microwave-treated Au-PS substrates can be improved by 10-fold, while the detection limit of Rh 6G in concentration can be enhanced by two orders of magnitude compared to the as-growth substrates. The high-quality SERS spectrum of saliva can also be acquired using the modified substrates, demonstrating the potential for the realization of the high-performance SERS substrates for biomedical applications.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-12
... stated that the Fusion Titanium trim and Fusion Hybrid vehicles will be equipped with the IAwPB system as... Standard for the Ford Fusion vehicle line beginning with its model year (MY) 2012 vehicles. On February 16, 2012, Ford submitted a petition to modify its previously approved exemption for the Ford Fusion vehicle...
Biosensing applications of titanium dioxide coated graphene modified disposable electrodes.
Kuralay, Filiz; Tunç, Selma; Bozduman, Ferhat; Oksuz, Lutfi; Oksuz, Aysegul Uygun
2016-11-01
In the present work, preparation of titanium dioxide coated graphene (TiO2/graphene) and the use of this nanocomposite modified electrode for electrochemical biosensing applications were detailed. The nanocomposite was prepared with radio frequency (rf) rotating plasma method which serves homogeneous distribution of TiO2 onto graphene. TiO2/graphene was characterized with scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) analysis. Then, this nanocomposite was dissolved in phosphate buffer solution (pH 7.4) and modified onto disposable pencil graphite electrode (PGE) by dip coating for the investigation of the biosensing properties of the prepared electrode. TiO2/graphene modified PGE was characterized with SEM, EDS and cyclic voltammetry (CV). The sensor properties of the obtained surface were examined for DNA and DNA-drug interaction. The detection limit was calculated as 1.25mgL(-1) (n=3) for double-stranded DNA (dsDNA). RSD% was calculated as 2.4% for three successive determinations at 5mgL(-1) dsDNA concentration. Enhanced results were obtained compared to the ones obtained with graphene and unmodified (bare) electrodes. Copyright © 2016 Elsevier B.V. All rights reserved.
Murakami, Asuka; Arimoto, Takafumi; Suzuki, Dai; Iwai-Yoshida, Misato; Otsuka, Fukunaga; Shibata, Yo; Igarashi, Takeshi; Kamijo, Ryutaro; Miyazaki, Takashi
2012-04-01
Hydroxyapatite (HA)-coated titanium (Ti) is commonly used for implantable medical devices. This study examined in vitro osteoblast gene expression and antimicrobial activity against early and late colonizers of supra-gingival plaque on nanoscale HA-coated Ti prepared by discharge in a physiological buffered solution. The HA-coated Ti surface showed super-hydrophilicity, whereas the densely sintered HA and Ti surfaces alone showed lower hydrophilicity. The sintered HA and HA-coated Ti surfaces enhanced osteoblast phenotypes in comparison with the bare Ti surface. The HA-coated Ti enabled antimicrobial activity against early colonizers of supra-gingival plaques, namely Streptococcus mitis and Streptococcus gordonii. Such antimicrobial activity may be caused by the surface hydrophilicity, thereby leading to a repulsion force between the HA-coated Ti surface and the bacterial cell membranes. On the contrary, the sintered HA sample was susceptible to infection of microorganisms. Thus, hydrophilic-modified HA-coated Ti may have potential for use in implantable medical devices. From the Clinical Editor: This study establishes that Hydroxyapatite (HA)-coated titanium (Ti) surface of implanted devices may result in an optimal microenvironment to control and prevent infections and may have potential future clinical applications. Copyright © 2012 Elsevier Inc. All rights reserved.
Accelerated cell-surface interlocking on plasma polymer-modified porous ceramics.
Rebl, Henrike; Finke, Birgit; Schmidt, Jürgen; Mohamad, Heba S; Ihrke, Roland; Helm, Christiane A; Nebe, J Barbara
2016-12-01
Excellent osseointegration of permanent implants is crucial for the long lasting success of the implantation. To improve the osseointegrative potential, bio-inert titanium alloy surfaces (Ti6Al4V) are modified by plasma chemical oxidation (PCO®) of the titanium-oxide layer to a non-stoichiometric, amorphous calcium phosphate layer. The native titanium-oxide film measuring only a few nanometers is converted by PCO® to a thick porous calcium phosphate layer of about 10μm. In a second step the PCO surface is combined with a cell adhesive plasma-polymerized allylamine (PPAAm) nano film (5 and 50nm). Independent of the PPAAm coating homogeneity, the human osteoblast-like MG-63 cells show a remarkable increase in cell size and well-developed filopodia. Analyses of the actin cytoskeleton reveal that the cells mold to the pore shape of the PPAAm-covered PCO, thereby establishing a strong attachment to the surface. Interestingly, we could demonstrate that even though our untreated PCO shows excellent hydrophilicity, this alone is not sufficient to facilitate fast cell spreading, but the positive surface charges mediated by PPAAm. This multilayer composite material guarantees enhanced interlocking of the cells with the porous surface. Copyright © 2016 Elsevier B.V. All rights reserved.
Parameter optimization for Ag-coated TiO2 nanotube arrays as recyclable SERS substrates
NASA Astrophysics Data System (ADS)
Sun, Yuyang; Yang, Lulu; Liao, Fan; Dang, Qian; Shao, Mingwang
2018-06-01
The Ag-coated titanium dioxide nanotube arrays (Ag-coated TNTs) are obtained via the deposition of Ag nanoparticles on the two-step anodized TNTs. The wall thickness of TNTs is modulated via finite difference time domain simulation to get the favorable electromagnetic field for surface enhanced Raman scattering (SERS). Ag-coated TNTs with optimal wall thickness of 20 nm were employed as the SERS substrates to detect 2-mercaptobenzoxazole, which show superior detection sensitivity and uniformity. In addition, due to the photocatalysis of TNTs, the SERS substrates could clean themselves and be repeatedly used by photo-degradation of target molecules under the ultra-violet irradiation. The Ag-coated TNTs are a kind of bifunctional SERS substrates which can produce high-quality SERS signals and reuse to reduce the cost.
Detailed Studies of Pixelated CZT Detectors Grown with the Modified Horizontal Bridgman Method
NASA Technical Reports Server (NTRS)
Jung, I.; Krawczynski, H.; Burger, A.; Guo, M.; Groza, M.
2007-01-01
The detector material Cadmium Zinc Telluride (CZT) achieves excellent spatial resolution and good energy resolution over a broad energy range, several keV up to some MeV. Presently, there are two main methods to grow CZT crystals, the Modified High-Pressure Bridgman (MHB) and the High-Pressure Bridgman (HPB) process. The study presented in this paper is based on MHB CZT substrates from the company Orbotech Medical Solutions Ltd. [Orbotech Medical Solutions Ltd., 10 Plaut St., Park Rabin, P.O. Box 2489, Rehovot, Israel, 76124]. Former studies have shown that high-work-function materials on the cathode side reduce the leakage current and, therefore, improve the energy resolution at lower energies. None of the studies have emphasized on the anode contact material. Therefore, we present in this paper the result of a detailed study in which for the first time the cathode material was kept constant and the anode material was varied. We used four different anode materials: Indium, Titanium, Chromium and Gold, metals with work-functions between 4.1 eV and 5.1 eV. The detector size was 2.0 x 2.0 x 0.5 cu cm with 8 x 8 pixels and a pitch of 2.46 mm. The best performance was achieved with the low-work-function materials Indium and Titanium with energy resolutions of 2.0 keV (at 59 keV) and 1.9 keV (at 122 keV) for Titanium and 2.1 keV (at 59 keV) and 2.9 keV (at 122 keV) for Indium. Taking into account the large pixel pitch of 2.46 mm, these resolutions are very competitive in comparison to those achieved with detectors made of material produced with the more expensive conventional HPB method. We present a detailed comparison of our detector response with 3D simulations. The latter comparisons allow us to determine the mobility-lifetime-products (mu tau-products) for electrons and holes. Finally, we evaluated the temperature dependency of the detector performance and ls-products. For many applications temperature dependence is important, therefore, we extended the scope of our study to temperatures as low as -30 C. There are two important results. The breakdown voltage increases with decreasing temperature, and electron mobility-lifetime-product decreases by about 30% over a range from 20 C to -30 C. The latter effect causes the energy resolution to deteriorate, but the concomitantly increasing breakdown voltage makes it possible to increase the applied bias voltage and restore the full performance
NASA Astrophysics Data System (ADS)
Yastrebinskii, R. N.
