Comparative Analysis of Aerosol Retrievals from MODIS, OMI and MISR Over Sahara Region
NASA Technical Reports Server (NTRS)
Lyapustin, A.; Wang, Y.; Hsu, C.; Terres, O.; Leptoukh, G.; Kalashnikova, O.; Korkin, S.
2011-01-01
MODIS is a wide field-of-view sensor providing daily global observations of the Earth. Currently, global MODIS aerosol retrievals over land are performed with the main Dark Target algorithm complimented with the Deep Blue (DB) Algorithm over bright deserts. The Dark Target algorithm relies on surface parameterization which relates reflectance in MODIS visible bands with the 2.1 micrometer region, whereas the Deep Blue algorithm uses an ancillary angular distribution model of surface reflectance developed from the time series of clear-sky MODIS observations. Recently, a new Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm has been developed for MODIS. MAIAC uses a time series and an image based processing to perform simultaneous retrievals of aerosol properties and surface bidirectional reflectance. It is a generic algorithm which works over both dark vegetative surfaces and bright deserts and performs retrievals at 1 km resolution. In this work, we will provide a comparative analysis of DB, MAIAC, MISR and OMI aerosol products over bright deserts of northern Africa.
NASA Astrophysics Data System (ADS)
Hsu, N. Y. C.; Sayer, A. M.; Lee, J.; Kim, W. V.
2017-12-01
The impacts of natural and anthropogenic sources of air pollution on climate and human health have continued to gain attention from the scientific community. In order to facilitate these effects, high quality consistent long-term global aerosol data records from satellites are essential. Several EOS-era instruments (e.g., SeaWiFS, MODIS, and MISR) are able to provide such information with a high degree of fidelity. However, with the aging MODIS sensors and the launch of the VIIRS instrument on Suomi NPP in late 2011, the continuation of long-term aerosol data records suitable for climate studies from MODIS to VIIRS is needed urgently. Recently, we have successfully modified our MODIS Deep Blue algorithm to process the VIIRS data. Extensive works were performed in refining the surface reflectance determination scheme to account for the wavelength differences between MODIS and VIIRS. Better aerosol models (including non-spherical dust) are also now implemented in our VIIRS algorithm compared to the MODIS C6 algorithm. We will show the global (land and ocean) distributions of various aerosol products from Version 1 of the VIIRS Deep Blue data set. The preliminary validation results of these new VIIRS Deep Blue aerosol products using data from AERONET sunphotometers over land and ocean will be discussed. We will also compare the monthly averaged Deep Blue aerosol optical depth (AOD) from VIIRS with the MODIS C6 products to investigate if any systematic biases may exist between MODIS C6 and VIIRS AOD. The Version 1 VIIRS Deep Blue aerosol products are currently scheduled to be released to the public in 2018.
Creating a consistent dark-target aerosol optical depth record from MODIS and VIIRS
NASA Astrophysics Data System (ADS)
Levy, R. C.; Mattoo, S.; Munchak, L. A.; Patadia, F.; Holz, R.
2014-12-01
To answer fundamental questions about our changing climate, we must quantify how aerosols are changing over time. This is a global question that requires regional characterization, because in some places aerosols are increasing and in others they are decreasing. Although NASA's Moderate resolution Imaging Spectrometer (MODIS) sensors have provided quantitative information about global aerosol optical depth (AOD) for more than a decade, the creation of an aerosol climate data record (CDR) requires consistent multi-decadal data. With the Visible and Infrared Imaging Radiometer Suite (VIIRS) aboard Suomi-NPP, there is potential to continue the MODIS aerosol time series. Yet, since the operational VIIRS aerosol product is produced by a different algorithm, it is not suitable to continue MODIS to create an aerosol CDR. Therefore, we have applied the MODIS Dark-target (DT) algorithm to VIIRS observations, taking into account the slight differences in wavelengths, resolutions and geometries between the two sensors. More specifically, we applied the MODIS DT algorithm to a dataset known as the Intermediate File Format (IFF), created by the University of Wisconsin. The IFF is produced for both MODIS and VIIRS, with the idea that a single (MODIS-like or ML) algorithm can be run either dataset, which can in turn be compared to the MODIS Collection 6 (M6) retrieval that is run on standard MODIS data. After minimizing or characterizing remaining differences between ML on MODIS-IFF (or ML-M) and M6, we have performed apples-to-apples comparison between ML-M and ML on VIIRS IFF (ML-V). Examples of these comparisons include time series of monthly global mean, monthly and seasonal global maps at 1° resolution, and collocations as compared to AERONET. We concentrate on the overlapping period January 2012 through June 2014, and discuss some of the remaining discrepancies between the ML-V and ML-M datasets.
NASA Astrophysics Data System (ADS)
Wu, Yerong; de Graaf, Martin; Menenti, Massimo
2017-08-01
Global quantitative aerosol information has been derived from MODerate Resolution Imaging SpectroRadiometer (MODIS) observations for decades since early 2000 and widely used for air quality and climate change research. However, the operational MODIS Aerosol Optical Depth (AOD) products Collection 6 (C6) can still be biased, because of uncertainty in assumed aerosol optical properties and aerosol vertical distribution. This study investigates the impact of aerosol vertical distribution on the AOD retrieval. We developed a new algorithm by considering dynamic vertical profiles, which is an adaptation of MODIS C6 Dark Target (C6_DT) algorithm over land. The new algorithm makes use of the aerosol vertical profile extracted from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) measurements to generate an accurate top of the atmosphere (TOA) reflectance for the AOD retrieval, where the profile is assumed to be a single layer and represented as a Gaussian function with the mean height as single variable. To test the impact, a comparison was made between MODIS DT and Aerosol Robotic Network (AERONET) AOD, over dust and smoke regions. The results show that the aerosol vertical distribution has a strong impact on the AOD retrieval. The assumed aerosol layers close to the ground can negatively bias the retrievals in C6_DT. Regarding the evaluated smoke and dust layers, the new algorithm can improve the retrieval by reducing the negative biases by 3-5%.
NASA Technical Reports Server (NTRS)
Anderson, J. C.; Wang, J.; Zeng, J.; Petrenko, M.; Leptoukh, G. G.; Ichoku, C.
2012-01-01
Coastal regions around the globe are a major source for anthropogenic aerosols in the atmosphere, but the underlying surface characteristics are not favorable for the Moderate Resolution Imaging Spectroradiometer (MODIS) algorithms designed for retrieval of aerosols over dark land or open-ocean surfaces. Using data collected from 62 coastal stations worldwide from the Aerosol Robotic Network (AERONET) from approximately 2002-2010, accuracy assessments are made for coastal aerosol optical depth (AOD) retrieved from MODIS aboard Aqua satellite. It is found that coastal AODs (at 550 nm) characterized respectively by the MODIS Dark Land (hereafter Land) surface algorithm, the Open-Ocean (hereafter Ocean) algorithm, and AERONET all exhibit a log-normal distribution. After filtering by quality flags, the MODIS AODs respectively retrieved from the Land and Ocean algorithms are highly correlated with AERONET (with R(sup 2) is approximately equal to 0.8), but only the Land algorithm AODs fall within the expected error envelope greater than 66% of the time. Furthermore, the MODIS AODs from the Land algorithm, Ocean algorithm, and combined Land and Ocean product show statistically significant discrepancies from their respective counterparts from AERONET in terms of mean, probability density function, and cumulative density function, which suggest a need for future improvement in retrieval algorithms. Without filtering with quality flag, the MODIS Land and Ocean AOD dataset can be degraded by 30-50% in terms of mean bias. Overall, the MODIS Ocean algorithm overestimates the AERONET coastal AOD by 0.021 for AOD less than 0.25 and underestimates it by 0.029 for AOD greater than 0.25. This dichotomy is shown to be related to the ocean surface wind speed and cloud contamination effects on the satellite aerosol retrieval. The Modern Era Retrospective-Analysis for Research and Applications (MERRA) reveals that wind speeds over the global coastal region 25 (with a mean and median value of 2.94 meters per second and 2.66 meters per second, respectively) are often slower than 6 meters per second assumed in the MODIS Ocean algorithm. As a result of high correlation (R(sup 2) greater than 0.98) between the bias in binned MODIS AOD and the corresponding binned wind speed over the coastal sea surface, an empirical scheme for correcting the bias of AOD retrieved from the MODIS Ocean algorithm is formulated and is shown to be effective over the majority of the coastal AERONET stations, and hence can be used in future analysis of AOD trend and MODIS AOD data assimilation.
Assessment of diverse algorithms applied on MODIS Aqua and Terra data over land surfaces in Europe
NASA Astrophysics Data System (ADS)
Glantz, P.; Tesche, M.
2012-04-01
Beside an increase of greenhouse gases (e.g., carbon dioxide, methane and nitrous oxide) human activities (for instance fossil fuel and biomass burning) have lead to perturbation of the atmospheric content of aerosol particles. Aerosols exhibits high spatial and temporal variability in the atmosphere. Therefore, aerosol investigation for climate research and environmental control require the identification of source regions, their strength and aerosol type, which can be retrieved based on space-borne observations. The aim of the present study is to validate and evaluate AOT (aerosol optical thickness) and Ångström exponent, obtained with the SAER (Satellite AErosol Retrieval) algorithm for MODIS (MODerate resolution Imaging Spectroradiometer) Aqua and Terra calibrated level 1 data (1 km horizontal resolution at ground), against AERONET (AErosol RObotic NETwork) observations and MODIS Collection 5 (c005) standard product retrievals (10 km), respectively, over land surfaces in Europe for the seasons; early spring (period 1), mid spring (period 2) and summer (period 3). For several of the cases analyzed here the Aqua and Terra satellites passed the investigation area twice during a day. Thus, beside a variation in the sun elevation the satellite aerosol retrievals have also on a daily basis been performed with a significant variation in the satellite-viewing geometry. An inter-comparison of the two algorithms has also been performed. The validation with AERONET shows that the MODIS c005 retrieved AOT is, for the wavelengths 0.469 and 0.500 nm, on the whole within the expected uncertainty for one standard deviation of the MODIS retrievals over Europe (Δτ = ±0.05 ± 0.15τ). The SAER estimated AOT for the wavelength 0.443 nm also agree reasonable well with AERONET. Thus, the majority of the SAER AOT values are within the MODIS expected uncertainty range, although somewhat larger RMSD (root mean square deviation) occurs compared to the results obtained with the MODIS c005 algorithm. The discrepancy between SAERand AERONET AOT is, however, substantially larger for the wavelength 488 nm, which means that several of the AOT values are without the MODIS expected uncertainty range. Both algorithms are unable to estimate Ångström exponent accurately, although the MODIS c005 algorithm performs a better job. Based on the inter-comparison of the SAER and MODIS c005 algorithms it was found here that the former estimation of AOT is for values up to 1on the whole within the expected uncertainties for one standard deviation of the MODIS retrievals, considering both Aqua and Terra and periods 1 and 3. The latter also occurs for Aqua and period 2, while then for AOT values lower than 0.5. The present algorithms were, beside aerosols emitted from clean sources and continental sources in Europe, also applied with favor on aerosol particles transported from agricultural fires in Russia and Ukraine. The latter events were associated with high aerosol loadings, although probably with similar single scattering albedo as the days classified as clean. We also present observations performed with space borne and ground-based lidars in the area investigated. From the latter platforms the vertical distribution of aerosol extinction in the atmosphere can be measured. This study suggests that the present satellite retrievals of AOT, particularly obtained with the MODIS c005 algorithm, will, in combination with the lidar measurements, be very useful in validation of regional and climate models over Europe.
NASA Astrophysics Data System (ADS)
Levy, R. C.; Munchak, L. A.; Mattoo, S.; Patadia, F.; Remer, L. A.; Holz, R. E.
2015-10-01
To answer fundamental questions about aerosols in our changing climate, we must quantify both the current state of aerosols and how they are changing. Although NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) sensors have provided quantitative information about global aerosol optical depth (AOD) for more than a decade, this period is still too short to create an aerosol climate data record (CDR). The Visible Infrared Imaging Radiometer Suite (VIIRS) was launched on the Suomi-NPP satellite in late 2011, with additional copies planned for future satellites. Can the MODIS aerosol data record be continued with VIIRS to create a consistent CDR? When compared to ground-based AERONET data, the VIIRS Environmental Data Record (V_EDR) has similar validation statistics as the MODIS Collection 6 (M_C6) product. However, the V_EDR and M_C6 are offset in regards to global AOD magnitudes, and tend to provide different maps of 0.55 μm AOD and 0.55/0.86 μm-based Ångström Exponent (AE). One reason is that the retrieval algorithms are different. Using the Intermediate File Format (IFF) for both MODIS and VIIRS data, we have tested whether we can apply a single MODIS-like (ML) dark-target algorithm on both sensors that leads to product convergence. Except for catering the radiative transfer and aerosol lookup tables to each sensor's specific wavelength bands, the ML algorithm is the same for both. We run the ML algorithm on both sensors between March 2012 and May 2014, and compare monthly mean AOD time series with each other and with M_C6 and V_EDR products. Focusing on the March-April-May (MAM) 2013 period, we compared additional statistics that include global and gridded 1° × 1° AOD and AE, histograms, sampling frequencies, and collocations with ground-based AERONET. Over land, use of the ML algorithm clearly reduces the differences between the MODIS and VIIRS-based AOD. However, although global offsets are near zero, some regional biases remain, especially in cloud fields and over brighter surface targets. Over ocean, use of the ML algorithm actually increases the offset between VIIRS and MODIS-based AOD (to ~ 0.025), while reducing the differences between AE. We characterize algorithm retrievability through statistics of retrieval fraction. In spite of differences between retrieved AOD magnitudes, the ML algorithm will lead to similar decisions about "whether to retrieve" on each sensor. Finally, we discuss how issues of calibration, as well as instrument spatial resolution may be contributing to the statistics and the ability to create a consistent MODIS → VIIRS aerosol CDR.
NASA Astrophysics Data System (ADS)
Levy, R. C.; Munchak, L. A.; Mattoo, S.; Patadia, F.; Remer, L. A.; Holz, R. E.
2015-07-01
To answer fundamental questions about aerosols in our changing climate, we must quantify both the current state of aerosols and how they are changing. Although NASA's Moderate resolution Imaging Spectroradiometer (MODIS) sensors have provided quantitative information about global aerosol optical depth (AOD) for more than a decade, this period is still too short to create an aerosol climate data record (CDR). The Visible Infrared Imaging Radiometer Suite (VIIRS) was launched on the Suomi-NPP satellite in late 2011, with additional copies planned for future satellites. Can the MODIS aerosol data record be continued with VIIRS to create a consistent CDR? When compared to ground-based AERONET data, the VIIRS Environmental Data Record (V_EDR) has similar validation statistics as the MODIS Collection 6 (M_C6) product. However, the V_EDR and M_C6 are offset in regards to global AOD magnitudes, and tend to provide different maps of 0.55 μm AOD and 0.55/0.86 μm-based Ångstrom Exponent (AE). One reason is that the retrieval algorithms are different. Using the Intermediate File Format (IFF) for both MODIS and VIIRS data, we have tested whether we can apply a single MODIS-like (ML) dark-target algorithm on both sensors that leads to product convergence. Except for catering the radiative transfer and aerosol lookup tables to each sensor's specific wavelength bands, the ML algorithm is the same for both. We run the ML algorithm on both sensors between March 2012 and May 2014, and compare monthly mean AOD time series with each other and with M_C6 and V_EDR products. Focusing on the March-April-May (MAM) 2013 period, we compared additional statistics that include global and gridded 1° × 1° AOD and AE, histograms, sampling frequencies, and collocations with ground-based AERONET. Over land, use of the ML algorithm clearly reduces the differences between the MODIS and VIIRS-based AOD. However, although global offsets are near zero, some regional biases remain, especially in cloud fields and over brighter surface targets. Over ocean, use of the ML algorithm actually increases the offset between VIIRS and MODIS-based AOD (to ∼ 0.025), while reducing the differences between AE. We characterize algorithm retrievibility through statistics of retrieval fraction. In spite of differences between retrieved AOD magnitudes, the ML algorithm will lead to similar decisions about "whether to retrieve" on each sensor. Finally, we discuss how issues of calibration, as well as instrument spatial resolution may be contributing to the statistics and the ability to create a consistent MODIS → VIIRS aerosol CDR.
MISR Aerosol Product Attributes and Statistical Comparisons with MODIS
NASA Technical Reports Server (NTRS)
Kahn, Ralph A.; Nelson, David L.; Garay, Michael J.; Levy, Robert C.; Bull, Michael A.; Diner, David J.; Martonchik, John V.; Paradise, Susan R.; Hansen, Earl G.; Remer, Lorraine A.
2009-01-01
In this paper, Multi-angle Imaging SpectroRadiometer (MISR) aerosol product attributes are described, including geometry and algorithm performance flags. Actual retrieval coverage is mapped and explained in detail using representative global monthly data. Statistical comparisons are made with coincident aerosol optical depth (AOD) and Angstrom exponent (ANG) retrieval results from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument. The relationship between these results and the ones previously obtained for MISR and MODIS individually, based on comparisons with coincident ground-truth observations, is established. For the data examined, MISR and MODIS each obtain successful aerosol retrievals about 15% of the time, and coincident MISR-MODIS aerosol retrievals are obtained for about 6%-7% of the total overlap region. Cloud avoidance, glint and oblique-Sun exclusions, and other algorithm physical limitations account for these results. For both MISR and MODIS, successful retrievals are obtained for over 75% of locations where attempts are made. Where coincident AOD retrievals are obtained over ocean, the MISR-MODIS correlation coefficient is about 0.9; over land, the correlation coefficient is about 0.7. Differences are traced to specific known algorithm issues or conditions. Over-ocean ANG comparisons yield a correlation of 0.67, showing consistency in distinguishing aerosol air masses dominated by coarse-mode versus fine-mode particles. Sampling considerations imply that care must be taken when assessing monthly global aerosol direct radiative forcing and AOD trends with these products, but they can be used directly for many other applications, such as regional AOD gradient and aerosol air mass type mapping and aerosol transport model validation. Users are urged to take seriously the published product data-quality statements.
The Time Series Technique for Aerosol Retrievals over Land from MODIS: Algorithm MAIAC
NASA Technical Reports Server (NTRS)
Lyapustin, Alexei; Wang, Yujie
2008-01-01
Atmospheric aerosols interact with sun light by scattering and absorbing radiation. By changing irradiance of the Earth surface, modifying cloud fractional cover and microphysical properties and a number of other mechanisms, they affect the energy balance, hydrological cycle, and planetary climate [IPCC, 2007]. In many world regions there is a growing impact of aerosols on air quality and human health. The Earth Observing System [NASA, 1999] initiated high quality global Earth observations and operational aerosol retrievals over land. With the wide swath (2300 km) of MODIS instrument, the MODIS Dark Target algorithm [Kaufman et al., 1997; Remer et al., 2005; Levy et al., 2007] currently complemented with the Deep Blue method [Hsu et al., 2004] provides daily global view of planetary atmospheric aerosol. The MISR algorithm [Martonchik et al., 1998; Diner et al., 2005] makes high quality aerosol retrievals in 300 km swaths covering the globe in 8 days. With MODIS aerosol program being very successful, there are still several unresolved issues in the retrieval algorithms. The current processing is pixel-based and relies on a single-orbit data. Such an approach produces a single measurement for every pixel characterized by two main unknowns, aerosol optical thickness (AOT) and surface reflectance (SR). This lack of information constitutes a fundamental problem of the remote sensing which cannot be resolved without a priori information. For example, MODIS Dark Target algorithm makes spectral assumptions about surface reflectance, whereas the Deep Blue method uses ancillary global database of surface reflectance composed from minimal monthly measurements with Rayleigh correction. Both algorithms use Lambertian surface model. The surface-related assumptions in the aerosol retrievals may affect subsequent atmospheric correction in unintended way. For example, the Dark Target algorithm uses an empirical relationship to predict SR in the Blue (B3) and Red (B1) bands from the 2.1 m channel (B7) for the purpose of aerosol retrieval. Obviously, the subsequent atmospheric correction will produce the same SR in the red and blue bands as predicted, i.e. an empirical function of 2.1. In other words, the spectral, spatial and temporal variability of surface reflectance in the Blue and Red bands appears borrowed from band B7. This may have certain implications for the vegetation and global carbon analysis because the chlorophyll-sensing bands B1, B3 are effectively substituted in terms of variability by band B7, which is sensitive to the plant liquid water. This chapter describes a new recently developed generic aerosol-surface retrieval algorithm for MODIS. The Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm simultaneously retrieves AOT and surface bi-directional reflection factor (BRF) using the time series of MODIS measurements.
A New, More Physically Based Algorithm, for Retrieving Aerosol Properties over Land from MODIS
NASA Technical Reports Server (NTRS)
Levy, Robert C.; Kaufman, Yoram J.; Remer, Lorraine A.; Mattoo, Shana
2004-01-01
The MOD Imaging Spectrometer (MODIS) has been successfully retrieving aerosol properties, beginning in early 2000 from Terra and from mid 2002 from Aqua. Over land, the retrieval algorithm makes use of three MODIS channels, in the blue, red and infrared wavelengths. As part of the validation exercises, retrieved spectral aerosol optical thickness (AOT) has been compared via scatterplots against spectral AOT measured by the global Aerosol Robotic NETwork (AERONET). On one hand, global and long term validation looks promising, with two-thirds (average plus and minus one standard deviation) of all points falling between published expected error bars. On the other hand, regression of these points shows a positive y-offset and a slope less than 1.0. For individual regions, such as along the U.S. East Coast, the offset and slope are even worse. Here, we introduce an overhaul of the algorithm for retrieving aerosol properties over land. Some well-known weaknesses in the current aerosol retrieval from MODIS include: a) rigid assumptions about the underlying surface reflectance, b) limited aerosol models to choose from, c) simplified (scalar) radiative transfer (RT) calculations used to simulate satellite observations, and d) assumption that aerosol is transparent in the infrared channel. The new algorithm attempts to address all four problems: a) The new algorithm will include surface type information, instead of fixed ratios of the reflectance in the visible channels to the mid-IR reflectance. b) It will include updated aerosol optical properties to reflect the growing aerosol retrieved from eight-plus years of AERONE". operation. c) The effects of polarization will be including using vector RT calculations. d) Most importantly, the new algorithm does not assume that aerosol is transparent in the infrared channel. It will be an inversion of reflectance observed in the three channels (blue, red, and infrared), rather than iterative single channel retrievals. Thus, this new formulation of the MODIS aerosol retrieval over land includes more physically based surface, aerosol and radiative transfer with fewer potentially erroneous assumptions.
Validation of MODIS Aerosol Retrieval Over Ocean
NASA Technical Reports Server (NTRS)
Remer, Lorraine A.; Tanre, Didier; Kaufman, Yoram J.; Ichoku, Charles; Mattoo, Shana; Levy, Robert; Chu, D. Allen; Holben, Brent N.; Dubovik, Oleg; Ahmad, Ziauddin;
2001-01-01
The MODerate resolution Imaging Spectroradiometer (MODIS) algorithm for determining aerosol characteristics over ocean is performing with remarkable accuracy. A two-month data set of MODIS retrievals co-located with observations from the AErosol RObotic NETwork (AERONET) ground-based sunphotometer network provides the necessary validation. Spectral radiation measured by MODIS (in the range 550 - 2100 nm) is used to retrieve the aerosol optical thickness, effective particle radius and ratio between the submicron and micron size particles. MODIS-retrieved aerosol optical thickness at 660 nm and 870 nm fall within the expected uncertainty, with the ensemble average at 660 nm differing by only 2% from the AERONET observations and having virtually no offset. MODIS retrievals of aerosol effective radius agree with AERONET retrievals to within +/- 0.10 micrometers, while MODIS-derived ratios between large and small mode aerosol show definite correlation with ratios derived from AERONET data.
MODIS Retrieval of Dust Aerosol
NASA Technical Reports Server (NTRS)
Remer, Lorraine A.; Kaufman, Yoram J.; Tanre, Didier
2003-01-01
The MODerate resolution Imaging Spectroradiometer (MODIS) currently aboard both the Terra and Aqua satellites produces a suite of products designed to characterize global aerosol distribution, optical thickness and particle size. Never before has a space-borne instrument been able to provide such detailed information, operationally, on a nearly global basis every day. The three years of Terra-MODIS data have been validated by comparing with co-located AERONET observations of aerosol optical thickness and derivations of aerosol size parameters. Some 8000 comparison points located at 133 AERONET sites around the globe show that the MODIS aerosol optical thickness retrievals are accurate to within the pre-launch expectations. However, the validation in regions dominated by desert dust is less accurate than in regions dominated by fine mode aerosol or background marine sea salt. The discrepancy is most apparent in retrievals of aerosol size parameters over ocean. In dust situations, the MODIS algorithm tends to under predict particle size because the reflectances at top of atmosphere measured by MODIS exhibit the stronger spectral signature expected by smaller particles. This pattern is consistent with the angular and spectral signature of non-spherical particles. All possible aerosol models in the MODIS Look-Up Tables were constructed from Mie theory, assuming a spherical shape. Using a combination of MODIS and AERONET observations, in regimes dominated by desert dust, we construct phase functions, empirically, with no assumption of particle shape. These new phase functions are introduced into the MODIS algorithm, in lieu of the original options for large dust-like particles. The results will be analyzed and examined.
The Global Aerosol System As Viewed By MODIS Today
NASA Technical Reports Server (NTRS)
Remer, Lorraine
2008-01-01
The MODerate resolution Imaging Spectroradiometer (MODIS) aerosol algorithms have been working steadily since early 2000 to transform the MODIS-measured spectral solar reflectance from the Earth's surface and atmosphere into a variety of aerosol products. In this lecture I will proceed through a survey of these products, answering the following questions as I proceed. What are the products? How do they compare with ground truth? How do we use these products to describe the global aerosol system? Are aerosols increasing or decreasing? How do aerosols affect climate and clouds?
Beyond MODIS: Developing an aerosol climate data record
NASA Astrophysics Data System (ADS)
Levy, R. C.; Mattoo, S.; Munchak, L. A.; Patadia, F.; Laszlo, I.; Holz, R.
2013-12-01
As defined by the National Research Council, a climate data record (CDR) is a time series of measurements of sufficient length, consistency, and continuity to determine climate variability and change. As one of our most pressing research questions concerns changes in global direct aerosol radiative forcing (DARF), creating an aerosol CDR is of high importance. To reduce our uncertainties in DARF, we need uncertainty in global aerosol optical depth (AOD) reduced to ×0.02 or better, or about 10% of global mean AOD (~0.15-0.20). To quantify aerosol trends with significance, we also need a stable time series at least 20-30 years. By this Fall-2013 AGU meeting, the Moderate Resolution Imaging Spectrometer (MODIS) has been flying on NASA's Terra and Aqua satellites for 14 years and 11.5 years, respectively. During this time, we have fine-tuned the aerosol retrieval algorithms and data processing protocols, resulting in a well characterized product of aerosol optical depth (AOD). MODIS AOD has been extensively compared to ground-based sunphotometer data, showing per-retrieval expected error (EE) of ×(0.03 + 5%) over ocean, and has been generally adopted as a robust and stable environmental data record (EDR). With the 2011 launch of the Visible and Infrared Imaging Radiometer Suite (VIIRS) aboard Suomi-NPP, we have begun a new aerosol time series. The VIIRS AOD product has stabilized to the point where, compared to ground-based AERONET sunphotometer, the VIIRS AOD is within similar EE envelope as MODIS. Thus, if VIIRS continues to perform as expected, it too can provide a robust and stable aerosol EDR. What will it take to stitch MODIS and VIIRS into a robust aerosol CDR? Based on the recent experience of MODIS 'Collection 6' development, there are many details of aerosol retrieval that each lead to ×0.01 uncertainties in global AOD. These include 'radiative transfer' assumptions such as calculations for gas absorption and sea-level Rayleigh optical depth, 'decision making' assumptions such as cloud masking and pixel selection, as well as 'retrieval' assumptions such as aerosol type, and surface reflectance model. Also there are instrument issues such as calibration and geo-location, which even on the level of 1-2%, will lead to 10% error in retrieved AOD. At this point, however, many of these issues have been solved, or are being quantified for MODIS and VIIRS. In the past year, we created a generic dark-target aerosol retrieval algorithm, which can be applied to MODIS, VIIRS, or any other sensor with a similar set of wavelength bands. We applied the same radiative transfer codes for creating lookup tables, the same protocols for deriving non-aerosol assumptions, and the same criteria for cloud masking. Although there are still inconsistencies to work out, this generic algorithm is being applied to selected months having VIIRS/MODIS overlap. Comparing to AERONET, and with each other, we quantify the statistical agreement between MODIS and VIIRS, both for the official algorithms run on each sensor, as well as for our generic algorithm run on both.
NASA Technical Reports Server (NTRS)
Gao, Bo-Cai; Montes, Marcos J.; Davis, Curtiss O.
2003-01-01
This SIMBIOS contract supports several activities over its three-year time-span. These include certain computational aspects of atmospheric correction, including the modification of our hyperspectral atmospheric correction algorithm Tafkaa for various multi-spectral instruments, such as SeaWiFS, MODIS, and GLI. Additionally, since absorbing aerosols are becoming common in many coastal areas, we are making the model calculations to incorporate various absorbing aerosol models into tables used by our Tafkaa atmospheric correction algorithm. Finally, we have developed the algorithms to use MODIS data to characterize thin cirrus effects on aerosol retrieval.
Comparing MODIS C6 'Deep Blue' and 'Dark Target' Aerosol Data
NASA Technical Reports Server (NTRS)
Hsu, N. C.; Sayer, A. M.; Bettenhausen, C.; Lee, J.; Levy, R. C.; Mattoo, S.; Munchak, L. A.; Kleidman, R.
2014-01-01
The MODIS Collection 6 Atmospheres product suite includes refined versions of both 'Deep Blue' (DB) and 'Dark Target' (DT) aerosol algorithms, with the DB dataset now expanded to include coverage over vegetated land surfaces. This means that, over much of the global land surface, users will have both DB and DT data to choose from. A 'merged' dataset is also provided, primarily for visualization purposes, which takes retrievals from either or both algorithms based on regional and seasonal climatologies of normalized difference vegetation index (NDVI). This poster present some comparisons of these two C6 aerosol algorithms, focusing on AOD at 550 nm derived from MODIS Aqua measurements, with each other and with Aerosol Robotic Network (AERONET) data, with the intent to facilitate user decisions about the suitability of the two datasets for their desired applications.
NASA Technical Reports Server (NTRS)
Mielonen, T.; Levy, R. C.; Aaltonen, V.; Komppula, M.; de Leeuw, G.; Huttunen, J.; Lihavainen, H.; Kolmonen, P.; Lehtinen, K. E. J.; Arola, A.
2011-01-01
Aerosol Optical Depth (AOD) and Angstrom exponent (AE) values derived with the MODIS retrieval algorithm over land (Collection 5) are compared with ground based sun photometer measurements at eleven sites spanning the globe. Although, in general, total AOD compares well at these sites (R2 values generally over 0.8), there are cases (from 2 to 67% of the measurements depending on the site) where MODIS clearly retrieves the wrong spectral dependence, and hence, an unrealistic AE value. Some of these poor AE retrievals are due to the aerosol signal being too small (total AOD<0.3) but in other cases the AOD should have been high enough to derive accurate AE. However, in these cases, MODIS indicates AE values close to 0.6 and zero fine model weighting (FMW), i.e. dust model provides the best fitting to the MODIS observed reflectance. Yet, according to evidence from the collocated sun photometer measurements and back-trajectory analyses, there should be no dust present. This indicates that the assumptions about aerosol model and surface properties made by the MODIS algorithm may have been incorrect. Here we focus on problems related to parameterization of the land-surface optical properties in the algorithm, in particular the relationship between the surface reflectance at 660 and 2130 nm.
Consistency of Global Modis Aerosol Optical Depths over Ocean on Terra and Aqua Ceres SSF Datasets
NASA Technical Reports Server (NTRS)
Ignatov, Alexander; Minnis, Patrick; Miller, Walter F.; Wielicki, Bruce A.; Remer, Lorraine
2006-01-01
Aerosol retrievals over ocean from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Terra and Aqua platforms are available from the Clouds and the Earth's Radiant Energy System (CERES) Single Scanner Footprint (SSF) datasets generated at NASA Langley Research Center (LaRC). Two aerosol products are reported side-by-side. The primary M product is generated by sub-setting and remapping the multi-spectral (0.47-2.1 micrometer) MODIS produced oceanic aerosol (MOD04/MYD04 for Terra/Aqua) onto CERES footprints. M*D04 processing uses cloud screening and aerosol algorithms developed by the MODIS science team. The secondary AVHRR-like A product is generated in only two MODIS bands 1 and 6 (on Aqua, bands 1 and 7). The A processing uses the CERES cloud screening algorithm, and NOAA/NESDIS glint identification, and single-channel aerosol retrieval algorithms. The M and A products have been documented elsewhere and preliminarily compared using 2 weeks of global Terra CERES SSF Edition 1A data in which the M product was based on MOD04 collection 3. In this study, the comparisons between the M and A aerosol optical depths (AOD) in MODIS band 1 (0.64 micrometers), tau(sub 1M) and tau(sub 1A) are re-examined using 9 days of global CERES SSF Terra Edition 2A and Aqua Edition 1B data from 13 - 21 October 2002, and extended to include cross-platform comparisons. The M and A products on the new CERES SSF release are generated using the same aerosol algorithms as before, but with different preprocessing and sampling procedures, lending themselves to a simple sensitivity check to non-aerosol factors. Both tau(sub 1M) and tau(sub 1A) generally compare well across platforms. However, the M product shows some differences, which increase with ambient cloud amount and towards the solar side of the orbit. Three types of comparisons conducted in this study - cross-platform, cross-product, and cross-release confirm the previously made observation that the major area for improvement in the current aerosol processing lies in a more formalized and standardized sampling (and most importantly, cloud screening) whereas optimization of the aerosol algorithm is deemed to be an important yet less critical element.
Snow and Ice Mask for the MODIS Aerosol Products
NASA Technical Reports Server (NTRS)
Li, Rong-Rong; Remer, Lorraine; Kaufman, Yoram J.; Mattoo, Shana; Gao, Bo-Cai; Vermote, Eric
2005-01-01
The atmospheric products have been derived operationally from multichannel imaging data collected with the Moderate Resolution Imaging SpectroRadiometers (MODIS) on board the NASA Terra and Aqua spacecrafts. Preliminary validations of the products were previously reported. Through analysis of more extensive time-series of MODIS aerosol products (Collection 4), we have found that the aerosol products over land areas are slightly contaminated by snow and ice during the springtime snow-melting season. We have developed an empirical technique using MODIS near-IR channels centered near 0.86 and 1.24 pm and a thermal emission channel near 11 pm to mask out these snow-contaminated pixels over land. Improved aerosol retrievals over land have been obtained. Sample results from application of the technique to MODIS data acquired over North America, northern Europe, and northeastern Asia are presented. The technique has been implemented into the MODIS Collection 5 operational algorithm for retrieving aerosols over land from MODIS data.
NASA Astrophysics Data System (ADS)
Wind, Galina; da Silva, Arlindo M.; Norris, Peter M.; Platnick, Steven; Mattoo, Shana; Levy, Robert C.
2016-07-01
The Multi-sensor Cloud Retrieval Simulator (MCRS) produces a "simulated radiance" product from any high-resolution general circulation model with interactive aerosol as if a specific sensor such as the Moderate Resolution Imaging Spectroradiometer (MODIS) were viewing a combination of the atmospheric column and land-ocean surface at a specific location. Previously the MCRS code only included contributions from atmosphere and clouds in its radiance calculations and did not incorporate properties of aerosols. In this paper we added a new aerosol properties module to the MCRS code that allows users to insert a mixture of up to 15 different aerosol species in any of 36 vertical layers.This new MCRS code is now known as MCARS (Multi-sensor Cloud and Aerosol Retrieval Simulator). Inclusion of an aerosol module into MCARS not only allows for extensive, tightly controlled testing of various aspects of satellite operational cloud and aerosol properties retrieval algorithms, but also provides a platform for comparing cloud and aerosol models against satellite measurements. This kind of two-way platform can improve the efficacy of model parameterizations of measured satellite radiances, allowing the assessment of model skill consistently with the retrieval algorithm. The MCARS code provides dynamic controls for appearance of cloud and aerosol layers. Thereby detailed quantitative studies of the impacts of various atmospheric components can be controlled.In this paper we illustrate the operation of MCARS by deriving simulated radiances from various data field output by the Goddard Earth Observing System version 5 (GEOS-5) model. The model aerosol fields are prepared for translation to simulated radiance using the same model subgrid variability parameterizations as are used for cloud and atmospheric properties profiles, namely the ICA technique. After MCARS computes modeled sensor radiances equivalent to their observed counterparts, these radiances are presented as input to operational remote-sensing algorithms.Specifically, the MCARS-computed radiances are input into the processing chain used to produce the MODIS Data Collection 6 aerosol product (M{O/Y}D04). The M{O/Y}D04 product is of course normally produced from M{O/Y}D021KM MODIS Level-1B radiance product directly acquired by the MODIS instrument. MCARS matches the format and metadata of a M{O/Y}D021KM product. The resulting MCARS output can be directly provided to MODAPS (MODIS Adaptive Processing System) as input to various operational atmospheric retrieval algorithms. Thus the operational algorithms can be tested directly without needing to make any software changes to accommodate an alternative input source.We show direct application of this synthetic product in analysis of the performance of the MOD04 operational algorithm. We use biomass-burning case studies over Amazonia employed in a recent Working Group on Numerical Experimentation (WGNE)-sponsored study of aerosol impacts on numerical weather prediction (Freitas et al., 2015). We demonstrate that a known low bias in retrieved MODIS aerosol optical depth appears to be due to a disconnect between actual column relative humidity and the value assumed by the MODIS aerosol product.
NASA Technical Reports Server (NTRS)
Wind, Galina; Da Silva, Arlindo M.; Norris, Peter M.; Platnick, Steven; Mattoo, Shana; Levy, Robert C.
2016-01-01
The Multi-sensor Cloud Retrieval Simulator (MCRS) produces a simulated radiance product from any high-resolution general circulation model with interactive aerosol as if a specific sensor such as the Moderate Resolution Imaging Spectroradiometer (MODIS) were viewing a combination of the atmospheric column and land ocean surface at a specific location. Previously the MCRS code only included contributions from atmosphere and clouds in its radiance calculations and did not incorporate properties of aerosols. In this paper we added a new aerosol properties module to the MCRS code that allows users to insert a mixture of up to 15 different aerosol species in any of 36 vertical layers. This new MCRS code is now known as MCARS (Multi-sensor Cloud and Aerosol Retrieval Simulator). Inclusion of an aerosol module into MCARS not only allows for extensive, tightly controlled testing of various aspects of satellite operational cloud and aerosol properties retrieval algorithms, but also provides a platform for comparing cloud and aerosol models against satellite measurements. This kind of two-way platform can improve the efficacy of model parameterizations of measured satellite radiances, allowing the assessment of model skill consistently with the retrieval algorithm. The MCARS code provides dynamic controls for appearance of cloud and aerosol layers. Thereby detailed quantitative studies of the impacts of various atmospheric components can be controlled. In this paper we illustrate the operation of MCARS by deriving simulated radiances from various data field output by the Goddard Earth Observing System version 5 (GEOS-5) model. The model aerosol fields are prepared for translation to simulated radiance using the same model sub grid variability parameterizations as are used for cloud and atmospheric properties profiles, namely the ICA technique. After MCARS computes modeled sensor radiances equivalent to their observed counterparts, these radiances are presented as input to operational remote-sensing algorithms. Specifically, the MCARS-computed radiances are input into the processing chain used to produce the MODIS Data Collection 6 aerosol product (MOYD04). TheMOYD04 product is of course normally produced from MOYD021KM MODIS Level-1B radiance product directly acquired by the MODIS instrument. MCARS matches the format and metadata of a MOYD021KM product. The resulting MCARS output can be directly provided to MODAPS (MODIS Adaptive Processing System) as input to various operational atmospheric retrieval algorithms. Thus the operational algorithms can be tested directly without needing to make any software changes to accommodate an alternative input source. We show direct application of this synthetic product in analysis of the performance of the MOD04 operational algorithm. We use biomass-burning case studies over Amazonia employed in a recent Working Group on Numerical Experimentation (WGNE)-sponsored study of aerosol impacts on numerical weather prediction (Freitas et al., 2015). We demonstrate that a known low bias in retrieved MODIS aerosol optical depth appears to be due to a disconnect between actual column relative humidity and the value assumed by the MODIS aerosol product.
The MODIS Aerosol Algorithm: Critical Evaluation and Plans for Collection 6
NASA Technical Reports Server (NTRS)
Remer, Lorraine
2010-01-01
For ten years the MODIS aerosol algorithm has been applied to measured MODIS radiances to produce a continuous set of aerosol products, over land and ocean. The MODIS aerosol products are widely used by the scientific and applied science communities for variety of purposes that span operational air quality forecasting in estimates o[ clear-sky direct radiative effects over ocean and aerosol-cloud interactions. The products undergo continual evaluation, including self-consistency checks and comparisons with highly accurate ground-based instruments. The result of these evaluation exercises is a quantitative understanding of the strengths and weaknesses of the retrieval, where and when the products are accurate and the situations where and when accuracy degrades. We intend 10 present results of the most recent critical evaluations including the first comparison of the over ocean products against the shipboard aerosol optical depth measurements of the Marine Aerosol Network (MAN), the demonstration of the lack of sensitivity to size parameter in the over land products and identification of residual problems and regional issues. While the current data set is undergoing evaluation, we are preparing for the next data processing, labeled Collection 6. Collection 6 will include transparent Quality Flags, a 3 km aerosol product and the 500m resolution cloud mask used within the aerosol n:bicvu|. These new products and adjustments to algorithm assumptions should provide users with more options and greater control, as they adapt the product for their own purposes.
Ocean observations with EOS/MODIS: Algorithm development and post launch studies
NASA Technical Reports Server (NTRS)
Gordon, Howard R.
1996-01-01
An investigation of the influence of stratospheric aerosol on the performance of the atmospheric correction algorithm is nearly complete. The results indicate how the performance of the algorithm is degraded if the stratospheric aerosol is ignored. Use of the MODIS 1380 nm band to effect a correction for stratospheric aerosols was also studied. Simple algorithms such as subtracting the reflectance at 1380 nm from the visible and near infrared bands can significantly reduce the error; however, only if the diffuse transmittance of the aerosol layer is taken into account. The atmospheric correction code has been modified for use with absorbing aerosols. Tests of the code showed that, in contrast to non absorbing aerosols, the retrievals were strongly influenced by the vertical structure of the aerosol, even when the candidate aerosol set was restricted to a set appropriate to the absorbing aerosol. This will further complicate the problem of atmospheric correction in an atmosphere with strongly absorbing aerosols. Our whitecap radiometer system and solar aureole camera were both tested at sea and performed well. Investigation of a technique to remove the effects of residual instrument polarization sensitivity were initiated and applied to an instrument possessing (approx.) 3-4 times the polarization sensitivity expected for MODIS. Preliminary results suggest that for such an instrument, elimination of the polarization effect is possible at the required level of accuracy by estimating the polarization of the top-of-atmosphere radiance to be that expected for a pure Rayleigh scattering atmosphere. This may be of significance for design of a follow-on MODIS instrument. W.M. Balch participated on two month-long cruises to the Arabian sea, measuring coccolithophore abundance, production, and optical properties. A thorough understanding of the relationship between calcite abundance and light scatter, in situ, will provide the basis for a generic suspended calcite algorithm.
Two MODIS Aerosol Products Over Ocean on the Terra and Aqua CERES SSF Datasets
NASA Technical Reports Server (NTRS)
Ignatov, Alexander; Minnis, Patrick; Loeb, Norman; Wielicki, Bruce; Miller, Walter; Sun-Mack, Sunny; Tanre, Didier; Remer, Lorraine; Laszlo, Istvan; Geier, Erika
2004-01-01
Over ocean, two aerosol products are reported on the Terra and Aqua CERES SSFs. Both are derived from MODIS, but using different sampling and aerosol algorithms. This study briefly summarizes these products, and compares using 2 weeks of global Terra data from 15-21 December 2000, and 1-7 June 2001.
Ocean observations with EOS/MODIS: Algorithm Development and Post Launch Studies
NASA Technical Reports Server (NTRS)
Gordon, Howard R.
1998-01-01
Significant accomplishments made during the present reporting period: (1) We expanded our "spectral-matching" algorithm (SMA), for identifying the presence of absorbing aerosols and simultaneously performing atmospheric correction and derivation of the ocean's bio-optical parameters, to the point where it could be added as a subroutine to the MODIS water-leaving radiance algorithm; (2) A modification to the SMA that does not require detailed aerosol models has been developed. This is important as the requirement for realistic aerosol models has been a weakness of the SMA; and (3) We successfully acquired micro pulse lidar data in a Saharan dust outbreak during ACE-2 in the Canary Islands.
NASA Astrophysics Data System (ADS)
Choi, Myungje; Kim, Jhoon; Lee, Jaehwa; Kim, Mijin; Park, Young-Je; Jeong, Ukkyo; Kim, Woogyung; Hong, Hyunkee; Holben, Brent; Eck, Thomas F.; Song, Chul H.; Lim, Jae-Hyun; Song, Chang-Keun
2016-04-01
The Geostationary Ocean Color Imager (GOCI) onboard the Communication, Ocean, and Meteorological Satellite (COMS) is the first multi-channel ocean color imager in geostationary orbit. Hourly GOCI top-of-atmosphere radiance has been available for the retrieval of aerosol optical properties over East Asia since March 2011. This study presents improvements made to the GOCI Yonsei Aerosol Retrieval (YAER) algorithm together with validation results during the Distributed Regional Aerosol Gridded Observation Networks - Northeast Asia 2012 campaign (DRAGON-NE Asia 2012 campaign). The evaluation during the spring season over East Asia is important because of high aerosol concentrations and diverse types of Asian dust and haze. Optical properties of aerosol are retrieved from the GOCI YAER algorithm including aerosol optical depth (AOD) at 550 nm, fine-mode fraction (FMF) at 550 nm, single-scattering albedo (SSA) at 440 nm, Ångström exponent (AE) between 440 and 860 nm, and aerosol type. The aerosol models are created based on a global analysis of the Aerosol Robotic Networks (AERONET) inversion data, and covers a broad range of size distribution and absorptivity, including nonspherical dust properties. The Cox-Munk ocean bidirectional reflectance distribution function (BRDF) model is used over ocean, and an improved minimum reflectance technique is used over land. Because turbid water is persistent over the Yellow Sea, the land algorithm is used for such cases. The aerosol products are evaluated against AERONET observations and MODIS Collection 6 aerosol products retrieved from Dark Target (DT) and Deep Blue (DB) algorithms during the DRAGON-NE Asia 2012 campaign conducted from March to May 2012. Comparison of AOD from GOCI and AERONET resulted in a Pearson correlation coefficient of 0.881 and a linear regression equation with GOCI AOD = 1.083 × AERONET AOD - 0.042. The correlation between GOCI and MODIS AODs is higher over ocean than land. GOCI AOD shows better agreement with MODIS DB than MODIS DT. The other GOCI YAER products (AE, FMF, and SSA) show lower correlation with AERONET than AOD, but still show some skills for qualitative use.
NASA Technical Reports Server (NTRS)
Choi, Myungje; Kim, Jhoon; Lee, Jaehwa; Kim, Mijin; Park, Young-Je; Jeong, Ukkyo; Kim, Woogyung; Hong, Hyunkee; Holben, Brent; Eck, Thomas F.;
2016-01-01
The Geostationary Ocean Color Imager (GOCI) onboard the Communication, Ocean, and Meteorological Satellite (COMS) is the first multi-channel ocean color imager in geostationary orbit. Hourly GOCI top-of-atmosphere radiance has been available for the retrieval of aerosol optical properties over East Asia since March 2011. This study presents improvements made to the GOCI Yonsei Aerosol Retrieval (YAER) algorithm together with validation results during the Distributed Regional Aerosol Gridded Observation Networks - Northeast Asia 2012 campaign (DRAGONNE Asia 2012 campaign). The evaluation during the spring season over East Asia is important because of high aerosol concentrations and diverse types of Asian dust and haze. Optical properties of aerosol are retrieved from the GOCI YAER algorithm including aerosol optical depth (AOD) at 550 nm, fine-mode fraction (FMF) at 550 nm, single-scattering albedo (SSA) at 440 nm, Angstrom exponent (AE) between 440 and 860 nm, and aerosol type. The aerosol models are created based on a global analysis of the Aerosol Robotic Networks (AERONET) inversion data, and covers a broad range of size distribution and absorptivity, including nonspherical dust properties. The Cox-Munk ocean bidirectional reflectance distribution function (BRDF) model is used over ocean, and an improved minimum reflectance technique is used over land. Because turbid water is persistent over the Yellow Sea, the land algorithm is used for such cases. The aerosol products are evaluated against AERONET observations and MODIS Collection 6 aerosol products retrieved from Dark Target (DT) and Deep Blue (DB) algorithms during the DRAGON-NE Asia 2012 campaign conducted from March to May 2012. Comparison of AOD from GOCI and AERONET resulted in a Pearson correlation coefficient of 0.881 and a linear regression equation with GOCI AOD = 1.083 x AERONET AOD - 0.042. The correlation between GOCI and MODIS AODs is higher over ocean than land. GOCI AOD shows better agreement with MODIS DB than MODIS DT. The other GOCI YAER products (AE, FMF, and SSA) show lower correlation with AERONET than AOD, but still show some skills for qualitative use.
NASA Astrophysics Data System (ADS)
Liu, Zhiquan; Liu, Quanhua; Lin, Hui-Chuan; Schwartz, Craig S.; Lee, Yen-Huei; Wang, Tijian
2011-12-01
Assimilation of the Moderate Resolution Imaging Spectroradiometer (MODIS) total aerosol optical depth (AOD) retrieval products (at 550 nm wavelength) from both Terra and Aqua satellites have been developed within the National Centers for Environmental Prediction (NCEP) Gridpoint Statistical Interpolation (GSI) three-dimensional variational (3DVAR) data assimilation system. This newly developed algorithm allows, in a one-step procedure, the analysis of 3-D mass concentration of 14 aerosol variables from the Goddard Chemistry Aerosol Radiation and Transport (GOCART) module. The Community Radiative Transfer Model (CRTM) was extended to calculate AOD using GOCART aerosol variables as input. Both the AOD forward model and corresponding Jacobian model were developed within the CRTM and used in the 3DVAR minimization algorithm to compute the AOD cost function and its gradient with respect to 3-D aerosol mass concentration. The impact of MODIS AOD data assimilation was demonstrated by application to a dust storm from 17 to 24 March 2010 over East Asia. The aerosol analyses initialized Weather Research and Forecasting/Chemistry (WRF/Chem) model forecasts. Results indicate that assimilating MODIS AOD substantially improves aerosol analyses and subsequent forecasts when compared to MODIS AOD, independent AOD observations from the Aerosol Robotic Network (AERONET) and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument, and surface PM10 (particulate matter with diameters less than 10 μm) observations. The newly developed AOD data assimilation system can serve as a tool to improve simulations of dust storms and general air quality analyses and forecasts.
NASA Technical Reports Server (NTRS)
Hsu, N. Christina; Bettenhausen, Corey; Sawyer, Andrew; Tsay, Si-Chee
2012-01-01
The impact of natural and anthropogenic sources of aerosols has gained increasing attention from scientific communities in recent years. Indeed, tropospheric aerosols not only perturb radiative energy balance by interacting with solar and terrestrial radiation, but also by changing cloud properties and lifetime. Furthermore, these anthropogenic and natural air particles, once generated over the source regions, can be transported out of the boundary layer into the free troposphere and can travel thousands of kilometers across oceans and continents resulting in important biogeochemical impacts on the ecosystem. With the launch of SeaWiFS in 1997, Terra/MODIS in 1999, and Aqua/MODIS in 2002, high quality comprehensive aerosol climatology is becoming feasible for the first time. As a result of these unprecedented data records, studies of the radiative and biogeochemical effects due to tropospheric aerosols are now possible. In this talk, we will demonstrate how this newly available SeaWiFS/MODIS aerosol climatology can provide an important piece of puzzles in reducing the uncertainty of estimated climatic forcing due to aerosols. We will start with the global distribution of aerosol loading and their variabilities over both land and ocean on short- and long-term temporal scales observed over the last decade. The recent progress made in Deep Blue aerosol algorithm on improving accuracy of these Sea WiFS / MODIS aerosol products in particular over land will be discussed. The impacts on quantifying physical and optical processes of aerosols over source regions of adding the Deep Blue products of aerosol properties over bright-reflecting surfaces into Sea WiFS / MODIS as well as VIIRS data suite will also be addressed. We will also show the intercomparison results of SeaWiFS/MODIS retrieved aerosol optical thickness with data from ground based AERONET sunphotometers over land and ocean as well as with other satellite measurements. The trends observed in global aerosol loadings of both natural and anthropogenic sources based upon more than a decade of combined MODIS/SeaWiFS data (1997-2011) will be discussed. We will also address the importance of various key issues such as differences in spatial-temporal sampling rates and observation time between different satellite measurements could potentially impact these intercomparisons results, especially for using the monthly mean data, and thus on estimates of long-term aerosol trends.
Combined Dust Detection Algorithm by Using MODIS Infrared Channels over East Asia
NASA Technical Reports Server (NTRS)
Park, Sang Seo; Kim, Jhoon; Lee, Jaehwa; Lee, Sukjo; Kim, Jeong Soo; Chang, Lim Seok; Ou, Steve
2014-01-01
A new dust detection algorithm is developed by combining the results of multiple dust detectionmethods using IR channels onboard the MODerate resolution Imaging Spectroradiometer (MODIS). Brightness Temperature Difference (BTD) between two wavelength channels has been used widely in previous dust detection methods. However, BTDmethods have limitations in identifying the offset values of the BTDto discriminate clear-sky areas. The current algorithm overcomes the disadvantages of previous dust detection methods by considering the Brightness Temperature Ratio (BTR) values of the dual wavelength channels with 30-day composite, the optical properties of the dust particles, the variability of surface properties, and the cloud contamination. Therefore, the current algorithm shows improvements in detecting the dust loaded region over land during daytime. Finally, the confidence index of the current dust algorithm is shown in 10 × 10 pixels of the MODIS observations. From January to June, 2006, the results of the current algorithm are within 64 to 81% of those found using the fine mode fraction (FMF) and aerosol index (AI) from the MODIS and Ozone Monitoring Instrument (OMI). The agreement between the results of the current algorithm and the OMI AI over the non-polluted land also ranges from 60 to 67% to avoid errors due to the anthropogenic aerosol. In addition, the developed algorithm shows statistically significant results at four AErosol RObotic NETwork (AERONET) sites in East Asia.
a New Algorithm for the Aod Inversion from Noaa/avhrr Data
NASA Astrophysics Data System (ADS)
Sun, L.; Li, R.; Yu, H.
2018-04-01
The advanced very high resolution radiometer (AVHRR) data from the National Oceanic and Atmospheric Administration satellite is one of the earliest data applied in aerosol research. The dense dark vegetation (DDV) algorithm is a popular method for the present land aerosol retrieval. One of the most crucial steps in the DDV algorithm with AVHRR data is estimating the land surface reflectance (LSR). However, LSR cannot be easily estimated because of the lack of a 2.13 μm band. In this article, the moderate resolution imaging spectroradiometer (MODIS) vegetation index product (MYD13) is introduced to support the estimation of AVHRR LSR. The relationship between MODIS NDVI and the AVHRR LSR of the visible band is analysed to retrieve aerosol optical depth (AOD) from AVHRR data. Retrieval experiments are carried out in mid-eastern America. The AOD data from AErosol RObotic NETwork (AERONET) measurements are used to evaluate the aerosol retrieval from AVHRR data, the results indicate that about 74 % of the retrieved AOD are within the expected error range of ±(0.05 + 0.2), and a cross comparison of the AOD retrieval results with the MODIS aerosol product (MYD04) shows that the AOD datasets have a similar spatial distribution.
Calculations of Aerosol Radiative Forcing in the SAFARI Region from MODIS Data
NASA Technical Reports Server (NTRS)
Remer, L. A.; Ichoku, C.; Kaufman, Y. J.; Chu, D. A.
2003-01-01
SAFARI 2000 provided the opportunity to validate MODIS aerosol retrievals and to correct any assumptions in the retrieval process. By comparing MODIS retrievals with ground-based sunphotometer data, we quantified the degree to which the MODIS algorithm underestimated the aerosol optical thickness. This discrepancy was attributed to underestimating the degree of light absorption by the southern African smoke aerosol. Correcting for this underestimation of absorption, produces more realistic aerosol retrievals that allow various applications of the MODIS aerosol products. One such application is the calculation of the aerosol radiative forcing at the top and bottom of the atmosphere. The combination of MODIS accuracy, coverage, resolution and the ability to separate fine and coarse mode make this calculation substantially advanced over previous attempts with other satellites. We focus on the oceans adjacent to southern Africa and use a solar radiative transfer model to perform the flux calculations. The forcing at the top of atmosphere is calculated to be 10 W/sq m, while the forcing at the surface is -26 W/sq m. These results resemble those calculated from INDOEX data, and are most sensitive to assumptions of aerosol absorption, the same parameter that initially interfered with our retrievals.
Validation of MODIS aerosol optical depth over the Mediterranean Coast
NASA Astrophysics Data System (ADS)
Díaz-Martínez, J. Vicente; Segura, Sara; Estellés, Víctor; Utrillas, M. Pilar; Martínez-Lozano, J. Antonio
2013-04-01
Atmospheric aerosols, due to their high spatial and temporal variability, are considered one of the largest sources of uncertainty in different processes affecting visibility, air quality, human health, and climate. Among their effects on climate, they play an important role in the energy balance of the Earth. On one hand they have a direct effect by scattering and absorbing solar radiation; on the other, they also have an impact in precipitation, modifying clouds, or affecting air quality. The application of remote sensing techniques to investigate aerosol effects on climate has advanced significatively over last years. In this work, the products employed have been obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS). MODIS is a sensor located onboard both Earth Observing Systems (EOS) Terra and Aqua satellites, which provide almost complete global coverage every day. These satellites have been acquiring data since early 2000 (Terra) and mid 2002 (Aqua) and offer different products for land, ocean and atmosphere. Atmospheric aerosol products are presented as level 2 products with a pixel size of 10 x 10 km2 in nadir. MODIS aerosol optical depth (AOD) is retrieved by different algorithms depending on the pixel surface, distinguishing between land and ocean. For its validation, ground based sunphotometer data from AERONET (Aerosol Robotic Network) has been employed. AERONET is an international operative network of Cimel CE318 sky-sunphotometers that provides the most extensive aerosol data base globally available of ground-based measurements. The ground sunphotometric technique is considered the most accurate for the retrieval of radiative properties of aerosols in the atmospheric column. In this study we present a validation of MODIS C051 AOD employing AERONET measurements over different Mediterranean coastal sites centered over an area of 50 x 50 km2, which includes both pixels over land and ocean. The validation is done comparing spatial statistics from MODIS with corresponding temporal statistics from AERONET, as proposed by Ichoku et al. (2002). Eight Mediterranean coastal sites (in Spain, France, Italy, Crete, Turkey and Israel) with available AERONET and MODIS data have been used. These stations have been selected following QA criteria (minimum 1000 days of level 2.0 data) and a maximum distance of 8 km from the coast line. Results of the validation over each site show analogous behaviour, giving similar results regarding to the accuracy of the algorithms. Greatest differences are found for the AOD obtained over land, especially for drier regions, where the surface tends to be brighter. In general, the MODIS AOD has better a agreement with AERONET retrievals for the ocean algorithm than the land algorithm when validated over coastal sites, and the agreement is within the expected uncertainty estimated for MODIS data. References: - C. Ichoku et al., "A spatio-temporal approach for global validation and analysis of MODIS aerosol products", Geophysical Research Letters, 219, 12, 10.1029/2001GL013206, 2002.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sayer, Andrew M.; Hsu, C.; Bettenhausen, Corey
Cases of absorbing aerosols above clouds (AAC), such as smoke or mineral dust, are omitted from most routinely-processed space-based aerosol optical depth (AOD) data products, including those from the Moderate Resolution Imaging Spectroradiometer (MODIS). This study presents a sensitivity analysis and preliminary algorithm to retrieve above-cloud AOD and liquid cloud optical depth (COD) for AAC cases from MODIS or similar
NASA Astrophysics Data System (ADS)
Miller, W. F.; Kato, S.; Rose, F. G.; Sun-Mack, S.
2009-12-01
Under the NASA Energy and Water Cycle System (NEWS) program, cloud and aerosol properties derived from CALIPSO, CloudSat, and MODIS data then matched to the CERES footprint are used for irradiance profile computations. Irradiance profiles are included in the publicly available product, CCCM. In addition to the MODIS and CALIPSO generated aerosol, aerosol optical thickness is calculated over ocean by processing MODIS radiance through the Stowe-Ignatov algorithm. The CERES cloud mask and properties algorithm are use with MODIS radiance to provide additional cloud information to accompany the actively sensed data. The passively sensed data is the only input to the standard CERES radiative flux products. The combined information is used as input to the NASA Langley Fu-Liou radiative transfer model to determine vertical profiles and Top of Atmosphere shortwave and longwave flux for pristine, all-sky, and aerosol conditions for the special data product. In this study, the three sources of aerosol optical thickness will be compared directly and their influence on the calculated and measured TOA fluxes. Earlier studies indicate that the largest uncertainty in estimating direct aerosol forcing using aerosol optical thickness derived from passive sensors is caused by cloud contamination. With collocated CALIPSO data, we are able to estimate frequency of occurrence of cloud contamination, effect on the aerosol optical thickness and direct radiative effect estimates.
NASA Astrophysics Data System (ADS)
Gassó, Santiago; Torres, Omar
2016-07-01
Retrievals of aerosol optical depth (AOD) at 388 nm over the ocean from the Ozone Monitoring Instrument (OMI) two-channel near-UV algorithm (OMAERUV) have been compared with independent AOD measurements. The analysis was carried out over the open ocean (OMI and MODerate-resolution Imaging Spectrometer (MODIS) AOD comparisons) and over coastal and island sites (OMI and AERONET, the AErosol RObotic NETwork). Additionally, a research version of the retrieval algorithm (using MODIS and CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) information as constraints) was utilized to evaluate the sensitivity of the retrieval to different assumed aerosol properties. Overall, the comparison resulted in differences (OMI minus independent measurements) within the expected levels of uncertainty for the OMI AOD retrievals (0.1 for AOD < 0.3, 30 % for AOD > 0.3). Using examples from case studies with outliers, the reasons that led to the observed differences were examined with specific purpose to determine whether they are related to instrument limitations (i.e., pixel size, calibration) or algorithm assumptions (such as aerosol shape, aerosol height). The analysis confirms that OMAERUV does an adequate job at rejecting cloudy scenes within the instrument's capabilities. There is a residual cloud contamination in OMI pixels with quality flag 0 (the best conditions for aerosol retrieval according to the algorithm), resulting in a bias towards high AODs in OMAERUV. This bias is more pronounced at low concentrations of absorbing aerosols (AOD 388 nm ˜ < 0.5). For higher aerosol loadings, the bias remains within OMI's AOD uncertainties. In pixels where OMAERUV assigned a dust aerosol model, a fraction of them (< 20 %) had retrieved AODs significantly lower than AERONET and MODIS AODs. In a case study, a detailed examination of the aerosol height from CALIOP and the AODs from MODIS, along with sensitivity tests, was carried out by varying the different assumed parameters in the retrieval (imaginary index of refraction, size distribution, aerosol height, particle shape). It was found that the spherical shape assumption for dust in the current retrieval is the main cause of the underestimate. In addition, it is demonstrated in an example how an incorrect assumption of the aerosol height can lead to an underestimate. Nevertheless, this is not as significant as the effect of particle shape. These findings will be incorporated in a future version of the retrieval algorithm.
NASA Technical Reports Server (NTRS)
Sayer, A. M.; Hsu, N. C.; Bettenhausen, C.; Lee, J.; Redemann, J.; Shinozuka, Y.; Schmid, B.
2015-01-01
Absorbing smoke or mineral dust aerosols above clouds (AAC) are a frequent occurrence in certain regions and seasons. Operational aerosol retrievals from sensors like MODIS omit AAC because they are designed to work only over cloud-free scenes. However, AAC can in principle be quantified by these sensors in some situations (e.g. Jethva et al., 2013; Meyer et al., 2013). We present a summary of some analyses of the potential of MODIS-like instruments for this purpose, along with two case studies using airborne observations from the Ames Airborne Tracking Sunphotometer (AATS; http://geo.arc.nasa.gov/sgg/AATS-website/) as a validation data source for a preliminary AAC algorithm applied to MODIS measurements. AAC retrievals will eventually be added to the MODIS Deep Blue (Hsu et al., 2013) processing chain.
Ocean Observations with EOS/MODIS: Algorithm Development and Post Launch Studies
NASA Technical Reports Server (NTRS)
Gordon, Howard R.
1997-01-01
Significant accomplishments made during the present reporting period are as follows: (1) We developed a new method for identifying the presence of absorbing aerosols and, simultaneously, performing atmospheric correction. The algorithm consists of optimizing the match between the top-of-atmosphere radiance spectrum and the result of models of both the ocean and aerosol optical properties; (2) We developed an algorithm for providing an accurate computation of the diffuse transmittance of the atmosphere given an aerosol model. A module for inclusion into the MODIS atmospheric-correction algorithm was completed; (3) We acquired reflectance data for oceanic whitecaps during a cruise on the RV Ka'imimoana in the Tropical Pacific (Manzanillo, Mexico to Honolulu, Hawaii). The reflectance spectrum of whitecaps was found to be similar to that for breaking waves in the surf zone measured by Frouin, Schwindling and Deschamps, however, the drop in augmented reflectance from 670 to 860 nm was not as great, and the magnitude of the augmented reflectance was significantly less than expected; and (4) We developed a method for the approximate correction for the effects of the MODIS polarization sensitivity. The correction, however, requires adequate characterization of the polarization sensitivity of MODIS prior to launch.
Evaluation of the MODIS Retrievals of Dust Aerosol over the Ocean during PRIDE
NASA Technical Reports Server (NTRS)
Levy, Robert C.; Remer, Lorraine A.; Tanre, Didier; Kaufman, Yoram J.; Ichoku, Charles; Holben, Brent N.; Livingston, John M.; Russell, Philip B.; Maring, Hal
2002-01-01
The Puerto Rico Dust Experiment (PRIDE) took place in Roosevelt Roads, Puerto Rico from June 26 to July 24,2000 to study the radiative and physical properties of African dust aerosol transported into the region. PRIDE had the unique distinction of being the first major field experiment to allow direct comparison of aerosol retrievals from the MODerate Imaging Spectro-radiometer (MODIS) with sunphotometer and in-situ aerosol measurements. Over the ocean, the MODIS algorithm retrieves aerosol optical depth (AOD) as well as information about the aerosols size distribution. During PRIDE, MODIS derived AODs in the red wavelengths (0.66 micrometers) compare closely with AODs measured from sunphotometers, but, are too large at blue and green wavelengths (0.47 and 0.55 micrometers) and too small in the infrared (0.87 micrometers). This discrepancy of spectral slope results in particle size distributions retrieved by MODIS that are small compared to in-situ measurements, and smaller still when compared to sunphotometer sky radiance inversions. The differences in size distributions are, at least in part, associated with MODIS simplification of dust as spherical particles. Analysis of this PRIDE data set is a first step towards derivation of realistic non-spherical models for future MODIS retrievals.
NASA Astrophysics Data System (ADS)
Zhu, Li
Biomass burning aerosols absorb and scatter solar radiation and therefore affect the energy balance of the Earth-atmosphere system. The single scattering albedo (SSA), the ratio of the scattering coefficient to the extinction coefficient, is an important parameter to describe the optical properties of aerosols and to determine the effect of aerosols on the energy balance of the planet and climate. Aerosol effects on radiation also depend strongly on surface albedo. Large uncertainties remain in current estimates of radiative impacts of biomass burning aerosols, due largely to the lack of reliable measurements of aerosol and surface properties. In this work we investigate how satellite measurements can be used to estimate the direct radiative forcing of biomass burning aerosols. We developed a method using the critical reflectance technique to retrieve SSA from the Moderate Resolution Imaging Spectroradiometer (MODIS) observed reflectance at the top of the atmosphere (TOA). We evaluated MODIS retrieved SSAs with AErosol RObotic NETwork (AERONET) retrievals and found good agreements within the published uncertainty of the AERONET retrievals. We then developed an algorithm, the MODIS Enhanced Vegetation Albedo (MEVA), to improve the representations of spectral variations of vegetation surface albedo based on MODIS observations at the discrete 0.67, 0.86, 0.47, 0.55, 1.24, 1.64, and 2.12 mu-m channels. This algorithm is validated using laboratory measurements of the different vegetation types from the Amazon region, data from the Johns Hopkins University (JHU) spectral library, and data from the U.S. Geological Survey (USGS) digital spectral library. We show that the MEVA method can improve the accuracy of flux and aerosol forcing calculations at the TOA compared to more traditional interpolated approaches. Lastly, we combine the MODIS retrieved biomass burning aerosol SSA and the surface albedo spectrum determined from the MEVA technique to calculate TOA flux and aerosol direct radiative forcing over the Amazon region and compare it with Clouds and the Earth's Radiant Energy System (CERES) satellite results. The results show that MODIS based forcing calculations present similar averaged results compared to CERES, but MODIS shows greater spatial variation of aerosol forcing than CERES. Possible reasons for these differences are explored and discussed in this work. Potential future research based on these results is discussed as well.
NASA Astrophysics Data System (ADS)
Levy, Robert Carroll
Aerosols are major components of the Earth's global climate system, affecting the radiation budget and cloud processes of the atmosphere. When located near the surface, high concentrations lead to lowered visibility, increased health problems and generally reduced quality of life for the human population. Over the United States mid-Atlantic region, aerosol pollution is a problem mainly during the summer. Satellites, such as the MODerate Imaging Spectrometer (MODIS), from their vantage point above the atmosphere, provide unprecedented coverage of global and regional aerosols over land. During MODIS' eight-year operation, exhaustive data validation and analyses have shown how the algorithm should be improved. This dissertation describes the development of the 'second-generation' operational algorithm for retrieval of global tropospheric aerosol properties over dark land surfaces, from MODIS-observed spectral reflectance. New understanding about global aerosol properties, land surface reflectance characteristics, and radiative transfer properties were learned in the process. This new operational algorithm performs a simultaneous inversion of reflectance in two visible channels (0.47 and 0.66 mum) and one shortwave infrared channel (2.12 mum), thereby having increased sensitivity to coarse aerosol. Inversion of the three channels retrieves the aerosol optical depth (tau) at 0.55 mum, the percentage of non-dust (fine model) aerosol (eta) and the surface reflectance. This algorithm is applied globally, and retrieves tau that is highly correlated (y = 0.02 + 1.0x, R=0.9) with ground-based sunphotometer measurements. The new algorithm estimates the global, over-land, long-term averaged tau ˜ 0.21, a 25% reduction from previous MODIS estimates. This leads to reducing estimates of global, non-desert, over-land aerosol direct radiative effect (all aerosols) by 1.7 W·m-2 (0.5 W·m-2 over the entire globe), which significantly impacts assessment of aerosol direct radiative forcing (contribution from anthropogenic aerosols only). Over the U.S. mid-Atlantic region, validated retrievals of tau (an integrated column property) can help to estimate surface PM2.5 concentration, a monitored criteria air quality property. The 3-dimensional aerosol loading in the region is characterized using aircraft measurements and the Community Multi-scale Air Quality Model (CMAQ) model, leading to some convergence of observed quantities and modeled processes.
NASA Technical Reports Server (NTRS)
Lee, J.; Kim, J.; Yang, P.; Hsu, N. C.
2012-01-01
New over-ocean aerosol models are developed by integrating the inversion data from the Aerosol Robotic Network (AERONET) sun/sky radiometers with a database for the optical properties of tri-axial ellipsoid particles. The new aerosol models allow more accurate retrieval of aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) in the case of high AOD (AOD greater than 0.3). The aerosol models are categorized by using the fine-mode fraction (FMF) at 550 nm and the singlescattering albedo (SSA) at 440 nm from the AERONET inversion data to include a variety of aerosol types found around the globe. For each aerosol model, the changes in the aerosol optical properties (AOPs) as functions of AOD are considered to better represent aerosol characteristics. Comparisons of AODs between AERONET and MODIS for the period from 2003 to 2010 show that the use of the new aerosol models enhances the AOD accuracy with a Pearson coefficient of 0.93 and a regression slope of 0.99 compared to 0.92 and 0.85 calculated using the MODIS Collection 5 data. Moreover, the percentage of data within an expected error of +/-(0.03 + 0.05xAOD) is increased from 62 percent to 64 percent for overall data and from 39 percent to 51 percent for AOD greater than 0.3. Errors in the retrieved AOD are further characterized with respect to the Angstrom exponent (AE), scattering angle, SSA, and air mass factor (AMF). Due to more realistic AOPs assumptions, the new algorithm generally reduces systematic errors in the retrieved AODs compared with the current operational algorithm. In particular, the underestimation of fine-dominated AOD and the scattering angle dependence of dust-dominated AOD are significantly mitigated as results of the new algorithm's improved treatment of aerosol size distribution and dust particle nonsphericity.
NASA Astrophysics Data System (ADS)
Hsu, N.
2005-12-01
The environment in Southwest Asia exhibits one of the most complex situations for aerosol remote sensing from space. Several air masses with different aerosol characteristics commonly converge in this region. In particular, there are often fine mode pollution particles generated from oil industry activities in the Persian Gulf colliding with coarse mode dust particles lifted from desert sources in the surrounding areas. During the course of the UAE field campaign (August-October, 2004), we provided near-real time information, calculated using the Deep Blue algorithm, of satellite aerosol optical thickness and Angstrom exponent over the Southwest Asia region, including the Arabian Peninsula, Iran, Afghanistan, Pakistan, and part of north Africa. In this paper, we will present results of aerosol characteristics retrieved from SeaWiFS and MODIS over the Arabian Peninsula, Persian Gulf, and the Arabian Sea during the UAE experiment. The spectral surface reflectance data base constructed using satellite reflectance from MODIS and SeaWiFS employed in our algorithm will be discussed. We will also compare the resulting satellite retrieved aerosol optical thickness and Angstrom exponent with those obtained from the ground based sun photometers from AERONET in the region. Finally, we will discuss the changes in shortwave and longwave fluxes at the top of atmosphere in response to changes in aerosol optical thickness (i.e. aerosol forcing).
GOCI Yonsei Aerosol Retrieval (YAER) algorithm and validation during DRAGON-NE Asia 2012 campaign
NASA Astrophysics Data System (ADS)
Choi, M.; Kim, J.; Lee, J.; Kim, M.; Park, Y. Je; Jeong, U.; Kim, W.; Holben, B.; Eck, T. F.; Lim, J. H.; Song, C. K.
2015-09-01
The Geostationary Ocean Color Imager (GOCI) onboard the Communication, Ocean, and Meteorology Satellites (COMS) is the first multi-channel ocean color imager in geostationary orbit. Hourly GOCI top-of-atmosphere radiance has been available for the retrieval of aerosol optical properties over East Asia since March 2011. This study presents improvements to the GOCI Yonsei Aerosol Retrieval (YAER) algorithm over ocean and land together with validation results during the DRAGON-NE Asia 2012 campaign. Optical properties of aerosol are retrieved from the GOCI YAER algorithm including aerosol optical depth (AOD) at 550 nm, fine-mode fraction (FMF) at 550 nm, single scattering albedo (SSA) at 440 nm, Angstrom exponent (AE) between 440 and 860 nm, and aerosol type from selected aerosol models in calculating AOD. Assumed aerosol models are compiled from global Aerosol Robotic Networks (AERONET) inversion data, and categorized according to AOD, FMF, and SSA. Nonsphericity is considered, and unified aerosol models are used over land and ocean. Different assumptions for surface reflectance are applied over ocean and land. Surface reflectance over the ocean varies with geometry and wind speed, while surface reflectance over land is obtained from the 1-3 % darkest pixels in a 6 km × 6 km area during 30 days. In the East China Sea and Yellow Sea, significant area is covered persistently by turbid waters, for which the land algorithm is used for aerosol retrieval. To detect turbid water pixels, TOA reflectance difference at 660 nm is used. GOCI YAER products are validated using other aerosol products from AERONET and the MODIS Collection 6 aerosol data from "Dark Target (DT)" and "Deep Blue (DB)" algorithms during the DRAGON-NE Asia 2012 campaign from March to May 2012. Comparison of AOD from GOCI and AERONET gives a Pearson correlation coefficient of 0.885 and a linear regression equation with GOCI AOD =1.086 × AERONET AOD - 0.041. GOCI and MODIS AODs are more highly correlated over ocean than land. Over land, especially, GOCI AOD shows better agreement with MODIS DB than MODIS DT because of the choice of surface reflectance assumptions. Other GOCI YAER products show lower correlation with AERONET than AOD, but are still qualitatively useful.
New capabilities for characterizing smoke and dust aerosol over land using MODIS
NASA Astrophysics Data System (ADS)
Levy, R. C.; Remer, L. A.
2006-12-01
Smoke and dust aerosol have different chemical, optical and physical properties and both types affect many processes within the climate system. As earth's surface and atmosphere are continuously altered by natural and anthropogenic processes, the emission and presumably the effects of these aerosols are also changing. Thus it is necessary to observe and characterize aerosols on a global and climatic scale. While MODIS has been reporting characteristics of smoke and dust aerosol over land and ocean since shortly after Terra launch, the uncertainties in the over-land retrieval have been larger than expected. To better characterize different aerosol types closer to their source regions with greater accuracy, we have developed a new operational algorithm for retrieving aerosol properties over dark land surfaces from MODIS-observed visible (VIS) and infrared (IR) reflectance. Like earlier versions, this algorithm estimates the total loading (aerosol optical depth-τ) and relative weighting of fine (non-dust) and coarse (dust) -dominated aerosol to the total τ (fine weighting-η) over dark land surfaces. However, the fundamental mathematics and major assumptions have been overhauled. The new algorithm performs simultaneous multi-channel inversion that includes information about coarse aerosol in the IR channels, while assuming a fine-tuned relationship between VIS and IR surface reflectances, that is itself a function of scattering angle and vegetation condition. Finally, the suite of expected aerosol optical models described by the lookup table have been revised to closer resemble the AERONET climatology, including for smoke and dust aerosol. Beginning in April 2006, this algorithm has been used for forward processing and backward re- processing of the entire MODIS dataset observed from both Terra and Aqua. "Collection 5" products were completed for Aqua reprocessing by July 2006 and should be complete for Terra by December 2006. In this study, we used the complete Aqua dataset (July 2002-Aug 2006) and two years of Terra (2005-Aug 2006) data to evaluate the products in regions known to be dominated by smoke and/or dust. We compared with sunphotometer data at selected AERONET sites and found improved τ retrievals,within prescribed accuracy.
NASA Astrophysics Data System (ADS)
Loría-Salazar, S. Marcela; Holmes, Heather A.; Patrick Arnott, W.; Barnard, James C.; Moosmüller, Hans
2016-11-01
Satellite characterization of local aerosol pollution is desirable because of the potential for broad spatial coverage, enabling transport studies of pollution from major sources, such as biomass burning events. However, retrieval of quantitative measures of air pollution such as Aerosol Optical Depth (AOD) from satellite measurements is challenging over land because the underlying surface albedo may be heterogeneous in space and time. Ground-based sunphotometer measurements of AOD are unaffected by surface albedo and are crucial in enabling evaluation, testing, and further development of satellite instruments and retrieval algorithms. Columnar aerosol optical properties from ground-based sunphotometers (Cimel CE-318) as part of AERONET and MODIS aerosol retrievals from Aqua and Terra satellites were compared over semi-arid California and Nevada during the summer season of 2012. Sunphotometer measurements were used as a 'ground truth' to evaluate the current state of satellite retrievals in this spatiotemporal domain. Satellite retrieved (MODIS Collection 6) AOD showed the presence of wildfires in northern California during August. During the study period, the dark-target (DT) retrieval algorithm appears to overestimate AERONET AOD by an average factor of 3.85 in the entire study domain. AOD from the deep-blue (DB) algorithm overestimates AERONET AOD by an average factor of 1.64. Low AOD correlation was also found between AERONET, DT, and DB retrievals. Smoke from fires strengthened the aerosol signal, but MODIS versus AERONET AOD correlation hardly increased during fire events (r2∼0.1-0.2 during non-fire periods and r2∼0-0.31 during fire periods). Furthermore, aerosol from fires increased the normalized mean bias (NMB) of MODIS retrievals of AOD (NMB∼23%-154% for non-fire periods and NMB∼77%-196% for fire periods). Ångström Extinction Exponent (AEE) from DB for both Terra and Aqua did not correlate with AERONET observations. High surface reflectance and incorrect aerosol physical parametrizations may still be affecting the DT and DB MODIS AOD retrievals in the semi-arid western U.S.
A Comparison of Aerosol Measurements from OCO-2 and MODIS
NASA Astrophysics Data System (ADS)
Nelson, R. R.; O'Dell, C.
2016-12-01
The goal of OCO-2 is to use hyperspectral measurements of reflected near-infrared sunlight to retrieve carbon dioxide with high accuracy and precision. This is only possible, however, if the light-path modification effects caused by clouds and aerosols are properly quantified. Even tiny amounts of clouds or aerosols can induce sufficient light-path modifications to lead to large errors in the estimated CO2 column-mean (XCO2). Therefore, it is imperative to evaluate the accuracy of the OCO-2 retrieved aerosol parameters. In this study, we compare OCO-2 retrieved aerosol parameters to Aqua-MODIS observations co-located in time and space. We find that there are significant disagreements between the aerosol information derived from MODIS and the retrieved aerosol parameters from OCO-2. These results are unsurprising, as previous comparisons to AERONET have also been poor. However, the tight co-location between Aqua and OCO-2 in the Afternoon Constellation allows us to examine the potential synergistic use of OCO-2 and MODIS measurements to more accurately constrain aerosol properties, potentially leading to a more accurate CO2 measurement. Specifically, we used select MODIS aerosol properties as the a priori for the OCO-2 retrievals and present the results here. Future studies include investigating the possibility of ingesting the MODIS radiances directly into the OCO-2 retrieval algorithm to further improve OCO-2's aerosol scheme and the resulting measurements.
The MODIS Aerosol Algorithm, Products and Validation
NASA Technical Reports Server (NTRS)
Remer, L. A.; Kaufman, Y. J.; Tanre, D.; Mattoo, S.; Chu, D. A.; Martins, J. V.; Li, R.-R.; Ichoku, C.; Levy, R. C.; Kleidman, R. G.
2003-01-01
The MODerate resolution Imaging Spectroradiometer (MODIS) aboard both NASA's Terra and Aqua satellites is making near global daily observations of the earth in a wide spectral range. These measurements are used to derive spectral aerosol optical thickness and aerosol size parameters over both land and ocean. The aerosol products available over land include aerosol optical thickness at three visible wavelengths, a measure of the fraction of aerosol optical thickness attributed to the fine mode and several derived parameters including reflected spectral solar flux at top of atmosphere. Over ocean, the aerosol optical thickness is provided in seven wavelengths from 0.47 microns to 2.13 microns. In addition, quantitative aerosol size information includes effective radius of the aerosol and quantitative fraction of optical thickness attributed to the fine mode. Spectral aerosol flux, mass concentration and number of cloud condensation nuclei round out the list of available aerosol products over the ocean. The spectral optical thickness and effective radius of the aerosol over the ocean are validated by comparison with two years of AERONET data gleaned from 133 AERONET stations. 8000 MODIS aerosol retrievals colocated with AERONET measurements confirm that one-standard deviation of MODIS optical thickness retrievals fall within the predicted uncertainty of delta tauapproximately equal to plus or minus 0.03 plus or minus 0.05 tau over ocean and delta tay equal to plus or minus 0.05 plus or minus 0.15 tau over land. 271 MODIS aerosol retrievals co-located with AERONET inversions at island and coastal sites suggest that one-standard deviation of MODIS effective radius retrievals falls within delta r_eff approximately equal to 0.11 microns. The accuracy of the MODIS retrievals suggests that the product can be used to help narrow the uncertainties associated with aerosol radiative forcing of global climate.
Validation of MODIS Aerosol Retrievals during PRIDE
NASA Technical Reports Server (NTRS)
Levy, R.; Remier, L.; Kaufman, Y.; Kleidman, R.; Holben, B.; Russell, P.; Livingston, J.; Einaudi, Franco (Technical Monitor)
2000-01-01
The Puerto Rico Dust Experiment (PRIDE) was held in Roosevelt Roads, Puerto Rico from June 26 to July 24, 2000. It was intended to study the radiative and microphysical properties of Saharan dust transported into Puerto Rico. PRIDE had the unique distinction of being the first major field experiment to allow direct comparison of aerosol retrievals from MODIS (MODerate Imaging Spectro-radiometer - aboard the Terra satellite) with data from a variety of ground, shipboard and air-based instruments. Over the ocean the MODIS algorithm retrieves optical depth as well as information about the aerosol's size. During PRIDE, MODIS passed over Roosevelt Roads approximately once per day during daylight hours. Due to sunglint and clouds over Puerto Rico, aerosol retrievals can be made from only about half the MODIS scenes. In this study we try to "validate" our aerosol retrievals by comparing to measurements taken by sun-photometers from multiple platforms, including: Cimel (AERONET) from the ground, Microtops (handheld) from ground and ship, and the NASA-Ames sunphotometer from the air.
NASA Astrophysics Data System (ADS)
Wong, Man Sing; Nichol, Janet E.; Lee, Kwon Ho
2011-03-01
Aerosol retrieval algorithms for the MODerate Resolution Imaging Spectroradiometer (MODIS) have been developed to estimate aerosol and microphysical properties of the atmosphere, which help to address aerosol climatic issues at global scale. However, higher spatial resolution aerosol products for urban areas have not been well-researched mainly due to the difficulty of differentiating aerosols from bright surfaces in urban areas. Here, an aerosol retrieval algorithm using the MODIS 500-m resolution bands is described, to retrieve aerosol properties over Hong Kong and the Pearl River Delta region. The rationale of our technique is to first estimate the aerosol reflectances by decomposing the top-of-atmosphere reflectances from surface reflectances and Rayleigh path reflectances. For the determination of surface reflectances, a Minimum Reflectance Technique (MRT) is used, and MRT images are computed for different seasons. For conversion of aerosol reflectance to aerosol optical thickness (AOT), comprehensive Look Up Tables specific to the local region are constructed, which consider aerosol properties and sun-viewing geometry in the radiative transfer calculations. Four local aerosol types, namely coastal urban, polluted urban, dust, and heavy pollution, were derived using cluster analysis on 3 years of AERONET measurements in Hong Kong. The resulting 500 m AOT images were found to be highly correlated with ground measurements from the AERONET (r2 = 0.767) and Microtops II sunphotometers (r2 = 0.760) in Hong Kong. This study further demonstrates the application of the fine resolution AOT images for monitoring inter-urban and intra-urban aerosol distributions and the influence of trans-boundary flows. These applications include characterization of spatial patterns of AOT within the city, and detection of regional biomass burning sources.
Two MODIS Aerosol Products over Ocean on the Terra and Aqua CERES SSF Datasets.
NASA Astrophysics Data System (ADS)
Ignatov, Alexander; Minnis, Patrick; Loeb, Norman; Wielicki, Bruce; Miller, Walter; Sun-Mack, Sunny; Tanré, Didier; Remer, Lorraine; Laszlo, Istvan; Geier, Erika
2005-04-01
Understanding the impact of aerosols on the earth's radiation budget and the long-term climate record requires consistent measurements of aerosol properties and radiative fluxes. The Clouds and the Earth's Radiant Energy System (CERES) Science Team combines satellite-based retrievals of aerosols, clouds, and radiative fluxes into Single Scanner Footprint (SSF) datasets from the Terra and Aqua satellites. Over ocean, two aerosol products are derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) using different sampling and aerosol algorithms. The primary, or M, product is taken from the standard multispectral aerosol product developed by the MODIS aerosol group while a simpler, secondary [Advanced Very High Resolution Radiometer (AVHRR) like], or A, product is derived by the CERES Science Team using a different cloud clearing method and a single-channel aerosol algorithm. Two aerosol optical depths (AOD), τA1 and τA2, are derived from MODIS bands 1 (0.644 μm) and 6 (1.632 μm) resembling the AVHRR/3 channels 1 and 3A, respectively. On Aqua the retrievals are made in band 7 (2.119 μm) because of poor quality data from band 6. The respective Ångström exponents can be derived from the values of τ. The A product serves as a backup for the M product. More importantly, the overlap of these aerosol products is essential for placing the 20+ year heritage AVHRR aerosol record in the context of more advanced aerosol sensors and algorithms such as that used for the M product.This study documents the M and A products, highlighting their CERES SSF specifics. Based on 2 weeks of global Terra data, coincident M and A AODs are found to be strongly correlated in both bands. However, both domains in which the M and A aerosols are available, and the respective τ/α statistics significantly differ because of discrepancies in sampling due to differences in cloud and sun-glint screening. In both aerosol products, correlation is observed between the retrieved aerosol parameters (τ/α) and ambient cloud amount, with the dependence in the M product being more pronounced than in the A product.
NASA Technical Reports Server (NTRS)
Levy, R. C.; Kaufman, Y. J.
1999-01-01
Atmospheric aerosol has uncertain impacts on the global climate system, as well as on atmospheric and bio-geo-chemical processes of regional and local scales. EOS-MODIS is one example of a satellite sensor designed to improve understanding of the aerosols' type, size and distribution at all temporal and spatial scales. Ocean scientists also plan to use data from EOS-MODIS to assess the temporal and spatial coverage of in-water chlorophyll. MODIS is the first sensor planned to observe the combined ocean-atmosphere system with a wide spectral range (from 410 to 2200 nm). Dust aerosol and salt aerosol have similar spectral signals for wavelengths longer than 550 nm, but because dust selectively absorbs blue light, they have divergent signals in the blue wavelength regions (412 to 490 nm). Chlorophyll also selectively absorbs blue radiation, so that varying chlorophyll concentrations produces a highly varying signal in the blue regions, but less variability in the green, and almost no signal in the red to mid-infrared regions. Thus, theoretically, it may be difficult to differentiate dust and salt in the presence of unknown chlorophyll in the ocean. This study attempts to address the cases in which aerosol and chlorophyll signals can and cannot be separated. For the aerosol spectra, we use the aerosol lookup table from the operational MODIS aerosol-over-ocean algorithm, and for chlorophyll spectra, we use the SeaBAM data set (created for SeaWiFS). We compare the signals using Principal Component Analysis and attempt to retrieve both chlorophyll and aerosol properties using a variant of the operational MODIS aerosol-over-ocean algorithm. Results show that for small optical depths, less than 0.5, it is not possible to differentiate between dust and salt and to determine the chlorophyll concentration at the same time. For larger aerosol optical depths, the chlorophyll signals are comparatively insignificant, and we can hope to distinguish between dust and salt.
NASA Technical Reports Server (NTRS)
Gasso, Santiago; Torres, Omar
2016-01-01
Retrievals of aerosol optical depth (AOD) at 388 nm over the ocean from the Ozone Monitoring Instrument (OMI) two-channel near-UV algorithm (OMAERUV) have been compared with independent AOD measurements. The analysis was carried out over the open ocean (OMI and MODerate-resolution Imaging Spectrometer (MODIS) AOD comparisons) and over coastal and island sites (OMI and AERONET, the AErosol RObotic NETwork). Additionally, a research version of the retrieval algorithm (using MODIS and CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) information as constraints) was utilized to evaluate the sensitivity of the retrieval to different assumed aerosol properties. Overall, the comparison resulted in differences (OMI minus independent measurements) within the expected levels of uncertainty for the OMI AOD retrievals (0.1 for AOD less than 0.3, 30% for AOD greater than 0.3). Using examples from case studies with outliers, the reasons that led to the observed differences were examined with specific purpose to determine whether they are related to instrument limitations (i.e., pixel size, calibration) or algorithm assumptions (such as aerosol shape, aerosol height). The analysis confirms that OMAERUV does an adequate job at rejecting cloudy scenes within the instrument's capabilities. There is a residual cloud contamination in OMI pixels with quality flag 0 (the best conditions for aerosol retrieval according to the algorithm), resulting in a bias towards high AODs in OMAERUV. This bias is more pronounced at low concentrations of absorbing aerosols (AOD 388 nm approximately less than 0.5). For higher aerosol loadings, the bias remains within OMI's AOD uncertainties. In pixels where OMAERUV assigned a dust aerosol model, a fraction of them (less than 20 %) had retrieved AODs significantly lower than AERONET and MODIS AODs. In a case study, a detailed examination of the aerosol height from CALIOP and the AODs from MODIS, along with sensitivity tests, was carried out by varying the different assumed parameters in the retrieval (imaginary index of refraction, size distribution, aerosol height, particle shape). It was found that the spherical shape assumption for dust in the current retrieval is the main cause of the underestimate. In addition, it is demonstrated in an example how an incorrect assumption of the aerosol height can lead to an underestimate. Nevertheless, this is not as significant as the effect of particle shape. These findings will be incorporated in a future version of the retrieval algorithm.
Ocean observations with EOS/MODIS: Algorithm development and post launch studies
NASA Technical Reports Server (NTRS)
Gordon, Howard R.
1995-01-01
Several significant accomplishments were made during the present reporting period. (1) Initial simulations to understand the applicability of the MODerate Resolution Imaging Spectrometer (MODIS) 1380 nm band for removing the effects of stratospheric aerosols and thin cirrus clouds were completed using a model for an aged volcanic aerosol. The results suggest that very simple procedures requiring no a priori knowledge of the optical properties of the stratospheric aerosol may be as effective as complex procedures requiring full knowledge of the aerosol properties, except the concentration which is estimated from the reflectance at 1380 nm. The limitations of this conclusion will be examined in the next reporting period; (2) The lookup tables employed in the implementation of the atmospheric correction algorithm have been modified in several ways intended to improve the accuracy and/or speed of processing. These have been delivered to R. Evans for implementation into the MODIS prototype processing algorithm for testing; (3) A method was developed for removal of the effects of the O2 'A' absorption band from SeaWiFS band 7 (745-785 nm). This is important in that SeaWiFS imagery will be used as a test data set for the MODIS atmospheric correction algorithm over the oceans; and (4) Construction of a radiometer, and associated deployment boom, for studying the spectral reflectance of oceanic whitecaps at sea was completed. The system was successfully tested on a cruise off Hawaii on which whitecaps were plentiful during October-November. This data set is now under analysis.
Evaluation of the MODIS Aerosol Retrievals over Ocean and Land during CLAMS.
NASA Astrophysics Data System (ADS)
Levy, R. C.; Remer, L. A.; Martins, J. V.; Kaufman, Y. J.; Plana-Fattori, A.; Redemann, J.; Wenny, B.
2005-04-01
The Chesapeake Lighthouse Aircraft Measurements for Satellites (CLAMS) experiment took place from 10 July to 2 August 2001 in a combined ocean-land region that included the Chesapeake Lighthouse [Clouds and the Earth's Radiant Energy System (CERES) Ocean Validation Experiment (COVE)] and the Wallops Flight Facility (WFF), both along coastal Virginia. This experiment was designed mainly for validating instruments and algorithms aboard the Terra satellite platform, including the Moderate Resolution Imaging Spectroradiometer (MODIS). Over the ocean, MODIS retrieved aerosol optical depths (AODs) at seven wavelengths and an estimate of the aerosol size distribution. Over the land, MODIS retrieved AOD at three wavelengths plus qualitative estimates of the aerosol size. Temporally coincident measurements of aerosol properties were made with a variety of sun photometers from ground sites and airborne sites just above the surface. The set of sun photometers provided unprecedented spectral coverage from visible (VIS) to the solar near-infrared (NIR) and infrared (IR) wavelengths. In this study, AOD and aerosol size retrieved from MODIS is compared with similar measurements from the sun photometers. Over the nearby ocean, the MODIS AOD in the VIS and NIR correlated well with sun-photometer measurements, nearly fitting a one-to-one line on a scatterplot. As one moves from ocean to land, there is a pronounced discontinuity of the MODIS AOD, where MODIS compares poorly to the sun-photometer measurements. Especially in the blue wavelength, MODIS AOD is too high in clean aerosol conditions and too low under larger aerosol loadings. Using the Second Simulation of the Satellite Signal in the Solar Spectrum (6S) radiative code to perform atmospheric correction, the authors find inconsistency in the surface albedo assumptions used by the MODIS lookup tables. It is demonstrated how the high bias at low aerosol loadings can be corrected. By using updated urban/industrial aerosol climatology for the MODIS lookup table over land, it is shown that the low bias for larger aerosol loadings can also be corrected. Understanding and improving MODIS retrievals over the East Coast may point to strategies for correction in other locations, thus improving the global quality of MODIS. Improvements in regional aerosol detection could also lead to the use of MODIS for monitoring air pollution.
NASA Technical Reports Server (NTRS)
Sherman, James P.; Gupta, Pawan; Levy, Robert C.; Sherman, Peter J.
2016-01-01
The literature shows that aerosol optical depth (AOD) derived from the MODIS Collection 5 (C5) dark target algorithm has been extensively validated by spatiotemporal collocation with AERONET sites on both global and regional scales.Although generally comparing well over the eastern US region, poor performance over mountains in other regions indicate the need to evaluate the MODIS product over a mountain site. This study compares MODIS C5 AOD at 550nm to AOD measured at the Appalachian State University AERONET site in Boone, NC over 30 months between August 2010 and September 2013. For the combined Aqua and Terra datasets, although more than 70% of the 500 MODIS AOD measurements agree with collocated AERONET AOD to within error envelope of +/- (0.05 + 15%), MODIS tends to have a low bias (0.02-0.03). The agreement between MODIS and AERONET AOD does not depend on MODIS quality assurance confidence (QAC) value. However, when stratified by satellite, MODIS-Terra data does not perform as well as Aqua, with especially poor correlation (r = 0.39) for low aerosol loading conditions (AERONET AOD less than 0.15).Linear regressions between Terra and AERONET possess statistically-different slopes for AOD < 0.15 and AOD > or = 0.15. AERONET AOD measured only during MODIS overpass hours is highly correlated with daily-averaged AERONET AOD. MODIS monthly-averaged AOD also tracks that of AERONET over the study period. These results indicate that MODIS is sensitive to the day-to-day variability, as well as the annual cycle of AOD over the Appalachian State AERONET site. The complex topography and high seasonality in AOD and vegetation indices allow us to specifically evaluate MODIS dark target algorithm surface albedo and aerosol model assumptions at a regionally-representative SE US mountain site.
Retrieval of Aerosol Properties from MODIS Terra, MODIS Aqua, and VIIRS SNPP: Calibration Focus
NASA Technical Reports Server (NTRS)
Levy, Robert C.; Mattoo, Shana; Sawyer, Virginia; Kleidman, Richard; Patadia, Falguni; Zhou, Yaping; Gupta, Pawan; Shi, Yingxi; Remer, Lorraine; Holz, Robert
2016-01-01
MODIS-DT Collection 6 - Aqua/Terra level 2, 3; entire record processed - "Trending" issues reduced - Still a 15% or 0.02 Terra vs Aqua offset. - Terra/Aqua convergence improved with C6+, but bias remains. - Other calibration efforts yield mixed results. VIIRS--DT in development - VIIRS is similar, yet different then MODIS - With 50% wider swath, VIIRS has daily coverage - Ensures algorithm consistency with MODIS. - Currently: 20% NPP vs Aqua offset over ocean. - Only small bias (%) over land (2012--2016) - Can VIIRS/MODIS create aerosol CDR? Calibration for MODIS - VIIRS continues to fundamentally important. It's not just Terra, or just Aqua, or just NPP--VIIRS, I really want to push synergistic calibration.
Next Generation of Air Quality Measurements from Geo Orbits: Breaking The Temporal Barrier
NASA Astrophysics Data System (ADS)
Gupta, P.; Levy, R. C.; Mattoo, S.; Remer, L.; Heidinger, A.
2017-12-01
NASA's dark target (DT) aerosol algorithm provides operational retrieval of atmospheric aerosols from multiple polar orbiting satellites. The DT algorithm, initially developed for MODIS observations, has been continuously improved since the first MODIS launch in early 2000. Now, we are adapting the DT algorithm to retrieve on new-generation geostationary (GEO) sensors, including the Advanced Himawari Imager (AHI) on Japan's Himawari-8 (H8) satellite and Advanced Baseline Imager (ABI) on NOAA's GOES-16 (or GOES-R). H8 is a weather geostationary satellite operating since July 2015, and AHI observes earth-atmosphere system over the Asia-Pacific region at spatial resolutions of 1km or less. GOES-R is launched in Nov 2016 and provides high temporal resolution observations over Americas. With 16 spectral channels, including 7 bands that observe similar wavelengths as the MODIS bands used for DT aerosol retrieval. Most exciting, however, is that both ABI and AHI provides full disk observations every 10-15 minutes and zoom mode observations every 30 second to 2.5 minutes. Therefore, spectral, spatial and temporal resolution observations from these GEO satellites provide opportunity to monitor atmospheric aerosols in the region, plus a new capability to monitor aerosol transport and aerosol/cloud diurnal cycles. In this paper, we will introduce retrieval results from AHI using the DT algorithm during the KORUS-AQ field campaign during summer 2016. These results are evaluated against surface measurements (e.g. AERONET). . We will also discuss, its potential applications in monitoring diurnal cycles of urban pollution, smoke and dust in the region. The same DT algorithm will also be adapted to retrieve aerosol properties using GOES-16 over Americas.
NASA Technical Reports Server (NTRS)
Remer, Lorraine A.; Lau, William (Technical Monitor)
2002-01-01
The PRIDE data set of MODIS aerosol retrievals co-located with sunphotometer measurements provides the basis of MODIS validation in a dust environment. The sunphotometer measurements include AERONET automatic instruments, land-based Microtops instruments, ship-board Microtops instruments and the AATS-6 aboard the Navajo aircraft. Analysis of these data indicate that the MODIS retrieval is within pre-launch estimates of uncertainty within the spectral range of 600-900 nm. However, the MODIS algorithm consistently retrieves smaller particles than reality thus leading to incorrect spectral response outside of the 600-900 nm range and improper size information. Further analysis of MODIS retrievals in other dust environments shows the inconsistencies are due to nonspherical effects in the phase function. These data are used to develop an ambient phase function for dust aerosol to be used for remote sensing purposes.
Validation and Uncertainty Estimates for MODIS Collection 6 "Deep Blue" Aerosol Data
NASA Technical Reports Server (NTRS)
Sayer, A. M.; Hsu, N. C.; Bettenhausen, C.; Jeong, M.-J.
2013-01-01
The "Deep Blue" aerosol optical depth (AOD) retrieval algorithm was introduced in Collection 5 of the Moderate Resolution Imaging Spectroradiometer (MODIS) product suite, and complemented the existing "Dark Target" land and ocean algorithms by retrieving AOD over bright arid land surfaces, such as deserts. The forthcoming Collection 6 of MODIS products will include a "second generation" Deep Blue algorithm, expanding coverage to all cloud-free and snow-free land surfaces. The Deep Blue dataset will also provide an estimate of the absolute uncertainty on AOD at 550 nm for each retrieval. This study describes the validation of Deep Blue Collection 6 AOD at 550 nm (Tau(sub M)) from MODIS Aqua against Aerosol Robotic Network (AERONET) data from 60 sites to quantify these uncertainties. The highest quality (denoted quality assurance flag value 3) data are shown to have an absolute uncertainty of approximately (0.086+0.56Tau(sub M))/AMF, where AMF is the geometric air mass factor. For a typical AMF of 2.8, this is approximately 0.03+0.20Tau(sub M), comparable in quality to other satellite AOD datasets. Regional variability of retrieval performance and comparisons against Collection 5 results are also discussed.
