NASA Astrophysics Data System (ADS)
Trepte, Q. Z.; Minnis, P.; Palikonda, R.; Bedka, K. M.; Sun-Mack, S.
2011-12-01
Accurate detection of cloud amount and distribution using satellite observations is crucial in determining cloud radiative forcing and earth energy budget. The CERES-MODIS (CM) Edition 4 cloud mask is a global cloud detection algorithm for application to Terra and Aqua MODIS data with the aid of other ancillary data sets. It is used operationally for the NASA's Cloud and Earth's Radiant Energy System (CERES) project. The LaRC AVHRR cloud mask, which uses only five spectral channels, is based on a subset of the CM cloud mask which employs twelve MODIS channels. The LaRC mask is applied to AVHRR data for the NOAA Climate Data Record Program. Comparisons among the CM Ed4, and LaRC AVHRR cloud masks and the CALIPSO Vertical Feature Mask (VFM) constitute a powerful means for validating and improving cloud detection globally. They also help us understand the strengths and limitations of the various cloud retrievals which use either active and passive satellite sensors. In this paper, individual comparisons will be presented for different types of clouds over various surfaces, including daytime and nighttime, and polar and non-polar regions. Additionally, the statistics of the global, regional, and zonal cloud occurrence and amount from the CERES Ed4, AVHRR cloud masks and CALIPSO VFM will be discussed.
Method for validating cloud mask obtained from satellite measurements using ground-based sky camera.
Letu, Husi; Nagao, Takashi M; Nakajima, Takashi Y; Matsumae, Yoshiaki
2014-11-01
Error propagation in Earth's atmospheric, oceanic, and land surface parameters of the satellite products caused by misclassification of the cloud mask is a critical issue for improving the accuracy of satellite products. Thus, characterizing the accuracy of the cloud mask is important for investigating the influence of the cloud mask on satellite products. In this study, we proposed a method for validating multiwavelength satellite data derived cloud masks using ground-based sky camera (GSC) data. First, a cloud cover algorithm for GSC data has been developed using sky index and bright index. Then, Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data derived cloud masks by two cloud-screening algorithms (i.e., MOD35 and CLAUDIA) were validated using the GSC cloud mask. The results indicate that MOD35 is likely to classify ambiguous pixels as "cloudy," whereas CLAUDIA is likely to classify them as "clear." Furthermore, the influence of error propagations caused by misclassification of the MOD35 and CLAUDIA cloud masks on MODIS derived reflectance, brightness temperature, and normalized difference vegetation index (NDVI) in clear and cloudy pixels was investigated using sky camera data. It shows that the influence of the error propagation by the MOD35 cloud mask on the MODIS derived monthly mean reflectance, brightness temperature, and NDVI for clear pixels is significantly smaller than for the CLAUDIA cloud mask; the influence of the error propagation by the CLAUDIA cloud mask on MODIS derived monthly mean cloud products for cloudy pixels is significantly smaller than that by the MOD35 cloud mask.
Progress towards MODIS and VIIRS Cloud Fraction Data Record Continuity
NASA Astrophysics Data System (ADS)
Ackerman, S. A.; Frey, R.; Holz, R.; Platnick, S. E.; Heidinger, A. K.
2016-12-01
Satellite-derived clear-sky vs. cloudy-sky discrimination at the pixel scale is an important input parameter used in many real-time applications. Cloud fractions, resulting from integrating over time and space, are also critical to the study of recent decadal climate changes. The NASA NPOESS Preparatory Project (NPP) has funded a science team to develop and study the ability to make continuous climate records from MODIS (2000-2020) and VIIRS (2012-2030). The MODAWG project, led by Dr. Steve Platnick of NASA/GSFC, combines elements of the MODIS processing system and the NOAA Algorithm Working Group (AWG) to achieve this goal. This presentation will focus on the cloud masking aspects of MODAWG, derived primarily from the MODIS cloud mask (MOD35). Challenges to continuity of cloud detection due to differences in instrument characteristics will be discussed. Cloud mask results from use of the same (continuity) algorithm will be shown for both MODIS and VIIRS, including comparisons to collocated CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) cloud data.
NASA Technical Reports Server (NTRS)
Wind, Galina; Riedi, Jerome; Platnick, Steven; Heidinger, Andrew
2014-01-01
The Cross-platform HIgh resolution Multi-instrument AtmosphEric Retrieval Algorithms (CHIMAERA) system allows us to perform MODIS-like cloud top, optical and microphysical properties retrievals on any sensor that possesses a minimum set of common spectral channels. The CHIMAERA system uses a shared-core architecture that takes retrieval method out of the equation when intercomparisons are made. Here we show an example of such retrieval and a comparison of simultaneous retrievals done using SEVIRI, MODIS and VIIRS sensors. All sensor retrievals are performed using CLAVR-x (or CLAVR-x based) cloud top properties algorithm. SEVIRI uses the SAF_NWC cloud mask. MODIS and VIIRS use the IFF-based cloud mask that is a shared algorithm between MODIS and VIIRS. The MODIS and VIIRS retrievals are performed using a VIIRS branch of CHIMAERA that limits available MODIS channel set. Even though in that mode certain MODIS products such as multilayer cloud map are not available, the cloud retrieval remains fully equivalent to operational Data Collection 6.
NASA Technical Reports Server (NTRS)
Remeer, Lorraine A.
2011-01-01
The MODIS aerosol cloud mask is based on a spatial variability test, using the assumption that aerosols are more homogeneous than clouds. On top of this first line of defense are a series of additional tests based on threshold values and ratios of various MODIS channels. The goal is to eliminate clouds and keep the aerosol. How well have we succeeded? There have been several studies showing cloud contamination in the MODIS aerosol product and several alternative cloud masks proposed. There are even "competing" MODIS aerosol products that offer an alternative "cloud free" world. Are these alternative products an improvement to the old standard product? We find there is a trade-off between retrieval availability and cloud contamination, and for many applications it is better to have a little bit of cloud in the product than to not have enough product. I will review the decisions that led us to the present MODIS cloud mask, and show how it is simultaneously too liberal and too conservative, some ideas on how to make it better and why in the end it doesn't matter. I hope to inspire a spirited discussion and will be very willing to take your complaints and suggestions.
Spatially Varying Spectrally Thresholds for MODIS Cloud Detection
NASA Technical Reports Server (NTRS)
Haines, S. L.; Jedlovec, G. J.; Lafontaine, F.
2004-01-01
The EOS science team has developed an elaborate global MODIS cloud detection procedure, and the resulting MODIS product (MOD35) is used in the retrieval process of several geophysical parameters to mask out clouds. While the global application of the cloud detection approach appears quite robust, the product has some shortcomings on the regional scale, often over determining clouds in a variety of settings, particularly at night. This over-determination of clouds can cause a reduction in the spatial coverage of MODIS derived clear-sky products. To minimize this problem, a new regional cloud detection method for use with MODIS data has been developed at NASA's Global Hydrology and Climate Center (GHCC). The approach is similar to that used by the GHCC for GOES data over the continental United States. Several spatially varying thresholds are applied to MODIS spectral data to produce a set of tests for detecting clouds. The thresholds are valid for each MODIS orbital pass, and are derived from 20-day composites of GOES channels with similar wavelengths to MODIS. This paper and accompanying poster will introduce the GHCC MODIS cloud mask, provide some examples, and present some preliminary validation.
The Q Continuum: Encounter with the Cloud Mask
NASA Astrophysics Data System (ADS)
Ackerman, S. A.; Frey, R.; Holz, R.; Philips, C.; Dutcher, S.
2017-12-01
We are developing a common cloud mask for MODIS and VIIRS observations, referred to as the MODIS VIIRS Continuity Mask (MVCM). Our focus is on extending the MODIS-heritage cloud detection approach in order to generate appropriate climate data records for clouds and climate studies. The MVCM is based on heritage from the MODIS cloud mask (MOD35 and MYD35) and employs a series of tests on MODIS reflectances and brightness temperatures. Cloud detection is based on contrasts (i.e., cloud versus background surface) at pixel resolution. The MVCM follows the same approach. These cloud masks use multiple cloud detection tests to indicate the confidence level that the observation is of a clear-sky scene. The outcome of a test ranges from 0 (cloudy) to 1 (clear-sky scene). Because of overlap in the sensitivities of the various spectral tests to the type of cloud, each test is considered in one of several groups. The final cloud mask is determined from the product of the minimum confidence of each group and is referred to as the Q value as defined in Ackerman et al (1998). In MOD35 and MYD35 processing, the Q value is not output, rather predetermined Q values determine the result: If Q ≥ .99 the scene is clear; .95 ≤ Q < .99 the pixel is probably a clear scene, .66 ≤ Q < .95 is probably cloudy and Q < .66 is cloudy. Thus representing Q discretely and not as a continuum. For the MVCM, the numerical value of the Q is output along with the classification of clear, probably clear, probably cloudy, and cloudy. Through comparisons with collocated CALIOP and MODIS observations, we will assess the categorization of the Q values as a function of scene type ). While validation studies have indicated the utility and statistical correctness of the cloud mask approach, the algorithm does not possess immeasurable power and perfection. This comparison will assess the time and space dependence of Q and assure that the laws of physics are followed, at least according to normal human notions. Using CALIOP as representing truth, a receiver operating characteristic curve (ROC) will be analyzed to determine the optimum Q for various scenes and seasons, thus providing a continuum of discriminating thresholds.
An Automatic Cloud Mask Algorithm Based on Time Series of MODIS Measurements
NASA Technical Reports Server (NTRS)
Lyapustin, Alexei; Wang, Yujie; Frey, R.
2008-01-01
Quality of aerosol retrievals and atmospheric correction depends strongly on accuracy of the cloud mask (CM) algorithm. The heritage CM algorithms developed for AVHRR and MODIS use the latest sensor measurements of spectral reflectance and brightness temperature and perform processing at the pixel level. The algorithms are threshold-based and empirically tuned. They don't explicitly address the classical problem of cloud search, wherein the baseline clear-skies scene is defined for comparison. Here, we report on a new CM algorithm which explicitly builds and maintains a reference clear-skies image of the surface (refcm) using a time series of MODIS measurements. The new algorithm, developed as part of the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm for MODIS, relies on fact that clear-skies images of the same surface area have a common textural pattern, defined by the surface topography, boundaries of rivers and lakes, distribution of soils and vegetation etc. This pattern changes slowly given the daily rate of global Earth observations, whereas clouds introduce high-frequency random disturbances. Under clear skies, consecutive gridded images of the same surface area have a high covariance, whereas in presence of clouds covariance is usually low. This idea is central to initialization of refcm which is used to derive cloud mask in combination with spectral and brightness temperature tests. The refcm is continuously updated with the latest clear-skies MODIS measurements, thus adapting to seasonal and rapid surface changes. The algorithm is enhanced by an internal dynamic land-water-snow classification coupled with a surface change mask. An initial comparison shows that the new algorithm offers the potential to perform better than the MODIS MOD35 cloud mask in situations where the land surface is changing rapidly, and over Earth regions covered by snow and ice.
NASA Astrophysics Data System (ADS)
Sun, Junqiang; Madhavan, S.; Wang, M.
2016-09-01
MODerate resolution Imaging Spectroradiometer (MODIS), a remarkable heritage sensor in the fleet of Earth Observing System for the National Aeronautics and Space Administration (NASA) is in space orbit on two spacecrafts. They are the Terra (T) and Aqua (A) platforms which tracks the Earth in the morning and afternoon orbits. T-MODIS has continued to operate over 15 years easily surpassing the 6 year design life time on orbit. Of the several science products derived from MODIS, one of the primary derivatives is the MODIS Cloud Mask (MOD035). The cloud mask algorithm incorporates several of the MODIS channels in both reflective and thermal infrared wavelengths to identify cloud pixels from clear sky. Two of the thermal infrared channels used in detecting clouds are the 6.7 μm and 8.5 μm. Based on a difference threshold with the 11 μm channel, the 6.7 μm channel helps in identifying thick high clouds while the 8.5 μm channel being useful for identifying thin clouds. Starting 2010, it had been observed in the cloud mask products that several pixels have been misclassified due to the change in the thermal band radiometry. The long-term radiometric changes in these thermal channels have been attributed to the electronic crosstalk contamination. In this paper, the improvement in cloud detection using the 6.7 μm and 8.5 μm channels are demonstrated using the electronic crosstalk correction. The electronic crosstalk phenomena analysis and characterization were developed using the regular moon observation of MODIS and reported in several works. The results presented in this paper should significantly help in improving the MOD035 product, maintaining the long term dataset from T-MODIS which is important for global change monitoring.
NASA Astrophysics Data System (ADS)
Holz, R.; Platnick, S. E.; Meyer, K.; Frey, R.; Wind, G.; Ackerman, S. A.; Heidinger, A. K.; Botambekov, D.; Yorks, J. E.; McGill, M. J.
2016-12-01
The launch of VIIRS and CrIS on Suomi NPP in the fall of 2011 introduced the next generation of U.S. operational polar orbiting environmental observations. Similar to MODIS, VIIRS provides visible and IR observations at moderate spatial resolution and has a 1:30 pm equatorial crossing time consistent with the MODIS on Aqua platform. However unlike MODIS, VIIRS lacks water vapor and CO2 absorbing channels that are used by the MODIS cloud algorithms for both cloud detection and to retrieve cloud top height and cloud emissivity for ice clouds. Given the different spectral and spatial characteristics of VIIRS, we seek to understand the extent to which the 15-year MODIS climate record can be continued with VIIRS/CrIS observations while maintaining consistent sensitivities across the observational systems. This presentation will focus on the evaluation of the latest version of the NASA funded cloud retrieval algorithms being developed for climate research. We will present collocated inter-comparisons between the imagers (VIIRS and MODIS Aqua) with CALIPSO and Cloud Aerosol Transport System (CATS) lidar observations as well as long term statistics based on a new Level-3 (L3) product being developed as part the project. The CALIPSO inter-comparisons will focus on cloud detection (cloud mask) with a focus on the impact of recent modifications to the cloud mask and how these changes impact the global statistics. For the first time we will provide inter-comparisons between two different cloud lidar systems (CALIOP and CATS) and investigate how the different sensitivities of the lidars impact the cloud mask and cloud comparisons. Using CALIPSO and CATS as the reference, and applying the same algorithms to VIIRS and MODIS, we will discuss the consistency between products from both imagers. The L3 analysis will focus on the regional and seasonal consistency between the suite of MODIS and VIIRS continuity cloud products. Do systematic biases remains when using consistent algorithms but applied to different observations (MODIS or VIIRS)?
NASA Technical Reports Server (NTRS)
Remer, Lorraine A.; Mattoo, Shana; Levy, Robert C.; Heidinger, Andrew; Pierce, R. Bradley; Chin, Mian
2011-01-01
The challenge of using satellite observations to retrieve aerosol properties in a cloudy environment is to prevent contamination of the aerosol signal from clouds, while maintaining sufficient aerosol product yield to satisfy specific applications. We investigate aerosol retrieval availability at different instrument pixel resolutions, using the standard MODIS aerosol cloud mask applied to MODIS data and a new GOES-R cloud mask applied to GOES data for a domain covering North America and surrounding oceans. Aerosol availability is not the same as the cloud free fraction and takes into account the technqiues used in the MODIS algorithm to avoid clouds, reduce noise and maintain sufficient numbers of aerosol retrievals. The inherent spatial resolution of each instrument, 0.5x0.5 km for MODIS and 1x1 km for GOES, is systematically degraded to 1x1 km, 2x2 km, 4x4 km and 8x8 km resolutions and then analyzed as to how that degradation would affect the availability of an aerosol retrieval, assuming an aerosol product resolution at 8x8 km. The results show that as pixel size increases, availability decreases until at 8x8 km 70% to 85% of the retrievals available at 0.5 km have been lost. The diurnal pattern of aerosol retrieval availability examined for one day in the summer suggests that coarse resolution sensors (i.e., 4x4 km or 8x8 km) may be able to retrieve aerosol early in the morning that would otherwise be missed at the time of current polar orbiting satellites, but not the diurnal aerosol properties due to cloud cover developed during the day. In contrast finer resolution sensors (i.e., 1x1 km or 2x2 km) have much better opportunity to retrieve aerosols in the partly cloudy scenes and better chance of returning the diurnal aerosol properties. Large differences in the results of the two cloud masks designed for MODIS aerosol and GOES cloud products strongly reinforce that cloud masks must be developed with specific purposes in mind and that a generic cloud mask applied to an independent aerosol retrieval will likely fail.
Enhancement of the MODIS Snow and Ice Product Suite Utilizing Image Segmentation
NASA Technical Reports Server (NTRS)
Tilton, James C.; Hall, Dorothy K.; Riggs, George A.
2006-01-01
A problem has been noticed with the current NODIS Snow and Ice Product in that fringes of certain snow fields are labeled as "cloud" whereas close inspection of the data indicates that the correct labeling is a non-cloud category such as snow or land. This occurs because the current MODIS Snow and Ice Product generation algorithm relies solely on the MODIS Cloud Mask Product for the labeling of image pixels as cloud. It is proposed here that information obtained from image segmentation can be used to determine when it is appropriate to override the cloud indication from the cloud mask product. Initial tests show that this approach can significantly reduce the cloud "fringing" in modified snow cover labeling. More comprehensive testing is required to determine whether or not this approach consistently improves the accuracy of the snow and ice product.
NASA Technical Reports Server (NTRS)
Wind, Galina (Gala); Platnick, Steven; Riedi, Jerome
2011-01-01
The MODIS cloud optical properties algorithm (MOD06IMYD06 for Terra and Aqua MODIS, respectively) slated for production in Data Collection 6 has been adapted to execute using available channels on MSG SEVIRI. Available MODIS-style retrievals include IR Window-derived cloud top properties, using the new Collection 6 cloud top properties algorithm, cloud optical thickness from VISINIR bands, cloud effective radius from 1.6 and 3.7Jlm and cloud ice/water path. We also provide pixel-level uncertainty estimate for successful retrievals. It was found that at nighttime the SEVIRI cloud mask tends to report unnaturally low cloud fraction for marine stratocumulus clouds. A correction algorithm that improves detection of such clouds has been developed. We will discuss the improvements to nighttime low cloud detection for SEVIRI and show examples and comparisons with MODIS and CALIPSO. We will also show examples of MODIS-style pixel-level (Level-2) cloud retrievals for SEVIRI with comparisons to MODIS.
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven; Wind, Galina; Arnold, George T.; Ackerman, Steven A.; Frey, Richard
2007-01-01
The MODIS Airborne Simulator (MAS) and MODIS/ASTER Airborne Simulator (MASTER) were used to obtain measurements of the bidirectional reflectance and brightness temperature of clouds at 50 discrete wavelengths between 0.47 and 14.3 (12.9 m for MASTER). These observations were obtained from the NASA ER-2 aircraft as part of the Tropical Composition, Clouds and Climate Coupling Experiment (TC4) conducted over Central America and surrounding Pacific and Atlantic Oceans between July 17 and August 8, 2007. Multispectral images in eight distinct bands were used to derive a confidence in clear sky (or alternatively the probability of cloud) over land and ocean ecosystems. Based on the results of individual tests run as part of this cloud mask, an algorithm was developed to estimate the phase of the clouds (liquid water, ice, or undetermined phase). Finally, the cloud optical thickness and effective radius were derived for both liquid water and ice clouds that were detected during each flight, using a nearly identical algorithm as that implemented operationally to process MODIS cloud data from the Aqua and Terra satellites (Collection 5). This analysis shows that the cloud mask developed for operational use on MODIS, and tested using MAS and MASTER date in TC4, is quite capable of distinguishing both liquid water and ice clouds during daytime conditions over both land and ocean. The cloud optical thickness and effective radius retrievals used three distinct bands of the MAS (or MASTER), and these results were compared with nearly simultaneous retrievals of MODIS on the Terra spacecraft. Finally, this MODIS-based algorithm was adapted to MISR data to infer the cloud optical thickness of liquid water clouds from MISR. Results of this analysis will be presented and discussed.
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven; Menzel, Paul; Ackerman, Steven A.
2006-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by NASA and launched onboard the Terra spacecraft on December 18,1999 and Aqua spacecraft on May 4, 2002. It achieved its final orbit and began Earth observations on February 24,2000 for Terra and June 24,2002 for Aqua. A comprehensive set of remote sensing algorithms for cloud masking and the retrieval of cloud physical and optical properties has been developed by members of the MODIS atmosphere science team. The archived products from these algorithms have applications in climate change studies, climate modeling, numerical weather prediction, and fundamental atmospheric research. In addition to an extensive cloud mask, products include cloud-top properties (temperature, pressure, effective emissivity), cloud thermodynamic phase, cloud optical and microphysical parameters (optical thickness, effective particle radius, water path), as well as derived statistics. Over the last year, extensive improvements and enhancements in the global cloud products have been implemented, and reprocessing of all MODIS data on Terra has commenced since first light in February 2000. In the cloud mask algorithm, the most extensive improvements were in distinguishing clouds at nighttime, including the challenging polar darkness regions of the world. Additional improvements have been made to properly distinguish sunglint from clouds in the tropical ocean regions, and to improve the identification of clouds from snow during daytime in Polar Regions. We will show global monthly mean cloud fraction for both Terra and Aqua, and show how similar the global daytime cloud fraction is from these morning and afternoon orbits, respectively. We will also show the zonal distribution of cloud fraction over land and ocean regions for both Terra and Aqua, and show the time series of global cloud fraction from July 2002 through June 2006.
Machine learning based cloud mask algorithm driven by radiative transfer modeling
NASA Astrophysics Data System (ADS)
Chen, N.; Li, W.; Tanikawa, T.; Hori, M.; Shimada, R.; Stamnes, K. H.
2017-12-01
Cloud detection is a critically important first step required to derive many satellite data products. Traditional threshold based cloud mask algorithms require a complicated design process and fine tuning for each sensor, and have difficulty over snow/ice covered areas. With the advance of computational power and machine learning techniques, we have developed a new algorithm based on a neural network classifier driven by extensive radiative transfer modeling. Statistical validation results obtained by using collocated CALIOP and MODIS data show that its performance is consistent over different ecosystems and significantly better than the MODIS Cloud Mask (MOD35 C6) during the winter seasons over mid-latitude snow covered areas. Simulations using a reduced number of satellite channels also show satisfactory results, indicating its flexibility to be configured for different sensors.
Implementation on Landsat Data of a Simple Cloud Mask Algorithm Developed for MODIS Land Bands
NASA Technical Reports Server (NTRS)
Oreopoulos, Lazaros; Wilson, Michael J.; Varnai, Tamas
2010-01-01
This letter assesses the performance on Landsat-7 images of a modified version of a cloud masking algorithm originally developed for clear-sky compositing of Moderate Resolution Imaging Spectroradiometer (MODIS) images at northern mid-latitudes. While data from recent Landsat missions include measurements at thermal wavelengths, and such measurements are also planned for the next mission, thermal tests are not included in the suggested algorithm in its present form to maintain greater versatility and ease of use. To evaluate the masking algorithm we take advantage of the availability of manual (visual) cloud masks developed at USGS for the collection of Landsat scenes used here. As part of our evaluation we also include the Automated Cloud Cover Assesment (ACCA) algorithm that includes thermal tests and is used operationally by the Landsat-7 mission to provide scene cloud fractions, but no cloud masks. We show that the suggested algorithm can perform about as well as ACCA both in terms of scene cloud fraction and pixel-level cloud identification. Specifically, we find that the algorithm gives an error of 1.3% for the scene cloud fraction of 156 scenes, and a root mean square error of 7.2%, while it agrees with the manual mask for 93% of the pixels, figures very similar to those from ACCA (1.2%, 7.1%, 93.7%).
Global Multispectral Cloud Retrievals from MODIS
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven; Ackerman, Steven A.; Menzel, W. Paul; Riedi, Jerome C.; Baum, Bryan A.
2003-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by NASA and launched onboard the Terra spacecraft on December 18,1999 and Aqua spacecraft on May 4,2002. It achieved its final orbit and began Earth observations on February 24, 2000 for Terra and June 24, 2002 for Aqua. A comprehensive set of remote sensing algorithms for cloud masking and the retrieval of cloud physical and optical properties has been developed by members of the MODIS atmosphere science team. The archived products from these algorithms have applications in climate change studies, climate modeling, numerical weather prediction, as well as fundamental atmospheric research. In addition to an extensive cloud mask, products include cloud-top properties (temperature, pressure, effective emissivity), cloud thermodynamic phase, cloud optical and microphysical parameters (optical thickness, effective particle radius, water path), as well as derived statistics. We will describe the various cloud properties being analyzed on a global basis from both Terra and Aqua, and will show characteristics of cloud optical and microphysical properties as a function of latitude for land and ocean separately, and contrast the statistical properties of similar cloud types in various parts of the world.
Multi-Spectral Cloud Retrievals from Moderate Image Spectrometer (MODIS)
NASA Technical Reports Server (NTRS)
Platnick, Steven
2004-01-01
MODIS observations from the NASA EOS Terra spacecraft (1030 local time equatorial sun-synchronous crossing) launched in December 1999 have provided a unique set of Earth observation data. With the launch of the NASA EOS Aqua spacecraft (1330 local time crossing! in May 2002: two MODIS daytime (sunlit) and nighttime observations are now available in a 24-hour period allowing some measure of diurnal variability. A comprehensive set of remote sensing algorithms for cloud masking and the retrieval of cloud physical and optical properties has been developed by members of the MODIS atmosphere science team. The archived products from these algorithms have applications in climate modeling, climate change studies, numerical weather prediction, as well as fundamental atmospheric research. In addition to an extensive cloud mask, products include cloud-top properties (temperature, pressure, effective emissivity), cloud thermodynamic phase, cloud optical and microphysical parameters (optical thickness, effective particle radius, water path), as well as derived statistics. An overview of the instrument and cloud algorithms will be presented along with various examples, including an initial analysis of several operational global gridded (Level-3) cloud products from the two platforms. Statistics of cloud optical and microphysical properties as a function of latitude for land and Ocean regions will be shown. Current algorithm research efforts will also be discussed.
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven; Wind, Galina; Arnold, G. Thomas; Dominguez, Roseanne T.
2010-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) Airborne Simulator (MAS) and MODIS/Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Airborne Simulator (MASTER) were used to obtain measurements of the bidirectional reflectance and brightness temperature of clouds at 50 discrete wavelengths between 0.47 and 14.2 microns (12.9 microns for MASTER). These observations were obtained from the NASA ER-2 aircraft as part of the Tropical Composition, Cloud and Climate Coupling (TC4) experiment conducted over Central America and surrounding Pacific and Atlantic Oceans between 17 July and 8 August 2007. Multispectral images in eleven distinct bands were used to derive a confidence in clear sky (or alternatively the probability Of cloud) over land and ocean ecosystems. Based on the results of individual tests run as part of the cloud mask, an algorithm was developed to estimate the phase of the clouds (liquid water, ice, or undetermined phase). The cloud optical thickness and effective radius were derived for both liquid water and ice clouds that were detected during each flight, using a nearly identical algorithm to that implemented operationally to process MODIS Cloud data from the Aqua and Terra satellites (Collection 5). This analysis shows that the cloud mask developed for operational use on MODIS, and tested using MAS and MASTER data in TC(sup 4), is quite capable of distinguishing both liquid water and ice clouds during daytime conditions over both land and ocean. The cloud optical thickness and effective radius retrievals use five distinct bands of the MAS (or MASTER), and these results were compared with nearly simultaneous retrievals of marine liquid water clouds from MODIS on the Terra spacecraft. Finally, this MODIS-based algorithm was adapted to Multiangle Imaging SpectroRadiometer (MISR) data to infer the cloud optical thickness Of liquid water clouds from MISR. Results of this analysis are compared and contrasted.
NASA Technical Reports Server (NTRS)
King, Michael D.
2005-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by NASA and launched onboard the Terra spacecraft on December 18, 1999 and Aqua spacecraft on May 4, 2002. It achieved its final orbit and began Earth observations on February 24, 2000 for Terra and June 24, 2002 for Aqua. A comprehensive set of remote sensing algorithms for cloud masking and the retrieval of cloud physical and optical properties has been developed by members of the MODIS atmosphere science team. The archived products from these algorithms have applications in climate change studies, climate modeling, numerical weather prediction, as well as fundamental atmospheric research. In addition to an extensive cloud mask, products include cloud-top properties (temperature, pressure, effective emissivity), cloud thermodynamic phase, cloud optical and microphysical parameters (optical thickness, effective particle radius, water path), as well as derived statistics. We will describe the various cloud properties being analyzed on a global basis from both Terra and Aqua. These include the latitudinal distribution of cloud optical and radiative properties of both liquid water and ice clouds, as well as joint histograms of cloud optical thickness and effective radius for selected geographical locations around the world.
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven
2005-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by NASA and launched onboard the Terra spacecraft on December 18,1999 and Aqua spacecraft on May 4, 2002. It achieved its final orbit and began Earth observations on February 24, 2000 for Terra and June 24, 2002 for Aqua. A comprehensive set of remote sensing algorithms for cloud masking and the retrieval of cloud physical and optical properties has been developed by members of the MODIS atmosphere science team. The archived products from these algorithms have applications in climate change studies, climate modeling, numerical weather prediction, as well as fundamental atmospheric research. In addition to an extensive cloud mask, products include cloud-top properties (temperature, pressure, effective emissivity), cloud thermodynamic phase, cloud optical and microphysical parameters (optical thickness, effective particle radius, water path), as well as derived statistics. We will describe the various cloud properties being analyzed on a global basis from both Terra and Aqua. These include the latitudinal distribution of cloud optical and radiative properties of both liquid water and ice clouds, as well as joint histograms of cloud optical thickness and effective radius for selected geographical locations around the world.
NASA Astrophysics Data System (ADS)
Li, J.; Menzel, W.; Sun, F.; Schmit, T.
2003-12-01
The Moderate-Resolution Imaging Spectroradiometer (MODIS) and Atmospheric Infrared Sounder (AIRS) measurements from the Earth Observing System's (EOS) Aqua satellite will enable global monitoring of the distribution of clouds. MODIS is able to provide at high spatial resolution (1 ~ 5km) the cloud mask, surface and cloud types, cloud phase, cloud-top pressure (CTP), effective cloud amount (ECA), cloud particle size (CPS), and cloud water path (CWP). AIRS is able to provide CTP, ECA, CPS, and CWP within the AIRS footprint with much better accuracy using its greatly enhanced hyperspectral remote sensing capability. The combined MODIS / AIRS system offers the opportunity for cloud products improved over those possible from either system alone. The algorithm developed was applied to process the AIRS longwave cloudy radiance measurements; results are compared with MODIS cloud products, as well as with the Geostationary Operational Environmental Satellite (GOES) sounder cloud products, to demonstrate the advantage of synergistic use of high spatial resolution MODIS cloud products and high spectral resolution AIRS sounder radiance measurements for optimal cloud retrieval. Data from ground-based instrumentation at the Atmospheric Radiation Measurement (ARM) Program Cloud and Radiation Test Bed (CART) in Oklahoma were used for the validation; results show that AIRS improves the MODIS cloud products in certain cases such as low-level clouds.
Spatial and Temporal Distribution of Clouds Observed by MODIS Onboard the Terra and Aqua Satellites
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven; Menzel, W. Paul; Ackerman, Steven A.; Hubanks, Paul A.
2012-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by NASA and launched aboard the Terra spacecraft on December 18, 1999 and Aqua spacecraft on May 4, 2002. A comprehensive set of remote sensing algorithms for the retrieval of cloud physical and optical properties have enabled over twelve years of continuous observations of cloud properties from Terra and over nine years from Aqua. The archived products from these algorithms include 1 km pixel-level (Level-2) and global gridded Level-3 products. In addition to an extensive cloud mask, products include cloud-top properties (temperature, pressure, effective emissivity), cloud thermodynamic phase, cloud optical and microphysical parameters (optical thickness, effective particle radius, water path), as well as derived statistics. Results include the latitudinal distribution of cloud optical and radiative properties for both liquid water and ice clouds, as well as latitudinal distributions of cloud top pressure and cloud top temperature. MODIS finds the cloud fraction, as derived by the cloud mask, is nearly identical during the day and night, with only modest diurnal variation. Globally, the cloud fraction derived by the MODIS cloud mask is approx.67%, with somewhat more clouds over land during the afternoon and less clouds over ocean in the afternoon, with very little difference in global cloud cover between Terra and Aqua. Overall, cloud fraction over land is approx.55%, with a distinctive seasonal cycle, whereas the ocean cloudiness is much higher, around 72%, with much reduced seasonal variation. Cloud top pressure and temperature have distinct spatial and temporal patterns, and clearly reflect our understanding of the global cloud distribution. High clouds are especially prevalent over the northern hemisphere continents between 30 and 50 . Aqua and Terra have comparable zonal cloud top pressures, with Aqua having somewhat higher clouds (cloud top pressures lower by 100 hPa) over land due to afternoon deep convection. The coldest cloud tops (colder than 230 K) generally occur over Antarctica and the high clouds in the tropics (ITCZ and the deep convective clouds over the western tropical Pacific and Indian sub-continent).
NASA Technical Reports Server (NTRS)
Platnick, Steven; Wind, Galina; Zhang, Zhibo; Ackerman, Steven A.; Maddux, Brent
2012-01-01
The optical and microphysical structure of warm boundary layer marine clouds is of fundamental importance for understanding a variety of cloud radiation and precipitation processes. With the advent of MODIS (Moderate Resolution Imaging Spectroradiometer) on the NASA EOS Terra and Aqua platforms, simultaneous global/daily 1km retrievals of cloud optical thickness and effective particle size are provided, as well as the derived water path. In addition, the cloud product (MOD06/MYD06 for MODIS Terra and Aqua, respectively) provides separate effective radii results using the l.6, 2.1, and 3.7 m spectral channels. Cloud retrieval statistics are highly sensitive to how a pixel identified as being "notclear" by a cloud mask (e.g., the MOD35/MYD35 product) is determined to be useful for an optical retrieval based on a 1-D cloud model. The Collection 5 MODIS retrieval algorithm removed pixels associated with cloud'edges as well as ocean pixels with partly cloudy elements in the 250m MODIS cloud mask - part of the so-called Clear Sky Restoral (CSR) algorithm. Collection 6 attempts retrievals for those two pixel populations, but allows a user to isolate or filter out the populations via CSR pixel-level Quality Assessment (QA) assignments. In this paper, using the preliminary Collection 6 MOD06 product, we present global and regional statistical results of marine warm cloud retrieval sensitivities to the cloud edge and 250m partly cloudy pixel populations. As expected, retrievals for these pixels are generally consistent with a breakdown of the ID cloud model. While optical thickness for these suspect pixel populations may have some utility for radiative studies, the retrievals should be used with extreme caution for process and microphysical studies.
NASA Astrophysics Data System (ADS)
Gumley, L.; Parker, D.; Flynn, B.; Holz, R.; Marais, W.
2011-12-01
SatCam is an application for iOS devices that allows users to collect observations of local cloud and surface conditions in coordination with an overpass of the Terra, Aqua, or NPP satellites. SatCam allows users to acquire images of sky conditions and ground conditions at their location anywhere in the world using the built-in iPhone or iPod Touch camera at the same time that the satellite is passing overhead and viewing their location. Immediately after the sky and ground observations are acquired, the application asks the user to rate the level of cloudiness in the sky (Completely Clear, Mostly Clear, Partly Cloudy, Overcast). For the ground observation, the user selects their assessment of the surface conditions (Urban, Green Vegetation, Brown Vegetation, Desert, Snow, Water). The sky condition and surface condition selections are stored along with the date, time, and geographic location for the images, and the images are uploaded to a central server. When the MODIS (Terra and Aqua) or VIIRS (NPP) imagery acquired over the user location becomes available, a MODIS or VIIRS true color image centered at the user's location is delivered back to the SatCam application on the user's iOS device. SSEC also proposes to develop a community driven SatCam website where users can share their observations and assessments of satellite cloud products in a collaborative environment. SSEC is developing a server side data analysis system to ingest the SatCam user observations, apply quality control, analyze the sky images for cloud cover, and collocate the observations with MODIS and VIIRS satellite products (e.g., cloud mask). For each observation that is collocated with a satellite observation, the server will determine whether the user scored a "hit", meaning their sky observation and sky assessment matched the automated cloud mask obtained from the satellite observation. The hit rate will be an objective assessment of the accuracy of the user's sky observations. Users with high hit rates will be identified automatically and their observations will be used globally to evaluate the performance of the MODIS cloud mask algorithm for Terra and Aqua and the VIIRS cloud mask algorithm for NPP. The user's assessment of the ground conditions will also be used to evaluate the cloud mask accuracy in selecting the correct surface type at the user's location, which is an important element in the decision path used internally by the cloud mask algorithm. This presentation will describe the SatCam application, how it is used, and show examples of SatCam observations.
NASA Astrophysics Data System (ADS)
Kim, Hye-Won; Yeom, Jong-Min; Shin, Daegeun; Choi, Sungwon; Han, Kyung-Soo; Roujean, Jean-Louis
2017-08-01
In this study, a new assessment of thin cloud detection with the application of bidirectional reflectance distribution function (BRDF) model-based background surface reflectance was undertaken by interpreting surface spectra characterized using the Geostationary Ocean Color Imager (GOCI) over a land surface area. Unlike cloud detection over the ocean, the detection of cloud over land surfaces is difficult due to the complicated surface scattering characteristics, which vary among land surface types. Furthermore, in the case of thin clouds, in which the surface and cloud radiation are mixed, it is difficult to detect the clouds in both land and atmospheric fields. Therefore, to interpret background surface reflectance, especially underneath cloud, the semiempirical BRDF model was used to simulate surface reflectance by reflecting solar angle-dependent geostationary sensor geometry. For quantitative validation, Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data were used to make a comparison with the proposed cloud masking result. As a result, the new cloud masking scheme resulted in a high probability of detection (POD = 0.82) compared with the Moderate Resolution Imaging Spectroradiometer (MODIS) (POD = 0.808) for all cloud cases. In particular, the agreement between the CALIPSO cloud product and new GOCI cloud mask was over 94% when detecting thin cloud (e.g., altostratus and cirrus) from January 2014 to June 2015. This result is relatively high in comparison with the result from the MODIS Collection 6 cloud mask product (MYD35).
The EOS CERES Global Cloud Mask
NASA Technical Reports Server (NTRS)
Berendes, T. A.; Welch, R. M.; Trepte, Q.; Schaaf, C.; Baum, B. A.
1996-01-01
To detect long-term climate trends, it is essential to produce long-term and consistent data sets from a variety of different satellite platforms. With current global cloud climatology data sets, such as the International Satellite Cloud Climatology Experiment (ISCCP) or CLAVR (Clouds from Advanced Very High Resolution Radiometer), one of the first processing steps is to determine whether an imager pixel is obstructed between the satellite and the surface, i.e., determine a cloud 'mask.' A cloud mask is essential to studies monitoring changes over ocean, land, or snow-covered surfaces. As part of the Earth Observing System (EOS) program, a series of platforms will be flown beginning in 1997 with the Tropical Rainfall Measurement Mission (TRMM) and subsequently the EOS-AM and EOS-PM platforms in following years. The cloud imager on TRMM is the Visible/Infrared Sensor (VIRS), while the Moderate Resolution Imaging Spectroradiometer (MODIS) is the imager on the EOS platforms. To be useful for long term studies, a cloud masking algorithm should produce consistent results between existing (AVHRR) data, and future VIRS and MODIS data. The present work outlines both existing and proposed approaches to detecting cloud using multispectral narrowband radiance data. Clouds generally are characterized by higher albedos and lower temperatures than the underlying surface. However, there are numerous conditions when this characterization is inappropriate, most notably over snow and ice of the cloud types, cirrus, stratocumulus and cumulus are the most difficult to detect. Other problems arise when analyzing data from sun-glint areas over oceans or lakes over deserts or over regions containing numerous fires and smoke. The cloud mask effort builds upon operational experience of several groups that will now be discussed.
Synergistic Use of MODIS and AIRS in a Variational Retrieval of Cloud Parameters.
NASA Astrophysics Data System (ADS)
Li, Jun; Menzel, W. Paul; Zhang, Wenjian; Sun, Fengying; Schmit, Timothy J.; Gurka, James J.; Weisz, Elisabeth
2004-11-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) and the Atmospheric Infrared Sounder (AIRS) measurements from the Earth Observing System's (EOS's) Aqua satellite enable global monitoring of the distribution of clouds. MODIS is able to provide a cloud mask, surface and cloud types, cloud phase, cloud-top pressure (CTP), effective cloud amount (ECA), cloud particle size, and cloud optical thickness at high spatial resolution (1 5 km). The combined MODIS AIRS system offers the opportunity for improved cloud products, better than from either system alone; this improvement is demonstrated in this paper with both simulated and real radiances. A one-dimensional variational (1DVAR) methodology is used to retrieve the CTP and ECA from AIRS longwave (650 790 cm-1 or 15.38 12.65 μm) cloudy radiance measurements (hereinafter referred to as MODIS AIRS 1DVAR). The MODIS AIRS 1DVAR cloud properties show significant improvement over the MODIS-alone cloud properties and slight improvement over AIRS-alone cloud properties in a simulation study, while MODIS AIRS 1DVAR is much more computationally efficient than the AIRS-alone 1DVAR; comparisons with radiosonde observations show that CTPs improve by 10 40 hPa for MODIS AIRS CTPs over those from MODIS alone. The 1DVAR approach is applied to process the AIRS longwave cloudy radiance measurements; results are compared with MODIS and Geostationary Operational Environmental Satellite sounder cloud products. Data from ground-based instrumentation at the Atmospheric Radiation Measurement Program Cloud and Radiation Test Bed in Oklahoma are used for validation; results show that MODIS AIRS improves the MODIS CTP, especially in low-level clouds. The operational use of a high-spatial-resolution imager, along with information from a high-spectral-resolution sounder will be possible with instruments planned for the next-generation geostationary operational instruments.
NASA Astrophysics Data System (ADS)
Platnick, S.; Wind, G.; Zhang, Z.; Ackerman, S. A.; Maddux, B. C.
2012-12-01
The optical and microphysical structure of warm boundary layer marine clouds is of fundamental importance for understanding a variety of cloud radiation and precipitation processes. With the advent of MODIS (Moderate Resolution Imaging Spectroradiometer) on the NASA EOS Terra and Aqua platforms, simultaneous global/daily 1km retrievals of cloud optical thickness and effective particle size are provided, as well as the derived water path. In addition, the cloud product (MOD06/MYD06 for MODIS Terra and Aqua, respectively) provides separate effective radii results using the 1.6, 2.1, and 3.7 μm spectral channels. Cloud retrieval statistics are highly sensitive to how a pixel identified as being "not-clear" by a cloud mask (e.g., the MOD35/MYD35 product) is determined to be useful for an optical retrieval based on a 1-D cloud model. The Collection 5 MODIS retrieval algorithm removed pixels associated with cloud edges (defined by immediate adjacency to "clear" MOD/MYD35 pixels) as well as ocean pixels with partly cloudy elements in the 250m MODIS cloud mask - part of the so-called Clear Sky Restoral (CSR) algorithm. Collection 6 attempts retrievals for those two pixel populations, but allows a user to isolate or filter out the populations via CSR pixel-level Quality Assessment (QA) assignments. In this paper, using the preliminary Collection 6 MOD06 product, we present global and regional statistical results of marine warm cloud retrieval sensitivities to the cloud edge and 250m partly cloudy pixel populations. As expected, retrievals for these pixels are generally consistent with a breakdown of the 1D cloud model. While optical thickness for these suspect pixel populations may have some utility for radiative studies, the retrievals should be used with extreme caution for process and microphysical studies.
XBAER-derived aerosol optical thickness from OLCI/Sentinel-3 observation
NASA Astrophysics Data System (ADS)
Mei, Linlu; Rozanov, Vladimir; Vountas, Marco; Burrows, John P.; Richter, Andreas
2018-02-01
A cloud identification algorithm used for cloud masking, which is based on the spatial variability of reflectances at the top of the atmosphere in visible wavelengths, has been developed for the retrieval of aerosol properties by MODIS. It is shown that the spatial pattern of cloud reflectance, as observed from space, is very different from that of aerosols. Clouds show a high spatial variability in the scale of a hundred metres to a few kilometres, whereas aerosols in general are homogeneous. The concept of spatial variability of reflectances at the top of the atmosphere is mainly applicable over the ocean, where the surface background is sufficiently homogeneous for the separation between aerosols and clouds. Aerosol retrievals require a sufficiently accurate cloud identification to be able to mask these ground scenes. However, a conservative mask will exclude strong aerosol episodes and a less conservative mask could introduce cloud contamination that biases the retrieved aerosol optical properties (e.g. aerosol optical depth and effective radii). A detailed study on the effect of cloud contamination on aerosol retrievals has been performed and parameters are established determining the threshold value for the MODIS aerosol cloud mask (3×3-STD) over the ocean. The 3×3-STD algorithm discussed in this paper is the operational cloud mask used for MODIS aerosol retrievals over the ocean.A prolonged pollution haze event occurred in the northeast part of China during the period 16-21 December 2016. To assess the impact of such events, the amounts and distribution of aerosol particles, formed in such events, need to be quantified. The newly launched Ocean Land Colour Instrument (OLCI) onboard Sentinel-3 is the successor of the MEdium Resolution Imaging Spectrometer (MERIS). It provides measurements of the radiance and reflectance at the top of the atmosphere, which can be used to retrieve the aerosol optical thickness (AOT) from synoptic to global scales. In this study, the recently developed AOT retrieval algorithm eXtensible Bremen AErosol Retrieval (XBAER) has been applied to data from the OLCI instrument for the first time to illustrate the feasibility of applying XBAER to the data from this new instrument. The first global retrieval results show similar patterns of aerosol optical thickness, AOT, to those from MODIS and MISR aerosol products. The AOT retrieved from OLCI is validated by comparison with AERONET observations and a correlation coefficient of 0.819 and bias (root mean square) of 0.115 is obtained. The haze episode is well captured by the OLCI-derived AOT product. XBAER is shown to retrieve AOT well from the observations of MERIS and OLCI.
Virtual Sensors: Using Data Mining to Efficiently Estimate Spectra
NASA Technical Reports Server (NTRS)
Srivastava, Ashok; Oza, Nikunj; Stroeve, Julienne
2004-01-01
Detecting clouds within a satellite image is essential for retrieving surface geophysical parameters, such as albedo and temperature, from optical and thermal imagery because the retrieval methods tend to be valid for clear skies only. Thus, routine satellite data processing requires reliable automated cloud detection algorithms that are applicable to many surface types. Unfortunately, cloud detection over snow and ice is difficult due to the lack of spectral contrast between clouds and snow. Snow and clouds are both highly reflective in the visible wavelen,ats and often show little contrast in the thermal Infrared. However, at 1.6 microns, the spectral signatures of snow and clouds differ enough to allow improved snow/ice/cloud discrimination. The recent Terra and Aqua Moderate Resolution Imaging Spectro-Radiometer (MODIS) sensors have a channel (channel 6) at 1.6 microns. Presently the most comprehensive, long-term information on surface albedo and temperature over snow- and ice-covered surfaces comes from the Advanced Very High Resolution Radiometer ( AVHRR) sensor that has been providing imagery since July 1981. The earlier AVHRR sensors (e.g. AVHRR/2) did not however have a channel designed for discriminating clouds from snow, such as the 1.6 micron channel available on the more recent AVHRR/3 or the MODIS sensors. In the absence of the 1.6 micron channel, the AVHRR Polar Pathfinder (APP) product performs cloud detection using a combination of time-series analysis and multispectral threshold tests based on the satellite's measuring channels to produce a cloud mask. The method has been found to work reasonably well over sea ice, but not so well over the ice sheets. Thus, improving the cloud mask in the APP dataset would be extremely helpful toward increasing the accuracy of the albedo and temperature retrievals, as well as extending the time-series of albedo and temperature retrievals from the more recent sensors to the historical ones. In this work, we use data mining methods to construct a model of MODIS channel 6 as a function of other channels that are common to both MODIS and AVHRR. The idea is to use the model to generate the equivalent of MODIS channel 6 for AVHRR as a function of the AVHRR equivalents to MODIS channels. We call this a Virtual Sensor because it predicts unmeasured spectra. The goal is to use this virtual channel 6. to yield a cloud mask superior to what is currently used in APP . Our results show that several data mining methods such as multilayer perceptrons (MLPs), ensemble methods (e.g., bagging), and kernel methods (e.g., support vector machines) generate channel 6 for unseen MODIS images with high accuracy. Because the true channel 6 is not available for AVHRR images, we qualitatively assess the virtual channel 6 for several AVHRR images.
Multispectral Cloud Retrievals from MODIS on Terra and Aqua
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven; Ackerman, Steven A.; Menzel, W. Paul; Gray, Mark A.; Moody, Eric G.
2002-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by NASA and launched onboard the Terra spacecraft on December 18, 1999 and the Aqua spacecraft on April 26, 2002. MODIS scans a swath width sufficient to provide nearly complete global coverage every two days from each polar-orbiting, sun-synchronous, platform at an altitude of 705 km, and provides images in 36 spectral bands between 0.415 and 14.235 microns with spatial resolutions of 250 m (2 bands), 500 m (5 bands) and 1000 m (29 bands). In this paper we will describe the various methods being used for the remote sensing of cloud properties using MODIS data, focusing primarily on the MODIS cloud mask used to distinguish clouds, clear sky, heavy aerosol, and shadows on the ground, and on the remote sensing of cloud optical properties, especially cloud optical thickness and effective radius of water drops and ice crystals. Additional properties of clouds derived from multispectral thermal infrared measurements, especially cloud top pressure and emissivity, will also be described. Results will be presented of MODIS cloud properties both over the land and over the ocean, showing the consistency in cloud retrievals over various ecosystems used in the retrievals. The implications of this new observing system on global analysis of the Earth's environment will be discussed.
New Multispectral Cloud Retrievals from MODIS
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven; Tsay, Si-Chee; Ackerman, Steven A.; Menzel, W. Paul; Gray, Mark A.; Moody, Eric G.; Li, Jason Y.; Arnold, G. Thomas
2001-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by NASA and launched onboard the Terra spacecraft on December 18, 1999. It achieved its final orbit and began Earth observations on February 24, 2000. MODIS scans a swath width sufficient to provide nearly complete global coverage every two days from a polar-orbiting, sun- synchronous, platform at an altitude of 705 km, and provides images in 36 spectral bands between 0.415 and 14.235 microns with spatial resolutions of 250 m (two bands), 500 m (five bands) and 1000 m (29 bands). In this paper we will describe the various methods being used for the remote sensing of cloud properties using MODIS data, focusing primarily on the MODIS cloud mask used to distinguish clouds, clear sky, heavy aerosol, and shadows on the ground, and on the remote sensing of cloud optical properties, especially cloud optical thickness and effective radius of water drops and ice crystals. Additional properties of clouds derived from multispectral thermal infrared measurements, especially cloud top pressure and emissivity, will also be described. Results will be presented of MODIS cloud properties both over the land and over the ocean, showing the consistency in cloud retrievals over various ecosystems used in the retrievals. The implications of this new observing system on global analysis of the Earth's environment will be discussed.
Progress towards NASA MODIS and Suomi NPP Cloud Property Data Record Continuity
NASA Astrophysics Data System (ADS)
Platnick, S.; Meyer, K.; Holz, R.; Ackerman, S. A.; Heidinger, A.; Wind, G.; Platnick, S. E.; Wang, C.; Marchant, B.; Frey, R.
2017-12-01
The Suomi NPP VIIRS imager provides an opportunity to extend the 17+ year EOS MODIS climate data record into the next generation operational era. Similar to MODIS, VIIRS provides visible through IR observations at moderate spatial resolution with a 1330 LT equatorial crossing consistent with the MODIS on the Aqua platform. However, unlike MODIS, VIIRS lacks key water vapor and CO2 absorbing channels used for high cloud detection and cloud-top property retrievals. In addition, there is a significant mismatch in the spectral location of the 2.2 μm shortwave-infrared channels used for cloud optical/microphysical retrievals and cloud thermodynamic phase. Given these instrument differences between MODIS EOS and VIIRS S-NPP/JPSS, a merged MODIS-VIIRS cloud record to serve the science community in the coming decades requires different algorithm approaches than those used for MODIS alone. This new approach includes two parallel efforts: (1) Imager-only algorithms with only spectral channels common to VIIRS and MODIS (i.e., eliminate use of MODIS CO2 and NIR/IR water vapor channels). Since the algorithms are run with similar spectral observations, they provide a basis for establishing a continuous cloud data record across the two imagers. (2) Merged imager and sounder measurements (i.e.., MODIS-AIRS, VIIRS-CrIS) in lieu of higher-spatial resolution MODIS absorption channels absent on VIIRS. The MODIS-VIIRS continuity algorithm for cloud optical property retrievals leverages heritage algorithms that produce the existing MODIS cloud mask (MOD35), optical and microphysical properties product (MOD06), and the NOAA AWG Cloud Height Algorithm (ACHA). We discuss our progress towards merging the MODIS observational record with VIIRS in order to generate cloud optical property climate data record continuity across the observing systems. In addition, we summarize efforts to reconcile apparent radiometric biases between analogous imager channels, a critical consideration for obtaining inter-sensor climate data record continuity.
NASA Technical Reports Server (NTRS)
Brubaker, N.; Jedlovec, G. J.
2004-01-01
With the preliminary release of AIRS Level 1 and 2 data to the scientific community, there is a growing need for an accurate AIRS cloud mask for data assimilation studies and in producing products derived from cloud free radiances. Current cloud information provided with the AIRS data are limited or based on simplified threshold tests. A multispectral cloud detection approach has been developed for AIRS that utilizes the hyper-spectral capabilities to detect clouds based on specific cloud signatures across the short wave and long wave infrared window regions. This new AIRS cloud mask has been validated against the existing AIRS Level 2 cloud product and cloud information derived from MODIS. Preliminary results for both day and night applications over the continental U.S. are encouraging. Details of the cloud detection approach and validation results will be presented at the conference.
New Multispectral Cloud Retrievals from MODIS
NASA Technical Reports Server (NTRS)
Platnick, Steven; Tsay, Si-Chee; Ackerman, Steven A.; Gray, Mark A.; Moody, Eric G.; Li, Jason Y.; Arnold, G. T.; King, Michael D. (Technical Monitor)
2000-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by NASA and launched onboard the Terra spacecraft on December 18, 1999. It achieved its final orbit and began Earth observations on February 24, 2000. MODIS scans a swath width sufficient to provide nearly complete global coverage every two days from a polar-orbiting, sun-synchronous, platform at an altitude of 705 km, and provides images in 36 spectral bands between 0.415 and 14.235 micrometers with spatial resolutions of 250 m (2 bands), 500 m (5 bands) and 1000 m (29 bands). These bands have been carefully selected to enable advanced studies of land, ocean, and atmospheric processes. In this paper I will describe the various methods being used for the remote sensing of cloud properties using MODIS data, focusing primarily on the MODIS cloud mask used to distinguish clouds, clear sky, heavy aerosol, and shadows on the ground, and on the remote sensing of cloud optical properties, especially cloud optical thickness and effective radius of cloud drops and ice crystals. Results will be presented of MODIS cloud properties both over the land and over the ocean, showing the consistency in cloud retrievals over various ecosystems used in the retrievals. The implications of this new observing system on global analysis of the Earth's environment will be discussed.
Progress towards MODIS and VIIRS Cloud Optical Property Data Record Continuity
NASA Astrophysics Data System (ADS)
Meyer, K.; Platnick, S. E.; Wind, G.; Amarasinghe, N.; Holz, R.; Ackerman, S. A.; Heidinger, A. K.
2016-12-01
The launch of Suomi NPP in the fall of 2011 began the next generation of U.S. operational polar orbiting Earth observations, and its VIIRS imager provides an opportunity to extend the 15+ year climate data record of MODIS EOS. Similar to MODIS, VIIRS provides visible through IR observations at moderate spatial resolution with a 1330 LT equatorial crossing consistent with the MODIS on the Aqua platform. However, unlike MODIS, VIIRS lacks key water vapor and CO2 absorbing channels used for high cloud detection and cloud-top property retrievals, and there is a significant change in the spectral location of the 2.1μm shortwave-infrared channel used for cloud optical/microphysical retrievals and cloud thermodynamic phase. Given these instrument differences between MODIS EOS and VIIRS S-NPP/JPSS, we discuss our progress towards merging the MODIS observational record with VIIRS in order to generate cloud optical property climate data record continuity across the observing systems. The MODIS-VIIRS continuity algorithm for cloud optical property retrievals leverages heritage algorithms that produce the existing MODIS cloud optical and microphysical properties product (MOD06); the NOAA AWG/CLAVR-x cloud-top property algorithm and a common MODIS-VIIRS cloud mask feed into the optical property algorithm. To account for the different channel sets of MODIS and VIIRS, each algorithm nominally uses a subset of channels common to both imagers. Data granule and aggregated examples for the current version of the continuity algorithm (MODAWG) will be shown. In addition, efforts to reconcile apparent radiometric biases between analogous channels of the two imagers, a critical consideration for obtaining inter-sensor climate data record continuity, will be discussed.
AIRS Subpixel Cloud Characterization Using MODIS Cloud Products.
NASA Astrophysics Data System (ADS)
Li, Jun; Menzel, W. Paul; Sun, Fengying; Schmit, Timothy J.; Gurka, James
2004-08-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) and the Atmospheric Infrared Sounder (AIRS) measurements from the Earth Observing System's (EOS's) Aqua satellite enable improved global monitoring of the distribution of clouds. MODIS is able to provide, at high spatial resolution (1 5 km), a cloud mask, surface and cloud types, cloud phase, cloud-top pressure (CTP), effective cloud amount (ECA), cloud particle size (CPS), and cloud optical thickness (COT). AIRS is able to provide CTP, ECA, CPS, and COT at coarser spatial resolution (13.5 km at nadir) but with much better accuracy using its high-spectral-resolution measurements. The combined MODIS AIRS system offers the opportunity for improved cloud products over those possible from either system alone. The key steps for synergistic use of imager and sounder radiance measurements are 1) collocation in space and time and 2) imager cloud amount, type, and phase determination within the sounder pixel. The MODIS and AIRS measurements from the EOS Aqua satellite provide the opportunity to study the synergistic use of advanced imager and sounder measurements. As the first step, the MODIS classification procedure is applied to identify various surface and cloud types within an AIRS footprint. Cloud-layer information (lower, midlevel, or high clouds) and phase information (water, ice, or mixed-phase clouds) within the AIRS footprint are sorted and characterized using MODIS 1-km-spatial-resolution data. The combined MODIS and AIRS data for various scenes are analyzed to study the utility of the synergistic use of high-spatial-resolution imager products and high-spectral-resolution sounder radiance measurements. There is relevance to the optimal use of data from the Advanced Baseline Imager (ABI) and Hyperspectral Environmental Suite (HES) systems, which are to fly on the Geostationary Operational Environmental Satellite (GOES)-R.
MODIS Data from the GES DISC DAAC: Moderate-Resolution Imaging Spectroradiometer (MODIS)
NASA Technical Reports Server (NTRS)
2002-01-01
The Goddard Earth Sciences (GES) Distributed Active Archive Center (DAAC) is responsible for the distribution of the Level 1 data, and the higher levels of all Ocean and Atmosphere products (Land products are distributed through the Land Processes (LP) DAAC DAAC, and the Snow and Ice products are distributed though the National Snow and Ice Data Center (NSIDC) DAAC). Ocean products include sea surface temperature (SST), concentrations of chlorophyll, pigment and coccolithophores, fluorescence, absorptions, and primary productivity. Atmosphere products include aerosols, atmospheric water vapor, clouds and cloud masks, and atmospheric profiles from 20 layers. While most MODIS data products are archived in the Hierarchical Data Format-Earth Observing System (HDF-EOS 2.7) format, the ocean binned products and primary productivity products (Level 4) are in the native HDF4 format. MODIS Level 1 and 2 data are of the Swath type and are packaged in files representing five minutes of Files for Level 3 and 4 are global products at daily, weekly, monthly or yearly resolutions. Apart from the ocean binned and Level 4 products, these are in Grid type, and the maps are in the Cylindrical Equidistant projection with rectangular grid. Terra viewing (scenes of approximately 2000 by 2330 km). MODIS data have several levels of maturity. Most products are released with a provisional level of maturity and only announced as validated after rigorous testing by the MODIS Science Teams. MODIS/Terra Level 1, and all MODIS/Terra 11 micron SST products are announced as validated. At the time of this publication, the MODIS Data Support Team (MDST) is working with the Ocean Science Team toward announcing the validated status of the remainder of MODIS/Terra Ocean products. MODIS/Aqua Level 1 and cloud mask products are released with provisional maturity.
Ten Years of Cloud Properties from MODIS: Global Statistics and Use in Climate Model Evaluation
NASA Technical Reports Server (NTRS)
Platnick, Steven E.
2011-01-01
The NASA Moderate Resolution Imaging Spectroradiometer (MODIS), launched onboard the Terra and Aqua spacecrafts, began Earth observations on February 24, 2000 and June 24,2002, respectively. Among the algorithms developed and applied to this sensor, a suite of cloud products includes cloud masking/detection, cloud-top properties (temperature, pressure), and optical properties (optical thickness, effective particle radius, water path, and thermodynamic phase). All cloud algorithms underwent numerous changes and enhancements between for the latest Collection 5 production version; this process continues with the current Collection 6 development. We will show example MODIS Collection 5 cloud climatologies derived from global spatial . and temporal aggregations provided in the archived gridded Level-3 MODIS atmosphere team product (product names MOD08 and MYD08 for MODIS Terra and Aqua, respectively). Data sets in this Level-3 product include scalar statistics as well as 1- and 2-D histograms of many cloud properties, allowing for higher order information and correlation studies. In addition to these statistics, we will show trends and statistical significance in annual and seasonal means for a variety of the MODIS cloud properties, as well as the time required for detection given assumed trends. To assist in climate model evaluation, we have developed a MODIS cloud simulator with an accompanying netCDF file containing subsetted monthly Level-3 statistical data sets that correspond to the simulator output. Correlations of cloud properties with ENSO offer the potential to evaluate model cloud sensitivity; initial results will be discussed.
NASA Technical Reports Server (NTRS)
Werner, Frank; Wind, Galina; Zhang, Zhibo; Platnick, Steven; Di Girolamo, Larry; Zhao, Guangyu; Amarasinghe, Nandana; Meyer, Kerry
2016-01-01
A research-level retrieval algorithm for cloud optical and microphysical properties is developed for the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) aboard the Terra satellite. It is based on the operational MODIS algorithm. This paper documents the technical details of this algorithm and evaluates the retrievals for selected marine boundary layer cloud scenes through comparisons with the operational MODIS Data Collection 6 (C6) cloud product. The newly developed, ASTERspecific cloud masking algorithm is evaluated through comparison with an independent algorithm reported in Zhao and Di Girolamo (2006). To validate and evaluate the cloud optical thickness (tau) and cloud effective radius (r(sub eff)) from ASTER, the high-spatial-resolution ASTER observations are first aggregated to the same 1000m resolution as MODIS. Subsequently, tau(sub aA) and r(sub eff, aA) retrieved from the aggregated ASTER radiances are compared with the collocated MODIS retrievals. For overcast pixels, the two data sets agree very well with Pearson's product-moment correlation coefficients of R greater than 0.970. However, for partially cloudy pixels there are significant differences between r(sub eff, aA) and the MODIS results which can exceed 10 micrometers. Moreover, it is shown that the numerous delicate cloud structures in the example marine boundary layer scenes, resolved by the high-resolution ASTER retrievals, are smoothed by the MODIS observations. The overall good agreement between the research-level ASTER results and the operational MODIS C6 products proves the feasibility of MODIS-like retrievals from ASTER reflectance measurements and provides the basis for future studies concerning the scale dependency of satellite observations and three-dimensional radiative effects.
NASA Astrophysics Data System (ADS)
Werner, Frank; Wind, Galina; Zhang, Zhibo; Platnick, Steven; Di Girolamo, Larry; Zhao, Guangyu; Amarasinghe, Nandana; Meyer, Kerry
2016-12-01
A research-level retrieval algorithm for cloud optical and microphysical properties is developed for the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) aboard the Terra satellite. It is based on the operational MODIS algorithm. This paper documents the technical details of this algorithm and evaluates the retrievals for selected marine boundary layer cloud scenes through comparisons with the operational MODIS Data Collection 6 (C6) cloud product. The newly developed, ASTER-specific cloud masking algorithm is evaluated through comparison with an independent algorithm reported in [Zhao and Di Girolamo(2006)]. To validate and evaluate the cloud optical thickness (τ) and cloud effective radius (reff) from ASTER, the high-spatial-resolution ASTER observations are first aggregated to the same 1000 m resolution as MODIS. Subsequently, τaA and reff,
MODIS Collection 6 Data at the National Snow and Ice Data Center (NSIDC)
NASA Astrophysics Data System (ADS)
Fowler, D. K.; Steiker, A. E.; Johnston, T.; Haran, T. M.; Fowler, C.; Wyatt, P.
2015-12-01
For over 15 years, the NASA National Snow and Ice Data Center Distributed Active Archive Center (NSIDC DAAC) has archived and distributed snow and sea ice products derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on the NASA Earth Observing System (EOS) Aqua and Terra satellites. Collection 6 represents the next revision to NSIDC's MODIS archive, mainly affecting the snow-cover products. Collection 6 specifically addresses the needs of the MODIS science community by targeting the scenarios that have historically confounded snow detection and introduced errors into the snow-cover and fractional snow-cover maps even though MODIS snow-cover maps are typically 90 percent accurate or better under good observing conditions, Collection 6 uses revised algorithms to discriminate between snow and clouds, resolve uncertainties along the edges of snow-covered regions, and detect summer snow cover in mountains. Furthermore, Collection 6 applies modified and additional snow detection screens and new Quality Assessment protocols that enhance the overall accuracy of the snow maps compared with Collection 5. Collection 6 also introduces several new MODIS snow products, including a daily Climate Modelling Grid (CMG) cloud gap-filled (CGF) snow-cover map which generates cloud-free maps by using the most recent clear observations.. The MODIS Collection 6 sea ice extent and ice surface temperature algorithms and products are much the same as Collection 5; however, Collection 6 updates to algorithm inputs—in particular, the L1B calibrated radiances, land and water mask, and cloud mask products—have improved the sea ice outputs. The MODIS sea ice products are currently available at NSIDC, and the snow cover products are soon to follow in 2016 NSIDC offers a variety of methods for obtaining these data. Users can download data directly from an online archive or use the NASA Reverb Search & Order Tool to perform spatial, temporal, and parameter subsetting, reformatting, and re-projection of the data.
NASA Astrophysics Data System (ADS)
Kim, H. W.; Yeom, J. M.; Woo, S. H.
2017-12-01
Over the thin cloud region, satellite can simultaneously detect the reflectance from thin clouds and land surface. Since the mixed reflectance is not the exact cloud information, the background surface reflectance should be eliminated to accurately distinguish thin cloud such as cirrus. In the previous research, Kim et al (2017) was developed the cloud masking algorithm using the Geostationary Ocean Color Imager (GOCI), which is one of significant instruments for Communication, Ocean, and Meteorology Satellite (COMS). Although GOCI has 8 spectral channels including visible and near infra-red spectral ranges, the cloud masking has quantitatively reasonable result when comparing with MODIS cloud mask (Collection 6 MYD35). Especially, we noticed that this cloud masking algorithm is more specialized in thin cloud detections through the validation with Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data. Because this cloud masking method was concentrated on eliminating background surface effects from the top-of-atmosphere (TOA) reflectance. Applying the difference between TOA reflectance and the bi-directional reflectance distribution function (BRDF) model-based background surface reflectance, cloud areas both thick cloud and thin cloud can be discriminated without infra-red channels which were mostly used for detecting clouds. Moreover, when the cloud mask result was utilized as the input data when simulating BRDF model and the optimized BRDF model-based surface reflectance was used for the optimized cloud masking, the probability of detection (POD) has higher value than POD of the original cloud mask. In this study, we examine the correlation between cloud optical depth (COD) and its cloud mask result. Cloud optical depths mostly depend on the cloud thickness, the characteristic of contents, and the size of cloud contents. COD ranges from less than 0.1 for thin clouds to over 1000 for the huge cumulus due to scattering by droplets. With the cloud optical depth of CALIPSO, the cloud masking result can be more improved since we can figure out how deep cloud is. To validate the cloud mask and the correlation result, the atmospheric retrieval will be computed to compare the difference between TOA reflectance and the simulated surface reflectance.