2018-04-01
The investigations on estimating the attenuation of capture gamma radiation by a composite neutron-shielding material based on modified titanium hydride and Portland cement with a varied amount of boron carbide are performed. The results of calculations demonstrate that an introduction of boron into this material enables significantly decreasing the thermal neutron flux density and hence the levels of capture gamma radiation. In particular, after introducing 1- 5 wt.% boron carbide into the material, the thermal neutron flux density on a 10 cm-thick layer is reduced by 11 to 176 factors, and the capture gamma dose rate - from 4 to 9 times, respectively. The difference in the degree of reduction in these functionals is attributed to the presence of capture gamma radiation in the epithermal region of the neutron spectrum.
Surface treatment of a titanium implant using low temperature atmospheric pressure plasmas
NASA Astrophysics Data System (ADS)
Lee, Hyun-Young; Tang, Tianyu; Ok, Jung-Woo; Kim, Dong-Hyun; Lee, Ho-Jun; Lee, Hae June
2015-09-01
During the last two decades, atmospheric pressure plasmas(APP) are widely used in diverse fields of biomedical applications, reduction of pollutants, and surface treatment of materials. Applications of APP to titanium surface of dental implants is steadily increasing as it renders surfaces wettability and modifies the oxide layer of titanium that hinders the interaction with cells and proteins. In this study, we have treated the titanium surfaces of screw-shaped implant samples using a plasma jet which is composed of a ceramic coaxial tube of dielectrics, a stainless steel inner electrode, and a coper tube outer electrode. The plasma ignition occurred with Ar gas flow between two coaxial metal electrodes and a sinusoidal bias voltage of 3 kV with a frequency of 20 kHz. Titanium materials used in this study are screw-shaped implants of which diameter and length are 5 mm and 13 mm, respectively. Samples were mounted at a distance of 5 mm below the plasma source, and the plasma treatment time was set to 3 min. The wettability of titanium surface was measured by the moving speed of water on its surface, which is enhanced by plasma treatment. The surface roughness was also measured by atomic force microscopy. The optimal condition for wettability change is discussed.
Chen, Junyu; Zhang, Xin; Huang, Chao; Cai, He; Hu, Shanshan; Wan, Qianbing; Pei, Xibo; Wang, Jian
2017-03-01
As a new class of crystalline nanoporous materials, metal-organic frameworks (MOFs) have recently been used for biomedical applications due to their large surface area, high porosity, and theoretically infinite structures. To improve the biological performance of titanium, MOF films were applied to surface modification of titanium. Zn-based MOF films composed of zeolitic imidazolate framework-8 (ZIF-8) crystals with nanoscale and microscale sizes (nanoZIF-8 and microZIF-8) were prepared on porous titanium surfaces by hydrothermal and solvothermal methods, respectively. The ZIF-8 films were characterized by powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The nanoZIF-8 film exhibited good biocompatibility, whereas the microZIF-8 film showed obvious cytotoxicity to MG63 cells. Compared to pure titanium and alkali- and heat-treated porous titanium, the nanoZIF-8 film not only enhanced alkaline phosphatase (ALP) activity, extracellular matrix mineralization, and expression of osteogenic genes (ALP, Runx2) in MG63 cells but also inhibited the growth of Streptococcus mutans. These results indicate that MOF films or coatings may be promising candidates for bone tissue engineering. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 834-846, 2017. © 2016 Wiley Periodicals, Inc.
Yu, Fei; Addison, Owen; Baker, Stephen J; Davenport, Alison J
2015-01-01
Titanium and its alloys are routinely used as biomedical implants and are usually considered to be corrosion resistant under physiological conditions. However, during inflammation, chemical modifications of the peri-implant environment including acidification occur. In addition certain biomolecules including lipopolysaccharide (LPS), a component of Gram-negative bacterial cell walls and driver of inflammation have been shown to interact strongly with Ti and modify its corrosion resistance. Gram-negative microbes are abundant in biofilms which form on dental implants. The objective was to investigate the influence of LPS on the corrosion properties of relevant biomedical Ti substrates as a function of environmental acidity. Inductively coupled plasma mass spectrometry was used to quantify Ti dissolution following immersion testing in physiological saline for three common biomedical grades of Ti (ASTM Grade 2, Grade 4 and Grade 5). Complementary electrochemical tests including anodic and cathodic polarisation experiments and potentiostatic measurements were also conducted. All three Ti alloys were observed to behave similarly and ion release was sensitive to pH of the immersion solution. However, LPS significantly inhibited Ti release under the most acidic conditions (pH 2), which may develop in localized corrosion sites, but promoted dissolution at pH 4–7, which would be more commonly encountered physiologically. The observed pattern of sensitivity to environmental acidity of the effect of LPS on Ti corrosion has not previously been reported. LPS is found extensively on the surfaces of skin and mucosal penetrating Ti implants and the findings are therefore relevant when considering the chemical stability of Ti implant surfaces in vivo. PMID:25634122
In vitro fatigue behaviour of vacuum plasma and detonation gun sprayed hydroxyapatite coatings.
Gledhill, H C; Turner, I G; Doyle, C
2001-06-01
The fatigue behaviour of vacuum plasma sprayed (VPS) and detonation gun sprayed (DGUN) hydroxyapatite coatings on titanium substrates has been compared in air and in buffered Ringer's solution. There was an increase in the surface microcracking and bulk porosity of both types of coating tested in air. After 1 million cycles in Ringer's solution the VPS coatings had completely delaminated from their substrates. In contrast the DGUN coatings retained their integrity when tested up to 10 million cycles but were beginning to show signs of delamination at the interface.
Planar waveguide nanolaser configured by dye-doped hybrid nanofilm on substrate
NASA Astrophysics Data System (ADS)
Tikhonov, E. A.; Yashchuk, V. P.; Telbiz, G. M.
2018-04-01
Dye-doped hybrid silicate/titanium nanofilms on the glass substrate structures of asymmetrical waveguides were studied by way of laser systems. The threshold, spatial and spectral features of the laser oscillation of genuine and hollow waveguides were determined. The pattern of stimulated radiation included two concurrent processes: single-mode waveguide lasing and lateral small divergence emission. Comparison of the open angle of the lateral beams and grazing angles of the waveguide lasing mode provides an insight into the effect of leaky mode emission followed by Lummer-Gehrcke interference.