Global Aerosol Remote Sensing from MODIS
NASA Technical Reports Server (NTRS)
Ichoku, Charles; Kaufman, Yoram J.; Remer, Lorraine A.; Chu, D. Allen; Mattoo, Shana; Tanre, Didier; Levy, Robert; Li, Rong-Rong; Martins, Jose V.; Lau, William K. M. (Technical Monitor)
2002-01-01
The physical characteristics, composition, abundance, spatial distribution and dynamics of global aerosols are still very poorly known, and new data from satellite sensors have long been awaited to improve current understanding and to give a boost to the effort in future climate predictions. The derivation of aerosol parameters from the MODerate resolution Imaging Spectro-radiometer (MODIS) sensors aboard the Earth Observing System (EOS) Terra and Aqua polar-orbiting satellites ushers in a new era in aerosol remote sensing from space. Terra and Aqua were launched on December 18, 1999 and May 4, 2002 respectively, with daytime equator crossing times of approximately 10:30 am and 1:30 pm respectively. Several aerosol parameters are retrieved at 10-km spatial resolution (level 2) from MODIS daytime data. The MODIS aerosol algorithm employs different approaches to retrieve parameters over land and ocean surfaces, because of the inherent differences in the solar spectral radiance interaction with these surfaces. The parameters retrieved include: aerosol optical thickness (AOT) at 0.47, 0.55 and 0.66 micron wavelengths over land, and at 0.47, 0.55, 0.66, 0.87, 1.2, 1.6, and 2.1 micron over ocean; Angstrom exponent over land and ocean; and effective radii, and the proportion of AOT contributed by the small mode aerosols over ocean. To ensure the quality of these parameters, a substantial part of the Terra-MODIS aerosol products were validated globally and regionally, based on cross correlation with corresponding parameters derived from ground-based measurements from AERONET (AErosol RObotic NETwork) sun photometers. Similar validation efforts are planned for the Aqua-MODIS aerosol products. The MODIS level 2 aerosol products are operationally aggregated to generate global daily, eight-day (weekly), and monthly products at one-degree spatial resolution (level 3). MODIS aerosol data are used for the detailed study of local, regional, and global aerosol concentration, distribution, and temporal dynamics, as well as for radiative forcing calculations. We show several examples of these results and comparisons with model output.
NASA Technical Reports Server (NTRS)
Kaufman, Yoram J.; Tanre, Didier; Remer, Lorraine; Martins, Vanderlei; Schoeberl, Mark; Lau, William K. M. (Technical Monitor)
2001-01-01
The MODIS instrument was launched on the NASA Terra satellite in Dec. 1999. Since last Oct, the sensor and the aerosol algorithm reached maturity and provide global daily retrievals of aerosol optical thickness and properties. MODIS has 36 spectral channels in the visible to IR with resolution down to 250 m. This allows accurate cloud screening and multi-spectral aerosol retrievals. We derive the aerosol optical thickness over the ocean and most of the land areas, distinguishing between fine (mainly man-made aerosol) and coarse (mainly natural) aerosol particles. New methods to derive the aerosol absorption of sunlight are also being developed. These measurements are use to track different aerosol sources, transport and the radiative forcing at the top and bottom of the atmosphere. However MODIS or any present satellite sensor cannot measure absorption by Black Carbon over the oceans, a critical component in studying climate change and human health. For this purpose we propose the COBRA mission that observes the ocean at glint and off glint simultaneously measuring the spectral polarized light and deriving precisely the aerosol absorption.
10 Years of Asian Dust Storm Observations from SeaWiFS: Source, Pathway, and Interannual Variability
NASA Technical Reports Server (NTRS)
Hsu, N. Christina; Tsay, S.-C.; King, M.D.; Jeong, M.-J.
2008-01-01
In this paper, we will demonstrate the capability of a new satellite algorithm to retrieve aerosol optical thickness and single scattering albedo over bright-reflecting surfaces such as urban areas and deserts. Such retrievals have been difficult to perform using previously available algorithms that use wavelengths from the mid-visible to the near IR because they have trouble separating the aerosol signal from the contribution due to the bright surface reflectance. The new algorithm, called Deep Blue, utilizes blue-wavelength measurements from instruments such as SeaWiFS and MODIS to infer the properties of aerosols, since the surface reflectance over land in the blue part of the spectrum is much lower than for longer wavelength channels. We have validated the satellite retrieved aerosol optical thickness with data from AERONET sunphotometers over desert and semi-desert regions. The comparisons show reasonable agreements between these two. These new satellite products will allow scientists to determine quantitatively the aerosol properties near sources using high spatial resolution measurements from SeaWiFS and MODIS-like instruments. The multiyear satellite measurements (1998 - 2007) from SeaWiFS will be utilized to investigate the interannual variability of source, pathway, and dust loading associated with these dust outbreaks in East Asia. The monthly averaged aerosol optical thickness during the springtime from SeaWiFS will also be compared with the MODIS Deep Blue products.
An algorithm for estimating aerosol optical depth from HIMAWARI-8 data over Ocean
NASA Astrophysics Data System (ADS)
Lee, Kwon Ho
2016-04-01
The paper presents currently developing algorithm for aerosol detection and retrieval over ocean for the next generation geostationary satellite, HIMAWARI-8. Enhanced geostationary remote sensing observations are now enables for aerosol retrieval of dust, smoke, and ash, which began a new era of geostationary aerosol observations. Sixteen channels of the Advanced HIMAWARI Imager (AHI) onboard HIMAWARI-8 offer capabilities for aerosol remote sensing similar to those currently provided by the Moderate Resolution Imaging Spectroradiometer (MODIS). Aerosols were estimated in detection processing from visible and infrared channel radiances, and in retrieval processing using the inversion-optimization of satellite-observed radiances with those calculated from radiative transfer model. The retrievals are performed operationally every ten minutes for pixel sizes of ~8 km. The algorithm currently under development uses a multichannel approach to estimate the effective radius, aerosol optical depth (AOD) simultaneously. The instantaneous retrieved AOD is evaluated by the MODIS level 2 operational aerosol products (C006), and the daily retrieved AOD was compared with ground-based measurements from the AERONET databases. The results show that the detection of aerosol and estimated AOD are in good agreement with the MODIS data and ground measurements with a correlation coefficient of ˜0.90 and a bias of 4%. These results suggest that the proposed method applied to the HIMAWARI-8 satellite data can accurately estimate continuous AOD. Acknowledgments This work was supported by "Development of Geostationary Meteorological Satellite Ground Segment(NMSC-2014-01)" program funded by National Meteorological Satellite Centre(NMSC) of Korea Meteorological Administration(KMA).
NASA Astrophysics Data System (ADS)
Levitan, Nathaniel; Gross, Barry
2016-10-01
New, high-resolution aerosol products are required in urban areas to improve the spatial coverage of the products, in terms of both resolution and retrieval frequency. These new products will improve our understanding of the spatial variability of aerosols in urban areas and will be useful in the detection of localized aerosol emissions. Urban aerosol retrieval is challenging for existing algorithms because of the high spatial variability of the surface reflectance, indicating the need for improved urban surface reflectance models. This problem can be stated in the language of novelty detection as the problem of selecting aerosol parameters whose effective surface reflectance spectrum is not an outlier in some space. In this paper, empirical orthogonal functions, a reconstruction-based novelty detection technique, is used to perform single-pixel aerosol retrieval using the single angular and temporal sample provided by the MODIS sensor. The empirical orthogonal basis functions are trained for different land classes using the MODIS BRDF MCD43 product. Existing land classification products are used in training and aerosol retrieval. The retrieval is compared against the existing operational MODIS 3 KM Dark Target (DT) aerosol product and co-located AERONET data. Based on the comparison, our method allows for a significant increase in retrieval frequency and a moderate decrease in the known biases of MODIS urban aerosol retrievals.
A sea surface reflectance model for (A)ATSR, and application to aerosol retrievals
NASA Astrophysics Data System (ADS)
Sayer, A. M.; Thomas, G. E.; Grainger, R. G.
2010-07-01
A model of the sea surface bidirectional reflectance distribution function (BRDF) is presented for the visible and near-IR channels (over the spectral range 550 nm to 1.6 μm) of the dual-viewing Along-Track Scanning Radiometers (ATSRs). The intended application is as part of the Oxford-RAL Aerosols and Clouds (ORAC) retrieval scheme. The model accounts for contributions to the observed reflectance from whitecaps, sun-glint and underlight. Uncertainties in the parametrisations used in the BRDF model are propagated through into the forward model and retrieved state. The new BRDF model offers improved coverage over previous methods, as retrievals are possible into the sun-glint region, through the ATSR dual-viewing system. The new model has been applied in the ORAC aerosol retrieval algorithm to process Advanced ATSR (AATSR) data from September 2004 over the south-eastern Pacific. The assumed error budget is shown to be generally appropriate, meaning the retrieved states are consistent with the measurements and a priori assumptions. The resulting field of aerosol optical depth (AOD) is compared with colocated MODIS-Terra observations, AERONET observations at Tahiti, and cruises over the oceanic region. MODIS and AATSR show similar spatial distributions of AOD, although MODIS reports values which are larger and more variable. It is suggested that assumptions in the MODIS aerosol retrieval algorithm may lead to a positive bias in MODIS AOD of order 0.01 at 550 nm over ocean regions where the wind speed is high.
A sea surface reflectance model for (A)ATSR, and application to aerosol retrievals
NASA Astrophysics Data System (ADS)
Sayer, A. M.; Thomas, G. E.; Grainger, R. G.
2010-03-01
A model of the sea surface bidirectional reflectance distribution function (BRDF) is presented for the visible and near-IR channels (over the spectral range 550 nm to 1.6 μm) of the dual-viewing Along-Track Scanning Radiometers (ATSRs). The intended application is as part of the Oxford-RAL Aerosols and Clouds (ORAC) retrieval scheme. The model accounts for contributions to the observed reflectance from whitecaps, sun-glint and underlight. Uncertainties in the parametrisations used in the BRDF model are propagated through into the forward model and retrieved state. The new BRDF model offers improved coverage over previous methods, as retrievals are possible into the sun-glint region, through the ATSR dual-viewing system. The new model has been applied in the ORAC aerosol retrieval algorithm to process Advanced ATSR (AATSR) data from September 2004 over the south-eastern Pacific. The assumed error budget is shown to be generally appropriate, meaning the retrieved states are consistent with the measurements and a priori assumptions. The resulting field of aerosol optical depth (AOD) is compared with colocated MODIS-Terra observations, AERONET observations at Tahiti, and cruises over the oceanic region. MODIS and AATSR show similar spatial distributions of AOD, although MODIS reports values which are larger and more variable. It is suggested that assumptions in the MODIS aerosol retrieval algorithm may lead to a positive bias in MODIS AOD of order 0.01 at 550 nm over ocean regions where the wind speed is high.
Ocean observations with EOS/MODIS: Algorithm development and post launch studies
NASA Technical Reports Server (NTRS)
Gordon, Howard R.
1995-01-01
An investigation of the influence of stratospheric aerosol on the performance of the atmospheric correction algorithm was carried out. The results indicate how the performance of the algorithm is degraded if the stratospheric aerosol is ignored. Use of the MODIS 1380 nm band to effect a correction for stratospheric aerosols was also studied. The development of a multi-layer Monte Carlo radiative transfer code that includes polarization by molecular and aerosol scattering and wind-induced sea surface roughness has been completed. Comparison tests with an existing two-layer successive order of scattering code suggests that both codes are capable of producing top-of-atmosphere radiances with errors usually less than 0.1 percent. An initial set of simulations to study the effects of ignoring the polarization of the the ocean-atmosphere light field, in both the development of the atmospheric correction algorithm and the generation of the lookup tables used for operation of the algorithm, have been completed. An algorithm was developed that can be used to invert the radiance exiting the top and bottom of the atmosphere to yield the columnar optical properties of the atmospheric aerosol under clear sky conditions over the ocean, for aerosol optical thicknesses as large as 2. The algorithm is capable of retrievals with such large optical thicknesses because all significant orders of multiple scattering are included.
MODIS-VIIRS Intercalibration for Dark Target Aerosol Retrieval Over Ocean
NASA Astrophysics Data System (ADS)
Sawyer, V. R.; Levy, R. C.; Mattoo, S.; Quinn, G.; Veglio, P.
2016-12-01
Any future climate record for satellite aerosol retrieval will require continuity over multiple decades, longer than the lifespan of an individual satellite instrument. The Dark Target algorithm was developed for MODIS, which began taking observations in 1999; the two MODIS instruments currently in orbit are not expected to continue taking observations beyond the early 2020s. However, the algorithm is portable, and a Dark Target product for VIIRS is scheduled for release December 2016. Because MODIS and VIIRS operate at different wavelengths, resolutions, fields of view and orbital timing, the transition can introduce artifacts that must be corrected. Without these corrections, it will be difficult to find any changes that may occur in the global aerosol climate record over time periods that span the transition from MODIS to VIIRS retrievals. The University of Wisconsin-Madison SIPS team found thousands of matches between 2012 and 2016 in which Aqua-MODIS and Suomi-NPP VIIRS observe the same location at similar times and view angles. These matched cases are used to identify corresponding matches in the Intermediate File Format (IFF) aerosol retrievals for MODIS and VIIRS, which are compared to one another in turn. Because most known sources of disagreement between the two instruments have already been corrected during the IFF retrieval, the direct comparison between near-collocated cases shows only the differences that remain at local and regional scales. The comparison is further restricted to clear-sky cases over ocean, so that the investigation of seasonal, diurnal and geographic variation is not affected by uncertainties in the land surface or cloud contamination.
NASA Technical Reports Server (NTRS)
Zhu, Jun; Xia, Xiangao; Wang, Jun; Che, Huizheng; Chen, Hongbin; Zhang, Jinqiang; Xu, Xiaoguang; Levy, Robert; Oo, Min; Holz, Robert;
2017-01-01
The first Visible Infrared Imaging Radiometer Suite (VIIRS) was launched on Suomi National Polar-orbiting Partnership (S-NPP) satellite in late 2011. Similar to the Moderate resolution Imaging Spectroradiometer (MODIS), VIIRS observes top-of-atmosphere spectral reflectance and is potentially suitable for retrieval of the aerosol optical depth (AOD). The VIIRS Environmental Data Record data (VIIRS_EDR) is produced operationally by NOAA, and is based on the MODIS atmospheric correction algorithm. The MODIS-like VIIRS data (VIIRS_ML) are being produced experimentally at NASA, from a version of the dark-target algorithm that is applied to MODIS. In this study, the AOD and aerosol model types from these two VIIRS retrieval algorithms over the North China Plain (NCP) are evaluated using the ground-based CE318 Sunphotometer (CE318) measurements during 2 May 2012-31 March 2014 at three sites. These sites represent three different surface types: urban (Beijing), suburban (XiangHe) and rural (Xinglong). Firstly, we evaluate the retrieved spectral AOD. For the three sites, VIIRS_EDR AOD at 550 nm shows a positive mean bias (MB) of 0.04-0.06 and the correlation of 0.83-0.86, with the largest MB (0.10-0.15) observed in Beijing. In contrast, VIIRS_ML AOD at 550 nm has overall higher positive MB of 0.13-0.14 and a higher correlation (0.93-0.94) with CE318 AOD. Secondly, we evaluate the aerosol model types assumed by each algorithm, as well as the aerosol optical properties used in the AOD retrievals. The aerosol model used in VIIRS_EDR algorithm shows that dust and clean urban models were the dominant model types during the evaluation period. The overall accuracy rate of the aerosol model used in VIIRS_ML over NCP three sites (0.48) is higher than that of VIIRS_EDR (0.27). The differences in Single Scattering Albedo (SSA) at 670 nm between VIIRS_ML and CE318 are mostly less than 0.015, but high seasonal differences are found especially over the Xinglong site. The values of SSA from VIIRS_EDR are higher than that observed by CE318 over all sites and all assumed aerosol modes, with a positive bias of 0.02-0.04 for fine mode, 0.06-0.12 for coarse mode and 0.03-0.05 for bi-mode at 440nm. The overestimation of SSA but positive AOD MB of VIIRS_EDR indicate that other factors (e.g. surface reflectance characterization or cloud contamination) are important sources of error in the VIIRS_EDR algorithm, and their effects on aerosol retrievals may override the effects from non-ideality in these aerosol models.
Zhu, Jun; Xia, Xiangao; Wang, Jun; Che, Huizheng; Chen, Hongbin; Zhang, Jinqiang; Xu, Xiaoguang; Levy, Robert; Oo, Min; Holz, Robert; Ayoub, Mohammed
2017-01-01
The first Visible Infrared Imaging Radiometer Suite (VIIRS) was launched on Suomi National Polar-orbiting Partnership (S-NPP) satellite in late 2011. Similar to the Moderate resolution Imaging Spectroradiometer (MODIS), VIIRS observes top-of-atmosphere spectral reflectance and is potentially suitable for retrieval of the aerosol optical depth (AOD). The VIIRS Environmental Data Record data (VIIRS_EDR) is produced operationally by NOAA, and is based on the MODIS atmospheric correction algorithm. The "MODIS-like" VIIRS data (VIIRS_ML) are being produced experimentally at NASA, from a version of the "dark-target" algorithm that is applied to MODIS. In this study, the AOD and aerosol model types from these two VIIRS retrieval algorithms over the North China Plain (NCP) are evaluated using the ground-based CE318 Sunphotometer (CE318) measurements during 2 May 2012 - 31 March 2014 at three sites. These sites represent three different surface types: urban (Beijing), suburban (XiangHe) and rural (Xinglong). Firstly, we evaluate the retrieved spectral AOD. For the three sites, VIIRS_EDR AOD at 550 nm shows a positive mean bias (MB) of 0.04-0.06 and the correlation of 0.83-0.86, with the largest MB (0.10-0.15) observed in Beijing. In contrast, VIIRS_ML AOD at 550 nm has overall higher positive MB of 0.13-0.14 and a higher correlation (0.93-0.94) with CE318 AOD. Secondly, we evaluate the aerosol model types assumed by each algorithm, as well as the aerosol optical properties used in the AOD retrievals. The aerosol model used in VIIRS_EDR algorithm shows that dust and clean urban models were the dominant model types during the evaluation period. The overall accuracy rate of the aerosol model used in VIIRS_ML over NCP three sites (0.48) is higher than that of VIIRS_EDR (0.27). The differences in Single Scattering Albedo (SSA) at 670 nm between VIIRS_ML and CE318 are mostly less than 0.015, but high seasonal differences are found especially over the Xinglong site. The values of SSA from VIIRS_EDR are higher than that observed by CE318 over all sites and all assumed aerosol modes, with a positive bias of 0.02-0.04 for fine mode, 0.06-0.12 for coarse mode and 0.03-0.05 for bi-mode at 440nm. The overestimation of SSA but positive AOD MB of VIIRS_EDR indicate that other factors (e.g. surface reflectance characterization or cloud contamination) are important sources of error in the VIIRS_EDR algorithm, and their effects on aerosol retrievals may override the effects from non-ideality in these aerosol models.
Discrimination of Biomass Burning Smoke and Clouds in MAIAC Algorithm
NASA Technical Reports Server (NTRS)
Lyapustin, A.; Korkin, S.; Wang, Y.; Quayle, B.; Laszlo, I.
2012-01-01
The multi-angle implementation of atmospheric correction (MAIAC) algorithm makes aerosol retrievals from MODIS data at 1 km resolution providing information about the fine scale aerosol variability. This information is required in different applications such as urban air quality analysis, aerosol source identification etc. The quality of high resolution aerosol data is directly linked to the quality of cloud mask, in particular detection of small (sub-pixel) and low clouds. This work continues research in this direction, describing a technique to detect small clouds and introducing the smoke test to discriminate the biomass burning smoke from the clouds. The smoke test relies on a relative increase of aerosol absorption at MODIS wavelength 0.412 micrometers as compared to 0.47-0.67 micrometers due to multiple scattering and enhanced absorption by organic carbon released during combustion. This general principle has been successfully used in the OMI detection of absorbing aerosols based on UV measurements. This paper provides the algorithm detail and illustrates its performance on two examples of wildfires in US Pacific North-West and in Georgia/Florida of 2007.
Adapting MODIS Dust Mask Algorithm to Suomi NPP VIIRS for Air Quality Applications
NASA Astrophysics Data System (ADS)
Ciren, P.; Liu, H.; Kondragunta, S.; Laszlo, I.
2012-12-01
Despite pollution reduction control strategies enforced by the Environmental Protection Agency (EPA), large regions of the United States are often under exceptional events such as biomass burning and dust outbreaks that lead to non-attainment of particulate matter standards. This has warranted the National Weather Service (NWS) to provide smoke and dust forecast guidance to the general public. The monitoring and forecasting of dust outbreaks relies on satellite data. Currently, Aqua/MODIS (MODerate resolution Imaging Spectrometer) and Terra/MODIS provide measurements needed to derive dust mask and Aerosol Optical Thickness (AOT) products. The newly launched Suomi NPP VIIRS (Visible/Infrared Imaging Radiometer Suite) instrument has a Suspended Matter (SM) product that indicates the presence of dust, smoke, volcanic ash, sea salt, and unknown aerosol types in a given pixel. The algorithm to identify dust is different over land and ocean but for both, the information comes from AOT retrieval algorithm. Over land, the selection of dust aerosol model in the AOT retrieval algorithm indicates the presence of dust and over ocean a fine mode fraction smaller than 20% indicates dust. Preliminary comparisons of VIIRS SM to CALIPSO Vertical Feature Mask (VFM) aerosol type product indicate that the Probability of Detection (POD) is at ~10% and the product is not mature for operational use. As an alternate approach, NESDIS dust mask algorithm developed for NWS dust forecast verification that uses MODIS deep blue, visible, and mid-IR channels using spectral differencing techniques and spatial variability tests was applied to VIIRS radiances. This algorithm relies on the spectral contrast of dust absorption at 412 and 440 nm and an increase in reflectivity at 2.13 μm when dust is present in the atmosphere compared to a clear sky. To avoid detecting bright desert surface as airborne dust, the algorithm uses the reflectances at 1.24 μm and 2.25 μm to flag bright pixels. The algorithm flags pixels that fall into the glint region so sun glint is not picked up as dust. The algorithm also has a spatial variability test that uses reflectances at 0.86 μm to screen for clouds over water. Analysis of one granule for a known dust event on May 2, 2012 shows that the agreement between VIIRS and MODIS is 82% and VIIRS and CALIPSO is 71%. The probability of detection for VIIRS when compared to MODIS and CALIPSO is 53% and 45% respectively whereas the false alarm ratio for VIIRS when compared to MODIS and CALIPSO is 20% and 37% respectively. The algorithm details, results from the test cases, and the use of the dust flag product in NWS applications will be presented.
NASA Astrophysics Data System (ADS)
Patadia, Falguni; Levy, Robert C.; Mattoo, Shana
2018-06-01
Retrieving aerosol optical depth (AOD) from top-of-atmosphere (TOA) satellite-measured radiance requires separating the aerosol signal from the total observed signal. Total TOA radiance includes signal from the underlying surface and from atmospheric constituents such as aerosols, clouds and gases. Multispectral retrieval algorithms, such as the dark-target (DT) algorithm that operates upon the Moderate Resolution Imaging Spectroradiometer (MODIS, on board Terra and Aqua satellites) and Visible Infrared Imaging Radiometer Suite (VIIRS, on board Suomi-NPP) sensors, use wavelength bands in window
regions. However, while small, the gas absorptions in these bands are non-negligible and require correction. In this paper, we use the High-resolution TRANsmission (HITRAN) database and Line-By-Line Radiative Transfer Model (LBLRTM) to derive consistent gas corrections for both MODIS and VIIRS wavelength bands. Absorptions from H2O, CO2 and O3 are considered, as well as other trace gases. Even though MODIS and VIIRS bands are similar
, they are different enough that applying MODIS-specific gas corrections to VIIRS observations results in an underestimate of global mean AOD (by 0.01), but with much larger regional AOD biases of up to 0.07. As recent studies have been attempting to create a long-term data record by joining multiple satellite data sets, including MODIS and VIIRS, the consistency of gas correction has become even more crucial.
Consistency of two global MODIS aerosol products over ocean on Terra and Aqua CERES SSF datasets
NASA Astrophysics Data System (ADS)
Ignatov, Alexander; Minnis, Patrick; Wielicki, Bruce; Loeb, Norman G.; Remer, Lorraine A.; Kaufman, Yoram J.; Miller, Walter F.; Sun-Mack, Sunny; Laszlo, Istvan; Geier, Erika B.
2004-12-01
MODIS aerosol retrievals over ocean from Terra and Aqua platforms are available from the Clouds and the Earth's Radiant Energy System (CERES) Single Scanner Footprint (SSF) datasets generated at NASA Langley Research Center (LaRC). Two aerosol products are reported side by side. The primary M product is generated by subsetting and remapping the multi-spectral (0.44 - 2.1 μm) MOD04 aerosols onto CERES footprints. MOD04 processing uses cloud screening and aerosol algorithms developed by the MODIS science team. The secondary (AVHRR-like) A product is generated in only two MODIS bands: 1 and 6 on Terra, and ` and 7 on Aqua. The A processing uses NASA/LaRC cloud-screening and NOAA/NESDIS single channel aerosol algorthm. The M and A products have been documented elsewhere and preliminarily compared using two weeks of global Terra CERES SSF (Edition 1A) data in December 2000 and June 2001. In this study, the M and A aerosol optical depths (AOD) in MODIS band 1 and (0.64 μm), τ1M and τ1A, are further checked for cross-platform consistency using 9 days of global Terra CERES SSF (Edition 2A) and Aqua CERES SSF (Edition 1A) data from 13 - 21 October 2002.
MODIS Aerosol Optical Depth retrieval over land considering surface BRDF effects
NASA Astrophysics Data System (ADS)
Wu, Yerong; de Graaf, Martin; Menenti, Massimo
2016-04-01
Aerosols in the atmosphere play an important role in the climate system and human health. Retrieval from satellite data, Aerosol Optical Depth (AOD), one of most important indices of aerosol optical properties, has been extensively investigated. Benefiting from the high resolution at spatial and temporal and the maturity of the aerosol retrieval algorithm, MOderate Resolution Imaging Spectroradiometer (MODIS) Dark Target AOD product has been extensively applied in other scientific research such as climate change and air pollution. The latest product - MODIS Collection 6 Dark Target AOD (C6_DT) has been released. However, the accuracy of C6_DT AOD (global mean ±0.03) over land is still too low for the constraint on radiative forcing in the climate system, where the uncertainty should be reduced to ±0.02. The major uncertainty mainly lies on the underestimation/overestimation of the surface contribution to the Top Of Atmosphere (TOA) radiance since a lambertian surface is assumed in the C6_DT land algorithm. In the real world, it requires considering the heterogeneity of the surface reflection in the radiative transfer process. Based on this, we developed a new algorithm to retrieve AOD by considering surface Bidirectional Reflectance Distribution Function (BRDF) effects. The surface BRDF is much more complicated than isotropic reflection, described as 4 elements: directional-directional, directional-hemispherical, hemispherical-directional and hemispherical-hemispherical reflectance, and coupled into radiative transfer equation to generate an accurate top of atmosphere reflectance. The limited MODIS measurements (three channels available) allow us to retrieve only three parameters, which including AOD, the surface directional-directional reflectance and fine aerosol ratio η. The other three elements of the surface reflectance are expected to be constrained by ancillary data and assumptions or "a priori" information since there are more unknowns than MODIS measurements in our algorithm. We validated three case studies with AErosol Robotic NETwork (AERONET) AOD, and the results show that the AOD retrieval was improved compared to C6_DT AOD, with the increase of within expected accuracy ±(0.05 + 15%) by ranging from 2.7% to 7.5% for the best quality only (Quality Assurance =3), and from 5.8% to 9.5% for the marginal and better quality (Quality Assurance ≥ 1).
Using High-Resolution Airborne Remote Sensing to Study Aerosol Near Clouds
NASA Technical Reports Server (NTRS)
Levy, Robert; Munchak, Leigh; Mattoo, Shana; Marshak, Alexander; Wilcox, Eric; Gao, Lan; Yorks, John; Platnick, Steven
2016-01-01
The horizontal space in between clear and cloudy air is very complex. This so-called twilight zone includes activated aerosols that are not quite clouds, thin cloud fragments that are not easily observable, and dying clouds that have not quite disappeared. This is a huge challenge for satellite remote sensing, specifically for retrieval of aerosol properties. Identifying what is cloud versus what is not cloud is critically important for attributing radiative effects and forcings to aerosols. At the same time, the radiative interactions between clouds and the surrounding media (molecules, surface and aerosols themselves) will contaminate retrieval of aerosol properties, even in clear skies. Most studies on aerosol cloud interactions are relevant to moderate resolution imagery (e.g. 500 m) from sensors such as MODIS. Since standard aerosol retrieval algorithms tend to keep a distance (e.g. 1 km) from the nearest detected cloud, it is impossible to evaluate what happens closer to the cloud. During Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS), the NASA ER-2 flew with the enhanced MODIS Airborne Simulator (eMAS), providing MODIS-like spectral observations at high (50 m) spatial resolution. We have applied MODIS-like aerosol retrieval for the eMAS data, providing new detail to characterization of aerosol near clouds. Interpretation and evaluation of these eMAS aerosol retrievals is aided by independent MODIS-like cloud retrievals, as well as profiles from the co-flying Cloud Physics Lidar (CPL). Understanding aerosolcloud retrieval at high resolution will lead to better characterization and interpretation of long-term, global products from lower resolution (e.g.MODIS) satellite retrievals.
Retrieval of aerosol optical depth over bare soil surfaces using time series of MODIS imagery
NASA Astrophysics Data System (ADS)
Yuan, Zhengwu; Yuan, Ranyin; Zhong, Bo
2014-11-01
Aerosol Optical Depth (AOD) is one of the key parameters which can not only reflect the characterization of atmospheric turbidity, but also identify the climate effects of aerosol. The current MODIS aerosol estimation algorithm over land is based on the "dark-target" approach which works only over densely vegetated surfaces. For non-densely vegetated surfaces (such as snow/ice, desert, and bare soil surfaces), this method will be failed. In this study, we develop an algorithm to derive AOD over the bare soil surfaces. Firstly, this method uses the time series of MODIS imagery to detect the " clearest" observations during the non-growing season in multiple years for each pixel. Secondly, the "clearest" observations after suitable atmospheric correction are used to fit the bare soil's bidirectional reflectance distribution function (BRDF) using Kernel model. As long as the bare soil's BRDF is established, the surface reflectance of "hazy" observations can be simulated. Eventually, the AOD over the bare soil surfaces are derived. Preliminary validation results by comparing with the ground measurements from AERONET at Xianghe sites show a good agreement.
Bayesian aerosol retrieval algorithm for MODIS AOD retrieval over land
NASA Astrophysics Data System (ADS)
Lipponen, Antti; Mielonen, Tero; Pitkänen, Mikko R. A.; Levy, Robert C.; Sawyer, Virginia R.; Romakkaniemi, Sami; Kolehmainen, Ville; Arola, Antti
2018-03-01
We have developed a Bayesian aerosol retrieval (BAR) algorithm for the retrieval of aerosol optical depth (AOD) over land from the Moderate Resolution Imaging Spectroradiometer (MODIS). In the BAR algorithm, we simultaneously retrieve all dark land pixels in a granule, utilize spatial correlation models for the unknown aerosol parameters, use a statistical prior model for the surface reflectance, and take into account the uncertainties due to fixed aerosol models. The retrieved parameters are total AOD at 0.55 µm, fine-mode fraction (FMF), and surface reflectances at four different wavelengths (0.47, 0.55, 0.64, and 2.1 µm). The accuracy of the new algorithm is evaluated by comparing the AOD retrievals to Aerosol Robotic Network (AERONET) AOD. The results show that the BAR significantly improves the accuracy of AOD retrievals over the operational Dark Target (DT) algorithm. A reduction of about 29 % in the AOD root mean square error and decrease of about 80 % in the median bias of AOD were found globally when the BAR was used instead of the DT algorithm. Furthermore, the fraction of AOD retrievals inside the ±(0.05+15 %) expected error envelope increased from 55 to 76 %. In addition to retrieving the values of AOD, FMF, and surface reflectance, the BAR also gives pixel-level posterior uncertainty estimates for the retrieved parameters. The BAR algorithm always results in physical, non-negative AOD values, and the average computation time for a single granule was less than a minute on a modern personal computer.
NASA Astrophysics Data System (ADS)
Sayer, A. M.; Hsu, N. C.; Lee, J.; Bettenhausen, C.; Kim, W. V.; Smirnov, A.
2018-01-01
The Suomi National Polar-Orbiting Partnership (S-NPP) satellite, launched in late 2011, carries the Visible Infrared Imaging Radiometer Suite (VIIRS) and several other instruments. VIIRS has similar characteristics to prior satellite sensors used for aerosol optical depth (AOD) retrieval, allowing the continuation of space-based aerosol data records. The Deep Blue algorithm has previously been applied to retrieve AOD from Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and Moderate Resolution Imaging Spectroradiometer (MODIS) measurements over land. The SeaWiFS Deep Blue data set also included a SeaWiFS Ocean Aerosol Retrieval (SOAR) algorithm to cover water surfaces. As part of NASA's VIIRS data processing, Deep Blue is being applied to VIIRS data over land, and SOAR has been adapted from SeaWiFS to VIIRS for use over water surfaces. This study describes SOAR as applied in version 1 of NASA's S-NPP VIIRS Deep Blue data product suite. Several advances have been made since the SeaWiFS application, as well as changes to make use of the broader spectral range of VIIRS. A preliminary validation against Maritime Aerosol Network (MAN) measurements suggests a typical uncertainty on retrieved 550 nm AOD of order ±(0.03+10%), comparable to existing SeaWiFS/MODIS aerosol data products. Retrieved Ångström exponent and fine-mode AOD fraction are also well correlated with MAN data, with small biases and uncertainty similar to or better than SeaWiFS/MODIS products.
Validation of MODIS 3 km land aerosol optical depth from NASA's EOS Terra and Aqua missions
NASA Astrophysics Data System (ADS)
Gupta, Pawan; Remer, Lorraine A.; Levy, Robert C.; Mattoo, Shana
2018-05-01
In addition to the standard resolution product (10 km), the MODerate resolution Imaging Spectroradiometer (MODIS) Collection 6 (C006) data release included a higher resolution (3 km). Other than accommodations for the two different resolutions, the 10 and 3 km Dark Target (DT) algorithms are basically the same. In this study, we perform global validation of the higher-resolution aerosol optical depth (AOD) over global land by comparing against AErosol RObotic NETwork (AERONET) measurements. The MODIS-AERONET collocated data sets consist of 161 410 high-confidence AOD pairs from 2000 to 2015 for Terra MODIS and 2003 to 2015 for Aqua MODIS. We find that 62.5 and 68.4 % of AODs retrieved from Terra MODIS and Aqua MODIS, respectively, fall within previously published expected error bounds of ±(0.05 + 0.2 × AOD), with a high correlation (R = 0.87). The scatter is not random, but exhibits a mean positive bias of ˜ 0.06 for Terra and ˜ 0.03 for Aqua. These biases for the 3 km product are approximately 0.03 larger than the biases found in similar validations of the 10 km product. The validation results for the 3 km product did not have a relationship to aerosol loading (i.e., true AOD), but did exhibit dependence on quality flags, region, viewing geometry, and aerosol spatial variability. Time series of global MODIS-AERONET differences show that validation is not static, but has changed over the course of both sensors' lifetimes, with Terra MODIS showing more change over time. The likely cause of the change of validation over time is sensor degradation, but changes in the distribution of AERONET stations and differences in the global aerosol system itself could be contributing to the temporal variability of validation.
Atmospheric correction at AERONET locations: A new science and validation data set
Wang, Y.; Lyapustin, A.I.; Privette, J.L.; Morisette, J.T.; Holben, B.
2009-01-01
This paper describes an Aerosol Robotic Network (AERONET)-based Surface Reflectance Validation Network (ASRVN) and its data set of spectral surface bidirectional reflectance and albedo based on Moderate Resolution Imaging Spectroradiometer (MODIS) TERRA and AQUA data. The ASRVN is an operational data collection and processing system. It receives 50 ?? 50 km2; subsets of MODIS level 1B (L1B) data from MODIS adaptive processing system and AERONET aerosol and water-vapor information. Then, it performs an atmospheric correction (AC) for about 100 AERONET sites based on accurate radiative-transfer theory with complex quality control of the input data. The ASRVN processing software consists of an L1B data gridding algorithm, a new cloud-mask (CM) algorithm based on a time-series analysis, and an AC algorithm using ancillary AERONET aerosol and water-vapor data. The AC is achieved by fitting the MODIS top-of-atmosphere measurements, accumulated for a 16-day interval, with theoretical reflectance parameterized in terms of the coefficients of the Li SparseRoss Thick (LSRT) model of the bidirectional reflectance factor (BRF). The ASRVN takes several steps to ensure high quality of results: 1) the filtering of opaque clouds by a CM algorithm; 2) the development of an aerosol filter to filter residual semitransparent and subpixel clouds, as well as cases with high inhomogeneity of aerosols in the processing area; 3) imposing the requirement of the consistency of the new solution with previously retrieved BRF and albedo; 4) rapid adjustment of the 16-day retrieval to the surface changes using the last day of measurements; and 5) development of a seasonal backup spectral BRF database to increase data coverage. The ASRVN provides a gapless or near-gapless coverage for the processing area. The gaps, caused by clouds, are filled most naturally with the latest solution for a given pixel. The ASRVN products include three parameters of the LSRT model (kL, kG, and kV), surface albedo, normalized BRF (computed for a standard viewing geometry, VZA = 0, SZA = 45??), and instantaneous BRF (or one-angle BRF value derived from the last day of MODIS measurement for specific viewing geometry) for the MODIS 500-m bands 17. The results are produced daily at a resolution of 1 km in gridded format. We also provide a cloud mask, a quality flag, and a browse bitmap image. The ASRVN data set, including 6 years of MODIS TERRA and 1.5 years of MODIS AQUA data, is available now as a standard MODIS product (MODASRVN) which can be accessed through the Level 1 and Atmosphere Archive and Distribution System website ( http://ladsweb.nascom.nasa.gov/data/search.html). It can be used for a wide range of applications including validation analysis and science research. ?? 2006 IEEE.
Does the Madden-Julian Oscillation influence aerosol variability?
NASA Astrophysics Data System (ADS)
Tian, Baijun; Waliser, Duane E.; Kahn, Ralph A.; Li, Qinbin; Yung, Yuk L.; Tyranowski, Tomasz; Geogdzhayev, Igor V.; Mishchenko, Michael I.; Torres, Omar; Smirnov, Alexander
2008-06-01
We investigate the modulation of aerosols by the Madden-Julian Oscillation (MJO) using multiple, global satellite aerosol products: aerosol index (AI) from the Total Ozone Mapping Spectrometer (TOMS) on Nimbus-7, and aerosol optical thickness (AOT) from the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua and the Advanced Very High Resolution Radiometer (AVHRR) on NOAA satellites. A composite MJO analysis indicates that large variations in the TOMS AI and MODIS/AVHRR AOT are found over the equatorial Indian and western Pacific Oceans where MJO convection is active, as well as the tropical Africa and Atlantic Ocean where MJO convection is weak but the background aerosol level is high. A strong inverse linear relationship between the TOMS AI and rainfall anomalies, but a weaker, less coherent positive correlation between the MODIS/AVHRR AOT and rainfall anomalies, were found. The MODIS/AVHRR pattern is consistent with ground-based Aerosol Robotic Network data. These results indicate that the MJO and its associated cloudiness, rainfall, and circulation variability systematically influence the variability in remote sensing aerosol retrieval results. Several physical and retrieval algorithmic factors that may contribute to the observed aerosol-rainfall relationships are discussed. Preliminary analysis indicates that cloud contamination in the aerosol retrievals is likely to be a major contributor to the observed relationships, although we cannot exclude possible contributions from other physical mechanisms. Future research is needed to fully understand these complex aerosol-rainfall relationships.
NASA Astrophysics Data System (ADS)
Lee, S.; Sohn, B.
2008-12-01
Artificial Neural Network (ANN) on the East Asia domain (20°N-55°N, 90°E-145°E) during the springs of 2006 and 2007 was investigated for retrieving aerosol optical thickness (AOT) of dust aerosol at both daytime and nighttime. The input data for ANN include brightness temperature, BTD (11 μm - 12 μm), spectral emissivity, surface temperature (Land: Price [1984] Equation, Ocean: The IMAPP MODIS Algorithm), relative airmass of satellite, and topography (SRTM30). The D*-parameter is adopted as dust detection algorithm which was developed by Hansell et al [2007]. The target data of the ANN is corresponding AOT at 550nm obtained from MODIS aerosol product (MYD04). After optimization and training, ANN AOT is retrieved. Among the many dust episodes during the spring of 2006, only the 8 April 2006 case was selected for the detailed analysis. Because it is one of the strongest episodes and shows a well-developed root penetrating the Korean peninsula and reaching the Japanese area. It is shown that ANN AOT coincide well with MODIS AOT having correlation coefficient of 0.8502 when the training and applying periods are the same (spring of 2006). Even a different period with training ANN AOT has a good relationship with MODIS AOT with the correlation coefficient of 0.7766 (spring 2007). This yearly difference is resulted from vegetation change and fixed IGBP land cover map. Also notable is that ANN AOT is underestimated in most IGBP types having low slope and negative mean bias. This study showed that ANN model has a good potential to retrieve AOT. More examinations and trials are needed, however, to improve this ANN algorithm using IR bands. Also this model should be extended to specify the dust aerosol property from other aerosols and clouds to assure that it has a capability during both daytime and nighttime.
NASA Technical Reports Server (NTRS)
Kaufman, Yoram; Tanre, Didier; Remer, Lorraine; Holben, Brent; Lau, William K.-M. (Technical Monitor)
2001-01-01
The MODIS instrument was launched on the NASA Terra satellite in Dec. 1999. Since last Oct., the sensor and the aerosol algorithm reached maturity and provide global daily retrievals of aerosol optical thickness and properties. MODIS has 36 spectral channels in the visible to IR with resolution down to 250 m. This allows accurate cloud screening and multi-spectral aerosol retrievals. We derive the aerosol optical thickness over the ocean and most of the land areas, distinguishing between fine (mainly man-made aerosol) and coarse aerosol particles. The information is more precise over the ocean where we derive also the effective radius and scattering asymmetry parameter of the aerosol. New methods to derive the aerosol single scattering albedo are also being developed. These measurements are use to track different aerosol sources, transport and the radiative forcing at the top and bottom of the atmosphere. The AErosol RObotic NETwork of ground based radiometers is used for global validation of the satellite derived optical thickness, size parameters and single scattering albedo and measure additional aerosol parameters that cannot be derived from space.
The Collection 6 'dark-target' MODIS Aerosol Products
NASA Technical Reports Server (NTRS)
Levy, Robert C.; Mattoo, Shana; Munchak, Leigh A.; Kleidman, Richard G.; Patadia, Falguni; Gupta, Pawan; Remer, Lorraine
2013-01-01
Aerosol retrieval algorithms are applied to Moderate resolution Imaging Spectroradiometer (MODIS) sensors on both Terra and Aqua, creating two streams of decade-plus aerosol information. Products of aerosol optical depth (AOD) and aerosol size are used for many applications, but the primary concern is that these global products are comprehensive and consistent enough for use in climate studies. One of our major customers is the international modeling comparison study known as AEROCOM, which relies on the MODIS data as a benchmark. In order to keep up with the needs of AEROCOM and other MODIS data users, while utilizing new science and tools, we have improved the algorithms and products. The code, and the associated products, will be known as Collection 6 (C6). While not a major overhaul from the previous Collection 5 (C5) version, there are enough changes that there are significant impacts to the products and their interpretation. In its entirety, the C6 algorithm is comprised of three sub-algorithms for retrieving aerosol properties over different surfaces: These include the dark-target DT algorithms to retrieve over (1) ocean and (2) vegetated-dark-soiled land, plus the (3) Deep Blue (DB) algorithm, originally developed to retrieve over desert-arid land. Focusing on the two DT algorithms, we have updated assumptions for central wavelengths, Rayleigh optical depths and gas (H2O, O3, CO2, etc.) absorption corrections, while relaxing the solar zenith angle limit (up to 84) to increase pole-ward coverage. For DT-land, we have updated the cloud mask to allow heavy smoke retrievals, fine-tuned the assignments for aerosol type as function of season location, corrected bugs in the Quality Assurance (QA) logic, and added diagnostic parameters such as topographic altitude. For DT-ocean, improvements include a revised cloud mask for thin-cirrus detection, inclusion of wind speed dependence in the retrieval, updates to logic of QA Confidence flag (QAC) assignment, and additions of important diagnostic information. At the same time as we have introduced algorithm changes, we have also accounted for upstream changes including: new instrument calibration, revised land-sea masking, and changed cloud masking. Upstream changes also impact the coverage and global statistics of the retrieved AOD. Although our responsibility is to the DT code and products, we have also added a product that merges DT and DB product over semi-arid land surfaces to provide a more gap-free dataset, primarily for visualization purposes. Preliminary validation shows that compared to surface-based sunphotometer data, the C6, Level 2 (along swath) DT-products compare at least as well as those from C5. C6 will include new diagnostic information about clouds in the aerosol field, including an aerosol cloud mask at 500 m resolution, and calculations of the distance to the nearest cloud from clear pixels. Finally, we have revised the strategy for aggregating and averaging the Level 2 (swath) data to become Level 3 (gridded) data. All together, the changes to the DT algorithms will result in reduced global AOD (by 0.02) over ocean and increased AOD (by 0.02) over land, along with changes in spatial coverage. Changes in calibration will have more impact to Terras time series, especially over land. This will result in a significant reduction in artificial differences in the Terra and Aqua datasets, and will stabilize the MODIS data as a target for AEROCOM studie
Remote Sensing of Spectral Aerosol Properties: A Classroom Experience
NASA Technical Reports Server (NTRS)
Levy, Robert C.; Pinker, Rachel T.
2006-01-01
Bridging the gap between current research and the classroom is a major challenge to today s instructor, especially in the sciences where progress happens quickly. NASA Goddard Space Flight Center and the University of Maryland teamed up in designing a graduate class project intended to provide a hands-on introduction to the physical basis for the retrieval of aerosol properties from state-of-the-art MODIS observations. Students learned to recognize spectral signatures of atmospheric aerosols and to perform spectral inversions. They became acquainted with the operational MODIS aerosol retrieval algorithm over oceans, and methods for its evaluation, including comparisons with groundbased AERONET sun-photometer data.
NASA Astrophysics Data System (ADS)
Loria-Salazar, S. Marcela
The aim of the present work is to carry out a detailed analysis of ground and columnar aerosol properties obtained by in-situ Photoacoustic and Integrated Nephelometer (PIN), Cimel CE-318 sunphotometer and MODIS instrument onboard Aqua and Terra satellites, for semi-arid Reno, Nevada, USA in the local summer months of 2012. Satellite determination of local aerosol pollution is desirable because of the potential for broad spatial and temporal coverage. However, retrieval of quantitative measures of air pollution such as Aerosol Optical Depth (AOD) from satellite measurements is challenging because of the underlying surface albedo being heterogeneous in space and time. Therefore, comparisons of satellite retrievals with measurements from ground-based sun photometers are crucial for validation, testing, and further development of instruments and retrieval algorithms. Ground-based sunphotometry and in-situ ground observations show that seasonal weather changes and fire plumes have great influence on the atmosphere aerosol optics. The Apparent Optical Height (AOH) follows the shape of the development of the Convective Boundary Layer (CBL) when fire conditions were not present. However, significant fine particle optical depth was inferred beyond the CBL thereby complicating the use of remote sensing measurements for near-ground aerosol pollution measurements. A meteorological analysis was performed to help diagnose the nature of the aerosols above Reno. The calculation of a Zephyr index and back trajectory analysis demonstrated that a local circulation often induces aerosol transport from Northern CA over the Sierra Nevada Mountains that doubles the Aerosol Optical Depth (AOD) at 500 nm. Sunphotometer measurements were used as a `ground truth' for satellite retrievals to evaluate the current state of the science retrievals in this challenging location. Satellite retrieved for AOD showed the presence of wild fires in Northern CA during August. AOD retrieved using the "dark-target algorithm" may be unrealistically high over the Great Basin. Low correlation was found between AERONET AOD and dark-target algorithm AOD retrievals from Aqua and Terra during June and July. During fire conditions the dark-target algorithm AOD values correlated better with AERONET measurements in August. Use of the Deep-blue algorithm for MODIS data to retrieve AOD did not provide enough points to compare with AERONET in June and July. In August, AOD from deep-blue and AERONET retrievals exhibited low correlation. AEE from MODIS products and AERONET exhibited low correlation during every month. Apparently satellite AOD retrievals need much improvement for areas like semi-arid Reno.
Ocean Observations with EOS/MODIS: Algorithm Development and Post Launch Studies
NASA Technical Reports Server (NTRS)
Gordon, Howard R.; Conboy, B. (Technical Monitor)
1999-01-01
Significant accomplishments made during the present reporting period include: 1) Installed spectral optimization algorithm in the SeaDas image processing environment and successfully processed SeaWiFS imagery. The results were superior to the standard SeaWiFS algorithm (the MODIS prototype) in a turbid atmosphere off the US East Coast, but similar in a clear (typical) oceanic atmosphere; 2) Inverted ACE-2 LIDAR measurements coupled with sun photometer-derived aerosol optical thickness to obtain the vertical profile of aerosol optical thickness. The profile was validated with simultaneous aircraft measurements; and 3) Obtained LIDAR and CIMEL measurements of typical maritime and mineral dust-dominated marine atmosphere in the U.S. Virgin Islands. Contemporaneous SeaWiFS imagery were also acquired.
NASA Technical Reports Server (NTRS)
Limbacher, James A.; Kahn, Ralph A.
2017-01-01
As aerosol amount and type are key factors in the 'atmospheric correction' required for remote-sensing chlorophyll alpha concentration (Chl) retrievals, the Multi-angle Imaging SpectroRadiometer (MISR) can contribute to ocean color analysis despite a lack of spectral channels optimized for this application. Conversely, an improved ocean surface constraint should also improve MISR aerosol-type products, especially spectral single-scattering albedo (SSA) retrievals. We introduce a coupled, self-consistent retrieval of Chl together with aerosol over dark water. There are time-varying MISR radiometric calibration errors that significantly affect key spectral reflectance ratios used in the retrievals. Therefore, we also develop and apply new calibration corrections to the MISR top-of-atmosphere (TOA) reflectance data, based on comparisons with coincident MODIS (Moderate Resolution Imaging Spectroradiometer) observations and trend analysis of the MISR TOA bidirectional reflectance factors (BRFs) over three pseudo-invariant desert sites. We run the MISR research retrieval algorithm (RA) with the corrected MISR reflectances to generate MISR-retrieved Chl and compare the MISR Chl values to a set of 49 coincident SeaBASS (SeaWiFS Bio-optical Archive and Storage System) in situ observations. Where Chl(sub in situ) less than 1.5 mg m(exp -3), the results from our Chl model are expected to be of highest quality, due to algorithmic assumption validity. Comparing MISR RA Chl to the 49 coincident SeaBASS observations, we report a correlation coefficient (r) of 0.86, a root-mean-square error (RMSE) of 0.25, and a median absolute error (MAE) of 0.10. Statistically, a two-sample Kolmogorov- Smirnov test indicates that it is not possible to distinguish between MISR Chl and available SeaBASS in situ Chl values (p greater than 0.1). We also compare MODIS-Terra and MISR RA Chl statistically, over much broader regions. With about 1.5 million MISR-MODIS collocations having MODIS Chl less than 1.5 mg m(exp -3), MISR and MODIS show very good agreement: r = 0.96, MAE = 0.09, and RMSE = 0.15. The new dark water aerosol/Chl RA can retrieve Chl in low-Chl, case I waters, independent of other imagers such as MODIS, via a largely physical algorithm, compared to the commonly applied statistical ones. At a minimum, MISR's multi-angle data should help reduce uncertainties in the MODIS-Terra ocean color retrieval where coincident measurements are made, while also allowing for a more robust retrieval of particle properties such as spectral single-scattering albedo.
NASA Astrophysics Data System (ADS)
Limbacher, James A.; Kahn, Ralph A.
2017-04-01
As aerosol amount and type are key factors in the atmospheric correction
required for remote-sensing chlorophyll a concentration (Chl) retrievals, the Multi-angle Imaging SpectroRadiometer (MISR) can contribute to ocean color analysis despite a lack of spectral channels optimized for this application. Conversely, an improved ocean surface constraint should also improve MISR aerosol-type products, especially spectral single-scattering albedo (SSA) retrievals. We introduce a coupled, self-consistent retrieval of Chl together with aerosol over dark water. There are time-varying MISR radiometric calibration errors that significantly affect key spectral reflectance ratios used in the retrievals. Therefore, we also develop and apply new calibration corrections to the MISR top-of-atmosphere (TOA) reflectance data, based on comparisons with coincident MODIS (Moderate Resolution Imaging Spectroradiometer) observations and trend analysis of the MISR TOA bidirectional reflectance factors (BRFs) over three pseudo-invariant desert sites. We run the MISR research retrieval algorithm (RA) with the corrected MISR reflectances to generate MISR-retrieved Chl and compare the MISR Chl values to a set of 49 coincident SeaBASS (SeaWiFS Bio-optical Archive and Storage System) in situ observations. Where Chlin situ < 1.5 mg m-3, the results from our Chl model are expected to be of highest quality, due to algorithmic assumption validity. Comparing MISR RA Chl to the 49 coincident SeaBASS observations, we report a correlation coefficient (r) of 0.86, a root-mean-square error (RMSE) of 0.25, and a median absolute error (MAE) of 0.10. Statistically, a two-sample Kolmogorov-Smirnov test indicates that it is not possible to distinguish between MISR Chl and available SeaBASS in situ Chl values (p > 0.1). We also compare MODIS-Terra and MISR RA Chl statistically, over much broader regions. With about 1.5 million MISR-MODIS collocations having MODIS Chl < 1.5 mg m-3, MISR and MODIS show very good agreement: r = 0. 96, MAE = 0.09, and RMSE = 0.15. The new dark water aerosol/Chl RA can retrieve Chl in low-Chl, case I waters, independent of other imagers such as MODIS, via a largely physical algorithm, compared to the commonly applied statistical ones. At a minimum, MISR's multi-angle data should help reduce uncertainties in the MODIS-Terra ocean color retrieval where coincident measurements are made, while also allowing for a more robust retrieval of particle properties such as spectral single-scattering albedo.
Improving Scene Classifications with Combined Active/Passive Measurements
NASA Astrophysics Data System (ADS)
Hu, Y.; Rodier, S.; Vaughan, M.; McGill, M.
The uncertainties in cloud and aerosol physical properties derived from passive instruments such as MODIS are not insignificant And the uncertainty increases when the optical depths decrease Lidar observations do much better for the thin clouds and aerosols Unfortunately space-based lidar measurements such as the one onboard CALIPSO satellites are limited to nadir view only and thus have limited spatial coverage To produce climatologically meaningful thin cloud and aerosol data products it is necessary to combine the spatial coverage of MODIS with the highly sensitive CALIPSO lidar measurements Can we improving the quality of cloud and aerosol remote sensing data products by extending the knowledge about thin clouds and aerosols learned from CALIPSO-type of lidar measurements to a larger portion of the off-nadir MODIS-like multi-spectral pixels To answer the question we studied the collocated Cloud Physics Lidar CPL with Modis-Airborne-Simulation MAS observations and established an effective data fusion technique that will be applied in the combined CALIPSO MODIS cloud aerosol product algorithms This technique performs k-mean and Kohonen self-organized map cluster analysis on the entire swath of MAS data as well as on the combined CPL MAS data at the nadir track Interestingly the clusters generated from the two approaches are almost identical It indicates that the MAS multi-spectral data may have already captured most of the cloud and aerosol scene types such as cloud ice water phase multi-layer information aerosols
Initial Verification of GEOS-4 Aerosols Using CALIPSO and MODIS: Scene Classification
NASA Technical Reports Server (NTRS)
Welton, Ellsworth J.; Colarco, Peter R.; Hlavka, Dennis; Levy, Robert C.; Vaughan, Mark A.; daSilva, Arlindo
2007-01-01
A-train sensors such as MODIS and MISR provide column aerosol properties, and in the process a means of estimating aerosol type (e.g. smoke vs. dust). Correct classification of aerosol type is important because retrievals are often dependent upon selection of the right aerosol model. In addition, aerosol scene classification helps place the retrieved products in context for comparisons and analysis with aerosol transport models. The recent addition of CALIPSO to the A-train now provides a means of classifying aerosol distribution with altitude. CALIPSO level 1 products include profiles of attenuated backscatter at 532 and 1064 nm, and depolarization at 532 nm. Backscatter intensity, wavelength ratio, and depolarization provide information on the vertical profile of aerosol concentration, size, and shape. Thus similar estimates of aerosol type using MODIS or MISR are possible with CALIPSO, and the combination of data from all sensors provides a means of 3D aerosol scene classification. The NASA Goddard Earth Observing System general circulation model and data assimilation system (GEOS-4) provides global 3D aerosol mass for sulfate, sea salt, dust, and black and organic carbon. A GEOS-4 aerosol scene classification algorithm has been developed to provide estimates of aerosol mixtures along the flight track for NASA's Geoscience Laser Altimeter System (GLAS) satellite lidar. GLAS launched in 2003 and did not have the benefit of depolarization measurements or other sensors from the A-train. Aerosol typing from GLAS data alone was not possible, and the GEOS-4 aerosol classifier has been used to identify aerosol type and improve the retrieval of GLAS products. Here we compare 3D aerosol scene classification using CALIPSO and MODIS with the GEOS-4 aerosol classifier. Dust, smoke, and pollution examples will be discussed in the context of providing an initial verification of the 3D GEOS-4 aerosol products. Prior model verification has only been attempted with surface mass comparisons and column optical depth from AERONET and MODIS.
NASA Technical Reports Server (NTRS)
Zhu, L.; Martins, J. V.; Yu, H.
2012-01-01
This study develops an algorithm for representing detailed spectral features of vegetation albedo based on Moderate Resolution Imaging Spectrometer (MODIS) observations at 7 discrete channels, referred to as the MODIS Enhanced Vegetation Albedo (MEVA) algorithm. The MEVA algorithm empirically fills spectral gaps around the vegetation red edge near 0.7 micrometers and vegetation water absorption features at 1.48 and 1.92 micrometers which cannot be adequately captured by the MODIS 7 channels. We then assess the effects of applying MEVA in comparison to four other traditional approaches to calculate solar fluxes and aerosol direct radiative forcing (DRF) at the top of atmosphere (TOA) based on the MODIS discrete reflectance bands. By comparing the DRF results obtained through the MEVA method with the results obtained through the other four traditional approaches, we show that filling the spectral gap of the MODIS measurements around 0.7 micrometers based on the general spectral behavior of healthy green vegetation leads to significant improvement in the instantaneous aerosol DRF at TOA (up to 3.02Wm(exp -2) difference or 48% fraction of the aerosol DRF, .6.28Wm(exp -2), calculated for high spectral resolution surface reflectance from 0.3 to 2.5 micrometers for deciduous vegetation surface). The corrections of the spectral gaps in the vegetation spectrum in the near infrared, again missed by the MODIS reflectances, also contributes to improving TOA DRF calculations but to a much lower extent (less than 0.27Wm(exp -2), or about 4% of the instantaneous DRF). Compared to traditional approaches, MEVA also improves the accuracy of the outgoing solar flux between 0.3 to 2.5 micrometers at TOA by over 60Wm(exp -2) (for aspen 3 surface) and aerosol DRF by over 10Wm(exp -2) (for dry grass). Specifically, for Amazon vegetation types, MEVA can improve the accuracy of daily averaged aerosol radiative forcing in the spectral range of 0.3 to 2.5 micrometers at equator at the equinox by 3.7Wm(exp -2). These improvements indicate that MEVA can contribute to regional climate studies over vegetated areas and can help to improve remote sensing-based studies of climate processes and climate change.
A New Algorithm for Retrieving Aerosol Properties Over Land from MODIS Spectral Reflectance
NASA Technical Reports Server (NTRS)
Levy, Robert C.; Remer, Lorraine A.; Mattoo, Shana; Vermote, Eric F.; Kaufman, Yoram J.
2006-01-01
Since first light in early 2000, operational global quantitative retrievals of aerosol properties over land have been made from MODIS observed spectral reflectance. These products have been continuously evaluated and validated, and opportunities for improvements have been noted. We have replaced the original algorithm by improving surface reflectance assumptions, the aerosol model optical properties and the radiative transfer code used to create the lookup tables. The new algorithm (known as Version 5.2 or V5.2) performs a simultaneous inversion of two visible (0.47 and 0.66 micron) and one shortwave-IR (2.12 micron) channel, making use of the coarse aerosol information content contained in the 2.12 micron channel. Inversion of the three channels yields three nearly independent parameters, the aerosol optical depth (tau) at 0.55 micron, the non-dust or fine weighting (eta) and the surface reflectance at 2.12 micron. Finally, retrievals of small magnitude negative tau values (down to -0.05) are considered valid, thus normalizing the statistics of tau in near zero tau conditions. On a 'test bed' of 6300 granules from Terra and Aqua, the products from V5.2 show marked improvement over those from the previous versions, including much improved retrievals of tau, where the MODIS/AERONET tau (at 0.55 micron) regression has an equation of: y = 1.01+0.03, R = 0.90. Mean tau for the test bed is reduced from 0.28 to 0.21.
Evaluation and Windspeed Dependence of MODIS Aerosol Retrievals Over Open Ocean
NASA Technical Reports Server (NTRS)
Kleidman, Richard G.; Smirnov, Alexander; Levy, Robert C.; Mattoo, Shana; Tanre, Didier
2011-01-01
The Maritime Aerosol Network (MAN) data set provides high quality ground-truth to validate the MODIS aerosol product over open ocean. Prior validation of the ocean aerosol product has been limited to coastal and island sites. Comparing MODIS Collection 5 ocean aerosol retrieval products with collocated MAN measurements from ships shows that MODIS is meeting the pre-launch uncertainty estimates for aerosol optical depth (AOD) with 64% and 67% of retrievals at 550 nm, and 74% and 78% of retrievals at 870 nm, falling within expected uncertainty for Terra and Aqua, respectively. Angstrom Exponent comparisons show a high correlation between MODIS retrievals and shipboard measurements (R= 0.85 Terra, 0.83 Aqua), although the MODIS aerosol algorithm tends to underestimate particle size for large particles and overestimate size for small particles, as seen in earlier Collections. Prior analysis noted an offset between Terra and Aqua ocean AOD, without concluding which sensor was more accurate. The simple linear regression reported here, is consistent with other anecdotal evidence that Aqua agreement with AERONET is marginally better. However we cannot claim based on the current study that the better Aqua comparison is statistically significant. Systematic increase of error as a function of wind speed is noted in both Terra and Aqua retrievals. This wind speed dependency enters the retrieval when winds deviate from the 6 m/s value assumed in the rough ocean surface and white cap parameterizations. Wind speed dependency in the results can be mitigated by using auxiliary NCEP wind speed information in the retrieval process.
Satellite aerosol retrieval using dark target algorithm by coupling BRDF effect over AERONET site
NASA Astrophysics Data System (ADS)
Yang, Leiku; Xue, Yong; Guang, Jie; Li, Chi
2012-11-01
For most satellite aerosol retrieval algorithms even for multi-angle instrument, the simple forward model (FM) based on Lambertian surface assumption is employed to simulate top of the atmosphere (TOA) spectral reflectance, which does not fully consider the surface bi-directional reflectance functions (BRDF) effect. The approximating forward model largely simplifies the radiative transfer model, reduces the size of the look-up tables, and creates faster algorithm. At the same time, it creates systematic biases in the aerosol optical depth (AOD) retrieval. AOD product from the Moderate Resolution Imaging Spectro-radiometer (MODIS) data based on the dark target algorithm is considered as one of accurate satellite aerosol products at present. Though it performs well at a global scale, uncertainties are still found on regional in a lot of studies. The Lambertian surface assumpiton employed in the retrieving algorithm may be one of the uncertain factors. In this study, we first use radiative transfer simulations over dark target to assess the uncertainty to what extent is introduced from the Lambertian surface assumption. The result shows that the uncertainties of AOD retrieval could reach up to ±0.3. Then the Lambertian FM (L_FM) and the BRDF FM (BRDF_FM) are respectively employed in AOD retrieval using dark target algorithm from MODARNSS (MODIS/Terra and MODIS/Aqua Atmosphere Aeronet Subsetting Product) data over Beijing AERONET site. The validation shows that accuracy in AOD retrieval has been improved by employing the BRDF_FM accounting for the surface BRDF effect, the regression slope of scatter plots with retrieved AOD against AEROENET AOD increases from 0.7163 (for L_FM) to 0.7776 (for BRDF_FM) and the intercept decreases from 0.0778 (for L_FM) to 0.0627 (for BRDF_FM).
NASA Technical Reports Server (NTRS)
Abbott, Mark R.
1996-01-01
Our first activity is based on delivery of code to Bob Evans (University of Miami) for integration and eventual delivery to the MODIS Science Data Support Team. As we noted in our previous semi-annual report, coding required the development and analysis of an end-to-end model of fluorescence line height (FLH) errors and sensitivity. This model is described in a paper in press in Remote Sensing of the Environment. Once the code was delivered to Miami, we continue to use this error analysis to evaluate proposed changes in MODIS sensor specifications and performance. Simply evaluating such changes on a band by band basis may obscure the true impacts of changes in sensor performance that are manifested in the complete algorithm. This is especially true with FLH that is sensitive to band placement and width. The error model will be used by Howard Gordon (Miami) to evaluate the effects of absorbing aerosols on the FLH algorithm performance. Presently, FLH relies only on simple corrections for atmospheric effects (viewing geometry, Rayleigh scattering) without correcting for aerosols. Our analysis suggests that aerosols should have a small impact relative to changes in the quantum yield of fluorescence in phytoplankton. However, the effect of absorbing aerosol is a new process and will be evaluated by Gordon.
Evaluation of Long-term Aerosol Data Records from SeaWiFS over Land and Ocean
NASA Astrophysics Data System (ADS)
Bettenhausen, C.; Hsu, C.; Jeong, M.; Huang, J.
2010-12-01
Deserts around the globe produce mineral dust aerosols that may then be transported over cities, across continents, or even oceans. These aerosols affect the Earth’s energy balance through direct and indirect interactions with incoming solar radiation. They also have a biogeochemical effect as they deliver scarce nutrients to remote ecosystems. Large dust storms regularly disrupt air traffic and are a general nuisance to those living in transport regions. In the past, measuring dust aerosols has been incomplete at best. Satellite retrieval algorithms were limited to oceans or vegetated surfaces and typically neglected desert regions due to their high surface reflectivity in the mid-visible and near-infrared wavelengths, which have been typically used for aerosol retrievals. The Deep Blue aerosol retrieval algorithm was developed to resolve these shortcomings by utilizing the blue channels from instruments such as the Sea-Viewing Wide-Field-of-View Sensor (SeaWiFS) and the Moderate Resolution Imaging Spectroradiometer (MODIS) to infer aerosol properties over these highly reflective surfaces. The surface reflectivity of desert regions is much lower in the blue channels and thus it is easier to separate the aerosol and surface signals than at the longer wavelengths used in other algorithms. More recently, the Deep Blue algorithm has been expanded to retrieve over vegetated surfaces and oceans as well. A single algorithm can now follow dust from source to sink. In this work, we introduce the SeaWiFS instrument and the Deep Blue aerosol retrieval algorithm. We have produced global aerosol data records over land and ocean from 1997 through 2009 using the Deep Blue algorithm and SeaWiFS data. We describe these data records and validate them with data from the Aerosol Robotic Network (AERONET). We also show the relative performance compared to the current MODIS Deep Blue operational aerosol data in desert regions. The current results are encouraging and this dataset will be useful to future studies in understanding the effects of dust aerosols on global processes, long-term aerosol trends, quantifying dust emissions, transport, and inter-annual variability.
Evaluation of MODIS aerosol optical depth for semi-arid environments in complex terrain
NASA Astrophysics Data System (ADS)
Holmes, H.; Loria Salazar, S. M.; Panorska, A. K.; Arnott, W. P.; Barnard, J.
2015-12-01
The use of satellite remote sensing to estimate spatially resolved ground level air pollutant concentrations is increasing due to advancements in remote sensing technology and the limited number of surface observations. Satellite retrievals provide global, spatiotemporal air quality information and are used to track plumes, estimate human exposures, model emissions, and determine sources (i.e., natural versus anthropogenic) in regulatory applications. Ground level PM2.5 concentrations can be estimated using columnar aerosol optical depth (AOD) from MODIS, where the satellite retrieval serves as a spatial surrogate to simulate surface PM2.5 gradients. The spatial statistical models and MODIS AOD retrieval algorithms have been evaluated for the dark, vegetated eastern US, while the semi-arid western US continues to be an understudied region with associated complexity due to heterogeneous emissions, smoke from wildfires, and complex terrain. The objective of this work is to evaluate the uncertainty of MODIS AOD retrievals by comparing with columnar AOD and surface PM2.5 measurements from AERONET and EPA networks. Data is analyzed from multiple stations in California and Nevada for three years where four major wildfires occurred. Results indicate that MODIS retrievals fail to estimate column-integrated aerosol pollution in the summer months. This is further investigated by quantifying the statistical relationships between MODIS AOD, AERONET AOD, and surface PM2.5 concentrations. Data analysis indicates that the distribution of MODIS AOD is significantly (p<0.05) different than AERONET AOD. Further, using the results of distributional and association analysis the impacts of MODIS AOD uncertainties on the spatial gradients are evaluated. Additionally, the relationships between these uncertainties and physical parameters in the retrieval algorithm (e.g., surface reflectance, Ångström Extinction Exponent) are discussed.
Validation of MODIS aerosol optical depth product over China using CARSNET measurements
NASA Astrophysics Data System (ADS)
Xie, Yong; Zhang, Yan; Xiong, Xiaoxiong; Qu, John J.; Che, Huizheng
2011-10-01
This study evaluates Moderate Resolution Imaging Spectroradiometer (MODIS) Aerosol Optical Depth (AOD) retrievals with ground measurements collected by the China Aerosol Remote Sensing NETwork (CARSNET). In current stage, the MODIS Collection 5 (C5) AODs are retrieved by two distinct algorithms: the Dark Target (DT) and the Deep Blue (DB). The CARSNET AODs are derived with measurements of Cimel Electronique CE-318, the same instrument deployed by the AEROsol Robotic Network (AEROENT). The collocation is performed by matching each MODIS AOD pixel (10 × 10 km 2) to CARSNET AOD mean within 7.5 min of satellite overpass. Four-year comparisons (2005-2008) of MODIS/CARSNET at ten sites show the performance of MODIS AOD retrieval is highly dependent on the underlying land surface. The MODIS DT AODs are on average lower than the CARSNET AODs by 6-30% over forest and grassland areas, but can be higher by up to 54% over urban area and 95% over desert-like area. More than 50% of the MODIS DT AODs fall within the expected error envelope over forest and grassland areas. The MODIS DT tends to overestimate for small AOD at urban area. At high vegetated area it underestimates for small AOD and overestimates for large AOD. Generally, its quality reduces with the decreasing AOD value. The MODIS DB is capable of retrieving AOD over desert but with a significant underestimation at CARSNET sites. The best retrieval of the MODIS DB is over grassland area with about 70% retrievals within the expected error. The uncertainties of MODIS AOD retrieval from spatial-temporal collocation and instrument calibration are discussed briefly.
Ozone and Aerosol Retrieval from Backscattered Ultraviolet Radiation
NASA Technical Reports Server (NTRS)
Bhartia, Pawan K.
2012-01-01
In this presentation we will discuss the techniques to estimate total column ozone and aerosol absorption optical depth from the measurements of back scattered ultraviolet (buv) radiation. The total ozone algorithm has been used to create a unique record of the ozone layer, spanning more than 3 decades, from a series of instruments (BUV, SBUV, TOMS, SBUV/2) flown on NASA, NOAA, Japanese and Russian satellites. We will discuss how this algorithm can be considered a generalization of the well-known Dobson/Brewer technique that has been used to process data from ground-based instruments for many decades, and how it differs from the DOAS techniques that have been used to estimate vertical column densities of a host of trace gases from data collected by GOME and SCIAMACHY instruments. The buv aerosol algorithm is most suitable for the detection of UV absorbing aerosols (smoke, desert dust, volcanic ash) and is the only technique that can detect aerosols embedded in clouds. This algorithm has been used to create a quarter century record of aerosol absorption optical depth using the buv data collected by a series of TOMS instruments. We will also discuss how the data from the OMI instrument launched on July 15, 2004 will be combined with data from MODIS and CALIPSO lidar data to enhance the accuracy and information content of satellite-derived aerosol measurements. The OMI and MODIS instruments are currently flying on EOS Aura and EOS Aqua satellites respectively, part of a constellation of satellites called the "A-train".
Remote Sensing of Cloud, Aerosol, and Water Vapor Properties from MODIS
NASA Technical Reports Server (NTRS)
King, Michael D.
2001-01-01
MODIS is an earth-viewing cross-track scanning spectroradiometer launched on the Terra satellite in December 1999. MODIS scans a swath width sufficient to provide nearly complete global coverage every two days from a polar-orbiting, sun-synchronous, platform at an altitude of 705 km, and provides images in 36 spectral bands from 0.415 to 14.235 microns with spatial resolutions of 250 m (2 bands), 500 m (5 bands) and 1000 m (29 bands). These bands have been carefully selected to enable advanced studies of land, ocean, and atmospheric processes. In this presentation I will review the comprehensive set of remote sensing algorithms that have been developed for the remote sensing of atmospheric properties using MODIS data, placing primary emphasis on the principal atmospheric applications of: (1) developing a cloud mask for distinguishing clear sky from clouds, (2) retrieving global cloud radiative and microphysical properties, including cloud top pressure and temperature, effective emissivity, cloud optical thickness, thermodynamic phase, and effective radius, (3) monitoring tropospheric aerosol optical thickness over the land and ocean and aerosol size distribution over the ocean, (4) determining atmospheric profiles of moisture and temperature, and (5) estimating column water amount. The physical principles behind the determination of each of these atmospheric products will be described, together with an example of their application using MODIS observations. All products are archived into two categories: pixel-level retrievals (referred to as Level-2 products) and global gridded products at a latitude and longitude resolution of 1 deg (Level-3 products). An overview of the MODIS atmosphere algorithms and products, status, validation activities, and early level-2 and -3 results will be presented. Finally, I will present some highlights from the land and ocean algorithms developed for processing global MODIS observations, including: (1) surface reflectance, (2) vegetation indices, leaf area index, and FPAR, (3) albedo and nadir BRDF-adjusted reflectance, (4) normalized water-leaving radiance, (5) chlorophyll-a concentration, and (6) sea surface temperature.
NASA Astrophysics Data System (ADS)
Sayer, A. M.; Hsu, N. C.; Bettenhausen, C.; Lee, J.; Redemann, J.; Schmid, B.; Shinozuka, Y.
2016-05-01
Cases of absorbing aerosols above clouds (AACs), such as smoke or mineral dust, are omitted from most routinely processed space-based aerosol optical depth (AOD) data products, including those from the Moderate Resolution Imaging Spectroradiometer (MODIS). This study presents a sensitivity analysis and preliminary algorithm to retrieve above-cloud AOD and liquid cloud optical depth (COD) for AAC cases from MODIS or similar sensors, for incorporation into a future version of the "Deep Blue" AOD data product. Detailed retrieval simulations suggest that these sensors should be able to determine AAC AOD with a typical level of uncertainty ˜25-50% (with lower uncertainties for more strongly absorbing aerosol types) and COD with an uncertainty ˜10-20%, if an appropriate aerosol optical model is known beforehand. Errors are larger, particularly if the aerosols are only weakly absorbing, if the aerosol optical properties are not known, and the appropriate model to use must also be retrieved. Actual retrieval errors are also compared to uncertainty envelopes obtained through the optimal estimation (OE) technique; OE-based uncertainties are found to be generally reasonable for COD but larger than actual retrieval errors for AOD, due in part to difficulties in quantifying the degree of spectral correlation of forward model error. The algorithm is also applied to two MODIS scenes (one smoke and one dust) for which near-coincident NASA Ames Airborne Tracking Sun photometer (AATS) data were available to use as a ground truth AOD data source, and found to be in good agreement, demonstrating the validity of the technique with real observations.
Retrieving the Height of Smoke and Dust Aerosols by Synergistic Use of Multiple Satellite Sensors
NASA Technical Reports Server (NTRS)
Lee, Jaehwa; Hsu, N. Christina; Bettenhausen, Corey; Sayer, Andrew M.; Seftor, Colin J.; Jeong, Myeong-Jae
2016-01-01
The Aerosol Single scattering albedo and Height Estimation (ASHE) algorithm was first introduced in Jeong and Hsu (2008) to provide aerosol layer height and single scattering albedo (SSA) for biomass burning smoke aerosols. By using multiple satellite sensors synergistically, ASHE can provide the height information over much broader areas than lidar observations alone. The complete ASHE algorithm uses aerosol data from MODIS or VIIRS, OMI or OMPS, and CALIOP. A simplified algorithm also exists that does not require CALIOP data as long as the SSA of the aerosol layer is provided by another source. Several updates have recently been made: inclusion of dust layers in the retrieval process, better determination of the input aerosol layer height from CALIOP, improvement in aerosol optical depth (AOD) for nonspherical dust, development of quality assurance (QA) procedure, etc.
The Retrieval of Aerosol Optical Thickness Using the MERIS Instrument
NASA Astrophysics Data System (ADS)
Mei, L.; Rozanov, V. V.; Vountas, M.; Burrows, J. P.; Levy, R. C.; Lotz, W.
2015-12-01
Retrieval of aerosol properties for satellite instruments without shortwave-IR spectral information, multi-viewing, polarization and/or high-temporal observation ability is a challenging problem for spaceborne aerosol remote sensing. However, space based instruments like the MEdium Resolution Imaging Spectrometer (MERIS) and the successor, Ocean and Land Colour Instrument (OLCI) with high calibration accuracy and high spatial resolution provide unique abilities for obtaining valuable aerosol information for a better understanding of the impact of aerosols on climate, which is still one of the largest uncertainties of global climate change evaluation. In this study, a new Aerosol Optical Thickness (AOT) retrieval algorithm (XBAER: eXtensible Bremen AErosol Retrieval) is presented. XBAER utilizes the global surface spectral library database for the determination of surface properties while the MODIS collection 6 aerosol type treatment is adapted for the aerosol type selection. In order to take the surface Bidirectional Reflectance Distribution Function (BRDF) effect into account for the MERIS reduce resolution (1km) retrieval, a modified Ross-Li mode is used. The AOT is determined in the algorithm using lookup tables including polarization created using Radiative Transfer Model SCIATRAN3.4, by minimizing the difference between atmospheric corrected surface reflectance with given AOT and the surface reflectance calculated from the spectral library. The global comparison with operational MODIS C6 product, Multi-angle Imaging SpectroRadiometer (MISR) product, Advanced Along-Track Scanning Radiometer (AATSR) aerosol product and the validation using AErosol RObotic NETwork (AERONET) show promising results. The current XBAER algorithm is only valid for aerosol remote sensing over land and a similar method will be extended to ocean later.
NASA Astrophysics Data System (ADS)
Wei, Jing; Sun, Lin; Huang, Bo; Bilal, Muhammad; Zhang, Zhaoyang; Wang, Lunche
2018-02-01
The objective of this study is to evaluate typical aerosol optical depth (AOD) products in China, which experienced seriously increasing atmospheric particulate pollution. For this, the Aqua-MODerate resolution Imaging Spectroradiometer (MODIS) AOD products (MYD04) at 10 km spatial resolution and Visible Infrared Imaging Radiometer Suite (VIIRS) Environmental Data Record (EDR) AOD product at 6 km resolution for different Quality Flags (QF) are obtained for validation against AErosol RObotic NETwork (AERONET) AOD measurements during 2013-2016. Results show that VIIRS EDR similarly Dark Target (DT) and MODIS DT algorithms perform worse with only 45.36% and 45.59% of the retrievals (QF = 3) falling within the Expected Error (EE, ±(0.05 + 15%)) compared to the Deep Blue (DB) algorithm (69.25%, QF ≥ 2). The DT retrievals perform poorly over the Beijing-Tianjin-Hebei (BTH) and Yangtze-River-Delta (YRD) regions, which significantly overestimate the AOD observations, but the performance is better over the Pearl-River-Delta (PRD) region than DB retrievals, which seriously under-estimate the AOD loadings. It is not surprising that the DT algorithm performs better over vegetated areas, while the DB algorithm performs better over bright areas mainly depends on the accuracy of surface reflectance estimation over different land use types. In general, the sensitivity of aerosol to apparent reflectance reduces by about 34% with an increasing surface reflectance by 0.01. Moreover, VIIRS EDR and MODIS DT algorithms perform overall better in the winter as 64.53% and 72.22% of the retrievals are within the EE but with less retrievals. However, the DB algorithm performs worst (57.17%) in summer mainly affected by the vegetation growth but there are overall high accuracies with more than 62% of the collections falling within the EE in other three seasons. Results suggest that the quality assurance process can help improve the overall data quality for MYD04 DB retrievals, but it is not always true for VIIRS EDR and MYD04 DT AOD retrievals.
XBAER-derived aerosol optical thickness from OLCI/Sentinel-3 observation
NASA Astrophysics Data System (ADS)
Mei, Linlu; Rozanov, Vladimir; Vountas, Marco; Burrows, John P.; Richter, Andreas
2018-02-01
A cloud identification algorithm used for cloud masking, which is based on the spatial variability of reflectances at the top of the atmosphere in visible wavelengths, has been developed for the retrieval of aerosol properties by MODIS. It is shown that the spatial pattern of cloud reflectance, as observed from space, is very different from that of aerosols. Clouds show a high spatial variability in the scale of a hundred metres to a few kilometres, whereas aerosols in general are homogeneous. The concept of spatial variability of reflectances at the top of the atmosphere is mainly applicable over the ocean, where the surface background is sufficiently homogeneous for the separation between aerosols and clouds. Aerosol retrievals require a sufficiently accurate cloud identification to be able to mask these ground scenes. However, a conservative mask will exclude strong aerosol episodes and a less conservative mask could introduce cloud contamination that biases the retrieved aerosol optical properties (e.g. aerosol optical depth and effective radii). A detailed study on the effect of cloud contamination on aerosol retrievals has been performed and parameters are established determining the threshold value for the MODIS aerosol cloud mask (3×3-STD) over the ocean. The 3×3-STD algorithm discussed in this paper is the operational cloud mask used for MODIS aerosol retrievals over the ocean.A prolonged pollution haze event occurred in the northeast part of China during the period 16-21 December 2016. To assess the impact of such events, the amounts and distribution of aerosol particles, formed in such events, need to be quantified. The newly launched Ocean Land Colour Instrument (OLCI) onboard Sentinel-3 is the successor of the MEdium Resolution Imaging Spectrometer (MERIS). It provides measurements of the radiance and reflectance at the top of the atmosphere, which can be used to retrieve the aerosol optical thickness (AOT) from synoptic to global scales. In this study, the recently developed AOT retrieval algorithm eXtensible Bremen AErosol Retrieval (XBAER) has been applied to data from the OLCI instrument for the first time to illustrate the feasibility of applying XBAER to the data from this new instrument. The first global retrieval results show similar patterns of aerosol optical thickness, AOT, to those from MODIS and MISR aerosol products. The AOT retrieved from OLCI is validated by comparison with AERONET observations and a correlation coefficient of 0.819 and bias (root mean square) of 0.115 is obtained. The haze episode is well captured by the OLCI-derived AOT product. XBAER is shown to retrieve AOT well from the observations of MERIS and OLCI.
Satellite Monitoring of Long-Range Transport of Asian Dust Storms from Sources to Sinks
NASA Astrophysics Data System (ADS)
Hsu, N.; Tsay, S.; Jeong, M.; King, M.; Holben, B.
2007-05-01
Among the many components that contribute to air pollution, airborne mineral dust plays an important role due to its biogeochemical impact on the ecosystem and its radiative-forcing effect on the climate system. In East Asia, dust storms frequently accompany the cold and dry air masses that occur as part of spring-time cold front systems. China's capital, Beijing, and other large cities are on the primary pathway of these dust storm plumes, and their passage over such popu-lation centers causes flight delays, pushes grit through windows and doors, and forces people indoors. Furthermore, during the spring these anthropogenic and natural air pollutants, once generated over the source regions, can be transported out of the boundary layer into the free troposphere and can travel thousands of kilometers across the Pacific into the United States and beyond. In this paper, we will demonstrate the capability of a new satellite algorithm to retrieve aerosol optical thickness and single scattering albedo over bright-reflecting surfaces such as urban areas and deserts. Such retrievals have been dif-ficult to perform using previously available algorithms that use wavelengths from the mid-visible to the near IR because they have trouble separating the aerosol signal from the contribution due to the bright surface reflectance. The new algorithm, called Deep Blue, utilizes blue-wavelength measurements from instruments such as SeaWiFS and MODIS to infer the properties of aerosols, since the surface reflectance over land in the blue part of the spectrum is much lower than for longer wavelength channels. Deep Blue algorithm has recently been integrated into the MODIS processing stream and began to provide aerosol products over land as part of the opera-tional MYD04 products. In this talk, we will show the comparisons of the MODIS Deep Blue products with data from AERONET sunphotometers on a global ba-sis. The results indicate reasonable agreements between these two. These new satellite products will allow scientists to determine quantitatively the aerosol properties near sources and their evolution along transport pathway using high spatial resolution measurements from SeaWiFS and MODIS-like instruments. We will also utilize the multiyear satellite measurements from MODIS and SeaWiFS to investigate the interannual variability of source strength, pathway, and radia-tive forcing associated with these dust outbreaks in East Asia.
Ocean Observations with EOS/MODIS: Algorithm Development and Post Launch Studies
NASA Technical Reports Server (NTRS)
Gordon, Howard R.
1997-01-01
The following accomplishments were made during the present reporting period: (1) We expanded our new method, for identifying the presence of absorbing aerosols and simultaneously performing atmospheric correction, to the point where it could be added as a subroutine to the MODIS water-leaving radiance algorithm; (2) We successfully acquired micro pulse lidar (MPL) data at sea during a cruise in February; (3) We developed a water-leaving radiance algorithm module for an approximate correction of the MODIS instrument polarization sensitivity; and (4) We participated in one cruise to the Gulf of Maine, a well known region for mesoscale coccolithophore blooms. We measured coccolithophore abundance, production and optical properties.
Principles in Remote Sensing of Aerosol from MODIS Over Land and Ocean
NASA Technical Reports Server (NTRS)
Remer, L. A.; Kaufman, Y. J.; Tanre, D.; Chu, D. A.
1999-01-01
The well-calibrated spectral radiances measured by MODIS will be processed to retrieve daily aerosol properties that include optical thickness and mass loading over land and optical thickness, the mean particle size of the dominant mode and the ratio between aerosol modes over ocean. In addition, after launch, aerosol single scattering albedo will be calculated as an experimental product. The retrieval process over land is based on a dark target method that identifies appropriate targets in the mid-IR channels and uses an empirical relationship found between the mid-ER and the visible channels to estimate surface reflectance in the visible from the mid-HZ reflectance measured by satellite. The method employs new aerosol models for industrial, smoke and dust aerosol. The process for retrieving aerosol over the ocean makes use of the wide spectral band from 0.55-2.13 microns and a look-up table constructed from combinations of five accumulation modes and five coarse modes. Both the over land and over ocean algorithms have been validated with satellite and airborne radiance measurements. We estimate that MODIS will be able to measure aerosol optical thickness (t) to within 0.05 +/- 0.2t over land and to within 0.05 +/- 0.05t over ocean. Much of the earth's surface is located far from aerosol sources and experience very low aerosol optical thickness. Will the accuracy expected from MODIS retrievals be sufficient to measure the global aerosol direct and indirect forcing? We are attempting to answer this question using global model results and cloud climatology.
NASA Technical Reports Server (NTRS)
Sayer, A. M.; Hsu, N. C.; Bettenhausen, C.; Jeong, M.-J.; Meister, G.
2015-01-01
The Deep Blue (DB) algorithm's primary data product is midvisible aerosol optical depth (AOD). DB applied to Moderate Resolution Imaging Spectroradiometer (MODIS) measurements provides a data record since early 2000 for MODIS Terra and mid-2002 for MODIS Aqua. In the previous data version (Collection 5, C5), DB production from Terra was halted in 2007 due to sensor degradation; the new Collection 6 (C6) has both improved science algorithms and sensor radiometric calibration. This includes additional calibration corrections developed by the Ocean Biology Processing Group to address MODIS Terra's gain, polarization sensitivity, and detector response versus scan angle, meaning DB can now be applied to the whole Terra record. Through validation with Aerosol Robotic Network (AERONET) data, it is shown that the C6 DB Terra AOD quality is stable throughout the mission to date. Compared to the C5 calibration, in recent years the RMS error compared to AERONET is smaller by approximately 0.04 over bright (e.g., desert) and approximately 0.01-0.02 over darker (e.g., vegetated) land surfaces, and the fraction of points in agreement with AERONET within expected retrieval uncertainty higher by approximately 10% and approximately 5%, respectively. Comparisons to the Aqua C6 time series reveal a high level of correspondence between the two MODIS DB data records, with a small positive (Terra-Aqua) average AOD offset <0.01. The analysis demonstrates both the efficacy of the new radiometric calibration efforts and that the C6 MODIS Terra DB AOD data remain stable (to better than 0.01 AOD) throughout the mission to date, suitable for quantitative scientific analyses.
NASA Technical Reports Server (NTRS)
Kaufman, Yoram J.; Gobron, Nadine; Pinty, Bernard; Widlowski, Jean-Luc; Verstraete, Michel M.; Lau, William K. M. (Technical Monitor)
2002-01-01
Data from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument that flies in polar orbit on the Terra platform, are used to derive the aerosol optical thickness and properties over land and ocean. The relationships between visible reflectance (at blue, rho(sub blue), and red, rho(sub red)) and mid-infrared (at 2.1 microns, rho(sub 2.1)) are used in the MODIS aerosol retrieval algorithm to derive global distribution of aerosols over the land. These relations have been established from a series of measurements indicating that rho(sub blue) is approximately 0.5 rho(sub red) is approximately 0.25 rho(sub 2.1). Here we use a model to describe the transfer of radiation through a vegetation canopy composed of randomly oriented leaves to assess the theoretical foundations for these relationships. Calculations for a wide range of leaf area indices and vegetation fractions show that rho(sub blue) is consistently about 1/4 of rho(sub 2.1) as used by MODIS for the whole range of analyzed cases, except for very dark soils, such as those found in burn scars. For its part, the ratio rho(sub red)/rho(sub 2.1) varies from less than the empirically derived value of 1/2 for dense and dark vegetation, to more than 1/2 for bright mixture of soil and vegetation. This is in agreement with measurements over uniform dense vegetation, but not with measurements over mixed dark scenes. In the later case the discrepancy is probably mitigated by shadows due to uneven canopy and terrain on a large scale. It is concluded that the value of this ratio should ideally be made dependent on the land cover type in the operational processing of MODIS data, especially over dense forests.
NASA Technical Reports Server (NTRS)
Remer, Lorraine A.; Mattoo, Shana; Levy, Robert C.; Heidinger, Andrew; Pierce, R. Bradley; Chin, Mian
2011-01-01
The challenge of using satellite observations to retrieve aerosol properties in a cloudy environment is to prevent contamination of the aerosol signal from clouds, while maintaining sufficient aerosol product yield to satisfy specific applications. We investigate aerosol retrieval availability at different instrument pixel resolutions, using the standard MODIS aerosol cloud mask applied to MODIS data and a new GOES-R cloud mask applied to GOES data for a domain covering North America and surrounding oceans. Aerosol availability is not the same as the cloud free fraction and takes into account the technqiues used in the MODIS algorithm to avoid clouds, reduce noise and maintain sufficient numbers of aerosol retrievals. The inherent spatial resolution of each instrument, 0.5x0.5 km for MODIS and 1x1 km for GOES, is systematically degraded to 1x1 km, 2x2 km, 4x4 km and 8x8 km resolutions and then analyzed as to how that degradation would affect the availability of an aerosol retrieval, assuming an aerosol product resolution at 8x8 km. The results show that as pixel size increases, availability decreases until at 8x8 km 70% to 85% of the retrievals available at 0.5 km have been lost. The diurnal pattern of aerosol retrieval availability examined for one day in the summer suggests that coarse resolution sensors (i.e., 4x4 km or 8x8 km) may be able to retrieve aerosol early in the morning that would otherwise be missed at the time of current polar orbiting satellites, but not the diurnal aerosol properties due to cloud cover developed during the day. In contrast finer resolution sensors (i.e., 1x1 km or 2x2 km) have much better opportunity to retrieve aerosols in the partly cloudy scenes and better chance of returning the diurnal aerosol properties. Large differences in the results of the two cloud masks designed for MODIS aerosol and GOES cloud products strongly reinforce that cloud masks must be developed with specific purposes in mind and that a generic cloud mask applied to an independent aerosol retrieval will likely fail.
NASA Technical Reports Server (NTRS)
Lee, Jaehwa; Hsu, N. Christina; Bettenhausen, Corey; Sayer, Andrew M.; Seftor, Colin J.; Jeong, Myeong-Jae
2015-01-01
Aerosol Single scattering albedo and Height Estimation (ASHE) algorithm was first introduced in Jeong and Hsu (2008) to provide aerosol layer height as well as single scattering albedo (SSA) for biomass burning smoke aerosols. One of the advantages of this algorithm was that the aerosol layer height can be retrieved over broad areas, which had not been available from lidar observations only. The algorithm utilized aerosol properties from three different satellite sensors, i.e., aerosol optical depth (AOD) and Ångström exponent (AE) from Moderate Resolution Imaging Spectroradiometer (MODIS), UV aerosol index (UVAI) from Ozone Monitoring Instrument (OMI), and aerosol layer height from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP). Here, we extend the application of the algorithm to Visible Infrared Imaging Radiometer Suite (VIIRS) and Ozone Mapping and Profiler Suite (OMPS) data. We also now include dust layers as well as smoke. Other updates include improvements in retrieving the AOD of nonspherical dust from VIIRS, better determination of the aerosol layer height from CALIOP, and more realistic input aerosol profiles in the forward model for better accuracy.
NASA Astrophysics Data System (ADS)
Mahler, Anna-Britt; Thome, Kurt; Yin, Dazhong; Sprigg, William A.
2006-08-01
Dust is known to aggravate respiratory diseases. This is an issue in the desert southwestern United States, where windblown dust events are common. The Public Health Applications in Remote Sensing (PHAiRS) project aims to address this problem by using remote-sensing products to assist in public health decision support. As part of PHAiRS, a model for simulating desert dust cycles, the Dust Regional Atmospheric Modeling (DREAM) system is employed to forecast dust events in the southwestern US. Thus far, DREAM has been validated in the southwestern US only in the lower part of the atmosphere by comparison with measurement and analysis products from surface synoptic, surface Meteorological Aerodrome Report (METAR), and upper-air radiosonde. This study examines the validity of the DREAM algorithm dust load prediction in the desert southwestern United States by comparison with satellite-based MODIS level 2 and MODIS Deep Blue aerosol products, and ground-based observations from the AERONET network of sunphotometers. Results indicate that there are difficulties obtaining MODIS L2 aerosol optical thickness (AOT) data in the desert southwest due to low AOT algorithm performance over areas with high surface reflectances. MODIS Deep Blue aerosol products show improvement, but the temporal and vertical resolution of MODIS data limit its utility for DREAM evaluation. AERONET AOT data show low correlation to DREAM dust load predictions. The potential contribution of space- or ground-based lidar to the PHAiRS project is also examined.
NASA Technical Reports Server (NTRS)
Redemann, J.; Livingston, J.; Shinozuka, Y.; Kacenelenbogen, M.; Russell, P.; LeBlanc, S.; Vaughan, M.; Ferrare, R.; Hostetler, C.; Rogers, R.;
2014-01-01
We have developed a technique for combining CALIOP aerosol backscatter, MODIS spectral AOD (aerosol optical depth), and OMI AAOD (absorption aerosol optical depth) retrievals for the purpose of estimating full spectral sets of aerosol radiative properties, and ultimately for calculating the 3-D distribution of direct aerosol radiative forcing. We present results using one year of data collected in 2007 and show comparisons of the aerosol radiative property estimates to collocated AERONET retrievals. Use of the recently released MODIS Collection 6 data for aerosol optical depths derived with the dark target and deep blue algorithms has extended the coverage of the multi-sensor estimates towards higher latitudes. We compare the spatio-temporal distribution of our multi-sensor aerosol retrievals and calculations of seasonal clear-sky aerosol radiative forcing based on the aerosol retrievals to values derived from four models that participated in the latest AeroCom model intercomparison initiative. We find significant inter-model differences, in particular for the aerosol single scattering albedo, which can be evaluated using the multi-sensor A-Train retrievals. We discuss the major challenges that exist in extending our clear-sky results to all-sky conditions. On the basis of comparisons to suborbital measurements, we present some of the limitations of the MODIS and CALIOP retrievals in the presence of adjacent or underlying clouds. Strategies for meeting these challenges are discussed.
Dark Targets, Aerosols, Clouds and Toys
NASA Astrophysics Data System (ADS)
Remer, L. A.
2015-12-01
Today if you use the Thomson-Reuters Science Citations Index to search for "aerosol*", across all scientific disciplines and years, with no constraints, and you sort by number of citations, you will find a 2005 paper published in the Journal of the Atmospheric Sciences in the top 20. This is the "The MODIS Aerosol Algorithm, Products and Validation". Although I am the first author, there are in total 12 co-authors who each made a significant intellectual contribution to the paper or to the algorithm, products and validation described. This paper, that algorithm, those people lie at the heart of a lineage of scientists whose collaborations and linked individual pursuits have made a significant contribution to our understanding of radiative transfer and climate, of aerosol properties and the global aerosol system, of cloud physics and aerosol-cloud interaction, and how to measure these parameters and maximize the science that can be obtained from those measurements. The 'lineage' had its origins across the globe, from Soviet Russia to France, from the U.S. to Israel, from the Himalayas, the Sahel, the metropolises of Sao Paulo, Taipei, and the cities of east and south Asia. It came together in the 1990s and 2000s at the NASA Goddard Space Flight Center, using cultural diversity as a strength to form a common culture of scientific creativity that continues to this day. The original algorithm has spawned daughter algorithms that are being applied to new satellite and airborne sensors. The original MODIS products have been fundamental to analyses as diverse as air quality monitoring and aerosol-cloud forcing. AERONET, designed originally for the need of validation, is now its own thriving institution, and the lineage continues to push forward to provide new technology for the coming generations.
NASA Astrophysics Data System (ADS)
Huang, J.; Hsu, C.; Tsay, S.; Jeong, M.; Holben, B.; Berkoff, T.; Welton, E. J.
2010-12-01
Cirrus clouds, particularly subvisual high thin cirrus with low optical thickness, are difficult to be screened out in the operational aerosol retrieval algorithms. In this study, we jointly used ground measurements (AERONET, aerosol robotic network; MPLNET, micro-pulse lidar network) and satellite data (MODIS, moderate resolution imaging spectroradiometer; CALIPSO, cloud-aerosol lidar and infrared pathfinder satellite observations) to closely examine the susceptibility of satellite retrieved and ground measured aerosol optical thickness (AOT) to cirrus contamination. Special cases were selected at Phimai (102.56°E, 15.18°N, also known as Pimai), Thailand, during the Biomass-burning Aerosols in South East-Asia: Smoke Impact Assessment (BASE-ASIA) campaign (February-May 2006). By taking advantage of space-borne and ground lidars in detecting cirrus clouds, we conducted the statistical analysis by matching up concurrent cirrus and aerosol observations at four levels: MPLNET vs AERONET, MPLNET vs MODIS, CALIPSO vs AERONET, and CALIPSO vs MODIS. Results suggest that the susceptibility of current operational AERONET and MODIS AOT products to cirrus features strong regional and seasonal variability, particularly in cirrus prevailing regions. The values of AOT and aerosol particle size appear to be larger for cirrus-susceptible cases than those for confidently non-cirrus cases, a possible signature of cirrus contamination. To further assess cirrus-screening algorithms, we tested 8 MODIS-derived cirrus screening parameters against lidar observations for their performance and robustness on cirrus screening: apparent reflectance at 1.38μm (R1.38), cirrus reflectance at 0.66μm (CR0.66), CR0.66 cirrus flag, reflectance ratio between 1.38μm and 0.66μm (RR1.38/0.66), reflectance ratio between 1.38μm and 1.24μm (RR1.38/1.24), brightness temperature difference between 8.6μm and 11μm (BTD8.6-11), brightness temperature difference between 11μm and 12μm (BTD11-12), and cloud phase infrared approach (CPIR). The quantitative findings from the study suggest that particular caution and careful evaluations on cirrus contamination in the satellite and ground AOT measurements should be exercised before they are used for aerosol related climatic forcing studies.
Continental-scale Validation of MODIS-based and LEDAPS Landsat ETM+ Atmospheric Correction Methods
NASA Technical Reports Server (NTRS)
Ju, Junchang; Roy, David P.; Vermote, Eric; Masek, Jeffrey; Kovalskyy, Valeriy
2012-01-01
The potential of Landsat data processing to provide systematic continental scale products has been demonstrated by several projects including the NASA Web-enabled Landsat Data (WELD) project. The recent free availability of Landsat data increases the need for robust and efficient atmospheric correction algorithms applicable to large volume Landsat data sets. This paper compares the accuracy of two Landsat atmospheric correction methods: a MODIS-based method and the Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) method. Both methods are based on the 6SV radiative transfer code but have different atmospheric characterization approaches. The MODIS-based method uses the MODIS Terra derived dynamic aerosol type, aerosol optical thickness, and water vapor to atmospherically correct ETM+ acquisitions in each coincident orbit. The LEDAPS method uses aerosol characterizations derived independently from each Landsat acquisition and assumes a fixed continental aerosol type and uses ancillary water vapor. Validation results are presented comparing ETM+ atmospherically corrected data generated using these two methods with AERONET corrected ETM+ data for 95 10 km×10 km 30 m subsets, a total of nearly 8 million 30 m pixels, located across the conterminous United States. The results indicate that the MODIS-based method has better accuracy than the LEDAPS method for the ETM+ red and longer wavelength bands.
Ozone and Aerosol Retrieval from Backscattered Ultraviolet Radiation
NASA Technical Reports Server (NTRS)
Bhartia, Pawan K.
2004-01-01
In this presentation we will discuss the techniques to estimate total column ozone and aerosol absorption optical depth from the measurements of backscattered ultraviolet (buv) radiation. The total ozone algorithm has been used to create a unique record of the ozone layer, spanning more than 3 decades, from a series of instruments (BUV, SBUV, TOMS, SBUV/2) flown on NASA, NOAA, Japanese and Russian satellites. We will discuss how this algorithm can be considered a generalization of the well-known Dobson/Brewer technique that has been used to process data from ground-based instruments for many decades, and how it differs from the DOAS techniques that have been used to estimate vertical column densities of a host of trace gases from data collected by GOME and SCIAMACHY instruments. The BUV aerosol algorithm is most suitable for the detection of UV absorbing aerosols (smoke, desert dust, volcanic ash) and is the only technique that can detect aerosols embedded in clouds. This algorithm has been used to create a quarter century record of aerosol absorption optical depth using the BUV data collected by a series of TOMS instruments. We will also discuss how the data from the OM1 instrument launched on July 15,2004 will be combined with data from MODIS and CALIPSO lidar data to enhance the accuracy and information content of satellite-derived aerosol measurements. The OM1 and MODIS instruments are currently flying on EOS Aura and EOS Aqua satellites respectively, part of a constellation of satellites called the "A-train". The CALIPSO satellite is expected to join this constellation in mid 2005.