ASTER cloud coverage reassessment using MODIS cloud mask products
NASA Astrophysics Data System (ADS)
Tonooka, Hideyuki; Omagari, Kunjuro; Yamamoto, Hirokazu; Tachikawa, Tetsushi; Fujita, Masaru; Paitaer, Zaoreguli
2010-10-01
In the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) Project, two kinds of algorithms are used for cloud assessment in Level-1 processing. The first algorithm based on the LANDSAT-5 TM Automatic Cloud Cover Assessment (ACCA) algorithm is used for a part of daytime scenes observed with only VNIR bands and all nighttime scenes, and the second algorithm based on the LANDSAT-7 ETM+ ACCA algorithm is used for most of daytime scenes observed with all spectral bands. However, the first algorithm does not work well for lack of some spectral bands sensitive to cloud detection, and the two algorithms have been less accurate over snow/ice covered areas since April 2008 when the SWIR subsystem developed troubles. In addition, they perform less well for some combinations of surface type and sun elevation angle. We, therefore, have developed the ASTER cloud coverage reassessment system using MODIS cloud mask (MOD35) products, and have reassessed cloud coverage for all ASTER archived scenes (>1.7 million scenes). All of the new cloud coverage data are included in Image Management System (IMS) databases of the ASTER Ground Data System (GDS) and NASA's Land Process Data Active Archive Center (LP DAAC) and used for ASTER product search by users, and cloud mask images are distributed to users through Internet. Daily upcoming scenes (about 400 scenes per day) are reassessed and inserted into the IMS databases in 5 to 7 days after each scene observation date. Some validation studies for the new cloud coverage data and some mission-related analyses using those data are also demonstrated in the present paper.
Improved Thin Cirrus and Terminator Cloud Detection in CERES Cloud Mask
NASA Technical Reports Server (NTRS)
Trepte, Qing; Minnis, Patrick; Palikonda, Rabindra; Spangenberg, Doug; Haeffelin, Martial
2006-01-01
Thin cirrus clouds account for about 20-30% of the total cloud coverage and affect the global radiation budget by increasing the Earth's albedo and reducing infrared emissions. Thin cirrus, however, are often underestimated by traditional satellite cloud detection algorithms. This difficulty is caused by the lack of spectral contrast between optically thin cirrus and the surface in techniques that use visible (0.65 micron ) and infrared (11 micron ) channels. In the Clouds and the Earth s Radiant Energy System (CERES) Aqua Edition 1 (AEd1) and Terra Edition 3 (TEd3) Cloud Masks, thin cirrus detection is significantly improved over both land and ocean using a technique that combines MODIS high-resolution measurements from the 1.38 and 11 micron channels and brightness temperature differences (BTDs) of 11-12, 8.5-11, and 3.7-11 micron channels. To account for humidity and view angle dependencies, empirical relationships were derived with observations from the 1.38 micron reflectance and the 11-12 and 8.5-11 micron BTDs using 70 granules of MODIS data in 2002 and 2003. Another challenge in global cloud detection algorithms occurs near the day/night terminator where information from the visible 0.65 micron channel and the estimated solar component of 3.7 micron channel becomes less reliable. As a result, clouds are often underestimated or misidentified near the terminator over land and ocean. Comparisons between the CLAVR-x (Clouds from Advanced Very High Resolution Radiometer [AVHRR]) cloud coverage and Geoscience Laser Altimeter System (GLAS) measurements north of 60 N indicate significant amounts of missing clouds from CLAVR-x because this part of the world was near the day/night terminator viewed by AVHRR. Comparisons between MODIS cloud products (MOD06) and GLAS in the same region also show similar difficulties with MODIS cloud retrievals. The consistent detection of clouds through out the day is needed to provide reliable cloud and radiation products for CERES and other research efforts involving the modeling of clouds and their interaction with the radiation budget.
NASA Astrophysics Data System (ADS)
King, Michael D.; Tsay, Si-Chee; Ackerman, Steven A.; Larsen, North F.
1998-12-01
A multispectral scanning spectrometer was used to obtain measurements of the reflection function and brightness temperature of smoke, clouds, and terrestrial surfaces at 50 discrete wavelengths between 0.55 and 14.2 μm. These observations were obtained from the NASA ER-2 aircraft as part of the Smoke, Clouds, and Radiation-Brazil (SCAR-B) campaign, conducted over a 1500×1500 km region of cerrado and rain forest throughout Brazil between August 16 and September 11, 1995. Multispectral images of the reflection function and brightness temperature in 10 distinct bands of the MODIS airborne simulator (MAS) were used to derive a confidence in clear sky (or alternatively the probability of cloud), shadow, fire, and heavy aerosol. In addition to multispectral imagery, monostatic lidar data were obtained along the nadir ground track of the aircraft and used to assess the accuracy of the cloud mask results. This analysis shows that the cloud and aerosol mask being developed for operational use on the moderate-resolution imaging spectroradiometer (MODIS), and tested using MAS data in Brazil, is quite capable of separating cloud, aerosol, shadow, and fires during daytime conditions over land.
Atmospheric Correction at AERONET Locations: A New Science and Validation Data Set
NASA Technical Reports Server (NTRS)
Wang, Yujie; Lyapustin, Alexei; Privette, Jeffery L.; Morisette, Jeffery T.; Holben, Brent
2008-01-01
This paper describes an AERONET-based Surface Reflectance Validation Network (ASRVN) and its dataset of spectral surface bidirectional reflectance and albedo based on MODIS TERRA and AQUA data. The ASRVN is an operational data collection and processing system. It receives 50x50 square kilometer subsets of MODIS L1B data from MODAPS and AERONET aerosol and water vapor information. Then it performs an accurate atmospheric correction for about 100 AERONET sites based on accurate radiative transfer theory with high quality control of the input data. The ASRVN processing software consists of L1B data gridding algorithm, a new cloud mask algorithm based on a time series analysis, and an atmospheric correction algorithm. The atmospheric correction is achieved by fitting the MODIS top of atmosphere measurements, accumulated for 16-day interval, with theoretical reflectance parameterized in terms of coefficients of the LSRT BRF model. The ASRVN takes several steps to ensure high quality of results: 1) cloud mask algorithm filters opaque clouds; 2) an aerosol filter has been developed to filter residual semi-transparent and sub-pixel clouds, as well as cases with high inhomogeneity of aerosols in the processing area; 3) imposing requirement of consistency of the new solution with previously retrieved BRF and albedo; 4) rapid adjustment of the 16-day retrieval to the surface changes using the last day of measurements; and 5) development of seasonal back-up spectral BRF database to increase data coverage. The ASRVN provides a gapless or near-gapless coverage for the processing area. The gaps, caused by clouds, are filled most naturally with the latest solution for a given pixels. The ASRVN products include three parameters of LSRT model (k(sup L), k(sup G), k(sup V)), surface albedo, NBRF (a normalized BRF computed for a standard viewing geometry, VZA=0 deg., SZA=45 deg.), and IBRF (instantaneous, or one angle, BRF value derived from the last day of MODIS measurement for specific viewing geometry) for MODIS 500m bands 1-7. The results are produced daily at resolution of 1 km in gridded format. We also provide cloud mask, quality flag and a browse bitmap image. The new dataset can be used for a wide range of applications including validation analysis and science research.
MODIS Direct Broadcast and Remote Sensing Applications
NASA Technical Reports Server (NTRS)
Tsay, Si-Chee
2004-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by NASA and launched onboard both Terra spacecraft on December 18, 1999 and Aqua spacecraft on May 4, 2002. MODIS scans a swath width sufficient to provide nearly complete global coverage every two days from a polar-orbiting, sun-synchronous, platform at an altitude of 705 km, and provides images in 36 spectral bands between 0.415 and 14.235 microns with spatial resolutions of 250 m (2 bands), 500 m (5 bands) and 1000 m (29 bands). Equipped with direct broadcast capability, the MODIS measurements can be received worldwide real time. There are 82 ingest sites (over 900 users, listed on the Direct Readout Portal) around the world for Terra/Aqua-MODIS Direct Broadcast DB) downlink. This represents 27 (6 from EOS science team members) science research organizations for DB land, ocean and atmospheric processing, and 53 companies that base their application algorithms and value added products on DB data. In this paper we will describe the various methods being used for the remote sensing of cloud properties using MODIS data, focusing primarily on the MODIS cloud mask used to distinguish clouds, clear sky, heavy aerosol, and shadows on the ground, and on the remote sensing of aerosol/cloud optical properties, especially optical thickness and effective particle size. Additional properties of clouds derived from multispectral thermal infrared measurements, especially cloud top pressure and emissivity, will also be described. Preliminary results will be presented and discussed their implications in regional-to-global climatic effects.
Daytime Cloud Property Retrievals Over the Arctic from Multispectral MODIS Data
NASA Technical Reports Server (NTRS)
Spangenberg, Douglas A.; Trepte, Qing; Minnis, Patrick; Uttal, Taneil
2004-01-01
Improving climate model predictions over Earth's polar regions requires a complete understanding of polar clouds properties. Passive satellite remote sensing techniques can be used to retrieve macro and microphysical properties of polar cloud systems. However, over the Arctic, there is minimal contrast between clouds and the background snow surface observed in satellite data, especially for visible wavelengths. This makes it difficult to identify clouds and retrieve their properties from space. Variable snow and ice cover, temperature inversions, and the predominance of mixed-phase clouds further complicate cloud property identification. For this study, the operational Clouds and the Earth s Radiant Energy System (CERES) cloud mask is first used to discriminate clouds from the background surface in Terra Moderate Resolution Imaging Spectroradiometer (MODIS) data. A solar-infrared infrared nearinfrared technique (SINT) first used by Platnick et al. (2001) is used here to retrieve cloud properties over snow and ice covered regions.
Early Evaluation of the VIIRS Calibration, Cloud Mask and Surface Reflectance Earth Data Records
NASA Technical Reports Server (NTRS)
Vermote, Eric; Justice, Chris; Csiszar, Ivan
2014-01-01
Surface reflectance is one of the key products fromVIIRS and as withMODIS, is used in developing several higherorder land products. The VIIRS Surface Reflectance (SR) Intermediate Product (IP) is based on the heritageMODIS Collection 5 product (Vermote, El Saleous, & Justice, 2002). The quality and character of surface reflectance depend on the accuracy of the VIIRS Cloud Mask (VCM), the aerosol algorithms and the adequate calibration of the sensor. The focus of this paper is the early evaluation of the VIIRS SR product in the context of the maturity of the operational processing system, the Interface Data Processing System (IDPS). After a brief introduction, the paper presents the calibration performance and the role of the surface reflectance in calibration monitoring. The analysis of the performance of the cloud mask with a focus on vegetation monitoring (no snow conditions) shows typical problems over bright surfaces and high elevation sites. Also discussed is the performance of the aerosol input used in the atmospheric correction and in particular the artifacts generated by the use of the Navy Aerosol Analysis and Prediction System. Early quantitative results of the performance of the SR product over the AERONET sites showthatwith the fewadjustments recommended, the accuracy iswithin the threshold specifications. The analysis of the adequacy of the SR product (Land PEATE adjusted version) in applications of societal benefits is then presented. We conclude with a set of recommendations to ensure consistency and continuity of the JPSS mission with the MODIS Land Climate Data Record.
Investigation of cloud properties and atmospheric stability with MODIS
NASA Technical Reports Server (NTRS)
Menzel, Paul
1995-01-01
In the past six months several milestones were accomplished. The MODIS Airborne Simulator (MAS) was flown in a 50 channel configuration for the first time in January 1995 and the data were calibrated and validated; in the same field campaign the approach for validating MODIS radiances using the MAS and High resolution Interferometer Sounder (HIS) instruments was successfully tested on GOES-8. Cloud masks for two scenes (one winter and the other summer) of AVHRR local area coverage from the Gulf of Mexico to Canada were processed and forwarded to the SDST for MODIS Science Team investigation; a variety of surface and cloud scenes were evident. Beta software preparations continued with incorporation of the EOS SDP Toolkit. SCAR-C data was processed and presented at the biomass burning conference. Preparations for SCAR-B accelerated with generation of a home page for access to real time satellite data related to biomass burning; this will be available to the scientists in Brazil via internet on the World Wide Web. The CO2 cloud algorithm was compared to other algorithms that differ in their construction of clear radiance fields. The HIRS global cloud climatology was completed for six years. The MODIS science team meeting was attended by five of the UW scientists.
NASA Astrophysics Data System (ADS)
Sedano, Fernando; Kempeneers, Pieter; Strobl, Peter; Kucera, Jan; Vogt, Peter; Seebach, Lucia; San-Miguel-Ayanz, Jesús
2011-09-01
This study presents a novel cloud masking approach for high resolution remote sensing images in the context of land cover mapping. As an advantage to traditional methods, the approach does not rely on thermal bands and it is applicable to images from most high resolution earth observation remote sensing sensors. The methodology couples pixel-based seed identification and object-based region growing. The seed identification stage relies on pixel value comparison between high resolution images and cloud free composites at lower spatial resolution from almost simultaneously acquired dates. The methodology was tested taking SPOT4-HRVIR, SPOT5-HRG and IRS-LISS III as high resolution images and cloud free MODIS composites as reference images. The selected scenes included a wide range of cloud types and surface features. The resulting cloud masks were evaluated through visual comparison. They were also compared with ad-hoc independently generated cloud masks and with the automatic cloud cover assessment algorithm (ACCA). In general the results showed an agreement in detected clouds higher than 95% for clouds larger than 50 ha. The approach produced consistent results identifying and mapping clouds of different type and size over various land surfaces including natural vegetation, agriculture land, built-up areas, water bodies and snow.
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven; Moody, Eric G.
2002-01-01
MODIS is an earth-viewing cross-track scanning spectroradiometer launched on the Terra satellite in December 1999 and the Aqua satellite in May 2002. MODIS scans a swath width sufficient to provide nearly complete global coverage every two days from a polar-orbiting, sun-synchronous, platform at an altitude of 705 km, and provides images in 36 spectral bands between 0.415 and 14.235 microns with spatial resolutions of 250 m (2 bands), 500 m (5 bands) and 1000 m (29 bands). These bands have been carefully selected to enable advanced studies of land, ocean, and atmospheric processes. In this paper we will describe the various methods being used for the remote sensing of cloud, aerosol, and surface properties using MODIS data, focusing primarily on (i) the MODIS cloud mask used to distinguish clouds, clear sky, heavy aerosol, and shadows on the ground, (ii) cloud optical properties, especially cloud optical thickness and effective radius of water drops and ice crystals, (iii) aerosol optical thickness and size characteristics both over land and ocean, and (iv) ecosystem classification and surface spectral reflectance. The physical principles behind the determination of each of these products will be described, together with an example of their application using MODIS observations to the east Asian region. All products are archived into two categories: pixel-level retrievals (referred to as Level-2 products) and global gridded products at a latitude and longitude resolution of 1 min (Level-3 products).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trepte, Q.Z.; Minnis, P.; Heck, P.W.
2005-03-18
Cloud detection using satellite measurements presents a big challenge near the terminator where the visible (VIS; 0.65 {micro}m) channel becomes less reliable and the reflected solar component of the solar infrared 3.9-{micro}m channel reaches very low signal-to-noise ratio levels. As a result, clouds are underestimated near the terminator and at night over land and ocean in previous Atmospheric Radiation Measurement (ARM) Program cloud retrievals using Geostationary Operational Environmental Satellite (GOES) imager data. Cloud detection near the terminator has always been a challenge. For example, comparisons between the CLAVR-x (Clouds from Advanced Very High Resolution Radiometer [AVHRR]) cloud coverage and Geosciencemore » Laser Altimeter System (GLAS) measurements north of 60{sup o}N indicate significant amounts of missing clouds from AVHRR because this part of the world was near the day/night terminator viewed by AVHRR. Comparisons between MODIS cloud products and GLAS at the same regions also shows the same difficulty in the MODIS cloud retrieval (Pavolonis and Heidinger 2005). Consistent detection of clouds at all times of day is needed to provide reliable cloud and radiation products for ARM and other research efforts involving the modeling of clouds and their interaction with the radiation budget. To minimize inconsistencies between daytime and nighttime retrievals, this paper develops an improved twilight and nighttime cloud mask using GOES-9, 10, and 12 imager data over the ARM sites and the continental United States (CONUS).« less
NASA Technical Reports Server (NTRS)
Trepte, Q. Z.; Minnis, P.; Heck, R. W.; Palikonda, R.
2005-01-01
Cloud detection using satellite measurements presents a big challenge near the terminator where the visible (VIS; 0.65 (micro)m) channel becomes less reliable and the reflected solar component of the solar infrared 3.9-(micro)m channel reaches very low signal-to-noise ratio levels. As a result, clouds are underestimated near the terminator and at night over land and ocean in previous Atmospheric Radiation Measurement (ARM) Program cloud retrievals using Geostationary Operational Environmental Satellite (GOES) imager data. Cloud detection near the terminator has always been a challenge. For example, comparisons between the CLAVR-x (Clouds from Advanced Very High Resolution Radiometer (AVHRR)) cloud coverage and Geoscience Laser Altimeter System (GLAS) measurements north of 60 degrees N indicate significant amounts of missing clouds from AVHRR because this part of the world was near the day/night terminator viewed by AVHRR. Comparisons between MODIS cloud products and GLAS at the same regions also shows the same difficulty in the MODIS cloud retrieval (Pavolonis and Heidinger 2005). Consistent detection of clouds at all times of day is needed to provide reliable cloud and radiation products for ARM and other research efforts involving the modeling of clouds and their interaction with the radiation budget. To minimize inconsistencies between daytime and nighttime retrievals, this paper develops an improved twilight and nighttime cloud mask using GOES-9, 10, and 12 imager data over the ARM sites and the continental United States (CONUS).
NASA Technical Reports Server (NTRS)
King, Michael D.; Menzel, W. Paul; Kaufman, Yoram J.; Tanre, Didier; Gao, Bo-Cai; Platnick, Steven; Ackerman, Steven A.; Remer, Lorraine A.; Pincus, Robert; Hubanks, Paul A.
2003-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) is an earth-viewing sensor that flies on the Earth Observing System (EOS) Terra and Aqua satellites, launched in 1999 and 2002, respectively. MODIS scans a swath width of 2330 km that is sufficiently wide to provide nearly complete global coverage every two days from a polar-orbiting, sun-synchronous, platform at an altitude of 705 km. MODIS provides images in 36 spectral bands between 0.415 and 14.235 pm with spatial resolutions of 250 m (2 bands), 500 m (5 bands) and 1000 m (29 bands). These bands have been carefully selected to en- able advanced studies of land, ocean, and atmospheric properties. Twenty-six bands are used to derive atmospheric properties such as cloud mask, atmospheric profiles, aerosol properties, total precipitable water, and cloud properties. In this paper we describe each of these atmospheric data products, including characteristics of each of these products such as file size, spatial resolution used in producing the product, and data availability.
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven; Yang, Ping; Arnold, G. Thomas; Gray, Mark A.; Riedi, Jerome C.; Ackerman, Steven A.; Liou, Kuo-Nan
2003-01-01
A multispectral scanning spectrometer was used to obtain measurements of the reflection function and brightness temperature of clouds, sea ice, snow, and tundra surfaces at 50 discrete wavelengths between 0.47 and 14.0 microns. These observations were obtained from the NASA ER-2 aircraft as part of the FIRE Arctic Clouds Experiment, conducted over a 1600 x 500 km region of the north slope of Alaska and surrounding Beaufort and Chukchi Seas between 18 May and 6 June 1998. Multispectral images of the reflection function and brightness temperature in 11 distinct bands of the MODIS Airborne Simulator (MAS) were used to derive a confidence in clear sky (or alternatively the probability of cloud), shadow, and heavy aerosol over five different ecosystems. Based on the results of individual tests run as part of the cloud mask, an algorithm was developed to estimate the phase of the clouds (water, ice, or undetermined phase). Finally, the cloud optical thickness and effective radius were derived for both water and ice clouds that were detected during one flight line on 4 June. This analysis shows that the cloud mask developed for operational use on MODIS, and tested using MAS data in Alaska, is quite capable of distinguishing clouds from bright sea ice surfaces during daytime conditions in the high Arctic. Results of individual tests, however, make it difficult to distinguish ice clouds over snow and sea ice surfaces, so additional tests were added to enhance the confidence in the thermodynamic phase of clouds over the Beaufort Sea. The cloud optical thickness and effective radius retrievals used 3 distinct bands of the MAS, with the newly developed 1.62 and 2.13 micron bands being used quite successfully over snow and sea ice surfaces. These results are contrasted with a MODIS-based algorithm that relies on spectral reflectance at 0.87 and 2.13 micron.
Investigation of cloud properties and atmospheric stability with MODIS
NASA Technical Reports Server (NTRS)
Menzel, P.; Ackerman, S.; Moeller, C.; Gumley, L.; Strabala, K.; Frey, R.; Prins, E.; LaPorte, D.; Lynch, M.
1996-01-01
The last half year was spent in preparing Version 1 software for delivery, and culminated in transfer of the Level 2 cloud mask production software to the SDST in April. A simulated MODIS test data set with good radiometric integrity was produced using MAS data for a clear ocean scene. ER-2 flight support and MAS data processing were provided by CIMSS personnel during the Apr-May 96 SUCCESS field campaign in Salina, Kansas. Improvements have been made in the absolute calibration of the MAS, including better characterization of the spectral response for all 50 channels. Plans were laid out for validating and testing the MODIS calibration techniques; these plans were further refined during a UW calibration meeting with MCST.
MODIS Collection 6 Clear Sky Restoral (CSR): Filtering Cloud Mast 'Not Clear' Pixels
NASA Technical Reports Server (NTRS)
Meyer, Kerry G.; Platnick, Steven Edward; Wind, Galina; Riedi, Jerome
2014-01-01
Correctly identifying cloudy pixels appropriate for the MOD06 cloud optical and microphysical property retrievals is accomplished in large part using results from the MOD35 1km cloud mask tests (note there are also two 250m subpixel cloud mask tests that can convert the 1km cloudy designations to clear sky). However, because MOD35 is by design clear sky conservative (i.e., it identifies "not clear" pixels), certain situations exist in which pixels identified by MOD35 as "cloudy" are nevertheless likely to be poor retrieval candidates. For instance, near the edge of clouds or within broken cloud fields, a given 1km MODIS field of view (FOV) may in fact only be partially cloudy. This can be problematic for the MOD06 retrievals because in these cases the assumptions of a completely overcast homogenous cloudy FOV and 1-dimensional plane-parallel radiative transfer no longer hold, and subsequent retrievals will be of low confidence. Furthermore, some pixels may be identified by MOD35 as "cloudy" for reasons other than the presence of clouds, such as scenes with thick smoke or lofted dust, and should therefore not be retrieved as clouds. With such situations in mind, a Clear Sky Restoral (CSR) algorithm was introduced in C5 that attempts to identify pixels expected to be poor retrieval candidates. Table 1 provides SDS locations for CSR and partly cloudy (PCL) pixels.
Effect of Clouds on Apertures of Space-based Air Fluorescence Detectors
NASA Technical Reports Server (NTRS)
Sokolsky, P.; Krizmanic, J.
2003-01-01
Space-based ultra-high-energy cosmic ray detectors observe fluorescence light from extensive air showers produced by these particles in the troposphere. Clouds can scatter and absorb this light and produce systematic errors in energy determination and spectrum normalization. We study the possibility of using IR remote sensing data from MODIS and GOES satellites to delimit clear areas of the atmosphere. The efficiency for detecting ultra-high-energy cosmic rays whose showers do not intersect clouds is determined for real, night-time cloud scenes. We use the MODIS SST cloud mask product to define clear pixels for cloud scenes along the equator and use the OWL Monte Carlo to generate showers in the cloud scenes. We find the efficiency for cloud-free showers with closest approach of three pixels to a cloudy pixel is 6.5% exclusive of other factors. We conclude that defining a totally cloud-free aperture reduces the sensitivity of space-based fluorescence detectors to unacceptably small levels.
NASA Astrophysics Data System (ADS)
Miller, W. F.; Kato, S.; Rose, F. G.; Sun-Mack, S.
2009-12-01
Under the NASA Energy and Water Cycle System (NEWS) program, cloud and aerosol properties derived from CALIPSO, CloudSat, and MODIS data then matched to the CERES footprint are used for irradiance profile computations. Irradiance profiles are included in the publicly available product, CCCM. In addition to the MODIS and CALIPSO generated aerosol, aerosol optical thickness is calculated over ocean by processing MODIS radiance through the Stowe-Ignatov algorithm. The CERES cloud mask and properties algorithm are use with MODIS radiance to provide additional cloud information to accompany the actively sensed data. The passively sensed data is the only input to the standard CERES radiative flux products. The combined information is used as input to the NASA Langley Fu-Liou radiative transfer model to determine vertical profiles and Top of Atmosphere shortwave and longwave flux for pristine, all-sky, and aerosol conditions for the special data product. In this study, the three sources of aerosol optical thickness will be compared directly and their influence on the calculated and measured TOA fluxes. Earlier studies indicate that the largest uncertainty in estimating direct aerosol forcing using aerosol optical thickness derived from passive sensors is caused by cloud contamination. With collocated CALIPSO data, we are able to estimate frequency of occurrence of cloud contamination, effect on the aerosol optical thickness and direct radiative effect estimates.
DSCOVR EPIC L2 Atmospheric Correction (MAIAC) Data Release Announcement
Atmospheric Science Data Center
2018-06-22
... several atmospheric quantities including cloud mask and aerosol optical depth (AOD) required for atmospheric correction. The parameters ... is a useful complementary dataset to MODIS and VIIRS global aerosol products. Information about the DSCOVR EPIC Atmospheric ...
Mapping Snow Grain Size over Greenland from MODIS
NASA Technical Reports Server (NTRS)
Lyapustin, Alexei; Tedesco, Marco; Wang, Yujie; Kokhanovsky, Alexander
2008-01-01
This paper presents a new automatic algorithm to derive optical snow grain size (SGS) at 1 km resolution using Moderate Resolution Imaging Spectroradiometer (MODIS) measurements. Differently from previous approaches, snow grains are not assumed to be spherical but a fractal approach is used to account for their irregular shape. The retrieval is conceptually based on an analytical asymptotic radiative transfer model which predicts spectral bidirectional snow reflectance as a function of the grain size and ice absorption. The analytical form of solution leads to an explicit and fast retrieval algorithm. The time series analysis of derived SGS shows a good sensitivity to snow metamorphism, including melting and snow precipitation events. Preprocessing is performed by a Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm, which includes gridding MODIS data to 1 km resolution, water vapor retrieval, cloud masking and an atmospheric correction. MAIAC cloud mask (CM) is a new algorithm based on a time series of gridded MODIS measurements and an image-based rather than pixel-based processing. Extensive processing of MODIS TERRA data over Greenland shows a robust performance of CM algorithm in discrimination of clouds over bright snow and ice. As part of the validation analysis, SGS derived from MODIS over selected sites in 2004 was compared to the microwave brightness temperature measurements of SSM\\I radiometer, which is sensitive to the amount of liquid water in the snowpack. The comparison showed a good qualitative agreement, with both datasets detecting two main periods of snowmelt. Additionally, MODIS SGS was compared with predictions of the snow model CROCUS driven by measurements of the automatic whether stations of the Greenland Climate Network. We found that CROCUS grain size is on average a factor of two larger than MODIS-derived SGS. Overall, the agreement between CROCUS and MODIS results was satisfactory, in particular before and during the first melting period in mid-June. Following detailed time series analysis of SGS for four permanent sites, the paper presents SGS maps over the Greenland ice sheet for the March-September period of 2004.
Ten Years of Cloud Optical and Microphysical Retrievals from MODIS
NASA Technical Reports Server (NTRS)
Platnick, Steven; King, Michael D.; Wind, Galina; Hubanks, Paul; Arnold, G. Thomas; Amarasinghe, Nandana
2010-01-01
The MODIS cloud optical properties algorithm (MOD06/MYD06 for Terra and Aqua MODIS, respectively) has undergone extensive improvements and enhancements since the launch of Terra. These changes have included: improvements in the cloud thermodynamic phase algorithm; substantial changes in the ice cloud light scattering look up tables (LUTs); a clear-sky restoral algorithm for flagging heavy aerosol and sunglint; greatly improved spectral surface albedo maps, including the spectral albedo of snow by ecosystem; inclusion of pixel-level uncertainty estimates for cloud optical thickness, effective radius, and water path derived for three error sources that includes the sensitivity of the retrievals to solar and viewing geometries. To improve overall retrieval quality, we have also implemented cloud edge removal and partly cloudy detection (using MOD35 cloud mask 250m tests), added a supplementary cloud optical thickness and effective radius algorithm over snow and sea ice surfaces and over the ocean, which enables comparison with the "standard" 2.1 11m effective radius retrieval, and added a multi-layer cloud detection algorithm. We will discuss the status of the MOD06 algorithm and show examples of pixellevel (Level-2) cloud retrievals for selected data granules, as well as gridded (Level-3) statistics, notably monthly means and histograms (lD and 2D, with the latter giving correlations between cloud optical thickness and effective radius, and other cloud product pairs).
Cho, Hyoun-Myoung; Zhang, Zhibo; Meyer, Kerry; Lebsock, Matthew; Platnick, Steven; Ackerman, Andrew S; Di Girolamo, Larry; C-Labonnote, Laurent; Cornet, Céline; Riedi, Jerome; Holz, Robert E
2015-05-16
Moderate Resolution Imaging Spectroradiometer (MODIS) retrieves cloud droplet effective radius ( r e ) and optical thickness ( τ ) by projecting observed cloud reflectances onto a precomputed look-up table (LUT). When observations fall outside of the LUT, the retrieval is considered "failed" because no combination of τ and r e within the LUT can explain the observed cloud reflectances. In this study, the frequency and potential causes of failed MODIS retrievals for marine liquid phase (MLP) clouds are analyzed based on 1 year of Aqua MODIS Collection 6 products and collocated CALIOP and CloudSat observations. The retrieval based on the 0.86 µm and 2.1 µm MODIS channel combination has an overall failure rate of about 16% (10% for the 0.86 µm and 3.7 µm combination). The failure rates are lower over stratocumulus regimes and higher over the broken trade wind cumulus regimes. The leading type of failure is the " r e too large" failure accounting for 60%-85% of all failed retrievals. The rest is mostly due to the " r e too small" or τ retrieval failures. Enhanced retrieval failure rates are found when MLP cloud pixels are partially cloudy or have high subpixel inhomogeneity, are located at special Sun-satellite viewing geometries such as sunglint, large viewing or solar zenith angles, or cloudbow and glory angles, or are subject to cloud masking, cloud overlapping, and/or cloud phase retrieval issues. The majority (more than 84%) of failed retrievals along the CALIPSO track can be attributed to at least one or more of these potential reasons. The collocated CloudSat radar reflectivity observations reveal that the remaining failed retrievals are often precipitating. It remains an open question whether the extremely large r e values observed in these clouds are the consequence of true cloud microphysics or still due to artifacts not included in this study.
Cho, Hyoun‐Myoung; Meyer, Kerry; Lebsock, Matthew; Platnick, Steven; Ackerman, Andrew S.; Di Girolamo, Larry; C.‐Labonnote, Laurent; Cornet, Céline; Riedi, Jerome; Holz, Robert E.
2015-01-01
Abstract Moderate Resolution Imaging Spectroradiometer (MODIS) retrieves cloud droplet effective radius (r e) and optical thickness (τ) by projecting observed cloud reflectances onto a precomputed look‐up table (LUT). When observations fall outside of the LUT, the retrieval is considered “failed” because no combination of τ and r e within the LUT can explain the observed cloud reflectances. In this study, the frequency and potential causes of failed MODIS retrievals for marine liquid phase (MLP) clouds are analyzed based on 1 year of Aqua MODIS Collection 6 products and collocated CALIOP and CloudSat observations. The retrieval based on the 0.86 µm and 2.1 µm MODIS channel combination has an overall failure rate of about 16% (10% for the 0.86 µm and 3.7 µm combination). The failure rates are lower over stratocumulus regimes and higher over the broken trade wind cumulus regimes. The leading type of failure is the “r e too large” failure accounting for 60%–85% of all failed retrievals. The rest is mostly due to the “r e too small” or τ retrieval failures. Enhanced retrieval failure rates are found when MLP cloud pixels are partially cloudy or have high subpixel inhomogeneity, are located at special Sun‐satellite viewing geometries such as sunglint, large viewing or solar zenith angles, or cloudbow and glory angles, or are subject to cloud masking, cloud overlapping, and/or cloud phase retrieval issues. The majority (more than 84%) of failed retrievals along the CALIPSO track can be attributed to at least one or more of these potential reasons. The collocated CloudSat radar reflectivity observations reveal that the remaining failed retrievals are often precipitating. It remains an open question whether the extremely large r e values observed in these clouds are the consequence of true cloud microphysics or still due to artifacts not included in this study. PMID:27656330
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven; Chu, D. Allen; Moody, Eric G.
2001-01-01
MODIS is an earth-viewing cross-track scanning spectroradiometer launched on the Terra satellite in December 1999. MODIS scans a swath width sufficient to provide nearly complete global coverage every two days from a polar-orbiting, sun-synchronous platform at an altitude of 705 km, and provides images in 36 spectral bands between 0.415 and 14.235 microns with spatial resolutions of 250 m (two bands), 500 m (five bands) and 1000 m (29 bands). These bands have been carefully selected to enable advanced studies of land, ocean, and atmospheric processes. In this presentation we review the comprehensive set of remote sensing algorithms that have been developed for the remote sensing of atmospheric properties using MODIS data, placing primary emphasis on the principal atmospheric applications of (i) developing a cloud mask for distinguishing clear sky from clouds, (ii) retrieving global cloud radiative and microphysical properties, including cloud top pressure and temperature, effective emissivity, cloud optical thickness, thermodynamic phase, and effective radius, (iii) monitoring tropospheric aerosol optical thickness over the land and ocean and aerosol size distribution over the ocean, (iv) determining atmospheric profiles of moisture and temperature, and (v) estimating column water amount. The physical principles behind the determination of each of these atmospheric products will be described, together with an example of their application using MODIS observations to the east Asian region in Spring 2001. All products are archived into two categories: pixel-level retrievals (referred to as Level-2 products) and global gridded products at a latitude and longitude resolution of 1 degree (Level-3 products). An overview of the MODIS atmosphere algorithms and products, status, validation activities, and early level-2 and -3 results will be presented.
Remote Sensing of Cloud, Aerosol, and Water Vapor Properties from MODIS
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven; Menzel, W. Paul; Kaufman, Yoram J.; Ackerman, Steven A.; Tanre, Didier; Gao, Bo-Cai
2001-01-01
MODIS is an earth-viewing cross-track scanning spectroradiometer launched on the Terra satellite in December 1999. MODIS scans a swath width sufficient to provide nearly complete global coverage every two days from a polar orbiting, sun-synchronous, platform at an altitude of 705 kilometers, and provides images in 36 spectral bands between 0.415 and 14.235 micrometers with spatial resolutions of 250 meters (2 bands), 500 meters (5 bands) and 1000 meters (29 bands). These bands have been carefully selected to enable advanced studies of land, ocean, and atmospheric processes. In this presentation we review the comprehensive set of remote sensing algorithms that have been developed for the remote sensing of atmospheric properties using MODIS data, placing primary emphasis on the principal atmospheric applications of (i) developing a cloud mask for distinguishing clear sky from clouds, (ii) retrieving global cloud radiative and microphysical properties, including cloud top pressure and temperature, effective emissivity, cloud optical thickness, thermodynamic phase, and effective radius, (iii) monitoring tropospheric aerosol optical thickness over the land and ocean and aerosol size distribution over the ocean, (iv) determining atmospheric profiles of moisture and temperature, and (v) estimating column water amount. The physical principles behind the determination of each of these atmospheric products will be described, together with an example of their application using MODIS observations. All products are archived into two categories: pixel-level retrievals (referred to as Level-2 products) and global gridded products at a latitude and longitude resolution of 1 degree (Level-3 products). An overview of the MODIS atmosphere algorithms and products, status, validation activities, and early level-2 and -3 results will be presented.
NASA Astrophysics Data System (ADS)
Ham, Seung-Hee; Kato, Seiji; Rose, Fred G.; Winker, David; L'Ecuyer, Tristan; Mace, Gerald G.; Painemal, David; Sun-Mack, Sunny; Chen, Yan; Miller, Walter F.
2017-08-01
Two kinds of cloud products obtained from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), CloudSat, and Moderate Resolution Imaging Spectroradiometer (MODIS) are compared and analyzed in this study: Clouds and the Earth's Radiant Energy System (CERES)-CALIPSO-CloudSat-MODIS (CCCM) product and CloudSat radar-lidar products such as GEOPROF-LIDAR and FLXHR-LIDAR. Compared to GEOPROF-LIDAR, low-level (<1 km) cloud occurrences in CCCM are larger over tropical oceans because the CCCM algorithm uses a more relaxed threshold of cloud-aerosol discrimination score for CALIPSO Vertical Feature Mask product. In contrast, midlevel (1-8 km) cloud occurrences in GEOPROF-LIDAR are larger than CCCM at high latitudes (>40°). The difference occurs when hydrometeors are detected by CALIPSO lidar but are undetected by CloudSat radar. In the comparison of cloud radiative effects (CREs), global mean differences between CCCM and FLXHR-LIDAR are mostly smaller than 5 W m-2, while noticeable regional differences are found. For example, CCCM shortwave (SW) and longwave (LW) CREs are larger than FXLHR-LIDAR along the west coasts of Africa and America because the GEOPROF-LIDAR algorithm misses shallow marine boundary layer clouds. In addition, FLXHR-LIDAR SW CREs are larger than the CCCM counterpart over tropical oceans away from the west coasts of America. Over midlatitude storm-track regions, CCCM SW and LW CREs are larger than the FLXHR-LIDAR counterpart.
The Collection 6 'dark-target' MODIS Aerosol Products
NASA Technical Reports Server (NTRS)
Levy, Robert C.; Mattoo, Shana; Munchak, Leigh A.; Kleidman, Richard G.; Patadia, Falguni; Gupta, Pawan; Remer, Lorraine
2013-01-01
Aerosol retrieval algorithms are applied to Moderate resolution Imaging Spectroradiometer (MODIS) sensors on both Terra and Aqua, creating two streams of decade-plus aerosol information. Products of aerosol optical depth (AOD) and aerosol size are used for many applications, but the primary concern is that these global products are comprehensive and consistent enough for use in climate studies. One of our major customers is the international modeling comparison study known as AEROCOM, which relies on the MODIS data as a benchmark. In order to keep up with the needs of AEROCOM and other MODIS data users, while utilizing new science and tools, we have improved the algorithms and products. The code, and the associated products, will be known as Collection 6 (C6). While not a major overhaul from the previous Collection 5 (C5) version, there are enough changes that there are significant impacts to the products and their interpretation. In its entirety, the C6 algorithm is comprised of three sub-algorithms for retrieving aerosol properties over different surfaces: These include the dark-target DT algorithms to retrieve over (1) ocean and (2) vegetated-dark-soiled land, plus the (3) Deep Blue (DB) algorithm, originally developed to retrieve over desert-arid land. Focusing on the two DT algorithms, we have updated assumptions for central wavelengths, Rayleigh optical depths and gas (H2O, O3, CO2, etc.) absorption corrections, while relaxing the solar zenith angle limit (up to 84) to increase pole-ward coverage. For DT-land, we have updated the cloud mask to allow heavy smoke retrievals, fine-tuned the assignments for aerosol type as function of season location, corrected bugs in the Quality Assurance (QA) logic, and added diagnostic parameters such as topographic altitude. For DT-ocean, improvements include a revised cloud mask for thin-cirrus detection, inclusion of wind speed dependence in the retrieval, updates to logic of QA Confidence flag (QAC) assignment, and additions of important diagnostic information. At the same time as we have introduced algorithm changes, we have also accounted for upstream changes including: new instrument calibration, revised land-sea masking, and changed cloud masking. Upstream changes also impact the coverage and global statistics of the retrieved AOD. Although our responsibility is to the DT code and products, we have also added a product that merges DT and DB product over semi-arid land surfaces to provide a more gap-free dataset, primarily for visualization purposes. Preliminary validation shows that compared to surface-based sunphotometer data, the C6, Level 2 (along swath) DT-products compare at least as well as those from C5. C6 will include new diagnostic information about clouds in the aerosol field, including an aerosol cloud mask at 500 m resolution, and calculations of the distance to the nearest cloud from clear pixels. Finally, we have revised the strategy for aggregating and averaging the Level 2 (swath) data to become Level 3 (gridded) data. All together, the changes to the DT algorithms will result in reduced global AOD (by 0.02) over ocean and increased AOD (by 0.02) over land, along with changes in spatial coverage. Changes in calibration will have more impact to Terras time series, especially over land. This will result in a significant reduction in artificial differences in the Terra and Aqua datasets, and will stabilize the MODIS data as a target for AEROCOM studie
Atmospheric correction at AERONET locations: A new science and validation data set
Wang, Y.; Lyapustin, A.I.; Privette, J.L.; Morisette, J.T.; Holben, B.
2009-01-01
This paper describes an Aerosol Robotic Network (AERONET)-based Surface Reflectance Validation Network (ASRVN) and its data set of spectral surface bidirectional reflectance and albedo based on Moderate Resolution Imaging Spectroradiometer (MODIS) TERRA and AQUA data. The ASRVN is an operational data collection and processing system. It receives 50 ?? 50 km2; subsets of MODIS level 1B (L1B) data from MODIS adaptive processing system and AERONET aerosol and water-vapor information. Then, it performs an atmospheric correction (AC) for about 100 AERONET sites based on accurate radiative-transfer theory with complex quality control of the input data. The ASRVN processing software consists of an L1B data gridding algorithm, a new cloud-mask (CM) algorithm based on a time-series analysis, and an AC algorithm using ancillary AERONET aerosol and water-vapor data. The AC is achieved by fitting the MODIS top-of-atmosphere measurements, accumulated for a 16-day interval, with theoretical reflectance parameterized in terms of the coefficients of the Li SparseRoss Thick (LSRT) model of the bidirectional reflectance factor (BRF). The ASRVN takes several steps to ensure high quality of results: 1) the filtering of opaque clouds by a CM algorithm; 2) the development of an aerosol filter to filter residual semitransparent and subpixel clouds, as well as cases with high inhomogeneity of aerosols in the processing area; 3) imposing the requirement of the consistency of the new solution with previously retrieved BRF and albedo; 4) rapid adjustment of the 16-day retrieval to the surface changes using the last day of measurements; and 5) development of a seasonal backup spectral BRF database to increase data coverage. The ASRVN provides a gapless or near-gapless coverage for the processing area. The gaps, caused by clouds, are filled most naturally with the latest solution for a given pixel. The ASRVN products include three parameters of the LSRT model (kL, kG, and kV), surface albedo, normalized BRF (computed for a standard viewing geometry, VZA = 0, SZA = 45??), and instantaneous BRF (or one-angle BRF value derived from the last day of MODIS measurement for specific viewing geometry) for the MODIS 500-m bands 17. The results are produced daily at a resolution of 1 km in gridded format. We also provide a cloud mask, a quality flag, and a browse bitmap image. The ASRVN data set, including 6 years of MODIS TERRA and 1.5 years of MODIS AQUA data, is available now as a standard MODIS product (MODASRVN) which can be accessed through the Level 1 and Atmosphere Archive and Distribution System website ( http://ladsweb.nascom.nasa.gov/data/search.html). It can be used for a wide range of applications including validation analysis and science research. ?? 2006 IEEE.
Cloud Statistics and Discrimination in the Polar Regions
NASA Astrophysics Data System (ADS)
Chan, M.; Comiso, J. C.
2012-12-01
Despite their important role in the climate system, cloud cover and their statistics are poorly known, especially in the polar regions, where clouds are difficult to discriminate from snow covered surfaces. The advent of the A-train, which included Aqua/MODIS, CALIPSO/CALIOP and CloudSat/CPR sensors has provided an opportunity to improve our ability to accurately characterize the cloud cover. MODIS provides global coverage at a relatively good temporal and spatial resolution while CALIOP and CPR provide limited nadir sampling but accurate characterization of the vertical structure and phase of the cloud cover. Over the polar regions, cloud detection from a passive sensors like MODIS is challenging because of the presence of cold and highly reflective surfaces such as snow, sea-ice, glaciers, and ice-sheet, which have surface signatures similar to those of clouds. On the other hand, active sensors such as CALIOP and CPR are not only very sensitive to the presence of clouds but can also provide information about its microphysical characteristics. However, these nadir-looking sensors have sparse spatial coverage and their global data can have data spatial gaps of up to 100 km. We developed a polar cloud detection system for MODIS that is trained using collocated data from CALIOP and CPR. In particular, we employ a machine learning system that reads the radiative profile observed by MODIS and determine whether the field of view is cloudy or clear. Results have shown that the improved cloud detection scheme performs better than typical cloud mask algorithms using a validation data set not used for training. A one-year data set was generated and results indicate that daytime cloud detection accuracies improved from 80.1% to 92.6% (over sea-ice) and 71.2% to 87.4% (over ice-sheet) with CALIOP data used as the baseline. Significant improvements are also observed during nighttime, where cloud detection accuracies increase by 19.8% (over sea-ice) and 11.6% (over ice-sheet). The immediate impact of the new algorithm is that it can minimize large biases of MODIS-derived cloud amount over the Polar Regions and thus a more realistic and high quality global cloud statistics. In particular, our results show that cloud fraction in the Arctic is typically 81.2 % during daytime and 84.0% during nighttime. This is significantly higher than the 71.8% and 58.5%, respectively, derived from standard MODIS cloud product.
Remote Sensing of Cloud, Aerosol, and Water Vapor Properties from MODIS
NASA Technical Reports Server (NTRS)
King, Michael D.
2001-01-01
MODIS is an earth-viewing cross-track scanning spectroradiometer launched on the Terra satellite in December 1999. MODIS scans a swath width sufficient to provide nearly complete global coverage every two days from a polar-orbiting, sun-synchronous, platform at an altitude of 705 km, and provides images in 36 spectral bands from 0.415 to 14.235 microns with spatial resolutions of 250 m (2 bands), 500 m (5 bands) and 1000 m (29 bands). These bands have been carefully selected to enable advanced studies of land, ocean, and atmospheric processes. In this presentation I will review the comprehensive set of remote sensing algorithms that have been developed for the remote sensing of atmospheric properties using MODIS data, placing primary emphasis on the principal atmospheric applications of: (1) developing a cloud mask for distinguishing clear sky from clouds, (2) retrieving global cloud radiative and microphysical properties, including cloud top pressure and temperature, effective emissivity, cloud optical thickness, thermodynamic phase, and effective radius, (3) monitoring tropospheric aerosol optical thickness over the land and ocean and aerosol size distribution over the ocean, (4) determining atmospheric profiles of moisture and temperature, and (5) estimating column water amount. The physical principles behind the determination of each of these atmospheric products will be described, together with an example of their application using MODIS observations. All products are archived into two categories: pixel-level retrievals (referred to as Level-2 products) and global gridded products at a latitude and longitude resolution of 1 deg (Level-3 products). An overview of the MODIS atmosphere algorithms and products, status, validation activities, and early level-2 and -3 results will be presented. Finally, I will present some highlights from the land and ocean algorithms developed for processing global MODIS observations, including: (1) surface reflectance, (2) vegetation indices, leaf area index, and FPAR, (3) albedo and nadir BRDF-adjusted reflectance, (4) normalized water-leaving radiance, (5) chlorophyll-a concentration, and (6) sea surface temperature.
Comparasion of Cloud Cover restituted by POLDER and MODIS
NASA Astrophysics Data System (ADS)
Zeng, S.; Parol, F.; Riedi, J.; Cornet, C.; Thieuxleux, F.
2009-04-01
PARASOL and AQUA are two sun-synchronous orbit satellites in the queue of A-Train satellites that observe our earth within a few minutes apart from each other. Aboard these two platforms, POLDER and MODIS provide coincident observations of the cloud cover with very different characteristics. These give us a good opportunity to study the clouds system and evaluate strengths and weaknesses of each dataset in order to provide an accurate representation of global cloud cover properties. This description is indeed of outermost importance to quantify and understand the effect of clouds on global radiation budget of the earth-atmosphere system and their influence on the climate changes. We have developed a joint dataset containing both POLDER and MODIS level 2 cloud products collocated and reprojected on a common sinusoidal grid in order to make the data comparison feasible and veracious. Our foremost work focuses on the comparison of both spatial distribution and temporal variation of the global cloud cover. This simple yet critical cloud parameter need to be clearly understood to allow further comparison of the other cloud parameters. From our study, we demonstrate that on average these two sensors both detect the clouds fairly well. They provide similar spatial distributions and temporal variations:both sensors see high values of cloud amount associated with deep convection in ITCZ, over Indonesia, and in west-central Pacific Ocean warm pool region; they also provide similar high cloud cover associated to mid-latitude storm tracks, to Indian monsoon or to the stratocumulus along the west coast of continents; on the other hand small cloud amounts that typically present over subtropical oceans and deserts in subsidence aeras are well identified by both POLDER and MODIS. Each sensor has its advantages and inconveniences for the detection of a particular cloud types. With higher spatial resolution, MODIS can better detect the fractional clouds thus explaining as one part of a positive bias in any latitude and in any viewing angle with an order of 10% between the POLDER cloud amount and the so-called MODIS "combined" cloud amount. Nevertheless it is worthy to note that a negative bias of about 10% is obtained between the POLDER cloud amount and the MODIS "day-mean" cloud amount. Main differences between the two MODIS cloud amount values are known to be due to the filtering of remaining aerosols or cloud edges. due to both this high spatial resolution of MODIS and the fact that "combined" cloud amount filters cloud edges, we can also explain why appear the high positive bias regions over subtropical ocean in south hemisphere and over east Africa in summer. Thanks to several channels in the thermal infrared spectral domain, MODIS detects probably much better the thin cirrus especially over land, thus causing a general negative bias for ice clouds. The multi-spectral capability of MODIS also allows for a better detection of low clouds over snow or ice, Hence the (POLDER-MODIS) cloud amount difference is often negative over Greenland, Antarctica, and over the continents at middle-high latitudes in spring and autumn associated to the snow coverage. The multi-spectral capability of MODIS also makes the discrimination possible between the biomass burning aerosols and the fractional clouds over the continents. Thus a positive bias appears in central Africa in summer and autumn associated to important biomass burning events. Over transition region between desert and non-desert, the presence of large negative bias (POLDER-MODIS) of cloud amount maybe partly due to MODIS pixel falsely labeled the desert as cloudy, where MODIS algorithm uses static desert mask. This is clearly highlighted in south of Sahara in spring and summer where we find a bias negative with an order of -0.1. What is more, thanks to its multi-angular capability, POLDER can discriminate the sun-glint region thus minimizing the dependence of cloud amount on view angle. It makes the detection of high clouds easier over a black surface thanks to its polarization character.
Deriving Aerosol Characteristics Over the Ocean from MODIS: Are We There Yet?
NASA Astrophysics Data System (ADS)
Remer, L. A.; Tanre, D.
2006-12-01
The MODerate resolution Imaging Spectroradiometer (MODIS) has been successfully retrieving aerosol characteristics over the ocean since shortly after the launch of the Terra satellite at the end of 1999. With its wide spectral range (0.47 to 2.13 μm) MODIS is able to derive spectral aerosol optical depth and information on the size of the aerosol particles. The products were quickly validated, the validation confirmed, and the products are now in wide use across the scientific community. The MODIS aerosol products over ocean are an outstanding success story, but are we done? As the years progress and we gain experience in using the products, evaluating them and nudging even greater information from them, we discover new challenges. Firstly, we continue to find issues affecting the integrity of the products we now produce. We need to find methods to reduce the uncertainty introduced by clouds that go beyond the classical concept of cloud masking and cloud contamination. Some of these novel cloud effects on aerosol retrieval include 3D scattering of light from cloud sides. Another issue that needs resolution is the uncertainty introduced by nonspherical particle shapes. Secondly, when MODIS was new we were excited to have spectral optical depth and particle size information. Now we find that aerosol characterization is still incomplete. We need more information. Are we there yet? Well, no, but we can see the future. To meet these new challenges we will need information beyond the spectral radiances that MODIS measures. We can see the future of satellite derivation of aerosol characteristics, and it looks more and more like a multi-sensor future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Hua; Zhang, Zhibo; Ma, Po-Lun
This paper presents a two-step evaluation of the marine boundary layer (MBL) cloud properties from two Community Atmospheric Model (version 5.3, CAM5) simulations, one based on the CAM5 standard parameterization schemes (CAM5-Base), and the other on the Cloud Layers Unified By Binormals (CLUBB) scheme (CAM5-CLUBB). In the first step, we compare the cloud properties directly from model outputs between the two simulations. We find that the CAM5-CLUBB run produces more MBL clouds in the tropical and subtropical large-scale descending regions. Moreover, the stratocumulus (Sc) to cumulus (Cu) cloud regime transition is much smoother in CAM5-CLUBB than in CAM5-Base. In addition,more » in CAM5-Base we find some grid cells with very small low cloud fraction (<20%) to have very high in-cloud water content (mixing ratio up to 400mg/kg). We find no such grid cells in the CAM5-CLUBB run. However, we also note that both simulations, especially CAM5-CLUBB, produce a significant amount of “empty” low cloud cells with significant cloud fraction (up to 70%) and near-zero in-cloud water content. In the second step, we use satellite observations from CERES, MODIS and CloudSat to evaluate the simulated MBL cloud properties by employing the COSP satellite simulators. We note that a feature of the COSP-MODIS simulator to mimic the minimum detection threshold of MODIS cloud masking removes much more low clouds from CAM5-CLUBB than it does from CAM5-Base. This leads to a surprising result — in the large-scale descending regions CAM5-CLUBB has a smaller COSP-MODIS cloud fraction and weaker shortwave cloud radiative forcing than CAM5-Base. A sensitivity study suggests that this is because CAM5-CLUBB suffers more from the above-mentioned “empty” clouds issue than CAM5-Base. The COSP-MODIS cloud droplet effective radius in CAM5-CLUBB shows a spatial increase from coastal St toward Cu, which is in qualitative agreement with MODIS observations. In contrast, COSP-MODIS cloud droplet effective radius in CAM5-Base almost remains a constant. In comparison with CloudSat observations, the histogram of the radar reflectivity from modeled MBL clouds is too narrow without a distinct separation between cloud and drizzle modes. Moreover, the probability of drizzle in both simulations is almost twice as high as the observation. Future studies are needed to understand the causes of these differences and their potential connection with the “empty” cloud issues in the model.« less
NASA Astrophysics Data System (ADS)
Zhang, Z.; Cho, H. M.; Platnick, S. E.; Meyer, K.; Lebsock, M. D.
2014-12-01
The cloud optical thickness (τ) and droplet effective radius (re) are two key cloud parameters retrieved by MODIS (Moderate Resolution Imaging Spectroradiometer). These MODIS cloud products are widely used in a broad range of earth system science applications. In this paper, we present a comprehensive analysis of the failed cloud τ and/or re retrievals for liquid-phase clouds over ocean in the Collection 6 MODIS cloud product. The main findings from this study are summarized as follows: MODIS retrieval failure rates for marine boundary layer (MBL) clouds have a strong dependence on the spectral combination used for retrieval (e.g., 0.86 + 2.1 µm vs. 0.8 + 3.7 µm) and the cloud morphology (i.e., "good" pixels vs. partly cloudy (PCL) pixels). Combining all clear-sky-restoral (CSR) categories (CSR=0,1 and 3), the 0.86 + 2.1 µm and 0.86 + 3.7 µm spectral combinations have an overall failure rate of about 20% and 12%, respectively (See figure below). The PCL pixels (CSR=1 & 3) have significantly higher failure rates and contribute more to the total failure population than the "good" (CSR=0) pixels. The majority of the failed retrievals are caused by the re too large failure, which explains about 85% and 70% of the failed 0.86 + 2.1 µm and 0.86 + 3.7 µm retrievals, respectively. The remaining failures are either due to the re too small failure or τ retrieval failure. The geographical distribution of failure rates has a significant dependence on cloud regime, lower over the coastal stratocumulus cloud regime and higher over the broken trade-wind cumulus cloud regime over open oceans. Enhanced retrieval failure rates are found when MBL clouds have high sub-pixel inhomogeneity , or are located at special Sun-satellite viewing geometries, such as sunglint, large viewing or solar zenith angle, or cloudbow and glory angles, or subject to cloud masking, cloud overlapping and/or cloud phase retrieval issues. About 80% of the failure retrievals can be attributed to at least one or more potential reasons mentioned above. Collocated radar reflectivity observations from CloudSat suggest that the remaining 20% are unlikely to be retrieval artifacts, but reflection of true cloud microphysics, i.e., the true is either truly very small or very large.
NASA Astrophysics Data System (ADS)
Schulz, Hans Martin; Thies, Boris; Chang, Shih-Chieh; Bendix, Jörg
2016-03-01
The mountain cloud forest of Taiwan can be delimited from other forest types using a map of the ground fog frequency. In order to create such a frequency map from remotely sensed data, an algorithm able to detect ground fog is necessary. Common techniques for ground fog detection based on weather satellite data cannot be applied to fog occurrences in Taiwan as they rely on several assumptions regarding cloud properties. Therefore a new statistical method for the detection of ground fog in mountainous terrain from MODIS Collection 051 data is presented. Due to the sharpening of input data using MODIS bands 1 and 2, the method provides fog masks in a resolution of 250 m per pixel. The new technique is based on negative correlations between optical thickness and terrain height that can be observed if a cloud that is relatively plane-parallel is truncated by the terrain. A validation of the new technique using camera data has shown that the quality of fog detection is comparable to that of another modern fog detection scheme developed and validated for the temperate zones. The method is particularly applicable to optically thinner water clouds. Beyond a cloud optical thickness of ≈ 40, classification errors significantly increase.
Enhancing a Simple MODIS Cloud Mask Algorithm for the Landsat Data Continuity Mission
NASA Technical Reports Server (NTRS)
Wilson, Michael J.; Oreopoulos, Lazarous
2011-01-01
The presence of clouds in images acquired by the Landsat series of satellites is usually an undesirable, but generally unavoidable fact. With the emphasis of the program being on land imaging, the suspended liquid/ice particles of which clouds are made of fully or partially obscure the desired observational target. Knowing the amount and location of clouds in a Landsat scene is therefore valuable information for scene selection, for making clear-sky composites from multiple scenes, and for scheduling future acquisitions. The two instruments in the upcoming Landsat Data Continuity Mission (LDCM) will include new channels that will enhance our ability to detect high clouds which are often also thin in the sense that a large fraction of solar radiation can pass through them. This work studies the potential impact of these new channels on enhancing LDCM's cloud detection capabilities compared to previous Landsat missions. We revisit a previously published scheme for cloud detection and add new tests to capture more of the thin clouds that are harder to detect with the more limited arsenal channels. Since there are no Landsat data yet that include the new LDCM channels, we resort to data from another instrument, MODIS, which has these bands, as well as the other bands of LDCM, to test the capabilities of our new algorithm. By comparing our revised scheme's performance against the performance of the official MODIS cloud detection scheme, we conclude that the new scheme performs better than the earlier scheme which was not very good at thin cloud detection.
NASA Technical Reports Server (NTRS)
Meyer, Kerry; Yang, Yuekui; Platnick, Steven
2016-01-01
This paper presents an investigation of the expected uncertainties of a single channel cloud optical thickness (COT) retrieval technique, as well as a simple cloud-temperature-threshold-based thermodynamic phase approach, in support of the Deep Space Climate Observatory (DSCOVR) mission. DSCOVR cloud products will be derived from Earth Polychromatic Imaging Camera (EPIC) observations in the ultraviolet and visible spectra. Since EPIC is not equipped with a spectral channel in the shortwave or mid-wave infrared that is sensitive to cloud effective radius (CER), COT will be inferred from a single visible channel with the assumption of appropriate CER values for liquid and ice phase clouds. One month of Aqua MODIS daytime granules from April 2005 is selected for investigating cloud phase sensitivity, and a subset of these granules that has similar EPIC sun-view geometry is selected for investigating COT uncertainties. EPIC COT retrievals are simulated with the same algorithm as the operational MODIS cloud products (MOD06), except using fixed phase-dependent CER values. Uncertainty estimates are derived by comparing the single channel COT retrievals with the baseline bi-spectral MODIS retrievals. Results show that a single channel COT retrieval is feasible for EPIC. For ice clouds, single channel retrieval errors are minimal (less than 2 percent) due to the particle- size insensitivity of the assumed ice crystal (i.e., severely roughened aggregate of hexagonal columns) scattering properties at visible wavelengths, while for liquid clouds the error is mostly limited to within 10 percent, although for thin clouds (COT less than 2) the error can be higher. Potential uncertainties in EPIC cloud masking and cloud temperature retrievals are not considered in this study.
Meyer, Kerry; Yang, Yuekui; Platnick, Steven
2018-01-01
This paper presents an investigation of the expected uncertainties of a single channel cloud optical thickness (COT) retrieval technique, as well as a simple cloud temperature threshold based thermodynamic phase approach, in support of the Deep Space Climate Observatory (DSCOVR) mission. DSCOVR cloud products will be derived from Earth Polychromatic Imaging Camera (EPIC) observations in the ultraviolet and visible spectra. Since EPIC is not equipped with a spectral channel in the shortwave or mid-wave infrared that is sensitive to cloud effective radius (CER), COT will be inferred from a single visible channel with the assumption of appropriate CER values for liquid and ice phase clouds. One month of Aqua MODIS daytime granules from April 2005 is selected for investigating cloud phase sensitivity, and a subset of these granules that has similar EPIC sun-view geometry is selected for investigating COT uncertainties. EPIC COT retrievals are simulated with the same algorithm as the operational MODIS cloud products (MOD06), except using fixed phase-dependent CER values. Uncertainty estimates are derived by comparing the single channel COT retrievals with the baseline bi-spectral MODIS retrievals. Results show that a single channel COT retrieval is feasible for EPIC. For ice clouds, single channel retrieval errors are minimal (< 2%) due to the particle size insensitivity of the assumed ice crystal (i.e., severely roughened aggregate of hexagonal columns) scattering properties at visible wavelengths, while for liquid clouds the error is mostly limited to within 10%, although for thin clouds (COT < 2) the error can be higher. Potential uncertainties in EPIC cloud masking and cloud temperature retrievals are not considered in this study. PMID:29619116
Meyer, Kerry; Yang, Yuekui; Platnick, Steven
2016-01-01
This paper presents an investigation of the expected uncertainties of a single channel cloud optical thickness (COT) retrieval technique, as well as a simple cloud temperature threshold based thermodynamic phase approach, in support of the Deep Space Climate Observatory (DSCOVR) mission. DSCOVR cloud products will be derived from Earth Polychromatic Imaging Camera (EPIC) observations in the ultraviolet and visible spectra. Since EPIC is not equipped with a spectral channel in the shortwave or mid-wave infrared that is sensitive to cloud effective radius (CER), COT will be inferred from a single visible channel with the assumption of appropriate CER values for liquid and ice phase clouds. One month of Aqua MODIS daytime granules from April 2005 is selected for investigating cloud phase sensitivity, and a subset of these granules that has similar EPIC sun-view geometry is selected for investigating COT uncertainties. EPIC COT retrievals are simulated with the same algorithm as the operational MODIS cloud products (MOD06), except using fixed phase-dependent CER values. Uncertainty estimates are derived by comparing the single channel COT retrievals with the baseline bi-spectral MODIS retrievals. Results show that a single channel COT retrieval is feasible for EPIC. For ice clouds, single channel retrieval errors are minimal (< 2%) due to the particle size insensitivity of the assumed ice crystal (i.e., severely roughened aggregate of hexagonal columns) scattering properties at visible wavelengths, while for liquid clouds the error is mostly limited to within 10%, although for thin clouds (COT < 2) the error can be higher. Potential uncertainties in EPIC cloud masking and cloud temperature retrievals are not considered in this study.
NASA Astrophysics Data System (ADS)
Meyer, Kerry; Yang, Yuekui; Platnick, Steven
2016-04-01
This paper presents an investigation of the expected uncertainties of a single-channel cloud optical thickness (COT) retrieval technique, as well as a simple cloud-temperature-threshold-based thermodynamic phase approach, in support of the Deep Space Climate Observatory (DSCOVR) mission. DSCOVR cloud products will be derived from Earth Polychromatic Imaging Camera (EPIC) observations in the ultraviolet and visible spectra. Since EPIC is not equipped with a spectral channel in the shortwave or mid-wave infrared that is sensitive to cloud effective radius (CER), COT will be inferred from a single visible channel with the assumption of appropriate CER values for liquid and ice phase clouds. One month of Aqua MODerate-resolution Imaging Spectroradiometer (MODIS) daytime granules from April 2005 is selected for investigating cloud phase sensitivity, and a subset of these granules that has similar EPIC Sun-view geometry is selected for investigating COT uncertainties. EPIC COT retrievals are simulated with the same algorithm as the operational MODIS cloud products (MOD06), except using fixed phase-dependent CER values. Uncertainty estimates are derived by comparing the single-channel COT retrievals with the baseline bi-spectral MODIS retrievals. Results show that a single-channel COT retrieval is feasible for EPIC. For ice clouds, single-channel retrieval errors are minimal (< 2 %) due to the particle size insensitivity of the assumed ice crystal (i.e., severely roughened aggregate of hexagonal columns) scattering properties at visible wavelengths, while for liquid clouds the error is mostly limited to within 10 %, although for thin clouds (COT < 2) the error can be higher. Potential uncertainties in EPIC cloud masking and cloud temperature retrievals are not considered in this study.
NASA Technical Reports Server (NTRS)
Wind, Galina; DaSilva, Arlindo M.; Norris, Peter M.; Platnick, Steven E.
2013-01-01
In this paper we describe a general procedure for calculating equivalent sensor radiances from variables output from a global atmospheric forecast model. In order to take proper account of the discrepancies between model resolution and sensor footprint the algorithm takes explicit account of the model subgrid variability, in particular its description of the probably density function of total water (vapor and cloud condensate.) The equivalent sensor radiances are then substituted into an operational remote sensing algorithm processing chain to produce a variety of remote sensing products that would normally be produced from actual sensor output. This output can then be used for a wide variety of purposes such as model parameter verification, remote sensing algorithm validation, testing of new retrieval methods and future sensor studies. We show a specific implementation using the GEOS-5 model, the MODIS instrument and the MODIS Adaptive Processing System (MODAPS) Data Collection 5.1 operational remote sensing cloud algorithm processing chain (including the cloud mask, cloud top properties and cloud optical and microphysical properties products.) We focus on clouds and cloud/aerosol interactions, because they are very important to model development and improvement.
NASA Technical Reports Server (NTRS)
Wind, G.; DaSilva, A. M.; Norris, P. M.; Platnick, S.
2013-01-01
In this paper we describe a general procedure for calculating synthetic sensor radiances from variable output from a global atmospheric forecast model. In order to take proper account of the discrepancies between model resolution and sensor footprint, the algorithm takes explicit account of the model subgrid variability, in particular its description of the probability density function of total water (vapor and cloud condensate.) The simulated sensor radiances are then substituted into an operational remote sensing algorithm processing chain to produce a variety of remote sensing products that would normally be produced from actual sensor output. This output can then be used for a wide variety of purposes such as model parameter verification, remote sensing algorithm validation, testing of new retrieval methods and future sensor studies.We show a specific implementation using the GEOS-5 model, the MODIS instrument and the MODIS Adaptive Processing System (MODAPS) Data Collection 5.1 operational remote sensing cloud algorithm processing chain (including the cloud mask, cloud top properties and cloud optical and microphysical properties products). We focus on clouds because they are very important to model development and improvement.
Discrimination of Biomass Burning Smoke and Clouds in MAIAC Algorithm
NASA Technical Reports Server (NTRS)
Lyapustin, A.; Korkin, S.; Wang, Y.; Quayle, B.; Laszlo, I.
2012-01-01
The multi-angle implementation of atmospheric correction (MAIAC) algorithm makes aerosol retrievals from MODIS data at 1 km resolution providing information about the fine scale aerosol variability. This information is required in different applications such as urban air quality analysis, aerosol source identification etc. The quality of high resolution aerosol data is directly linked to the quality of cloud mask, in particular detection of small (sub-pixel) and low clouds. This work continues research in this direction, describing a technique to detect small clouds and introducing the smoke test to discriminate the biomass burning smoke from the clouds. The smoke test relies on a relative increase of aerosol absorption at MODIS wavelength 0.412 micrometers as compared to 0.47-0.67 micrometers due to multiple scattering and enhanced absorption by organic carbon released during combustion. This general principle has been successfully used in the OMI detection of absorbing aerosols based on UV measurements. This paper provides the algorithm detail and illustrates its performance on two examples of wildfires in US Pacific North-West and in Georgia/Florida of 2007.
Production of Arctic Sea-ice Albedo by fusion of MISR and MODIS data
NASA Astrophysics Data System (ADS)
Kharbouche, Said; Muller, Jan-Peter
2017-04-01
We have combined data from the NASA MISR and MODIS spectro-radiometers to create a cloud-free albedo dataset specifically for sea-ice. The MISR (Multi-Angular Spectro-Radiometer) instrument on board Terra satellite has a unique ability to create high-quality Bidirectional Reflectance (BRF) over a 7 minute time interval per single overpass, thanks to its 9 cameras of different view angles (±70°,±60°,±45°,±26°). However, as MISR is limited to narrow spectral bands (443nm, 555nm, 670nm, 865nm), which is not sufficient to mask cloud effectively and robustly, we have used the sea-ice mask MOD09 product (Collection 6) from MODIS (Moderate resolution Imaging Spectoradiometer) instrument, which is also on board Terra satellite and acquiring data simultaneously. Only We have created a new and consistent sea-ice (for Arctic) albedo product that is daily, from 1st March to 22nd September for each and every year between 2000 to 2016 at two spatial grids, 1km x 1km and 5km x 5km in polar stereographic projection. Their analysis is described in a separate report [1]. References [1] Muller & Kharbouche, Variation of Arctic's Sea-ice Albedo between 2000 and 2016 by fusion of MISR and MODIS data. This conference. Acknowledgements This work was supported by www.QA4ECV.eu, a project of European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 607405. We thank our colleagues at JPL and NASA LaRC for processing these data, especially Sebastian Val and Steve Protack.