Methods of Antimicrobial Coating of Diverse Materials
NASA Technical Reports Server (NTRS)
Akse, James R.; Holtsnider, John T.; Kliestik, Helen
2011-01-01
Methods of coating diverse substrate materials with antimicrobial agents have been developed. Originally intended to reduce health risks to astronauts posed by pathogenic microorganisms that can grow on surfaces in spacecraft, these methods could also be used on Earth for example, to ensure sterility of surgical inserts and other medical equipment. The methods involve, generally, chemical preparation of substrate surfaces to enable attachment of antimicrobial molecules to the substrate surfaces via covalent bonds. Substrate materials that have been treated successfully include aluminum, glass, a corrosion-resistant nickel alloy, stainless steel, titanium, and poly(tetrafluoroethylene). Antimicrobial agents that have been successfully immobilized include antibiotics, enzymes, bacteriocins, bactericides, and fungicides. A variety of linkage chem istries were employed. Activity of antimicrobial coatings against gram-positive bacteria, gram-negative bacteria, and fungi was demonstrated. Results of investigations indicate that the most suitable combination of antimicrobial agent, substrate, and coating method depends upon the intended application.
Eick, Sigrun; Kindblom, Christian; Mizgalska, Danuta; Magdoń, Anna; Jurczyk, Karolina; Sculean, Anton; Stavropoulos, Andreas
2017-03-01
To evaluate the adhesion of selected bacterial strains incl. expression of important virulence factors at dentin and titanium SLA surfaces coated with layers of serum proteins. Dentin- and moderately rough SLA titanium-discs were coated overnight with human serum, or IgG, or human serum albumin (HSA). Thereafter, Porphyromonas gingivalis, Tannerella forsythia, or a six-species mixture were added for 4h and 24h. The number of adhered bacteria (colony forming units; CFU) was determined. Arg-gingipain activity of P. gingivalis and mRNA expressions of P. gingivalis and T. forsythia proteases and T. forsythia protease inhibitor were measured. Coating specimens never resulted in differences exceeding 1.1 log10 CFU, comparing to controls, irrespective the substrate. Counts of T. forsythia were statistically significantly higher at titanium than dentin, the difference was up to 3.7 log10 CFU after 24h (p=0.002). No statistically significant variation regarding adhesion of the mixed culture was detected between surfaces or among coatings. Arg-gingipain activity of P. gingivalis was associated with log10 CFU but not with the surface or the coating. Titanium negatively influenced mRNA expression of T. forsythia protease inhibitor at 24h (p=0.026 uncoated, p=0.009 with serum). The present findings indicate that: a) single bacterial species (T. forsythia) can adhere more readily to titanium SLA than to dentin, b) low expression of T. forsythia protease inhibitor may influence the virulence of the species on titanium SLA surfaces in comparison with teeth, and c) surface properties (e.g. material and/or protein layers) do not appear to significantly influence multi-species adhesion. Copyright © 2016 Elsevier Ltd. All rights reserved.
Biao, M N; Chen, Y M; Xiong, S B; Wu, B Y; Yang, B C
2017-09-01
To improve the biological properties of bioactive titanium metal, recombinant human bone morphogenetic protein 2(rhBMP-2) and fibronectin (Fn) were adsorbed on its surface solely or contiguously to modify the anodic oxidized titanium (AO-Ti), acid-alkali-treated titanium (AA-Ti), and polished titanium (P-Ti). It is found that the different bioactive titanium surface structures had great influence on protein adsorption. The adsorption amounts of BMP adsorbed solely and Fn/BMP adsorbed contiguously were AA-Ti > P-Ti > AO-Ti, and that for Fn adsorbed solely was AA-Ti ≈ P-Ti > AO-Ti. The conformation of proteins was changed remarkably after the adsorption. For BMP, the α-helix decreased on AA-Ti and stabilized on P-Ti and AO-Ti. For Fn, the β-sheet on PT-Ti and AA-Ti increased significantly. For Fn/BMP, the percentage of β-sheet on AA-Ti increased, and that of α-helix on all samples was stable. MSCs showed greater adhesion and spreading on Fn/BMP groups. MTT and Elisa tests showed that the synergistic effects of proteins made the cells proliferate and differentiate faster. It indicated both the surface structure and the synergistic effects of proteins could influence the biological properties of titanium metals. It provides research foundation for improving the biological properties of bioactive titanium metals by simultaneous application of several proteins. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2485-2498, 2017. © 2017 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Peralta, S.; Rosales, Keisa R.; Stoltzfus, Joel M.
2009-01-01
Metallic contaminant was found in the liquid oxygen (LOX) pre-valve screen of the shuttle main engine propulsion system on two orbiter vehicles. To investigate the potential for an ignition, NASA Johnson Space Center White Sands Test Facility performed (modified) rotating friction ignition testing in LOX. This testing simulated a contaminant particle in the low-pressure oxygen turbo pump (LPOTP) and the high-pressure oxygen turbo pump (HPOTP) of the shuttle main propulsion system. Monel(R) K-500 and Inconel(R) 718 samples represented the LPOTP and HPOTP materials. Aluminum foil tape and titanium foil represented the contaminant particles. In both the Monel(R) and Inconel(R) material configurations, the aluminum foil tape samples did not ignite after 30 s of rubbing. In contrast, all of the titanium foil samples ignited regardless of the rubbing duration or material configuration. However, the titanium foil ignitions did not propagate to the Monel and Inconel materials.
Rao, Xi; Li, Jing; Feng, Xue; Chu, Chenglin
2018-01-01
In this study, a simple, cost-effective approach of polymeric foam replication was used to produce three-dimensionally macroporous titanium scaffolds with controllable porosities and mechanical properties. Two kinds of porous titanium scaffolds with different porosities (74.7% and 87.6%) and pore sizes (360µm and 750µm) were fabricated. Both of the scaffolds exhibit good compressive strength (24.5MPa and 13.5MPa) with a low elastic modulus (0.23GPa and 0.11GPa), approximating the mechanical properties of nature human cancellous bone (E = 10-50MPa, σ = 0.01-3.0GPa). Thereafter, the scaffolds were surface modified using plasma electrolyte oxidation (PEO) process to gain a bioactive porous titania ceramic coating. The SBF immersion test indicates PEO treated scaffolds show excellent bioactivity as the apatite rapidly nucleates and grows on the scaffold surface during 3-28 days. The results suggest that the highly porous titanium scaffolds with titania bioactive coatings are promising in cancellous bone replacement. Copyright © 2017 Elsevier Ltd. All rights reserved.
Anticorrosion efficiency of ultrasonically deposited silica coatings on titanium
NASA Astrophysics Data System (ADS)
Ertaş, Fatma Sinem; Kaş, Recep; Mikó, Annamária; Birer, Özgür
2013-07-01
We utilized high intensity ultrasound to prepare coatings of silica and organically modified silica composed of multiple layers of densely packed nanoparticles. Ultrasound was used to collide nanoparticles onto an activated titanium surface with high speed. Large areas could be homogeneously coated by this method. These coatings were characterized by spectroscopy and microscopy methods and the anticorrosion efficiency in NaCl solution was evaluated by electrochemical measurements. The results indicated that the composite coatings provided good quality barrier layer on bare titanium and decreased the anodic corrosion rate. It was found that increase in the organic content of the coating shifted the passivation potential towards more positive direction. The comparison of the impedance results recorded at the corrosion potential pointed out that in each case a good quality barrier layer was formed on the titanium surface. The outstanding corrosion resistance of the composite coatings with only ~200 nm thickness shows that ultrasound assisted deposition can be a competitive method to obtain corrosion protective layers.