Statistical Studies on Thin Cirrus from MODIS Data
NASA Technical Reports Server (NTRS)
Li, Rong-Rong; Kaufman, Yoram; Remer, Lorraine
2004-01-01
The 1.38 micron channel on the MODerate resolution Imaging Spectroradiomater (MODIS) is an ideal channel to identify and quantify thin cirrus on a global basis. This channel is used to produce the cirrus reflectance product in MOD06 and also used extensively by the MODIS aerosol algorithms to mask clouds for the MOD04 product. The aerosol product uses a lower threshold of the 1.38 micron channel reflectance of 0.01. A cirrus channel reflectance of 0.01 corresponds to approximately an aerosol optical thickness of 0.10. Therefore, the ambiguity due to the minor cirrus contamination may introduce artificial optical thickness in the aerosol products. The questions arise: How prevalent are the thinnest cirrus clouds over the globe? Do they persist over specific regions and seasons? Can we distinguish between the noise of the channel and the actual cloudiness by extrapolating the cloudiness signal to very dark scenes, statistically. We analyze the Terra data, over land and ocean to answer these questions.
Retrieval of aerosol optical properties using MERIS observations: Algorithm and some first results.
Mei, Linlu; Rozanov, Vladimir; Vountas, Marco; Burrows, John P; Levy, Robert C; Lotz, Wolfhardt
2017-08-01
The MEdium Resolution Imaging Spectrometer (MERIS) instrument on board ESA Envisat made measurements from 2002 to 2012. Although MERIS was limited in spectral coverage, accurate Aerosol Optical Thickness (AOT) from MERIS data are retrieved by using appropriate additional information. We introduce a new AOT retrieval algorithm for MERIS over land surfaces, referred to as eXtensible Bremen AErosol Retrieval (XBAER). XBAER is similar to the "dark-target" (DT) retrieval algorithm used for Moderate-resolution Imaging Spectroradiometer (MODIS), in that it uses a lookup table (LUT) to match to satellite-observed reflectance and derive the AOT. Instead of a global parameterization of surface spectral reflectance, XBAER uses a set of spectral coefficients to prescribe surface properties. In this manner, XBAER is not limited to dark surfaces (vegetation) and retrieves AOT over bright surface (desert, semiarid, and urban areas). Preliminary validation of the MERIS-derived AOT and the ground-based Aerosol Robotic Network (AERONET) measurements yield good agreement, the resulting regression equation is y = (0.92 × ± 0.07) + (0.05 ± 0.01) and Pearson correlation coefficient of R = 0.78. Global monthly means of AOT have been compared from XBAER, MODIS and other satellite-derived datasets.
NASA Technical Reports Server (NTRS)
Sayer, A. M.; Hsu, N. C.; Bettenhausen, C.; Lee, J.; Redemann, J.; Schmid, B.; Shinozuka, Y.
2016-01-01
Cases of absorbing aerosols above clouds (AACs), such as smoke or mineral dust, are omitted from most routinely processed space-based aerosol optical depth (AOD) data products, including those from the Moderate Resolution Imaging Spectroradiometer (MODIS). This study presents a sensitivity analysis and preliminary algorithm to retrieve above-cloud AOD and liquid cloud optical depth (COD) for AAC cases from MODIS or similar sensors, for incorporation into a future version of the "Deep Blue" AOD data product. Detailed retrieval simulations suggest that these sensors should be able to determine AAC AOD with a typical level of uncertainty approximately 25-50 percent (with lower uncertainties for more strongly absorbing aerosol types) and COD with an uncertainty approximately10-20 percent, if an appropriate aerosol optical model is known beforehand. Errors are larger, particularly if the aerosols are only weakly absorbing, if the aerosol optical properties are not known, and the appropriate model to use must also be retrieved. Actual retrieval errors are also compared to uncertainty envelopes obtained through the optimal estimation (OE) technique; OE-based uncertainties are found to be generally reasonable for COD but larger than actual retrieval errors for AOD, due in part to difficulties in quantifying the degree of spectral correlation of forward model error. The algorithm is also applied to two MODIS scenes (one smoke and one dust) for which near-coincident NASA Ames Airborne Tracking Sun photometer (AATS) data were available to use as a ground truth AOD data source, and found to be in good agreement, demonstrating the validity of the technique with real observations.
Development and Testing of the New Surface LER Climatology for OMI UV Aerosol Retrievals
NASA Technical Reports Server (NTRS)
Gupta, Pawan; Torres, Omar; Jethva, Hiren; Ahn, Changwoo
2014-01-01
Ozone Monitoring Instrument (OMI) onboard Aura satellite retrieved aerosols properties using UV part of solar spectrum. The OMI near UV aerosol algorithm (OMAERUV) is a global inversion scheme which retrieves aerosol properties both over ocean and land. The current version of the algorithm makes use of TOMS derived Lambertian Equivalent Reflectance (LER) climatology. A new monthly climatology of surface LER at 354 and 388 nm have been developed. This will replace TOMS LER (380 nm and 354nm) climatology in OMI near UV aerosol retrieval algorithm. The main objectives of this study is to produce high resolution (quarter degree) surface LER sets as compared to existing one degree TOMS surface LERs, to product instrument and wavelength consistent surface climatology. Nine years of OMI observations have been used to derive monthly climatology of surface LER. MODIS derived aerosol optical depth (AOD) have been used to make aerosol corrections on OMI wavelengths. MODIS derived BRDF adjusted reflectance product has been also used to capture seasonal changes in the surface characteristics. Finally spatial and temporal averaging techniques have been used to fill the gaps around the globes, especially in the regions with consistent cloud cover such as Amazon. After implementation of new surface data in the research version of algorithm, comparisons of AOD and single scattering albedo (SSA) have been performed over global AERONET sites for year 2007. Preliminary results shows improvements in AOD retrievals globally but more significance improvement were observed over desert and bright locations. We will present methodology of deriving surface data sets and will discuss the observed changes in retrieved aerosol properties with respect to reference AERONET measurements.
Cloud and aerosol studies using combined CPL and MAS data
NASA Astrophysics Data System (ADS)
Vaughan, Mark A.; Rodier, Sharon; Hu, Yongxiang; McGill, Matthew J.; Holz, Robert E.
2004-11-01
Current uncertainties in the role of aerosols and clouds in the Earth's climate system limit our abilities to model the climate system and predict climate change. These limitations are due primarily to difficulties of adequately measuring aerosols and clouds on a global scale. The A-train satellites (Aqua, CALIPSO, CloudSat, PARASOL, and Aura) will provide an unprecedented opportunity to address these uncertainties. The various active and passive sensors of the A-train will use a variety of measurement techniques to provide comprehensive observations of the multi-dimensional properties of clouds and aerosols. However, to fully achieve the potential of this ensemble requires a robust data analysis framework to optimally and efficiently map these individual measurements into a comprehensive set of cloud and aerosol physical properties. In this work we introduce the Multi-Instrument Data Analysis and Synthesis (MIDAS) project, whose goal is to develop a suite of physically sound and computationally efficient algorithms that will combine active and passive remote sensing data in order to produce improved assessments of aerosol and cloud radiative and microphysical properties. These algorithms include (a) the development of an intelligent feature detection algorithm that combines inputs from both active and passive sensors, and (b) identifying recognizable multi-instrument signatures related to aerosol and cloud type derived from clusters of image pixels and the associated vertical profile information. Classification of these signatures will lead to the automated identification of aerosol and cloud types. Testing of these new algorithms is done using currently existing and readily available active and passive measurements from the Cloud Physics Lidar and the MODIS Airborne Simulator, which simulate, respectively, the CALIPSO and MODIS A-train instruments.
Derivation of Aerosol Columnar Mass from MODIS Optical Depth
NASA Technical Reports Server (NTRS)
Gasso, Santiago; Hegg, Dean A.
2003-01-01
In order to verify performance, aerosol transport models (ATM) compare aerosol columnar mass (ACM) with those derived from satellite measurements. The comparison is inherently indirect since satellites derive optical depths and they use a proportionality constant to derive the ACM. Analogously, ATMs output a four dimensional ACM distribution and the optical depth is linearly derived. In both cases, the proportionality constant requires a direct intervention of the user by prescribing the aerosol composition and size distribution. This study introduces a method that minimizes the direct user intervention by making use of the new aerosol products of MODIS. A parameterization is introduced for the derivation of columnar aerosol mass (AMC) and CCN concentration (CCNC) and comparisons between sunphotometer, MODIS Airborne Simulator (MAS) and in-measurements are shown. The method still relies on the scaling between AMC and optical depth but the proportionality constant is dependent on the MODIS derived r$_{eff}$,\\eta (contribution of the accumulation mode radiance to the total radiance), ambient RH and an assumed constant aerosol composition. The CCNC is derived fkom a recent parameterization of CCNC as a function of the retrieved aerosol volume. By comparing with in-situ data (ACE-2 and TARFOX campaigns), it is shown that retrievals in dry ambient conditions (dust) are improved when using a proportionality constant dependent on r$ {eff}$ and \\eta derived in the same pixel. In high humidity environments, the improvement inthe new method is inconclusive because of the difficulty in accounting for the uneven vertical distribution of relative humidity. Additionally, two detailed comparisons of AMC and CCNC retrieved by the MAS algorithm and the new method are shown. The new method and MAS retrievals of AMC are within the same order of magnitude with respect to the in-situ measurements of aerosol mass. However, the proposed method is closer to the in-situ measurements than the MODIS retrievals. The retrievals of CCNC are also within the same order of magnitude for both methods. The new method is applied to an actual MODIS retrieval and although no in-situ data is available to compare, it is shown that the proposed method yields more credible values than the MODIS retrievals. In addition, recent data available from the PRIDE (Puerto Rico Dust Experiment, July 2000) will be shown by comparing sunphotometer, MODIS and in-situ data.
NASA Technical Reports Server (NTRS)
Kahn, Ralph A.; Garay, Michael J.; Nelson, David L.; Levy, Robert C.; Bull, Michael A.; Diner, David J.; Martonchik, John V.; Hansen, Earl G.; Remer, Lorraine A.; Tanre, Didler
2010-01-01
A recent paper by Mishchenko et al. compares near-coincident MISR, MODIS, and AERONET aerosol optical depth (AOD), and gives a much less favorable impression of the utility of the satellite products than that presented by the instrument teams and other groups. We trace the reasons for the differing pictures to whether known and previously documented limitations of the products are taken into account in the assessments. Specifically, the analysis approaches differ primarily in (1) the treatment of outliers, (2) the application of absolute vs. relative criteria for testing agreement, and (3) the ways in which seasonally varying spatial distributions of coincident retrievals are taken into account. Mishchenko et al. also do not distinguish between observational sampling differences and retrieval algorithm error. We assess the implications of the different analysis approaches, and cite examples demonstrating how the MISR and MODIS aerosol products have been applied successfully to a range of scientific investigations.
Retrieval of Aerosol Optical Depth Under Thin Cirrus from MODIS: Application to an Ocean Algorithm
NASA Technical Reports Server (NTRS)
Lee, Jaehwa; Hsu, Nai-Yung Christina; Sayer, Andrew Mark; Bettenhausen, Corey
2013-01-01
A strategy for retrieving aerosol optical depth (AOD) under conditions of thin cirrus coverage from the Moderate Resolution Imaging Spectroradiometer (MODIS) is presented. We adopt an empirical method that derives the cirrus contribution to measured reflectance in seven bands from the visible to shortwave infrared (0.47, 0.55, 0.65, 0.86, 1.24, 1.63, and 2.12 µm, commonly used for AOD retrievals) by using the correlations between the top-of-atmosphere (TOA) reflectance at 1.38 micron and these bands. The 1.38 micron band is used due to its strong absorption by water vapor and allows us to extract the contribution of cirrus clouds to TOA reflectance and create cirrus-corrected TOA reflectances in the seven bands of interest. These cirrus-corrected TOA reflectances are then used in the aerosol retrieval algorithm to determine cirrus-corrected AOD. The cirrus correction algorithm reduces the cirrus contamination in the AOD data as shown by a decrease in both magnitude and spatial variability of AOD over areas contaminated by thin cirrus. Comparisons of retrieved AOD against Aerosol Robotic Network observations at Nauru in the equatorial Pacific reveal that the cirrus correction procedure improves the data quality: the percentage of data within the expected error +/-(0.03 + 0.05 ×AOD) increases from 40% to 80% for cirrus-corrected points only and from 80% to 86% for all points (i.e., both corrected and uncorrected retrievals). Statistical comparisons with Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) retrievals are also carried out. A high correlation (R = 0.89) between the CALIOP cirrus optical depth and AOD correction magnitude suggests potential applicability of the cirrus correction procedure to other MODIS-like sensors.
NASA Astrophysics Data System (ADS)
Kaufman, Y. J.; Tanré, D.; Remer, L. A.; Vermote, E. F.; Chu, A.; Holben, B. N.
1997-07-01
Daily distribution of the aerosol optical thickness and columnar mass concentration will be derived over the continents, from the EOS moderate resolution imaging spectroradiometer (MODIS) using dark land targets. Dark land covers are mainly vegetated areas and dark soils observed in the red and blue channels; therefore the method will be limited to the moist parts of the continents (excluding water and ice cover). After the launch of MODIS the distribution of elevated aerosol concentrations, for example, biomass burning in the tropics or urban industrial aerosol in the midlatitudes, will be continuously monitored. The algorithm takes advantage of the MODIS wide spectral range and high spatial resolution and the strong spectral dependence of the aerosol opacity for most aerosol types that result in low optical thickness in the mid-IR (2.1 and 3.8 μm). The main steps of the algorithm are (1) identification of dark pixels in the mid-IR; (2) estimation of their reflectance at 0.47 and 0.66 μm; and (3) derivation of the optical thickness and mass concentration of the accumulation mode from the detected radiance. To differentiate between dust and aerosol dominated by accumulation mode particles, for example, smoke or sulfates, ratios of the aerosol path radiance at 0.47 and 0.66 μm are used. New dynamic aerosol models for biomass burning aerosol, dust and aerosol from industrial/urban origin, are used to determine the aerosol optical properties used in the algorithm. The error in the retrieved aerosol optical thicknesses, τa is expected to be Δτa = 0.05±0.2τa. Daily values are stored on a resolution of 10×10 pixels (1 km nadir resolution). Weighted and gridded 8-day and monthly composites of the optical thickness, the aerosol mass concentration and spectral radiative forcing are generated for selected scattering angles to increase the accuracy. The daily aerosol information over land and oceans [Tanré et al., this issue], combined with continuous aerosol remote sensing from the ground, will be used to study aerosol climatology, to monitor the sources and sinks of specific aerosol types, and to study the interaction of aerosol with water vapor and clouds and their radiative forcing of climate. The aerosol information will also be used for atmospheric corrections of remotely sensed surface reflectance. In this paper, examples of applications and validations are provided.
NASA Technical Reports Server (NTRS)
Young, Stuart A.; Josset, Damien B.; Vaughan, Mark A.
2010-01-01
CALIPSO's (Cloud Aerosol Lidar Infrared Pathfinder Satellite Observations) analysis algorithms generally require the use of tabulated values of the lidar ratio in order to retrieve aerosol extinction and optical depth from measured profiles of attenuated backscatter. However, for any given time or location, the lidar ratio for a given aerosol type can differ from the tabulated value. To gain some insight as to the extent of the variability, we here calculate the lidar ratio for dust aerosols using aerosol optical depth constraints from two sources. Daytime measurements are constrained using Level 2, Collection 5, 550-nm aerosol optical depth measurements made over the ocean by the MODIS (Moderate Resolution Imaging Spectroradiometer) on board the Aqua satellite, which flies in formation with CALIPSO. We also retrieve lidar ratios from night-time profiles constrained by aerosol column optical depths obtained by analysis of CALIPSO and CloudSat backscatter signals from the ocean surface.
NASA Astrophysics Data System (ADS)
de Leeuw, Gerrit; Sogacheva, Larisa; Rodriguez, Edith; Kourtidis, Konstantinos; Georgoulias, Aristeidis K.; Alexandri, Georgia; Amiridis, Vassilis; Proestakis, Emmanouil; Marinou, Eleni; Xue, Yong; van der A, Ronald
2018-02-01
The retrieval of aerosol properties from satellite observations provides their spatial distribution over a wide area in cloud-free conditions. As such, they complement ground-based measurements by providing information over sparsely instrumented areas, albeit that significant differences may exist in both the type of information obtained and the temporal information from satellite and ground-based observations. In this paper, information from different types of satellite-based instruments is used to provide a 3-D climatology of aerosol properties over mainland China, i.e., vertical profiles of extinction coefficients from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), a lidar flying aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite and the column-integrated extinction (aerosol optical depth - AOD) available from three radiometers: the European Space Agency (ESA)'s Along-Track Scanning Radiometer version 2 (ATSR-2), Advanced Along-Track Scanning Radiometer (AATSR) (together referred to as ATSR) and NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Terra satellite, together spanning the period 1995-2015. AOD data are retrieved from ATSR using the ATSR dual view (ADV) v2.31 algorithm, while for MODIS Collection 6 (C6) the AOD data set is used that was obtained from merging the AODs obtained from the dark target (DT) and deep blue (DB) algorithms, further referred to as the DTDB merged AOD product. These data sets are validated and differences are compared using Aerosol Robotic Network (AERONET) version 2 L2.0 AOD data as reference. The results show that, over China, ATSR slightly underestimates the AOD and MODIS slightly overestimates the AOD. Consequently, ATSR AOD is overall lower than that from MODIS, and the difference increases with increasing AOD. The comparison also shows that neither of the ATSR and MODIS AOD data sets is better than the other one everywhere. However, ATSR ADV has limitations over bright surfaces which the MODIS DB was designed for. To allow for comparison of MODIS C6 results with previous analyses where MODIS Collection 5.1 (C5.1) data were used, also the difference between the C6 and C5.1 merged DTDB data sets from MODIS/Terra over China is briefly discussed. The AOD data sets show strong seasonal differences and the seasonal features vary with latitude and longitude across China. Two-decadal AOD time series, averaged over all of mainland China, are presented and briefly discussed. Using the 17 years of ATSR data as the basis and MODIS/Terra to follow the temporal evolution in recent years when the environmental satellite Envisat was lost requires a comparison of the data sets for the overlapping period to show their complementarity. ATSR precedes the MODIS time series between 1995 and 2000 and shows a distinct increase in the AOD over this period. The two data series show similar variations during the overlapping period between 2000 and 2011, with minima and maxima in the same years. MODIS extends this time series beyond the end of the Envisat period in 2012, showing decreasing AOD.
NASA Astrophysics Data System (ADS)
Hutchison, Keith D.; Faruqui, Shazia J.; Smith, Solar
The Center for Space Research (CSR) continues to focus on developing methods to improve correlations between satellite-based aerosol optical thickness (AOT) values and ground-based, air pollution observations made at continuous ambient monitoring sites (CAMS) operated by the Texas commission on environmental quality (TCEQ). Strong correlations and improved understanding of the relationships between satellite and ground observations are needed to formulate reliable real-time predictions of air quality using data accessed from the moderate resolution imaging spectroradiometer (MODIS) at the CSR direct-broadcast ground station. In this paper, improvements in these correlations are demonstrated first as a result of the evolution in the MODIS retrieval algorithms. Further improvement is then shown using procedures that compensate for differences in horizontal spatial scales between the nominal 10-km MODIS AOT products and CAMS point measurements. Finally, airborne light detection and ranging (lidar) observations, collected during the Texas Air Quality Study of 2000, are used to examine aerosol profile concentrations, which may vary greatly between aerosol classes as a result of the sources, chemical composition, and meteorological conditions that govern transport processes. Further improvement in correlations is demonstrated with this limited dataset using insights into aerosol profile information inferred from the vertical motion vectors in a trajectory-based forecast model. Analyses are ongoing to verify these procedures on a variety of aerosol classes using data collected by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite (Calipso) lidar.
Enhanced Deep Blue Aerosol Retrieval Algorithm: The Second Generation
NASA Technical Reports Server (NTRS)
Hsu, N. C.; Jeong, M.-J.; Bettenhausen, C.; Sayer, A. M.; Hansell, R.; Seftor, C. S.; Huang, J.; Tsay, S.-C.
2013-01-01
The aerosol products retrieved using the MODIS collection 5.1 Deep Blue algorithm have provided useful information about aerosol properties over bright-reflecting land surfaces, such as desert, semi-arid, and urban regions. However, many components of the C5.1 retrieval algorithm needed to be improved; for example, the use of a static surface database to estimate surface reflectances. This is particularly important over regions of mixed vegetated and non- vegetated surfaces, which may undergo strong seasonal changes in land cover. In order to address this issue, we develop a hybrid approach, which takes advantage of the combination of pre-calculated surface reflectance database and normalized difference vegetation index in determining the surface reflectance for aerosol retrievals. As a result, the spatial coverage of aerosol data generated by the enhanced Deep Blue algorithm has been extended from the arid and semi-arid regions to the entire land areas.
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven; Chu, D. Allen; Moody, Eric G.
2001-01-01
MODIS is an earth-viewing cross-track scanning spectroradiometer launched on the Terra satellite in December 1999. MODIS scans a swath width sufficient to provide nearly complete global coverage every two days from a polar-orbiting, sun-synchronous platform at an altitude of 705 km, and provides images in 36 spectral bands between 0.415 and 14.235 microns with spatial resolutions of 250 m (two bands), 500 m (five bands) and 1000 m (29 bands). These bands have been carefully selected to enable advanced studies of land, ocean, and atmospheric processes. In this presentation we review the comprehensive set of remote sensing algorithms that have been developed for the remote sensing of atmospheric properties using MODIS data, placing primary emphasis on the principal atmospheric applications of (i) developing a cloud mask for distinguishing clear sky from clouds, (ii) retrieving global cloud radiative and microphysical properties, including cloud top pressure and temperature, effective emissivity, cloud optical thickness, thermodynamic phase, and effective radius, (iii) monitoring tropospheric aerosol optical thickness over the land and ocean and aerosol size distribution over the ocean, (iv) determining atmospheric profiles of moisture and temperature, and (v) estimating column water amount. The physical principles behind the determination of each of these atmospheric products will be described, together with an example of their application using MODIS observations to the east Asian region in Spring 2001. All products are archived into two categories: pixel-level retrievals (referred to as Level-2 products) and global gridded products at a latitude and longitude resolution of 1 degree (Level-3 products). An overview of the MODIS atmosphere algorithms and products, status, validation activities, and early level-2 and -3 results will be presented.
Remote Sensing of Cloud, Aerosol, and Water Vapor Properties from MODIS
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven; Menzel, W. Paul; Kaufman, Yoram J.; Ackerman, Steven A.; Tanre, Didier; Gao, Bo-Cai
2001-01-01
MODIS is an earth-viewing cross-track scanning spectroradiometer launched on the Terra satellite in December 1999. MODIS scans a swath width sufficient to provide nearly complete global coverage every two days from a polar orbiting, sun-synchronous, platform at an altitude of 705 kilometers, and provides images in 36 spectral bands between 0.415 and 14.235 micrometers with spatial resolutions of 250 meters (2 bands), 500 meters (5 bands) and 1000 meters (29 bands). These bands have been carefully selected to enable advanced studies of land, ocean, and atmospheric processes. In this presentation we review the comprehensive set of remote sensing algorithms that have been developed for the remote sensing of atmospheric properties using MODIS data, placing primary emphasis on the principal atmospheric applications of (i) developing a cloud mask for distinguishing clear sky from clouds, (ii) retrieving global cloud radiative and microphysical properties, including cloud top pressure and temperature, effective emissivity, cloud optical thickness, thermodynamic phase, and effective radius, (iii) monitoring tropospheric aerosol optical thickness over the land and ocean and aerosol size distribution over the ocean, (iv) determining atmospheric profiles of moisture and temperature, and (v) estimating column water amount. The physical principles behind the determination of each of these atmospheric products will be described, together with an example of their application using MODIS observations. All products are archived into two categories: pixel-level retrievals (referred to as Level-2 products) and global gridded products at a latitude and longitude resolution of 1 degree (Level-3 products). An overview of the MODIS atmosphere algorithms and products, status, validation activities, and early level-2 and -3 results will be presented.
NASA Astrophysics Data System (ADS)
Jethva, Hiren; Torres, Omar; Remer, Lorraine; Redemann, Jens; Livingston, John; Dunagan, Stephen; Shinozuka, Yohei; Kacenelenbogen, Meloe; Segal Rosenheimer, Michal; Spurr, Rob
2016-10-01
We present the validation analysis of above-cloud aerosol optical depth (ACAOD) retrieved from the "color ratio" method applied to MODIS cloudy-sky reflectance measurements using the limited direct measurements made by NASA's airborne Ames Airborne Tracking Sunphotometer (AATS) and Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) sensors. A thorough search of the airborne database collection revealed a total of five significant events in which an airborne sun photometer, coincident with the MODIS overpass, observed partially absorbing aerosols emitted from agricultural biomass burning, dust, and wildfires over a low-level cloud deck during SAFARI-2000, ACE-ASIA 2001, and SEAC4RS 2013 campaigns, respectively. The co-located satellite-airborne matchups revealed a good agreement (root-mean-square difference < 0.1), with most matchups falling within the estimated uncertainties associated the MODIS retrievals (about -10 to +50 %). The co-retrieved cloud optical depth was comparable to that of the MODIS operational cloud product for ACE-ASIA and SEAC4RS, however, higher by 30-50 % for the SAFARI-2000 case study. The reason for this discrepancy could be attributed to the distinct aerosol optical properties encountered during respective campaigns. A brief discussion on the sources of uncertainty in the satellite-based ACAOD retrieval and co-location procedure is presented. Field experiments dedicated to making direct measurements of aerosols above cloud are needed for the extensive validation of satellite-based retrievals.
NASA Technical Reports Server (NTRS)
Jethva, Hiren; Torres, Omar; Remer, Lorraine; Redemann, Jens; Livingston, John; Dunagan, Stephen; Shinozuka, Yohei; Kacenelenbogen, Meloe; Segal Rozenhaimer, Michal; Spurr, Rob
2016-01-01
We present the validation analysis of above-cloud aerosol optical depth (ACAOD) retrieved from the color ratio method applied to MODIS cloudy-sky reflectance measurements using the limited direct measurements made by NASAs airborne Ames Airborne Tracking Sunphotometer (AATS) and Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) sensors. A thorough search of the airborne database collection revealed a total of five significant events in which an airborne sun photometer, coincident with the MODIS overpass, observed partially absorbing aerosols emitted from agricultural biomass burning, dust, and wildfires over a low-level cloud deck during SAFARI-2000, ACE-ASIA 2001, and SEAC4RS 2013 campaigns, respectively. The co-located satellite-airborne match ups revealed a good agreement (root-mean-square difference less than 0.1), with most match ups falling within the estimated uncertainties associated with the MODIS retrievals (about -10 to +50 ). The co-retrieved cloud optical depth was comparable to that of the MODIS operational cloud product for ACE-ASIA and SEAC4RS, however, higher by 30-50% for the SAFARI-2000 case study. The reason for this discrepancy could be attributed to the distinct aerosol optical properties encountered during respective campaigns. A brief discussion on the sources of uncertainty in the satellite-based ACAOD retrieval and co-location procedure is presented. Field experiments dedicated to making direct measurements of aerosols above cloud are needed for the extensive validation of satellite based retrievals.
Continental-Scale Validation of Modis-Based and LEDAPS Landsat ETM + Atmospheric Correction Methods
NASA Technical Reports Server (NTRS)
Ju, Junchang; Roy, David P.; Vermote, Eric; Masek, Jeffrey; Kovalskyy, Valeriy
2012-01-01
The potential of Landsat data processing to provide systematic continental scale products has been demonstratedby several projects including the NASA Web-enabled Landsat Data (WELD) project. The recent freeavailability of Landsat data increases the need for robust and efficient atmospheric correction algorithms applicableto large volume Landsat data sets. This paper compares the accuracy of two Landsat atmospheric correctionmethods: a MODIS-based method and the Landsat Ecosystem Disturbance Adaptive ProcessingSystem (LEDAPS) method. Both methods are based on the 6SV radiative transfer code but have different atmosphericcharacterization approaches. The MODIS-based method uses the MODIS Terra derived dynamicaerosol type, aerosol optical thickness, and water vapor to atmospherically correct ETM+ acquisitions ineach coincident orbit. The LEDAPS method uses aerosol characterizations derived independently from eachLandsat acquisition and assumes a fixed continental aerosol type and uses ancillary water vapor. Validationresults are presented comparing ETM+ atmospherically corrected data generated using these two methodswith AERONET corrected ETM+ data for 95 10 km10 km 30 m subsets, a total of nearly 8 million 30 mpixels, located across the conterminous United States. The results indicate that the MODIS-based methodhas better accuracy than the LEDAPS method for the ETM+ red and longer wavelength bands.
NASA Astrophysics Data System (ADS)
Redemann, J.; Livingston, J. M.; Shinozuka, Y.; Kacenelenbogen, M. S.; Russell, P. B.; LeBlanc, S. E.; Vaughan, M.; Ferrare, R. A.; Hostetler, C. A.; Rogers, R. R.; Burton, S. P.; Torres, O.; Remer, L. A.; Stier, P.; Schutgens, N.
2014-12-01
We describe a technique for combining CALIOP aerosol backscatter, MODIS spectral AOD (aerosol optical depth), and OMI AAOD (absorption aerosol optical depth) retrievals for the purpose of estimating full spectral sets of aerosol radiative properties, and ultimately for calculating the 3-D distribution of direct aerosol radiative forcing. We present results using one year of data collected in 2007 and show comparisons of the aerosol radiative property estimates to collocated AERONET retrievals. Use of the recently released MODIS Collection 6 data for aerosol optical depths derived with the dark target and deep blue algorithms has extended the coverage of the multi-sensor estimates towards higher latitudes. Initial calculations of seasonal clear-sky aerosol radiative forcing based on our multi-sensor aerosol retrievals compare well with over-ocean and top of the atmosphere IPCC-2007 model-based results, and with more recent assessments in the "Climate Change Science Program Report: Atmospheric Aerosol Properties and Climate Impacts" (2009). For the first time, we present comparisons of our multi-sensor aerosol direct radiative forcing estimates to values derived from a subset of models that participated in the latest AeroCom initiative. We discuss the major challenges that exist in extending our clear-sky results to all-sky conditions. On the basis of comparisons to suborbital measurements, we present some of the limitations of the MODIS and CALIOP retrievals in the presence of adjacent or underlying clouds. Strategies for meeting these challenges are discussed.
Georgoulias, Aristeidis K.; Alexandri, Georgia; Kourtidis, Konstantinos A.; Lelieveld, Jos; Zanis, Prodromos; Pöschl, Ulrich; Levy, Robert; Amiridis, Vassilis; Marinou, Eleni; Tsikerdekis, Athanasios
2018-01-01
This study characterizes the spatiotemporal variability and relative contribution of different types of aerosols to the Aerosol Optical Depth (AOD) over the Eastern Mediterranean as derived from MODIS Terra (3/2000–12/2012) and Aqua (7/2002–12/2012) satellite instruments. For this purpose, a 0.1° × 0.1° gridded MODIS dataset was compiled and validated against sunphotometric observations from the AErosol RObotic NETwork (AERONET). The high spatial resolution and long temporal coverage of the dataset allows for the determination of local hot spots like megacities, medium sized cities, industrial zones, and power plant complexes, seasonal variabilities, and decadal averages. The average AOD at 550 nm (AOD550) for the entire region is ~ 0.22 ± 0.19 with maximum values in summer and seasonal variabilities that can be attributed to precipitation, photochemical production of secondary organic aerosols, transport of pollution and smoke from biomass burning in Central and Eastern Europe, and transport of dust from the Sahara Desert and the Middle East. The MODIS data were analyzed together with data from other satellite sensors, reanalysis projects and a chemistry-aerosol-transport model using an optimized algorithm tailored for the region and capable of estimating the contribution of different aerosol types to the total AOD550. The spatial and temporal variability of anthropogenic, dust and fine mode natural aerosols over land and anthropogenic, dust and marine aerosols over the sea is examined. The relative contribution of the different aerosol types to the total AOD550 exhibits a low/high seasonal variability over land/sea areas, respectively. Overall, anthropogenic aerosols, dust and fine mode natural aerosols account for ~ 51 %, ~ 34 % and ~ 15 % of the total AOD550 over land, while, anthropogenic aerosols, dust and marine aerosols account ~ 40 %, ~ 34 % and ~ 26 % of the total AOD550 over the sea, based on MODIS Terra and Aqua observations. PMID:29755508
NASA Astrophysics Data System (ADS)
Georgoulias, Aristeidis K.; Alexandri, Georgia; Kourtidis, Konstantinos A.; Lelieveld, Jos; Zanis, Prodromos; Pöschl, Ulrich; Levy, Robert; Amiridis, Vassilis; Marinou, Eleni; Tsikerdekis, Athanasios
2016-11-01
This study characterizes the spatiotemporal variability and relative contribution of different types of aerosols to the aerosol optical depth (AOD) over the Eastern Mediterranean as derived from MODIS (Moderate Resolution Imaging Spectroradiometer) Terra (March 2000-December 2012) and Aqua (July 2002-December 2012) satellite instruments. For this purpose, a 0.1° × 0.1° gridded MODIS dataset was compiled and validated against sun photometric observations from the AErosol RObotic NETwork (AERONET). The high spatial resolution and long temporal coverage of the dataset allows for the determination of local hot spots like megacities, medium-sized cities, industrial zones and power plant complexes, seasonal variabilities and decadal averages. The average AOD at 550 nm (AOD550) for the entire region is ˜ 0.22 ± 0.19, with maximum values in summer and seasonal variabilities that can be attributed to precipitation, photochemical production of secondary organic aerosols, transport of pollution and smoke from biomass burning in central and eastern Europe and transport of dust from the Sahara and the Middle East. The MODIS data were analyzed together with data from other satellite sensors, reanalysis projects and a chemistry-aerosol-transport model using an optimized algorithm tailored for the region and capable of estimating the contribution of different aerosol types to the total AOD550. The spatial and temporal variability of anthropogenic, dust and fine-mode natural aerosols over land and anthropogenic, dust and marine aerosols over the sea is examined. The relative contribution of the different aerosol types to the total AOD550 exhibits a low/high seasonal variability over land/sea areas, respectively. Overall, anthropogenic aerosols, dust and fine-mode natural aerosols account for ˜ 51, ˜ 34 and ˜ 15 % of the total AOD550 over land, while, anthropogenic aerosols, dust and marine aerosols account ˜ 40, ˜ 34 and ˜ 26 % of the total AOD550 over the sea, based on MODIS Terra and Aqua observations.
NASA Technical Reports Server (NTRS)
Georgoulias, Aristeidis K.; Alexandri, Georgia; Kourtidis, Konstantinos A.; Lelieveld, Jos; Zanis, Prodromos; Poeschl, Ulrich; Levy, Robert; Amiridis, Vassilis; Marinou, Eleni; Tsikerdekis, Athanasios
2016-01-01
This study characterizes the spatiotemporal variability and relative contribution of different types of aerosols to the aerosol optical depth (AOD) over the Eastern Mediterranean as derived from MODIS (Moderate Resolution Imaging Spectroradiometer) Terra (March 2000-December 2012) and Aqua (July 2002-December 2012) satellite instruments. For this purpose, a 0.1deg × 0.1deg gridded MODIS dataset was compiled and validated against sun photometric observations from the AErosol RObotic NETwork (AERONET). The high spatial resolution and long temporal coverage of the dataset allows for the determination of local hot spots like megacities, medium-sized cities, industrial zones and power plant complexes, seasonal variabilities and decadal averages. The average AOD at 550 nm (AOD550) for the entire region is approx. 0.22 +/- 0.19, with maximum values in summer and seasonal variabilities that can be attributed to precipitation, photochemical production of secondary organic aerosols, transport of pollution and smoke from biomass burning in central and eastern Europe and transport of dust from the Sahara and the Middle East. The MODIS data were analyzed together with data from other satellite sensors, reanalysis projects and a chemistry-aerosol-transport model using an optimized algorithm tailored for the region and capable of estimating the contribution of different aerosol types to the total AOD550. The spatial and temporal variability of anthropogenic, dust and fine-mode natural aerosols over land and anthropogenic, dust and marine aerosols over the sea is examined. The relative contribution of the different aerosol types to the total AOD550 exhibits a low/high seasonal variability over land/sea areas, respectively. Overall, anthropogenic aerosols, dust and fine-mode natural aerosols account for approx. 51, approx. 34 and approx. 15 % of the total AOD550 over land, while, anthropogenic aerosols, dust and marine aerosols account approx. 40, approx. 34 and approx. 26 % of the total AOD550 over the sea, based on MODIS Terra and Aqua observations.
Georgoulias, Aristeidis K; Alexandri, Georgia; Kourtidis, Konstantinos A; Lelieveld, Jos; Zanis, Prodromos; Pöschl, Ulrich; Levy, Robert; Amiridis, Vassilis; Marinou, Eleni; Tsikerdekis, Athanasios
2016-01-01
This study characterizes the spatiotemporal variability and relative contribution of different types of aerosols to the Aerosol Optical Depth (AOD) over the Eastern Mediterranean as derived from MODIS Terra (3/2000-12/2012) and Aqua (7/2002-12/2012) satellite instruments. For this purpose, a 0.1° × 0.1° gridded MODIS dataset was compiled and validated against sunphotometric observations from the AErosol RObotic NETwork (AERONET). The high spatial resolution and long temporal coverage of the dataset allows for the determination of local hot spots like megacities, medium sized cities, industrial zones, and power plant complexes, seasonal variabilities, and decadal averages. The average AOD at 550 nm (AOD 550 ) for the entire region is ~ 0.22 ± 0.19 with maximum values in summer and seasonal variabilities that can be attributed to precipitation, photochemical production of secondary organic aerosols, transport of pollution and smoke from biomass burning in Central and Eastern Europe, and transport of dust from the Sahara Desert and the Middle East. The MODIS data were analyzed together with data from other satellite sensors, reanalysis projects and a chemistry-aerosol-transport model using an optimized algorithm tailored for the region and capable of estimating the contribution of different aerosol types to the total AOD 550 . The spatial and temporal variability of anthropogenic, dust and fine mode natural aerosols over land and anthropogenic, dust and marine aerosols over the sea is examined. The relative contribution of the different aerosol types to the total AOD 550 exhibits a low/high seasonal variability over land/sea areas, respectively. Overall, anthropogenic aerosols, dust and fine mode natural aerosols account for ~ 51 %, ~ 34 % and ~ 15 % of the total AOD 550 over land, while, anthropogenic aerosols, dust and marine aerosols account ~ 40 %, ~ 34 % and ~ 26 % of the total AOD 550 over the sea, based on MODIS Terra and Aqua observations.
Analysis of MAIAC Dust Aerosol Retrievals from MODIS Over North Africa
NASA Technical Reports Server (NTRS)
Lyapustin, A.; Wang, Y.; Hsu, C.; Torres, O.; Leptoukh, G.; Kalashnikova, O.; Korkin, S.
2011-01-01
An initial comparison of aerosol optical thickness over North Africa for year 2007 was performed between the Deep Blue and Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithms complimented with MISR and OMI data. The new MAIAC algorithm has a better sensitivity to the small dust storms than the DB algorithm, but it also has biases in the brightest desert regions indicating the need for improvement. The quarterly averaged AOT values in the Bodele depression and western downwind transport region show a good agreement among MAIAC, MISR and OMI data, while the DB algorithm shows a somewhat different seasonality.
MODIS 3km Aerosol Product: Algorithm and Global Perspective
NASA Technical Reports Server (NTRS)
Remer, L. A.; Mattoo, S.; Levy, R. C.; Munchak, L.
2013-01-01
After more than a decade of producing a nominal 10 km aerosol product based on the dark target method, the MODIS aerosol team will be releasing a nominal 3 km product as part of their Collection 6 release. The new product differs from the original 10 km product only in the manner in which reflectance pixels are ingested, organized and selected by the aerosol algorithm. Overall, the 3 km product closely mirrors the 10 km product. However, the finer resolution product is able to retrieve over ocean closer to islands and coastlines, and is better able to resolve fine aerosol features such as smoke plumes over both ocean and land. In some situations, it provides retrievals over entire regions that the 10 km product barely samples. In situations traditionally difficult for the dark target algorithm, such as over bright or urban surfaces the 3 km product introduces isolated spikes of artificially high aerosol optical depth (AOD) that the 10 km algorithm avoids. Over land, globally, the 3 km product appears to be 0.01 to 0.02 higher than the 10 km product, while over ocean, the 3 km algorithm is retrieving a proportionally greater number of very low aerosol loading situations. Based on collocations with ground-based observations for only six months, expected errors associated with the 3 km land product are determined to be greater than for the 10 km product: 0.05 0.25 AOD. Over ocean, the suggestion is for expected errors to be the same as the 10 km product: 0.03 0.05 AOD. The advantage of the product is on the local scale, which will require continued evaluation not addressed here. Nevertheless, the new 3 km product is expected to provide important information complementary to existing satellite-derived products and become an important tool for the aerosol community.
NASA Astrophysics Data System (ADS)
Limbacher, J.; Kahn, R. A.
2015-12-01
MISR aerosol optical depth retrievals are fairly robust to small radiometric calibration artifacts, due to the multi-angle observations. However, even small errors in the MISR calibration, especially structured artifacts in the imagery, have a disproportionate effect on the retrieval of aerosol properties from these data. Using MODIS, POLDER-3, AERONET, MAN, and MISR lunar images, we diagnose and correct various calibration and radiometric artifacts found in the MISR radiance (Level 1) data, using empirical image analysis. The calibration artifacts include temporal trends in MISR top-of-atmosphere reflectance at relatively stable desert sites and flat-fielding artifacts detected by comparison to MODIS over bright, low-contrast scenes. The radiometric artifacts include ghosting (as compared to MODIS, POLDER-3, and forward model results) and point-spread function mischaracterization (using the MISR lunar data and MODIS). We minimize the artifacts to the extent possible by parametrically modeling the artifacts and then removing them from the radiance (reflectance) data. Validation is performed using non-training scenes (reflectance comparison), and also by using the MISR Research Aerosol retrieval algorithm results compared to MAN and AERONET.
NASA Astrophysics Data System (ADS)
Meyer, Kerry; Platnick, Steven; Zhang, Zhibo
2015-06-01
The regional haze over the southeast (SE) Atlantic Ocean induced by biomass burning in southern Africa can be problematic for passive imager-based retrievals of the underlying quasi-permanent marine boundary layer (MBL) clouds and for estimates of top-of-atmosphere (TOA) aerosol direct radiative effect (DRE). Here an algorithm is introduced to simultaneously retrieve above-cloud aerosol optical thickness (AOT), the cloud optical thickness (COT), and cloud effective particle radius (CER) of the underlying MBL clouds while also providing pixel-level estimates of retrieval uncertainty. This approach utilizes reflectance measurements at six Moderate Resolution Imaging Spectroradiometer (MODIS) channels from the visible to the shortwave infrared. Retrievals are run under two aerosol model assumptions on 8 years (2006-2013) of June-October Aqua MODIS data over the SE Atlantic, from which a regional cloud and above-cloud aerosol climatology is produced. The cloud retrieval methodology is shown to yield COT and CER consistent with those from the MODIS operational cloud product (MOD06) when forcing AOT to zero, while the full COT-CER-AOT retrievals that account for the above-cloud aerosol attenuation increase regional monthly mean COT and CER by up to 9% and 2%, respectively. Retrieved AOT is roughly 3 to 5 times larger than the collocated 532 nm Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) retrievals, though closer agreement is observed with the CALIOP 1064 nm retrievals, a result consistent with previous case study analyses. Regional cloudy-sky above-cloud aerosol DRE calculations are also performed that illustrate the importance of the aerosol model assumption and underlying cloud retrievals.
Aerosol climate time series from ESA Aerosol_cci (Invited)
NASA Astrophysics Data System (ADS)
Holzer-Popp, T.
2013-12-01
Within the ESA Climate Change Initiative (CCI) the Aerosol_cci project (mid 2010 - mid 2013, phase 2 proposed 2014-2016) has conducted intensive work to improve algorithms for the retrieval of aerosol information from European sensors AATSR (3 algorithms), PARASOL, MERIS (3 algorithms), synergetic AATSR/SCIAMACHY, OMI and GOMOS. Whereas OMI and GOMOS were used to derive absorbing aerosol index and stratospheric extinction profiles, respectively, Aerosol Optical Depth (AOD) and Angstrom coefficient were retrieved from the other sensors. Global datasets for 2008 were produced and validated versus independent ground-based data and other satellite data sets (MODIS, MISR). An additional 17-year dataset is currently generated using ATSR-2/AATSR data. During the three years of the project, intensive collaborative efforts were made to improve the retrieval algorithms focusing on the most critical modules. The team agreed on the use of a common definition for the aerosol optical properties. Cloud masking was evaluated, but a rigorous analysis with a pre-scribed cloud mask did not lead to improvement for all algorithms. Better results were obtained using a post-processing step in which sudden transitions, indicative of possible occurrence of cloud contamination, were removed. Surface parameterization, which is most critical for the nadir only algorithms (MERIS and synergetic AATSR / SCIAMACHY) was studied to a limited extent. The retrieval results for AOD, Ångström exponent (AE) and uncertainties were evaluated by comparison with data from AERONET (and a limited amount of MAN) sun photometer and with satellite data available from MODIS and MISR. Both level2 and level3 (gridded daily) datasets were validated. Several validation metrics were used (standard statistical quantities such as bias, rmse, Pearson correlation, linear regression, as well as scoring approaches to quantitatively evaluate the spatial and temporal correlations against AERONET), and in some cases developed further, to evaluate the datasets and their regional and seasonal merits. The validation showed that most datasets have improved significantly and in particular PARASOL (ocean only) provides excellent results. The metrics for AATSR (land and ocean) datasets are similar to those of MODIS and MISR, with AATSR better in some land regions and less good in some others (ocean). However, AATSR coverage is smaller than that of MODIS due to swath width. The MERIS dataset provides better coverage than AATSR but has lower quality (especially over land) than the other datasets. Also the synergetic AATSR/SCIAMACHY dataset has lower quality. The evaluation of the pixel uncertainties shows first good results but also reveals that more work needs to be done to provide comprehensive information for data assimilation. Users (MACC/ECMWF, AEROCOM) confirmed the relevance of this additional information and encouraged Aerosol_cci to release the current uncertainties. The paper will summarize and discuss the results of three year work in Aerosol_cci, extract the lessons learned and conclude with an outlook to the work proposed for the next three years. In this second phase a cyclic effort of algorithm evolution, dataset generation, validation and assessment will be applied to produce and further improve complete time series from all sensors under investigation, new sensors will be added (e.g. IASI), and preparation for the Sentinel missions will be made.
NASA Technical Reports Server (NTRS)
Sayer, Andrew M.; Hsu, N. C.; Bettenhausen, C.; Lee, J.; Kondragunta, S.
2013-01-01
Aerosols are small particles suspended in the atmosphere and have a variety of natural and man-made sources. Knowledge of aerosol optical depth (AOD), which is a measure of the amount of aerosol in the atmosphere, and its change over time, is important for multiple reasons. These include climate change, air quality (pollution) monitoring, monitoring hazards such as dust storms and volcanic ash, monitoring smoke from biomass burning, determining potential energy yields from solar plants, determining visibility at sea, estimating fertilization of oceans and rainforests by transported mineral dust, understanding changes in weather brought upon by the interaction of aerosols and clouds, and more. The Suomi-NPP satellite was launched late in 2011. The Visible Infrared Imaging Radiometer Suite (VIIRS) aboard Suomi-NPP is being used, among other things, to determine AOD. This study compares the VIIRS dataset to ground-based measurements of AOD, along with a state-of-the-art satellite AOD dataset (the new version of the Moderate Resolution Imaging Spectrometer Deep Blue algorithm) to assess its reliability. The Suomi-NPP satellite was launched late in 2011, carrying several instruments designed to continue the biogeophysical data records of current and previous satellite sensors. The Visible Infrared Imaging Radiometer Suite (VIIRS) aboard Suomi-NPP is being used, among other things, to determine aerosol optical depth (AOD), and related activities since launch have been focused towards validating and understanding this new dataset through comparisons with other satellite and ground-based products. The operational VIIRS AOD product is compared over land with AOD derived from Moderate Resolution Imaging Spectrometer (MODIS) observations using the Deep Blue (DB) algorithm from the forthcoming Collection 6 of MODIS data
NASA Astrophysics Data System (ADS)
Boiyo, Richard; Kumar, K. Raghavendra; Zhao, Tianliang
2017-11-01
Over the last two decades, a number of space-borne sensors have been used to retrieve aerosol optical depth (AOD). The reliability of these datasets over East Africa (EA), however, is an important issue in the interpretation of regional aerosol variability. This study provides an intercomparison and validation of AOD retrievals from the MODIS-Terra (DT and DB), MISR and OMI sensors against ground-based measurements from the AERONET over three sites (CRPSM_Malindi, Nairobi, and ICIPE_Mbita) in Kenya, EA during the periods 2008-2013, 2005-2009 and 2006-2015, respectively. The analysis revealed that MISR performed better over the three sites with about 82.5% of paired AOD data falling within the error envelope (EE). MODIS-DT showed good agreement against AERONET with 59.05% of paired AOD falling within the sensor EE over terrestrial surfaces with relatively high vegetation cover. The comparison between MODIS-DB and AERONET revealed an overall lower performance with lower Gfraction (48.93%) and lower correlation r = 0.58; while AOD retrieved from OMI showed less correspondence with AERONET data with lower Gfraction (68.89%) and lowest correlation r = 0.31. The monthly evaluation of AODs retrieved from the sensors against AERONET AOD indicates that MODIS-DT has the best performance over the three sites with highest correlation (0.71-0.84), lowest RMSE and spread closer to the AERONET. Regarding seasonal analysis, MISR performed well during most seasons over Nairobi and Mbita; while MODIS-DT performed better than all other sensors during most seasons over Malindi. Furthermore, the best seasonal performance of most sensors relative to AERONET data occurred during June-August (JJA) attributed to modulations induced by a precipitation-vegetation factor to AOD satellite retrieval algorithms. The study revealed the strength and weakness of each of the retrieval algorithm and forms the basis for further research on the validation of satellite retrieved aerosol products over EA.
Characterizing error distributions for MISR and MODIS optical depth data
NASA Astrophysics Data System (ADS)
Paradise, S.; Braverman, A.; Kahn, R.; Wilson, B.
2008-12-01
The Multi-angle Imaging SpectroRadiometer (MISR) and Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's EOS satellites collect massive, long term data records on aerosol amounts and particle properties. MISR and MODIS have different but complementary sampling characteristics. In order to realize maximum scientific benefit from these data, the nature of their error distributions must be quantified and understood so that discrepancies between them can be rectified and their information combined in the most beneficial way. By 'error' we mean all sources of discrepancies between the true value of the quantity of interest and the measured value, including instrument measurement errors, artifacts of retrieval algorithms, and differential spatial and temporal sampling characteristics. Previously in [Paradise et al., Fall AGU 2007: A12A-05] we presented a unified, global analysis and comparison of MISR and MODIS measurement biases and variances over lives of the missions. We used AErosol RObotic NETwork (AERONET) data as ground truth and evaluated MISR and MODIS optical depth distributions relative to AERONET using simple linear regression. However, AERONET data are themselves instrumental measurements subject to sources of uncertainty. In this talk, we discuss results from an improved analysis of MISR and MODIS error distributions that uses errors-in-variables regression, accounting for uncertainties in both the dependent and independent variables. We demonstrate on optical depth data, but the method is generally applicable to other aerosol properties as well.
NASA Astrophysics Data System (ADS)
Hsu, N.; Tsay, S.; Jeong, M.; Holben, B.
2006-12-01
Among the many components that contribute to air pollution, airborne mineral dust plays an important role due to its biogeochemical impact on the ecosystem and its radiative-forcing effect on the climate system. In East Asia, dust storms frequently accompany the cold and dry air masses that occur as part of spring-time cold front systems. China's capital, Beijing, and other large cities are on the primary pathway of these dust storm plumes, and their passage over such popu-lation centers causes flight delays, pushes grit through windows and doors, and forces people indoors. Furthermore, during the spring these anthropogenic and natural air pollutants, once generated over the source regions, can be transported out of the boundary layer into the free troposphere and can travel thousands of kilometers across the Pacific into the United States and beyond. In this paper, we will demonstrate the capability of a new satellite algorithm to retrieve aerosol optical thickness and single scattering albedo over bright-reflecting surfaces such as urban areas and deserts. Such retrievals have been dif-ficult to perform using previously available algorithms that use wavelengths from the mid-visible to the near IR because they have trouble separating the aerosol signal from the contribution due to the bright surface reflectance. The new algorithm, called Deep Blue, utilizes blue-wavelength measurements from instruments such as SeaWiFS and MODIS to infer the properties of aerosols, since the surface reflectance over land in the blue part of the spectrum is much lower than for longer wavelength channels. We have validated the satellite retrieved aerosol optical thickness with data from AERONET sunphotometers over desert and semi-desert regions. The compari-sons show reasonable agreements between these two. These new satellite prod-ucts will allow scientists to determine quantitatively the aerosol properties near sources using high spatial resolution measurements from SeaWiFS and MODIS-like instruments. The multiyear satellite measurements since 1998 from SeaWiFS will be utilized to investigate the interannual variability of source, pathway, and dust loading associated with these dust outbreaks in East Asia. The monthly av-eraged aerosol optical thickness during the springtime from SeaWiFS will also be compared with the MODIS Deep Blue products.
NASA Technical Reports Server (NTRS)
Hsu, N. Christina
2007-01-01
Among the many components that contribute to air pollution, airborne mineral dust plays an important role due to its biogeochemical impact on the ecosystem and its radiative-forcing effect on the climate system. In East Asia, dust storms frequently accompany the cold and dry air masses that occur as part of springtime cold front systems. China's capital, Beijing, and other large cities are on the primary pathway of these dust storm plumes, and their passage over such population centers causes flight delays, pushes grit through windows and doors, and forces people indoors. Furthermore, during the spring these anthropogenic and natural air pollutants, once generated over the source regions, can be transported out of the boundary layer into the free troposphere and can travel thousands of kilometers across the Pacific into the United States and beyond. In this paper, we will demonstrate the capability of a new satellite algorithm to retrieve aerosol optical thickness and single scattering albedo over bright-reflecting surfaces such as urban areas and deserts. Such retrievals have been difficult to perform using previously available algorithms that use wavelengths from the mid-visible to the near IR because they have trouble separating the aerosol signal from the contribution due to the bright surface reflectance. The new algorithm, called Deep Blue, utilizes blue-wavelength measurements from instruments such as SeaWiFS and MODIS to infer the properties of aerosols, since the surface reflectance over land in the blue part of the spectrum is much lower than for longer wavelength channels. We have validated the satellite retrieved aerosol optical thickness with data from AERONET sunphotometers over desert and semi-desert regions. The comparisons show reasonable agreements between these two. These new satellite products will allow scientists to determine quantitatively the aerosol properties near sources using high spatial resolution measurements from SeaWiFS and MODIS-like instruments. The multiyear satellite measurements since 1998 from SeaWiFS will be utilized to investigate the interannual variability of source, pathway, and dust loading associated with these dust outbreaks in East Asia. The monthly averaged aerosol optical thickness during the springtime from SeaWiFS will also be compared with the MODIS Deep Blue products.
NASA Technical Reports Server (NTRS)
Hsu, N. Christina; Tsay, S.-C.; Bettenhausen, C.; Salustro, C.; Jeong, M. J.
2010-01-01
Among the many components that contribute to air pollution, airborne mineral dust plays an important role due to its biogeochernical impact on the ecosystem and its radiative-forcing effect on the climate system. In East Asia, dust storms frequently accompany the cold and dry air masses that occur as part of springtime cold front systems. China's capital, Beijing, and other large cities are on the primary pathway of these dust storm plumes, and their passage over such population centers causes flight delays, pushes grit through windows and doors, and forces people indoors. Furthermore, during the spring these anthropogenic and natural air pollutants, once generated over the source regions, can be transported out of the boundary layer into the free troposphere and can travel thousands of kilometers across the Pacific into the United States and beyond. In this paper, we will demonstrate the capability of a new satellite algorithm to retrieve aerosol optical thickness and single scattering albedo over bright reflecting surfaces such as urban areas and deserts. Such retrievals have been difficult to perform using previously available algorithms that use wavelengths from the mid-visible to the near IR because they have trouble separating the aerosol signal from the contribution due to the bright surface reflectance. The new algorithm, called Deep Blue, utilizes blue-wavelength measurements from instruments such as SeaWiFS and MODIS to infer the properties of aerosols, since the surface reflectance over land in the blue part of the spectrum is much lower than for longer wavelength channels. We have validated the satellite retrieved aerosol optical thickness with data from AERONET sunphotometers over desert and semi-desert regions. The comparisons show reasonable agreements between these two. These new satellite products will allow scientists to determine quantitatively the aerosol properties near sources using high spatial resolution measurements from SeaWiFS and MODIS-like instruments. The multiyear satellite measurements since 1998 from SeaWiFS will be utilized to investigate the interannual variability of source, pathway, and dust loading associated with these dust outbreaks in East Asia. The monthly averaged aerosol optical thickness during the springtime from SeaWiFS will also be compared with the MODIS Deep Blue products.
NASA Technical Reports Server (NTRS)
Di Tomaso, Enza; Schutgens, Nick A. J.; Jorba, Oriol; Perez Garcia-Pando, Carlos
2017-01-01
A data assimilation capability has been built for the NMMB-MONARCH chemical weather prediction system, with a focus on mineral dust, a prominent type of aerosol. An ensemble-based Kalman filter technique (namely the local ensemble transform Kalman filter - LETKF) has been utilized to optimally combine model background and satellite retrievals. Our implementation of the ensemble is based on known uncertainties in the physical parametrizations of the dust emission scheme. Experiments showed that MODIS AOD retrievals using the Dark Target algorithm can help NMMB-MONARCH to better characterize atmospheric dust. This is particularly true for the analysis of the dust outflow in the Sahel region and over the African Atlantic coast. The assimilation of MODIS AOD retrievals based on the Deep Blue algorithm has a further positive impact in the analysis downwind from the strongest dust sources of the Sahara and in the Arabian Peninsula. An analysis-initialized forecast performs better (lower forecast error and higher correlation with observations) than a standard forecast, with the exception of underestimating dust in the long-range Atlantic transport and degradation of the temporal evolution of dust in some regions after day 1. Particularly relevant is the improved forecast over the Sahara throughout the forecast range thanks to the assimilation of Deep Blue retrievals over areas not easily covered by other observational datasets.The present study on mineral dust is a first step towards data assimilation with a complete aerosol prediction system that includes multiple aerosol species.
NASA Astrophysics Data System (ADS)
Di Tomaso, Enza; Schutgens, Nick A. J.; Jorba, Oriol; Pérez García-Pando, Carlos
2017-03-01
A data assimilation capability has been built for the NMMB-MONARCH chemical weather prediction system, with a focus on mineral dust, a prominent type of aerosol. An ensemble-based Kalman filter technique (namely the local ensemble transform Kalman filter - LETKF) has been utilized to optimally combine model background and satellite retrievals. Our implementation of the ensemble is based on known uncertainties in the physical parametrizations of the dust emission scheme. Experiments showed that MODIS AOD retrievals using the Dark Target algorithm can help NMMB-MONARCH to better characterize atmospheric dust. This is particularly true for the analysis of the dust outflow in the Sahel region and over the African Atlantic coast. The assimilation of MODIS AOD retrievals based on the Deep Blue algorithm has a further positive impact in the analysis downwind from the strongest dust sources of the Sahara and in the Arabian Peninsula. An analysis-initialized forecast performs better (lower forecast error and higher correlation with observations) than a standard forecast, with the exception of underestimating dust in the long-range Atlantic transport and degradation of the temporal evolution of dust in some regions after day 1. Particularly relevant is the improved forecast over the Sahara throughout the forecast range thanks to the assimilation of Deep Blue retrievals over areas not easily covered by other observational datasets. The present study on mineral dust is a first step towards data assimilation with a complete aerosol prediction system that includes multiple aerosol species.
Comparison of the MODIS Collection 5 Multilayer Cloud Detection Product with CALIPSO
NASA Technical Reports Server (NTRS)
Platnick, Steven; Wind, Gala; King, Michael D.; Holz, Robert E.; Ackerman, Steven A.; Nagle, Fred W.
2010-01-01
CALIPSO, launched in June 2006, provides global active remote sensing measurements of clouds and aerosols that can be used for validation of a variety of passive imager retrievals derived from instruments flying on the Aqua spacecraft and other A-Train platforms. The most recent processing effort for the MODIS Atmosphere Team, referred to as the Collection 5 scream, includes a research-level multilayer cloud detection algorithm that uses both thermodynamic phase information derived from a combination of solar and thermal emission bands to discriminate layers of different phases, as well as true layer separation discrimination using a moderately absorbing water vapor band. The multilayer detection algorithm is designed to provide a means of assessing the applicability of 1D cloud models used in the MODIS cloud optical and microphysical product retrieval, which are generated at a 1 km resolution. Using pixel-level collocations of MODIS Aqua, CALIOP, we investigate the global performance of multilayer cloud detection algorithms (and thermodynamic phase).
Synergetic use of Aerosol Robotic Network (AERONET) and Moderate Image Spectrometer (MODIS)
NASA Technical Reports Server (NTRS)
Kaufman, Y.
2004-01-01
I shall describe several distinct modes in which AERONET data are used in conjunction with MODIS data to evaluate the global aerosol system and its impact on climate. These includes: 1) Evaluation of the aerosol diurnal cycle not available from MODIS, and the relationship between the aerosol properties derived from MODIS and the daily average of these properties; 2) Climatology of the aerosol size distribution and single scattering albedo. The climatology is used to formulate the assumptions used in the MODIS look up tables used in the inversion of MODIS data; 3) Measurement of the aerosol effect on irradiation of the surface, this is used in conjunction with the MODIS evaluation of the aerosol effect at the TOA; and 4) Assessment of the aerosol baseline on top off which the satellite data are used to find the amount of dust or anthropogenic aerosol.
NASA Technical Reports Server (NTRS)
Abdou, Wedad A.; Diner, David J.; Martonchik, John V.; Bruegge, Carol J.; Kahn, Ralph A.; Gaitley, Barbara J.; Crean, Kathleen A.; Remer, Lorraine A.; Holben, Brent
2005-01-01
The Multiangle Imaging Spectroradiometer (MISR) and the Moderate Resolution Imaging Spectroradiometer (MODIS), launched on 18 December 1999 aboard the Terra spacecraft, are making global observations of top-of-atmosphere (TOA) radiances. Aerosol optical depths and particle properties are independently retrieved from these radiances using methodologies and algorithms that make use of the instruments corresponding designs. This paper compares instantaneous optical depths retrieved from simultaneous and collocated radiances measured by the two instruments at locations containing sites within the Aerosol Robotic Network (AERONET). A set of 318 MISR and MODIS images, obtained during the months of March, June, and September 2002 at 62 AERONET sites, were used in this study. The results show that over land, MODIS aerosol optical depths at 470 and 660 nm are larger than those retrieved from MISR by about 35% and 10% on average, respectively, when all land surface types are included in the regression. The differences decrease when coastal and desert areas are excluded. For optical depths retrieved over ocean, MISR is on average about 0.1 and 0.05 higher than MODIS in the 470 and 660 nm bands, respectively. Part of this difference is due to radiometric calibration and is reduced to about 0.01 and 0.03 when recently derived band-to-band adjustments in the MISR radiometry are incorporated. Comparisons with AERONET data show similar patterns.
Using Aerosol Reflectance for Dust Detection
NASA Astrophysics Data System (ADS)
Bahramvash Shams, S.; Mohammadzade, A.
2013-09-01
In this study we propose an approach for dust detection by aerosol reflectance over arid and urban region in clear sky condition. In urban and arid areas surface reflectance in red and infrared spectral is bright and hence shorter wavelength is required for this detections. Main step of our approach can be mentioned as: cloud mask for excluding cloudy pixels from our calculation, calculate Rayleigh path radiance, construct a surface reflectance data base, estimate aerosol reflectance, detect dust aerosol, dust detection and evaluations of dust detection. Spectral with wavelength 0.66, 0.55, 0.47 μm has been used in our dust detection. Estimating surface reflectance is the most challenging step of obtaining aerosol reflectance from top of atmosphere (TOA) reflectance. Hence for surface estimation we had created a surface reflectance database of 0.05 degree latitude by 0.05 degree longitude resolution by using minimum reflectivity technique (MRT). In order to evaluate our dust detection algorithm MODIS aerosol product MOD04 and common dust detection method named Brightness Temperature Difference (BTD) had been used. We had implemented this method to Moderate Resolution Imaging Spectroradiometer (MODIS) image of part of Iran (7 degree latitude and 8 degree longitude) spring 2005 dust phenomenon from April to June. This study uses MODIS LIB calibrated reflectance high spatial resolution (500 m) MOD02Hkm on TERRA spacecraft. Hence our dust detection spatial resolution will be higher spatial resolution than MODIS aerosol product MOD04 which has 10 × 10 km2 and BTD resolution is 1 km due to the band 29 (8.7 μm), 31 (11 μm), and 32 (12 μm) spatial resolutions.
An Automatic Cloud Mask Algorithm Based on Time Series of MODIS Measurements
NASA Technical Reports Server (NTRS)
Lyapustin, Alexei; Wang, Yujie; Frey, R.
2008-01-01
Quality of aerosol retrievals and atmospheric correction depends strongly on accuracy of the cloud mask (CM) algorithm. The heritage CM algorithms developed for AVHRR and MODIS use the latest sensor measurements of spectral reflectance and brightness temperature and perform processing at the pixel level. The algorithms are threshold-based and empirically tuned. They don't explicitly address the classical problem of cloud search, wherein the baseline clear-skies scene is defined for comparison. Here, we report on a new CM algorithm which explicitly builds and maintains a reference clear-skies image of the surface (refcm) using a time series of MODIS measurements. The new algorithm, developed as part of the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm for MODIS, relies on fact that clear-skies images of the same surface area have a common textural pattern, defined by the surface topography, boundaries of rivers and lakes, distribution of soils and vegetation etc. This pattern changes slowly given the daily rate of global Earth observations, whereas clouds introduce high-frequency random disturbances. Under clear skies, consecutive gridded images of the same surface area have a high covariance, whereas in presence of clouds covariance is usually low. This idea is central to initialization of refcm which is used to derive cloud mask in combination with spectral and brightness temperature tests. The refcm is continuously updated with the latest clear-skies MODIS measurements, thus adapting to seasonal and rapid surface changes. The algorithm is enhanced by an internal dynamic land-water-snow classification coupled with a surface change mask. An initial comparison shows that the new algorithm offers the potential to perform better than the MODIS MOD35 cloud mask in situations where the land surface is changing rapidly, and over Earth regions covered by snow and ice.
Reduction of Aerosol Absorption in Beijing Since 2007 from MODIS and AERONET
NASA Technical Reports Server (NTRS)
Lyapustin, A.; Smirnov, A.; Holben, B.; Chin, M.; Streets, D. G.; Lu, Z.; Kahn, R.; Slutsker, I.; Laszlo, I.; Kondragunta, S.;
2011-01-01
An analysis of the time series of MODIS-based and AERONET aerosol records over Beijing reveals two distinct periods, before and after 2007. The MODIS data from both the Terra and Aqua satellites were processed with the new Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm. A comparison of MAIAC and AERONET AOT shows that whereas MAIAC consistently underestimated peak AOT values by 10-20% in the prior period, the bias mostly disappears after mid-2007. Independent analysis of the AERONET dataset reveals little or no change in the effective radii of the fine and coarse fractions and of the Angstrom exponent. At the same time, it shows an increasing trend in the single scattering albedo, by approx.0.02 in 9 years. As MAIAC was using the same aerosol model for the entire 2000-2010 period, the decrease in AOT bias after 2007 can be explained only by a corresponding decrease of aerosol absorption caused by a reduction in local black carbon emissions. The observed changes correlate in time with the Chinese government's broad measures to improve air quality in Beijing during preparations for the Summer Olympics of 2008.
Progress towards MODIS and VIIRS Cloud Fraction Data Record Continuity
NASA Astrophysics Data System (ADS)
Ackerman, S. A.; Frey, R.; Holz, R.; Platnick, S. E.; Heidinger, A. K.
2016-12-01
Satellite-derived clear-sky vs. cloudy-sky discrimination at the pixel scale is an important input parameter used in many real-time applications. Cloud fractions, resulting from integrating over time and space, are also critical to the study of recent decadal climate changes. The NASA NPOESS Preparatory Project (NPP) has funded a science team to develop and study the ability to make continuous climate records from MODIS (2000-2020) and VIIRS (2012-2030). The MODAWG project, led by Dr. Steve Platnick of NASA/GSFC, combines elements of the MODIS processing system and the NOAA Algorithm Working Group (AWG) to achieve this goal. This presentation will focus on the cloud masking aspects of MODAWG, derived primarily from the MODIS cloud mask (MOD35). Challenges to continuity of cloud detection due to differences in instrument characteristics will be discussed. Cloud mask results from use of the same (continuity) algorithm will be shown for both MODIS and VIIRS, including comparisons to collocated CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) cloud data.
Synergism of MODIS Aerosol Remote Sensing from Terra and Aqua
NASA Technical Reports Server (NTRS)
Ichoku, Charles; Kaufman, Yoram J.; Remer, Lorraine A.
2003-01-01
The MODerate-resolution Imaging Spectro-radiometer (MODIS) sensors, aboard the Earth Observing System (EOS) Terra and Aqua satellites, are showing excellent competence at measuring the global distribution and properties of aerosols. Terra and Aqua were launched on December 18, 1999 and May 4, 2002 respectively, with daytime equator crossing times of approximately 10:30 am and 1:30 pm respectively. Several aerosol parameters are retrieved at 10-km spatial resolution from MODIS daytime data over land and ocean surfaces. The parameters retrieved include: aerosol optical thickness (AOT) at 0.47, 0.55 and 0.66 micron wavelengths over land, and at 0.47, 0.55, 0.66, 0.87, 1.2, 1.6, and 2.1 microns over ocean; Angstrom exponent over land and ocean; and effective radii, and the proportion of AOT contributed by the small mode aerosols over ocean. Since the beginning of its operation, the quality of Terra-MODIS aerosol products (especially AOT) have been evaluated periodically by cross-correlation with equivalent data sets acquired by ground-based (and occasionally also airborne) sunphotometers, particularly those coordinated within the framework of the AErosol Robotic NETwork (AERONET). Terra-MODIS AOT data have been found to meet or exceed pre-launch accuracy expectations, and have been applied to various studies dealing with local, regional, and global aerosol monitoring. The results of these Terra-MODIS aerosol data validation efforts and studies have been reported in several scientific papers and conferences. Although Aqua-MODIS is still young, it is already yielding formidable aerosol data products, which are also subjected to careful periodic evaluation similar to that implemented for the Terra-MODIS products. This paper presents results of validation of Aqua-MODIS aerosol products with AERONET, as well as comparative evaluation against corresponding Terra-MODIS data. In addition, we show interesting independent and synergistic applications of MODIS aerosol data from both Terra and Aqua. In certain situations, this combined analysis of Terra- and Aqua-MODIS data offers an insight into the diurnal cycle of aerosol loading.
Remote Sensing of Aerosol using MODIS, MODIS+CALIPSO and with the AEROSAT Concept
NASA Technical Reports Server (NTRS)
Kaufman, Yoram J.
2002-01-01
In the talk I shall review the MODIS use of spectral information to derive aerosol size distribution, optical thickness and reflected spectral flux. The accuracy and validation of the MODIS products will be discussed. A few applications will be shown: inversion of combined MODIS+lidar data, aerosol Anthropogenic direct forcing, and dust deposition in the Atlantic Ocean. I shall also discuss the aerosol information that MODIS is measuring: real ref index, single scattering albedo, size of fine and coarse modes, and describe the AEROSAT concept that uses bright desert and glint to derive aerosol absorption.
NASA Astrophysics Data System (ADS)
Toth, Travis D.; Campbell, James R.; Reid, Jeffrey S.; Tackett, Jason L.; Vaughan, Mark A.; Zhang, Jianglong; Marquis, Jared W.
2018-01-01
Due to instrument sensitivities and algorithm detection limits, level 2 (L2) Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) 532 nm aerosol extinction profile retrievals are often populated with retrieval fill values (RFVs), which indicate the absence of detectable levels of aerosol within the profile. In this study, using 4 years (2007-2008 and 2010-2011) of CALIOP version 3 L2 aerosol data, the occurrence frequency of daytime CALIOP profiles containing all RFVs (all-RFV profiles) is studied. In the CALIOP data products, the aerosol optical thickness (AOT) of any all-RFV profile is reported as being zero, which may introduce a bias in CALIOP-based AOT climatologies. For this study, we derive revised estimates of AOT for all-RFV profiles using collocated Moderate Resolution Imaging Spectroradiometer (MODIS) Dark Target (DT) and, where available, AErosol RObotic NEtwork (AERONET) data. Globally, all-RFV profiles comprise roughly 71 % of all daytime CALIOP L2 aerosol profiles (i.e., including completely attenuated profiles), accounting for nearly half (45 %) of all daytime cloud-free L2 aerosol profiles. The mean collocated MODIS DT (AERONET) 550 nm AOT is found to be near 0.06 (0.08) for CALIOP all-RFV profiles. We further estimate a global mean aerosol extinction profile, a so-called noise floor
, for CALIOP all-RFV profiles. The global mean CALIOP AOT is then recomputed by replacing RFV values with the derived noise-floor values for both all-RFV and non-all-RFV profiles. This process yields an improvement in the agreement of CALIOP and MODIS over-ocean AOT.
Global Distributions of Mineral Dust Properties from SeaWiFS and MODIS: From Sources to Sinks
NASA Technical Reports Server (NTRS)
Hsu, N. Christina; Bettenhausen, C.; Sayer, A.
2011-01-01
The impact of natural and anthropogenic sources of mineral dust has gained increasing attention from scientific communities in recent years. Indeed, these airborne dust particles, once lifted over the source regions, can be transported out of the boundary layer into the free troposphere and can travel thousands of kilometers across the oceans resulting in important biogeochemical impacts on the ecosystem. Due to the relatively short lifetime (a few hours to about a week), the distributions of these mineral dust particles vary extensively in both space and time. Consequently, satellite observations are needed over both source and sink regions for continuous temporal and spatial sampling of aerosol properties. With the launch of SeaWiFS in 1997, Terra/MODIS in 1999, and Aqua/MODIS in 2002, high quality comprehensive aerosol climatology is becoming feasible for the first time. As a result of these unprecedented satellite data records, studies of the radiative and biogeochemical effects due to dust aerosols are now possible. In this study, we will show the comparisons of satellite retrieved aerosol optical thickness using Deep Blue algorithm with data from AERONET sunphotometers over desert and semi-desert regions as well as vegetated areas. Our results indicate reasonable agreements between these two. These new satellite products will allow scientists to determine quantitatively the aerosol properties near sources using high spatial resolution measurements from Sea WiFS and MODIS-like instruments. The multiyear satellite measurements since 1997 from Sea WiFS will be compared with those retrieved from MODIS and MISR, and will be utilized to investigate the interannual variability of source, pathway, and dust loading associated with the dust outbreaks over the entire globe. Finally, the trends observed over the last decade based upon the SeaWiFS time series in the amounts of tropospheric aerosols due to natural and anthropogenic sources (such as changes in the frequency of dust storms) will be discussed.
NASA Astrophysics Data System (ADS)
Kalaitzi, Nikoleta; Hatzianastassiou, Nikos; Gkikas, Antonis; Papadimas, Christos D.; Torres, Omar; Mihalopoulos, Nikos
2017-04-01
Natural biomass burning (BB) along with anthropogenic urban and industrial aerosol particles, altogether labeled here as BU aerosols, contain black and brown carbon which both absorb strongly the solar radiation. Thus, BU aerosols warm significantly the atmosphere also causing adjustments to cloud properties, which traditionally are known as cloud indirect and semi-direct effects. Given the role of the effects of BU aerosols for contemporary and future climate change, and the uncertainty associated with BU, both ascertained by the latest IPCC reports, there is an urgent need for improving our knowledge on the spatial and temporal variability of BU aerosols all over the globe. Over the last few decades, thanks to the rapid development of satellite observational techniques and retrieval algorithms it is now possible to detect BU aerosols based on satellite measurements. However, care must be taken in order to ensure the ability to distinguish BU from other aerosol types usually co-existing in the Earth's atmosphere. In the present study, an algorithm is presented, based on a synergy of different satellite measurements, aiming to identify and quantify BU aerosols over the entire globe and during multiple years. The objective is to build a satellite-based climatology of BU aerosols intended for use for various purposes. The produced regime, namely the spatial and temporal variability of BU aerosols, emphasizes the BU frequency of occurrence and their intensity, in terms of aerosol optical depth (AOD). The algorithm is using the following aerosol optical properties describing the size and atmospheric loading of BU aerosols: (i) spectral AOD, (ii) Ångström Exponent (AE), (iii) Fine Fraction (FF) and (iv) Aerosol Index (AI). The relevant data are taken from Collection 006 MODIS-Aqua, except for AI which is taken from OMI-Aura. The identification of BU aerosols by the algorithm is based on a specific thresholding technique, with AI≥1.5, AE≥1.2 and FF≥0.6 threshold values. The study spans the 11-year period 2005-2015, which enables to examine the inter-annual variability and possible changes of BU aerosols. Emphasis is given on specific world areas known to be sources of BU emissions. An effort is also made to separate with the algorithm the BB from BU aerosols, aiming to create a satellite database of biomass burning aerosols. The results of the algorithm, as to BB aerosols and the ability to separate them, are evaluated through comparisons against the global satellite databases of MODIS active fire counts as well as AIRS carbon monoxide (CO), which is a key indicator of presence of biomass burning activities. The algorithm estimates frequencies of occurrence of BU aerosols reaching up to 10 days/year and AOD values up to 1.5 or even larger. The results indicate the existence of seasonal cycles of biomass burning in south and central Africa as well as in South America (Amazonia), with highest BU frequencies during June-September, December-February and August-October, respectively, whereas they successfully reproduce features like the export of African BB aerosols into the Atlantic Ocean.
Atmospheric Correction at AERONET Locations: A New Science and Validation Data Set
NASA Technical Reports Server (NTRS)
Wang, Yujie; Lyapustin, Alexei; Privette, Jeffery L.; Morisette, Jeffery T.; Holben, Brent
2008-01-01
This paper describes an AERONET-based Surface Reflectance Validation Network (ASRVN) and its dataset of spectral surface bidirectional reflectance and albedo based on MODIS TERRA and AQUA data. The ASRVN is an operational data collection and processing system. It receives 50x50 square kilometer subsets of MODIS L1B data from MODAPS and AERONET aerosol and water vapor information. Then it performs an accurate atmospheric correction for about 100 AERONET sites based on accurate radiative transfer theory with high quality control of the input data. The ASRVN processing software consists of L1B data gridding algorithm, a new cloud mask algorithm based on a time series analysis, and an atmospheric correction algorithm. The atmospheric correction is achieved by fitting the MODIS top of atmosphere measurements, accumulated for 16-day interval, with theoretical reflectance parameterized in terms of coefficients of the LSRT BRF model. The ASRVN takes several steps to ensure high quality of results: 1) cloud mask algorithm filters opaque clouds; 2) an aerosol filter has been developed to filter residual semi-transparent and sub-pixel clouds, as well as cases with high inhomogeneity of aerosols in the processing area; 3) imposing requirement of consistency of the new solution with previously retrieved BRF and albedo; 4) rapid adjustment of the 16-day retrieval to the surface changes using the last day of measurements; and 5) development of seasonal back-up spectral BRF database to increase data coverage. The ASRVN provides a gapless or near-gapless coverage for the processing area. The gaps, caused by clouds, are filled most naturally with the latest solution for a given pixels. The ASRVN products include three parameters of LSRT model (k(sup L), k(sup G), k(sup V)), surface albedo, NBRF (a normalized BRF computed for a standard viewing geometry, VZA=0 deg., SZA=45 deg.), and IBRF (instantaneous, or one angle, BRF value derived from the last day of MODIS measurement for specific viewing geometry) for MODIS 500m bands 1-7. The results are produced daily at resolution of 1 km in gridded format. We also provide cloud mask, quality flag and a browse bitmap image. The new dataset can be used for a wide range of applications including validation analysis and science research.
NASA Technical Reports Server (NTRS)
Geogdzhayev, Igor V.; Mishchenko, Michael I.
2015-01-01
A comprehensive set of monthly mean aerosol optical thickness (AOT) data from coastal and island AErosol RObotic NETwork (AERONET) stations is used to evaluate Global Aerosol Climatology Project (GACP) retrievals for the period 1995-2009 during which contemporaneous GACP and AERONET data were available. To put the GACP performance in broader perspective, we also compare AERONET and MODerate resolution Imaging Spectroradiometer (MODIS) Aqua level-2 data for 2003-2009 using the same methodology. We find that a large mismatch in geographic coverage exists between the satellite and ground-based datasets, with very limited AERONET coverage of open-ocean areas. This is especially true of GACP because of the smaller number of AERONET stations at the early stages of the network development. Monthly mean AOTs from the two over-the-ocean satellite datasets are well-correlated with the ground-based values, the correlation coefficients being 0.81-0.85 for GACP and 0.74-0.79 for MODIS. Regression analyses demonstrate that the GACP mean AOTs are approximately 17%-27% lower than the AERONET values on average, while the MODIS mean AOTs are 5%-25% higher. The regression coefficients are highly dependent on the weighting assumptions (e.g., on the measure of aerosol variability) as well as on the set of AERONET stations used for comparison. Comparison of over-the-land and over-the-ocean MODIS monthly mean AOTs in the vicinity of coastal AERONET stations reveals a significant bias. This may indicate that aerosol amounts in coastal locations can differ significantly from those in adjacent open-ocean areas. Furthermore, the color of coastal waters and peculiarities of coastline meteorological conditions may introduce biases in the GACP AOT retrievals. We conclude that the GACP and MODIS over-the-ocean retrieval algorithms show similar ranges of discrepancy when compared to available coastal and island AERONET stations. The factors mentioned above may limit the performance of the validation procedure and cause us to caution against a direct extrapolation of the presented validation results to the entirety of the GACP dataset.
NASA Astrophysics Data System (ADS)
Antuña-Marrero, Juan Carlos; Cachorro Revilla, Victoria; García Parrado, Frank; de Frutos Baraja, Ángel; Rodríguez Vega, Albeth; Mateos, David; Estevan Arredondo, René; Toledano, Carlos
2018-04-01
In the present study, we report the first comparison between the aerosol optical depth (AOD) and Ångström exponent (AE) of the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on the Terra (AODt) and Aqua (AODa) satellites and those measured using a sun photometer (AODSP) at Camagüey, Cuba, for the period 2008 to 2014. The comparison of Terra and Aqua data includes AOD derived with both deep blue (DB) and dark target (DT) algorithms from MODIS Collection 6. Combined Terra and Aqua (AODta) data were also considered. Assuming an interval of ±30 min around the overpass time and an area of 25 km around the sun photometer site, two coincidence criteria were considered: individual pairs of observations and both spatial and temporal mean values, which we call collocated daily means. The usual statistics (root mean square error, RMSE; mean absolute error, MAE; median bias, BIAS), together with linear regression analysis, are used for this comparison. Results show very similar values for both coincidence criteria: the DT algorithm generally displays better statistics and higher homogeneity than the DB algorithm in the behaviour of AODt, AODa, AODta compared to AODSP. For collocated daily means, (a) RMSEs of 0.060 and 0.062 were obtained for Terra and Aqua with the DT algorithm and 0.084 and 0.065 for the DB algorithm, (b) MAE follows the same patterns, (c) BIAS for both Terra and Aqua presents positive and negative values but its absolute values are lower for the DT algorithm; (d) combined AODta data also give lower values of these three statistical indicators for the DT algorithm; (e) both algorithms present good correlations for comparing AODt, AODa, AODta vs. AODSP, with a slight overestimation of satellite data compared to AODSP, (f). The DT algorithm yields better figures with slopes of 0.96 (Terra), 0.96 (Aqua) and 0.96 (Terra + Aqua) compared to the DB algorithm (1.07, 0.90, 0.99), which displays greater variability. Multi-annual monthly means of AODta establish a first climatology that is more comparable to that given by the sun photometer and their statistical evaluation reveals better agreement with AODSP for the DT algorithm. Results of the AE comparison showed similar results to those reported in the literature concerning the two algorithms' capacity for retrieval. A comparison between broadband aerosol optical depth (BAOD), derived from broadband pyrheliometer observations at the Camagüey site and three other meteorological stations in Cuba, and AOD observations from MODIS on board Terra and Aqua show a poor correlation with slopes below 0.4 for both algorithms. Aqua (Terra) showed RMSE values of 0.073 (0.080) and 0.088 (0.087) for the DB and DT algorithms. As expected, RMSE values are higher than those from the MODIS-sun photometer comparison, but within the same order of magnitude. Results from the BAOD derived from solar radiation measurements demonstrate its reliability in describing climatological AOD series estimates.
Cloud, Aerosol, and Volcanic Ash Retrievals Using ASTR and SLSTR with ORAC
NASA Astrophysics Data System (ADS)
McGarragh, Gregory; Poulsen, Caroline; Povey, Adam; Thomas, Gareth; Christensen, Matt; Sus, Oliver; Schlundt, Cornelia; Stapelberg, Stefan; Stengel, Martin; Grainger, Don
2015-12-01
The Optimal Retrieval of Aerosol and Cloud (ORAC) is a generalized optimal estimation system that retrieves cloud, aerosol and volcanic ash parameters using satellite imager measurements in the visible to infrared. Use of the same algorithm for different sensors and parameters leads to consistency that facilitates inter-comparison and interaction studies. ORAC currently supports ATSR, AVHRR, MODIS and SEVIRI. In this proceeding we discuss the ORAC retrieval algorithm applied to ATSR data including the retrieval methodology, the forward model, uncertainty characterization and discrimination/classification techniques. Application of ORAC to SLSTR data is discussed including the additional features that SLSTR provides relative to the ATSR heritage. The ORAC level 2 and level 3 results are discussed and an application of level 3 results to the study of cloud/aerosol interactions is presented.
NASA Technical Reports Server (NTRS)
Platnick, Steven; King, Michael D.; Wind, Gala; Holz, Robert E.; Ackerman, Steven A.; Nagle, Fred W.
2008-01-01
CALIPSO and CloudSat, launched in June 2006, provide global active remote sensing measurements of clouds and aerosols that can be used for validation of a variety of passive imager retrievals derived from instruments flying on the Aqua spacecraft and other A-Train platforms. The most recent processing effort for the MODIS Atmosphere Team, referred to as the "Collection 5" stream, includes a research-level multilayer cloud detection algorithm that uses both thermodynamic phase information derived from a combination of solar and thermal emission bands to discriminate layers of different phases, as well as true layer separation discrimination using a moderately absorbing water vapor band. The multilayer detection algorithm is designed to provide a means of assessing the applicability of 1D cloud models used in the MODIS cloud optical and microphysical product retrieval, which are generated at a 1 h resolution. Using pixel-level collocations of MODIS Aqua, CALIOP, and CloudSat radar measurements, we investigate the global performance of the thermodynamic phase and multilayer cloud detection algorithms.
Air Quality Monitoring and Forecasting Applications of Suomi NPP VIIRS Aerosol Products
NASA Astrophysics Data System (ADS)
Kondragunta, Shobha
The Suomi National Polar-orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) instrument was launched on October 28, 2011. It provides Aerosol Optical Thickness (AOT) at two different spatial resolutions: a pixel level (~750 m at nadir) product called the Intermediate Product (IP) and an aggregated (~6 km at nadir) product called the Environmental Data Record (EDR), and a Suspended Matter (SM) EDR that provides aerosol type (dust, smoke, sea salt, and volcanic ash) information. An extensive validation of VIIRS best quality aerosol products with ground based L1.5 Aerosol Robotic NETwork (AERONET) data shows that the AOT EDR product has an accuracy/precision of -0.01/0.11 and 0.01/0.08 over land and ocean respectively. Globally, VIIRS mean AOT EDR (0.20) is similar to Aqua MODIS (0.16) with some important regional and seasonal differences. The accuracy of the SM product, however, is found to be very low (20 percent) when compared to Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) and AERONET. Several algorithm updates which include a better approach to retrieve surface reflectance have been developed for AOT retrieval. For dust aerosol type retrieval, a new approach that takes advantage of spectral dependence of Rayleigh scattering, surface reflectance, dust absorption in the deep blue (412 nm), blue (440 nm), and mid-IR (2.2 um) has been developed that detects dust with an accuracy of ~80 percent. For smoke plume identification, a source apportionment algorithm that combines fire hot spots with AOT imagery has been developed that provides smoke plume extent with an accuracy of ~70 percent. The VIIRS aerosol products will provide continuity to the current operational use of aerosol products from Aqua and Terra MODIS. These include aerosol data assimilation in Naval Research Laboratory (NRL) global aerosol model, verification of National Weather Service (NWS) dust and smoke forecasts, exceptional events monitoring by different states, air quality warnings by Environmental Protection Agency (EPA). This talk will provide an overview of VIIRS algorithms, aerosol product validation, and examples of various applications with a discussion on the relevance of product accuracy.
Advantages and Challenges in using Multi-Sensor Data for Studying Aerosols from Space
NASA Astrophysics Data System (ADS)
Leptoukh, Gregory
We are living now in the golden era of numerous sensors measuring aerosols from space, e.g., MODIS, MISR, MERIS, OMI, POLDER, etc. Data from multiple sensors provide a more complete coverage of physical phenomena than data from a single sensor. These sensors are rather different from each other, are sensitive to various parts of the atmosphere, use different aerosol models and treat surface differently when retrieving aerosols. However, they complement each other thus providing more information about spatial, vertical and temporal distribution of aerosols. In addition to differences in instrumentation, retrieval algorithms and calibration, there are quite substantial differences in processing algorithms from Level 0 up to Level 3 and 4. Some of these differences in processing steps, at times not well documented and not widely known by users, can lead to quite significant differences in final products. Without documenting all the steps leading to the final product, data users will not trust the data and/or may use data incorrectly. Data by themselves without quality assessment and provenance are not sufficient to make accurate scientific conclusions. In this paper we provide examples of striking differences between aerosol optical depth data from MODIS, MISR, and MERIS that can be attributed to differences in a certain threshold, aggregation methods, and the dataday definition. We talk about challenges in developing processing provenance. Also, we address issues of harmonization of data, quality and provenance that is needed to guide the multi-sensor data usage and avoid apples-to-oranges comparison and fusion.
Scientific impact of MODIS C5 calibration degradation and C6+ improvements
NASA Astrophysics Data System (ADS)
Lyapustin, A.; Wang, Y.; Xiong, X.; Meister, G.; Platnick, S.; Levy, R.; Franz, B.; Korkin, S.; Hilker, T.; Tucker, J.; Hall, F.; Sellers, P.; Wu, A.; Angal, A.
2014-12-01
The Collection 6 (C6) MODIS (Moderate Resolution Imaging Spectroradiometer) land and atmosphere data sets are scheduled for release in 2014. C6 contains significant revisions of the calibration approach to account for sensor aging. This analysis documents the presence of systematic temporal trends in the visible and near-infrared (500 m) bands of the Collection 5 (C5) MODIS Terra and, to lesser extent, in MODIS Aqua geophysical data sets. Sensor degradation is largest in the blue band (B3) of the MODIS sensor on Terra and decreases with wavelength. Calibration degradation causes negative global trends in multiple MODIS C5 products including the dark target algorithm's aerosol optical depth over land and Ångström exponent over the ocean, global liquid water and ice cloud optical thickness, as well as surface reflectance and vegetation indices, including the normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI). As the C5 production will be maintained for another year in parallel with C6, one objective of this paper is to raise awareness of the calibration-related trends for the broad MODIS user community. The new C6 calibration approach removes major calibrations trends in the Level 1B (L1B) data. This paper also introduces an enhanced C6+ calibration of the MODIS data set which includes an additional polarization correction (PC) to compensate for the increased polarization sensitivity of MODIS Terra since about 2007, as well as detrending and Terra-Aqua cross-calibration over quasi-stable desert calibration sites. The PC algorithm, developed by the MODIS ocean biology processing group (OBPG), removes residual scan angle, mirror side and seasonal biases from aerosol and surface reflectance (SR) records along with spectral distortions of SR. Using the multiangle implementation of atmospheric correction (MAIAC) algorithm over deserts, we have also developed a detrending and cross-calibration method which removes residual decadal trends on the order of several tenths of 1% of the top-of-atmosphere (TOA) reflectance in the visible and near-infrared MODIS bands B1-B4, and provides a good consistency between the two MODIS sensors. MAIAC analysis over the southern USA shows that the C6+ approach removed an additional negative decadal trend of Terra ΔNDVI ~ 0.01 as compared to Aqua data. This change is particularly important for analysis of vegetation dynamics and trends in the tropics, e.g., Amazon rainforest, where the morning orbit of Terra provides considerably more cloud-free observations compared to the afternoon Aqua measurements.
Scientific Impact of MODIS C5 Calibration Degradation and C6+ Improvements
NASA Technical Reports Server (NTRS)
Lyapustin, A.; Wang, Y.; Xiong, X.; Meister, G.; Platnick, S.; Levy, R.; Franz, B.; Korkin, S.; Hilker, T.; Tucker, J.;
2014-01-01
The Collection 6 (C6) MODIS (Moderate Resolution Imaging Spectroradiometer) land and atmosphere data sets are scheduled for release in 2014. C6 contains significant revisions of the calibration approach to account for sensor aging. This analysis documents the presence of systematic temporal trends in the visible and near-infrared (500 m) bands of the Collection 5 (C5) MODIS Terra and, to lesser extent, in MODIS Aqua geophysical data sets. Sensor degradation is largest in the blue band (B3) of the MODIS sensor on Terra and decreases with wavelength. Calibration degradation causes negative global trends in multiple MODIS C5 products including the dark target algorithm's aerosol optical depth over land and Ångstrom exponent over the ocean, global liquid water and ice cloud optical thickness, as well as surface reflectance and vegetation indices, including the normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI). As the C5 production will be maintained for another year in parallel with C6, one objective of this paper is to raise awareness of the calibration-related trends for the broad MODIS user community. The new C6 calibration approach removes major calibrations trends in the Level 1B (L1B) data. This paper also introduces an enhanced C6C calibration of the MODIS data set which includes an additional polarization correction (PC) to compensate for the increased polarization sensitivity of MODIS Terra since about 2007, as well as detrending and Terra- Aqua cross-calibration over quasi-stable desert calibration sites. The PC algorithm, developed by the MODIS ocean biology processing group (OBPG), removes residual scan angle, mirror side and seasonal biases from aerosol and surface reflectance (SR) records along with spectral distortions of SR. Using the multiangle implementation of atmospheric correction (MAIAC) algorithm over deserts, we have also developed a detrending and cross-calibration method which removes residual decadal trends on the order of several tenths of 1% of the top-of-atmosphere (TOA) reflectance in the visible and near-infrared MODIS bands B1-B4, and provides a good consistency between the two MODIS sensors. MAIAC analysis over the southern USA shows that the C6C approach removed an additional negative decadal trend of Terra (Delta)NDVI approx.0.01 as compared to Aqua data. This change is particularly important for analysis of vegetation dynamics and trends in the tropics, e.g., Amazon rainforest, where the morning orbit of Terra provides considerably more cloud-free observations compared to the afternoon Aqua measurements.
Long-term Satellite Observations of Asian Dust Storm: Source, Pathway, and Interannual Variability
NASA Technical Reports Server (NTRS)
Hsu, N. Christina
2008-01-01
Among the many components that contribute to air pollution, airborne mineral dust plays an important role due to its biogeochemical impact on the ecosystem and its radiative-forcing effect on the climate system. In East Asia, dust storms frequently accompany the cold and dry air masses that occur as part of springtime cold front systems. Outbreaks of Asian dust storms occur often in the arid and semi-arid areas of northwestern China -about 1.6x10(exp 6) square kilometers including the Gobi and Taklimakan deserts- with continuous expanding of spatial coverage. These airborne dust particles, originating in desert areas far from polluted regions, interact with anthropogenic sulfate and soot aerosols emitted from Chinese megacities during their transport over the mainland. Adding the intricate effects of clouds and marine aerosols, dust particles reaching the marine environment can have drastically different properties than those from their sources. Furthermore, these aerosols, once generated over the source regions, can be transported out of the boundary layer into the free troposphere and can travel thousands of kilometers across the Pacific into the United States and beyond. In this paper, we will demonstrate the capability of a new satellite algorithm to retrieve aerosol properties (e.g., optical thickness, single scattering albedo) over bright-reflecting surfaces such as urban areas and deserts. Such retrievals have been difficult to perform using previously available algorithms that use wavelengths from the mid-visible to the near IR because they have trouble separating the aerosol signal from the contribution due to the bright surface reflectance. This new algorithm, called Deep Blue, utilizes blue-wavelength measurements from instruments such as SeaWiFS and MODIS to infer the properties of aerosols, since the surface reflectance over land in the blue part of the spectrum is much lower than for longer wavelength channels. Reasonable agreements have been achieved between Deep Blue retrievals of aerosol optical thickness and those directly from AERONET sunphotometers over desert and semi-desert regions. New Deep Blue products will allow scientists to determine quantitatively the aerosol properties near sources using high spatial resolution measurements from SeaWiFS and MODIS-like instruments. Long-term satellite measurements (1998 - 2007) from SeaWiFS will be utilized to investigate the interannual variability of source, pathway, and dust loading associated with the Asian dust storm outbreaks. In addition, monthly averaged aerosol optical thickness during the springtime from SeaWiFS will also be compared with the MODIS Deep Blue products.
NASA Astrophysics Data System (ADS)
Neubauer, David; Christensen, Matthew W.; Poulsen, Caroline A.; Lohmann, Ulrike
2017-11-01
Aerosol-cloud interactions (ACIs) are uncertain and the estimates of the ACI effective radiative forcing (ERFaci) magnitude show a large variability. Within the Aerosol_cci project the susceptibility of cloud properties to changes in aerosol properties is derived from the high-resolution AATSR (Advanced Along-Track Scanning Radiometer) data set using the Cloud-Aerosol Pairing Algorithm (CAPA) (as described in our companion paper) and compared to susceptibilities from the global aerosol climate model ECHAM6-HAM2 and MODIS-CERES (Moderate Resolution Imaging Spectroradiometer - Clouds and the Earth's Radiant Energy System) data. For ECHAM6-HAM2 the dry aerosol is analysed to mimic the effect of CAPA. Furthermore the analysis is done for different environmental regimes. The aerosol-liquid water path relationship in ECHAM6-HAM2 is systematically stronger than in AATSR-CAPA data and cannot be explained by an overestimation of autoconversion when using diagnostic precipitation but rather by aerosol swelling in regions where humidity is high and clouds are present. When aerosol water is removed from the analysis in ECHAM6-HAM2 the strength of the susceptibilities of liquid water path, cloud droplet number concentration and cloud albedo as well as ERFaci agree much better with those of AATSR-CAPA or MODIS-CERES. When comparing satellite-derived to model-derived susceptibilities, this study finds it more appropriate to use dry aerosol in the computation of model susceptibilities. We further find that the statistical relationships inferred from different satellite sensors (AATSR-CAPA vs. MODIS-CERES) as well as from ECHAM6-HAM2 are not always of the same sign for the tested environmental conditions. In particular the susceptibility of the liquid water path is negative in non-raining scenes for MODIS-CERES but positive for AATSR-CAPA and ECHAM6-HAM2. Feedback processes like cloud-top entrainment that are missing or not well represented in the model are therefore not well constrained by satellite observations. In addition to aerosol swelling, wet scavenging and aerosol processing have an impact on liquid water path, cloud albedo and cloud droplet number susceptibilities. Aerosol processing leads to negative liquid water path susceptibilities to changes in aerosol index (AI) in ECHAM6-HAM2, likely due to aerosol-size changes by aerosol processing. Our results indicate that for statistical analysis of aerosol-cloud interactions the unwanted effects of aerosol swelling, wet scavenging and aerosol processing need to be minimised when computing susceptibilities of cloud variables to changes in aerosol.
Effects of Data Quality on the Characterization of Aerosol Properties from Multiple Sensors
NASA Technical Reports Server (NTRS)
Petrenko, Maksym; Ichoku, Charles; Leptoukh, Gregory
2011-01-01
Cross-comparison of aerosol properties between ground-based and spaceborne measurements is an important validation technique that helps to investigate the uncertainties of aerosol products acquired using spaceborne sensors. However, it has been shown that even minor differences in the cross-characterization procedure may significantly impact the results of such validation. Of particular consideration is the quality assurance I quality control (QA/QC) information - an auxiliary data indicating a "confidence" level (e.g., Bad, Fair, Good, Excellent, etc.) conferred by the retrieval algorithms on the produced data. Depending on the treatment of available QA/QC information, a cross-characterization procedure has the potential of filtering out invalid data points, such as uncertain or erroneous retrievals, which tend to reduce the credibility of such comparisons. However, under certain circumstances, even high QA/QC values may not fully guarantee the quality of the data. For example, retrievals in proximity of a cloud might be particularly perplexing for an aerosol retrieval algorithm, resulting in an invalid data that, nonetheless, could be assigned a high QA/QC confidence. In this presentation, we will study the effects of several QA/QC parameters on cross-characterization of aerosol properties between the data acquired by multiple spaceborne sensors. We will utilize the Multi-sensor Aerosol Products Sampling System (MAPSS) that provides a consistent platform for multi-sensor comparison, including collocation with measurements acquired by the ground-based Aerosol Robotic Network (AERONET), The multi-sensor spaceborne data analyzed include those acquired by the Terra-MODIS, Aqua-MODIS, Terra-MISR, Aura-OMI, Parasol-POLDER, and CalipsoCALIOP satellite instruments.
NASA Technical Reports Server (NTRS)
Lyapustin, A.; Wang, Y.; Laszlo, I.; Hilker, T.; Hall, F.; Sellers, P.; Tucker, J.; Korkin, S.
2012-01-01
This paper describes the atmospheric correction (AC) component of the Multi-Angle Implementation of Atmospheric Correction algorithm (MAIAC) which introduces a new way to compute parameters of the Ross-Thick Li-Sparse (RTLS) Bi-directional reflectance distribution function (BRDF), spectral surface albedo and bidirectional reflectance factors (BRF) from satellite measurements obtained by the Moderate Resolution Imaging Spectroradiometer (MODIS). MAIAC uses a time series and spatial analysis for cloud detection, aerosol retrievals and atmospheric correction. It implements a moving window of up to 16 days of MODIS data gridded to 1 km resolution in a selected projection. The RTLS parameters are computed directly by fitting the cloud-free MODIS top of atmosphere (TOA) reflectance data stored in the processing queue. The RTLS retrieval is applied when the land surface is stable or changes slowly. In case of rapid or large magnitude change (as for instance caused by disturbance), MAIAC follows the MODIS operational BRDF/albedo algorithm and uses a scaling approach where the BRDF shape is assumed stable but its magnitude is adjusted based on the latest single measurement. To assess the stability of the surface, MAIAC features a change detection algorithm which analyzes relative change of reflectance in the Red and NIR bands during the accumulation period. To adjust for the reflectance variability with the sun-observer geometry and allow comparison among different days (view geometries), the BRFs are normalized to the fixed view geometry using the RTLS model. An empirical analysis of MODIS data suggests that the RTLS inversion remains robust when the relative change of geometry-normalized reflectance stays below 15%. This first of two papers introduces the algorithm, a second, companion paper illustrates its potential by analyzing MODIS data over a tropical rainforest and assessing errors and uncertainties of MAIAC compared to conventional MODIS products.