Statistical Studies on Thin Cirrus from MODIS Data
NASA Technical Reports Server (NTRS)
Li, Rong-Rong; Kaufman, Yoram; Remer, Lorraine
2004-01-01
The 1.38 micron channel on the MODerate resolution Imaging Spectroradiomater (MODIS) is an ideal channel to identify and quantify thin cirrus on a global basis. This channel is used to produce the cirrus reflectance product in MOD06 and also used extensively by the MODIS aerosol algorithms to mask clouds for the MOD04 product. The aerosol product uses a lower threshold of the 1.38 micron channel reflectance of 0.01. A cirrus channel reflectance of 0.01 corresponds to approximately an aerosol optical thickness of 0.10. Therefore, the ambiguity due to the minor cirrus contamination may introduce artificial optical thickness in the aerosol products. The questions arise: How prevalent are the thinnest cirrus clouds over the globe? Do they persist over specific regions and seasons? Can we distinguish between the noise of the channel and the actual cloudiness by extrapolating the cloudiness signal to very dark scenes, statistically. We analyze the Terra data, over land and ocean to answer these questions.
NASA Astrophysics Data System (ADS)
Tang, Wenjun; Qin, Jun; Yang, Kun; Liu, Shaomin; Lu, Ning; Niu, Xiaolei
2016-03-01
Cloud parameters (cloud mask, effective particle radius, and liquid/ice water path) are the important inputs in estimating surface solar radiation (SSR). These parameters can be derived from MODIS with high accuracy, but their temporal resolution is too low to obtain high-temporal-resolution SSR retrievals. In order to obtain hourly cloud parameters, an artificial neural network (ANN) is applied in this study to directly construct a functional relationship between MODIS cloud products and Multifunctional Transport Satellite (MTSAT) geostationary satellite signals. In addition, an efficient parameterization model for SSR retrieval is introduced and, when driven with MODIS atmospheric and land products, its root mean square error (RMSE) is about 100 W m-2 for 44 Baseline Surface Radiation Network (BSRN) stations. Once the estimated cloud parameters and other information (such as aerosol, precipitable water, ozone) are input to the model, we can derive SSR at high spatiotemporal resolution. The retrieved SSR is first evaluated against hourly radiation data at three experimental stations in the Haihe River basin of China. The mean bias error (MBE) and RMSE in hourly SSR estimate are 12.0 W m-2 (or 3.5 %) and 98.5 W m-2 (or 28.9 %), respectively. The retrieved SSR is also evaluated against daily radiation data at 90 China Meteorological Administration (CMA) stations. The MBEs are 9.8 W m-2 (or 5.4 %); the RMSEs in daily and monthly mean SSR estimates are 34.2 W m-2 (or 19.1 %) and 22.1 W m-2 (or 12.3 %), respectively. The accuracy is comparable to or even higher than two other radiation products (GLASS and ISCCP-FD), and the present method is more computationally efficient and can produce hourly SSR data at a spatial resolution of 5 km.
NASA Astrophysics Data System (ADS)
Tang, W.; Qin, J.; Yang, K.; Liu, S.; Lu, N.; Niu, X.
2015-12-01
Cloud parameters (cloud mask, effective particle radius and liquid/ice water path) are the important inputs in determining surface solar radiation (SSR). These parameters can be derived from MODIS with high accuracy but their temporal resolution is too low to obtain high temporal resolution SSR retrievals. In order to obtain hourly cloud parameters, the Artificial Neural Network (ANN) is applied in this study to directly construct a functional relationship between MODIS cloud products and Multi-functional Transport Satellite (MTSAT) geostationary satellite signals. Meanwhile, an efficient parameterization model for SSR retrieval is introduced and, when driven with MODIS atmospheric and land products, its root mean square error (RMSE) is about 100 W m-2 for 44 Baseline Surface Radiation Network (BSRN) stations. Once the estimated cloud parameters and other information (such as aerosol, precipitable water, ozone and so on) are input to the model, we can derive SSR at high spatio-temporal resolution. The retrieved SSR is first evaluated against hourly radiation data at three experimental stations in the Haihe River Basin of China. The mean bias error (MBE) and RMSE in hourly SSR estimate are 12.0 W m-2 (or 3.5 %) and 98.5 W m-2 (or 28.9 %), respectively. The retrieved SSR is also evaluated against daily radiation data at 90 China Meteorological Administration (CMA) stations. The MBEs are 9.8 W m-2 (5.4 %); the RMSEs in daily and monthly-mean SSR estimates are 34.2 W m-2 (19.1 %) and 22.1 W m-2 (12.3 %), respectively. The accuracy is comparable or even higher than other two radiation products (GLASS and ISCCP-FD), and the present method is more computationally efficient and can produce hourly SSR data at a spatial resolution of 5 km.
NASA Technical Reports Server (NTRS)
Spruce, Joseph P.; Hargrove, William; Gasser, Gerald; Smoot, James; Kuper, Philip D.
2012-01-01
This presentation reviews the development, integration, and testing of Near Real Time (NRT) MODIS forest % maximum NDVI change products resident to the USDA Forest Service (USFS) ForWarn System. ForWarn is an Early Warning System (EWS) tool for detection and tracking of regionally evident forest change, which includes the U.S. Forest Change Assessment Viewer (FCAV) (a publically available on-line geospatial data viewer for visualizing and assessing the context of this apparent forest change). NASA Stennis Space Center (SSC) is working collaboratively with the USFS, ORNL, and USGS to contribute MODIS forest change products to ForWarn. These change products compare current NDVI derived from expedited eMODIS data, to historical NDVI products derived from MODIS MOD13 data. A new suite of forest change products are computed every 8 days and posted to the ForWarn system; this includes three different forest change products computed using three different historical baselines: 1) previous year; 2) previous three years; and 3) all previous years in the MODIS record going back to 2000. The change product inputs are maximum value NDVI that are composited across a 24 day interval and refreshed every 8 days so that resulting images for the conterminous U.S. are predominantly cloud-free yet still retain temporally relevant fresh information on changes in forest canopy greenness. These forest change products are computed at the native nominal resolution of the input reflectance bands at 231.66 meters, which equates to approx 5.4 hectares or 13.3 acres per pixel. The Time Series Product Tool, a MATLAB-based software package developed at NASA SSC, is used to temporally process, fuse, reduce noise, interpolate data voids, and re-aggregate the historical NDVI into 24 day composites, and then custom MATLAB scripts are used to temporally process the eMODIS NDVIs so that they are in synch with the historical NDVI products. Prior to posting, an in-house snow mask classification product is computed for the current compositing period and integrated into the change images to account for snow related NDVI drops. The supplemental snow classification product was needed because other available QA cloud/snow mask typically underestimates snow cover. MODIS true and false color composites were also computed from eMODIS reflectance data and the true color RGBs are also posted on ForWarn?s FCAV; this data is used for assessing apparent occasional quality issues on the change products due to residual unmasked cloud cover. New forest change products are posted with typical latencies of 1-2 days after the last input eMODIS data collection date for a given 24 day compositing period.
NASA Astrophysics Data System (ADS)
Trepte, Qing; Minnis, Patrick; Sun-Mack, Sunny; Trepte, Charles
Clouds and aerosol play important roles in the global climate system. Accurately detecting their presence, altitude, and properties using satellite radiance measurements is a crucial first step in determining their influence on surface and top-of-atmosphere radiative fluxes. This paper presents a comparison analysis of a new version of the Clouds and Earth's Radiant Energy System (CERES) Edition 3 cloud detection algorithms using Aqua MODIS data with the recently released Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) Version 2 Vertical Feature Mask (VFM). Improvements in CERES Edition 3 cloud mask include dust detection, thin cirrus tests, enhanced low cloud detection at night, and a smoother transition from mid-latitude to polar regions. For the CALIPSO Version 2 data set, changes to the lidar calibration can result in significant improvements to its identification of optically thick aerosol layers. The Aqua and CALIPSO satellites, part of the A-train satellite constellation, provide a unique opportunity for validating passive sensor cloud and aerosol detection using an active sensor. In this paper, individual comparison cases will be discussed for different types of clouds and aerosols over various surfaces, for daytime and nighttime conditions, and for regions ranging from the tropics to the poles. Examples will include an assessment of the CERES detection algorithm for optically thin cirrus, marine stratus, and polar night clouds as well as its ability to characterize Saharan dust plumes off the African coast. With the CALIPSO lidar's unique ability to probe the vertical structure of clouds and aerosol layers, it provides an excellent validation data set for cloud detection algorithms, especially for polar nighttime clouds.
Remote sensing of smoke, land, and clouds from the NASA ER-2 during SAFARI 2000
NASA Astrophysics Data System (ADS)
King, Michael D.; Platnick, Steven; Moeller, Christopher C.; Revercomb, Henry E.; Chu, D. Allen
2003-07-01
The NASA ER-2 aircraft was deployed to southern Africa between 13 August and 25 September 2000 as part of the Southern African Regional Science Initiative (SAFARI) 2000. This aircraft carried a sophisticated array of multispectral scanners, multiangle spectroradiometers, a monostatic lidar, a gas correlation radiometer, upward and downward spectral flux radiometers, and two metric mapping cameras. These observations were obtained over a 3200 × 2800 km region of savanna, woody savanna, open shrubland, and grassland ecosystems throughout southern Africa and were quite often coordinated with overflights by NASA's Terra and Landsat 7 satellites. The primary purpose of this high-altitude observing platform was to obtain independent observations of smoke, clouds, and land surfaces that could be used to check the validity of various remote sensing measurements derived by Earth-orbiting satellites. These include such things as the accuracy of the Moderate Resolution Imaging Spectroradiometer (MODIS) cloud mask for distinguishing clouds and heavy aerosol from land and ocean surfaces and Terra analyses of cloud optical and microphysical properties, aerosol properties, leaf area index, vegetation index, fire occurrence, carbon monoxide, and surface radiation budget. In addition to coordination with Terra and Landsat 7 satellites, numerous flights were conducted over surface AERONET sites, flux towers in South Africa, Botswana, and Zambia, and in situ aircraft from the University of Washington, South Africa, and the United Kingdom. As a result of this experiment, the MODIS cloud mask was shown to distinguish clouds, cloud shadows, and fires over land ecosystems of southern Africa with a high degree of accuracy. In addition, data acquired from the ER-2 show the vertical distribution and stratification of aerosol layers over the subcontinent and make the first observations of a "blue spike" spectral emission signature associated with air heated by fire advecting over a cooler land surface.
NASA Astrophysics Data System (ADS)
Nelson, R. R.; Taylor, T.; O'Dell, C.; Cronk, H. Q.; Partain, P.; Frankenberg, C.; Eldering, A.; Crisp, D.; Gunson, M. R.; Chang, A.; Fisher, B.; Osterman, G. B.; Pollock, H. R.; Savtchenko, A.; Rosenthal, E. J.
2015-12-01
Effective cloud and aerosol screening is critically important to the Orbiting Carbon Observatory-2 (OCO-2), which can accurately determine column averaged dry air mole fraction of carbon dioxide (XCO2) only when scenes are sufficiently clear of scattering material. It is crucial to avoid sampling biases, in order to maintain a globally unbiased XCO2 record for inversion modeling to determine sources and sinks of carbon dioxide. This work presents analysis from the current operational B7 data set, which is identifying as clear approximately 20% of the order one million daily soundings. Of those soundings that are passed to the L2 retrieval algorithm, we find that almost 80% are yielding XCO2 estimates that converge. Two primary preprocessor algorithms are used to cloud screen the OCO-2 soundings. The A-Band Preprocessor (ABP) uses measurements in the Oxygen-A band near 0.76 microns (mm) to determine scenes with large photon path length modifications due to scattering by aerosol and clouds. The Iterative Maximum A-Posteriori (IMAP) Differential Optical Absorption Spectroscopy (DOAS) algorithm (IDP) computes ratios of retrieved CO2 (and H2O) in the 1.6mm (weak CO2) and 2.0mm (strong CO2) spectral bands to determine scenes with spectral differences, indicating contamination by scattering materials. We demonstrate that applying these two algorithms in tandem provides robust cloud screening of the OCO-2 data set. We compare the OCO-2 cloud screening results to collocated Moderate Resolution Imaging Spectroradiometer (MODIS) cloud mask data and show that agreement between the two sensors is approximately 85-90%. A detailed statistical analysis is performed on a winter and spring 16-day repeat cycle for the nadir-land, glint-land and glint-water viewing geometries. No strong seasonal, spatial or footprint dependencies are found, although the agreement tends to be worse at high solar zenith angles and for snow and ice covered surfaces.
Brown, Jesslyn; Howard, Daniel M.; Wylie, Bruce K.; Friesz, Aaron M.; Ji, Lei; Gacke, Carolyn
2015-01-01
Monitoring systems benefit from high temporal frequency image data collected from the Moderate Resolution Imaging Spectroradiometer (MODIS) system. Because of near-daily global coverage, MODIS data are beneficial to applications that require timely information about vegetation condition related to drought, flooding, or fire danger. Rapid satellite data streams in operational applications have clear benefits for monitoring vegetation, especially when information can be delivered as fast as changing surface conditions. An “expedited” processing system called “eMODIS” operated by the U.S. Geological Survey provides rapid MODIS surface reflectance data to operational applications in less than 24 h offering tailored, consistently-processed information products that complement standard MODIS products. We assessed eMODIS quality and consistency by comparing to standard MODIS data. Only land data with known high quality were analyzed in a central U.S. study area. When compared to standard MODIS (MOD/MYD09Q1), the eMODIS Normalized Difference Vegetation Index (NDVI) maintained a strong, significant relationship to standard MODIS NDVI, whether from morning (Terra) or afternoon (Aqua) orbits. The Aqua eMODIS data were more prone to noise than the Terra data, likely due to differences in the internal cloud mask used in MOD/MYD09Q1 or compositing rules. Post-processing temporal smoothing decreased noise in eMODIS data.
NASA Astrophysics Data System (ADS)
Minnett, P. J.; Liu, Y.; Kilpatrick, K. A.
2016-12-01
Sea-surface temperature (SST) measurements by satellites in the northern hemisphere high latitudes confront several difficulties. Year-round prevalent clouds, effects near ice edges, and the relative small difference between SST and low-level cloud temperatures lead to a significant loss of infrared observations regardless of the more frequent polar satellite overpasses. Recent research (Liu and Minnett, 2016) identified sampling issues in the Level 3 NASA MODIS SST products when 4km observations are aggregated into global grids at different time and space scales, particularly in the Arctic, where a binary decision cloud mask designed for global data is often overly conservative at high latitudes and results in many gaps and missing data. This under sampling of some Arctic regions results in a warm bias in Level 3 products, likely a result of warmer surface temperature, more distant from the ice edge, being identified more frequently as cloud free. Here we present an improved method for cloud detection in the Arctic using a majority vote from an ensemble of four classifiers trained based on an Alternative Decision Tree (ADT) algorithm (Freund and Mason 1999, Pfahringer et. al. 2001). This new cloud classifier increases sampling of clear pixel by 50% in several regions and generally produces cooler monthly average SST fields in the ice-free Arctic, while still retaining the same error characteristics at 1km resolution relative to in situ observations. SST time series of 12 years of MODIS (Aqua and Terra) and more recently VIIRS sensors are compared and the improvements in errors and uncertainties resulting from better cloud screening for Level 3 gridded products are assessed and summarized.
Continuity of MODIS and VIIRS Snow-Cover Maps during Snowmelt in the Catskill Mountains in New York
NASA Astrophysics Data System (ADS)
Hall, D. K.; Riggs, G. A., Jr.; Roman, M. O.; DiGirolamo, N. E.
2015-12-01
We investigate the local and regional differences and possible biases between the Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible-Infrared Imager Radiometer Suite (VIIRS) snow-cover maps in the winter of 2012 during snowmelt conditions in the Catskill Mountains in New York using a time series of cloud-gap filled daily snow-cover maps. The MODIS Terra instrument has been providing daily global snow-cover maps since February 2000 (Riggs and Hall, 2015). Using the VIIRS instrument, launched in 2011, NASA snow products are being developed based on the heritage MODIS snow-mapping algorithms, and will soon be available to the science community. Continuity of the standard NASA MODIS and VIIRS snow-cover maps is essential to enable environmental-data records (EDR) to be developed for analysis of snow-cover trends using a consistent data record. For this work, we compare daily MODIS and VIIRS snow-cover maps of the Catskill Mountains from 29 February through 14 March 2012. The entire region was snow covered on 29 February and by 14 March the snow had melted; we therefore have a daily time series available to compare normalized difference snow index (NDSI), as an indicator of snow-cover fraction. The MODIS and VIIRS snow-cover maps have different spatial resolutions (500 m for MODIS and 375 m for VIIRS) and different nominal overpass times (10:30 AM for MODIS Terra and 2:30 PM for VIIRS) as well as different cloud masks. The results of this work will provide a quantitative assessment of the continuity of the snow-cover data records for use in development of an EDR of snow cover.http://modis-snow-ice.gsfc.nasa.gov/Riggs, G.A. and D.K. Hall, 2015: MODIS Snow Products User Guide to Collection 6, http://modis-snow-ice.gsfc.nasa.gov/?c=userguides
Comparison of global cloud liquid water path derived from microwave measurements with CERES-MODIS
NASA Astrophysics Data System (ADS)
Yi, Y.; Minnis, P.; Huang, J.; Lin, B.; Ayers, K.; Sun-Mack, S.; Fan, A.
Cloud liquid water path LWP is a crucial parameter for climate studies due to the link that it provides between the atmospheric hydrological and radiative budgets Satellite-based visible infrared techniques such as the Visible Infrared Solar Split-Window Technique VISST can retrieve LWP for water clouds assumes single-layer over a variety of surfaces If the water clouds are overlapped by ice clouds the LWP of the underlying clouds can not be retrieved by such techniques However microwave techniques may be used to retrieve the LWP underneath ice clouds due to the microwave s insensitivity to cloud ice particles LWP is typically retrieved from satellite-observed microwave radiances only over ocean due to variations of land surface temperature and emissivity Recently Deeter and Vivekanandan 2006 developed a new technique for retrieving LWP over land In order to overcome the sensitivity to land surface temperature and emissivity their technique is based on a parameterization of microwave polarization-difference signals In this study a similar regression-based technique for retrieving LWP over land and ocean using Advanced Microwave Scanning Radiometer - EOS AMSR-E measurements is developed Furthermore the microwave surface emissivities are also derived using clear-sky fields of view based on the Clouds and Earth s Radiant Energy System Moderate-resolution Imaging Spectroradiometer CERES-MODIS cloud mask These emissivities are used in an alternate form of the technique The results are evaluated using independent measurements such
NASA Technical Reports Server (NTRS)
Tilton, James C.; Lawrence, William T.; Plaza, Antonio J.
2006-01-01
The hierarchical segmentation (HSEG) algorithm is a hybrid of hierarchical step-wise optimization and constrained spectral clustering that produces a hierarchical set of image segmentations. This segmentation hierarchy organizes image data in a manner that makes the image's information content more accessible for analysis by enabling region-based analysis. This paper discusses data analysis with HSEG and describes several measures of region characteristics that may be useful analyzing segmentation hierarchies for various applications. Segmentation hierarchy analysis for generating landwater and snow/ice masks from MODIS (Moderate Resolution Imaging Spectroradiometer) data was demonstrated and compared with the corresponding MODIS standard products. The masks based on HSEG segmentation hierarchies compare very favorably to the MODIS standard products. Further, the HSEG based landwater mask was specifically tailored to the MODIS data and the HSEG snow/ice mask did not require the setting of a critical threshold as required in the production of the corresponding MODIS standard product.
Comparisons of Satellite-Deduced Overlapping Cloud Properties and CALIPSO CloudSat Data
NASA Technical Reports Server (NTRS)
Chang, Fu-Lung; Minnis, Patrick; Lin, Bing; Sun-Mack, Sunny
2010-01-01
Introduction to the overlapped cloud properties derived from polar-orbiting (MODIS) and geostationary (GOES-12, -13, Meteosat-8, -9, etc.) meteorological satellites, which are produced at the NASA Langley Research Center (LaRC) cloud research & development team (NASA lead scientist: Dr. Patrick Minnis). Comparison of the LaRC CERES MODIS Edition-3 overlapped cloud properties to the CALIPSO and the CloudSat active sensing data. High clouds and overlapped clouds occur frequently as deduced by CALIPSO (44 & 25%), CloudSat (25 & 4%), and MODIS (37 & 6%). Large fractions of optically-thin cirrus and overlapped clouds are deduced from CALIPSO, but much smaller fractions are from CloudSat and MODIS. For overlapped clouds, the averaged upper-layer CTHs are about 12.8 (CALIPSO), 10.9 (CloudSat) and 10 km (MODIS), and the averaged lower-layer CTHs are about 3.6 (CALIPSO), 3.2 (CloudSat) and 3.9 km (MODIS). Based on comparisons of upper and lower-layer cloud properties as deduced from the MODIS, CALIPSO and CloudSat data, more enhanced passive satellite methods for retrieving thin cirrus and overlapped cloud properties are needed and are under development.
NASA Astrophysics Data System (ADS)
Coddington, Odele; Platnick, Steven; Pilewskie, Peter; Schmidt, Sebastian
2016-04-01
The NASA Pre-Aerosol, Cloud and ocean Ecosystem (PACE) Science Definition Team (SDT) report released in 2012 defined imager stability requirements for the Ocean Color Instrument (OCI) at the sub-percent level. While the instrument suite and measurement requirements are currently being determined, the PACE SDT report provided details on imager options and spectral specifications. The options for a threshold instrument included a hyperspectral imager from 350-800 nm, two near-infrared (NIR) channels, and three short wave infrared (SWIR) channels at 1240, 1640, and 2130 nm. Other instrument options include a variation of the threshold instrument with 3 additional spectral channels at 940, 1378, and 2250 nm and the inclusion of a spectral polarimeter. In this work, we present cloud retrieval information content studies of optical thickness, droplet effective radius, and thermodynamic phase to quantify the potential for continuing the low cloud climate data record established by the MOderate Resolution and Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) missions with the PACE OCI instrument (i.e., non-polarized cloud reflectances and in the absence of midwave and longwave infrared channels). The information content analysis is performed using the GEneralized Nonlinear Retrieval Analysis (GENRA) methodology and the Collection 6 simulated cloud reflectance data for the common MODIS/VIIRS algorithm (MODAWG) for Cloud Mask, Cloud-Top, and Optical Properties. We show that using both channels near 2 microns improves the probability of cloud phase discrimination with shortwave-only cloud reflectance retrievals. Ongoing work will extend the information content analysis, currently performed for dark ocean surfaces, to different land surface types.
NASA Astrophysics Data System (ADS)
Chu, C.; Sun-Mack, S.; Chen, Y.; Heckert, E.; Doelling, D. R.
2017-12-01
In Langley NASA, Clouds and the Earth's Radiant Energy System (CERES) and Moderate Resolution Imaging Spectroradiometer (MODIS) are merged with Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) and CloudSat Cloud Profiling Radar (CPR). The CERES merged product (C3M) matches up to three CALIPSO footprints with each MODIS pixel along its ground track. It then assigns the nearest CloudSat footprint to each of those MODIS pixels. The cloud properties from MODIS, retrieved using the CERES algorithms, are included in C3M with the matched CALIPSO and CloudSat products along with radiances from 18 MODIS channels. The dataset is used to validate the CERES retrieved MODIS cloud properties and the computed TOA and surface flux difference using MODIS or CALIOP/CloudSAT retrieved clouds. This information is then used to tune the computed fluxes to match the CERES observed TOA flux. A visualization tool will be invaluable to determine the cause of these large cloud and flux differences in order to improve the methodology. This effort is part of larger effort to allow users to order the CERES C3M product sub-setted by time and parameter as well as the previously mentioned visualization capabilities. This presentation will show a new graphical 3D-interface, 3D-CERESVis, that allows users to view both passive remote sensing satellites (MODIS and CERES) and active satellites (CALIPSO and CloudSat), such that the detailed vertical structures of cloud properties from CALIPSO and CloudSat are displayed side by side with horizontally retrieved cloud properties from MODIS and CERES. Similarly, the CERES computed profile fluxes whether using MODIS or CALIPSO and CloudSat clouds can also be compared. 3D-CERESVis is a browser-based visualization tool that makes uses of techniques such as multiple synchronized cursors, COLLADA format data and Cesium.
Accessing and Understanding MODIS Data
NASA Technical Reports Server (NTRS)
Leptoukh, Gregory; Jenkerson, Calli B.; Jodha, Siri
2003-01-01
The National Aeronautics and Space Administration (NASA) launched the Terra satellite in December 1999, as part of the Earth Science Enterprise promotion of interdisciplinary studies of the integrated Earth system. Aqua, the second satellite from the series of EOS constellation, was launched in May 2002. Both satellites carry the MODerate resolution Imaging Spectroradiometer (MODIS) instrument. MODIS data are processed at the Goddard Space Flight Center, Greenbelt, MD, and then archived and distributed by the Distributed Active Archive Centers (DAACs). Data products from the MODIS sensors present new challenges to remote sensing scientists due to specialized production level, data format, and map projection. MODIS data are distributed as calibrated radiances and as higher level products such as: surface reflectance, water-leaving radiances, ocean color and sea surface temperature, land surface kinetic temperature, vegetation indices, leaf area index, land cover, snow cover, sea ice extent, cloud mask, atmospheric profiles, aerosol properties, and many other geophysical parameters. MODIS data are stored in HDF- EOS format in both swath format and in several different map projections. This tutorial guides users through data set characteristics as well as search and order interfaces, data unpacking, data subsetting, and potential applications of the data. A CD-ROM with sample data sets, and software tools for working with the data will be provided to the course participants.
Adapting MODIS Dust Mask Algorithm to Suomi NPP VIIRS for Air Quality Applications
NASA Astrophysics Data System (ADS)
Ciren, P.; Liu, H.; Kondragunta, S.; Laszlo, I.
2012-12-01
Despite pollution reduction control strategies enforced by the Environmental Protection Agency (EPA), large regions of the United States are often under exceptional events such as biomass burning and dust outbreaks that lead to non-attainment of particulate matter standards. This has warranted the National Weather Service (NWS) to provide smoke and dust forecast guidance to the general public. The monitoring and forecasting of dust outbreaks relies on satellite data. Currently, Aqua/MODIS (MODerate resolution Imaging Spectrometer) and Terra/MODIS provide measurements needed to derive dust mask and Aerosol Optical Thickness (AOT) products. The newly launched Suomi NPP VIIRS (Visible/Infrared Imaging Radiometer Suite) instrument has a Suspended Matter (SM) product that indicates the presence of dust, smoke, volcanic ash, sea salt, and unknown aerosol types in a given pixel. The algorithm to identify dust is different over land and ocean but for both, the information comes from AOT retrieval algorithm. Over land, the selection of dust aerosol model in the AOT retrieval algorithm indicates the presence of dust and over ocean a fine mode fraction smaller than 20% indicates dust. Preliminary comparisons of VIIRS SM to CALIPSO Vertical Feature Mask (VFM) aerosol type product indicate that the Probability of Detection (POD) is at ~10% and the product is not mature for operational use. As an alternate approach, NESDIS dust mask algorithm developed for NWS dust forecast verification that uses MODIS deep blue, visible, and mid-IR channels using spectral differencing techniques and spatial variability tests was applied to VIIRS radiances. This algorithm relies on the spectral contrast of dust absorption at 412 and 440 nm and an increase in reflectivity at 2.13 μm when dust is present in the atmosphere compared to a clear sky. To avoid detecting bright desert surface as airborne dust, the algorithm uses the reflectances at 1.24 μm and 2.25 μm to flag bright pixels. The algorithm flags pixels that fall into the glint region so sun glint is not picked up as dust. The algorithm also has a spatial variability test that uses reflectances at 0.86 μm to screen for clouds over water. Analysis of one granule for a known dust event on May 2, 2012 shows that the agreement between VIIRS and MODIS is 82% and VIIRS and CALIPSO is 71%. The probability of detection for VIIRS when compared to MODIS and CALIPSO is 53% and 45% respectively whereas the false alarm ratio for VIIRS when compared to MODIS and CALIPSO is 20% and 37% respectively. The algorithm details, results from the test cases, and the use of the dust flag product in NWS applications will be presented.
NASA Technical Reports Server (NTRS)
Carroll, M. L.; DiMiceli, C. M.; Townshend, J. R. G.; Sohlberg, R. A.; Elders, A. I.; Devadiga, S.; Sayer, A. M.; Levy, R. C.
2016-01-01
Data from the Moderate Resolution Imaging Spectro-radiometer (MODIS)on-board the Earth Observing System Terra and Aqua satellites are processed using a land water mask to determine when an algorithm no longer needs to be run or when an algorithm needs to follow a different pathway. Entering the fourth reprocessing (Collection 6 (C6)) the MODIS team replaced the 1 km water mask with a 500 m water mask for improved representation of the continental surfaces. The new water mask represents more small water bodies for an overall increase in water surface from 1 to 2 of the continental surface. While this is still a small fraction of the overall global surface area the increase is more dramatic in certain areas such as the Arctic and Boreal regions where there are dramatic increases in water surface area in the new mask. MODIS products generated by the on-going C6 reprocessing using the new land water mask show significant impact in areas with high concentrations of change in the land water mask. Here differences between the Collection 5 (C5) and C6 water masks and the impact of these differences on the MOD04 aerosol product and the MOD11 land surface temperature product are shown.
A Simplified Approach to Cloud Masking with VIIRS in the S-NPP/JPSS Era
NASA Technical Reports Server (NTRS)
Jedlovec, Gary J.; Lafontaine, Frank J.
2014-01-01
The quantitative detection of clouds in satellite imagery has a number of important applications in weather analysis. The proper interpretation of satellite imagery for improved situational awareness depends on knowing where the clouds are at all times of the day. Additionally, many products derived from infrared measurements need accurate cloud information to mask out regions where retrieval of geophysical parameters in the atmosphere or on the surface are not possible. Thus, the accurate detection of the presence of clouds in satellite imagery on a global basis is important to the product developers and the operational weather community to support their decision-making process. This abstract describes an application of a two-channel bispectral composite threshold (BCT) approach applied to VIIRS imagery. The simplified BCT approach uses only the 10.76 and 3.75 micrometer spectral channels in two spectral tests; a straightforward infrared threshold test with the longwave channel and a shortwave minus longwave channel difference test. The key to the success of this approach as demonstrated in past applications to GOES and MODIS data is the generation of temporally and spatially dependent thresholds used in the tests from a previous number of days at similar observations to the current data. The presentation will present an overview of the approach and intercomparison results with other satellites, methods, and against verification data.
The MODIS Aerosol Algorithm: Critical Evaluation and Plans for Collection 6
NASA Technical Reports Server (NTRS)
Remer, Lorraine
2010-01-01
For ten years the MODIS aerosol algorithm has been applied to measured MODIS radiances to produce a continuous set of aerosol products, over land and ocean. The MODIS aerosol products are widely used by the scientific and applied science communities for variety of purposes that span operational air quality forecasting in estimates o[ clear-sky direct radiative effects over ocean and aerosol-cloud interactions. The products undergo continual evaluation, including self-consistency checks and comparisons with highly accurate ground-based instruments. The result of these evaluation exercises is a quantitative understanding of the strengths and weaknesses of the retrieval, where and when the products are accurate and the situations where and when accuracy degrades. We intend 10 present results of the most recent critical evaluations including the first comparison of the over ocean products against the shipboard aerosol optical depth measurements of the Marine Aerosol Network (MAN), the demonstration of the lack of sensitivity to size parameter in the over land products and identification of residual problems and regional issues. While the current data set is undergoing evaluation, we are preparing for the next data processing, labeled Collection 6. Collection 6 will include transparent Quality Flags, a 3 km aerosol product and the 500m resolution cloud mask used within the aerosol n:bicvu|. These new products and adjustments to algorithm assumptions should provide users with more options and greater control, as they adapt the product for their own purposes.
Global Characterization of Tropospheric Noise for InSAR Analysis Using MODIS Data
NASA Astrophysics Data System (ADS)
Yun, S.; Hensley, S.; Chaubell, M.; Fielding, E. J.; Pan, L.; Rosen, P. A.
2013-12-01
Radio wave's differential phase delay variation through the troposphere is one of the largest error sources in Interferometric Synthetic Aperture Radar (InSAR) measurements, and water vapor variability in the troposphere is known to be the dominant factor. We use the precipitable water vapor products from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) sensors mounted on Terra and Aqua satellites to produce tropospheric noise maps of InSAR. Then we extract a small set of characteristic parameters of its power spectral density curve and 1-D covariance function, and calculate the structure function to estimate the expected tropospheric noise level as a function of distance. The results serve two purposes: 1) to provide guidance on the expected covariance matrix for geophysical modeling, 2) to provide quantitative basis of the measurement requirements for the planned US L-band SAR mission. We build over a decade span (2000-2013) of a lookup table of the parameters derived from 2-by-2 degree tiles at 1-by-1 degree posting of global coverage, representing 10 days of each season in each year. The MODIS data were retrieved from OSCAR (Online Services for Correcting Atmosphere in Radar) server. MODIS images with 5 percent or more cloud cover were discarded. Cloud mask and sensor scanning artifacts were removed with interpolation and spectral filtering, respectively. We also mitigate topography dependent stratified tropospheric delay variation using the European Centre for Medium-Range Weather Forecasts (ECMWF) and Shuttle Radar Topography Mission Digital Elevation Models (SRTM DEMs).
NASA Technical Reports Server (NTRS)
Hall, Dorothy K.; Comiso, Josefino C.; DiGirolamo, Nikolo E.; Shuman, Christopher A.; Key, Jeffrey R.; Koenig, Lora S.
2012-01-01
We have developed a climate-quality data record of the clear-sky surface temperature of the Greenland Ice Sheet using the Moderate-Resolution Imaging Spectroradiometer (MODIS) ice-surface temperature (1ST) algorithm. A climate-data record (CDR) is a time series of measurements of sufficient length, consistency, and continuity to determine climate variability and change. We present daily and monthly MODIS ISTs of the Greenland Ice Sheet beginning on 1 March 2000 and continuing through 31 December 2010 at 6.25-km spatial resolution on a polar stereographic grid. This record will be elevated in status to a CDR when at least nine more years of data become available either from MODIS Terra or Aqua, or from the Visible Infrared Imager Radiometer Suite (VIIRS) to be launched in October 2011. Our ultimate goal is to develop a CDR that starts in 1981 with the Advanced Very High Resolution (AVHRR) Polar Pathfinder (APP) dataset and continues with MODIS data from 2000 to the present, and into the VIIRS era. Differences in the APP and MODIS cloud masks have so far precluded the current 1ST records from spanning both the APP and MODIS time series in a seamless manner though this will be revisited when the APP dataset has been reprocessed. The complete MODIS 1ST daily and monthly data record is available online.
NASA Astrophysics Data System (ADS)
Zhang, Zhibo; Dong, Xiquan; Xi, Baike; Song, Hua; Ma, Po-Lun; Ghan, Steven J.; Platnick, Steven; Minnis, Patrick
2017-02-01
From April 2009 to December 2010, the Department of Energy Atmospheric Radiation Measurement (ARM) program carried out an observational field campaign on Graciosa Island, targeting the marine boundary layer (MBL) clouds over the Azores region. In this paper, we present an intercomparison of the MBL cloud properties, namely, cloud liquid water path (LWP), cloud optical thickness (COT), and cloud-droplet effective radius (CER), among retrievals from the ARM mobile facility and two Moderate Resolution Imaging Spectroradiometer (MODIS) cloud products (Goddard Space Flight Center (GSFC)-MODIS and Clouds and Earth's Radiant Energy System-MODIS). A total of 63 daytime single-layer MBL cloud cases are selected for intercomparison. Comparison of collocated retrievals indicates that the two MODIS cloud products agree well on both COT and CER retrievals, with the correlation coefficient R > 0.95, despite their significant difference in spatial sampling. In both MODIS products, the CER retrievals based on the 2.1 µm band (CER2.1) are significantly larger than those based on the 3.7 µm band (CER3.7). The GSFC-MODIS cloud product is collocated and compared with ground-based ARM observations at several temporal-spatial scales. In general, the correlation increases with more precise collocation. For the 63 selected MBL cloud cases, the GSFC-MODIS LWP and COT retrievals agree reasonably well with the ground-based observations with no apparent bias and correlation coefficient R around 0.85 and 0.70, respectively. However, GSFC-MODIS CER3.7 and CER2.1 retrievals have a lower correlation (R 0.5) with the ground-based retrievals. For the 63 selected cases, they are on average larger than ground observations by about 1.5 µm and 3.0 µm, respectively. Taking into account that the MODIS CER retrievals are only sensitive to cloud top reduces the bias only by 0.5 µm.
The Generation of Near-Real Time Data Products for MODIS
NASA Astrophysics Data System (ADS)
Teague, M.; Schmaltz, J. E.; Ilavajhala, S.; Ye, G.; Masuoka, E.; Murphy, K. J.; Michael, K.
2010-12-01
The GSFC Terrestrial Information Systems Branch (614.5) operate the Land and Atmospheres Near-real-time Capability for EOS (LANCE-MODIS) system. Other LANCE elements include -AIRS, -MLS, -OMI, and -AMSR-E. LANCE-MODIS incorporates the former Rapid Response system and will, in early 2011, include the Fire Information for Resource Management System (FIRMS). The purpose of LANCE is to provide applications users with a variety of products on a near-real time basis. The LANCE-MODIS data products include Level 1 (L1), L2 fire, snow, sea ice, cloud mask/profiles, aerosols, clouds, land surface reflectance, land surface temperature, and L2G and L3 gridded, daily, land surface reflectance products. Data are available either by ftp access (pull) or by subscription (push) and the L1 and L2 data products are available within an average of 2.5 hours of the observation time. The use of ancillary data products input to the standard science algorithms has been modified in order to obtain these latencies. The resulting products have been approved for applications use by the MODIS Science Team. The http://lance.nasa.gov site provides registration information and extensive information concerning the MODIS data products and imagery including a comparison between the LANCE-MODIS and the standard science-quality products generated by the MODAPS system. The LANCE-MODIS system includes a variety of tools that enable users to manipulate the data products including: parameter, band, and geographic subsetting, re-projection, mosaicing, and generation of data in the GeoTIFF format. In most instances the data resulting from use of these tools has a latency of less than 3 hours. Access to these tools is available through a Web Coverage Service. A Google Earth/Web Mapping Service is available to access image products. LANCE-MODIS supports a wide variety of applications users in civilian, military, and foreign agencies as well as universities and the private sector. Examples of applications are: Flood Mapping, Famine relief, Food and Agriculture, Hazards and Disasters, and Weather.
NASA Technical Reports Server (NTRS)
Zhang, Zhibo; Dong, Xiquan; Xi, Baike; Song, Hua; Ma, Po-Lun; Ghan, Steven J.; Platnick, Steven; Minnis, Patrick
2017-01-01
From April 2009 to December 2010, the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program carried out an observational field campaign on Graciosa Island, targeting the marine boundary layer (MBL) clouds over the Azores region. In this paper, we present an inter-comparison of the MBL cloud properties, namely, cloud liquid water path (LWP), cloud optical thickness (COT) and cloud-droplet effective radius (CER), among retrievals from the ARM mobile facility (AMF) and two Moderate Resolution Spectroradiometer (MODIS) cloud products (GSFC-MODIS and CERES-MODIS). A total of 63 daytime single-layer MBL cloud cases are selected for inter-comparison. Comparison of collocated retrievals indicates that the two MODIS cloud products agree well on both COT and CER retrievals, with the correlation coefficient R greater than 0.95 despite their significant difference in spatial sampling. In both MODIS products, the CER retrievals based on the 2.1 micrometers band (CER(sub 2.1)) is significantly smaller than that based on the 3.7 micrometers band (CER(sub 3.7)). The GSFC-MODIS cloud product is collocated and compared with ground-based ARM observations at several temporal spatial scales. In general, the correlation increases with more precise collocation. For the 63 selected MBL cloud cases, the GSFC-MODIS LWP and COT retrievals agree reasonably well with the ground-based observations with no apparent bias and correlation coefficient R around 0.85 and 0.70, respectively. However, GSFC-MODIS CER(sub 3.7) and CER(sub 2.1) retrievals have a lower correlation (R is approximately 0.5) with the ground-based retrievals. For the 63 selected cases, they are on average larger than ground observations by about 1.5 micrometers and 3.0 micrometers, respectively. Taking into account that the MODIS CER retrievals are only sensitive to cloud top reduces the bias only by 0.5 micrometers.
Cloud vertical profiles derived from CALIPSO and CloudSat and a comparison with MODIS derived clouds
NASA Astrophysics Data System (ADS)
Kato, S.; Sun-Mack, S.; Miller, W. F.; Rose, F. G.; Minnis, P.; Wielicki, B. A.; Winker, D. M.; Stephens, G. L.; Charlock, T. P.; Collins, W. D.; Loeb, N. G.; Stackhouse, P. W.; Xu, K.
2008-05-01
CALIPSO and CloudSat from the a-train provide detailed information of vertical distribution of clouds and aerosols. The vertical distribution of cloud occurrence is derived from one month of CALIPSO and CloudSat data as a part of the effort of merging CALIPSO, CloudSat and MODIS with CERES data. This newly derived cloud profile is compared with the distribution of cloud top height derived from MODIS on Aqua from cloud algorithms used in the CERES project. The cloud base from MODIS is also estimated using an empirical formula based on the cloud top height and optical thickness, which is used in CERES processes. While MODIS detects mid and low level clouds over the Arctic in April fairly well when they are the topmost cloud layer, it underestimates high- level clouds. In addition, because the CERES-MODIS cloud algorithm is not able to detect multi-layer clouds and the empirical formula significantly underestimates the depth of high clouds, the occurrence of mid and low-level clouds is underestimated. This comparison does not consider sensitivity difference to thin clouds but we will impose an optical thickness threshold to CALIPSO derived clouds for a further comparison. The effect of such differences in the cloud profile to flux computations will also be discussed. In addition, the effect of cloud cover to the top-of-atmosphere flux over the Arctic using CERES SSF and FLASHFLUX products will be discussed.
MODIS comparisons with northeastern Pacific in situ stratocumulus microphysics
NASA Astrophysics Data System (ADS)
Noble, Stephen R.; Hudson, James G.
2015-08-01
Vertical sounding measurements within stratocumuli during two aircraft field campaigns, Marine Stratus/stratocumulus Experiment (MASE) and Physics of Stratocumulus Top (POST), are used to validate Moderate Resolution Imaging Spectroradiometer (MODIS) cloud optical thickness (COT), cloud liquid water path (LWP), and cloud effective radius (re). In situ COT, LWP, and re were calculated using 5 m vertically averaged droplet probe measurements of complete vertical cloud penetrations. MODIS COT, LWP, and re 1 km pixels were averaged along these penetrations. COT comparisons in POST showed strong correlations and a near 1:1 relationship. In MASE, comparisons showed strong correlations; however, MODIS COT exceeded in situ COT, likely due to larger temporal differences between MODIS and in situ measurements. LWP comparisons between two cloud probes show good agreement for POST but not MASE, giving confidence to POST data. Both projects provided strong LWP correlations but MODIS exceeded in situ by 14-36%. MODIS in situ re correlations were strong, but MODIS 2.1 µm re exceeded in situ re, which contributed to LWP bias; in POST, MODIS re was 20-30% greater than in situ re. Maximum in situ re near cloud top showed comparisons nearer 1:1. Other MODIS re bands (3.7 µm and 1.6 µm) showed similar comparisons. Temporal differences between MODIS and in situ measurements, airplane speed differences, and cloud probe artifacts were likely causes of weaker MASE correlations. POST COT comparison was best for temporal differences under 20 min. POST data validate MODIS COT but it also implies a positive MODIS re bias that propagates to LWP while still capturing variability.
NASA Technical Reports Server (NTRS)
Zhang, Zhibo; Werner, Frank; Miller, Daniel; Platnick, Steven; Ackerman, Andrew; DiGirolamo, Larry; Meyer, Kerry; Marshak, Alexander; Wind, Galina; Zhao, Guangyu
2016-01-01
Theory: A novel framework based on 2-D Tayler expansion for quantifying the uncertainty in MODIS retrievals caused by sub-pixel reflectance inhomogeneity. (Zhang et al. 2016). How cloud vertical structure influences MODIS LWP retrievals. (Miller et al. 2016). Observation: Analysis of failed MODIS cloud property retrievals. (Cho et al. 2015). Cloud property retrievals from 15m resolution ASTER observations. (Werner et al. 2016). Modeling: LES-Satellite observation simulator (Zhang et al. 2012, Miller et al. 2016).
NASA Astrophysics Data System (ADS)
Adolph, Alden C.; Albert, Mary R.; Hall, Dorothy K.
2018-03-01
As rapid warming of the Arctic occurs, it is imperative that climate indicators such as temperature be monitored over large areas to understand and predict the effects of climate changes. Temperatures are traditionally tracked using in situ 2 m air temperatures and can also be assessed using remote sensing techniques. Remote sensing is especially valuable over the Greenland Ice Sheet, where few ground-based air temperature measurements exist. Because of the presence of surface-based temperature inversions in ice-covered areas, differences between 2 m air temperature and the temperature of the actual snow surface (referred to as skin
temperature) can be significant and are particularly relevant when considering validation and application of remote sensing temperature data. We present results from a field campaign extending from 8 June to 18 July 2015, near Summit Station in Greenland, to study surface temperature using the following measurements: skin temperature measured by an infrared (IR) sensor, 2 m air temperature measured by a National Oceanic and Atmospheric Administration (NOAA) meteorological station, and a Moderate Resolution Imaging Spectroradiometer (MODIS) surface temperature product. Our data indicate that 2 m air temperature is often significantly higher than snow skin temperature measured in situ, and this finding may account for apparent biases in previous studies of MODIS products that used 2 m air temperature for validation. This inversion is present during our study period when incoming solar radiation and wind speed are both low. As compared to our in situ IR skin temperature measurements, after additional cloud masking, the MOD/MYD11 Collection 6 surface temperature standard product has an RMSE of 1.0 °C and a mean bias of -0.4 °C, spanning a range of temperatures from -35 to -5 °C (RMSE = 1.6 °C and mean bias = -0.7 °C prior to cloud masking). For our study area and time series, MODIS surface temperature products agree with skin surface temperatures better than previous studies indicated, especially at temperatures below -20 °C, where other studies found a significant cold bias. We show that the apparent cold bias present in other comparisons of 2 m air temperature and MODIS surface temperature may be a result of the near-surface temperature inversion. Further investigation of how in situ IR skin temperatures compare to MODIS surface temperature at lower temperatures (below -35 °C) is warranted to determine whether a cold bias exists for those temperatures.
MODIS comparisons with northeastern Pacific in situ stratocumulus microphysics
Noble, Stephen R.
2015-01-01
Abstract Vertical sounding measurements within stratocumuli during two aircraft field campaigns, Marine Stratus/stratocumulus Experiment (MASE) and Physics of Stratocumulus Top (POST), are used to validate Moderate Resolution Imaging Spectroradiometer (MODIS) cloud optical thickness (COT), cloud liquid water path (LWP), and cloud effective radius (r e). In situ COT, LWP, and r e were calculated using 5 m vertically averaged droplet probe measurements of complete vertical cloud penetrations. MODIS COT, LWP, and r e 1 km pixels were averaged along these penetrations. COT comparisons in POST showed strong correlations and a near 1:1 relationship. In MASE, comparisons showed strong correlations; however, MODIS COT exceeded in situ COT, likely due to larger temporal differences between MODIS and in situ measurements. LWP comparisons between two cloud probes show good agreement for POST but not MASE, giving confidence to POST data. Both projects provided strong LWP correlations but MODIS exceeded in situ by 14–36%. MODIS in situ r e correlations were strong, but MODIS 2.1 µm r e exceeded in situ r e, which contributed to LWP bias; in POST, MODIS r e was 20–30% greater than in situ r e. Maximum in situ r e near cloud top showed comparisons nearer 1:1. Other MODIS r e bands (3.7 µm and 1.6 µm) showed similar comparisons. Temporal differences between MODIS and in situ measurements, airplane speed differences, and cloud probe artifacts were likely causes of weaker MASE correlations. POST COT comparison was best for temporal differences under 20 min. POST data validate MODIS COT but it also implies a positive MODIS r e bias that propagates to LWP while still capturing variability. PMID:27708990
MODIS comparisons with northeastern Pacific in situ stratocumulus microphysics
Noble, Stephen R.; Hudson, James G.
2015-07-22
Here, vertical sounding measurements within stratocumuli during two aircraft field campaigns, Marine Stratus/stratocumulus Experiment (MASE) and Physics of Stratocumulus Top (POST), are used to validate Moderate Resolution Imaging Spectroradiometer (MODIS) cloud optical thickness (COT), cloud liquid water path (LWP), and cloud effective radius (r e). In situ COT, LWP, and r e were calculated using 5 m vertically averaged droplet probe measurements of complete vertical cloud penetrations. MODIS COT, LWP, and r e 1 km pixels were averaged along these penetrations. COT comparisons in POST showed strong correlations and a near 1:1 relationship. In MASE, comparisons showed strong correlations; however,more » MODIS COT exceeded in situ COT, likely due to larger temporal differences between MODIS and in situ measurements. LWP comparisons between two cloud probes show good agreement for POST but not MASE, giving confidence to POST data. Both projects provided strong LWP correlations but MODIS exceeded in situ by 14–36%. MODIS in situ r e correlations were strong, but MODIS 2.1 µm r e exceeded in situ r e, which contributed to LWP bias; in POST, MODIS r e was 20–30% greater than in situ r e. Maximum in situ r e near cloud top showed comparisons nearer 1:1. Other MODIS r e bands (3.7 µm and 1.6 µm) showed similar comparisons. Temporal differences between MODIS and in situ measurements, airplane speed differences, and cloud probe artifacts were likely causes of weaker MASE correlations. POST COT comparison was best for temporal differences under 20 min. POST data validate MODIS COT but it also implies a positive MODIS r e bias that propagates to LWP while still capturing variability.« less
Multi-platform comparisons of MODIS and AVHRR normalized difference vegetation index data
Gallo, Kevin P.; Ji, Lei; Reed, Bradley C.; Eidenshink, Jeffery C.; Dwyer, John L.
2005-01-01
The relationship between AVHRR-derived normalized difference vegetation index (NDVI) values and those of future sensors is critical to continued long-term monitoring of land surface properties. The follow-on operational sensor to the AVHRR, the Visible/Infrared Imager/Radiometer Suite (VIIRS), will be very similar to the NASA Earth Observing System's Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. NDVI data derived from visible and near-infrared data acquired by the MODIS (Terra and Aqua platforms) and AVHRR (NOAA-16 and NOAA-17) sensors were compared over the same time periods and a variety of land cover classes within the conterminous United States. The results indicate that the 16-day composite NDVI values are quite similar over the composite intervals of 2002 and 2003, and linear relationships exist between the NDVI values from the various sensors. The composite AVHRR NDVI data included water and cloud masks and adjustments for water vapor as did the MODIS NDVI data. When analyzed over a variety of land cover types and composite intervals, the AVHRR derived NDVI data were associated with 89% or more of the variation in the MODIS NDVI values. The results suggest that it may be possible to successfully reprocess historical AVHRR data sets to provide continuity of NDVI products through future sensor systems.
Remote Sensing of Lake Ice Phenology in Alaska
NASA Astrophysics Data System (ADS)
Zhang, S.; Pavelsky, T.
2017-12-01
Lake ice phenology (e.g. ice break-up and freeze-up timing) in Alaska is potentially sensitive to climate change. However, there are few current lake ice records in this region, which hinders the comprehensive understanding of interactions between climate change and lake processes. To provide a lake ice database with over a comparatively long time period (2000 - 2017) and large spatial coverage (4000+ lakes) in Alaska, we have developed an algorithm to detect the timing of lake ice using Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data. This approach generally consists of three major steps. First, we use a cloud mask (MOD09GA) to filter out satellite images with heavy cloud contamination. Second, daily MODIS reflectance values (MOD09GQ) of lake surface are used to extract ice pixels from water pixels. The ice status of lakes can be further identified based on the fraction of ice pixels. Third, to improve the accuracy of ice phenology detection, we execute post-processing quality control to reduce false ice events caused by outliers. We validate the proposed algorithm over six lakes by comparing with Landsat-based reference data. Validation results indicate a high correlation between the MODIS results and reference data, with normalized root mean square error (NRMSE) ranging from 1.7% to 4.6%. The time series of this lake ice product is then examined to analyze the spatial and temporal patterns of lake ice phenology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noble, Stephen R.; Hudson, James G.
Here, vertical sounding measurements within stratocumuli during two aircraft field campaigns, Marine Stratus/stratocumulus Experiment (MASE) and Physics of Stratocumulus Top (POST), are used to validate Moderate Resolution Imaging Spectroradiometer (MODIS) cloud optical thickness (COT), cloud liquid water path (LWP), and cloud effective radius (r e). In situ COT, LWP, and r e were calculated using 5 m vertically averaged droplet probe measurements of complete vertical cloud penetrations. MODIS COT, LWP, and r e 1 km pixels were averaged along these penetrations. COT comparisons in POST showed strong correlations and a near 1:1 relationship. In MASE, comparisons showed strong correlations; however,more » MODIS COT exceeded in situ COT, likely due to larger temporal differences between MODIS and in situ measurements. LWP comparisons between two cloud probes show good agreement for POST but not MASE, giving confidence to POST data. Both projects provided strong LWP correlations but MODIS exceeded in situ by 14–36%. MODIS in situ r e correlations were strong, but MODIS 2.1 µm r e exceeded in situ r e, which contributed to LWP bias; in POST, MODIS r e was 20–30% greater than in situ r e. Maximum in situ r e near cloud top showed comparisons nearer 1:1. Other MODIS r e bands (3.7 µm and 1.6 µm) showed similar comparisons. Temporal differences between MODIS and in situ measurements, airplane speed differences, and cloud probe artifacts were likely causes of weaker MASE correlations. POST COT comparison was best for temporal differences under 20 min. POST data validate MODIS COT but it also implies a positive MODIS r e bias that propagates to LWP while still capturing variability.« less
Beyond MODIS: Developing an aerosol climate data record
NASA Astrophysics Data System (ADS)
Levy, R. C.; Mattoo, S.; Munchak, L. A.; Patadia, F.; Laszlo, I.; Holz, R.
2013-12-01
As defined by the National Research Council, a climate data record (CDR) is a time series of measurements of sufficient length, consistency, and continuity to determine climate variability and change. As one of our most pressing research questions concerns changes in global direct aerosol radiative forcing (DARF), creating an aerosol CDR is of high importance. To reduce our uncertainties in DARF, we need uncertainty in global aerosol optical depth (AOD) reduced to ×0.02 or better, or about 10% of global mean AOD (~0.15-0.20). To quantify aerosol trends with significance, we also need a stable time series at least 20-30 years. By this Fall-2013 AGU meeting, the Moderate Resolution Imaging Spectrometer (MODIS) has been flying on NASA's Terra and Aqua satellites for 14 years and 11.5 years, respectively. During this time, we have fine-tuned the aerosol retrieval algorithms and data processing protocols, resulting in a well characterized product of aerosol optical depth (AOD). MODIS AOD has been extensively compared to ground-based sunphotometer data, showing per-retrieval expected error (EE) of ×(0.03 + 5%) over ocean, and has been generally adopted as a robust and stable environmental data record (EDR). With the 2011 launch of the Visible and Infrared Imaging Radiometer Suite (VIIRS) aboard Suomi-NPP, we have begun a new aerosol time series. The VIIRS AOD product has stabilized to the point where, compared to ground-based AERONET sunphotometer, the VIIRS AOD is within similar EE envelope as MODIS. Thus, if VIIRS continues to perform as expected, it too can provide a robust and stable aerosol EDR. What will it take to stitch MODIS and VIIRS into a robust aerosol CDR? Based on the recent experience of MODIS 'Collection 6' development, there are many details of aerosol retrieval that each lead to ×0.01 uncertainties in global AOD. These include 'radiative transfer' assumptions such as calculations for gas absorption and sea-level Rayleigh optical depth, 'decision making' assumptions such as cloud masking and pixel selection, as well as 'retrieval' assumptions such as aerosol type, and surface reflectance model. Also there are instrument issues such as calibration and geo-location, which even on the level of 1-2%, will lead to 10% error in retrieved AOD. At this point, however, many of these issues have been solved, or are being quantified for MODIS and VIIRS. In the past year, we created a generic dark-target aerosol retrieval algorithm, which can be applied to MODIS, VIIRS, or any other sensor with a similar set of wavelength bands. We applied the same radiative transfer codes for creating lookup tables, the same protocols for deriving non-aerosol assumptions, and the same criteria for cloud masking. Although there are still inconsistencies to work out, this generic algorithm is being applied to selected months having VIIRS/MODIS overlap. Comparing to AERONET, and with each other, we quantify the statistical agreement between MODIS and VIIRS, both for the official algorithms run on each sensor, as well as for our generic algorithm run on both.
Multilayer Cloud Detection with the MODIS Near-Infrared Water Vapor Absorption Band
NASA Technical Reports Server (NTRS)
Wind, Galina; Platnick, Steven; King, Michael D.; Hubanks, Paul A,; Pavolonis, Michael J.; Heidinger, Andrew K.; Yang, Ping; Baum, Bryan A.
2009-01-01
Data Collection 5 processing for the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the NASA Earth Observing System EOS Terra and Aqua spacecraft includes an algorithm for detecting multilayered clouds in daytime. The main objective of this algorithm is to detect multilayered cloud scenes, specifically optically thin ice cloud overlying a lower-level water cloud, that presents difficulties for retrieving cloud effective radius using single layer plane-parallel cloud models. The algorithm uses the MODIS 0.94 micron water vapor band along with CO2 bands to obtain two above-cloud precipitable water retrievals, the difference of which, in conjunction with additional tests, provides a map of where multilayered clouds might potentially exist. The presence of a multilayered cloud results in a large difference in retrievals of above-cloud properties between the CO2 and the 0.94 micron methods. In this paper the MODIS multilayered cloud algorithm is described, results of using the algorithm over example scenes are shown, and global statistics for multilayered clouds as observed by MODIS are discussed. A theoretical study of the algorithm behavior for simulated multilayered clouds is also given. Results are compared to two other comparable passive imager methods. A set of standard cloudy atmospheric profiles developed during the course of this investigation is also presented. The results lead to the conclusion that the MODIS multilayer cloud detection algorithm has some skill in identifying multilayered clouds with different thermodynamic phases
Study on ice cloud optical thickness retrieval with MODIS IR spectral bands
NASA Astrophysics Data System (ADS)
Zhang, Hong; Li, Jun
2005-01-01
The operational Moderate-Resolution Imaging Spectroradiometer (MODIS) products for cloud properties such as cloud-top pressure (CTP), effective cloud amount (ECA), cloud particle size (CPS), cloud optical thickness (COT), and cloud phase (CP) have been available for users globally. An approach to retrieve COT is investigated using MODIS infrared (IR) window spectral bands (8.5 mm, 11mm, and 12 mm). The COT retrieval from MODIS IR bands has the potential to provide microphysical properties with high spatial resolution during night. The results are compared with those from operational MODIS products derived from the visible (VIS) and near-infrared (NIR) bands during day. Sensitivity of COT to MODIS spectral brightness temperature (BT) and BT difference (BTD) values is studied. A look-up table is created from the cloudy radiative transfer model accounting for the cloud absorption and scattering for the cloud microphysical property retrieval. The potential applications and limitations are also discussed. This algorithm can be applied to the future imager systems such as Visible/Infrared Imager/Radiometer Suite (VIIRS) on the National Polar-orbiting Operational Environmental Satellite System (NPOESS) and Advanced Baseline Imager (ABI) on the Geostationary Operational Environmental Satellite (GOES)-R.
NASA Technical Reports Server (NTRS)
Ackerman, Steven A.; Hemler, Richard S.; Hofman, Robert J. Patrick; Pincus, Robert; Platnick, Steven
2011-01-01
The properties of clouds that may be observed by satellite instruments, such as optical depth and cloud top pressure, are only loosely related to the way clouds m-e represented in models of the atmosphere. One way to bridge this gap is through "instrument simulators," diagnostic tools that map the model representation to synthetic observations so that differences between simulator output and observations can be interpreted unambiguously as model error. But simulators may themselves be restricted by limited information available from the host model or by internal assumptions. This paper considers the extent to which instrument simulators are able to capture essential differences between MODIS and ISCCP, two similar but independent estimates of cloud properties. The authors review the measurements and algorithms underlying these two cloud climatologies, introduce a MODIS simulator, and detail data sets developed for comparison with global models using ISCCP and MODIS simulators, In nature MODIS observes less mid-level doudines!> than ISCCP, consistent with the different methods used to determine cloud top pressure; aspects of this difference are reproduced by the simulators running in a climate modeL But stark differences between MODIS and ISCCP observations of total cloudiness and the distribution of cloud optical thickness can be traced to different approaches to marginal pixels, which MODIS excludes and ISCCP treats as homogeneous. These pixels, which likely contain broken clouds, cover about 15 k of the planet and contain almost all of the optically thinnest clouds observed by either instrument. Instrument simulators can not reproduce these differences because the host model does not consider unresolved spatial scales and so can not produce broken pixels. Nonetheless, MODIS and ISCCP observation are consistent for all but the optically-thinnest clouds, and models can be robustly evaluated using instrument simulators by excluding ambiguous observations.
Aerosol Optical Depth Changes in Version 4 CALIPSO Level 2 Product
NASA Astrophysics Data System (ADS)
Kim, M. H.; Omar, A. H.; Tackett, J. L.; Vaughan, M.; Winker, D. M.; Trepte, C. R.; Hu, Y.; Liu, Z.
2017-12-01
The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) version 4 (V4) products were released in November 2016 with substantial enhancements. There have been improvements in the V4 CALIOP level 2 aerosol optical depth (AOD) compared to V3 (version 3) due to various factors. To analyze the AOD changes we selected every bin whose the vertical feature mask (VFM) is determined as aerosol for either V3 or V4 (or both) from the CALIOP level 2 profile product from 2007 to 2009. We isolated the AOD differences due to changes in six factors: layer detection, cloud-aerosol discrimination (CAD), surface detection, stratospheric aerosol, aerosol subtype, and lidar ratio. Total mean (± standard deviation) column AOD increases from V3 in V4 by 0.051±0.296 and 0.075±0.383 for daytime and nighttime, respectively. Dominant reasons for AOD change are differences in aerosol layer detection, CAD, aerosol subtype, and lidar ratio between V3 and V4 with AOD changes of 0.011 (0.027), 0.018 (0.015), -0.002 (0.009), 0.016 (0.017) for daytime (nighttime), respectively. CALIOP AOD was compared with the Moderate Resolution Imaging Spectroradiometer (MODIS) and Aerosol Robotic Network (AERONET) for both V3 and V4. The comparison shows that mean AOD biases with AERONET and MODIS (collection 6, over ocean) decrease in V4 compared to V3. Mean AOD difference with MODIS for cloud-screened data changes from -0.012±0.079 in V3 to -0.008±0.067 in V4. Mean AOD difference with AERONET is -0.071±0.207 and -0.023±0.233 for V3 and V4, respectively. There is reduction in the CALIOP AOD negative bias with respect to both MODIS and AERONET.
NASA Astrophysics Data System (ADS)
Spruce, J.; Hargrove, W. W.; Gasser, G.; Smoot, J. C.; Kuper, P.
2009-12-01
This presentation discusses a study on the use of MODIS NDVI data for viewing regional patterns of forest disturbance across the conterminous United States. This capability is a part of a national forest threat early warning system (EWS) being developed by the USDA Forest Service’s Eastern and Western Environmental Threat Centers with help from NASA Stennis Space Center and the Oak Ridge National Laboratory. The viewing capability of the EWS was recently demonstrated for 2009, using near-real time (NRT) MODIS NDVI data from the USGS eMODIS Web site and historical NDVI data from standard MOD13 products. For this study, a historical maximum NDVI baseline for CONUS was computed from fused Aqua and Terra MOD13 data for June 10-July 27 of each year during 2000-2006. Comparable 2009 MODIS NDVI imagery was computed from fusion and re-compositing of eMODIS NRT Aqua and Terra 7-day products. For the historical data, time series data processing software was used to remove poor quality data and to mitigate data gaps mainly due to clouds. Although the NRT component was not as rigorously processed to mitigate noise, the processing still yielded largely cloud-free clean, coherent CONUS NDVI imagery initially with only 21-days of compositing. The principal end product of the study was a forest disturbance visualization product based on an NDVI RGB image that combines data from 2 dates (i.e. time frames). For this RGB, the historical maximum NDVI for the observed temporal window was assigned to the red color gun and the 2009 NRT product for the same time frame was assigned to the blue and green guns. The resulting image was masked with a USFS FIA 250-m type map to include only forested areas. The forest disturbance areas on the forest-masked 2-date NDVI RGB are shown in red tones with non-disturbed closed canopy forest generally shown in medium to bright gray tones. This product highlighted several broad-scaled forest canopy disturbances for the observed time in 2009, including damage from caterpillars, bark beetles, ice storms, hail and wind storms, and wildfire. The MODIS forest disturbance products compared well with reference data (e.g., Landsat, aerial sketch maps, and news accounts). These products have been useful in aiding development of the forest threat EWS. Information on location and extent of regional forest disturbance is important to Federal, State, and private sector forest managers. The 2-date RGB product for 2009 was also processed into a classification of forest disturbance for the Colorado Front Range. Validation of this classification is underway. Regional forest disturbance classifications in conjunction with available CONUS forest biomass products could be useful for assessing carbon impacts from biotic threats such as mountain pine beetle and from abiotic threats related to climate change. The latency of the NRT eMODIS products addresses an important need of the USFS EWS.
Remote Sensing of Water Vapor and Thin Cirrus Clouds using MODIS Near-IR Channels
NASA Technical Reports Server (NTRS)
Gao, Bo-Cai; Kaufman, Yoram J.
2001-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS), a major facility instrument on board the Terra Spacecraft, was successfully launched into space in December of 1999. MODIS has several near-IR channels within and around the 0.94 micrometer water vapor bands for remote sensing of integrated atmospheric water vapor over land and above clouds. MODIS also has a special near-IR channel centered at 1.375-micron with a width of 30 nm for remote sensing of cirrus clouds. In this paper, we describe briefly the physical principles on remote sensing of water vapor and cirrus clouds using these channels. We also present sample water vapor images and cirrus cloud images obtained from MODIS data.
NASA Technical Reports Server (NTRS)
Kahn, Brian H.; Fishbein, Evan; Nasiri, Shaima L.; Eldering, Annmarie; Fetzer, Eric J.; Garay, Michael J.; Lee, Sung-Yung
2007-01-01
The consistency of cloud top temperature (Tc) and effective cloud fraction (f) retrieved by the Atmospheric Infrared Sounder (AIRS)/Advanced Microwave Sounding Unit (AMSU) observation suite and the Moderate Resolution Imaging Spectroradiometer (MODIS) on the EOS-Aqua platform are investigated. Collocated AIRS and MODIS TC and f are compared via an 'effective scene brightness temperature' (Tb,e). Tb,e is calculated with partial field of view (FOV) contributions from TC and surface temperature (TS), weighted by f and 1-f, respectively. AIRS reports up to two cloud layers while MODIS reports up to one. However, MODIS reports TC, TS, and f at a higher spatial resolution than AIRS. As a result, pixel-scale comparisons of TC and f are difficult to interpret, demonstrating the need for alternatives such as Tb,e. AIRS-MODIS Tb,e differences ((Delta)Tb,e) for identical observing scenes are useful as a diagnostic for cloud quantity comparisons. The smallest values of DTb,e are for high and opaque clouds, with increasing scatter in (Delta)Tb,e for clouds of smaller opacity and lower altitude. A persistent positive bias in DTb,e is observed in warmer and low-latitude scenes, characterized by a mixture of MODIS CO2 slicing and 11-mm window retrievals. These scenes contain heterogeneous cloud cover, including mixtures of multilayered cloudiness and misplaced MODIS cloud top pressure. The spatial patterns of (Delta)Tb,e are systematic and do not correlate well with collocated AIRS-MODIS radiance differences, which are more random in nature and smaller in magnitude than (Delta)Tb,e. This suggests that the observed inconsistencies in AIRS and MODIS cloud fields are dominated by retrieval algorithm differences, instead of differences in the observed radiances. The results presented here have implications for the validation of cloudy satellite retrieval algorithms, and use of cloud products in quantitative analyses.