Pan, Chang-Jiang; Hou, Yan-Hua; Zhang, Bin-Bin; Zhang, Lin-Cai
2014-01-01
This paper presents a simple method to sequentially immobilize poly (ethylene glycol) (PEG) and albumin on titanium surface to enhance the blood compatibility. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) analysis indicated that PEG and albumin were successfully immobilized on the titanium surface. Water contact angle results showed a better hydrophilic surface after the immobilization. The immobilized PEG or albumin can not only obviously prevent platelet adhesion and activation but also prolong activated partial thromboplastin time (APTT), leading to the improved anticoagulation. Moreover, immobilization of albumin on PEG-modified surface can further improve the anticoagulation. The approach in the present study provides an effective and efficient method to improve the anticoagulation of blood-contact biomedical devices such as coronary stents.
Selective growth of titanium dioxide by low-temperature chemical vapor deposition.
Reinke, Michael; Kuzminykh, Yury; Hoffmann, Patrik
2015-05-13
A key factor in engineering integrated optical devices such as electro-optic switches or waveguides is the patterning of thin films into specific geometries. In particular for functional oxides, etching processes are usually developed to a much lower extent than for silicon or silicon dioxide; therefore, selective area deposition techniques are of high interest for these materials. We report the selective area deposition of titanium dioxide using titanium isopropoxide and water in a high-vacuum chemical vapor deposition (HV-CVD) process at a substrate temperature of 225 °C. Here—contrary to conventional thermal CVD processes—only hydrolysis of the precursor on the surface drives the film growth as the thermal energy is not sufficient to thermally decompose the precursor. Local modification of the substrate surface energy by perfluoroalkylsilanization leads to a reduced surface residence time of the precursors and, consequently, to lower reaction rate and a prolonged incubation period before nucleation occurs, hence, enabling selective area growth. We discuss the dependence of the incubation time and the selectivity of the deposition process on the presence of the perfluoroalkylsilanization layer and on the precursor impinging rates—with selectivity, we refer to the difference of desired material deposition, before nucleation occurs in the undesired regions. The highest measured selectivity reached (99 ± 5) nm, a factor of 3 superior than previously reported in an atomic layer deposition process using the same chemistry. Furthermore, resolution of the obtained patterns will be discussed and illustrated.
NASA Astrophysics Data System (ADS)
Lu, C.; Yao, J. W.; Wang, Y. X.; Zhu, Y. D.; Guo, J. H.; Wang, Y.; Fu, H. Y.; Chen, Z. B.; Yan, M. F.
2018-02-01
The heat treatment (consisting of solid solution and aging), is integrated with the nitriding process of titanium coated ZL205A aluminum alloy to improve the surface and matrix mechanical properties simultaneously. Two-step duplex treatment is adopted to prepare the gradient multiphase layer on a magnesium-free ZL205A aluminum-copper based alloy. Firstly, pure titanium film is deposited on the aluminum alloy substrate using magnetron sputtering. Secondly, the Ti-coated specimen is nitrided at the solid solution temperature of the substrate alloying elements in a gas mixture of N2 and H2 and aged at 175 °C. The microstructure evolution, microhardness as well as the wear resistance of obtained multiphase layers are investigated by means of scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectrometer (EDS), microhardness tester and pin-on-disc tribometer. The multiphase layer, dominated by TiN0.3 or Al3Ti, is prepared with significantly increased layer depth after duplex treatment. The surface hardness of multiphase layer is remarkably improved from 23.7HV to 457HV. The core matrix hardness is also increased to 65HV after aging. The wear rate of the multiphase layer decreases about 55.22% and 49.28% in comparison with the aged and Ti coated specimens, respectively. The predominant wear mechanism for the multiphase layer is abrasive and oxidation, but severe adhesive wear for the aged and Ti coated specimens.
Growth of ultra-thin TiO 2 films by spray pyrolysis on different substrates
NASA Astrophysics Data System (ADS)
Oja Acik, I.; Junolainen, A.; Mikli, V.; Danilson, M.; Krunks, M.
2009-12-01
In the present study TiO 2 films were deposited by spray pyrolysis method onto ITO covered glass and Si (1 0 0) substrates. The spray solution containing titanium(IV) isopropoxide, acetylacetone and ethanol was sprayed at a substrate temperature of 450 °C employing 1-125 spray pulses (1 s spray and 30 s pause). According to AFM, continuous coverage of ITO and Si substrates with TiO 2 layer is formed by 5-10 and below 5 spray pulses, respectively. XPS studies revealed that TiO 2 film growth on Si substrate using up to 4 spray pulses follows 2D or layer-by-layer-growth. Above 4 spray pulses, 3D or island growth becomes dominant irrespective of the substrate. Only 50 spray pulses result in TiO 2 layer with the thickness more than XPS measurement escape depth as any signal from the substrate could not be detected. TiO 2 grain size remains 30 nm on ITO and increases from 10-20 nm to 50-100 nm on Si substrate with the number of spray pulses from 1 to 125.
The study of VOPc thin film transistors on modified substrates
NASA Astrophysics Data System (ADS)
Song, De; Xu, Qi; Cheng, Hongcang; Li, Bao-zeng; Shang, Yubin
2018-02-01
The vanadyl phthalocyanine (VOPc) organic thin film transistors (OTFTs) were fabricated on the various organosilane self-assembled monolayer (SAM) modified substrates. And the effect of the surface properties on the performance of these transistors was studied. The atomic force morphologies and X-ray diffraction (XRD) spectrums of vanadyl phthalocyanine films on different SAM-modified surfaces were studied. They reveal that the terminal functional groups of organosilane affect the growth of VOPc film and device performance. The VOPc film on octadecyltrichlorosilane (OTS) modified substrate has larger crystal size and effective crystal thickness than those on phenyltrichlorosilane (PTS), 1H,1H,2H,2H-Perfluorodec-yltrichlorosilane (FDTS) as well as non-modified substrate, which contributes the mobility of corresponding device several and several dozen times relative to other ones. The effective crystal thickness and crystal grain size of VOPc film on PTS is between that on OTS treated and that on non-modified substrate due to the stronger attractive force between VOPc and SiO2. The VOPc films' performance and effective crystal thickness on FDTS treated are worse than that on PTS due to the existents of attractive force between -CF3 and VOPc.
NASA Astrophysics Data System (ADS)
Huo, Fangjun; Guo, Weihua; Wu, Hao; Wang, Yueting; He, Gang; Xie, Li; Tian, Weidong
2018-04-01
Biomimetic specific surface structure could improve biological behaviors of specific cells and eventual tissue integration. Featuring titanium surface with structures resembling bone resorption lacunae (RL) can be a promising approach to improve the osteoblast responses and osseointegration of implants. As a most common used dental implant surface, sandblasting and acid etching (SLA) surface has micro-sized structures with dimensions similar to RL, but great differences exist when it comes to shape and contour. In this work, by anodizing titanium substrate in a novel HCOONa/CH3COONa electrolyte, RL-like crater structures were fabricated with highly similar size, shape and contour. Compared with SLA, it was much more similar to RL structure in shape and contour. Furthermore, through subsequent alkali-heat treatment, nano-sized structures that overlaid the whole surface were obtained, which further mimic undercuts features inside the RL. The as-prepared surface was consisted of crystalline titania and exhibited super-hydrophilicity with good stability. In vitro evaluation results showed that the surface could significantly improve adhesion, proliferation and differentiation of MG63 cells in comparison with SLA. This new method may be a promising candidate for biomimetic modification of titanium implant to promote osseointegration.
Biomimetic Deposition of Hydroxyapatite by Mixed Acid Treatment of Titanium Surfaces.