[A review of atmospheric aerosol research by using polarization remote sensing].
Guo, Hong; Gu, Xing-Fa; Xie, Dong-Hai; Yu, Tao; Meng, Qing-Yan
2014-07-01
In the present paper, aerosol research by using polarization remote sensing in last two decades (1993-2013) was reviewed, including aerosol researches based on POLDER/PARASOL, APS(Aerosol Polarimetry Sensor), Polarized Airborne camera and Ground-based measurements. We emphasize the following three aspects: (1) The retrieval algorithms developed for land and marine aerosol by using POLDER/PARASOL; The validation and application of POLDER/PARASOL AOD, and cross-comparison with AOD of other satellites, such as MODIS AOD. (2) The retrieval algorithms developed for land and marine aerosol by using MICROPOL and RSP/APS. We also introduce the new progress in aerosol research based on The Directional Polarimetric Camera (DPC), which was produced by Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences (CAS). (3) The aerosol retrieval algorithms by using measurements from ground-based instruments, such as CE318-2 and CE318-DP. The retrieval results from spaceborne sensors, airborne camera and ground-based measurements include total AOD, fine-mode AOD, coarse-mode AOD, size distribution, particle shape, complex refractive indices, single scattering albedo, scattering phase function, polarization phase function and AOD above cloud. Finally, based on the research, the authors present the problems and prospects of atmospheric aerosol research by using polarization remote sensing, and provide a valuable reference for the future studies of atmospheric aerosol.
NASA Astrophysics Data System (ADS)
Georgoulias, Aristeidis K.; Alexandri, Georgia; Kourtidis, Konstantinos; Zanis, Prodromos; Pöschl, Ulrich; Lelieveld, Jos; Levy, Robert; Amiridis, Vassilis; Marinou, Eleni; Tsikerdekis, Athanasios; Pozzer, Andrea
2015-04-01
In this work, we study the aerosol spatiotemporal variability over the region of Eastern Mediterranean, for the time period 2000-2012, using a 0.1-degree gridded dataset compiled from level-2 MODIS TERRA and MODIS AQUA AOD550 and FMR550 data. A detailed validation of the AOD550 data was implemented using ground-based observations from the AERONET, also showing that the gridding methodology we followed allows for the detection of several local hot spots that cannot be seen using lower resolutions or level-3 data. By combining the MODIS data with data from other satellite sensors (TOMS, OMI), data from a global chemical-aerosol-transport model (GOCART), and reanalysis data from MACC and ERA-interim, we quantify the relative contribution of different aerosol types to the total AOD550 for the period of interest. For this reason, we developed an optimized algorithm for regional studies based on results from previous global studies. Over land, anthropogenic, dust, and fine-mode natural aerosols contribute to the total AOD550, while anthropogenic, dust and maritime AODs are calculated over the ocean. The dust AOD550 over the region was compared against dust AODs from the LIVAS CALIPSO product, showing a similar seasonal variability. Finally, we also look into the aerosol load short-term trends over the region for each aerosol type separately, the results being strongly affected by the selected time period. The research leading to these results has received funding from the European Social Fund (ESF) and national resources under the operational programme Education and Lifelong Learning (EdLL) within the framework of the Action "Supporting Postdoctoral Researchers" (QUADIEEMS project) and from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 226144 (C8 project).
Desert Dust Satellite Retrieval Intercomparison
NASA Technical Reports Server (NTRS)
Carboni, E.; Thomas, G. E.; Sayer, A. M.; Siddans, R.; Poulsen, C. A.; Grainger, R. G.; Ahn, C.; Antoine, D.; Bevan, S.; Braak, R.;
2012-01-01
This work provides a comparison of satellite retrievals of Saharan desert dust aerosol optical depth (AOD) during a strong dust event through March 2006. In this event, a large dust plume was transported over desert, vegetated, and ocean surfaces. The aim is to identify and understand the differences between current algorithms, and hence improve future retrieval algorithms. The satellite instruments considered are AATSR, AIRS, MERIS, MISR, MODIS, OMI, POLDER, and SEVIRI. An interesting aspect is that the different algorithms make use of different instrument characteristics to obtain retrievals over bright surfaces. These include multi-angle approaches (MISR, AATSR), polarisation measurements (POLDER), single-view approaches using solar wavelengths (OMI, MODIS), and the thermal infrared spectral region (SEVIRI, AIRS). Differences between instruments, together with the comparison of different retrieval algorithms applied to measurements from the same instrument, provide a unique insight into the performance and characteristics of the various techniques employed. As well as the intercomparison between different satellite products, the AODs have also been compared to co-located AERONET data. Despite the fact that the agreement between satellite and AERONET AODs is reasonably good for all of the datasets, there are significant differences between them when compared to each other, especially over land. These differences are partially due to differences in the algorithms, such as as20 sumptions about aerosol model and surface properties. However, in this comparison of spatially and temporally averaged data, at least as significant as these differences are sampling issues related to the actual footprint of each instrument on the heterogeneous aerosol field, cloud identification and the quality control flags of each dataset.
Lessons learned and way forward from 6 years of Aerosol_cci
NASA Astrophysics Data System (ADS)
Popp, Thomas; de Leeuw, Gerrit; Pinnock, Simon
2017-04-01
Within the ESA Climate Change Initiative (CCI) Aerosol_cci (2010 - 2017) conducts intensive work to improve and qualify algorithms for the retrieval of aerosol information from European sensors. Meanwhile, several validated (multi-) decadal time series of different aerosol parameters from complementary sensors are available: Aerosol Optical Depth (AOD), stratospheric extinction profiles, a qualitative Absorbing Aerosol Index (AAI), fine mode AOD, mineral dust AOD; absorption information and aerosol layer height are in an evaluation phase and the multi-pixel GRASP algorithm for the POLDER instrument is used for selected regions. Validation (vs. AERONET, MAN) and inter-comparison to other satellite datasets (MODIS, MISR, SeaWIFS) proved the high quality of the available datasets comparable to other satellite retrievals and revealed needs for algorithm improvement (for example for higher AOD values) which were taken into account in an iterative evolution cycle. The datasets contain pixel level uncertainty estimates which were also validated and improved in the reprocessing. The use of an ensemble method was tested, where several algorithms are applied to the same sensor. The presentation will summarize and discuss the lessons learned from the 6 years of intensive collaboration and highlight major achievements (significantly improved AOD quality, fine mode AOD, dust AOD, pixel level uncertainties, ensemble approach); also limitations and remaining deficits shall be discussed. An outlook will discuss the way forward for the continuous algorithm improvement and re-processing together with opportunities for time series extension with successor instruments of the Sentinel family and the complementarity of the different satellite aerosol products.
A Spatio-Temporal Approach for Global Validation and Analysis of MODIS Aerosol Products
NASA Technical Reports Server (NTRS)
Ichoku, Charles; Chu, D. Allen; Mattoo, Shana; Kaufman, Yoram J.; Remer, Lorraine A.; Tanre, Didier; Slutsker, Ilya; Holben, Brent N.; Lau, William K. M. (Technical Monitor)
2001-01-01
With the launch of the MODIS sensor on the Terra spacecraft, new data sets of the global distribution and properties of aerosol are being retrieved, and need to be validated and analyzed. A system has been put in place to generate spatial statistics (mean, standard deviation, direction and rate of spatial variation, and spatial correlation coefficient) of the MODIS aerosol parameters over more than 100 validation sites spread around the globe. Corresponding statistics are also computed from temporal subsets of AERONET-derived aerosol data. The means and standard deviations of identical parameters from MOMS and AERONET are compared. Although, their means compare favorably, their standard deviations reveal some influence of surface effects on the MODIS aerosol retrievals over land, especially at low aerosol loading. The direction and rate of spatial variation from MODIS are used to study the spatial distribution of aerosols at various locations either individually or comparatively. This paper introduces the methodology for generating and analyzing the data sets used by the two MODIS aerosol validation papers in this issue.
Remote Sensing of Aerosol and Aerosol Radiative Forcing of Climate from EOS Terra MODIS Instrument
NASA Technical Reports Server (NTRS)
Kaufman, Yoram; Tanre, Didier; Remer, Lorraine; Einaudi, Franco (Technical Monitor)
2000-01-01
The recent launch of EOS-Terra into polar orbit has begun to revolutionize remote sensing of aerosol and their effect on climate. Terra has five instruments, two of them,Moderate Resolution Imaging Spectroradiometer (MODIS) and Multiangle Imaging Spectro-Radiometer (MISR) are designed to monitor global aerosol in two different complementary ways. Here we shall discuss the use of the multispectral measurements of MODIS to derive: (1) the global distribution of aerosol load (and optical thickness) over ocean and land; (2) to measure the impact of aerosol on reflection of sunlight to space; and (3) to measure the ability of aerosol to absorb solar radiation. These measurements have direct applications on the understanding of the effect of aerosol on climate, the ability to predict climate change, and on the monitoring of dust episodes and man-made pollution. Principles of remote sensing of aerosol from MODIS will be discussed and first examples of measurements from MODIS will be provided.
Pre-launch Performance Assessment of the VIIRS Ice Surface Temperature Algorithm
NASA Astrophysics Data System (ADS)
Ip, J.; Hauss, B.
2008-12-01
The VIIRS Ice Surface Temperature (IST) environmental data product provides the surface temperature of sea-ice at VIIRS moderate resolution (750m) during both day and night. To predict the IST, the retrieval algorithm utilizes a split-window approach with Long-wave Infrared (LWIR) channels at 10.76 μm (M15) and 12.01 μm (M16) to correct for atmospheric water vapor. The split-window approach using these LWIR channels is AVHRR and MODIS heritage, where the MODIS formulation has a slightly modified functional form. The algorithm relies on the VIIRS Cloud Mask IP for identifying cloudy and ocean pixels, the VIIRS Ice Concentration IP for identifying ice pixels, and the VIIRS Aerosol Optical Thickness (AOT) IP for excluding pixels with AOT greater than 1.0. In this paper, we will report the pre-launch performance assessment of the IST retrieval. We have taken two separate approaches to perform this assessment, one based on global synthetic data and the other based on proxy data from Terra MODIS. Results of the split- window algorithm have been assessed by comparison either to synthetic "truth" or results of the MODIS retrieval. We will also show that the results of the assessment with proxy data are consistent with those obtained using the global synthetic data.
NASA Technical Reports Server (NTRS)
Hsu, N. Christina; Tsay, S.-C.; Bettenhausen, C.; Sayer, A.
2011-01-01
Among the many components that contribute to air pollution, airborne mineral dust plays an important role due to its biogeochemical impact on the ecosystem and its radiative-forcing effect on the climate system. In East Asia, dust storms frequently accompany the cold and dry air masses that occur as part of springtime cold front systems. China's capital, Beijing, and other large cities are on the primary pathway of these dust storm plumes, and their passage over such population centers causes flight delays, pushes grit through windows and doors, and forces peop Ie indoors. Furthermore, during the spring these anthropogenic and natural air pollutants, once generated over the source regions, can be tran sported out of the boundary layer into the free troposphere and can travel thousands of kilometers across the Pacific into the United States and beyond. In this paper, we will demonstrate the capability of a new satellite algorithm to retrieve aerosol optical thickness and single scattering albedo over brightreflecting surfaces such as urban areas and deserts. Such retrievals have been difficult to perform using previously available algorithms that use wavelengths from the mid-visible to the near IR because they have trouble separating the aerosol signal from the contribution due to the bright surface reflectance. The new algorithm, called Deep Blue, utilizes blue-wavelength measurements from instruments such as Sea WiFS and MODIS to infer the properties of aerosols, since the surface reflectance over land in the blue part of the spectrum is much lower than for longer wavelength channels. We have validated the satellite retrieved aerosol optical thickness with data from AERONET sunphotometers over desert and semi-desert regions. The comparisons show reasonable agreements between these two. These new satellite products will allow scientists to determine quantitatively the aerosol properties near sources using high spatial resolution measurements from Sea WiFS and MODISlike instruments. The multiyear satellite measurements since 1998 from SeaWiFS will be utilized to investigate the interannual variability of source, pathway, and dust loading associated with these dust outbreaks in East Asia. The monthly averaged aerosol optical thickness during the springtime from SeaWiFS will also be compared with the MODIS Deep Blue products.
NASA Astrophysics Data System (ADS)
Taylor, Thomas E.; O'Dell, Christopher W.; Frankenberg, Christian; Partain, Philip T.; Cronk, Heather Q.; Savtchenko, Andrey; Nelson, Robert R.; Rosenthal, Emily J.; Chang, Albert Y.; Fisher, Brenden; Osterman, Gregory B.; Pollock, Randy H.; Crisp, David; Eldering, Annmarie; Gunson, Michael R.
2016-03-01
The objective of the National Aeronautics and Space Administration's (NASA) Orbiting Carbon Observatory-2 (OCO-2) mission is to retrieve the column-averaged carbon dioxide (CO2) dry air mole fraction (XCO2) from satellite measurements of reflected sunlight in the near-infrared. These estimates can be biased by clouds and aerosols, i.e., contamination, within the instrument's field of view. Screening of the most contaminated soundings minimizes unnecessary calls to the computationally expensive Level 2 (L2) XCO2 retrieval algorithm. Hence, robust cloud screening methods have been an important focus of the OCO-2 algorithm development team. Two distinct, computationally inexpensive cloud screening algorithms have been developed for this application. The A-Band Preprocessor (ABP) retrieves the surface pressure using measurements in the 0.76 µm O2 A band, neglecting scattering by clouds and aerosols, which introduce photon path-length differences that can cause large deviations between the expected and retrieved surface pressure. The Iterative Maximum A Posteriori (IMAP) Differential Optical Absorption Spectroscopy (DOAS) Preprocessor (IDP) retrieves independent estimates of the CO2 and H2O column abundances using observations taken at 1.61 µm (weak CO2 band) and 2.06 µm (strong CO2 band), while neglecting atmospheric scattering. The CO2 and H2O column abundances retrieved in these two spectral regions differ significantly in the presence of cloud and scattering aerosols. The combination of these two algorithms, which are sensitive to different features in the spectra, provides the basis for cloud screening of the OCO-2 data set.To validate the OCO-2 cloud screening approach, collocated measurements from NASA's Moderate Resolution Imaging Spectrometer (MODIS), aboard the Aqua platform, were compared to results from the two OCO-2 cloud screening algorithms. With tuning of algorithmic threshold parameters that allows for processing of ≃ 20-25 % of all OCO-2 soundings, agreement between the OCO-2 and MODIS cloud screening methods is found to be ≃ 85 % over four 16-day orbit repeat cycles in both the winter (December) and spring (April-May) for OCO-2 nadir-land, glint-land and glint-water observations.No major, systematic, spatial or temporal dependencies were found, although slight differences in the seasonal data sets do exist and validation is more problematic with increasing solar zenith angle and when surfaces are covered in snow and ice and have complex topography. To further analyze the performance of the cloud screening algorithms, an initial comparison of OCO-2 observations was made to collocated measurements from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). These comparisons highlight the strength of the OCO-2 cloud screening algorithms in identifying high, thin clouds but suggest some difficulty in identifying some clouds near the surface, even when the optical thicknesses are greater than 1.
NASA Technical Reports Server (NTRS)
Wang, Chenxi; Platnick, Steven; Zhang, Zhibo; Meyer, Kerry; Wind, Galina; Yang, Ping
2016-01-01
An infrared-based optimal estimation (OE-IR) algorithm for retrieving ice cloud properties is evaluated. Specifically, the implementation of the algorithm with MODerate resolution Imaging Spectroradiometer (MODIS) observations is assessed in comparison with the operational retrieval products from MODIS on the Aqua satellite (MYD06), Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), and the Imaging Infrared Radiometer (IIR); the latter two instruments fly on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite in the Afternoon Constellation (A-Train) with Aqua. The results show that OE-IR cloud optical thickness (tau) and effective radius (r(sub eff)) retrievals perform best for ice clouds having 0.5 < tau< 7 and r(sub eff) < 50microns. For global ice clouds, the averaged retrieval uncertainties of tau and r(sub eff) are 19% and 33%, respectively. For optically thick ice clouds with tau larger than 10, however, the tau and r(sub eff) retrieval uncertainties can exceed 30% and 50%, respectively. For ice cloud top height (h), the averaged global uncertainty is 0.48km. Relatively large h uncertainty (e.g., > 1km) occurs for tau < 0.5. Analysis of 1month of the OE-IR retrievals shows large tau and r(sub eff) uncertainties in storm track regions and the southern oceans where convective clouds are frequently observed, as well as in high-latitude regions where temperature differences between the surface and cloud top are more ambiguous. Generally, comparisons between the OE-IR and the operational products show consistent tau and h retrievals. However, obvious differences between the OE-IR and the MODIS Collection 6 r(sub eff) are found.
Aerosol Lidar and MODIS Satellite Comparisons for Future Aerosol Loading Forecast
NASA Technical Reports Server (NTRS)
DeYoung, Russell; Szykman, James; Severance, Kurt; Chu, D. Allen; Rosen, Rebecca; Al-Saadi, Jassim
2006-01-01
Knowledge of the concentration and distribution of atmospheric aerosols using both airborne lidar and satellite instruments is a field of active research. An aircraft based aerosol lidar has been used to study the distribution of atmospheric aerosols in the California Central Valley and eastern US coast. Concurrently, satellite aerosol retrievals, from the MODIS (Moderate Resolution Imaging Spectroradiometer) instrument aboard the Terra and Aqua satellites, were take over the Central Valley. The MODIS Level 2 aerosol data product provides retrieved ambient aerosol optical properties (e.g., optical depth (AOD) and size distribution) globally over ocean and land at a spatial resolution of 10 km. The Central Valley topography was overlaid with MODIS AOD (5x5 sq km resolution) and the aerosol scattering vertical profiles from a lidar flight. Backward air parcel trajectories for the lidar data show that air from the Pacific and northern part of the Central Valley converge confining the aerosols to the lower valley region and below the mixed layer. Below an altitude of 1 km, the lidar aerosol and MODIS AOD exhibit good agreement. Both data sets indicate a high presence of aerosols near Bakersfield and the Tehachapi Mountains. These and other results to be presented indicate that the majority of the aerosols are below the mixed layer such that the MODIS AOD should correspond well with surface measurements. Lidar measurements will help interpret satellite AOD retrievals so that one day they can be used on a routine basis for prediction of boundary layer aerosol pollution events.
Remote Sensing of Aerosol Over the Land from the Earth Observing System MODIS Instrument
NASA Technical Reports Server (NTRS)
Kaufman, Yoram; Tanre, Didier; Remer, Lorraine; Einaudi, Franco (Technical Monitor)
2000-01-01
On Dec 18, 1999, NASA launched the Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument on the Earth Observing System (EOS) Terra mission, in a spectacular launch. The mission will provide morning (10:30 AM) global observations of aerosol and other related parameters. It will be followed a year later by a MODIS instrument on EOS Aqua for afternoon observations (1:30 PM). MODIS will measure aerosol over land and ocean with its eight 500 m and 250 m channels in the solar spectrum (0-41 to 2.2 micrometers). Over the land MODIS will measure the total column aerosol loading, and distinguish between submicron pollution particles and large soil particles. Standard daily products of resolution of ten kilometers and global mapped eight day and monthly products on a 1x1 degree global scale will be produced routinely and make available for no or small reproduction charge to the international community. Though the aerosol products will not be available everywhere over the land, it is expected that they will be useful for assessments of the presence, sources and transport of urban pollution, biomass burning aerosol, and desert dust. Other measurements from MODIS will supplement the aerosol information, e.g., land use change, urbanization, presence and magnitude of biomass burning fires, and effect of aerosol on cloud microphysics. Other instruments on Terra, e.g. Multi-angle Imaging SpectroRadiometer (MISR) and the Clouds and the Earth's Radiant Energy System (CERES), will also measure aerosol, its properties and radiative forcing in tandem with the MODIS measurements. During the Aqua period, there are plans to launch in 2003 the Pathfinder Instruments for Cloud and Aerosol Spaceborne Observations (PICASSO) mission for global measurements of the aerosol vertical structure, and the PARASOL mission for aerosol characterization. Aqua-MODIS, PICASSO and PARASOL will fly in formation for detailed simultaneous characterization of the aerosol three-dimensional field, which will feed and evaluate global aerosol transport and climate models. In this talk, some examples of the MODIS measurements will be shown.
Global Aerosol Optical Models and Lookup Tables for the New MODIS Aerosol Retrieval over Land
NASA Technical Reports Server (NTRS)
Levy, Robert C.; Remer, Loraine A.; Dubovik, Oleg
2007-01-01
Since 2000, MODIS has been deriving aerosol properties over land from MODIS observed spectral reflectance, by matching the observed reflectance with that simulated for selected aerosol optical models, aerosol loadings, wavelengths and geometrical conditions (that are contained in a lookup table or 'LUT'). Validation exercises have showed that MODIS tends to under-predict aerosol optical depth (tau) in cases of large tau (tau greater than 1.0), signaling errors in the assumed aerosol optical properties. Using the climatology of almucantur retrievals from the hundreds of global AERONET sunphotometer sites, we found that three spherical-derived models (describing fine-sized dominated aerosol), and one spheroid-derived model (describing coarse-sized dominated aerosol, presumably dust) generally described the range of observed global aerosol properties. The fine dominated models were separated mainly by their single scattering albedo (omega(sub 0)), ranging from non-absorbing aerosol (omega(sub 0) approx. 0.95) in developed urban/industrial regions, to neutrally absorbing aerosol (omega(sub 0) approx.90) in forest fire burning and developing industrial regions, to absorbing aerosol (omega(sub 0) approx. 0.85) in regions of savanna/grassland burning. We determined the dominant model type in each region and season, to create a 1 deg. x 1 deg. grid of assumed aerosol type. We used vector radiative transfer code to create a new LUT, simulating the four aerosol models, in four MODIS channels. Independent AERONET observations of spectral tau agree with the new models, indicating that the new models are suitable for use by the MODIS aerosol retrieval.
Validating and improving long-term aerosol data records from SeaWiFS
NASA Astrophysics Data System (ADS)
Bettenhausen, C.; Hsu, N. C.; Sayer, A. M.; Huang, J.; Gautam, R.
2011-12-01
Natural and anthropogenic aerosols influence the radiative balance of the Earth through direct and indirect interactions with incoming solar radiation. However, the quantification of these interactions and their ultimate effect on the Earth's climate still have large uncertainties. This is partly due to the limitations of current satellite data records which include short satellite lifetimes, retrieval algorithm uncertainty, or insufficient calibration accuracy. We have taken the first steps in overcoming this hurdle with the production and public release of an aerosol data record using the radiances from the Sea-viewing Wide Field-of-View Sensor (SeaWiFS). SeaWiFS was launched in late 1997 and provided exceptionally well-calibrated top-of-atmosphere radiance data until December 2010, more than 13 years. We have partnered this data with an expanded Deep Blue aerosol retrieval algorithm. In accordance with Deep Blue's original focus, the latest algorithm retrieves aerosol properties not only over bright desert surfaces, but also over oceans and vegetated surfaces. With this combination of a long time series and global algorithm, we can finally identify the changing patterns of regional aerosol loading and provide insight into long-term variability and trends of aerosols on regional and global scales. In this work, we provide an introduction to SeaWiFS, the current algorithms, and our aerosol data records. We have validated the data over land and ocean with ground measurements from the Aerosol Robotic Network (AERONET) and compared them with other satellites such as MODIS and MISR. Looking ahead to the next data release, we will also provide details on the implemented and planned algorithm improvements, and subsequent validation results.
Validating and Improving Long-Term Aerosol Data Records from SeaWiFS
NASA Technical Reports Server (NTRS)
Bettenhausen, Corey; Hsu, N. Christina; Sayer, Andrew; Huang, Jinhfeng; Gautam, Ritesh
2011-01-01
Natural and anthropogenic aerosols influence the radiative balance of the Earth through direct and indirect interactions with incoming solar radiation. However, the quantification of these interactions and their ultimate effect on the Earth's climate still have large uncertainties. This is partly due to the limitations of current satellite data records which include short satellite lifetimes, retrieval algorithm uncertainty, or insufficient calibration accuracy. We have taken the first steps in overcoming this hurdle with the production and public release of an aerosol data record using the radiances from the Sea-viewing Wide Field-of-View Sensor (Sea WiFS). Sea WiFS was launched in late 1997 and provided exceptionally well-calibrated top-of-atmosphere radiance data until December 2010, more than 13 years. We have partnered this data with an expanded Deep Blue aerosol retrieval algorithm. In accordance with Deep Blue's original focus, the latest algorithm retrieves aerosol properties not only over bright desert surfaces, but also over oceans and vegetated surfaces. With this combination of a long time series and global algorithm, we can finally identify the changing patterns of regional aerosol loading and provide insight into longterm variability and trends of aerosols on regional and global scales. In this work, we provide an introduction to Sea WiFS, the current algorithms, and our aerosol data records. We have validated the data over land and ocean with ground measurements from the Aerosol Robotic Network (AERONET) and compared them with other satellites such as MODIS and MISR. Looking ahead to the next data release, we will also provide details on the implemented and planned algorithm improvements, and subsequent validation results.
NASA Astrophysics Data System (ADS)
Stamnes, Snorre; Fan, Yongzhen; Chen, Nan; Li, Wei; Tanikawa, Tomonori; Lin, Zhenyi; Liu, Xu; Burton, Sharon; Omar, Ali; Stamnes, Jakob J.; Cairns, Brian; Stamnes, Knut
2018-05-01
A simple but novel study was conducted to investigate whether an imager-type spectroradiometer instrument like MODIS, currently flying on board the Aqua and Terra satellites, or MERIS, which flew on board Envisat, could detect absorbing aerosols if they could measure the Q Stokes parameter in addition to the total radiance I, that is if they could also measure the linear polarization of the light. Accurate radiative transfer calculations were used to train a fast neural network forward model, which together with a simple statistical optimal estimation scheme was used to retrieve three aerosol parameters: aerosol optical depth at 869 nm, optical depth fraction of fine mode (absorbing) aerosols at 869 nm, and aerosol vertical location. The aerosols were assumed to be bimodal, each with a lognormal size distribution, located either between 0 and 2 km or between 2 and 4 km in the Earth's atmosphere. From simulated data with 3% random Gaussian measurement noise added for each Stokes parameter, it was found that by itself the total radiance I at the nine MODIS VIS channels was generally insufficient to accurately retrieve all three aerosol parameters (˜ 15% to 37% successful), but that together with the Q Stokes component it was possible to retrieve values of aerosol optical depth at 869 nm to ± 0.03, single-scattering albedo at 869 nm to ± 0.04, and vertical location in ˜ 65% of the cases. This proof-of-concept retrieval algorithm uses neural networks to overcome the computational burdens of using vector radiative transfer to accurately simulate top-of-atmosphere (TOA) total and polarized radiances, enabling optimal estimation techniques to exploit information from multiple channels. Therefore such an algorithm could, in concept, be readily implemented for operational retrieval of aerosol and ocean products from moderate or hyperspectral spectroradiometers.
MODIS Direct Broadcast and Remote Sensing Applications
NASA Technical Reports Server (NTRS)
Tsay, Si-Chee
2004-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by NASA and launched onboard both Terra spacecraft on December 18, 1999 and Aqua spacecraft on May 4, 2002. MODIS scans a swath width sufficient to provide nearly complete global coverage every two days from a polar-orbiting, sun-synchronous, platform at an altitude of 705 km, and provides images in 36 spectral bands between 0.415 and 14.235 microns with spatial resolutions of 250 m (2 bands), 500 m (5 bands) and 1000 m (29 bands). Equipped with direct broadcast capability, the MODIS measurements can be received worldwide real time. There are 82 ingest sites (over 900 users, listed on the Direct Readout Portal) around the world for Terra/Aqua-MODIS Direct Broadcast DB) downlink. This represents 27 (6 from EOS science team members) science research organizations for DB land, ocean and atmospheric processing, and 53 companies that base their application algorithms and value added products on DB data. In this paper we will describe the various methods being used for the remote sensing of cloud properties using MODIS data, focusing primarily on the MODIS cloud mask used to distinguish clouds, clear sky, heavy aerosol, and shadows on the ground, and on the remote sensing of aerosol/cloud optical properties, especially optical thickness and effective particle size. Additional properties of clouds derived from multispectral thermal infrared measurements, especially cloud top pressure and emissivity, will also be described. Preliminary results will be presented and discussed their implications in regional-to-global climatic effects.
Aerosol loading impact on Asian monsoon precipitation patterns
NASA Astrophysics Data System (ADS)
Biondi, Riccardo; Cagnazzo, Chiara; Costabile, Francesca; Cairo, Francesco
2017-04-01
Solar light absorption by aerosols such as black carbon and dust assume a key role in driving the precipitation patterns in the Indian subcontinent. The aerosols stack up against the foothills of the Himalayas in the pre-monsoon season and several studies have already demonstrated that this can cause precipitation anomalies during summer. Despite its great significance in climate change studies, the link between absorbing aerosols loading and precipitation patterns remains highly uncertain. The main challenge for this kind of studies is to find consistent and reliable datasets. Several aerosol time series are available from satellite and ground based instruments and some precipitation datasets from satellite sensors, but they all have different time/spatial resolution and they use different assumptions for estimating the parameter of interest. We have used the aerosol estimations from the Ozone Monitoring Instrument (OMI), the Along-Track Scanning Radiometer (AATSR) and the MODerate resolution Imaging Spectroradiometer (MODIS) and validated them against the Aerosol Robotic Network (AERONET) measurements in the Indian area. The precipitation has been analyzed by using the Tropical Rainfall Measuring Mission (TRMM) estimations and the Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA-2). From our results it is evident the discrepancy between the aerosol loading on the area of interest from the OMI, AATSR, and MODIS, but even between 3 different algorithms applied to the MODIS data. This uncertainty does not allow to clearly distinguishing high aerosol loading years from low aerosol loading years except in a couple of cases where all the estimations agree. Similar issues are also present in the precipitation estimations from TRMM and MERRA-2. However, all the aerosol datasets agree in defining couples of consecutive years with a large gradient of aerosol loading. Based on this assumption we have compared the precipitation anomalies and found typical patterns characterizing different Indian regions in late summer. Analyzing the AERONET data we have also separated the black carbon and dust contribution to the total aerosol loading based on aerosol spectral optical properties for investigating the link between different aerosol types and precipitation patterns.
NASA Technical Reports Server (NTRS)
Redemann, J.; Shinozuka, Y.; Kacenelenbogen, M.; Segal-Rozenhaimer, M.; LeBlanc, S.; Vaughan, M.; Stier, P.; Schutgens, N.
2017-01-01
We describe a technique for combining multiple A-Train aerosol data sets, namely MODIS spectral AOD (aerosol optical depth), OMI AAOD (absorption aerosol optical depth) and CALIOP aerosol backscatter retrievals (hereafter referred to as MOC retrievals) to estimate full spectral sets of aerosol radiative properties, and ultimately to calculate the 3-D distribution of direct aerosol radiative effects (DARE). We present MOC results using almost two years of data collected in 2007 and 2008, and show comparisons of the aerosol radiative property estimates to collocated AERONET retrievals. Use of the MODIS Collection 6 AOD data derived with the dark target and deep blue algorithms has extended the coverage of the MOC retrievals towards higher latitudes. The MOC aerosol retrievals agree better with AERONET in terms of the single scattering albedo (ssa) at 441 nm than ssa calculated from OMI and MODIS data alone, indicating that CALIOP aerosol backscatter data contains information on aerosol absorption. We compare the spatio-temporal distribution of the MOC retrievals and MOC-based calculations of seasonal clear-sky DARE to values derived from four models that participated in the Phase II AeroCom model intercomparison initiative. Overall, the MOC-based calculations of clear-sky DARE at TOA over land are smaller (less negative) than previous model or observational estimates due to the inclusion of more absorbing aerosol retrievals over brighter surfaces, not previously available for observationally-based estimates of DARE. MOC-based DARE estimates at the surface over land and total (land and ocean) DARE estimates at TOA are in between previous model and observational results. Comparisons of seasonal aerosol property to AeroCom Phase II results show generally good agreement best agreement with forcing results at TOA is found with GMI-MerraV3. We discuss sampling issues that affect the comparisons and the major challenges in extending our clear-sky DARE results to all-sky conditions. We present estimates of clear-sky and all-sky DARE and show uncertainties that stem from the assumptions in the spatial extrapolation and accuracy of aerosol and cloud properties, in the diurnal evolution of these properties, and in the radiative transfer calculations.
NASA Astrophysics Data System (ADS)
Taylor, T. E.; O'Dell, C. W.; Frankenberg, C.; Partain, P.; Cronk, H. Q.; Savtchenko, A.; Nelson, R. R.; Rosenthal, E. J.; Chang, A. Y.; Fisher, B.; Osterman, G.; Pollock, R. H.; Crisp, D.; Eldering, A.; Gunson, M. R.
2015-12-01
The objective of the National Aeronautics and Space Administration's (NASA) Orbiting Carbon Observatory-2 (OCO-2) mission is to retrieve the column-averaged carbon dioxide (CO2) dry air mole fraction (XCO2) from satellite measurements of reflected sunlight in the near-infrared. These estimates can be biased by clouds and aerosols within the instrument's field of view (FOV). Screening of the most contaminated soundings minimizes unnecessary calls to the computationally expensive Level 2 (L2) XCO2 retrieval algorithm. Hence, robust cloud screening methods have been an important focus of the OCO-2 algorithm development team. Two distinct, computationally inexpensive cloud screening algorithms have been developed for this application. The A-Band Preprocessor (ABP) retrieves the surface pressure using measurements in the 0.76 μm O2 A-band, neglecting scattering by clouds and aerosols, which introduce photon path-length (PPL) differences that can cause large deviations between the expected and retrieved surface pressure. The Iterative Maximum A-Posteriori (IMAP) Differential Optical Absorption Spectroscopy (DOAS) Preprocessor (IDP) retrieves independent estimates of the CO2 and H2O column abundances using observations taken at 1.61 μm (weak CO2 band) and 2.06 μm (strong CO2 band), while neglecting atmospheric scattering. The CO2 and H2O column abundances retrieved in these two spectral regions differ significantly in the presence of cloud and scattering aerosols. The combination of these two algorithms, which key off of different features in the spectra, provides the basis for cloud screening of the OCO-2 data set. To validate the OCO-2 cloud screening approach, collocated measurements from NASA's Moderate Resolution Imaging Spectrometer (MODIS), aboard the Aqua platform, were compared to results from the two OCO-2 cloud screening algorithms. With tuning to allow throughputs of ≃ 30 %, agreement between the OCO-2 and MODIS cloud screening methods is found to be ≃ 85 % over four 16-day orbit repeat cycles in both the winter (December) and spring (April-May) for OCO-2 nadir-land, glint-land and glint-water observations. No major, systematic, spatial or temporal dependencies were found, although slight differences in the seasonal data sets do exist and validation is more problematic with increasing solar zenith angle and when surfaces are covered in snow and ice and have complex topography. To further analyze the performance of the cloud screening algorithms, an initial comparison of OCO-2 observations was made to collocated measurements from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). These comparisons highlight the strength of the OCO-2 cloud screening algorithms in identifying high, thin clouds but suggest some difficulty in identifying some clouds near the surface, even when the optical thicknesses are greater than 1.
NASA Astrophysics Data System (ADS)
Bourdet, Alice; Frouin, Robert J.
2014-11-01
The classic atmospheric correction algorithm, routinely applied to second-generation ocean-color sensors such as SeaWiFS, MODIS, and MERIS, consists of (i) estimating the aerosol reflectance in the red and near infrared (NIR) where the ocean is considered black (i.e., totally absorbing), and (ii) extrapolating the estimated aerosol reflectance to shorter wavelengths. The marine reflectance is then retrieved by subtraction. Variants and improvements have been made over the years to deal with non-null reflectance in the red and near infrared, a general situation in estuaries and the coastal zone, but the solutions proposed so far still suffer some limitations, due to uncertainties in marine reflectance modeling in the near infrared or difficulty to extrapolate the aerosol signal to the blue when using observations in the shortwave infrared (SWIR), a spectral range far from the ocean-color wavelengths. To estimate the marine signal (i.e., the product of marine reflectance and atmospheric transmittance) in the near infrared, the proposed approach is to decompose the aerosol reflectance in the near infrared to shortwave infrared into principal components. Since aerosol scattering is smooth spectrally, a few components are generally sufficient to represent the perturbing signal, i.e., the aerosol reflectance in the near infrared can be determined from measurements in the shortwave infrared where the ocean is black. This gives access to the marine signal in the near infrared, which can then be used in the classic atmospheric correction algorithm. The methodology is evaluated theoretically from simulations of the top-of-atmosphere reflectance for a wide range of geophysical conditions and angular geometries and applied to actual MODIS imagery acquired over the Gulf of Mexico. The number of discarded pixels is reduced by over 80% using the PC modeling to determine the marine signal in the near infrared prior to applying the classic atmospheric correction algorithm.
NASA Astrophysics Data System (ADS)
Peyridieu, S.; Chédin, A.; Capelle, V.; Pierangelo, C.; Lamquin, N.; Armante, R.
2009-04-01
Observation from space, being global and quasi-continuous, is a first importance tool for aerosol studies. Remote sensing in the visible domain has been widely used to obtain better characterization of these particles and their effect on solar radiation. On the opposite, remote sensing of aerosols in the thermal infrared domain still remains marginal. However, knowledge of the effect of aerosols on terrestrial radiation is needed for the evaluation of their total radiative forcing. Infrared remote sensing provides a way to retrieve other aerosol characteristics, including their mean altitude. Moreover, observations are possible at night and day, over ocean and over land. In this context, six years (2003-2008) of the 2nd generation vertical sounder AIRS observations have been processed over the tropical belt (30°N-30°S). Our results of the dust optical depth at 10 µm have been compared to the 0.55 µm Aqua/MODIS optical depth product for this period. The detailed study of Atlantic regions shows a very good agreement between the two products, with a VIS/IR ratio around 0.3-0.5 during the Saharan dust season. Comparing these two AOD products should allow separating different aerosols signals, given that our retrieval algorithm is specifically designed for dust coarse mode whereas MODIS retrieves both accumulation and fine aerosol modes. Mean aerosol layer altitude has also been retrieved from AIRS data and we show global maps and time series of altitude retrieved from space. Altitude retrievals are compared to the CALIOP/Calipso Level-2 product starting June 2006. This comparison, for a region located downwind from the Sahara, again shows a good agreement demonstrating that our algorithm effectively allows retrieving reliable mean dust layer altitude. A global climatology of the dust optical depth at 10 µm and of the aerosol layer mean altitude has also been established. An interesting conclusion is the fact that if the AOD decreases from Africa to the Caribbean as a result of transport and dilution, altitude decreases less rapidly. This is in agreement with in situ measurements made during the Puerto Rico Dust Experiment (PRIDE) campaign and modelled forward trajectories.
Global dust sources detection using MODIS Deep Blue Collection 6 aerosol products
NASA Astrophysics Data System (ADS)
Pérez García-Pando, C.; Ginoux, P. A.
2015-12-01
Our understanding of the global dust cycle is limited by a dearth of information about dust sources, especially small-scale features which could account for a large fraction of global emissions. Remote sensing sensors are the most useful tool to locate dust sources. These sensors include microwaves, visible channels, and lidar. On the global scale, major dust source regions have been identified using polar orbiting satellite instruments. The MODIS Deep Blue algorithm has been particularly useful to detect small-scale sources such as floodplains, alluvial fans, rivers, and wadis , as well as to identify anthropogenic sources from agriculture. The recent release of Collection 6 MODIS aerosol products allows to extend dust source detection to the entire land surfaces, which is quite useful to identify mid to high latitude dust sources and detect not only dust from agriculture but fugitive dust from transport and industrial activities. This presentation will overview the advantages and drawbacks of using MODIS Deep Blue for dust detection, compare to other instruments (polar orbiting and geostationary). The results of Collection 6 with a new dust screening will be compared against AERONET. Applications to long range transport of anthropogenic dust will be presented.
NASA Astrophysics Data System (ADS)
Rani Sharma, Anu; Kharol, Shailesh Kumar; Kvs, Badarinath; Roy, P. S.
In Earth observation, the atmosphere has a non-negligible influence on the visible and infrared radiation which is strong enough to modify the reflected electromagnetic signal and at-target reflectance. Scattering of solar irradiance by atmospheric molecules and aerosol generates path radiance, which increases the apparent surface reflectance over dark surfaces while absorption by aerosols and other molecules in the atmosphere causes loss of brightness to the scene, as recorded by the satellite sensor. In order to derive precise surface reflectance from satellite image data, it is indispensable to apply the atmospheric correction which serves to remove the effects of molecular and aerosol scattering. In the present study, we have implemented a fast atmospheric correction algorithm to IRS-P6 AWiFS satellite data which can effectively retrieve surface reflectance under different atmospheric and surface conditions. The algorithm is based on MODIS climatology products and simplified use of Second Simulation of Satellite Signal in Solar Spectrum (6S) radiative transfer code, which is used to generate look-up-tables (LUTs). The algorithm requires information on aerosol optical depth for correcting the satellite dataset. The proposed method is simple and easy to implement for estimating surface reflectance from the at sensor recorded signal, on a per pixel basis. The atmospheric correction algorithm has been tested for different IRS-P6 AWiFS False color composites (FCC) covering the ICRISAT Farm, Patancheru, Hyderabad, India under varying atmospheric conditions. Ground measurements of surface reflectance representing different land use/land cover, i.e., Red soil, Chick Pea crop, Groundnut crop and Pigeon Pea crop were conducted to validate the algorithm and found a very good match between surface reflectance and atmospherically corrected reflectance for all spectral bands. Further, we aggregated all datasets together and compared the retrieved AWiFS reflectance with aggregated ground measurements which showed a very good correlation of 0.96 in all four spectral bands (i.e. green, red, NIR and SWIR). In order to quantify the accuracy of the proposed method in the estimation of the surface reflectance, the root mean square error (RMSE) associated to the proposed method was evaluated. The analysis of the ground measured versus retrieved AWiFS reflectance yielded smaller RMSE values in case of all four spectral bands. EOS TERRA/AQUA MODIS derived AOD exhibited very good correlation of 0.92 and the data sets provides an effective means for carrying out atmospheric corrections in an operational way. Keywords: Atmospheric correction, 6S code, MODIS, Spectroradiometer, Sun-Photometer
The Continuous Monitoring of Desert Dust using an Infrared-based Dust Detection and Retrieval Method
NASA Technical Reports Server (NTRS)
Duda, David P.; Minnis, Patrick; Trepte, Qing; Sun-Mack, Sunny
2006-01-01
Airborne dust and sand are significant aerosol sources that can impact the atmospheric and surface radiation budgets. Because airborne dust affects visibility and air quality, it is desirable to monitor the location and concentrations of this aerosol for transportation and public health. Although aerosol retrievals have been derived for many years using visible and near-infrared reflectance measurements from satellites, the detection and quantification of dust from these channels is problematic over bright surfaces, or when dust concentrations are large. In addition, aerosol retrievals from polar orbiting satellites lack the ability to monitor the progression and sources of dust storms. As a complement to current aerosol dust retrieval algorithms, multi-spectral thermal infrared (8-12 micron) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Meteosat-8 Spinning Enhanced Visible and Infrared Imager (SEVIRI) are used in the development of a prototype dust detection method and dust property retrieval that can monitor the progress of Saharan dust fields continuously, both night and day. The dust detection method is incorporated into the processing of CERES (Clouds and the Earth s Radiant Energy System) aerosol retrievals to produce dust property retrievals. Both MODIS (from Terra and Aqua) and SEVERI data are used to develop the method.
Assessment of 10 Year Record of Aerosol Optical Depth from OMI UV Observations
NASA Technical Reports Server (NTRS)
Ahn, Changwoo; Torres, Omar; Jethva, Hiren
2014-01-01
The Ozone Monitoring Instrument (OMI) onboard the EOS-Aura satellite provides information on aerosol optical properties by making use of the large sensitivity to aerosol absorption in the near-ultraviolet (UV) spectral region. Another important advantage of using near UV observations for aerosol characterization is the low surface albedo of all terrestrial surfaces in this spectral region that reduces retrieval errors associated with land surface reflectance characterization. In spite of the 13 × 24 square kilometers coarse sensor footprint, the OMI near UV aerosol algorithm (OMAERUV) retrieves aerosol optical depth (AOD) and single-scattering albedo under cloud-free conditions from radiance measurements at 354 and 388 nanometers. We present validation results of OMI AOD against space and time collocated Aerosol Robotic Network measured AOD values over multiple stations representing major aerosol episodes and regimes. OMAERUV's performance is also evaluated with respect to those of the Aqua-MODIS Deep Blue and Terra-MISR AOD algorithms over arid and semi-arid regions in Northern Africa. The outcome of the evaluation analysis indicates that in spite of the "row anomaly" problem, affecting the sensor since mid-2007, the long-term aerosol record shows remarkable sensor stability.
Improved Cloud and Snow Screening in MAIAC Aerosol Retrievals Using Spectral and Spatial Analysis
NASA Technical Reports Server (NTRS)
Lyapustin, A.; Wang, Y.; Laszlo, I.; Kokrkin, S.
2012-01-01
An improved cloud/snow screening technique in the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm is described. It is implemented as part of MAIAC aerosol retrievals based on analysis of spectral residuals and spatial variability. Comparisons with AERONET aerosol observations and a large-scale MODIS data analysis show strong suppression of aerosol optical thickness outliers due to unresolved clouds and snow. At the same time, the developed filter does not reduce the aerosol retrieval capability at high 1 km resolution in strongly inhomogeneous environments, such as near centers of the active fires. Despite significant improvement, the optical depth outliers in high spatial resolution data are and will remain the problem to be addressed by the application-dependent specialized filtering techniques.
Aerosol Climate Time Series in ESA Aerosol_cci
NASA Astrophysics Data System (ADS)
Popp, Thomas; de Leeuw, Gerrit; Pinnock, Simon
2016-04-01
Within the ESA Climate Change Initiative (CCI) Aerosol_cci (2010 - 2017) conducts intensive work to improve algorithms for the retrieval of aerosol information from European sensors. Meanwhile, full mission time series of 2 GCOS-required aerosol parameters are completely validated and released: Aerosol Optical Depth (AOD) from dual view ATSR-2 / AATSR radiometers (3 algorithms, 1995 - 2012), and stratospheric extinction profiles from star occultation GOMOS spectrometer (2002 - 2012). Additionally, a 35-year multi-sensor time series of the qualitative Absorbing Aerosol Index (AAI) together with sensitivity information and an AAI model simulator is available. Complementary aerosol properties requested by GCOS are in a "round robin" phase, where various algorithms are inter-compared: fine mode AOD, mineral dust AOD (from the thermal IASI spectrometer, but also from ATSR instruments and the POLDER sensor), absorption information and aerosol layer height. As a quasi-reference for validation in few selected regions with sparse ground-based observations the multi-pixel GRASP algorithm for the POLDER instrument is used. Validation of first dataset versions (vs. AERONET, MAN) and inter-comparison to other satellite datasets (MODIS, MISR, SeaWIFS) proved the high quality of the available datasets comparable to other satellite retrievals and revealed needs for algorithm improvement (for example for higher AOD values) which were taken into account for a reprocessing. The datasets contain pixel level uncertainty estimates which were also validated and improved in the reprocessing. For the three ATSR algorithms the use of an ensemble method was tested. The paper will summarize and discuss the status of dataset reprocessing and validation. The focus will be on the ATSR, GOMOS and IASI datasets. Pixel level uncertainties validation will be summarized and discussed including unknown components and their potential usefulness and limitations. Opportunities for time series extension with successor instruments of the Sentinel family will be described and the complementarity of the different satellite aerosol products (e.g. dust vs. total AOD, ensembles from different algorithms for the same sensor) will be discussed.
NASA Technical Reports Server (NTRS)
Jethva, Hiren; Torres, Omar; Bhartia, Pawan K.; Remer, Lorraine; Redemann, Jens; Dunagan, Stephen E.; Livingston, John; Shinozuka, Yohei; Kacenelenbogen, Meloe; Segal-Rosenbeimer, Michal;
2014-01-01
Absorbing aerosols produced from biomass burning and dust outbreaks are often found to overlay lower level cloud decks and pose greater potentials of exerting positive radiative effects (warming) whose magnitude directly depends on the aerosol loading above cloud, optical properties of clouds and aerosols, and cloud fraction. Recent development of a 'color ratio' (CR) algorithm applied to observations made by the Aura/OMI and Aqua/MODIS constitutes a major breakthrough and has provided unprecedented maps of above-cloud aerosol optical depth (ACAOD). The CR technique employs reflectance measurements at TOA in two channels (354 and 388 nm for OMI; 470 and 860 nm for MODIS) to retrieve ACAOD in near-UV and visible regions and aerosol-corrected cloud optical depth, simultaneously. An inter-satellite comparison of ACAOD retrieved from NASA's A-train sensors reveals a good level of agreement between the passive sensors over the homogeneous cloud fields. Direct measurements of ACA such as carried out by the NASA Ames Airborne Tracking Sunphotometer (AATS) and Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) can be of immense help in validating ACA retrievals. We validate the ACA optical depth retrieved using the CR method applied to the MODIS cloudy-sky reflectance against the airborne AATS and 4STAR measurements. A thorough search of the historic AATS-4STAR database collected during different field campaigns revealed five events where biomass burning, dust, and wildfire-emitted aerosols were found to overlay lower level cloud decks observed during SAFARI-2000, ACE-ASIA 2001, and SEAC4RS- 2013, respectively. The co-located satellite-airborne measurements revealed a good agreement (RMSE less than 0.1 for AOD at 500 nm) with most matchups falling within the estimated uncertainties in the MODIS retrievals. An extensive validation of satellite-based ACA retrievals requires equivalent field measurements particularly over the regions where ACA are often observed from satellites, i.e., south-eastern Atlantic Ocean, tropical Atlantic Ocean, northern Arabian Sea, South-East and North-East Asia.
NASA Astrophysics Data System (ADS)
Xu, Xiaoguang; Wang, Jun; Wang, Yi; Zeng, Jing; Torres, Omar; Yang, Yuekui; Marshak, Alexander; Reid, Jeffrey; Miller, Steve
2017-07-01
We presented an algorithm for inferring aerosol layer height (ALH) and optical depth (AOD) over ocean surface from radiances in oxygen A and B bands measured by the Earth Polychromatic Imaging Camera (EPIC) on the Deep Space Climate Observatory (DSCOVR) orbiting at Lagrangian-1 point. The algorithm was applied to EPIC imagery of a 2 day dust outbreak over the North Atlantic Ocean. Retrieved ALHs and AODs were evaluated against counterparts observed by Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), Moderate Resolution Imaging Spectroradiometer, and Aerosol Robotic Network. The comparisons showed 71.5% of EPIC-retrieved ALHs were within ±0.5 km of those determined from CALIOP and 74.4% of EPIC AOD retrievals fell within a ± (0.1 + 10%) envelope of MODIS retrievals. This study demonstrates the potential of EPIC measurements for retrieving global aerosol height multiple times daily, which are essential for evaluating aerosol profile simulated in climate models and for better estimating aerosol radiative effects.
NASA Technical Reports Server (NTRS)
Ichoku, Charles; Kaufman, Yoram; Remer, Lorraine; Chu, D. Allen; Mattoo, Shana; Tanre, Didier; Levy, Robert; Li, Rong-Rong; Kleidman, Richard; Lau, William K. M. (Technical Monitor)
2001-01-01
Aerosol properties, including optical thickness and size parameters, are retrieved operationally from the MODIS sensor onboard the Terra satellite launched on 18 December 1999. The predominant aerosol type over the Southern African region is smoke, which is generated from biomass burning on land and transported over the southern Atlantic Ocean. The SAFARI-2000 period experienced smoke aerosol emissions from the regular biomass burning activities as well as from the prescribed burns administered on the auspices of the experiment. The MODIS Aerosol Science Team (MAST) formulates and implements strategies for the retrieval of aerosol products from MODIS, as well as for validating and analyzing them in order to estimate aerosol effects in the radiative forcing of climate as accurately as possible. These activities are carried out not only from a global perspective, but also with a focus on specific regions identified as having interesting characteristics, such as the biomass burning phenomenon in southern Africa and the associated smoke aerosol, particulate, and trace gas emissions. Indeed, the SAFARI-2000 aerosol measurements from the ground and from aircraft, along with MODIS, provide excellent data sources for a more intensive validation and a closer study of the aerosol characteristics over Southern Africa. The SAFARI-2000 ground-based measurements of aerosol optical thickness (AOT) from both the automatic Aerosol Robotic Network (AERONET) and handheld Sun photometers have been used to validate MODIS retrievals, based on a sophisticated spatio-temporal technique. The average global monthly distribution of aerosol from MODIS has been combined with other data to calculate the southern African aerosol daily averaged (24 hr) radiative forcing over the ocean for September 2000. It is estimated that on the average, for cloud free conditions over an area of 9 million square kin, this predominantly smoke aerosol exerts a forcing of -30 W/square m C lose to the terrestrial surface and -10 W/square m at the top of the atmosphere (TOA). While cooling the surface and Earth system, the difference of 20 W/square m is energy that heats the atmosphere.
NASA Technical Reports Server (NTRS)
Giles, D. M.; Holben, B. N.; Tripathi, S. N.; Eck, T. F.; Newcomb, W. W.; Slutsker, I.; Dickerson, R. R.; Thompson, A. M.; Wang, S.-H.; Singh, R. P.;
2010-01-01
The Indo-Gangetic Plain (IGP) of the northern Indian subcontinent produces anthropogenic pollution from urban, industrial and rural combustion sources nearly continuously and is affected by convection-induced winds driving desert and alluvial dust into the atmosphere during the premonsoon period. Within the IGP, the NASA Aerosol Robotic Network (AERONET) project initiated the TIGERZ measurement campaign in May 2008 with an intensive operational period from May 1 to June 23, 2008. Mesoscale spatial variability of aerosol optical depth (AOD, tau) measurements at 500mn was assessed at sites around Kanpur, India, with averages ranging from 0.31 to 0.89 for spatial variability study (SVS) deployments. Sites located downwind from the city of Kanpur indicated slightly higher average aerosol optical depth (delta Tau(sub 500)=0.03-0.09). In addition, SVS AOD area-averages were compared to the long-tenn Kanpur AERONET site data: Four SVS area-averages were within +/- 1 cr of the climatological mean of the Kanpur site, while one SVS was within 2sigma below climatology. For a SVS case using AERONET inversions, the 440-870mn Angstrom exponent of approximately 0.38, the 440-870mn absorption Angstrom exponent (AAE) of 1.15-1.53, and the sphericity parameter near zero suggested the occurrence of large, strongly absorbing, non-spherical aerosols over Kanpur (e.g., mixed black carbon and dust) as well as stronger absorption downwind of Kanpur. Furthermore, the 3km and lOkm Terra and Aqua MODIS C005 aerosol retrieval algorithms at tau(sub 550) were compared to the TIGERZ data set. Although MODIS retrievals at higher quality levels were comparable to the MODIS retrieval uncertainty, the total number of MODIS matchups (N) were reduced with subsequent quality levels (N=25, QA>=0; N=9,QA>=l; N=6, QA>=2; N=1, QA=3) over Kanpur during the premonsoon primarily due to the semi-bright surface, complex aerosol mixture and cloud-contaminated pixels. The TIGERZ 2008 data set provided a unique opportunity to measure the spatial and temporal variations of aerosol loading in the IGP. The strong aerosol absorption derived from ground-based sun/sky radiometer measurements suggested the presence of a predominately black carbon and dust mixture during the pre-monsoon period. Consistent with the elevated heat-pump hypothesis, these absorbing aerosols found across Kanpur and the greater IGP region during the pre-monsoon period likely induced regional atmospheric warming, which lead to a more rapid advance of the southwest Asian monsoon and above normal precipitation over northern India in June 2008.
NASA Technical Reports Server (NTRS)
Jeong, Myeong-Jae; Hsu, N. Christina; Kwiatkowska, Ewa J.; Franz, Bryan A.; Meister, Gerhard; Salustro, Clare E.
2012-01-01
The retrieval of aerosol properties from spaceborne sensors requires highly accurate and precise radiometric measurements, thus placing stringent requirements on sensor calibration and characterization. For the Terra/Moderate Resolution Imaging Spedroradiometer (MODIS), the characteristics of the detectors of certain bands, particularly band 8 [(B8); 412 nm], have changed significantly over time, leading to increased calibration uncertainty. In this paper, we explore a possibility of utilizing a cross-calibration method developed for characterizing the Terral MODIS detectors in the ocean bands by the National Aeronautics and Space Administration Ocean Biology Processing Group to improve aerosol retrieval over bright land surfaces. We found that the Terra/MODIS B8 reflectance corrected using the cross calibration method resulted in significant improvements for the retrieved aerosol optical thickness when compared with that from the Multi-angle Imaging Spectroradiometer, Aqua/MODIS, and the Aerosol Robotic Network. The method reported in this paper is implemented for the operational processing of the Terra/MODIS Deep Blue aerosol products.
NASA Technical Reports Server (NTRS)
Wilcox, Eric M.; Harshvardhan; Platnick, Steven
2009-01-01
Two independent satellite retrievals of cloud liquid water path (LWP) from the NASA Aqua satellite are used to diagnose the impact of absorbing biomass burning aerosol overlaying boundary-layer marine water clouds on the Moderate Resolution Imaging Spectrometer (MODIS) retrievals of cloud optical thickness (tau) and cloud droplet effective radius (r(sub e)). In the MODIS retrieval over oceans, cloud reflectance in the 0.86-micrometer and 2.13-micrometer bands is used to simultaneously retrieve tau and r(sub e). A low bias in the MODIS tau retrieval may result from reductions in the 0.86-micrometer reflectance, which is only very weakly absorbed by clouds, owing to absorption by aerosols in cases where biomass burning aerosols occur above water clouds. MODIS LWP, derived from the product of the retrieved tau and r(sub e), is compared with LWP ocean retrievals from the Advanced Microwave Scanning Radiometer-EOS (AMSR-E), determined from cloud microwave emission that is transparent to aerosols. For the coastal Atlantic southern African region investigated in this study, a systematic difference between AMSR-E and MODIS LWP retrievals is found for stratocumulus clouds over three biomass burning months in 2005 and 2006 that is consistent with above-cloud absorbing aerosols. Biomass burning aerosol is detected using the ultraviolet aerosol index from the Ozone Monitoring Instrument (OMI) on the Aura satellite. The LWP difference (AMSR-E minus MODIS) increases both with increasing tau and increasing OMI aerosol index. During the biomass burning season the mean LWP difference is 14 g per square meters, which is within the 15-20 g per square meter range of estimated uncertainties in instantaneous LWP retrievals. For samples with only low amounts of overlaying smoke (OMI AI less than or equal to 1) the difference is 9.4, suggesting that the impact of smoke aerosols on the mean MODIS LWP is 5.6 g per square meter. Only for scenes with OMI aerosol index greater than 2 does the average LWP difference and the estimated bias in MODIS cloud optical thickness attributable to the impact of overlaying biomass burning aerosol exceed the instantaneous uncertainty in the retrievals.
NASA Astrophysics Data System (ADS)
Choi, M.; Kim, J.; Lee, J.; KIM, M.; Park, Y. J.; Holben, B. N.; Eck, T. F.; Li, Z.; Song, C. H.
2017-12-01
The Geostationary Ocean Color Imager (GOCI) Yonsei aerosol retrieval (YAER) version 1 algorithm was developed for retrieving hourly aerosol optical depth at 550 nm (AOD) and other subsidiary aerosol optical properties over East Asia. The GOCI YAER AOD showed comparable accuracy compared to ground-based and other satellite-based observations, but still had errors due to uncertainties in surface reflectance and simple cloud masking. Also, it was not capable of near-real-time (NRT) processing because it required a monthly database of each year encompassing the day of retrieval for the determination of surface reflectance. This study describes the improvement of GOCI YAER algorithm to the version 2 (V2) for NRT processing with improved accuracy from the modification of cloud masking, surface reflectance determination using multi-year Rayleigh corrected reflectance and wind speed database, and inversion channels per surface conditions. Therefore, the improved GOCI AOD ( ) is similar with those of Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) AOD compared to V1 of the YAER algorithm. The shows reduced median bias and increased ratio within range (i.e. absolute expected error range of MODIS AOD) compared to V1 in the validation results using Aerosol Robotic Network (AERONET) AOD ( ) from 2011 to 2016. The validation using the Sun-Sky Radiometer Observation Network (SONET) over China also shows similar results. The bias of error ( is within -0.1 and 0.1 range as a function of AERONET AOD and AE, scattering angle, NDVI, cloud fraction and homogeneity of retrieved AOD, observation time, month, and year. Also, the diagnostic and prognostic expected error (DEE and PEE, respectively) of are estimated. The estimated multiple PEE of GOCI V2 AOD is well matched with actual error over East Asia, and the GOCI V2 AOD over Korea shows higher ratio within PEE compared to over China and Japan. Hourly AOD products based on the improved GOCI YAER AOD could contribute to better understandings of aerosols in terms of long-term climate changes and short-term air quality monitoring and forecasting perspectives over East Asia, especially rapid diurnal variation and transboundary transport.
NASA Technical Reports Server (NTRS)
Chu, D. A.; Remer, L. A.; Kaufman, Y. J.; Schmid, B.; Redemann, J.; Knobelspiesse, K.; Chern, J.-D.; Livingston, J.; Russell, P. B.; Xiong, X.;
2005-01-01
The Aerosol Characterization Experiment-Asia (ACE-Asia) was conducted in March-May 2001 in the western North Pacific in order to characterize the complex mix of dust, smoke, urban/industrial pollution, and background marine aerosol that is observed in that region in springtime. The Moderate Resolution Imaging Spectroradiometer (MODIS) provides a large-scale regional view of the aerosol during the ACE-Asia time period. Focusing only on aerosol retrievals over ocean, MODIS data show latitudinal and longitudinal variation in the aerosol characteristics. Typically, aerosol optical depth (tau(sub a)) values at 0.55 micrometers are highest in the 30 deg. - 50 deg. latitude band associated with dust outbreaks. Monthly mean tau(sub a) in this band ranges approx. 0.40-70, although large differences between monthly mean and median values indicate the periodic nature of these dust outbreaks. The size parameters, fine mode fraction (eta), and effective radius (r(sub eff)) vary between monthly mean values of eta = 0.47 and r(sub eff)= 0.75 micrometers in the cleanest regions far offshore to approximately eta = 0.85 and r(sub eff) =.30 micrometers in near-shore regions dominated by biomass burning smoke. The collocated MODIS retrievals with airborne, ship-based, and ground-based radiometers measurements suggest that MODIS retrievals of spectral optical depth fall well within expected error (DELTA tau(sub a) = plus or minus 0.03 plus or minus 0.05 tau(sub a)) except in situations dominated by dust, in which cases MODIS overestimate both the aerosol loading and the aerosol spectral dependence. Such behavior is consistent with issues related to particle nonsphericity. Comparisons of MODIS-derived r(sub eff) with AERONET retrievals at the few occurrences of collocations show MODIS systematically underestimates particle size by 0.2 micrometers. Multiple-year analysis of MODIS aerosol size parameters suggests systematic differences between the year 2001 and the years 2000 and 2002, which are traced to instrumental electronic cross talk. Sensitivity studies show that such calibration errors are negligible in tau(sub a) retrievals but are more pronounced in size parameter retrievals, especially for dust and sea salt.
Aerosol Climate Time Series Evaluation In ESA Aerosol_cci
NASA Astrophysics Data System (ADS)
Popp, T.; de Leeuw, G.; Pinnock, S.
2015-12-01
Within the ESA Climate Change Initiative (CCI) Aerosol_cci (2010 - 2017) conducts intensive work to improve algorithms for the retrieval of aerosol information from European sensors. By the end of 2015 full mission time series of 2 GCOS-required aerosol parameters are completely validated and released: Aerosol Optical Depth (AOD) from dual view ATSR-2 / AATSR radiometers (3 algorithms, 1995 - 2012), and stratospheric extinction profiles from star occultation GOMOS spectrometer (2002 - 2012). Additionally, a 35-year multi-sensor time series of the qualitative Absorbing Aerosol Index (AAI) together with sensitivity information and an AAI model simulator is available. Complementary aerosol properties requested by GCOS are in a "round robin" phase, where various algorithms are inter-compared: fine mode AOD, mineral dust AOD (from the thermal IASI spectrometer), absorption information and aerosol layer height. As a quasi-reference for validation in few selected regions with sparse ground-based observations the multi-pixel GRASP algorithm for the POLDER instrument is used. Validation of first dataset versions (vs. AERONET, MAN) and inter-comparison to other satellite datasets (MODIS, MISR, SeaWIFS) proved the high quality of the available datasets comparable to other satellite retrievals and revealed needs for algorithm improvement (for example for higher AOD values) which were taken into account for a reprocessing. The datasets contain pixel level uncertainty estimates which are also validated. The paper will summarize and discuss the results of major reprocessing and validation conducted in 2015. The focus will be on the ATSR, GOMOS and IASI datasets. Pixel level uncertainties validation will be summarized and discussed including unknown components and their potential usefulness and limitations. Opportunities for time series extension with successor instruments of the Sentinel family will be described and the complementarity of the different satellite aerosol products (e.g. dust vs. total AOD, ensembles from different algorithms for the same sensor) will be discussed.
NASA Technical Reports Server (NTRS)
Remer, L. A.; Kaufman, Y. J.
2006-01-01
A four year record of MODIS spaceborne data provides a new measurement tool to assess the aerosol direct radiative effect at the top of the atmosphere. MODIS derives the aerosol optical thickness and microphysical properties from the scattered sunlight at 0.55-2.1 microns. The monthly MODIS data used here are accumulated measurements across a wide range of view and scattering angles and represent the aerosol s spectrally resolved angular properties. We use these data consistently to compute with estimated accuracy of +/-0.6W/sq m the reflected sunlight by the aerosol over global oceans in cloud free conditions. The MODIS high spatial resolution (0.5 km) allows observation of the aerosol impact between clouds that can be missed by other sensors with larger footprints. We found that over the clear-sky global ocean the aerosol reflected 5.3+/-0.6W/sq m with an average radiative efficiency of 49+/-2W/sq m per unit optical thickness. The seasonal and regional distribution of the aerosol radiative effects are discussed. The analysis adds a new measurement perspective to a climate change problem dominated so far by models.
Aerosol layer height from synergistic use of VIIRS and OMPS
NASA Astrophysics Data System (ADS)
Lee, J.; Hsu, N. Y. C.; Sayer, A. M.; Kim, W.; Seftor, C. J.
2017-12-01
This study presents an Aerosol Single-scattering albedo and Height Estimation (ASHE) algorithm, which retrieves the height of UV-absorbing aerosols by synergistically using the Visible Infrared Imaging Radiometer Suite (VIIRS) and the Ozone Mapping and Profiler Suite (OMPS). ASHE provides height information over a much broader area than ground-based or spaceborne lidar measurements by benefitting from the wide swaths of the two instruments used. As determination of single-scattering albedo (SSA) of the aerosol layer is the most critical part for the performance and coverage of ASHE, here we demonstrate three different strategies to constrain the SSA. First, ASHE is able to retrieve the SSA of UV-absorbing aerosols when Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) provides vertical profiles of the aerosol layer of interest. Second, Aerosol Robotic Network (AERONET) inversions can directly constrain the SSA of the aerosol layer when collocated with VIIRS or OMPS. Last, a SSA climatology from ASHE, AERONET, or other data sources can be used for large-scale, aged aerosol events, for which climatological SSA is well-known, at the cost of a slight decrease in retrieval accuracy. The same algorithm can be applied to measurements of similar type, such as those made by the Moderate Resolution Imaging Spectroradiometer (MODIS) and Ozone Monitoring Instrument (OMI), for a long-term, consistent data record.
2015-08-27
Shi et al. (2011) suggested that large spatial discrepancies exist in operational satellite aerosol products such as MODIS and MISR. Thus, before...to be fully evaluated. In the past few years of the project period, MODIS Deep Blue (DB) and MISR aerosol products have been studied, and schemes for...constructing DA-grade MODIS DB and MISR aerosol products have been developed and transitioned to the Naval Research Laboratory (NRL). Continuing
NASA Astrophysics Data System (ADS)
Jethva, H. T.; Torres, O.; Remer, L. A.; Redemann, J.; Dunagan, S. E.; Livingston, J. M.; Shinozuka, Y.; Kacenelenbogen, M. S.; Segal-Rosenhaimer, M.
2014-12-01
Absorbing aerosols produced from biomass burning and dust outbreaks are often found to overlay the lower level cloud decks as evident in the satellite images. In contrast to the cloud-free atmosphere, in which aerosols generally tend to cool the atmosphere, the presence of absorbing aerosols above cloud poses greater potential of exerting positive radiative effects (warming) whose magnitude directly depends on the aerosol loading above cloud, optical properties of clouds and aerosols, and cloud fraction. In recent years, development of algorithms that exploit satellite-based passive measurements of ultraviolet (UV), visible, and polarized light as well as lidar-based active measurements constitute a major breakthrough in the field of remote sensing of aerosols. While the unprecedented quantitative information on aerosol loading above cloud is now available from NASA's A-train sensors, a greater question remains ahead: How to validate the satellite retrievals of above-cloud aerosols (ACA)? Direct measurements of ACA such as carried out by the NASA Ames Airborne Tracking Sunphotometer (AATS) and Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) can be of immense help in validating ACA retrievals. In this study, we validate the ACA optical depth retrieved using the 'color ratio' (CR) method applied to the MODIS cloudy-sky reflectance by using the airborne AATS and 4STAR measurements. A thorough search of the historic AATS-4STAR database collected during different field campaigns revealed five events where biomass burning, dust, and wildfire-emitted aerosols were found to overlay lower level cloud decks observed during SAFARI-2000, ACE-ASIA 2001, and SEAC4RS-2013, respectively. The co-located satellite-airborne measurements revealed a good agreement (root-mean-square-error<0.1 for Aerosol Optical Depth (AOD) at 500 nm) with most matchups falling within the estimated uncertainties in the MODIS retrievals (-10% to +50%). An extensive validation of satellite-based ACA retrievals requires equivalent field measurements particularly over the regions where ACA are often observed from satellites, i.e., south-eastern Atlantic Ocean, tropical Atlantic Ocean, northern Arabian Sea, South-East and North-East Asia.
Biomass Burning Aerosol Absorption Measurements with MODIS Using the Critical Reflectance Method
NASA Technical Reports Server (NTRS)
Zhu, Li; Martins, Vanderlei J.; Remer, Lorraine A.
2010-01-01
This research uses the critical reflectance technique, a space-based remote sensing method, to measure the spatial distribution of aerosol absorption properties over land. Choosing two regions dominated by biomass burning aerosols, a series of sensitivity studies were undertaken to analyze the potential limitations of this method for the type of aerosol to be encountered in the selected study areas, and to show that the retrieved results are relatively insensitive to uncertainties in the assumptions used in the retrieval of smoke aerosol. The critical reflectance technique is then applied to Moderate Resolution Imaging Spectrometer (MODIS) data to retrieve the spectral aerosol single scattering albedo (SSA) in South African and South American 35 biomass burning events. The retrieved results were validated with collocated Aerosol Robotic Network (AERONET) retrievals. One standard deviation of mean MODIS retrievals match AERONET products to within 0.03, the magnitude of the AERONET uncertainty. The overlap of the two retrievals increases to 88%, allowing for measurement variance in the MODIS retrievals as well. The ensemble average of MODIS-derived SSA for the Amazon forest station is 0.92 at 670 nm, and 0.84-0.89 for the southern African savanna stations. The critical reflectance technique allows evaluation of the spatial variability of SSA, and shows that SSA in South America exhibits higher spatial variation than in South Africa. The accuracy of the retrieved aerosol SSA from MODIS data indicates that this product can help to better understand 44 how aerosols affect the regional and global climate.
What is the Uncertainty in MODIS Aerosol Optical Depth in the Vicinity of Clouds?
NASA Technical Reports Server (NTRS)
Patadia, Falguni; Levy, Rob; Mattoo, Shana
2017-01-01
MODIS dark-target (DT) algorithm retrieves aerosol optical depth (AOD) using a Look Up Table (LUT) approach. Global comparison of AOD (Collection 6 ) with ground-based sun photometer gives an Estimated Error (EE) of +/-(0.04 + 10%) over ocean. However, EE does not represent per-retrieval uncertainty. For retrievals that are biased high compared to AERONET, here we aim to closely examine the contribution of biases due to presence of clouds and per-pixel retrieval uncertainty. We have characterized AOD uncertainty at 550 nm, due to standard deviation of reflectance in 10 km retrieval region, uncertainty related to gas (H2O, O3) absorption, surface albedo, and aerosol models. The uncertainty in retrieved AOD seems to lie within the estimated over ocean error envelope of +/-(0.03+10%). Regions between broken clouds tend to have higher uncertainty. Compared to C6 AOD, a retrieval omitting observations in the vicinity of clouds (< or = 1 km) is biased by about +/- 0.05. For homogeneous aerosol distribution, clear sky retrievals show near zero bias. Close look at per-pixel reflectance histograms suggests retrieval possibility using median reflectance values.
Ten Years of Cloud Optical and Microphysical Retrievals from MODIS
NASA Technical Reports Server (NTRS)
Platnick, Steven; King, Michael D.; Wind, Galina; Hubanks, Paul; Arnold, G. Thomas; Amarasinghe, Nandana
2010-01-01
The MODIS cloud optical properties algorithm (MOD06/MYD06 for Terra and Aqua MODIS, respectively) has undergone extensive improvements and enhancements since the launch of Terra. These changes have included: improvements in the cloud thermodynamic phase algorithm; substantial changes in the ice cloud light scattering look up tables (LUTs); a clear-sky restoral algorithm for flagging heavy aerosol and sunglint; greatly improved spectral surface albedo maps, including the spectral albedo of snow by ecosystem; inclusion of pixel-level uncertainty estimates for cloud optical thickness, effective radius, and water path derived for three error sources that includes the sensitivity of the retrievals to solar and viewing geometries. To improve overall retrieval quality, we have also implemented cloud edge removal and partly cloudy detection (using MOD35 cloud mask 250m tests), added a supplementary cloud optical thickness and effective radius algorithm over snow and sea ice surfaces and over the ocean, which enables comparison with the "standard" 2.1 11m effective radius retrieval, and added a multi-layer cloud detection algorithm. We will discuss the status of the MOD06 algorithm and show examples of pixellevel (Level-2) cloud retrievals for selected data granules, as well as gridded (Level-3) statistics, notably monthly means and histograms (lD and 2D, with the latter giving correlations between cloud optical thickness and effective radius, and other cloud product pairs).
NASA Astrophysics Data System (ADS)
Holz, R.; Platnick, S. E.; Meyer, K.; Frey, R.; Wind, G.; Ackerman, S. A.; Heidinger, A. K.; Botambekov, D.; Yorks, J. E.; McGill, M. J.
2016-12-01
The launch of VIIRS and CrIS on Suomi NPP in the fall of 2011 introduced the next generation of U.S. operational polar orbiting environmental observations. Similar to MODIS, VIIRS provides visible and IR observations at moderate spatial resolution and has a 1:30 pm equatorial crossing time consistent with the MODIS on Aqua platform. However unlike MODIS, VIIRS lacks water vapor and CO2 absorbing channels that are used by the MODIS cloud algorithms for both cloud detection and to retrieve cloud top height and cloud emissivity for ice clouds. Given the different spectral and spatial characteristics of VIIRS, we seek to understand the extent to which the 15-year MODIS climate record can be continued with VIIRS/CrIS observations while maintaining consistent sensitivities across the observational systems. This presentation will focus on the evaluation of the latest version of the NASA funded cloud retrieval algorithms being developed for climate research. We will present collocated inter-comparisons between the imagers (VIIRS and MODIS Aqua) with CALIPSO and Cloud Aerosol Transport System (CATS) lidar observations as well as long term statistics based on a new Level-3 (L3) product being developed as part the project. The CALIPSO inter-comparisons will focus on cloud detection (cloud mask) with a focus on the impact of recent modifications to the cloud mask and how these changes impact the global statistics. For the first time we will provide inter-comparisons between two different cloud lidar systems (CALIOP and CATS) and investigate how the different sensitivities of the lidars impact the cloud mask and cloud comparisons. Using CALIPSO and CATS as the reference, and applying the same algorithms to VIIRS and MODIS, we will discuss the consistency between products from both imagers. The L3 analysis will focus on the regional and seasonal consistency between the suite of MODIS and VIIRS continuity cloud products. Do systematic biases remains when using consistent algorithms but applied to different observations (MODIS or VIIRS)?
MODIS Aerosol Optical Depth Bias Adjustment Using Machine Learning Algorithms
NASA Technical Reports Server (NTRS)
Albayrak, Arif; Wei, Jennifer; Petrenko, Maksym; Lary, David; Leptoukh, Gregory
2011-01-01
To monitor the earth atmosphere and its surface changes, satellite based instruments collect continuous data. While some of the data is directly used, some others such as aerosol properties are indirectly retrieved from the observation data. While retrieved variables (RV) form very powerful products, they don't come without obstacles. Different satellite viewing geometries, calibration issues, dynamically changing atmospheric and earth surface conditions, together with complex interactions between observed entities and their environment affect them greatly. This results in random and systematic errors in the final products.
NASA Technical Reports Server (NTRS)
Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.; Kittaka, C.; Vaughn, M. A.; Remer, L. A.
2010-01-01
We derive aerosol extinction profiles from airborne and space-based lidar backscatter signals by constraining the retrieval with column aerosol optical thickness (AOT), with no need to rely on assumptions about aerosol type or lidar ratio. The backscatter data were acquired by the NASA Langley Research Center airborne High Spectral Resolution Lidar (HSRL) and by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite. The HSRL also simultaneously measures aerosol extinction coefficients independently using the high spectral resolution lidar technique, thereby providing an ideal data set for evaluating the retrieval. We retrieve aerosol extinction profiles from both HSRL and CALIOP attenuated backscatter data constrained with HSRL, Moderate-Resolution Imaging Spectroradiometer (MODIS), and Multiangle Imaging Spectroradiometer column AOT. The resulting profiles are compared with the aerosol extinction measured by HSRL. Retrievals are limited to cases where the column aerosol thickness is greater than 0.2 over land and 0.15 over water. In the case of large AOT, the results using the Aqua MODIS constraint over water are poorer than Aqua MODIS over land or Terra MODIS. The poorer results relate to an apparent bias in Aqua MODIS AOT over water observed in August 2007. This apparent bias is still under investigation. Finally, aerosol extinction coefficients are derived from CALIPSO backscatter data using AOT from Aqua MODIS for 28 profiles over land and 9 over water. They agree with coincident measurements by the airborne HSRL to within +/-0.016/km +/- 20% for at least two-thirds of land points and within +/-0.028/km +/- 20% for at least two-thirds of ocean points.
Assessment of Biases in MODIS Surface Reflectance Due to Lambertian Approximation
NASA Technical Reports Server (NTRS)
Wang, Yujie; Lyapustin, Alexei I.; Privette, Jeffrey L.; Cook, Robert B.; SanthanaVannan, Suresh K.; Vermote, Eric F.; Schaaf, Crystal
2010-01-01
Using MODIS data and the AERONET-based Surface Reflectance Validation Network (ASRVN), this work studies errors of MODIS atmospheric correction caused by the Lambertian approximation. On one hand, this approximation greatly simplifies the radiative transfer model, reduces the size of the look-up tables, and makes operational algorithm faster. On the other hand, uncompensated atmospheric scattering caused by Lambertian model systematically biases the results. For example, for a typical bowl-shaped bidirectional reflectance distribution function (BRDF), the derived reflectance is underestimated at high solar or view zenith angles, where BRDF is high, and is overestimated at low zenith angles where BRDF is low. The magnitude of biases grows with the amount of scattering in the atmosphere, i.e., at shorter wavelengths and at higher aerosol concentration. The slope of regression of Lambertian surface reflectance vs. ASRVN bidirectional reflectance factor (BRF) is about 0.85 in the red and 0.6 in the green bands. This error propagates into the MODIS BRDF/albedo algorithm, slightly reducing the magnitude of overall reflectance and anisotropy of BRDF. This results in a small negative bias of spectral surface albedo. An assessment for the GSFC (Greenbelt, USA) validation site shows the albedo reduction by 0.004 in the near infrared, 0.005 in the red, and 0.008 in the green MODIS bands.
Cloud Properties of CERES-MODIS Edition 4 and CERES-VIIRS Edition 1
NASA Technical Reports Server (NTRS)
Sun-Mack, Sunny; Minnis, Patrick; Chang, Fu-Lung; Hong, Gang; Arduini, Robert; Chen, Yan; Trepte, Qing; Yost, Chris; Smith, Rita; Brown, Ricky;
2015-01-01
The Clouds and Earth's Radiant Energy System (CERES) analyzes MODerate-resolution Imaging Spectroradiometer (MODIS) data and Visible Infrared Imaging Radiometer Suite (VIIRS) to derive cloud properties that are combine with aerosol and CERES broadband flux data to create a multi-parameter data set for climate study. CERES has produced over 15 years of data from Terra and over 13 years of data from Aqua using the CERES-MODIS Edition-2 cloud retrieval algorithm. A recently revised algorithm, CERESMODIS Edition 4, has been developed and is now generating enhanced cloud data for climate research (over 10 years for Terra and 8 years for Aqua). New multispectral retrievals of properties are included along with a multilayer cloud retrieval system. Cloud microphysical properties are reported at 3 wavelengths, 0.65, 1.24, and 2.1 microns to enable better estimates of the vertical profiles of cloud water contents. Cloud properties over snow are retrieved using the 1.24-micron channel. A new CERES-VIIRS cloud retrieval package was developed for the VIIRS spectral complement and is currently producing the CERES-VIIRS Edition 1 cloud dataset. The results from CERES-MODIS Edition 4 and CERES-VIIRS Edition 1 are presented and compared with each other and other datasets, including CALIPSO, CloudSat and the CERES-MODIS Edition-2 results.
NASA Astrophysics Data System (ADS)
Choi, Myungje; Kim, Jhoon; Lee, Jaehwa; Kim, Mijin; Park, Young-Je; Holben, Brent; Eck, Thomas F.; Li, Zhengqiang; Song, Chul H.
2018-01-01
The Geostationary Ocean Color Imager (GOCI) Yonsei aerosol retrieval (YAER) version 1 algorithm was developed to retrieve hourly aerosol optical depth at 550 nm (AOD) and other subsidiary aerosol optical properties over East Asia. The GOCI YAER AOD had accuracy comparable to ground-based and other satellite-based observations but still had errors because of uncertainties in surface reflectance and simple cloud masking. In addition, near-real-time (NRT) processing was not possible because a monthly database for each year encompassing the day of retrieval was required for the determination of surface reflectance. This study describes the improved GOCI YAER algorithm version 2 (V2) for NRT processing with improved accuracy based on updates to the cloud-masking and surface-reflectance calculations using a multi-year Rayleigh-corrected reflectance and wind speed database, and inversion channels for surface conditions. The improved GOCI AOD τG is closer to that of the Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) AOD than was the case for AOD from the YAER V1 algorithm. The V2 τG has a lower median bias and higher ratio within the MODIS expected error range (0.60 for land and 0.71 for ocean) compared with V1 (0.49 for land and 0.62 for ocean) in a validation test against Aerosol Robotic Network (AERONET) AOD τA from 2011 to 2016. A validation using the Sun-Sky Radiometer Observation Network (SONET) over China shows similar results. The bias of error (τG - τA) is within -0.1 and 0.1, and it is a function of AERONET AOD and Ångström exponent (AE), scattering angle, normalized difference vegetation index (NDVI), cloud fraction and homogeneity of retrieved AOD, and observation time, month, and year. In addition, the diagnostic and prognostic expected error (PEE) of τG are estimated. The estimated PEE of GOCI V2 AOD is well correlated with the actual error over East Asia, and the GOCI V2 AOD over South Korea has a higher ratio within PEE than that over China and Japan.
NASA Astrophysics Data System (ADS)
Chu, C.; Sun-Mack, S.; Chen, Y.; Heckert, E.; Doelling, D. R.
2017-12-01
In Langley NASA, Clouds and the Earth's Radiant Energy System (CERES) and Moderate Resolution Imaging Spectroradiometer (MODIS) are merged with Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) and CloudSat Cloud Profiling Radar (CPR). The CERES merged product (C3M) matches up to three CALIPSO footprints with each MODIS pixel along its ground track. It then assigns the nearest CloudSat footprint to each of those MODIS pixels. The cloud properties from MODIS, retrieved using the CERES algorithms, are included in C3M with the matched CALIPSO and CloudSat products along with radiances from 18 MODIS channels. The dataset is used to validate the CERES retrieved MODIS cloud properties and the computed TOA and surface flux difference using MODIS or CALIOP/CloudSAT retrieved clouds. This information is then used to tune the computed fluxes to match the CERES observed TOA flux. A visualization tool will be invaluable to determine the cause of these large cloud and flux differences in order to improve the methodology. This effort is part of larger effort to allow users to order the CERES C3M product sub-setted by time and parameter as well as the previously mentioned visualization capabilities. This presentation will show a new graphical 3D-interface, 3D-CERESVis, that allows users to view both passive remote sensing satellites (MODIS and CERES) and active satellites (CALIPSO and CloudSat), such that the detailed vertical structures of cloud properties from CALIPSO and CloudSat are displayed side by side with horizontally retrieved cloud properties from MODIS and CERES. Similarly, the CERES computed profile fluxes whether using MODIS or CALIPSO and CloudSat clouds can also be compared. 3D-CERESVis is a browser-based visualization tool that makes uses of techniques such as multiple synchronized cursors, COLLADA format data and Cesium.
Internally Consistent MODIS Estimate of Aerosol Clear-Sky Radiative Effect Over the Global Oceans
NASA Technical Reports Server (NTRS)
Remer, Lorraine A.; Kaufman, Yoram J.
2004-01-01
Modern satellite remote sensing, and in particular the MODerate resolution Imaging Spectroradiometer (MODIS), offers a measurement-based pathway to estimate global aerosol radiative effects and aerosol radiative forcing. Over the Oceans, MODIS retrieves the total aerosol optical thickness, but also reports which combination of the 9 different aerosol models was used to obtain the retrieval. Each of the 9 models is characterized by a size distribution and complex refractive index, which through Mie calculations correspond to a unique set of single scattering albedo, assymetry parameter and spectral extinction for each model. The combination of these sets of optical parameters weighted by the optical thickness attributed to each model in the retrieval produces the best fit to the observed radiances at the top of the atmosphere. Thus the MODIS Ocean aerosol retrieval provides us with (1) An observed distribution of global aerosol loading, and (2) An internally-consistent, observed, distribution of aerosol optical models that when used in combination will best represent the radiances at the top of the atmosphere. We use these two observed global distributions to initialize the column climate model by Chou and Suarez to calculate the aerosol radiative effect at top of the atmosphere and the radiative efficiency of the aerosols over the global oceans. We apply the analysis to 3 years of MODIS retrievals from the Terra satellite and produce global and regional, seasonally varying, estimates of aerosol radiative effect over the clear-sky oceans.
Intercomparison of Desert Dust Optical Depth from Satellite Measurements
NASA Technical Reports Server (NTRS)
Carboni, E.; Thomas, G. E.; Sayer, A. M.; Siddans, R.; Poulsen, C. A.; Grainger, R. G.; Ahn, C.; Antoine, D.; Bevan, S.; Braak, R.;
2012-01-01
This work provides a comparison of satellite retrievals of Saharan desert dust aerosol optical depth (AOD) during a strong dust event through March 2006. In this event, a large dust plume was transported over desert, vegetated, and ocean surfaces. The aim is to identify the differences between current datasets. The satellite instruments considered are AATSR, AIRS, MERIS, MISR, MODIS, OMI, POLDER, and SEVIRI. An interesting aspect is that the different algorithms make use of different instrument characteristics to obtain retrievals over bright surfaces. These include multi-angle approaches (MISR, AATSR), polarisation measurements (POLDER), single-view approaches using solar wavelengths (OMI, MODIS), and the thermal infrared spectral region (SEVIRI, AIRS). Differences between instruments, together with the comparison of different retrieval algorithms applied to measurements from the same instrument, provide a unique insight into the performance and characteristics of the various techniques employed. As well as the intercomparison between different satellite products, the AODs have also been compared to co-located AERONET data. Despite the fact that the agreement between satellite and AERONET AODs is reasonably good for all of the datasets, there are significant differences between them when compared to each other, especially over land. These differences are partially due to differences in the algorithms, such as assumptions about aerosol model and surface properties. However, in this comparison of spatially and temporally averaged data, it is important to note that differences in sampling, related to the actual footprint of each instrument on the heterogeneous aerosol field, cloud identification and the quality control flags of each dataset can be an important issue.
NASA Astrophysics Data System (ADS)
Reid, J. S.; Westphal, D. L.; Christopher, S. A.; Prins, E. M.; Gasso, S.; Reid, E.; Theisen, M.; Schmidt, C. C.; Hunter, J.; Eck, T.
2002-05-01
The Fire Locating and Modeling of Burning Emissions (FLAMBE') project is a joint Navy, NOAA, NASA and university project to integrate satellite products with numerical aerosol models to produce a real time fire and emissions inventory. At the center of the program is the Wildfire Automated Biomass Burning Algorithm (WF ABBA) which provides real-time fire products and the NRL Aerosol Analysis and Prediction System to model smoke transport. In this presentation we give a brief overview of the system and methods, but emphasize new estimations of smoke coverage and emission fluxes from the South American continent. Temporal and smoke patterns compare reasonably well with AERONET and MODIS aerosol optical depth products for the 2000 and 2001 fire seasons. Fluxes are computed by relating NAAPS output fields and MODIS optical depth maps with modeled wind fields. Smoke emissions and transport fluxes out of the continent can then be estimated by perturbing the modeled emissions to gain agreement with the satellite and wind products. Regional smoke emissions are also presented for grass and forest burning.
Atmospheric correction of HJ-1 CCD imagery over turbid lake waters.
Zhang, Minwei; Tang, Junwu; Dong, Qing; Duan, Hongtao; Shen, Qian
2014-04-07
We have presented an atmospheric correction algorithm for HJ-1 CCD imagery over Lakes Taihu and Chaohu with highly turbid waters. The Rayleigh scattering radiance (Lr) is calculated using the hyperspectral Lr with a wavelength interval 1nm. The hyperspectral Lr is interpolated from Lr in the central wavelengths of MODIS bands, which are converted from the band response-averaged Lr calculated using the Rayleigh look up tables (LUTs) in SeaDAS6.1. The scattering radiance due to aerosol (La) is interpolated from La at MODIS band 869nm, which is derived from MODIS imagery using a shortwave infrared atmospheric correction scheme. The accuracy of the atmospheric correction algorithm is firstly evaluated by comparing the CCD measured remote sensing reflectance (Rrs) with MODIS measurements, which are validated by the in situ data. The CCD measured Rrs is further validated by the in situ data for a total of 30 observation stations within ± 1h time window of satellite overpass and field measurements. The validation shows the mean relative errors about 0.341, 0.259, 0.293 and 0.803 at blue, green, red and near infrared bands.
NASA Technical Reports Server (NTRS)
Remeer, Lorraine A.
2011-01-01
The MODIS aerosol cloud mask is based on a spatial variability test, using the assumption that aerosols are more homogeneous than clouds. On top of this first line of defense are a series of additional tests based on threshold values and ratios of various MODIS channels. The goal is to eliminate clouds and keep the aerosol. How well have we succeeded? There have been several studies showing cloud contamination in the MODIS aerosol product and several alternative cloud masks proposed. There are even "competing" MODIS aerosol products that offer an alternative "cloud free" world. Are these alternative products an improvement to the old standard product? We find there is a trade-off between retrieval availability and cloud contamination, and for many applications it is better to have a little bit of cloud in the product than to not have enough product. I will review the decisions that led us to the present MODIS cloud mask, and show how it is simultaneously too liberal and too conservative, some ideas on how to make it better and why in the end it doesn't matter. I hope to inspire a spirited discussion and will be very willing to take your complaints and suggestions.
Deep Blue Retrievals of Asian Aerosol Properties During ACE-Asia
NASA Technical Reports Server (NTRS)
Hsu, N. Christina; Tsay, Si-Cee; King, Michael D.; Herman, Jay R.
2006-01-01
During the ACE-Asia field campaign, unprecedented amounts of aerosol property data in East Asia during springtime were collected from an array of aircraft, shipboard, and surface instruments. However, most of the observations were obtained in areas downwind of the source regions. In this paper, the newly developed satellite aerosol algorithm called "Deep Blue" was employed to characterize the properties of aerosols over source regions using radiance measurements from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and Moderate Resolution Imaging Spectroradiometer (MODIS). Based upon the ngstr m exponent derived from the Deep Blue algorithm, it was demonstrated that this new algorithm is able to distinguish dust plumes from fine-mode pollution particles even in complex aerosol environments such as the one over Beijing. Furthermore, these results were validated by comparing them with observations from AERONET sites in China and Mongolia during spring 2001. These comparisons show that the values of satellite-retrieved aerosol optical thickness from Deep Blue are generally within 20%-30% of those measured by sunphotometers. The analyses also indicate that the roles of mineral dust and anthropogenic particles are comparable in contributing to the overall aerosol distributions during spring in northern China, while fine-mode particles are dominant over southern China. The spring season in East Asia consists of one of the most complex environments in terms of frequent cloudiness and wide ranges of aerosol loadings and types. This paper will discuss how the factors contributing to this complexity influence the resulting aerosol monthly averages from various satellite sensors and, thus, the synergy among satellite aerosol products.
Results and Validation of MODIS Aerosol Retrievals Over Land and Ocean
NASA Technical Reports Server (NTRS)
Remer, Lorraine; Einaudi, Franco (Technical Monitor)
2001-01-01
The MODerate Resolution Imaging Spectroradiometer (MODIS) instrument aboard the Terra spacecraft has been retrieving aerosol parameters since late February 2000. Initial qualitative checking of the products showed very promising results including matching of land and ocean retrievals at coastlines. Using AERONET ground-based radiometers as our primary validation tool, we have established quantitative validation as well. Our results show that for most aerosol types, the MODIS products fall within the pre-launch estimated uncertainties. Surface reflectance and aerosol model assumptions appear to be sufficiently accurate for the optical thickness retrieval. Dust provides a possible exception, which may be due to non-spherical effects. Over ocean the MODIS products include information on particle size, and these parameters are also validated with AERONET retrievals.
Results and Validation of MODIS Aerosol Retrievals over Land and Ocean
NASA Technical Reports Server (NTRS)
Remer, L. A.; Kaufman, Y. J.; Tanre, D.; Ichoku, C.; Chu, D. A.; Mattoo, S.; Levy, R.; Martins, J. V.; Li, R.-R.; Einaudi, Franco (Technical Monitor)
2000-01-01
The MODerate Resolution Imaging Spectroradiometer (MODIS) instrument aboard the Terra spacecraft has been retrieving aerosol parameters since late February 2000. Initial qualitative checking of the products showed very promising results including matching of land and ocean retrievals at coastlines. Using AERONET ground-based radiometers as our primary validation tool, we have established quantitative validation as well. Our results show that for most aerosol types, the MODIS products fall within the pre-launch estimated uncertainties. Surface reflectance and aerosol model assumptions appear to be sufficiently accurate for the optical thickness retrieval. Dust provides a possible exception, which may be due to non-spherical effects. Over ocean the MODIS products include information on particle size, and these parameters are also validated with AERONET retrievals.
Atmospheric correction over coastal waters using multilayer neural networks
NASA Astrophysics Data System (ADS)
Fan, Y.; Li, W.; Charles, G.; Jamet, C.; Zibordi, G.; Schroeder, T.; Stamnes, K. H.
2017-12-01
Standard atmospheric correction (AC) algorithms work well in open ocean areas where the water inherent optical properties (IOPs) are correlated with pigmented particles. However, the IOPs of turbid coastal waters may independently vary with pigmented particles, suspended inorganic particles, and colored dissolved organic matter (CDOM). In turbid coastal waters standard AC algorithms often exhibit large inaccuracies that may lead to negative water-leaving radiances (Lw) or remote sensing reflectance (Rrs). We introduce a new atmospheric correction algorithm for coastal waters based on a multilayer neural network (MLNN) machine learning method. We use a coupled atmosphere-ocean radiative transfer model to simulate the Rayleigh-corrected radiance (Lrc) at the top of the atmosphere (TOA) and the Rrs just above the surface simultaneously, and train a MLNN to derive the aerosol optical depth (AOD) and Rrs directly from the TOA Lrc. The SeaDAS NIR algorithm, the SeaDAS NIR/SWIR algorithm, and the MODIS version of the Case 2 regional water - CoastColour (C2RCC) algorithm are included in the comparison with AERONET-OC measurements. The results show that the MLNN algorithm significantly improves retrieval of normalized Lw in blue bands (412 nm and 443 nm) and yields minor improvements in green and red bands. These results indicate that the MLNN algorithm is suitable for application in turbid coastal waters. Application of the MLNN algorithm to MODIS Aqua images in several coastal areas also shows that it is robust and resilient to contamination due to sunglint or adjacency effects of land and cloud edges. The MLNN algorithm is very fast once the neural network has been properly trained and is therefore suitable for operational use. A significant advantage of the MLNN algorithm is that it does not need SWIR bands, which implies significant cost reduction for dedicated OC missions. A recent effort has been made to extend the MLNN AC algorithm to extreme atmospheric conditions (i.e. heavy polluted continental aerosols) over coastal areas by including additional aerosol and ocean models to generate the training dataset. Preliminary tests show very good results. Results of applying the extended MLNN algorithm to VIIRS images over the Yellow Sea and East China Sea areas with extreme atmospheric and marine conditions will be provided.
NASA Astrophysics Data System (ADS)
Ham, Seung-Hee; Kato, Seiji; Rose, Fred G.; Winker, David; L'Ecuyer, Tristan; Mace, Gerald G.; Painemal, David; Sun-Mack, Sunny; Chen, Yan; Miller, Walter F.
2017-08-01
Two kinds of cloud products obtained from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), CloudSat, and Moderate Resolution Imaging Spectroradiometer (MODIS) are compared and analyzed in this study: Clouds and the Earth's Radiant Energy System (CERES)-CALIPSO-CloudSat-MODIS (CCCM) product and CloudSat radar-lidar products such as GEOPROF-LIDAR and FLXHR-LIDAR. Compared to GEOPROF-LIDAR, low-level (<1 km) cloud occurrences in CCCM are larger over tropical oceans because the CCCM algorithm uses a more relaxed threshold of cloud-aerosol discrimination score for CALIPSO Vertical Feature Mask product. In contrast, midlevel (1-8 km) cloud occurrences in GEOPROF-LIDAR are larger than CCCM at high latitudes (>40°). The difference occurs when hydrometeors are detected by CALIPSO lidar but are undetected by CloudSat radar. In the comparison of cloud radiative effects (CREs), global mean differences between CCCM and FLXHR-LIDAR are mostly smaller than 5 W m-2, while noticeable regional differences are found. For example, CCCM shortwave (SW) and longwave (LW) CREs are larger than FXLHR-LIDAR along the west coasts of Africa and America because the GEOPROF-LIDAR algorithm misses shallow marine boundary layer clouds. In addition, FLXHR-LIDAR SW CREs are larger than the CCCM counterpart over tropical oceans away from the west coasts of America. Over midlatitude storm-track regions, CCCM SW and LW CREs are larger than the FLXHR-LIDAR counterpart.
NASA Technical Reports Server (NTRS)
Coddington, O. M.; Pilewskie, P.; Redemann, J.; Platnick, S.; Russell, P. B.; Schmidt, K. S.; Gore, W. J.; Livingston, J.; Wind, G.; Vukicevic, T.
2010-01-01
Haywood et al. (2004) show that an aerosol layer above a cloud can cause a bias in the retrieved cloud optical thickness and effective radius. Monitoring for this potential bias is difficult because space ]based passive remote sensing cannot unambiguously detect or characterize aerosol above cloud. We show that cloud retrievals from aircraft measurements above cloud and below an overlying aerosol layer are a means to test this bias. The data were collected during the Intercontinental Chemical Transport Experiment (INTEX-A) study based out of Portsmouth, New Hampshire, United States, above extensive, marine stratus cloud banks affected by industrial outflow. Solar Spectral Flux Radiometer (SSFR) irradiance measurements taken along a lower level flight leg above cloud and below aerosol were unaffected by the overlying aerosol. Along upper level flight legs, the irradiance reflected from cloud top was transmitted through an aerosol layer. We compare SSFR cloud retrievals from below ]aerosol legs to satellite retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) in order to detect an aerosol ]induced bias. In regions of small variation in cloud properties, we find that SSFR and MODIS-retrieved cloud optical thickness compares within the uncertainty range for each instrument while SSFR effective radius tend to be smaller than MODIS values (by 1-2 microns) and at the low end of MODIS uncertainty estimates. In regions of large variation in cloud properties, differences in SSFR and MODIS ]retrieved cloud optical thickness and effective radius can reach values of 10 and 10 microns, respectively. We include aerosols in forward modeling to test the sensitivity of SSFR cloud retrievals to overlying aerosol layers. We find an overlying absorbing aerosol layer biases SSFR cloud retrievals to smaller effective radii and optical thickness while nonabsorbing aerosols had no impact.
NASA Astrophysics Data System (ADS)
Smith, W. L., Jr.; Minnis, P.; Bedka, K. M.; Sun-Mack, S.; Chen, Y.; Doelling, D. R.; Kato, S.; Rutan, D. A.
2017-12-01
Recent studies analyzing long-term measurements of surface insolation at ground sites suggest that decadal-scale trends of increasing (brightening) and decreasing (dimming) downward solar flux have occurred at various times over the last century. Regional variations have been reported that range from near 0 Wm-2/decade to as large as 9 Wm-2/decade depending on the location and time period analyzed. The more significant trends have been attributed to changes in overhead clouds and aerosols, although quantifying their relative impacts using independent observations has been difficult, owing in part to a lack of consistent long-term measurements of cloud properties. This paper examines new satellite based records of cloud properties derived from MODIS (2000-present) and AVHRR (1981- present) data to infer cloud property trends over a number of surface radiation sites across the globe. The MODIS cloud algorithm was developed for the NASA Clouds and the Earth's Radiant Energy System (CERES) project to provide a consistent record of cloud properties to help improve broadband radiation measurements and to better understand cloud radiative effects. The CERES-MODIS cloud algorithm has been modified to analyze other satellites including the AVHRR on the NOAA satellites. Compared to MODIS, obtaining consistent cloud properties over a long period from AVHRR is a much more significant challenge owing to the number of different satellites, instrument calibration uncertainties, orbital drift and other factors. Nevertheless, both the MODIS and AVHRR cloud properties will be analyzed to determine trends, and their level of consistency and correspondence with surface radiation trends derived from the ground-based radiometer data. It is anticipated that this initial study will contribute to an improved understanding of surface solar radiation trends and their relationship to clouds.