NASA Astrophysics Data System (ADS)
Stengel, Martin; Stapelberg, Stefan; Sus, Oliver; Schlundt, Cornelia; Poulsen, Caroline; Thomas, Gareth; Christensen, Matthew; Carbajal Henken, Cintia; Preusker, Rene; Fischer, Jürgen; Devasthale, Abhay; Willén, Ulrika; Karlsson, Karl-Göran; McGarragh, Gregory R.; Proud, Simon; Povey, Adam C.; Grainger, Roy G.; Fokke Meirink, Jan; Feofilov, Artem; Bennartz, Ralf; Bojanowski, Jedrzej S.; Hollmann, Rainer
2017-11-01
New cloud property datasets based on measurements from the passive imaging satellite sensors AVHRR, MODIS, ATSR2, AATSR and MERIS are presented. Two retrieval systems were developed that include components for cloud detection and cloud typing followed by cloud property retrievals based on the optimal estimation (OE) technique. The OE-based retrievals are applied to simultaneously retrieve cloud-top pressure, cloud particle effective radius and cloud optical thickness using measurements at visible, near-infrared and thermal infrared wavelengths, which ensures spectral consistency. The retrieved cloud properties are further processed to derive cloud-top height, cloud-top temperature, cloud liquid water path, cloud ice water path and spectral cloud albedo. The Cloud_cci products are pixel-based retrievals, daily composites of those on a global equal-angle latitude-longitude grid, and monthly cloud properties such as averages, standard deviations and histograms, also on a global grid. All products include rigorous propagation of the retrieval and sampling uncertainties. Grouping the orbital properties of the sensor families, six datasets have been defined, which are named AVHRR-AM, AVHRR-PM, MODIS-Terra, MODIS-Aqua, ATSR2-AATSR and MERIS+AATSR, each comprising a specific subset of all available sensors. The individual characteristics of the datasets are presented together with a summary of the retrieval systems and measurement records on which the dataset generation were based. Example validation results are given, based on comparisons to well-established reference observations, which demonstrate the good quality of the data. In particular the ensured spectral consistency and the rigorous uncertainty propagation through all processing levels can be considered as new features of the Cloud_cci datasets compared to existing datasets. In addition, the consistency among the individual datasets allows for a potential combination of them as well as facilitates studies on the impact of temporal sampling and spatial resolution on cloud climatologies.
For each dataset a digital object identifier has been issued:
Cloud_cci AVHRR-AM: https://doi.org/10.5676/DWD/ESA_Cloud_cci/AVHRR-AM/V002
Cloud_cci AVHRR-PM: https://doi.org/10.5676/DWD/ESA_Cloud_cci/AVHRR-PM/V002
Cloud_cci MODIS-Terra: https://doi.org/10.5676/DWD/ESA_Cloud_cci/MODIS-Terra/V002
Cloud_cci MODIS-Aqua: https://doi.org/10.5676/DWD/ESA_Cloud_cci/MODIS-Aqua/V002
Cloud_cci ATSR2-AATSR: https://doi.org/10.5676/DWD/ESA_Cloud_cci/ATSR2-AATSR/V002
Cloud_cci MERIS+AATSR: https://doi.org/10.5676/DWD/ESA_Cloud_cci/MERIS+AATSR/V002
AVHRR-Based Polar Pathfinder Products: Evaluation, Enhancement and Transition to MODIS
NASA Technical Reports Server (NTRS)
Fowler, Charles; Masalanik, James; Stone, Robert; Stroeve, Julienne; Emery, William
2001-01-01
The Advanced Very High Resolution Radiometer (AVHRR)-Based Polar Pathfinder (APP) products include calibrated AVHRR channel data, surface temperatures, albedo, satellite scan and solar geometries, and cloud mask, all composited into twice-per-day images, and daily averaged fields of sea ice motion, for regions poleward of 50 latitude. Our general goals under this grant: (1) Quantify the APP accuracy and sources of error by comparing Pathfinder products with field measurements; (2) Determine the consistency of mean fields and trends in comparison with longer time series of available station data and forecast model output; (3) Investigate the consistency of the products between the different AVHRR instruments over the 1982-present period of the NOAA program; and (4) Compare and annual cycle of the APP products with MODIS to establish a baseline for extending Pathfinder-type products into the new ESE period.
NASA Astrophysics Data System (ADS)
Wang, Chenxi; Platnick, Steven; Zhang, Zhibo; Meyer, Kerry; Yang, Ping
2016-05-01
An optimal estimation (OE) retrieval method is developed to infer three ice cloud properties simultaneously: optical thickness (τ), effective radius (reff), and cloud top height (h). This method is based on a fast radiative transfer (RT) model and infrared (IR) observations from the MODerate resolution Imaging Spectroradiometer (MODIS). This study conducts thorough error and information content analyses to understand the error propagation and performance of retrievals from various MODIS band combinations under different cloud/atmosphere states. Specifically, the algorithm takes into account four error sources: measurement uncertainty, fast RT model uncertainty, uncertainties in ancillary data sets (e.g., atmospheric state), and assumed ice crystal habit uncertainties. It is found that the ancillary and ice crystal habit error sources dominate the MODIS IR retrieval uncertainty and cannot be ignored. The information content analysis shows that for a given ice cloud, the use of four MODIS IR observations is sufficient to retrieve the three cloud properties. However, the selection of MODIS IR bands that provide the most information and their order of importance varies with both the ice cloud properties and the ambient atmospheric and the surface states. As a result, this study suggests the inclusion of all MODIS IR bands in practice since little a priori information is available.
Wang, Chenxi; Platnick, Steven; Zhang, Zhibo; Meyer, Kerry; Yang, Ping
2016-05-27
An optimal estimation (OE) retrieval method is developed to infer three ice cloud properties simultaneously: optical thickness ( τ ), effective radius ( r eff ), and cloud-top height ( h ). This method is based on a fast radiative transfer (RT) model and infrared (IR) observations from the MODerate resolution Imaging Spectroradiometer (MODIS). This study conducts thorough error and information content analyses to understand the error propagation and performance of retrievals from various MODIS band combinations under different cloud/atmosphere states. Specifically, the algorithm takes into account four error sources: measurement uncertainty, fast RT model uncertainty, uncertainties in ancillary datasets (e.g., atmospheric state), and assumed ice crystal habit uncertainties. It is found that the ancillary and ice crystal habit error sources dominate the MODIS IR retrieval uncertainty and cannot be ignored. The information content analysis shows that, for a given ice cloud, the use of four MODIS IR observations is sufficient to retrieve the three cloud properties. However, the selection of MODIS IR bands that provide the most information and their order of importance varies with both the ice cloud properties and the ambient atmospheric and the surface states. As a result, this study suggests the inclusion of all MODIS IR bands in practice since little a priori information is available.
NASA Astrophysics Data System (ADS)
Zhang, Xiao; Tan, Saichun; Shi, Guangyu
2018-02-01
Satellite and human visual observation are two of the most important observation approaches for cloud cover. In this study, the total cloud cover (TCC) observed by MODIS onboard the Terra and Aqua satellites was compared with Synop meteorological station observations over the North China Plain and its surrounding regions for 11 years during daytime and 7 years during nighttime. The Synop data were recorded eight times a day at 3-h intervals. Linear interpolation was used to interpolate the Synop data to the MODIS overpass time in order to reduce the temporal deviation between the satellite and Synop observations. Results showed that MODIS-derived TCC had good consistency with the Synop observations; the correlation coefficients ranged from 0.56 in winter to 0.73 in summer for Terra MODIS, and from 0.55 in winter to 0.71 in summer for Aqua MODIS. However, they also had certain differences. On average, the MODIS-derived TCC was 15.16% higher than the Synop data, and this value was higher at nighttime (15.58%-16.64%) than daytime (12.74%-14.14%). The deviation between the MODIS and Synop TCC had large seasonal variation, being largest in winter (29.53%-31.07%) and smallest in summer (4.46%-6.07%). Analysis indicated that cloud with low cloud-top height and small cloud optical thickness was more likely to cause observation bias. Besides, an increase in the satellite view zenith angle, aerosol optical depth, or snow cover could lead to positively biased MODIS results, and this affect differed among different cloud types.
Enhanced clear sky reflectance near clouds: What can be learned from it about aerosol properties?
NASA Astrophysics Data System (ADS)
Marshak, A.; Varnai, T.; Wen, G.; Chiu, J.
2009-12-01
Studies on aerosol direct and indirect effects require a precise separation of cloud-free and cloudy air. However, separation between cloud-free and cloudy areas from remotely-sensed measurements is ambiguous. The transition zone in the regions around clouds often stretches out tens of km, which are neither precisely clear nor precisely cloudy. We study the transition zone between cloud-free and cloudy air using MODerate-resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) measurements. Both instruments show enhanced clear-sky reflectance (MODIS) and clear-sky backscatterer (CALIPSO) near clouds. Analyzing a large dataset of MODIS observations, we examine the effect of three-dimensional radiative interactions between clouds and cloud-free areas, also known as a cloud adjacency effect. The cloud adjacency effect is well observed in MODIS clear-sky data in the vicinity of clouds. Comparing with CALIPSO clear-sky backscatterer measurements, we show that this effect may be responsible for a large portion of the enhanced clear-sky reflectance observed by MODIS. Finally, we describe a simple model that estimates the cloud-induced enhanced reflectances of cloud-free areas in the vicinity of clouds. The model assumes that the enhancement is due entirely to Rayleigh scattering and is therefore bigger at shorter wavelengths, thus creating a so-called apparent “bluing” of aerosols in remote sensing retrievals.
Cloud Properties of CERES-MODIS Edition 4 and CERES-VIIRS Edition 1
NASA Technical Reports Server (NTRS)
Sun-Mack, Sunny; Minnis, Patrick; Chang, Fu-Lung; Hong, Gang; Arduini, Robert; Chen, Yan; Trepte, Qing; Yost, Chris; Smith, Rita; Brown, Ricky;
2015-01-01
The Clouds and Earth's Radiant Energy System (CERES) analyzes MODerate-resolution Imaging Spectroradiometer (MODIS) data and Visible Infrared Imaging Radiometer Suite (VIIRS) to derive cloud properties that are combine with aerosol and CERES broadband flux data to create a multi-parameter data set for climate study. CERES has produced over 15 years of data from Terra and over 13 years of data from Aqua using the CERES-MODIS Edition-2 cloud retrieval algorithm. A recently revised algorithm, CERESMODIS Edition 4, has been developed and is now generating enhanced cloud data for climate research (over 10 years for Terra and 8 years for Aqua). New multispectral retrievals of properties are included along with a multilayer cloud retrieval system. Cloud microphysical properties are reported at 3 wavelengths, 0.65, 1.24, and 2.1 microns to enable better estimates of the vertical profiles of cloud water contents. Cloud properties over snow are retrieved using the 1.24-micron channel. A new CERES-VIIRS cloud retrieval package was developed for the VIIRS spectral complement and is currently producing the CERES-VIIRS Edition 1 cloud dataset. The results from CERES-MODIS Edition 4 and CERES-VIIRS Edition 1 are presented and compared with each other and other datasets, including CALIPSO, CloudSat and the CERES-MODIS Edition-2 results.
An Imager Gaussian Process Machine Learning Methodology for Cloud Thermodynamic Phase classification
NASA Astrophysics Data System (ADS)
Marchant, B.; Platnick, S. E.; Meyer, K.
2017-12-01
The determination of cloud thermodynamic phase from MODIS and VIIRS instruments is an important first step in cloud optical retrievals, since ice and liquid clouds have different optical properties. To continue improving the cloud thermodynamic phase classification algorithm, a machine-learning approach, based on Gaussian processes, has been developed. The new proposed methodology provides cloud phase uncertainty quantification and improves the algorithm portability between MODIS and VIIRS. We will present new results, through comparisons between MODIS and CALIOP v4, and for VIIRS as well.
Evaluating the impact of above-cloud aerosols on cloud optical depth retrievals from MODIS
NASA Astrophysics Data System (ADS)
Alfaro, Ricardo
Using two different operational Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) cloud optical depth (COD) retrievals (visible and shortwave infrared), the impacts of above-cloud absorbing aerosols on the standard COD retrievals are evaluated. For fine-mode aerosol particles, aerosol optical depth (AOD) values diminish sharply from the visible to the shortwave infrared channels. Thus, a suppressed above-cloud particle radiance aliasing effect occurs for COD retrievals using shortwave infrared channels. Aerosol Index (AI) from the spatially and temporally collocated Ozone Monitoring Instrument (OMI) are used to identify above-cloud aerosol particle loading over the southern Atlantic Ocean, including both smoke and dust from the African sub-continent. MODIS and OMI Collocated Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) data are used to constrain cloud phase and provide contextual above-cloud AOD values. The frequency of occurrence of above-cloud aerosols is depicted on a global scale for the spring and summer seasons from OMI and CALIOP, thus indicating the significance of the problem. Seasonal frequencies for smoke-over-cloud off the southwestern Africa coastline reach 20--50% in boreal summer. We find a corresponding low COD bias of 10--20% for standard MODIS COD retrievals when averaged OMI AI are larger than 1.0. No such bias is found over the Saharan dust outflow region off northern Africa, since both MODIS visible and shortwave in channels are vulnerable to dust particle aliasing, and thus a COD impact cannot be isolated with this method. A similar result is found for a smaller domain, in the Gulf of Tonkin region, from smoke advection over marine stratocumulus clouds and outflow into the northern South China Sea in spring. This study shows the necessity of accounting for the above-cloud aerosol events for future studies using standard MODIS cloud products in biomass burning outflow regions, through the use of collocated OMI AI and supplementary MODIS shortwave infrared COD products.
Snow and Ice Mask for the MODIS Aerosol Products
NASA Technical Reports Server (NTRS)
Li, Rong-Rong; Remer, Lorraine; Kaufman, Yoram J.; Mattoo, Shana; Gao, Bo-Cai; Vermote, Eric
2005-01-01
The atmospheric products have been derived operationally from multichannel imaging data collected with the Moderate Resolution Imaging SpectroRadiometers (MODIS) on board the NASA Terra and Aqua spacecrafts. Preliminary validations of the products were previously reported. Through analysis of more extensive time-series of MODIS aerosol products (Collection 4), we have found that the aerosol products over land areas are slightly contaminated by snow and ice during the springtime snow-melting season. We have developed an empirical technique using MODIS near-IR channels centered near 0.86 and 1.24 pm and a thermal emission channel near 11 pm to mask out these snow-contaminated pixels over land. Improved aerosol retrievals over land have been obtained. Sample results from application of the technique to MODIS data acquired over North America, northern Europe, and northeastern Asia are presented. The technique has been implemented into the MODIS Collection 5 operational algorithm for retrieving aerosols over land from MODIS data.
Long Term Cloud Property Datasets From MODIS and AVHRR Using the CERES Cloud Algorithm
NASA Technical Reports Server (NTRS)
Minnis, Patrick; Bedka, Kristopher M.; Doelling, David R.; Sun-Mack, Sunny; Yost, Christopher R.; Trepte, Qing Z.; Bedka, Sarah T.; Palikonda, Rabindra; Scarino, Benjamin R.; Chen, Yan;
2015-01-01
Cloud properties play a critical role in climate change. Monitoring cloud properties over long time periods is needed to detect changes and to validate and constrain models. The Clouds and the Earth's Radiant Energy System (CERES) project has developed several cloud datasets from Aqua and Terra MODIS data to better interpret broadband radiation measurements and improve understanding of the role of clouds in the radiation budget. The algorithms applied to MODIS data have been adapted to utilize various combinations of channels on the Advanced Very High Resolution Radiometer (AVHRR) on the long-term time series of NOAA and MetOp satellites to provide a new cloud climate data record. These datasets can be useful for a variety of studies. This paper presents results of the MODIS and AVHRR analyses covering the period from 1980-2014. Validation and comparisons with other datasets are also given.
MODIS Views Variations in Cloud Types
NASA Technical Reports Server (NTRS)
2002-01-01
This MODIS image, centered over the Great Lakes region in North America, shows a variety of cloud types. The clouds at the top of the image, colored pink, are cold, high-level snow and ice clouds, while the neon green clouds are lower-level water clouds. Because different cloud types reflect and emit radiant energy differently, scientists can use MODIS' unique data set to measure the sizes of cloud particles and distinguish between water, snow, and ice clouds. This scene was acquired on Feb. 24, 2000, and is a red, green, blue composite of bands 1, 6, and 31 (0.66, 1.6, and 11.0 microns, respectively). Image by Liam Gumley, Space Science and Engineering Center, University of Wisconsin-Madison
NASA Technical Reports Server (NTRS)
Wilcox, Eric M.; Harshvardhan; Platnick, Steven
2009-01-01
Two independent satellite retrievals of cloud liquid water path (LWP) from the NASA Aqua satellite are used to diagnose the impact of absorbing biomass burning aerosol overlaying boundary-layer marine water clouds on the Moderate Resolution Imaging Spectrometer (MODIS) retrievals of cloud optical thickness (tau) and cloud droplet effective radius (r(sub e)). In the MODIS retrieval over oceans, cloud reflectance in the 0.86-micrometer and 2.13-micrometer bands is used to simultaneously retrieve tau and r(sub e). A low bias in the MODIS tau retrieval may result from reductions in the 0.86-micrometer reflectance, which is only very weakly absorbed by clouds, owing to absorption by aerosols in cases where biomass burning aerosols occur above water clouds. MODIS LWP, derived from the product of the retrieved tau and r(sub e), is compared with LWP ocean retrievals from the Advanced Microwave Scanning Radiometer-EOS (AMSR-E), determined from cloud microwave emission that is transparent to aerosols. For the coastal Atlantic southern African region investigated in this study, a systematic difference between AMSR-E and MODIS LWP retrievals is found for stratocumulus clouds over three biomass burning months in 2005 and 2006 that is consistent with above-cloud absorbing aerosols. Biomass burning aerosol is detected using the ultraviolet aerosol index from the Ozone Monitoring Instrument (OMI) on the Aura satellite. The LWP difference (AMSR-E minus MODIS) increases both with increasing tau and increasing OMI aerosol index. During the biomass burning season the mean LWP difference is 14 g per square meters, which is within the 15-20 g per square meter range of estimated uncertainties in instantaneous LWP retrievals. For samples with only low amounts of overlaying smoke (OMI AI less than or equal to 1) the difference is 9.4, suggesting that the impact of smoke aerosols on the mean MODIS LWP is 5.6 g per square meter. Only for scenes with OMI aerosol index greater than 2 does the average LWP difference and the estimated bias in MODIS cloud optical thickness attributable to the impact of overlaying biomass burning aerosol exceed the instantaneous uncertainty in the retrievals.
Wang, Chenxi; Platnick, Steven; Zhang, Zhibo; Meyer, Kerry; Yang, Ping
2018-01-01
An optimal estimation (OE) retrieval method is developed to infer three ice cloud properties simultaneously: optical thickness (τ), effective radius (reff), and cloud-top height (h). This method is based on a fast radiative transfer (RT) model and infrared (IR) observations from the MODerate resolution Imaging Spectroradiometer (MODIS). This study conducts thorough error and information content analyses to understand the error propagation and performance of retrievals from various MODIS band combinations under different cloud/atmosphere states. Specifically, the algorithm takes into account four error sources: measurement uncertainty, fast RT model uncertainty, uncertainties in ancillary datasets (e.g., atmospheric state), and assumed ice crystal habit uncertainties. It is found that the ancillary and ice crystal habit error sources dominate the MODIS IR retrieval uncertainty and cannot be ignored. The information content analysis shows that, for a given ice cloud, the use of four MODIS IR observations is sufficient to retrieve the three cloud properties. However, the selection of MODIS IR bands that provide the most information and their order of importance varies with both the ice cloud properties and the ambient atmospheric and the surface states. As a result, this study suggests the inclusion of all MODIS IR bands in practice since little a priori information is available. PMID:29707470
NASA Technical Reports Server (NTRS)
Wang, Chenxi; Platnick, Steven; Zhang, Zhibo; Meyer, Kerry; Yang, Ping
2016-01-01
An optimal estimation (OE) retrieval method is developed to infer three ice cloud properties simultaneously: optical thickness (tau), effective radius (r(sub eff)), and cloud-top height (h). This method is based on a fast radiative transfer (RT) model and infrared (IR) observations from the MODerate resolution Imaging Spectroradiometer (MODIS). This study conducts thorough error and information content analyses to understand the error propagation and performance of retrievals from various MODIS band combinations under different cloud/atmosphere states. Specifically, the algorithm takes into account four error sources: measurement uncertainty, fast RT model uncertainty, uncertainties in ancillary datasets (e.g., atmospheric state), and assumed ice crystal habit uncertainties. It is found that the ancillary and ice crystal habit error sources dominate the MODIS IR retrieval uncertainty and cannot be ignored. The information content analysis shows that, for a given ice cloud, the use of four MODIS IR observations is sufficient to retrieve the three cloud properties. However, the selection of MODIS IR bands that provide the most information and their order of importance varies with both the ice cloud properties and the ambient atmospheric and the surface states. As a result, this study suggests the inclusion of all MODIS IR bands in practice since little a priori information is available.
NASA Technical Reports Server (NTRS)
Wang, Chenxi; Platnick, Steven; Zhang, Zhibo; Meyer, Kerry; Yang, Ping
2016-01-01
An optimal estimation (OE) retrieval method is developed to infer three ice cloud properties simultaneously: optical thickness (tau), effective radius (r(sub eff)), and cloud top height (h). This method is based on a fast radiative transfer (RT) model and infrared (IR) observations from the MODerate resolution Imaging Spectroradiometer (MODIS). This study conducts thorough error and information content analyses to understand the error propagation and performance of retrievals from various MODIS band combinations under different cloud/atmosphere states. Specifically, the algorithm takes into account four error sources: measurement uncertainty, fast RT model uncertainty, uncertainties in ancillary data sets (e.g., atmospheric state), and assumed ice crystal habit uncertainties. It is found that the ancillary and ice crystal habit error sources dominate the MODIS IR retrieval uncertainty and cannot be ignored. The information content analysis shows that for a given ice cloud, the use of four MODIS IR observations is sufficient to retrieve the three cloud properties. However, the selection of MODIS IR bands that provide the most information and their order of importance varies with both the ice cloud properties and the ambient atmospheric and the surface states. As a result, this study suggests the inclusion of all MODIS IR bands in practice since little a priori information is available.
Evaluating the impact of aerosol particles above cloud on cloud optical depth retrievals from MODIS
NASA Astrophysics Data System (ADS)
Alfaro-Contreras, Ricardo; Zhang, Jianglong; Campbell, James R.; Holz, Robert E.; Reid, Jeffrey S.
2014-05-01
Using two different operational Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) cloud optical depth (COD) retrievals (0.86 versus 1.6 µm), we evaluate the impact of above-cloud smoke aerosol particles on near-IR (0.86 µm) COD retrievals. Aerosol Index (AI) from the collocated Ozone Monitoring Instrument (OMI) are used to identify above-cloud aerosol particle loading over the southern Atlantic Ocean, including both smoke and dust from the African subcontinent. Collocated Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation data constrain cloud phase and provide contextual above-cloud aerosol optical depth. The frequency of occurrence of above-cloud aerosol events is depicted on a global scale for the spring and summer seasons from OMI and Cloud Aerosol Lidar with Orthogonal Polarization. Seasonal frequencies for smoke-over-cloud off the southwestern Africa coastline reach 20-50% in boreal summer. We find a corresponding low COD bias of 10-20% for standard MODIS COD retrievals when averaged OMI AI are larger than 1. No such bias is found over the Saharan dust outflow region off northern Africa, since both MODIS 0.86 and 1.6 µm channels are vulnerable to radiance attenuation due to dust particles. A similar result is found for a smaller domain, in the Gulf of Tonkin region, from smoke advection over marine stratocumulus clouds and outflow into the northern South China Sea in spring. This study shows the necessity of accounting for the above-cloud aerosol events for future studies using standard MODIS cloud products in biomass burning outflow regions, through the use of collocated OMI AI and supplementary MODIS 1.6 µm COD products.
Using High-Resolution Airborne Remote Sensing to Study Aerosol Near Clouds
NASA Technical Reports Server (NTRS)
Levy, Robert; Munchak, Leigh; Mattoo, Shana; Marshak, Alexander; Wilcox, Eric; Gao, Lan; Yorks, John; Platnick, Steven
2016-01-01
The horizontal space in between clear and cloudy air is very complex. This so-called twilight zone includes activated aerosols that are not quite clouds, thin cloud fragments that are not easily observable, and dying clouds that have not quite disappeared. This is a huge challenge for satellite remote sensing, specifically for retrieval of aerosol properties. Identifying what is cloud versus what is not cloud is critically important for attributing radiative effects and forcings to aerosols. At the same time, the radiative interactions between clouds and the surrounding media (molecules, surface and aerosols themselves) will contaminate retrieval of aerosol properties, even in clear skies. Most studies on aerosol cloud interactions are relevant to moderate resolution imagery (e.g. 500 m) from sensors such as MODIS. Since standard aerosol retrieval algorithms tend to keep a distance (e.g. 1 km) from the nearest detected cloud, it is impossible to evaluate what happens closer to the cloud. During Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS), the NASA ER-2 flew with the enhanced MODIS Airborne Simulator (eMAS), providing MODIS-like spectral observations at high (50 m) spatial resolution. We have applied MODIS-like aerosol retrieval for the eMAS data, providing new detail to characterization of aerosol near clouds. Interpretation and evaluation of these eMAS aerosol retrievals is aided by independent MODIS-like cloud retrievals, as well as profiles from the co-flying Cloud Physics Lidar (CPL). Understanding aerosolcloud retrieval at high resolution will lead to better characterization and interpretation of long-term, global products from lower resolution (e.g.MODIS) satellite retrievals.
NASA Astrophysics Data System (ADS)
Smith, W. L., Jr.; Minnis, P.; Bedka, K. M.; Sun-Mack, S.; Chen, Y.; Doelling, D. R.; Kato, S.; Rutan, D. A.
2017-12-01
Recent studies analyzing long-term measurements of surface insolation at ground sites suggest that decadal-scale trends of increasing (brightening) and decreasing (dimming) downward solar flux have occurred at various times over the last century. Regional variations have been reported that range from near 0 Wm-2/decade to as large as 9 Wm-2/decade depending on the location and time period analyzed. The more significant trends have been attributed to changes in overhead clouds and aerosols, although quantifying their relative impacts using independent observations has been difficult, owing in part to a lack of consistent long-term measurements of cloud properties. This paper examines new satellite based records of cloud properties derived from MODIS (2000-present) and AVHRR (1981- present) data to infer cloud property trends over a number of surface radiation sites across the globe. The MODIS cloud algorithm was developed for the NASA Clouds and the Earth's Radiant Energy System (CERES) project to provide a consistent record of cloud properties to help improve broadband radiation measurements and to better understand cloud radiative effects. The CERES-MODIS cloud algorithm has been modified to analyze other satellites including the AVHRR on the NOAA satellites. Compared to MODIS, obtaining consistent cloud properties over a long period from AVHRR is a much more significant challenge owing to the number of different satellites, instrument calibration uncertainties, orbital drift and other factors. Nevertheless, both the MODIS and AVHRR cloud properties will be analyzed to determine trends, and their level of consistency and correspondence with surface radiation trends derived from the ground-based radiometer data. It is anticipated that this initial study will contribute to an improved understanding of surface solar radiation trends and their relationship to clouds.
Pre-launch Performance Assessment of the VIIRS Ice Surface Temperature Algorithm
NASA Astrophysics Data System (ADS)
Ip, J.; Hauss, B.
2008-12-01
The VIIRS Ice Surface Temperature (IST) environmental data product provides the surface temperature of sea-ice at VIIRS moderate resolution (750m) during both day and night. To predict the IST, the retrieval algorithm utilizes a split-window approach with Long-wave Infrared (LWIR) channels at 10.76 μm (M15) and 12.01 μm (M16) to correct for atmospheric water vapor. The split-window approach using these LWIR channels is AVHRR and MODIS heritage, where the MODIS formulation has a slightly modified functional form. The algorithm relies on the VIIRS Cloud Mask IP for identifying cloudy and ocean pixels, the VIIRS Ice Concentration IP for identifying ice pixels, and the VIIRS Aerosol Optical Thickness (AOT) IP for excluding pixels with AOT greater than 1.0. In this paper, we will report the pre-launch performance assessment of the IST retrieval. We have taken two separate approaches to perform this assessment, one based on global synthetic data and the other based on proxy data from Terra MODIS. Results of the split- window algorithm have been assessed by comparison either to synthetic "truth" or results of the MODIS retrieval. We will also show that the results of the assessment with proxy data are consistent with those obtained using the global synthetic data.
Validation of CERES-MODIS Arctic cloud properties using CloudSat/CALIPSO and ARM NSA observations
NASA Astrophysics Data System (ADS)
Giannecchini, K.; Dong, X.; Xi, B.; Minnis, P.; Kato, S.
2011-12-01
The traditional passive satellite studies of cloud properties in the Arctic are often affected by the complex surface features present across the region. Nominal visual and thermal contrast exists between Arctic clouds and the snow- and ice-covered surfaces beneath them, which can lead to difficulties in satellite retrievals of cloud properties. However, the addition of active sensors to the A-Train constellation of satellites has increased the availability of validation sources for cloud properties derived from passive sensors in the data-sparse high-latitude regions. In this study, Arctic cloud fraction and cloud heights derived from the NASA CERES team (CERES-MODIS) have been compared with CloudSat/CALIPSO and DOE ARM NSA radar-lidar observations over Barrow, AK, for the two-year period from 2007 to 2008. An Arctic-wide comparison of cloud fraction and height between CERES-MODIS and CloudSat/CALIPSO was then conducted for the same time period. The CERES-MODIS cloud properties, which include cloud fraction and cloud effective heights, were retrieved using the 4-channel VISST (Visible Infrared Solar-Infrared Split-window Technique) [Minnis et al.,1995]. CloudSat/CALIPSO cloud fraction and cloud-base and -top heights were from version RelB1 data products determined by both the 94 GHz radar onboard CloudSat and the lidar on CALIPSO with a vertical resolution of 30 m below 8.2 km and 60 m above. To match the surface and satellite observations/retrievals, the ARM surface observations were averaged into 3-hour intervals centered at the time of the satellite overpass, while satellite observations were averaged within a 3°x3° grid box centered on the Barrow site. The preliminary results have shown that all observed CFs have peaks during April-May and September-October, and dips during winter months (January-February) and summer months (June-July) during the study period of 2007-2008. ARM radar-lidar and CloudSat/CALIPSO show generally good agreement in CF (0.79 vs. 0.74), while CERES-MODIS derived values are much lower (0.60). CERES-MODIS derived cloud effective height (2.7 km) falls between the CloudSat/CALIPSO derived cloud base (0.6 km) and top (6.4 km) and the ARM ceilometers and MMCR derived cloud base (0.9 km) and radar derived cloud top (5.8 km). When extended to the entire Arctic, although the CERES-MODIS and Cloudsat/CALIPSO derived annual mean CFs agree within a few percents, there are significant differences over several regions, and the maximum cloud heights derived from CloudSat/CALIPSO (13.4 km) and CERES-MODIS (10.7 km) show the largest disagreement during early spring.
NASA Technical Reports Server (NTRS)
Hall, Dorothy K.; Comiso, Josefino C.; DiGirolamo, Nicolo E.; Shuman, Christopher A.; Key, Jeffrey R.; Koenig, Lora S.
2011-01-01
We have developed a climate-quality data record of the clear-sky surface temperature of the Greenland Ice Sheet using the Moderate-Resolution Imaging Spectroradiometer (MODIS) Terra ice-surface temperature (1ST) algorithm. A climate-data record (CDR) is a time series of measurements of sufficient length, consistency, and continuity to determine climate variability and change. We present daily and monthly Terra MODIS ISTs of the Greenland Ice Sheet beginning on 1 March 2000 and continuing through 31 December 2010 at 6.25-km spatial resolution on a polar stereographic grid within +/-3 hours of 17:00Z or 2:00 PM Local Solar Time. Preliminary validation of the ISTs at Summit Camp, Greenland, during the 2008-09 winter, shows that there is a cold bias using the MODIS IST which underestimates the measured surface temperature by approximately 3 C when temperatures range from approximately -50 C to approximately -35 C. The ultimate goal is to develop a CDR that starts in 1981 with the Advanced Very High Resolution (AVHRR) Polar Pathfinder (APP) dataset and continues with MODIS data from 2000 to the present. Differences in the APP and MODIS cloud masks have so far precluded the current IST records from spanning both the APP and MODIS IST time series in a seamless manner though this will be revisited when the APP dataset has been reprocessed. The Greenland IST climate-quality data record is suitable for continuation using future Visible Infrared Imager Radiometer Suite (VIIRS) data and will be elevated in status to a CDR when at least 9 more years of climate-quality data become available either from MODIS Terra or Aqua, or from the VIIRS. The complete MODIS IST data record will be available online in the summer of 2011.
Integrated Cloud-Aerosol-Radiation Product using CERES, MODIS, CALIPSO and CloudSat Data
NASA Technical Reports Server (NTRS)
Sun-Mack, Sunny; Minnis, Patrick; Chen, Yan; Gibson, Sharon; Yi, Yuhong; Trepte, Qing; Wielicki, Bruce; Kato, Seiji; Winker, Dave
2007-01-01
This paper documents the development of the first integrated data set of global vertical profiles of clouds, aerosols, and radiation using the combined NASA A-Train data from the Aqua Clouds and Earth's Radiant Energy System (CERES) and Moderate Resolution Imaging Spectroradiometer (MODIS), Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), and CloudSat. As part of this effort, cloud data from the CALIPSO lidar and the CloudSat radar are merged with the integrated column cloud properties from the CERES-MODIS analyses. The active and passive datasets are compared to determine commonalities and differences in order to facilitate the development of a 3- dimensional cloud and aerosol dataset that will then be integrated into the CERES broadband radiance footprint. Preliminary results from the comparisons for April 2007 reveal that the CERES-MODIS global cloud amounts are, on average, 0.14 less and 0.15 greater than those from CALIPSO and CloudSat, respectively. These new data will provide unprecedented ability to test and improve global cloud and aerosol models, to investigate aerosol direct and indirect radiative forcing, and to validate the accuracy of global aerosol, cloud, and radiation data sets especially in polar regions and for multi-layered cloud conditions.
Integrated cloud-aerosol-radiation product using CERES, MODIS, CALIPSO, and CloudSat data
NASA Astrophysics Data System (ADS)
Sun-Mack, Sunny; Minnis, Patrick; Chen, Yan; Gibson, Sharon; Yi, Yuhong; Trepte, Qing; Wielicki, Bruce; Kato, Seiji; Winker, Dave; Stephens, Graeme; Partain, Philip
2007-10-01
This paper documents the development of the first integrated data set of global vertical profiles of clouds, aerosols, and radiation using the combined NASA A-Train data from the Aqua Clouds and Earth's Radiant Energy System (CERES) and Moderate Resolution Imaging Spectroradiometer (MODIS), Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), and CloudSat. As part of this effort, cloud data from the CALIPSO lidar and the CloudSat radar are merged with the integrated column cloud properties from the CERES-MODIS analyses. The active and passive datasets are compared to determine commonalities and differences in order to facilitate the development of a 3-dimensional cloud and aerosol dataset that will then be integrated into the CERES broadband radiance footprint. Preliminary results from the comparisons for April 2007 reveal that the CERES-MODIS global cloud amounts are, on average, 0.14 less and 0.15 greater than those from CALIPSO and CloudSat, respectively. These new data will provide unprecedented ability to test and improve global cloud and aerosol models, to investigate aerosol direct and indirect radiative forcing, and to validate the accuracy of global aerosol, cloud, and radiation data sets especially in polar regions and for multi-layered cloud conditions.
Effect of Cloud Fraction on Near-Cloud Aerosol Behavior Based on MODIS and CALIPSO Observations
NASA Technical Reports Server (NTRS)
Marshak, A.; Varnai, T.; Yang, W.
2015-01-01
Organizers of the MODIS-VIIRS Science Team Meeting, held May 18-22, 2015 in Silver Spring, MD plan to post the presentations and posters to the NASA MODIS website: http:modis.gsfc.nasa.govsci_teammeetings201505index.php. The MODIS Science Team Meeting is held twice a year, so that the members of the science team may assemble and discuss data they have collected, ideas they have formed, and future issues that apply to the MODIS Mission.
Modeling the Impact of Drizzle and 3D Cloud Structure on Remote Sensing of Effective Radius
NASA Technical Reports Server (NTRS)
Platnick, Steven; Zinner, Tobias; Ackerman, S.
2008-01-01
Remote sensing of cloud particle size with passive sensors like MODIS is an important tool for cloud microphysical studies. As a measure of the radiatively relevant droplet size, effective radius can be retrieved with different combinations of visible through shortwave infrared channels. MODIS observations sometimes show significantly larger effective radii in marine boundary layer cloud fields derived from the 1.6 and 2.1 pm channel observations than for 3.7 pm retrievals. Possible explanations range from 3D radiative transport effects and sub-pixel cloud inhomogeneity to the impact of drizzle formation on the droplet distribution. To investigate the potential influence of these factors, we use LES boundary layer cloud simulations in combination with 3D Monte Carlo simulations of MODIS observations. LES simulations of warm cloud spectral microphysics for cases of marine stratus and broken stratocumulus, each for two different values of cloud condensation nuclei density, produce cloud structures comprising droplet size distributions with and without drizzle size drops. In this study, synthetic MODIS observations generated from 3D radiative transport simulations that consider the full droplet size distribution will be generated for each scene. The operational MODIS effective radius retrievals will then be applied to the simulated reflectances and the results compared with the LES microphysics.
Analysis of Co-Located MODIS and CALIPSO Observations Near Clouds
NASA Technical Reports Server (NTRS)
Varnai, Tamas; Marshak, Alexander
2011-01-01
The purpose of this paper is to help researchers combine data from different satellites and thus gain new insights into two critical yet poorly understood aspects of anthropogenic climate change, aerosol-cloud interactions and aerosol radiative effects, For this, the paper explores whether cloud information from the Aqua satellite's MODIS instrument can help characterize systematic aerosol changes near clouds by refining earlier perceptions of these changes that were based on the CALIPSO satellite's CALIOP instrument. Similar to a radar but using visible and ncar-infrared light, CALIOP sends out laser pulses and provides aerosol and cloud information along a single line that tracks the satellite orbit by measuring the reflection of its pulses. In contrast, MODIS takes images of reflected sunlight and emitted infrared radiation at several wavelengths, and covers wide areas around the satellite track. This paper analyzes a year-long global dataset covering all ice-free oceans, and finds that MODIS can greatly help the interpretation of CALIOP observations, especially by detecting clouds that lie outside the line observed by CALlPSO. The paper also finds that complications such as differences in view direction or clouds drifting in the 72 seconds that elapse between MODIS and CALIOP observations have only a minor impact. The study also finds that MODIS data helps refine but does not qualitatively alter perceptions of the systematic aerosol changes that were detected in earlier studies using only CALIOP data. It then proposes a statistical approach to account for clouds lying outside the CALIOP track even when MODIS cannot as reliably detect low clouds, for example at night or over ice. Finally, the paper finds that, because of variations in cloud amount and type, the typical distance to clouds in maritime clear areas varies with season and location. The overall median distance to clouds in maritime clear areas around 4-5 km. The fact that half of all clear areas is closer than 5 km to clouds implies that pronounced near-cloud changes in aerosol properties have significant implications for overall clear-sky characteristics, including the radiative impact of aerosols.
Abstract Art or Arbiters of Energy?
NASA Technical Reports Server (NTRS)
2002-01-01
More than just the idle stuff of daydreams, clouds help control the flow of radiant energy around our world. Clouds are plentiful and widespread throughout Earth's atmosphere-covering up to 75 percent of our planet at any given time-so they play a dominant role in determining how much sunlight reaches the surface, how much sunlight is reflected back into space, how and where warmth is spread around the globe, and how much heat escapes from the surface and atmosphere back into space. Clouds are also highly variable. Clouds' myriad variations through time and space make them one of the greatest areas of uncertainty in scientists' understanding and predictions of climate change. In short, they play a central role in our world's climate system. The false-color image above shows a one-month composite of cloud optical thickness measured by the Moderate-resolution Imaging Spectroradiometer (MODIS) and averaged globally for April 2001. Optical thickness is a measure of how much solar radiation is not allowed to travel through a column of atmosphere. Areas colored red and yellow indicate very cloudy skies, on average, while areas colored green and light blue show moderately cloudy skies. Dark blue regions show where there is little or no cloud cover. This data product is an important new tool for helping scientists understand the roles clouds play in our global climate system. MODIS gives scientists new capabilities for measuring the structure and composition of clouds. MODIS observes the entire Earth almost every day in 36 spectral bands ranging from visible to thermal infrared wavelengths, enabling it to quantify a wide suite of clouds' physical and radiative properties. Specifically, MODIS can determine whether a cloud is composed of ice or water particles (or some combination of the two), it can measure the effective radius of the particles within a cloud, it can determine the temperature and altitude of cloud tops, and it can observe how much sunlight passes through a cloud. MODIS is one of five sensors flying aboard NASA's Terra satellite, the flagship in NASA's Earth Observing System, launched in December 1999. For more information about this and other new MODIS products, read NASA Unveils Spectacular Suite of New Global Data Products from MODIS. Image courtesy MODIS Atmosphere Group, NASA GSFC
NASA Technical Reports Server (NTRS)
Platnick, Steven; King, Michael D.; Wind, Gala; Holz, Robert E.; Ackerman, Steven A.; Nagle, Fred W.
2008-01-01
CALIPSO and CloudSat, launched in June 2006, provide global active remote sensing measurements of clouds and aerosols that can be used for validation of a variety of passive imager retrievals derived from instruments flying on the Aqua spacecraft and other A-Train platforms. The most recent processing effort for the MODIS Atmosphere Team, referred to as the "Collection 5" stream, includes a research-level multilayer cloud detection algorithm that uses both thermodynamic phase information derived from a combination of solar and thermal emission bands to discriminate layers of different phases, as well as true layer separation discrimination using a moderately absorbing water vapor band. The multilayer detection algorithm is designed to provide a means of assessing the applicability of 1D cloud models used in the MODIS cloud optical and microphysical product retrieval, which are generated at a 1 h resolution. Using pixel-level collocations of MODIS Aqua, CALIOP, and CloudSat radar measurements, we investigate the global performance of the thermodynamic phase and multilayer cloud detection algorithms.
Example MODIS Global Cloud Optical and Microphysical Properties: Comparisons between Terra and Aqua
NASA Technical Reports Server (NTRS)
Hubanks, P. A.; Platnick, S.; King, M. D.; Ackerman, S. A.; Frey, R. A.
2003-01-01
MODIS observations from the NASA EOS Terra spacecraft (launched in December 1999, 1030 local time equatorial crossing) have provided a unique data set of Earth observations. With the launch of the NASA Aqua spacecraft in May 2002 (1330 local time), two MODIS daytime (sunlit) and nighttime observations are now available in a 24 hour period, allowing for some measure of diurnal variability. We report on an initial analysis of several operational global (Level-3) cloud products from the two platforms. The MODIS atmosphere Level-3 products, which include clear-sky and aerosol products in addition to cloud products, are available as three separate files providing daily, eight-day, and monthly aggregations; each temporal aggregation is spatially aggregated to a 1 degree grid. The files contain approximately 600 statisitical datasets (from simple means and standard deviations to 1 - and 2-dimensional histograms). Operational cloud products include detection (cloud fraction), cloud-top properties, and daytimeonly cloud optical thickness and particle effective radius for both water and ice clouds. We will compare example global Terra and Aqua cloud fraction, optical thickness, and effective radius aggregations.
NASA Astrophysics Data System (ADS)
Wang, W.; Wang, Y.; Hashimoto, H.; Li, S.; Takenaka, H.; Higuchi, A.; Lyapustin, A.; Nemani, R. R.
2017-12-01
The latest generation of geostationary satellite sensors, including the GOES-16/ABI and the Himawari 8/AHI, provide exciting capability to monitor land surface at very high temporal resolutions (5-15 minute intervals) and with spatial and spectral characteristics that mimic the Earth Observing System flagship MODIS. However, geostationary data feature changing sun angles at constant view geometry, which is almost reciprocal to sun-synchronous observations. Such a challenge needs to be carefully addressed before one can exploit the full potential of the new sources of data. Here we take on this challenge with Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm, recently developed for accurate and globally robust applications like the MODIS Collection 6 re-processing. MAIAC first grids the top-of-atmosphere measurements to a fixed grid so that the spectral and physical signatures of each grid cell are stacked ("remembered") over time and used to dramatically improve cloud/shadow/snow detection, which is by far the dominant error source in the remote sensing. It also exploits the changing sun-view geometry of the geostationary sensor to characterize surface BRDF with augmented angular resolution for accurate aerosol retrievals and atmospheric correction. The high temporal resolutions of the geostationary data indeed make the BRDF retrieval much simpler and more robust as compared with sun-synchronous sensors such as MODIS. As a prototype test for the geostationary-data processing pipeline on NASA Earth Exchange (GEONEX), we apply MAIAC to process 18 months of data from Himawari 8/AHI over Australia. We generate a suite of test results, including the input TOA reflectance and the output cloud mask, aerosol optical depth (AOD), and the atmospherically-corrected surface reflectance for a variety of geographic locations, terrain, and land cover types. Comparison with MODIS data indicates a general agreement between the retrieved surface reflectance products. Furthermore, the geostationary results satisfactorily capture the movement of clouds and variations in atmospheric dust/aerosol concentrations, suggesting that high quality land surface and vegetation datasets from the advanced geostationary sensors can help complement and improve the corresponding EOS products.
NASA Technical Reports Server (NTRS)
Coddington, O. M.; Pilewskie, P.; Redemann, J.; Platnick, S.; Russell, P. B.; Schmidt, K. S.; Gore, W. J.; Livingston, J.; Wind, G.; Vukicevic, T.
2010-01-01
Haywood et al. (2004) show that an aerosol layer above a cloud can cause a bias in the retrieved cloud optical thickness and effective radius. Monitoring for this potential bias is difficult because space ]based passive remote sensing cannot unambiguously detect or characterize aerosol above cloud. We show that cloud retrievals from aircraft measurements above cloud and below an overlying aerosol layer are a means to test this bias. The data were collected during the Intercontinental Chemical Transport Experiment (INTEX-A) study based out of Portsmouth, New Hampshire, United States, above extensive, marine stratus cloud banks affected by industrial outflow. Solar Spectral Flux Radiometer (SSFR) irradiance measurements taken along a lower level flight leg above cloud and below aerosol were unaffected by the overlying aerosol. Along upper level flight legs, the irradiance reflected from cloud top was transmitted through an aerosol layer. We compare SSFR cloud retrievals from below ]aerosol legs to satellite retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) in order to detect an aerosol ]induced bias. In regions of small variation in cloud properties, we find that SSFR and MODIS-retrieved cloud optical thickness compares within the uncertainty range for each instrument while SSFR effective radius tend to be smaller than MODIS values (by 1-2 microns) and at the low end of MODIS uncertainty estimates. In regions of large variation in cloud properties, differences in SSFR and MODIS ]retrieved cloud optical thickness and effective radius can reach values of 10 and 10 microns, respectively. We include aerosols in forward modeling to test the sensitivity of SSFR cloud retrievals to overlying aerosol layers. We find an overlying absorbing aerosol layer biases SSFR cloud retrievals to smaller effective radii and optical thickness while nonabsorbing aerosols had no impact.
Remote sensing of cirrus cloud vertical size profile using MODIS data
NASA Astrophysics Data System (ADS)
Wang, Xingjuan; Liou, K. N.; Ou, Steve S. C.; Mace, G. G.; Deng, M.
2009-05-01
This paper describes an algorithm for inferring cirrus cloud top and cloud base effective particle sizes and cloud optical thickness from the Moderate Resolution Imaging Spectroradiometer (MODIS) 0.645, 1.64 and 2.13, and 3.75 μm band reflectances/radiances. This approach uses a successive minimization method based on a look-up library of precomputed reflectances/radiances from an adding-doubling radiative transfer program, subject to corrections for Rayleigh scattering at the 0.645 μm band, above-cloud water vapor absorption, and 3.75 μm thermal emission. The algorithmic accuracy and limitation of the retrieval method were investigated by synthetic retrievals subject to the instrument noise and the perturbation of input parameters. The retrieval algorithm was applied to three MODIS cirrus scenes over the Atmospheric Radiation Measurement Program's southern Great Plain site, north central China, and northeast Asia. The reliability of retrieved cloud optical thicknesses and mean effective particle sizes was evaluated by comparison with MODIS cloud products and qualitatively good correlations were obtained for all three cases, indicating that the performance of the vertical sizing algorithm is comparable with the MODIS retrieval program. Retrieved cloud top and cloud base ice crystal effective sizes were also compared with those derived from the collocated ground-based millimeter wavelength cloud radar for the first case and from the Cloud Profiling Radar onboard CloudSat for the other two cases. Differences between retrieved and radar-derived cloud properties are discussed in light of assumptions made in the collocation process and limitations in radar remote sensing characteristics.
An Integrated Cloud-Aerosol-Radiation Product Using CERES, MODIS, CALIPSO and CloudSat Data
NASA Astrophysics Data System (ADS)
Sun-Mack, S.; Gibson, S.; Chen, Y.; Wielicki, B.; Minnis, P.
2006-12-01
The goal of this paper is to provide the first integrated data set of global vertical profiles of aerosols, clouds, and radiation using the combined NASA A-Train data from Aqua CERES and MODIS, CALIPSO, and CloudSat. All of these instruments are flying in formation as part of the Aqua Train, or A-Train. This paper will present the preliminary results of merging aerosol and cloud data from the CALIPSO active lidar, cloud data from CloudSat, integrated column aerosol and cloud data from the MODIS CERES analyses, and surface and top-of-atmosphere broadband radiation fluxes from CERES. These new data will provide unprecedented ability to test and improve global cloud and aerosol models, to investigate aerosol direct and indirect radiative forcing, and to validate the accuracy of global aerosol, cloud, and radiation data sets especially in polar regions and for multi-layered cloud conditions.
NASA Technical Reports Server (NTRS)
Pincus, Robert; Platnick, Steven E.; Ackerman, Steve; Hemler, Richard; Hofmann, Patrick
2011-01-01
The properties of clouds that may be observed by satellite instruments, such as optical depth and cloud top pressure, are only loosely related to the way clouds are represented in models of the atmosphere. One way to bridge this gap is through "instrument simulators," diagnostic tools that map the model representation to synthetic observations so that differences between simulator output and observations can be interpreted unambiguously as model error. But simulators may themselves be restricted by limited information available from the host model or by internal assumptions. This work examines the extent to which instrument simulators are able to capture essential differences between MODIS and ISCCP, two similar but independent estimates of cloud properties. We focus on the stark differences between MODIS and ISCCP observations of total cloudiness and the distribution of cloud optical thickness can be traced to different approaches to marginal pixels, which MODIS excludes and ISCCP treats as homogeneous. These pixels, which likely contain broken clouds, cover about 15% of the planet and contain almost all of the optically thinnest clouds observed by either instrument. Instrument simulators can not reproduce these differences because the host model does not consider unresolved spatial scales and so can not produce broken pixels. Nonetheless, MODIS and ISCCP observation are consistent for all but the optically-thinnest clouds, and models can be robustly evaluated using instrument simulators by excluding ambiguous observations.
Extending MODIS Cloud Top and Infrared Phase Climate Records with VIIRS and CrIS
NASA Astrophysics Data System (ADS)
Heidinger, A. K.; Platnick, S. E.; Ackerman, S. A.; Holz, R.; Meyer, K.; Frey, R.; Wind, G.; Li, Y.; Botambekov, D.
2015-12-01
The MODIS imagers on the NASA EOS Terra and Aqua satellites have generated accurate and well-used cloud climate data records for 15 years. Both missions are expected to continue until the end of this decade and perhaps beyond. The Visible and Infrared Imaging Radiometer Suite (VIIRS) imagers on the Suomi-NPP (SNPP) mission (launched in October 2011) and future NOAA Joint Polar Satellite System (JPSS) platforms are the successors for imager-based cloud climate records from polar orbiting satellites after MODIS. To ensure product continuity across a broad suite of EOS products, NASA has funded a SNPP science team to develop EOS-like algorithms that can be use with SNPP and JPSS observations, including two teams to work on cloud products. Cloud data record continuity between MODIS and VIIRS is particularly challenging due to the lack of VIIRS CO2-slicing channels, which reduces information content for cloud detection and cloud-top property products, as well as down-stream cloud optical products that rely on both. Here we report on our approach to providing continuity specifically for the MODIS/VIIRS cloud-top and infrared-derived thermodynamic phase products by combining elements of the NASA MODIS science team (MOD) and the NOAA Algorithm Working Group (AWG) algorithms. The combined approach is referred to as the MODAWG processing package. In collaboration with the NASA Atmospheric SIPS located at the University of Wisconsin Space Science and Engineering Center, the MODAWG code has been exercised on one year of SNPP VIIRS data. In addition to cloud-top and phase, MODAWG provides a full suite of cloud products that are physically consistent with MODIS and have a similar data format. Further, the SIPS has developed tools to allow use of Cross-track Infrared Sounder (CrIS) observations in the MODAWG processing that can ameliorate the loss of the CO2 absorption channels on VIIRS. Examples will be given that demonstrate the positive impact that the CrIS data can provide when combined with VIIRS for cloud height and IR-phase retrievals.
NASA Technical Reports Server (NTRS)
Platnick, S.; Wind, G.
2004-01-01
In order to perform satellite retrievals of cloud properties, it is important to account for the effect of the above-cloud atmosphere on the observations. The solar bands used in the operational MODIS Terra and Aqua cloud optical and microphysical algorithms (visible, NIR, and SWIR spectral windows) are primarily affected by water vapor, and to a lesser extent by well-mixed gases. For water vapor, the above-cloud column amount, or precipitable water, provides adequate information for an atmospheric correction; details of the vertical vapor distribution are not typically necessary for the level of correction required. Cloud-top pressure has a secondary effect due to pressure broadening influences. For well- mixed gases, cloud-top pressure is also required for estimates of above-cloud abundances. We present a method for obtaining above-cloud precipitable water over dark Ocean surfaces using the MODIS 0.94 pm vapor absorption band. The retrieval includes an iterative procedure for establishing cloud-top temperature and pressure, and is useful for both single layer water and ice clouds. Knowledge of cloud thermodynamic phase is fundamental in retrieving cloud optical and microphysical properties. However, in cases of optically thin cirrus overlapping lower water clouds, the concept of a single unique phase is ill- defined and depends, at least, on the spectral region of interest. We will present a method for multi-layer and multi-phase cloud detection which uses above-cloud precipitable water retrievals along with several existing MODIS operational cloud products (cloud-top pressure derived from a C02 slicing algorithm, IR and SWIR phase retrievals). Results are catagorized by whether the radiative signature in the MODIS solar bands is primarily that of a water cloud with ice cloud contamination, or visa-versa. Examples in polar and mid-latitude regions will be shown.
NASA Astrophysics Data System (ADS)
Fu, D.; Di Girolamo, L.; Liang, L.; Zhao, G.
2017-12-01
Listed as one of the Essential Climate Variables by the Global Climate Observing System, the effective radius (Re) of the cloud drop size distribution plays an important role in the energy and water cycles of the Earth system. Re is retrieved from several passive sensors, such as the Moderate Resolution Imaging Spectroradiometer (MODIS), based on a visible and near-infrared bi-spectral technique that had its foundation more than a quarter century ago. This technique makes a wide range of assumptions, including 1-D radiative transfer, assumed single-mode drop size distribution, and cloud horizontal and vertical homogeneity. It is well known that deviations from these assumptions lead to bias in the retrieved Re. Recently, an effort to characterize the bias in MODIS-retrieved Re through MISR-MODIS data fusion revealed biases in the zonal-mean values of MODIS-retrieved Re that varied from 2 to 11 µm, depending on latitude (Liang et al., 2015). Here, in a push towards bias-correction of MODIS-retrieved Re, we further examine the bias with MISR-MODIS data fusion as it relates to other observed cloud properties, such as cloud-top height and the spatial variability of the radiance field, sun-view geometry, and the driving meteorology had from reanalysis data. Our results show interesting relationships in Re bias behavior with these observed properties, revealing that while Re bias do show a certain degree of dependence on some properties, no single property dominates the behavior in MODIS-retrieved Re bias.
NASA Technical Reports Server (NTRS)
Chiriaco, M.; Chepfer, H.; Haeffelin, M.; Minnis, P.; Noel, V.; Platnick, S.; McGill, M.; Baumgardner, D.; Dubuisson, P.; Pelon, J.;
2007-01-01
This study compares cirrus particle effective radius retrieved by a CALIPSO-like method with two similar methods using MODIS, MODI Airborne Simulator (MAS), and GOES imagery. The CALIPSO-like method uses lidar measurements coupled with the split-window technique that uses the infrared spectral information contained at the 8.65-micrometer, 11.15-micrometer and 12.05-micrometer bands to infer the microphysical properties of cirrus clouds. The two other methods, sing passive remote sensing at visible and infrared wavelengths, are the operational MODIS cloud products (referred to by its archival product identifier MOD06 for MODIS Terra) and MODIS retrievals performed by the CERES team at LaRC (Langley Research Center) in support of CERES algorithms; the two algorithms will be referred to as MOD06- and LaRC-method, respectively. The three techniques are compared at two different latitudes: (i) the mid-latitude ice clouds study uses 18 days of observations at the Palaiseau ground-based site in France (SIRTA: Site Instrumental de Recherche par Teledetection Atmospherique) including a ground-based 532 nm lidar and the Moderate Resolution Imaging Spectrometer (MODIS) overpasses on the Terra Platform, (ii) the tropical ice clouds study uses 14 different flight legs of observations collected in Florida, during the intensive field experiment CRYSTAL-FACE (Cirrus Regional Study of Tropical Anvils and cirrus Layers-Florida Area Cirrus Experiment), including the airborne Cloud Physics Lidar (CPL) and the MAS. The comparison of the three methods gives consistent results for the particle effective radius and the optical thickness, but discrepancies in cloud detection and altitudes. The study confirms the value of an active remote-sensing method (CALIPSO-like) for the study of sub-visible ice clouds, in both mid-latitudes and tropics. Nevertheless, this method is not reliable in optically very thick tropical ice clouds.
MODIS Retrievals of Cloud Optical Thickness and Particle Radius
NASA Technical Reports Server (NTRS)
Platnick, S.; King, M. D.; Ackerman, S. A.; Gray, M.; Moody, E.; Arnold, G. T.; Einaudi, Franco (Technical Monitor)
2000-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) provides an unprecedented opportunity for global cloud studies with 36 spectral bands from the visible through the infrared, and spatial resolution from 250 m to 1 km at nadir. In particular, all solar window bands useful for simultaneous retrievals of cloud optical thickness and particle size (0.67, 0.86, 1.2, 1.6, 2.1, and 3.7 micron bands) are now available on a single satellite instrument/platform for the first time. An operational algorithm for the retrieval of these optical and cloud physical properties (including water path) have been developed for both liquid and ice phase clouds. The product is archived into two categories: pixel-level retrievals at 1 km spatial resolution (referred to as a Level-2 product) and global gridded statistics (Level-3 product). An overview of the MODIS cloud retrieval algorithm and early level-2 and -3 results will be presented. A number of MODIS cloud validation activities are being planned, including the recent Southern Africa Regional Science Initiative 2000 (SAFARI-2000) dry season campaign conducted in August/September 2000. The later part of the experiment concentrated on MODIS validation in the Namibian stratocumulus regime off the southwest coast of Africa. Early retrieval results from this regime will be discussed.
NASA Technical Reports Server (NTRS)
Platnick, Steven; Meyer, Kerry G.; King, Michael D.; Wind, Galina; Amarasinghe, Nandana; Marchant, Benjamin G.; Arnold, G. Thomas; Zhang, Zhibo; Hubanks, Paul A.; Holz, Robert E.;
2016-01-01
The MODIS Level-2 cloud product (Earth Science Data Set names MOD06 and MYD06 for Terra and Aqua MODIS, respectively) provides pixel-level retrievals of cloud-top properties (day and night pressure, temperature, and height) and cloud optical properties(optical thickness, effective particle radius, and water path for both liquid water and ice cloud thermodynamic phases daytime only). Collection 6 (C6) reprocessing of the product was completed in May 2014 and March 2015 for MODIS Aqua and Terra, respectively. Here we provide an overview of major C6 optical property algorithm changes relative to the previous Collection 5 (C5) product. Notable C6 optical and microphysical algorithm changes include: (i) new ice cloud optical property models and a more extensive cloud radiative transfer code lookup table (LUT) approach, (ii) improvement in the skill of the shortwave-derived cloud thermodynamic phase, (iii) separate cloud effective radius retrieval datasets for each spectral combination used in previous collections, (iv) separate retrievals for partly cloudy pixels and those associated with cloud edges, (v) failure metrics that provide diagnostic information for pixels having observations that fall outside the LUT solution space, and (vi) enhanced pixel-level retrieval uncertainty calculations.The C6 algorithm changes collectively can result in significant changes relative to C5,though the magnitude depends on the dataset and the pixels retrieval location in the cloud parameter space. Example Level-2 granule and Level-3 gridded dataset differences between the two collections are shown. While the emphasis is on the suite of cloud opticalproperty datasets, other MODIS cloud datasets are discussed when relevant.
Platnick, Steven; Meyer, Kerry G; King, Michael D; Wind, Galina; Amarasinghe, Nandana; Marchant, Benjamin; Arnold, G Thomas; Zhang, Zhibo; Hubanks, Paul A; Holz, Robert E; Yang, Ping; Ridgway, William L; Riedi, Jérôme
2017-01-01
The MODIS Level-2 cloud product (Earth Science Data Set names MOD06 and MYD06 for Terra and Aqua MODIS, respectively) provides pixel-level retrievals of cloud-top properties (day and night pressure, temperature, and height) and cloud optical properties (optical thickness, effective particle radius, and water path for both liquid water and ice cloud thermodynamic phases-daytime only). Collection 6 (C6) reprocessing of the product was completed in May 2014 and March 2015 for MODIS Aqua and Terra, respectively. Here we provide an overview of major C6 optical property algorithm changes relative to the previous Collection 5 (C5) product. Notable C6 optical and microphysical algorithm changes include: (i) new ice cloud optical property models and a more extensive cloud radiative transfer code lookup table (LUT) approach, (ii) improvement in the skill of the shortwave-derived cloud thermodynamic phase, (iii) separate cloud effective radius retrieval datasets for each spectral combination used in previous collections, (iv) separate retrievals for partly cloudy pixels and those associated with cloud edges, (v) failure metrics that provide diagnostic information for pixels having observations that fall outside the LUT solution space, and (vi) enhanced pixel-level retrieval uncertainty calculations. The C6 algorithm changes collectively can result in significant changes relative to C5, though the magnitude depends on the dataset and the pixel's retrieval location in the cloud parameter space. Example Level-2 granule and Level-3 gridded dataset differences between the two collections are shown. While the emphasis is on the suite of cloud optical property datasets, other MODIS cloud datasets are discussed when relevant.
Platnick, Steven; Meyer, Kerry G.; King, Michael D.; Wind, Galina; Amarasinghe, Nandana; Marchant, Benjamin; Arnold, G. Thomas; Zhang, Zhibo; Hubanks, Paul A.; Holz, Robert E.; Yang, Ping; Ridgway, William L.; Riedi, Jérôme
2018-01-01
The MODIS Level-2 cloud product (Earth Science Data Set names MOD06 and MYD06 for Terra and Aqua MODIS, respectively) provides pixel-level retrievals of cloud-top properties (day and night pressure, temperature, and height) and cloud optical properties (optical thickness, effective particle radius, and water path for both liquid water and ice cloud thermodynamic phases–daytime only). Collection 6 (C6) reprocessing of the product was completed in May 2014 and March 2015 for MODIS Aqua and Terra, respectively. Here we provide an overview of major C6 optical property algorithm changes relative to the previous Collection 5 (C5) product. Notable C6 optical and microphysical algorithm changes include: (i) new ice cloud optical property models and a more extensive cloud radiative transfer code lookup table (LUT) approach, (ii) improvement in the skill of the shortwave-derived cloud thermodynamic phase, (iii) separate cloud effective radius retrieval datasets for each spectral combination used in previous collections, (iv) separate retrievals for partly cloudy pixels and those associated with cloud edges, (v) failure metrics that provide diagnostic information for pixels having observations that fall outside the LUT solution space, and (vi) enhanced pixel-level retrieval uncertainty calculations. The C6 algorithm changes collectively can result in significant changes relative to C5, though the magnitude depends on the dataset and the pixel’s retrieval location in the cloud parameter space. Example Level-2 granule and Level-3 gridded dataset differences between the two collections are shown. While the emphasis is on the suite of cloud optical property datasets, other MODIS cloud datasets are discussed when relevant. PMID:29657349
Shang, Huazhe; Letu, Husi; Nakajima, Takashi Y; Wang, Ziming; Ma, Run; Wang, Tianxing; Lei, Yonghui; Ji, Dabin; Li, Shenshen; Shi, Jiancheng
2018-01-18
Analysis of cloud cover and its diurnal variation over the Tibetan Plateau (TP) is highly reliant on satellite data; however, the accuracy of cloud detection from both polar-orbiting and geostationary satellites over this area remains unclear. The new-generation geostationary Himawari-8 satellites provide high-resolution spatial and temporal information about clouds over the Tibetan Plateau. In this study, the cloud detection of MODIS and AHI is investigated and validated against CALIPSO measurements. For AHI and MODIS, the false alarm rate of AHI and MODIS in cloud identification over the TP was 7.51% and 1.94%, respectively, and the cloud hit rate was 73.55% and 80.15%, respectively. Using hourly cloud-cover data from the Himawari-8 satellites, we found that at the monthly scale, the diurnal cycle in cloud cover over the TP tends to increase throughout the day, with the minimum and maximum cloud fractions occurring at 10:00 a.m. and 18:00 p.m. local time. Due to the limited time resolution of polar-orbiting satellites, the underestimation of MODIS daytime average cloud cover is approximately 4.00% at the annual scale, with larger biases during the spring (5.40%) and winter (5.90%).
Optical properties of aerosol contaminated cloud derived from MODIS instrument
NASA Astrophysics Data System (ADS)
Mei, Linlu; Rozanov, Vladimir; Lelli, Luca; Vountas, Marco; Burrows, John P.
2016-04-01
The presence of absorbing aerosols above/within cloud can reduce the amount of up-welling radiation in visible (VIS) and short-wave infrared and darken the spectral reflectance when compared with a spectrum of a clean cloud observed by satellite instruments (Jethva et al., 2013). Cloud properties retrieval for aerosol contaminated cases is a great challenge. Even small additional injection of aerosol particles into clouds in the cleanest regions of Earth's atmosphere will cause significant effect on those clouds and on climate forcing (Koren et al., 2014; Rosenfeld et al., 2014) because the micro-physical cloud process are non-linear with respect to the aerosol loading. The current cloud products like Moderate Resolution Imaging Spectroradiometer (MODIS) ignoring the aerosol effect for the retrieval, which may cause significant error in the satellite-derived cloud properties. In this paper, a new cloud properties retrieval method, considering aerosol effect, based on the weighting-function (WF) method, is presented. The retrieval results shows that the WF retrieved cloud properties (e.g COT) agrees quite well with MODIS COT product for relative clear atmosphere (AOT ≤ 0.4) while there is a large difference for large aerosol loading. The MODIS COT product is underestimated for at least 2 - 3 times for AOT>0.4, and this underestimation increases with the increase of AOT.
Reconciling biases and uncertainties of AIRS and MODIS ice cloud properties
NASA Astrophysics Data System (ADS)
Kahn, B. H.; Gettelman, A.
2015-12-01
We will discuss comparisons of collocated Atmospheric Infrared Sounder (AIRS) and Moderate Resolution Imaging Spectroradiometer (MODIS) ice cloud optical thickness (COT), effective radius (CER), and cloud thermodynamic phase retrievals. The ice cloud comparisons are stratified by retrieval uncertainty estimates, horizontal inhomogeneity at the pixel-scale, vertical cloud structure, and other key parameters. Although an estimated 27% globally of all AIRS pixels contain ice cloud, only 7% of them are spatially uniform ice according to MODIS. We find that the correlations of COT and CER between the two instruments are strong functions of horizontal cloud heterogeneity and vertical cloud structure. The best correlations are found in single-layer, horizontally homogeneous clouds over the low-latitude tropical oceans with biases and scatter that increase with scene complexity. While the COT comparisons are unbiased in homogeneous ice clouds, a bias of 5-10 microns remains in CER within the most homogeneous scenes identified. This behavior is entirely consistent with known sensitivity differences in the visible and infrared bands. We will use AIRS and MODIS ice cloud properties to evaluate ice hydrometeor output from climate model output, such as the CAM5, with comparisons sorted into different dynamical regimes. The results of the regime-dependent comparisons will be described and implications for model evaluation and future satellite observational needs will be discussed.