Zhao, J M; Park, W U; Hwang, K H; Lee, J K; Yoon, S Y
2015-03-01
A simple chemical method was established for inducing bioactivity of Ti metal. In the present study, two kinds of mixed acid solutions were used to treat Ti specimens to induce Ca-P formation. Following a strong mixed acid activation process, Ca-P coatings successfully formed on the Ti surfaces in the simulated body fluid. Strong mixed acid etching was used to increase the roughness of the metal surface, because the porous and rough surfaces allow better adhesion between Ca-P coatings and substrate. Nano-scale modification of titanium surfaces can alter cellular and tissue responses, which may benefit osseointegration and dental implant therapy. Some specimens were treated with a 5 M NaOH aqueous solution, and then heat treated at 600 °C in order to form an amorphous sodium titanate layer on their surface. This treated titanium metal is believed to form a dense and uniform bone-like apatite layer on its surface in a simulated body fluid (SBF). This study proved that mixed acid treatment is not only important for surface passivation but is also another bioactive treatment for titanium surfaces, an alternative to alkali treatment. In addition, mixed acid treatment uses a lower temperature and shorter time period than alkali treatment.
Effect of pulsed laser parameters on in-situ TiC synthesis in laser surface treatment
NASA Astrophysics Data System (ADS)
Hamedi, M. J.; Torkamany, M. J.; Sabbaghzadeh, J.
2011-04-01
Commercial titanium sheets pre-coated with 300-μm thick graphite layer were treated by employing a pulsed Nd:YAG laser in order to enhance surface properties such as wear and erosion resistance. Laser in-situ alloying method produced a composite layer by melting the titanium substrate and dissolution of graphite in the melt pool. Correlations between pulsed laser parameters, microstructure and microhardness of the synthesized composite coatings were investigated. Effects of pulse duration and overlapping factor on the microstructure and hardness of the alloyed layer were deduced from Vickers micro-indentation tests, XRD, SEM and metallographic analyses of cross sections of the generated layer. Results show that the composite cladding layer was constituted with TiC intermetallic phase between the titanium matrix in particle and dendrite forms. The dendritic morphology of composite layer was changed to cellular grain structure by increasing laser pulse duration and irradiated energy. High values of the measured hardness indicate that deposited titanium carbide increases in the conditions with more pulse duration and low process speed. This occurs due to more dissolution of carbon into liquid Ti by heat input increasing and positive influence of the Marangoni flow in the melted zone.
Application of hard coatings to substrates at low temperatures
NASA Technical Reports Server (NTRS)
Sproul, William D.
1993-01-01
BIRL, the industrial research laboratory of Northwestern University, has conducted unique and innovative research, under sponsorship from the NASA Marshall Space Flight Center (MSFC), in the application of hard, wear resistant coatings to bearing steels using the high-rate reactive sputtering (HRRS) process that was pioneered by Dr. William Sproul, the principal investigator on this program. Prior to this program, Dr. Sproul had demonstrated that it is possible to apply hard coatings such as titanium nitride (TiN) to alloy steels at low temperatures via the HRRS process without changing the metallurgical properties of the steel. The NASA MSFC program at BIRL had the specific objectives to: apply TiN to 440C stainless steel without changing the metallurgical properties of the steel; prepare rolling contact fatigue (RCF) test samples coated with binary hard coatings of TiN, zirconium nitride (ZrN), hafnium nitride (HfN), chromium nitride (CrN), and molybdenum nitride (MoN), and metal coatings of copper (Cu) and gold (Au); and develop new alloyed hard coatings of titanium aluminum nitride (Ti(0.5)Al(0.5)N), titanium zirconium nitride (Ti(0.5)Zr(0.5)N), and titanium aluminum vanadium nitride.
Fabrication of TiO2 nanostructures on porous silicon for thermoelectric application
NASA Astrophysics Data System (ADS)
Fahrizal, F. N.; Ahmad, M. K.; Ramli, N. M.; Ahmad, N.; Fakhriah, R.; Mohamad, F.; Nafarizal, N.; Soon, C. F.; Ameruddin, A. S.; Faridah, A. B.; Shimomura, M.; Murakami, K.
2017-09-01
Nowadays, technology is moving by leaps and bounds over the last several decades. This has created new opportunities and challenge in the research fields. In this study, the experiment is about to investigate the potential of Titanium Dioxide (TiO2) nanostructures that have been growth onto a layer of porous silicon (pSi) for their thermoelectric application. Basically, it is divided into two parts, which is the preparation of the porous silicon (pSi) substrate by electrochemical-etching process and the growth of the Titanium Dioxide (TiO2) nanostructures by hydrothermal method. This sample have been characterize by Field Emission Scanning Electron Microscopy (FESEM) to visualize the morphology of the TiO2 nanostructures area that formed onto the porous silicon (pSi) substrate. Besides, the sample is also used to visualize their cross-section images under the FESEM microscopy. Next, the sample is characterized by the X-Ray Diffraction (XRD) machine. The XRD machine is used to get the information about the chemical composition, crystallographic structure and physical properties of materials.
NASA Astrophysics Data System (ADS)
Lin, Yinghua; Yao, Jianhua; Lei, Yongping; Fu, Hanguang; Wang, Liang
2016-11-01
TiB2 particle and TiB short fiber reinforced titanium matrix composite coatings were prepared utilizing in situ synthesized technique by laser cladding on the surface of Ti6Al4V alloy. Through the experiment, it was found that the surface of the single-track coatings appeared in the depression, but it can be improved by laser track overlapping. With the increase of laser power density, the amount of TiB short fiber was increased, and the distribution of TiB2 and TiB became more uniform from the top to bottom. The micro-hardness of TiB2/TiB coating showed a gradient decreasing trend, and the average micro-hardness of the coatings was two-fold higher than that of the substrate. Due to the strengthening effect of TiB2 particle and TiB short fiber, the wear volume loss of the center of the coating was approximately 30% less than that of the Ti-6Al-4V substrate, and the wear mechanism of the coating was mild fatigue particle detachment.
Properties of ordered titanium templates covered with Au thin films for SERS applications
NASA Astrophysics Data System (ADS)
Grochowska, Katarzyna; Siuzdak, Katarzyna; Sokołowski, Michał; Karczewski, Jakub; Szkoda, Mariusz; Śliwiński, Gerard
2016-12-01
Currently, roughened metal nanostructures are widely studied as highly sensitive Raman scattering substrates that show application potential in biochemistry, food safety or medical diagnostic. In this work the structural properties and the enhancement effect due to surface enhanced Raman scattering (SERS) of highly ordered nano-patterned titanium templates covered with thin (5-20 nm) gold films are reported. The templates are formed by preparation of a dense structure of TiO2 nanotubes on a flat Ti surface (2 × 2 cm2) and their subsequent etching down to the substrate. SEM images reveal the formation of honeycomb nanostructures with the cavity diameter of 80 nm. Due to the strongly inhomogeneous distribution of the electromagnetic field in the vicinity of the Au film discontinuities the measured average enhancement factor (107-108) is markedly higher than observed for bare Ti templates. The enhancement factor and Raman signal intensity can be optimized by adjusting the process conditions and thickness of the deposited Au layer. Results confirm that the obtained structures can be used in surface enhanced sensing.
Methods for modifying monofilaments, bundles of monofilaments, and fibrous structural material
Allen, Charles A.; Argyle, Mark D.; Fox, Robert V.; Ginosar, Daniel M.; Janikowski, Stuart K.; Miller, David L.; Propp, W. Alan; Toth, William J.
2002-12-17
The present invention is related to the modifying of substrates such as monofilaments, bundles of monofilaments, and fibrous structural material with a modifying agent. The modifying agent is suspended or dissolved in a supercritical fluid, near-critical fluid, superheated fluid, superheated liquid, or a liquified gas and is deposited by rapidly altering the pressure in a chamber to deposit the modifying material onto the substrate.