Evaluating the impact of above-cloud aerosols on cloud optical depth retrievals from MODIS
NASA Astrophysics Data System (ADS)
Alfaro, Ricardo
Using two different operational Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) cloud optical depth (COD) retrievals (visible and shortwave infrared), the impacts of above-cloud absorbing aerosols on the standard COD retrievals are evaluated. For fine-mode aerosol particles, aerosol optical depth (AOD) values diminish sharply from the visible to the shortwave infrared channels. Thus, a suppressed above-cloud particle radiance aliasing effect occurs for COD retrievals using shortwave infrared channels. Aerosol Index (AI) from the spatially and temporally collocated Ozone Monitoring Instrument (OMI) are used to identify above-cloud aerosol particle loading over the southern Atlantic Ocean, including both smoke and dust from the African sub-continent. MODIS and OMI Collocated Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) data are used to constrain cloud phase and provide contextual above-cloud AOD values. The frequency of occurrence of above-cloud aerosols is depicted on a global scale for the spring and summer seasons from OMI and CALIOP, thus indicating the significance of the problem. Seasonal frequencies for smoke-over-cloud off the southwestern Africa coastline reach 20--50% in boreal summer. We find a corresponding low COD bias of 10--20% for standard MODIS COD retrievals when averaged OMI AI are larger than 1.0. No such bias is found over the Saharan dust outflow region off northern Africa, since both MODIS visible and shortwave in channels are vulnerable to dust particle aliasing, and thus a COD impact cannot be isolated with this method. A similar result is found for a smaller domain, in the Gulf of Tonkin region, from smoke advection over marine stratocumulus clouds and outflow into the northern South China Sea in spring. This study shows the necessity of accounting for the above-cloud aerosol events for future studies using standard MODIS cloud products in biomass burning outflow regions, through the use of collocated OMI AI and supplementary MODIS shortwave infrared COD products.
MODIS 3 Km Aerosol Product: Applications over Land in an Urban/suburban Region
NASA Technical Reports Server (NTRS)
Munchak, L. A.; Levy, R. C.; Mattoo, S.; Remer, L. A.; Holben, B. N.; Schafer, J. S.; Hostetler, C. A.; Ferrare, R. A.
2013-01-01
MODerate resolution Imaging Spectroradiometer (MODIS) instruments aboard the Terra and Aqua satellites have provided a rich dataset of aerosol information at a 10 km spatial scale. Although originally intended for climate applications, the air quality community quickly became interested in using the MODIS aerosol data. However, 10 km resolution is not sufficient to resolve local scale aerosol features. With this in mind, MODIS Collection 6 is including a global aerosol product with a 3 km resolution. Here, we evaluate the 3 km product over the Baltimore/Washington D.C., USA, corridor during the summer of 2011, by comparing with spatially dense data collected as part of the DISCOVER-AQ campaign these data were measured by the NASA Langley Research Center airborne High Spectral Resolution Lidar (HSRL) and a network of 44 sun photometers (SP) spaced approximately 10 km apart. The HSRL instrument shows that AOD can vary by up to 0.2 within a single 10 km MODIS pixel, meaning that higher resolution satellite retrievals may help to characterize aerosol spatial distributions in this region. Different techniques for validating a high-resolution aerosol product against SP measurements are considered. Although the 10 km product is more statistically reliable than the 3 km product, the 3 km product still performs acceptably, with more than two-thirds of MODIS/SP collocations falling within the expected error envelope with high correlation (R > 0.90). The 3 km product can better resolve aerosol gradients and retrieve closer to clouds and shorelines than the 10 km product, but tends to show more significant noise especially in urban areas. This urban degradation is quantified using ancillary land cover data. Overall, we show that the MODIS 3 km product adds new information to the existing set of satellite derived aerosol products and validates well over the region, but due to noise and problems in urban areas, should be treated with some degree of caution.
Near-Real-Time Detection and Monitoring of Dust Events by Satellite (SeaWIFS, MODIS, and TOMS)
NASA Technical Reports Server (NTRS)
Hsu, N. Christina; Tsay, Si-Chee; Herman, Jay R.; Kaufman, Yoram
2002-01-01
Over the last few years satellites have given us increasingly detailed information on the size, location, and duration of dust events around the world. These data not only provide valuable feedback to the modelling community as to the fidelity of their aerosol models but are also finding increasing use in near real-time applications. In particular, the ability to locate and track the development of aerosol dust clouds on a near real-time basis is being used by scientists and government to provide warning of air pollution episodes over major urban area. This ability has also become a crucial component of recent coordinated campaigns to study the characteristics of tropospheric aerosols such as dust and their effect on climate. One such recent campaign was ACE-Asia, which was designed to obtain the comprehensive set of ground, aircraft, and satellite data necessary to provide a detailed understanding of atmospheric aerosol particles over the Asian-Pacific region. As part of ACE-Asia, we developed a near real-time data processing and access system to provide satellite data from the polar-orbiting instruments Earth Probe TOMS (in the form of absorbing aerosol index) and SeaWiFS (in the form of aerosol optical thickness, AOT, and Angstrom exponent). The results were available via web access. The location and movement information provided by these data were used both in support of the day-to-day flight planning of ACE-Asia and as input into aerosol transport models. While near real-time SeaWiFS data processing can be performed using either the normal global data product or data obtained via direct broadcast to receiving stations close to the area of interest, near real-time MODIS processing of data to provide aerosol retrievals is currently only available using its direct broadcast capability. In this paper, we will briefly discuss the algorithms used to generate these data. The retrieved aerosol optical thickness and Angstrom exponent from SeaWiFS will be compared with those obtained from various AERONET sites over the Asian-Pacific region. The TOMS aerosol index will also be compared with AERONET aerosol optical thickness over different aerosol conditions, and comparisons between the MODIS and SeaWiFS data will also be presented. Finally, we will discuss the climate implication of our studies using the combined satellite and AERONET observations.
NASA Astrophysics Data System (ADS)
Pappas, V.; Hatzianastassiou, N.; Papadimas, C.; Matsoukas, C.; Kinne, S.; Vardavas, I.
2013-02-01
The new global aerosol climatology named HAC (Hamburg Aerosol Climatology) is compared against MODIS (MODerate resolution Imaging Spectroradiometer, Collection 5, 2000-2007) and CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization, Level 2-Version 3, 2006-2011) retrievals. The HAC aerosol optical depth (AOD) values are larger than MODIS in heavy aerosol load conditions (over land) and lower over oceans. Agreement between HAC and MODIS is better over land and for low AOD. Hemispherically, HAC has 16-17% smaller AOD values than MODIS. The discrepancy is slightly larger for the Southern Hemisphere (SH) than for the Northern Hemisphere (NH). Seasonally, the largest absolute differences are from March to August for NH and from September to February for SH. The spectral variability of HAC AOD is also evaluated against AERONET (1998-2007) data for sites representative of main aerosol types (pollutants, sea-salt, biomass and dust). The HAC has a stronger spectral dependence of AOD in the UV wavelengths, compared to AERONET and MODIS. For visible and near-infrared wavelengths, the spectral dependence is similar to AERONET. For specific sites, HAC AOD vertical distribution is compared to CALIOP data by looking at the fraction of columnar AOD at each altitude. The comparison suggests that HAC exhibits a smaller fraction of columnar AOD in the lowest 2-3 km than CALIOP, especially for sites with biomass burning smoke, desert dust and sea salt spray. For the region of the greater Mediterranean basin, the mean profile of HAC AOD is in very good agreement with CALIOP. The HAC AOD is very useful for distinguishing between natural and anthropogenic aerosols and provides high spectral resolution and vertically resolved information.
Evaluating the impact of aerosol particles above cloud on cloud optical depth retrievals from MODIS
NASA Astrophysics Data System (ADS)
Alfaro-Contreras, Ricardo; Zhang, Jianglong; Campbell, James R.; Holz, Robert E.; Reid, Jeffrey S.
2014-05-01
Using two different operational Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) cloud optical depth (COD) retrievals (0.86 versus 1.6 µm), we evaluate the impact of above-cloud smoke aerosol particles on near-IR (0.86 µm) COD retrievals. Aerosol Index (AI) from the collocated Ozone Monitoring Instrument (OMI) are used to identify above-cloud aerosol particle loading over the southern Atlantic Ocean, including both smoke and dust from the African subcontinent. Collocated Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation data constrain cloud phase and provide contextual above-cloud aerosol optical depth. The frequency of occurrence of above-cloud aerosol events is depicted on a global scale for the spring and summer seasons from OMI and Cloud Aerosol Lidar with Orthogonal Polarization. Seasonal frequencies for smoke-over-cloud off the southwestern Africa coastline reach 20-50% in boreal summer. We find a corresponding low COD bias of 10-20% for standard MODIS COD retrievals when averaged OMI AI are larger than 1. No such bias is found over the Saharan dust outflow region off northern Africa, since both MODIS 0.86 and 1.6 µm channels are vulnerable to radiance attenuation due to dust particles. A similar result is found for a smaller domain, in the Gulf of Tonkin region, from smoke advection over marine stratocumulus clouds and outflow into the northern South China Sea in spring. This study shows the necessity of accounting for the above-cloud aerosol events for future studies using standard MODIS cloud products in biomass burning outflow regions, through the use of collocated OMI AI and supplementary MODIS 1.6 µm COD products.
The influence of aerosols and land-use type on NO2 satellite retrieval over China
NASA Astrophysics Data System (ADS)
Liu, Mengyao; Lin, Jintai; Boersma, Folkert; Eskes, Henk; Chimot, Julien
2017-04-01
Both aerosols and surface reflectance have a strong influence on the retrieval of NO2 tropospheric vertical column densities (VCDs), especially over China with its heavy aerosol loading and rapid changes in land-use type. However, satellite retrievals of NO2 VCDs usually do not explicitly account for aerosol optical effects and surface reflectance anisotropy (BRDF) that varies in space and time. We develop an improved algorithm to derive tropospheric AMFs and VCDs over China from the OMI instrument - POMINO and DOMINO. This method can also be applied to TropOMI NO2 retrievals in the future. With small pixels of TropOMI and higher probability of encountering clear-sky scenes, the influence of BRDF and aerosol interference becomes more important than for OMI. Daily aerosol information is taken from the GEOS-Chem chemistry transport model and the aerosol optical depth (AOD) is adjusted via MODIS AOD climatology. We take the MODIS MCD43C2 C5 product to account for BRDF effects. The relative altitude of NO2 and aerosols is critical factor influencing the NO2 retrieval. In order to evaluate the aerosol extinction profiles (AEP) of GEOS-Chem improve our algorithm, we compare the GEOS-Chem simulation with CALIOP and develop a CALIOP AEP climatology to regulate the model's AEP. This provides a new way to include aerosol information into the tracer gas retrieval for OMI and TropOMI. Preliminary results indicate that the model performs reasonably well in reproducing the AEP shape. However, it seems to overestimate aerosols under 2km and underestimate above. We find that relative humidity (RH) is an important factor influencing the AEP shape when comparing the model with observations. If we adjust the GEOS-Chem RH to CALIOP's RH, the correlations of their AEPs also improve. Besides, take advantage of our retrieval method, we executed sensitivity tests to analyze their influences on NO2 trend and spatiotemporal variations in retrieval. It' the first time to investigate influence from aerosols and surface reflectance in 10-year period (2005-2015) in the real retrieval. We find their influences are largely time and space dependent, but their effects on trend are small, leading relative 7% differences in different areas.
High Resolution Aerosol Data from MODIS Satellite for Urban Air Quality Studies
NASA Technical Reports Server (NTRS)
Chudnovsky, A.; Lyapustin, A.; Wang, Y.; Tang, C.; Schwartz, J.; Koutrakis, P.
2013-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) provides daily global coverage, but the 10 km resolution of its aerosol optical depth (AOD) product is not suitable for studying spatial variability of aerosols in urban areas. Recently, a new Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm was developed for MODIS which provides AOD at 1 km resolution. Using MAIAC data, the relationship between MAIAC AOD and PM(sub 2.5) as measured by the 27 EPA ground monitoring stations was investigated. These results were also compared to conventional MODIS 10 km AOD retrievals (MOD04) for the same days and locations. The coefficients of determination for MOD04 and for MAIAC are R(exp 2) =0.45 and 0.50 respectively, suggested that AOD is a reasonably good proxy for PM(sub 2.5) ground concentrations. Finally, we studied the relationship between PM(sub 2.5) and AOD at the intra-urban scale (10 km) in Boston. The fine resolution results indicated spatial variability in particle concentration at a sub-10 kilometer scale. A local analysis for the Boston area showed that the AOD-PM(sub 2.5) relationship does not depend on relative humidity and air temperatures below approximately 7 C. The correlation improves for temperatures above 7 - 16 C. We found no dependence on the boundary layer height except when the former was in the range 250-500 m. Finally, we apply a mixed effects model approach to MAIAC aerosol optical depth (AOD) retrievals from MODIS to predict PM(sub 2.5) concentrations within the greater Boston area. With this approach we can control for the inherent day-to-day variability in the AOD-PM(sub 2.5) relationship, which depends on time-varying parameters such as particle optical properties, vertical and diurnal concentration profiles and ground surface reflectance. Our results show that the model-predicted PM(sub 2.5) mass concentrations are highly correlated with the actual observations (out-of-sample R(exp 2) of 0.86). Therefore, adjustment for the daily variability in the AOD-PM(sub 2.5) relationship provides a means for obtaining spatially-resolved PM(sub 2.5) concentrations.
NASA Technical Reports Server (NTRS)
Xiao, Q.; Zhang, H.; Choi, M.; Li, S.; Kondragunta, S.; Kim, J.; Holben, B.; Levy, R. C.; Liu, Y.
2016-01-01
Persistent high aerosol loadings together with extremely high population densities have raised serious air quality and public health concerns in many urban centers in East Asia. However, ground-based air quality monitoring is relatively limited in this area. Recently, satellite-retrieved Aerosol Optical Depth (AOD) at high resolution has become a powerful tool to characterize aerosol patterns in space and time. Using ground AOD observations from the Aerosol Robotic Network (AERONET) and the Distributed Regional Aerosol Gridded Observation Networks (DRAGON)-Asia Campaign, as well as from handheld sunphotometers, we evaluated emerging aerosol products from the Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership (S-NPP), the Geostationary Ocean Color Imager (GOCI) aboard the Communication, Ocean, and Meteorology Satellite (COMS), and Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) (Collection 6) in East Asia in 2012 and 2013. In the case study in Beijing, when compared with AOD observations from handheld sunphotometers, 51% of VIIRS Environmental Data Record (EDR) AOD, 37% of GOCI AOD, 33% of VIIRS Intermediate Product (IP) AOD, 26% of Terra MODIS C6 3km AOD, and 16% of Aqua MODIS C6 3km AOD fell within the reference expected error (EE) envelope (+/-0.05/+/- 0.15 AOD). Comparing against AERONET AOD over the JapanSouth Korea region, 64% of EDR, 37% of IP, 61% of GOCI, 39% of Terra MODIS, and 56% of Aqua MODIS C6 3km AOD fell within the EE. In general, satellite aerosol products performed better in tracking the day-to-day variability than tracking the spatial variability at high resolutions. The VIIRS EDR and GOCI products provided the most accurate AOD retrievals, while VIIRS IP and MODIS C6 3km products had positive biases.
NASA Astrophysics Data System (ADS)
Xiao, Q.; Zhang, H.; Choi, M.; Li, S.; Kondragunta, S.; Kim, J.; Holben, B.; Levy, R. C.; Liu, Y.
2016-02-01
Persistent high aerosol loadings together with extremely high population densities have raised serious air quality and public health concerns in many urban centers in East Asia. However, ground-based air quality monitoring is relatively limited in this area. Recently, satellite-retrieved Aerosol Optical Depth (AOD) at high resolution has become a powerful tool to characterize aerosol patterns in space and time. Using ground AOD observations from the Aerosol Robotic Network (AERONET) and the Distributed Regional Aerosol Gridded Observation Networks (DRAGON)-Asia Campaign, as well as from handheld sunphotometers, we evaluated emerging aerosol products from the Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership (S-NPP), the Geostationary Ocean Color Imager (GOCI) aboard the Communication, Ocean, and Meteorology Satellite (COMS), and Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) (Collection 6) in East Asia in 2012 and 2013. In the case study in Beijing, when compared with AOD observations from handheld sunphotometers, 51 % of VIIRS Environmental Data Record (EDR) AOD, 37 % of GOCI AOD, 33 % of VIIRS Intermediate Product (IP) AOD, 26 % of Terra MODIS C6 3 km AOD, and 16 % of Aqua MODIS C6 3 km AOD fell within the reference expected error (EE) envelope (±0.05 ± 0.15 AOD). Comparing against AERONET AOD over the Japan-South Korea region, 64 % of EDR, 37 % of IP, 61 % of GOCI, 39 % of Terra MODIS, and 56 % of Aqua MODIS C6 3 km AOD fell within the EE. In general, satellite aerosol products performed better in tracking the day-to-day variability than tracking the spatial variability at high resolutions. The VIIRS EDR and GOCI products provided the most accurate AOD retrievals, while VIIRS IP and MODIS C6 3 km products had positive biases.
Combing Visible and Infrared Spectral Tests for Dust Identification
NASA Technical Reports Server (NTRS)
Zhou, Yaping; Levy, Robert; Kleidman, Richard; Remer, Lorraine; Mattoo, Shana
2016-01-01
The MODIS Dark Target aerosol algorithm over Ocean (DT-O) uses spectral reflectance in the visible, near-IR and SWIR wavelengths to determine aerosol optical depth (AOD) and Angstrom Exponent (AE). Even though DT-O does have "dust-like" models to choose from, dust is not identified a priori before inversion. The "dust-like" models are not true "dust models" as they are spherical and do not have enough absorption at short wavelengths, so retrieved AOD and AE for dusty regions tends to be biased. The inference of "dust" is based on postprocessing criteria for AOD and AE by users. Dust aerosol has known spectral signatures in the near-UV (Deep blue), visible, and thermal infrared (TIR) wavelength regions. Multiple dust detection algorithms have been developed over the years with varying detection capabilities. Here, we test a few of these dust detection algorithms, to determine whether they can be useful to help inform the choices made by the DT-O algorithm. We evaluate the following methods: The multichannel imager (MCI) algorithm uses spectral threshold tests in (0.47, 0.64, 0.86, 1.38, 2.26, 3.9, 11.0, 12.0 micrometer) channels and spatial uniformity test [Zhao et al., 2010]. The NOAA dust aerosol index (DAI) uses spectral contrast in the blue channels (412nm and 440nm) [Ciren and Kundragunta, 2014]. The MCI is already included as tests within the "Wisconsin" (MOD35) Cloud mask algorithm.
NASA Astrophysics Data System (ADS)
Wang, W.; Wang, Y.; Hashimoto, H.; Li, S.; Takenaka, H.; Higuchi, A.; Lyapustin, A.; Nemani, R. R.
2017-12-01
The latest generation of geostationary satellite sensors, including the GOES-16/ABI and the Himawari 8/AHI, provide exciting capability to monitor land surface at very high temporal resolutions (5-15 minute intervals) and with spatial and spectral characteristics that mimic the Earth Observing System flagship MODIS. However, geostationary data feature changing sun angles at constant view geometry, which is almost reciprocal to sun-synchronous observations. Such a challenge needs to be carefully addressed before one can exploit the full potential of the new sources of data. Here we take on this challenge with Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm, recently developed for accurate and globally robust applications like the MODIS Collection 6 re-processing. MAIAC first grids the top-of-atmosphere measurements to a fixed grid so that the spectral and physical signatures of each grid cell are stacked ("remembered") over time and used to dramatically improve cloud/shadow/snow detection, which is by far the dominant error source in the remote sensing. It also exploits the changing sun-view geometry of the geostationary sensor to characterize surface BRDF with augmented angular resolution for accurate aerosol retrievals and atmospheric correction. The high temporal resolutions of the geostationary data indeed make the BRDF retrieval much simpler and more robust as compared with sun-synchronous sensors such as MODIS. As a prototype test for the geostationary-data processing pipeline on NASA Earth Exchange (GEONEX), we apply MAIAC to process 18 months of data from Himawari 8/AHI over Australia. We generate a suite of test results, including the input TOA reflectance and the output cloud mask, aerosol optical depth (AOD), and the atmospherically-corrected surface reflectance for a variety of geographic locations, terrain, and land cover types. Comparison with MODIS data indicates a general agreement between the retrieved surface reflectance products. Furthermore, the geostationary results satisfactorily capture the movement of clouds and variations in atmospheric dust/aerosol concentrations, suggesting that high quality land surface and vegetation datasets from the advanced geostationary sensors can help complement and improve the corresponding EOS products.
Cloud vertical profiles derived from CALIPSO and CloudSat and a comparison with MODIS derived clouds
NASA Astrophysics Data System (ADS)
Kato, S.; Sun-Mack, S.; Miller, W. F.; Rose, F. G.; Minnis, P.; Wielicki, B. A.; Winker, D. M.; Stephens, G. L.; Charlock, T. P.; Collins, W. D.; Loeb, N. G.; Stackhouse, P. W.; Xu, K.
2008-05-01
CALIPSO and CloudSat from the a-train provide detailed information of vertical distribution of clouds and aerosols. The vertical distribution of cloud occurrence is derived from one month of CALIPSO and CloudSat data as a part of the effort of merging CALIPSO, CloudSat and MODIS with CERES data. This newly derived cloud profile is compared with the distribution of cloud top height derived from MODIS on Aqua from cloud algorithms used in the CERES project. The cloud base from MODIS is also estimated using an empirical formula based on the cloud top height and optical thickness, which is used in CERES processes. While MODIS detects mid and low level clouds over the Arctic in April fairly well when they are the topmost cloud layer, it underestimates high- level clouds. In addition, because the CERES-MODIS cloud algorithm is not able to detect multi-layer clouds and the empirical formula significantly underestimates the depth of high clouds, the occurrence of mid and low-level clouds is underestimated. This comparison does not consider sensitivity difference to thin clouds but we will impose an optical thickness threshold to CALIPSO derived clouds for a further comparison. The effect of such differences in the cloud profile to flux computations will also be discussed. In addition, the effect of cloud cover to the top-of-atmosphere flux over the Arctic using CERES SSF and FLASHFLUX products will be discussed.
NASA Technical Reports Server (NTRS)
Taylor, Thomas E.; O'Dell, Christopher W.; Frankenberg, Christian; Partain, Philip; Cronk, Heather W.; Savtchenko, Andrey; Nelson, Robert R.; Rosenthal, Emily J.; Chang, Albert; Crisp, David;
2015-01-01
The retrieval of the column-averaged carbon dioxide (CO2) dry air mole fraction (XCO2 ) from satellite measurements of reflected sunlight in the near-infrared can be biased due to contamination by clouds and aerosols within the instrument's field of view (FOV). Therefore, accurate aerosol and cloud screening of soundings is required prior to their use in the computationally expensive XCO2 retrieval algorithm. Robust cloud screening methods have been an important focus of the retrieval algorithm team for the National Aeronautics and Space Administration (NASA) Orbiting Carbon Observatory-2 (OCO-2), which was successfully launched into orbit on July 2, 2014. Two distinct spectrally-based algorithms have been developed for the purpose of cloud clearing OCO-2 soundings. The A-Band Preprocessor (ABP) performs a retrieval of surface pressure using measurements in the 0.76 micron O2 A-band to distinguish changes in the expected photon path length. The Iterative Maximum A-Posteriori (IMAP) Differential Optical Absorption Spectroscopy (DOAS) (IDP) algorithm is a non- scattering routine that operates on the O2 A-band as well as two CO2 absorption bands at 1.6 m (weak CO2 band) and 2.0 m (strong CO2 band) to provide band-dependent estimates of CO2 and H2O. Spectral ratios of retrieved CO2 and H2O identify measurements contaminated with cloud and scattering aerosols. Information from the two preprocessors is feed into a sounding selection tool to strategically down select from the order one million daily soundings collected by OCO-2 to a manageable number (order 10 to 20%) to be processed by the OCO-2 L2 XCO2 retrieval algorithm. Regional biases or errors in the selection of clear-sky soundings will introduce errors in the final retrieved XCO2 values, ultimately yielding errors in the flux inversion models used to determine global sources and sinks of CO2. In this work collocated measurements from NASA's Moderate Resolution Imaging Spectrometer (MODIS), aboard the Aqua platform, and the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite, are used as a reference to access the accuracy and strengths and weaknesses of the OCO-2 screening algorithms. The combination of the ABP and IDP algorithms is shown to provide very robust and complimentary cloud filtering as compared to the results from MODIS and CALIOP. With idealized algorithm tuning to allow throughputs of 20-25%, correct classification of scenes, i.e., accuracies, are found to be ' 80-90% over several orbit repeat cycles in both the win ter and spring time for the three main viewing configurations of OCO-2; nadir-land, glint-land and glint-water. Investigation unveiled no major spatial or temporal dependencies, although slight differences in the seasonal data sets do exist and classification tends to be more problematic with increasing solar zenith angle and when surfaces are covered in snow and ice. An in depth analysis on both a simulated data set and real OCO-2 measurements against CALIOP highlight the strength of the ABP in identifying high, thin clouds while it often misses clouds near the surface even when the optical thickness is greater than 1. Fortunately, by combining the ABP with the IDP, the number of thick low clouds passing the preprocessors is partially mitigated.
NASA Astrophysics Data System (ADS)
Filonchyk, Mikalai; Yan, Haowen; Yang, Shuwen; Lu, Xiaomin
2018-02-01
The present paper has used a comprehensive approach to study atmosphere pollution sources including the study of vertical distribution characteristics, the epicenters of occurrence and transport of atmospheric aerosol in North-West China under intensive dust storm registered in all cities of the region in April 2014. To achieve this goal, the remote sensing data using Moderate Resolution Imaging Spectroradiometer satellite (MODIS) as well as model-simulated data, were used, which facilitate tracking the sources, routes, and spatial extent of dust storms. The results of the study have shown strong territory pollution with aerosol during sandstorm. According to ground-based air quality monitoring stations data, concentrations of PM10 and PM2.5 exceeded 400 μg/m3 and 150 μg/m3, respectively, the ratio PM2.5/PM10 being within the range of 0.123-0.661. According to MODIS/Terra Collection 6 Level-2 aerosol products data and the Deep Blue algorithm data, the aerosol optical depth (AOD) at 550 nm in the pollution epicenter was within 0.75-1. The vertical distribution of aerosols indicates that the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) 532 nm total attenuates backscatter coefficient ranges from 0.01 to 0.0001 km-1 × sr-1 with the distribution of the main types of aerosols in the troposphere of the region within 0-12.5 km, where the most severe aerosol contamination is observed in the lower troposphere (at 3-6 km). According to satellite sounding and model-simulated data, the sources of pollution are the deserted regions of Northern and Northwestern China.
SEOM's Sentinel-3/OLCI' project CAWA: advanced GRASP aerosol retrieval
NASA Astrophysics Data System (ADS)
Dubovik, Oleg; litvinov, Pavel; Huang, Xin; Aspetsberger, Michael; Fuertes, David; Brockmann, Carsten; Fischer, Jürgen; Bojkov, Bojan
2016-04-01
The CAWA "Advanced Clouds, Aerosols and WAter vapour products for Sentinel-3/OLCI" ESA-SEOM project aims on the development of advanced atmospheric retrieval algorithms for the Sentinel-3/OLCI mission, and is prepared using Envisat/MERIS and Aqua/MODIS datasets. This presentation discusses mainly CAWA aerosol product developments and results. CAWA aerosol retrieval uses recently developed GRASP algorithm (Generalized Retrieval of Aerosol and Surface Properties) algorithm described by Dubovik et al. (2014). GRASP derives extended set of atmospheric parameters using multi-pixel concept - a simultaneous fitting of a large group of pixels under additional a priori constraints limiting the time variability of surface properties and spatial variability of aerosol properties. Over land GRASP simultaneously retrieves properties of both aerosol and underlying surface even over bright surfaces. GRAPS doesn't use traditional look-up-tables and performs retrieval as search in continuous space of solution. All radiative transfer calculations are performed as part of the retrieval. The results of comprehensive sensitivity tests, as well as results obtained from real Envisat/MERIS data will be presented. The tests analyze various aspects of aerosol and surface reflectance retrieval accuracy. In addition, the possibilities of retrieval improvement by means of implementing synergetic inversion of a combination of OLCI data with observations by SLSTR are explored. Both the results of numerical tests, as well as the results of processing several years of Envisat/MERIS data illustrate demonstrate reliable retrieval of AOD (Aerosol Optical Depth) and surface BRDF. Observed retrieval issues and advancements will be discussed. For example, for some situations we illustrate possibilities of retrieving aerosol absorption - property that hardly accessible from satellite observations with no multi-angular and polarimetric capabilities.
Deriving Aerosol Characteristics Over the Ocean from MODIS: Are We There Yet?
NASA Astrophysics Data System (ADS)
Remer, L. A.; Tanre, D.
2006-12-01
The MODerate resolution Imaging Spectroradiometer (MODIS) has been successfully retrieving aerosol characteristics over the ocean since shortly after the launch of the Terra satellite at the end of 1999. With its wide spectral range (0.47 to 2.13 μm) MODIS is able to derive spectral aerosol optical depth and information on the size of the aerosol particles. The products were quickly validated, the validation confirmed, and the products are now in wide use across the scientific community. The MODIS aerosol products over ocean are an outstanding success story, but are we done? As the years progress and we gain experience in using the products, evaluating them and nudging even greater information from them, we discover new challenges. Firstly, we continue to find issues affecting the integrity of the products we now produce. We need to find methods to reduce the uncertainty introduced by clouds that go beyond the classical concept of cloud masking and cloud contamination. Some of these novel cloud effects on aerosol retrieval include 3D scattering of light from cloud sides. Another issue that needs resolution is the uncertainty introduced by nonspherical particle shapes. Secondly, when MODIS was new we were excited to have spectral optical depth and particle size information. Now we find that aerosol characterization is still incomplete. We need more information. Are we there yet? Well, no, but we can see the future. To meet these new challenges we will need information beyond the spectral radiances that MODIS measures. We can see the future of satellite derivation of aerosol characteristics, and it looks more and more like a multi-sensor future.
NASA Technical Reports Server (NTRS)
Jethva, Hiren; Torres, Omar; Waquet, Fabien; Chand, Duli; Hu, Yongxiang
2014-01-01
We intercompare the above-cloud aerosol optical depth (ACAOD) of biomass burning plumes retrieved from A-train sensors, i.e., Moderate Resolution Imaging Spectroradiometer (MODIS), Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), Polarization and Directionality of Earth Reflectances (POLDER), and Ozone Monitoring Instrument (OMI). These sensors have shown independent capabilities to retrieve aerosol loading above marine boundary layer clouds-a kind of situation often found over the southeast Atlantic Ocean during dry burning season. A systematic comparison reveals that all passive sensors and CALIOP-based research methods derive comparable ACAOD with differences mostly within 0.2 over homogeneous cloud fields. The 532 nm ACAOD retrieved by CALIOP operational algorithm is underestimated. The retrieved 1064 nm AOD however shows closer agreement with passive sensors. Given the different types of measurements processed with different algorithms, the reported close agreement between them is encouraging. Due to unavailability of direct measurements above cloud, the validation of satellite-based ACAOD remains an open challenge. The intersatellite comparison however can be useful for the relative evaluation and consistency check
NASA Astrophysics Data System (ADS)
Pappas, V.; Hatzianastassiou, N.; Papadimas, C.; Matsoukas, C.; Kinne, S.; Vardavas, I.
2013-08-01
The new global aerosol climatology named HAC (Hamburg Aerosol Climatology) is compared against MODIS (Collection 5, 2000-2007) and CALIOP (Level 2-version 3, 2006-2011) retrievals. The comparison of aerosol optical depth (AOD) from HAC against MODIS shows larger HAC AOD values over regions with higher aerosol loads and smaller HAC AOD values than MODIS for regions with lower loads. The HAC data are found to be more reliable over land and for low AOD values. The largest differences between HAC and MODIS occur from March to August for the Northern Hemisphere and from September to February for the Southern Hemisphere. In addition, both the spectral variability and vertical distribution of the HAC AOD are examined at selected AERONET (1998-2007) sites, representative of main aerosol types (pollutants, sea salt, biomass and dust). Based on comparisons against spectral AOD values from AERONET, the mean absolute percentage error in HAC AOD data is 25% at ultraviolet wavelengths (400 nm), 6-12% at visible and 18% at near-infrared (1000 nm). For the same AERONET sites, the HAC AOD vertical distribution is compared against CALIOP space lidar data. On a daily average basis, HAD AOD is less by 9% in the lowest 3 km than CALIOP values, especially for sites with biomass burning smoke, desert dust and sea salt spray. Above the boundary layer, the HAC AOD vertical distribution is reliable.
Quality Assessment of Collection 6 MODIS Atmospheric Science Products
NASA Astrophysics Data System (ADS)
Manoharan, V. S.; Ridgway, B.; Platnick, S. E.; Devadiga, S.; Mauoka, E.
2015-12-01
Since the launch of the NASA Terra and Aqua satellites in December 1999 and May 2002, respectively, atmosphere and land data acquired by the MODIS (Moderate Resolution Imaging Spectroradiometer) sensor on-board these satellites have been reprocessed five times at the MODAPS (MODIS Adaptive Processing System) located at NASA GSFC. The global land and atmosphere products use science algorithms developed by the NASA MODIS science team investigators. MODAPS completed Collection 6 reprocessing of MODIS Atmosphere science data products in April 2015 and is currently generating the Collection 6 products using the latest version of the science algorithms. This reprocessing has generated one of the longest time series of consistent data records for understanding cloud, aerosol, and other constituents in the earth's atmosphere. It is important to carefully evaluate and assess the quality of this data and remove any artifacts to maintain a useful climate data record. Quality Assessment (QA) is an integral part of the processing chain at MODAPS. This presentation will describe the QA approaches and tools adopted by the MODIS Land/Atmosphere Operational Product Evaluation (LDOPE) team to assess the quality of MODIS operational Atmospheric products produced at MODAPS. Some of the tools include global high resolution images, time series analysis and statistical QA metrics. The new high resolution global browse images with pan and zoom have provided the ability to perform QA of products in real time through synoptic QA on the web. This global browse generation has been useful in identifying production error, data loss, and data quality issues from calibration error, geolocation error and algorithm performance. A time series analysis for various science datasets in the Level-3 monthly product was recently developed for assessing any long term drifts in the data arising from instrument errors or other artifacts. This presentation will describe and discuss some test cases from the recently processed C6 products. We will also describe the various tools and approaches developed to verify and assess the algorithm changes implemented by the science team to address known issues in the products and improve the quality of the products.
Dynamics and Properties of Global Aerosol using MODIS, AERONET and GOCART Model
NASA Technical Reports Server (NTRS)
Kaufman, Yoram; Chin, Mian; Reme, Lorraine; Tanre, Didier; Mattoo, Shana
2002-01-01
Recently produced daily Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol data for the whole year of 2001 are used to show the concentration and dynamics of aerosol over ocean and large parts of the continents. The data were validated against the Aerosol Robotic Network (AERONET) measurements over land and ocean in a special issue in GRL now in press. Monthly averages and a movie based on the daily data are produced and used to demonstrate the spatial and temporal evolution of aerosol. The MODIS wide spectral range is used to distinguish fine smoke and pollution aerosol from coarse dust and salt. The aerosol is observed above ocean and land. The movie produced from the MODIS data provides a new dimension to aerosol observations by showing the dynamics of the system. For example in February smoke and dust emitted from the Sahel and West Africa is shown to travel to the North-East Atlantic. In April heavy dust and pollution from East Asia is shown to travel to North America. In May-June pollution and dust play a dynamical dance in the Arabian Sea and Bay of Bengal. In Aug-September smoke from South Africa and South America is shown to pulsate in tandem and to periodically to be transported to the otherwise pristine Southern part of the Southern Hemisphere. The MODIS data are compared with the Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation Transport (GOCART) model to test and adjust source and sink strengths in the model and to study the effect of clouds on the representation of the satellite data.
Development, Comparisons and Evaluation of Aerosol Retrieval Algorithms
NASA Astrophysics Data System (ADS)
de Leeuw, G.; Holzer-Popp, T.; Aerosol-cci Team
2011-12-01
The Climate Change Initiative (cci) of the European Space Agency (ESA) has brought together a team of European Aerosol retrieval groups working on the development and improvement of aerosol retrieval algorithms. The goal of this cooperation is the development of methods to provide the best possible information on climate and climate change based on satellite observations. To achieve this, algorithms are characterized in detail as regards the retrieval approaches, the aerosol models used in each algorithm, cloud detection and surface treatment. A round-robin intercomparison of results from the various participating algorithms serves to identify the best modules or combinations of modules for each sensor. Annual global datasets including their uncertainties will then be produced and validated. The project builds on 9 existing algorithms to produce spectral aerosol optical depth (AOD and Ångström exponent) as well as other aerosol information; two instruments are included to provide the absorbing aerosol index (AAI) and stratospheric aerosol information. The algorithms included are: - 3 for ATSR (ORAC developed by RAL / Oxford university, ADV developed by FMI and the SU algorithm developed by Swansea University ) - 2 for MERIS (BAER by Bremen university and the ESA standard handled by HYGEOS) - 1 for POLDER over ocean (LOA) - 1 for synergetic retrieval (SYNAER by DLR ) - 1 for OMI retreival of the absorbing aerosol index with averaging kernel information (KNMI) - 1 for GOMOS stratospheric extinction profile retrieval (BIRA) The first seven algorithms aim at the retrieval of the AOD. However, each of the algorithms used differ in their approach, even for algorithms working with the same instrument such as ATSR or MERIS. To analyse the strengths and weaknesses of each algorithm several tests are made. The starting point for comparison and measurement of improvements is a retrieval run for 1 month, September 2008. The data from the same month are subsequently used for several runs with a prescribed set of aerosol models and an a priori data set derived from the median of AEROCOM model runs. The aerosol models and a priori data can be used in several ways, i.e. fully prescribed or with some freedom to choose a combination of aerosol models, based on the a priori or not. Another test gives insight in the effect of the cloud masks used, i.e. retrievals using the same cloud mask (the AATSR APOLLO cloud mask for collocated instruments) are compared with runs using the standard cloud masks. Tests to determine the influence of surface treatment are planned as well. The results of all these tests are evaluated by an independent team which compares the retrieval results with ground-based remote sensing (in particular AERONET) and in-situ data, and by a scoring method. Results are compared with other satellites such as MODIS and MISR. Blind tests using synthetic data are part of the algorithm characterization. The presentation will summarize results of the ongoing phase 1 inter-comparison and evaluation work within the Aerosol_cci project.
An Integrated Cloud-Aerosol-Radiation Product Using CERES, MODIS, CALIPSO and CloudSat Data
NASA Astrophysics Data System (ADS)
Sun-Mack, S.; Gibson, S.; Chen, Y.; Wielicki, B.; Minnis, P.
2006-12-01
The goal of this paper is to provide the first integrated data set of global vertical profiles of aerosols, clouds, and radiation using the combined NASA A-Train data from Aqua CERES and MODIS, CALIPSO, and CloudSat. All of these instruments are flying in formation as part of the Aqua Train, or A-Train. This paper will present the preliminary results of merging aerosol and cloud data from the CALIPSO active lidar, cloud data from CloudSat, integrated column aerosol and cloud data from the MODIS CERES analyses, and surface and top-of-atmosphere broadband radiation fluxes from CERES. These new data will provide unprecedented ability to test and improve global cloud and aerosol models, to investigate aerosol direct and indirect radiative forcing, and to validate the accuracy of global aerosol, cloud, and radiation data sets especially in polar regions and for multi-layered cloud conditions.
NASA Technical Reports Server (NTRS)
Carroll, M. L.; DiMiceli, C. M.; Townshend, J. R. G.; Sohlberg, R. A.; Elders, A. I.; Devadiga, S.; Sayer, A. M.; Levy, R. C.
2016-01-01
Data from the Moderate Resolution Imaging Spectro-radiometer (MODIS)on-board the Earth Observing System Terra and Aqua satellites are processed using a land water mask to determine when an algorithm no longer needs to be run or when an algorithm needs to follow a different pathway. Entering the fourth reprocessing (Collection 6 (C6)) the MODIS team replaced the 1 km water mask with a 500 m water mask for improved representation of the continental surfaces. The new water mask represents more small water bodies for an overall increase in water surface from 1 to 2 of the continental surface. While this is still a small fraction of the overall global surface area the increase is more dramatic in certain areas such as the Arctic and Boreal regions where there are dramatic increases in water surface area in the new mask. MODIS products generated by the on-going C6 reprocessing using the new land water mask show significant impact in areas with high concentrations of change in the land water mask. Here differences between the Collection 5 (C5) and C6 water masks and the impact of these differences on the MOD04 aerosol product and the MOD11 land surface temperature product are shown.
Early Evaluation of the VIIRS Calibration, Cloud Mask and Surface Reflectance Earth Data Records
NASA Technical Reports Server (NTRS)
Vermote, Eric; Justice, Chris; Csiszar, Ivan
2014-01-01
Surface reflectance is one of the key products fromVIIRS and as withMODIS, is used in developing several higherorder land products. The VIIRS Surface Reflectance (SR) Intermediate Product (IP) is based on the heritageMODIS Collection 5 product (Vermote, El Saleous, & Justice, 2002). The quality and character of surface reflectance depend on the accuracy of the VIIRS Cloud Mask (VCM), the aerosol algorithms and the adequate calibration of the sensor. The focus of this paper is the early evaluation of the VIIRS SR product in the context of the maturity of the operational processing system, the Interface Data Processing System (IDPS). After a brief introduction, the paper presents the calibration performance and the role of the surface reflectance in calibration monitoring. The analysis of the performance of the cloud mask with a focus on vegetation monitoring (no snow conditions) shows typical problems over bright surfaces and high elevation sites. Also discussed is the performance of the aerosol input used in the atmospheric correction and in particular the artifacts generated by the use of the Navy Aerosol Analysis and Prediction System. Early quantitative results of the performance of the SR product over the AERONET sites showthatwith the fewadjustments recommended, the accuracy iswithin the threshold specifications. The analysis of the adequacy of the SR product (Land PEATE adjusted version) in applications of societal benefits is then presented. We conclude with a set of recommendations to ensure consistency and continuity of the JPSS mission with the MODIS Land Climate Data Record.
Inversion Schemes to Retrieve Atmospheric and Oceanic Parameters from SeaWiFS Data
NASA Technical Reports Server (NTRS)
Deschamps, P.-Y.; Frouin, R.
1997-01-01
The investigation focuses on two key issues in satellite ocean color remote sensing, namely the presence of whitecaps on the sea surface and the validity of the aerosol models selected for the atmospheric correction of SeaWiFS data. Experiments were designed and conducted at the Scripps Institution of Oceanography to measure the optical properties of whitecaps and to study the aerosol optical properties in a typical mid-latitude coastal environment. CIMEL Electronique sunphotometers, now integrated in the AERONET network, were also deployed permanently in Bermuda and in Lanai, calibration/validation sites for SeaWiFS and MODIS. Original results were obtained on the spectral reflectance of whitecaps and on the choice of aerosol models for atmospheric correction schemes and the type of measurements that should be made to verify those schemes. Bio-optical algorithms to remotely sense primary productivity from space were also evaluated, as well as current algorithms to estimate PAR at the earth's surface.
NASA Astrophysics Data System (ADS)
Fischer, A.; Ryan, J. P.; Moreno-Madriñán, M. J.
2012-12-01
Recent advances in satellite and airborne remote sensing, such as improvements in sensor and algorithm calibrations and atmospheric correction procedures have provided for increased coverage of remote-sensing, ocean color products for coastal regions. In particular, for the Moderate Resolution Imaging Spectrometer (MODIS), calibration updates, improved aerosol retrievals, and new aerosol models have led to improved atmospheric correction algorithms for turbid waters and have improved the retrieval of ocean-color. This has opened the way for studying coastal ocean phenomena and processes at finer spatial scales. Human population growth and changes in coastal management practices have brought about significant changes in the concentrations of organic and inorganic, particulate and dissolved substances entering the coastal ocean. There is increasing concern that these inputs have led to declines in water quality and increases in local concentrations of phytoplankton, which could result in harmful algal blooms. In two case studies we present improved and validated MODIS coastal observations of fluorescence line height (FLH) to: (1) assess trends in water quality for Tampa Bay, Florida; and (2) illustrate seasonal and annual variability of algal bloom activity in Monterey Bay, California, as well as document estuarine/riverine plume induced red tide events. In a comprehensive analysis of long term (2003-2011) in situ monitoring data and imagery from Tampa Bay, we assess the validity of the MODIS FLH product against chlorophyll-a and a suite of water quality parameters taken in a variety of conditions throughout this large, optically complex estuarine system. A systematic analysis of sampling sites throughout the bay illustrates that the correlations between FLH and in situ chlorophyll-a are influenced by water quality parameters of total nitrogen, total phosphorous, turbidity and biological oxygen demand. Sites that correlated well with satellite imagery were in depths greater than seven meters and were located over five kilometers from shore. Satellite FLH estimates show improving water quality from 2003-2007 with a slight decline up through 2011. Dinoflagellate blooms in Monterey Bay, California have recently increased in frequency and intensity. Nine years of MODIS FLH observations are used to describe the annual and seasonal variability of bloom activity within the Bay. Three classes of MODIS algorithms were correlated against in situ chlorophyll measurements. The FLH algorithm provided the most robust estimate of bloom activity. Elevated concentrations of phytoplankton were evident during the months of August-November, a period during which increased occurrences of dinoflagellate blooms have been observed in situ. Seasonal patterns of FLH show the on- and offshore movement of areas of high phytoplankton biomass between oceanographic seasons. Higher concentrations of phytoplankton are also evident in the vicinity of the land-based nutrient sources and outflows, and cyclonic bay-wide circulation transports these nutrients to a northern Bay bloom incubation region. Both of these case studies illustrate the utility of improved MODIS FLH observations in supporting management decisions in coastal and estuarine waters.
Integrated Cloud-Aerosol-Radiation Product using CERES, MODIS, CALIPSO and CloudSat Data
NASA Technical Reports Server (NTRS)
Sun-Mack, Sunny; Minnis, Patrick; Chen, Yan; Gibson, Sharon; Yi, Yuhong; Trepte, Qing; Wielicki, Bruce; Kato, Seiji; Winker, Dave
2007-01-01
This paper documents the development of the first integrated data set of global vertical profiles of clouds, aerosols, and radiation using the combined NASA A-Train data from the Aqua Clouds and Earth's Radiant Energy System (CERES) and Moderate Resolution Imaging Spectroradiometer (MODIS), Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), and CloudSat. As part of this effort, cloud data from the CALIPSO lidar and the CloudSat radar are merged with the integrated column cloud properties from the CERES-MODIS analyses. The active and passive datasets are compared to determine commonalities and differences in order to facilitate the development of a 3- dimensional cloud and aerosol dataset that will then be integrated into the CERES broadband radiance footprint. Preliminary results from the comparisons for April 2007 reveal that the CERES-MODIS global cloud amounts are, on average, 0.14 less and 0.15 greater than those from CALIPSO and CloudSat, respectively. These new data will provide unprecedented ability to test and improve global cloud and aerosol models, to investigate aerosol direct and indirect radiative forcing, and to validate the accuracy of global aerosol, cloud, and radiation data sets especially in polar regions and for multi-layered cloud conditions.
Integrated cloud-aerosol-radiation product using CERES, MODIS, CALIPSO, and CloudSat data
NASA Astrophysics Data System (ADS)
Sun-Mack, Sunny; Minnis, Patrick; Chen, Yan; Gibson, Sharon; Yi, Yuhong; Trepte, Qing; Wielicki, Bruce; Kato, Seiji; Winker, Dave; Stephens, Graeme; Partain, Philip
2007-10-01
This paper documents the development of the first integrated data set of global vertical profiles of clouds, aerosols, and radiation using the combined NASA A-Train data from the Aqua Clouds and Earth's Radiant Energy System (CERES) and Moderate Resolution Imaging Spectroradiometer (MODIS), Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), and CloudSat. As part of this effort, cloud data from the CALIPSO lidar and the CloudSat radar are merged with the integrated column cloud properties from the CERES-MODIS analyses. The active and passive datasets are compared to determine commonalities and differences in order to facilitate the development of a 3-dimensional cloud and aerosol dataset that will then be integrated into the CERES broadband radiance footprint. Preliminary results from the comparisons for April 2007 reveal that the CERES-MODIS global cloud amounts are, on average, 0.14 less and 0.15 greater than those from CALIPSO and CloudSat, respectively. These new data will provide unprecedented ability to test and improve global cloud and aerosol models, to investigate aerosol direct and indirect radiative forcing, and to validate the accuracy of global aerosol, cloud, and radiation data sets especially in polar regions and for multi-layered cloud conditions.
NASA Astrophysics Data System (ADS)
Gogoi, Mukunda M.; Babu, S. Suresh
2016-05-01
In view of the increasing anthropogenic presence and influence of aerosols in the northern polar regions, long-term continuous measurements of aerosol optical parameters have been investigated over the Svalbard region of Norwegian Arctic (Ny-Ålesund, 79°N, 12°E, 8 m ASL). This study has shown a consistent enhancement in the aerosol scattering and absorption coefficients during spring. The relative dominance of absorbing aerosols is more near the surface (lower single scattering albedo), compared to that at the higher altitude. This is indicative of the presence of local anthropogenic activities. In addition, long-range transported biomass burning aerosols (inferred from the spectral variation of absorption coefficient) also contribute significantly to the higher aerosol absorption in the Arctic spring. Aerosol optical depth (AOD) estimates from ground based Microtop sun-photometer measurements reveals that the columnar abundance of aerosols reaches the peak during spring season. Comparison of AODs between ground based and satellite remote sensing indicates that deep blue algorithm of Moderate Resolution Imaging Spectroradiometer (MODIS) retrievals over Arctic snow surfaces overestimate the columnar AOD.
Can MODIS detect trends in aerosol optical depth over land?
NASA Astrophysics Data System (ADS)
Fan, Xuehua; Xia, Xiang'ao; Chen, Hongbin
2018-02-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard NASA's Aqua satellite has been collecting valuable data about the Earth system for more than 14 years, and one of the benefits of this is that it has made it possible to detect the long-term variation in aerosol loading across the globe. However, the long-term aerosol optical depth (AOD) trends derived from MODIS need careful validation and assessment, especially over land. Using AOD products with at least 70 months' worth of measurements collected during 2002-15 at 53 Aerosol Robotic Network (AERONET) sites over land, Mann-Kendall (MK) trends in AOD were derived and taken as the ground truth data for evaluating the corresponding results from MODIS onboard Aqua. The results showed that the AERONET AOD trends over all sites in Europe and North America, as well as most sites in Africa and Asia, can be reproduced by MODIS/Aqua. However, disagreement in AOD trends between MODIS and AERONET was found at a few sites in Australia and South America. The AOD trends calculated from AERONET instantaneous data at the MODIS overpass times were consistent with those from AERONET daily data, which suggests that the AOD trends derived from satellite measurements of 1-2 overpasses may be representative of those from daily measurements.
NASA Astrophysics Data System (ADS)
Szykman, J.; Kondragunta, S.; Zhang, H.; Dickerson, P.; van Donkelaar, A.; Martin, R. V.; Pasch, A. N.; White, J. E.; DeWinter, J. L.; Zahn, P. H.; Dye, T. S.; Haderman, M. D.
2012-12-01
The U.S. Environmental Protection Agency's (EPA) Air Quality Index (AQI) relies on hourly measurements of ground-based surface PM2.5 (particles smaller than 2.5 μm in median diameter) to develop daily AQI index maps. The EPA is improving the accuracy of AQI information and extending its coverage for reporting to the public by incorporating National Aeronautics and Space Administration (NASA) satellite-derived surface PM2.5 concentrations into daily AQI maps. The additional coverage will provide air quality information in regions without dense monitoring networks. The AirNow Satellite Data Processor (ASDP) uses daily PM2.5 estimates and uncertainties derived from average Aqua and Terra MODerate resolution Imaging Spectroradiometer (MODIS) aerosol optical depth (AOD) in near real-time over the United States. The algorithm to derive surface PM2.5 from MODIS AOD relies on linear relationships between AOD and PM2.5 generated from multi-year GEOS-Chem model simulations (van Donkelaar et al., 2012). Parameters from the regression equation (slopes and intercepts) are saved in a lookup table (LUT) with 4 km spatial resolution for each day of a given year. To improve data accuracy and continuity, a filter is applied to remove MODIS AOD with low accuracy (e.g., over bright surfaces) and an inverse distance weighted average is applied to fill in gaps created by cloud coverage. Daily surface PM2.5 estimates and their uncertainties are generated at the National Oceanic and Atmospheric Administration (NOAA) using the van Donkelaar et al. algorithm and near real-time MODIS AOD products from Terra and Aqua and are provided to the EPA through its Infusing satellite Data into Environmental Applications (IDEA) website. The Suomi National Polar-orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) was launched on October 28, 2011, and similar to MODIS, provides AOD products for real-time applications. NOAA plans to explore the value of VIIRS AOD products to improve AQI. This presentation will focus on a description of ASDP, including an overview of the algorithm used to estimate surface PM2.5 using satellite data and examples of high resolution VIIRS AOD products and their value to the ASDP. Disclaimer: Although this work was reviewed by the U.S. Environmental Protection Agency and approved for publication, it may not necessarily reflect official Agency policy.
Optical properties of aerosol contaminated cloud derived from MODIS instrument
NASA Astrophysics Data System (ADS)
Mei, Linlu; Rozanov, Vladimir; Lelli, Luca; Vountas, Marco; Burrows, John P.
2016-04-01
The presence of absorbing aerosols above/within cloud can reduce the amount of up-welling radiation in visible (VIS) and short-wave infrared and darken the spectral reflectance when compared with a spectrum of a clean cloud observed by satellite instruments (Jethva et al., 2013). Cloud properties retrieval for aerosol contaminated cases is a great challenge. Even small additional injection of aerosol particles into clouds in the cleanest regions of Earth's atmosphere will cause significant effect on those clouds and on climate forcing (Koren et al., 2014; Rosenfeld et al., 2014) because the micro-physical cloud process are non-linear with respect to the aerosol loading. The current cloud products like Moderate Resolution Imaging Spectroradiometer (MODIS) ignoring the aerosol effect for the retrieval, which may cause significant error in the satellite-derived cloud properties. In this paper, a new cloud properties retrieval method, considering aerosol effect, based on the weighting-function (WF) method, is presented. The retrieval results shows that the WF retrieved cloud properties (e.g COT) agrees quite well with MODIS COT product for relative clear atmosphere (AOT ≤ 0.4) while there is a large difference for large aerosol loading. The MODIS COT product is underestimated for at least 2 - 3 times for AOT>0.4, and this underestimation increases with the increase of AOT.
NASA Astrophysics Data System (ADS)
Zhang, Z.; Meyer, K.; Yu, H.; Platnick, S.; Colarco, P.; Liu, Z.; Oreopoulos, L.
2015-09-01
In this paper, we studied the frequency of occurrence and shortwave direct radiative effects (DRE) of above-cloud aerosols (ACAs) over global oceans using eight years of collocated CALIOP and MODIS observations. Similar to previous work, we found high ACA occurrence in four regions: Southeast (SE) Atlantic region where ACAs are mostly light-absorbing aerosols, i.e., smoke and polluted dust according to CALIOP classification, originating from biomass burning over African Savanna; Tropical Northeast Atlantic and Arabian Sea where ACAs are predominantly windblown dust from the Sahara and Arabian desert, respectively; and Northwest Pacific where ACAs are mostly transported smoke and polluted dusts from Asian. From radiative transfer simulations based on CALIOP-MODIS observations and a set of the preselected aerosol optical models, we found the DREs of ACAs at the top of atmosphere (TOA) to be positive (i.e., warming) in the SE Atlantic and NW Pacific regions, but negative (i.e., cooling) in TNE Atlantic and Arabian Sea. The cancellation of positive and negative regional DREs results in a global ocean annual mean diurnally averaged cloudy-sky DRE of 0.015 W m-2 (range of -0.03 to 0.06 W m-2) at TOA. The DREs at surface and within atmosphere are -0.15 W m-2 (range of -0.09 to -0.21 W m-2), and 0.17 W m-2 (range of 0.11 to 0.24 W m-2), respectively. The regional and seasonal mean DREs are much stronger. For example, in the SE Atlantic region the JJA (July ~ August) seasonal mean cloudy-sky DRE is about 0.7 W m-2 (range of 0.2 to 1.2 W m-2) at TOA. The uncertainty in our DRE computations is mainly cause by the uncertainties in the aerosol optical properties, in particular aerosol absorption, and uncertainties in the CALIOP operational aerosol optical thickness retrieval. In situ and remotely sensed measurements of ACA from future field campaigns and satellite missions, and improved lidar retrieval algorithm, in particular vertical feature masking, would help reduce the uncertainty.
NASA Astrophysics Data System (ADS)
Nelson, R. R.; Taylor, T.; O'Dell, C.; Cronk, H. Q.; Partain, P.; Frankenberg, C.; Eldering, A.; Crisp, D.; Gunson, M. R.; Chang, A.; Fisher, B.; Osterman, G. B.; Pollock, H. R.; Savtchenko, A.; Rosenthal, E. J.
2015-12-01
Effective cloud and aerosol screening is critically important to the Orbiting Carbon Observatory-2 (OCO-2), which can accurately determine column averaged dry air mole fraction of carbon dioxide (XCO2) only when scenes are sufficiently clear of scattering material. It is crucial to avoid sampling biases, in order to maintain a globally unbiased XCO2 record for inversion modeling to determine sources and sinks of carbon dioxide. This work presents analysis from the current operational B7 data set, which is identifying as clear approximately 20% of the order one million daily soundings. Of those soundings that are passed to the L2 retrieval algorithm, we find that almost 80% are yielding XCO2 estimates that converge. Two primary preprocessor algorithms are used to cloud screen the OCO-2 soundings. The A-Band Preprocessor (ABP) uses measurements in the Oxygen-A band near 0.76 microns (mm) to determine scenes with large photon path length modifications due to scattering by aerosol and clouds. The Iterative Maximum A-Posteriori (IMAP) Differential Optical Absorption Spectroscopy (DOAS) algorithm (IDP) computes ratios of retrieved CO2 (and H2O) in the 1.6mm (weak CO2) and 2.0mm (strong CO2) spectral bands to determine scenes with spectral differences, indicating contamination by scattering materials. We demonstrate that applying these two algorithms in tandem provides robust cloud screening of the OCO-2 data set. We compare the OCO-2 cloud screening results to collocated Moderate Resolution Imaging Spectroradiometer (MODIS) cloud mask data and show that agreement between the two sensors is approximately 85-90%. A detailed statistical analysis is performed on a winter and spring 16-day repeat cycle for the nadir-land, glint-land and glint-water viewing geometries. No strong seasonal, spatial or footprint dependencies are found, although the agreement tends to be worse at high solar zenith angles and for snow and ice covered surfaces.
Estimate of the Aerosol Anthropogenic Component and Focusing from Satellite Data
NASA Technical Reports Server (NTRS)
Kaufman, Yoram; Remer, Lorraine A.; Chin, Mian
2004-01-01
Satellite measurements of aerosol do not contain information on the chemical composition needed to resolve anthropogenic vs. natural aerosol components. Besides, the same chemical species can have natural and anthropogenic origins. However the ability of the new satellite instruments (MODIS, MISR, POLDER) to distinguish fine from coarse aerosols over the oceans, can be used as a signature of the presence of anthropogenic component and used to measure the fraction of the aerosol originating from anthropogenic activity with an uncertainty of 10 percent for aerosol optical thickness larger than 0.1. We develop the methods and investigated it using model calculations (GOCART) and satellite data (MODIS). Preliminary application to 2 years of global MODIS data shows that 0.200.08 of the aerosol optical thickness and radiative effect has anthropogenic origin. The resultant aerosol forcing over cloud free oceans is 1.30.6 W/sq m, larger than model simulations. Further research until the presentation will probably modify these values.
NASA Astrophysics Data System (ADS)
Loria Salazar, S. M.; Holmes, H.; Panorska, A. K.; Arnott, W. P.; Barnard, J.
2016-12-01
Previous investigations have used satellite remote sensing to estimate surface air pollution concentrations. While most of these studies rely on models developed for the dark-vegetated eastern U.S., they are being used in the semi-arid western U.S without modifications. These models are not robust in the western U.S. due to: 1. Irregular topography that leads to complicated boundary layer physics, 2. Pollutant mixtures, 3. Heterogeneous vertical profile of aerosol concentrations, and 4. High surface reflectance. Here, results from Nevada and California demonstrate poor AOD correlation between AERONET MODIS retrievals. Smoke from wildfires strengthened the aerosol signal, but the MODIS versus AERONET AOD correlation did not improve significantly during fire events [r2 0.17 (non-fire), r2 0.2 (fire)]. Furthermore, aerosol from fires increased the normalized mean bias (NMB) of MODIS retrievals of AOD[NMB 82% (non-fire), NMB 146% (fire)]. Additional results of this investigation found that aerosol plumes confined with the boundary layer improves MODIS AOD retrievals. However, when this condition is not met (i.e., 70% of the time downwind of mountains regions) MODIS AOD has a poor correlation and high bias with respect to AERONET AOD. Fire injection height, complicated boundary layer mixing, and entrainment disperse smoke plumes into the free atmosphere. Therefore, smoke plumes exacerbate the complex aerosol transport typical in the western U.S. and the non-linear relationship between surface pollutant concentrations and conditions aloft. This work uses stochastic methods, including regression to investigate the influence of each of these physical behaviors on the MODIS, AERONET AOD discrepancy using surrogates for each physical phenomenon, e.g., surface albedo for surface reflectance, boundary layer height and elevation for complex mixing, aerosol optical height for vertical aerosol concentrations, and fire radiative power for smoke plume injection height.
An automated fog monitoring system for the Indo-Gangetic Plains based on satellite measurements
NASA Astrophysics Data System (ADS)
Patil, Dinesh; Chourey, Reema; Rizvi, Sarwar; Singh, Manoj; Gautam, Ritesh
2016-05-01
Fog is a meteorological phenomenon that causes reduction in regional visibility and affects air quality, thus leading to various societal and economic implications, especially disrupting air and rail transportation. The persistent and widespread winter fog impacts the entire the Indo-Gangetic Plains (IGP), as frequently observed in satellite imagery. The IGP is a densely populated region in south Asia, inhabiting about 1/6th of the world's population, with a strong upward pollution trend. In this study, we have used multi-spectral radiances and aerosol/cloud retrievals from Terra/Aqua MODIS data for developing an automated web-based fog monitoring system over the IGP. Using our previous and existing methodologies, and ongoing algorithm development for the detection of fog and retrieval of associated microphysical properties (e.g. fog droplet effective radius), we characterize the widespread fog detection during both daytime and nighttime. Specifically, for the night time fog detection, the algorithm employs a satellite-based bi-spectral brightness temperature difference technique between two spectral channels: MODIS band-22 (3.9μm) and band-31 (10.75μm). Further, we are extending our algorithm development to geostationary satellites, for providing continuous monitoring of the spatial-temporal variation of fog. We anticipate that the ongoing and future development of a fog monitoring system would be of assistance to air, rail and vehicular transportation management, as well as for dissemination of fog information to government agencies and general public. The outputs of fog detection algorithm and related aerosol/cloud parameters are operationally disseminated via http://fogsouthasia.com/.
NASA Technical Reports Server (NTRS)
Guo, Yanjuan; Tian, Baijun; Kahn, Ralph A.; Kalashnikova, Olga; Wong, Sun; Waliser, Duane E.
2012-01-01
In this study, MODIS fine mode fraction and MISR non-spherical fraction are 2used to derive dust and smoke AOT components (tau(sub dust) and tau(sub smoke)) over the tropical Atlantic, and their variabilities related to the Madden-Julian Oscillation (MJO) are then investigated. Both MODIS and MISR show a very similar dust and smoke winter climatology. tau(sub dust) is found to be the dominant aerosol component over the tropical Atlantic while tau(sub smoke) is significantly smaller than tau(sub dust). The daily MODIS and MISR tau(sub dust) are overall highly correlated, with the correlation coefficients typically about 0.7 over the North Atlantic. The consistency between the MODIS and MISR dust and smoke aerosol climatology and daily variations give us confidence to use these two data sets to investigate their relative contributions to the total AOT variation associated with the MJO. However, unlike the MISR dust discrimination, which is based on particle shape retrievals, the smoke discrimination is less certain, based on assumed partitioning of maritime aerosol for both MISR and MODIS. The temporal evolution and spatial patterns of the tau(sub dust) anomalies associated with the MJO are consistent between MODIS and MISR. The tau(sub dust) anomalies are very similar to those of tau anomalies, and are of comparable magnitude. In contrast, the MJO-related tau(sub smoke) anomalies are rather small, and the tau(sub mar) anomalies are negligible. The consistency between the MODIS and MISR results suggests that dust aerosol is the dominant component on the intra-seasonal time scale over the tropical Atlantic Ocean.
Preliminary results of the aerosol optical depth retrieval in Johor, Malaysia
NASA Astrophysics Data System (ADS)
Lim, H. Q.; Kanniah, K. D.; Lau, A. M. S.
2014-02-01
Monitoring of atmospheric aerosols over the urban area is important as tremendous amounts of pollutants are released by industrial activities and heavy traffic flow. Air quality monitoring by satellite observation provides better spatial coverage, however, detailed aerosol properties retrieval remains a challenge. This is due to the limitation of aerosol retrieval algorithm on high reflectance (bright surface) areas. The aim of this study is to retrieve aerosol optical depth over urban areas of Iskandar Malaysia; the main southern development zone in Johor state, using Moderate Resolution Imaging Spectroradiometer (MODIS) 500 m resolution data. One of the important steps is the aerosol optical depth retrieval is to characterise different types of aerosols in the study area. This information will be used to construct a Look Up Table containing the simulated aerosol reflectance and corresponding aerosol optical depth. Thus, in this study we have characterised different aerosol types in the study area using Aerosol Robotic Network (AERONET) data. These data were processed using cluster analysis and the preliminary results show that the area is consisting of coastal urban (65%), polluted urban (27.5%), dust particles (6%) and heavy pollution (1.5%) aerosols.
NASA Astrophysics Data System (ADS)
Zhang, Yuhuan; Li, Zhengqiang; Zhang, Ying; Hou, Weizhen; Xu, Hua; Chen, Cheng; Ma, Yan
2014-01-01
The Geostationary Ocean Color Imager (GOCI) provides multispectral imagery of the East Asia region hourly from 9:00 to 16:00 local time (GMT+9) and collects multispectral imagery at eight spectral channels (412, 443, 490, 555, 660, 680, 745, and 865 nm) with a spatial resolution of 500 m. Thus, this technology brings significant advantages to high temporal resolution environmental monitoring. We present the retrieval of aerosol optical depth (AOD) in northern China based on GOCI data. Cross-calibration was performed against Moderate Resolution Imaging Spectrometer (MODIS) data in order to correct the land calibration bias of the GOCI sensor. AOD retrievals were then accomplished using a look-up table (LUT) strategy with assumptions of a quickly varying aerosol and a slowly varying surface with time. The AOD retrieval algorithm calculates AOD by minimizing the surface reflectance variations of a series of observations in a short period of time, such as several days. The monitoring of hourly AOD variations was implemented, and the retrieved AOD agreed well with AErosol RObotic NETwork (AERONET) ground-based measurements with a good R2 of approximately 0.74 at validation sites at the cities of Beijing and Xianghe, although intercept bias may be high in specific cases. The comparisons with MODIS products also show a good agreement in AOD spatial distribution. This work suggests that GOCI imagery can provide high temporal resolution monitoring of atmospheric aerosols over land, which is of great interest in climate change studies and environmental monitoring.
NASA Astrophysics Data System (ADS)
Chang, Kuo-En; Hsiao, Ta-Chih; Hsu, N. Christina; Lin, Neng-Huei; Wang, Sheng-Hsiang; Liu, Gin-Rong; Liu, Chian-Yi; Lin, Tang-Huang
2016-08-01
In this study, an approach in determining effective mixing weight of soot aggregates from dust-soot aerosols is proposed to improve the accuracy of retrieving properties of polluted dusts by means of satellite remote sensing. Based on a pre-computed database containing several variables (such as wavelength, refractive index, soot mixing weight, surface reflectivity, observation geometries and aerosol optical depth (AOD)), the fan-shaped look-up tables can be drawn out accordingly for determining the mixing weights, AOD and single scattering albedo (SSA) of polluted dusts simultaneously with auxiliary regional dust properties and surface reflectivity. To validate the performance of the approach in this study, 6 cases study of polluted dusts (dust-soot aerosols) in Lower Egypt and Israel were examined with the ground-based measurements through AErosol RObotic NETwork (AERONET). The results show that the mean absolute differences could be reduced from 32.95% to 6.56% in AOD and from 2.67% to 0.83% in SSA retrievals for MODIS aerosol products when referenced to AERONET measurements, demonstrating the soundness of the proposed approach under different levels of dust loading, mixing weight and surface reflectivity. Furthermore, the developed algorithm is capable of providing the spatial distribution of the mixing weights and removing the requirement to assume that the dust plume properties are uniform. The case study further shows the spatially variant dust-soot mixing weight would improve the retrieval accuracy in AODmixture and SSAmixture about 10.0% and 1.4% respectively.
Improvement of retrieval algorithms for severe air pollution
NASA Astrophysics Data System (ADS)
Mukai, Sonoyo; Sano, Itaru; Nakata, Makiko
2016-10-01
Increased emissions of anthropogenic aerosols associated with economic growth can lead to increased concentrations of hazardous air pollutants. Furthermore, dust storms or biomass burning plumes can cause serious environmental hazards, yet their aerosol properties are poorly understood. Our research group has worked on the development of an efficient algorithm for aerosol retrieval during hazy episodes (dense concentrations of atmospheric aerosols). It is noted that near UV measurements are available for detection of carbonaceous aerosols. The biomass burning aerosols (BBA) due to large-scale forest fires and/or burn agriculture exacerbated the severe air pollution. It is known that global warming and climate change have caused increasing instances of forest fires, which have in turn accelerated climate change. It is well known that this negative cycle decreases the quality of the global environment and human health. The Japan Aerospace Exploration Agency (JAXA) has been developing a new Earth observing system, the GCOM (Global Change Observation Mission) project, which consists of two satellite series: GCOM-W1 and GCOM-C1. The first GCOM-C satellite will board the SGLI (second generation GLI [global imager]) to be launched in early 2017. The SGLI is capable of multi-channel (19) observation, including a near UV channel (0.380 μm) and two polarization channels at red and near-infrared wavelengths of 0.67 and 0.87 μm. Thus, global aerosol retrieval will be achieved with simultaneous polarization and total radiance. In this study, algorithm improvement for aerosol remote sensing, especially of BBA episodes, is examined using Terra/MODIS measurements from 2003, when the GLI and POLDER-2 sensors were working onboard the Japanese satellite ADEOS-2.
NASA Astrophysics Data System (ADS)
Schüller, Lothar; Bennartz, Ralf; Fischer, Jürgen; Brenguier, Jean-Louis
2005-01-01
Algorithms are now currently used for the retrieval of cloud optical thickness and droplet effective radius from multispectral radiance measurements. This paper extends their application to the retrieval of cloud droplet number concentration, cloud geometrical thickness, and liquid water path in shallow convective clouds, using an algorithm that was previously tested with airborne measurements of cloud radiances and validated against in situ measurements of the same clouds. The retrieval is based on a stratified cloud model of liquid water content and droplet spectrum. Radiance measurements in visible and near-infrared channels of the Moderate Resolution Imaging Spectroradiometer (MODIS), which is operated from the NASA platforms Terra and Aqua, are analyzed. Because of uncertainties in the simulation of the continental surface reflectance, the algorithm is presently limited to the monitoring of the microphysical structure of boundary layer clouds over the ocean. Two MODIS scenes of extended cloud fields over the North Atlantic Ocean trade wind region are processed. A transport and dispersion model (the Hybrid Single-Particle Lagrangian Integrated Trajectory Model, HYSPLIT4) is also used to characterize the origin of the air masses and hence their aerosol regimes. One cloud field formed in an air mass that was advected from southern Europe and North Africa. It shows high values of the droplet concentration when compared with the second cloud system, which developed in a more pristine environment. The more pristine case also exhibits a higher geometrical thickness and, thus, liquid water path, which counterbalances the expected cloud albedo increase of the polluted case. Estimates of cloud liquid water path are then compared with retrievals from the Special Sensor Microwave Imager (SSM/I). SSM/I-derived liquid water paths are in good agreement with the MODIS-derived values.
Near Real{time Data Assimilation for the HYSPLIT Aerosol Dispersion Model
NASA Astrophysics Data System (ADS)
Kalpakis, K.; Yang, S.; Yesha, Y.
2010-12-01
Konstantinos Kalpakis, Shiming Yang, and Yaacov Yesha Department of Computer Science and Electrical Engineering University of Maryland Baltimore County 1000 Hilltop Circle, Baltimore, MD, U.S.A. {kalpakis, shiming1, yayeshag}@csee.umbc.edu ABSTRACT We are working on an IBM-funded project seeking to develop a prototype system for real-time plume dispersion and fire and smoke detection and monitoring. Our prototype system utilizes HYSPLIT and observation data from various sources. HYSPLIT is a model developed by NOAA's Air Resources Laboratory for forecasting aerosol trajectories, dispersion, and concentration from emission sources. It is used extensively by NOAA to routinely provide a number of data products. We develop a data assimilation system for assimilating observational data into the forecasting model in order to improve its forecasting accuracy. Our system is based on the Local Ensemble Transform Kalman Filter (LETKF) algorithm and it is computationally efficient. We evaluate our data assimilation system with real in-situ observational data, and find that our system improves upon HYSPLIT's forecast by reducing the normalized mean squared error and the bias. We are also experimenting with assimilating MODIS data with HYSPLIT model forecasts. To this end, we extrapolate ground concentrations from MODIS Aerosol Optical Depth (AOD) data. Our extrapolation approach relies on spatially localized linear regressions of aerosol concentrations from ground stations in the Air Quality System (AQS) network and MODIS AOD data. We expect that assimilating the extrapolated concentrations leads into further improvements of HYSPLIT forecasts. Furthermore, we are investigating using additional sources of in-situ and remotely sensed observations, such as GOES AOD 30-minute data, and UAV data from the Ikhana AMS fire missions. These sources provide higher spatial resolution and more frequent temporal coverage. Moreover, GOES and UAVs provide near-real time data which should be useful in improving HYSPLIT forecasts of smoke from wildfires. Currently, the Ikhana AMS fire missions team provides L1B data which are very useful in themselves, but no level 2 to the best of our knowledge. For our application, it would very useful to have an AOD data product for these datasets. A possible path for deriving AOD data the AMS sensor onboard UAVs would be to utilize the DRL code for deriving the MODIS AOD from MODIS L1B data, due to the sensor similarities. Developing such code would be very useful for wildfire smoke prediction applications. Our near real-time data assimilation system helps in bridging the gap between predictions and real-time observations, for more accurate and timely aerosol dispersion forecasts. Keywords: data assimilation, HYSPLIT, forecast model performance, real-time, ensemble Kalman filter, aerosol dispersion and concentration.
Fine Resolution Air Quality Monitoring from a Small Satellite: CHRIS/PROBA.
Nichol, Janet E; Wong, Man Sing; Chan, Yuk Ying
2008-11-27
Current remote sensing techniques fail to address the task of air quality monitoring over complex regions where multiple pollution sources produce high spatial variability. This is due to a lack of suitable satellite-sensor combinations and appropriate aerosol optical thickness (AOT) retrieval algorithms. The new generation of small satellites, with their lower costs and greater flexibility has the potential to address this problem, with customised platform-sensor combinations dedicated to monitoring single complex regions or mega-cities. This paper demonstrates the ability of the European Space Agency's small satellite sensor CHRIS/PROBA to provide reliable AOT estimates at a spatially detailed level over Hong Kong, using a modified version of the dense dark vegetation (DDV) algorithm devised for MODIS. Since CHRIS has no middle-IR band such as the MODIS 2,100 nm band which is transparent to fine aerosols, the longest waveband of CHRIS, the 1,019 nm band was used to approximate surface reflectance, by the subtraction of an offset derived from synchronous field reflectance spectra. Aerosol reflectance in the blue and red bands was then obtained from the strong empirical relationship observed between the CHRIS 1,019 nm, and the blue and red bands respectively. AOT retrievals for three different dates were shown to be reliable, when compared with AERONET and Microtops II sunphotometers, and a Lidar, as well as air quality data at ground stations. The AOT images exhibited considerable spatial variability over the 11 x 11km image area and were able to indicate both local and long distance sources.
NASA Technical Reports Server (NTRS)
Li, Jing; Carlson, Barbara E.; Lacis, Andrew A.
2014-01-01
Satellite measurements of global aerosol properties are very useful in constraining aerosol parameterization in climate models. The reliability of different data sets in representing global and regional aerosol variability becomes an essential question. In this study, we present the results of a comparison using combined principal component analysis (CPCA), applied to monthly mean, mapped (Level 3) aerosol optical depth (AOD) product from Moderate Resolution Imaging Spectroradiometer (MODIS), Multiangle Imaging Spectroradiometer (MISR), and Ozone Monitoring Instrument (OMI). This technique effectively finds the common space-time variability in the multiple data sets by decomposing the combined AOD field. The results suggest that all of the sensors capture the globally important aerosol regimes, including dust, biomass burning, pollution, and mixed aerosol types. Nonetheless, differences are also noted. Specifically, compared with MISR and OMI, MODIS variability is significantly higher over South America, India, and the Sahel. MODIS deep blue AOD has a lower seasonal variability in North Africa, accompanied by a decreasing trend that is not found in either MISR or OMI AOD data. The narrow swath of MISR results in an underestimation of dust variability over the Taklamakan Desert. The MISR AOD data also exhibit overall lower variability in South America and the Sahel. OMI does not capture the Russian wild fire in 2010 nor the phase shift in biomass burning over East South America compared to Central South America, likely due to cloud contamination and the OMI row anomaly. OMI also indicates a much stronger (boreal) winter peak in South Africa compared with MODIS and MISR.
Toward Unified Satellite Climatology of Aerosol Properties. 3. MODIS Versus MISR Versus AERONET
NASA Technical Reports Server (NTRS)
Mishchenko, Michael I.; Liu, Li; Geogdzhayev, Igor V.; Travis, Larry D.; Cairns, Brian; Lacis, Andrew A.
2010-01-01
We use the full duration of collocated pixel-level MODIS-Terra and MISR aerosol optical thickness (AOT) retrievals and level 2 cloud-screened quality-assured AERONET measurements to evaluate the likely individual MODIS and MISR retrieval accuracies globally over oceans and land. We show that the use of quality-assured MODIS AOTs as opposed to the use of all MODIS AOTs has little effect on the resulting accuracy. The MODIS and MISR relative standard deviations (RSTDs) with respect to AERONET are remarkably stable over the entire measurement record and reveal nearly identical overall AOT performances of MODIS and MISR over the entire suite of AERONET sites. This result is used to evaluate the likely pixel-level MODIS and MISR performances on the global basis with respect to the (unknown) actual AOTs. For this purpose, we use only fully compatible MISR and MODIS aerosol pixels. We conclude that the likely RSTDs for this subset of MODIS and MISR AOTs are 73% over land and 30% over oceans. The average RSTDs for the combined [AOT(MODIS)+AOT(MISR)]/2 pixel-level product are close to 66% and 27%, respectively, which allows us to recommend this simple blend as a better alternative to the original MODIS and MISR data. These accuracy estimates still do not represent the totality of MISR and quality-assured MODIS pixel-level AOTs since an unaccounted for and potentially significant source of errors is imperfect cloud screening. Furthermore, many collocated pixels for which one of the datasets reports a retrieval, whereas the other one does not may also be problematic.
Hazard Mapping System Fire and Smoke Product - Office of Satellite and
Floater Imagery NASA MODIS NASA MODIS Rapid Response NESDIS Products Archived Fire Products (6 months OMI SO2 NASA data portal NRL Aerosol page NRL Aerosol links NOAA Earth System Research Lab RAMSDIS G
NASA Astrophysics Data System (ADS)
Zhang, Zhibo; Meyer, Kerry; Yu, Hongbin; Platnick, Steven; Colarco, Peter; Liu, Zhaoyan; Oreopoulos, Lazaros
2016-03-01
In this paper, we studied the frequency of occurrence and shortwave direct radiative effects (DREs) of above-cloud aerosols (ACAs) over global oceans using 8 years (2007-2014) of collocated CALIOP and MODIS observations. Similar to previous work, we found high ACA occurrence in four regions: southeastern (SE) Atlantic region, where ACAs are mostly light-absorbing aerosols, i.e., smoke and polluted dust according to CALIOP classification, originating from biomass burning over the African Savanna; tropical northeastern (TNE) Atlantic and the Arabian Sea, where ACAs are predominantly windblown dust from the Sahara and Arabian deserts, respectively; and the northwestern (NW) Pacific, where ACAs are mostly transported smoke and polluted dusts from Asian. From radiative transfer simulations based on CALIOP-MODIS observations and a set of the preselected aerosol optical models, we found the DREs of ACAs at the top of atmosphere (TOA) to be positive (i.e., warming) in the SE Atlantic and NW Pacific regions, but negative (i.e., cooling) in the TNE Atlantic Ocean and the Arabian Sea. The cancellation of positive and negative regional DREs results in a global ocean annual mean diurnally averaged cloudy-sky DRE of 0.015 W m-2 (range of -0.03 to 0.06 W m-2) at TOA. The DREs at surface and within the atmosphere are -0.15 W m-2 (range of -0.09 to -0.21 W m-2), and 0.17 W m-2 (range of 0.11 to 0.24 W m-2), respectively. The regional and seasonal mean DREs are much stronger. For example, in the SE Atlantic region, the JJA (July-August) seasonal mean cloudy-sky DRE is about 0.7 W m-2 (range of 0.2 to 1.2 W m-2) at TOA. All our DRE computations are publicly available1. The uncertainty in our DRE computations is mainly caused by the uncertainties in the aerosol optical properties, in particular aerosol absorption, the uncertainties in the CALIOP operational aerosol optical thickness retrieval, and the ignorance of cloud and potential aerosol diurnal cycle. In situ and remotely sensed measurements of ACA from future field campaigns and satellite missions and improved lidar retrieval algorithm, in particular vertical feature masking, would help reduce the uncertainty.
NASA Technical Reports Server (NTRS)
Zhang, Zhibo; Meyer, Kerry; Yu, Hongbin; Platnick, Steven; Colarco, Peter; Liu, Zhaoyan; Oraiopoulos, Lazaros
2016-01-01
In this paper, we studied the frequency of occurrence and shortwave direct radiative effects (DREs) of above-cloud aerosols (ACAs) over global oceans using 8 years (2007-2014) of collocated CALIOP and MODIS observations. Similar to previous work, we found high ACA occurrence in four regions: southeastern (SE) Atlantic region, where ACAs are mostly light-absorbing aerosols, i.e., smoke and polluted dust according to CALIOP classification, originating from biomass burning over the African Savanna; tropical northeastern (TNE) Atlantic and the Arabian Sea, where ACAs are predominantly windblown dust from the Sahara and Arabian deserts, respectively; and the northwestern (NW) Pacific, where ACAs are mostly transported smoke and polluted dusts from Asia. From radiative transfer simulations based on CALIOP-MODIS observations and a set of the preselected aerosol optical models, we found the DREs of ACAs at the top of atmosphere (TOA) to be positive (i.e., warming) in the SE Atlantic and NW Pacific regions, but negative (i.e., cooling) in the TNE Atlantic Ocean and the Arabian Sea. The cancellation of positive and negative regional DREs results in a global ocean annual mean diurnally averaged cloudy-sky DRE of 0.015 W m(exp. -2) [range of -0.03 to 0.06 W m (exp. -2)] at TOA. The DREs at surface and within the atmosphere are -0.015 W m(exp. -2) [range of -0.09 to -0.21 W m(exp. -2)], and 0.17 W m(exp. -2) [range of 0.11 to 0.24 W m(exp. -2)], respectively. The regional and seasonal mean DREs are much stronger. For example, in the SE Atlantic region, the JJA (July-August) seasonal mean cloudy-sky DRE is about 0.7 W m(exp. -2) [range of 0.2 to 1.2 W m(exp. -2)] at TOA. All our DRE computations are publicly available. The uncertainty in our DRE computations is mainly caused by the uncertainties in the aerosol optical properties, in particular aerosol absorption, the uncertainties in the CALIOP operational aerosol optical thickness retrieval, and the ignorance of cloud and potential aerosol diurnal cycle. In situ and remotely sensed measurements of ACA from future field campaigns and satellite missions and improved lidar retrieval algorithm, in particular vertical feature masking, would help reduce the uncertainty.
Global Long-Term SeaWiFS Deep Blue Aerosol Products available at NASA GES DISC
NASA Technical Reports Server (NTRS)
Shen, Suhung; Sayer, A. M.; Bettenhausen, Corey; Wei, Jennifer C.; Ostrenga, Dana M.; Vollmer, Bruce E.; Hsu, Nai-Yung; Kempler, Steven J.
2012-01-01
Long-term climate data records about aerosols are needed in order to improve understanding of air quality, radiative forcing, and for many other applications. The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) provides a global well-calibrated 13- year (1997-2010) record of top-of-atmosphere radiance, suitable for use in retrieval of atmospheric aerosol optical depth (AOD). Recently, global aerosol products derived from SeaWiFS with Deep Blue algorithm (SWDB) have become available for the entire mission, as part of the NASA Making Earth Science data records for Use in Research for Earth Science (MEaSUREs) program. The latest Deep Blue algorithm retrieves aerosol properties not only over bright desert surfaces, but also vegetated surfaces, oceans, and inland water bodies. Comparisons with AERONET observations have shown that the data are suitable for quantitative scientific use [1],[2]. The resolution of Level 2 pixels is 13.5x13.5 km2 at the center of the swath. Level 3 daily and monthly data are composed by using best quality level 2 pixels at resolution of both 0.5ox0.5o and 1.0ox1.0o. Focusing on the southwest Asia region, this presentation shows seasonal variations of AOD, and the result of comparisons of 5-years (2003- 2007) of AOD from SWDB (Version 3) and MODIS Aqua (Version 5.1) for Dark Target (MYD-DT) and Deep Blue (MYD-DB) algorithms.
A novel method to improve MODIS AOD retrievals in cloudy pixels using an analog ensemble approach
NASA Astrophysics Data System (ADS)
Kumar, R.; Raman, A.; Delle Monache, L.; Alessandrini, S.; Cheng, W. Y. Y.; Gaubert, B.; Arellano, A. F.
2016-12-01
Particulate matter (PM) concentrations are one of the fundamental indicators of air quality. Earth orbiting satellite platforms acquire column aerosol abundance that can in turn provide information about the PM concentrations. One of the serious limitations of column aerosol retrievals from low earth orbiting satellites is that these algorithms are based on clear sky assumptions. They do not retrieve AOD in cloudy pixels. After filtering cloudy pixels, these algorithms also arbitrarily remove brightest and darkest 25% of remaining pixels over ocean and brightest and darkest 50% pixels over land to filter any residual contamination from clouds. This becomes a critical issue especially in regions that experience monsoon, like Asia and North America. In case of North America, monsoon season experiences wide variety of extreme air quality events such as fires in California and dust storms in Arizona. Assessment of these episodic events warrants frequent monitoring of aerosol observations from remote sensing retrievals. In this study, we demonstrate a method to fill in cloudy pixels in Moderate Imaging Resolution Spectroradiometer (MODIS) AOD retrievals based on ensembles generated using an analog-based approach (AnEn). It provides a probabilistic distribution of AOD in cloudy pixels using historical records of model simulations of meteorological predictors such as AOD, relative humidity, and wind speed, and past observational records of MODIS AOD at a given target site. We use simulations from a coupled community weather forecasting model with chemistry (WRF-Chem) run at a resolution comparable to MODIS AOD. Analogs selected from summer months (June, July) of 2011-2013 from model and corresponding observations are used as a training dataset. Then, missing AOD retrievals in cloudy pixels in the last 31 days of the selected period are estimated. Here, we use AERONET stations as target sites to facilitate comparison against in-situ measurements. We use two approaches to evaluate the estimated AOD: 1) by comparing against reanalysis AOD, 2) by inverting AOD to PM10 concentrations and then comparing those with measured PM10. AnEn is an efficient approach to generate an ensemble as it involves only one model run and provides an estimate of uncertainty that complies with the physical and chemical state of the atmosphere.
NASA Technical Reports Server (NTRS)
Wind, Galina; DaSilva, Arlindo M.; Norris, Peter M.; Platnick, Steven E.
2013-01-01
In this paper we describe a general procedure for calculating equivalent sensor radiances from variables output from a global atmospheric forecast model. In order to take proper account of the discrepancies between model resolution and sensor footprint the algorithm takes explicit account of the model subgrid variability, in particular its description of the probably density function of total water (vapor and cloud condensate.) The equivalent sensor radiances are then substituted into an operational remote sensing algorithm processing chain to produce a variety of remote sensing products that would normally be produced from actual sensor output. This output can then be used for a wide variety of purposes such as model parameter verification, remote sensing algorithm validation, testing of new retrieval methods and future sensor studies. We show a specific implementation using the GEOS-5 model, the MODIS instrument and the MODIS Adaptive Processing System (MODAPS) Data Collection 5.1 operational remote sensing cloud algorithm processing chain (including the cloud mask, cloud top properties and cloud optical and microphysical properties products.) We focus on clouds and cloud/aerosol interactions, because they are very important to model development and improvement.
Development of Realistic Synthetic Data Products for the Tempo Geostationary Mission
NASA Astrophysics Data System (ADS)
Chan Miller, C.; Gonzalez Abad, G.; Zoogman, P.; Spurr, R. J. D.; Keller, C. A.; Liu, X.; Chance, K.
2017-12-01
TEMPO is a future geostationary satellite instrument designed to measure atmospheric pollution from solar backscatter over greater North America. Here we describe efforts to generate realistic synthetic level 1 (radiance) and level 2 (trace gas, aerosol and cloud) TEMPO observations, appropriate for retrieval algorithm validation and data assimilation observing system simulation experiments. The synthetic data are derived using a high resolution ( 12km x 12km) GEOS-5 GCM simulation with GEOS-Chem tropospheric chemistry combined with the VLIDORT radiative transfer model. The simulations include cloud and aerosol scattering, pressure- and temperature-dependent gas absorption, anisotropic surface reflectance derived from MODIS observations, solar-induced plant fluorescence derived from GOME-2 observations, and the Ring effect. We describe methods to speed up calculation of the synthetic level 2 products, and present a first validation of the TEMPO operational algorithms against the synthetic level 1 data.
NASA Astrophysics Data System (ADS)
Trepte, Qing; Minnis, Patrick; Sun-Mack, Sunny; Trepte, Charles
Clouds and aerosol play important roles in the global climate system. Accurately detecting their presence, altitude, and properties using satellite radiance measurements is a crucial first step in determining their influence on surface and top-of-atmosphere radiative fluxes. This paper presents a comparison analysis of a new version of the Clouds and Earth's Radiant Energy System (CERES) Edition 3 cloud detection algorithms using Aqua MODIS data with the recently released Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) Version 2 Vertical Feature Mask (VFM). Improvements in CERES Edition 3 cloud mask include dust detection, thin cirrus tests, enhanced low cloud detection at night, and a smoother transition from mid-latitude to polar regions. For the CALIPSO Version 2 data set, changes to the lidar calibration can result in significant improvements to its identification of optically thick aerosol layers. The Aqua and CALIPSO satellites, part of the A-train satellite constellation, provide a unique opportunity for validating passive sensor cloud and aerosol detection using an active sensor. In this paper, individual comparison cases will be discussed for different types of clouds and aerosols over various surfaces, for daytime and nighttime conditions, and for regions ranging from the tropics to the poles. Examples will include an assessment of the CERES detection algorithm for optically thin cirrus, marine stratus, and polar night clouds as well as its ability to characterize Saharan dust plumes off the African coast. With the CALIPSO lidar's unique ability to probe the vertical structure of clouds and aerosol layers, it provides an excellent validation data set for cloud detection algorithms, especially for polar nighttime clouds.
Wang, Menghua
2006-12-10
The current ocean color data processing system for the Sea-viewing Wide Field-of-View Sensor (SeaWiFS) and the moderate resolution imaging spectroradiometer (MODIS) uses the Rayleigh lookup tables that were generated using the vector radiative transfer theory with inclusion of the polarization effects. The polarization effects, however, are not accounted for in the aerosol lookup tables for the ocean color data processing. I describe a study of the aerosol polarization effects on the atmospheric correction and aerosol retrieval algorithms in the ocean color remote sensing. Using an efficient method for the multiple vector radiative transfer computations, aerosol lookup tables that include polarization effects are generated. Simulations have been carried out to evaluate the aerosol polarization effects on the derived ocean color and aerosol products for all possible solar-sensor geometries and the various aerosol optical properties. Furthermore, the new aerosol lookup tables have been implemented in the SeaWiFS data processing system and extensively tested and evaluated with SeaWiFS regional and global measurements. Results show that in open oceans (maritime environment), the aerosol polarization effects on the ocean color and aerosol products are usually negligible, while there are some noticeable effects on the derived products in the coastal regions with nonmaritime aerosols.
NASA Technical Reports Server (NTRS)
Huang, Jingfeng; Hsu, N. Christina; Tsay, Si-Chee; Holben, Brent N.; Welton, Ellsworth J.; Smirnov, Alexander; Jeong, Myeong-Jae; Hansell, Richard A.; Berkoff, Timothy A.
2012-01-01
Cirrus clouds, particularly sub visual high thin cirrus with low optical thickness, are difficult to be screened in operational aerosol retrieval algorithms. Collocated aerosol and cirrus observations from ground measurements, such as the Aerosol Robotic Network (AERONET) and the Micro-Pulse Lidar Network (MPLNET), provide us with an unprecedented opportunity to examine the susceptibility of operational aerosol products to thin cirrus contamination. Quality assured aerosol optical thickness (AOT) measurements were also tested against the CALIPSO vertical feature mask (VFM) and the MODIS-derived thin cirrus screening parameters for the purpose of evaluating thin cirrus contamination. Key results of this study include: (1) Quantitative evaluations of data uncertainties in AERONET AOT retrievals are conducted. Although AERONET cirrus screening schemes are successful in removing most cirrus contamination, strong residuals displaying strong spatial and seasonal variability still exist, particularly over thin cirrus prevalent regions during cirrus peak seasons, (2) Challenges in matching up different data for analysis are highlighted and corresponding solutions proposed, and (3) Estimation of the relative contributions from cirrus contamination to aerosol retrievals are discussed. The results are valuable for better understanding and further improving ground aerosol measurements that are critical for aerosol-related climate research.
Comparison of C5 and C6 Aqua-MODIS Dark Target Aerosol Validation
NASA Technical Reports Server (NTRS)
Munchak, Leigh A.; Levy, Robert C.; Mattoo, Shana
2014-01-01
We compare C5 and C6 validation to compare the C6 10 km aerosol product against the well validated and trusted aerosol product on global and regional scales. Only the 10 km aerosol product is evaluated in this study, validation of the new C6 3 km aerosol product still needs to be performed. Not all of the time series has processed yet for C5 or C6, and the years processed for the 2 products is not exactly the same (this work is preliminary!). To reduce the impact of outlier observations, MODIS is spatially averaged within 27.5 km of the AERONET site, and AERONET is temporatally averaged within 30 minutes of the MODIS overpass time. Only high quality (QA = 3 over land, QA greater than 0 over ocean) pixels are included in the mean.
Validation of MODIS Aerosol Optical Depth Retrieval Over Land
NASA Technical Reports Server (NTRS)
Chu, D. A.; Kaufman, Y. J.; Ichoku, C.; Remer, L. A.; Tanre, D.; Holben, B. N.; Einaudi, Franco (Technical Monitor)
2001-01-01
Aerosol optical depths are derived operationally for the first time over land in the visible wavelengths by MODIS (Moderate Resolution Imaging Spectroradiometer) onboard the EOSTerra spacecraft. More than 300 Sun photometer data points from more than 30 AERONET (Aerosol Robotic Network) sites globally were used in validating the aerosol optical depths obtained during July - September 2000. Excellent agreement is found with retrieval errors within (Delta)tau=+/- 0.05 +/- 0.20 tau, as predicted, over (partially) vegetated surfaces, consistent with pre-launch theoretical analysis and aircraft field experiments. In coastal and semi-arid regions larger errors are caused predominantly by the uncertainty in evaluating the surface reflectance. The excellent fit was achieved despite the ongoing improvements in instrument characterization and calibration. This results show that MODIS-derived aerosol optical depths can be used quantitatively in many applications with cautions for residual clouds, snow/ice, and water contamination.
Analysis of Co-Located MODIS and CALIPSO Observations Near Clouds
NASA Technical Reports Server (NTRS)
Varnai, Tamas; Marshak, Alexander
2011-01-01
The purpose of this paper is to help researchers combine data from different satellites and thus gain new insights into two critical yet poorly understood aspects of anthropogenic climate change, aerosol-cloud interactions and aerosol radiative effects, For this, the paper explores whether cloud information from the Aqua satellite's MODIS instrument can help characterize systematic aerosol changes near clouds by refining earlier perceptions of these changes that were based on the CALIPSO satellite's CALIOP instrument. Similar to a radar but using visible and ncar-infrared light, CALIOP sends out laser pulses and provides aerosol and cloud information along a single line that tracks the satellite orbit by measuring the reflection of its pulses. In contrast, MODIS takes images of reflected sunlight and emitted infrared radiation at several wavelengths, and covers wide areas around the satellite track. This paper analyzes a year-long global dataset covering all ice-free oceans, and finds that MODIS can greatly help the interpretation of CALIOP observations, especially by detecting clouds that lie outside the line observed by CALlPSO. The paper also finds that complications such as differences in view direction or clouds drifting in the 72 seconds that elapse between MODIS and CALIOP observations have only a minor impact. The study also finds that MODIS data helps refine but does not qualitatively alter perceptions of the systematic aerosol changes that were detected in earlier studies using only CALIOP data. It then proposes a statistical approach to account for clouds lying outside the CALIOP track even when MODIS cannot as reliably detect low clouds, for example at night or over ice. Finally, the paper finds that, because of variations in cloud amount and type, the typical distance to clouds in maritime clear areas varies with season and location. The overall median distance to clouds in maritime clear areas around 4-5 km. The fact that half of all clear areas is closer than 5 km to clouds implies that pronounced near-cloud changes in aerosol properties have significant implications for overall clear-sky characteristics, including the radiative impact of aerosols.
Zhanqing Li; Feng Niu; Kwon-Ho Lee; Jinyuan Xin; Wei Min Hao; Bryce L. Nordgren; Yuesi Wang; Pucai Wang
2007-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) currently provides the most extensive aerosol retrievals on a global basis, but validation is limited to a small number of ground stations. This study presents a comprehensive evaluation of Collection 4 and 5 MODIS aerosol products using ground measurements from the Chinese Sun Hazemeter Network (CSHNET). The...
Extending the Deep Blue aerosol record from SeaWiFS and MODIS to NPP-VIIRS
NASA Technical Reports Server (NTRS)
Sayer, Andrew M.; Hsu, Nai-Yung Christina; Bettenhausen, Corey; Lee, Jaehwa
2015-01-01
Deep Blue expands AOD coverage to deserts and other bright surfaces. Using multiple similar satellite sensors enables us to obtain a long data record. The Deep Blue family consists of three separate aerosol optical depth (AOD) retrieval algorithms: 1. Bright Land: Surface reflectance database, BRDF correction. AOD retrieved separately at each of 412, 470/490, (650) nm. SSA retrieved for heavy dust events. 2. Dark Land: Spectral/directional surface reflectance relationship. AOD retrieved separately at 470/490 and 650 nm. 3. Water: Surface BRDF including glint, foam, underlight. Multispectral inversion (Not present in MODISdataset) All report the AOD at 550 nm, and Ångström exponent (AE).
NASA Astrophysics Data System (ADS)
Lee, Kwon-Ho; Kim, Wonkook
2017-04-01
The geostationary ocean color imager-II (GOCI-II), designed to be focused on the ocean environmental monitoring with better spatial (250m for local and 1km for full disk) and spectral resolution (13 bands) then the current operational mission of the GOCI-I. GOCI-II will be launched in 2018. This study presents currently developing algorithm for atmospheric correction and retrieval of surface reflectance over land to be optimized with the sensor's characteristics. We first derived the top-of-atmosphere radiances as the proxy data derived from the parameterized radiative transfer code in the 13 bands of GOCI-II. Based on the proxy data, the algorithm has been made with cloud masking, gas absorption correction, aerosol inversion, computation of aerosol extinction correction. The retrieved surface reflectances are evaluated by the MODIS level 2 surface reflectance products (MOD09). For the initial test period, the algorithm gave error of within 0.05 compared to MOD09. Further work will be progressed to fully implement the GOCI-II Ground Segment system (G2GS) algorithm development environment. These atmospherically corrected surface reflectance product will be the standard GOCI-II product after launch.
Improving Satellite Retrieved Infrared Sea Surface Temperatures in Aerosol-Contaminated Regions
NASA Astrophysics Data System (ADS)
Luo, B.; Minnett, P. J.; Szczodrak, G.; Kilpatrick, K. A.
2017-12-01
Infrared satellite observations of sea surface temperature (SST) have become essential for many applications in meteorology, climatology, and oceanography. Applications often require high accuracy SST data: for climate research and monitoring an absolute uncertainty of 0.1K and stability of better than 0.04K per decade are required. Tropospheric aerosol concentrations increase infrared signal attenuation and prevent the retrieval of accurate satellite SST. We compare satellite-derived skin SST with measurements from the Marine-Atmospheric Emitted Radiance Interferometer (M-AERI) deployed on ships during the Aerosols and Ocean Science Expeditions (AEROSE) and with quality-controlled drifter temperatures. After match-up with in-situ SST and filtering of cloud contaminated data, the results indicate that SST retrieved from MODIS (Moderate Resolution Imaging Spectroradiometer) aboard the Terra and Aqua satellites have negative (cool) biases compared to shipboard radiometric measurements. There is also a pronounced negative bias in the Saharan outflow area that can introduce SST errors >1 K at aerosol optical depths > 0.5. In this study, we present a new method to derive night-time Saharan Dust Index (SDI) algorithms based on simulated brightness temperatures at infrared wavelengths of 3.9, 10.8 and 12.0 μm, derived using RTTOV. We derived correction coefficients for Aqua MODIS measurements by regression of the SST errors against the SDI. The biases and standard deviations are reduced by 0.25K and 0.19K after the SDI correction. The goal of this study is to understand better the characteristics and physical mechanisms of aerosol effects on satellite retrieved infrared SST, as well as to derive empirical formulae for improved accuracies in aerosol-contaminated regions.
Plumes and Blooms: Observations, Analysis and Modeling for SIMBIOS
NASA Technical Reports Server (NTRS)
Maritorena, S.; Siegel, D. A.; Nelson, N. B.
2004-01-01
The goal of the Plumes and Blooms (PnB) project is to develop, validate and apply to imagery state-of-the-art ocean color algorithms for quantifying sediment plumes and phytoplankton blooms for the Case II environment of the Santa Barbara Channel. We conduct monthly to twice-monthly transect observations across the Santa Barbara Channel to develop an algorithm development and product validation data set. A primary goal is the use the PnB field data set to objectively tune semi-analytical models of ocean color for this site and apply them using available satellite imagery (SeaWiFS and MODIS). However, the comparison between PnB field observations and satellite estimates of primary products has been disappointing. We find that field estimates of water-leaving radiance correspond poorly to satellite estimates for both SeaWiFS and MODIS local area coverage imagery. We believe this is due to poor atmospheric correction due to complex mixtures of aerosol types found in these near-coastal regions.
Retrieval of AOD and PM2.5 Concentrations over Urban Areas of Shenyang City using MODIS Data
NASA Astrophysics Data System (ADS)
Wang, Z.