NASA Technical Reports Server (NTRS)
2002-01-01
The Moderate-resolution Imaging Spectroradiometer's (MODIS') cloud detection capability is so sensitive that it can detect clouds that would be indistinguishable to the human eye. This pair of images highlights MODIS' ability to detect what scientists call 'sub-visible cirrus.' The image on top shows the scene using data collected in the visible part of the electromagnetic spectrum-the part our eyes can see. Clouds are apparent in the center and lower right of the image, while the rest of the image appears to be relatively clear. However, data collected at 1.38um (lower image) show that a thick layer of previously undetected cirrus clouds obscures the entire scene. These kinds of cirrus are called 'sub-visible' because they can't be detected using only visible light. MODIS' 1.38um channel detects electromagnetic radiation in the infrared region of the spectrum. These images were made from data collected on April 4, 2000. Image courtesy Mark Gray, MODIS Atmosphere Team
Cloud Motion in the GOCI COMS Ocean Colour Data
NASA Technical Reports Server (NTRS)
Robinson, Wayne D.; Franz, Bryan A.; Mannino, Antonio; Ahn, Jae-Hyun
2016-01-01
The Geostationary Ocean Colour Imager (GOCI) instrument, on Koreas Communications, Oceans, and Meteorological Satellite (COMS), can produce a spectral artefact arising from the motion of clouds the cloud is spatially shifted and the amount of shift varies by spectral band. The length of time it takes to acquire all eight GOCI bands for a given slot (portion of a scene) is sucient to require that cloud motion be taken into account to fully mask or correct the eects of clouds in all bands. Inter-band correlations can be used to measure the amount of cloud shift, which can then be used to adjust the cloud mask so that the union of all shifted masks can act as a mask for all bands. This approach reduces the amount of masking required versus a simple expansion of the mask in all directions away from clouds. Cloud motion can also aect regions with unidentied clouds thin or fractional clouds that evade the cloud identication process yielding degraded quality in retrieved ocean colour parameters. Areas with moving and unidentied clouds require more elaborate masking algo-rithms to remove these degraded retrievals. Correction for the eects of moving fractional clouds may also be possible. The cloud shift information can be used to determine cloud motion and thus wind at the cloud levels on sub-minute timescales. The benecial and negative eects of moving clouds should be con-sidered for any ocean colour instrument design and associated data processing plans.
NASA Astrophysics Data System (ADS)
Hu, Y.; Vaughan, M.; McClain, C.; Behrenfeld, M.; Maring, H.; Anderson, D.; Sun-Mack, S.; Flittner, D.; Huang, J.; Wielicki, B.; Minnis, P.; Weimer, C.; Trepte, C.; Kuehn, R.
2007-06-01
This study presents an empirical relation that links the volume extinction coefficients of water clouds, the layer integrated depolarization ratios measured by lidar, and the effective radii of water clouds derived from collocated passive sensor observations. Based on Monte Carlo simulations of CALIPSO lidar observations, this method combines the cloud effective radius reported by MODIS with the lidar depolarization ratios measured by CALIPSO to estimate both the liquid water content and the effective number concentration of water clouds. The method is applied to collocated CALIPSO and MODIS measurements obtained during July and October of 2006, and January 2007. Global statistics of the cloud liquid water content and effective number concentration are presented.
Comparison of the MODIS Collection 5 Multilayer Cloud Detection Product with CALIPSO
NASA Technical Reports Server (NTRS)
Platnick, Steven; Wind, Gala; King, Michael D.; Holz, Robert E.; Ackerman, Steven A.; Nagle, Fred W.
2010-01-01
CALIPSO, launched in June 2006, provides global active remote sensing measurements of clouds and aerosols that can be used for validation of a variety of passive imager retrievals derived from instruments flying on the Aqua spacecraft and other A-Train platforms. The most recent processing effort for the MODIS Atmosphere Team, referred to as the Collection 5 scream, includes a research-level multilayer cloud detection algorithm that uses both thermodynamic phase information derived from a combination of solar and thermal emission bands to discriminate layers of different phases, as well as true layer separation discrimination using a moderately absorbing water vapor band. The multilayer detection algorithm is designed to provide a means of assessing the applicability of 1D cloud models used in the MODIS cloud optical and microphysical product retrieval, which are generated at a 1 km resolution. Using pixel-level collocations of MODIS Aqua, CALIOP, we investigate the global performance of multilayer cloud detection algorithms (and thermodynamic phase).
NASA Astrophysics Data System (ADS)
Choi, Myungje; Kim, Jhoon; Lee, Jaehwa; Kim, Mijin; Park, Young-Je; Holben, Brent; Eck, Thomas F.; Li, Zhengqiang; Song, Chul H.
2018-01-01
The Geostationary Ocean Color Imager (GOCI) Yonsei aerosol retrieval (YAER) version 1 algorithm was developed to retrieve hourly aerosol optical depth at 550 nm (AOD) and other subsidiary aerosol optical properties over East Asia. The GOCI YAER AOD had accuracy comparable to ground-based and other satellite-based observations but still had errors because of uncertainties in surface reflectance and simple cloud masking. In addition, near-real-time (NRT) processing was not possible because a monthly database for each year encompassing the day of retrieval was required for the determination of surface reflectance. This study describes the improved GOCI YAER algorithm version 2 (V2) for NRT processing with improved accuracy based on updates to the cloud-masking and surface-reflectance calculations using a multi-year Rayleigh-corrected reflectance and wind speed database, and inversion channels for surface conditions. The improved GOCI AOD τG is closer to that of the Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) AOD than was the case for AOD from the YAER V1 algorithm. The V2 τG has a lower median bias and higher ratio within the MODIS expected error range (0.60 for land and 0.71 for ocean) compared with V1 (0.49 for land and 0.62 for ocean) in a validation test against Aerosol Robotic Network (AERONET) AOD τA from 2011 to 2016. A validation using the Sun-Sky Radiometer Observation Network (SONET) over China shows similar results. The bias of error (τG - τA) is within -0.1 and 0.1, and it is a function of AERONET AOD and Ångström exponent (AE), scattering angle, normalized difference vegetation index (NDVI), cloud fraction and homogeneity of retrieved AOD, and observation time, month, and year. In addition, the diagnostic and prognostic expected error (PEE) of τG are estimated. The estimated PEE of GOCI V2 AOD is well correlated with the actual error over East Asia, and the GOCI V2 AOD over South Korea has a higher ratio within PEE than that over China and Japan.
Improving Scene Classifications with Combined Active/Passive Measurements
NASA Astrophysics Data System (ADS)
Hu, Y.; Rodier, S.; Vaughan, M.; McGill, M.
The uncertainties in cloud and aerosol physical properties derived from passive instruments such as MODIS are not insignificant And the uncertainty increases when the optical depths decrease Lidar observations do much better for the thin clouds and aerosols Unfortunately space-based lidar measurements such as the one onboard CALIPSO satellites are limited to nadir view only and thus have limited spatial coverage To produce climatologically meaningful thin cloud and aerosol data products it is necessary to combine the spatial coverage of MODIS with the highly sensitive CALIPSO lidar measurements Can we improving the quality of cloud and aerosol remote sensing data products by extending the knowledge about thin clouds and aerosols learned from CALIPSO-type of lidar measurements to a larger portion of the off-nadir MODIS-like multi-spectral pixels To answer the question we studied the collocated Cloud Physics Lidar CPL with Modis-Airborne-Simulation MAS observations and established an effective data fusion technique that will be applied in the combined CALIPSO MODIS cloud aerosol product algorithms This technique performs k-mean and Kohonen self-organized map cluster analysis on the entire swath of MAS data as well as on the combined CPL MAS data at the nadir track Interestingly the clusters generated from the two approaches are almost identical It indicates that the MAS multi-spectral data may have already captured most of the cloud and aerosol scene types such as cloud ice water phase multi-layer information aerosols
Sensitivity of Aerosol Multi-Sensor Daily Data Intercomparison to the Level 3 Dataday Definition
NASA Technical Reports Server (NTRS)
Leptoukh, Gregory; Lary, David; Shen, Suhung; Lynnes, Christopher
2010-01-01
Topics include: why people use Level 3 products, why someone might go wrong with Level 3 products, differences in L3 from different sensors, Level 3 data day definition, MODIS vs. MODIS, AOD MODIS Terra vs. Aqua in Pacific, AOD Aqua MODIS vs. MISR correlation map, MODIS vs MISR on Terra, MODIS atmospheric data day definition, orbit time difference for Terra and Aqua 2009-01-06, maximum time difference for Terra (Calendar day), artifact explains, data day definitions, local time distribution, spatial (local time) data day definition, maximum time difference between Terra and Aqua, Removing the artifact in 16-day AOD correlation, MODIS cloud top pressure, and MODIS Terra and Aqua vs. AIRS cloud top pressure.
TERRA/MODIS Data Products and Data Management at the GES-DAAC
NASA Astrophysics Data System (ADS)
Sharma, A. K.; Ahmad, S.; Eaton, P.; Koziana, J.; Leptoukh, G.; Ouzounov, D.; Savtchenko, A.; Serafino, G.; Sikder, M.; Zhou, B.
2001-05-01
Since February 2000, the Earth Sciences Distributed Active Archive Center (GES-DAAC) at the NASA/Goddard Space Flight Center has been successfully ingesting, processing, archiving, and distributing the Moderate Resolution Imaging Spectroradiometer (MODIS) data. MODIS is the key instrument aboard the Terra satellite, viewing the entire Earth's surface every 1 to 2 days, acquiring data in 36 channels in the visible and infrared spectral bands (0.4 to 14.4 microns). Higher resolution (250m, 500m, and 1km pixel) data are improving our understanding of global dynamics and processes occurring on the land, in the oceans, and in the lower atmosphere and will play a vital role in the future development of validated, global, interactive Earth-system models. MODIS calibrated and uncalibrated radiances, and geolocation products were released to the public in April 2000, and a suite of oceans products and an entire suite of atmospheric products were released by early January 2001. The suite of ocean products is grouped into three categories Ocean Color, SST and Primary Productivity. The suite of atmospheric products includes Aerosol, Total Precipitable Water, Cloud Optical and Physical properties, Atmospheric Profiles and Cloud Mask. The MODIS Data Support Team (MDST) at the GES-DAAC has been providing support for enabling basic scientific research and assistance in accessing the scientific data and information to the Earth Science User Community. Support is also provided for data formats (HDF-EOS), information on visualization tools, documentation for data products, information on the scientific content of products and metadata. Visit the MDST website at http://daac.gsfc.nasa.gov/CAMPAIGN_DOCS/MODIS/index.html The task to process archive and distribute enormous volumes of MODIS data to users (more than 0.5 TB a day) has led to the development of an unique world wide web based GES DAAC Search and Order system http://acdisx.gsfc.nasa.gov/data/, data handling software and tools, as well as a FTP site that contains sample of browse images and MODIS data products. This paper is intended to inform the user community about the data system and services available at the GES-DAAC in support of these information-rich data products. MDST provides support to MODIS data users to access and process data and information for research, applications and educational purposes. This paper will present an overview of the MODIS data products released to public including the suite of atmosphere and oceans data products that can be ordered from the GES-DAAC. Different mechanisms for search and ordering the data, determining data product sizes, data distribution policy, User Assistance System (UAS), and data subscription services will be described.
NASA Astrophysics Data System (ADS)
Zhang, Z.; Song, H.; Wang, M.; Ghan, S. J.; Dong, X.
2016-12-01
he main objective of this study is to systematically evaluate the MBL cloud properties simulated in CAM5 family models using a combination of satellite-based CloudSat/MODIS observations and ground-based observations from the ARM Azores site, with a special focus on MBL cloud microphysics and warm rain process. First, we will present a global evaluation based on satellite observations and retrievals. We will compare global cloud properties (e.g., cloud fraction, cloud vertical structure, cloud CER, COT, and LWP, as well as drizzle frequency and intensity diagnosed using the CAM5-COSP instrumental simulators) simulated in the CAM5 models with the collocated CloudSat and MODIS observations. We will also present some preliminary results from a regional evaluation based mainly on ground observations from ARM Azores site. We will compare MBL cloud properties simulated in CAM5 models over the ARM Azores site with collocated satellite (MODIS and CloudSat) and ground-based observations from the ARM site.
NASA Astrophysics Data System (ADS)
Wang, C.; Platnick, S. E.; Meyer, K.; Zhang, Z.
2014-12-01
We developed an optimal estimation (OE)-based method using infrared (IR) observations to retrieve ice cloud optical thickness (COT), cloud effective radius (CER), and cloud top height (CTH) simultaneously. The OE-based retrieval is coupled with a fast IR radiative transfer model (RTM) that simulates observations of different sensors, and corresponding Jacobians in cloudy atmospheres. Ice cloud optical properties are calculated using the MODIS Collection 6 (C6) ice crystal habit (severely roughened hexagonal column aggregates). The OE-based method can be applied to various IR space-borne and airborne sensors, such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and the enhanced MODIS Airborne Simulator (eMAS), by optimally selecting IR bands with high information content. Four major error sources (i.e., the measurement error, fast RTM error, model input error, and pre-assumed ice crystal habit error) are taken into account in our OE retrieval method. We show that measurement error and fast RTM error have little impact on cloud retrievals, whereas errors from the model input and pre-assumed ice crystal habit significantly increase retrieval uncertainties when the cloud is optically thin. Comparisons between the OE-retrieved ice cloud properties and other operational cloud products (e.g., the MODIS C6 and CALIOP cloud products) are shown.
NASA Technical Reports Server (NTRS)
Fisher, Brad; Joiner, Joanna; Vasilkov, Alexander; Veefkind, Pepijn; Platnick, Steven; Wind, Galina
2014-01-01
Clouds cover approximately 60% of the earth's surface. When obscuring the satellite's field of view (FOV), clouds complicate the retrieval of ozone, trace gases and aerosols from data collected by earth observing satellites. Cloud properties associated with optical thickness, cloud pressure, water phase, drop size distribution (DSD), cloud fraction, vertical and areal extent can also change significantly over short spatio-temporal scales. The radiative transfer models used to retrieve column estimates of atmospheric constituents typically do not account for all these properties and their variations. The OMI science team is preparing to release a new data product, OMMYDCLD, which combines the cloud information from sensors on board two earth observing satellites in the NASA A-Train: Aura/OMI and Aqua/MODIS. OMMYDCLD co-locates high resolution cloud and radiance information from MODIS onto the much larger OMI pixel and combines it with parameters derived from the two other OMI cloud products: OMCLDRR and OMCLDO2. The product includes histograms for MODIS scientific data sets (SDS) provided at 1 km resolution. The statistics of key data fields - such as effective particle radius, cloud optical thickness and cloud water path - are further separated into liquid and ice categories using the optical and IR phase information. OMMYDCLD offers users of OMI data cloud information that will be useful for carrying out OMI calibration work, multi-year studies of cloud vertical structure and in the identification and classification of multi-layer clouds.
Cao, Ya-nan; Wei, He-li; Dai, Cong-ming; Zhang, Xue-hai
2015-05-01
A study was carried out to retrieve optical thickness and cloud top height of cirrus clouds from the Atmospheric Infrared Sounder (AIRS) high spectral resolution data in 1070~1135 cm-1 IR band using a Combined Atmospheric Radiative Transfer model (CART) by brightness temperature difference between model simulation and AIRS observation. The research is based on AIRS LIB high spectral infrared observation data combined with Moderate Resolution Imaging Spectroradiometer (MODIS) cloud product data. Brightness temperature spectra based, on the retrieved cirrus optical thickness and cloud top height were simulated and compared with brightness temperature spectra of AIRS observation in the 650~1150 cm-1 band. The cirrus optical thickness and cloud top height retrieved were compared with brightness temperature of AIRS for channel 760 (900.56 cm-1, 11. 1 µm) and cirrus reflectance of MODIS cloud product. And cloud top height retrieved was compared with cloud top height from MODIS. Results show that the brightness temperature spectra simulated were basically consistent with AIRS observation under the condition of retrieval in the 650~1150 cm-1 band. It means that CART can be used to simulate AIRS brightness temperature spectra. The retrieved cirrus parameters are consistent with brightness temperature of AIRS for channel 11. 1 µm with low brightness temperature corresponding to large cirrus optical thickness and high cloud top height. And the retrieved cirrus parameters are consistent with cirrus reflectance of MODIS cloud product with high cirrus reflectance corresponding to large cirrus optical thickness and high cloud top height. Correlation coefficient of brightness temperature between retrieved cloud top height and MODIS cloud top height was relatively high. They are mostly located in the range of 8. 5~11.5 km, and their probability distribution trend is approximately identical. CART model is feasible to retrieve cirrus properties, and the retrieval is reliable.
A Full Snow Season in Yellowstone: A Database of Restored Aqua Band 6
NASA Technical Reports Server (NTRS)
Gladkova, Irina; Grossberg, Michael; Bonev, George; Romanov, Peter; Riggs, George; Hall, Dorothy
2013-01-01
The algorithms for estimating snow extent for the Moderate Resolution Imaging Spectroradiometer (MODIS) optimally use the 1.6- m channel which is unavailable for MODIS on Aqua due to detector damage. As a test bed to demonstrate that Aqua band 6 can be restored, we chose the area surrounding Yellowstone and Grand Teton national parks. In such rugged and difficult-to-access terrain, satellite images are particularly important for providing an estimation of snow-cover extent. For the full 2010-2011 snow season covering the Yellowstone region, we have used quantitative image restoration to create a database of restored Aqua band 6. The database includes restored radiances, normalized vegetation index, normalized snow index, thermal data, and band-6-based snow-map products. The restored Aqua-band-6 data have also been regridded and combined with Terra data to produce a snow-cover map that utilizes both Terra and Aqua snow maps. Using this database, we show that the restored Aqua-band-6-based snow-cover extent has a comparable performance with respect to ground stations to the one based on Terra. The result of a restored band 6 from Aqua is that we have an additional band-6 image of the Yellowstone region each day. This image can be used to mitigate cloud occlusion, using the same algorithms used for band 6 on Terra. We show an application of this database of restored band-6 images to illustrate the value of creating a cloud gap filling using the National Aeronautics and Space Administration s operational cloud masks and data from both Aqua and Terra.
View angle dependence of cloud optical thicknesses retrieved by MODIS
NASA Technical Reports Server (NTRS)
Marshak, Alexander; Varnai, Tamas
2005-01-01
This study examines whether cloud inhomogeneity influences the view angle dependence of MODIS cloud optical thickness (tau) retrieval results. The degree of cloud inhomogeneity is characterized through the local gradient in 11 microns brightness temperature. The analysis of liquid phase clouds in a one year long global dataset of Collection 4 MODIS data reveals that while optical thickness retrievals give remarkably consistent results for all view directions if clouds are homogeneous, they give much higher tau-values for oblique views than for overhead views if clouds are inhomogeneous and the sun is fairly oblique. For solar zenith angles larger than 55deg, the mean optical thickness retrieved for the most inhomogeneous third of cloudy pixels is more than 30% higher for oblique views than for overhead views. After considering a variety of possible scenarios, the paper concludes that the most likely reason for the increase lies in three-dimensional radiative interactions that are not considered in current, one-dimensional retrieval algorithms. Namely, the radiative effect of cloud sides viewed at oblique angles seems to contribute most to the enhanced tau-values. The results presented here will help understand cloud retrieval uncertainties related to cloud inhomogeneity. They complement the uncertainty estimates that will start accompanying MODIS cloud products in Collection 5 and may eventually help correct for the observed view angle dependent biases.
MODIS Snow Cover Mapping Decision Tree Technique: Snow and Cloud Discrimination
NASA Technical Reports Server (NTRS)
Riggs, George A.; Hall, Dorothy K.
2010-01-01
Accurate mapping of snow cover continues to challenge cryospheric scientists and modelers. The Moderate-Resolution Imaging Spectroradiometer (MODIS) snow data products have been used since 2000 by many investigators to map and monitor snow cover extent for various applications. Users have reported on the utility of the products and also on problems encountered. Three problems or hindrances in the use of the MODIS snow data products that have been reported in the literature are: cloud obscuration, snow/cloud confusion, and snow omission errors in thin or sparse snow cover conditions. Implementation of the MODIS snow algorithm in a decision tree technique using surface reflectance input to mitigate those problems is being investigated. The objective of this work is to use a decision tree structure for the snow algorithm. This should alleviate snow/cloud confusion and omission errors and provide a snow map with classes that convey information on how snow was detected, e.g. snow under clear sky, snow tinder cloud, to enable users' flexibility in interpreting and deriving a snow map. Results of a snow cover decision tree algorithm are compared to the standard MODIS snow map and found to exhibit improved ability to alleviate snow/cloud confusion in some situations allowing up to about 5% increase in mapped snow cover extent, thus accuracy, in some scenes.
NASA Astrophysics Data System (ADS)
Hu, Y.; Vaughan, M.; McClain, C.; Behrenfeld, M.; Maring, H.; Anderson, D.; Sun-Mack, S.; Flittner, D.; Huang, J.; Wielicki, B.; Minnis, P.; Weimer, C.; Trepte, C.; Kuehn, R.
2007-03-01
This study presents an empirical relation that links layer integrated depolarization ratios, the extinction coefficients, and effective radii of water clouds, based on Monte Carlo simulations of CALIPSO lidar observations. Combined with cloud effective radius retrieved from MODIS, cloud liquid water content and effective number density of water clouds are estimated from CALIPSO lidar depolarization measurements in this study. Global statistics of the cloud liquid water content and effective number density are presented.
NASA Technical Reports Server (NTRS)
Ding, Jiachen; Yang, Ping; Kattawar, George W.; King, Michael D.; Platnick, Steven; Meyer, Kerry G.
2017-01-01
Similarity relations applied to ice cloud radiance calculations are theoretically analyzed and numerically validated. If t(1v) and t(1vg) are conserved where t is optical thickness, v the single-scattering albedo, and g the asymmetry factor, it is possible that substantially different phase functions may give rise to similar radiances in both conservative and non-conservative scattering cases, particularly in the case of large optical thicknesses. In addition to theoretical analysis, this study uses operational ice cloud optical thickness retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) Level 2 Collection5 (C5) and Collection 6 (C6) cloud property products to verify radiative similarity relations. It is found that, if the MODIS C5 and C6 ice cloud optical thickness values are multiplied by their respective (1wg)factors, the resultant products referred to as the effective optical thicknesses become similar with their ratio values around unity. Furthermore, the ratios of the C5 and C6 ice cloud effective optical thicknesses display an angular variation pattern similar to that of the corresponding ice cloud phase function ratios. The MODIS C5 and C6 values of ice cloud similarity parameter, defined as [(1w)(1(exp. 1/2)wg)]12, also tend to be similar.
NASA Astrophysics Data System (ADS)
Alvarez, César I.; Teodoro, Ana; Tierra, Alfonso
2017-10-01
Thin clouds in the optical remote sensing data are frequent and in most of the cases don't allow to have a pure surface data in order to calculate some indexes as Normalized Difference Vegetation Index (NDVI). This paper aims to evaluate the Automatic Cloud Removal Method (ACRM) algorithm over a high elevation city like Quito (Ecuador), with an altitude of 2800 meters above sea level, where the clouds are presented all the year. The ACRM is an algorithm that considers a linear regression between each Landsat 8 OLI band and the Cirrus band using the slope obtained with the linear regression established. This algorithm was employed without any reference image or mask to try to remove the clouds. The results of the application of the ACRM algorithm over Quito didn't show a good performance. Therefore, was considered improving this algorithm using a different slope value data (ACMR Improved). After, the NDVI computation was compared with a reference NDVI MODIS data (MOD13Q1). The ACMR Improved algorithm had a successful result when compared with the original ACRM algorithm. In the future, this Improved ACRM algorithm needs to be tested in different regions of the world with different conditions to evaluate if the algorithm works successfully for all conditions.
NASA Astrophysics Data System (ADS)
Iwabuchi, Hironobu; Saito, Masanori; Tokoro, Yuka; Putri, Nurfiena Sagita; Sekiguchi, Miho
2016-12-01
Satellite remote sensing of the macroscopic, microphysical, and optical properties of clouds are useful for studying spatial and temporal variations of clouds at various scales and constraining cloud physical processes in climate and weather prediction models. Instead of using separate independent algorithms for different cloud properties, a unified, optimal estimation-based cloud retrieval algorithm is developed and applied to moderate resolution imaging spectroradiometer (MODIS) observations using ten thermal infrared bands. The model considers sensor configurations, background surface and atmospheric profile, and microphysical and optical models of ice and liquid cloud particles and radiative transfer in a plane-parallel, multilayered atmosphere. Measurement and model errors are thoroughly quantified from direct comparisons of clear-sky observations over the ocean with model calculations. Performance tests by retrieval simulations show that ice cloud properties are retrieved with high accuracy when cloud optical thickness (COT) is between 0.1 and 10. Cloud-top pressure is inferred with uncertainty lower than 10 % when COT is larger than 0.3. Applying the method to a tropical cloud system and comparing the results with the MODIS Collection 6 cloud product shows good agreement for ice cloud optical thickness when COT is less than about 5. Cloud-top height agrees well with estimates obtained by the CO2 slicing method used in the MODIS product. The present algorithm can detect optically thin parts at the edges of high clouds well in comparison with the MODIS product, in which these parts are recognized as low clouds by the infrared window method. The cloud thermodynamic phase in the present algorithm is constrained by cloud-top temperature, which tends not to produce results with an ice cloud that is too warm and liquid cloud that is too cold.
NASA Astrophysics Data System (ADS)
Bley, S.; Deneke, H.
2013-10-01
A threshold-based cloud mask for the high-resolution visible (HRV) channel (1 × 1 km2) of the Meteosat SEVIRI (Spinning Enhanced Visible and Infrared Imager) instrument is introduced and evaluated. It is based on operational EUMETSAT cloud mask for the low-resolution channels of SEVIRI (3 × 3 km2), which is used for the selection of suitable thresholds to ensure consistency with its results. The aim of using the HRV channel is to resolve small-scale cloud structures that cannot be detected by the low-resolution channels. We find that it is of advantage to apply thresholds relative to clear-sky reflectance composites, and to adapt the threshold regionally. Furthermore, the accuracy of the different spectral channels for thresholding and the suitability of the HRV channel are investigated for cloud detection. The case studies show different situations to demonstrate the behavior for various surface and cloud conditions. Overall, between 4 and 24% of cloudy low-resolution SEVIRI pixels are found to contain broken clouds in our test data set depending on considered region. Most of these broken pixels are classified as cloudy by EUMETSAT's cloud mask, which will likely result in an overestimate if the mask is used as an estimate of cloud fraction. The HRV cloud mask aims for small-scale convective sub-pixel clouds that are missed by the EUMETSAT cloud mask. The major limit of the HRV cloud mask is the minimum cloud optical thickness (COT) that can be detected. This threshold COT was found to be about 0.8 over ocean and 2 over land and is highly related to the albedo of the underlying surface.
Towards Continuity in Cloud Properties from MODIS and Suomi-NPP Polar-Orbiting Sensors
NASA Astrophysics Data System (ADS)
Baum, B. A.; Menzel, P.; Gladkova, I.; Heidinger, A. K.
2015-12-01
The intent of this talk is to discuss the progress and issues involved with developing a continuous record of cloud properties since 1978, beginning with the High Resolution Infrared Radiation Sounder (HIRS), then MODIS on the NASA Terra/Aqua platforms, and into the future from merged CrIS and VIIRS data. The MODIS measurements include infrared (IR) window radiances at 8.5-, 11- and 12-μm and four 15-μm channels in the broad CO2 absorption band. Cloud top pressure/height and emissivity are derived using a technique in which the strength is in retrievals for mid-to-high clouds but less so for low clouds where there is little thermal contrast with the surface. Additionally, MODIS provides a decadal IR cloud phase product. The goal now is to extend this continuity from HIRS and MODIS to the S-NPP era. However, there is one large drawback to consider: VIIRS has no infrared (IR) absorption channels. The lack of at least one IR absorption channel on VIIRS degrades the accuracy of the cloud properties. There is a solution: we can construct a 13.3-μm channel from a combination of VIIRS and CrIS (Cross-track Infrared Sounder). The approach involves using the high spatial resolution VIIRS IR window channels in combination with a lower spatial resolution 13.3-μm channel derived using CrIS high spectral resolution measurements. The result is a 13.3-μm pseudo-channel at the VIIRS pixel spatial resolution of 750 m (i.e., M-band resolution). The radiometric accuracy of this approach was tested using MODIS and AIRS, and found to be within 1-2%. The availability of the pseudo-channel increases the potential for achieving continuity between MODIS and S-NPP. Since future platforms will likely continue with a pairing of an imager and hyperspectral sounder, this work lays a foundation for future cloud product continuity. We will show how the use of this new channel will impact the cloud height and phase products.
NASA Technical Reports Server (NTRS)
Sayer, A. M.; Hsu, N. C.; Bettenhausen, C.; Lee, J.; Redemann, J.; Shinozuka, Y.; Schmid, B.
2015-01-01
Absorbing smoke or mineral dust aerosols above clouds (AAC) are a frequent occurrence in certain regions and seasons. Operational aerosol retrievals from sensors like MODIS omit AAC because they are designed to work only over cloud-free scenes. However, AAC can in principle be quantified by these sensors in some situations (e.g. Jethva et al., 2013; Meyer et al., 2013). We present a summary of some analyses of the potential of MODIS-like instruments for this purpose, along with two case studies using airborne observations from the Ames Airborne Tracking Sunphotometer (AATS; http://geo.arc.nasa.gov/sgg/AATS-website/) as a validation data source for a preliminary AAC algorithm applied to MODIS measurements. AAC retrievals will eventually be added to the MODIS Deep Blue (Hsu et al., 2013) processing chain.
On the response of MODIS cloud coverage to global mean surface air temperature
NASA Astrophysics Data System (ADS)
Yue, Qing; Kahn, Brian H.; Fetzer, Eric J.; Wong, Sun; Frey, Richard; Meyer, Kerry G.
2017-01-01
The global surface temperature change (ΔTs) mediated cloud cover response is directly related to cloud-climate feedback. Using satellite remote sensing data to relate cloud and climate requires a well-calibrated, stable, and consistent long-term cloud data record. The Collection 5.1 (C5) Moderate Resolution Imaging Spectroradiometer (MODIS) cloud observations have been widely used for this purpose. However, the MODIS data quality varies greatly with the surface type, spectral region, cloud type, and time periods of study, which calls for additional caution when applying such data to studies on cloud cover temporal trends and variability. Using 15 years of cloud observations made by Terra and Aqua MODIS, we analyze the ΔTs-mediated cloud cover response for different cloud types by linearly regressing the monthly anomaly of cloud cover (ΔC) with the monthly anomaly of global Ts. The Collection 6 (C6) Aqua data exhibit a similar cloud response to the long-term counterpart simulated by advanced climate models. A robust increase in altitude with increasing ΔTs is found for high clouds, while a robust decrease of ΔC is noticed for optically thick low clouds. The large differences between C5 and C6 results are from improvements in calibration and cloud retrieval algorithms. The large positive cloud cover responses with data after 2010 and the strong sensitivity to time period obtained from the Terra (C5 and C6) data are likely due to calibration drift that has not been corrected, suggesting that the previous estimate of the short-term cloud cover response from the these data should be revisited.
Retrievals and Comparisons of Various MODIS-Spectrum Inferred Water Cloud Droplet Effective Radii
NASA Technical Reports Server (NTRS)
Fu-Lung, Chang; Minnis, Patrick; Lin, Bin; Sunny, Sun-Mack; Khaiyer, Mandana M.
2007-01-01
Cloud droplet effective radius retrievals from different Aqua MODIS nearinfrared channels (2.1- micrometer, 3.7- micrometer, and 1.6- micrometer) show considerable differences even among most confident QC pixels. Both Collection 004 and Collection 005 MOD06 show smaller mean effective radii at 3.7- micrometer wavelength than at 2.1- micrometer and 1.6- micrometer wavelengths. Differences in effective radius retrievals between Collection 004 and Collection 005 may be affected by cloud top height/temperature differences, which mainly occur for optically thin clouds. Changes in cloud top height and temperature for thin clouds have different impacts on the effective radius retrievals from 2.1- micrometer, 3.7- micrometer, and 1.6- micrometer channels. Independent retrievals (this study) show, on average, more consistency in the three effective radius retrievals. This study is for Aqua MODIS only.
Global monitoring of atmospheric properties by the EOS MODIS
NASA Technical Reports Server (NTRS)
King, Michael D.
1993-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) being developed for the Earth Observing System (EOS) is well suited to the global monitoring of atmospheric properties from space. Among the atmospheric properties to be examined using MODIS observations, clouds are especially important, since they are a strong modulator of the shortwave and longwave components of the earth's radiation budget. A knowledge of cloud properties (such as optical thickness and effective radius) and their variation in space and time, which are our task objectives, is also crucial to studies of global climate change. In addition, with the use of related airborne instrumentation, such as the Cloud Absorption Radiometer (CAR) and MODIS Airborne Simulator (MAS) in intensive field experiments (both national and international campaigns, see below), various types of surface and cloud properties can be derived from the measured bidirectional reflectances. These missions have provided valuable experimental data to determine the capability of narrow bandpass channels in examining the Earth's atmosphere and to aid in defining algorithms and building an understanding of the ability of MODIS to remotely sense atmospheric conditions for assessing global change. Therefore, the primary task objective is to extend and expand our algorithm for retrieving the optical thickness and effective radius of clouds from radiation measurements to be obtained from MODIS. The secondary objective is to obtain an enhanced knowledge of surface angular and spectral properties that can be inferred from airborne directional radiance measurements.
An Examination of the Nature of Global MODIS Cloud Regimes
NASA Technical Reports Server (NTRS)
Oreopoulos, Lazaros; Cho, Nayeong; Lee, Dongmin; Kato, Seiji; Huffman, George J.
2014-01-01
We introduce global cloud regimes (previously also referred to as "weather states") derived from cloud retrievals that use measurements by the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard the Aqua and Terra satellites. The regimes are obtained by applying clustering analysis on joint histograms of retrieved cloud top pressure and cloud optical thickness. By employing a compositing approach on data sets from satellites and other sources, we examine regime structural and thermodynamical characteristics. We establish that the MODIS cloud regimes tend to form in distinct dynamical and thermodynamical environments and have diverse profiles of cloud fraction and water content. When compositing radiative fluxes from the Clouds and the Earth's Radiant Energy System instrument and surface precipitation from the Global Precipitation Climatology Project, we find that regimes with a radiative warming effect on the atmosphere also produce the largest implied latent heat. Taken as a whole, the results of the study corroborate the usefulness of the cloud regime concept, reaffirm the fundamental nature of the regimes as appropriate building blocks for cloud system classification, clarify their association with standard cloud types, and underscore their distinct radiative and hydrological signatures.
Use of MODIS Cloud Top Pressure to Improve Assimilation Yields of AIRS Radiances in GSI
NASA Technical Reports Server (NTRS)
Zavodsky, Bradley; Srikishen, Jayanthi
2014-01-01
Radiances from hyperspectral sounders such as the Atmospheric Infrared Sounder (AIRS) are routinely assimilated both globally and regionally in operational numerical weather prediction (NWP) systems using the Gridpoint Statistical Interpolation (GSI) data assimilation system. However, only thinned, cloud-free radiances from a 281-channel subset are used, so the overall percentage of these observations that are assimilated is somewhere on the order of 5%. Cloud checks are performed within GSI to determine which channels peak above cloud top; inaccuracies may lead to less assimilated radiances or introduction of biases from cloud-contaminated radiances.Relatively large footprint from AIRS may not optimally represent small-scale cloud features that might be better resolved by higher-resolution imagers like the Moderate Resolution Imaging Spectroradiometer (MODIS). Objective of this project is to "swap" the MODIS-derived cloud top pressure (CTP) for that designated by the AIRS-only quality control within GSI to test the hypothesis that better representation of cloud features will result in higher assimilated radiance yields and improved forecasts.
Investigation of Cloud Properties and Atmospheric Profiles with MODIS
NASA Technical Reports Server (NTRS)
Menzel, Paul; Ackerman, Steve; Moeller, Chris; Gumley, Liam; Strabala, Kathy; Frey, Richard; Prins, Elaine; LaPorte, Dan; Wolf, Walter
1997-01-01
The WINter Cloud Experiment (WINCE) was directed and supported by personnel from the University of Wisconsin in January and February. Data sets of good quality were collected by the MODIS Airborne Simulator (MAS) and other instruments on the NASA ER2; they will be used to develop and validate cloud detection and cloud property retrievals over winter scenes (especially over snow). Software development focused on utilities needed for all of the UW product executables; preparations for Version 2 software deliveries were almost completed. A significant effort was made, in cooperation with SBRS and MCST, in characterizing and understanding MODIS PFM thermal infrared performance; crosstalk in the longwave infrared channels continues to get considerable attention.
NASA Technical Reports Server (NTRS)
Meyer, Kerry; Platnick, Steven; Oreopoulos, Lazaros; Lee, Dongmin
2013-01-01
Absorbing aerosols such as smoke strongly absorb solar radiation, particularly at ultraviolet and visible/near-infrared (VIS/NIR) wavelengths, and their presence above clouds can have considerable implications. It has been previously shown that they have a positive (i.e., warming) direct aerosol radiative effect (DARE) when overlying bright clouds. Additionally, they can cause biased passive instrument satellite retrievals in techniques that rely on VIS/NIR wavelengths for inferring the cloud optical thickness (COT) and effective radius (re) of underlying clouds, which can in turn yield biased above-cloud DARE estimates. Here we investigate Moderate Resolution Imaging Spectroradiometer (MODIS) cloud optical property retrieval biases due to overlying absorbing aerosols observed by Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and examine the impact of these biases on above-cloud DARE estimates. The investigation focuses on a region in the southeast Atlantic Ocean during August and September (2006-2011), where smoke from biomass burning in southern Africa overlies persistent marine boundary layer stratocumulus clouds. Adjusting for above-cloud aerosol attenuation yields increases in the regional mean liquid COT (averaged over all ocean-only liquid clouds) by roughly 6%; mean re increases by roughly 2.6%, almost exclusively due to the COT adjustment in the non-orthogonal retrieval space. It is found that these two biases lead to an underestimate of DARE. For liquid cloud Aqua MODIS pixels with CALIOP-observed above-cloud smoke, the regional mean above-cloud radiative forcing efficiency (DARE per unit aerosol optical depth (AOD)) at time of observation (near local noon for Aqua overpass) increases from 50.9Wm(sup-2)AOD(sup-1) to 65.1Wm(sup-2)AOD(sup -1) when using bias-adjusted instead of nonadjusted MODIS cloud retrievals.
Comparison of MODIS and VIIRS Snow Cover Products for the 2016 Hydrological Year
NASA Astrophysics Data System (ADS)
Klein, A. G.; Thapa, S.
2017-12-01
The VIIRS (Visible Infrared Imaging Radiometer Suite) instrument on board the Suomi-NPP satellite aims to provide long-term continuity of several environmental data series including snow cover initiated with MODIS. While it is speculated that MODIS and VIIRS snow cover products may differ because of their differing spatial resolutions and spectral coverage quantitative comparisons between their snow products are currently limited. Therefore this study intercompares MODIS and VIIRS snow products for the 2016 Hydrological Year over the Midwestern United States and southern Canada. Two hundred and forty-four swath snow products from MODIS/Aqua (MYD10L2) and the VIIRS EDR (VSCMO/binary) were intercompared using confusion matrices, comparison maps and false color imagery. Thresholding the MODIS NDSI Snow Cover product at a snow cover fraction of 30% generated binary snow maps most comparable to the NOAA VIIRS binary snow product. Overall agreement between MODIS and VIIRS was found to be approximately 98%. This exceeds the VIIRS accuracy requirements of 90% probability of correct typing. Agreement was highest during the winter but lower during late fall and spring. Comparability was lowest over forest. MODIS and VIIRS often mapped snow/no-snow transition zones as cloud. The assessment of total snow and cloud pixels and comparison snow maps of MODIS and VIIRS indicates that VIIRS is mapping more snow cover and less cloud cover compared to MODIS. This is evidenced by the average area of snow in MYD10L2 and VSCMO being 5.72% and 11.43%, no-snow 26.65% and 28.67%, and cloud 65.02% and 59.91%, respectively. Visual comparisons depict good qualitative agreement between snow cover area visible in MODIS and VIIRS false color imagery and mapped in their respective snow cover products. While VIIRS and MODIS have similar capacity to map snow cover, VIIRS has the potential to more accurately map snow cover area for the successive development of climate data records.
Rausch, John; Meyer, Kerry; Bennartz, Ralf; Platnick, Steven
2017-01-01
Differences in cloud droplet effective radius and cloud droplet number concentration (CDNC) estimates inferred from the Aqua MODIS Collections 5.1 and 6 cloud products (MYD06) are examined for warm clouds over global oceans for the year 2008. Individual pixel level retrievals for both collections are aggregated to 1° × 1° and compared globally and regionally for the three main spectral channel pairs used for MODIS cloud optical property retrievals. Comparisons between both collections are performed for cases in which all three effective radii retrievals are classified by the MODIS Cloud Product as valid. The contribution to the observed differences of several key MYD06 Collection 6 algorithm updates are also explored, with a focus on changes to the surface reflectance model, assumed solar irradiance, above cloud emission, cloud top pressure, and pixel registration. Global results show a neutral to positive (> 50 cm -3 ) change for C6-derived CDNC relative to C5.1 for the 1.6 µm and 2.1 µm channel retrievals, corresponding to a neutral to -2 µm difference in droplet effective radius. For 3.7 µm retrievals, CDNC results show a negative change in the tropics, with differences transitioning toward positive values with increasing latitude spanning -25 to +50 cm -3 related to a +2.5 to -1 µm transition in effective radius. Cloud optical thickness differences were small relative to effective radius, and found to not significantly impact CDNC estimates. Regionally, the magnitude and behavior of the annual CDNC cycle are compared for each effective radius retrieval. Results from this study indicate significant intercollection differences in aggregated values of effective radius due to changes to the pre-computed retrieval lookup tables for ocean scenes, changes to retrieved cloud top pressure, solar irradiance, or above cloud thermal emission, depending upon spectral channel. The observed differences between collections may have implications for existing MODIS derived climatologies and validation studies of effective radius and CDNC.
A methodology for cloud masking uncalibrated lidar signals
NASA Astrophysics Data System (ADS)
Binietoglou, Ioannis; D'Amico, Giuseppe; Baars, Holger; Belegante, Livio; Marinou, Eleni
2018-04-01
Most lidar processing algorithms, such as those included in EARLINET's Single Calculus Chain, can be applied only to cloud-free atmospheric scenes. In this paper, we present a methodology for masking clouds in uncalibrated lidar signals. First, we construct a reference dataset based on manual inspection and then train a classifier to separate clouds and cloud-free regions. Here we present details of this approach together with an example cloud masks from an EARLINET station.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yue, Qing; Kahn, Brian; Xiao, Heng
2013-08-16
Cloud top entrainment instability (CTEI) is a hypothesized positive feedback between entrainment mixing and evaporative cooling near the cloud top. Previous theoretical and numerical modeling studies have shown that the persistence or breakup of marine boundary layer (MBL) clouds may be sensitive to the CTEI parameter. Collocated thermodynamic profile and cloud observations obtained from the Atmospheric Infrared Sounder (AIRS) and Moderate Resolution Imaging Spectroradiometer (MODIS) instruments are used to quantify the relationship between the CTEI parameter and the cloud-topped MBL transition from stratocumulus to trade cumulus in the northeastern Pacific Ocean. Results derived from AIRS and MODIS are compared withmore » numerical results from the UCLA large eddy simulation (LES) model for both well-mixed and decoupled MBLs. The satellite and model results both demonstrate a clear correlation between the CTEI parameter and MBL cloud fraction. Despite fundamental differences between LES steady state results and the instantaneous snapshot type of observations from satellites, significant correlations for both the instantaneous pixel-scale observations and the long-term averaged spatial patterns between the CTEI parameter and MBL cloud fraction are found from the satellite observations and are consistent with LES results. This suggests the potential of using AIRS and MODIS to quantify global and temporal characteristics of the cloud-topped MBL transition.« less
Clear-sky remote sensing in the vicinity of clouds: what we learned from MODIS and CALIPSO
NASA Astrophysics Data System (ADS)
Marshak, Alexander; Varnai, Tamas; Wen, Guoyong; Cahalan, Robert
Studies on aerosol direct and indirect effects require a precise separation of cloud-free and cloudy air. However, separation between cloud-free and cloudy areas from remotely-sensed measurements is ambiguous. The transition zone in the regions around clouds often stretches out tens of km, which are neither precisely clear nor precisely cloudy. We study the transition zone between cloud-free and cloudy air using MODerate-resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) measurements. Both instruments show enhanced clear-sky reflectance (MODIS) and clear-sky backscatterer (CALIPSO) near clouds. Analyzing a large dataset of MODIS observations we examine the effect of three-dimensional (3D) radiative interactions between clouds and cloud-free areas, also known as a cloud adjacency effect. Comparing with CALIPSO clear-sky backscatterer measurements, we show that the cloud adjacency effect may be responsible for a large portion of the enhanced clear sky reflectance observed by MODIS. While aerosol particles are responsible for a large part of the near-cloud enhancements in CALIPSO observations, misidentified or undetected cloud particles are also likely to contribute. As a result, both the nature of these particles (cloud vs. aerosol) and the processes creating them need to be clarified using a quantitative assessment of remote sensing limitations in particle detection and identification. The width and ubiquity of the transition zone near clouds imply that studies of aerosol-cloud interactions and aerosol direct radiative effects need to account for aerosol changes near clouds. Not accounted, these changes can cause systematic biases toward smaller aerosol radiative forcing. On the other hand, including aerosol products near clouds despite their uncertainties may overestimate aerosol radiative forcing. Therefore, there is an urgent need for developing methods that can assess and account for remote sensing challenges and thus allow for including the transition zone into the study. We describe a simple model that estimates the cloud-induced enhanced reflectances of cloud-free areas in the vicinity of clouds. The model assumes that the enhancement is due entirely to Rayleigh scattering and is therefore bigger at shorter wavelengths, thus creating a so-called apparent "bluing" of aerosols in remote sensing retrievals.
NASA Astrophysics Data System (ADS)
Meyer, Kerry; Platnick, Steven; Zhang, Zhibo
2015-06-01
The regional haze over the southeast (SE) Atlantic Ocean induced by biomass burning in southern Africa can be problematic for passive imager-based retrievals of the underlying quasi-permanent marine boundary layer (MBL) clouds and for estimates of top-of-atmosphere (TOA) aerosol direct radiative effect (DRE). Here an algorithm is introduced to simultaneously retrieve above-cloud aerosol optical thickness (AOT), the cloud optical thickness (COT), and cloud effective particle radius (CER) of the underlying MBL clouds while also providing pixel-level estimates of retrieval uncertainty. This approach utilizes reflectance measurements at six Moderate Resolution Imaging Spectroradiometer (MODIS) channels from the visible to the shortwave infrared. Retrievals are run under two aerosol model assumptions on 8 years (2006-2013) of June-October Aqua MODIS data over the SE Atlantic, from which a regional cloud and above-cloud aerosol climatology is produced. The cloud retrieval methodology is shown to yield COT and CER consistent with those from the MODIS operational cloud product (MOD06) when forcing AOT to zero, while the full COT-CER-AOT retrievals that account for the above-cloud aerosol attenuation increase regional monthly mean COT and CER by up to 9% and 2%, respectively. Retrieved AOT is roughly 3 to 5 times larger than the collocated 532 nm Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) retrievals, though closer agreement is observed with the CALIOP 1064 nm retrievals, a result consistent with previous case study analyses. Regional cloudy-sky above-cloud aerosol DRE calculations are also performed that illustrate the importance of the aerosol model assumption and underlying cloud retrievals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sayer, Andrew M.; Hsu, C.; Bettenhausen, Corey
Cases of absorbing aerosols above clouds (AAC), such as smoke or mineral dust, are omitted from most routinely-processed space-based aerosol optical depth (AOD) data products, including those from the Moderate Resolution Imaging Spectroradiometer (MODIS). This study presents a sensitivity analysis and preliminary algorithm to retrieve above-cloud AOD and liquid cloud optical depth (COD) for AAC cases from MODIS or similar
NASA Astrophysics Data System (ADS)
Li, Linlin; Vrieling, Anton; Skidmore, Andrew; Wang, Tiejun; Turak, Eren
2018-04-01
Detailed spatial information of changes in surface water extent is needed for water management and biodiversity conservation, particularly in drier parts of the globe where small, temporally-variant wetlands prevail. Although global surface water histories are now generated from 30 m Landsat data, for many locations they contain large temporal gaps particularly for longer periods (>10 years) due to revisit intervals and cloud cover. Daily Moderate Resolution Imaging Spectrometer (MODIS) imagery has potential to fill such gaps, but its relatively coarse spatial resolution may not detect small water bodies, which can be of great ecological importance. To address this problem, this study proposes and tests options for estimating the surface water fraction from MODIS 16-day 500 m Bidirectional Reflectance Distribution Function (BRDF) corrected surface reflectance image composites. The spatial extent of two Landsat tiles over Spain were selected as test areas. We obtained a 500 m reference dataset on surface water fraction by spatially aggregating 30 m binary water masks obtained from the Landsat-derived C-version of Function of Mask (CFmask), which themselves were evaluated against high-resolution Google Earth imagery. Twelve regression tree models were developed with two approaches, Random Forest and Cubist, using spectral metrics derived from MODIS data and topographic parameters generated from a 30 m spatial resolution digital elevation model. Results showed that accuracies were higher when we included annual summary statistics of the spectral metrics as predictor variables. Models trained on a single Landsat tile were ineffective in mapping surface water in the other tile, but global models trained with environmental conditions from both tiles can provide accurate results for both study areas. We achieved the highest accuracy with Cubist global model (R2 = 0.91, RMSE = 11.05%, MAE = 7.67%). Our method was not only effective for mapping permanent water fraction, but also in accurately capturing temporal fluctuations of surface water. Based on this good performance, we produced surface water fraction maps at 16-day interval for the 2000-2015 MODIS archive. Our approach is promising for monitoring surface water fraction at high frequency time intervals over much larger regions provided that training data are collected across the spatial domain for which the model will be applied.
AVHRR-Based Polar Pathfinder Products: Evaluation, Enhancement, and Transition to MODIS
NASA Technical Reports Server (NTRS)
Fowler, Charles; Maslanik, James; Stone, Robert; Stroeve, Julienne; Emery, William
2001-01-01
The AVHRR-Based Polar Pathfinder (APP) products include calibrated AVHRR channel data, surface temperatures, albedo, satellite scan and solar geometries, and a cloud mask composited into twice- per-day images, and daily averaged fields of sea ice motion, for regions poleward of 50 deg. latitude. Our goals under this grant, in general, are four-fold: 1. To quantify the APP accuracy and sources of error by comparing Pathfinder products with field measurements. 2. To determine the consistency of mean fields and trends in comparison with longer time series of available station data and forecast model output. 3. To investigate the consistency of the products between the different AVHRR instruments over the 1982-present period of the NOAA program. 4. To compare an annual cycle of the AVHRR Pathfinder products with MODIS to establish a baseline for extending Pathfinder-type products into the new ESE period. Year One tasks include intercomparisons of the Pathfinder products with field measurements, testing of algorithm assumptions, collection of field data, and further validation and possible improvement of the multi-sensor ice motion fields. Achievements for these tasks are summarized below.
NASA Technical Reports Server (NTRS)
Platnick, Steven; King, Michael D.; Wind, Galina; Amarasinghe, Nandana; Marchant, Benjamin; Arnold, G. Thomas
2012-01-01
Operational Moderate Resolution Imaging Spectroradiometer (MODIS) retrievals of cloud optical and microphysical properties (part of the archived products MOD06 and MYD06, for MODIS Terra and Aqua, respectively) are currently being reprocessed along with other MODIS Atmosphere Team products. The latest "Collection 6" processing stream, which is expected to begin production by summer 2012, includes updates to the previous cloud retrieval algorithm along with new capabilities. The 1 km retrievals, based on well-known solar reflectance techniques, include cloud optical thickness, effective particle radius, and water path, as well as thermodynamic phase derived from a combination of solar and infrared tests. Being both global and of high spatial resolution requires an algorithm that is computationally efficient and can perform over all surface types. Collection 6 additions and enhancements include: (i) absolute effective particle radius retrievals derived separately from the 1.6 and 3.7 !-lm bands (instead of differences relative to the standard 2.1 !-lm retrieval), (ii) comprehensive look-up tables for cloud reflectance and emissivity (no asymptotic theory) with a wind-speed interpolated Cox-Munk BRDF for ocean surfaces, (iii) retrievals for both liquid water and ice phases for each pixel, and a subsequent determination of the phase based, in part, on effective radius retrieval outcomes for the two phases, (iv) new ice cloud radiative models using roughened particles with a specified habit, (v) updated spatially-complete global spectral surface albedo maps derived from MODIS Collection 5, (vi) enhanced pixel-level uncertainty calculations incorporating additional radiative error sources including the MODIS L1 B uncertainty index for assessing band and scene-dependent radiometric uncertainties, (v) and use of a new 1 km cloud top pressure/temperature algorithm (also part of MOD06) for atmospheric corrections and low cloud non-unity emissivity temperature adjustments.
NASA Technical Reports Server (NTRS)
Marchant, Benjamin; Platnick, Steven; Meyer, Kerry; Arnold, George Thomas; Riedi, Jerome
2016-01-01
Cloud thermodynamic phase (e.g., ice, liquid) classification is an important first step for cloud retrievals from passive sensors such as MODIS (Moderate-Resolution Imaging Spectroradiometer). Because ice and liquid phase clouds have very different scattering and absorbing properties, an incorrect cloud phase decision can lead to substantial errors in the cloud optical and microphysical property products such as cloud optical thickness or effective particle radius. Furthermore, it is well established that ice and liquid clouds have different impacts on the Earth's energy budget and hydrological cycle, thus accurately monitoring the spatial and temporal distribution of these clouds is of continued importance. For MODIS Collection 6 (C6), the shortwave-derived cloud thermodynamic phase algorithm used by the optical and microphysical property retrievals has been completely rewritten to improve the phase discrimination skill for a variety of cloudy scenes (e.g., thin/thick clouds, over ocean/land/desert/snow/ice surface, etc). To evaluate the performance of the C6 cloud phase algorithm, extensive granule-level and global comparisons have been conducted against the heritage C5 algorithm and CALIOP. A wholesale improvement is seen for C6 compared to C5.
NASA Astrophysics Data System (ADS)
Schüller, Lothar; Bennartz, Ralf; Fischer, Jürgen; Brenguier, Jean-Louis
2005-01-01
Algorithms are now currently used for the retrieval of cloud optical thickness and droplet effective radius from multispectral radiance measurements. This paper extends their application to the retrieval of cloud droplet number concentration, cloud geometrical thickness, and liquid water path in shallow convective clouds, using an algorithm that was previously tested with airborne measurements of cloud radiances and validated against in situ measurements of the same clouds. The retrieval is based on a stratified cloud model of liquid water content and droplet spectrum. Radiance measurements in visible and near-infrared channels of the Moderate Resolution Imaging Spectroradiometer (MODIS), which is operated from the NASA platforms Terra and Aqua, are analyzed. Because of uncertainties in the simulation of the continental surface reflectance, the algorithm is presently limited to the monitoring of the microphysical structure of boundary layer clouds over the ocean. Two MODIS scenes of extended cloud fields over the North Atlantic Ocean trade wind region are processed. A transport and dispersion model (the Hybrid Single-Particle Lagrangian Integrated Trajectory Model, HYSPLIT4) is also used to characterize the origin of the air masses and hence their aerosol regimes. One cloud field formed in an air mass that was advected from southern Europe and North Africa. It shows high values of the droplet concentration when compared with the second cloud system, which developed in a more pristine environment. The more pristine case also exhibits a higher geometrical thickness and, thus, liquid water path, which counterbalances the expected cloud albedo increase of the polluted case. Estimates of cloud liquid water path are then compared with retrievals from the Special Sensor Microwave Imager (SSM/I). SSM/I-derived liquid water paths are in good agreement with the MODIS-derived values.
NASA Technical Reports Server (NTRS)
Luvall, J. C.; Sprigg, W.; Levetin, E.; Huete, A.; Nickovic, S.; Pejanovic, G. A.; Vukovic, A.; VandeWater, P.; Budge, A.; Hudspeth, W.;
2012-01-01
Juniperus spp. pollen is a significant aeroallergen that can be transported 200-600 km from the source. Local observations of Juniperus spp. phenology may not be consistent with the timing and source of pollen collected by pollen sampling instruments. Methods: The Dust REgional Atmospheric Model (DREAM)is a verified model for atmospheric dust transport modeling using MODIS data products to identify source regions and quantities of dust. We successfully modified the DREAM model to incorporate pollen transport (PREAM) and used MODIS satellite images to develop Juniperus ashei pollen input source masks. The Pollen Release Potential Source Map, also referred to as a source mask in model applications, may use different satellite platforms and sensors and a variety of data sets other than the USGS GAP data we used to map J. ashei cover type. MODIS derived percent tree cover is obtained from MODIS Vegetation Continuous Fields (VCF) product (collection 3 and 4, MOD44B, 500 and 250 m grid resolution). We use updated 2010 values to calculate pollen concentration at source (J. ashei ). The original MODIS derived values are converted from native approx. 250 m to 990m (approx. 1 km) for the calculation of a mask to fit the model (PREAM) resolution. Results: The simulation period is chosen following the information that in the last 2 weeks of December 2010. The PREAM modeled near-surface concentrations (Nm-3) shows the transport patterns of J. ashei pollen over a 5 day period (Fig. 2). Typical scales of the simulated transport process are regional.
Ice Cloud Backscatter Study and Comparison with CALIPSO and MODIS Satellite Data
NASA Technical Reports Server (NTRS)
Ding, Jiachen; Yang, Ping; Holz, Robert E.; Platnick, Steven; Meyer, Kerry G.; Vaughan, Mark A.; Hu, Yongxiang; King, Michael D.
2016-01-01
An invariant imbedding T-matrix (II-TM) method is used to calculate the single-scattering properties of 8-column aggregate ice crystals. The II-TM based backscatter values are compared with those calculated by the improved geometric-optics method (IGOM) to refine the backscattering properties of the ice cloud radiative model used in the MODIS Collection 6 cloud optical property product. The integrated attenuated backscatter-to-cloud optical depth (IAB-ICOD) relation is derived from simulations using a CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite) lidar simulator based on a Monte Carlo radiative transfer model. By comparing the simulation results and co-located CALIPSO and MODIS (Moderate Resolution Imaging Spectroradiometer) observations, the non-uniform zonal distribution of ice clouds over ocean is characterized in terms of a mixture of smooth and rough ice particles. The percentage of the smooth particles is approximately 6 percent and 9 percent for tropical and mid-latitude ice clouds, respectively.
Apperception of Clouds in AIRS Data
NASA Technical Reports Server (NTRS)
Huang, Hung-Lung; Smith, William L.
2005-01-01
Our capacity to simulate the radiative characteristics of the Earth system has advanced greatly over the past decade. However, new space based measurements show that idealized simulations might not adequately represent the complexity of nature. For example, AIRS simulated multi-layer cloud clearing research provides an excellent groundwork for early Atmospheric Infra-Red Sounder (AIRS) operational cloud clearing and atmospheric profile retrieval. However, it doesn't reflect the complicated reality of clouds over land and coastal areas. Thus far, operational AIRS/AMSU (Advanced Microwave Sounding Unit) cloud clearing is not only of low yield but also of unsatisfying quality. This is not an argument for avoiding this challenging task, rather a powerful argument for exploring other synergistic approaches, and for adapting these strategies toward improving both indirect and direct use of cloudy infrared sounding data. Ample evidence is shown in this paper that the indirect use of cloudy sounding data by way of cloud clearing is sub-optimal for data assimilation. Improvements are needed in quality control, retrieval yield, and overall cloud clearing retrieval performance. For example, cloud clearing over land, especially over the desert surface, has led to much degraded retrieval quality and often a very low yield of quality controlled cloud cleared radiances. If these indirect cloud cleared radiances are instead to be directly assimilated into NWP models, great caution must be used. Our limited and preliminary cloud clearing results from AIRS/AMSU (with the use of MODIS data) and an AIRS/MODIS synergistic approach have, however, shown that higher spatial resolution multispectral imagery data can provide much needed quality control of the AIRS/AMSU cloud clearing retrieval. When AIRS and Moderate Resolution Imaging Spectroradiometer (MODIS) are used synergistically, a higher spatial resolution over difficult terrain (especially desert areas) can be achieved and with a much improved accuracy. Preliminary statistical analyses of cloud cleared radiances derived from (1) operational AIRS/AMSU, (2) operational AIRS/AMSU plus the use of MODIS data as quality control, and (3) AIRS/MODIS synergistic single channel and two field of views cloud clearing are Our capacity to simulate the radiative characteristics of the Earth system has
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A. (Principal Investigator)
The Single Scanner Footprint TOA/Surface Fluxes and Clouds (SSF) product contains one hour of instantaneous Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The SSF combines instantaneous CERES data with scene information from a higher-resolution imager such as Visible/Infrared Scanner (VIRS) on TRMM or Moderate-Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua. Scene identification and cloud properties are defined at the higher imager resolution and these data are averaged over the larger CERES footprint. For each CERES footprint, the SSF contains the number of cloud layers and for each layer the cloud amount, height, temperature, pressure, optical depth, emissivity, ice and liquid water path, and water particle size. The SSF also contains the CERES filtered radiances for the total, shortwave (SW), and window (WN) channels and the unfiltered SW, longwave (LW), and WN radiances. The SW, LW, and WN radiances at spacecraft altitude are converted to Top-of-the-Atmosphere (TOA) fluxes based on the imager defined scene. These TOA fluxes are used to estimate surface fluxes. Only footprints with adequate imager coverage are included on CER_SSF_TRMM-PFM-VIRS_Subset_Edition1the SSF which is much less than the full set of footprints on the CERES ES-8 product. The following CERES SSF data sets are currently available: CER_SSF_TRMM-PFM-VIRS_Edition1 CER_SSF_TRMM-PFM-VIRS_Subset_Edition1 CER_SSF_TRMM-PFM-VIRS_Edition2A CER_SSF_TRMM-SIM-VIRS_Edition2_VIRSonly CER_SSF_TRMM-PFM-VIRS_Edition2A-TransOps CER_SSF_TRMM-PFM-VIRS_Edition2B-TransOps CER_SSF_TRMM-PFM-VIRS_Edition2B CER_SSF_Terra-FM1-MODIS_Edition1A CER_SSF_Terra-FM1-MODIS_Edition1A CER_SSF_Terra-FM1-MODIS_Edition2A CER_SSF_Terra-FM2-MODIS_Edition2A CER_SSF_Terra-FM1-MODIS_Edition2B CER_SSF_Terra-FM2-MODIS_Edition2B CER_SSF_Aqua-FM4-MODIS_Beta1 CER_SSF_Aqua-FM3-MODIS_Beta2 CER_SSF_Aqua-FM4-MODIS_Beta2. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2003-12-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Temporal_Resolution=1 hour; Temporal_Resolution_Range=Hourly - < Daily].
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A. (Principal Investigator)
The Single Scanner Footprint TOA/Surface Fluxes and Clouds (SSF) product contains one hour of instantaneous Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The SSF combines instantaneous CERES data with scene information from a higher-resolution imager such as Visible/Infrared Scanner (VIRS) on TRMM or Moderate-Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua. Scene identification and cloud properties are defined at the higher imager resolution and these data are averaged over the larger CERES footprint. For each CERES footprint, the SSF contains the number of cloud layers and for each layer the cloud amount, height, temperature, pressure, optical depth, emissivity, ice and liquid water path, and water particle size. The SSF also contains the CERES filtered radiances for the total, shortwave (SW), and window (WN) channels and the unfiltered SW, longwave (LW), and WN radiances. The SW, LW, and WN radiances at spacecraft altitude are converted to Top-of-the-Atmosphere (TOA) fluxes based on the imager defined scene. These TOA fluxes are used to estimate surface fluxes. Only footprints with adequate imager coverage are included on CER_SSF_TRMM-PFM-VIRS_Subset_Edition1the SSF which is much less than the full set of footprints on the CERES ES-8 product. The following CERES SSF data sets are currently available: CER_SSF_TRMM-PFM-VIRS_Edition1 CER_SSF_TRMM-PFM-VIRS_Subset_Edition1 CER_SSF_TRMM-PFM-VIRS_Edition2A CER_SSF_TRMM-SIM-VIRS_Edition2_VIRSonly CER_SSF_TRMM-PFM-VIRS_Edition2A-TransOps CER_SSF_TRMM-PFM-VIRS_Edition2B-TransOps CER_SSF_TRMM-PFM-VIRS_Edition2B CER_SSF_Terra-FM1-MODIS_Edition1A CER_SSF_Terra-FM1-MODIS_Edition1A CER_SSF_Terra-FM1-MODIS_Edition2A CER_SSF_Terra-FM2-MODIS_Edition2A CER_SSF_Terra-FM1-MODIS_Edition2B CER_SSF_Terra-FM2-MODIS_Edition2B CER_SSF_Aqua-FM4-MODIS_Beta1 CER_SSF_Aqua-FM3-MODIS_Beta2 CER_SSF_Aqua-FM4-MODIS_Beta2. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2005-09-16] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Temporal_Resolution=1 hour; Temporal_Resolution_Range=Hourly - < Daily].
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A. (Principal Investigator)
The Single Scanner Footprint TOA/Surface Fluxes and Clouds (SSF) product contains one hour of instantaneous Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The SSF combines instantaneous CERES data with scene information from a higher-resolution imager such as Visible/Infrared Scanner (VIRS) on TRMM or Moderate-Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua. Scene identification and cloud properties are defined at the higher imager resolution and these data are averaged over the larger CERES footprint. For each CERES footprint, the SSF contains the number of cloud layers and for each layer the cloud amount, height, temperature, pressure, optical depth, emissivity, ice and liquid water path, and water particle size. The SSF also contains the CERES filtered radiances for the total, shortwave (SW), and window (WN) channels and the unfiltered SW, longwave (LW), and WN radiances. The SW, LW, and WN radiances at spacecraft altitude are converted to Top-of-the-Atmosphere (TOA) fluxes based on the imager defined scene. These TOA fluxes are used to estimate surface fluxes. Only footprints with adequate imager coverage are included on CER_SSF_TRMM-PFM-VIRS_Subset_Edition1the SSF which is much less than the full set of footprints on the CERES ES-8 product. The following CERES SSF data sets are currently available: CER_SSF_TRMM-PFM-VIRS_Edition1 CER_SSF_TRMM-PFM-VIRS_Subset_Edition1 CER_SSF_TRMM-PFM-VIRS_Edition2A CER_SSF_TRMM-SIM-VIRS_Edition2_VIRSonly CER_SSF_TRMM-PFM-VIRS_Edition2A-TransOps CER_SSF_TRMM-PFM-VIRS_Edition2B-TransOps CER_SSF_TRMM-PFM-VIRS_Edition2B CER_SSF_Terra-FM1-MODIS_Edition1A CER_SSF_Terra-FM1-MODIS_Edition1A CER_SSF_Terra-FM1-MODIS_Edition2A CER_SSF_Terra-FM2-MODIS_Edition2A CER_SSF_Terra-FM1-MODIS_Edition2B CER_SSF_Terra-FM2-MODIS_Edition2B CER_SSF_Aqua-FM4-MODIS_Beta1 CER_SSF_Aqua-FM3-MODIS_Beta2 CER_SSF_Aqua-FM4-MODIS_Beta2. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2005-03-29] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Temporal_Resolution=1 hour; Temporal_Resolution_Range=Hourly - < Daily].
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A. (Principal Investigator)
The Single Scanner Footprint TOA/Surface Fluxes and Clouds (SSF) product contains one hour of instantaneous Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The SSF combines instantaneous CERES data with scene information from a higher-resolution imager such as Visible/Infrared Scanner (VIRS) on TRMM or Moderate-Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua. Scene identification and cloud properties are defined at the higher imager resolution and these data are averaged over the larger CERES footprint. For each CERES footprint, the SSF contains the number of cloud layers and for each layer the cloud amount, height, temperature, pressure, optical depth, emissivity, ice and liquid water path, and water particle size. The SSF also contains the CERES filtered radiances for the total, shortwave (SW), and window (WN) channels and the unfiltered SW, longwave (LW), and WN radiances. The SW, LW, and WN radiances at spacecraft altitude are converted to Top-of-the-Atmosphere (TOA) fluxes based on the imager defined scene. These TOA fluxes are used to estimate surface fluxes. Only footprints with adequate imager coverage are included on CER_SSF_TRMM-PFM-VIRS_Subset_Edition1the SSF which is much less than the full set of footprints on the CERES ES-8 product. The following CERES SSF data sets are currently available: CER_SSF_TRMM-PFM-VIRS_Edition1 CER_SSF_TRMM-PFM-VIRS_Subset_Edition1 CER_SSF_TRMM-PFM-VIRS_Edition2A CER_SSF_TRMM-SIM-VIRS_Edition2_VIRSonly CER_SSF_TRMM-PFM-VIRS_Edition2A-TransOps CER_SSF_TRMM-PFM-VIRS_Edition2B-TransOps CER_SSF_TRMM-PFM-VIRS_Edition2B CER_SSF_Terra-FM1-MODIS_Edition1A CER_SSF_Terra-FM1-MODIS_Edition1A CER_SSF_Terra-FM1-MODIS_Edition2A CER_SSF_Terra-FM2-MODIS_Edition2A CER_SSF_Terra-FM1-MODIS_Edition2B CER_SSF_Terra-FM2-MODIS_Edition2B CER_SSF_Aqua-FM4-MODIS_Beta1 CER_SSF_Aqua-FM3-MODIS_Beta2 CER_SSF_Aqua-FM4-MODIS_Beta2. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2006-01-01] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Temporal_Resolution=1 hour; Temporal_Resolution_Range=Hourly - < Daily].