Covalent Functionalization of NiTi Surfaces with Bioactive Peptide Amphiphile Nanofibers
Sargeant, Timothy D.; Rao, Mukti S.; Koh, Chung-Yan
2009-01-01
Surface modification enables the creation of bioactive implants using traditional material substrates without altering the mechanical properties of the bulk material. For applications such as bone plates and stents, it is desirable to modify the surface of metal alloy substrates to facilitate cellular attachment, proliferation, and possibly differentiation. In this work we present a general strategy for altering the surface chemistry of nickel-titanium shape memory alloy (NiTi) in order to covalently attach self-assembled peptide amphiphile (PA) nanofibers with bioactive functions. Bioactivity in the systems studied here includes biological adhesion and proliferation of osteoblast and endothelial cell types. The optimized surface treatment creates a uniform TiO2 layer with low levels of Ni on the NiTi surface, which is subsequently covered with an aminopropylsilane coating using a novel, lower temperature vapor deposition method. This method produces an aminated surface suitable for covalent attachment of PA molecules containing terminal carboxylic acid groups. The functionalized NiTi surfaces have been characterized by X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectroscopy (ToF-SIMS), and atomic force microscopy (AFM). These techniques offer evidence that the treated metal surfaces consist primarily of TiO2 with very little Ni, and also confirm the presence of the aminopropylsilane overlayer. Self-assembled PA nanofibers presenting the biological peptide adhesion sequence Arg-Gly-Asp-Ser are capable of covalently anchoring to the treated substrate, as demonstrated by spectrofluorimetry and AFM. Cell culture and scanning electron microscopy (SEM) demonstrate cellular adhesion, spreading, and proliferation on these functionalized metal surfaces. Furthermore, these experiments demonstrate that covalent attachment is crucial for creating robust PA nanofiber coatings, leading to confluent cell monolayers. PMID:18083225
Wang, Zheng; Sun, Yan; Wang, Dongzhou; Liu, Hong; Boughton, Robert I
2013-01-01
A silver nanoparticle (AgNP)-filled hydrogen titanate nanotube layer was synthesized in situ on a metallic titanium substrate. In the synthesis approach, a layer of sodium titanate nanotubes is first prepared on the titanium surface by using a hydrothermal method. Silver nitrate solution is absorbed into the nanotube channels by immersing a dried nanotube layer in silver nitrate solution. Finally, silver ions are reduced by glucose, leading to the in situ growth of AgNPs in the hydrogen titanate nanotube channels. Long-term silver release and bactericidal experiments demonstrated that the effective silver release and effective antibacterial period of the titanium foil with a AgNP-filled hydrogen titanate nanotube layer on the surface can extend to more than 15 days. This steady and prolonged release characteristic is helpful to promote a long-lasting antibacterial capability for the prevention of severe infection after surgery. A series of antimicrobial and biocompatible tests have shown that the sandwich nanostructure with a low level of silver loading exhibits a bacteriostatic rate as high as 99.99%, while retaining low toxicity for cells and possessing high osteogenic potential. Titanium foil with a AgNP-filled hydrogen titanate nanotube layer on the surface that is fabricated with low-cost surface modification methods is a promising implantable material that will find applications in artificial bones, joints, and dental implants. PMID:23966780
Plasma column and nano-powder generation from solid titanium by localized microwaves in air
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popescu, Simona; Jerby, Eli, E-mail: jerby@eng.tau.ac.il; Meir, Yehuda
2015-07-14
This paper studies the effect of a plasma column ejected from solid titanium by localized microwaves in an ambient air atmosphere. Nanoparticles of titanium dioxide (titania) are found to be directly synthesized in this plasma column maintained by the microwave energy in the cavity. The process is initiated by a hotspot induced by localized microwaves, which melts the titanium substrate locally. The molten hotspot emits ionized titanium vapors continuously into the stable plasma column, which may last for more than a minute duration. The characterization of the dusty plasma obtained is performed in-situ by small-angle X-ray scattering (SAXS), optical spectroscopy,more » and microwave reflection analyses. The deposited titania nanoparticles are structurally and morphologically analyzed by ex-situ optical and scanning-electron microscope observations, and also by X-ray diffraction. Using the Boltzmann plot method combined with the SAXS results, the electron temperature and density in the dusty plasma are estimated as ∼0.4 eV and ∼10{sup 19 }m{sup −3}, respectively. The analysis of the plasma product reveals nanoparticles of titania in crystalline phases of anatase, brookite, and rutile. These are spatially arranged in various spherical, cubic, lamellar, and network forms. Several applications are considered for this process of titania nano-powder production.« less
NASA Astrophysics Data System (ADS)
Mohapatra, A. K.; Nayak, J.
2018-05-01
Titanium dioxide (TiO2) nanorod thin films were deposited on fluorine doped tin oxide coated glass substrates by a single step rapid hydrothermal process. The concentration of the precursor, the temperature of the reaction mixture were optimized in order to enhance the rate of deposition. Unlike the previously reported hydrothermal treatment for 24 - 48 h, the deposition of well aligned titanium dioxide nanorods was achieved in a short time such as 3 - 8 h. The crystal structure of the films were investigated by X-rays diffraction. The morphology of the nanorod films were studied with scanning electron microscopy. The optical properties were studied by photoluminescence spectroscopy.
Structure and optical properties of TiO2 thin films deposited by ALD method
NASA Astrophysics Data System (ADS)
Szindler, Marek; Szindler, Magdalena M.; Boryło, Paulina; Jung, Tymoteusz
2017-12-01
This paper presents the results of study on titanium dioxide thin films prepared by atomic layer deposition method on a silicon substrate. The changes of surface morphology have been observed in topographic images performed with the atomic force microscope (AFM) and scanning electron microscope (SEM). Obtained roughness parameters have been calculated with XEI Park Systems software. Qualitative studies of chemical composition were also performed using the energy dispersive spectrometer (EDS). The structure of titanium dioxide was investigated by X-ray crystallography. A variety of crystalline TiO2 was also confirmed by using the Raman spectrometer. The optical reflection spectra have been measured with UV-Vis spectrophotometry.
Investigation of the SERS Spectra of Hydroquinone Molecule Adsorbed on Titanium Dioxide
NASA Astrophysics Data System (ADS)
Polubotko, A. M.; Chelibanov, V. P.