2016-12-01
Atmospheric aerosols play an important part in the Earth's radiation balance as well as global climate change, aerosols also have very important impact on environment as well as human and other organisms' health, PM2.5 and other small particle aerosols, can enter bronchi directly, thus causing bronchitis, cardiovascular disease, asthma and so on.Detection of AOD by satellite and remote sensing is currently one of the hotest issues , diffierent from the traditional monitoring method, this method has much more advantanges, for emample wide area coverage, fast and convenient etc. So it is possible for people to know the regional changes of AOD real time over large area. Now, detection aerosol by RS technology has reached a high level in marine and dense vegetation land areas, but result is not ideal for urban areas, the higher surface reflectance in urban areas is a bottleneck of AOD retrieval. Focus on the high surface reflectance and low accuracy of the AOD products of urban areas, this paper propose an algorithm coupled with surface reflectance to get red band surface reflectance, based on Dens Dark Vegetation algorithm and geometrical optics model theory, to distinguish urban reflectivity from other targets. Considering the appropriate aerosol model which adapt to season and other proper parameters, this paper uses 6S model to establish look-up table, thus retrieve AOD for urban as well as other high reflectance areas. This paper take Shenyang region as pilot area, then retrieve the AOD and PM2.5 concentration of Shenyang in 2015 based on MODIS data, thus get 1km resolution distribution map, and then analyzed the results in spatial, intensity and temporal. At last, real-time monitoring data from the ground monitor station is used to verify the outcome, the results have good accuracy and the the correlation reached 0.9004 when the weather is sunny. The research shows that this algorithm has relatively higher precision and certain universality. This method has better applicability to retrieve AOD and PM2.5 concentration by remote sensing in Shenyang and Liaoning Provience, and owes guiding and reference significance, and it has a high value in terms of atmospheric environment monitoring.
NASA Astrophysics Data System (ADS)
Xu, Hui; Guo, Jianping; Ceamanos, Xavier; Roujean, Jean-Louis; Min, Min; Carrer, Dominique
2016-09-01
Long-term measurements of aerosol optical depth (AOD) from the Aerosol Robotic Network (AERONET) located in Beijing reveal a strong diurnal cycle of aerosol load staged by seasonal patterns. Such pronounced variability is matter of importance in respect to the estimation of daily averaged direct aerosol radiative forcing (DARF). Polar-orbiting satellites could only offer a daily revisit, which turns in fact to be even much less in case of frequent cloudiness. Indeed, this places a severe limit to properly capture the diurnal variations of AOD and thus estimate daily DARF. Bearing this in mind, the objective of the present study is however to evaluate the impact of AOD diurnal variations for conducting quantitative assessment of DARF using Moderate Resolution Imaging Spectroradiometer (MODIS) AOD data over Beijing. We provide assessments of DARF with two different assumptions about diurnal AOD variability: taking the observed hourly-averaged AOD cycle into account and assuming constant MODIS (including Terra and Aqua) AOD value throughout the daytime. Due to the AOD diurnal variability, the absolute differences in annual daily mean DARFs, if the constant MODIS/Terra (MODIS/Aqua) AOD value is used instead of accounting for the observed hourly-averaged daily variability, is 1.2 (1.3) Wm-2 at the top of the atmosphere, 27.5 (30.6) Wm-2 at the surface, and 26.4 (29.3) Wm-2 in the atmosphere, respectively. During the summertime, the impact of the diurnal AOD variability on seasonal daily mean DARF estimates using MODIS Terra (Aqua) data can reach up to 2.2 (3.9) Wm-2 at the top of the atmosphere, 43.7 (72.7) Wm-2 at the surface, and 41.4 (68.8) Wm-2 in the atmosphere, respectively. Overall, the diurnal variation in AOD tends to cause large bias in the estimated DARF on both seasonal and annual scales. In summertime, the higher the surface albedo, the stronger impact on DARF at the top of the atmosphere caused by dust and biomass burning (continental) aerosol. This indicates that the impact on DARFs estimates is sensitive to assumptions of aerosol type and surface albedo.
Estimation of the spatial validity of local aerosol measurements in Europe using MODIS data
NASA Astrophysics Data System (ADS)
Marcos, Carlos; Gómez-Amo, J. Luis; Pedrós, Roberto; Utrillas, M. Pilar; Martínez-Lozano, J. Antonio
2013-04-01
The actual impact of atmospheric aerosols in the Earth's radiative budget is still associated to large uncertainties [IPCC, 2007]. Global monitoring of the aerosol properties and distribution in the atmosphere is needed to improve our knowledge of climate change. The instrumentation used for this purpose can be divided into two main groups: ground-based and satellite-based. Ground-based instruments, like lidars or Sun-photometers, are usually designed to measure accurate local properties of atmospheric aerosols throughout the day. However, the spatial validity of these measurements is conditioned by the aerosol variability within the atmosphere. Satellite-based sensors offer spatially resolved information about aerosols at a global scale, but generally with a worse temporal resolution and in a less detailed way. In this work, the aerosol optical depth (AOD) at 550nm from MODIS Aqua, product MYD04 [Remer, 2005], is used to estimate the area of validity of local measurements at different reference points, corresponding to the AERONET [Holben, 1998] stations during the 2011-2012 period in Europe. For each case, the local AOD (AODloc) at each reference point is calculated as the averaged MODIS data within a radius of 15 km. Then, the AODloc is compared to the AOD obtained when a larger averaging radius is used (AOD(r)), up to 500 km. Only those cases where more than 50% of the pixels in each averaging area contain valid data are used. Four factors that could affect the spatial variability of aerosols are studied: proximity to the sea, human activity, aerosol load and geographical location (latitude and longitude). For the 76 reference points studied, which are sited in different regions of Europe, we have determined that the root mean squared difference (RMSD) between AODloc and AOD(r) , averaged for all cases, increases in a logarithmic way with the averaging radius (RMSD ? log(r)), while the linear correlation coefficient (R) decreases following a logarithmic trend (R ? -log(r)). Among all the factors studied, the aerosol load is the most influential one in the aerosol spatial variability: for averaging radii smaller than 40 km, the RMSD increases with AODloc. Another important factor is the latitude and longitude: the variation of the RMSD in the AOD with regard to the averaging radius can differ up to a 60%, depending on the location. On the contray, the proximity to the sea and the amount of population surrounding each reference point do not have a noticeable influence compared to the above mentioned factors. Holben, B. N., Eck, T. F., Slutsker, I., Buis, J. P., Setzer, A., Vermote, E., Reagan, J. A., Kaufman, Y., Nakajima, T., Lavenu, F., and Smirnov, A.: AERONET - A federated instrument network and data archive for aerosol characterization, Remote Sens. Environ., 66, 1-16, 1998. IPCC (2007). S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, H.L. Miller (Eds.), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK & New York, USA. Remer, L. A., y co-authors, 2005: The MODIS aerosol algorithm, products, and validation. J. Atmos. Sci., 62, 947-973. doi: http://dx.doi.org/10.1175/JAS3385.1
Remote sensing of aerosols by synergy of caliop and modis
NASA Astrophysics Data System (ADS)
Kudo, Rei; Nishizawa, Tomoaki; Higurashi, Akiko; Oikawa, Eiji
2018-04-01
For the monitoring of the global 3-D distribution of aerosol components, we developed the method to retrieve the vertical profiles of water-soluble, light absorbing carbonaceous, dust, and sea salt particles by the synergy of CALIOP and MODIS data. The aerosol product from the synergistic method is expected to be better than the individual products of CALIOP and MODIS. We applied the method to the biomass-burning event in Africa and the dust event in West Asia. The reasonable results were obtained; the much amount of the water-soluble and light absorbing carbonaceous particles were estimated in the biomass-burning event, and the dust particles were estimated in the dust event.
NASA Astrophysics Data System (ADS)
2016-04-01
The strong El Nino event in 2015 resulted in below normal rainfall leading to very dry conditions throughout Indonesia from August though October 2015. These conditions in turn allowed for exceptionally large numbers of biomass burning fires with very high emissions of aerosols. Over the island of Borneo, three AERONET sites (Palangkaraya, Pontianak, and Kuching) measured monthly mean fine mode aerosol optical depth (AOD) at 500 nm from the spectral deconvolution algorithm in September and October ranging from 1.6 to 3.7, with daily average AOD as high as 6.1. In fact, the AOD was sometimes too high to obtain any significant signal in the mid-visible wavelengths, therefore a previously developed new algorithm in the AERONET Version 3 database was invoked to retain the measurements in as many of the red and near-infrared wavelengths (675, 870, 1020, and 1640 nm) as possible to analyze the AOD in those wavelengths. These AOD at longer wavelengths are then utilized to provide some estimate the AOD in the mid-visible. Additionally, satellite retrievals of AOD at 550 nm from MODIS sensor data and the Dark Target, Beep Blue, and MAIAC algorithms were also analyzed and compared to AERONET measured AOD. Not surprisingly, the AOD was often too high for the satellite algorithms to also measure accurate AOD on many days in the densest smoke regions. The AERONET sky radiance inversion algorithm was utilized to analyze retrievals of the aerosol optical properties of complex refractive indices and size distributions. Since the AOD was often extremely high there was sometimes insufficient direct sun signal for the larger solar zenith angles (> 50 degrees) required for almucantar retrievals. However, the new hybrid sky radiance scan can attain sufficient scattering angle range even at small solar zenith angles when 440 nm direct beam irradiance can be accurately measured, thereby allowing for many more retrievals and also at higher AOD levels during this event. Due to extreme dryness occurring in the region, significant biomass burning of peat soils occurred in some areas. The retrieved volume median radius of the fine mode increased from ~0.18 micron to ~0.25 micron as AOD increased from 1 to 3 at 440 nm. These are very large size particles for biomass burning aerosol and are similar in size to smoke particles measured in Alaska during the very dry years of 2004 and 2005 when peat soil burning also contributed to the fuel burned. The average single scattering albedo over the wavelength range of 440 to 1020 nm was very high ranging from ~0.96 to 0.98, indicative of dominant smoldering phase combustion. These very high values of single scattering albedo for biomass burning aerosols are similar to those retrieved by AERONET for the Alaska smoke in 2004 and 2005.
Toward Obtaining Reliable Particulate Air Quality Information from Satellites
NASA Astrophysics Data System (ADS)
Strawa, A. W.; Chatfield, R. B.; Legg, M.; Esswein, R.; Justice, E.
2009-12-01
Air quality agencies use ground sites to monitor air quality, providing accurate information at particular points. Using measurements from satellite imagery has the potential to provide air quality information in a timely manner with better spatial resolution and at a lower cost that can also useful for model validation. While previous studies show acceptable correlations between Aerosol Optical Depth (AOD) derived from MODIS and surface Particulate Matter (PM) measurements on the eastern US, the data do not correlate well in the western US (Al-Saadi et al., 2005; Engle-Cox et al., 2004) . This paper seeks to improve the AOD-PM correlations by using advanced statistical analysis techniques. Our study area is the San Joaquin Valley in California because air quality in this region has failed to meet state and federal attainment standards for PM for the past several years. A previous investigation found good correlation of the AOD values between MODIS, MISR and AERONET, but poor correlations (R2 ~ 0.02) between satellite-based AOD and surface PM2.5 measurements. PM2.5 measurements correlated somewhat better (R2 ~ 0.18) with MODIS-derived AOD using the Deep Blue surface reflectance algorithm (Hsu et al., 2006) rather than the standard MODIS algorithm. This level of correlation is not adequate for reliable air quality measurements. Pelletier et al. (2007) used generalized additive models (GAMs) and meteorological data to improve the correlation between PM and AERONET AOD in western Europe. Additive models are more flexible than linear models and the functional relationships can be plotted to give a sense of the relationship between the predictor and the response. In this paper we use GAMs to improve surface PM2.5 to MODIS-AOD correlations. For example, we achieve an R2 ~ 0.44 using a GAM that includes the Deep Blue AOD, and day of year as parameters. Including NOx observations, improves the R2 ~ 0.64. Surprisingly Ångström exponent did not prove to be a significant factor. The relationships between the predictor and the response are discussed. Al-Saadi, J., J. Szykman, R.B. Pierce, C. Kittaka, D. Neil, D.A. Chu, L. Remer, L. Gumley, E. Prins, L. Weinstock, C. MacDonald, R. Wayland, F. Dimmick, and J. Fishman, Imporving national air quality forecasts with satellite aerosol observations, Bull. Amer, Met. Soc. (Sept), 1249-1261, 2005. Engle-Cox, J.A., C.H. Holloman, B.W. Coutant, and R.M. Hoff, Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and urban scale air quality, Atmos. En., 38, 2495-2509, 2004. Hsu, N.C., S.-C. Tsay, M.D. King, and J.R. Herman, Deep blue retrievals of Asian Aerosol properties during ACE-Asia, IEEE Trans. on Geosci.a nd Remote Sensing, 44 (11), 3180, 2006. Pelletier, B., R. Santer, and J. Vidot, Retrieving of particulate matter from optical measurements: A semi-parametric approach, J. Geophys. Res., 112 (D06208), 2007.
Using VIIRS to Provide Data Continuity with MODIS
NASA Technical Reports Server (NTRS)
Murphy, Robert E.; Barnes, William L.; Lyapustin, Alexei I.; Privette, Jeffrey; Welsch, Carol; DeLuccia, Frank; Schueler, Carl F.; Ardanuy, Philip E.; Kealy, Peter S. M.; Smith, David E. (Technical Monitor)
2001-01-01
Long-term continuity of the data series being initiated by the MODIS (MODerate Resolution Imaging Spectroradiometer) on NASA's Terra mission will be obtained using the VIIRS (Visible Infrared Imaging Radiometer Suite) flying on the converged National Polar-Orbiting Environmental Satellite System (NPOESS) and on the NPOESS Preparatory Project (NPP). The data series include critical parameters such as cloud and aerosol properties, vegetation index, land use and land cover, ocean chlorophyll and sea surface temperature. VIIRS is being designed and built by Raytheon for the Integrated Program Office (IPO), the DoD, NOAA and NASA consortium that is responsible for NPOESS. In addition to meeting the requirements for operational environmental monitoring, VIIRS will meet the needs of the global change research community through the use of state-of-the-art algorithms and calibration and characterization activities.
NASA Technical Reports Server (NTRS)
Li, Jing; Carlson, Barbara E.; Lacis, Andrew A.
2014-01-01
Moderate Resolution Imaging SpectroRadiometer (MODIS) and Multi-angle Imaging Spectroradiomater (MISR) provide regular aerosol observations with global coverage. It is essential to examine the coherency between space- and ground-measured aerosol parameters in representing aerosol spatial and temporal variability, especially in the climate forcing and model validation context. In this paper, we introduce Maximum Covariance Analysis (MCA), also known as Singular Value Decomposition analysis as an effective way to compare correlated aerosol spatial and temporal patterns between satellite measurements and AERONET data. This technique not only successfully extracts the variability of major aerosol regimes but also allows the simultaneous examination of the aerosol variability both spatially and temporally. More importantly, it well accommodates the sparsely distributed AERONET data, for which other spectral decomposition methods, such as Principal Component Analysis, do not yield satisfactory results. The comparison shows overall good agreement between MODIS/MISR and AERONET AOD variability. The correlations between the first three modes of MCA results for both MODIS/AERONET and MISR/ AERONET are above 0.8 for the full data set and above 0.75 for the AOD anomaly data. The correlations between MODIS and MISR modes are also quite high (greater than 0.9). We also examine the extent of spatial agreement between satellite and AERONET AOD data at the selected stations. Some sites with disagreements in the MCA results, such as Kanpur, also have low spatial coherency. This should be associated partly with high AOD spatial variability and partly with uncertainties in satellite retrievals due to the seasonally varying aerosol types and surface properties.
NASA Technical Reports Server (NTRS)
Kishcha, Pavel; Da Silva, Arlindo M.; Starobinets, Boris; Alpert, Pinhas
2014-01-01
The MERRA Aerosol Reanalysis (MERRAero) has been recently developed at NASA's Global Modeling Assimilation Office. This reanalysis is based on a version of the Goddard Earth Observing System-5 (GEOS-5) model radiatively coupled with Goddard Chemistry, Aerosol, Radiation, and Transport aerosols, and it includes assimilation of bias-corrected aerosol optical thickness (AOT) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor on both Terra and Aqua satellites. In October over the period 2002-2009, MERRAero showed that AOT was lower over the east of the Ganges basin than over the northwest of the Ganges basin: this was despite the fact that the east of the Ganges basin should have produced higher anthropogenic aerosol emissions because of higher population density, increased industrial output, and transportation. This is evidence that higher aerosol emissions do not always correspond to higher AOT over the areas where the effects of meteorological factors on AOT dominate those of aerosol emissions. MODIS AOT assimilation was essential for correcting modeled AOT mainly over the northwest of the Ganges basin, where AOT increments were maximal. Over the east of the Ganges basin and northwest Bay of Bengal (BoB), AOT increments were low and MODIS AOT assimilation did not contribute significantly to modeled AOT. Our analysis showed that increasing AOT trends over northwest BoB (exceeding those over the east of the Ganges basin) were reproduced by GEOS-5, not because of MODIS AOT assimilation butmainly because of the model capability of reproducing meteorological factors contributing to AOT trends. Moreover, vertically integrated aerosol mass flux was sensitive to wind convergence causing aerosol accumulation over northwest BoB.
NASA Technical Reports Server (NTRS)
Gasso, B. S.; Hegg, D. A.; Covert, D. S.; Collins, D.; Noone, K.; Oestroem, E.; Schmid, B.; Russell, P. B.; Livingston, J. M.; Durkee, P. A.;
2000-01-01
Aerosol scattering coefficients (sigma(sub sp)) have been measured over the ocean at different relative humidities (RH) as a function of attitude in the region surrounding the Canary Islands during the Second Aerosol Characterization Experiment (ACE-2) in June and July 1997. The data were collected by the University of Washington passive humidigraph (UWPH) mounted on the Pelican research aircraft. Concurrently, particle size distributions absorption coefficients and aerosol optical depth were measured throughout 17 flights. A parameterization of sigma(sub sp) as a function of RH was utilized to assess the impact of aerosol hydration on the upwelling radiance (normalized to the solar constant and cosine of zenith angle). The top of the atmosphere radiance signal was simulated at wavelengths corresponding to visible and near-infrared bands or the EOS-AM ("Terra") detectors, MODIS and MISR. The UWPH measured (sigma(sub sp)) at 2 RHs, one below and the other above ambient conditions. Ambient (sigma(sub sp)) was obtained by interpolation of these 2 measurements. The data were stratified in terms of 3 types of aerosols: Saharan dust, clean marine (marine boundary layer background) and polluted marine aerosols (i.e., 2- or 1-day old polluted aerosols advected from Europe). An empirical relation for the dependence of (sigma(sub sp)) on RH, defined by (sigma(sub sp))(RH) = k. ((1 - RH/100)(exp -gamma), was used with the hygroscopic exponent gamma derived from the data. The following gamma values were obtained for the 3 aerosol types: gamma(dust) = 0.23 +/- 0.05, gamma(clean marine) = 0.69 +/- 0.06 and gamma(polluted marine) = 0.57 + 0.06. Based on the measured (gamma)(s), the above equation was utilized to derive aerosol models with different hygroscopicities. The satellite simulation signal code 6S was used to compute the upwelling radiance corresponding to each of those aerosol models at several ambient humidities. For the pre-launch estimated precision of the sensors and the assumed viewing geometry of the instrument, the simulations suggest that the spectral and angular dependence of the reflectance measured by MISR is not sufficient to distinguish aerosol models with various different combinations of values ror dry composition. y and ambient RH. A similar behavior is observed for MODIS at visible wavelengths. However, the 2100 nm band of MODIS appears to be able to differentiate between at least some aerosol models with different aerosol hygroscopicity given the MODIS calibration error requirements. This result suggests the possibility of retrieval of aerosol hygroscopicity by MODIS.
NASA Astrophysics Data System (ADS)
Xu, C.; Kondragunta, S.
2008-05-01
The purpose of this study is to understand the potential for using the GOES Aerosol/Smoke Product (GASP) to monitor wild fires over the United States. GASP AOD is retrieved using visible imagery from Geostationary Operational Environment Satellite (GOES) at 30 minute interval. This high temporal estimate of AOD provides significantly dense information of air quality in near real time. Hourly or daily animations of GASP aerosol optical depth for smoke plumes suggest that development and variation of wild fires can be determined by GASP. Also, the performances of GASP AOD are compared to other satellite data from MODerate-resolution Imaging Spectro- radiometers (MODIS) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). The results reveal that GOES AOD has same level performance for monitoring wild fires as those of MODIS and CALIPSO. Therefore, we believe that the retrieval accuracy of GOES is adequate for monitoring larger outbreaks of aerosol events.
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven; Moody, Eric G.
2002-01-01
MODIS is an earth-viewing cross-track scanning spectroradiometer launched on the Terra satellite in December 1999 and the Aqua satellite in May 2002. MODIS scans a swath width sufficient to provide nearly complete global coverage every two days from a polar-orbiting, sun-synchronous, platform at an altitude of 705 km, and provides images in 36 spectral bands between 0.415 and 14.235 microns with spatial resolutions of 250 m (2 bands), 500 m (5 bands) and 1000 m (29 bands). These bands have been carefully selected to enable advanced studies of land, ocean, and atmospheric processes. In this paper we will describe the various methods being used for the remote sensing of cloud, aerosol, and surface properties using MODIS data, focusing primarily on (i) the MODIS cloud mask used to distinguish clouds, clear sky, heavy aerosol, and shadows on the ground, (ii) cloud optical properties, especially cloud optical thickness and effective radius of water drops and ice crystals, (iii) aerosol optical thickness and size characteristics both over land and ocean, and (iv) ecosystem classification and surface spectral reflectance. The physical principles behind the determination of each of these products will be described, together with an example of their application using MODIS observations to the east Asian region. All products are archived into two categories: pixel-level retrievals (referred to as Level-2 products) and global gridded products at a latitude and longitude resolution of 1 min (Level-3 products).
NASA Technical Reports Server (NTRS)
Zhang, Z.; Meyer, K.; Platnick, S.; Oreopoulos, L.; Lee, D.; Yu, H.
2013-01-01
This paper describes an efficient and unique method for computing the shortwave direct radiative effect (DRE) of aerosol residing above low-level liquid-phase clouds using CALIOP and MODIS data. It accounts for the overlapping of aerosol and cloud rigorously by utilizing the joint histogram of cloud optical depth and cloud top pressure. Effects of sub-grid scale cloud and aerosol variations on DRE are accounted for. It is computationally efficient through using grid-level cloud and aerosol statistics, instead of pixel-level products, and a pre-computed look-up table in radiative transfer calculations. We verified that for smoke over the southeast Atlantic Ocean the method yields a seasonal mean instantaneous shortwave DRE that generally agrees with more rigorous pixel-level computation within 4%. We have also computed the annual mean instantaneous shortwave DRE of light-absorbing aerosols (i.e., smoke and polluted dust) over global ocean based on 4 yr of CALIOP and MODIS data. We found that the variability of the annual mean shortwave DRE of above-cloud light-absorbing aerosol is mainly driven by the optical depth of the underlying clouds.
NASA Technical Reports Server (NTRS)
Zhang, Z.; Meyer, K.; Platnick, S.; Oreopoulos, L.; Lee, D.; Yu, H.
2014-01-01
This paper describes an efficient and unique method for computing the shortwave direct radiative effect (DRE) of aerosol residing above low-level liquid-phase clouds using CALIOP and MODIS data. It accounts for the overlapping of aerosol and cloud rigorously by utilizing the joint histogram of cloud optical depth and cloud top pressure. Effects of sub-grid scale cloud and aerosol variations on DRE are accounted for. It is computationally efficient through using grid-level cloud and aerosol statistics, instead of pixel-level products, and a pre-computed look-up table in radiative transfer calculations. We verified that for smoke over the southeast Atlantic Ocean the method yields a seasonal mean instantaneous shortwave DRE that generally agrees with more rigorous pixel-level computation within 4. We have also computed the annual mean instantaneous shortwave DRE of light-absorbing aerosols (i.e., smoke and polluted dust) over global ocean based on 4 yr of CALIOP and MODIS data. We found that the variability of the annual mean shortwave DRE of above-cloud light-absorbing aerosol is mainly driven by the optical depth of the underlying clouds.
NASA Astrophysics Data System (ADS)
Zhang, Hai; Kondragunta, Shobha; Laszlo, Istvan; Liu, Hongqing; Remer, Lorraine A.; Huang, Jingfeng; Superczynski, Stephen; Ciren, Pubu
2016-09-01
The Visible/Infrared Imager Radiometer Suite (VIIRS) on board the Suomi National Polar-orbiting Partnership (S-NPP) satellite has been retrieving aerosol optical thickness (AOT), operationally and globally, over ocean and land since shortly after S-NPP launch in 2011. However, the current operational VIIRS AOT retrieval algorithm over land has two limitations in its assumptions for land surfaces: (1) it only retrieves AOT over the dark surfaces and (2) it assumes that the global surface reflectance ratios between VIIRS bands are constants. In this work, we develop a surface reflectance ratio database over land with a spatial resolution 0.1° × 0.1° using 2 years of VIIRS top of atmosphere reflectances. We enhance the current operational VIIRS AOT retrieval algorithm by applying the surface reflectance ratio database in the algorithm. The enhanced algorithm is able to retrieve AOT over both dark and bright surfaces. Over bright surfaces, the VIIRS AOT retrievals from the enhanced algorithm have a correlation of 0.79, mean bias of -0.008, and standard deviation (STD) of error of 0.139 when compared against the ground-based observations at the global AERONET (Aerosol Robotic Network) sites. Over dark surfaces, the VIIRS AOT retrievals using the surface reflectance ratio database improve the root-mean-square error from 0.150 to 0.123. The use of the surface reflectance ratio database also increases the data coverage of more than 20% over dark surfaces. The AOT retrievals over bright surfaces are comparable to MODIS Deep Blue AOT retrievals.
Spatial and Temporal Monitoring of Aerosol over Selected Urban Areas in Egypt
NASA Astrophysics Data System (ADS)
Shokr, Mohammed; El-Tahan, Mohammed; Ibrahim, Alaa
2015-04-01
We utilize remote sensing data of atmospheric aerosols from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Terra and Aqua satellites to explore spatio-temporal patterns over selected urban sites in Egypt during 2000-2015. High resolution (10 x 10 km^2) Level 2, collection 5, quality-controlled product was used. The selected sites are characterized by different human and industrial activities as well as landscape and meteorological attributes. These have impacts on the dominant types and intensity of aerosols. Aerosol robotic network (AERONET) data were used to validate the calculations from MODIS. The suitability of the MODIS product in terms of spatial and temporal coverage as well as accuracy and robustness has been established. Seasonal patterns of aerosol concentration are identified and compared between the sites. Spatial gradient of aerosol is assessed in the vicinity of major aerosol-emission sites (e.g. Cairo) to determine the range of influence of the generated pollution. Peak aerosol concentrations are explained in terms of meteorological events and land cover. The limited trends found in the temporal records of the aerosol measurements will be confirmed using calibrated long-term ground observations. The study has been conducted under the PEER 2-239 research project titled "The Impact of Biogenic and Anthropogenic Atmospheric Aerosols to Climate in Egypt". Project website is CleanAirEgypt.org
Multi-Satellite Synergy for Aerosol Analysis in the Asian Monsoon Region
NASA Technical Reports Server (NTRS)
Ichoku, Charles; Petrenko, Maksym
2012-01-01
Atmospheric aerosols represent one of the greatest uncertainties in environmental and climate research, particularly in tropical monsoon regions such as the Southeast Asian regions, where significant contributions from a variety of aerosol sources and types is complicated by unstable atmospheric dynamics. Although aerosols are now routinely retrieved from multiple satellite Sensors, in trying to answer important science questions about aerosol distribution, properties, and impacts, researchers often rely on retrievals from only one or two sensors, thereby running the risk of incurring biases due to sensor/algorithm peculiarities. We are conducting detailed studies of aerosol retrieval uncertainties from various satellite sensors (including Terra-/ Aqua-MODIS, Terra-MISR, Aura-OMI, Parasol-POLDER, SeaWiFS, and Calipso-CALIOP), based on the collocation of these data products over AERONET and other important ground stations, within the online Multi-sensor Aerosol Products Sampling System (MAPSS) framework that was developed recently. Such analyses are aimed at developing a synthesis of results that can be utilized in building reliable unified aerosol information and climate data records from multiple satellite measurements. In this presentation, we will show preliminary results of. an integrated comparative uncertainly analysis of aerosol products from multiple satellite sensors, particularly focused on the Asian Monsoon region, along with some comparisons from the African Monsoon region.
NASA Astrophysics Data System (ADS)
Taghavi, F.; Owlad, E.; Ackerman, S. A.
2017-03-01
South-west Asia including the Middle East is one of the most prone regions to dust storm events. In recent years, there was an increase in the occurrence of these environmental and meteorological phenomena. Remote sensing could serve as an applicable method to detect and also characterise these events. In this study, two dust enhancement algorithms were used to investigate the behaviour of dust events using satellite data, compare with numerical model output and other satellite products and finally validate with in-situ measurements. The results show that the use of thermal infrared algorithm enhances dust more accurately. The aerosol optical depth from MODIS and output of a Dust Regional Atmospheric Model (DREAM8b) are applied for comparing the results. Ground-based observations of synoptic stations and sun photometers are used for validating the satellite products. To find the transport direction and the locations of the dust sources and the synoptic situations during these events, model outputs (HYSPLIT and NCEP/NCAR) are presented. Comparing the results with synoptic maps and the model outputs showed that using enhancement algorithms is a more reliable way than any other MODIS products or model outputs to enhance the dust.
NASA Technical Reports Server (NTRS)
Fischer, Andrew; Moreno-Mardinan, Max; Ryan, John P.
2012-01-01
Recent advances in satellite and airborne remote sensing, such as improvements in sensor and algorithm calibrations, processing techniques and atmospheric correction procedures have provided for increased coverage of remote-sensing, ocean-color products for coastal regions. In particular, for the Moderate Resolution Imaging Spectrometer (MODIS) sensor calibration updates, improved aerosol retrievals and new aerosol models has led to improved atmospheric correction algorithms for turbid waters and have improved the retrieval of ocean color in coastal waters. This has opened the way for studying ocean phenomena and processes at finer spatial scales, such as the interactions at the land-sea interface, trends in coastal water quality and algal blooms. Human population growth and changes in coastal management practices have brought about significant changes in the concentrations of organic and inorganic, particulate and dissolved substances entering the coastal ocean. There is increasing concern that these inputs have led to declines in water quality and have increase local concentrations of phytoplankton, which cause harmful algal blooms. In two case studies we present MODIS observations of fluorescence line height (FLH) to 1) assess trends in water quality for Tampa Bay, Florida and 2) illustrate seasonal and annual variability of algal bloom activity in Monterey Bay, California as well as document estuarine/riverine plume induced red tide events. In a comprehensive analysis of long term (2003-2011) in situ monitoring data and satellite imagery from Tampa Bay we assess the validity of the MODIS FLH product against chlorophyll-a and a suite of water quality parameters taken in a variety of conditions throughout a large optically complex estuarine system. A systematic analysis of sampling sites throughout the bay is undertaken to understand how the relationship between FLH and in situ chlorophyll-a responds to varying conditions and to develop a near decadal trend in water quality changes. In situ monitoring locations that correlated well with satellite imagery were in depths greater than seven meters and were located over five kilometers from shore. Water quality parameter of total nitrogen, phosphorous, turbidity and biological oxygen demand had high correlations with these sites, as well. Satellite FLH estimates show improving water quality from 2003-2007 with a slight decline up through 2011. Dinoflagellate blooms in Monterey Bay, California (USA) have recently increased in frequency and intensity. Nine years of MODIS FLH observations are used to describe the annual and seasonal variability of bloom activity within the Bay. Three classes of MODIS algorithms were correlated against in situ chlorophyll measurements. The FLH algorithm provided the most robust estimate of bloom activity. Elevated concentrations of phytoplankton were evident during the months of August-November, a period during which increased occurrences of dinoflagellate blooms have been observed in situ. Seasonal patterns of FLH show the on- and offshore movement of areas of high phytoplankton biomass between oceanographic seasons. Higher concentrations of phytoplankton are also evident in the vicinity of the land-based nutrient sources and outflows, and the cyclonic bay-wide circulation can transport these nutrients to the northern Bay bloom incubation region. Both of these case studies illustrate the utility MODIS FLH observations in supporting management decisions in coastal and estuarine waters.
Clear-sky remote sensing in the vicinity of clouds: what we learned from MODIS and CALIPSO
NASA Astrophysics Data System (ADS)
Marshak, Alexander; Varnai, Tamas; Wen, Guoyong; Cahalan, Robert
Studies on aerosol direct and indirect effects require a precise separation of cloud-free and cloudy air. However, separation between cloud-free and cloudy areas from remotely-sensed measurements is ambiguous. The transition zone in the regions around clouds often stretches out tens of km, which are neither precisely clear nor precisely cloudy. We study the transition zone between cloud-free and cloudy air using MODerate-resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) measurements. Both instruments show enhanced clear-sky reflectance (MODIS) and clear-sky backscatterer (CALIPSO) near clouds. Analyzing a large dataset of MODIS observations we examine the effect of three-dimensional (3D) radiative interactions between clouds and cloud-free areas, also known as a cloud adjacency effect. Comparing with CALIPSO clear-sky backscatterer measurements, we show that the cloud adjacency effect may be responsible for a large portion of the enhanced clear sky reflectance observed by MODIS. While aerosol particles are responsible for a large part of the near-cloud enhancements in CALIPSO observations, misidentified or undetected cloud particles are also likely to contribute. As a result, both the nature of these particles (cloud vs. aerosol) and the processes creating them need to be clarified using a quantitative assessment of remote sensing limitations in particle detection and identification. The width and ubiquity of the transition zone near clouds imply that studies of aerosol-cloud interactions and aerosol direct radiative effects need to account for aerosol changes near clouds. Not accounted, these changes can cause systematic biases toward smaller aerosol radiative forcing. On the other hand, including aerosol products near clouds despite their uncertainties may overestimate aerosol radiative forcing. Therefore, there is an urgent need for developing methods that can assess and account for remote sensing challenges and thus allow for including the transition zone into the study. We describe a simple model that estimates the cloud-induced enhanced reflectances of cloud-free areas in the vicinity of clouds. The model assumes that the enhancement is due entirely to Rayleigh scattering and is therefore bigger at shorter wavelengths, thus creating a so-called apparent "bluing" of aerosols in remote sensing retrievals.
NASA Astrophysics Data System (ADS)
Naeger, Aaron R.; Gupta, Pawan; Zavodsky, Bradley T.; McGrath, Kevin M.
2016-06-01
The primary goal of this study was to generate a near-real time (NRT) aerosol optical depth (AOD) product capable of providing a comprehensive understanding of the aerosol spatial distribution over the Pacific Ocean, in order to better monitor and track the trans-Pacific transport of aerosols. Therefore, we developed a NRT product that takes advantage of observations from both low-earth orbiting and geostationary satellites. In particular, we utilize AOD products from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Suomi National Polar-orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) satellites. Then, we combine these AOD products with our own retrieval algorithms developed for the NOAA Geostationary Operational Environmental Satellite (GOES-15) and Japan Meteorological Agency (JMA) Multi-functional Transport Satellite (MTSAT-2) to generate a NRT daily AOD composite product. We present examples of the daily AOD composite product for a case study of trans-Pacific transport of Asian pollution and dust aerosols in mid-March 2014. Overall, the new product successfully tracks this aerosol plume during its trans-Pacific transport to the west coast of North America as the frequent geostationary observations lead to a greater coverage of cloud-free AOD retrievals equatorward of about 35° N, while the polar-orbiting satellites provide a greater coverage of AOD poleward of 35° N. However, we note several areas across the domain of interest from Asia to North America where the GOES-15 and MTSAT-2 retrieval algorithms can introduce significant uncertainties into the new product.
An enhanced TIMESAT algorithm for estimating vegetation phenology metrics from MODIS data
Tan, B.; Morisette, J.T.; Wolfe, R.E.; Gao, F.; Ederer, G.A.; Nightingale, J.; Pedelty, J.A.
2011-01-01
An enhanced TIMESAT algorithm was developed for retrieving vegetation phenology metrics from 250 m and 500 m spatial resolution Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation indexes (VI) over North America. MODIS VI data were pre-processed using snow-cover and land surface temperature data, and temporally smoothed with the enhanced TIMESAT algorithm. An objective third derivative test was applied to define key phenology dates and retrieve a set of phenology metrics. This algorithm has been applied to two MODIS VIs: Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI). In this paper, we describe the algorithm and use EVI as an example to compare three sets of TIMESAT algorithm/MODIS VI combinations: a) original TIMESAT algorithm with original MODIS VI, b) original TIMESAT algorithm with pre-processed MODIS VI, and c) enhanced TIMESAT and pre-processed MODIS VI. All retrievals were compared with ground phenology observations, some made available through the National Phenology Network. Our results show that for MODIS data in middle to high latitude regions, snow and land surface temperature information is critical in retrieving phenology metrics from satellite observations. The results also show that the enhanced TIMESAT algorithm can better accommodate growing season start and end dates that vary significantly from year to year. The TIMESAT algorithm improvements contribute to more spatial coverage and more accurate retrievals of the phenology metrics. Among three sets of TIMESAT/MODIS VI combinations, the start of the growing season metric predicted by the enhanced TIMESAT algorithm using pre-processed MODIS VIs has the best associations with ground observed vegetation greenup dates. ?? 2010 IEEE.
An Enhanced TIMESAT Algorithm for Estimating Vegetation Phenology Metrics from MODIS Data
NASA Technical Reports Server (NTRS)
Tan, Bin; Morisette, Jeffrey T.; Wolfe, Robert E.; Gao, Feng; Ederer, Gregory A.; Nightingale, Joanne; Pedelty, Jeffrey A.
2012-01-01
An enhanced TIMESAT algorithm was developed for retrieving vegetation phenology metrics from 250 m and 500 m spatial resolution Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation indexes (VI) over North America. MODIS VI data were pre-processed using snow-cover and land surface temperature data, and temporally smoothed with the enhanced TIMESAT algorithm. An objective third derivative test was applied to define key phenology dates and retrieve a set of phenology metrics. This algorithm has been applied to two MODIS VIs: Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI). In this paper, we describe the algorithm and use EVI as an example to compare three sets of TIMESAT algorithm/MODIS VI combinations: a) original TIMESAT algorithm with original MODIS VI, b) original TIMESAT algorithm with pre-processed MODIS VI, and c) enhanced TIMESAT and pre-processed MODIS VI. All retrievals were compared with ground phenology observations, some made available through the National Phenology Network. Our results show that for MODIS data in middle to high latitude regions, snow and land surface temperature information is critical in retrieving phenology metrics from satellite observations. The results also show that the enhanced TIMESAT algorithm can better accommodate growing season start and end dates that vary significantly from year to year. The TIMESAT algorithm improvements contribute to more spatial coverage and more accurate retrievals of the phenology metrics. Among three sets of TIMESAT/MODIS VI combinations, the start of the growing season metric predicted by the enhanced TIMESAT algorithm using pre-processed MODIS VIs has the best associations with ground observed vegetation greenup dates.
NASA Astrophysics Data System (ADS)
Liu, M.; Lin, J.; Boersma, F.; Pinardi, G.; Wang, Y.; Chimot, J.; Wagner, T.; Xie, P.; Eskes, H.; Van Roozendael, M.; Hendrick, F.
2017-12-01
Satellite retrieval of vertical column densities (VCDs) of tropospheric nitrogen dioxide (NO2) is influenced by aerosols substantially. Aerosols affect the retrieval of "effective cloud fraction (CF)" and "effective cloud top pressure (CP)" that are used in the subsequent NO2 retrieval to account for the presentence of clouds. And aerosol properties and vertical distributions directly affect the NO2 air mass factor (AMF) calculations. Our published POMINO algorithm uses a parallelized LIDORT-driven AMFv6 code to derive CF, CP and NO2 VCD. Daily information on aerosol optical properties are taken from GEOS-Chem simulations, with aerosol optical depth (AOD) further constrained by monthly MODIS AOD. However, the published algorithm does not include an observation-based constraint of aerosol vertical distribution. Here we construct a monthly climatological observation dataset of aerosol extinction profiles, based on Level-2 CALIOP data over 2007-2015, to further constrain aerosol vertical distributions. GEOS-Chem captures the temporal variations of CALIOP aerosol layer heights (ALH) but has an overall underestimate by about 0.3 km. It tends to overestimate the aerosol extinction by 10% below 2 km but with an underestimate by 30% above 2 km, leading to a low bias by 10-30% in the retrieved tropospheric NO2 VCD. After adjusting GEOS-Chem aerosol extinction profiles by the CALIOP monthly ALH climatology, the retrieved NO2 VCDs increase by 4-16% over China on a monthly basis in 2012. The improved NO2 VCDs are better correlated to independent MAX-DOAS observations at three sites than POMINO and DOMINO are - especially for the polluted cases, R2 reaches 0.76 for the adjusted POMINO, much higher than that for the published POMINO (0.68) and DOMINO (0.38). The newly retrieved CP increases by 60 hPa on average, because of a stronger aerosol screening effect. Compared to the CF used in DOMINO, which implicitly includes aerosol information, our improved CF is much lower and can reach a value of zero on actual cloud-free days. Overall, constraining aerosol vertical profiles greatly improves the retrievals of clouds and NO2 VCDs from satellite remote sensing. Our algorithm can be applied, with minimum modifications, to formaldehyde, sulfur dioxide and other species with similar retrieval methodologies.
Characterize Aerosols from MODIS/MISR/OMI/MERRA-2: Dynamic Image Browse Perspective
NASA Astrophysics Data System (ADS)
Wei, J. C.; Yang, W.; Shen, S.; Zhao, P.; Albayrak, A.; Johnson, J. E.; Kempler, S. J.; Pham, L.
2016-12-01
Among the known atmospheric constituents, aerosols still represent the greatest uncertainty in climate research. To understand the uncertainty is to bring altogether of observational (in-situ and remote sensing) and modeling datasets and inter-compare them synergistically for a wide variety of applications that can bring far-reaching benefits to the science community and the broader society. These benefits can best be achieved if these earth science data (satellite and modeling) are well utilized and interpreted. Unfortunately, this is not always the case, despite the abundance and relative maturity of numerous satellite-borne sensors routinely measure aerosols. There is often disagreement between similar aerosol parameters retrieved from different sensors, leaving users confused as to which sensors to trust for answering important science questions about the distribution, properties, and impacts of aerosols. NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) have developed multiple MAPSS (Multi-sensor Aerosol Products Sampling System) applications as a part of Giovanni (Geospatial Interactive Online Visualization and Analysis Interface) data visualization and analysis tool since 2007. The MAPSS database provides spatio-temporal statistics for multiple spatial spaceborne Level 2 aerosol products (MODIS Terra, MODIS Aqua, MISR, POLDER, OMI, CALIOP, SeaWiFS Deep Blue, and VIIRS) sampled over AERONET ground stations. In this presentation, I will demonstrate a new visualization service (NASA Level 2 Data Quality Visualization, DQViz) supporting various visualization and data accessing capabilities from satellite Level 2 (MODIS/MISR/OMI) and long term assimilated aerosols from NASA Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2 displaying at their own native physical-retrieved spatial resolution. Functionality will include selecting data sources (e.g., multiple parameters under the same measurement), defining area-of-interest and temporal extents, zooming, panning, overlaying, sliding, and data subsetting and reformatting.
Estimating Marine Aerosol Particle Volume and Number from Maritime Aerosol Network Data
NASA Technical Reports Server (NTRS)
Sayer, A. M.; Smirnov, A.; Hsu, N. C.; Munchak, L. A.; Holben, B. N.
2012-01-01
As well as spectral aerosol optical depth (AOD), aerosol composition and concentration (number, volume, or mass) are of interest for a variety of applications. However, remote sensing of these quantities is more difficult than for AOD, as it is more sensitive to assumptions relating to aerosol composition. This study uses spectral AOD measured on Maritime Aerosol Network (MAN) cruises, with the additional constraint of a microphysical model for unpolluted maritime aerosol based on analysis of Aerosol Robotic Network (AERONET) inversions, to estimate these quantities over open ocean. When the MAN data are subset to those likely to be comprised of maritime aerosol, number and volume concentrations obtained are physically reasonable. Attempts to estimate surface concentration from columnar abundance, however, are shown to be limited by uncertainties in vertical distribution. Columnar AOD at 550 nm and aerosol number for unpolluted maritime cases are also compared with Moderate Resolution Imaging Spectroradiometer (MODIS) data, for both the present Collection 5.1 and forthcoming Collection 6. MODIS provides a best-fitting retrieval solution, as well as the average for several different solutions, with different aerosol microphysical models. The average solution MODIS dataset agrees more closely with MAN than the best solution dataset. Terra tends to retrieve lower aerosol number than MAN, and Aqua higher, linked with differences in the aerosol models commonly chosen. Collection 6 AOD is likely to agree more closely with MAN over open ocean than Collection 5.1. In situations where spectral AOD is measured accurately, and aerosol microphysical properties are reasonably well-constrained, estimates of aerosol number and volume using MAN or similar data would provide for a greater variety of potential comparisons with aerosol properties derived from satellite or chemistry transport model data.
NASA Astrophysics Data System (ADS)
Singh, A. K.; Toshniwal, D.
2017-12-01
The MODIS Joint Atmosphere product, MODATML2 and MYDATML2 L2/3 provided by LAADS DAAC (Level-1 and Atmosphere Archive & Distribution System Distributed Active Archive Center) re-sampled from medium resolution MODIS Terra /Aqua Satellites data at 5km scale, contains Cloud Reflectance, Cloud Top Temperature, Water Vapor, Aerosol Optical Depth/Thickness, Humidity data. These re-sampled data, when used for deriving climatic effects of aerosols (particularly in case of cooling effect) still exposes limitations in presence of uncertainty measures in atmospheric artifacts such as aerosol, cloud, cirrus cloud etc. The effect of uncertainty measures in these artifacts imposes an important challenge for estimation of aerosol effects, adequately affecting precise regional weather modeling and predictions: Forecasting and recommendation applications developed largely depend on these short-term local conditions (e.g. City/Locality based recommendations to citizens/farmers based on local weather models). Our approach inculcates artificial intelligence technique for representing heterogeneous data(satellite data along with air quality data from local weather stations (i.e. in situ data)) to learn, correct and predict aerosol effects in the presence of cloud and other atmospheric artifacts, defusing Spatio-temporal correlations and regressions. The Big Data process pipeline consisting correlation and regression techniques developed on Apache Spark platform can easily scale for large data sets including many tiles (scenes) and over widened time-scale. Keywords: Climatic Effects of Aerosols, Situation-Aware, Big Data, Apache Spark, MODIS Terra /Aqua, Time Series
NASA Technical Reports Server (NTRS)
Zhang, Yan
2012-01-01
Quantifying above-cloud aerosols can help improve the assessment of aerosol intercontinental transport and climate impacts. Large-scale measurements of aerosol above low-level clouds had been generally unexplored until very recently when CALIPSO lidar started to acquire aerosol and cloud profiles in June 2006. Despite CALIPSO s unique capability of measuring above-cloud aerosol optical depth (AOD), such observations are substantially limited in spatial coverage because of the lidar s near-zero swath. We developed an approach that integrates measurements from A-Train satellite sensors (including CALIPSO lidar, OMI, and MODIS) to extend CALIPSO above-cloud AOD observations to substantially larger areas. We first examine relationships between collocated CALIPSO above-cloud AOD and OMI absorbing aerosol index (AI, a qualitative measure of AOD for elevated dust and smoke aerosol) as a function of MODIS cloud optical depth (COD) by using 8-month data in the Saharan dust outflow and southwest African smoke outflow regions. The analysis shows that for a given cloud albedo, above-cloud AOD correlates positively with AI in a linear manner. We then apply the derived relationships with MODIS COD and OMI AI measurements to derive above-cloud AOD over the whole outflow regions. In this talk, we will present spatial and day-to-day variations of the above-cloud AOD and the estimated direct radiative forcing by the above-cloud aerosols.
Trend analysis of the aerosol optical depth from fusion of MISR and MODIS retrievals over China
NASA Astrophysics Data System (ADS)
Guo, Jing; Gu, Xingfa; Yu, Tao; Cheng, Tianhai; Chen, Hao
2014-03-01
Atmospheric aerosol plays an important role in the climate change though direct and indirect processes. In order to evaluate the effects of aerosols on climate, it is necessary to have a research on their spatial and temporal distributions. Satellite aerosol remote sensing is a developing technology that may provide good temporal sampling and superior spatial coverage to study aerosols. The Moderate Resolution Imaging Spectroradiometer (MODIS) and Multi-angle Imaging Spectroradiometer (MISR) have provided aerosol observations since 2000, with large coverage and high accuracy. However, due to the complex surface, cloud contamination, and aerosol models used in the retrieving process, the uncertainties still exist in current satellite aerosol products. There are several observed differences in comparing the MISR and MODIS AOD data with the AERONET AOD. Combing multiple sensors could reduce uncertainties and improve observational accuracy. The validation results reveal that a better agreement between fusion AOD and AERONET AOD. The results confirm that the fusion AOD values are more accurate than single sensor. We have researched the trend analysis of the aerosol properties over China based on nine-year (2002-2010) fusion data. Compared with trend analysis in Jingjintang and Yangtze River Delta, the accuracy has increased by 5% and 3%, respectively. It is obvious that the increasing trend of the AOD occurred in Yangtze River Delta, where human activities may be the main source of the increasing AOD.
NASA Technical Reports Server (NTRS)
Kaufman, Yoram J.; Gobron, Nadine; Pinty, Bernard; Widlowski, Jean-Luc; Verstraete, Michel M.; Lau, William K. M. (Technical Monitor)
2001-01-01
The analysis of data from the MODIS instrument on the Terra platform to derive global distribution of aerosols assumes a set of relationships between the blue, rho (sub blue), the red, rho (sub red), and 2.1 micrometers, rho (sub 2.1), spectral channels. These relations have been established from a series of measurements indicating that rho (sub blue) approximately 0.5 rho (sub red) approximately 0.25 rho (sub 2.1). Here we use a model to describe the transfer of radiation through a vegetation canopy composed of randomly oriented leaves to assess the theoretical foundations for these relationships. The influence of varying fractional vegetation coverage is simulated simply as a linear combination of pure soil and pure vegetation conditions, also known as Independent Pixel Approximation (IPA). Calculations for a wide range of leaf area indices and vegetation fractions show that rho (sub blue) is consistently about 1/4 of rho (sub 2.1) as used by MODIS for the whole range of analyzed cases, except for very dark soils, such as those found in burn scars. For its part, the ratio rho (sub red)/rho (sub 2.1) varies from less than the empirically derived value of 1/2 for dense and dark vegetation (rho (sub 2.1) less than 0.1), to more than 1/2 for bright mixture of soil and vegetation. This is in agreement with measurements over uniform dense vegetation, but not with measurements over mixed dark scenes. In the later case, the discrepancy is probably mitigated by shadows due to uneven canopy and terrain on a large scale. It is concluded that the value of this ratio should ideally be made dependent on the land cover type in the operational processing of MODIS data, especially over dense forests.
Enhanced clear sky reflectance near clouds: What can be learned from it about aerosol properties?
NASA Astrophysics Data System (ADS)
Marshak, A.; Varnai, T.; Wen, G.; Chiu, J.
2009-12-01
Studies on aerosol direct and indirect effects require a precise separation of cloud-free and cloudy air. However, separation between cloud-free and cloudy areas from remotely-sensed measurements is ambiguous. The transition zone in the regions around clouds often stretches out tens of km, which are neither precisely clear nor precisely cloudy. We study the transition zone between cloud-free and cloudy air using MODerate-resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) measurements. Both instruments show enhanced clear-sky reflectance (MODIS) and clear-sky backscatterer (CALIPSO) near clouds. Analyzing a large dataset of MODIS observations, we examine the effect of three-dimensional radiative interactions between clouds and cloud-free areas, also known as a cloud adjacency effect. The cloud adjacency effect is well observed in MODIS clear-sky data in the vicinity of clouds. Comparing with CALIPSO clear-sky backscatterer measurements, we show that this effect may be responsible for a large portion of the enhanced clear-sky reflectance observed by MODIS. Finally, we describe a simple model that estimates the cloud-induced enhanced reflectances of cloud-free areas in the vicinity of clouds. The model assumes that the enhancement is due entirely to Rayleigh scattering and is therefore bigger at shorter wavelengths, thus creating a so-called apparent “bluing” of aerosols in remote sensing retrievals.
Aerosol Optical Depth Changes in Version 4 CALIPSO Level 2 Product
NASA Astrophysics Data System (ADS)
Kim, M. H.; Omar, A. H.; Tackett, J. L.; Vaughan, M.; Winker, D. M.; Trepte, C. R.; Hu, Y.; Liu, Z.
2017-12-01
The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) version 4 (V4) products were released in November 2016 with substantial enhancements. There have been improvements in the V4 CALIOP level 2 aerosol optical depth (AOD) compared to V3 (version 3) due to various factors. To analyze the AOD changes we selected every bin whose the vertical feature mask (VFM) is determined as aerosol for either V3 or V4 (or both) from the CALIOP level 2 profile product from 2007 to 2009. We isolated the AOD differences due to changes in six factors: layer detection, cloud-aerosol discrimination (CAD), surface detection, stratospheric aerosol, aerosol subtype, and lidar ratio. Total mean (± standard deviation) column AOD increases from V3 in V4 by 0.051±0.296 and 0.075±0.383 for daytime and nighttime, respectively. Dominant reasons for AOD change are differences in aerosol layer detection, CAD, aerosol subtype, and lidar ratio between V3 and V4 with AOD changes of 0.011 (0.027), 0.018 (0.015), -0.002 (0.009), 0.016 (0.017) for daytime (nighttime), respectively. CALIOP AOD was compared with the Moderate Resolution Imaging Spectroradiometer (MODIS) and Aerosol Robotic Network (AERONET) for both V3 and V4. The comparison shows that mean AOD biases with AERONET and MODIS (collection 6, over ocean) decrease in V4 compared to V3. Mean AOD difference with MODIS for cloud-screened data changes from -0.012±0.079 in V3 to -0.008±0.067 in V4. Mean AOD difference with AERONET is -0.071±0.207 and -0.023±0.233 for V3 and V4, respectively. There is reduction in the CALIOP AOD negative bias with respect to both MODIS and AERONET.
Validation of high-resolution MAIAC aerosol product over South America
NASA Astrophysics Data System (ADS)
Martins, V. S.; Lyapustin, A.; de Carvalho, L. A. S.; Barbosa, C. C. F.; Novo, E. M. L. M.
2017-07-01
Multiangle Implementation of Atmospheric Correction (MAIAC) is a new Moderate Resolution Imaging Spectroradiometer (MODIS) algorithm that combines time series approach and image processing to derive surface reflectance and atmosphere products, such as aerosol optical depth (AOD) and columnar water vapor (CWV). The quality assessment of MAIAC AOD at 1 km resolution is still lacking across South America. In the present study, critical assessment of MAIAC AOD550 was performed using ground-truth data from 19 Aerosol Robotic Network (AERONET) sites over South America. Additionally, we validated the MAIAC CWV retrievals using the same AERONET sites. In general, MAIAC AOD Terra/Aqua retrievals show high agreement with ground-based measurements, with a correlation coefficient (R) close to unity (RTerra:0.956 and RAqua: 0.949). MAIAC accuracy depends on the surface properties and comparisons revealed high confidence retrievals over cropland, forest, savanna, and grassland covers, where more than 2/3 ( 66%) of retrievals are within the expected error (EE = ±(0.05 + 0.05 × AOD)) and R exceeding 0.86. However, AOD retrievals over bright surfaces show lower correlation than those over vegetated areas. Both MAIAC Terra and Aqua retrievals are similarly comparable to AERONET AOD over the MODIS lifetime (small bias offset 0.006). Additionally, MAIAC CWV presents quantitative information with R 0.97 and more than 70% of retrievals within error (±15%). Nonetheless, the time series validation shows an upward bias trend in CWV Terra retrievals and systematic negative bias for CWV Aqua. These results contribute to a comprehensive evaluation of MAIAC AOD retrievals as a new atmospheric product for future aerosol studies over South America.
NASA Astrophysics Data System (ADS)
Hyer, E. J.; Reid, J. S.
2006-12-01
As more forecast models aim to include aerosol and chemical species, there is a need for source functions for biomass burning emissions that are accurate, robust, and operable in real-time. NAAPS is a global aerosol forecast model running every six hours and forecasting distributions of biomass burning, industrial sulfate, dust, and sea salt aerosols. This model is run operationally by the U.S. Navy as an aid to planning. The smoke emissions used as input to the model are calculated from the data collected by the FLAMBE system, driven by near-real-time active fire data from GOES WF_ABBA and MODIS Rapid Response. The smoke source function uses land cover data to predict properties of detected fires based on literature data from experimental burns. This scheme is very sensitive to the choice of land cover data sets. In areas of rapid land cover change, the use of static land cover data can produce artifactual changes in emissions unrelated to real changes in fire patterns. In South America, this change may be as large as 40% over five years. We demonstrate the impact of a modified land cover scheme on FLAMBE emissions and NAAPS forecasts, including a fire size algorithm developed using MODIS burned area data. We also describe the effects of corrections to emissions estimates for cloud and satellite coverage. We outline areas where existing data sources are incomplete and improvements are required to achieve accurate modeling of biomass burning emissions in real time.
NASA Astrophysics Data System (ADS)
Nakajima, Teruyuki; Hashimoto, Makiko; Takenaka, Hideaki; Goto, Daisuke; Oikawa, Eiji; Suzuki, Kentaroh; Uchida, Junya; Dai, Tie; Shi, Chong
2017-04-01
The rapid growth of satellite remote sensing technologies in the last two decades widened the utility of satellite data for understanding climate impacts of aerosols and clouds. The climate modeling community also has received the benefit of the earth observation and nowadays closed-collaboration of the two communities make us possible to challenge various applications for societal problems, such as for global warming and global-scale air pollution and others. I like to give several thoughts of new algorithm developments, model use of satellite data for climate impact studies and societal applications related with aerosols and clouds. Important issues are 1) Better aerosol detection and solar energy application using expanded observation ability of the third generation geostationary satellites, i.e. Himawari-8, GOES-R and future MTG, 2) Various observation functions by directional, polarimetric, and high resolution near-UV band by MISR, POLDER&PARASOL, GOSAT/CAI and future GOSAT2/CAI2, 3) Various applications of general purpose-imagers, MODIS, VIIRS and future GCOM-C/SGLI, and 4) Climate studies of aerosol and cloud stratification and convection with active and passive sensors, especially climate impact of BC aerosols using CLOUDSAT&CALIPSO and future Earth Explorer/EarthCARE.
Assessment of OMI Near-UV Aerosol Optical Depth over Land
NASA Technical Reports Server (NTRS)
Ahn, Changwoo; Torres, Omar; Jethva, Hiren
2014-01-01
This is the first comprehensive assessment of the aerosol optical depth (AOD) product retrieved from the near-UV observations by the Ozone Monitoring Instrument (OMI) onboard the Aura satellite. The OMI-retrieved AOD by the ultraviolet (UV) aerosol algorithm (OMAERUV version 1.4.2) was evaluated using collocated Aerosol Robotic Network (AERONET) level 2.0 direct Sun AOD measurements over 8 years (2005-2012). A time series analysis of collocated satellite and ground-based AOD observations over 8 years shows no discernible drift in OMI's calibration. A rigorous validation analysis over 4 years (2005-2008) was carried out at 44 globally distributed AERONET land sites. The chosen locations are representative of major aerosol types such as smoke from biomass burning or wildfires, desert mineral dust, and urban/industrial pollutants. Correlation coefficient (p) values of 0.75 or better were obtained at 50 percent of the sites with about 33 percent of the sites in the analysis reporting regression line slope values larger than 0.70 but always less than unity. The combined AERONET-OMAERUV analysis of the 44 sites yielded a p of 0.81, slope of 0.79, Y intercept of 0.10, and 65 percent OMAERUV AOD falling within the expected uncertainty range (largest of 30 percent or 0.1) at 440 nanometers. The most accurate OMAERUV retrievals are reported over northern Africa locations where the predominant aerosol type is desert dust and cloud presence is less frequent. Reliable retrievals were documented at many sites characterized by urban-type aerosols with low to moderate AOD values, concentrated in the boundary layer. These results confirm that the near-ultraviolet observations are sensitive to the entire aerosol column. A simultaneous comparison of OMAERUV, Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue, and Multiangle Imaging Spectroradiometer (MISR) AOD retrievals to AERONET measurements was also carried out to evaluate the OMAERUV accuracy in relation to those of the standard aerosol satellite products. The outcome of the comparison indicates that OMAERUV, MODIS Deep Blue, and MISR retrieval accuracies in arid and semiarid environments are statistically comparable.
NASA Technical Reports Server (NTRS)
Gasso, S.; Hegg, D. A.; Covert, D. S.; Collins, D.; Noone, K. J.; Oestroem, E.; Schmid, B.; Russell, P. B.; Livingston, J. M.; Durkee, P. A.
2000-01-01
Aerosol scattering coefficients (sigma(sub sp)) have been measured over the ocean at different relative humidities (RH) as a function of altitude in the region surrounding the Canary Islands during the Second Aerosol Characterization Experiment (ACE-2) in June and July 1997. The data were collected by the University of Washington passive humidigraph (UWPH) mounted on the Pelican research aircraft. Concurrently, particle size distributions, absorption coefficients and aerosol optical depth were measured throughout 17 flights. A parameterization of sigma(sub sp) as a function of RH was utilized to assess the impact of aerosol hydration on the upwelling radiance (normalized to the solar constant and cosine of zenith angle). The top of the atmosphere radiance signal was simulated at wavelengths corresponding to visible and near-infrared bands of the EOS (Earth Observing System) AM-1 (Terra) detectors, MODIS (Moderate Resolution Imaging Spectroradiometer) and MISR (Multi-angle Imaging Spectroradiometer). The UWPH measured sigma(sub sp) at two RHs, one below and the other above ambient conditions. Ambient sigma(sub sp) was obtained by interpolation of these two measurements. The data were stratified in terms of three types of aerosols: Saharan dust, clean marine (marine boundary layer background) and polluted marine aerosols (i.e., two- or one-day old polluted aerosols advected from Europe). An empirical relation for the dependence of sigma(sub sp) on RH, defined by sigma(sub sp)(RH) = k.(1 - RH/100)(sup gamma), was used with the hygroscopic exponent gamma derived from the data. The following gamma values were obtained for the 3 aerosol types: gamma(dust) = 0.23 +/- 0.05, gamma(clean marine) = 0.69 +/- 0.06 and gamma(polluted marine) = 0.57 +/- 0.06. Based on the measured gammas, the above equation was utilized to derive aerosol models with different hygroscopicities. The satellite simulation signal code 6S was used to compute the upwelling radiance corresponding to each of those aerosol models at several ambient humidities. For the prelaunch estimated precision of the sensors and the assumed viewing geometry of the instrument, the simulations suggest that the spectral and angular dependence of the reflectance measured by MISR is not sufficient to distinguish aerosol models with various different combinations of values for dry composition, gamma and ambient RH. A similar behavior is observed for MODIS at visible wavelengths. However, the 2100 nm band of MODIS appears to be able to differentiate between at least same aerosol models with different aerosol hygroscopicity given the MODIS calibration error requirements. This result suggests the possibility of retrieval of aerosol hygroscopicity by MODIS.
NASA Astrophysics Data System (ADS)
Christensen, Matthew W.; Neubauer, David; Poulsen, Caroline A.; Thomas, Gareth E.; McGarragh, Gregory R.; Povey, Adam C.; Proud, Simon R.; Grainger, Roy G.
2017-11-01
Increased concentrations of aerosol can enhance the albedo of warm low-level cloud. Accurately quantifying this relationship from space is challenging due in part to contamination of aerosol statistics near clouds. Aerosol retrievals near clouds can be influenced by stray cloud particles in areas assumed to be cloud-free, particle swelling by humidification, shadows and enhanced scattering into the aerosol field from (3-D radiative transfer) clouds. To screen for this contamination we have developed a new cloud-aerosol pairing algorithm (CAPA) to link cloud observations to the nearest aerosol retrieval within the satellite image. The distance between each aerosol retrieval and nearest cloud is also computed in CAPA. Results from two independent satellite imagers, the Advanced Along-Track Scanning Radiometer (AATSR) and Moderate Resolution Imaging Spectroradiometer (MODIS), show a marked reduction in the strength of the intrinsic aerosol indirect radiative forcing when selecting aerosol pairs that are located farther away from the clouds (-0.28±0.26 W m-2) compared to those including pairs that are within 15 km of the nearest cloud (-0.49±0.18 W m-2). The larger aerosol optical depths in closer proximity to cloud artificially enhance the relationship between aerosol-loading, cloud albedo, and cloud fraction. These results suggest that previous satellite-based radiative forcing estimates represented in key climate reports may be exaggerated due to the inclusion of retrieval artefacts in the aerosol located near clouds.
Remote Sensing of Fires and Smoke from the Earth Observing System MODIS Instrument
NASA Technical Reports Server (NTRS)
Kaufman, Y. J.; Hao, W. M.; Justice, C.; Giglio, L.; Herring, D.; Einaudi, Franco (Technical Monitor)
2001-01-01
The talk will include review of the MODIS (Moderate Resolution Imaging Spectrometer) algorithms and performance e.g. the MODIS algorithm and the changes in the algorithm since launch. Comparison of MODIS and ASTER fire observations. Summary of the fall activity with the Forest Service in use of MODIS data for the fires in the North-West. Validation on the ground of the MODIS fire product.
NASA Astrophysics Data System (ADS)
Jethva, H. T.; Torres, O.; Waquet, F.; Chand, D.
2013-12-01
Atmospheric aerosols are known to produce a net cooling effect in the cloud-free conditions. However, when present over the reflective cloud decks, absorbing aerosols such as biomass burning generated smoke and wind-blown dust can potentially exert a large positive forcing through enhanced atmospheric heating resulting from cloud-aerosol radiative interactions. The interest on this aspect of aerosol science has grown significantly in the recent years. Particularly, development of the satellite-based retrieval techniques and unprecedented knowledge on the above-cloud aerosol optical depth (ACAOD) is of great relevance. A direct validation of satellite ACAOD is a difficult task primarily due to lack of ample in situ and/or remote sensing measurements of aerosols above cloud. In these circumstances, a comparative analysis on the inter-satellite ACAOD retrievals can be performed for the sack of consistency check. Here, we inter-compare the ACAOD of biomass burning plumes observed from different A-train sensors, i.e., MODIS [Jethva et al., 2013], CALIOP [Chand et al., 2008], POLDER [Waquet et al., 2009], and OMI [Torres et al., 2012]. These sensors have been shown to acquire sensitivity and independent capabilities to detect and retrieve aerosol loading above marine stratocumulus clouds--a kind of situation often found over the southeastern Atlantic Ocean during dry burning season. A systematic one-to-one comparison reveals that, in general, all passive sensors and CALIOP-based research methods retrieve comparable ACAOD over homogeneous cloud fields. The high-resolution sensors (MODIS and CALIOP) are able to retrieve aerosols over thin clouds but with larger discrepancies. Given the different types of sensor measurements processed with different algorithms, a reasonable agreement between them is encouraging. A direct validation of satellite-based ACAOD remains an open challenge for which dedicated field measurements over the region of frequent aerosol/cloud overlap are a prime requirement. Jethva, H., O. Torres, L. A. Remer, P. K. Bhartia (2013), A Color Ratio Method for Simultaneous Retrieval of Aerosol and Cloud Optical Thickness of Above-Cloud Absorbing Aerosols From Passive Sensors: Application to MODIS Measurements, Geoscience and Remote Sensing, IEEE Transactions on, 51(7), pp. 3862-3870, doi: 10.1109/TGRS.2012.2230008. Chand, D., T. L. Anderson, R. Wood, R. J. Charlson, Y. Hu, Z. Liu, and M. Vaughan (2008), Quantifying above-cloud aerosol using spaceborne lidar for improved understanding of cloudy-sky direct climate forcing, J. Geophys. Res., 113, D13206, doi:10.1029/2007JD009433. Waquet, F., J. Riedi, L. C. Labonnote, P. Goloub, B. Cairns, J.-L. Deuzeand, and D. Tanre (2009), Aerosol remote sensing over clouds using a-train observations, J. Atmos. Sci., 66(8), 2468-2480, doi: http://dx.doi.org/10.1175/2009JAS3026.1 Torres, O., H. Jethva, and P. K. Bhartia (2012), Retrieval of aerosol optical depth above clouds from OMI observations: Sensitivity analysis and case studies, J. Atmos. Sci., 69(3), 1037-1053, doi: http://dx.doi.org/10.1175/JAS-D-11-0130.
NASA Technical Reports Server (NTRS)
Yu, Hongbin; Chin, Mian; Remer, Lorraine A.; Kleidman, Richard G.; Bellouin, Nicolas; Bian, Huisheng; Diehl, Thomas
2009-01-01
In this study, we examine seasonal and geographical variability of marine aerosol fine-mode fraction (f(sub m)) and its impacts on deriving the anthropogenic component of aerosol optical depth (tau(sub a)) and direct radiative forcing from multispectral satellite measurements. A proxy of f(sub m), empirically derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 5 data, shows large seasonal and geographical variations that are consistent with the Goddard Chemistry Aerosol Radiation Transport (GOCART) and Global Modeling Initiative (GMI) model simulations. The so-derived seasonally and spatially varying f(sub m) is then implemented into a method of estimating tau(sub a) and direct radiative forcing from the MODIS measurements. It is found that the use of a constant value for fm as in previous studies would have overestimated Ta by about 20% over global ocean, with the overestimation up to 45% in some regions and seasons. The 7-year (2001-2007) global ocean average tau(sub a) is 0.035, with yearly average ranging from 0.031 to 0.039. Future improvement in measurements is needed to better separate anthropogenic aerosol from natural ones and to narrow down the wide range of aerosol direct radiative forcing.
NASA Astrophysics Data System (ADS)
Loria Salazar, S.; Arnott, W. P.; Moosmuller, H.; Colucci, D.
2012-12-01
Reno, Nevada, USA is subject to typical urban aerosol, wind-blown dust, and occasional biomass burning smoke from anthropogenic and natural fires. Reno has complex air flow at levels relevant for aerosol transport. At times recirculating mountain and urban flow arrives from the Sierra Nevada, San Francisco, CA and Sacramento, CA. The urban plumes are further modified by biogenic forest emissions and secondary aerosol formation during transport over the Sierra Nevada Mountains to Reno. This complicates the use of MODIS aerosol optical depth (AOD) for air quality measurements in Reno. Our laboratory at the University of Nevada Reno has collocated multispectral photoacoustic instruments and reciprocal nephelometers to measure light absorption and light scattering coefficients as well as an AERONET operated CIMEL CE-318 ground-based sunphotometer. Preliminary measurements from August 2011 indicate substantially larger Cimel AOD than could be accounted for by use of the in situ aerosol extinction measurements combined with mixing height estimate. This poster presents new results comparing AERONET AOD and single scattering albedo and MODIS AOD with in situ measurements for summer and fall 2012, along with extensive back trajectory analysis, to evaluate conditions when satellite measurement may be useful for air pollution applications in Reno.
How Well Will MODIS Measure Top of Atmosphere Aerosol Direct Radiative Forcing?
NASA Technical Reports Server (NTRS)
Remer, Lorraine A.; Kaufman, Yoram J.; Levin, Zev; Ghan, Stephen; Einaudi, Franco (Technical Monitor)
2000-01-01
The new generation of satellite sensors such as the Moderate Resolution Imaging Spectroradiometer (MODIS) will be able to detect and characterize global aerosols with an unprecedented accuracy. The question remains whether this accuracy will be sufficient to narrow the uncertainties in our estimates of aerosol radiative forcing at the top of the atmosphere. Satellite remote sensing detects aerosol optical thickness with the least amount of relative error when aerosol loading is high. Satellites are less effective when aerosol loading is low. We use the monthly mean results of two global aerosol transport models to simulate the spatial distribution of smoke aerosol in the Southern Hemisphere during the tropical biomass burning season. This spatial distribution allows us to determine that 87-94% of the smoke aerosol forcing at the top of the atmosphere occurs in grid squares with sufficient signal to noise ratio to be detectable from space. The uncertainty of quantifying the smoke aerosol forcing in the Southern Hemisphere depends on the uncertainty introduced by errors in estimating the background aerosol, errors resulting from uncertainties in surface properties and errors resulting from uncertainties in assumptions of aerosol properties. These three errors combine to give overall uncertainties of 1.5 to 2.2 Wm-2 (21-56%) in determining the Southern Hemisphere smoke aerosol forcing at the top of the atmosphere. The range of values depend on which estimate of MODIS retrieval uncertainty is used, either the theoretical calculation (upper bound) or the empirical estimate (lower bound). Strategies that use the satellite data to derive flux directly or use the data in conjunction with ground-based remote sensing and aerosol transport models can reduce these uncertainties.
Aerosol direct and indirect radiative effect over Eastern Mediterranean
NASA Astrophysics Data System (ADS)
Georgoulias, Aristeidis; Alexandri, Georgia; Zanis, Prodromos; Ntogras, Christos; Poeschl, Ulrich; Kourtidis, Kostas
In this work, we present results from the QUADIEEMS project which is focused on the aerosol-cloud relations and the aerosol direct and indirect radiative effect over the region of Eastern Mediterranean. First, a gridded dataset at a resolution of 0.1x0.1 degrees (~10km) with aerosol and cloud related parameters was compiled, using level-2 satellite observations from MODIS TERRA (3/2000-12/2012) and AQUA (7/2002-12/2012). The aerosol gridded dataset has been validated against sunphotometric measurements from 12 AERONET ground stations, showing that generally MODIS overestimates aerosol optical depth (AOD550). Then, the AOD550 and fine mode ratio (FMR550) data from MODIS were combined with aerosol index (AI) data from the Earth Probe TOMS and OMI satellite sensors, wind field data from the ERA-interim reanalysis and AOD550 data for various aerosol types from the GOCART model and the MACC reanalysis to quantify the relative contribution of different aerosol types (marine, dust, anthropogenic, fine-mode natural) to the total AOD550. The aerosol-cloud relations over the region were investigated with the use of the joint high resolution aerosol-cloud gridded dataset. Specifically, we focused on the seasonal relations between the cloud droplet number concentration (CDNC) and AOD550. The aerosol direct and first indirect radiative effect was then calculated for each aerosol type separately making use of the aerosol relative contribution to the total AOD550, the CDND-AOD550 relations and satellite-based parameterizations. The direct radiative effect was also quantified using simulations from a regional climate model (REGCM4), simulations with a radiative transfer model (SBDART) and the three methods were finally intervalidated.
Evaluation Of The MODIS-VIIRS Land Surface Reflectance Fundamental Climate Data Record.
NASA Astrophysics Data System (ADS)
Roger, J. C.; Vermote, E.; Skakun, S.; Murphy, E.; Holben, B. N.; Justice, C. O.
2016-12-01
The land surface reflectance is a fundamental climate data record at the basis of the derivation of other climate data records (Albedo, LAI/Fpar, Vegetation indices) and has been recognized as a key parameter in the understanding of the land-surface-climate processes. Here, we present the validation of the Land surface reflectance used for MODIS and VIIRS data. This methodology uses the 6SV Code and data from the AERONET network. The first part was to define a protocol to use the AERONET data. To correctly take into account the aerosol model, we used the aerosol microphysical properties provided by the AERONET network including size-distribution (%Cf, %Cc, rf, rc, σr, σc), complex refractive indices and sphericity. Over the 670 available AERONET sites, we selected 230 sites with sufficient data. To be useful for validation, the aerosol model should be readily available anytime, which is rarely the case. We then used regressions for each microphysical parameter using the aerosol optical thickness at 440nm and the Angström coefficient as parameters. Comparisons with the AERONET dataset give good APU (Accuracy-Precision-Uncertainties) for each parameter. The second part of the study relies on the theoretical land surface retrieval. We generated TOA synthetic data using aerosol models from AERONET and determined APU on the surface reflectance retrieval while applying the MODIS and VIRRS Atmospheric correction software. Over 250 AERONET sites, the global uncertainties are for MODIS band 1 (red) is always lower than 0.0015 (when surface reflectance is > 0.04). This very good result shows the validity of our reference. Then, we used this reference for validating the MODIS and VIIRS surface reflectance products. The overall accuracy clearly reaches specifications. Finally, we will present an error budget of the surface reflectance retrieval. Indeed, to better understand how to improve the methodology, we defined an exhaustive error budget. We included all inputs i.e. sensor, calibration, aerosol properties, atmospheric conditions… This latter work provides a lot of information, such as the aerosol optical thickness obviously drives the uncertainties of the retrieval, the absorption and the volume concentration of the fine aerosol mode have an important impact as well…
NASA Astrophysics Data System (ADS)
Wang, Chenxi; Yang, Ping; Nasiri, Shaima L.; Platnick, Steven; Baum, Bryan A.; Heidinger, Andrew K.; Liu, Xu
2013-02-01
A computationally efficient radiative transfer model (RTM) for calculating visible (VIS) through shortwave infrared (SWIR) reflectances is developed for use in satellite and airborne cloud property retrievals. The full radiative transfer equation (RTE) for combinations of cloud, aerosol, and molecular layers is solved approximately by using six independent RTEs that assume the plane-parallel approximation along with a single-scattering approximation for Rayleigh scattering. Each of the six RTEs can be solved analytically if the bidirectional reflectance/transmittance distribution functions (BRDF/BTDF) of the cloud/aerosol layers are known. The adding/doubling (AD) algorithm is employed to account for overlapped cloud/aerosol layers and non-Lambertian surfaces. Two approaches are used to mitigate the significant computational burden of the AD algorithm. First, the BRDF and BTDF of single cloud/aerosol layers are pre-computed using the discrete ordinates radiative transfer program (DISORT) implemented with 128 streams, and second, the required integral in the AD algorithm is numerically implemented on a twisted icosahedral mesh. A concise surface BRDF simulator associated with the MODIS land surface product (MCD43) is merged into a fast RTM to accurately account for non-isotropic surface reflectance. The resulting fast RTM is evaluated with respect to its computational accuracy and efficiency. The simulation bias between DISORT and the fast RTM is large (e.g., relative error >5%) only when both the solar zenith angle (SZA) and the viewing zenith angle (VZA) are large (i.e., SZA>45° and VZA>70°). For general situations, i.e., cloud/aerosol layers above a non-Lambertian surface, the fast RTM calculation rate is faster than that of the 128-stream DISORT by approximately two orders of magnitude.
NASA Astrophysics Data System (ADS)
Asmat, A.; Jalal, K. A.; Ahmad, N.
2018-02-01
The present study uses the Aerosol Optical Depth (AOD) retrieved from Moderate Imaging Resolution Spectroradiometer (MODIS) data for the period from January 2011 until December 2015 over an urban area in Kuching, Sarawak. The results show the minimum AOD value retrieved from MODIS is -0.06 and the maximum value is 6.0. High aerosol loading with high AOD value observed during dry seasons and low AOD monitored during wet seasons. Multi plane regression technique used to retrieve AOD from MODIS (AODMODIS) and different statistics parameter is proposed by using relative absolute error for accuracy assessment in spatial and temporal averaging approach. The AODMODIS then compared with AOD derived from Aerosol Robotic Network (AERONET) Sunphotometer (AODAERONET) and the results shows high correlation coefficient (R2) for AODMODIS and AODAERONET with 0.93. AODMODIS used as an input parameters into Santa Barbara Discrete Ordinate Radiative Transfer (SBDART) model to estimate urban radiative forcing at Kuching. The observed hourly averaged for urban radiative forcing is -0.12 Wm-2 for top of atmosphere (TOA), -2.13 Wm-2 at the surface and 2.00 Wm-2 in the atmosphere. There is a moderate relationship observed between urban radiative forcing calculated using SBDART and AERONET which are 0.75 at the surface, 0.65 at TOA and 0.56 in atmosphere. Overall, variation in AOD tends to cause large bias in the estimated urban radiative forcing.
Recent Update on MODIS/VIIRS Deep Blue Data Continuity and New Aerosol Products
NASA Technical Reports Server (NTRS)
Hsu, N. Christina; Sayer, Andrew M.; Lee, Jaehwa; Bettenhausen, Corey; Carletta, N.; Tsay, Si-Chee
2016-01-01
The MODIS VIIRS 2016 Science Team Meeting was held June 6-10, 2016 at the Sheraton in Silver Spring, MD. The organizers plan to post the presentations and posters here: http:modis.gsfc.nasa.govsci_teammeetings201606.
NASA Astrophysics Data System (ADS)
Kato, Seiji; Rose, Fred G.; Sun-Mack, Sunny; Miller, Walter F.; Chen, Yan; Rutan, David A.; Stephens, Graeme L.; Loeb, Norman G.; Minnis, Patrick; Wielicki, Bruce A.; Winker, David M.; Charlock, Thomas P.; Stackhouse, Paul W., Jr.; Xu, Kuan-Man; Collins, William D.
2011-10-01
One year of instantaneous top-of-atmosphere (TOA) and surface shortwave and longwave irradiances are computed using cloud and aerosol properties derived from instruments on the A-Train Constellation: the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite, the CloudSat Cloud Profiling Radar (CPR), and the Aqua Moderate Resolution Imaging Spectrometer (MODIS). When modeled irradiances are compared with those computed with cloud properties derived from MODIS radiances by a Clouds and the Earth's Radiant Energy System (CERES) cloud algorithm, the global and annual mean of modeled instantaneous TOA irradiances decreases by 12.5 W m-2 (5.0%) for reflected shortwave and 2.5 W m-2 (1.1%) for longwave irradiances. As a result, the global annual mean of instantaneous TOA irradiances agrees better with CERES-derived irradiances to within 0.5W m-2 (out of 237.8 W m-2) for reflected shortwave and 2.6W m-2 (out of 240.1 W m-2) for longwave irradiances. In addition, the global annual mean of instantaneous surface downward longwave irradiances increases by 3.6 W m-2 (1.0%) when CALIOP- and CPR-derived cloud properties are used. The global annual mean of instantaneous surface downward shortwave irradiances also increases by 8.6 W m-2 (1.6%), indicating that the net surface irradiance increases when CALIOP- and CPR-derived cloud properties are used. Increasing the surface downward longwave irradiance is caused by larger cloud fractions (the global annual mean by 0.11, 0.04 excluding clouds with optical thickness less than 0.3) and lower cloud base heights (the global annual mean by 1.6 km). The increase of the surface downward longwave irradiance in the Arctic exceeds 10 W m-2 (˜4%) in winter because CALIOP and CPR detect more clouds in comparison with the cloud detection by the CERES cloud algorithm during polar night. The global annual mean surface downward longwave irradiance of 345.4 W m-2 is estimated by combining the modeled instantaneous surface longwave irradiance computed with CALIOP and CPR cloud profiles with the global annual mean longwave irradiance from the CERES product (AVG), which includes the diurnal variation of the irradiance. The estimated bias error is -1.5 W m-2 and the uncertainty is 6.9 W m-2. The uncertainty is predominately caused by the near-surface temperature and column water vapor amount uncertainties.
Using MODIS Cloud Regimes to Sort Diagnostic Signals of Aerosol-Cloud-Precipitation Interactions
Oreopoulos, Lazaros; Cho, Nayeong; Lee, Dongmin
2018-01-01
Coincident multi-year measurements of aerosol, cloud, precipitation and radiation at near-global scales are analyzed to diagnose their apparent relationships as suggestive of interactions previously proposed based on theoretical, observational, and model constructs. Specifically, we examine whether differences in aerosol loading in separate observations go along with consistently different precipitation, cloud properties, and cloud radiative effects. Our analysis uses a cloud regime (CR) framework to dissect and sort the results. The CRs come from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor and are defined as distinct groups of cloud systems with similar co-variations of cloud top pressure and cloud optical thickness. Aerosol optical depth used as proxy for aerosol loading comes from two sources, MODIS observations, and the MERRA-2 re-analysis, and its variability is defined with respect to local seasonal climatologies. The choice of aerosol dataset impacts our results substantially. We also find that the responses of the marine and continental component of a CR are frequently quite disparate. Overall, CRs dominated by warm clouds tend to exhibit less ambiguous signals, but also have more uncertainty with regard to precipitation changes. Finally, we find weak, but occasionally systematic co-variations of select meteorological indicators and aerosol, which serves as a sober reminder that ascribing changes in cloud and cloud-affected variables solely to aerosol variations is precarious. PMID:29651373
Using MODIS Cloud Regimes to Sort Diagnostic Signals of Aerosol-Cloud-Precipitation Interactions.
Oreopoulos, Lazaros; Cho, Nayeong; Lee, Dongmin
2017-05-27
Coincident multi-year measurements of aerosol, cloud, precipitation and radiation at near-global scales are analyzed to diagnose their apparent relationships as suggestive of interactions previously proposed based on theoretical, observational, and model constructs. Specifically, we examine whether differences in aerosol loading in separate observations go along with consistently different precipitation, cloud properties, and cloud radiative effects. Our analysis uses a cloud regime (CR) framework to dissect and sort the results. The CRs come from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor and are defined as distinct groups of cloud systems with similar co-variations of cloud top pressure and cloud optical thickness. Aerosol optical depth used as proxy for aerosol loading comes from two sources, MODIS observations, and the MERRA-2 re-analysis, and its variability is defined with respect to local seasonal climatologies. The choice of aerosol dataset impacts our results substantially. We also find that the responses of the marine and continental component of a CR are frequently quite disparate. Overall, CRs dominated by warm clouds tend to exhibit less ambiguous signals, but also have more uncertainty with regard to precipitation changes. Finally, we find weak, but occasionally systematic co-variations of select meteorological indicators and aerosol, which serves as a sober reminder that ascribing changes in cloud and cloud-affected variables solely to aerosol variations is precarious.
NASA Technical Reports Server (NTRS)
King, M. D.
1992-01-01
The Moderate Resolution Imaging Spectrometer (MODIS) is an Earth-viewing sensor being developed as a facility instrument for the Earth Observing System (EOS) to be launched in the late 1990s. MODIS consists of two separate instruments that scan a swath width sufficient to provide nearly complete global coverage every two days from a polar-orbiting, Sun-synchronous, platform at an altitude of 705 km. Of primary interest for studies of atmospheric physics is the MODIS-N (nadir) instrument which will provide images in 36 spectral bands between 0.415 and 14.235 micrometers with spatial resoulutions of 250 m (2 bands), 500 m (5 bands) and 1000 m (29 bands). These bands have been carefully selected to enable advanced studies of land, ocean and atmosperhic processes. The intent of this lecture is to describe the current status of MODIS-N and its companion instrument MODIS-T (tilt), a tiltable cross-track scanning radiometer with 32 uniformly spaced channels between 0.410 and 0.875 micrometers, and to describe the physical principles behind the development of MODIS for the remote sensing of atmospheric properties. Primary emphasis will be placed on the main atmospheric applications of determining the optical, microphysical and physical properties of clouds and aerosol particles form spectral-reflection and thermal-emission measurements. In addition to cloud and aerosol properties, MODIS-N will be utilized for the determination of the total precipitable water vapor over land and atmospheric stability. The physical principles behind the determination of each of these atmospheric products will be described herein.
NASA Astrophysics Data System (ADS)
Park, S. S.; Kim, J.; Lee, H.; Torres, O.; Lee, K.-M.; Lee, S. D.
2015-03-01
The sensitivities of oxygen-dimer (O4) slant column densities (SCDs) to changes in aerosol layer height are investigated using simulated radiances by a radiative transfer model, Linearized Discrete Ordinate Radiative Transfer (LIDORT), and Differential Optical Absorption Spectroscopy (DOAS) technique. The sensitivities of the O4 SCDs to aerosol types and optical properties are also evaluated and compared. Among the O4 absorption bands at 340, 360, 380, and 477 nm, the O4 absorption band at 477 nm is found to be the most suitable to retrieve the aerosol effective height. However, the O4 SCD at 477 nm is significantly influenced not only by the aerosol layer effective height but also by aerosol vertical profiles, optical properties including single scattering albedo (SSA), aerosol optical depth (AOD), and surface albedo. Overall, the error of the retrieved aerosol effective height is estimated to be 414 m (16.5%), 564 m (22.4%), and 1343 m (52.5%) for absorbing, dust, and non-absorbing aerosol, respectively, assuming knowledge on the aerosol vertical distribution type. Using radiance data from the Ozone Monitoring Instrument (OMI), a new algorithm is developed to derive the aerosol effective height over East Asia after the determination of the aerosol type and AOD from the MODerate resolution Imaging Spectroradiometer (MODIS). The retrieved aerosol effective heights are lower by approximately 300 m (27 %) compared to those obtained from the ground-based LIDAR measurements.
NASA Astrophysics Data System (ADS)
Eck, T. F.; Holben, B. N.; Giles, D. M.; Smirnov, A.; Slutsker, I.; Sinyuk, A.; Schafer, J.; Sorokin, M. G.; Reid, J. S.; Sayer, A. M.; Hsu, N. Y. C.; Levy, R. C.; Lyapustin, A.; Wang, Y.; Rahman, M. A.; Liew, S. C.; Salinas Cortijo, S. V.; Li, T.; Kalbermatter, D.; Keong, K. L.; Elifant, M.; Aditya, F.; Mohamad, M.; Mahmud, M.; Chong, T. K.; Lim, H. S.; Choon, Y. E.; Deranadyan, G.; Kusumaningtyas, S. D. A.
2016-12-01
The strong El Nino event in 2015 resulted in below normal rainfall throughout Indonesia, which in turn allowed for exceptionally large numbers of biomass burning fires (including much peat burning) from Aug though Oct 2015. Over the island of Borneo, three AERONET sites measured monthly mean fine mode aerosol optical depth (AOD) at 500 nm from the spectral deconvolution algorithm in Sep and Oct ranging from 1.6 to 3.7, with daily average AOD as high as 6.1. In fact, the AOD was sometimes too high to obtain significant signal at mid-visible, therefore a newly developed algorithm in the AERONET Version 3 database was invoked to retain the measurements in as many of the longer wavelengths as possible. The AOD at longer wavelengths were then utilized to provide estimates of AOD at 550 nm with maximum values of 9 to 11. Additionally, satellite retrievals of AOD at 550 nm from MODIS data and the Dark Target, Deep Blue, and MAIAC algorithms were analyzed and compared to AERONET measured AOD. The AOD was sometimes too high for the satellite algorithms to make retrievals in the densest smoke regions. Since the AOD was often extremely high there was often insufficient AERONET direct sun signal at 440 nm for the larger solar zenith angles (> 50 degrees) required for almucantar retrievals. However, new hybrid sky radiance scans can attain sufficient scattering angle range even at small solar zenith angles when 440 nm direct beam irradiance can be accurately measured, thereby allowing for more retrievals and at higher AOD levels. The retrieved volume median radius of the fine mode increased from 0.18 to 0.25 micron as AOD increased from 1 to 3 (at 440 nm). These are very large size particles for biomass burning aerosol and are similar in size to smoke particles measured in Alaska during the very dry years of 2004 and 2005 (Eck et al. 2009) when peat soil burning also contributed to the fuel burned. The average single scattering albedo over the wavelength range of 440 to 1020 nm was very high ranging from 0.96 to 0.98 (spectrally flat), indicative of dominant smoldering phase combustion which produces very little black carbon. Additionally, we have analyzed measured (pyranometer) and modeled total solar flux at ground level for these extremely high aerosol loadings that resulted in significant attenuation of downwelling solar energy.
NASA Astrophysics Data System (ADS)
Mubenga, K.; Hoff, R.; McCann, K.; Chu, A.; Prados, A.
2006-05-01
The NOAA GOES Aerosol and Smoke Product (GASP) is a product displaying the Aerosol Optical Depth (AOD) over the United States. The GASP retrieval involves discriminating the upwelling radiance from the atmosphere from that of the variable underlying surface. Unlike other sensors with more visible and near- infrared spectral channels such as MODIS, the sensors on GOES 8 through 12 only have one visible and a several far infrared channels. The GASP algorithm uses the detection of the second-darkest pixel from the visible channel over a 28-day period as the reference from which a radiance look-up table gives the corresponding AOD. GASP is reliable in capturing the AOD during large events. As an example, GASP was able to precisely show the Alaska and British Columbia smoke plume advecting from Alaska to the northeastern U.S. during the summer of 2004. Knapp et al. (2005) has shown that the AOD retrieval for GOES- 8 is within +/-0.13 of AERONET ground data with a coefficient of correlation of 0.72. Prados (this meeting) will update that study. However, GASP may not be as reliable when it comes to observing smaller AOD events in the northeast where the surface brightness is relatively high. The presence of large cities, such as New York, increases the surface albedo and produces a bright background against which it may be difficult to deduce the AOD. The Moderate Resolution Imaging Spectroradiometer (MODIS) sensor on the Earth Observing System Terra and Aqua platforms provides an independent measurement of the surface albedo at a resolution greater than available on GOES. In this research, the MODIS and GOES surface albedo product for New York, Washington and Baltimore are compared in order to see how we can improve the AOD retrieval in urban areas for air quality applications. Ref: K. Knapp et al. 2005. Toward aerosol optical depth retrievals over land from GOES visible radiances: determining surface reflectance. Int.Journal of Remote Sensing 26, 4097-4116
NASA Technical Reports Server (NTRS)
Meyer, Kerry; Platnick, Steven; Oreopoulos, Lazaros; Lee, Dongmin
2013-01-01
Absorbing aerosols such as smoke strongly absorb solar radiation, particularly at ultraviolet and visible/near-infrared (VIS/NIR) wavelengths, and their presence above clouds can have considerable implications. It has been previously shown that they have a positive (i.e., warming) direct aerosol radiative effect (DARE) when overlying bright clouds. Additionally, they can cause biased passive instrument satellite retrievals in techniques that rely on VIS/NIR wavelengths for inferring the cloud optical thickness (COT) and effective radius (re) of underlying clouds, which can in turn yield biased above-cloud DARE estimates. Here we investigate Moderate Resolution Imaging Spectroradiometer (MODIS) cloud optical property retrieval biases due to overlying absorbing aerosols observed by Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and examine the impact of these biases on above-cloud DARE estimates. The investigation focuses on a region in the southeast Atlantic Ocean during August and September (2006-2011), where smoke from biomass burning in southern Africa overlies persistent marine boundary layer stratocumulus clouds. Adjusting for above-cloud aerosol attenuation yields increases in the regional mean liquid COT (averaged over all ocean-only liquid clouds) by roughly 6%; mean re increases by roughly 2.6%, almost exclusively due to the COT adjustment in the non-orthogonal retrieval space. It is found that these two biases lead to an underestimate of DARE. For liquid cloud Aqua MODIS pixels with CALIOP-observed above-cloud smoke, the regional mean above-cloud radiative forcing efficiency (DARE per unit aerosol optical depth (AOD)) at time of observation (near local noon for Aqua overpass) increases from 50.9Wm(sup-2)AOD(sup-1) to 65.1Wm(sup-2)AOD(sup -1) when using bias-adjusted instead of nonadjusted MODIS cloud retrievals.
MODIS Observations of Smoke and Fires
NASA Technical Reports Server (NTRS)
Kaufman, Yoram; Ichoku, Charles; Remer, Lorraine; Lau, William K. M. (Technical Monitor)
2002-01-01
The MODIS (Moderate Resolution Imaging Spectroradiometer) instruments collect daily measurements of our planet since early 2000 from the Terra spaceborne polar platform. It has unique channels to observe smoke over land and ocean and to observe fires. Using unsaturated channels at 3.9 micron MODIS detects the fires and estimates the fire radiative energy. Using solar channels in the visible (0.47 and 0.66 micron) and in the mid IR (2.1 micron) MODIS measures the smoke optical thickness distribution and evolution over the land. Seven Channels in the solar spectrum are used to detect the smoke properties and distribution over the oceans. Data from the Aerosol Robotic Network, are used to validate the MODIS observations. The MODIS aerosol data presented in a movie form is used to observe the generation of smoke plumes and their dispersion around the globe. For example a key conclusion is that smoke in particular from Southern Africa can pollute significantly the 'pristine' Southern Hemisphere zonal range of 45'S-60'S, and the Northern Pacific.
On the Specification of Smoke Injection Heights for Aerosol Forecasting
NASA Astrophysics Data System (ADS)
da Silva, A.; Schaefer, C.; Randles, C. A.
2014-12-01
The proper forecasting of biomass burning (BB) aerosols in global or regional transport models requires not only the specification of emission rates with sufficient temporal resolution but also the injection layers of such emissions. While current near realtime biomass burning inventories such as GFAS, QFED, FINN, GBBEP and FLAMBE provide such emission rates, it is left for each modeling system to come up with its own scheme for distributing these emissions in the vertical. A number of operational aerosol forecasting models deposits BB emissions in the near surface model layers, relying on the model's parameterization of turbulent and convective transport to determine the vertical mass distribution of BB aerosols. Despite their simplicity such schemes have been relatively successful reproducing the vertical structure of BB aerosols, except for those large fires that produce enough buoyancy to puncture the PBL and deposit the smoke at higher layers. Plume Rise models such as the so-called 'Freitas model', parameterize this sub-grid buoyancy effect, but require the specification of fire size and heat fluxes, none of which is readily available in near real-time from current remotely-sensed products. In this talk we will introduce a bayesian algorithm for estimating file size and heat fluxes from MODIS brightness temperatures. For small to moderate fires the Freitas model driven by these heat flux estimates produces plume tops that are highly correlated with the GEOS-5 model estimate of PBL height. Comparison to MINX plume height estimates from MISR indicates moderate skill of this scheme predicting the injection height of large fires. As an alternative, we make use of OMPS UV aerosol index data in combination with estimates of Overshooting Convective Tops (from MODIS and Geo-stationary satellites) to detect PyCu events and specify the BB emission vertical mass distribution in such cases. We will present a discussion of case studies during the SEAC4RS field campaign in August-September 2013.
Retrievals of Profiles of Fine And Coarse Aerosols Using Lidar And Radiometric Space Measurements
NASA Technical Reports Server (NTRS)
Kaufman, Yoram; Tanre, Didier; Leon, Jean-Francois; Pelon, Jacques; Lau, William K. M. (Technical Monitor)
2002-01-01
In couple of years we expect the launch of the CALIPSO lidar spaceborne mission designed to observe aerosols and clouds. CALIPSO will collect profiles of the lidar attenuated backscattering coefficients in two spectral wavelengths (0.53 and 1.06 microns). Observations are provided along the track of the satellite around the globe from pole to pole. The attenuated backscattering coefficients are sensitive to the vertical distribution of aerosol particles, their shape and size. However the information is insufficient to be mapped into unique aerosol physical properties and vertical distribution. Infinite number of physical solutions can reconstruct the same two wavelength backscattered profile measured from space. CALIPSO will fly in formation with the Aqua satellite and the MODIS spectro-radiometer on board. Spectral radiances measured by MODIS in six channels between 0.55 and 2.13 microns simultaneously with the CALIPSO observations can constrain the solutions and resolve this ambiguity, albeit under some assumptions. In this paper we describe the inversion method and apply it to aircraft lidar and MODIS data collected over a dust storm off the coast of West Africa during the SHADE experiment. It is shown that the product of the single scattering albedo, omega, and the phase function, P, for backscattering can be retrieved from the synergism between measurements avoiding a priori hypotheses required for inverting lidar measurements alone. The resultant value of (omega)P(180 deg.) = 0.016/sr are significantly different from what is expected using Mie theory, but are in good agreement with recent results obtained from lidar observations of dust episodes. The inversion is robust in the presence of noise of 10% and 20% in the lidar signal in the 0.53 and 1.06 pm channels respectively. Calibration errors of the lidar of 5 to 10% can cause an error in optical thickness of 20 to 40% respectively in the tested cases. The lidar calibration errors cause degradation in the ability to fit the MODIS data. Therefore the MODIS measurements can be used to identify the calibration problem and correct for it. The CALIPSO-MODIS measurements of the profiles of fine and coarse aerosols, together with CALIPSO measurements of clouds vertical distribution, is expected to be critically important in understanding aerosol transport across continents and political boundaries, and to study aerosol-cloud interaction and its effect on precipitation and global forcing of climate.
Aerosol Remote Sensing from Space -- What We've Learned, Where We're Heading
NASA Technical Reports Server (NTRS)
Kahn, Ralph
2010-01-01
The MISR and MODIS instruments aboard the NASA Earth Observing System's Terra Satellite have been collecting data containing information about the state of Earth's atmosphere and surface for over ten years. Among the retrieved quantities are amount and type of wildfire smoke, desert dust, volcanic effluent, urban and industrial pollution particles, and other aerosols. However, the broad scientific challenges of understanding aerosol impacts on climate and health place different, and very exacting demands on our measurement capabilities. And these data sets, though much more advanced in many respects than previous aerosol data records, are imperfect. In this presentation, I will summarize current understanding of MISR and MODIS aerosol product strengths and limitations, discuss how they relate to the bigger aerosol science questions we must address, and give my view of what we will need to do to progress.
Aerosol Remote Sensing from Space - Where We Stand, Where We're Heading
NASA Technical Reports Server (NTRS)
Kahn, Ralph
2011-01-01
The MISR and MODIS instruments aboard the NASA Earth Observing System's Terra Satellite have been collecting data containing information about the state of Earth's atmosphere and surface for over eleven years. Among the retrieved quantities are amount and type of wildfire smoke, desert dust, volcanic effluent, urban and industrial pollution particles, and other aerosols. However, the broad scientific challenges of understanding aerosol impacts on climate and health place different, and very exacting demands on our measurement capabilities. And these data sets, though much more advanced in many respects than previous aerosol data records, are imperfect. In this presentation, I will summarize current understanding of MISR and MODIS aerosol product strengths and limitations, discuss how they relate to the bigger aerosol science questions we must address, and give my view of the way forward.
Aerosol Remote Sensing from Space - Where We Stand, Where We're Heading
NASA Technical Reports Server (NTRS)
Kahn, Ralph A.
2013-01-01
The MISR and MODIS instruments aboard the NASA Earth Observing System's Terra Satellite have been collecting data containing information about the state of Earth's atmosphere and surface for over eleven years. Among the retrieved quantities are amount and type of wildfire smoke, desert dust, volcanic effluent, urban and industrial pollution particles, and other aerosols. However, the broad scientific challenges of understanding aerosol impacts on climate and health place different, and very exacting demands on our measurement capabilities. And these data sets, though much more advanced in many respects than previous aerosol data records, are imperfect. In this presentation, I will summarize current understanding of MISR and MODIS aerosol product strengths and limitations, discuss how they relate to the bigger aerosol science questions we must address, and give my view of the way forward.
NASA Astrophysics Data System (ADS)
Kim, Mijin; Kim, Jhoon; Yoon, Jongmin; Chung, Chu-Yong; Chung, Sung-Rae
2017-04-01
In 2010, the Korean geostationary earth orbit (GEO) satellite, the Communication, Ocean, and Meteorological Satellite (COMS), was launched including the Meteorological Imager (MI). The MI measures atmospheric condition over Northeast Asia (NEA) using a single visible channel centered at 0.675 μm and four IR channels at 3.75, 6.75, 10.8, 12.0 μm. The visible measurement can also be utilized for the retrieval of aerosol optical properties (AOPs). Since the GEO satellite measurement has an advantage for continuous monitoring of AOPs, we can analyze the spatiotemporal variation of the aerosol using the MI observations over NEA. Therefore, we developed an algorithm to retrieve aerosol optical depth (AOD) using the visible observation of MI, and named as MI Yonsei Aerosol Retrieval Algorithm (YAER). In this study, we investigated the accuracy of MI YAER AOD by comparing the values with the long-term products of AERONET sun-photometer. The result showed that the MI AODs were significantly overestimated than the AERONET values over bright surface in low AOD case. Because the MI visible channel centered at red color range, contribution of aerosol signal to the measured reflectance is relatively lower than the surface contribution. Therefore, the AOD error in low AOD case over bright surface can be a fundamental limitation of the algorithm. Meanwhile, an assumption of background aerosol optical depth (BAOD) could result in the retrieval uncertainty, also. To estimate the surface reflectance by considering polluted air condition over the NEA, we estimated the BAOD from the MODIS dark target (DT) aerosol products by pixel. The satellite-based AOD retrieval, however, largely depends on the accuracy of the surface reflectance estimation especially in low AOD case, and thus, the BAOD could include the uncertainty in surface reflectance estimation of the satellite-based retrieval. Therefore, we re-estimated the BAOD using the ground-based sun-photometer measurement, and investigated the effects of the BAOD assumption. The satellite-based BAOD was significantly higher than the ground-based value over urban area, and thus, resulted in the underestimation of surface reflectance and the overestimation of AOD. The error analysis of the MI AOD also showed sensitivity to cloud contamination, clearly. Therefore, improvements of cloud masking process in the developed single channel MI algorithm as well as the modification of the surface reflectance estimation will be required for the future study.