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A. (Principal Investigator)
The Single Scanner Footprint TOA/Surface Fluxes and Clouds (SSF) product contains one hour of instantaneous Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The SSF combines instantaneous CERES data with scene information from a higher-resolution imager such as Visible/Infrared Scanner (VIRS) on TRMM or Moderate-Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua. Scene identification and cloud properties are defined at the higher imager resolution and these data are averaged over the larger CERES footprint. For each CERES footprint, the SSF contains the number of cloud layers and for each layer the cloud amount, height, temperature, pressure, optical depth, emissivity, ice and liquid water path, and water particle size. The SSF also contains the CERES filtered radiances for the total, shortwave (SW), and window (WN) channels and the unfiltered SW, longwave (LW), and WN radiances. The SW, LW, and WN radiances at spacecraft altitude are converted to Top-of-the-Atmosphere (TOA) fluxes based on the imager defined scene. These TOA fluxes are used to estimate surface fluxes. Only footprints with adequate imager coverage are included on CER_SSF_TRMM-PFM-VIRS_Subset_Edition1the SSF which is much less than the full set of footprints on the CERES ES-8 product. The following CERES SSF data sets are currently available: CER_SSF_TRMM-PFM-VIRS_Edition1 CER_SSF_TRMM-PFM-VIRS_Subset_Edition1 CER_SSF_TRMM-PFM-VIRS_Edition2A CER_SSF_TRMM-SIM-VIRS_Edition2_VIRSonly CER_SSF_TRMM-PFM-VIRS_Edition2A-TransOps CER_SSF_TRMM-PFM-VIRS_Edition2B-TransOps CER_SSF_TRMM-PFM-VIRS_Edition2B CER_SSF_Terra-FM1-MODIS_Edition1A CER_SSF_Terra-FM1-MODIS_Edition1A CER_SSF_Terra-FM1-MODIS_Edition2A CER_SSF_Terra-FM2-MODIS_Edition2A CER_SSF_Terra-FM1-MODIS_Edition2B CER_SSF_Terra-FM2-MODIS_Edition2B CER_SSF_Aqua-FM4-MODIS_Beta1 CER_SSF_Aqua-FM3-MODIS_Beta2 CER_SSF_Aqua-FM4-MODIS_Beta2. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2006-01-01] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Temporal_Resolution=1 hour; Temporal_Resolution_Range=Hourly - < Daily].
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A. (Principal Investigator)
The Single Scanner Footprint TOA/Surface Fluxes and Clouds (SSF) product contains one hour of instantaneous Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The SSF combines instantaneous CERES data with scene information from a higher-resolution imager such as Visible/Infrared Scanner (VIRS) on TRMM or Moderate-Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua. Scene identification and cloud properties are defined at the higher imager resolution and these data are averaged over the larger CERES footprint. For each CERES footprint, the SSF contains the number of cloud layers and for each layer the cloud amount, height, temperature, pressure, optical depth, emissivity, ice and liquid water path, and water particle size. The SSF also contains the CERES filtered radiances for the total, shortwave (SW), and window (WN) channels and the unfiltered SW, longwave (LW), and WN radiances. The SW, LW, and WN radiances at spacecraft altitude are converted to Top-of-the-Atmosphere (TOA) fluxes based on the imager defined scene. These TOA fluxes are used to estimate surface fluxes. Only footprints with adequate imager coverage are included on CER_SSF_TRMM-PFM-VIRS_Subset_Edition1the SSF which is much less than the full set of footprints on the CERES ES-8 product. The following CERES SSF data sets are currently available: CER_SSF_TRMM-PFM-VIRS_Edition1 CER_SSF_TRMM-PFM-VIRS_Subset_Edition1 CER_SSF_TRMM-PFM-VIRS_Edition2A CER_SSF_TRMM-SIM-VIRS_Edition2_VIRSonly CER_SSF_TRMM-PFM-VIRS_Edition2A-TransOps CER_SSF_TRMM-PFM-VIRS_Edition2B-TransOps CER_SSF_TRMM-PFM-VIRS_Edition2B CER_SSF_Terra-FM1-MODIS_Edition1A CER_SSF_Terra-FM1-MODIS_Edition1A CER_SSF_Terra-FM1-MODIS_Edition2A CER_SSF_Terra-FM2-MODIS_Edition2A CER_SSF_Terra-FM1-MODIS_Edition2B CER_SSF_Terra-FM2-MODIS_Edition2B CER_SSF_Aqua-FM4-MODIS_Beta1 CER_SSF_Aqua-FM3-MODIS_Beta2 CER_SSF_Aqua-FM4-MODIS_Beta2. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2003-12-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Temporal_Resolution=1 hour; Temporal_Resolution_Range=Hourly - < Daily].
Detection of Multi-Layer and Vertically-Extended Clouds Using A-Train Sensors
NASA Technical Reports Server (NTRS)
Joiner, J.; Vasilkov, A. P.; Bhartia, P. K.; Wind, G.; Platnick, S.; Menzel, W. P.
2010-01-01
The detection of mUltiple cloud layers using satellite observations is important for retrieval algorithms as well as climate applications. In this paper, we describe a relatively simple algorithm to detect multiple cloud layers and distinguish them from vertically-extended clouds. The algorithm can be applied to coincident passive sensors that derive both cloud-top pressure from the thermal infrared observations and an estimate of solar photon pathlength from UV, visible, or near-IR measurements. Here, we use data from the A-train afternoon constellation of satellites: cloud-top pressure, cloud optical thickness, the multi-layer flag from the Aqua MODerate-resolution Imaging Spectroradiometer (MODIS) and the optical centroid cloud pressure from the Aura Ozone Monitoring Instrument (OMI). For the first time, we use data from the CloudSat radar to evaluate the results of a multi-layer cloud detection scheme. The cloud classification algorithms applied with different passive sensor configurations compare well with each other as well as with data from CloudSat. We compute monthly mean fractions of pixels containing multi-layer and vertically-extended clouds for January and July 2007 at the OMI spatial resolution (l2kmx24km at nadir) and at the 5kmx5km MODIS resolution used for infrared cloud retrievals. There are seasonal variations in the spatial distribution of the different cloud types. The fraction of cloudy pixels containing distinct multi-layer cloud is a strong function of the pixel size. Globally averaged, these fractions are approximately 20% and 10% for OMI and MODIS, respectively. These fractions may be significantly higher or lower depending upon location. There is a much smaller resolution dependence for fractions of pixels containing vertically-extended clouds (approx.20% for OMI and slightly less for MODIS globally), suggesting larger spatial scales for these clouds. We also find higher fractions of vertically-extended clouds over land as compared with ocean, particularly in the tropics and summer hemisphere.
Evaluation of Decision Trees for Cloud Detection from AVHRR Data
NASA Technical Reports Server (NTRS)
Shiffman, Smadar; Nemani, Ramakrishna
2005-01-01
Automated cloud detection and tracking is an important step in assessing changes in radiation budgets associated with global climate change via remote sensing. Data products based on satellite imagery are available to the scientific community for studying trends in the Earth's atmosphere. The data products include pixel-based cloud masks that assign cloud-cover classifications to pixels. Many cloud-mask algorithms have the form of decision trees. The decision trees employ sequential tests that scientists designed based on empirical astrophysics studies and simulations. Limitations of existing cloud masks restrict our ability to accurately track changes in cloud patterns over time. In a previous study we compared automatically learned decision trees to cloud masks included in Advanced Very High Resolution Radiometer (AVHRR) data products from the year 2000. In this paper we report the replication of the study for five-year data, and for a gold standard based on surface observations performed by scientists at weather stations in the British Islands. For our sample data, the accuracy of automatically learned decision trees was greater than the accuracy of the cloud masks p < 0.001.
NASA Astrophysics Data System (ADS)
Jethva, Hiren; Torres, Omar; Remer, Lorraine; Redemann, Jens; Livingston, John; Dunagan, Stephen; Shinozuka, Yohei; Kacenelenbogen, Meloe; Segal Rosenheimer, Michal; Spurr, Rob
2016-10-01
We present the validation analysis of above-cloud aerosol optical depth (ACAOD) retrieved from the "color ratio" method applied to MODIS cloudy-sky reflectance measurements using the limited direct measurements made by NASA's airborne Ames Airborne Tracking Sunphotometer (AATS) and Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) sensors. A thorough search of the airborne database collection revealed a total of five significant events in which an airborne sun photometer, coincident with the MODIS overpass, observed partially absorbing aerosols emitted from agricultural biomass burning, dust, and wildfires over a low-level cloud deck during SAFARI-2000, ACE-ASIA 2001, and SEAC4RS 2013 campaigns, respectively. The co-located satellite-airborne matchups revealed a good agreement (root-mean-square difference < 0.1), with most matchups falling within the estimated uncertainties associated the MODIS retrievals (about -10 to +50 %). The co-retrieved cloud optical depth was comparable to that of the MODIS operational cloud product for ACE-ASIA and SEAC4RS, however, higher by 30-50 % for the SAFARI-2000 case study. The reason for this discrepancy could be attributed to the distinct aerosol optical properties encountered during respective campaigns. A brief discussion on the sources of uncertainty in the satellite-based ACAOD retrieval and co-location procedure is presented. Field experiments dedicated to making direct measurements of aerosols above cloud are needed for the extensive validation of satellite-based retrievals.
Cloud Photogrammetry from Space
NASA Astrophysics Data System (ADS)
Zaksek, K.; Gerst, A.; von der Lieth, J.; Ganci, G.; Hort, M.
2015-04-01
The most commonly used method for satellite cloud top height (CTH) compares brightness temperature of the cloud with the atmospheric temperature profile. Because of the uncertainties of this method, we propose a photogrammetric approach. As clouds can move with high velocities, even instruments with multiple cameras are not appropriate for accurate CTH estimation. Here we present two solutions. The first is based on the parallax between data retrieved from geostationary (SEVIRI, HRV band; 1000 m spatial resolution) and polar orbiting satellites (MODIS, band 1; 250 m spatial resolution). The procedure works well if the data from both satellites are retrieved nearly simultaneously. However, MODIS does not retrieve the data at exactly the same time as SEVIRI. To compensate for advection in the atmosphere we use two sequential SEVIRI images (one before and one after the MODIS retrieval) and interpolate the cloud position from SEVIRI data to the time of MODIS retrieval. CTH is then estimated by intersection of corresponding lines-of-view from MODIS and interpolated SEVIRI data. The second method is based on NASA program Crew Earth observations from the International Space Station (ISS). The ISS has a lower orbit than most operational satellites, resulting in a shorter minimal time between two images, which is needed to produce a suitable parallax. In addition, images made by the ISS crew are taken by a full frame sensor and not a push broom scanner that most operational satellites use. Such data make it possible to observe also short time evolution of clouds.
NASA Technical Reports Server (NTRS)
Jethva, Hiren; Torres, Omar; Remer, Lorraine; Redemann, Jens; Livingston, John; Dunagan, Stephen; Shinozuka, Yohei; Kacenelenbogen, Meloe; Segal Rozenhaimer, Michal; Spurr, Rob
2016-01-01
We present the validation analysis of above-cloud aerosol optical depth (ACAOD) retrieved from the color ratio method applied to MODIS cloudy-sky reflectance measurements using the limited direct measurements made by NASAs airborne Ames Airborne Tracking Sunphotometer (AATS) and Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) sensors. A thorough search of the airborne database collection revealed a total of five significant events in which an airborne sun photometer, coincident with the MODIS overpass, observed partially absorbing aerosols emitted from agricultural biomass burning, dust, and wildfires over a low-level cloud deck during SAFARI-2000, ACE-ASIA 2001, and SEAC4RS 2013 campaigns, respectively. The co-located satellite-airborne match ups revealed a good agreement (root-mean-square difference less than 0.1), with most match ups falling within the estimated uncertainties associated with the MODIS retrievals (about -10 to +50 ). The co-retrieved cloud optical depth was comparable to that of the MODIS operational cloud product for ACE-ASIA and SEAC4RS, however, higher by 30-50% for the SAFARI-2000 case study. The reason for this discrepancy could be attributed to the distinct aerosol optical properties encountered during respective campaigns. A brief discussion on the sources of uncertainty in the satellite-based ACAOD retrieval and co-location procedure is presented. Field experiments dedicated to making direct measurements of aerosols above cloud are needed for the extensive validation of satellite based retrievals.
NASA Astrophysics Data System (ADS)
Marquis, Jared Wayne
Passive longwave infrared radiometric satellite-based retrievals of sea surface temperature (SST) at instrument nadir are investigated for cold bias caused by unscreened optically-thin cirrus (OTC) clouds (cloud optical depth ≤ 0.3; COD). Level 2 split-window SST retrievals over tropical oceans (30° S - 30° N) from Moderate Resolution Imaging Spectroradiometer (MODIS) radiances collected aboard the NASA Aqua satellite (Aqua-MODIS) are collocated with cloud profiles from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument, mounted on the independent NASA CALIPSO satellite. OTC are present in approximately 25% of tropical quality-assured (QA) Aqua-MODIS Level-2 data, representing over 99% of all contaminating cirrus found. This results in cold-biased SST retrievals using either split- (MODIS, AVHRR and VIIRS) or triple-window (AVHRR and VIIRS only) retrieval methods. SST retrievals are modeled based on operational algorithms using radiative transfer model simulations conducted with a hypothetical 1.5 km thick OTC cloud placed incrementally from 10.0 - 18.0 km above mean sea level for cloud optical depths (COD) between 0.0 - 0.3. Corresponding cold bias estimates for each sensor are estimated using relative Aqua-MODIS cloud contamination frequencies as a function of cloud top height and COD (assuming them consistent across each platform) integrated within each corresponding modeled cold bias matrix. Split-window relative OTC cold biases, for any single observation, range from 0.40° - 0.49° C for the three sensors, with an absolute (bulk mean) bias between 0.10° - 0.13° C. Triple-window retrievals are more resilient, ranging from 0.03° - 0.04° C relative and 0.11° - 0.16° C absolute. Cold biases are constant across the Pacific and Indian Ocean domains. Absolute bias is smaller over the Atlantic, but relative bias is larger due to different cloud properties indicating that this issue persists globally.
Photogrammetric retrieval of volcanic ash cloud top height from SEVIRI and MODIS
NASA Astrophysics Data System (ADS)
Zakšek, Klemen; Hort, Matthias; Zaletelj, Janez; Langmann, Bärbel
2013-04-01
Even if erupting in remote areas, volcanoes can have a significant impact on the modern society due to volcanic ash dispersion in the atmosphere. The ash does not affect merely air traffic - its transport in the atmosphere and its deposition on land and in the oceans may also significantly influence the climate through modifications of atmospheric CO2. The emphasis of this contribution is the retrieval of volcanic ash plume height (ACTH). ACTH is important information especially for air traffic but also to predict ash transport and to estimate the mass flux of the ejected material. ACTH is usually estimated from ground measurements, pilot reports, or satellite remote sensing. But ground based instruments are often not available at remote volcanoes and also the pilots reports are a matter of chance. Volcanic ash cloud top height (ACTH) can be monitored on the global level using satellite remote sensing. The most often used method compares brightness temperature of the cloud with the atmospheric temperature profile. Because of uncertainties of this method (unknown emissivity of the ash cloud, tropopause, etc.) we propose photogrammetric methods based on the parallax between data retrieved from geostationary (SEVIRI) and polar orbiting satellites (MODIS). The parallax is estimated using automatic image matching in three level image pyramids. The procedure works well if the data from both satellites are retrieved nearly simultaneously. MODIS does not retrieve the data at exactly the same time as SEVIRI. To compensate for advection we use two sequential SEVIRI images (one before and one after the MODIS retrieval) and interpolate the cloud position from SEVIRI data to the time of MODIS retrieval. ACTH is then estimated by intersection of corresponding lines-of-view from MODIS and interpolated SEVIRI data. The proposed method was tested using MODIS band 1 and SEVIRI HRV band for the case of the Eyjafjallajökull eruption in April 2010. The parallax between MODIS and SEVIRI data can reach over 30 km which implies ACTH of more than 12 km. The accuracy of ACTH was estimated to 0.6 km. The limitation of this procedure is that it has difficulties with automatic image matching if the ash cloud is not opaque.
Remote Sensing of Smoke, Land and Clouds from the NASA ER-2 during SAFARI 2000
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven; Moeller, Christopher C.; Revercomb, Henry E.; Chu, D. Allen
2002-01-01
The NASA ER-2 aircraft was deployed to southern Africa between August 17 and September 25, 2000 as part of the Southern Africa Regional Science Initiative (SAFARI) 2000. This aircraft carried a sophisticated array of multispectral scanners, multiangle spectroradiometers, a monostatic lidar, a gas correlation radiometer, upward and downward spectral flux radiometers, and two metric mapping cameras. These observations were obtained over a 3200 x 2800 km region of savanna, woody savanna, open shrubland, and grassland ecosystems throughout southern Africa, and were quite often coordinated with overflights by NASA's Terra and Landsat 7 satellites. The primary purpose of this sophisticated high altitude observing platform was to obtain independent observations of smoke, clouds, and land surfaces that could be used to check the validity of various remote sensing measurements derived by Earth-orbiting satellites. These include such things as the accuracy of the Moderate Resolution Imaging Spectro-radiometer (MODIS) cloud mask for distinguishing clouds and heavy aerosol from land and ocean surfaces, and Terra analyses of cloud optical and micro-physical properties, aerosol properties, leaf area index, vegetation index, fire occurrence, carbon monoxide, and surface radiation budget. In addition to coordination with Terra and Landsat 7 satellites, numerous flights were conducted over surface AERONET sites, flux towers in South Africa, Botswana, and Zambia, and in situ aircraft from the University of Washington, South Africa, and the United Kingdom.
Validation of AIRS/AMSU Cloud Retrievals Using MODIS Cloud Analyses
NASA Technical Reports Server (NTRS)
Molnar, Gyula I.; Susskind, Joel
2005-01-01
The AIRS/AMSU (flying on the EOS-AQUA satellite) sounding retrieval methodology allows for the retrieval of key atmospheric/surface parameters under partially cloudy conditions (Susskind et al.). In addition, cloud parameters are also derived from the AIRS/AMSU observations. Within each AIRS footprint, cloud parameters at up to 2 cloud layers are determined with differing cloud top pressures and effective (product of infrared emissivity at 11 microns and physical cloud fraction) cloud fractions. However, so far the AIRS cloud product has not been rigorously evaluated/validated. Fortunately, collocated/coincident radiances measured by MODIS/AQUA (at a much lower spectral resolution but roughly an order of-magnitude higher spatial resolution than that of AIRS) are used to determine analogous cloud products from MODIS. This allows us for a rather rare and interesting possibility: the intercomparisons and mutual validation of imager vs. sounder-based cloud products obtained from the same satellite positions. First, we present results of small-scale (granules) instantaneous intercomparisons. Next, we will evaluate differences of temporally averaged (monthly) means as well as the representation of inter-annual variability of cloud parameters as presented by the two cloud data sets. In particular, we present statistical differences in the retrieved parameters of cloud fraction and cloud top pressure. We will investigate what type of cloud systems are retrieved most consistently (if any) with both retrieval schemes, and attempt to assess reasons behind statistically significant differences.
NASA Astrophysics Data System (ADS)
Yi, Bingqi; Rapp, Anita D.; Yang, Ping; Baum, Bryan A.; King, Michael D.
2017-04-01
We compare differences in ice and liquid water cloud physical and optical properties between Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) collection 6 (C6) and collection 5.1 (C51). The C6 cloud products changed significantly due to improved calibration, improvements based on comparisons with the Cloud-Aerosol Lidar with Orthogonal Polarization, treatment of subpixel liquid water clouds, introduction of a roughened ice habit for C6 rather than the use of smooth ice particles in C51, and more. The MODIS cloud products form a long-term data set for analysis, modeling, and various purposes. Thus, it is important to understand the impact of the changes. Two cases are considered for C6 to C51 comparisons. Case 1 considers pixels with valid cloud retrievals in both C6 and C51, while case 2 compares all valid cloud retrievals in each collection. One year (2012) of level-2 MODIS cloud products are examined, including cloud effective radius (CER), optical thickness (COT), water path, cloud top pressure (CTP), cloud top temperature, and cloud fraction. Large C6-C51 differences are found in the ice CER (regionally, as large as 15 μm) and COT (decrease in annual average by approximately 25%). Liquid water clouds have higher CTP in marine stratocumulus regions in C6 but lower CTP globally (-5 hPa), and there are 66% more valid pixels in C6 (case 2) due to the treatment of pixels with subpixel clouds. Simulated total cloud radiative signatures from C51 and C6 are compared to Clouds and the Earth's Radiant Energy System Energy Balanced And Filled (EBAF) product. The C6 CREs compare more closely with the EBAF than the C51 counterparts.
NASA Satellite Data for Seagrass Health Modeling and Monitoring
NASA Technical Reports Server (NTRS)
Spiering, Bruce A.; Underwood, Lauren; Ross, Kenton
2011-01-01
Time series derived information for coastal waters will be used to provide input data for the Fong and Harwell model. The current MODIS land mask limits where the model can be applied; this project will: a) Apply MODIS data with resolution higher than the standard products (250-m vs. 1-km). b) Seek to refine the land mask. c) Explore nearby areas to use as proxies for time series directly over the beds. Novel processing approaches will be leveraged from other NASA projects and customized as inputs for seagrass productivity modeling
2015-11-02
Cloud vortices off Heard Island, south Indian Ocean. The Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Aqua satellite captured this true-color image of sea ice off Heard Island on Nov 2, 2015 at 5:02 AM EST (09:20 UTC). Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team
NASA Astrophysics Data System (ADS)
Choi, M.; Kim, J.; Lee, J.; KIM, M.; Park, Y. J.; Holben, B. N.; Eck, T. F.; Li, Z.; Song, C. H.
2017-12-01
The Geostationary Ocean Color Imager (GOCI) Yonsei aerosol retrieval (YAER) version 1 algorithm was developed for retrieving hourly aerosol optical depth at 550 nm (AOD) and other subsidiary aerosol optical properties over East Asia. The GOCI YAER AOD showed comparable accuracy compared to ground-based and other satellite-based observations, but still had errors due to uncertainties in surface reflectance and simple cloud masking. Also, it was not capable of near-real-time (NRT) processing because it required a monthly database of each year encompassing the day of retrieval for the determination of surface reflectance. This study describes the improvement of GOCI YAER algorithm to the version 2 (V2) for NRT processing with improved accuracy from the modification of cloud masking, surface reflectance determination using multi-year Rayleigh corrected reflectance and wind speed database, and inversion channels per surface conditions. Therefore, the improved GOCI AOD ( ) is similar with those of Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) AOD compared to V1 of the YAER algorithm. The shows reduced median bias and increased ratio within range (i.e. absolute expected error range of MODIS AOD) compared to V1 in the validation results using Aerosol Robotic Network (AERONET) AOD ( ) from 2011 to 2016. The validation using the Sun-Sky Radiometer Observation Network (SONET) over China also shows similar results. The bias of error ( is within -0.1 and 0.1 range as a function of AERONET AOD and AE, scattering angle, NDVI, cloud fraction and homogeneity of retrieved AOD, observation time, month, and year. Also, the diagnostic and prognostic expected error (DEE and PEE, respectively) of are estimated. The estimated multiple PEE of GOCI V2 AOD is well matched with actual error over East Asia, and the GOCI V2 AOD over Korea shows higher ratio within PEE compared to over China and Japan. Hourly AOD products based on the improved GOCI YAER AOD could contribute to better understandings of aerosols in terms of long-term climate changes and short-term air quality monitoring and forecasting perspectives over East Asia, especially rapid diurnal variation and transboundary transport.
Lidar Cloud Detection with Fully Convolutional Networks
NASA Astrophysics Data System (ADS)
Cromwell, E.; Flynn, D.
2017-12-01
The vertical distribution of clouds from active remote sensing instrumentation is a widely used data product from global atmospheric measuring sites. The presence of clouds can be expressed as a binary cloud mask and is a primary input for climate modeling efforts and cloud formation studies. Current cloud detection algorithms producing these masks do not accurately identify the cloud boundaries and tend to oversample or over-represent the cloud. This translates as uncertainty for assessing the radiative impact of clouds and tracking changes in cloud climatologies. The Atmospheric Radiation Measurement (ARM) program has over 20 years of micro-pulse lidar (MPL) and High Spectral Resolution Lidar (HSRL) instrument data and companion automated cloud mask product at the mid-latitude Southern Great Plains (SGP) and the polar North Slope of Alaska (NSA) atmospheric observatory. Using this data, we train a fully convolutional network (FCN) with semi-supervised learning to segment lidar imagery into geometric time-height cloud locations for the SGP site and MPL instrument. We then use transfer learning to train a FCN for (1) the MPL instrument at the NSA site and (2) for the HSRL. In our semi-supervised approach, we pre-train the classification layers of the FCN with weakly labeled lidar data. Then, we facilitate end-to-end unsupervised pre-training and transition to fully supervised learning with ground truth labeled data. Our goal is to improve the cloud mask accuracy and precision for the MPL instrument to 95% and 80%, respectively, compared to the current cloud mask algorithms of 89% and 50%. For the transfer learning based FCN for the HSRL instrument, our goal is to achieve a cloud mask accuracy of 90% and a precision of 80%.
Rausch, John; Meyer, Kerry; Bennartz, Ralf; Platnick, Steven
2017-01-01
Differences in cloud droplet effective radius and cloud droplet number concentration (CDNC) estimates inferred from the Aqua MODIS Collections 5.1 and 6 cloud products (MYD06) are examined for warm clouds over global oceans for the year 2008. Individual pixel level retrievals for both collections are aggregated to 1° × 1° and compared globally and regionally for the three main spectral channel pairs used for MODIS cloud optical property retrievals. Comparisons between both collections are performed for cases in which all three effective radii retrievals are classified by the MODIS Cloud Product as valid. The contribution to the observed differences of several key MYD06 Collection 6 algorithm updates are also explored, with a focus on changes to the surface reflectance model, assumed solar irradiance, above cloud emission, cloud top pressure, and pixel registration. Global results show a neutral to positive (> 50 cm−3) change for C6-derived CDNC relative to C5.1 for the 1.6 µm and 2.1 µm channel retrievals, corresponding to a neutral to −2 µm difference in droplet effective radius. For 3.7 µm retrievals, CDNC results show a negative change in the tropics, with differences transitioning toward positive values with increasing latitude spanning −25 to +50 cm−3 related to a +2.5 to −1 µm transition in effective radius. Cloud optical thickness differences were small relative to effective radius, and found to not significantly impact CDNC estimates. Regionally, the magnitude and behavior of the annual CDNC cycle are compared for each effective radius retrieval. Results from this study indicate significant intercollection differences in aggregated values of effective radius due to changes to the pre-computed retrieval lookup tables for ocean scenes, changes to retrieved cloud top pressure, solar irradiance, or above cloud thermal emission, depending upon spectral channel. The observed differences between collections may have implications for existing MODIS derived climatologies and validation studies of effective radius and CDNC. PMID:29098040
NASA Technical Reports Server (NTRS)
Rausch, John; Meyer, Kerry; Bennartz, Ralf; Platnick, Steven
2017-01-01
Differences in cloud droplet effective radius and cloud droplet number concentration (CDNC) estimates inferred from the Aqua MODIS Collections 5.1 and 6 cloud products (MYD06) are examined for warm clouds over global oceans for the year 2008. Individual pixel level retrievals for both collections are aggregated to 1 degree x 1 degree and compared globally and regionally for the three main spectral channel pairs used for MODIS cloud optical property retrievals. Comparisons between both collections are performed for cases in which all three effective radii retrievals are classified by the MODIS Cloud Product as valid. The contribution to the observed differences of several key MYD06 Collection 6 algorithm updates are also explored, with a focus on changes to the surface reflectance model, assumed solar irradiance, above cloud emission, cloud top pressure, and pixel registration. Global results show a neutral to positive ( greater than 50cm(exp. -3) change for C6-derived CDNC relative to C5.1 for the 1.6 micrometers and 2.1 micrometers channel retrievals, corresponding to a neutral to -2 micrometers difference in droplet effective radius. For 3.7 micrometer retrievals, CDNC results show a negative change in the tropics, with differences transitioning toward positive values with increasing latitude spanning -25 to +50 cm(exp. -3) related to a +2.5 to -1 micrometers transition in effective radius. Cloud optical thickness differences were small relative to effective radius, and found to not significantly impact CDNC estimates. Regionally, the magnitude and behavior of the annual CDNC cycle are compared for each effective radius retrieval. Results from this study indicate significant intercollection differences in aggregated values of effective radius due to changes to the pre-computed retrieval lookup tables for ocean scenes, changes to retrieved cloud top pressure, solar irradiance, or above cloud thermal emission, depending upon spectral channel. The observed differences between collections may have implications for existing MODIS derived climatologies and validation studies of effective radius and CDNC.
Advantageous GOES IR results for ash mapping at high latitudes: Cleveland eruptions 2001
Gu, Yingxin; Rose, William I.; Schneider, D.J.; Bluth, G.J.S.; Watson, I.M.
2005-01-01
The February 2001 eruption of Cleveland Volcano, Alaska allowed for comparisons of volcanic ash detection using two-band thermal infrared (10-12 ??m) remote sensing from MODIS, AVHRR, and GOES 10. Results show that high latitude GOES volcanic cloud sensing the range of about 50 to 65??N is significantly enhanced. For the Cleveland volcanic clouds the MODIS and AVHRR data have zenith angles 6-65 degrees and the GOES has zenith angles that are around 70 degrees. The enhancements are explained by distortion in the satellite view of the cloud's lateral extent because the satellite zenith angles result in a "side-looking" aspect and longer path lengths through the volcanic cloud. The shape of the cloud with respect to the GOES look angle also influences the results. The MODIS and AVHRR data give consistent retrievals of the ash cloud evolution over time and are good corrections for the GOES data. Copyright 2005 by the American Geophysical Union.
Refinement of the CALIOP cloud mask algorithm
NASA Astrophysics Data System (ADS)
Katagiri, Shuichiro; Sato, Kaori; Ohta, Kohei; Okamoto, Hajime
2018-04-01
A modified cloud mask algorithm was applied to the CALIOP data to have more ability to detect the clouds in the lower atmosphere. In this algorithm, we also adopt the fully attenuation discrimination and the remain noise estimation using the data obtained at an altitude of 40 km to avoid contamination of stratospheric aerosols. The new cloud mask shows an increase in the lower cloud fraction. Comparison of the results to the data observed with a PML ground observation was also made.
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A. (Principal Investigator)
The Single Scanner Footprint TOA/Surface Fluxes and Clouds (SSF) product contains one hour of instantaneous Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The SSF combines instantaneous CERES data with scene information from a higher-resolution imager such as Visible/Infrared Scanner (VIRS) on TRMM or Moderate-Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua. Scene identification and cloud properties are defined at the higher imager resolution and these data are averaged over the larger CERES footprint. For each CERES footprint, the SSF contains the number of cloud layers and for each layer the cloud amount, height, temperature, pressure, optical depth, emissivity, ice and liquid water path, and water particle size. The SSF also contains the CERES filtered radiances for the total, shortwave (SW), and window (WN) channels and the unfiltered SW, longwave (LW), and WN radiances. The SW, LW, and WN radiances at spacecraft altitude are converted to Top-of-the-Atmosphere (TOA) fluxes based on the imager defined scene. These TOA fluxes are used to estimate surface fluxes. Only footprints with adequate imager coverage are included on CER_SSF_TRMM-PFM-VIRS_Subset_Edition1the SSF which is much less than the full set of footprints on the CERES ES-8 product. The following CERES SSF data sets are currently available: CER_SSF_TRMM-PFM-VIRS_Edition1 CER_SSF_TRMM-PFM-VIRS_Subset_Edition1 CER_SSF_TRMM-PFM-VIRS_Edition2A CER_SSF_TRMM-SIM-VIRS_Edition2_VIRSonly CER_SSF_TRMM-PFM-VIRS_Edition2A-TransOps CER_SSF_TRMM-PFM-VIRS_Edition2B-TransOps CER_SSF_TRMM-PFM-VIRS_Edition2B CER_SSF_Terra-FM1-MODIS_Edition1A CER_SSF_Terra-FM1-MODIS_Edition1A CER_SSF_Terra-FM1-MODIS_Edition2A CER_SSF_Terra-FM2-MODIS_Edition2A CER_SSF_Terra-FM1-MODIS_Edition2B CER_SSF_Terra-FM2-MODIS_Edition2B CER_SSF_Aqua-FM4-MODIS_Beta1 CER_SSF_Aqua-FM3-MODIS_Beta2 CER_SSF_Aqua-FM4-MODIS_Beta2. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=1998-08-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Temporal_Resolution=1 hour; Temporal_Resolution_Range=Hourly - < Daily].
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A. (Principal Investigator)
The Single Scanner Footprint TOA/Surface Fluxes and Clouds (SSF) product contains one hour of instantaneous Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The SSF combines instantaneous CERES data with scene information from a higher-resolution imager such as Visible/Infrared Scanner (VIRS) on TRMM or Moderate-Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua. Scene identification and cloud properties are defined at the higher imager resolution and these data are averaged over the larger CERES footprint. For each CERES footprint, the SSF contains the number of cloud layers and for each layer the cloud amount, height, temperature, pressure, optical depth, emissivity, ice and liquid water path, and water particle size. The SSF also contains the CERES filtered radiances for the total, shortwave (SW), and window (WN) channels and the unfiltered SW, longwave (LW), and WN radiances. The SW, LW, and WN radiances at spacecraft altitude are converted to Top-of-the-Atmosphere (TOA) fluxes based on the imager defined scene. These TOA fluxes are used to estimate surface fluxes. Only footprints with adequate imager coverage are included on CER_SSF_TRMM-PFM-VIRS_Subset_Edition1the SSF which is much less than the full set of footprints on the CERES ES-8 product. The following CERES SSF data sets are currently available: CER_SSF_TRMM-PFM-VIRS_Edition1 CER_SSF_TRMM-PFM-VIRS_Subset_Edition1 CER_SSF_TRMM-PFM-VIRS_Edition2A CER_SSF_TRMM-SIM-VIRS_Edition2_VIRSonly CER_SSF_TRMM-PFM-VIRS_Edition2A-TransOps CER_SSF_TRMM-PFM-VIRS_Edition2B-TransOps CER_SSF_TRMM-PFM-VIRS_Edition2B CER_SSF_Terra-FM1-MODIS_Edition1A CER_SSF_Terra-FM1-MODIS_Edition1A CER_SSF_Terra-FM1-MODIS_Edition2A CER_SSF_Terra-FM2-MODIS_Edition2A CER_SSF_Terra-FM1-MODIS_Edition2B CER_SSF_Terra-FM2-MODIS_Edition2B CER_SSF_Aqua-FM4-MODIS_Beta1 CER_SSF_Aqua-FM3-MODIS_Beta2 CER_SSF_Aqua-FM4-MODIS_Beta2. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2000-03-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Temporal_Resolution=1 hour; Temporal_Resolution_Range=Hourly - < Daily].
NASA Technical Reports Server (NTRS)
Zhang, Z.; Meyer, K.; Platnick, S.; Oreopoulos, L.; Lee, D.; Yu, H.
2013-01-01
This paper describes an efficient and unique method for computing the shortwave direct radiative effect (DRE) of aerosol residing above low-level liquid-phase clouds using CALIOP and MODIS data. It accounts for the overlapping of aerosol and cloud rigorously by utilizing the joint histogram of cloud optical depth and cloud top pressure. Effects of sub-grid scale cloud and aerosol variations on DRE are accounted for. It is computationally efficient through using grid-level cloud and aerosol statistics, instead of pixel-level products, and a pre-computed look-up table in radiative transfer calculations. We verified that for smoke over the southeast Atlantic Ocean the method yields a seasonal mean instantaneous shortwave DRE that generally agrees with more rigorous pixel-level computation within 4%. We have also computed the annual mean instantaneous shortwave DRE of light-absorbing aerosols (i.e., smoke and polluted dust) over global ocean based on 4 yr of CALIOP and MODIS data. We found that the variability of the annual mean shortwave DRE of above-cloud light-absorbing aerosol is mainly driven by the optical depth of the underlying clouds.
NASA Technical Reports Server (NTRS)
Zhang, Z.; Meyer, K.; Platnick, S.; Oreopoulos, L.; Lee, D.; Yu, H.
2014-01-01
This paper describes an efficient and unique method for computing the shortwave direct radiative effect (DRE) of aerosol residing above low-level liquid-phase clouds using CALIOP and MODIS data. It accounts for the overlapping of aerosol and cloud rigorously by utilizing the joint histogram of cloud optical depth and cloud top pressure. Effects of sub-grid scale cloud and aerosol variations on DRE are accounted for. It is computationally efficient through using grid-level cloud and aerosol statistics, instead of pixel-level products, and a pre-computed look-up table in radiative transfer calculations. We verified that for smoke over the southeast Atlantic Ocean the method yields a seasonal mean instantaneous shortwave DRE that generally agrees with more rigorous pixel-level computation within 4. We have also computed the annual mean instantaneous shortwave DRE of light-absorbing aerosols (i.e., smoke and polluted dust) over global ocean based on 4 yr of CALIOP and MODIS data. We found that the variability of the annual mean shortwave DRE of above-cloud light-absorbing aerosol is mainly driven by the optical depth of the underlying clouds.
NASA Technical Reports Server (NTRS)
Meyer, Kerry; Platnick, Steven
2012-01-01
Clouds, aerosols, and their interactions are widely considered to be key uncertainty components in our current understanding of the Earth's atmosphere and radiation budget. The work presented here is focused on the quasi-permanent marine boundary layer . (MBL) clouds off the southern Atlantic coast of Africa and the effects on MODIS cloud optical property retrievals (MOD06) of an overlying absorbing smoke layer. During much of August and September, a persistent smoke layer resides over this region, produced from extensive biomass burning throughout the southern African savanna. The resulting absorption, which increases with decreasing wavelength, potentially introduces biases into the MODIS cloud optical property retrievals of the underlying MBL clouds. This effect is more pronounced in the cloud optical thickness retrievals, which over ocean are derived from the wavelength channel centered near 0.86 micron (effective particle size retrievals are derived from the longer-wavelength near-IR channels at 1.6, 2.1, and 3.7 microns). Here, the spatial distributions of the scalar statistics of both the cloud and aerosol layers are first determined from the CALIOP 5 km layer products. Next, the MOD06 look-up tables (LUTs) are adjusted by inserting an absorbing smoke layer of varying optical thickness over the cloud. Retrievals are subsequently performed for a subset of MODIS pixels collocated with the CALIOP ground track, using smoke optical thickness from the CALIOP 5km aerosol layer product to select the appropriate LUT. The resulting differences in cloud optical property retrievals due to the inclusion of the smoke layer in the LUTs will be examined. In addition, the direct radiative forcing of this smoke layer will be investigated from the perspective of the cloud optical property retrieval differences.
NASA Technical Reports Server (NTRS)
Wang, Chenxi; Platnick, Steven; Zhang, Zhibo; Meyer, Kerry; Wind, Galina; Yang, Ping
2016-01-01
An infrared-based optimal estimation (OE-IR) algorithm for retrieving ice cloud properties is evaluated. Specifically, the implementation of the algorithm with MODerate resolution Imaging Spectroradiometer (MODIS) observations is assessed in comparison with the operational retrieval products from MODIS on the Aqua satellite (MYD06), Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), and the Imaging Infrared Radiometer (IIR); the latter two instruments fly on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite in the Afternoon Constellation (A-Train) with Aqua. The results show that OE-IR cloud optical thickness (tau) and effective radius (r(sub eff)) retrievals perform best for ice clouds having 0.5 < tau< 7 and r(sub eff) < 50microns. For global ice clouds, the averaged retrieval uncertainties of tau and r(sub eff) are 19% and 33%, respectively. For optically thick ice clouds with tau larger than 10, however, the tau and r(sub eff) retrieval uncertainties can exceed 30% and 50%, respectively. For ice cloud top height (h), the averaged global uncertainty is 0.48km. Relatively large h uncertainty (e.g., > 1km) occurs for tau < 0.5. Analysis of 1month of the OE-IR retrievals shows large tau and r(sub eff) uncertainties in storm track regions and the southern oceans where convective clouds are frequently observed, as well as in high-latitude regions where temperature differences between the surface and cloud top are more ambiguous. Generally, comparisons between the OE-IR and the operational products show consistent tau and h retrievals. However, obvious differences between the OE-IR and the MODIS Collection 6 r(sub eff) are found.
Global cloud database from VIRS and MODIS for CERES
NASA Astrophysics Data System (ADS)
Minnis, Patrick; Young, David F.; Wielicki, Bruce A.; Sun-Mack, Sunny; Trepte, Qing Z.; Chen, Yan; Heck, Patrick W.; Dong, Xiquan
2003-04-01
The NASA CERES Project has developed a combined radiation and cloud property dataset using the CERES scanners and matched spectral data from high-resolution imagers, the Visible Infrared Scanner (VIRS) on the Tropical Rainfall Measuring Mission (TRMM) satellite and the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua. The diurnal cycle can be well-characterized over most of the globe using the combinations of TRMM, Aqua, and Terra data. The cloud properties are derived from the imagers using state-of-the-art methods and include cloud fraction, height, optical depth, phase, effective particle size, emissivity, and ice or liquid water path. These cloud products are convolved into the matching CERES fields of view to provide simultaneous cloud and radiation data at an unprecedented accuracy. Results are available for at least 3 years of VIRS data and 1 year of Terra MODIS data. The various cloud products are compared with similar quantities from climatological sources and instantaneous active remote sensors. The cloud amounts are very similar to those from surface observer climatologies and are 6-7% less than those from a satellite-based climatology. Optical depths are 2-3 times smaller than those from the satellite climatology, but are within 5% of those from the surface remote sensing. Cloud droplet sizes and liquid water paths are within 10% of the surface results on average for stratus clouds. The VIRS and MODIS retrievals are very consistent with differences that usually can be explained by sampling, calibration, or resolution differences. The results should be extremely valuable for model validation and improvement and for improving our understanding of the relationship between clouds and the radiation budget.
NASA Astrophysics Data System (ADS)
Wang, C.; Platnick, S. E.; Meyer, K.; Ackerman, S. A.; Holz, R.; Heidinger, A.
2017-12-01
The Visible Infrared Imaging Radiometer Suite (VIIRS) on board the Suomi-NPP spacecraft is considered as the next generation of instrument providing operational moderate resolution imaging capabilities after the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua. However, cloud-top property (CTP) retrieval algorithms designed for the two instruments cannot be identical because of the absence of CO2 bands on VIIRS. In this study, we conduct a comprehensive sensitivity study of cloud retrievals utilizing a IR-Optimal Estimation (IROE) based algorithm. With a fast IR radiative transfer model, the IROE simultaneously retrieves cloud-top height (CTH), cloud optical thickness (COT), cloud effective radius (CER) and corresponding uncertainties using a set of IR bands. Three retrieval runs are implemented for this sensitivity study: retrievals using 1) three native VIIRS M-Bands at 750m resolution (8.5-, 11-, and 12-μm), 2) three native VIIRS M-Bands with spectrally integrated CO2 bands from the Cross-Track Infrared Sounder (CrIS), and 3) six MODIS IR bands (8.5-, 11-, 12-, 13.3-, 13.6-, and 13.9-μm). We select a few collocated MODIS and VIIRS granules for pixel-level comparison. Furthermore, aggregated daily and monthly cloud properties from the three runs are also compared. It shows that, the combined VIIRS/CrIS run agrees well with the MODIS-only run except for pixels near cloud edges. The VIIRS-only run is close to its counterparts when clouds are optically thick. However, for optically thin clouds, the VIIRS-only run can be readily influenced by the initial guess. Large discrepancies and uncertainties can be found for optically thin clouds from the VIIRS-only run.
Measurement Comparisons Towards Improving the Understanding of Aerosol-Cloud Processing
NASA Astrophysics Data System (ADS)
Noble, Stephen R.
Cloud processing of aerosol is an aerosol-cloud interaction that is not heavily researched but could have implications on climate. The three types of cloud processing are chemical processing, collision and coalescence processing, and Brownian capture of interstitial particles. All types improve cloud condensation nuclei (CCN) in size or hygroscopicity (kappa). These improved CCN affect subsequent clouds. This dissertation focuses on measurement comparisons to improve our observations and understanding of aerosol-cloud processing. Particle size distributions measured at the continental Southern Great Plains (SGP) site were compared with ground based measurements of cloud fraction (CF) and cloud base altitude (CBA). Particle size distributions were described by a new objective shape parameter to define bimodality rather than an old subjective one. Cloudy conditions at SGP were found to be correlated with lagged shape parameter. Horizontal wind speed and regional CF explained 42%+ of this lag time. Many of these surface particle size distributions were influenced by aerosol-cloud processing. Thus, cloud processing may be more widespread with more implications than previously thought. Particle size distributions measured during two aircraft field campaigns (MArine Stratus/stratocumulus Experiment; MASE; and Ice in Cloud Experiment-Tropical; ICE-T) were compared to CCN distributions. Tuning particle size to critical supersaturation revealed hygroscopicity expressed as ? when the distributions were overlain. Distributions near cumulus clouds (ICE-T) had a higher frequency of the same ?s (48% in ICE-T to 42% in MASE) between the accumulation (processed) and Aitken (unprocessed) modes. This suggested physical processing domination in ICE-T. More MASE (stratus cloud) kappa differences between modes pointed to chemical cloud processing. Chemistry measurements made in MASE showed increases in sulfates and nitrates with distributions that were more processed. This supported chemical cloud processing in MASE. This new method to determine kappa provides the needed information without interrupting ambient measurements. MODIS derived cloud optical thickness (COT), cloud liquid water path (LWP), and cloud effective radius (re) were compared to the same in situ derived variables from cloud probe measurements of two stratus/stratocumulus cloud campaigns (MASE and Physics Of Stratocumulus Tops; POST). In situ data were from complete vertical cloud penetrations, while MODIS data were from pixels along the aircraft penetration path. Comparisons were well correlated except that MODIS LWP (14-36%) and re (20-30%) were biased high. The LWP bias was from re bias and was not improved by using the vertically stratified assumption. MODIS re bias was almost removed when compared to cloud top maximum in situ re, but, that does not describe re for the full depth of the cloud. COT is validated by in situ COT. High correlations suggest that MODIS variables are useful in self-comparisons such as gradient changes in stratus cloud re during aerosol-cloud processing.
Near-Real Time Cloud Retrievals from Operational and Research Meteorological Satellites
NASA Technical Reports Server (NTRS)
Minnis, Patrick; Nguyen, Louis; Palilonda, Rabindra; Heck, Patrick W.; Spangenberg, Douglas A.; Doelling, David R.; Ayers, J. Kirk; Smith, William L., Jr.; Khaiyer, Mandana M.; Trepte, Qing Z.;
2008-01-01
A set of cloud retrieval algorithms developed for CERES and applied to MODIS data have been adapted to analyze other satellite imager data in near-real time. The cloud products, including single-layer cloud amount, top and base height, optical depth, phase, effective particle size, and liquid and ice water paths, are being retrieved from GOES- 10/11/12, MTSAT-1R, FY-2C, and Meteosat imager data as well as from MODIS. A comprehensive system to normalize the calibrations to MODIS has been implemented to maximize consistency in the products across platforms. Estimates of surface and top-of-atmosphere broadband radiative fluxes are also provided. Multilayered cloud properties are retrieved from GOES-12, Meteosat, and MODIS data. Native pixel resolution analyses are performed over selected domains, while reduced sampling is used for full-disk retrievals. Tools have been developed for matching the pixel-level results with instrumented surface sites and active sensor satellites. The calibrations, methods, examples of the products, and comparisons with the ICESat GLAS lidar are discussed. These products are currently being used for aircraft icing diagnoses, numerical weather modeling assimilation, and atmospheric radiation research and have potential for use in many other applications.
A robust threshold-based cloud mask for the HRV channel of MSG SEVIRI
NASA Astrophysics Data System (ADS)
Bley, S.; Deneke, H.
2013-03-01
A robust threshold-based cloud mask for the high-resolution visible (HRV) channel (1 × 1 km2) of the METEOSAT SEVIRI instrument is introduced and evaluated. It is based on operational EUMETSAT cloud mask for the low resolution channels of SEVIRI (3 × 3 km2), which is used for the selection of suitable thresholds to ensure consistency with its results. The aim of using the HRV channel is to resolve small-scale cloud structures which cannot be detected by the low resolution channels. We find that it is of advantage to apply thresholds relative to clear-sky reflectance composites, and to adapt the threshold regionally. Furthermore, the accuracy of the different spectral channels for thresholding and the suitability of the HRV channel are investigated for cloud detection. The case studies show different situations to demonstrate the behaviour for various surface and cloud conditions. Overall, between 4 and 24% of cloudy low-resolution SEVIRI pixels are found to contain broken clouds in our test dataset depending on considered region. Most of these broken pixels are classified as cloudy by EUMETSAT's cloud mask, which will likely result in an overestimate if the mask is used as estimate of cloud fraction.
NASA Astrophysics Data System (ADS)
Gacal, G. F. B.; Lagrosas, N.
2017-12-01
Cloud detection nowadays is primarily achieved by the utilization of various sensors aboard satellites. These include MODIS Aqua, MODIS Terra, and AIRS with products that include nighttime cloud fraction. Ground-based instruments are, however, only secondary to these satellites when it comes to cloud detection. Nonetheless, these ground-based instruments (e.g., LIDARs, ceilometers, and sky-cameras) offer significant datasets about a particular region's cloud cover values. For nighttime operations of cloud detection instruments, satellite-based instruments are more reliably and prominently used than ground-based ones. Therefore if a ground-based instrument for nighttime operations is operated, it ought to produce reliable scientific datasets. The objective of this study is to do a comparison between the results of a nighttime ground-based instrument (sky-camera) and that of MODIS Aqua and MODIS Terra. A Canon Powershot A2300 is placed ontop of Manila Observatory (14.64N, 121.07E) and is configured to take images of the night sky at 5min intervals. To detect pixels with clouds, the pictures are converted to grayscale format. Thresholding technique is used to screen pixels with cloud and pixels without clouds. If the pixel value is greater than 17, it is considered as a cloud; otherwise, a noncloud (Gacal et al., 2016). This algorithm is applied to the data gathered from Oct 2015 to Oct 2016. A scatter plot between satellite cloud fraction in the area covering the area 14.2877N, 120.9869E, 14.7711N and 121.4539E and ground cloud cover is graphed to find the monthly correlation. During wet season (June - November), the satellite nighttime cloud fraction vs ground measured cloud cover produce an acceptable R2 (Aqua= 0.74, Terra= 0.71, AIRS= 0.76). However, during dry season, poor R2 values are obtained (AIRS= 0.39, Aqua & Terra = 0.01). The high correlation during wet season can be attributed to a high probability that the camera and satellite see the same clouds. However during dry season, the satellite sees high altitude clouds and the camera can not detect these clouds from the ground as it relies on city lights reflected from low level clouds. With this acknowledged disparity, the ground-based camera has the advantage of detecting haze and thin clouds near the ground that are hardly or not detected by the satellites.
Subpixel Snow Cover Mapping from MODIS Data by Nonparametric Regression Splines
NASA Astrophysics Data System (ADS)
Akyurek, Z.; Kuter, S.; Weber, G. W.
2016-12-01
Spatial extent of snow cover is often considered as one of the key parameters in climatological, hydrological and ecological modeling due to its energy storage, high reflectance in the visible and NIR regions of the electromagnetic spectrum, significant heat capacity and insulating properties. A significant challenge in snow mapping by remote sensing (RS) is the trade-off between the temporal and spatial resolution of satellite imageries. In order to tackle this issue, machine learning-based subpixel snow mapping methods, like Artificial Neural Networks (ANNs), from low or moderate resolution images have been proposed. Multivariate Adaptive Regression Splines (MARS) is a nonparametric regression tool that can build flexible models for high dimensional and complex nonlinear data. Although MARS is not often employed in RS, it has various successful implementations such as estimation of vertical total electron content in ionosphere, atmospheric correction and classification of satellite images. This study is the first attempt in RS to evaluate the applicability of MARS for subpixel snow cover mapping from MODIS data. Total 16 MODIS-Landsat ETM+ image pairs taken over European Alps between March 2000 and April 2003 were used in the study. MODIS top-of-atmospheric reflectance, NDSI, NDVI and land cover classes were used as predictor variables. Cloud-covered, cloud shadow, water and bad-quality pixels were excluded from further analysis by a spatial mask. MARS models were trained and validated by using reference fractional snow cover (FSC) maps generated from higher spatial resolution Landsat ETM+ binary snow cover maps. A multilayer feed-forward ANN with one hidden layer trained with backpropagation was also developed. The mutual comparison of obtained MARS and ANN models was accomplished on independent test areas. The MARS model performed better than the ANN model with an average RMSE of 0.1288 over the independent test areas; whereas the average RMSE of the ANN model was 0.1500. MARS estimates for low FSC values (i.e., FSC<0.3) were better than that of ANN. Both ANN and MARS tended to overestimate medium FSC values (i.e., 0.30.7).
Refinements to HIRS CO2 Slicing Algorithm with Results Compared to CALIOP and MODIS
NASA Astrophysics Data System (ADS)
Frey, R.; Menzel, P.
2012-12-01
This poster reports on the refinement of a cloud top property algorithm using High-resolution Infrared Radiation Sounder (HIRS) measurements. The HIRS sensor has been flown on fifteen satellites from TIROS-N through NOAA-19 and MetOp-A forming a continuous 30 year cloud data record. Cloud Top Pressure and effective emissivity (cloud fraction multiplied by cloud emissivity) are derived using the 15 μm spectral bands in the CO2 absorption band, implementing the CO2 slicing technique which is strong for high semi-transparent clouds but weak for low clouds with little thermal contrast from clear skies. We report on algorithm adjustments suggested from MODIS cloud record validations and the inclusion of collocated AVHRR cloud fraction data from the PATMOS-x algorithm. Reprocessing results for 2008 are shown using NOAA-18 HIRS and collocated CALIOP data for validation, as well as comparisons to MODIS monthly mean values. Adjustments to the cloud algorithm include (a) using CO2 slicing for all ice and mixed phase clouds and infrared window determinations for all water clouds, (b) determining the cloud top pressure from the most opaque CO2 spectral band pair seeing the cloud, (c) reducing the cloud detection threshold for the CO2 slicing algorithm to include conditions of smaller radiance differences that are often due to thin ice clouds, and (d) identifying stratospheric clouds when an opaque band is warmer than a less opaque band.
NASA Technical Reports Server (NTRS)
Comiso, Joey C.
1995-01-01
Surface temperature is one of the key variables associated with weather and climate. Accurate measurements of surface air temperatures are routinely made in meteorological stations around the world. Also, satellite data have been used to produce synoptic global temperature distributions. However, not much attention has been paid on temperature distributions in the polar regions. In the polar regions, the number of stations is very sparse. Because of adverse weather conditions and general inaccessibility, surface field measurements are also limited. Furthermore, accurate retrievals from satellite data in the region have been difficult to make because of persistent cloudiness and ambiguities in the discrimination of clouds from snow or ice. Surface temperature observations are required in the polar regions for air-sea-ice interaction studies, especially in the calculation of heat, salinity, and humidity fluxes. They are also useful in identifying areas of melt or meltponding within the sea ice pack and the ice sheets and in the calculation of emissivities of these surfaces. Moreover, the polar regions are unique in that they are the sites of temperature extremes, the location of which is difficult to identify without a global monitoring system. Furthermore, the regions may provide an early signal to a potential climate change because such signal is expected to be amplified in the region due to feedback effects. In cloud free areas, the thermal channels from infrared systems provide surface temperatures at relatively good accuracies. Previous capabilities include the use of the Temperature Humidity Infrared Radiometer (THIR) onboard the Nimbus-7 satellite which was launched in 1978. Current capabilities include the use of the Advance Very High Resolution Radiometer (AVHRR) aboard NOAA satellites. Together, these two systems cover a span of 16 years of thermal infrared data. Techniques for retrieving surface temperatures with these sensors in the polar regions have been developed. Errors have been estimated to range from 1K to 5K mainly due to cloud masking problems. With many additional channels available, it is expected that the EOS-Moderate Resolution Imaging Spectroradiometer (MODIS) will provide an improved characterization of clouds and a good discrimination of clouds from snow or ice surfaces.
NASA Technical Reports Server (NTRS)
Zhang, Yan
2012-01-01
Quantifying above-cloud aerosols can help improve the assessment of aerosol intercontinental transport and climate impacts. Large-scale measurements of aerosol above low-level clouds had been generally unexplored until very recently when CALIPSO lidar started to acquire aerosol and cloud profiles in June 2006. Despite CALIPSO s unique capability of measuring above-cloud aerosol optical depth (AOD), such observations are substantially limited in spatial coverage because of the lidar s near-zero swath. We developed an approach that integrates measurements from A-Train satellite sensors (including CALIPSO lidar, OMI, and MODIS) to extend CALIPSO above-cloud AOD observations to substantially larger areas. We first examine relationships between collocated CALIPSO above-cloud AOD and OMI absorbing aerosol index (AI, a qualitative measure of AOD for elevated dust and smoke aerosol) as a function of MODIS cloud optical depth (COD) by using 8-month data in the Saharan dust outflow and southwest African smoke outflow regions. The analysis shows that for a given cloud albedo, above-cloud AOD correlates positively with AI in a linear manner. We then apply the derived relationships with MODIS COD and OMI AI measurements to derive above-cloud AOD over the whole outflow regions. In this talk, we will present spatial and day-to-day variations of the above-cloud AOD and the estimated direct radiative forcing by the above-cloud aerosols.
NASA Astrophysics Data System (ADS)
de Laat, Adrianus; Defer, Eric; Delanoë, Julien; Dezitter, Fabien; Gounou, Amanda; Grandin, Alice; Guignard, Anthony; Fokke Meirink, Jan; Moisselin, Jean-Marc; Parol, Frédéric
2017-04-01
We present an evaluation of the ability of passive broadband geostationary satellite measurements to detect high ice water content (IWC > 1 g m-3) as part of the European High Altitude Ice Crystals (HAIC) project for detection of upper-atmospheric high IWC, which can be a hazard for aviation. We developed a high IWC mask based on measurements of cloud properties using the Cloud Physical Properties (CPP) algorithm applied to the geostationary Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI). Evaluation of the high IWC mask with satellite measurements of active remote sensors of cloud properties (CLOUDSAT/CALIPSO combined in the DARDAR (raDAR-liDAR) product) reveals that the high IWC mask is capable of detecting high IWC values > 1 g m-3 in the DARDAR profiles with a probability of detection of 60-80 %. The best CPP predictors of high IWC were the condensed water path, cloud optical thickness, cloud phase, and cloud top height. The evaluation of the high IWC mask against DARDAR provided indications that the MSG-CPP high IWC mask is more sensitive to cloud ice or cloud water in the upper part of the cloud, which is relevant for aviation purposes. Biases in the CPP results were also identified, in particular a solar zenith angle (SZA) dependence that reduces the performance of the high IWC mask for SZAs > 60°. Verification statistics show that for the detection of high IWC a trade-off has to be made between better detection of high IWC scenes and more false detections, i.e., scenes identified by the high IWC mask that do not contain IWC > 1 g m-3. However, the large majority of these detections still contain IWC values between 0.1 and 1 g m-3. Comparison of the high IWC mask against results from the Rapidly Developing Thunderstorm (RDT) algorithm applied to the same geostationary SEVIRI data showed that there are similarities and differences with the high IWC mask: the RDT algorithm is very capable of detecting young/new convective cells and areas, whereas the high IWC mask appears to be better capable of detecting more mature and ageing convection as well as cirrus remnants. The lack of detailed understanding of what causes aviation hazards related to high IWC, as well as the lack of clearly defined user requirements, hampers further tuning of the high IWC mask. Future evaluation of the high IWC mask against field campaign data, as well as obtaining user feedback and user requirements from the aviation industry, should provide more information on the performance of the MSG-CPP high IWC mask and contribute to improving the practical use of the high IWC mask.
NASA Astrophysics Data System (ADS)
Huang, Jianping; Minnis, Patrick; Lin, Bing; Wang, Tianhe; Yi, Yuhong; Hu, Yongxiang; Sun-Mack, Sunny; Ayers, Kirk
2006-03-01
The effects of dust storms on cloud properties and Radiative Forcing (RF) are analyzed over Northwestern China from April 2001 to June 2004 using data collected by the MODerate Resolution Imaging Spectroradiometer (MODIS) and Clouds and the Earth's Radiant Energy System (CERES) instruments on the Aqua and Terra satellites. On average, ice cloud effective particle diameter, optical depth and ice water path of cirrus clouds under dust polluted conditions are 11%, 32.8%, and 42% less, respectively, than those derived from ice clouds in dust-free atmospheric environments. Due to changes in cloud microphysics, the instantaneous net RF is increased from -161.6 W/m2 for dust-free clouds to -118.6 W/m2 for dust-contaminated clouds.
NASA Astrophysics Data System (ADS)
Meyer, K.; Platnick, S. E.; Zhang, Z.
2013-12-01
Clouds, aerosols, and their interactions are widely considered to be key uncertainty components in our current understanding of the Earth's atmosphere and radiation budget. The work presented here is focused on the quasi-permanent marine boundary layer (MBL) clouds over the southeastern Atlantic Ocean, which underlie a near-persistent smoke layer produced from extensive biomass burning throughout the southern African savanna during austral winter. The absorption of the above-cloud smoke layer, which increases with decreasing wavelength, can introduce biases into the standard MODIS cloud optical and microphysical property retrievals of the underlying MBL clouds. This effect is more pronounced in the cloud optical thickness retrievals, which over ocean are derived from the wavelength channel centered near 0.86 μm (effective particle size retrievals are derived from the short and mid-wave IR channels at 1.6, 2.1, and 3.7 μm). Here, a new method is introduced to simultaneously retrieve the above-cloud smoke aerosol optical depth (AOD) and the unbiased cloud optical thickness (COT) and effective radius (CER) using multiple MODIS spectral channels in the visible and near- and shortwave-infrared. Preliminary retrieval results are shown, as are comparisons with other A-Train sensors.
Wang, Wei; Song, Wei-Guo; Liu, Shi-Xing; Zhang, Yong-Ming; Zheng, Hong-Yang; Tian, Wei
2011-04-01
An improved method for detecting cloud combining Kmeans clustering and the multi-spectral threshold approach is described. On the basis of landmark spectrum analysis, MODIS data is categorized into two major types initially by Kmeans method. The first class includes clouds, smoke and snow, and the second class includes vegetation, water and land. Then a multi-spectral threshold detection is applied to eliminate interference such as smoke and snow for the first class. The method is tested with MODIS data at different time under different underlying surface conditions. By visual method to test the performance of the algorithm, it was found that the algorithm can effectively detect smaller area of cloud pixels and exclude the interference of underlying surface, which provides a good foundation for the next fire detection approach.
NASA Astrophysics Data System (ADS)
Jiang, Y.; Chen, F.; Gao, Y.; Barlage, M. J.
2017-12-01
Snow cover in Qinghai-Tibetan Plateau (QTP) is a critical component of water cycle and affects regional climate of East Asia. Satellite data from three different sources (i.e., FY3A/B/C, MODIS and IMS) were used to analyze the QTP fractional-snow-cover (FSC) change and associated uncertainties in the last decade. To reduce the high percentage of cloud in FY3A/B/C and MODIS, a four-step cloud removal procedure was applied and effectively reduced the cloud percentage from 40.8-56.1% to 2.2-3.3%. The averaged error introduced by the cloud removal procedure was about 2% estimated by a random sampling method. Results show that the snow cover in QTP significantly decreased in recent 5 years. Three data sets (FY3B, MODIS and IMS) showed significant decreased annual FSC at all elevation bands from 2012-2016, and a significant shorter snow season with delayed snow onset and earlier melting. Both IMS and MODIS had a slightly decline annual FSC from 2000 to 3000 m, while MODIS FSC slightly decreased in 2002-2016 and IMS FSC slightly increased from 2006-2016 in the region with elevation higher than 3000 m. Results also show significant uncertainties among the five data sets (FY3A/B/C, MODIS, IMS), although they showed similar fluctuations of daily FSC. IMS had largest snow-cover extent and highest daily FSC due to its multi data sources. FY3A/C and MODIS (observed in the morning) had around 5% higher mean FSC than FY3B (observed in the afternoon) due to the 3 hours detection time gap. The relative error of daily FSC (taking MODIS as `truth') between FY3A/B/C, IMS and MODIS is 23%, -35%, 8% and 63%, respectively, averaged in five elevation bands in 2015-2017.
Using MODIS Cloud Regimes to Sort Diagnostic Signals of Aerosol-Cloud-Precipitation Interactions
Oreopoulos, Lazaros; Cho, Nayeong; Lee, Dongmin
2018-01-01
Coincident multi-year measurements of aerosol, cloud, precipitation and radiation at near-global scales are analyzed to diagnose their apparent relationships as suggestive of interactions previously proposed based on theoretical, observational, and model constructs. Specifically, we examine whether differences in aerosol loading in separate observations go along with consistently different precipitation, cloud properties, and cloud radiative effects. Our analysis uses a cloud regime (CR) framework to dissect and sort the results. The CRs come from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor and are defined as distinct groups of cloud systems with similar co-variations of cloud top pressure and cloud optical thickness. Aerosol optical depth used as proxy for aerosol loading comes from two sources, MODIS observations, and the MERRA-2 re-analysis, and its variability is defined with respect to local seasonal climatologies. The choice of aerosol dataset impacts our results substantially. We also find that the responses of the marine and continental component of a CR are frequently quite disparate. Overall, CRs dominated by warm clouds tend to exhibit less ambiguous signals, but also have more uncertainty with regard to precipitation changes. Finally, we find weak, but occasionally systematic co-variations of select meteorological indicators and aerosol, which serves as a sober reminder that ascribing changes in cloud and cloud-affected variables solely to aerosol variations is precarious. PMID:29651373
Using MODIS Cloud Regimes to Sort Diagnostic Signals of Aerosol-Cloud-Precipitation Interactions.
Oreopoulos, Lazaros; Cho, Nayeong; Lee, Dongmin
2017-05-27
Coincident multi-year measurements of aerosol, cloud, precipitation and radiation at near-global scales are analyzed to diagnose their apparent relationships as suggestive of interactions previously proposed based on theoretical, observational, and model constructs. Specifically, we examine whether differences in aerosol loading in separate observations go along with consistently different precipitation, cloud properties, and cloud radiative effects. Our analysis uses a cloud regime (CR) framework to dissect and sort the results. The CRs come from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor and are defined as distinct groups of cloud systems with similar co-variations of cloud top pressure and cloud optical thickness. Aerosol optical depth used as proxy for aerosol loading comes from two sources, MODIS observations, and the MERRA-2 re-analysis, and its variability is defined with respect to local seasonal climatologies. The choice of aerosol dataset impacts our results substantially. We also find that the responses of the marine and continental component of a CR are frequently quite disparate. Overall, CRs dominated by warm clouds tend to exhibit less ambiguous signals, but also have more uncertainty with regard to precipitation changes. Finally, we find weak, but occasionally systematic co-variations of select meteorological indicators and aerosol, which serves as a sober reminder that ascribing changes in cloud and cloud-affected variables solely to aerosol variations is precarious.
NASA Technical Reports Server (NTRS)
Shiffman, Smadar
2004-01-01
Automated cloud detection and tracking is an important step in assessing global climate change via remote sensing. Cloud masks, which indicate whether individual pixels depict clouds, are included in many of the data products that are based on data acquired on- board earth satellites. Many cloud-mask algorithms have the form of decision trees, which employ sequential tests that scientists designed based on empirical astrophysics studies and astrophysics simulations. Limitations of existing cloud masks restrict our ability to accurately track changes in cloud patterns over time. In this study we explored the potential benefits of automatically-learned decision trees for detecting clouds from images acquired using the Advanced Very High Resolution Radiometer (AVHRR) instrument on board the NOAA-14 weather satellite of the National Oceanic and Atmospheric Administration. We constructed three decision trees for a sample of 8km-daily AVHRR data from 2000 using a decision-tree learning procedure provided within MATLAB(R), and compared the accuracy of the decision trees to the accuracy of the cloud mask. We used ground observations collected by the National Aeronautics and Space Administration Clouds and the Earth s Radiant Energy Systems S COOL project as the gold standard. For the sample data, the accuracy of automatically learned decision trees was greater than the accuracy of the cloud masks included in the AVHRR data product.
NASA Technical Reports Server (NTRS)
Joiner, J.; Vasilkov, A.; Gupta, P.; Bhartia, P. K.; Veefkind, P.; Sneep, M.; de Haan, J.; Polonsky, I.; Spurr, R.