2018-01-01
The paper analyzes the SERS spectrum of hydroquinone adsorbed on nanoparticles of titanium dioxide (TiO2). It is seen that the enhancement is stronger for a larger mean size of nanoparticles that is in agreement with an electrostatic approximation. In addition, it is found that there are the lines, which are forbidden in usual Raman spectra. There is also an enhancement caused both by the normal and tangential components of the electric field. This result is in agreement with the theory of SERS on semiconductor and dielectric substrates. The discovery of the forbidden lines indicates on the sufficiently large role of the strong quadrupole light-molecule interaction in such a system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samoylenko, Vitaliy V., E-mail: samoylenko.vitaliy@mail.ru; Lenivtseva, Olga G., E-mail: lenivtseva-olga@mail.ru; Polyakov, Igor A., E-mail: status9@mail.ru
In this paper structural investigations and mechanical tests of Ti-Ta-Zr coatings obtained on surfaces of cp-titanium workpieces were carried out. It was found that the coatings had a dendrite structure; investigations at high-power magnifications revealed a platelet structure. An increase of tantalum concentration led to refinement of structural components. The microhardness level of all coatings, excepting a specimen with the maximum tantalum content, was 370 HV. The microhardness of this coating reached 400 HV. The ultimate tensile strength of cladded layers varied from 697 to 947 MPa. Adhesion tests showed that bimetallic composites were characterized by high bond strength of claddedmore » layers to the substrate, which exceeded cp-titanium strength characteristics.« less
NASA Astrophysics Data System (ADS)
Akazawa, Housei
2012-12-01
Adding N2 gas during reactive sputtering of a Ti target prevented the target surface from being severely poisoned by oxygen atoms and sustained a high deposition rate for titanium oxynitride films under metal-mode-like sputtering conditions. With progress in the degree of oxidization, films deposited onto a glass substrate varied from TiO1-xNx having a face-centered cubic (fcc) structure to TiO2-xNx having an anatase structure. Titanium oxynitride films deposited on an Al2O3(0 0 0 1) substrate were epitaxial with major orientations toward the (1 1 1) and (2 0 0) directions for fcc-TiO1-xNx and (1 1 2) for anatase-TiO2-xNx. Intermediately oxidized films between TiO1-xNx and TiO2-xNx were amorphous on the glass substrate but crystallized into a Magneli phase, TinO(N)2n-1, on the Al2O3(0 0 0 1) substrate. Partially substituting oxygen in TiO2 with nitrogen as well as continuously irradiating the growing film surface with a Xe plasma stream preferentially formed anatase rather than rutile. However, the occupation of anion sites with enough oxygen rather than nitrogen was the required condition for anatase crystals to form. The transparent conductive properties of epitaxial TiO2-xNx films on Al2O3(0 0 0 1) were superior to those of microcrystalline films on the glass substrate. Since resistivity and optical transmittance of TiOxNy films vary continuously with changing N2 flow rate, their transparent conductive properties can be controlled more easily than TiOx. Nb5+ ions could be doped as donors in TiO2-xNx anatase crystals.
NASA Astrophysics Data System (ADS)
Han, Inho; Vagaska, Barbora; Joo Park, Bong; Lee, Mi Hee; Jin Lee, Seung; Park, Jong-Chul
2011-06-01
Successful tissue integration of implanted medical devices depends on appropriate initial cellular response. In this study, the effect of helium atmospheric pressure glow discharge (He-APGD) treatment of titanium on selective protein adsorption and the initial attachment processes and focal adhesion formation of osteoprogenitor cells and stem cells were examined. Titanium disks were treated in a self-designed He-APGD system. Initial attachment of MC3T3-E1 mouse pre-osteoblasts and human mesenchymal stem cells (MSCs) was evaluated by MTT assay and plasma membrane staining followed by morphometric analysis. Fibronectin adsorption was investigated by Enzyme-Linked ImmunoSorbant Assay. MSCs cell attachment to treated and non-treated titanium disks coated with different proteins was verified also in serum-free culture. Organization of actin cytoskeleton and focal adhesions was evaluated microscopically. He-APGD treatment effectively modified the titanium surfaces by creating a super-hydrophilic surface, which promoted selectively higher adsorption of fibronectin, a protein of critical importance for cell/biomaterial interaction. In two different types of cells, the He-APGD treatment enhanced the number of attaching cells as well as their attachment area. Moreover, cells had higher organization of actin cytoskeleton and focal adhesions. Faster acceptance of the material by the progenitor cells in the early phases of tissue integration after the implantation may significantly reduce the overall healing time; therefore, titanium treatment with He-APGD seems to be an effective method of surface modification of titanium for improving its tissue inductive properties.
Harzer, W; Schröter, A; Gedrange, T; Muschter, F
2001-08-01
Titanium brackets are used in orthodontic patients with an allergy to nickel and other specific substances. In recent studies, the corrosive properties of fluoride-containing toothpastes with different pH values were investigated. The present in vivo study tested how the surfaces of titanium brackets react to the corrosive influence of acidic fluoride-containing toothpaste during orthodontic treatment. Molar bands were placed on 18 orthodontic patients. In these same patients, titanium brackets were bonded on the left quadrants and stainless steel brackets on the right quadrants of the upper and lower arches. Fifteen patients used Gel Kam containing soluble tin fluoride (pH 3.2), whereas 3 used fluoride-free toothpaste. The brackets were removed for evaluation by light microscopy and scanning microscopy 5.5 to 7.0 months and 7.5 to 17 months after bonding. The quality and quantity of elements present were measured by scanning microscopy. Macroscopic evaluation showed the matte gray color of titanium brackets dominating over the silver gleam of the steel brackets. The plaque accumulation on titanium brackets is high because of the very rough surface. Pitting and crevices were observed in only 3 of the 165 brackets tested. The present in vivo investigation confirms the results of in vitro studies, but the changes are so minor that titanium brackets can safely be used for up to 18 months. Wing surfaces should be improved by modifying the manufacturing process.
Shear strength of a three-dimensional capillary-porous titanium coating for biomedical applications
NASA Astrophysics Data System (ADS)
Kalita, V. I.; Komlev, D. I.; Radyuk, A. A.; Ivannikov, A. Yu; Alpatov, A. V.; Komlev, V. S.; Mamonov, V. I.; Sevostyanov, M. A.; Baikin, A. S.
2018-04-01
The effect of pretreatment and plasma preheating of Ti-substrate on shear strength of three-dimensional capillary porous Ti-coating was studied. After sandblasting the shear strength of the plasma sprayed coating was 200 ± 2 MPa, and after additional matting it was 68 ± 4 MPa. The use of plasma preheating of the substrates for 9 seconds decreased difference between values of the shear strength to 249 ± 17 MPa and 229 ± 16 MPa, respectively. After plasma spraying the microhardness of the surface layer of the substrate was 4.34 ± 0.35 GPa, the microhardness of the boundary between the coating and the substrate was 8.08 ± 0.45 GPa, and the microhardness of the coating was 3.48 ± 0.25 GPa. High shear strength of the coating was attributed to the activation of the substrate by means of plasma preheating and hardening of the boundary between the coating and the substrate by oxides and nitrides.
Physical and rheological properties of Titanium Dioxide modified asphalt
NASA Astrophysics Data System (ADS)
Buhari, Rosnawati; Ezree Abdullah, Mohd; Khairul Ahmad, Mohd; Chong, Ai Ling; Haini, Rosli; Khatijah Abu Bakar, Siti
2018-03-01
Titanium Dioxide (TiO2) has been known as a useful photocatalytic material that is attributed to the several characteristics includes high photocatalytic activity compared with other metal oxide photocatalysts, compatible with traditional construction materials without changing any original performance. This study investigates the physical and rheological properties of modified asphalt with TiO2. Five samples of asphalt with different concentration of TiO2 were studied, namely asphalt 2%, 4%, 6% 8% and 10% TiO2. The tests includes are penetration, softening point, ductility, rotational viscosity and dynamic shear rheometer (DSR) test. From the results of this study, it is noted that addition of TiO2 has significant effect on the physical properties of asphalt. The viscosity tests revealed that asphalt 10% TiO2 has good workability among with reducing approximately 15°C compared to base asphalt. Based on the results from DSR measurements, asphalt 10% TiO2 has reduced temperature susceptibility and increase stiffness and elastic behaviour in comparison to base asphalt. As a result, TiO2 can be considered to be an additive to modify the properties of asphalt.