Effect of Cloud Fraction on Near-Cloud Aerosol Behavior Based on MODIS and CALIPSO Observations
NASA Technical Reports Server (NTRS)
Marshak, A.; Varnai, T.; Yang, W.
2015-01-01
Organizers of the MODIS-VIIRS Science Team Meeting, held May 18-22, 2015 in Silver Spring, MD plan to post the presentations and posters to the NASA MODIS website: http:modis.gsfc.nasa.govsci_teammeetings201505index.php. The MODIS Science Team Meeting is held twice a year, so that the members of the science team may assemble and discuss data they have collected, ideas they have formed, and future issues that apply to the MODIS Mission.
NASA Technical Reports Server (NTRS)
Guo, Yanjuan; Tian, Baijun; Kahn, Ralph A.; Kalashnikova, Olga; Wong, Sun; Waliser, Duane E.
2013-01-01
In this study, Moderate Resolution Imaging Spectroradiometer (MODIS) fine mode fraction and Multi-angle Imaging SpectroRadiometer (MISR) nonspherical fraction data are used to derive dust and smoke aerosol optical thickness (T(sub dust) and T(sub smoke)) over the tropical Atlantic in a complementary way: due to its wider swath, MODIS has 3-4 times greater sampling than MISR, but MISR dust discrimination is based on particle shape retrievals, whereas an empirical scheme is used for MODIS. MODIS and MISR show very similar dust and smoke winter climatologies. T(sub dust) is the dominant aerosol component over the tropical Atlantic, accounting for 40-70 percent of the total aerosol optical thickness (AOT), whereas T(sub smoke) is significantly smaller than T(sub dust). The consistency and high correlation between these climatologies and their daily variations lends confidence to their use for investigating the relative dust and smoke contributions to the total AOT variation associated with the Madden-Julian Oscillation (MJO). The temporal evolution and spatial patterns of the tdus anomalies associated with the MJO are consistent between MODIS and MISR: the magnitude of MJO-realted T(sub dust) anomalies is comparable to or even larger than that of the total T, while the T(sub smoke) anomaly represents about 15 percent compared to the total, which is quite different from their relative magnitudes to the total T on the climatological time scale. This suggests that dust and smoke are not influenced by the MJO in the same way. Based on correlation analysis, dust is strongly influenced by the MJO-modulated trade wind and precipitation anomalies, and can last as long as one MJO phase, whereas smoke is less affected.
Recent Short Term Global Aerosol Trends over Land and Ocean Dominated by Biomass Burning
NASA Technical Reports Server (NTRS)
Remer, Lorraine A.; Koren, Ilan; Kleidman, RIchard G.; Levy, Robert C.; Martins, J. Vanderlei; Kim, Kyu-Myong; Tanre, Didier; Mattoo, Shana; Yu, Hongbin
2007-01-01
NASA's MODIS instrument on board the Terra satellite is one of the premier tools to assess aerosol over land and ocean because of its high quality calibration and consistency. We analyze Terra-MODIS's seven year record of aerosol optical depth (AOD) observations to determine whether global aerosol has increased or decreased during this period. This record shows that AOD has decreased over land and increased over ocean. Only the ocean trend is statistically significant and corresponds to an increase in AOD of 0.009, or a 15% increase from background conditions. The strongest increasing trends occur over regions and seasons noted for strong biomass burning. This suggests that biomass burning aerosol dominates the increasing trend over oceans and mitigates the otherwise mostly negative trend over the continents.
Wang, Tongtong; Xiao, Zhiqiang; Liu, Zhigang
2017-01-01
Leaf area index (LAI) is an important biophysical parameter and the retrieval of LAI from remote sensing data is the only feasible method for generating LAI products at regional and global scales. However, most LAI retrieval methods use satellite observations at a specific time to retrieve LAI. Because of the impacts of clouds and aerosols, the LAI products generated by these methods are spatially incomplete and temporally discontinuous, and thus they cannot meet the needs of practical applications. To generate high-quality LAI products, four machine learning algorithms, including back-propagation neutral network (BPNN), radial basis function networks (RBFNs), general regression neutral networks (GRNNs), and multi-output support vector regression (MSVR) are proposed to retrieve LAI from time-series Moderate Resolution Imaging Spectroradiometer (MODIS) reflectance data in this study and performance of these machine learning algorithms is evaluated. The results demonstrated that GRNNs, RBFNs, and MSVR exhibited low sensitivity to training sample size, whereas BPNN had high sensitivity. The four algorithms performed slightly better with red, near infrared (NIR), and short wave infrared (SWIR) bands than red and NIR bands, and the results were significantly better than those obtained using single band reflectance data (red or NIR). Regardless of band composition, GRNNs performed better than the other three methods. Among the four algorithms, BPNN required the least training time, whereas MSVR needed the most for any sample size. PMID:28045443
Wang, Tongtong; Xiao, Zhiqiang; Liu, Zhigang
2017-01-01
Leaf area index (LAI) is an important biophysical parameter and the retrieval of LAI from remote sensing data is the only feasible method for generating LAI products at regional and global scales. However, most LAI retrieval methods use satellite observations at a specific time to retrieve LAI. Because of the impacts of clouds and aerosols, the LAI products generated by these methods are spatially incomplete and temporally discontinuous, and thus they cannot meet the needs of practical applications. To generate high-quality LAI products, four machine learning algorithms, including back-propagation neutral network (BPNN), radial basis function networks (RBFNs), general regression neutral networks (GRNNs), and multi-output support vector regression (MSVR) are proposed to retrieve LAI from time-series Moderate Resolution Imaging Spectroradiometer (MODIS) reflectance data in this study and performance of these machine learning algorithms is evaluated. The results demonstrated that GRNNs, RBFNs, and MSVR exhibited low sensitivity to training sample size, whereas BPNN had high sensitivity. The four algorithms performed slightly better with red, near infrared (NIR), and short wave infrared (SWIR) bands than red and NIR bands, and the results were significantly better than those obtained using single band reflectance data (red or NIR). Regardless of band composition, GRNNs performed better than the other three methods. Among the four algorithms, BPNN required the least training time, whereas MSVR needed the most for any sample size.
Aerosol Mapping From Space: Strengths, Limitations, and Applications
NASA Technical Reports Server (NTRS)
Kahn, Ralph
2010-01-01
The aerosol data products from the NASA Earth Observing System's MISR and MODIS instruments provide significant advances in regional and global aerosol optical depth (AOD) mapping, aerosol type measurement, and source plume characterization from space. These products have been and are being used for many applications, ranging from regional air quality assessment, to aerosol air mass type identification and evolution, to wildfire smoke injection height and aerosol transport model validation. However, retrieval uncertainties and coverage gaps still limit the quantitative constraints these satellite data place on some important questions, such as global-scale long-term trends and direct aerosol radiative forcing. Major advances in these areas seem to require a different paradigm, involving the integration of satellite with suborbital data and with models. This presentation will briefly summarize where we stand, and what incremental improvements we can expect, with the current MISR and MODIS aerosol products, and will then elaborate on some initial steps aimed at the necessary integration of satellite data with data from other sources and with chemical transport models.
NASA Astrophysics Data System (ADS)
Yang, Z.; Wang, J.; Hyer, E. J.; Ichoku, C. M.
2012-12-01
A fully-coupled meteorology-chemistry-aerosol model, Weather Research and Forecasting model with Chemistry (WRF-Chem), is used to simulate the transport of smoke aerosol over the Central Africa during February 2008. Smoke emission used in this study is specified from the Fire Locating and Modeling of Burning Emissions (FLAMBE) database derived from Moderate Resolution Imaging Spectroradiometer (MODIS) fire products. Model performance is evaluated using MODIS true color images, measured Aerosol Optical Depth (AOD) from space-borne MODIS (550 nm) and ground-based AERONET (500 nm), and Cloud-Aerosol Lidar data with Orthogonal Polarization (CALIOP) level 1 and 2 products. The simulated smoke transport is in good agreement with the validation data. Analyzing from three smoke events, smoke is constrained in a narrow belt between the Equator and 10°N near the surface, with the interplay of trade winds, subtropical high, and ITCZ. At the 700 hpa level, smoke expands farther meridionally. Topography blocks the smoke transport to the southeast of study area, because of high mountains located near the Great Rift Valley region. The simulation with injection height of 650 m is consistent with CALIOP measurements. The particular phenomenon, aerosol above cloud, is studied statistically from CALIOP observations. The total percentage of aerosol above cloud is about 5%.
NASA Astrophysics Data System (ADS)
Smirnov, Alexander; Petrenko, Maksym; Ichoku, Charles; Holben, Brent N.
2017-10-01
The paper reports on the current status of the Maritime Aerosol Network (MAN) which is a component of the Aerosol Robotic Network (AERONET). A public domain web-based data archive dedicated to MAN activity can be found at https://aeronet.gsfc.nasa.gov/new_web/maritime_aerosol_network.html . Since 2006 over 450 cruises were completed and the data archive consists of more than 6000 measurement days. In this work, we present MAN observations collocated with MODIS Terra, MODIS Aqua, MISR, POLDER, SeaWIFS, OMI, and CALIOP spaceborne aerosol products using a modified version of the Multi-Sensor Aerosol Products Sampling System (MAPSS) framework. Because of different spatio-temporal characteristics of the analyzed products, the number of MAN data points collocated with spaceborne retrievals varied between 1500 matchups for MODIS to 39 for CALIOP (as of August 2016). Despite these unavoidable sampling biases, latitudinal dependencies of AOD differences for all satellite sensors, except for SeaWIFS and POLDER, showed positive biases against ground truth (i.e. MAN) in the southern latitudes (<50° S), and substantial scatter in the Northern Atlantic "dust belt" (5°-15° N). Our analysis did not intend to determine whether satellite retrievals are within claimed uncertainty boundaries, but rather show where bias exists and corrections are needed.
Satellite remote sensing of air quality in winter of Lanzhou
NASA Astrophysics Data System (ADS)
Wang, Dawei; Han, Tao; Jiang, Youyan; Li, Lili; Ren, Shuyuan
2018-03-01
Fine particulate matter (aerodynamic diameters of less than 2.5 μm, PM2.5) air pollution has become one of the global environmental problem, endangering the existence of residents living, climate, and public health. Estimation Particulate Matter (aerodynamic diameters of less than 10 μm, PM10) concentration and aerosol absorption was the key point in air quality and climate studies. In this study, we retrieve the Aerosol Optical Depth (AOD) from the Earth Observing System (EOS) and the Moderate Resolution Imaging Spectroradiometer (MODIS), and PM2.5, PM10 in winter on 2014 and 2015, using Extended Dense Dark Vegetation Algorithm and 6S radiation model to analysis the correlation. The result showed that at the condition of non-considering the influence of primary pollutants, the correlation of two Polynomials between aerosol optical depth and PM2.5 and PM10 was poor; taking the influence of the primary pollutants into consideration, the aerosol optical depth has a good correlation with PM2.5 and PM10. The version of PM10 by aerosol optical depth is higher than that of PM2.5, so the model can be used to realize the high precision inversion of winter PM10 in Lanzhou.
An Emerging Global Aerosol Climatology from the MODIS Satellite Sensors
NASA Technical Reports Server (NTRS)
Remer, Lorraine A.; Kleidman, Richard G.; Levy, Robert C.; Kaufman, Yoram J.; Tanre, Didier; Mattoo, Shana; Martins, J. Vandelei; Ichoku, Charles; Koren, Ilan; Hongbin, Yu;
2008-01-01
The recently released Collection 5 MODIS aerosol products provide a consistent record of the Earth's aerosol system. Comparison with ground-based AERONET observations of aerosol optical depth (AOD) we find that Collection 5 MODIS aerosol products estimate AOD to within expected accuracy more than 60% of the time over ocean and more than 72% of the time over land. This is similar to previous results for ocean, and better than the previous results for land. However, the new Collection introduces a 0.01 5 offset between the Terra and Aqua global mean AOD over ocean, where none existed previously. Aqua conforms to previous values and expectations while Terra is high. The cause of the offset is unknown, but changes to calibration are a possible explanation. We focus the climatological analysis on the better understood Aqua retrievals. We find that global mean AOD at 550 nm over oceans is 0.13 and over land 0.19. AOD in situations with 80% cloud fraction are twice the global mean values, although such situations occur only 2% of the time over ocean and less than 1% of the time over land. There is no drastic change in aerosol particle size associated with these very cloudy situations. Regionally, aerosol amounts vary from polluted areas such as East Asia and India, to the cleanest regions such as Australia and the northern continents. In almost all oceans fine mode aerosol dominates over dust, except in the tropical Atlantic downwind of the Sahara and in some months the Arabian Sea.
NASA Technical Reports Server (NTRS)
Jongeward, Andrew R.; Li, Zhanqing; He, Hao; Xiong, Xiaoxiong
2016-01-01
Aerosols contribute to Earths radiative budget both directly and indirectly, and large uncertainties remain in quantifying aerosol effects on climate. Variability in aerosol distribution and properties, as might result from changing emissions and transport processes, must be characterized. In this study, variations in aerosol loading across the eastern seaboard of theUnited States and theNorthAtlanticOcean during 2002 to 2012 are analyzed to examine the impacts of anthropogenic emission control measures using monthly mean data from MODIS, AERONET, and IMPROVE observations and Goddard Chemistry Aerosol Radiation and Transport (GOCART) model simulation.MODIS observes a statistically significant negative trend in aerosol optical depth (AOD) over the midlatitudes (-0.030 decade(sup-1)). Correlation analyses with surface AOD from AERONET sites in the upwind region combined with trend analysis from GOCART component AOD confirm that the observed decrease in the midlatitudes is chiefly associated with anthropogenic aerosols that exhibit significant negative trends from the eastern U.S. coast extending over the western North Atlantic. Additional analysis of IMPROVE surface PM(sub 2.5) observations demonstrates statistically significant negative trends in the anthropogenic components with decreasing mass concentrations over the eastern United States. Finally, a seasonal analysis of observational datasets is performed. The negative trend seen by MODIS is strongest during spring (MAM) and summer (JJA) months. This is supported by AERONET seasonal trends and is identified from IMPROVE seasonal trends as resulting from ammonium sulfate decreases during these seasons.
MODIS Microphysical Regimes for Examining Apparent Aerosol Effects on Clouds and Precipitation
NASA Astrophysics Data System (ADS)
Oreopoulos, L.; Cho, N.; Lee, D.; Kato, S.; Lebsock, M. D.; Yuan, T.; Huffman, G. J.
2014-12-01
We use a 10-year record of MODIS Terra and Aqua Level-3 joint histograms of cloud optical thickness (COT) and cloud effective radius (CER) to derive so-called cloud microphysical regimes by means of clustering analysis. The regimes reveal the dominant modes of COT and CER co-variations around the globe for both liquid and ice phases. The clustering analysis is capable of separating regimes so that each is dominated by one of the two water phases and can be associated with previously derived "dynamical" regimes. The microphysical regimes serve as an appropriate basis to study possible effects of aerosols on cloud microphysical changes and precipitation. To this end, we employ MODIS aerosol loading measurements either in terms of aerosol index or aerosol optical depth and spatiotemporally matched precipitation (from either GPCP, TRMM or CloudSat) to examine intra-regime variability, regime transitions from morning (Terra) to afternoon (Aqua), and regime precipitation characteristics for locally low, average, and high aerosol loadings. Breakdowns by ocean/land and geographical zone (e.g., tropics vs. midlatitudes) are essential for physical interpretation of the results. The analysis conducted so far reveals notable differences in apparent characteristics of low- and high-cloud dominated microphysical regimes when in different aerosol environments. The presentation will attempt to examine whether the picture painted by our work is consistent with prevailing expectations, rooted to either modeling or prior observational studies, on how clouds and precipitation respond to distinct aerosol environments.
NASA Astrophysics Data System (ADS)
Farahat, A.; El-Askary, H. M.; Kalashnikova, O. V.; Garay, M. J.
2016-12-01
Several space-borne and ground based sensors can provide long-standing monitoring of aerosols characteristics, but inconsistencies among different sensors reduce data reliability and lead to uncertainty in analysing long-term data. In this study, we perform statistical inter-comparison of the Aerosol Optical Depth (AOD) among MISR, MODIS/Terra, MODIS/Aqua and Aerosol Robotic Network (AERONET) over seven sites located in the Middle East and North Africa during the period (1995 -2015). The sites are categorized into two regions based on their geographic location and possible dominate particles composition. Compared to MISR, MODIS and AERONET AOD data retrievals indicate larger uncertainty over all sites with a larger daily variability in MODIS measurements. In general, MISR and MODIS AOD matches during high dust seasons but MODIS tends to under estimate the AOD values on low dust seasons. While Terra measurements give a negative trend over the time series at the dust-dominated sites, Aqua, MISR and AERONET show a positive trend. In general, MODIS/Aqua displays stable measurements over the time line at the dust dominated sites. MODIS/Terra, MODIS/Aqua and MISR display a positive trend over Cairo_EMA site while AERONET shows a negative trend over the time line. Terra was found to overestimate AOD during 2002 - 2004 and underestimates it after 2004. We also observe a deviation between Aqua and Terra regardless of the region and data sampling. Excluding Bahrain and Cairo_EMA for low data retrievals the performance of MODIS tends to be similar over all region with 68 % of the retrieved AOD values fall within the confidence range of the AERONET matched data, within global averaged level (> 66 %). MISR indicated better data performance with 72 % falls within the same confidence range. Complimentary MISR and MODIS data was found to provide a better picture of dust storms evolution over Arabian Peninsula and the Middle East. Acknowledgement The authors would like to acknowledge the support provided by the Deanship of Scientific Research (DSR) at the King Fahd University of Petroleum and Minerals (KFUPM) for funding this work through project No. IN141051.
Validation of High-Resolution MAIAC Aerosol Product over South America
NASA Technical Reports Server (NTRS)
Martins, V. S.; Lyapustin, A.; de Carvalho, L. A. S.; Barbosa, C. C. F.; Novo, E. M. L. M.
2017-01-01
Multiangle Implementation of Atmospheric Correction (MAIAC) is a new Moderate Resolution Imaging Spectroradiometer (MODIS) algorithm that combines time series approach and image processing to derive surface reflectance and atmosphere products, such as aerosol optical depth (AOD) and columnar water vapor (CWV). The quality assessment of MAIAC AOD at 1 km resolution is still lacking across South America. In the present study, critical assessment of MAIAC AOD(sub 550) was performed using ground-truth data from 19 Aerosol Robotic Network (AERONET) sites over South America. Additionally, we validated the MAIAC CWV retrievals using the same AERONET sites. In general, MAIAC AOD Terra/Aqua retrievals show high agreement with ground-based measurements, with a correlation coefficient (R) close to unity (R(sub Terra):0.956 and R(sub Aqua):0.949). MAIAC accuracy depends on the surface properties and comparisons revealed high confidence retrievals over cropland, forest, savanna, and grassland covers, where more than 2/3 (approximately 66%) of retrievals are within the expected error (EE = +/-(0.05 + 0.05 × AOD)) and R exceeding 0.86. However, AOD retrievals over bright surfaces show lower correlation than those over vegetated areas. Both MAIAC Terra and Aqua retrievals are similarly comparable to AERONET AOD over the MODIS lifetime (small bias offset approximately 0.006). Additionally, MAIAC CWV presents quantitative information with R approximatley 0.97 and more than 70% of retrievals within error (+/-15%). Nonetheless, the time series validation shows an upward bias trend in CWV Terra retrievals and systematic negative bias for CWV Aqua. These results contribute to a comprehensive evaluation of MAIAC AOD retrievals as a new atmospheric product for future aerosol studies over South America.
Pre-Launch Performance Assessment of the VIIRS Land Surface Temperature Environmental Data Record
NASA Astrophysics Data System (ADS)
Hauss, B.; Ip, J.; Agravante, H.
2009-12-01
The Visible/Infrared Imager Radiometer Suite (VIIRS) Land Surface Temperature (LST) Environmental Data Record (EDR) provides the surface temperature of land surface including coastal and inland-water pixels at VIIRS moderate resolution (750m) during both day and night. To predict the LST under optimal conditions, the retrieval algorithm utilizes a dual split-window approach with both Short-wave Infrared (SWIR) channels at 3.70 µm (M12) and 4.05 µm (M13), and Long-wave Infrared (LWIR) channels at 10.76 µm (M15) and 12.01 µm (M16) to correct for atmospheric water vapor. Under less optimal conditions, the algorithm uses a fallback split-window approach with M15 and M16 channels. By comparison, the MODIS generalized split-window algorithm only uses the LWIR bands in the retrieval of surface temperature because of the concern for both solar contamination and large emissivity variations in the SWIR bands. In this paper, we assess whether these concerns are real and whether there is an impact on the precision and accuracy of the LST retrieval. The algorithm relies on the VIIRS Cloud Mask IP for identifying cloudy and ocean pixels, the VIIRS Surface Type EDR for identifying the IGBP land cover type for the pixels, and the VIIRS Aerosol Optical Thickness (AOT) IP for excluding pixels with AOT greater than 1.0. In this paper, we will report the pre-launch performance assessment of the LST EDR based on global synthetic data and proxy data from Terra MODIS. Results of both the split-window and dual split-window algorithms will be assessed by comparison either to synthetic "truth" or results of the MODIS retrieval. We will also show that the results of the assessment with proxy data are consistent with those obtained using the global synthetic data.
Ocean observations with EOS/MODIS: Algorithm development and post launch studies
NASA Technical Reports Server (NTRS)
Gordan, Howard R.
1996-01-01
Several significant accomplishments were made during the present reporting period. We have completed our basic study of using the 1.38 micron MODIS band for removal of the effects of thin cirrus clouds and stratospheric aerosol. The results suggest that it should be possible to correct imagery for thin cirrus clouds with optical thicknesses as large as 0.5 to 1.0. We have also acquired reflectance data for oceanic whitecaps during a cruise on the RV Malcolm Baldrige in the Gulf of Mexico. The reflectance spectrum of whitecaps was found to be similar to that for breaking waves in the surf zone measured by Frouin, Schwindling and Deschamps. We installed a CIMEL sun photometer at Fort Jefferson on the Dry Tortugas off Key West in the Gulf of Mexico. The instrument has yielded a continuous stream of data since February. It shows that the aerosol optical thickness at 669 nm is often less than 0.1 in winter. This suggests that the Southern Gulf of Mexico will be an excellent winter site for vicarious calibration. In addition, we completed a study of the effect of vicarious calibration, i.e., the accuracy with which the radiance at the top of the atmosphere (TOA) can be predicted from measurement of the sky radiance at the bottom of the atmosphere (BOA). The results suggest that the neglect of polarization in the aerosol optical property inversion algorithm and in the prediction code for the TOA radiances is the largest error associated with the radiative transfer process. Overall, the study showed that the accuracy of the TOA radiance prediction is now limited by the racliometric calibration error in the sky radiometer. Finally, considerable coccolith light scattering data were obtained in the Gulf of Maine with a flow-through instrument, along with data relating to calcite concentration and the rate of calcite production.
Spatial Distribution of Accuracy of Aerosol Retrievals from Multiple Satellite Sensors
NASA Technical Reports Server (NTRS)
Petrenko, Maksym; Ichoku, Charles
2012-01-01
Remote sensing of aerosols from space has been a subject of extensive research, with multiple sensors retrieving aerosol properties globally on a daily or weekly basis. The diverse algorithms used for these retrievals operate on different types of reflected signals based on different assumptions about the underlying physical phenomena. Depending on the actual retrieval conditions and especially on the geographical location of the sensed aerosol parcels, the combination of these factors might be advantageous for one or more of the sensors and unfavorable for others, resulting in disagreements between similar aerosol parameters retrieved from different sensors. In this presentation, we will demonstrate the use of the Multi-sensor Aerosol Products Sampling System (MAPSS) to analyze and intercompare aerosol retrievals from multiple spaceborne sensors, including MODIS (on Terra and Aqua), MISR, OMI, POLDER, CALIOP, and SeaWiFS. Based on this intercomparison, we are determining geographical locations where these products provide the greatest accuracy of the retrievals and identifying the products that are the most suitable for retrieval at these locations. The analyses are performed by comparing quality-screened satellite aerosol products to available collocated ground-based aerosol observations from the Aerosol Robotic Network (AERONET) stations, during the period of 2006-2010 when all the satellite sensors were operating concurrently. Furthermore, we will discuss results of a statistical approach that is applied to the collocated data to detect and remove potential data outliers that can bias the results of the analysis.
Clear-sky remote sensing in the vicinity of clouds: what can be learned about aerosol changes?
NASA Astrophysics Data System (ADS)
Marshak, Alexander; Varnai, Tamas; Wen, Guoyong
2010-05-01
Studies on aerosol direct and indirect effects require a precise separation of cloud-free and cloudy air. However, separation between cloud-free and cloudy areas from remotely-sensed measurements is ambiguous. The transition zone in the regions around clouds often stretches out tens of km, which are neither precisely clear nor precisely cloudy. We study the transition zone between cloud-free and cloudy air using MODerate-resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) measurements. Both instruments show enhanced clear-sky reflectance (MODIS) and clear-sky backscatterer (CALIPSO) near clouds. Analyzing a large dataset of MODIS observations we examine the effect of three-dimensional (3D) radiative interactions between clouds and cloud-free areas, also known as a cloud adjacency effect. Comparing with CALIPSO clear-sky backscatterer measurements, we show that the cloud adjacency effect may be responsible for a large portion of the enhanced clear sky reflectance observed by MODIS. While aerosol particles are responsible for a large part of the near-cloud enhancements in CALIPSO observations, misidentified or undetected cloud particles are also likely to contribute. As a result, both the nature of these particles (cloud vs. aerosol) and the processes creating them need to be clarified using a quantitative assessment of remote sensing limitations in particle detection and identification. The width and ubiquity of the transition zone near clouds imply that studies of aerosol-cloud interactions and aerosol direct radiative effects need to account for aerosol changes near clouds. Not accounted, these changes can cause systematic biases toward smaller aerosol radiative forcing. On the other hand, including aerosol products near clouds despite their uncertainties may overestimate aerosol radiative forcing. Therefore, there is an urgent need for developing methods that can assess and account for remote sensing challenges and thus allow for including the transition zone into the study. We describe a simple model that estimates the cloud-induced enhanced reflectances of cloud-free areas in the vicinity of clouds. The model assumes that the enhancement is due entirely to Rayleigh scattering and is therefore bigger at shorter wavelengths, thus creating a so-called apparent "bluing" of aerosols in remote sensing retrievals.
NASA Astrophysics Data System (ADS)
McCarthy, M. C.; Raffuse, S. M.; Dewinter, J. L.; Lurmann, F.; Craig, K. J.; Fruin, S.
2010-12-01
Current methods for estimating acute exposure to high levels of air pollution (e.g., particles, CO, NOx, aldehydes) during fire events require spatial interpolation over the study area using concentrations at central air quality monitors to represent the population of interest. This may inaccurately represent the magnitude of exposure because pollutant concentrations vary widely depending on the location of the fire plume, vertical mixing, and prevailing winds dispersing the pollutant. Remotely sensed datasets, such as aerosol optical depth (AOD) from the NASA MODIS instrument, can provide greater spatial coverage than ground-based air quality monitors. Past studies have shown positive correlations between AOD, a measure of aerosols in an atmospheric column, and ground-level measurements of PM2.5 and PM10 concentrations. However, current standard AOD products are not sufficient for assessing intra-urban variability due to the low spatial resolution (e.g., 10x10 km for MODIS) of datasets. In addition such products typically perform poorly with very dense smoke in the atmosphere and over reflective, semi-arid land surfaces such as southern California. A highly resolved AOD product (500m resolution) was developed for southern California during the October 2007 fires using radiance data obtained from the National Aeronautics and Space Administration (NASA) MODIS instrument. AOD was calculated at 0.55µm wavelength using a unique algorithm tailored to the southern California region and for an atmosphere dominated by biomass burning aerosols. The AOD product was compared with column measurements of AOD from surface-based AERONET sites. AOD was not predictive of surface PM during the October 2007 fires when compared to surface PM concentrations throughout southern California; R-square correlation coefficients were low. However, the relationship varied during the time period studied: correlations were weak early in the event (0.02) but improved during the later days of the event (0.3). Heavy dust episodes early in the fire event were poorly represented by the biomass-specific aerosol optical properties model. In addition, lofted smoke plumes from active fires did not mix down to the surface, resulting in high AOD column estimates and low surface PM concentrations. The aerosol was more dispersed later in the event; elevated surface PM concentrations were coincident with moderate AOD values. The case study demonstrates the challenges in using remote measurements in quantifying surface concentrations during active fire events in areas of complex terrain.
The regime of biomass burning aerosols over the Mediterranean basin based on satellite observations
NASA Astrophysics Data System (ADS)
Kalaitzi, Nikoleta; Gkikas, Antonis; Papadimas, Christos. D.; Hatzianastassiou, Nikolaos; Torres, Omar; Mihalopoulos, Nikolaos
2016-04-01
Biomass burning (BB) aerosol particles have significant effects on global and regional climate, as well as on regional air quality, visibility, cloud processes and human health.Biomass burning contributes by about 40% to the global emission of black carbonBC, and BB aerosols can exert a significant positive radiative forcing. The BB aerosols can originate from natural fires and human induced burning, such as wood or agricultural waste. However, the magnitude, but also the sign of the radiative forcing of BB aerosols is still uncertain, according to the third assessment report of IPCC (2013). Moreover, there are significant differences between different models as to their representation (inventories) of BB aerosols, more than for others, e.g. of fossil fuel origin. Therefore, it is important to better understand the spatial and temporal regime of BB aerosols. This is attempted here for the broader Mediterranean basin, which is a very interesting study area for aerosols, also being one of the most climaticallysensitive world regions. The determination of spatial and temporal regime of Mediterranean BB aerosols premises the identification of these particles at a complete spatial and long temporal coverage. Such a complete coverage is only ensured by contemporary satellite observations, which offer a challenging ability to characterize the existence of BB aerosols. This is possible thanks to the current availability of derived satellite products offering information on the size and absorption/scattering ability of aerosol particles. A synergistic use of such satellite aerosol data is made here, in conjunction with a developed algorithm, in order to identify the existence of BB aerosols over the Mediterranean basin over the 11-year period from 2005 to 2015. The algorithm operates, on a daily basis and at 1°×1°latitude-longitude resolution, setting threshold values (criteria) for specific physical and optical properties, which are representative of BB aerosols. More specifically, the algorithm examines the fulfillment of these criteria for Ångström Exponent (AE), Fine Fraction (FF) and Aerosol Index (AI). The AE and FF data, which are characteristic of the aerosol size, are derived from multispectralCollection 006 MODIS-AquaAerosol Optical Depth (AOD) data, whereas the AI data, that characterize the absorption ability of aerosols, are taken from the OMI-Aura database. The algorithm enables the identification of BB aerosols over specific geographical cells (pixels) throughout the study region, over both sea and land surfaces, during days of the 2005-2015 period. The results make possible the construction of a climatological-like database of Mediterranean BB aerosols, permitting to perceive the geographical patterns of their regime, namely the areas in which they occur, in relation to their timing, i.e. the months and seasons of their occurrence. This regime is quantified, which means that the frequency (absolute and percent) of occurrence of BB aerosols is calculated, along with the associated computed AOD values. The year by year variability of BB aerosols is also investigated over the period 2005-2015, with emphasis to inter-annual and seasonal tendencies.
NASA Astrophysics Data System (ADS)
Sockol, Alyssa; Small Griswold, Jennifer D.
2017-08-01
Aerosols are a critical component of the Earth's atmosphere and can affect the climate of the Earth through their interactions with solar radiation and clouds. Cloud fraction (CF) and aerosol optical depth (AOD) at 550 nm from the Moderate Resolution Imaging Spectroradiometer (MODIS) are used with analogous cloud and aerosol properties from Historical Phase 5 of the Coupled Model Intercomparison Project (CMIP5) model runs that explicitly include anthropogenic aerosols and parameterized cloud-aerosol interactions. The models underestimate AOD by approximately 15% and underestimate CF by approximately 10% overall on a global scale. A regional analysis is then used to evaluate model performance in two regions with known biomass burning activity and absorbing aerosol (South America (SAM) and South Africa (SAF)). In SAM, the models overestimate AOD by 4.8% and underestimate CF by 14%. In SAF, the models underestimate AOD by 35% and overestimate CF by 13.4%. Average annual cycles show that the monthly timing of AOD peaks closely match satellite data in both SAM and SAF for all except the Community Atmosphere Model 5 and Geophysical Fluid Dynamics Laboratory (GFDL) models. Monthly timing of CF peaks closely match for all models (except GFDL) for SAM and SAF. Sorting monthly averaged 2° × 2.5° model or MODIS CF as a function of AOD does not result in the previously observed "boomerang"-shaped CF versus AOD relationship characteristic of regions with absorbing aerosols from biomass burning. Cloud-aerosol interactions, as observed using daily (or higher) temporal resolution data, are not reproducible at the spatial or temporal resolution provided by the CMIP5 models.
Land Surface Albedo from MERIS Reflectances Using MODIS Directional Factors
NASA Technical Reports Server (NTRS)
Schaaf, Crystal L. B.; Gao, Feng; Strahler, Alan H.
2004-01-01
MERIS Level 2 surface reflectance products are now available to the scientific community. This paper demonstrates the production of MERIS-derived surface albedo and Nadir Bidirectional Reflectance Distribution Function (BRDF) adjusted reflectances by coupling the MERIS data with MODIS BRDF products. Initial efforts rely on the specification of surface anisotropy as provided by the global MODIS BRDF product for a first guess of the shape of the BRDF and then make use all of the coincidently available, partially atmospherically corrected, cloud cleared, MERIS observations to generate MERIS-derived BRDF and surface albedo quantities for each location. Comparisons between MODIS (aerosol-corrected) and MERIS (not-yet aerosol-corrected) surface values from April and May 2003 are also presented for case studies in Spain and California as well as preliminary comparisons with field data from the Devil's Rock Surfrad/BSRN site.
Deriving Albedo from Coupled MERIS and MODIS Surface Products
NASA Technical Reports Server (NTRS)
Gao, Feng; Schaaf, Crystal; Jin, Yu-Fang; Lucht, Wolfgang; Strahler, Alan
2004-01-01
MERIS Level 2 surface reflectance products are now available to the scientific community. This paper demonstrates the production of MERIS-derived surface albedo and Nadir Bidirectional Reflectance Distribution Function (BRDF) adjusted reflectances by coupling the MERIS data with MODIS BRDF products. Initial efforts rely on the specification of surface anisotropy as provided by the global MODIS BRDF product for a first guess of the shape of the BRDF and then make use all of the coincidently available, partially atmospherically corrected, cloud cleared, MERIS observations to generate MERIS-derived BRDF and surface albedo quantities for each location. Comparisons between MODIS (aerosol-corrected) and MERIS (not-yet aerosol-corrected) surface values from April and May 2003 are also presented for case studies in Spain and California as well as preliminary comparisons with field data from the Devil's Rock Surfrad/BSRN site.
A COMPARISON OF CMAQ-BASED AEROSOL PROPERTIES WITH IMPROVE, MODIS, AND AERONET DATA
We compare select aerosol Properties derived from the Community Multiscale Air Quality (CMAQ) model-simulated aerosol mass concentrations with routine data from the National Aeronautics and Space Administration (NASA) satellite-borne Moderate Resolution Imaging Spectro-radiometer...
Spatial Aspects of Multi-Sensor Data Fusion: Aerosol Optical Thickness
NASA Technical Reports Server (NTRS)
Leptoukh, Gregory; Zubko, V.; Gopalan, A.
2007-01-01
The Goddard Earth Sciences Data and Information Services Center (GES DISC) investigated the applicability and limitations of combining multi-sensor data through data fusion, to increase the usefulness of the multitude of NASA remote sensing data sets, and as part of a larger effort to integrate this capability in the GES-DISC Interactive Online Visualization and Analysis Infrastructure (Giovanni). This initial study focused on merging daily mean Aerosol Optical Thickness (AOT), as measured by the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Terra and Aqua satellites, to increase spatial coverage and produce complete fields to facilitate comparison with models and station data. The fusion algorithm used the maximum likelihood technique to merge the pixel values where available. The algorithm was applied to two regional AOT subsets (with mostly regular and irregular gaps, respectively) and a set of AOT fields that differed only in the size and location of artificially created gaps. The Cumulative Semivariogram (CSV) was found to be sensitive to the spatial distribution of gap areas and, thus, useful for assessing the sensitivity of the fused data to spatial gaps.
NASA Technical Reports Server (NTRS)
Zhang, Zhibo; Meyer, Kerry G.; Platnick, Steven; Oreopoulos, Lazaros; Lee, Dongmin; Yu, Hongbin
2014-01-01
This paper describes an efficient and unique method for computing the shortwave direct radiative effect (DRE) of aerosol residing above low-level liquid-phase clouds using CALIOP and MODIS data. It addresses the overlap of aerosol and cloud rigorously by utilizing the joint histogram of cloud optical depth and cloud top pressure while also accounting for subgrid-scale variations of aerosols. The method is computationally efficient because of its use of grid-level cloud and aerosol statistics, instead of pixel-level products, and a pre-computed look-up table based on radiative transfer calculations. We verify that for smoke over the southeast Atlantic Ocean the method yields a seasonal mean instantaneous (approximately 1:30PM local time) shortwave DRE of above cloud aerosol (ACA) that generally agrees with more rigorous pixel-level computation within 4 percent. We also estimate the impact of potential CALIOP aerosol optical depth (AOD) retrieval bias of ACA on DRE. We find that the regional and seasonal mean instantaneous DRE of ACA over southeast Atlantic Ocean would increase, from the original value of 6.4 W m(-2) based on operational CALIOP AOD to 9.6 W m(-2) if CALIOP AOD retrieval are biased low by a factor of 1.5 (Meyer et al., 2013) and further to 30.9 W m(-2) if CALIOP AOD retrieval are biased low by a factor of 5 as suggested in (Jethva et al., 2014). In contrast, the instantaneous ACA radiative forcing efficiency (RFE) remains relatively invariant in all cases at about 53 W m(-2) AOD(-1), suggesting a near linear relation between the instantaneous RFE and AOD. We also compute the annual mean instantaneous shortwave DRE of light-absorbing aerosols (i.e., smoke and polluted dust) over global oceans based on 4 years of CALIOP and MODIS data. We find that the variability of the annual mean shortwave DRE of above-cloud light-absorbing aerosol is mainly driven by the optical depth of the underlying clouds. While we demonstrate our method using CALIOP and MODIS data, it can also be extended to other satellite data sets, as well as climate model outputs.
NASA Technical Reports Server (NTRS)
Colarco, P. R.; Kahn, R. A.; Remer, L. A.; Levy, R. C.
2014-01-01
We use the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite aerosol optical thickness (AOT) product to assess the impact of reduced swath width on global and regional AOT statistics and trends. Alongtrack and across-track sampling strategies are employed, in which the full MODIS data set is sub-sampled with various narrow-swath (approximately 400-800 km) and single pixel width (approximately 10 km) configurations. Although view-angle artifacts in the MODIS AOT retrieval confound direct comparisons between averages derived from different sub-samples, careful analysis shows that with many portions of the Earth essentially unobserved, spatial sampling introduces uncertainty in the derived seasonal-regional mean AOT. These AOT spatial sampling artifacts comprise up to 60%of the full-swath AOT value under moderate aerosol loading, and can be as large as 0.1 in some regions under high aerosol loading. Compared to full-swath observations, narrower swath and single pixel width sampling exhibits a reduced ability to detect AOT trends with statistical significance. On the other hand, estimates of the global, annual mean AOT do not vary significantly from the full-swath values as spatial sampling is reduced. Aggregation of the MODIS data at coarse grid scales (10 deg) shows consistency in the aerosol trends across sampling strategies, with increased statistical confidence, but quantitative errors in the derived trends are found even for the full-swath data when compared to high spatial resolution (0.5 deg) aggregations. Using results of a model-derived aerosol reanalysis, we find consistency in our conclusions about a seasonal-regional spatial sampling artifact in AOT Furthermore, the model shows that reduced spatial sampling can amount to uncertainty in computed shortwave top-ofatmosphere aerosol radiative forcing of 2-3 W m(sup-2). These artifacts are lower bounds, as possibly other unconsidered sampling strategies would perform less well. These results suggest that future aerosol satellite missions having significantly less than full-swath viewing are unlikely to sample the true AOT distribution well enough to obtain the statistics needed to reduce uncertainty in aerosol direct forcing of climate.
Aerosol algorithm evaluation within aerosol-CCI
NASA Astrophysics Data System (ADS)
Kinne, Stefan; Schulz, Michael; Griesfeller, Jan
Properties of aerosol retrievals from space are difficult. Even data from dedicated satellite sensors face contaminations which limit the accuracy of aerosol retrieval products. Issues are the identification of complete cloud-free scenes, the need to assume aerosol compositional features in an underdetermined solution space and the requirement to characterize the background at high accuracy. Usually the development of aerosol is a slow process, requiring continuous feedback from evaluations. To demonstrate maturity, these evaluations need to cover different regions and seasons and many different aerosol properties, because aerosol composition is quite diverse and highly variable in space and time, as atmospheric aerosol lifetimes are only a few days. Three years ago the ESA Climate Change Initiative started to support aerosol retrieval efforts in order to develop aerosol retrieval products for the climate community from underutilized ESA satellite sensors. The initial focus was on retrievals of AOD (a measure for the atmospheric column amount) and of Angstrom (a proxy for aerosol size) from the ATSR and MERIS sensors on ENVISAT. The goal was to offer retrieval products that are comparable or better in accuracy than commonly used NASA products of MODIS or MISR. Fortunately, accurate reference data of ground based sun-/sky-photometry networks exist. Thus, retrieval assessments could and were conducted independently by different evaluation groups. Here, results of these evaluations for the year 2008 are summarized. The capability of these newly developed retrievals is analyzed and quantified in scores. These scores allowed a ranking of competing efforts and also allow skill comparisons of these new retrievals against existing and commonly used retrievals.
Progress towards NASA MODIS and Suomi NPP Cloud Property Data Record Continuity
NASA Astrophysics Data System (ADS)
Platnick, S.; Meyer, K.; Holz, R.; Ackerman, S. A.; Heidinger, A.; Wind, G.; Platnick, S. E.; Wang, C.; Marchant, B.; Frey, R.
2017-12-01
The Suomi NPP VIIRS imager provides an opportunity to extend the 17+ year EOS MODIS climate data record into the next generation operational era. Similar to MODIS, VIIRS provides visible through IR observations at moderate spatial resolution with a 1330 LT equatorial crossing consistent with the MODIS on the Aqua platform. However, unlike MODIS, VIIRS lacks key water vapor and CO2 absorbing channels used for high cloud detection and cloud-top property retrievals. In addition, there is a significant mismatch in the spectral location of the 2.2 μm shortwave-infrared channels used for cloud optical/microphysical retrievals and cloud thermodynamic phase. Given these instrument differences between MODIS EOS and VIIRS S-NPP/JPSS, a merged MODIS-VIIRS cloud record to serve the science community in the coming decades requires different algorithm approaches than those used for MODIS alone. This new approach includes two parallel efforts: (1) Imager-only algorithms with only spectral channels common to VIIRS and MODIS (i.e., eliminate use of MODIS CO2 and NIR/IR water vapor channels). Since the algorithms are run with similar spectral observations, they provide a basis for establishing a continuous cloud data record across the two imagers. (2) Merged imager and sounder measurements (i.e.., MODIS-AIRS, VIIRS-CrIS) in lieu of higher-spatial resolution MODIS absorption channels absent on VIIRS. The MODIS-VIIRS continuity algorithm for cloud optical property retrievals leverages heritage algorithms that produce the existing MODIS cloud mask (MOD35), optical and microphysical properties product (MOD06), and the NOAA AWG Cloud Height Algorithm (ACHA). We discuss our progress towards merging the MODIS observational record with VIIRS in order to generate cloud optical property climate data record continuity across the observing systems. In addition, we summarize efforts to reconcile apparent radiometric biases between analogous imager channels, a critical consideration for obtaining inter-sensor climate data record continuity.
Remote sensing of smoke, clouds, and radiation using AVIRIS during SCAR experiments
NASA Technical Reports Server (NTRS)
Gao, Bo-Cai; Remer, Lorraine; Kaufman, Yorman J.
1995-01-01
During the past two years, researchers from several institutes joined together to take part in two SCAR experiments. The SCAR-A (Sulfates, Clouds And Radiation - Atlantic) took place in the mid-Atlantic region of the United States in July, 1993. remote sensing data were acquired with the Airborne Visible Infrared Imaging Spectrometer (AVIRIS), the MODIS Airborne Simulator (MAS), and a RC-10 mapping camera from an ER-2 aircraft at 20 km. In situ measurements of aerosol and cloud microphysical properties were made with a variety of instruments equipped on the University of Washington's C-131A research aircraft. Ground based measurements of aerosol optical depths and particle size distributions were made using a network of sunphotometers. The main purpose of SCAR-A experiment was to study the optical, physical and chemical properties of sulfate aerosols and their interaction with clouds and radiation. Sulfate particles are believed to affect the energy balance of the earth by directly reflecting solar radiation back to space and by increasing the cloud albedo. The SCAR-C (Smoke, Clouds And Radiation - California) took place on the west coast areas during September - October of 1994. Sets of aircraft and ground-based instruments, similar to those used during SCAR-A, were used during SCAR-C. Remote sensing of fires and smoke from AVIRIS and MAS imagers on the ER-2 aircraft was combined with a complete in situ characterization of the aerosol and trace gases from the C-131A aircraft of the University of Washington and the Cesna aircraft from the U.S. Forest Service. The comprehensive data base acquired during SCAR-A and SCAR-C will contribute to a better understanding of the role of clouds and aerosols in global change studies. The data will also be used to develop satellite remote sensing algorithms from MODIS on the Earth Observing System.
Numerical simulation of "An American Haboob"
NASA Astrophysics Data System (ADS)
Vukovic, A.; Vujadinovic, M.; Pejanovic, G.; Andric, J.; Kumjian, M. R.; Djurdjevic, V.; Dacic, M.; Prasad, A. K.; El-Askary, H. M.; Paris, B. C.; Petkovic, S.; Nickovic, S.; Sprigg, W. A.
2013-10-01
A dust storm of fearful proportions hit Phoenix in the early evening hours of 5 July 2011. This storm, an American haboob, was predicted hours in advance because numerical, land-atmosphere modeling, computing power and remote sensing of dust events have improved greatly over the past decade. High resolution numerical models are required for accurate simulation of the small-scales of the haboob process, with high velocity surface winds produced by strong convection and severe downbursts. Dust productive areas in this region consist mainly of agricultural fields, with soil surfaces disturbed by plowing and tracks of land in the high Sonoran desert laid barren by ongoing draught. Model simulation of the 5 July 2011 dust storm uses the coupled atmospheric-dust model NMME-DREAM with 3.5 km horizontal resolution. A mask of the potentially dust productive regions is obtained from the land cover and the Normalized Difference Vegetation Index (NDVI) data from the Moderate Resolution Imaging Spectroradiometer (MODIS). Model results are compared with radar and other satellite-based images and surface meteorological and PM10 observations. The atmospheric model successfully hindcasted the position of the front in space and time, with about 1 h late arrival in Phoenix. The dust model predicted the rapid uptake of dust and high values of dust concentration in the ensuing storm. South of Phoenix, over the closest source regions (~ 25 km), the model PM10 surface dust concentration reached ~ 2500 μg m-3, but underestimated the values measured by the PM10stations within the city. Model results are also validated by the MODIS aerosol optical depth (AOD), employing deep blue (DB) algorithms for aerosol loadings. Model validation included Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), equipped with the lidar instrument, to disclose the vertical structure of dust aerosols as well as aerosol subtypes. Promising results encourage further research and application of high-resolution modeling and satellite-based remote sensing to warn of approaching severe dust events and reduce risks for safety and health.
NASA Technical Reports Server (NTRS)
Mallet, M.; Dubovik, O.; Nabat, P.; Dulac, F.; Kahn, R.; Sciare, J.; Paronis, D.; Leon, J. F.
2013-01-01
Aerosol absorption properties are of high importance to assess aerosol impact on regional climate. This study presents an analysis of aerosol absorption products obtained over the Mediterranean Basin or land stations in the region from multi-year ground-based AERONET and satellite observations with a focus on the Absorbing Aerosol Optical Depth (AAOD), Single Scattering Albedo (SSA) and their spectral dependence. The AAOD and Absorption Angstrom Exponent (AAE) data set is composed of daily averaged AERONET level 2 data from a total of 22 Mediterranean stations having long time series, mainly under the influence of urban-industrial aerosols and/or soil dust. This data set covers the 17 yr period 1996-2012 with most data being from 2003-2011 (approximately 89 percent of level-2 AAOD data). Since AERONET level-2 absorption products require a high aerosol load (AOD at 440 nm greater than 0.4), which is most often related to the presence of desert dust, we also consider level-1.5 SSA data, despite their higher uncertainty, and filter out data with an Angstrom exponent less than 1.0 in order to study absorption by carbonaceous aerosols. The SSA data set includes both AERONET level-2 and satellite level-3 products. Satellite-derived SSA data considered are monthly level 3 products mapped at the regional scale for the spring and summer seasons that exhibit the largest aerosol loads. The satellite SSA dataset includes the following products: (i) Multi-angle Imaging SpectroRadiometer (MISR) over 2000-2011, (ii) Ozone Monitoring Instrument (OMI) near-UV algorithm over 2004-2010, and (iii) MODerate resolution Imaging Spectroradiometer (MODIS) Deep-Blue algorithm over 2005-2011, derived only over land in dusty conditions. Sun-photometer observations show that values of AAOD at 440 nm vary between 0.024 +/- 0.01 (resp. 0.040 +/- 0.01) and 0.050 +/- 0.01 (0.055 +/- 0.01) for urban (dusty) sites. Analysis shows that the Mediterranean urban-industrial aerosols appear "moderately" absorbing with values of SSA close to approximately 0.94-0.95 +/- 0.04 (at 440 nm) in most cases except over the large cities of Rome and Athens, where aerosol appears more absorbing (SSA approximately 0.89-0.90 +/- 0.04). The aerosol Absorption Angstrom Exponent (AAE, estimated using 440 and 870 nm) is found to be larger than 1 for most sites over the Mediterranean, a manifestation of mineral dust (iron) and/or brown carbon producing the observed absorption. AERONET level-2 sun-photometer data indicate the existence of a moderate East-West gradient, with higher values over the eastern basin (AAEEast. = 1.39/AAEWest. = 1.33) due to the influence of desert dust. The North-South AAE gradient is more pronounced, especially over the western basin. Our additional analysis of AERONET level-1.5 data also shows that organic absorbing aerosols significantly affect some Mediterranean sites. These results indicate that current climate models treating organics as nonabsorbing over the Mediterranean certainly underestimate the warming effect due to carbonaceous aerosols. Acomparative analysis of the regional SSA variability has been attempted using satellite data. OMI and MODIS data show an absorbing zone (SSA approximately 0.90 at 470-500 nm) over Northeastern Africa that does not appear in the MISR retrievals. In contrast, MISR seems able to observe the East-West SSA gradient during summer, as also detected by AERONET. Also, the analysis of SSA provided by satellites indicates that the aerosol over the Mediterranean Sea appears less absorbing during spring (MAM) than summer (JJA).
NASA Astrophysics Data System (ADS)
Pereira, Gabriel; Freitas, Saulo R.; Moraes, Elisabete Caria; Ferreira, Nelson Jesus; Shimabukuro, Yosio Edemir; Rao, Vadlamudi Brahmananda; Longo, Karla M.
2009-12-01
Contemporary human activities such as tropical deforestation, land clearing for agriculture, pest control and grassland management lead to biomass burning, which in turn leads to land-cover changes. However, biomass burning emissions are not correctly measured and the methods to assess these emissions form a part of current research area. The traditional methods for estimating aerosols and trace gases released into the atmosphere generally use emission factors associated with fuel loading and moisture characteristics and other parameters that are hard to estimate in near real-time applications. In this paper, fire radiative power (FRP) products were extracted from Moderate Resolution Imaging Spectroradiometer (MODIS) and from the Geostationary Operational Environmental Satellites (GOES) fire products and new South America generic biomes FRE-based smoke aerosol emission coefficients were derived and applied in 2002 South America fire season. The inventory estimated by MODIS and GOES FRP measurements were included in Coupled Aerosol-Tracer Transport model coupled to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS) and evaluated with ground truth collected in Large Scale Biosphere-Atmosphere Smoke, Aerosols, Clouds, rainfall, and Climate (SMOCC) and Radiation, Cloud, and Climate Interactions (RaCCI). Although the linear regression showed that GOES FRP overestimates MODIS FRP observations, the use of a common external parameter such as MODIS aerosol optical depth product could minimize the difference between sensors. The relationship between the PM 2.5μm (Particulate Matter with diameter less than 2.5 μm) and CO (Carbon Monoxide) model shows a good agreement with SMOCC/RaCCI data in the general pattern of temporal evolution. The results showed high correlations, with values between 0.80 and 0.95 (significant at 0.5 level by student t test), for the CATT-BRAMS simulations with PM 2.5μm and CO.
Satellite remote sensing of aerosol and cloud properties over Eurasia
NASA Astrophysics Data System (ADS)
Sogacheva, Larisa; Kolmonen, Pekka; Saponaro, Giulia; Virtanen, Timo; Rodriguez, Edith; Sundström, Anu-Maija; Atlaskina, Ksenia; de Leeuw, Gerrit
2015-04-01
Satellite remote sensing provides the spatial distribution of aerosol and cloud properties over a wide area. In our studies large data sets are used for statistical studies on aerosol and cloud interaction in an area over Fennoscandia, the Baltic Sea and adjacent regions over the European mainland. This area spans several regimes with different influences on aerosol cloud interaction such as a the transition from relative clean air over Fennoscandia to more anthropogenically polluted air further south, and the influence maritime air over the Baltic and oceanic air advected from the North Atlantic. Anthropogenic pollution occurs in several parts of the study area, and in particular near densely populated areas and megacities, but also in industrialized areas and areas with dense traffic. The aerosol in such areas is quite different from that produced over the boreal forest and has different effects on air quality and climate. Studies have been made on the effects of aerosols on air quality and on the radiation balance in China. The aim of the study is to study the effect of these different regimes on aerosol-cloud interaction using a large aerosol and cloud data set retrieved with the (Advanced) Along Track Scanning Radiometer (A)ATSR Dual View algorithm (ADV) further developed at Finnish Meteorological Institute and aerosol and cloud data provided by MODIS. Retrieval algorithms for aerosol and clouds have been developed for the (A)ATSR, consisting of a series of instruments of which we use the second and third one: ATSR-2 which flew on the ERS-2 satellite (1995-2003) and AATSR which flew on the ENVISAT satellite (2002-2012) (both from the European Space Agency, ESA). The ADV algorithm provides aerosol data on a global scale with a default resolution of 10x10km2 (L2) and an aggregate product on 1x1 degree (L3). Optional, a 1x1 km2 retrieval products is available over smaller areas for specific studies. Since for the retrieval of AOD no prior knowledge is needed on surface properties, the surface reflectance can be independently retrieved using the AOD for atmospheric correction. For the retrieval of cloud properties, the SACURA algorithm has been implemented in the ADV/ASV aerosol retrieval suite. Cloud properties retrieved from AATSR data are cloud fraction, cloud optical thickness, cloud top height, cloud droplet effective radius, liquid water path. Aerosol and cloud properties are applied for different studies over the Eurasia area. Using the simultaneous retrieval of aerosol and cloud properties allows for study of the transition from the aerosol regime to the cloud regime, such as changes in effective radius or AOD (aerosol optical depth) to COT (cloud optical thickness). The column- integrated aerosol extinction, aerosol optical depth or AOD, which is primarily reported from satellite observations, can be used as a proxy for cloud condensation nuclei (CCN) and hence contains information on the ability of aerosol particles to form clouds. Hence, connecting this information with direct observations of cloud properties provides information on aerosol-cloud interactions.
NASA Technical Reports Server (NTRS)
Varnai, Tamas; Yang, Weidong; Marshak, Alexander
2016-01-01
CALIOP shows stronger near-cloud changes in aerosol properties at higher cloud fractions. Cloud fraction variations explain a third of near-cloud changes in overall aerosol statistics. Cloud fraction and aerosol particle size distribution have a complex relationship.
NASA Technical Reports Server (NTRS)
Wen, Guoyong; Marshak, Alexander; Cahalan, Robert F.; Remer, Lorraine A.; Kleidman, Richard G.
2007-01-01
3D aerosol-cloud interaction is examined by analyzing two images containing cumulus clouds in biomass burning regions in Brazil. The research consists of two parts. The first part focuses on identifying 3D clo ud impacts on the reflectance of pixel selected for the MODIS aerosol retrieval based purely on observations. The second part of the resea rch combines the observations with radiative transfer computations to identify key parameters in 3D aerosol-cloud interaction. We found that 3D cloud-induced enhancement depends on optical properties of nearb y clouds as well as wavelength. The enhancement is too large to be ig nored. Associated biased error in 1D aerosol optical thickness retrie val ranges from 50% to 140% depending on wavelength and optical prope rties of nearby clouds as well as aerosol optical thickness. We caution the community to be prudent when applying 1D approximations in comp uting solar radiation in dear regions adjacent to clouds or when usin g traditional retrieved aerosol optical thickness in aerosol indirect effect research.
NASA Astrophysics Data System (ADS)
Park, Sang Seo; Kim, Jhoon; Lee, Hanlim; Torres, Omar; Lee, Kwang-Mog; Lee, Sang Deok
2016-02-01
The sensitivities of oxygen-dimer (O4) slant column densities (SCDs) to changes in aerosol layer height are investigated using the simulated radiances by a radiative transfer model, the linearized pseudo-spherical vector discrete ordinate radiative transfer (VLIDORT), and the differential optical absorption spectroscopy (DOAS) technique. The sensitivities of the O4 index (O4I), which is defined as dividing O4 SCD by 1040 molecules2 cm-5, to aerosol types and optical properties are also evaluated and compared. Among the O4 absorption bands at 340, 360, 380, and 477 nm, the O4 absorption band at 477 nm is found to be the most suitable to retrieve the aerosol effective height. However, the O4I at 477 nm is significantly influenced not only by the aerosol layer effective height but also by aerosol vertical profiles, optical properties including single scattering albedo (SSA), aerosol optical depth (AOD), particle size, and surface albedo. Overall, the error of the retrieved aerosol effective height is estimated to be 1276, 846, and 739 m for dust, non-absorbing, and absorbing aerosol, respectively, assuming knowledge on the aerosol vertical distribution shape. Using radiance data from the Ozone Monitoring Instrument (OMI), a new algorithm is developed to derive the aerosol effective height over East Asia after the determination of the aerosol type and AOD from the MODerate resolution Imaging Spectroradiometer (MODIS). About 80 % of retrieved aerosol effective heights are within the error range of 1 km compared to those obtained from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) measurements on thick aerosol layer cases.
NASA Astrophysics Data System (ADS)
Weaver, C. J.; da Silva, A. M., Jr.; Colarco, P. R.; Randles, C. A.
2015-12-01
We retrieve aerosol concentrations and optical information from vertical profiles of airborne 532 nm extinction and 532 and 1064 nm backscatter measurements made during the SEAC4RS summer 2013 campaign. The observations are from the High Spectral Resolution Lidar (HSRL) Airborne Differential Absorption Lidar (DIAL) on board the NASA DC-8. Instead of retrieving information about aerosol microphysical properties such as indexes of refraction, we seek information more directly applicable to an aerosol transport model - in our case the Goddard Chemistry Aerosol Radiation and Transport (GOCART) module used in the GEOS-5 Earth modeling system. A joint atmosphere/aerosol mini-reanalysis was performed for the SEAC4RS period using GEOS-5. The meteorological reanalysis followed the MERRA-2 atmospheric reanalysis protocol, and aerosol information from MODIS, MISR, and AERONET provided a constraint on the simulated aerosol optical depth (i.e., total column loading of aerosols). We focus on the simulated concentrations of 10 relevant aerosol species simulated by the GOCART module: dust, sulfate, and organic and black carbon. Our first retrieval algorithm starts with the SEAC4RS mini-reanalysis and adjusts the concentration of each GOCART aerosol species so that differences between the observed and simulated backscatter and extinction measurements are minimized. In this case, too often we are unable to simulate the observations by simple adjustment of the aerosol concentrations. A second retrieval approach adjusts both the aerosol concentrations and the optical parameters (i.e., assigned mass extinction efficiency) associated with each GOCART species. We present results from DC-8 flights over smoke from forest fires over the western US using both retrieval approaches. Finally, we compare our retrieved quantities with in-situ observations of aerosol absorption, scattering, and mass concentrations at flight altitude.
NASA Technical Reports Server (NTRS)
Park, Sang Seo; Kim, Jhoon; Lee, Hanlim; Torres, Omar; Lee, Kwang-Mog; Lee, Sang Deok
2016-01-01
The sensitivities of oxygen-dimer (O4) slant column densities (SCDs) to changes in aerosol layer height are investigated using the simulated radiances by a radiative transfer model, the linearized pseudo-spherical vector discrete ordinate radiative transfer (VLIDORT), and the differential optical absorption spectroscopy (DOAS) technique. The sensitivities of the O4 index (O4I), which is defined as dividing O4 SCD by 10(sup 40) molecules (sup 2) per centimeters(sup -5), to aerosol types and optical properties are also evaluated and compared. Among the O4 absorption bands at 340, 360, 380, and 477 nanometers, the O4 absorption band at 477 nanometers is found to be the most suitable to retrieve the aerosol effective height. However, the O4I at 477 nanometers is significantly influenced not only by the aerosol layer effective height but also by aerosol vertical profiles, optical properties including single scattering albedo (SSA), aerosol optical depth (AOD), particle size, and surface albedo. Overall, the error of the retrieved aerosol effective height is estimated to be 1276, 846, and 739 meters for dust, non-absorbing, and absorbing aerosol, respectively, assuming knowledge on the aerosol vertical distribution shape. Using radiance data from the Ozone Monitoring Instrument (OMI), a new algorithm is developed to derive the aerosol effective height over East Asia after the determination of the aerosol type and AOD from the MODerate resolution Imaging Spectroradiometer (MODIS). About 80 percent of retrieved aerosol effective heights are within the error range of 1 kilometer compared to those obtained from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) measurements on thick aerosol layer cases.
NASA Technical Reports Server (NTRS)
Park, Sang Seo; Kim, Jhoon; Lee, Hanlim; Torres, Omar; Lee, Kwang-Mog; Lee, Sang Deok
2016-01-01
The sensitivities of oxygen-dimer (O4) slant column densities (SCDs) to changes in aerosol layer height are investigated using the simulated radiances by a radiative transfer model, the linearized pseudo-spherical vector discrete ordinate radiative transfer (VLIDORT), and the Differential Optical Absorption Spectroscopy (DOAS) technique. The sensitivities of the O4 index (O4I), which is defined as dividing O4 SCD by 10(exp 40) sq molecules cm(exp -5), to aerosol types and optical properties are also evaluated and compared. Among the O4 absorption bands at 340, 360, 380, and 477 nm, the O4 absorption band at 477 nm is found to be the most suitable to retrieve the aerosol effective height. However, the O4I at 477 nm is significantly influenced not only by the aerosol layer effective height but also by aerosol vertical profiles, optical properties including single scattering albedo (SSA), aerosol optical depth (AOD), particle size, and surface albedo. Overall, the error of the retrieved aerosol effective height is estimated to be 1276, 846, and 739 m for dust, non-absorbing, and absorbing aerosol, respectively, assuming knowledge on the aerosol vertical distribution shape. Using radiance data from the Ozone Monitoring Instrument (OMI), a new algorithm is developed to derive the aerosol effective height over East Asia after the determination of the aerosol type and AOD from the MODerate resolution Imaging Spectroradiometer (MODIS). About 80% of retrieved aerosol effective heights are within the error range of 1 km compared to those obtained from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) measurements on thick aerosol layer cases.
Aerosol Remote Sensing from Space - Where We Stand, Where We're Heading
NASA Technical Reports Server (NTRS)
Kahn, Ralph
2012-01-01
The MISR and MODIS instruments aboard the NASA Earth Observing System's Terra Satellite have been collecting data containing information about the state of Earth's atmosphere and surface for over twelve years. Among the retrieved quantities are the amount and type of wildfire smoke, desert dust, volcanic effluent, urban and industrial pollution particles, and other aerosols. Data from these instruments have been used to develop a global, monthly climatology of aerosol amount that is widely used as a constraint on climate models, including those used for the 2007 IPCC assessment report. However, the broad scientific challenges of understanding aerosol impacts on climate and health place different, and very exacting demands on our measurement capabilities. And these data sets, though much more advanced in many respects than previous aerosol data records, are imperfect. The next frontier in assessing aerosol radiative forcing of climate is aerosol type, and in particular, the absorption properties of major aerosol air masses. In this presentation, I will summarize current understanding of MISR and MODIS aerosol product strengths and limitations, discuss how they relate to the bigger aerosol science questions we must address, and give my view of the way forward.
NASA Astrophysics Data System (ADS)
Segal-Rosenhaimer, M.; Knobelspiesse, K. D.; Redemann, J.; Cairns, B.; Alexandrov, M. D.
2016-12-01
The ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) campaign is taking place in the South-East Atlantic during the Austral Spring for three consecutive years from 2016-2018. The study area encompasses one of the Earth's three semi-permanent subtropical Stratocumulus (Sc) cloud decks, and experiences very large aerosol optical depths, mainly biomass burning, originating from Africa. Over time, cloud optical depth (COD), lifetime and cloud microphysics (number concentration, effective radii Reff and precipitation) are expected to be influenced by indirect aerosol effects. These changes play a key role in the energetic balance of the region, and are part of the core investigation objectives of the ORACLES campaign, which acquires measurements of clean and polluted scenes of above cloud aerosols (ACA). Simultaneous retrievals of aerosol and cloud optical properties are being developed (e.g. MODIS, OMI), but still challenging, especially for passive, single viewing angle instruments. By comparison, multiangle polarimetric instruments like RSP (Research Scanning Polarimeter) show promise for detection and quantification of ACA, however, there are no operational retrieval algorithms available yet. Here we describe a new algorithm to retrieve cloud and aerosol optical properties from observations by RSP flown on the ER-2 and P-3 during the 2016 ORACLES campaign. The algorithm is based on training a NN, and is intended to retrieve aerosol and cloud properties simultaneously. However, the first step was to establish the retrieval scheme for low level Sc cloud optical properties. The NN training was based on simulated RSP total and polarized radiances for a range of COD, Reff, and effective variances, spanning 7 wavelength bands and 152 viewing zenith angles. Random and correlated noise were added to the simulations to achieve a more realistic representation of the signals. Before introducing the input variables to the network, the signals are projected on a principle component plane that retains the maximal signal information but minimizes the noise contribution. We will discuss parameter choices for the network and present preliminary results of cloud retrievals from ORACLES, compared with standard RSP low-level cloud retrieval method that has been validated against in situ observations.
NASA Technical Reports Server (NTRS)
Ichoku, Charles; Kaufman, Yoram J.
2003-01-01
Biomass burning is the main source of smoke aerosols and certain trace gases in the atmosphere. However, estimates of the rates of biomass consumption and emission of aerosols and trace gases from fires have not attained adequate reliability thus far. Traditional methods for deriving emission rates employ the use of emission factors e(sub x), (in g of species x per kg of biomass burned), which are difficult to measure from satellites. In this era of environmental monitoring from space, fire characterization was not a major consideration in the design of the early satellite-borne remote sensing instruments, such as AVHRR. Therefore, although they are able to provide fire location information, they were not adequately sensitive to variations in fire strength or size, because their thermal bands used for fire detection saturated at the lower end of fire radiative temperature range. As such, hitherto, satellite-based emission estimates employ proxy techniques using satellite derived fire pixel counts (which do not express the fire strength or rate of biomass consumption) or burned areas (which can only be obtained after the fire is over). The MODIS sensor, recently launched into orbit aboard EOS Terra (1999) and Aqua (2002) satellites, have a much higher saturation level and can, not only detect the fire locations 4 times daily, but also measures the at-satellite fire radiative energy (which is a measure of the fire strength) based on its 4 micron channel temperature. Also, MODIS measures the optical thickness of smoke and other aerosols. Preliminary analysis shows appreciable correlation between the MODIS-derived rates of emission of fire radiative energy and smoke over different regions across the globe. These relationships hold great promise for deriving emission coefficients, which can be used for estimating smoke aerosol emissions from MODIS active fire products. This procedure has the potential to provide more accurate emission estimates in near real-time, providing opportunities for various disaster management applications such as alerts, evacuation and, smoke dispersion forecasting.
Winter fog monitoring over south asia by using multi satellite data
NASA Astrophysics Data System (ADS)
Yasmin, Naila
2016-07-01
committing The South Asian region in general and the Indo-Gangetic Plains (IGP) in particular hold about 1/6th of the world's population and is considered as one of the major hotspots of increasing atmospheric pollution. Due to growing population and globalization, South Asia is experiencing high transformations in the urban and industrial sectors. Fog is one of the meteorological/environmental phenomena which can generate significant social and economic problems especially a major havoc to air and road traffic. Meteorological stations provide information about the fog episodes only on the basis of point observation. Continuous monitoring as well as a spatially coherent picture of fog distribution can only be possible through the use of satellite imagery. Current study focus on winter fog episodes over South Asian region using Moderate Resolution Image Spectrometer (MODIS) Level 2 terra Product and MODIS Aerosol Product and OMI Absorbing Aerosol Index. The datasets used in this study includes MODIS Corrected Reflectance RGBs are used to analyse fog situation over study area. MOD04 level 2 Collection 6 data is used to study aerosol load and distribution which are characterised using aerosol type land. In order to study the variation of ground based observations from satellite data MODIS, CALIPSO, AERONET and high volume air Sampler were used. Objectives of the study was to map the spatial extent of fog as well as monitor its causes and similarly to analyze the Aerosol Optical Depth (AOD) over South Asia with particular focus over Indo Gangetic Plans (IGP). Current studies show an increase in AOD from past few decades over South Asia and is contributing to poor air quality in the region due to growing population, urbanization, and industrialization. Smoke and absorbing aerosol are major constituent of fog over south Asia. Furthermore, winter 2014-15 extended span of Fog was also observed over South Asia. A significant correlation between MODIS (AOD) and AERONET Station (AOD) data was identified. Mass concentration of PM 2.5 and PM 10 over sampling sites exceeded the NEQS's Level at most occasions.
NASA Technical Reports Server (NTRS)
Lewis, Jasper R., Jr.; DeYoung, Russell J.; Chu, D. Allen
2010-01-01
Aerosol distributions from two aircraft lidar campaigns conducted in the California Central Valley are compared in order to identify seasonal variations. Aircraft lidar flights were conducted in June 2003 and February 2008. While the PM2.5 concentration is highest in the winter, the aerosol optical depth measured from MODIS is highest in the summer. A seasonal comparison shows that PM2.5 in the winter can exceed summer PM2.5 by 55%, while summer AOD exceeds winter AOD by 43%. Higher temperatures wildfires in the summer produce elevated aerosol layers that are detected by satellite measurements, but not surface particulate matter monitors. Measurements of the boundary layer height from lidar instruments are necessary to incorporate satellite measurements with air quality measurements.
Application of Polarization to the MODIS Aerosol Retrieval Over Land
NASA Technical Reports Server (NTRS)
Levy, Robert C.; Remer, Lorraine R.; Kaufman, Yoram J.
2004-01-01
Reflectance measurements in the visible and infrared wavelengths, from the Moderate Resolution Imaging Spectroradiometer (MODIS), are used to derive aerosol optical thicknesses (AOT) and aerosol properties over land surfaces. The measured spectral reflectance is compared with lookup tables, containing theoretical reflectance calculated by radiative transfer (RT) code. Specifically, this RT code calculates top of the atmosphere (TOA) intensities based on a scalar treatment of radiation, neglecting the effects of polarization. In the red and near infrared (NIR) wavelengths the use of the scalar RT code is of sufficient accuracy to model TOA reflectance. However, in the blue, molecular and aerosol scattering dominate the TOA signal. Here, polarization effects can be large, and should be included in the lookup table derivation. Using a RT code that allows for both vector and scalar calculations, we examine the reflectance differences at the TOA, with and without polarization. We find that the differences in blue channel TOA reflectance (vector - scalar) may reach values of 0.01 or greater, depending on the sun/surface/sensor scattering geometry. Reflectance errors of this magnitude translate to AOT differences of 0.1, which is a very large error, especially when the actual AOT is low. As a result of this study, the next version of aerosol retrieval from MODIS over land will include polarization.
Neural network cloud top pressure and height for MODIS
NASA Astrophysics Data System (ADS)
Håkansson, Nina; Adok, Claudia; Thoss, Anke; Scheirer, Ronald; Hörnquist, Sara
2018-06-01
Cloud top height retrieval from imager instruments is important for nowcasting and for satellite climate data records. A neural network approach for cloud top height retrieval from the imager instrument MODIS (Moderate Resolution Imaging Spectroradiometer) is presented. The neural networks are trained using cloud top layer pressure data from the CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) dataset. Results are compared with two operational reference algorithms for cloud top height: the MODIS Collection 6 Level 2 height product and the cloud top temperature and height algorithm in the 2014 version of the NWC SAF (EUMETSAT (European Organization for the Exploitation of Meteorological Satellites) Satellite Application Facility on Support to Nowcasting and Very Short Range Forecasting) PPS (Polar Platform System). All three techniques are evaluated using both CALIOP and CPR (Cloud Profiling Radar for CloudSat (CLOUD SATellite)) height. Instruments like AVHRR (Advanced Very High Resolution Radiometer) and VIIRS (Visible Infrared Imaging Radiometer Suite) contain fewer channels useful for cloud top height retrievals than MODIS, therefore several different neural networks are investigated to test how infrared channel selection influences retrieval performance. Also a network with only channels available for the AVHRR1 instrument is trained and evaluated. To examine the contribution of different variables, networks with fewer variables are trained. It is shown that variables containing imager information for neighboring pixels are very important. The error distributions of the involved cloud top height algorithms are found to be non-Gaussian. Different descriptive statistic measures are presented and it is exemplified that bias and SD (standard deviation) can be misleading for non-Gaussian distributions. The median and mode are found to better describe the tendency of the error distributions and IQR (interquartile range) and MAE (mean absolute error) are found to give the most useful information of the spread of the errors. For all descriptive statistics presented MAE, IQR, RMSE (root mean square error), SD, mode, median, bias and percentage of absolute errors above 0.25, 0.5, 1 and 2 km the neural network perform better than the reference algorithms both validated with CALIOP and CPR (CloudSat). The neural networks using the brightness temperatures at 11 and 12 µm show at least 32 % (or 623 m) lower MAE compared to the two operational reference algorithms when validating with CALIOP height. Validation with CPR (CloudSat) height gives at least 25 % (or 430 m) reduction of MAE.
Coherent Evaluation of Aerosol Data Products from Multiple Satellite Sensors
NASA Technical Reports Server (NTRS)
Ichoku, Charles
2011-01-01
Aerosol retrieval from satellite has practically become routine, especially during the last decade. However, there is often disagreement between similar aerosol parameters retrieved from different sensors, thereby leaving users confused as to which sensors to trust for answering important science questions about the distribution, properties, and impacts of aerosols. As long as there is no consensus, and the inconsistencies are not well characterized and understood, there will be no way of developing reliable model inputs and climate data records from satellite aerosol measurements. Fortunately, the Aerosol Robotic Network (AERONET) is providing well-calibrated globally representative ground-based aerosol measurements corresponding to the satellite-retrieved products. Through a recently developed web-based Multi-sensor Aerosol Products Sampling System (MAPSS), we are utilizing the advantages offered by collocated AERONET and satellite products to characterize and evaluate aerosol retrieval from multiple sensors. Indeed, MAPSS and its companion statistical tool AeroStat are facilitating detailed comparative uncertainty analysis of satellite aerosol measurements from Terra-MODIS, Aqua-MODIS, Terra-MISR, Aura-OMI, Parasol-POLDER, and Calipso-CALIOP. In this presentation, we will describe the strategy of the MAPSS system, its potential advantages for the aerosol community, and the preliminary results of an integrated comparative uncertainly analysis of aerosol products from multiple satellite sensors.
NASA Technical Reports Server (NTRS)
Ichoku, Charles; Petrenko, Maksym; Leptoukh, Gregory
2010-01-01
Among the known atmospheric constituents, aerosols represent the greatest uncertainty in climate research. Although satellite-based aerosol retrieval has practically become routine, especially during the last decade, there is often disagreement between similar aerosol parameters retrieved from different sensors, leaving users confused as to which sensors to trust for answering important science questions about the distribution, properties, and impacts of aerosols. As long as there is no consensus and the inconsistencies are not well characterized and understood ', there will be no way of developing reliable climate data records from satellite aerosol measurements. Fortunately, the most globally representative well-calibrated ground-based aerosol measurements corresponding to the satellite-retrieved products are available from the Aerosol Robotic Network (AERONET). To adequately utilize the advantages offered by this vital resource,., an online Multi-sensor Aerosol Products Sampling System (MAPSS) was recently developed. The aim of MAPSS is to facilitate detailed comparative analysis of satellite aerosol measurements from different sensors (Terra-MODIS, Aqua-MODIS, Terra-MISR, Aura-OMI, Parasol-POLDER, and Calipso-CALIOP) based on the collocation of these data products over AERONET stations. In this presentation, we will describe the strategy of the MAPSS system, its potential advantages for the aerosol community, and the preliminary results of an integrated comparative uncertainty analysis of aerosol products from multiple satellite sensors.
Toward a Coherent Detailed Evaluation of Aerosol Data Products from Multiple Satellite Sensors
NASA Technical Reports Server (NTRS)
Ichoku, Charles; Petrenko, Maksym; Leptoukh, Gregory
2011-01-01
Atmospheric aerosols represent one of the greatest uncertainties in climate research. Although satellite-based aerosol retrieval has practically become routine, especially during the last decade, there is often disagreement between similar aerosol parameters retrieved from different sensors, leaving users confused as to which sensors to trust for answering important science questions about the distribution, properties, and impacts of aerosols. As long as there is no consensus and the inconsistencies are not well characterized and understood, there will be no way of developing reliable climate data records from satellite aerosol measurements. Fortunately, the most globally representative well-calibrated ground-based aerosol measurements corresponding to the satellite-retrieved products are available from the Aerosol Robotic Network (AERONET). To adequately utilize the advantages offered by this vital resource, an online Multi-sensor Aerosol Products Sampling System (MAPSS) was recently developed. The aim of MAPSS is to facilitate detailed comparative analysis of satellite aerosol measurements from different sensors (Terra-MODIS, Aqua-MODIS, TerraMISR, Aura-OMI, Parasol-POLDER, and Calipso-CALIOP) based on the collocation of these data products over AERONET stations. In this presentation, we will describe the strategy of the MASS system, its potential advantages for the aerosol community, and the preliminary results of an integrated comparative uncertainly analysis of aerosol products from multiple satellite sensors.
NASA Technical Reports Server (NTRS)
Kahn, Ralph A.; Garay, Michael J.; Nelson, David L.; Levy, Robert C.; Bull, Michael A.; Diner, David J.; Martonchik, John V.; Hansen, Earl G.; Remer, Lorraine A.; Tanre, Didier
2010-01-01
A recent paper by Mishchenko et al. compares near-coincident MISR, MODIS, and AERONET aerosol optical depth (AOD) products, and reports much poorer agreement than that obtained by the instrument teams and others. We trace the reasons for the discrepancies primarily to differences in (1) the treatment of outliers, (2) the application of absolute vs. relative criteria for testing agreement, and (3) the ways in which seasonally varying spatial distributions of coincident retrievals are taken into account.
NASA Technical Reports Server (NTRS)
Zhang, Jiang-Long; Christopher, Sundar A.
2003-01-01
Using observations from the Multi-angle Imaging Spectroradiometer (MISR), the Moderate Resolution Imaging Spectroradiometer (MODIS), and the Clouds and the Earth's Radiant Energy System (CERES) instruments onboard the Terra satellite; we present a new technique for studying longwave (LW) radiative forcing of dust aerosols over the Saharan desert for cloud-free conditions. The monthly-mean LW forcing for September 2000 is 7 W/sq m and the LW forcing efficiency' (LW(sub eff)) is 15 W/sq m. Using radiative transfer calculations, we also show that the vertical distribution of aerosols and water vapor are critical to the understanding of dust aerosol forcing. Using well calibrated, spatially and temporally collocated data sets, we have combined the strengths of three sensors from the same satellite to quantify the LW radiative forcing, and show that dust aerosols have a "warming" effect over the Saharan desert that will counteract the shortwave "cooling effect" of aerosols.
NASA Technical Reports Server (NTRS)
Nabat, P.; Somot, S.; Mallet, M.; Chiapello, I; Morcrette, J. J.; Solomon, F.; Szopa, S.; Dulac, F; Collins, W.; Ghan, S.;
2013-01-01
Since the 1980s several spaceborne sensors have been used to retrieve the aerosol optical depth (AOD) over the Mediterranean region. In parallel, AOD climatologies coming from different numerical model simulations are now also available, permitting to distinguish the contribution of several aerosol types to the total AOD. In this work, we perform a comparative analysis of this unique multiyear database in terms of total AOD and of its apportionment by the five main aerosol types (soil dust, seasalt, sulfate, black and organic carbon). We use 9 different satellite-derived monthly AOD products: NOAA/AVHRR, SeaWiFS (2 products), TERRA/MISR, TERRA/MODIS, AQUA/MODIS, ENVISAT/MERIS, PARASOL/POLDER and MSG/SEVIRI, as well as 3 more historical datasets: NIMBUS7/CZCS, TOMS (onboard NIMBUS7 and Earth- Probe) and METEOSAT/MVIRI. Monthly model datasets include the aerosol climatology from Tegen et al. (1997), the climate-chemistry models LMDz-OR-INCA and RegCM-4, the multi-model mean coming from the ACCMIP exercise, and the reanalyses GEMS and MACC. Ground-based Level- 2 AERONET AOD observations from 47 stations around the basin are used here to evaluate the model and satellite data. The sensor MODIS (on AQUA and TERRA) has the best average AOD scores over this region, showing a relevant spatio-temporal variability and highlighting high dust loads over Northern Africa and the sea (spring and summer), and sulfate aerosols over continental Europe (summer). The comparison also shows limitations of certain datasets (especially MERIS and SeaWiFS standard products). Models reproduce the main patterns of the AOD variability over the basin. The MACC reanalysis is the closest to AERONET data, but appears to underestimate dust over Northern Africa, where RegCM-4 is found closer to MODIS thanks to its interactive scheme for dust emissions. The vertical dimension is also investigated using the CALIOP instrument. This study confirms differences of vertical distribution between dust aerosols showing a large vertical spread, and other continental and marine aerosols which are confined in the boundary layer. From this compilation, we propose a 4-D blended product from model and satellite data, consisting in monthly time series of 3-D aerosol distribution at a 50 km horizontal resolution over the Euro-Mediterranean marine and continental region for the 2003-2009 period. The product is based on the total AOD from AQUA/MODIS, apportioned into sulfates, black and organic carbon from the MACC reanalysis, and into dust and sea-salt aerosols from RegCM-4 simulations, which are distributed vertically based on CALIOP climatology.We extend the 2003-2009 reconstruction to the past up to 1979 using the 2003-2009 average and applying the decreasing trend in sulfate aerosols from LMDz-OR-INCA, whose AOD trends over Europe and the Mediterranean are median among the ACCMIP models. Finally optical properties of the different aerosol types in this region are proposed from Mie calculations so that this reconstruction can be included in regional climate models for aerosol radiative forcing and aerosol-climate studies.
NASA Technical Reports Server (NTRS)
Redemann, Jens; Shinozuka, Y.; Kacenelenbogen, M.; Russell, P.; Vaughan, M.; Ferrare, R.; Hostetler, C.; Rogers, R.; Burton, S.; Livingston, J.;
2014-01-01
We describe a technique for combining CALIOP aerosol backscatter, MODIS spectral AOD (aerosol optical depth), and OMI AAOD (absorption aerosol optical depth) measurements for the purpose of estimating full spectral sets of aerosol radiative properties, and ultimately for calculating the 3-D distribution of direct aerosol radiative forcing. We present results using one year of data collected in 2007 and show comparisons of the aerosol radiative property estimates to collocated AERONET retrievals. Initial calculations of seasonal clear-sky aerosol radiative forcing based on our multi-sensor aerosol retrievals compare well with over-ocean and top of the atmosphere IPCC-2007 model-based results, and with more recent assessments in the "Climate Change Science Program Report: Atmospheric Aerosol Properties and Climate Impacts" (2009). We discuss some of the challenges that exist in extending our clear-sky results to all-sky conditions. On the basis of comparisons to suborbital measurements, we present some of the limitations of the MODIS and CALIOP retrievals in the presence of adjacent or underlying clouds. Strategies for meeting these challenges are discussed. We also discuss a methodology for using the multi-sensor aerosol retrievals for aerosol type classification based on advanced clustering techniques. The combination of research results permits conclusions regarding the attribution of aerosol radiative forcing to aerosol type.
Constructing An Event Based Aerosol Product Under High Aerosol Loading Conditions
NASA Astrophysics Data System (ADS)
Levy, R. C.; Shi, Y.; Mattoo, S.; Remer, L. A.; Zhang, J.
2016-12-01
High aerosol loading events, such as the Indonesia's forest fire in Fall 2015 or the persistent wintertime haze near Beijing, gain tremendous interests due to their large impact on regional visibility and air quality. Understanding the optical properties of these events and further being able to simulate and predict these events are beneficial. However, it is a great challenge to consistently identify and then retrieve aerosol optical depth (AOD) from passive sensors during heavy aerosol events. Some reasons include:1). large differences between optical properties of high-loading aerosols and those under normal conditions, 2) spectral signals of optically thick aerosols can be mistaken with surface depending on aerosol types, and 3) Extremely optically thick aerosol plumes can also be misidentified as clouds due to its high optical thickness. Thus, even under clear-sky conditions, the global distribution of extreme aerosol events is not well captured in datasets such as the MODIS Dark-Target (DT) aerosol product. In this study, with the synthetic use of OMI Aerosol Index, MODIS cloud product, and operational DT product, the heavy smoke events over the seven sea region are identified and retrieved over the dry season. An event based aerosol product that would compensate the standard "global" aerosol retrieval will be created and evaluated. The impact of missing high AOD retrievals on the regional aerosol climatology will be studied using this newly developed research product.
NASA Astrophysics Data System (ADS)
Ferrare, R. A.; Burton, S. P.; Cook, A. L.; Harper, D. B.; Hostetler, C. A.; Hair, J. W.; Vaughan, M.; Hu, Y.; Fenn, M. A.; Clayton, M.; Scarino, A. J.; Jethva, H. T.; Sayer, A. M.; Meyer, K.; Torres, O.; Josset, D. B.; Redemann, J.
2017-12-01
The NASA Langley Research Center airborne High Spectral Resolution Lidar (HSRL-2) provided extensive measurements of smoke above shallow marine clouds while deployed from the NASA ER-2 aircraft during the NASA EV-S Observations of Aerosols above Clouds and their Interactions (ORACLES) mission. During the first ORACLES field campaign in September 2016, the ER-2 was deployed from Walvis Bay, Namibia and conducted flights over the southeastern Atlantic Ocean. HSRL-2 measured profiles of aerosol backscattering, extinction and aerosol optical depth (AOD) at 355 and 532 nm and aerosol backscattering and depolarization at 1064 nm and so provided an excellent characterization of the widespread smoke layers above shallow marine clouds. OMI, MODIS, and CALIOP satellite retrievals of above cloud AOD (ACAOD) are compared to the HSRL-2 measurements. The OMI above-cloud aerosols data product (OMACA) ACAOD product relies on the spectral contrast produced by aerosol absorption in two near-UV measurements (354 and 388 nm) to derive ACAOD. Two MODIS ACAOD products are examined; the first ("multichannel') relies on the spectral contrast in aerosol absorption derived from reflectance measurements at six MODIS channels from the visible to the shortwave infrared (swIR). The second method is an extension of the "Deep Blue" method and differs from the multichannel method in that it does not use swIR channels. The CALIOP V4 operational and "depolarization ratio (DR)" methods of retrieving ACAOD are also examined. The MODIS and OMI ACAOD values were well correlated (r2>0.6) with the HSRL-2 ACAOD values; bias differences were generally less than about 0.1 at 532 nm (10-30%). The CALIOP operational retrievals missed a significant amount of aerosol and so were biased low by 50-75% compared to HSRL-2. In contrast, the CALIOP DR method produced ACAOD values in excellent agreement (bias differences less than 0.03 (5%)) with HSRL-2. Aerosol extinction profiles computed for the smoke layer using the CALIOP attenuated backscatter profiles and constrained by the CALIOP DR ACAOD retrievals are also found to agree well on average with coincident HSRL-2 extinction profiles. These constrained CALIOP extinction profiles are used to characterize the smoke distribution over this region.
Progress towards MODIS and VIIRS Cloud Optical Property Data Record Continuity
NASA Astrophysics Data System (ADS)
Meyer, K.; Platnick, S. E.; Wind, G.; Amarasinghe, N.; Holz, R.; Ackerman, S. A.; Heidinger, A. K.
2016-12-01
The launch of Suomi NPP in the fall of 2011 began the next generation of U.S. operational polar orbiting Earth observations, and its VIIRS imager provides an opportunity to extend the 15+ year climate data record of MODIS EOS. Similar to MODIS, VIIRS provides visible through IR observations at moderate spatial resolution with a 1330 LT equatorial crossing consistent with the MODIS on the Aqua platform. However, unlike MODIS, VIIRS lacks key water vapor and CO2 absorbing channels used for high cloud detection and cloud-top property retrievals, and there is a significant change in the spectral location of the 2.1μm shortwave-infrared channel used for cloud optical/microphysical retrievals and cloud thermodynamic phase. Given these instrument differences between MODIS EOS and VIIRS S-NPP/JPSS, we discuss our progress towards merging the MODIS observational record with VIIRS in order to generate cloud optical property climate data record continuity across the observing systems. The MODIS-VIIRS continuity algorithm for cloud optical property retrievals leverages heritage algorithms that produce the existing MODIS cloud optical and microphysical properties product (MOD06); the NOAA AWG/CLAVR-x cloud-top property algorithm and a common MODIS-VIIRS cloud mask feed into the optical property algorithm. To account for the different channel sets of MODIS and VIIRS, each algorithm nominally uses a subset of channels common to both imagers. Data granule and aggregated examples for the current version of the continuity algorithm (MODAWG) will be shown. In addition, efforts to reconcile apparent radiometric biases between analogous channels of the two imagers, a critical consideration for obtaining inter-sensor climate data record continuity, will be discussed.
NASA Astrophysics Data System (ADS)
Kumar, M.; Raju, M. P.; Singh, R. K.; Singh, A. K.; Singh, R. S.; Banerjee, T.
2017-01-01
Winter-specific characteristics of airborne particulates over middle Indo-Gangetic Plain (IGP) were evaluated in terms of aerosol chemical and micro-physical properties under three-dimensional domain. Emphases were made for the first time to identify intra-seasonal variations of aerosols sources, horizontal and vertical transport, effects of regional meteorology and estimating composite aerosol short-wave radiative forcing over an urban region (25°10‧-25°19‧N; 82°54‧-83°4‧E) at middle-IGP. Space-borne passive (Aqua and Terra MODIS, Aura OMI) and active sensor (CALIPSO-CALIOP) based observations were concurrently used with ground based aerosol mass measurement for entire winter and pre-summer months (December, 1, 2014 to March, 31, 2015). Exceptionally high aerosol mass loading was recorded for both PM10 (267.6 ± 107.0 μg m- 3) and PM2.5 (150.2 ± 89.4 μg m- 3) typically exceeding national standard. Aerosol type was mostly dominated by fine particulates (particulate ratio: 0.61) during pre to mid-winter episodes before being converted to mixed aerosol types (ratio: 0.41-0.53). Time series analysis of aerosols mass typically identified three dissimilar aerosol loading episodes with varying attributes, well resemble to that of previous year's observation representing its persisting nature. Black carbon (9.4 ± 3.7 μg m- 3) was found to constitute significant proportion of fine particulates (2-27%) with a strong diurnal profile. Secondary inorganic ions also accounted a fraction of particulates (PM2.5: 22.5%; PM10: 26.9%) having SO4- 2, NO3- and NH4+ constituting major proportion. Satellite retrieved MODIS-AOD (0.01-2.30) and fine mode fractions (FMF: 0.01-1.00) identified intra-seasonal variation with transport of aerosols from upper to middle-IGP through continental westerly. Varying statistical association of columnar and surface aerosol loading both in terms of fine (r; PM2.5: MODIS-AOD: 0.51) and coarse particulates (PM10: MODIS-AOD: 0.53) was found influenced by local meteorology (boundary layer and humidity) and aerosol vertical profile. A gradual increase in aerosol vertical profile (surface to 4.9 km) was evident with dominance of polluted continental, polluted dust and smoke at lower altitude. Presence of mineral dusts in higher altitude during later phase was linked with its transboundary transport, originating from western dry regions. Conclusively, winter-specific short-wave aerosol radiative forcing revealed an ATM warming effect (31-47 W m- 2) while cooling both at TOA (- 20 to - 32 W m- 2) and SUF (- 51 to - 80 W m- 2) with significant level of intra-seasonal variations in heating rates (0.86-1.32 K day- 1).
NASA Astrophysics Data System (ADS)
Gasso, S.; Gaiero, D. M.; Villoslada, B.; Liske, E.
2005-12-01
The largest continental landmass south of the 40-degree parallel and potentially one of the largest sources of dust into the Southern Ocean (SO) is the Patagonia desert. Most of the estimates of dust outflow and deposition from this region into the South Atlantic Ocean are based on model simulations. However, there are very few measurements available that can corroborate these estimates. Satellite assessments of dust activity offer conflicting views. For example, monthly time series of satellite-derived (e.g. AVHRR and MODIS) aerosol optical depth (AOD) indicate that dust activity is minimal. However, a study with the TOMS Aerosol Index (Prospero et al., 2002) showed that the frequency of dust events is in the range of 7-14 days/month during the years 1978 through 1993. In addition, surface visibility observations along the Patagonian coast confirm that ocean-going dust events do occur during the summer and spring months. These discrepancies indicate fundamental uncertainties regarding the frequency and extent of dust activity in Patagonia. Given that the SO is the largest high-chlorophyll, low-nutrient area in the world and that the flux of nutrient-rich dust has the potential to modify biological activity with possible climatic consequences, it is of interest to have a better understanding of how often and intense are dust events in the Patagonia region. We surveyed the reports of dust activity from surface weather stations in the Patagonia region during the period June, 2004 to April, 2005. These observations were compared with simultaneous MODIS true color pictures and the corresponding aerosol retrievals. In addition, measurements of vertical and horizontal dust flux were collected by dust samplers at four sites along the coast. The horizontal flux measurements were compared with the same estimates derived from MODIS. According to the true color pictures and confirmed by the surface visibility observations, we recorded at least 16 ocean-going dust events. The scale of the events varied from small (single dust plumes along the coast) to large (dust front extending ~600 km). Most of the large events occurred during the late summer. Due to the presence of sun glint, cloud obstruction, or coastal sediments, the MODIS automatic aerosol algorithm did not derive AODs in many instances and, as result, many events were not recorded in the MODIS monthly database. Dust sources are numerous and dust plumes outflow at any place along the coastline (> 1000 km) including some very active sources as far south as in the Tierra del Fuego Island (54S). The main sources identified are coastal saltbeds, inland deflation hollows and receding shores of large lakes. Although some of major emitting points have been included as sources in dust models, there are some notable exceptions, for example most of the coastal sources. We note, in addition, that the scale and diversity of the different sources pose significant challenges with respect to parameterization in global models of dust dispersion.
NASA Technical Reports Server (NTRS)
Kaufman, Yoram; Mattoo, Shana; Tanre, Didier; Kleidman, Richard; Lau, William K. M. (Technical Monitor)
2001-01-01
The ESSP3-CENA space mission (formally PICASSO-CENA) will provide continues global observations with a two wavelength lidar. The attenuated backscattering coefficients measured by the lidar, have valuable information about the vertical distribution of aerosol particles and their sizes. However the information cannot be mapped into unique aerosol physical properties. Infinite number of physical solutions with different attenuations through the atmosphere can reconstruct the same two wavelength backscattered profile measured from space. Spectral radiance measured by MODIS simultaneously with the ESSP3 data can constrain the problem and resolve this ambiguity to a large extent. Sensitivity study shows that inversion of the integrated MODIS+ESSP3 data can derive the vertical profiles of the fine and coarse modes mixed in the same atmospheric column in the presence of moderate calibration uncertainties and electronic noise (approx. 10%). We shall present the sensitivity study and results from application of the technique to measurements in the SAFARI-2000 and SHADE experiments.
NASA Astrophysics Data System (ADS)
Guo, Jianping; Wang, Fu; Huang, Jingfeng; Li, Xiaowen
2015-04-01
Aerosol, one of key components of the climate system, is highly variable, both temporally and spatially. It often exerts great influences on the cloud-precipitation chain processes by serving as CCN/IN, altering cloud microphysics and its life cycle. Yet, the aerosol indirect effect on clouds remains largely unknown, because the initial changes in clouds due to aerosols may be enhanced or dampened by such feedback processes as modified cloud dynamics, or evaporation of the smaller droplets due to the competition for water vapor. In this study, we attempted to quantify the aerosol effects on warm cloud over eastern China, based on near-simultaneous retrievals from MODIS/AQUA, CALIOP/CALIPSO and CPR/CLOUDSAT during the period 2006 to 2010. The seasonality of aerosol from ground-based PM10 is quite different from that estimated from MODIS AOD. This result is corroborated by lower level profile of aerosol occurrence frequency from CALIOP, indicating the significant role CALIOP could play in aerosol-cloud interaction. The combined use of CALIOP and CPR facilitate the process to exactly determine the (vertical) position of warm cloud relative to aerosol, out of six scenarios in terms of aerosol-cloud mixing status in terms of aerosol-cloud mixing status, which shows as follows: AO (Aerosol only), CO (Cloud only), SASC (Single aerosol-single cloud), SADC (single aerosol-double cloud), DASC (double aerosol-single cloud), and others. Results shows that about 54% of all the cases belong to mixed status, among all the collocated aerosol-cloud cases. Under mixed condition, a boomerang shape is observed, i.e., reduced cloud droplet radius (CDR) is associated with increasing aerosol at moderate aerosol pollution (AOD<0.4), becoming saturated at AOD of 0.5, followed by an increase in CDR with aerosol. In contrast, there is no such boomerang shape found for (aerosol-cloud) separated cases. We categorize dataset into warm-season and cold-season subsets to figure out how the boomerang shape varies with season. For moderate aerosol loading (AOD<0.4), the effect on the droplet size for the "Mixed" cases is greater during cold season (denoted by a large slope), as compared with that during warm season. It is likely associated with an increase in the emission of light absorbing aerosol like smoke (black carbon), mainly caused by coal-fired heating during the cold season in China. As expected, the sensitivity of CDR to AOD is much weaker for "Separated" cases, irrespective of warm or cold seasons, indicating no real aerosol indirect effect occurring in this case. In contrast, for heavy aerosol loading (AOD>0.4), an increasing CDR with AOD can be seen in "Mixed" scenario during the warm season. Conversely, a closer look at the responses of CDR during the cold season shows that CDR decreases with AOD, although the strength is not much large. Therefore, we argue that cloud droplet size decreases with aerosol loading during cold season, irrespective of moderate or heavy atmospheric pollution. Finally, we discuss the possible factors that may influence the aerosol indirect effects on warm clouds investigated here. For instance, aerosol-cloud interaction conundrum might be affected by aerosol humidification, which is the case for MODIS AOD during warm seasons. But this issue can be partly overcome by categorizing dataset into warm-season and cold-season subsets, representing different ambient humidity condition in the atmosphere. The different boomerang shapes observed during various seasons, particularly after transition zone due to droplet saturation effect, have great implications for climate forcing by aerosol in eastern China.
Development of an Operational Multi-sensor and Multi-channel Aerosol Assimilation Package
2011-08-18
2010, EGU General Assembly 2010. Shi, Y., J. Zhang, J. S. Reid, E. Hyer, Evaluation of MISR Aerosol Optical Depth Product for Aerosol Data...empirical correction procedures for generating data-assimilation-friendly over-water MODIS aerosol products. This study has been published (Shi et al...type as large r\\ values are generally related to fine mode aerosols, such as sulfate and smoke aerosols, and small r\\ values typically indicate sea
NASA Astrophysics Data System (ADS)
Sayer, Andrew M.; Hsu, N. Christina; Bettenhausen, Corey; Holz, Robert E.; Lee, Jaehwa; Quinn, Greg; Veglio, Paolo
2017-04-01
The Visible Infrared Imaging Radiometer Suite (VIIRS) is being used to continue the record of Earth Science observations and data products produced routinely from National Aeronautics and Space Administration (NASA) Moderate Resolution Imaging Spectroradiometer (MODIS) measurements. However, the absolute calibration of VIIRS's reflected solar bands is thought to be biased, leading to offsets in derived data products such as aerosol optical depth (AOD) as compared to when similar algorithms are applied to different sensors. This study presents a cross-calibration of these VIIRS bands against MODIS Aqua over dark water scenes, finding corrections to the NASA VIIRS Level 1 (version 2) reflectances between approximately +1 and -7 % (dependent on band) are needed to bring the two into alignment (after accounting for expected differences resulting from different band spectral response functions), and indications of relative trending of up to ˜ 0.35 % per year in some bands. The derived calibration gain corrections are also applied to the VIIRS reflectance and then used in an AOD retrieval, and they are shown to decrease the bias and total error in AOD across the mid-visible spectral region compared to the standard VIIRS NASA reflectance calibration. The resulting AOD bias characteristics are similar to those of NASA MODIS AOD data products, which is encouraging in terms of multi-sensor data continuity.
Improved ocean-color remote sensing in the Arctic using the POLYMER algorithm
NASA Astrophysics Data System (ADS)
Frouin, Robert; Deschamps, Pierre-Yves; Ramon, Didier; Steinmetz, François
2012-10-01
Atmospheric correction of ocean-color imagery in the Arctic brings some specific challenges that the standard atmospheric correction algorithm does not address, namely low solar elevation, high cloud frequency, multi-layered polar clouds, presence of ice in the field-of-view, and adjacency effects from highly reflecting surfaces covered by snow and ice and from clouds. The challenges may be addressed using a flexible atmospheric correction algorithm, referred to as POLYMER (Steinmetz and al., 2011). This algorithm does not use a specific aerosol model, but fits the atmospheric reflectance by a polynomial with a non spectral term that accounts for any non spectral scattering (clouds, coarse aerosol mode) or reflection (glitter, whitecaps, small ice surfaces within the instrument field of view), a spectral term with a law in wavelength to the power -1 (fine aerosol mode), and a spectral term with a law in wavelength to the power -4 (molecular scattering, adjacency effects from clouds and white surfaces). Tests are performed on selected MERIS imagery acquired over Arctic Seas. The derived ocean properties, i.e., marine reflectance and chlorophyll concentration, are compared with those obtained with the standard MEGS algorithm. The POLYMER estimates are more realistic in regions affected by the ice environment, e.g., chlorophyll concentration is higher near the ice edge, and spatial coverage is substantially increased. Good retrievals are obtained in the presence of thin clouds, with ocean-color features exhibiting spatial continuity from clear to cloudy regions. The POLYMER estimates of marine reflectance agree better with in situ measurements than the MEGS estimates. Biases are 0.001 or less in magnitude, except at 412 and 443 nm, where they reach 0.005 and 0.002, respectively, and root-mean-squared difference decreases from 0.006 at 412 nm to less than 0.001 at 620 and 665 nm. A first application to MODIS imagery is presented, revealing that the POLYMER algorithm is robust when pixels are contaminated by sea ice.