2012-01-01
The cloud Optical Centroid Pressure (OCP), also known as the effective cloud pressure, is a satellite-derived parameter that is commonly used in trace-gas retrievals to account for the effects of clouds on near-infrared through ultraviolet radiance measurements. Fast simulators are desirable to further expand the use of cloud OCP retrievals into the operational and climate communities for applications such as data assimilation and evaluation of cloud vertical structure in general circulation models. In this paper, we develop and validate fast simulators that provide estimates of the cloud OCP given a vertical profile of optical extinction. We use a pressure-weighting scheme where the weights depend upon optical parameters of clouds and/or aerosol. A cloud weighting function is easily extracted using this formulation. We then use fast simulators to compare two different satellite cloud OCP retrievals from the Ozone Monitoring Instrument (OMI) with estimates based on collocated cloud extinction profiles from a combination of CloudS at radar and MODIS visible radiance data. These comparisons are made over a wide range of conditions to provide a comprehensive validation of the OMI cloud OCP retrievals. We find generally good agreement between OMI cloud OCPs and those predicted by CloudSat. However, the OMI cloud OCPs from the two independent algorithms agree better with each other than either does with the estimates from CloudSat/MODIS. Differences between OMI cloud OCPs and those based on CloudSat/MODIS may result from undetected snow/ice at the surface, cloud 3-D effects, low altitude clouds missed by CloudSat, and the fact that CloudSat only observes a relatively small fraction of an OMI field-of-view.
NASA Astrophysics Data System (ADS)
Wang, Yang; Zhao, Chuanfeng
2016-04-01
Clouds play essential roles in the Earth's energy and water cycle, and Cloud Fraction (CF) is one of the most important cloud parameters. The CF from Moderate Resolution Imaging Spectroradiometer (MODIS) has been widely used, whereas the time representation of these instantaneous CF values is not clear. In this study, we evaluate MODIS-derived CF by using continuous, day-and-night radar/lidar CF from the Atmospheric Radiation Measurement (ARM) program Active Remote Sensing of CLouds (ARSCL) product and the total sky cover (TSC) day-time CF datasets. Inter-comparisons between MODIS and surface CFs for time period from 2000 to 2011 are performed for three climate regimes as represented by the ARM sites of Southern Great Plains (SGP), Manus, Papua New Guinea (PNG) and North Slope of Alaska (NSA). We first choose both the TSC and ARSCL CFs averaged over 1 hour around the two passing time of satellite, which are around 10:30 AM and 1:30 PM local time. Then two kind of analyses have been done. One is the spatial variation analysis and the other is temporal variation analysis. For the spatial variation analysis, we compare the 1-hour averaged cloud fractions from TSC and ARSCL around 10:30 AM and 1:30 PM with the instantaneous cloud fractions from MODIS but with different spatial resolution. By obtaining the RMS errors and ratio of average values of CFs for these inter-comparisons, the optimal CF-matching spatial resolutions for MODIS regarding to TSC and ARSCL are obtained which are both 30 km radius of circle. We also find that the optimal matching spatial resolution increases when the ground observation average time increases. For the temporal analysis, we first analyze the diurnal variation of the cloud fraction based on the surface CFs from TSC and ARSCL from which we can see the daily representation of cloud fraction observed at 10:30 AM and 1:30 PM. Then we make a statistical comparison of daily and monthly cloud fraction between using all time observation and using the 1-hour averaged observations at both 10:30 AM and 1:30 PM. Comparison results will be shown in our paper. It shows a high correlation coefficient of 0.95 (0.93) for observations from TSC (ARSCL). The ratios of daily (monthly) averaged cloud fraction between using all time and using the time satellite passes are 0.87(0.92) and 0.86(0.97) for TSC and ARSCL, respectively. This suggests that considerable errors could be introduced while using the cloud fraction at two fixed time points (10:30 AM and 1:30 PM) to represent the daily cloud fraction.
NASA Astrophysics Data System (ADS)
Yang, Xin; Zhong, Shiquan; Sun, Han; Tan, Zongkun; Li, Zheng; Ding, Meihua
Based on analyzing of the physical characteristics of cloud and importance of cloud in agricultural production and national economy, cloud is a very important climatic resources such as temperature, precipitation and solar radiation. Cloud plays a very important role in agricultural climate division .This paper analyzes methods of cloud detection based on MODIS data in China and Abroad . The results suggest that Quanjun He method is suitable to detect cloud in Guangxi. State chart of cloud cover in Guangxi is imaged by using Quanjun He method .We find out the approach of calculating cloud covered rate by using the frequency spectrum analysis. At last, the Guangxi is obtained. Taking Rongxian County Guangxi as an example, this article analyze the preliminary application of cloud covered rate in distribution of Rong Shaddock pomelo . Analysis results indicate that cloud covered rate is closely related to quality of Rong Shaddock pomelo.
Radiative effects of global MODIS cloud regimes
Oreopoulos, Lazaros; Cho, Nayeong; Lee, Dongmin; Kato, Seiji
2018-01-01
We update previously published MODIS global cloud regimes (CRs) using the latest MODIS cloud retrievals in the Collection 6 dataset. We implement a slightly different derivation method, investigate the composition of the regimes, and then proceed to examine several aspects of CR radiative appearance with the aid of various radiative flux datasets. Our results clearly show the CRs are radiatively distinct in terms of shortwave, longwave and their combined (total) cloud radiative effect. We show that we can clearly distinguish regimes based on whether they radiatively cool or warm the atmosphere, and thanks to radiative heating profiles to discern the vertical distribution of cooling and warming. Terra and Aqua comparisons provide information about the degree to which morning and afternoon occurrences of regimes affect the symmetry of CR radiative contribution. We examine how the radiative discrepancies among multiple irradiance datasets suffering from imperfect spatiotemporal matching depend on CR, and whether they are therefore related to the complexity of cloud structure, its interpretation by different observational systems, and its subsequent representation in radiative transfer calculations. PMID:29619289
Radiative effects of global MODIS cloud regimes.
Oreopoulos, Lazaros; Cho, Nayeong; Lee, Dongmin; Kato, Seiji
2016-03-16
We update previously published MODIS global cloud regimes (CRs) using the latest MODIS cloud retrievals in the Collection 6 dataset. We implement a slightly different derivation method, investigate the composition of the regimes, and then proceed to examine several aspects of CR radiative appearance with the aid of various radiative flux datasets. Our results clearly show the CRs are radiatively distinct in terms of shortwave, longwave and their combined (total) cloud radiative effect. We show that we can clearly distinguish regimes based on whether they radiatively cool or warm the atmosphere, and thanks to radiative heating profiles to discern the vertical distribution of cooling and warming. Terra and Aqua comparisons provide information about the degree to which morning and afternoon occurrences of regimes affect the symmetry of CR radiative contribution. We examine how the radiative discrepancies among multiple irradiance datasets suffering from imperfect spatiotemporal matching depend on CR, and whether they are therefore related to the complexity of cloud structure, its interpretation by different observational systems, and its subsequent representation in radiative transfer calculations.
Radiative Effects of Global MODIS Cloud Regimes
NASA Technical Reports Server (NTRS)
Oraiopoulos, Lazaros; Cho, Nayeong; Lee, Dong Min; Kato, Seiji
2016-01-01
We update previously published MODIS global cloud regimes (CRs) using the latest MODIS cloud retrievals in the Collection 6 dataset. We implement a slightly different derivation method, investigate the composition of the regimes, and then proceed to examine several aspects of CR radiative appearance with the aid of various radiative flux datasets. Our results clearly show the CRs are radiatively distinct in terms of shortwave, longwave and their combined (total) cloud radiative effect. We show that we can clearly distinguish regimes based on whether they radiatively cool or warm the atmosphere, and thanks to radiative heating profiles to discern the vertical distribution of cooling and warming. Terra and Aqua comparisons provide information about the degree to which morning and afternoon occurrences of regimes affect the symmetry of CR radiative contribution. We examine how the radiative discrepancies among multiple irradiance datasets suffering from imperfect spatiotemporal matching depend on CR, and whether they are therefore related to the complexity of cloud structure, its interpretation by different observational systems, and its subsequent representation in radiative transfer calculations.
NASA Technical Reports Server (NTRS)
Oreopoulos, Lazaros; Platnick, Steven
2008-01-01
Global distributions of albedo susceptibility for areas covered by liquid clouds are presented for 4 months in 2005. The susceptibility estimates are based on expanded definitions presented in a companion paper and include relative cloud droplet number concentration (CDNC) changes, perturbations in cloud droplet asymmetry parameter and single-scattering albedo, atmospheric/surface effects, and incorporation of the full solar spectrum. The cloud properties (optical thickness and effective radius) used as input in the susceptibility calculations come from MODIS Terra and Aqua Collection 5 gridded data. Geographical distributions of susceptibility corresponding to absolute ( absolute cloud susceptibility ) and relative ( relative cloud susceptibility ) CDNC changes are markedly different indicating that the detailed nature of the cloud microphysical perturbation is important for determining the radiative forcing associated with the first indirect aerosol effect. However, both types of susceptibility exhibit common characteristics such as significant reductions when perturbations in single-scattering properties are omitted, significant increases when atmospheric absorption and surface albedo effects are ignored, and the tendency to decrease with latitude, to be higher over ocean than over land, and to be statistically similar between the morning and afternoon MODIS overpasses. The satellite-based susceptibility analysis helps elucidate the role of present-day cloud and land surface properties in indirect aerosol forcing responses. Our realistic yet moderate CDNC perturbations yield forcings on the order of 1-2 W/sq m for cloud optical property distributions and land surface spectral albedos observed by MODIS. Since susceptibilities can potentially be computed from model fields, these results have practical application in assessing the reasonableness of model-generated estimates of the aerosol indirect radiative forcing.
NASA Astrophysics Data System (ADS)
Neigh, C. S.; Nelson, R. F.; Sun, G.; Ranson, J.; Montesano, P. M.; Margolis, H. A.
2011-12-01
The Eurasian boreal forest is the largest continuous forest in the world and contains a vast quantity of carbon stock that is currently vulnerable to loss from climate change. We develop and present an approach to map the spatial distribution of above ground biomass throughout this region. Our method combines satellite measurements from the Geoscience Laser Altimeter System (GLAS) that is carried on the Ice, Cloud and land Elevation Satellite ( ICESat), with the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM), and biomass field measurements collected from surveys from a number of different biomes throughout Boreal Eurasia. A slope model derived from the GDEM with quality control flags, and Moderate-resolution Imaging Spectroradiometer (MODIS) water mask was implemented to exclude poor quality GLAS shots and stratify measurements by MODIS International Geosphere Biosphere (IGBP) and World Wildlife Fund (WWF) ecozones. We derive equations from regional field measurements to estimate the spatial distribution of above ground biomass by land cover type within biome and present a map with uncertainties and limitations of this approach which can be used as a baseline for future studies.
Drought in Southeastern United States
NASA Technical Reports Server (NTRS)
2007-01-01
May 2007 was a record-setting month in Georgia. Typically a dry month in this southern state, May 2007 was exceptionally so, with many locations setting record-low rainfall records and some receiving no rain at all, said state climatologist David Emory Stooksbury on GeorgiaDrought.org. The lack of rain slowed plant growth, as shown in this vegetation index image. The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite collected the data used to make this image between May 9 and May 24, 2007. The image shows vegetation conditions compared to average conditions observed from 2000 through 2006. Areas in which plants are more sparse or are growing more slowly than average are brown, while better-than-average growth is green. Georgia and its neighbors (South Carolina, Alabama, and Florida) are all brown, an indication that the lack of rainfall is suppressing plant growth. The gray area in southern Georgia and northern Florida shows where MODIS could not collect valid vegetation measurements, either because of clouds or smoke. In this case, the area corresponds with land that burned during this period and was probably masked by smoke. NASA image created by Jesse Allen, Earth Observatory, using data provided by Inbal Reshef, Global Agricultural Monitoring Project.
NASA Technical Reports Server (NTRS)
Wilson, Truman; Wu, Aisheng; Wang, Zhipeng; Xiong, Xiaoxiong
2016-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) is one of the key sensors among the suite of remote sensing instruments on board the Earth Observing System Terra and Aqua spacecrafts. For each MODIS spectral band, the sensor degradation has been measured using a set of on-board calibrators. MODIS also uses lunar observations from nearly monthly spacecraft maneuvers, which bring the Moon into view through the space-view port, helping to characterize the scan mirror degradation at a different angles of incidence. Throughout the Terra mission, contamination of the long-wave infrared photovoltaic band (LWIR PV, bands 27-30) signals has been observed in the form of electronic crosstalk, where signal from each of the detectors among the LWIR PV bands can leak to the other detectors, producing a false signal contribution. This contamination has had a noticeable effect on the MODIS science products since 2010 for band 27, and since 2012 for bands 28 and 29. Images of the Moon have been used effectively for determining the contaminating bands, and have also been used to derive correction coefficients for the crosstalk contamination. In this paper, we introduce an updated technique for characterizing the crosstalk contamination among the LWIR PV bands using data from lunar calibration events. This approach takes into account both the in-band and out-of-band contribution to the signal contamination for each detector in bands 27-30, which is not considered in previous works. The crosstalk coefficients can be derived for each lunar calibration event, providing the time dependence of the crosstalk contamination. Application of these coefficients to Earth-view image data results in a significant reduction in image contamination and a correction of the scene radiance for bands 27- 30. Also, this correction shows a significant improvement to certain threshold tests in the MODIS Level-2 Cloud Mask. In this paper, we will detail the methodology used to identify and correct the crosstalk contamination for the LWIR PV bands in Terra MODIS. The derived time-dependent crosstalk coefficients will also be discussed. Finally, the impact of the correction on the downstream data products will be analyzed.
NASA Technical Reports Server (NTRS)
Platnick, Steven; Oreopoulos, Lazaros
2008-01-01
Theoretical and satellite-based assessments of the sensitivity of broadband shortwave radiative fluxes in cloudy atmospheres to small perturbations in the cloud droplet number concentration (N) of liquid water clouds under constant water conditions are performed. Two approaches to study this sensitivity are adopted: absolute increases in N, for which the radiative response is referred to as absolute cloud susceptibility, and relative increases in N or relative cloud susceptibility. Estimating the former is more challenging as it requires an assumed value for either cloud liquid water content or geometrical thickness; both susceptibilities require an assumed relationship between the droplet volume and effective radius. Expanding upon previous susceptibility studies, present radiative calculations include the effect of AN perturbations on droplet asymmetry parameter and single-scattering albedo, in addition to extinction. Absolute cloud susceptibility has a strong nonlinear dependence on the droplet effective radius as expected, while relative cloud susceptibility is primarily dependent on optical thickness. Molecular absorption and reflecting surfaces both reduce the relative contribution of the cloud to the top-of-atmosphere (TOA) flux and therefore also reduce the TOA albedo susceptibility. Transmittance susceptibilities are negative with absolute values similar to albedo susceptibility, while atmospheric absorptance susceptibilities are about an order of magnitude smaller than albedo susceptibilities and can be either positive or negative. Observation-based susceptibility calculations are derived from MODIS pixel-level retrievals of liquid water cloud optical thickness, effective radius, and cloud top temperature; two data granule examples are shown. Susceptibility quantifies the aerosol indirect effect sensitivity in a way that can be easily computed from model fields. As such, susceptibilities derived from MODIS observations provide a higher-order test of model cloud properties used for indirect effect studies. MODIS-derived global distributions of cloud susceptibility and radiative forcing calculations are presented in a companion paper.
NASA Technical Reports Server (NTRS)
Zhang, Zhibo; Ackerman, Andrew S.; Feingold, Graham; Platnick, Steven; Pincus, Robert; Xue, Huiwen
2012-01-01
This study investigates effects of drizzle and cloud horizontal inhomogeneity on cloud effective radius (re) retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS). In order to identify the relative importance of various factors, we developed a MODIS cloud property retrieval simulator based on the combination of large-eddy simulations (LES) and radiative transfer computations. The case studies based on synthetic LES cloud fields indicate that at high spatial resolution (100 m) 3-D radiative transfer effects, such as illumination and shadowing, can induce significant differences between retrievals ofre based on reflectance at 2.1 m (re,2.1) and 3.7 m (re,3.7). It is also found that 3-D effects tend to have stronger impact onre,2.1 than re,3.7, leading to positive difference between the two (re,3.72.1) from illumination and negative re,3.72.1from shadowing. The cancellation of opposing 3-D effects leads to overall reasonable agreement betweenre,2.1 and re,3.7 at high spatial resolution as far as domain averages are concerned. At resolutions similar to MODIS, however, re,2.1 is systematically larger than re,3.7when averaged over the LES domain, with the difference exhibiting a threshold-like dependence on bothre,2.1and an index of the sub-pixel variability in reflectance (H), consistent with MODIS observations. In the LES cases studied, drizzle does not strongly impact reretrievals at either wavelength. It is also found that opposing 3-D radiative transfer effects partly cancel each other when cloud reflectance is aggregated from high spatial resolution to MODIS resolution, resulting in a weaker net impact of 3-D radiative effects onre retrievals. The large difference at MODIS resolution between re,3.7 and re,2.1 for highly inhomogeneous pixels with H 0.4 can be largely attributed to what we refer to as the plane-parallelrebias, which is attributable to the impact of sub-pixel level horizontal variability of cloud optical thickness onre retrievals and is greater for re,2.1 than re,3.7. These results suggest that there are substantial uncertainties attributable to 3-D radiative effects and plane-parallelre bias in the MODIS re,2.1retrievals for pixels with strong sub-pixel scale variability, and theH index can be used to identify these uncertainties.
MODIS volcanic ash retrievals vs FALL3D transport model: a quantitative comparison
NASA Astrophysics Data System (ADS)
Corradini, S.; Merucci, L.; Folch, A.
2010-12-01
Satellite retrievals and transport models represents the key tools to monitor the volcanic clouds evolution. Because of the harming effects of fine ash particles on aircrafts, the real-time tracking and forecasting of volcanic clouds is key for aviation safety. Together with the security reasons also the economical consequences of a disruption of airports must be taken into account. The airport closures due to the recent Icelandic Eyjafjöll eruption caused millions of passengers to be stranded not only in Europe, but across the world. IATA (the International Air Transport Association) estimates that the worldwide airline industry has lost a total of about 2.5 billion of Euro during the disruption. Both security and economical issues require reliable and robust ash cloud retrievals and trajectory forecasting. The intercomparison between remote sensing and modeling is required to assure precise and reliable volcanic ash products. In this work we perform a quantitative comparison between Moderate Resolution Imaging Spectroradiometer (MODIS) retrievals of volcanic ash cloud mass and Aerosol Optical Depth (AOD) with the FALL3D ash dispersal model. MODIS, aboard the NASA-Terra and NASA-Aqua polar satellites, is a multispectral instrument with 36 spectral bands operating in the VIS-TIR spectral range and spatial resolution varying between 250 and 1000 m at nadir. The MODIS channels centered around 11 and 12 micron have been used for the ash retrievals through the Brightness Temperature Difference algorithm and MODTRAN simulations. FALL3D is a 3-D time-dependent Eulerian model for the transport and deposition of volcanic particles that outputs, among other variables, cloud column mass and AOD. Three MODIS images collected the October 28, 29 and 30 on Mt. Etna volcano during the 2002 eruption have been considered as test cases. The results show a general good agreement between the retrieved and the modeled volcanic clouds in the first 300 km from the vents. Even if the modeled volcanic cloud area is systematically wider than the retrieved area, the ash total mass is comparable and varies between 35 and 60 kt and between 20 and 42 kt for FALL3D and MODIS respectively. The mean AOD values are in good agreement and approximately equal to 0.8. When the whole volcanic clouds are considered the ash areas and the total ash masses, computed by FALL3D model are significantly greater than the same parameters retrieved from the MODIS data, while the mean AOD values remain in a very good agreement and equal to about 0.6. The volcanic cloud direction in its distal part is not coincident for the 29 and 30 October 2002 images due to the difference between the real and the modeled local wind fields. Finally the MODIS maps show regions of high mass and AOD due to volcanic puffs not modeled by FALL3D.
Passive and Active Detection of Clouds: Comparisons between MODIS and GLAS Observations
NASA Technical Reports Server (NTRS)
Mahesh, Ashwin; Gray, Mark A.; Palm, Stephen P.; Hart, William D.; Spinhirne, James D.
2003-01-01
The Geoscience Laser Altimeter System (GLAS), launched on board the Ice, Cloud and Land Elevation Satellite in January 2003 provides space-borne laser observations of atmospheric layers. GLAS provides opportunities to validate passive observations of the atmosphere for the first time from space with an active optical instrument. Data from the Moderate Resolution Imaging Spectrometer aboard the Aqua satellite is examined along with GLAS observations of cloud layers. In more than three-quarters of the cases, MODIS scene identification from spectral radiances agrees with GLAS. Disagreement between the two platforms is most significant over snow-covered surfaces in the northern hemisphere. Daytime clouds detected by GLAS are also more easily seen in the MODIS data as well, compared to observations made at night. These comparisons illustrate the capabilities of active remote sensing to validate and assess passive measurements, and also to complement them in studies of atmospheric layers.
Clear-sky remote sensing in the vicinity of clouds: what can be learned about aerosol changes?
NASA Astrophysics Data System (ADS)
Marshak, Alexander; Varnai, Tamas; Wen, Guoyong
2010-05-01
Studies on aerosol direct and indirect effects require a precise separation of cloud-free and cloudy air. However, separation between cloud-free and cloudy areas from remotely-sensed measurements is ambiguous. The transition zone in the regions around clouds often stretches out tens of km, which are neither precisely clear nor precisely cloudy. We study the transition zone between cloud-free and cloudy air using MODerate-resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) measurements. Both instruments show enhanced clear-sky reflectance (MODIS) and clear-sky backscatterer (CALIPSO) near clouds. Analyzing a large dataset of MODIS observations we examine the effect of three-dimensional (3D) radiative interactions between clouds and cloud-free areas, also known as a cloud adjacency effect. Comparing with CALIPSO clear-sky backscatterer measurements, we show that the cloud adjacency effect may be responsible for a large portion of the enhanced clear sky reflectance observed by MODIS. While aerosol particles are responsible for a large part of the near-cloud enhancements in CALIPSO observations, misidentified or undetected cloud particles are also likely to contribute. As a result, both the nature of these particles (cloud vs. aerosol) and the processes creating them need to be clarified using a quantitative assessment of remote sensing limitations in particle detection and identification. The width and ubiquity of the transition zone near clouds imply that studies of aerosol-cloud interactions and aerosol direct radiative effects need to account for aerosol changes near clouds. Not accounted, these changes can cause systematic biases toward smaller aerosol radiative forcing. On the other hand, including aerosol products near clouds despite their uncertainties may overestimate aerosol radiative forcing. Therefore, there is an urgent need for developing methods that can assess and account for remote sensing challenges and thus allow for including the transition zone into the study. We describe a simple model that estimates the cloud-induced enhanced reflectances of cloud-free areas in the vicinity of clouds. The model assumes that the enhancement is due entirely to Rayleigh scattering and is therefore bigger at shorter wavelengths, thus creating a so-called apparent "bluing" of aerosols in remote sensing retrievals.
Detection and Retrieval of Multi-Layered Cloud Properties Using Satellite Data
NASA Technical Reports Server (NTRS)
Minnis, Patrick; Sun-Mack, Sunny; Chen, Yan; Yi, Helen; Huang, Jian-Ping; Nguyen, Louis; Khaiyer, Mandana M.
2005-01-01
Four techniques for detecting multilayered clouds and retrieving the cloud properties using satellite data are explored to help address the need for better quantification of cloud vertical structure. A new technique was developed using multispectral imager data with secondary imager products (infrared brightness temperature differences, BTD). The other methods examined here use atmospheric sounding data (CO2-slicing, CO2), BTD, or microwave data. The CO2 and BTD methods are limited to optically thin cirrus over low clouds, while the MWR methods are limited to ocean areas only. This paper explores the use of the BTD and CO2 methods as applied to Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Microwave Scanning Radiometer EOS (AMSR-E) data taken from the Aqua satellite over ocean surfaces. Cloud properties derived from MODIS data for the Clouds and the Earth's Radiant Energy System (CERES) Project are used to classify cloud phase and optical properties. The preliminary results focus on a MODIS image taken off the Uruguayan coast. The combined MW visible infrared (MVI) method is assumed to be the reference for detecting multilayered ice-over-water clouds. The BTD and CO2 techniques accurately match the MVI classifications in only 51 and 41% of the cases, respectively. Much additional study is need to determine the uncertainties in the MVI method and to analyze many more overlapped cloud scenes.
Detection and retrieval of multi-layered cloud properties using satellite data
NASA Astrophysics Data System (ADS)
Minnis, Patrick; Sun-Mack, Sunny; Chen, Yan; Yi, Helen; Huang, Jianping; Nguyen, Louis; Khaiyer, Mandana M.
2005-10-01
Four techniques for detecting multilayered clouds and retrieving the cloud properties using satellite data are explored to help address the need for better quantification of cloud vertical structure. A new technique was developed using multispectral imager data with secondary imager products (infrared brightness temperature differences, BTD). The other methods examined here use atmospheric sounding data (CO2-slicing, CO2), BTD, or microwave data. The CO2 and BTD methods are limited to optically thin cirrus over low clouds, while the MWR methods are limited to ocean areas only. This paper explores the use of the BTD and CO2 methods as applied to Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Microwave Scanning Radiometer EOS (AMSR-E) data taken from the Aqua satellite over ocean surfaces. Cloud properties derived from MODIS data for the Clouds and the Earth's Radiant Energy System (CERES) Project are used to classify cloud phase and optical properties. The preliminary results focus on a MODIS image taken off the Uruguayan coast. The combined MW visible infrared (MVI) method is assumed to be the reference for detecting multilayered ice-over-water clouds. The BTD and CO2 techniques accurately match the MVI classifications in only 51 and 41% of the cases, respectively. Much additional study is need to determine the uncertainties in the MVI method and to analyze many more overlapped cloud scenes.
A CERES-like Cloud Property Climatology Using AVHRR Data
NASA Astrophysics Data System (ADS)
Minnis, P.; Bedka, K. M.; Yost, C. R.; Trepte, Q.; Bedka, S. T.; Sun-Mack, S.; Doelling, D.
2015-12-01
Clouds affect the climate system by modulating the radiation budget and distributing precipitation. Variations in cloud patterns and properties are expected to accompany changes in climate. The NASA Clouds and the Earth's Radiant Energy System (CERES) Project developed an end-to-end analysis system to measure broadband radiances from a radiometer and retrieve cloud properties from collocated high-resolution MODerate-resolution Imaging Spectroradiometer (MODIS) data to generate a long-term climate data record of clouds and clear-sky properties and top-of-atmosphere radiation budget. The first MODIS was not launched until 2000, so the current CERES record is only 15 years long at this point. The core of the algorithms used to retrieve the cloud properties from MODIS is based on the spectral complement of the Advanced Very High Resolution Radiometer (AVHRR), which has been aboard a string of satellites since 1978. The CERES cloud algorithms were adapted for application to AVHRR data and have been used to produce an ongoing CERES-like cloud property and surface temperature product that includes an initial narrowband-based radiation budget. This presentation will summarize this new product, which covers nearly 37 years, and its comparability with cloud parameters from CERES, CALIPSO, and other satellites. Examples of some applications of this dataset are given and the potential for generating a long-term radiation budget CDR is also discussed.
Aerosol climate time series from ESA Aerosol_cci (Invited)
NASA Astrophysics Data System (ADS)
Holzer-Popp, T.
2013-12-01
Within the ESA Climate Change Initiative (CCI) the Aerosol_cci project (mid 2010 - mid 2013, phase 2 proposed 2014-2016) has conducted intensive work to improve algorithms for the retrieval of aerosol information from European sensors AATSR (3 algorithms), PARASOL, MERIS (3 algorithms), synergetic AATSR/SCIAMACHY, OMI and GOMOS. Whereas OMI and GOMOS were used to derive absorbing aerosol index and stratospheric extinction profiles, respectively, Aerosol Optical Depth (AOD) and Angstrom coefficient were retrieved from the other sensors. Global datasets for 2008 were produced and validated versus independent ground-based data and other satellite data sets (MODIS, MISR). An additional 17-year dataset is currently generated using ATSR-2/AATSR data. During the three years of the project, intensive collaborative efforts were made to improve the retrieval algorithms focusing on the most critical modules. The team agreed on the use of a common definition for the aerosol optical properties. Cloud masking was evaluated, but a rigorous analysis with a pre-scribed cloud mask did not lead to improvement for all algorithms. Better results were obtained using a post-processing step in which sudden transitions, indicative of possible occurrence of cloud contamination, were removed. Surface parameterization, which is most critical for the nadir only algorithms (MERIS and synergetic AATSR / SCIAMACHY) was studied to a limited extent. The retrieval results for AOD, Ångström exponent (AE) and uncertainties were evaluated by comparison with data from AERONET (and a limited amount of MAN) sun photometer and with satellite data available from MODIS and MISR. Both level2 and level3 (gridded daily) datasets were validated. Several validation metrics were used (standard statistical quantities such as bias, rmse, Pearson correlation, linear regression, as well as scoring approaches to quantitatively evaluate the spatial and temporal correlations against AERONET), and in some cases developed further, to evaluate the datasets and their regional and seasonal merits. The validation showed that most datasets have improved significantly and in particular PARASOL (ocean only) provides excellent results. The metrics for AATSR (land and ocean) datasets are similar to those of MODIS and MISR, with AATSR better in some land regions and less good in some others (ocean). However, AATSR coverage is smaller than that of MODIS due to swath width. The MERIS dataset provides better coverage than AATSR but has lower quality (especially over land) than the other datasets. Also the synergetic AATSR/SCIAMACHY dataset has lower quality. The evaluation of the pixel uncertainties shows first good results but also reveals that more work needs to be done to provide comprehensive information for data assimilation. Users (MACC/ECMWF, AEROCOM) confirmed the relevance of this additional information and encouraged Aerosol_cci to release the current uncertainties. The paper will summarize and discuss the results of three year work in Aerosol_cci, extract the lessons learned and conclude with an outlook to the work proposed for the next three years. In this second phase a cyclic effort of algorithm evolution, dataset generation, validation and assessment will be applied to produce and further improve complete time series from all sensors under investigation, new sensors will be added (e.g. IASI), and preparation for the Sentinel missions will be made.
Cloud detection algorithm comparison and validation for operational Landsat data products
Foga, Steven Curtis; Scaramuzza, Pat; Guo, Song; Zhu, Zhe; Dilley, Ronald; Beckmann, Tim; Schmidt, Gail L.; Dwyer, John L.; Hughes, MJ; Laue, Brady
2017-01-01
Clouds are a pervasive and unavoidable issue in satellite-borne optical imagery. Accurate, well-documented, and automated cloud detection algorithms are necessary to effectively leverage large collections of remotely sensed data. The Landsat project is uniquely suited for comparative validation of cloud assessment algorithms because the modular architecture of the Landsat ground system allows for quick evaluation of new code, and because Landsat has the most comprehensive manual truth masks of any current satellite data archive. Currently, the Landsat Level-1 Product Generation System (LPGS) uses separate algorithms for determining clouds, cirrus clouds, and snow and/or ice probability on a per-pixel basis. With more bands onboard the Landsat 8 Operational Land Imager (OLI)/Thermal Infrared Sensor (TIRS) satellite, and a greater number of cloud masking algorithms, the U.S. Geological Survey (USGS) is replacing the current cloud masking workflow with a more robust algorithm that is capable of working across multiple Landsat sensors with minimal modification. Because of the inherent error from stray light and intermittent data availability of TIRS, these algorithms need to operate both with and without thermal data. In this study, we created a workflow to evaluate cloud and cloud shadow masking algorithms using cloud validation masks manually derived from both Landsat 7 Enhanced Thematic Mapper Plus (ETM +) and Landsat 8 OLI/TIRS data. We created a new validation dataset consisting of 96 Landsat 8 scenes, representing different biomes and proportions of cloud cover. We evaluated algorithm performance by overall accuracy, omission error, and commission error for both cloud and cloud shadow. We found that CFMask, C code based on the Function of Mask (Fmask) algorithm, and its confidence bands have the best overall accuracy among the many algorithms tested using our validation data. The Artificial Thermal-Automated Cloud Cover Algorithm (AT-ACCA) is the most accurate nonthermal-based algorithm. We give preference to CFMask for operational cloud and cloud shadow detection, as it is derived from a priori knowledge of physical phenomena and is operable without geographic restriction, making it useful for current and future land imaging missions without having to be retrained in a machine-learning environment.
Annual Corn Yield Estimation through Multi-temporal MODIS Data
NASA Astrophysics Data System (ADS)
Shao, Y.; Zheng, B.; Campbell, J. B.
2013-12-01
This research employed 13 years of the Moderate Resolution Imaging Spectroradiometer (MODIS) to estimate annual corn yield for the Midwest of the United States. The overall objective of this study was to examine if annual corn yield could be accurately predicted using MODIS time-series NDVI (Normalized Difference Vegetation Index) and ancillary data such monthly precipitation and temperature. MODIS-NDVI 16-Day composite images were acquired from the USGS EROS Data Center for calendar years 2000 to 2012. For the same time-period, county level corn yield statistics were obtained from the National Agricultural Statistics Service (NASS). The monthly precipitation and temperature measures were derived from Precipitation-Elevation Regressions on Independent Slopes Model (PRISM) climate data. A cropland mask was derived using 2006 National Land Cover Database. For each county and within the cropland mask, the MODIS-NDVI time-series data and PRISM climate data were spatially averaged, at their respective time steps. We developed a random forest predictive model with the MODIS-NDVI and climate data as predictors and corn yield as response. To assess the model accuracy, we used twelve years of data as training and the remaining year as hold-out testing set. The training and testing procedures were repeated 13 times. The R2 ranged from 0.72 to 0.83 for testing years. It was also found that the inclusion of climate data did not improve the model predictive performance. MODIS-NDVI time-series data alone might provide sufficient information for county level corn yield prediction.
2017-12-08
Visualization Date 2003-12-18 Clouds ripple over Ireland and Scotland in a wave pattern, similar to the pattern of waves along a seashore. The similarity is not coincidental — the atmosphere behaves like a fluid, so when it encounters an obstacle, it must move around it. This movement forms a wave, and the wave movement can continue for long distances. In this case, the waves were caused by the air moving over and around the mountains of Scotland and Ireland. As the air crested a wave, it cooled, and clouds formed. Then, as the air sank into the trough, the air warmed, and clouds did not form. This pattern repeated itself, with clouds appearing at the peak of every wave. Other types of clouds are also visible in the scene. Along the northwestern and southwestern edges of this true-color image from December 17, 2003, are normal mid-altitude clouds with fairly uniform appearances. High altitude cirrus-clouds float over these, casting their shadows on the lower clouds. Open- and closed-cell clouds formed off the coast of northwestern France, and thin contrail clouds are visible just east of these. Contrail clouds form around the particles carried in airplane exhaust. Fog is also visible in the valleys east of the Cambrian Mountains, along the border between northern/central Wales and England. This is an Aqua MODIS image. Sensor Aqua/MODIS Credit Jacques Descloitres, MODIS Rapid Response Team, NASA/GSFC For more information go to: visibleearth.nasa.gov/view_rec.php?id=6146
NASA Technical Reports Server (NTRS)
2002-01-01
This spectacular, full-color image of the Earth is a composite of the first full day of data gathered by the Moderate-resolution Imaging Spectroradiometer (MODIS) aboard NASA's Terra spacecraft. MODIS collected the data for each wavelength of red, green, and blue light as Terra passed over the daylit side of the Earth on April 19, 2000. Terra is orbiting close enough to the Earth so that it cannot quite see the entire surface in a day, resulting in the narrow gaps around the equator. Although the sensor's visible channels were combined to form this true-color picture, MODIS collects data in a total of 36 wavelengths, ranging from visible to thermal infrared energy. Scientists use these data to measure regional and global-scale changes in marine and land-based plant life, sea and land surface temperatures, cloud properties, aerosols, fires, and land surface properties. Notice how cloudy the Earth is, and the large differences in brightness between clouds, deserts, oceans, and forests. The Antarctic, surrounded by clockwise swirls of cloud, is shrouded in darkness because the sun is north of the equator at this time of year. The tropical forests of Africa, Southeast Asia, and South America are shrouded by clouds. The bright Sahara and Arabian deserts stand out clearly. Green vegetation is apparent in the southeast United States, the Yucatan Peninsula, and Madagascar. Image by Mark Gray, MODIS Atmosphere Team, NASA GSFC
Using Aerosol Reflectance for Dust Detection
NASA Astrophysics Data System (ADS)
Bahramvash Shams, S.; Mohammadzade, A.
2013-09-01
In this study we propose an approach for dust detection by aerosol reflectance over arid and urban region in clear sky condition. In urban and arid areas surface reflectance in red and infrared spectral is bright and hence shorter wavelength is required for this detections. Main step of our approach can be mentioned as: cloud mask for excluding cloudy pixels from our calculation, calculate Rayleigh path radiance, construct a surface reflectance data base, estimate aerosol reflectance, detect dust aerosol, dust detection and evaluations of dust detection. Spectral with wavelength 0.66, 0.55, 0.47 μm has been used in our dust detection. Estimating surface reflectance is the most challenging step of obtaining aerosol reflectance from top of atmosphere (TOA) reflectance. Hence for surface estimation we had created a surface reflectance database of 0.05 degree latitude by 0.05 degree longitude resolution by using minimum reflectivity technique (MRT). In order to evaluate our dust detection algorithm MODIS aerosol product MOD04 and common dust detection method named Brightness Temperature Difference (BTD) had been used. We had implemented this method to Moderate Resolution Imaging Spectroradiometer (MODIS) image of part of Iran (7 degree latitude and 8 degree longitude) spring 2005 dust phenomenon from April to June. This study uses MODIS LIB calibrated reflectance high spatial resolution (500 m) MOD02Hkm on TERRA spacecraft. Hence our dust detection spatial resolution will be higher spatial resolution than MODIS aerosol product MOD04 which has 10 × 10 km2 and BTD resolution is 1 km due to the band 29 (8.7 μm), 31 (11 μm), and 32 (12 μm) spatial resolutions.
NASA Technical Reports Server (NTRS)
Wang, Chunpeng; Lou, Zhengzhao Johnny; Chen, Xiuhong; Zeng, Xiping; Tao, Wei-Kuo; Huang, Xianglei
2014-01-01
Cloud-top temperature (CTT) is an important parameter for convective clouds and is usually different from the 11-micrometers brightness temperature due to non-blackbody effects. This paper presents an algorithm for estimating convective CTT by using simultaneous passive [Moderate Resolution Imaging Spectroradiometer (MODIS)] and active [CloudSat 1 Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO)] measurements of clouds to correct for the non-blackbody effect. To do this, a weighting function of the MODIS 11-micrometers band is explicitly calculated by feeding cloud hydrometer profiles from CloudSat and CALIPSO retrievals and temperature and humidity profiles based on ECMWF analyses into a radiation transfer model.Among 16 837 tropical deep convective clouds observed by CloudSat in 2008, the averaged effective emission level (EEL) of the 11-mm channel is located at optical depth; approximately 0.72, with a standard deviation of 0.3. The distance between the EEL and cloud-top height determined by CloudSat is shown to be related to a parameter called cloud-top fuzziness (CTF), defined as the vertical separation between 230 and 10 dBZ of CloudSat radar reflectivity. On the basis of these findings a relationship is then developed between the CTF and the difference between MODIS 11-micrometers brightness temperature and physical CTT, the latter being the non-blackbody correction of CTT. Correction of the non-blackbody effect of CTT is applied to analyze convective cloud-top buoyancy. With this correction, about 70% of the convective cores observed by CloudSat in the height range of 6-10 km have positive buoyancy near cloud top, meaning clouds are still growing vertically, although their final fate cannot be determined by snapshot observations.
2015-05-08
Decades of satellite observations and astronaut photographs show that clouds dominate space-based views of Earth. One study based on nearly a decade of satellite data estimated that about 67 percent of Earth’s surface is typically covered by clouds. This is especially the case over the oceans, where other research shows less than 10 percent of the sky is completely clear of clouds at any one time. Over land, 30 percent of skies are completely cloud free. Earth’s cloudy nature is unmistakable in this global cloud fraction map, based on data collected by the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Aqua satellite. While MODIS collects enough data to make a new global map of cloudiness every day, this version of the map shows an average of all of the satellite’s cloud observations between July 2002 and April 2015. Colors range from dark blue (no clouds) to light blue (some clouds) to white (frequent clouds).
The importance of the diurnal cycle of Aerosol Optical Depth in West Africa
NASA Astrophysics Data System (ADS)
Kocha, Cécile; Tulet, Pierre; Lafore, Jean-Philippe; Flamant, Cyrille; Banks, Jamie; Marnas, Fabien; Brindley, Helen; Marsham, Jonh
2013-04-01
High resolution atmospheric simulations with the AROME model coupled with a dust module over West Africa for the whole of June 2006 and 2011 were used to calculate Aerosol Optical Depth (AOD). But the simulations showed a significant diurnal cycle of 0.2 in the dust AOD that could not be inferred from the MODIS Deep Blue satellite retrievals due to their time of overpass. The AROME AOD diurnal cycle have been compared to the new SEVIRI AOD retrievals in June 2011 and shows simlar AOD diurnal cycle. In fact, dust sources are mainly driven by the breakdown of the early morning low-level jet and by moist convection in the afternoon, leading to opposite diurnal cycles. The contribution in dust production is calculated for each processes. Moreover, simulations show that cloud cover significantly prevents the observation of AOD in convective areas. The under-sampling of the diurnal cycle by satellites like MODIS plus the impact of cloud masks on the space-borne AOD retrievals induce an underestimation of 0.28 (~40%) over the convective regions and an overestimation of 0.1 (17%) over morning source areas like Bodélé. Finally, the vertical dust distribution is explored via CALIPSO monthly mean from 2006 to 2011. The vertical dust distribution is a clue element to determine the dust raciative impact. Over the June month, the dust radiative impact affect the atmospheric energetic budget by an absorption of the short wave of 58W/m²/AOD into the atmosphere and a reduction of 50W/m²/AOD at the surface.
NASA Technical Reports Server (NTRS)
King, M. D.
1992-01-01
The Moderate Resolution Imaging Spectrometer (MODIS) is an Earth-viewing sensor being developed as a facility instrument for the Earth Observing System (EOS) to be launched in the late 1990s. MODIS consists of two separate instruments that scan a swath width sufficient to provide nearly complete global coverage every two days from a polar-orbiting, Sun-synchronous, platform at an altitude of 705 km. Of primary interest for studies of atmospheric physics is the MODIS-N (nadir) instrument which will provide images in 36 spectral bands between 0.415 and 14.235 micrometers with spatial resoulutions of 250 m (2 bands), 500 m (5 bands) and 1000 m (29 bands). These bands have been carefully selected to enable advanced studies of land, ocean and atmosperhic processes. The intent of this lecture is to describe the current status of MODIS-N and its companion instrument MODIS-T (tilt), a tiltable cross-track scanning radiometer with 32 uniformly spaced channels between 0.410 and 0.875 micrometers, and to describe the physical principles behind the development of MODIS for the remote sensing of atmospheric properties. Primary emphasis will be placed on the main atmospheric applications of determining the optical, microphysical and physical properties of clouds and aerosol particles form spectral-reflection and thermal-emission measurements. In addition to cloud and aerosol properties, MODIS-N will be utilized for the determination of the total precipitable water vapor over land and atmospheric stability. The physical principles behind the determination of each of these atmospheric products will be described herein.
NASA Astrophysics Data System (ADS)
Zakšek, K.; Hort, M.; Zaletelj, J.; Langmann, B.
2012-09-01
Volcanic ash cloud top height (ACTH) can be monitored on the global level using satellite remote sensing. Here we propose a photogrammetric method based on the parallax between data retrieved from geostationary and polar orbiting satellites to overcome some limitations of the existing methods of ACTH retrieval. SEVIRI HRV band and MODIS band 1 are a good choice because of their high resolution. The procedure works well if the data from both satellites are retrieved nearly simultaneously. MODIS does not retrieve the data at exactly the same time as SEVIRI. To compensate for advection we use two sequential SEVIRI images (one before and one after the MODIS retrieval) and interpolate the cloud position from SEVIRI data to the time of MODIS retrieval. The proposed method was tested for the case of the Eyjafjallajökull eruption in April 2010. The parallax between MODIS and SEVIRI data can reach over 30 km which implies ACTH of more than 12 km in the beginning of the eruption. In the end of April eruption ACTH of 3-4 km is observed. The accuracy of ACTH was estimated to be 0.6 km.
NASA Astrophysics Data System (ADS)
Zakšek, K.; Hort, M.; Zaletelj, J.; Langmann, B.
2013-03-01
Volcanic ash cloud-top height (ACTH) can be monitored on the global level using satellite remote sensing. Here we propose a photogrammetric method based on the parallax between data retrieved from geostationary and polar orbiting satellites to overcome some limitations of the existing methods of ACTH retrieval. SEVIRI HRV band and MODIS band 1 are a good choice because of their high resolution. The procedure works well if the data from both satellites are retrieved nearly simultaneously. MODIS does not retrieve the data at exactly the same time as SEVIRI. To compensate for advection we use two sequential SEVIRI images (one before and one after the MODIS retrieval) and interpolate the cloud position from SEVIRI data to the time of MODIS retrieval. The proposed method was tested for the case of the Eyjafjallajökull eruption in April 2010. The parallax between MODIS and SEVIRI data can reach 30 km, which implies an ACTH of approximately 12 km at the beginning of the eruption. At the end of April eruption an ACTH of 3-4 km is observed. The accuracy of ACTH was estimated to be 0.6 km.
NASA Technical Reports Server (NTRS)
Remer, L. A.; Kaufman, Y. J.
2006-01-01
A four year record of MODIS spaceborne data provides a new measurement tool to assess the aerosol direct radiative effect at the top of the atmosphere. MODIS derives the aerosol optical thickness and microphysical properties from the scattered sunlight at 0.55-2.1 microns. The monthly MODIS data used here are accumulated measurements across a wide range of view and scattering angles and represent the aerosol s spectrally resolved angular properties. We use these data consistently to compute with estimated accuracy of +/-0.6W/sq m the reflected sunlight by the aerosol over global oceans in cloud free conditions. The MODIS high spatial resolution (0.5 km) allows observation of the aerosol impact between clouds that can be missed by other sensors with larger footprints. We found that over the clear-sky global ocean the aerosol reflected 5.3+/-0.6W/sq m with an average radiative efficiency of 49+/-2W/sq m per unit optical thickness. The seasonal and regional distribution of the aerosol radiative effects are discussed. The analysis adds a new measurement perspective to a climate change problem dominated so far by models.
NASA Technical Reports Server (NTRS)
Spruce, Joseph; Hargrove, William; Gasser, Gerald
2013-01-01
This presentation discusses the development of anew method for computing NDVI temporal composites from near real time eMODIS data This research is being conducted to improve forest change products used in the ForWarn system for monitoring regional forest disturbances in the United States. ForWarn provides nation-wide NDVI-based forest disturbance detection products that are refreshed every 8 days. Current eMODIS and historical MOD13 24 day NDVI data are used to compute the disturbance detection products. The eMODIS 24 day NDVI data re-aggregated from 7 day NDVI products. The 24 day eMODIS NDVIs are generally cloud free, but do not necessarily use the freshest quality data. To shorten the disturbance detection time, a method has been developed that performs adaptive length/maximum value compositing of eMODIS NDVI, along with cloud and shadow "noise" mitigation. Tests indicate that this method can reduce detection rates by 8-16 days for known recent disturbance events, depending on the cloud frequencies and disturbance type. The noise mitigation in these tests, though imperfect, helped to improve quality of the resulting NDVI and forest change products.
Auditory Backward Masking Deficits in Children with Reading Disabilities
ERIC Educational Resources Information Center
Montgomery, Christine R.; Morris, Robin D.; Sevcik, Rose A.; Clarkson, Marsha G.
2005-01-01
Studies evaluating temporal auditory processing among individuals with reading and other language deficits have yielded inconsistent findings due to methodological problems (Studdert-Kennedy & Mody, 1995) and sample differences. In the current study, seven auditory masking thresholds were measured in fifty-two 7- to 10-year-old children (26…
Biogeography, Cloud Base Heights and Cloud Immersion in Tropical Montane Cloud Forests
NASA Astrophysics Data System (ADS)
Welch, R. M.; Asefi, S.; Zeng, J.; Nair, U. S.; Lawton, R. O.; Ray, D. K.; Han, Q.; Manoharan, V. S.
2007-05-01
Tropical Montane Cloud Forests (TMCFs) are ecosystems characterized by frequent and prolonged immersion within orographic clouds. TMCFs often lie at the core of the biological hotspots, areas of high biodiversity, whose conservation is necessary to ensure the preservation of a significant amount of the plant and animal species in the world. TMCFs support islands of endemism dependent on cloud water interception that are extremely susceptible to environmental and climatic changes at regional or global scales. Due to the ecological and hydrological importance of TMCFs it is important to understand the biogeographical distribution of these ecosystems. The best current list of TMCFs is a global atlas compiled by the United Nations Environmental Program (UNEP). However, this list is incomplete, and it does not provide information on cloud immersion, which is the defining characteristic of TMCFs and sorely needed for ecological and hydrological studies. The present study utilizes MODIS satellite data both to determine orographic cloud base heights and then to quantify cloud immersion statistics over TMCFs. Results are validated from surface measurements over Northern Costa Rica for the month of March 2003. Cloud base heights are retrieved with approximately 80m accuracy, as determined at Monteverde, Costa Rica. Cloud immersion derived from MODIS data is also compared to an independent cloud immersion dataset created using a combination of GOES satellite data and RAMS model simulations. Comparison against known locations of cloud forests in Northern Costa Rica shows that the MODIS-derived cloud immersion maps successfully identify these cloud forest locations, including those not included in the UNEP data set. Results also will be shown for cloud immersion in Hawaii. The procedure appears to be ready for global mapping.
Bayesian cloud detection for MERIS, AATSR, and their combination
NASA Astrophysics Data System (ADS)
Hollstein, A.; Fischer, J.; Carbajal Henken, C.; Preusker, R.
2014-11-01
A broad range of different of Bayesian cloud detection schemes is applied to measurements from the Medium Resolution Imaging Spectrometer (MERIS), the Advanced Along-Track Scanning Radiometer (AATSR), and their combination. The cloud masks were designed to be numerically efficient and suited for the processing of large amounts of data. Results from the classical and naive approach to Bayesian cloud masking are discussed for MERIS and AATSR as well as for their combination. A sensitivity study on the resolution of multidimensional histograms, which were post-processed by Gaussian smoothing, shows how theoretically insufficient amounts of truth data can be used to set up accurate classical Bayesian cloud masks. Sets of exploited features from single and derived channels are numerically optimized and results for naive and classical Bayesian cloud masks are presented. The application of the Bayesian approach is discussed in terms of reproducing existing algorithms, enhancing existing algorithms, increasing the robustness of existing algorithms, and on setting up new classification schemes based on manually classified scenes.
Seasonal Bias of Retrieved Ice Cloud Optical Properties Based on MISR and MODIS Measurements
NASA Astrophysics Data System (ADS)
Wang, Y.; Hioki, S.; Yang, P.; Di Girolamo, L.; Fu, D.
2017-12-01
The precise estimation of two important cloud optical and microphysical properties, cloud particle optical thickness and cloud particle effective radius, is fundamental in the study of radiative energy budget and hydrological cycle. In retrieving these two properties, an appropriate selection of ice particle surface roughness is important because it substantially affects the single-scattering properties. At present, using a predetermined ice particle shape without spatial and temporal variations is a common practice in satellite-based retrieval. This approach leads to substantial uncertainties in retrievals. The cloud radiances measured by each of the cameras of the Multi-angle Imaging SpectroRadiometer (MISR) instrument are used to estimate spherical albedo values at different scattering angles. By analyzing the directional distribution of estimated spherical albedo values, the degree of ice particle surface roughness is estimated. With an optimal degree of ice particle roughness, cloud optical thickness and effective radius are retrieved based on a bi-spectral shortwave technique in conjunction with two Moderate Resolution Imaging Spectroradiometer (MODIS) bands centered at 0.86 and 2.13 μm. The seasonal biases of retrieved cloud optical and microphysical properties, caused by the uncertainties in ice particle roughness, are investigated by using one year of MISR-MODIS fused data.
Validation of satellite-retrieved MBL cloud properties using DOE ARM AMF measurements at the Azores
NASA Astrophysics Data System (ADS)
Xi, B.; Dong, X.; Minnis, P.; Sun-Mack, S.
2013-05-01
Marine Boundary Layer (MBL) cloud properties derived for the Clouds and the Earth's Radiant Energy System (CERES) Project using Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) data are compared with observations taken at the Atmospheric Radiation Measurement (ARM) AMF AZORES site from June 2009 through December 2010. Retrievals from ARM surface-based data were averaged over a 1-hour interval centered at the time of each satellite overpass, and the CERES-MODIS Ed4 cloud properties were averaged within a 30-km x 30-km box centered on the ARM AZORES site. Two datasets were analyzed: all of the single-layered unbroken decks (SL) and those cases without temperature inversions. The CERES-MODIS cloud top/base heights were determined from cloud top/base temperature by using a lapse rate method normalized to the 24-h mean surface air temperature. The preliminary results show: for all SL MBL at daytime, they are, on average, 0.148 km (cloud top) and 0.087 km (cloud base) higher than the ARM radar-lidar observed cloud top and base, respectively. At nighttime, they are 0.446 km (cloud top) and 0.334 km (cloud base). For those cases without temperature inversions, the comparisons are close to their SL counterparts. For cloud temperatures, the MODIS-derived cloud-top and -base temperatures are 1.6 K lower and 0.4 K higher than the surface values with correlations of 0.92 during daytime. At nighttime, the differences are slightly larger and correlations are lower than daytime comparisons. Variations in the height difference are mainly caused by uncertainties in the surface air temperatures and lapse rates. Based on a total of 61 daytime and 87 nighttime samples (ALL SL cases), the temperature inversion layers occur about 72% during daytime and 83% during nighttime. The difference of surface-observed lapse rate and the satellite derived lapse rate can be 1.6 K/km for daytime and 3.3K/km for nighttime. From these lapse rates, we can further analyze the surface air temperature difference that used to calculate these lapse rate, which are ~3K difference between surface-observed and the satellite derived during the daytime and 5.1 K during nighttime. Further studies of the cause of the temperature inversions that may help the cloud heights retrievals by satellite. The preliminary comparisons in MBL microphysical properties have shown that the averaged CERES-MODIS derived MBL cloud-droplet effective radius is only 1.5 μm larger than ARM retrieval (13.2 μm), and LWP values are also very close to each other (112 vs. 124 gm-2) with a relative large difference in optical depth (10.6 vs. 14.4).
Examining the NZESM Cloud representation with Self Organizing Maps
NASA Astrophysics Data System (ADS)
Schuddeboom, Alex; McDonald, Adrian; Parsons, Simon; Morgenstern, Olaf; Harvey, Mike
2017-04-01
Several different cloud regimes are identified from MODIS satellite data and the representation of these regimes within the New Zealand Earth System Model (NZESM) is examined. For the development of our cloud classification we utilize a neural network algorithm known as self organizing maps (SOMs) on MODIS cloud top pressure - cloud optical thickness joint histograms. To evaluate the representation of the cloud within NZESM, the frequency and geographical distribution of the regimes is compared between the NZESM and satellite data. This approach has the advantage of not only identifying differences, but also potentially giving additional information about the discrepancy such as in which regions or phases of cloud the differences are most prominent. To allow for a more direct comparison between datasets, the COSP satellite simulation software is applied to NZESM output. COSP works by simulating the observational processes linked to a satellite, within the GCM, so that data can be generated in a way that shares the particular observational bias of specific satellites. By taking the COSP joint histograms and comparing them to our existing classifications we can easily search for discrepancies between the observational data and the simulations without having to be cautious of biases introduced by the satellite. Preliminary results, based on data for 2008, show a significant decrease in overall cloud fraction in the NZESM compared to the MODIS satellite data. To better understand the nature of this discrepancy, the cloud fraction related to different cloud heights and phases were also analysed.
NASA Astrophysics Data System (ADS)
Wang, C.; Luo, Z. J.; Chen, X.; Zeng, X.; Tao, W.; Huang, X.
2012-12-01
Cloud top temperature is a key parameter to retrieval in the remote sensing of convective clouds. Passive remote sensing cannot directly measure the temperature at the cloud tops. Here we explore a synergistic way of estimating cloud top temperature by making use of the simultaneous passive and active remote sensing of clouds (in this case, CloudSat and MODIS). Weighting function of the MODIS 11μm band is explicitly calculated by feeding cloud hydrometer profiles from CloudSat retrievals and temperature and humidity profiles based on ECMWF ERA-interim reanalysis into a radiation transfer model. Among 19,699 tropical deep convective clouds observed by the CloudSat in 2008, the averaged effective emission level (EEL, where the weighting function attains its maximum) is at optical depth 0.91 with a standard deviation of 0.33. Furthermore, the vertical gradient of CloudSat radar reflectivity, an indicator of the fuzziness of convective cloud top, is linearly proportional to, d_{CTH-EEL}, the distance between the EEL of 11μm channel and cloud top height (CTH) determined by the CloudSat when d_{CTH-EEL}<0.6km. Beyond 0.6km, the distance has little sensitivity to the vertical gradient of CloudSat radar reflectivity. Based on these findings, we derive a formula between the fuzziness in the cloud top region, which is measurable by CloudSat, and the MODIS 11μm brightness temperature assuming that the difference between effective emission temperature and the 11μm brightness temperature is proportional to the cloud top fuzziness. This formula is verified using the simulated deep convective cloud profiles by the Goddard Cumulus Ensemble model. We further discuss the application of this formula in estimating cloud top buoyancy as well as the error characteristics of the radiative calculation within such deep-convective clouds.
A study of the 3D radiative transfer effect in cloudy atmospheres
NASA Astrophysics Data System (ADS)
Okata, M.; Teruyuki, N.; Suzuki, K.
2015-12-01
Evaluation of the effect of clouds in the atmosphere is a significant problem in the Earth's radiation budget study with their large uncertainties of microphysics and the optical properties. In this situation, we still need more investigations of 3D cloud radiative transer problems using not only models but also satellite observational data.For this purpose, we have developed a 3D-Monte-Carlo radiative transfer code that is implemented with various functions compatible with the OpenCLASTR R-Star radiation code for radiance and flux computation, i.e. forward and backward tracing routines, non-linear k-distribution parameterization (Sekiguchi and Nakajima, 2008) for broad band solar flux calculation, and DM-method for flux and TMS-method for upward radiance (Nakajima and Tnaka 1998). We also developed a Minimum cloud Information Deviation Profiling Method (MIDPM) as a method for a construction of 3D cloud field with MODIS/AQUA and CPR/CloudSat data. We then selected a best-matched radar reflectivity factor profile from the library for each of off-nadir pixels of MODIS where CPR profile is not available, by minimizing the deviation between library MODIS parameters and those at the pixel. In this study, we have used three cloud microphysical parameters as key parameters for the MIDPM, i.e. effective particle radius, cloud optical thickness and top of cloud temperature, and estimated 3D cloud radiation budget. We examined the discrepancies between satellite observed and mode-simulated radiances and three cloud microphysical parameter's pattern for studying the effects of cloud optical and microphysical properties on the radiation budget of the cloud-laden atmospheres.
NASA Astrophysics Data System (ADS)
Zhang, Zhibo; Meyer, Kerry; Yu, Hongbin; Platnick, Steven; Colarco, Peter; Liu, Zhaoyan; Oreopoulos, Lazaros
2016-03-01
In this paper, we studied the frequency of occurrence and shortwave direct radiative effects (DREs) of above-cloud aerosols (ACAs) over global oceans using 8 years (2007-2014) of collocated CALIOP and MODIS observations. Similar to previous work, we found high ACA occurrence in four regions: southeastern (SE) Atlantic region, where ACAs are mostly light-absorbing aerosols, i.e., smoke and polluted dust according to CALIOP classification, originating from biomass burning over the African Savanna; tropical northeastern (TNE) Atlantic and the Arabian Sea, where ACAs are predominantly windblown dust from the Sahara and Arabian deserts, respectively; and the northwestern (NW) Pacific, where ACAs are mostly transported smoke and polluted dusts from Asian. From radiative transfer simulations based on CALIOP-MODIS observations and a set of the preselected aerosol optical models, we found the DREs of ACAs at the top of atmosphere (TOA) to be positive (i.e., warming) in the SE Atlantic and NW Pacific regions, but negative (i.e., cooling) in the TNE Atlantic Ocean and the Arabian Sea. The cancellation of positive and negative regional DREs results in a global ocean annual mean diurnally averaged cloudy-sky DRE of 0.015 W m-2 (range of -0.03 to 0.06 W m-2) at TOA. The DREs at surface and within the atmosphere are -0.15 W m-2 (range of -0.09 to -0.21 W m-2), and 0.17 W m-2 (range of 0.11 to 0.24 W m-2), respectively. The regional and seasonal mean DREs are much stronger. For example, in the SE Atlantic region, the JJA (July-August) seasonal mean cloudy-sky DRE is about 0.7 W m-2 (range of 0.2 to 1.2 W m-2) at TOA. All our DRE computations are publicly available1. The uncertainty in our DRE computations is mainly caused by the uncertainties in the aerosol optical properties, in particular aerosol absorption, the uncertainties in the CALIOP operational aerosol optical thickness retrieval, and the ignorance of cloud and potential aerosol diurnal cycle. In situ and remotely sensed measurements of ACA from future field campaigns and satellite missions and improved lidar retrieval algorithm, in particular vertical feature masking, would help reduce the uncertainty.
NASA Technical Reports Server (NTRS)
Zhang, Zhibo; Meyer, Kerry; Yu, Hongbin; Platnick, Steven; Colarco, Peter; Liu, Zhaoyan; Oraiopoulos, Lazaros
2016-01-01
In this paper, we studied the frequency of occurrence and shortwave direct radiative effects (DREs) of above-cloud aerosols (ACAs) over global oceans using 8 years (2007-2014) of collocated CALIOP and MODIS observations. Similar to previous work, we found high ACA occurrence in four regions: southeastern (SE) Atlantic region, where ACAs are mostly light-absorbing aerosols, i.e., smoke and polluted dust according to CALIOP classification, originating from biomass burning over the African Savanna; tropical northeastern (TNE) Atlantic and the Arabian Sea, where ACAs are predominantly windblown dust from the Sahara and Arabian deserts, respectively; and the northwestern (NW) Pacific, where ACAs are mostly transported smoke and polluted dusts from Asia. From radiative transfer simulations based on CALIOP-MODIS observations and a set of the preselected aerosol optical models, we found the DREs of ACAs at the top of atmosphere (TOA) to be positive (i.e., warming) in the SE Atlantic and NW Pacific regions, but negative (i.e., cooling) in the TNE Atlantic Ocean and the Arabian Sea. The cancellation of positive and negative regional DREs results in a global ocean annual mean diurnally averaged cloudy-sky DRE of 0.015 W m(exp. -2) [range of -0.03 to 0.06 W m (exp. -2)] at TOA. The DREs at surface and within the atmosphere are -0.015 W m(exp. -2) [range of -0.09 to -0.21 W m(exp. -2)], and 0.17 W m(exp. -2) [range of 0.11 to 0.24 W m(exp. -2)], respectively. The regional and seasonal mean DREs are much stronger. For example, in the SE Atlantic region, the JJA (July-August) seasonal mean cloudy-sky DRE is about 0.7 W m(exp. -2) [range of 0.2 to 1.2 W m(exp. -2)] at TOA. All our DRE computations are publicly available. The uncertainty in our DRE computations is mainly caused by the uncertainties in the aerosol optical properties, in particular aerosol absorption, the uncertainties in the CALIOP operational aerosol optical thickness retrieval, and the ignorance of cloud and potential aerosol diurnal cycle. In situ and remotely sensed measurements of ACA from future field campaigns and satellite missions and improved lidar retrieval algorithm, in particular vertical feature masking, would help reduce the uncertainty.
Development, Comparisons and Evaluation of Aerosol Retrieval Algorithms
NASA Astrophysics Data System (ADS)
de Leeuw, G.; Holzer-Popp, T.; Aerosol-cci Team
2011-12-01
The Climate Change Initiative (cci) of the European Space Agency (ESA) has brought together a team of European Aerosol retrieval groups working on the development and improvement of aerosol retrieval algorithms. The goal of this cooperation is the development of methods to provide the best possible information on climate and climate change based on satellite observations. To achieve this, algorithms are characterized in detail as regards the retrieval approaches, the aerosol models used in each algorithm, cloud detection and surface treatment. A round-robin intercomparison of results from the various participating algorithms serves to identify the best modules or combinations of modules for each sensor. Annual global datasets including their uncertainties will then be produced and validated. The project builds on 9 existing algorithms to produce spectral aerosol optical depth (AOD and Ångström exponent) as well as other aerosol information; two instruments are included to provide the absorbing aerosol index (AAI) and stratospheric aerosol information. The algorithms included are: - 3 for ATSR (ORAC developed by RAL / Oxford university, ADV developed by FMI and the SU algorithm developed by Swansea University ) - 2 for MERIS (BAER by Bremen university and the ESA standard handled by HYGEOS) - 1 for POLDER over ocean (LOA) - 1 for synergetic retrieval (SYNAER by DLR ) - 1 for OMI retreival of the absorbing aerosol index with averaging kernel information (KNMI) - 1 for GOMOS stratospheric extinction profile retrieval (BIRA) The first seven algorithms aim at the retrieval of the AOD. However, each of the algorithms used differ in their approach, even for algorithms working with the same instrument such as ATSR or MERIS. To analyse the strengths and weaknesses of each algorithm several tests are made. The starting point for comparison and measurement of improvements is a retrieval run for 1 month, September 2008. The data from the same month are subsequently used for several runs with a prescribed set of aerosol models and an a priori data set derived from the median of AEROCOM model runs. The aerosol models and a priori data can be used in several ways, i.e. fully prescribed or with some freedom to choose a combination of aerosol models, based on the a priori or not. Another test gives insight in the effect of the cloud masks used, i.e. retrievals using the same cloud mask (the AATSR APOLLO cloud mask for collocated instruments) are compared with runs using the standard cloud masks. Tests to determine the influence of surface treatment are planned as well. The results of all these tests are evaluated by an independent team which compares the retrieval results with ground-based remote sensing (in particular AERONET) and in-situ data, and by a scoring method. Results are compared with other satellites such as MODIS and MISR. Blind tests using synthetic data are part of the algorithm characterization. The presentation will summarize results of the ongoing phase 1 inter-comparison and evaluation work within the Aerosol_cci project.
NASA Technical Reports Server (NTRS)
Varnai, Tamas; Yang, Weidong; Marshak, Alexander
2016-01-01
CALIOP shows stronger near-cloud changes in aerosol properties at higher cloud fractions. Cloud fraction variations explain a third of near-cloud changes in overall aerosol statistics. Cloud fraction and aerosol particle size distribution have a complex relationship.
A Study of Uncertainties for MODIS Cloud Retrievals of Optical Thickness and Effective Radius
NASA Technical Reports Server (NTRS)
Platnick, Steven; Pincus, Robert
2002-01-01
The investigation spanned four linked components as summarized in section III, each relating to some aspect of uncertainty assessment in the retrieval of cloud optical and microphysical properties using solar reflectance algorithms such as the MODIS operational cloud product (product IDS MOD06, MDY06 for Terra and Aqua, respectively). As discussed, three of these components have been fully completed (items (l), (2), and (3) while item (4) has been partially completed. These efforts have resulted in peer-reviewed publications and/or information delivered to the MODIS P.I. (M. D. King) for inclusion in the cloud product Quality Assessment (QA) output, a portion of the product output used, in part, for retrieval error assignments. This final report begins with a synopsis of the proposed investigation (section III) followed by a summary of work performed up through the last report including updates (section IV). Section V describes new activities. Publications from the efforts are listed in section VI. Figures (available in powerpoint format) are found in section VII.
Seasonal Surface Spectral Emissivity Derived from Terra MODIS Data
NASA Technical Reports Server (NTRS)
Sun-Mack, Sunny; Chen, Yan; Minnis, Patrick; Young, DavidF.; Smith, William J., Jr.
2004-01-01
The CERES (Clouds and the Earth's Radiant Energy System) Project is measuring broadband shortwave and longwave radiances and deriving cloud properties form various images to produce a combined global radiation and cloud property data set. In this paper, simultaneous data from Terra MODIS (Moderate Resolution Imaging Spectroradiometer) taken at 3.7, 8.5, 11.0, and 12.0 m are used to derive the skin temperature and the surface emissivities at the same wavelengths. The methodology uses separate measurements of clear sky temperature in each channel determined by scene classification during the daytime and at night. The relationships between the various channels at night are used during the day when solar reflectance affects the 3.7- m radiances. A set of simultaneous equations is then solved to derive the emissivities. Global monthly emissivity maps are derived from Terra MODIS data while numerical weather analyses provide soundings for correcting the observed radiances for atmospheric absorption. These maps are used by CERES and other cloud retrieval algorithms.