Fabrication of the Ti5Si3/Ti composite inoculants and its refining mechanism on pure titanium
NASA Astrophysics Data System (ADS)
Li, Nuo; Cui, Chunxiang; Liu, Shaungjin; Zhao, Long; Liu, Shuiqing
2017-03-01
The in situ Ti5Si3/Ti inoculants were successfully prepared by vacuum arc-melting and melt-spinning method. An efficient route by adding a small quantity of Ti5Si3/Ti inoculants to Ti melt has been first proposed to modify the coarse grains of as cast microstructure of pure titanium in this paper. It was found that the microstructure of ribbon inoculants was cellular structure that composed of Ti5Si3 and α-Ti phases. The grain refining effect of the inoculants was significantly improved with the adding ratio range from 0.2% to 0.5% in weight. With the increase of addition amount of inoculants on Ti melt, the tensile strength, yield strength and microhardness of pure titanium are significantly improved except elongation. The excellent grain refining effect can be attributed to the heterogeneous nucleation of the titanium grain on the precipitated Ti5Si3 phases in the Si-rich regions and the constitutional supercooling of Si in the Si-poverty regions. It is suggested that the in situ Ti5Si3/Ti inoculants is a promising inoculants for titanium alloys.
Huan, Zhiguang; Fratila-Apachitei, Lidy E; Apachitei, Iulian; Duszczyk, Jurek
2013-07-01
In this study, a porous oxide layer was formed on the surface of nickel-titanium alloy (NiTi) by plasma electrolytic oxidation (PEO) with the aim to produce a polymer-free drug carrier for drug eluting stent (DES) applications. The oxidation was performed galvanostatically in concentrated phosphoric acid electrolyte at low temperature. It was found that the response of NiTi substrate during the PEO process was different from that of bulk Ti, since the presence of large amount of Ni delayed the initial formation of a compact oxide layer that is essential for the PEO to take place. Under optimized PEO conditions, the resultant surface showed porosity, pore density and oxide layer thickness of 14.11%, 2.40 × 10⁵ pores/mm² and 0.8 μm, respectively. It was additionally noted that surface roughness after PEO did not significantly increase as compared with that of original NiTi substrate and the EDS analyses revealed a decrease in Ni/Ti ratio on the surface after PEO. The cross-section morphology showed no discontinuity between the PEO layer and the NiTi substrate. Furthermore, wettability and surface free energy of the NiTi substrate increased significantly after PEO treatment. The PEO process could be successfully translated to NiTi stent configuration proving for the first time its feasibility for such a medical device and offering potential for development of alternative, polymer-free drug carriers for NiTi DES. Copyright © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Palanivelu, R.; Ruban Kumar, A.
2014-10-01
Among the various coating techniques, plasma spray coating is an efficient technique to protect the metal surface from the various surface problems like wear and corrosion. The aim of this present work is to design and produce a bilayer coating on the non- toxic commercially pure titanium (denoted as CP-Ti) implant substrate in order to improve the biocompatibility and surface properties. To achieve that, Al2O3-13 wt%TiO2 (AT13) and hydroxyapatite (HAP) were coated on CP-Ti implant substrate using plasma spray coating technique. Further, the coated substrates were subjected to various characterization techniques. The crystallite size of coated HAP and its morphological studies were carried out using X-ray diffractometer (XRD) and scanning electron microscopy (SEM) respectively. The wear test on the bilayer (AT13/HAP) coated CP-Ti implant surface was conducted using ball-on-disc tester under SBF environment at 37 °C, in order to determine the wear rate and the coefficient of friction. The adhesion strength of the bilayer coated surface was evaluated by micro scratch tester under the ramp load conditions with load range of 14-20 N. The above said studies were repeated on the single layer coated HAP and AT13 implant surfaces. The results reveal that the bilayer (AT13/HAP) coated CP-Ti surface has the improved wear rate, coefficient of friction in compared to single layer coated HAP and AT13 surfaces.
Evaluating Zeolite-Modified Sensors: towards a faster set of chemical sensors
NASA Astrophysics Data System (ADS)
Berna, A. Z.; Vergara, A.; Trincavelli, M.; Huerta, R.; Afonja, A.; Parkin, I. P.; Binions, R.; Trowell, S.
2011-09-01
The responses of zeolite-modified sensors, prepared by screen printing layers of chromium titanium oxide (CTO), were compared to unmodified tin oxide sensors using amplitude and transient responses. For transient responses we used a family of features, derived from the exponential moving average (EMA), to characterize chemo-resistive responses. All sensors were tested simultaneously against 20 individual volatile compounds from four chemical groups. The responses of the two types of sensors showed some independence. The zeolite-modified CTO sensors discriminated compounds better using either amplitude response or EMA features and CTO-modified sensors also responded three times faster.
Karthikeyan, Rengasamy; Krishnaraj, Navanietha; Selvam, Ammaiyappan; Wong, Jonathan Woon-Chung; Lee, Patrick K H; Leung, Michael K H; Berchmans, Sheela
2016-10-01
This study explores the use of materials such as chitosan (chit), polyaniline (PANI) and titanium carbide (TC) as anode materials for microbial fuel cells. Nickel foam (NF) was used as the base anode substrate. Four different types of anodes (NF, NF/PANI, NF/PANI/TC, NF/PANI/TC/Chit) are thus prepared and used in batch type microbial fuel cells operated with a mixed consortium of Acetobacter aceti and Gluconobacter roseus as the biocatalysts and bad wine as a feedstock. A maximum power density of 18.8Wm(-3) (≈2.3 times higher than NF) was obtained in the case of the anode modified with a composite of PANI/TC/Chit. The MFCs running under a constant external resistance of (50Ω) yielded 14.7% coulombic efficiency with a maximum chemical oxygen demand (COD) removal of 87-93%. The overall results suggest that the catalytic materials embedded in the chitosan matrix show the best performance and have potentials for further development. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ma, Jin-fang; Wang, Guang-wei; Zhang, Jian-liang; Li, Xin-yu; Liu, Zheng-jian; Jiao, Ke-xin; Guo, Jian
2017-05-01
In this work, the reduction behavior of vanadium-titanium sinters was studied under five different sets of conditions of pulverized coal injection with oxygen enrichment. The modified random pore model was established to analyze the reduction kinetics. The results show that the reduction rate of sinters was accelerated by an increase of CO and H2 contents. Meanwhile, with the increase in CO and H2 contents, the increasing range of the medium reduction index (MRE) of sinters decreased. The increasing oxygen enrichment ratio played a diminishing role in improving the reduction behavior of the sinters. The reducing process kinetic parameters were solved using the modified random role model. The results indicated that, with increasing oxygen enrichment, the contents of CO and H2 in the reducing gas increased. The reduction activation energy of the sinters decreased to between 20.4 and 23.2 kJ/mol.
Sepahvandi, Azadeh; Moztarzadeh, Fathollah; Mozafari, Masoud; Ghaffari, Maryam; Raee, Nahid
2011-09-01
Photoluminescence (PL) property is particularly important in the characterization of materials that contain significant proportions of noncrystalline components, multiple phases, or low concentrations of mineral phases. In this research, the ability of biomimetic bone-like apatite deposition on the surface of titanium alloy (Ti6Al4V) substrates in simulated body fluid (SBF) right after alkaline-treatment and subsequent heat-treatment was studied by the inherent luminescence properties of apatite. For this purpose, the metallic substrates were treated in 5 M NaOH solution at 60 °C. Subsequently, the substrates were heat-treated at 600 °C for 1 h for consolidation of the sodium titanate hydrogel layer. Then, they were soaked in SBF for different periods of time. Finally, the possibility to use of PL monitoring as an effective method and early detection tool is discussed. According to the obtained results, it was concluded that the PL emission peak did not have any significant shift to the shorter or higher wavelengths, and the PL intensity increased as the exposure time increased. This research proved that the observed inherent PL of the newly formed apatite coatings might be of specific interest for histological probing and bone remodelling monitoring. Copyright © 2011 Elsevier B.V. All rights reserved.