NASA Technical Reports Server (NTRS)
Shi, Y.; Zhang, J.; Reid, J. S.; Hyer, E. J.; Eck, T. F.; Holben, B. N.; Kahn, R. A.
2011-01-01
AErosol RObotic NETwork (AERONET) data are the primary benchmark for evaluating satellite-retrieved aerosol properties. However, despite its extensive coverage, the representativeness of the AERONET data is rarely discussed. Indeed, many studies have shown that satellite retrieval biases have a significant degree of spatial correlation that may be problematic for higher-level processes or inverse-emissions-modeling studies. To consider these issues and evaluate relative performance in regions of few surface observations, cross-comparisons between the Aerosol Optical Depth (AOD) products of operational MODIS Collection 5.1 Dark Target (DT) and operational MODIS Collection 5.1 Deep Blue (DB) with MISR version 22 were conducted. Through such comparisons, we can observe coherent spatial features of the AOD bias while side-stepping the full analysis required for determining when or where either retrieval is more correct. We identify regions where MODIS to MISR AOD ratios were found to be above 1.4 and below 0.7. Regions where lower boundary condition uncertainty is likely to be a dominant factor include portions of Western North America, the Andes mountains, Saharan Africa, the Arabian Peninsula, and Central Asia. Similarly, microphysical biases may be an issue in South America, and specific parts of Southern Africa, India Asia, East Asia, and Indonesia. These results help identify high-priority locations for possible future deployments of both in situ and ground based remote sensing measurements. The Supplement includes a km1 file.
NASA Astrophysics Data System (ADS)
Zoran, Maria A.; Savastru, Roxana S.; Savastru, Dan M.
2015-10-01
With the increasing industrialization and urbanization, especially in the metropolis regions, aerosol pollution has highly negative effects on environment. Urbanization is responsible of three major changes that may have impact on the urban atmosphere: replacement of the natural surfaces with buildings and impermeable pavements, heat of anthropogenic origin and air pollution. The importance of aerosols for radiative and atmospheric chemical processes is widely recognized. They can scatter and/or absorb solar radiation leading to changes of the radiation budget. Also, the so-called indirect effect of aerosols describes the cloud-aerosol interactions, which can modify the chemical and physical processes in the atmosphere. Their high spatial variability and short lifetime make spaceborne sensors especially well suited for their observation. Remote sensing is a key application in global-change science and urban climatology. Since the launch of the MODerate resolution Imaging Spectroradiometer (MODIS) there is detailed global aerosol information available, both over land and oceans The aerosol parameters can be measured directly in situ or derived from satellite remote sensing observations. All these methods are important and complementary. The objective of this work was to document the seasonal and inter-annual patterns of the aerosol pollution particulate matter in two size fractions (PM10 and PM2.5) loading and air quality index (AQI) over Bucharest metropolitan area in Romania based on in-situ and MODIS (Terra-Moderate Resolution Imaging Spectoradiometer) satellite time series data over 2010-2012 period. Accurate information of urban air pollution is required for environmental and health policy, but also to act as a basis for designing and stratifying future monitoring networks.
NASA Astrophysics Data System (ADS)
Alston, E. J.; Sokolik, I. N.
2011-12-01
This study examines how aerosols measured from the ground and space over the U. S. Southeast change temporally over a regional scale and their radiative impacts. PM2.5 data consist of two datasets that represent the measurements that are used for regulatory purposes by the U.S. EPA and continuous measurements used for quickly disseminating air quality information. Aerosol optical depth (AOD) data come from three NASA sensors: the MODIS sensors onboard Terra and Aqua satellites and the MISR sensor onboard the Terra satellite. We analyze all available aerosol data over the state of Georgia from 2000 - 2009. In additional to aerosol data, we examine the surface albedo and cloud cover products from MODIS Terra over the same time period. Strong seasonality is detected in both the AOD and PM2.5 datasets; as evidenced by a threefold increase of AOD from mean winter values to mean summer values, and the increase in PM2.5 concentrations is almost twofold from over the same period. We found good agreement between MODIS and MISR onboard the Terra satellite during the spring and summer having correlation coefficients of 0.64 in spring and 0.71 in summer. Monthly anomalies were used to determine the presence of a trend in the both AODs and PM2.5 aerosol datasets. In addition, radiative transfer modeling was performed to assess the aerosol radiative forcing in the region over the past decade. The results of this analysis suggest that the Southeastern U.S. is experiencing solar brightening likely due to better air quality control policies. Our results also hint that if the brightening continues, the radiative forcing from these aerosols will become less negative, which could have potential impacts on climate for the region.
Using Satellite Aerosol Retrievals to Monitor Surface Particulate Air Quality
NASA Technical Reports Server (NTRS)
Levy, Robert C.; Remer, Lorraine A.; Kahn, Ralph A.; Chu, D. Allen; Mattoo, Shana; Holben, Brent N.; Schafer, Joel S.
2011-01-01
The MODIS and MISR aerosol products were designed nearly two decades ago for the purpose of climate applications. Since launch of Terra in 1999, these two sensors have provided global, quantitative information about column-integrated aerosol properties, including aerosol optical depth (AOD) and relative aerosol type parameters (such as Angstrom exponent). Although primarily designed for climate, the air quality (AQ) community quickly recognized that passive satellite products could be used for particulate air quality monitoring and forecasting. However, AOD and particulate matter (PM) concentrations have different units, and represent aerosol conditions in different layers of the atmosphere. Also, due to low visible contrast over brighter surface conditions, satellite-derived aerosol retrievals tend to have larger uncertainty in urban or populated regions. Nonetheless, the AQ community has made significant progress in relating column-integrated AOD at ambient relative humidity (RH) to surface PM concentrations at dried RH. Knowledge of aerosol optical and microphysical properties, ambient meteorological conditions, and especially vertical profile, are critical for physically relating AOD and PM. To make urban-scale maps of PM, we also must account for spatial variability. Since surface PM may vary on a finer spatial scale than the resolution of standard MODIS (10 km) and MISR (17km) products, we test higher-resolution versions of MODIS (3km) and MISR (1km research mode) retrievals. The recent (July 2011) DISCOVER-AQ campaign in the mid-Atlantic offers a comprehensive network of sun photometers (DRAGON) and other data that we use for validating the higher resolution satellite data. In the future, we expect that the wealth of aircraft and ground-based measurements, collected during DISCOVER-AQ, will help us quantitatively link remote sensed and ground-based measurements in the urban region.
NASA Technical Reports Server (NTRS)
Malakar, Nabin K.; Lary, D. L.; Moore, A.; Gencaga, D.; Roscoe, B.; Albayrak, Arif; Petrenko, Maksym; Wei, Jennifer
2012-01-01
Air quality information is increasingly becoming a public health concern, since some of the aerosol particles pose harmful effects to peoples health. One widely available metric of aerosol abundance is the aerosol optical depth (AOD). The AOD is the integrated light extinction coefficient over a vertical atmospheric column of unit cross section, which represents the extent to which the aerosols in that vertical profile prevent the transmission of light by absorption or scattering. The comparison between the AOD measured from the ground-based Aerosol Robotic Network (AERONET) system and the satellite MODIS instruments at 550 nm shows that there is a bias between the two data products. We performed a comprehensive analysis exploring possible factors which may be contributing to the inter-instrumental bias between MODIS and AERONET. The analysis used several measured variables, including the MODIS AOD, as input in order to train a neural network in regression mode to predict the AERONET AOD values. This not only allowed us to obtain an estimate, but also allowed us to infer the optimal sets of variables that played an important role in the prediction. In addition, we applied machine learning to infer the global abundance of ground level PM2.5 from the AOD data and other ancillary satellite and meteorology products. This research is part of our goal to provide air quality information, which can also be useful for global epidemiology studies.
Sensitivity of Aerosol Multi-Sensor Daily Data Intercomparison to the Level 3 Dataday Definition
NASA Technical Reports Server (NTRS)
Leptoukh, Gregory; Lary, David; Shen, Suhung; Lynnes, Christopher
2010-01-01
Topics include: why people use Level 3 products, why someone might go wrong with Level 3 products, differences in L3 from different sensors, Level 3 data day definition, MODIS vs. MODIS, AOD MODIS Terra vs. Aqua in Pacific, AOD Aqua MODIS vs. MISR correlation map, MODIS vs MISR on Terra, MODIS atmospheric data day definition, orbit time difference for Terra and Aqua 2009-01-06, maximum time difference for Terra (Calendar day), artifact explains, data day definitions, local time distribution, spatial (local time) data day definition, maximum time difference between Terra and Aqua, Removing the artifact in 16-day AOD correlation, MODIS cloud top pressure, and MODIS Terra and Aqua vs. AIRS cloud top pressure.
NASA Astrophysics Data System (ADS)
Kacenelenbogen, M. S.; Russell, P. B.; Vaughan, M.; Redemann, J.; Shinozuka, Y.; Livingston, J. M.; Zhang, Q.
2014-12-01
According to the 5th Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), the model estimates of Radiative Forcing due to aerosol-radiation interactions (RFari) for individual aerosol types are less certain than the total RFari [Boucher et al., 2013]. For example, the RFari specific to Black Carbon (BC) is uncertain due to an underestimation of its mass concentration near source regions [Koch et al., 2009]. Several recent studies have evaluated chemical transport model (CTM) predictions using observations of aerosol optical properties such as Aerosol Optical Depth (AOD) or Single Scattering Albedo (SSA) from satellite or ground-based instruments (e.g., Huneeus et al., [2010]). However, most passive remote sensing instruments fail to provide a comprehensive assessment of the particle type without further analysis and combination of measurements. To improve the predictions of aerosol composition in CTMs, we have developed an aerosol classification algorithm (called Specified Clustering and Mahalanobis Classification, SCMC) that assigns an aerosol type to multi-parameter retrievals by spaceborne, airborne or ground based passive remote sensing instruments [Russell et al., 2014]. The aerosol types identified by our scheme are pure dust, polluted dust, urban-industrial/developed economy, urban-industrial/developing economy, dark biomass smoke, light biomass smoke and pure marine. First, we apply the SCMC method to five years of clear-sky space-borne POLDER observations over Greece. We then use the aerosol extinction and SSA spectra retrieved from a combination of MODIS, OMI and CALIOP clear-sky observations to infer the aerosol type over the globe in 2007. Finally, we will extend the spaceborne aerosol classification from clear-sky to above low opaque water clouds using a combination of CALIOP AOD and backscatter observations and OMI absorption AOD values from near-by clear-sky pixels.
NASA Astrophysics Data System (ADS)
Manzo, Ciro; Bassani, Cristiana
2016-04-01
This paper focuses on the evaluation of surface reflectance obtained by different atmospheric correction algorithms of the Landsat 8 OLI data considering or not the micro-physical properties of the aerosol when images are acquired in desert area located in South-West of Nile delta. The atmospheric correction of remote sensing data was shown to be sensitive to the aerosol micro-physical properties, as reported in Bassani et al., 2012. In particular, the role of the aerosol micro-physical properties on the accuracy of the atmospheric correction of remote sensing data was investigated [Bassani et al., 2015; Tirelli et al., 2015]. In this work, the OLI surface reflectance was retrieved by the developed OLI@CRI (OLI ATmospherically Corrected Reflectance Imagery) physically-based atmospheric correction which considers the aerosol micro-physical properties available from the two AERONET stations [Holben et al., 1998] close to the study area (El_Farafra and Cairo_EMA_2). The OLI@CRI algorithm is based on 6SV radiative transfer model, last generation of the Second Simulation of a Satellite Signal in the Solar Spectrum (6S) radiative transfer code [Kotchenova et al., 2007; Vermote et al., 1997], specifically developed for Landsat 8 OLI data. The OLI reflectance obtained by the OLI@CRI was compared with reflectance obtained by other atmospheric correction algorithms which do not consider micro-physical properties of aerosol (DOS) or take on aerosol standard models (FLAASH, implemented in ENVI software). The accuracy of the surface reflectance retrieved by different algorithms were calculated by comparing the spatially resampled OLI images with the MODIS surface reflectance products. Finally, specific image processing was applied to the OLI reflectance images in order to compare remote sensing products obtained for same scene. The results highlight the influence of the physical characterization of aerosol on the OLI data improving the retrieved atmospherically corrected reflectance. One of the most important outreach of this research is the retrieval of the highest possible accuracy of the OLI reflectance for land surface variables by spectral indices. Consequently if OLI@CRI algorithm is applied to time series data, the uncertainty into the time curve can be reduced. Kotchenova and Vermote, 2007. Appl. Opt. doi:10.1364/AO.46.004455. Vermote et al., 1997. IEEE Trans. Geosci. Remote Sens. doi:10.1109/36.581987. Bassani et al., 2015. Atmos. Meas. Tech. doi:10.5194/amt-8-1593-2015. Bassani et al., 2012. Atmos. Meas. Tech. doi:10.5194/amt-5-1193-2012. Tirelli et al., 2015. Remote Sens. doi:10.3390/rs70708391. Holben et al., 1998. Rem. Sens. Environ. doi:10.1016/S0034-4257(98)00031-5.
NASA Technical Reports Server (NTRS)
Gkikas, A.; Hatzianastassiou, N.; Mihalopoulos, N.; Torres, O.
2015-01-01
An algorithm able to identify and characterize episodes of different aerosol types above sea surfaces of the greater Mediterranean basin (GMB), including the Black Sea and the Atlantic Ocean off the coasts of Iberia and northwest Africa, is presented in this study. Based on this algorithm, five types of intense (strong and extreme) aerosol episodes in the GMB are identified and characterized using daily aerosol optical properties from satellite measurements, namely MODIS-Terra, Earth Probe (EP)-TOMS and OMIAura. These aerosol episodes are: (i) biomass-burning/urban-industrial (BU), (ii) desert dust (DD), (iii) dust/sea-salt (DSS), (iv) mixed (MX) and (v) undetermined (UN). The identification and characterization is made with our algorithm using a variety of aerosol properties, namely aerosol optical depth (AOD), Angstrom exponent (a), fine fraction (FF), effective radius (reff) and Aerosol Index (AI). During the study period (2000e2007), the most frequent aerosol episodes are DD, observed primarily in the western and central Mediterranean Sea, and off the northern African coasts, 7 times/year for strong episodes and 4 times/year for extreme ones, on average. The DD episodes yield 40% of all types of strong aerosol episodes in the study region, while they account for 71.5% of all extreme episodes. The frequency of occurrence of strong episodes exhibits specific geographical patterns, for example the BU are mostly observed along the coasts of southern Europe and off the Atlantic coasts of Portugal, the MX episodes off the Spanish Mediterranean coast and over the Adriatic and northern Aegean Sea, while the DSS ones over the western and central Mediterranean Sea. On the other hand, the extreme episodes for all but DD aerosol display more patchy spatial patterns. The strong episodes exhibit AOD at 550 nm as high as 1.6 in the southernmost parts of central and eastern Mediterranean Sea, which rise up to 5 for the extreme, mainly DD and DSS, episodes. Although more than 90% of all aerosol episodes last 1 day, there are few cases, mainly extreme DD episodes, which last up to 4 days. Independently of their type, the Mediterranean aerosol episodes occur more frequently in spring (strong and extreme episodes) and summer (strong episodes) and most rarely during winter. A significant year by year variability of Mediterranean aerosol episodes has been identified, more in terms of their frequency than intensity. An analysis of 5-day back trajectories for the most extreme episodes provides confidence on the obtained results of the algorithm, based on the revealed origin and track of air masses causing the episodes. The 25 and 6% of all strong and extreme episodes, respectively, are MX, thus highlighting the co-existence of different aerosol types in the greater Mediterranean. The intensity of both MX and DSS episodes exhibits similar patterns to those of DD strong ones, indicating that desert dust is a determinant factor for the intensity of aerosol episodes in the Mediterranean, including DSS and MX episodes.
Hu, Chuanmin; Barnes, Brian B.; Qi, Lin; Corcoran, Alina A.
2015-01-01
The most recent Visible Infrared Imager Radiometer Suite (VIIRS) is not equipped with a spectral band to detect solar-stimulated phytoplankton fluorescence. The lack of such a band may affect the ability of VIIRS to detect and quantify harmful algal blooms (HABs) in coastal waters rich in colored dissolved organic matter (CDOM) because of the overlap of CDOM and chlorophyll absorption within the blue-green spectrum. A recent HAB dominated by the toxin-producing dinoflagellate Karenia brevis in the northeastern Gulf of Mexico, offshore of Florida's Big Bend region, allowed for comparison of the capacities of VIIRS and Moderate Resolution Imaging Spectroradiometer (MODIS) to detect blooms in CDOM-rich waters. Both VIIRS and MODIS showed general consistency in mapping the CDOM-rich dark water, which measured a maximum area of 8900 km2 by mid-July 2014. However, within the dark water, only MODIS allowed detection of bloom patches—as indicated by high normalized fluorescence line height (nFLH). Field surveys between late July and mid-September confirmed Karenia brevis at bloom abundances up to 20 million cells·L−1 within these patches. The bloom patches were well captured by the MODIS nFLH images, but not by the default chlorophyll a concentration (Chla) images from either MODIS or VIIRS. Spectral analysis showed that VIIRS could not discriminate these high-phytoplankton water patches within the dark water due to its lack of fluorescence band. Such a deficiency may be overcome with new algorithms or future satellite missions such as the U.S. NASA's Pre-Aerosol-Clouds-Ecology mission and the European Space Agency's Sentinel-3 mission. PMID:25635412
Hu, Chuanmin; Barnes, Brian B; Qi, Lin; Corcoran, Alina A
2015-01-28
The most recent Visible Infrared Imager Radiometer Suite (VIIRS) is not equipped with a spectral band to detect solar-stimulated phytoplankton fluorescence. The lack of such a band may affect the ability of VIIRS to detect and quantify harmful algal blooms (HABs) in coastal waters rich in colored dissolved organic matter (CDOM) because of the overlap of CDOM and chlorophyll absorption within the blue-green spectrum. A recent HAB dominated by the toxin-producing dinoflagellate Karenia brevis in the northeastern Gulf of Mexico, offshore of Florida's Big Bend region, allowed for comparison of the capacities of VIIRS and Moderate Resolution Imaging Spectroradiometer (MODIS) to detect blooms in CDOM-rich waters. Both VIIRS and MODIS showed general consistency in mapping the CDOM-rich dark water, which measured a maximum area of 8900 km2 by mid-July 2014. However, within the dark water, only MODIS allowed detection of bloom patches-as indicated by high normalized fluorescence line height (nFLH). Field surveys between late July and mid-September confirmed Karenia brevis at bloom abundances up to 20 million cells·L(-1) within these patches. The bloom patches were well captured by the MODIS nFLH images, but not by the default chlorophyll a concentration (Chla) images from either MODIS or VIIRS. Spectral analysis showed that VIIRS could not discriminate these high-phytoplankton water patches within the dark water due to its lack of fluorescence band. Such a deficiency may be overcome with new algorithms or future satellite missions such as the U.S. NASA's Pre-Aerosol-Clouds-Ecology mission and the European Space Agency's Sentinel-3 mission.
Influence of Aerosols And Surface Reflectance On NO2 Retrieval Over China From 2005 to 2015
NASA Astrophysics Data System (ADS)
Liu, M.; Lin, J.
2016-12-01
Satellite observation is a powerful way to analysis annual and seasonal variations of nitrogen dioxide (NO2). However, much retrieval of vertical column densities (VCDs) of normally do not explicitly account for aerosol optical effects and surface reflectance anisotropy that vary with space and time. In traditional retrieval, aerosols' effects are often considered as cloud. However, China has complicated aerosols type and aerosol loading. Their optical properties may be very different from the cloud. Furthermore, China has undergone big changes in land use type in recent 10 years. Traditional climatology surface reflectance data may not have representation. In order to study spatial-temporal variation of and influences of these two factors on variations and trends, we use an improved retrieval method of VCDs over China, called the POMINO, based on measurements from the Ozone Monitoring Instrument (OMI), and we compare the results of without aerosol, without surface reflectance treatments and without both to the original POMINO product from 2005 to 2015. Furthermore, we will study correspondent spatial-temporal variations of aerosols, represented by MODIS aerosol optical depth (AOD) data and CALIOP extinction data; surface reflectance, represented by MODIS bidirectional reflectance distribution function (BRDF) data.
Variability of Aerosol and its Impact on Cloud Properties Over Different Cities of Pakistan
NASA Astrophysics Data System (ADS)
Alam, Khan
Interaction between aerosols and clouds is the subject of considerable scientific research, due to the importance of clouds in controlling climate. Aerosols vary in time in space and can lead to variations in cloud microphysics. This paper is a pilot study to examine the temporal and spatial variation of aerosol particles and their impact on different cloud optical properties in the territory of Pakistan using the Moderate resolution Imaging Spectroradiometer (MODIS) on board NASA's Terra satellite data and Multi-angle Imaging Spectroradiometer (MISR) data. We also use Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model for trajectory analysis to obtain origin of air masses in order to understand the spatial and temporal variability of aerosol concentrations. We validate data of MODIS and MISR by using linear correlation and regression analysis, which shows that there is an excellent agreement between data of these instruments. Seasonal study of Aerosol Optical Depth (AOD) shows that maximum value is found in monsoon season (June-August) over all study areas. We analyze the relationships between aerosol optical depth (AOD) and some cloud parameters like water vapor (WV), cloud fraction (CF), cloud top temperature (CTT) and cloud top pressure (CTP). We construct the regional correlation maps and time series plots for aerosol and cloud parameters mandatory for the better understanding of aerosol-cloud interaction. Our analyses show that there is a strong positive correlation between AOD and water vapor in all cities. The correlation between AOD and CF is positive for the cities where the air masses are moist while the correlation is negative for cities where air masses are relatively dry and with lower aerosol abundance. It shows that these correlations depend on meteorological conditions. Similarly as AOD increases Cloud Top Pressure (CTP) is decreasing while Cloud Top Temperature (CTT) is increasing. Key Words: MODIS, MISR, HYSPLIT, AOD, CF, CTP, CTT
Validation of MODIS Aerosol Optical Depth Retrievals over a Tropical Urban Site, Pune, India
NASA Technical Reports Server (NTRS)
More, Sanjay; Kuman, P. Pradeep; Gupta, Pawan; Devara, P. C. S.; Aher, G. R.
2011-01-01
In the present paper, MODIS (Terra and Aqua; level 2, collection 5) derived aerosoloptical depths (AODs) are compared with the ground-based measurements obtained from AERONET (level 2.0) and Microtops - II sun-photometer over a tropical urban station, Pune (18 deg 32'N; 73 deg 49'E, 559 m amsl). This is the first ever systematic validation of the MODIS aerosol products over Pune. Analysis of the data indicates that the Terra and Aqua MODIS AOD retrievals at 550 nm have good correlations with the AERONET and Microtops - II sun-photometer AOD measurements. During winter the linear regression correlation coefficients for MODIS products against AERONET measurements are 0.79 for Terra and 0.62 for Aqua; however for premonsoon, the corresponding coefficients are 0.78 and 0.74. Similarly, the linear regression correlation coefficients for Microtops measurements against MODIS products are 0.72 and 0.93 for Terra and Aqua data respectively during winter and are 0.78 and 0.75 during pre-monsoon. On yearly basis in 2008-2009, correlation coefficients for MODIS products against AERONET measurements are 0.80 and 0.78 for Terra and Aqua respectively while the corresponding coefficients are 0.70 and 0.73 during 2009-2010. The regressed intercepts with MODIS vs. AERONET are 0.09 for Terra and 0.05 for Aqua during winter whereas their values are 0.04 and 0.07 during pre-monsoon. However, MODIS AODs are found to underestimate during winter and overestimate during pre-monsoon with respect to AERONET and Microtops measurements having slopes 0.63 (Terra) and 0.74 (Aqua) during winter and 0.97 (Terra) and 0.94 (Aqua) during pre-monsoon. Wavelength dependency of Single Scattering Albedo (SSA) shows presence of absorbing and scattering aerosol particles. For winter, SSA decreases with wavelength with the values 0.86 +/- 0.03 at 440 nm and 0.82 +/- 0.04 at 1020nm. In pre-monsoon, it increases with wavelength (SSA is 0.87 +/- 0.02 at 440nm; and 0.88 +/-0.04 at 1020 nm).
Observing a Severe Dust Storm Event over China using Multiple Satellite Data
NASA Astrophysics Data System (ADS)
Xu, Hui; Xue, Yong; Guang, Jie; Mei, Linlu
2013-04-01
A severe dust storm (SDS) event occurred from 19 to 21 March 2010 in China, originated in western China and Mongolia and propagated into eastern/southern China, affecting human's life in a large area. As reported by National Meteorological Center of CMA (China Meteorological Administration), 16 provinces (cities) of China were hit by the dust storm (Han et al., 2012). Satellites can provide global measurements of desert dust and have particular importance in remote areas where there is a lack of in situ measurements (Carboni et al., 2012). To observe a dust, it is necessary to estimate the spatial and temporal distributions of dust aerosols. An important metric in the characterisation of aerosol distribution is the aerosol optical depth (AOD) (Adhikary et al., 2008). Satellite aerosol retrievals have improved considerably in the last decade, and numerous satellite sensors and algorithms have been generated. Reliable retrievals of dust aerosol over land were made using POLarization and Directionality of the Earth's Reflectance instrument-POLDER (Deuze et al., 2001), Moderate Resolution Imaging Spectroradiometer-MODIS (Kaufman et al., 1997; Hsu et al., 2004), Multiangle Imaging Spectroradiometer-MISR (Martonchik et al., 1998), and Cloud-aerosol Lidar and infrared pathfinder satellite observations (CALIPSO). However, intercomparison exercises (Myhre et al., 2005) have revealed that discrepancies between satellite measurements are particularly large during events of heavy aerosol loading. The reason is that different AOD retrieval algorithms make use of different instrument characteristics to obtain retrievals over bright surfaces. For MISR, POLDER and MODIS instrument, the multi-angle approaches, the polarization measurements and single-view approaches were used to retrieval AOD respectively. Combining of multi-sensor AOD data can potentially create a more consistent, reliable and complete picture of the space-time evolution of dust storms (Ehlers, 1991). In order to make use of all useful satellite data to observe one severe dust procedure, multi-sensor and multi-algorithm AOD data were combined. In this paper, the satellite instruments considered are MISR, MODIS, POLDER and CALIPSO. In addition, air pollution index (API) data were used to validate the satellite AOD data. We chose the study region with a longitude range from 76°N to 136°N and a latitude range from 15°E to 60°E. Index Terms—aerosol optical depth, dust, satellite REFERENCES Adhikary, B., Kulkarni, S., Dallura A., Tang, Y., Chai, T., Leung, L. R., Qian, Y., Chung, C. E., Ramanathan,V. and Carmichael, G. R., 2008, A regional scale chemical transport modeling of Asian aerosols with data assimilation of AOD observations using optimal interpolation technique, Atmospheric Environment, 42(37), 8600-8615. Carboni, E., Thomas, G. E., Sayer, A. M., Siddans, R., Poulsen, C. A., Grainger, R. G., Ahn, C., Antoine, D., Bevan, S., Braak, R., Brindley, H., DeSouza-Machado, S., Deuz'e, J. L., Diner, D., Ducos, F., Grey, W., Hsu, C., Kalashnikova, O. V., Kahn, R., North, P. R. J., Salustro, C., Smith, A., Tanr'e, D., Torres, O., and Veihelmann, B., 2012, Intercomparison of desert dust optical depth from satellite measurements, Atmospheric Measurement Techniques, 5, 1973-2002. Deuze', J. L., Bre'on, F. M., Devaux, C., Goloub, Herman, M., Lafrance, B., Maignan, F., Marchand, A.,Nadal, F., Perry, G., and Tanre', D., 2001, Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements, Journal of Geophysical Research, 106(D5), 4913-4926. Ehlers, M., 1991, Multisensor image fusion techniques in remote sensing, ISPRS Journal of Photogrammetry and Remote Sensing, 46, 19-30. Han, X., Ge. C., Tao, J. H., Zhang, M. G., Zhang, R. J., 2012, Air Quality Modeling for a Strong Dust Event in East Asia in March 2010, Aerosol and Air Quality Research, 12: 615-628. Hsu, N. C., Tsay, S. C., King, M. D. and Herman, J. R., 2004, Aerosol Properties over Bright-Reflecting Source Regions, IEEE Transactions on Geoscience and Remote Sensing, 42(3), 557-569. Martonchik, J. V., Diner, D. J., Kahn, R., Ackerman, T. P., Verstraete, M. M., Pinty, B., and Gordon, H. R., 1998, Techniques for the retrieval of aerosol properties over land and ocean using multiangle imaging, IEEE Transactions on Geoscience and Remote Sensing, 36(4), 1212-1227. Myhre, G., Stordal, F., Johnsrud, M., Diner, D. J., Geogdzhayev, I. V., Haywood, J. M., Holben, B. N., Holzer-Popp, T., Ignatov, A., Kahn, R. A., Kaufman, Y. J., Loeb, N., Martonchik, J. V., Mishchenko, M. I., Nalli, N. R., Remer, L. A., Schroedter-Homscheidt, M., Tanr'e, D., Torres, O., and Wang, M., 2005, Intercomparison of satellite retrieved aerosol optical depth over ocean during the period September 1997 to December 2000, Atmospheric Chemistry and Physics, 5, 1697-1719. Kaufman, Y.J., Tanre', D., Remer, L.A., Vermote, E.F., Chu, A., and Holben, B.N., 1997, Operationalremote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer, Journal of Geophysical Research, 102(D14), 17,051-17,067.
NASA Technical Reports Server (NTRS)
Menzel, W. Paul; Huh, Oscar K.; Walker, Nan
2004-01-01
The purpose of this joint University of Wisconsin (UW) and Louisiana State University (LSU) project has been to relate short term climate variation to response in the coastal zone of Louisiana in an attempt to better understand how the coastal zone is shaped by climate variation. Climate variation in this case largely refers to variation in surface wind conditions that affect wave action and water currents in the coastal zone. The primary region of focus was the Atchafalaya Bay and surrounding bays in the central coastal region of Louisiana. Suspended solids in the water column show response to wind systems both in quantity (through resuspension) and in the pattern of dispersement or transport. Wind systems associated with cold fronts are influenced by short term climate variation. Wind energy was used as the primary signature of climate variation in this study because winds are a significant influence on sediment transport in the micro-tidal Gilf of Mexico coastal zone. Using case studies, the project has been able to investigate the influence of short term climate variation on sediment transport. Wind energy data, collected daily for National Weather Service (NWS) stations at Lake Charles and New Orleans, LA, were used as an indicator of short term climate variation influence on seasonal time scales. A goal was to relate wind energy to coastal impact through sediment transport. This goal was partially accomplished by combining remote sensing and wind energy data. Daily high resolution remote sensing observations are needed to monitor the complex coastal zone environment, where winds, tides, and water level all interact to influence sediment transport. The NASA Earth Observing System (EOS) era brings hope for documenting and revealing response of the complex coastal transport mosaic through regular high spatial resolution observations from the Moderate resolution Imaging Spectrometer (MODIS) instrument. MODIS observations were sampled in this project for information content and should continue to be viewed as a resource for coastal zone monitoring. The project initialized the effort to transfer a suspended sediment concentration (SSC) algorithm to the MODIS platform for case 2 waters. MODIS enables monitoring of turbid coastal zones around the globe. The MODIS SSC algorithm requires refinements in the atmospheric aerosol contribution, sun glint influence, and designation of the sediment inherent optical properties (IOPs); the framework for continued development is in place with a plan to release the algorithm to the MODIS direct broadcast community.
NASA Astrophysics Data System (ADS)
Fahim Khokhar, Muhammad; Yasmin, Naila; Zaib, Naila; Murtaza, Rabia; Noreen, Asma; Ishtiaq, Hira; Khayyam, Junaid; Panday, Arnico
2016-04-01
The South Asian region in general and the Indo-Gangetic Plains (IGP) in particular hold about 1/6th of the world's population and is considered as one of the major hotspots with increasing air pollution. Due to growing population and globalization, South Asia is experiencing high transformations in the urban and industrial sectors. Fog is one of the meteorological/environmental phenomena which can generate significant social and economic problems especially havoc to air and road traffic. Meteorological stations provide information about the fog episodes only on the basis of point observation. Continuous monitoring as well as a spatially coherent picture of fog distribution can only be possible through the use of satellite imagery. Current study focus on winter fog episodes over South Asian region using Moderate Resolution Image Spectrometer (MODIS) Level 2 Terra Product and other MODIS Aerosol Product in addition to ground-based sampling and AERONET measurements. MODIS Corrected Reflectance RGBs are used to analyse the spatial extent of fog over study area. MOD04 level 2 Collection 6 data is used to study aerosol load and distribution which are further characterised by using aerosol type land product of MODIS. In order to study the variation of ground based observations from satellite data MODIS, AERONET and high volume air Sampler were used. Main objective of this study was to explore the spatial extent of fog, its causes and to analyse the Aerosol Optical Depth (AOD) over South Asia with particular focus over Indo-Gangetic Plains (IGP). Current studies show a descent increase in AOD from past few decades over South Asia and is contributing to poor air quality in the region due to growing population, urbanization, and industrialization. Smoke and absorbing aerosol are major constituent of fog over South Asia. Furthermore, winter 2014-15 extended span of Fog was also observed over South Asia. A significant correlation between MODIS (AOD) and AERONET Station (AOD) data was identified. Mass concentration of PM2.5 and PM10 over sampling sites exceeded the Pak-NEQS at most occasions. However, during the current winter of 2015-16 the number of fog days has substantially reduced. Although, reasons are not clear yet but may be attributed to the atmospheric changes induced by the onset El-NINO.
NASA Technical Reports Server (NTRS)
Ichoku, Charles; Kaufman, Y. J.; Fraser, R. H.; Jin, J.-Z.; Park, W. M.; Lau, William K. M. (Technical Monitor)
2001-01-01
Two fixed-threshold Canada Centre for Remote Sensing and European Space Agency (CCRS and ESA) and three contextual GIGLIO, International Geosphere and Biosphere Project, and Moderate Resolution Imaging Spectroradiometer (GIGLIO, IGBP, and MODIS) algorithms were used for fire detection with Advanced Very High Resolution Radiometer (AVHRR) data acquired over Canada during the 1995 fire season. The CCRS algorithm was developed for the boreal ecosystem, while the other four are for global application. The MODIS algorithm, although developed specifically for use with the MODIS sensor data, was applied to AVHRR in this study for comparative purposes. Fire detection accuracy assessment for the algorithms was based on comparisons with available 1995 burned area ground survey maps covering five Canadian provinces. Overall accuracy estimations in terms of omission (CCRS=46%, ESA=81%, GIGLIO=75%, IGBP=51%, MODIS=81%) and commission (CCRS=0.35%, ESA=0.08%, GIGLIO=0.56%, IGBP=0.75%, MODIS=0.08%) errors over forested areas revealed large differences in performance between the algorithms, with no relevance to type (fixed-threshold or contextual). CCRS performed best in detecting real forest fires, with the least omission error, while ESA and MODIS produced the highest omission error, probably because of their relatively high threshold values designed for global application. The commission error values appear small because the area of pixels falsely identified by each algorithm was expressed as a ratio of the vast unburned forest area. More detailed study shows that most commission errors in all the algorithms were incurred in nonforest agricultural areas, especially on days with very high surface temperatures. The advantage of the high thresholds in ESA and MODIS was that they incurred the least commission errors.
Satellite Remote Sensing of Aerosol Forcing
NASA Technical Reports Server (NTRS)
Remer, Lorraine; Kaufman, Yoram; Ramaprasad, Jaya; Procopio, Aline; Levin, Zev
1999-01-01
The role of aerosol forcing remains one of the largest uncertainties in estimating man's impact on the global climate system. One school of thought suggests that remote sensing by satellite sensors will provide the data necessary to narrow these uncertainties. While satellite measurements of direct aerosol forcing appear to be straightforward, satellite measurements of aerosol indirect forcing will be more complicated. Pioneering studies identified indirect aerosol forcing using AVHRR data in the biomass burning regions of Brazil. We have expanded this analysis with AVHRR to include an additional year of data and assimilated water vapor fields. The results show similar latitudinal dependence as reported by Kaufman and Fraser, but by using water vapor observations we conclude that latitude is not a proxy for water vapor and the strength of the indirect effect is not correlated to water vapor amounts. In addition to the AVHRR study we have identified indirect aerosol forcing in Brazil at much smaller spatial scales using the MODIS Airborne Simulator. The strength of the indirect effect appears to be related to cloud type and cloud dynamics. There is a suggestion that some of the cloud dynamics may be influenced by smoke destabilization of the atmospheric column. Finally, this study attempts to quantify remote sensing limitations due to the accuracy limits of the retrieval algorithms. We use a combination of numerical aerosol transport models, ground-based AERONET data and ISCCP cloud climatology to determine how much of the forcing occurs in regions too clean to determine from satellite retrievals.
NASA Astrophysics Data System (ADS)
Tang, Qingxin; Bo, Yanchen; Zhu, Yuxin
2016-04-01
Merging multisensor aerosol optical depth (AOD) products is an effective way to produce more spatiotemporally complete and accurate AOD products. A spatiotemporal statistical data fusion framework based on a Bayesian maximum entropy (BME) method was developed for merging satellite AOD products in East Asia. The advantages of the presented merging framework are that it not only utilizes the spatiotemporal autocorrelations but also explicitly incorporates the uncertainties of the AOD products being merged. The satellite AOD products used for merging are the Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 5.1 Level-2 AOD products (MOD04_L2) and the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Deep Blue Level 2 AOD products (SWDB_L2). The results show that the average completeness of the merged AOD data is 95.2%,which is significantly superior to the completeness of MOD04_L2 (22.9%) and SWDB_L2 (20.2%). By comparing the merged AOD to the Aerosol Robotic Network AOD records, the results show that the correlation coefficient (0.75), root-mean-square error (0.29), and mean bias (0.068) of the merged AOD are close to those (the correlation coefficient (0.82), root-mean-square error (0.19), and mean bias (0.059)) of the MODIS AOD. In the regions where both MODIS and SeaWiFS have valid observations, the accuracy of the merged AOD is higher than those of MODIS and SeaWiFS AODs. Even in regions where both MODIS and SeaWiFS AODs are missing, the accuracy of the merged AOD is also close to the accuracy of the regions where both MODIS and SeaWiFS have valid observations.
Dai, Tie; Schutgens, Nick A J; Goto, Daisuke; Shi, Guangyu; Nakajima, Teruyuki
2014-12-01
A new global aerosol assimilation system adopting a more complex icosahedral grid configuration is developed. Sensitivity tests for the assimilation system are performed utilizing satellite retrieved aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS), and the results over Eastern Asia are analyzed. The assimilated results are validated through independent Aerosol Robotic Network (AERONET) observations. Our results reveal that the ensemble and local patch sizes have little effect on the assimilation performance, whereas the ensemble perturbation method has the largest effect. Assimilation leads to significantly positive effect on the simulated AOD field, improving agreement with all of the 12 AERONET sites over the Eastern Asia based on both the correlation coefficient and the root mean square difference (assimilation efficiency). Meanwhile, better agreement of the Ångström Exponent (AE) field is achieved for 8 of the 12 sites due to the assimilation of AOD only. Copyright © 2014 Elsevier Ltd. All rights reserved.
Effect of Thin Cirrus Clouds on Dust Optical Depth Retrievals From MODIS Observations
NASA Technical Reports Server (NTRS)
Feng, Qian; Hsu, N. Christina; Yang, Ping; Tsay, Si-Chee
2011-01-01
The effect of thin cirrus clouds in retrieving the dust optical depth from MODIS observations is investigated by using a simplified aerosol retrieval algorithm based on the principles of the Deep Blue aerosol property retrieval method. Specifically, the errors of the retrieved dust optical depth due to thin cirrus contamination are quantified through the comparison of two retrievals by assuming dust-only atmospheres and the counterparts with overlapping mineral dust and thin cirrus clouds. To account for the effect of the polarization state of radiation field on radiance simulation, a vector radiative transfer model is used to generate the lookup tables. In the forward radiative transfer simulations involved in generating the lookup tables, the Rayleigh scattering by atmospheric gaseous molecules and the reflection of the surface assumed to be Lambertian are fully taken into account. Additionally, the spheroid model is utilized to account for the nonsphericity of dust particles In computing their optical properties. For simplicity, the single-scattering albedo, scattering phase matrix, and optical depth are specified a priori for thin cirrus clouds assumed to consist of droxtal ice crystals. The present results indicate that the errors in the retrieved dust optical depths due to the contamination of thin cirrus clouds depend on the scattering angle, underlying surface reflectance, and dust optical depth. Under heavy dusty conditions, the absolute errors are comparable to the predescribed optical depths of thin cirrus clouds.
Volcanic Ash Retrievals Using ORAC and Satellite Measurements in the Visible and IR
NASA Astrophysics Data System (ADS)
Mcgarragh, Gregory R.; Thomas, Gareth E.; Povey, Adam C.; Poulsen, Caroline A.; Grainger, Roy G.
2015-11-01
The Optimal Retrieval of Aerosol and Cloud (ORAC) is a generalized optimal estimation system that uses visible to infrared measurements from a wide range of instruments including AATSR, AVHRR, MODIS and SEVIRI. Recently, support to retrieve volcanic ash has been added for which it retrieves optical thickness, effective radius and cloud top pressure. In this proceeding we discuss the implementation of the volcanic ash retrieval in ORAC including the retrieval methodology, forward model, sources of uncertainty and the discrimination of ash from aerosol and cloud. Results are presented that are consistent with a well know eruption from both AATSR and MODIS while results of a full SEVIRI retrieval of ash, aerosol and cloud properties relative to the ash is are discussed.
NASA Astrophysics Data System (ADS)
Luffarelli, Marta; Govaerts, Yves; Goossens, Cedric
2017-04-01
A new versatile algorithm for the joint retrieval of surface reflectance and aerosol properties has been developed and tested at Rayference. This algorithm, named Combined Inversion of Surface and Aerosols (CISAR), includes a fast physically-based Radiative Transfer Model (RTM) accounting for the surface reflectance anisotropy and its coupling with aerosol scattering. This RTM explicitly solves the radiative transfer equation during the inversion process, without relying on pre-calculated integrals stored in LUT, allowing for a continuous variation of the state variables in the solution space. The inversion is based on a Optimal Estimation (OE) approach, which seeks for the best balance between the information coming from the observation and the a priori information. The a priori information is any additional knowledge on the observed system and it can concern the magnitude of the state variable or constraints on temporal and spectral variability. Both observations and priori information are provided with the corresponding uncertainty. For each processed spectral band, CISAR delivers the surface Bidirectional Reflectance Factor (BRF) and aerosol optical thickness, discriminating the effects of small and large particles. It also provides the associated uncertainty covariance matrix for every processed pixels. In the framework of the ESA aerosol_cci project, CISAR is applied on TOA BRF acquired by SEVIRI onboard Meteosat Second Generation (MSG) in the VIS0.6, VIS0.8 and NIR1.6 spectral bands. SEVIRI observations are accumulated during several days to document the surface anisotropy and minimize the impact of clouds. While surface radiative properties are supposed constant during this accumulation period, aerosol properties are derived on an hourly basis. The information content of each MSG/SEVIRI band will be provided based on the analysis of the posterior uncertainty covariance matrix. The analysis will demonstrate in particular the capability of CISAR to decouple the fraction of TOA BRF signal coming from the surface from the one originating from the aerosols. The results of the algorithm are compared with independent data sets of AOD and surface reflectance. Comparison with ground observations from the AERONET network shows a good agreement between these data. The surface reflectance evaluation is performed comparing white-sky albedo retrieved by CISAR with the MODIS surface product. This evaluation shows a very good consistency. The retrieved aerosol optical depth is consistent also in term of spatial distribution, being comparable in terms of geographical location and intensity.
Increased aerosol content in the atmosphere over Ukraine during summer 2010
NASA Astrophysics Data System (ADS)
Galytska, Evgenia; Danylevsky, Vassyl; Hommel, René; Burrows, John P.
2018-04-01
In this paper we assessed the influence of biomass burning during forest fires throughout summer (1 June-31 August) 2010 on aerosol abundance, dynamics, and its properties over Ukraine. We also considered influences and effects over neighboring countries: European Russia, Estonia, Belarus, Poland, Moldova, and Romania. We used MODIS satellite instrument data to study fire distribution. We also used ground-based remote measurements from the international sun photometer network AERONET plus MODIS and CALIOP satellite instrument data to determine the aerosol content and optical properties in the atmosphere over Eastern Europe. We applied the HYSPLIT model to investigate atmospheric dynamics and model pathways of particle transport. As with previous studies, we found that the highest aerosol content was observed over Moscow in the first half of August 2010 due to the proximity of the most active fires. Large temporal variability of the aerosol content with pronounced pollution peaks during 7-17 August was observed at the Ukrainian (Kyiv and Sevastopol), Belarusian (Minsk), Estonian (Toravere), and Romanian (Bucharest) AERONET sites. We analyzed aerosol spatiotemporal distribution over Ukraine using MODIS AOD 550 nm and further compared with the Kyiv AERONET site sun photometer measurements; we also compared CALIOP AOD 532 nm with MODIS AOD data. We analyzed vertical distribution of aerosol extinction at 532 nm, retrieved from CALIOP measurements, for the territory of Ukraine at locations where high AOD values were observed during intense fires. We estimated the influence of fires on the spectral single scattering albedo, size distribution, and complex refractive indices using Kyiv AERONET measurements performed during summer 2010. In this study we showed that the maximum AOD in the atmosphere over Ukraine recorded in summer 2010 was caused by particle transport from the forest fires in Russia. Those fires caused the highest AOD 500 nm over the Kyiv site, which in August 2010 exceeded multiannual monthly mean for the entire observational period (2008-2016, excluding 2010) by a factor of 2.2. Also, the influence of fires resulted in a change of the particle microphysics in the polluted regions.
Implications of Satellite Swath Width on Global Aerosol Optical Thickness Statistics
NASA Technical Reports Server (NTRS)
Colarco, Peter; Kahn, Ralph; Remer, Lorraine; Levy, Robert; Welton, Ellsworth
2012-01-01
We assess the impact of swath width on the statistics of aerosol optical thickness (AOT) retrieved by satellite as inferred from observations made by the Moderate Resolution Imaging Spectroradiometer (MODIS). We sub-sample the year 2009 MODIS data from both the Terra and Aqua spacecraft along several candidate swaths of various widths. We find that due to spatial sampling there is an uncertainty of approximately 0.01 in the global, annual mean AOT. The sub-sampled monthly mean gridded AOT are within +/- 0.01 of the full swath AOT about 20% of the time for the narrow swath sub-samples, about 30% of the time for the moderate width sub-samples, and about 45% of the time for the widest swath considered. These results suggest that future aerosol satellite missions with only a narrow swath view may not sample the true AOT distribution sufficiently to reduce significantly the uncertainty in aerosol direct forcing of climate.
NASA Technical Reports Server (NTRS)
TenHoeve, J. E.; Remer, L. A.; Jacobson, M. Z.
2010-01-01
This study analyzes changes in the number of fires detected on forest, grass, and transition lands during the 2002-2009 biomass burning seasons using fire detection data and co-located land cover classifications from the Moderate Resolution Imaging Spectroradiometer (MODIS). We find that the total number of detected fires correlates well with MODIS mean aerosol optical depth (AOD) from year to year, in accord with other studies. However, we also show that the ratio of forest to savanna fires varies substantially from year to year. Forest fires have trended downward, on average, since the beginning of 2006 despite a modest increase in 2007. Our study suggests that high particulate matter loading detected in 2007 was likely due to a large number of savanna/agricultural fires that year. Finally, we illustrate that the correlation between annual Brazilian deforestation estimates and MODIS fires is considerably higher when fires are stratified by MODIS-derived land cover classifications.
NASA Technical Reports Server (NTRS)
King, Michael D.; Menzel, W. Paul; Kaufman, Yoram J.; Tanre, Didier; Gao, Bo-Cai; Platnick, Steven; Ackerman, Steven A.; Remer, Lorraine A.; Pincus, Robert; Hubanks, Paul A.
2003-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) is an earth-viewing sensor that flies on the Earth Observing System (EOS) Terra and Aqua satellites, launched in 1999 and 2002, respectively. MODIS scans a swath width of 2330 km that is sufficiently wide to provide nearly complete global coverage every two days from a polar-orbiting, sun-synchronous, platform at an altitude of 705 km. MODIS provides images in 36 spectral bands between 0.415 and 14.235 pm with spatial resolutions of 250 m (2 bands), 500 m (5 bands) and 1000 m (29 bands). These bands have been carefully selected to en- able advanced studies of land, ocean, and atmospheric properties. Twenty-six bands are used to derive atmospheric properties such as cloud mask, atmospheric profiles, aerosol properties, total precipitable water, and cloud properties. In this paper we describe each of these atmospheric data products, including characteristics of each of these products such as file size, spatial resolution used in producing the product, and data availability.
Hersey, S. P.; Garland, R. M.; Crosbie, E.; Shingler, T.; Sorooshian, A.; Piketh, S.; Burger, R.
2015-01-01
We present a comprehensive overview of particulate air quality across the five major metropolitan areas of South Africa (Cape Town, Bloemfontein, Johannesburg and Tshwane (Gauteng Province), the Industrial Highveld Air Quality Priority Area (HVAPA), and Durban), based on a decadal (1 January 2000 to 31 December 2009) aerosol climatology from multiple satellite platforms and detailed analysis of ground-based data from 19 sites throughout Gauteng Province. Satellite analysis was based on aerosol optical depth (AOD) from MODIS Aqua and Terra (550 nm) and MISR (555 nm) platforms, Ångström Exponent (α) from MODIS Aqua (550/865 nm) and Terra (470/660 nm), ultraviolet aerosol index (UVAI) from TOMS, and results from the Goddard Ozone Chemistry Aerosol Radiation and Transport (GOCART) model. At continentally influenced sites, AOD, α, and UVAI reach maxima (0.12–0.20, 1.0–1.8, and 1.0–1.2, respectively) during austral spring (September–October), coinciding with a period of enhanced dust generation and the maximum integrated intensity of close-proximity and subtropical fires identified by MODIS Fire Information for Resource Management System (FIRMS). Minima in AOD, α, and UVAI occur during winter. Results from ground monitoring indicate that low-income township sites experience by far the worst particulate air quality in South Africa, with seasonally averaged PM10 concentrations as much as 136 % higher in townships that in industrial areas. We report poor agreement between satellite and ground aerosol measurements, with maximum surface aerosol concentrations coinciding with minima in AOD, α, and UVAI. This result suggests that remotely sensed data are not an appropriate surrogate for ground air quality in metropolitan South Africa. PMID:26312061
NASA Astrophysics Data System (ADS)
Bibi, Humera; Alam, Khan; Chishtie, Farrukh; Bibi, Samina; Shahid, Imran; Blaschke, Thomas
2015-06-01
This study provides an intercomparison of aerosol optical depth (AOD) retrievals from satellite-based Moderate Resolution Imaging Spectroradiometer (MODIS), Multiangle Imaging Spectroradiometer (MISR), Ozone Monitoring Instrument (OMI), and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) instrumentation over Karachi, Lahore, Jaipur, and Kanpur between 2007 and 2013, with validation against AOD observations from the ground-based Aerosol Robotic Network (AERONET). Both MODIS Deep Blue (MODISDB) and MODIS Standard (MODISSTD) products were compared with the AERONET products. The MODISSTD-AERONET comparisons revealed a high degree of correlation for the four investigated sites at Karachi, Lahore, Jaipur, and Kanpur, the MODISDB-AERONET comparisons revealed even better correlations, and the MISR-AERONET comparisons also indicated strong correlations, as did the OMI-AERONET comparisons, while the CALIPSO-AERONET comparisons revealed only poor correlations due to the limited number of data points available. We also computed figures for root mean square error (RMSE), mean absolute error (MAE) and root mean bias (RMB). Using AERONET data to validate MODISSTD, MODISDB, MISR, OMI, and CALIPSO data revealed that MODISSTD data was more accurate over vegetated locations than over un-vegetated locations, while MISR data was more accurate over areas close to the ocean than over other areas. The MISR instrument performed better than the other instruments over Karachi and Kanpur, while the MODISSTD AOD retrievals were better than those from the other instruments over Lahore and Jaipur. We also computed the expected error bounds (EEBs) for both MODIS retrievals and found that MODISSTD consistently outperformed MODISDB in all of the investigated areas. High AOD values were observed by the MODISSTD, MODISDB, MISR, and OMI instruments during the summer months (April-August); these ranged from 0.32 to 0.78, possibly due to human activity and biomass burning. In contrast, high AOD values were observed by the CALIPSO instrument between September and December, due to high concentrations of smoke and soot aerosols. The variable monthly AOD figures obtained with different sensors indicate overestimation by MODISSTD, MODISDB, OMI, and CALIPSO instruments over Karachi, Lahore, Jaipur and Kanpur, relative to the AERONET data, but underestimation by the MISR instrument.
NASA Astrophysics Data System (ADS)
Kanniah, Kasturi Devi; Lim, Hui Qi; Kaskaoutis, Dimitris G.; Cracknell, Arthur P.
2014-03-01
Spatio-temporal variation and trends in atmospheric aerosols as well as their impact on solar radiation and clouds are crucial for regional and global climate change assessment. These topics are not so well-documented over Malaysia, the fact that it receives considerable amounts of pollutants from both local and trans-boundary sources. The present study aims to analyse the spatio-temporal evolution and decadal trend of Aerosol Optical Depth (AOD) from Terra and Aqua MODIS sensors, to identify different types and origin of aerosols and explore the link between aerosols and solar radiation. AOD and fine-mode fraction (FMF) products from MODIS, AOD and Ångström Exponent (AE) values from AERONET stations along with ground-based PM10 measurements and solar radiation recordings at selected sites in Peninsular Malaysia are used for this scope. The MODIS AODs exhibit a wide spatio-temporal variation over Peninsular Malaysia, while Aqua AOD is consistently lower than that from Terra. The AOD shows a neutral-to-declining trend during the 2000s (Terra satellite), while that from Aqua exhibits an increasing trend (~ 0.01 per year). AERONET AODs exhibit either insignificant diurnal variation or higher values during the afternoon, while their short-term availability does not allow for a trend analysis. Moreover, the PM10 concentrations exhibit a general increasing trend over the examined locations. The sources and destination of aerosols are identified via the HYSPLIT trajectory model, revealing that aerosols during the dry season (June to September) are mainly originated from the west and southwest (Sumatra, Indonesia), while in the wet season (November to March) they are mostly associated with the northeast monsoon winds from the southern China Sea. Different aerosol types are identified via the relationship of AOD with FMF, revealing that the urban and biomass-burning aerosols are the most abundant over the region contributing to a significant reduction (~- 0.21 MJ m- 2) of the solar radiation.
Infrared Algorithm Development for Ocean Observations with EOS/MODIS
NASA Technical Reports Server (NTRS)
Brown, Otis B.
1997-01-01
Efforts continue under this contract to develop algorithms for the computation of sea surface temperature (SST) from MODIS infrared measurements. This effort includes radiative transfer modeling, comparison of in situ and satellite observations, development and evaluation of processing and networking methodologies for algorithm computation and data accession, evaluation of surface validation approaches for IR radiances, development of experimental instrumentation, and participation in MODIS (project) related activities. Activities in this contract period have focused on radiative transfer modeling, evaluation of atmospheric correction methodologies, undertake field campaigns, analysis of field data, and participation in MODIS meetings.
NASA Astrophysics Data System (ADS)
Li, X.; Zhang, C.; Li, W.
2017-12-01
Long-term spatiotemporal analysis and modeling of aerosol optical depth (AOD) distribution is of paramount importance to study radiative forcing, climate change, and human health. This study is focused on the trends and variations of AOD over six stations located in United States and China during 2003 to 2015, using satellite-retrieved Moderate Resolution Imaging Spectrometer (MODIS) Collection 6 retrievals and ground measurements derived from Aerosol Robotic NETwork (AERONET). An autoregressive integrated moving average (ARIMA) model is applied to simulate and predict AOD values. The R2, adjusted R2, Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and Bayesian Information Criterion (BIC) are used as indices to select the best fitted model. Results show that there is a persistent decreasing trend in AOD for both MODIS data and AERONET data over three stations. Monthly and seasonal AOD variations reveal consistent aerosol patterns over stations along mid-latitudes. Regional differences impacted by climatology and land cover types are observed for the selected stations. Statistical validation of time series models indicates that the non-seasonal ARIMA model performs better for AERONET AOD data than for MODIS AOD data over most stations, suggesting the method works better for data with higher quality. By contrast, the seasonal ARIMA model reproduces the seasonal variations of MODIS AOD data much more precisely. Overall, the reasonably predicted results indicate the applicability and feasibility of the stochastic ARIMA modeling technique to forecast future and missing AOD values.
NASA Technical Reports Server (NTRS)
Wind, Galina; Riedi, Jerome; Platnick, Steven; Heidinger, Andrew
2014-01-01
The Cross-platform HIgh resolution Multi-instrument AtmosphEric Retrieval Algorithms (CHIMAERA) system allows us to perform MODIS-like cloud top, optical and microphysical properties retrievals on any sensor that possesses a minimum set of common spectral channels. The CHIMAERA system uses a shared-core architecture that takes retrieval method out of the equation when intercomparisons are made. Here we show an example of such retrieval and a comparison of simultaneous retrievals done using SEVIRI, MODIS and VIIRS sensors. All sensor retrievals are performed using CLAVR-x (or CLAVR-x based) cloud top properties algorithm. SEVIRI uses the SAF_NWC cloud mask. MODIS and VIIRS use the IFF-based cloud mask that is a shared algorithm between MODIS and VIIRS. The MODIS and VIIRS retrievals are performed using a VIIRS branch of CHIMAERA that limits available MODIS channel set. Even though in that mode certain MODIS products such as multilayer cloud map are not available, the cloud retrieval remains fully equivalent to operational Data Collection 6.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nabat, P.; Somot, S.; Mallet, M.
Since the 1980s several spaceborne sensors have been used to retrieve the aerosol optical depth (AOD) over the Mediterranean region. In parallel, AOD climatologies coming from different numerical model simulations are now also available, permitting to distinguish the contribution of several aerosol types to the total AOD. In this work, we perform a comparative analysis of this unique multiyear database in terms of total AOD and of its apportionment by the five main aerosol types (soil dust, seasalt, sulfate, black and organic carbon). We use 9 different satellite-derived monthly AOD products: NOAA/AVHRR, SeaWiFS (2 products), TERRA/MISR, TERRA/MODIS, AQUA/MODIS, ENVISAT/MERIS, PARASOL/POLDERmore » and MSG/SEVIRI, as well as 3 more historical datasets: NIMBUS7/CZCS, TOMS (onboard NIMBUS7 and Earth- Probe) and METEOSAT/MVIRI. Monthly model datasets include the aerosol climatology from Tegen et al. (1997), the climate-chemistry models LMDz-OR-INCA and RegCM-4, the multi-model mean coming from the ACCMIP exercise, and the reanalyses GEMS and MACC. Ground-based Level- 2 AERONET AOD observations from 47 stations around the basin are used here to evaluate the model and satellite data. The sensor MODIS (on AQUA and TERRA) has the best average AOD scores over this region, showing a relevant spatiotemporal variability and highlighting high dust loads over Northern Africa and the sea (spring and summer), and sulfate aerosols over continental Europe (summer). The comparison also shows limitations of certain datasets (especially MERIS and SeaWiFS standard products). Models reproduce the main patterns of the AOD variability over the basin. The MACC reanalysis is the closest to AERONET data, but appears to underestimate dust over Northern Africa, where RegCM-4 is found closer to MODIS thanks to its interactive scheme for dust emissions. The vertical dimension is also investigated using the CALIOP instrument. This study confirms differences of vertical distribution between dust aerosols showing a large vertical spread, and other continental and marine aerosols which are confined in the boundary layer. From this compilation, we propose a 4-D blended product from model and satellite data, consisting in monthly time series of 3-D aerosol distribution at a 50 km horizontal resolution over the Euro-Mediterranean marine and continental region for the 2003–2009 period. The product is based on the total AOD from AQUA/MODIS, apportioned into sulfates, black and organic carbon from the MACC reanalysis, and into dust and sea-salt aerosols from RegCM-4 simulations, which are distributed vertically based on CALIOP climatology.We extend the 2003–2009 reconstruction to the past up to 1979 using the 2003–2009 average and applying the decreasing trend in sulfate aerosols from LMDz-OR-INCA, whose AOD trends over Europe and the Mediterranean are median among the ACCMIP models. Finally optical properties of the different aerosol types in this region are proposed from Mie calculations so that this reconstruction can be included in regional climate models for aerosol radiative forcing and aerosolclimate studies.« less
Development of IDEA product for GOES-R aerosol data
NASA Astrophysics Data System (ADS)
Zhang, Hai; Hoff, Raymond M.; Kondragunta, Shobha
2009-08-01
The NOAA GOES-R Advanced Baseline Imager (ABI) will have nearly the same capabilities as NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) to generate multi-wavelength retrievals of aerosol optical depth (AOD) with high temporal and spatial resolution, which can be used as a surrogate of surface particulate measurements such as PM2.5 (particulate matter with diameter less than 2.5 μm). To prepare for the launch of GOES-R and its application in the air quality forecasting, we have transferred and enhanced the Infusing satellite Data into Environmental Applications (IDEA) product from University of Wisconsin to NOAA NESDIS. IDEA was created through a NASA/EPA/NOAA cooperative effort. The enhanced IDEA product provides near-real-time imagery of AOD derived from multiple satellite sensors including MODIS Terra, MODIS Aqua, GOES EAST and GOES WEST imager. Air quality forecast guidance is produced through a trajectory model initiated at locations with high AOD retrievals and/or high aerosol index (AI) from OMI (Ozone Monitoring Instrument). The product is currently running at http://www.star.nesdis.noaa.gov/smcd/spb/aq/. The IDEA system will be tested using the GOES-R ABI proxy dataset, and will be ready to operate with GOES-R aerosol data when GOES-R is launched.
NASA Technical Reports Server (NTRS)
Essias, Wayne E.; Abbott, Mark; Carder, Kendall; Campbell, Janet; Clark, Dennis; Evans, Robert; Brown, Otis; Kearns, Ed; Kilpatrick, Kay; Balch, W.
2003-01-01
Simplistic models relating global satellite ocean color, temperature, and light to ocean net primary production (ONPP) are sensitive to the accuracy and limitations of the satellite estimate of chlorophyll and other input fields, as well as the primary productivity model. The standard MODIS ONPP product uses the new semi-analytic chlorophyll algorithm as its input for two ONPP indexes. The three primary MODIS chlorophyll Q estimates from MODIS, as well as the SeaWiFS 4 chlorophyll product, were used to assess global and regional performance in estimating ONPP for the full mission, but concentrating on 2001. The two standard ONPP algorithms were examined with 8-day and 39 kilometer resolution to quantify chlorophyll algorithm dependency of ONPP. Ancillary data (MLD from FNMOC, MODIS SSTD1, and PAR from the GSFC DAO) were identical. The standard MODIS ONPP estimates for annual production in 2001 was 59 and 58 GT C for the two ONPP algorithms. Differences in ONPP using alternate chlorophylls were on the order of 10% for global annual ONPP, but ranged to 100% regionally. On all scales the differences in ONPP were smaller between MODIS and SeaWiFS than between ONPP models, or among chlorophyll algorithms within MODIS. Largest regional ONPP differences were found in the Southern Ocean (SO). In the SO, application of the semi-analytic chlorophyll resulted in not only a magnitude difference in ONPP (2x), but also a temporal shift in the time of maximum production compared to empirical algorithms when summed over standard oceanic areas. The resulting increase in global ONPP (6-7 GT) is supported by better performance of the semi-analytic chlorophyll in the SO and other high chlorophyll regions. The differences are significant in terms of understanding regional differences and dynamics of ocean carbon transformations.
DSCOVR EPIC L2 Atmospheric Correction (MAIAC) Data Release Announcement
Atmospheric Science Data Center
2018-06-22
... several atmospheric quantities including cloud mask and aerosol optical depth (AOD) required for atmospheric correction. The parameters ... is a useful complementary dataset to MODIS and VIIRS global aerosol products. Information about the DSCOVR EPIC Atmospheric ...
The Generation of Near-Real Time Data Products for MODIS
NASA Astrophysics Data System (ADS)
Teague, M.; Schmaltz, J. E.; Ilavajhala, S.; Ye, G.; Masuoka, E.; Murphy, K. J.; Michael, K.
2010-12-01
The GSFC Terrestrial Information Systems Branch (614.5) operate the Land and Atmospheres Near-real-time Capability for EOS (LANCE-MODIS) system. Other LANCE elements include -AIRS, -MLS, -OMI, and -AMSR-E. LANCE-MODIS incorporates the former Rapid Response system and will, in early 2011, include the Fire Information for Resource Management System (FIRMS). The purpose of LANCE is to provide applications users with a variety of products on a near-real time basis. The LANCE-MODIS data products include Level 1 (L1), L2 fire, snow, sea ice, cloud mask/profiles, aerosols, clouds, land surface reflectance, land surface temperature, and L2G and L3 gridded, daily, land surface reflectance products. Data are available either by ftp access (pull) or by subscription (push) and the L1 and L2 data products are available within an average of 2.5 hours of the observation time. The use of ancillary data products input to the standard science algorithms has been modified in order to obtain these latencies. The resulting products have been approved for applications use by the MODIS Science Team. The http://lance.nasa.gov site provides registration information and extensive information concerning the MODIS data products and imagery including a comparison between the LANCE-MODIS and the standard science-quality products generated by the MODAPS system. The LANCE-MODIS system includes a variety of tools that enable users to manipulate the data products including: parameter, band, and geographic subsetting, re-projection, mosaicing, and generation of data in the GeoTIFF format. In most instances the data resulting from use of these tools has a latency of less than 3 hours. Access to these tools is available through a Web Coverage Service. A Google Earth/Web Mapping Service is available to access image products. LANCE-MODIS supports a wide variety of applications users in civilian, military, and foreign agencies as well as universities and the private sector. Examples of applications are: Flood Mapping, Famine relief, Food and Agriculture, Hazards and Disasters, and Weather.
Verma, S; Bhanja, S N; Pani, S K; Misra, A
2014-04-01
We analysed aerosol optical and physical properties in an urban environment (Kolkata) during winter monsoon pollution transport from nearby and far-off regions. Prevailing meteorological conditions, viz. low temperature and wind speed, and a strong downdraft of air mass, indicated weak dispersion and inhibition of vertical mixing of aerosols. Spectral features of WinMon aerosol optical depth (AOD) showed larger variability (0.68-1.13) in monthly mean AOD at short-wavelength (SW) channels (0.34-0.5 μm) compared to that (0.28-0.37) at long-wavelength (LW) channels (0.87-1.02 μm), thereby indicating sensitivity of WinMon AOD to fine aerosol constituents and the predominant contribution from fine aerosol constituents to WinMon AOD. WinMon AOD at 0.5 μm (AOD 0. 5) and Angstrom parameter ( α) were 0.68-0.82 and 1.14-1.32, respectively, with their highest value in December. Consistent with inference from spectral features of AOD, surface aerosol loading was primarily constituted of fine aerosols (size 0.23-3 μm) which was 60-70 % of aerosol 10- μm (size 0.23-10 μm) concentration. Three distinct modes of aerosol distribution were obtained, with the highest WinMon concentration at a mass median diameter (MMD) of 0.3 μm during December, thereby indicating characteristics of primary contribution related to anthropogenic pollutants that were inferred to be mostly due to contribution from air mass originating in nearby region having predominant emissions from biofuel and fossil fuel combustion. A relatively higher contribution from aerosols in the upper atmospheric layers than at the surface to WinMon AOD was inferred during February compared to other months and was attributed to predominant contribution from open burning emissions arising from nearby and far-off regions. A comparison of ground-based measurements with Moderate Resolution Imaging Spectroradiometer (MODIS) data showed an underestimation of MODIS AOD and α values for most of the days. Discrepancy in relative distribution of fine and coarse mode of MODIS AOD was also inferred.
NASA Astrophysics Data System (ADS)
Nguyen, T. K. V.; Ghate, V. P.; Carlton, A. M. G.
2015-12-01
Summertime aerosol optical thickness (AOT) in the Southeast U.S. is high and sharply enhanced (2-3 times) compared to wintertime AOT. This seasonal pattern is unique to the Southeast U.S. and is of particular interest because temperatures there have not warmed over the past 100 years, contrasting with trends in other U.S. regions. Some investigators hypothesize the Southeast temperature trend is due to secondary organic aerosols (SOA) formed from interactions of biogenic volatile organic compounds (BVOCs) and anthropogenic emissions that create a cooling haze. However, aerosol measurements made at the surface do not exhibit strong seasonal differences in mass or organic fraction to support this hypothesis. In this work, we attempt to reconcile the spatial and temporal distribution of AOT over the U.S. with surface mass measurements by examining trends in particle-phase liquid water, an aerosol constituent that effectively scatters radiation and is removed from aerosols in mass measurements at routine surface monitoring sites. We employ the thermodynamic model ISORROPIA (v2.1) to estimate surface and aloft aerosol water mass concentrations at locations of Interagency Monitoring of Protected Visual Environments (IMPROVE) sites using measured speciated ion mass concentrations and NCEP North American Regional Reanalysis (NARR) meteorological data. Results demonstrate strong seasonal differences in aerosol water in the eastern compared to the western part of the U.S., consistent with geographic patterns in AOT. The highest mean regional seasonal difference from 2000 to 2007 is 5.5 μg m-3 and occurs the Southeast, while the lowest is 0.44 μg m-3 and occurs in the dry Mountain West. Our findings suggest 1) similarity between spatial trends in aerosol water in the U.S. and previously published AOT data from the MODIS-TERRA instrument and 2) similar interannual trends in mean aerosol water and previously published interannual AOT trends from MISR, MODIS-TERRA, MODIS-AQUA, and the Walker Branch AERONET site. These aerosol water results provide a plausible explanation for the geographical and seasonal patterns in AOT, and reconcile AOT with surface mass networks.
Characterization of Asian Dust Properties Near Source Region During ACE-Asia
NASA Technical Reports Server (NTRS)
Tsay, Si-Chee; Hsu, N. Christina; King, Michael D.; Kaufman, Yoram J.; Herman, Jay R.
2004-01-01
Asian dust typically originates in desert areas far from polluted urban regions. During transport, dust layers can interact with anthropogenic sulfate and soot aerosols from heavily polluted urban areas. Added to the complex effects of clouds and natural marine aerosols, dust particles reaching the marine environment can have drastically different properties than those from the source. Thus, understanding the unique temporal and spatial variations of Asian aerosols is of special importance in regional-to-global climate issues such as radiative forcing, the hydrological cycle, and primary biological productivity in the mid-Pacific Ocean. During ACE-Asia campaign, we have acquired ground- based (temporal) and satellite (spatial) measurements to infer aerosol physical/optical/radiative properties, column precipitable water amount, and surface reflectivity over this region. The inclusion of flux measurements permits the determination of aerosol radiative flux in addition to measurements of loading and optical depth. At the time of the Terra/MODIS, SeaWiFS, TOMS and other satellite overpasses, these ground-based observations can provide valuable data to compare with satellite retrievals over land. In this paper, we will demonstrate new capability of the Deep Blue algorithm to track the evolution of the Asian dust storm from sources to sinks. Although there are large areas often covered by clouds in the dust season in East Asia, this algorithm is able to distinguish heavy dust from clouds over the entire regions. Examination of the retrieved daily maps of dust plumes over East Asia clearly identifies the sources contributing to the dust loading in the atmosphe. We have compared the satellite retrieved aerosol optical thickness to the ground-based measurements and obtained a reasonable agreement between these two. Our results also indicate that there is a large difference in the retrieved value of spectral single scattering albedo of windblown dust between different sources in East Asia.
NASA Astrophysics Data System (ADS)
Davies, J. E.; Strabala, K.; Pierce, R. B.; Huang, A.
2016-12-01
Fine mode aerosols play a significant role in public health through their impact on respiratory and cardiovascular disease. IDEA-I (Infusion of Satellite Data into Environmental Applications-International) is a real-time system for trajectory-based forecasts of aerosol dispersion that can assist in the prediction of poor air quality events. We released a direct broadcast version of IDEA-I for aerosol trajectory forecasts in June 2012 under the International MODIS and AIRS Processing Package (IMAPP). In January 2014 we updated this application with website software to display multi-satellite products. Now we have added VIIRS aerosols from Suomi National Polar-orbiting Partnership (S-NPP). IMAPP is a NASA-funded and freely-distributed software package developed at Space Science and Engineering Center of University of Wisconsin-Madison that has over 2,300 registered users worldwide. With IMAPP, any ground station capable of receiving direct broadcast from Terra or Aqua can produce calibrated and geolocated radiances and a suite of environmental products. These products include MODIS AOD required for IDEA-I. VIIRS AOD for IDEA-I can be generated by Community Satellite Processing Package (CSPP) VIIRS EDR Version 2.0 Software for Suomi NPP. CSPP is also developed and distributed by Space Science & Engineering Center. This presentation describes our updated IMAPP implementation of IDEA-I through an example of its operation in a region known for episodic poor air quality events.
Shahzad, Muhammad I; Nichol, Janet E; Wang, Jun; Campbell, James R; Chan, Pak W
2013-09-01
Hong Kong's surface visibility has decreased in recent years due to air pollution from rapid social and economic development in the region. In addition to deteriorating health standards, reduced visibility disrupts routine civil and public operations, most notably transportation and aviation. Regional estimates of visibility solved operationally using available ground and satellite-based estimates of aerosol optical properties and vertical distribution may prove more effective than standard reliance on a few existing surface visibility monitoring stations. Previous studies have demonstrated that such satellite measurements correlate well with near-surface optical properties, despite these sensors do not consider range-resolved information and indirect parameterizations necessary to solve relevant parameters. By expanding such analysis to include vertically resolved aerosol profile information from an autonomous ground-based lidar instrument, this work develops six models for automated assessment of surface visibility. Regional visibility is estimated using co-incident ground-based lidar, sun photometer visibility meter and MODerate-resolution maging Spectroradiometer (MODIS) aerosol optical depth data sets. Using a 355 nm extinction coefficient profile solved from the lidar MODIS AOD (aerosol optical depth) is scaled down to the surface to generate a regional composite depiction of surface visibility. These results demonstrate the potential for applying passive satellite depictions of broad-scale aerosol optical properties together with a ground-based surface lidar and zenith-viewing sun photometer for improving quantitative assessments of visibility in a city such as Hong Kong.
NASA Technical Reports Server (NTRS)
Quattrochi, Dale A.; Rickman, Douglas; Mohammad, Al-Hamdan; Crosson, William; Estes, Maurice, Jr.; Limaye, Ashutosh; Qualters, Judith
2008-01-01
Describes the public health surveillance efforts of NASA, in a joint effort with the Center for Disease Control (CDC). NASA/MSFC and the CDC are partners in linking nvironmental and health data to enhance public health surveillance. The use of NASA technology creates value - added geospatial products from existing environmental data sources to facilitate public health linkages. The venture sought to provide remote sensing data for the 5-country Metro-Atlanta area and to integrate this environmental data with public health data into a local network, in an effort to prevent and control environmentally related health effects. Remote sensing data used environmental data (Environmental Protection Agency [EPA] Air Quality System [AQS] ground measurements and MODIS Aerosol Optical Depth [AOD]) to estimate airborne particulate matter over Atlanta, and linked this data with health data related to asthma. The study proved the feasibility of linking environmental data (MODIS particular matter estimates and AQS) with health data (asthma). Algorithms were developed for QC, bias removal, merging MODIS and AQS particulate matter data, as well as for other applications. Additionally, a Business Associate Agreement was negotiated for a health care provider to enable sharing of Protected Health Information.
Cloud and Radiation Studies during SAFARI 2000
NASA Technical Reports Server (NTRS)
Platnick, Steven; King, M. D.; Hobbs, P. V.; Osborne, S.; Piketh, S.; Bruintjes, R.; Lau, William K. M. (Technical Monitor)
2001-01-01
Though the emphasis of the Southern Africa Regional Science Initiative 2000 (SAFARI-2000) dry season campaign was largely on emission sources and transport, the assemblage of aircraft (including the high altitude NASA ER-2 remote sensing platform and the University of Washington CV-580, UK MRF C130, and South African Weather Bureau JRA in situ aircrafts) provided a unique opportunity for cloud studies. Therefore, as part of the SAFARI initiative, investigations were undertaken to assess regional aerosol-cloud interactions and cloud remote sensing algorithms. In particular, the latter part of the experiment concentrated on marine boundary layer stratocumulus clouds off the southwest coast of Africa. Associated with cold water upwelling along the Benguela current, the Namibian stratocumulus regime has received limited attention but appears to be unique for several reasons. During the dry season, outflow of continental fires and industrial pollution over this area can be extreme. From below, upwelling provides a rich nutrient source for phytoplankton (a source of atmospheric sulphur through DMS production as well as from decay processes). The impact of these natural and anthropogenic sources on the microphysical and optical properties of the stratocumulus is unknown. Continental and Indian Ocean cloud systems of opportunity were also studied during the campaign. Aircraft flights were coordinated with NASA Terra Satellite overpasses for synergy with the Moderate Resolution Imaging Spectroradiometer (MODIS) and other Terra instruments. An operational MODIS algorithm for the retrieval of cloud optical and physical properties (including optical thickness, effective particle radius, and water path) has been developed. Pixel-level MODIS retrievals (11 km spatial resolution at nadir) and gridded statistics of clouds in th SAFARI region will be presented. In addition, the MODIS Airborne Simulator flown on the ER-2 provided high spatial resolution retrievals (50 m at nadir). These retrievals will be discussed and compared with in situ observations.
NASA Technical Reports Server (NTRS)
Yu, Hongbin; Chin, Mian; Winker, David M.; Omar, Ali H.; Liu, Zhaoyan; Kittaka, Chieko; Diehl, Thomas
2010-01-01
This study examines seasonal variations of the vertical distribution of aerosols through a statistical analysis of the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) lidar observations from June 2006 to November 2007. A data-screening scheme is developed to attain good quality data in cloud-free conditions, and the polarization measurement is used to separate dust from non-dust aerosol. The CALIPSO aerosol observations are compared with aerosol simulations from the Goddard Chemistry Aerosol Radiation Transport (GOCART) model and aerosol optical depth (AOD) measurements from the MODerate resolution Imaging Spectroradiometer (MODIS). The CALIPSO observations of geographical patterns and seasonal variations of AOD are generally consistent with GOCART simulations and MODIS retrievals especially near source regions, while the magnitude of AOD shows large discrepancies in most regions. Both the CALIPSO observation and GOCART model show that the aerosol extinction scale heights in major dust and smoke source regions are generally higher than that in industrial pollution source regions. The CALIPSO aerosol lidar ratio also generally agrees with GOCART model within 30% on regional scales. Major differences between satellite observations and GOCART model are identified, including (1) an underestimate of aerosol extinction by GOCART over the Indian sub-continent, (2) much larger aerosol extinction calculated by GOCART than observed by CALIPSO in dust source regions, (3) much weaker in magnitude and more concentrated aerosol in the lower atmosphere in CALIPSO observation than GOCART model over transported areas in midlatitudes, and (4) consistently lower aerosol scale height by CALIPSO observation than GOCART model. Possible factors contributing to these differences are discussed.
WRF-Chem Model Simulations of Arizona Dust Storms
NASA Astrophysics Data System (ADS)
Mohebbi, A.; Chang, H. I.; Hondula, D.
2017-12-01
The online Weather Research and Forecasting model with coupled chemistry module (WRF-Chem) is applied to simulate the transport, deposition and emission of the dust aerosols in an intense dust outbreak event that took place on July 5th, 2011 over Arizona. Goddard Chemistry Aerosol Radiation and Transport (GOCART), Air Force Weather Agency (AFWA), and University of Cologne (UoC) parameterization schemes for dust emission were evaluated. The model was found to simulate well the synoptic meteorological conditions also widely documented in previous studies. The chemistry module performance in reproducing the atmospheric desert dust load was evaluated using the horizontal field of the Aerosol Optical Depth (AOD) from Moderate Resolution Imaging Spectro (MODIS) radiometer Terra/Aqua and Aerosol Robotic Network (AERONET) satellites employing standard Dark Target (DT) and Deep Blue (DB) algorithms. To assess the temporal variability of the dust storm, Particulate Matter mass concentration data (PM10 and PM2.5) from Arizona Department of Environmental Quality (AZDEQ) ground-based air quality stations were used. The promising performance of WRF-Chem indicate that the model is capable of simulating the right timing and loading of a dust event in the planetary-boundary-layer (PBL) which can be used to forecast approaching severe dust events and to communicate an effective early warning.
The "Deep Blue" Aerosol Project at NASA GSFC
NASA Technical Reports Server (NTRS)
Sayer, Andrew; Hsu, N. C.; Lee, J.; Bettenhausen, C.; Carletta, N.; Chen, S.; Esmaili, R.
2016-01-01
Atmospheric aerosols such as mineral dust, wildfire smoke, sea spray, and volcanic ash are of interest for a variety of reasons including public health, climate change, hazard avoidance, and more. Deep Blue is a project which uses satellite observations of the Earth from sensors such as SeaWiFS, MODIS, and VIIRS to monitor the global aerosol burden. This talk will cover some basics about aerosols and the principles of aerosol remote sensing, as well as discussing specific results and future directions for the Deep Blue project.
NASA Astrophysics Data System (ADS)
Della Ceca, Lara Sofia; Carreras, Hebe A.; Lyapustin, Alexei I.; Barnaba, Francesca
2016-04-01
Particulate matter (PM) is one of the major harmful pollutants to public health and the environment [1]. In developed countries, specific air-quality legislation establishes limit values for PM metrics (e.g., PM10, PM2.5) to protect the citizens health (e.g., European Commission Directive 2008/50, US Clean Air Act). Extensive PM measuring networks therefore exist in these countries to comply with the legislation. In less developed countries air quality monitoring networks are still lacking and satellite-based datasets could represent a valid alternative to fill observational gaps. The main PM (or aerosol) parameter retrieved from satellite is the 'aerosol optical depth' (AOD), an optical parameter quantifying the aerosol load in the whole atmospheric column. Datasets from the MODIS sensors on board of the NASA spacecrafts TERRA and AQUA are among the longest records of AOD from space. However, although extremely useful in regional and global studies, the standard 10 km-resolution MODIS AOD product is not suitable to be employed at the urban scale. Recently, a new algorithm called Multi-Angle Implementation of Atmospheric Correction (MAIAC) was developed for MODIS, providing AOD at 1 km resolution [2]. In this work, the MAIAC AOD retrievals over the decade 2003-2013 were employed to investigate the spatiotemporal variation of atmospheric aerosols over the Argentinean city of Cordoba and its surroundings, an area where a very scarce dataset of in situ PM data is available. The MAIAC retrievals over the city were firstly validated using a 'ground truth' AOD dataset from the Cordoba sunphotometer operating within the global AERONET network [3]. This validation showed the good performances of the MAIAC algorithm in the area. The satellite MAIAC AOD dataset was therefore employed to investigate the 10-years trend as well as seasonal and monthly patterns of particulate matter in the Cordoba city. The first showed a marked increase of AOD over time, particularly evident in some areas of the city (hot spots). These hot spots were put in relation with changes in vehicular traffic flows after the construction of new roads in the urban area. The monthly-resolved analysis showed a marked seasonal cycle, evidencing the influence of both meteorological conditions and season-dependent sources on the AOD parameter. For instance, in the Cordoba rural area an increase of AOD is observed during March-April, which is the soybean harvesting period, the main agricultural activity in the region. Furthermore, higher AOD signals were observed in the vicinity of main roads during summer months (December to February), likely related to the increase in vehicular traffic flow due to tourism. Long-range transport is also shown to play a role at the city scale, as high AODs throughout the study area are observed between August and November. In fact, this is the biomass-burning season over the Amazon region and over most of South America, with huge amounts of fire-related particles injected into the atmosphere and transported across the continent [4]. References [1] WHO, 2013; REVIHAAP, Project Technical Report [2] Lyapustin et al., 2011; doi: 10.1029/2010JD014986 [3] Holben et al., 1998, doi:10.1016/S0034-4257(98)00031-5 [4] Castro et al., 2013; doi:10.1016/j.atmosres.2012.10.026
Mesoscale modeling of smoke radiative feedback over the Sahel region
NASA Astrophysics Data System (ADS)
Yang, Z.; Wang, J.; Ichoku, C. M.; Ellison, L.; Zhang, F.; Yue, Y.
2013-12-01
This study employs satellite observations and a fully-coupled meteorology-chemistry-aerosol model, Weather Research and Forecasting model with Chemistry (WRF-Chem) to study the smoke radative feedback on surface energy budget, boundary layer processes, and atmospheric lapse rate in February 2008 over the Sahel region. The smoke emission inventories we use come from various sources, including but not limited to the Fire Locating and Modeling of Burning Emissions (FLAMBE) developed by NRL and the Fire Energetic and Emissions Research (FEER) developed by NASA GSFC. Model performance is evaluated using numerous satellite and ground-based datasets: MODIS true color images, ground-based Aerosol Optical Depth (AOD) measurements from AERONET, MODIS AOD retrievals, and Cloud-Aerosol Lidar data with Orthogonal Polarization (CALIOP) atmospheric backscattering and extinction products. Specification of smoke injection height of 650 m in WRF-Chem yields aerosol vertical profiles that are most consistent with CALIOP observations of aerosol layer height. Statistically, 5% of the CALIPSO valid measurements of aerosols in February 2008 show aerosol layers either above the clouds or between the clouds, reinforcing the importance of the aerosol vertical distribution for quantifying aerosol impact on climate in the Sahel region. The results further show that the smoke radiative feedbacks are sensitive to assumptions of black carbon and organic carbon ratio in the particle emission inventory. Also investigated is the smoke semi-direct effect as a function of cloud fraction.
NASA Astrophysics Data System (ADS)
Darmenova, Kremena; Sokolik, Irina N.; Darmenov, Anton
2005-01-01
This study presents a detailed examination of east Asian dust events during March-April of 2001, by combining satellite multisensor observation (Total Ozone Mapping Spectrometer (TOMS), Moderate-Resolution Imaging Spectroradiometer (MODIS), and Sea-Viewing Wide Field-of-View Sensor (SeaWiFS)) meteorological data from weather stations in China and Mongolia and the Pennsylania State University/National Center for Atmospheric Research Mesoscale Modeling System (MM5) driven by the National Centers for Environmental Prediction Reanalysis data. The main goal is to determine the extent to which the routine surface meteorological observations (including visibility) and satellite data can be used to characterize the spatiotemporal distribution of dust plumes at a range of scales. We also examine the potential of meteorological time series for constraining the dust emission schemes used in aerosol transport models. Thirty-five dust events were identified in the source region during March and April of 2001 and characterized on a case-by-case basis. The midrange transport routes were reconstructed on the basis of visibility observations and observed and MM5-predicted winds with further validation against satellite data. We demonstrate that the combination of visibility data, TOMS aerosol index, MODIS aerosol optical depth over the land, and a qualitative analysis of MODIS and SeaWiFS imagery enables us to constrain the regions of origin of dust outbreaks and midrange transport, though various limitations of individual data sets were revealed in detecting dust over the land. Only two long-range transport episodes were found. The transport routes and coverage of these dust episodes were reconstructed by using MODIS aerosol optical depth and TOMS aerosol index. Our analysis reveals that over the oceans the presence of persistent clouds poses a main problem in identifying the regions affected by dust transport, so only partial reconstruction of dust transport routes reaching the west coast of the United States was possible.
NASA Astrophysics Data System (ADS)
Alston, E. J.; Sokolik, I. N.; Kalashnikova, O. V.
2012-07-01
This study examines how aerosols measured from the ground and space over the US Southeast change temporally over a regional scale during the past decade. PM2.5 (particulate matter with aerodynamic diameter >2.5 micrometers) data consist of two datasets that represent the measurements that are used for regulatory purposes by the US EPA (Environmental Protection Agency) and continuous measurements used for quickly disseminating air quality information. AOD (aerosol optical depth) data come from three NASA sensors: the MODIS sensors onboard Terra and Aqua satellites and the MISR sensor onboard the Terra satellite. We analyze all available data over the state of Georgia from 2000-2009 of both types of aerosol data. The analysis reveals that during the summer the large metropolitan area of Atlanta has average PM2.5 concentrations that are 50% more than the remainder of the state. Strong seasonality is detected in both the AOD and PM2.5 datasets, as evidenced by a threefold increase of AOD from mean winter values to mean summer values, and the increase in PM2.5 concentrations is almost twofold over the same period. Additionally, there is agreement between MODIS and MISR onboard the Terra satellite during the spring and summer, having correlation coefficients of 0.64 and 0.71, respectively. Monthly anomalies were used to determine the presence of a trend in all considered aerosol datasets. We found negative linear trends for both the monthly AOD anomalies from MODIS onboard Terra and the PM2.5 datasets, which are statistically significant. Decreasing trends were also found for MISR onboard Terra and MODIS onboard Aqua, but those trends were not statistically significant. The observed decrease in AOD and PM2.5 concentrations may be indicative of the brightening over the study region during the past decade.
Optimal interpolation schemes to constrain pmPM2.5 in regional modeling over the United States
NASA Astrophysics Data System (ADS)
Sousan, Sinan Dhia Jameel
This thesis presents the use of data assimilation with optimal interpolation (OI) to develop atmospheric aerosol concentration estimates for the United States at high spatial and temporal resolutions. Concentration estimates are highly desirable for a wide range of applications, including visibility, climate, and human health. OI is a viable data assimilation method that can be used to improve Community Multiscale Air Quality (CMAQ) model fine particulate matter (PM2.5) estimates. PM2.5 is the mass of solid and liquid particles with diameters less than or equal to 2.5 µm suspended in the gas phase. OI was employed by combining model estimates with satellite and surface measurements. The satellite data assimilation combined 36 x 36 km aerosol concentrations from CMAQ with aerosol optical depth (AOD) measured by MODIS and AERONET over the continental United States for 2002. Posterior model concentrations generated by the OI algorithm were compared with surface PM2.5 measurements to evaluate a number of possible data assimilation parameters, including model error, observation error, and temporal averaging assumptions. Evaluation was conducted separately for six geographic U.S. regions in 2002. Variability in model error and MODIS biases limited the effectiveness of a single data assimilation system for the entire continental domain. The best combinations of four settings and three averaging schemes led to a domain-averaged improvement in fractional error from 1.2 to 0.97 and from 0.99 to 0.89 at respective IMPROVE and STN monitoring sites. For 38% of OI results, MODIS OI degraded the forward model skill due to biases and outliers in MODIS AOD. Surface data assimilation combined 36 × 36 km aerosol concentrations from the CMAQ model with surface PM2.5 measurements over the continental United States for 2002. The model error covariance matrix was constructed by using the observational method. The observation error covariance matrix included site representation that scaled the observation error by land use (i.e. urban or rural locations). In theory, urban locations should have less effect on surrounding areas than rural sites, which can be controlled using site representation error. The annual evaluations showed substantial improvements in model performance with increases in the correlation coefficient from 0.36 (prior) to 0.76 (posterior), and decreases in the fractional error from 0.43 (prior) to 0.15 (posterior). In addition, the normalized mean error decreased from 0.36 (prior) to 0.13 (posterior), and the RMSE decreased from 5.39 µg m-3 (prior) to 2.32 µg m-3 (posterior). OI decreased model bias for both large spatial areas and point locations, and could be extended to more advanced data assimilation methods. The current work will be applied to a five year (2000-2004) CMAQ simulation aimed at improving aerosol model estimates. The posterior model concentrations will be used to inform exposure studies over the U.S. that relate aerosol exposure to mortality and morbidity rates. Future improvements for the OI techniques used in the current study will include combining both surface and satellite data to improve posterior model estimates. Satellite data have high spatial and temporal resolutions in comparison to surface measurements, which are scarce but more accurate than model estimates. The satellite data are subject to noise affected by location and season of retrieval. The implementation of OI to combine satellite and surface data sets has the potential to improve posterior model estimates for locations that have no direct measurements.
NASA Technical Reports Server (NTRS)
Wind, Galina (Gala); Platnick, Steven; Riedi, Jerome
2011-01-01
The MODIS cloud optical properties algorithm (MOD06IMYD06 for Terra and Aqua MODIS, respectively) slated for production in Data Collection 6 has been adapted to execute using available channels on MSG SEVIRI. Available MODIS-style retrievals include IR Window-derived cloud top properties, using the new Collection 6 cloud top properties algorithm, cloud optical thickness from VISINIR bands, cloud effective radius from 1.6 and 3.7Jlm and cloud ice/water path. We also provide pixel-level uncertainty estimate for successful retrievals. It was found that at nighttime the SEVIRI cloud mask tends to report unnaturally low cloud fraction for marine stratocumulus clouds. A correction algorithm that improves detection of such clouds has been developed. We will discuss the improvements to nighttime low cloud detection for SEVIRI and show examples and comparisons with MODIS and CALIPSO. We will also show examples of MODIS-style pixel-level (Level-2) cloud retrievals for SEVIRI with comparisons to MODIS.
Nguyen, Hai Van; Finkelstein, Eric Andrew; Mital, Shweta; Gardner, Daphne Su-Lyn
2017-11-01
Offering genetic testing for Maturity Onset Diabetes of the Young (MODY) to all young patients with type 2 diabetes has been shown to be not cost-effective. This study tests whether a novel algorithm-driven genetic testing strategy for MODY is incrementally cost-effective relative to the setting of no testing. A decision tree was constructed to estimate the costs and effectiveness of the algorithm-driven MODY testing strategy and a strategy of no genetic testing over a 30-year time horizon from a payer's perspective. The algorithm uses glutamic acid decarboxylase (GAD) antibody testing (negative antibodies), age of onset of diabetes (<45 years) and body mass index (<25 kg/m 2 if diagnosed >30 years) to stratify the population of patients with diabetes into three subgroups, and testing for MODY only among the subgroup most likely to have the mutation. Singapore-specific costs and prevalence of MODY obtained from local studies and utility values sourced from the literature are used to populate the model. The algorithm-driven MODY testing strategy has an incremental cost-effectiveness ratio of US$93 663 per quality-adjusted life year relative to the no testing strategy. If the price of genetic testing falls from US$1050 to US$530 (a 50% decrease), it will become cost-effective. Our proposed algorithm-driven testing strategy for MODY is not yet cost-effective based on established benchmarks. However, as genetic testing prices continue to fall, this strategy is likely to become cost-effective in the near future. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
NASA Astrophysics Data System (ADS)
Al Shehhi, Maryam R.; Gherboudj, Imen; Zhao, Jun; Ghedira, Hosni
2017-11-01
This study presents a comprehensive assessment of the performance of the commonly used atmospheric correction models (NIR, SWIR, NIR-SWIR and FM) and ocean color products (OC3 and OC2) derived from MODIS images over the Arabian Gulf, Sea of Oman, and Arabian Sea. The considered atmospheric correction models have been used to derive MODIS normalized water-leaving radiances (nLw), which are compared to in situ water nLw(λ) data collected at different locations by Masdar Institute, United Arab of Emirates, and from AERONET-OC (the ocean color component of the Aerosol Robotic Network) database. From this comparison, the NIR model has been found to be the best performing model among the considered atmospheric correction models, which in turn shows disparity, especially at short wavelengths (400-500 nm) under high aerosol optical depth conditions (AOT (869) > 0.3) and over turbid waters. To reduce the error induced by these factors, a modified model taking into consideration the atmospheric and water turbidity conditions has been proposed. A turbidity index was used to identify the turbid water and a threshold of AOT (869) = 0.3 was used to identify the dusty atmosphere. Despite improved results in the MODIS nLw(λ) using the proposed approach, Chl-a models (OC3 and OC2) show low performance when compared to the in situ Chl-a measurements collected during several field campaigns organized by local, regional and international organizations. This discrepancy might be caused by the improper parametrization of these models or/and the improper selection of bands. Thus, an adaptive power fit algorithm (R2 = 0.95) has been proposed to improve the estimation of Chl-a concentration from 0.07 to 10 mg/m3 by using a new blue/red MODIS band ratio of (443,488)/645 instead of the default band ratio used for OC3(443,488)/547. The selection of this new band ratio (443,488)/645 has been based on using band 645 nm which has been found to represent both water turbidity and algal absorption.
Short-term Aerosol Trends: Reality or Myth?
NASA Technical Reports Server (NTRS)
Leptoukh, Gregory; Zubko, Viktor
2009-01-01
The main questions addressed in this slide presentation involve short-term trends of MODIS aerosol optical thickness (AOT) over 6 years: (1) Why are the trends different in different regions? (2) How are these trends so high? (3) Why are they "coherent" in many areas? (4) Are these changes in aerosol concentrations real, i.e., are they monotonic changes in emissions? Several views of the Spatial Distribution of AOT from Terra are shown. In conclusion there are several trends: (1) There is a broad spatial inhomogenueity in AOT trends over 6 years of MODIS Terra and Aqua (2) Some of the areas demonstrate clear positive trends related to increase of emission (e.g., Eastern China) (3) Strong trends in some other areas are superficial and might be attributed, in part, to: (3a) Least squares linear trend sensitivity to outliers (need to use more robust linear fitting method) (3b) Spatial and temporal shifts or trends in meteorological conditions, especially in wind patterns responsible for aerosol transport (6) Aerosol trends should be studied together with changes in meteorology patterns as they might closely linked together
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven; Menzel, W. Paul; Ackerman, Steven A.; Remer, Lorraine A.
2006-01-01
Remote sensing of cloud and aerosol optical properties is routinely obtained using the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Terra and Aqua satellites. Instruments that are being used to enhance our ability to characterize the global distribution of cloud and aerosol properties include well-calibrated multispectral radiometers that measure in the visible, near-infrared, and thermal infrared. The availability of thermal channels to enhance detection of cloud when estimating aerosol properties is an important improvement. In this paper, we describe the radiative properties of clouds as currently determined from satellites (cloud fraction, optical thickness, cloud top pressure, and cloud particle effective radius) and highlight the global/regional cloud microphysical properties currently available for assessing climate variability and forcing. These include the latitudinal distribution of cloud optical and radiative properties of both liquid water and ice clouds, as well as joint histograms of cloud optical thickness and effective particle radius for selected geographical locations around the world. In addition, we will illustrate the radiative and microphysical properties of aerosol particles (in cloud free regions) that are currently available from space-based observations, and show the latitudinal distribution of aerosol optical properties over both land and ocean surfaces.
Estimation of fire emissions from satellite-based measurements
NASA Astrophysics Data System (ADS)
Ichoku, C. M.; Kaufman, Y. J.
2004-12-01
Biomass burning is a worldwide phenomenon affecting many vegetated parts of the globe regularly. Fires emit large quantities of aerosol and trace gases into the atmosphere, thus influencing the atmospheric chemistry and climate. Traditional methods of fire emissions estimation achieved only limited success, because they were based on peripheral information such as rainfall patterns, vegetation types and changes, agricultural practices, and surface ozone concentrations. During the last several years, rapid developments in satellite remote sensing has allowed more direct estimation of smoke emissions using remotely-sensed fire data. However, current methods use fire pixel counts or burned areas, thereby depending on the accuracy of independent estimations of the biomass fuel loadings, combustion efficiency, and emission factors. With the enhanced radiometric range of its 4-micron fire channel, the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor, which flies aboard both of the Earth Observing System (EOS) Terra and Aqua Satellites, is able to measure the rate of release of fire radiative energy (FRE) in MJ/s (something that older sensors could not do). MODIS also measures aerosol distribution. Taking advantage of these new resources, we have developed a procedure combining MODIS fire and aerosol products to derive FRE-based smoke emission coefficients (Ce in kg/MJ) for different regions of the globe. These coefficients are simply used to multiply FRE from MODIS to derive the emitted smoke aerosol mass. Results from this novel methodology are very encouraging. For instance, it was found that the smoke total particulate mass emission coefficient for the Brazilian Cerrado ecosystem (approximately 0.022 kg/MJ) is about twice the value for North America or Australia, but about 50 percent lower than the value for Zambia in southern Africa.
NASA Astrophysics Data System (ADS)
Alston, E. J.; Sokolik, I. N.; Kalashnikova, O. V.
2011-12-01
This study examines how aerosols measured from the ground and space over the US Southeast change temporally over a regional scale during the past decade. PM2.5 data consist of two datasets that represent the measurements that are used for regulatory purposes by the US EPA and continuous measurements used for quickly disseminating air quality information. AOD data comes from three NASA sensors: the MODIS sensors onboard Terra and Aqua satellites and the MISR sensor onboard the Terra satellite. We analyze all available data over the state of Georgia from 2000-2009 of both types of aerosol data. The analysis reveals that during the summer the large metropolitan area of Atlanta has average PM2.5 concentrations that are 50% more than the remainder of the state. Strong seasonality is detected in both the AOD and PM2.5 datasets; as evidenced by a threefold increase of AOD from mean winter values to mean summer values, and the increase in PM2.5 concentrations is almost twofold from over the same period. Additionally, there is good agreement between MODIS and MISR onboard the Terra satellite during the spring and summer having correlation coefficients of 0.64 and 0.71, respectively. Monthly anomalies were used to determine the presence of a trend in all considered aerosol datasets. We found negative linear trends in both the monthly AOD anomalies from MODIS onboard Terra and the PM2.5 datasets, which are statistically significant for α = 0.05. Decreasing trends were also found for MISR onboard Terra and MODIS onboard Aqua, but those trends were not statistically significant.
Estimation of Fire Emissions from Satellite-Based Measurements
NASA Technical Reports Server (NTRS)
Ichoku, Charles; Kaufman, Yoram J.
2004-01-01
Biomass burning is a worldwide phenomenon affecting many vegetated parts of the globe regularly. Fires emit large quantities of aerosol and trace gases into the atmosphere, thus influencing the atmospheric chemistry and climate. Traditional methods of fire emissions estimation achieved only limited success, because they were based on peripheral information such as rainfall patterns, vegetation types and changes, agricultural practices, and surface ozone concentrations. During the last several years, rapid developments in satellite remote sensing has allowed more direct estimation of smoke emissions using remotely-sensed fire data. However, current methods use fire pixel counts or burned areas, thereby depending on the accuracy of independent estimations of the biomass fuel loadings, combustion efficiency, and emission factors. With the enhanced radiometric range of its 4-micron fire channel, the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor, which flies aboard both of the Earth Observing System EOS) Terra and Aqua Satellites, is able to measure the rate of release of fire radiative energy (FRE) in MJ/s (something that older sensors could not do). MODIS also measures aerosol distribution. Taking advantage of these new resources, we have developed a procedure combining MODIS fire and aerosol products to derive FRE-based smoke emission coefficients (C(e), in kg/MJ) for different regions of the globe. These coefficients are simply used to multiply FRE from MODIS to derive the emitted smoke aerosol mass. Results from this novel methodology are very encouraging. For instance, it was found that the smoke total particulate mass emission coefficient for the Brazilian Cerrado ecosystem (approximately 0.022 kg/MJ) is about twice the value for North America, Western Europe, or Australia, but about 50% lower than the value for southern Africa.