Technique for ship/wake detection
Roskovensky, John K [Albuquerque, NM
2012-05-01
An automated ship detection technique includes accessing data associated with an image of a portion of Earth. The data includes reflectance values. A first portion of pixels within the image are masked with a cloud and land mask based on spectral flatness of the reflectance values associated with the pixels. A given pixel selected from the first portion of pixels is unmasked when a threshold number of localized pixels surrounding the given pixel are not masked by the cloud and land mask. A spatial variability image is generated based on spatial derivatives of the reflectance values of the pixels which remain unmasked by the cloud and land mask. The spatial variability image is thresholded to identify one or more regions within the image as possible ship detection regions.
NASA Astrophysics Data System (ADS)
Cayula, Jean-François P.; May, Douglas A.; McKenzie, Bruce D.
2014-05-01
The Visible Infrared Imaging Radiometer Suite (VIIRS) Cloud Mask (VCM) Intermediate Product (IP) has been developed for use with Suomi National Polar-orbiting Partnership (NPP) VIIRS Environmental Data Record (EDR) products. In particular, the VIIRS Sea Surface Temperature (SST) EDR relies on VCM to identify cloud contaminated observations. Unfortunately, VCM does not appear to perform as well as cloud detection algorithms for SST. This may be due to similar but different goals of the two algorithms. VCM is concerned with detecting clouds while SST is interested in identifying clear observations. The result is that in undetermined cases VCM defaults to "clear," while the SST cloud detection defaults to "cloud." This problem is further compounded because classic SST cloud detection often flags as "cloud" all types of corrupted data, thus making a comparison with VCM difficult. The Naval Oceanographic Office (NAVOCEANO), which operationally produces a VIIRS SST product, relies on cloud detection from the NAVOCEANO Cloud Mask (NCM), adapted from cloud detection schemes designed for SST processing. To analyze VCM, the NAVOCEANO SST process was modified to attach the VCM flags to all SST retrievals. Global statistics are computed for both day and night data. The cases where NCM and/or VCM tag data as cloud-contaminated or clear can then be investigated. By analyzing the VCM individual test flags in conjunction with the status of NCM, areas where VCM can complement NCM are identified.
NASA Astrophysics Data System (ADS)
Painemal, D.; Minnis, P.; Sun-Mack, S.
2013-05-01
The impact of horizontal heterogeneities, liquid water path (LWP from AMSR-E), and cloud fraction (CF) on MODIS cloud effective radius (re), retrieved from the 2.1 μm (re2.1) and 3.8 μm (re3.8) channels, is investigated for warm clouds over the southeast Pacific. Values of re retrieved using the CERES Edition 4 algorithms are averaged at the CERES footprint resolution (~ 20 km), while heterogeneities (Hσ) are calculated as the ratio between the standard deviation and mean 0.64 μm reflectance. The value of re2.1 strongly depends on CF, with magnitudes up to 5 μm larger than those for overcast scenes, whereas re3.8 remains insensitive to CF. For cloudy scenes, both re2.1 and re3.8 increase with Hσ for any given AMSR-E LWP, but re2.1 changes more than for re3.8. Additionally, re3.8 - re2.1 differences are positive (< 1 μm) for homogeneous scenes (Hσ < 0.2) and LWP > 50 g m-2, and negative (up to -4 μm) for larger Hσ. Thus, re3.8 - re2.1 differences are more likely to reflect biases associated with cloud heterogeneities rather than information about the cloud vertical structure. The consequences for MODIS LWP are also discussed.
CHIMAERA System for Cloud Retrievals v 6.0.85
NASA Technical Reports Server (NTRS)
Wind, Galina; Platnick, Steven; Meyer, Kerry; Amarasinghe, Nandana; Marchant, Benjamin; Arnold, Tom; King, Michael D.
2015-01-01
Organizers of the MODIS-VIIRS Science Team Meeting, held May 18-22, 2015 in Silver Spring, MD plan to post the presentations and posters to the NASA MODIS website: http:modis.gsfc.nasa.govsci_teammeetings201505index.php. The MODIS Science Team Meeting is held twice a year, so that the members of the science team may assemble and discuss data they have collected, ideas they have formed, and future issues that apply to the MODIS Mission.
NASA Astrophysics Data System (ADS)
Davis, A. B.; von Allmen, P. A.; Marshak, A.; Bal, G.
2010-12-01
The geometrical assumption in all operational cloud remote sensing algorithms is that clouds are plane-parallel slabs, which applies relatively well to the most uniform stratus layers. Its benefit is to justify using classic 1D radiative transfer (RT) theory, where angular details (solar, viewing, azimuthal) are fully accounted for and precise phase functions can be used, to generate the look-up tables used in the retrievals. Unsurprisingly, these algorithms catastrophically fail when applied to cumulus-type clouds, which are highly 3D. This is unfortunate for the cloud-process modeling community that may thrive on in situ airborne data, but would very much like to use satellite data for more than illustrations in their presentations and publications. So, how can we obtain quantitative information from space-based observations of finite aspect ratio clouds? Cloud base/top heights, vertically projected area, mean liquid water content (LWC), and volume-averaged droplet size would be a good start. Motivated by this science need, we present a new approach suitable for sparse cumulus fields where we turn the tables on the standard procedure in cloud remote sensing. We make no a priori assumption about cloud shape, save an approximately flat base, but use brutal approximations about the RT that is necessarily 3D. Indeed, the first order of business is to roughly determine the cloud's outer shape in one of two ways, which we will frame as competing initial guesses for the next phase of shape refinement and volume-averaged microphysical parameter estimation. Both steps use multi-pixel/multi-angle techniques amenable to MISR data, the latter adding a bi-spectral dimension using collocated MODIS data. One approach to rough cloud shape determination is to fit the multi-pixel/multi-angle data with a geometric primitive such as a scalene hemi-ellipsoid with 7 parameters (translation in 3D space, 3 semi-axes, 1 azimuthal orientation); for the radiometry, a simple radiosity-type model is used where the cloud surface "emits" either reflected (sunny-side) or transmitted (shady-side) light at different levels. As it turns out, the reflected/transmitted light ratio yields an approximate cloud optical thickness. Another approach is to invoke tomography techniques to define the volume occupied by the cloud using, as it were, cloud masks for each direction of observation. In the shape and opacity refinement phase, initial guesses along with solar and viewing geometry information are used to predict radiance in each pixel using a fast diffusion model for the 3D RT in MISR's non-absorbing red channel (275 m resolution). Refinement is constrained and stopped when optimal resolution is reached. Finally, multi-pixel/mono-angle MODIS data for the same cloud (at comparable 250 m resolution) reveals the desired droplet size information, hence the volume-averaged LWC. This is an ambitious remote sensing science project drawing on cross-disciplinary expertise gained in medical imaging using both X-ray and near-IR sources and detectors. It is high risk but with potentially high returns not only for the cloud modeling community but also aerosol and surface characterization in the presence of broken 3D clouds.
Toward Unified Satellite Climatology of Aerosol Properties. 3. MODIS Versus MISR Versus AERONET
NASA Technical Reports Server (NTRS)
Mishchenko, Michael I.; Liu, Li; Geogdzhayev, Igor V.; Travis, Larry D.; Cairns, Brian; Lacis, Andrew A.
2010-01-01
We use the full duration of collocated pixel-level MODIS-Terra and MISR aerosol optical thickness (AOT) retrievals and level 2 cloud-screened quality-assured AERONET measurements to evaluate the likely individual MODIS and MISR retrieval accuracies globally over oceans and land. We show that the use of quality-assured MODIS AOTs as opposed to the use of all MODIS AOTs has little effect on the resulting accuracy. The MODIS and MISR relative standard deviations (RSTDs) with respect to AERONET are remarkably stable over the entire measurement record and reveal nearly identical overall AOT performances of MODIS and MISR over the entire suite of AERONET sites. This result is used to evaluate the likely pixel-level MODIS and MISR performances on the global basis with respect to the (unknown) actual AOTs. For this purpose, we use only fully compatible MISR and MODIS aerosol pixels. We conclude that the likely RSTDs for this subset of MODIS and MISR AOTs are 73% over land and 30% over oceans. The average RSTDs for the combined [AOT(MODIS)+AOT(MISR)]/2 pixel-level product are close to 66% and 27%, respectively, which allows us to recommend this simple blend as a better alternative to the original MODIS and MISR data. These accuracy estimates still do not represent the totality of MISR and quality-assured MODIS pixel-level AOTs since an unaccounted for and potentially significant source of errors is imperfect cloud screening. Furthermore, many collocated pixels for which one of the datasets reports a retrieval, whereas the other one does not may also be problematic.
Resolving ice cloud optical thickness biases between CALIOP and MODIS using infrared retrievals
NASA Astrophysics Data System (ADS)
Holz, R. E.; Platnick, S.; Meyer, K.; Vaughan, M.; Heidinger, A.; Yang, P.; Wind, G.; Dutcher, S.; Ackerman, S.; Amarasinghe, N.; Nagle, F.; Wang, C.
2015-10-01
Despite its importance as one of the key radiative properties that determines the impact of upper tropospheric clouds on the radiation balance, ice cloud optical thickness (IOT) has proven to be one of the more challenging properties to retrieve from space-based remote sensing measurements. In particular, optically thin upper tropospheric ice clouds (cirrus) have been especially challenging due to their tenuous nature, extensive spatial scales, and complex particle shapes and light scattering characteristics. The lack of independent validation motivates the investigation presented in this paper, wherein systematic biases between MODIS Collection 5 (C5) and CALIOP Version 3 (V3) unconstrained retrievals of tenuous IOT (< 3) are examined using a month of collocated A-Train observations. An initial comparison revealed a factor of two bias between the MODIS and CALIOP IOT retrievals. This bias is investigated using an infrared (IR) radiative closure approach that compares both products with MODIS IR cirrus retrievals developed for this assessment. The analysis finds that both the MODIS C5 and the unconstrained CALIOP V3 retrievals are biased (high and low, respectively) relative to the IR IOT retrievals. Based on this finding, the MODIS and CALIOP algorithms are investigated with the goal of explaining and minimizing the biases relative to the IR. For MODIS we find that the assumed ice single scattering properties used for the C5 retrievals are not consistent with the mean IR COT distribution. The C5 ice scattering database results in the asymmetry parameter (g) varying as a function of effective radius with mean values that are too large. The MODIS retrievals have been brought into agreement with the IR by adopting a new ice scattering model for Collection 6 (C6) consisting of a modified gamma distribution comprised of a single habit (severely roughened aggregated columns); the C6 ice cloud optical property models have a constant g ~ 0.75 in the mid-visible spectrum, 5-15 % smaller than C5. For CALIOP, the assumed lidar ratio for unconstrained retrievals is fixed at 25 sr for the V3 data products. This value is found to be inconsistent with the constrained (predominantly nighttime) CALIOP retrievals. An experimental data set was produced using a modified lidar ratio of 32 sr for the unconstrained retrievals (an increase of 28 %), selected to provide consistency with the constrained V3 results. These modifications greatly improve the agreement with the IR and provide consistency between the MODIS and CALIOP products. Based on these results the recently released MODIS C6 optical products use the single habit distribution given above, while the upcoming CALIOP V4 unconstrained algorithm will use higher lidar ratios for unconstrained retrievals.
Resolving Ice Cloud Optical Thickness Biases Between CALIOP and MODIS Using Infrared Retrievals
NASA Technical Reports Server (NTRS)
Holz, R. E.; Platnick, S.; Meyer, K.; Vaughan, M.; Heidinger, A.; Yang, P.; Wind, G.; Dutcher, S.; Ackerman, S.; Amarasinghe, N.;
2015-01-01
Despite its importance as one of the key radiative properties that determines the impact of upper tropospheric clouds on the radiation balance, ice cloud optical thickness (IOT) has proven to be one of the more challenging properties to retrieve from space-based remote sensing measurements. In particular, optically thin upper tropospheric ice clouds (cirrus) have been especially challenging due to their tenuous nature, extensive spatial scales, and complex particle shapes and light scattering characteristics. The lack of independent validation motivates the investigation presented in this paper, wherein systematic biases between MODIS Collection 5 (C5) and CALIOP Version 3 (V3) unconstrained retrievals of tenuous IOT (< 3) are examined using a month of collocated A-Train observations. An initial comparison revealed a factor of two bias between the MODIS and CALIOP IOT retrievals. This bias is investigated using an infrared (IR) radiative closure approach that compares both products with MODIS IR cirrus retrievals developed for this assessment. The analysis finds that both the MODIS C5 and the unconstrained CALIOP V3 retrievals are biased (high and low, respectively) relative to the IR IOT retrievals. Based on this finding, the MODIS and CALIOP algorithms are investigated with the goal of explaining and minimizing the biases relative to the IR. For MODIS we find that the assumed ice single scattering properties used for the C5 retrievals are not consistent with the mean IR COT distribution. The C5 ice scattering database results in the asymmetry parameter (g) varying as a function of effective radius with mean values that are too large. The MODIS retrievals have been brought into agreement with the IR by adopting a new ice scattering model for Collection 6 (C6) consisting of a modified gamma distribution comprised of a single habit (severely roughened aggregated columns); the C6 ice cloud optical property models have a constant g approx. = 0.75 in the mid-visible spectrum, 5-15% smaller than C5. For CALIOP, the assumed lidar ratio for unconstrained retrievals is fixed at 25 sr for the V3 data products.This value is found to be inconsistent with the constrained (predominantly nighttime) CALIOP retrievals. An experimental data set was produced using a modified lidar ratio of 32 sr for the unconstrained retrievals (an increase of 28%), selected to provide consistency with the constrained V3 results. These modifications greatly improve the agreement with the IR and provide consistency between the MODIS and CALIOP products. Based on these results the recently released MODIS C6 optical products use the single habit distribution given above, while the upcoming CALIOP V4 unconstrained algorithm will use higher lidar ratios for unconstrained retrievals.
Resolving ice cloud optical thickness biases between CALIOP and MODIS using infrared retrievals
NASA Astrophysics Data System (ADS)
Holz, Robert E.; Platnick, Steven; Meyer, Kerry; Vaughan, Mark; Heidinger, Andrew; Yang, Ping; Wind, Gala; Dutcher, Steven; Ackerman, Steven; Amarasinghe, Nandana; Nagle, Fredrick; Wang, Chenxi
2016-04-01
Despite its importance as one of the key radiative properties that determines the impact of upper tropospheric clouds on the radiation balance, ice cloud optical thickness (IOT) has proven to be one of the more challenging properties to retrieve from space-based remote sensing measurements. In particular, optically thin upper tropospheric ice clouds (cirrus) have been especially challenging due to their tenuous nature, extensive spatial scales, and complex particle shapes and light-scattering characteristics. The lack of independent validation motivates the investigation presented in this paper, wherein systematic biases between MODIS Collection 5 (C5) and CALIOP Version 3 (V3) unconstrained retrievals of tenuous IOT (< 3) are examined using a month of collocated A-Train observations. An initial comparison revealed a factor of 2 bias between the MODIS and CALIOP IOT retrievals. This bias is investigated using an infrared (IR) radiative closure approach that compares both products with MODIS IR cirrus retrievals developed for this assessment. The analysis finds that both the MODIS C5 and the unconstrained CALIOP V3 retrievals are biased (high and low, respectively) relative to the IR IOT retrievals. Based on this finding, the MODIS and CALIOP algorithms are investigated with the goal of explaining and minimizing the biases relative to the IR. For MODIS we find that the assumed ice single-scattering properties used for the C5 retrievals are not consistent with the mean IR COT distribution. The C5 ice scattering database results in the asymmetry parameter (g) varying as a function of effective radius with mean values that are too large. The MODIS retrievals have been brought into agreement with the IR by adopting a new ice scattering model for Collection 6 (C6) consisting of a modified gamma distribution comprised of a single habit (severely roughened aggregated columns); the C6 ice cloud optical property models have a constant g ≈ 0.75 in the mid-visible spectrum, 5-15 % smaller than C5. For CALIOP, the assumed lidar ratio for unconstrained retrievals is fixed at 25 sr for the V3 data products. This value is found to be inconsistent with the constrained (predominantly nighttime) CALIOP retrievals. An experimental data set was produced using a modified lidar ratio of 32 sr for the unconstrained retrievals (an increase of 28 %), selected to provide consistency with the constrained V3 results. These modifications greatly improve the agreement with the IR and provide consistency between the MODIS and CALIOP products. Based on these results the recently released MODIS C6 optical products use the single-habit distribution given above, while the upcoming CALIOP V4 unconstrained algorithm will use higher lidar ratios for unconstrained retrievals.
Multilayered Clouds Identification and Retrieval for CERES Using MODIS
NASA Technical Reports Server (NTRS)
Sun-Mack, Sunny; Minnis, Patrick; Chen, Yan; Yi, Yuhong; Huang, Jainping; Lin, Bin; Fan, Alice; Gibson, Sharon; Chang, Fu-Lung
2006-01-01
Traditionally, analyses of satellite data have been limited to interpreting the radiances in terms of single layer clouds. Generally, this results in significant errors in the retrieved properties for multilayered cloud systems. Two techniques for detecting overlapped clouds and retrieving the cloud properties using satellite data are explored to help address the need for better quantification of cloud vertical structure. The first technique was developed using multispectral imager data with secondary imager products (infrared brightness temperature differences, BTD). The other method uses microwave (MWR) data. The use of BTD, the 11-12 micrometer brightness temperature difference, in conjunction with tau, the retrieved visible optical depth, was suggested by Kawamoto et al. (2001) and used by Pavlonis et al. (2004) as a means to detect multilayered clouds. Combining visible (VIS; 0.65 micrometer) and infrared (IR) retrievals of cloud properties with microwave (MW) retrievals of cloud water temperature Tw and liquid water path LWP retrieved from satellite microwave imagers appears to be a fruitful approach for detecting and retrieving overlapped clouds (Lin et al., 1998, Ho et al., 2003, Huang et al., 2005). The BTD method is limited to optically thin cirrus over low clouds, while the MWR method is limited to ocean areas only. With the availability of VIS and IR data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and MW data from the Advanced Microwave Scanning Radiometer EOS (AMSR-E), both on Aqua, it is now possible to examine both approaches simultaneously. This paper explores the use of the BTD method as applied to MODIS and AMSR-E data taken from the Aqua satellite over non-polar ocean surfaces.
NASA Astrophysics Data System (ADS)
Dong, Xiquan; Minnis, Patrick; Xi, Baike; Sun-Mack, Sunny; Chen, Yan
2008-02-01
Overcast stratus cloud properties derived for the Clouds and the Earth's Radiant Energy System (CERES) project using Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) data are compared with observations taken at the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains site from March 2000 through December 2004. Retrievals from ARM surface-based data were averaged over a 1-h interval centered at the time of each satellite overpass, and the CERES-MODIS cloud properties were averaged within a 30 km × 30 km box centered on the ARM SGP site. Two data sets were analyzed: all of the data (ALL), which include multilayered, single-layered, and slightly broken stratus decks and a subset, single-layered unbroken decks (SL). The CERES-MODIS effective cloud heights were determined from effective cloud temperature using a lapse rate method with the surface temperature specified as the 24-h mean surface air temperature. For SL stratus, they are, on average, within the ARM radar-lidar estimated cloud boundaries and are 0.534 ± 0.542 km and 0.108 ± 0.480 km lower than the cloud physical tops and centers, respectively, and are comparable for day and night observations. The mean differences and standard deviations are slightly larger for ALL data, but not statistically different to those of SL data. The MODIS-derived effective cloud temperatures are 2.7 ± 2.4 K less than the surface-observed SL cloud center temperatures with very high correlations (0.86-0.97). Variations in the height differences are mainly caused by uncertainties in the surface air temperatures, lapse rates, and cloud top height variability. The biases are mainly the result of the differences between effective and physical cloud top, which are governed by cloud liquid water content and viewing zenith angle, and the selected lapse rate, -7.1 K km-1. On the basis of a total of 43 samples, the means and standard deviations of the differences between the daytime Terra and surface retrievals of effective radius re, optical depth, and liquid water path for SL stratus are 0.1 ± 1.9 μm (1.2 ± 23.5%), -1.3 ± 9.5 (-3.6 ± 26.2%), and 0.6 ± 49.9 gm-2 (0.3 ± 27%), respectively, while the corresponding correlation coefficients are 0.44, 0.87, and 0.89. For Aqua, they are 0.2 ± 1.9 μm (2.5 ± 23.4%), 2.5 ± 7.8 (7.8 ± 24.3%), and 28.1 ± 52.7 gm-2 (17.2 ± 32.2%), as well as 0.35, 0.96, and 0.93 from a total of 21 cases. The results for ALL cases are comparable. Although a bias in re was expected because the satellite retrieval of effective radius only represents the top of the cloud, the surface-based radar retrievals revealed that the vertical profile of re is highly variable with smaller droplets occurring at cloud top in some cases. The larger bias in optical depth and liquid water path for Aqua is due, at least partially, to differences in the Terra and Aqua MODIS visible channel calibrations. Methods for improving the cloud top height and microphysical property retrievals are suggested.
NASA Technical Reports Server (NTRS)
Dong, Xiquan; Minnis Patrick; Xi, Baike; Sun-Mack, Sunny; Chen, Yan
2008-01-01
Overcast stratus cloud properties derived for the Clouds and the Earth's Radiant Energy system (CERES) Project using Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) data are compared with observations taken at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site from March 2000 through December 2004. Retrievals from ARM surface-based data were averaged over a 1-hour interval centered at the time of each satellite overpass, and the CERES-MODIS cloud properties were averaged within a 30-km x 30 km box centered on the ARM SGP site. Two datasets were analyzed: all of the data (ALL) which include multilayered, single-layered, and slightly broken stratus decks and a subset, single-layered unbroken decks (SL). The CERES-MODIS effective cloud heights were determined from effective cloud temperature using a lapse rate method with the surface temperature specified as the 24-h mean surface air temperature. For SL stratus, they are, on average, within the ARM radar-lidar estimated cloud boundaries and are 0.534 +/- 0.542 km and 0.108 +/- 0.480 km lower than the cloud physical tops and centers, respectively, and are comparable for day and night observations. The mean differences and standard deviations are slightly larger for ALL data, but not statistically different to those of SL data. The MODIS-derived effective cloud temperatures are 2.7 +/- 2.4 K less than the surface-observed SL cloud center temperatures with very high correlations (0.86-0.97). Variations in the height differences are mainly caused by uncertainties in the surface air temperatures, lapse rates, and cloud-top height variability. The biases are mainly the result of the differences between effective and physical cloud top, which are governed by cloud liquid water content and viewing zenith angle, and the selected lapse rate, -7.1 K km(exp -1). Based on a total of 43 samples, the means and standard deviations of the differences between the daytime Terra and surface retrievals of effective radius r(sub e), optical depth, and liquid water path for SL stratu are 0.1 +/- 1.9 micrometers (1.2 +/- 23.5%), -1.3 +/- 9.5 (-3.6 +/-26.2%), and 0.6 +/- 49.9 gm (exp -2) (0.3 +/- 27%), respectively, while the corresponding correlation coefficients are 0.44, 0.87, and 0.89. For Aqua, they are 0.2 +/- 1.9 micrometers (2.5 +/- 23.4%), 2.5 +/- 7.8 (7.8 +/- 24.3%), and 28.1 +/- 52.7 gm (exp -2) (17.2 +/- 32.2%), as well as 0.35, 0.96, and 0.93 from a total of 21 cases. The results for ALL cases are comparable. Although a bias in R(sub e) was expected because the satellite retrieval of effective radius only represents the top of the cloud, the surface-based radar retrievals revealed that the vertical profile of r(sub e) is highly variable with smaller droplets occurring at cloud top in some cases. The larger bias in optical depth and liquid water path for Aqua is due, at least partially, to differences in the Terra and Aqua MODIS visible channel calibrations. methods for improving the cloud-top height and microphysical property retrievals are suggested.
Quality assessment of the Harmonized Landsat and Sentinel-2 (HLS) data set
NASA Astrophysics Data System (ADS)
Masek, J. G.; Claverie, M.; Ju, J.; Vermote, E.
2017-12-01
The Harmonized Landsat and Sentinel-2 (HLS) project is a NASA initiative aiming to produce a compatible surface reflectance (SR) data set from a virtual constellation consisting of the US Landsat-8 and the European Sentinel-2 satellites. The creation of such a long-term surface reflectance data record requires the development and implementation of Quality assessment (QA) methods to evaluate the quality of the product. QA is built as an integral part of the HLS production chain. The QA includes three components: (i) the comparison of the HLS data with MODIS data, (ii) an analysis of the geometric accuracy of the Landsat-8 OLI and Sentinel-2 MSI Level-1 products, and (iii) an evaluation of the temporal consistency of the HLS products.The methodology of the cross-comparison of the HLS product with MODIS products was introduced by Claverie et al. (2015, RSE, vol. 169). It consists in comparing HLS SR (L30 products for Landsat-8 and S30 products for Sentinel-2) with MODIS SR (MOD09CMG), after adjustment of sun-view geometry and bandpass differences. The overall uncertainties and biases between MODIS and HLS SR do not exceed, depending on the band (excluding blue bands), 9% and 3%, respectively. No significant spatial or temporal patterns were identified. The most important source of uncertainty comes from the cloud detection omission on the MSI data.The HLS and Level-1 products geometric accuracy was assessed and improved using the automated registration and orthorectification package, AROP (Gao et al., 2009, SPIE JARS, vol. 3). The use of AROP reduces the geometric co-registration error in Level-1 products by about 40% and 60% during HLS processing of OLI and MSI, respectively. The final CE-90 are 6.2 m and 18.8 m, for HLS MSI (computed with 10m pixels) and OLI (30 m pixels), respectively.Finally, the time series (TS) smoothness of the data set was analyzed by computing the time series noise (Vermote et al., 2009, TGRS, vol. 47). We showed that major issue is related to the MSI cloud mask quality. After filtering TS outliers, we demonstrated that the HLS TS noise (i.e., including MSI and OLI data) do not exceed 0.006 for the visible bands and 0.014 for the NIR and SWIR bands.
A Sample of What We Have Learned from A-Train Cloud Measurements
NASA Technical Reports Server (NTRS)
Joiner, Joanna; Vasilkov, Alexander; Ziemke, Jerry; Chandra, Sushil; Spurr, Robert; Bhartia, P. K.; Krotkov, Nick; Sneep, Maarten; Menzel, Paul; Platnick, Steve;
2008-01-01
The A-train active sensors CloudSat and CALIPSO provide detailed information about cloud vertical structure. Coarse vertical information can also be obtained from a combination of passive sensors (e.g. cloud liquid water content from AMSR-E, cloud ice properties from MLS and HIRDLS, cloud-top pressure from MODIS and AIRS, and UVNISINear IR absorption and scattering from OMI, MODIS, and POLDER). In addition, the wide swaths of instruments such as MODIS, AIRS, OMI, POLDER, and AMSR-E can be exploited to create estimates of the three-dimensional cloud extent. We will show how data fusion from A-train sensors can be used, e.g., to detect and map the presence of multiple layer/phase clouds. Ultimately, combined cloud information from Atrain instruments will allow for estimates of heating and radiative flux at the surface as well as UV/VIS/Near IR trace-gas absorption at the overpass time on a near-global daily basis. CloudSat has also dramatically improved our interpretation of visible and UV passive measurements in complex cloudy situations such as deep convection and multiple cloud layers. This has led to new approaches for unique and accurate constituent retrievals from A-train instruments. For example, ozone mixing ratios inside tropical deep convective clouds have recently been estimated using the Aura Ozone Monitoring Instrument (OMI). Field campaign data from TC4 provide additional information about the spatial variability and origin of trace-gases inside convective clouds. We will highlight some of the new applications of remote sensing in cloudy conditions that have been enabled by the synergy between the A-train active and passive sensors.
Assessment of the NPOESS/VIIRS Nighttime Infrared Cloud Optical Properties Algorithms
NASA Astrophysics Data System (ADS)
Wong, E.; Ou, S. C.
2008-12-01
In this paper we will describe two NPOESS VIIRS IR algorithms used to retrieve microphysical properties for water and ice clouds during nighttime conditions. Both algorithms employ four VIIRS IR channels: M12 (3.7 μm), M14 (8.55 μm), M15 (10.7 μm) and M16 (12 μm). The physical basis for the two algorithms is similar in that while the Cloud Top Temperature (CTT) is derived from M14 and M16 for ice clouds the Cloud Optical Thickness (COT) and Cloud Effective Particle Size (CEPS) are derived from M12 and M15. The two algorithms depart in the different radiative transfer parameterization equations used for ice and water clouds. Both the VIIRS nighttime IR algorithms and the CERES split-window method employ the 3.7 μm and 10.7 μm bands for cloud optical properties retrievals, apparently based on similar physical principles but with different implementations. It is reasonable to expect that the VIIRS and CERES IR algorithms produce comparable performance and similar limitations. To demonstrate the VIIRS nighttime IR algorithm performance, we will select a number of test cases using NASA MODIS L1b radiance products as proxy input data for VIIRS. The VIIRS retrieved COT and CEPS will then be compared to cloud products available from the MODIS, NASA CALIPSO, CloudSat and CERES sensors. For the MODIS product, the nighttime cloud emissivity will serve as an indirect comparison to VIIRS COT. For the CALIPSO and CloudSat products, the layered COT will be used for direct comparison. Finally, the CERES products will provide direct comparison with COT as well as CEPS. This study can only provide a qualitative assessment of the VIIRS IR algorithms due to the large uncertainties in these cloud products.
The Plane-parallel Albedo Bias of Liquid Clouds from MODIS Observations
NASA Technical Reports Server (NTRS)
Oreopoulos, Lazaros; Cahalan, Robert F.; Platnick, Steven
2007-01-01
In our most advanced modeling tools for climate change prediction, namely General Circulation Models (GCMs), the schemes used to calculate the budget of solar and thermal radiation commonly assume that clouds are horizontally homogeneous at scales as large as a few hundred kilometers. However, this assumption, used for convenience, computational speed, and lack of knowledge on cloud small scale variability, leads to erroneous estimates of the radiation budget. This paper provides a global picture of the solar radiation errors at scales of approximately 100 km due to warm (liquid phase) clouds only. To achieve this, we use cloud retrievals from the instrument MODIS on the Terra and Aqua satellites, along with atmospheric and surface information, as input into a GCM-style radiative transfer algorithm. Since the MODIS product contains information on cloud variability below 100 km we can run the radiation algorithm both for the variable and the (assumed) homogeneous clouds. The difference between these calculations for reflected or transmitted solar radiation constitutes the bias that GCMs would commit if they were able to perfectly predict the properties of warm clouds, but then assumed they were homogeneous for radiation calculations. We find that the global average of this bias is approx.2-3 times larger in terms of energy than the additional amount of thermal energy that would be trapped if we were to double carbon dioxide from current concentrations. We should therefore make a greater effort to predict horizontal cloud variability in GCMs and account for its effects in radiation calculations.
MOD06 Optical and Microphysical Retrievals
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven; Arnold, G. T.; Dinsick, J.; Gatebe, C. K.; Gray, M. A.; Hubanks, P. A.; Moody, E. G.; Wind, B.; Wind, G.
2003-01-01
Major efforts over the past six months included: (1) submission of MOD06 Optical and Microphysical Retrieval recompetition proposal, (2) delivery of a MODIS Atmosphere Level-3 update, (3) delivery of the MODIS Atmosphere s new combined Level-2 product, (4) development of an above-cloud precipitable water research algorithm and a multi-layer cloud detection algorithm, (5) continued development of a Fortran 90 version of the retrieval code for use with MAS as well as operational MODIS processing, (6) preliminary analysis of CRYSTAL-FACE field experiment in July 2002, (7) continued analysis of data obtained during the SAFARI 2000 dry season campaign in southern Africa, and the Arctic FIRE-ACE experiment.
Overview of CERES Cloud Properties Derived From VIRS AND MODIS DATA
NASA Technical Reports Server (NTRS)
Minis, Patrick; Geier, Erika; Wielicki, Bruce A.; Sun-Mack, Sunny; Chen, Yan; Trepte, Qing Z.; Dong, Xiquan; Doelling, David R.; Ayers, J. Kirk; Khaiyer, Mandana M.
2006-01-01
Simultaneous measurement of radiation and cloud fields on a global basis is recognized as a key component in understanding and modeling the interaction between clouds and radiation at the top of the atmosphere, at the surface, and within the atmosphere. The NASA Clouds and Earth s Radiant Energy System (CERES) Project (Wielicki et al., 1998) began addressing this issue in 1998 with its first broadband shortwave and longwave scanner on the Tropical Rainfall Measuring Mission (TRMM). This was followed by the launch of two CERES scanners each on Terra and Aqua during late 1999 and early 2002, respectively. When combined, these satellites should provide the most comprehensive global characterization of clouds and radiation to date. Unfortunately, the TRMM scanner failed during late 1998. The Terra and Aqua scanners continue to operate, however, providing measurements at a minimum of 4 local times each day. CERES was designed to scan in tandem with high resolution imagers so that the cloud conditions could be evaluated for every CERES measurement. The cloud properties are essential for converting CERES radiances shortwave albedo and longwave fluxes needed to define the radiation budget (ERB). They are also needed to unravel the impact of clouds on the ERB. The 5-channel, 2-km Visible Infrared Scanner (VIRS) on the TRMM and the 36-channel 1-km Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua are analyzed to define the cloud properties for each CERES footprint. To minimize inter-satellite differences and aid the development of useful climate-scale measurements, it was necessary to ensure that each satellite imager is calibrated in a fashion consistent with its counterpart on the other CERES satellites (Minnis et al., 2006) and that the algorithms are as similar as possible for all of the imagers. Thus, a set of cloud detection and retrieval algorithms were developed that could be applied to all three imagers utilizing as few channels as possible while producing stable and accurate cloud properties. This paper discusses the algorithms and results of applying those techniques to more than 5 years of Terra MODIS, 3 years of Aqua MODIS, and 4 years of TRMM VIRS data.
NASA Astrophysics Data System (ADS)
Bonev, George; Gladkova, Irina; Grossberg, Michael; Romanov, Peter; Helfrich, Sean
2016-09-01
The ultimate objective of this work is to improve characterization of the ice cover distribution in the polar areas, to improve sea ice mapping and to develop a new automated real-time high spatial resolution multi-sensor ice extent and ice edge product for use in operational applications. Despite a large number of currently available automated satellite-based sea ice extent datasets, analysts at the National Ice Center tend to rely on original satellite imagery (provided by satellite optical, passive microwave and active microwave sensors) mainly because the automated products derived from satellite optical data have gaps in the area coverage due to clouds and darkness, passive microwave products have poor spatial resolution, automated ice identifications based on radar data are not quite reliable due to a considerable difficulty in discriminating between the ice cover and rough ice-free ocean surface due to winds. We have developed a multisensor algorithm that first extracts maximum information on the sea ice cover from imaging instruments VIIRS and MODIS, including regions covered by thin, semitransparent clouds, then supplements the output by the microwave measurements and finally aggregates the results into a cloud gap free daily product. This ability to identify ice cover underneath thin clouds, which is usually masked out by traditional cloud detection algorithms, allows for expansion of the effective coverage of the sea ice maps and thus more accurate and detailed delineation of the ice edge. We have also developed a web-based monitoring system that allows comparison of our daily ice extent product with the several other independent operational daily products.
Consistency of two global MODIS aerosol products over ocean on Terra and Aqua CERES SSF datasets
NASA Astrophysics Data System (ADS)
Ignatov, Alexander; Minnis, Patrick; Wielicki, Bruce; Loeb, Norman G.; Remer, Lorraine A.; Kaufman, Yoram J.; Miller, Walter F.; Sun-Mack, Sunny; Laszlo, Istvan; Geier, Erika B.
2004-12-01
MODIS aerosol retrievals over ocean from Terra and Aqua platforms are available from the Clouds and the Earth's Radiant Energy System (CERES) Single Scanner Footprint (SSF) datasets generated at NASA Langley Research Center (LaRC). Two aerosol products are reported side by side. The primary M product is generated by subsetting and remapping the multi-spectral (0.44 - 2.1 μm) MOD04 aerosols onto CERES footprints. MOD04 processing uses cloud screening and aerosol algorithms developed by the MODIS science team. The secondary (AVHRR-like) A product is generated in only two MODIS bands: 1 and 6 on Terra, and ` and 7 on Aqua. The A processing uses NASA/LaRC cloud-screening and NOAA/NESDIS single channel aerosol algorthm. The M and A products have been documented elsewhere and preliminarily compared using two weeks of global Terra CERES SSF (Edition 1A) data in December 2000 and June 2001. In this study, the M and A aerosol optical depths (AOD) in MODIS band 1 and (0.64 μm), τ1M and τ1A, are further checked for cross-platform consistency using 9 days of global Terra CERES SSF (Edition 2A) and Aqua CERES SSF (Edition 1A) data from 13 - 21 October 2002.
Remote Sensing of Tropical Ecosystems: Atmospheric Correction and Cloud Masking Matter
NASA Technical Reports Server (NTRS)
Hilker, Thomas; Lyapustin, Alexei I.; Tucker, Compton J.; Sellers, Piers J.; Hall, Forrest G.; Wang, Yujie
2012-01-01
Tropical rainforests are significant contributors to the global cycles of energy, water and carbon. As a result, monitoring of the vegetation status over regions such as Amazonia has been a long standing interest of Earth scientists trying to determine the effect of climate change and anthropogenic disturbance on the tropical ecosystems and its feedback on the Earth's climate. Satellite-based remote sensing is the only practical approach for observing the vegetation dynamics of regions like the Amazon over useful spatial and temporal scales, but recent years have seen much controversy over satellite-derived vegetation states in Amazônia, with studies predicting opposite feedbacks depending on data processing technique and interpretation. Recent results suggest that some of this uncertainty could stem from a lack of quality in atmospheric correction and cloud screening. In this paper, we assess these uncertainties by comparing the current standard surface reflectance products (MYD09, MYD09GA) and derived composites (MYD09A1, MCD43A4 and MYD13A2 - Vegetation Index) from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Aqua satellite to results obtained from the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm. MAIAC uses a new cloud screening technique, and novel aerosol retrieval and atmospheric correction procedures which are based on time-series and spatial analyses. Our results show considerable improvements of MAIAC processed surface reflectance compared to MYD09/MYD13 with noise levels reduced by a factor of up to 10. Uncertainties in the current MODIS surface reflectance product were mainly due to residual cloud and aerosol contamination which affected the Normalized Difference Vegetation Index (NDVI): During the wet season, with cloud cover ranging between 90 percent and 99 percent, conventionally processed NDVI was significantly depressed due to undetected clouds. A smaller reduction in NDVI due to increased aerosol levels was observed during the dry season, with an inverse dependence of NDVI on aerosol optical thickness (AOT). NDVI observations processed with MAIAC showed highly reproducible and stable inter-annual patterns with little or no dependence on cloud cover, and no significant dependence on AOT (p less than 0.05). In addition to a better detection of cloudy pixels, MAIAC obtained about 20-80 percent more cloud free pixels, depending on season, a considerable amount for land analysis given the very high cloud cover (75-99 percent) observed at any given time in the area. We conclude that a new generation of atmospheric correction algorithms, such as MAIAC, can help to dramatically improve vegetation estimates over tropical rain forest, ultimately leading to reduced uncertainties in satellite-derived vegetation products globally.
NASA Technical Reports Server (NTRS)
Bhatt, Rajendra; Doelling, David R.; Angal, Amit; Xiong, Xiaoxiong; Scarino, Benjamin; Gopalan, Arun; Haney, Conor; Wu, Aisheng
2017-01-01
MODIS consists of a cross-track, two-sided scan mirror, whose reflectance is not uniform but is a function of angle of incidence (AOI). This feature, known as response versusscan-angle (RVS), was characterized for all reflective solar bands of both MODIS instruments prior to launch. The RVS characteristic has changed on orbit, which must be tracked precisely over time to ensure the quality of MODIS products. The MODIS characterization support team utilizes the onboard calibrators and the earth view responses from multiple pseudo invariant desert sites to track the RVS changes at different AOIs. The drawback of using deserts is the assumption that these sites are radiometrically stable during the monitoring period. In addition, the 16-day orbit repeat cycle of MODIS allows for only a limited set of AOIs over a given desert. We propose a novel and robust approach of characterizing the MODIS RVS using tropical deep convective clouds (DCC). The method tracks the monthly DCC response at specified sets of AOIs to compute the temporal RVS changes. Initial results have shown that the Aqua-MODIS collection 6 band 1 level 1B radiances show considerable residual RVS dependencies, with long-term drifts up to 2.3 at certain AOIs.
NASA Astrophysics Data System (ADS)
Bhatt, Rajendra; Doelling, David R.; Angal, Amit; Xiong, Xiaoxiong; Scarino, Benjamin; Gopalan, Arun; Haney, Conor; Wu, Aisheng
2017-01-01
MODIS consists of a cross-track, two-sided scan mirror, whose reflectance is not uniform but is a function of angle of incidence (AOI). This feature, known as response versus scan-angle (RVS), was characterized for all reflective solar bands of both MODIS instruments prior to launch. The RVS characteristic has changed on orbit, which must be tracked precisely over time to ensure the quality of MODIS products. The MODIS characterization support team utilizes the onboard calibrators and the earth view responses from multiple pseudoinvariant desert sites to track the RVS changes at different AOIs. The drawback of using deserts is the assumption that these sites are radiometrically stable during the monitoring period. In addition, the 16-day orbit repeat cycle of MODIS allows for only a limited set of AOIs over a given desert. We propose a novel and robust approach of characterizing the MODIS RVS using tropical deep convective clouds (DCC). The method tracks the monthly DCC response at specified sets of AOIs to compute the temporal RVS changes. Initial results have shown that the Aqua-MODIS collection 6 band 1 level 1B radiances show considerable residual RVS dependencies, with long-term drifts up to 2.3% at certain AOIs.
Evaluation of AIRS cloud properties using MPACE data
NASA Astrophysics Data System (ADS)
Wu, Xuebao; Li, Jun; Menzel, W. Paul; Huang, Allen; Baggett, Kevin; Revercomb, Henry
2005-12-01
Retrieval of cloud properties from the Atmospheric Infrared Sounder (AIRS) aboard the NASA Aqua satellite has been investigated. The cloud products from the collocated MODerate resolution Imaging Spectroradiometer (MODIS) data are used to characterize the AIRS sub-pixel cloud information such as cloud phase, cloud coverage, and cloud layer information. A Minimum Residual (MR) approach is used to retrieve cloud microphysical properties once the cloud top pressure (CTP) and effective cloud amount (ECA) are determined from AIRS CO2 absorption channels between 720 and 790 cm-1. The cloud microphysical properties can be retrieved by minimizing the differences between the observations and the calculations using AIRS longwave window channels between 790 and 1130 cm-1. AIRS is used to derive cloud properties during the Mixed Phase Arctic Cloud Experiment (MPACE) field campaign. Comparison with measurements obtained from lidar data is made for a test day, showing that AIRS cloud property retrievals agree with in situ lidar observations. Due to the large solar zenith angle, the MODIS operational retrieval approach is not able to provide cloud microphysics north of Barrow, Alaska; however, AIRS provides cloud microphysical properties with its high spectral resolution IR measurements.
Mapping the Distribution of Cloud Forests Using MODIS Imagery
NASA Astrophysics Data System (ADS)
Douglas, M. W.; Mejia, J.; Murillo, J.; Orozco, R.
2007-05-01
Tropical cloud forests - those forests that are frequently immersed in clouds or otherwise very humid, are extremely difficult to map from the ground, and are not easily distinguished in satellite imagery from other forest types, but they have a very different flora and fauna than lowland rainforest. Cloud forests, although found in many parts of the tropics, have a very restricted vertical extent and thus are also restricted horizontally. As a result, they are subject to both human disturbance (coffee growing for example) and the effects of possible climate change. Motivated by a desire to seek meteorological explanations for the distribution of cloud forests, we have begun to map cloudiness using MODIS Terra and Aqua visible imagery. This imagery, at ~1030 LT and 1330 LT, is an approximation for mid-day cloudiness. In tropical regions the amount of mid-day cloudiness strongly controls the shortwave radiation and thus the potential for evaporation (and aridity). We have mapped cloudiness using a simple algorithm that distinguishes between the cloud-free background brightness and the generally more reflective clouds to separate clouds from the underlying background. A major advantage of MODIS imagery over many other sources of satellite imagery is its high spatial resolution (~250m). This, coupled with precisely navigated images, means that detailed maps of cloudiness can be produced. The cloudiness maps can then be related to the underlying topography to further refine the location of the cloud forests. An advantage of this technique is that we are mapping the potential cloud forest, based on cloudiness, rather than the actual cloud forest, which are commonly based on forest estimates from satellite and digital elevation data. We do not derive precipitation, only estimates of daytime cloudiness. Although only a few years of MODIS imagery has been used in our studies, we will show that this is sufficient to describe the climatology of cloudiness with acceptable accuracy for its intended purposes. Even periods as short as one month are sufficient for depicting the location of most cloud forest environments. However, we are proceeding to distinguish different characteristics of cloud forests, depending on the overall frequency of cloudiness, the seasonality of cloudiness, and the interannual variability of cloudiness. These results should be useful to those seeking to describe relationships between the physical characteristics of the cloud forests and their biological environment.
Neural network cloud top pressure and height for MODIS
NASA Astrophysics Data System (ADS)
Håkansson, Nina; Adok, Claudia; Thoss, Anke; Scheirer, Ronald; Hörnquist, Sara
2018-06-01
Cloud top height retrieval from imager instruments is important for nowcasting and for satellite climate data records. A neural network approach for cloud top height retrieval from the imager instrument MODIS (Moderate Resolution Imaging Spectroradiometer) is presented. The neural networks are trained using cloud top layer pressure data from the CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) dataset. Results are compared with two operational reference algorithms for cloud top height: the MODIS Collection 6 Level 2 height product and the cloud top temperature and height algorithm in the 2014 version of the NWC SAF (EUMETSAT (European Organization for the Exploitation of Meteorological Satellites) Satellite Application Facility on Support to Nowcasting and Very Short Range Forecasting) PPS (Polar Platform System). All three techniques are evaluated using both CALIOP and CPR (Cloud Profiling Radar for CloudSat (CLOUD SATellite)) height. Instruments like AVHRR (Advanced Very High Resolution Radiometer) and VIIRS (Visible Infrared Imaging Radiometer Suite) contain fewer channels useful for cloud top height retrievals than MODIS, therefore several different neural networks are investigated to test how infrared channel selection influences retrieval performance. Also a network with only channels available for the AVHRR1 instrument is trained and evaluated. To examine the contribution of different variables, networks with fewer variables are trained. It is shown that variables containing imager information for neighboring pixels are very important. The error distributions of the involved cloud top height algorithms are found to be non-Gaussian. Different descriptive statistic measures are presented and it is exemplified that bias and SD (standard deviation) can be misleading for non-Gaussian distributions. The median and mode are found to better describe the tendency of the error distributions and IQR (interquartile range) and MAE (mean absolute error) are found to give the most useful information of the spread of the errors. For all descriptive statistics presented MAE, IQR, RMSE (root mean square error), SD, mode, median, bias and percentage of absolute errors above 0.25, 0.5, 1 and 2 km the neural network perform better than the reference algorithms both validated with CALIOP and CPR (CloudSat). The neural networks using the brightness temperatures at 11 and 12 µm show at least 32 % (or 623 m) lower MAE compared to the two operational reference algorithms when validating with CALIOP height. Validation with CPR (CloudSat) height gives at least 25 % (or 430 m) reduction of MAE.
NASA Astrophysics Data System (ADS)
Trepte, Q.; Minnis, P.; Palikonda, R.; Yost, C. R.; Rodier, S. D.; Trepte, C. R.; McGill, M. J.
2016-12-01
Geostationary satellites provide continuous cloud and meteorological observations important for weather forecasting and for understanding climate processes. The Himawari-8 satellite represents a new generation of measurement capabilities with significantly improved resolution and enhanced spectral information. The satellite was launched in October 2014 by the Japanese Meteorological Agency and is centered at 140° E to provide coverage over eastern Asia and the western Pacific region. A cloud detection algorithm was developed as part of the CERES Cloud Mask algorithm using the Advanced Himawari Imager (AHI), a 16 channel multi-spectral imager. The algorithm was originally designed for use with Meteosat Second Generation (MSG) data and has been adapted for Himawari-8 AHI measurements. This paper will describe the improvements in the Himawari cloud mask including daytime ocean low cloud and aerosol discrimination, nighttime thin cirrus detection, and Australian desert and coastal cloud detection. The statistics from matched CERES Himawari cloud mask results with CALIPSO lidar data and with new observations from the CATS lidar will also be presented. A feature of the CATS instrument on board the International Space Station is that it gives information at different solar viewing times to examine the diurnal variation of clouds and this provides an ability to evaluate the performance of the cloud mask for different sun angles.
NASA Astrophysics Data System (ADS)
Watanabe, T.; Nohara, D.
2017-12-01
The shorter temporal scale variation in the downward solar irradiance at the ground level (DSI) is not understood well because researches in the shorter-scale variation in the DSI is based on the ground observation and ground observation stations are located coarsely. Use of dataset derived from satellite observation will overcome such defect. DSI data and MODIS cloud properties product are analyzed simultaneously. Three metrics: mean, standard deviation and sample entropy, are used to evaluate time-series properties of the DSI. Three metrics are computed from two-hours time-series centered at the observation time of MODIS over the ground observation stations. We apply the regression methods to design prediction models of each three metrics from cloud properties. The validation of the model accuracy show that mean and standard deviation are predicted with a higher degree of accuracy and that the accuracy of prediction of sample entropy, which represents the complexity of time-series, is not high. One of causes of lower prediction skill of sample entropy is the resolution of the MODIS cloud properties. Higher sample entropy is corresponding to the rapid fluctuation, which is caused by the small and unordered cloud. It seems that such clouds isn't retrieved well.
NASA Astrophysics Data System (ADS)
Huang, Jianping; Minnis, Patrick; Lin, Bing; Yi, Yuhong; Fan, T.-F.; Sun-Mack, Sunny; Ayers, J. K.
2006-11-01
To provide more accurate ice cloud microphysical properties, the multi-layered cloud retrieval system (MCRS) is used to retrieve ice water path (IWP) in ice-over-water cloud systems globally over oceans using combined instrument data from Aqua. The liquid water path (LWP) of lower-layer water clouds is estimated from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) measurements. The properties of the upper-level ice clouds are then derived from Moderate Resolution Imaging Spectroradiometer (MODIS) measurements by matching simulated radiances from a two-cloud-layer radiative transfer model. The results show that the MCRS can significantly improve the accuracy and reduce the over-estimation of optical depth and IWP retrievals for ice-over-water cloud systems. The mean daytime ice cloud optical depth and IWP for overlapped ice-over-water clouds over oceans from Aqua are 7.6 and 146.4 gm-2, respectively, down from the initial single-layer retrievals of 17.3 and 322.3 gm-2. The mean IWP for actual single-layer clouds is 128.2 gm-2.
Impact of MODIS SWIR Band Calibration Improvements on Level-3 Atmospheric Products
NASA Technical Reports Server (NTRS)
Wald, Andrew; Levy, Robert; Angal, Amit; Geng, Xu; Xiong, Jack; Hoffman, Kurt
2016-01-01
The spectral reflectance measured by the MODIS reflective solar bands (RSB) is used for retrieving many atmospheric science products. The accuracy of these products depends on the accuracy of the calibration of the RSB. To this end, the RSB of the MODIS instruments are primarily calibrated on-orbit using regular solar diffuser (SD) observations. For lambda < 0.94 microns the SDs on-orbit bi-directional reflectance factor (BRF) change is tracked using solar diffuser stability monitor (SDSM) observations. For lambda > 0.94 microns, the MODIS Characterization Support Team (MCST) developed, in MODIS Collection 6 (C6), a time-dependent correction using observations from pseudo-invariant earth-scene targets. This correction has been implemented in C6 for the Terra MODIS 1.24 micron band over the entire mission, and for the 1.375 micron band in the forward processing. As the instruments continue to operate beyond their design lifetime of six years, a similar correction is planned for other short-wave infrared (SWIR) bands as well. MODIS SWIR bands are used in deriving atmosphere products, including aerosol optical thickness, atmospheric total column water vapor, cloud fraction and cloud optical depth. The SD degradation correction in Terra bands 5 and 26 impact the spectral radiance and therefore the retrieval of these atmosphere products. Here, we describe the corrections to Bands 5 (1.24 microns) and 26 (1.375 microns), and produce three sets (B5, B26 correction on/on, on/off, and off/off) of Terra-MODIS Level 1B (calibrated radiance product) data. By comparing products derived from these corrected and uncorrected Terra MODIS Level 1B (L1B) calibrations, dozens of L3 atmosphere products are surveyed for changes caused by the corrections, and representative results are presented. Aerosol and water vapor products show only small local changes, while some cloud products can change locally by > 10%, which is a large change.
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven; Hubanks, Paul; Pincus, Robert
2006-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by NASA and launched onboard the Terra spacecraft on December 18, 1999 and Aqua spacecraft on May 4, 2002. It achieved its final orbit and began Earth observations on February 24, 2000 for Terra and June 24, 2002 for Aqua. A comprehensive set of operational algorithms for the retrieval of cloud physical and optical properties (optical thickness, effective particle radius, water path, thermodynamic phase) have recently been updated and are being used in the new "Collection 5" processing stream being produced by the MODIS Adaptive Processing System (MODAPS) at NASA GSFC. All Terra and Aqua data are undergoing Collection 5 reprocessing with an expected completion date by the end of 2006. The archived products from these algorithms include 1 km pixel-level (Level-2) and global gridded Level-3 products. The cloud products have applications in climate change studies, climate modeling, numerical weather prediction, as well as fundamental atmospheric research. In this talk, we will summarize the available Level-3 cloud properties and their associated statistical data sets, and show preliminary Terra and Aqua results from the available Collection 5 reprocessing effort. Anticipated results include the latitudinal distribution of cloud optical and radiative properties for both liquid water and ice clouds, as well as joint histograms of cloud optical thickness and effective radius for selected geographical locations around the world.
MODIS Cloud Microphysics Product (MOD_PR06OD) Data Collection 6 Updates
NASA Technical Reports Server (NTRS)
Wind, Gala; Platnick, Steven; King, Michael D.
2014-01-01
The MODIS Cloud Optical and Microphysical Product (MOD_PR060D) for Data Collection 6 has entered full scale production. Aqua reprocessing is almost completed and Terra reprocessing will begin shortly. Unlike previous collections, the CHIMAERA code base allows for simultaneous processing for multiple sensors and the operational CHIMAERA 6.0.76 stream is also available for VIIRS and SEVIRI sensors and for our E-MAS airborne platform.
Cloud and Radiation Studies during SAFARI 2000
NASA Technical Reports Server (NTRS)
Platnick, Steven; King, M. D.; Hobbs, P. V.; Osborne, S.; Piketh, S.; Bruintjes, R.; Lau, William K. M. (Technical Monitor)
2001-01-01
Though the emphasis of the Southern Africa Regional Science Initiative 2000 (SAFARI-2000) dry season campaign was largely on emission sources and transport, the assemblage of aircraft (including the high altitude NASA ER-2 remote sensing platform and the University of Washington CV-580, UK MRF C130, and South African Weather Bureau JRA in situ aircrafts) provided a unique opportunity for cloud studies. Therefore, as part of the SAFARI initiative, investigations were undertaken to assess regional aerosol-cloud interactions and cloud remote sensing algorithms. In particular, the latter part of the experiment concentrated on marine boundary layer stratocumulus clouds off the southwest coast of Africa. Associated with cold water upwelling along the Benguela current, the Namibian stratocumulus regime has received limited attention but appears to be unique for several reasons. During the dry season, outflow of continental fires and industrial pollution over this area can be extreme. From below, upwelling provides a rich nutrient source for phytoplankton (a source of atmospheric sulphur through DMS production as well as from decay processes). The impact of these natural and anthropogenic sources on the microphysical and optical properties of the stratocumulus is unknown. Continental and Indian Ocean cloud systems of opportunity were also studied during the campaign. Aircraft flights were coordinated with NASA Terra Satellite overpasses for synergy with the Moderate Resolution Imaging Spectroradiometer (MODIS) and other Terra instruments. An operational MODIS algorithm for the retrieval of cloud optical and physical properties (including optical thickness, effective particle radius, and water path) has been developed. Pixel-level MODIS retrievals (11 km spatial resolution at nadir) and gridded statistics of clouds in th SAFARI region will be presented. In addition, the MODIS Airborne Simulator flown on the ER-2 provided high spatial resolution retrievals (50 m at nadir). These retrievals will be discussed and compared with in situ observations.
NASA Technical Reports Server (NTRS)
Viudez-Mora, Antonio; Kato, Seiji
2015-01-01
This work evaluates the multilayer cloud (MCF) algorithm based on CO2-slicing techniques against CALISPO-CloudSat (CLCS) measurement. This evaluation showed that the MCF underestimates the presence of multilayered clouds compared with CLCS and are retrained to cloud emissivities below 0.8 and cloud optical septs no larger than 0.3.
NASA Astrophysics Data System (ADS)
Yan, Hongru; Huang, Jianping; Minnis, Patrick; Yi, Yuhong; Sun-Mack, Sunny; Wang, Tianhe; Nakajima, Takashi Y.
2015-03-01
To enhance the utility of satellite-derived cloud properties for studying the role of clouds in climate change and the hydrological cycle in semi-arid areas, it is necessary to know their uncertainties. This paper estimates the uncertainties of several cloud properties by comparing those derived over the China Loess Plateau from the MODerate-resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua by the Clouds and Earth's Radiant Energy System (CERES) with surface observations at the Semi-Arid Climate and Environment Observatory of Lanzhou University (SACOL). The comparisons use data from January 2008 to June 2010 limited to single layer and overcast stratus conditions during daytime. Cloud optical depths (τ) and liquid water paths (LWP) from both Terra and Aqua generally track the variation of the surface counterparts with modest correlation, while cloud effective radius (re) is only weakly correlated with the surface retrievals. The mean differences between Terra and the SACOL retrievals are -4.7±12.9, 2.1±3.2 μm and 30.2±85.3 g m-2 for τ, re and LWP, respectively. The corresponding differences for Aqua are 2.1±8.4, 1.2±2.9 μm and 47.4±79.6 g m-2, respectively. Possible causes for biases of satellite retrievals are discussed through statistical analysis and case studies. Generally, the CERES-MODIS cloud properties have a bit larger biases over the Loess Plateau than those in previous studies over other locations.
MODIS Microphysical Regimes for Examining Apparent Aerosol Effects on Clouds and Precipitation
NASA Astrophysics Data System (ADS)
Oreopoulos, L.; Cho, N.; Lee, D.; Kato, S.; Lebsock, M. D.; Yuan, T.; Huffman, G. J.
2014-12-01
We use a 10-year record of MODIS Terra and Aqua Level-3 joint histograms of cloud optical thickness (COT) and cloud effective radius (CER) to derive so-called cloud microphysical regimes by means of clustering analysis. The regimes reveal the dominant modes of COT and CER co-variations around the globe for both liquid and ice phases. The clustering analysis is capable of separating regimes so that each is dominated by one of the two water phases and can be associated with previously derived "dynamical" regimes. The microphysical regimes serve as an appropriate basis to study possible effects of aerosols on cloud microphysical changes and precipitation. To this end, we employ MODIS aerosol loading measurements either in terms of aerosol index or aerosol optical depth and spatiotemporally matched precipitation (from either GPCP, TRMM or CloudSat) to examine intra-regime variability, regime transitions from morning (Terra) to afternoon (Aqua), and regime precipitation characteristics for locally low, average, and high aerosol loadings. Breakdowns by ocean/land and geographical zone (e.g., tropics vs. midlatitudes) are essential for physical interpretation of the results. The analysis conducted so far reveals notable differences in apparent characteristics of low- and high-cloud dominated microphysical regimes when in different aerosol environments. The presentation will attempt to examine whether the picture painted by our work is consistent with prevailing expectations, rooted to either modeling or prior observational studies, on how clouds and precipitation respond to distinct aerosol environments.
NASA Astrophysics Data System (ADS)
Minnis, P.; Sun-Mack, S.; Chang, F.; Huang, J.; Nguyen, L.; Ayers, J. K.; Spangenberg, D. A.; Yi, Y.; Trepte, C. R.
2006-12-01
During the last few years, several algorithms have been developed to detect and retrieve multilayered clouds using passive satellite data. Assessing these techniques has been difficult due to the need for active sensors such as cloud radars and lidars that can "see" through different layers of clouds. Such sensors have been available only at a few surface sites and on aircraft during field programs. With the launch of the CALIPSO and CloudSat satellites on April 28, 2006, it is now possible to observe multilayered systems all over the globe using collocated cloud radar and lidar data. As part of the A- Train, these new active sensors are also matched in time ad space with passive measurements from the Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Microwave Scanning Radiometer - EOS (AMSR-E). The Clouds and the Earth's Radiant Energy System (CERES) has been developing and testing algorithms to detect ice-over-water overlapping cloud systems and to retrieve the cloud liquid path (LWP) and ice water path (IWP) for those systems. One technique uses a combination of the CERES cloud retrieval algorithm applied to MODIS data and a microwave retrieval method applied to AMSR-E data. The combination of a CO2-slicing cloud retireval technique with the CERES algorithms applied to MODIS data (Chang et al., 2005) is used to detect and analyze such overlapped systems that contain thin ice clouds. A third technique uses brightness temperature differences and the CERES algorithms to detect similar overlapped methods. This paper uses preliminary CloudSat and CALIPSO data to begin a global scale assessment of these different methods. The long-term goals are to assess and refine the algorithms to aid the development of an optimal combination of the techniques to better monitor ice 9and liquid water clouds in overlapped conditions.
NASA Astrophysics Data System (ADS)
Minnis, P.; Sun-Mack, S.; Chang, F.; Huang, J.; Nguyen, L.; Ayers, J. K.; Spangenberg, D. A.; Yi, Y.; Trepte, C. R.
2005-05-01
During the last few years, several algorithms have been developed to detect and retrieve multilayered clouds using passive satellite data. Assessing these techniques has been difficult due to the need for active sensors such as cloud radars and lidars that can "see" through different layers of clouds. Such sensors have been available only at a few surface sites and on aircraft during field programs. With the launch of the CALIPSO and CloudSat satellites on April 28, 2006, it is now possible to observe multilayered systems all over the globe using collocated cloud radar and lidar data. As part of the A- Train, these new active sensors are also matched in time ad space with passive measurements from the Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Microwave Scanning Radiometer - EOS (AMSR-E). The Clouds and the Earth's Radiant Energy System (CERES) has been developing and testing algorithms to detect ice-over-water overlapping cloud systems and to retrieve the cloud liquid path (LWP) and ice water path (IWP) for those systems. One technique uses a combination of the CERES cloud retrieval algorithm applied to MODIS data and a microwave retrieval method applied to AMSR-E data. The combination of a CO2-slicing cloud retireval technique with the CERES algorithms applied to MODIS data (Chang et al., 2005) is used to detect and analyze such overlapped systems that contain thin ice clouds. A third technique uses brightness temperature differences and the CERES algorithms to detect similar overlapped methods. This paper uses preliminary CloudSat and CALIPSO data to begin a global scale assessment of these different methods. The long-term goals are to assess and refine the algorithms to aid the development of an optimal combination of the techniques to better monitor ice 9and liquid water clouds in overlapped conditions.
Snow cover retrieval over Rhone and Po river basins from MODIS optical satellite data (2000-2009).
NASA Astrophysics Data System (ADS)
Dedieu, Jean-Pierre, ,, Dr.; Boos, Alain; Kiage, Wiliam; Pellegrini, Matteo
2010-05-01
Estimation of the Snow Covered Area (SCA) is an important issue for meteorological application and hydrological modeling of runoff. With spectral bands in the visible, near and middle infrared, the MODIS optical satellite sensor can be used to detect snow cover because of large differences between reflectance from snow covered and snow free surfaces. At the same time, it allows separation between snow and clouds. Moreover, the sensor provides a daily coverage of large areas (2,500 km range). However, as the pixel size is 500m x 500m, a MODIS pixel may be partially covered by snow, particularly in Alpine areas, where snow may not be present in valleys lying at lower altitudes. Also, variation of reflectance due to differential sunlit effects as a function of slope and aspect, as well as bidirectional effects may be present in images. Nevertheless, it is possible to estimate snow cover at the Sub-Pixel level with a relatively good accuracy and with very good results if the sub-pixel estimations are integrated for a few pixels relative to an entire watershed. Integrated into the EU-FP7 ACQWA Project (www.acqwa.ch), this approach was first applied over Alpine area of Rhone river basin upper Geneva Lake: Canton du Valais, Switzerland (5 375 km²). In a second step over Alps, rolling hills and plain areas in Po catchment for Val d'Aosta and Piemonte regions, Italy (37 190 km²). Watershed boundaries were provided respectively by GRID (Ch) and ARPA (It) partners. The complete satellite images database was extracted from the U.S. MODIS/NASA website (http://modis.gsfc.nasa.gov/) for MOD09_B1 Reflectance images, and from the MODIS/NSIDC website (http://nsidc.org/index.html) for MOD10_A2 snow cover images. Only the Terra platform was used because images are acquired in the morning and are therefore better correlated with dry snow surface, avoiding cloud coverage of the afternoon (Aqua Platform). The MOD9 Image reflectance and MOD10_A2 products were respectively analyzed to retrieve (i) Fractional Snow cover at sub-pixel scale, and (ii) maximum snow cover. All products were retrieved at 8-days over a complete time period of 10 years (2000-2009), giving 500 images for each river basin. Digital Model Elevation was given by NASA/SRTM database at 90-m resolution and used (i) for illumination versus topography correction on snow cover, (ii) geometric rectification of images. Geographic projection is WGS84, UTM 32. Fractional Snow cover mapping was derived from the NDSI linear regression method (Salomonson et al., 2004). Cloud mask was given by MODIS-NASA library (radiometric threshold) and completed by inverse slope regression to avoid lowlands fog confusing with thin snow cover (Po river basin). Maximum Snow Cover mapping was retrieved from the NSIDC database classification (Hall et al., 2001). Validation step was processed using comparison between MODIS Snow maps outputs and meteorological data provided by network of 87 meteorological stations: temperature, precipitation, snow depth measurement. A 0.92 correlation was observed for snow/non snow cover and can be considered as quite satisfactory, given the radiometric problems encountered in mountainous areas, particularly in snowmelt season. The 10-years time period results indicates a main difference between (i) regular snow accumulation and depletion in Rhone and (ii) the high temporal and spatial variability of snow cover for Po. Then, a high sensitivity to low variation of air temperature, often close to 1° C was observed. This is the case in particular for the beginning and the end of the winter season. The regional snow cover depletion is both influenced by thermal positives anomalies (e.g. 2000 and 2006), and the general trend of rising atmospheric temperatures since the late 1980s, particularly for Po river basin. Results will be combined with two hydrological models: Topkapi and Fest.
Introducing two Random Forest based methods for cloud detection in remote sensing images
NASA Astrophysics Data System (ADS)
Ghasemian, Nafiseh; Akhoondzadeh, Mehdi
2018-07-01
Cloud detection is a necessary phase in satellite images processing to retrieve the atmospheric and lithospheric parameters. Currently, some cloud detection methods based on Random Forest (RF) model have been proposed but they do not consider both spectral and textural characteristics of the image. Furthermore, they have not been tested in the presence of snow/ice. In this paper, we introduce two RF based algorithms, Feature Level Fusion Random Forest (FLFRF) and Decision Level Fusion Random Forest (DLFRF) to incorporate visible, infrared (IR) and thermal spectral and textural features (FLFRF) including Gray Level Co-occurrence Matrix (GLCM) and Robust Extended Local Binary Pattern (RELBP_CI) or visible, IR and thermal classifiers (DLFRF) for highly accurate cloud detection on remote sensing images. FLFRF first fuses visible, IR and thermal features. Thereafter, it uses the RF model to classify pixels to cloud, snow/ice and background or thick cloud, thin cloud and background. DLFRF considers visible, IR and thermal features (both spectral and textural) separately and inserts each set of features to RF model. Then, it holds vote matrix of each run of the model. Finally, it fuses the classifiers using the majority vote method. To demonstrate the effectiveness of the proposed algorithms, 10 Terra MODIS and 15 Landsat 8 OLI/TIRS images with different spatial resolutions are used in this paper. Quantitative analyses are based on manually selected ground truth data. Results show that after adding RELBP_CI to input feature set cloud detection accuracy improves. Also, the average cloud kappa values of FLFRF and DLFRF on MODIS images (1 and 0.99) are higher than other machine learning methods, Linear Discriminate Analysis (LDA), Classification And Regression Tree (CART), K Nearest Neighbor (KNN) and Support Vector Machine (SVM) (0.96). The average snow/ice kappa values of FLFRF and DLFRF on MODIS images (1 and 0.85) are higher than other traditional methods. The quantitative values on Landsat 8 images show similar trend. Consequently, while SVM and K-nearest neighbor show overestimation in predicting cloud and snow/ice pixels, our Random Forest (RF) based models can achieve higher cloud, snow/ice kappa values on MODIS and thin cloud, thick cloud and snow/ice kappa values on Landsat 8 images. Our algorithms predict both thin and thick cloud on Landsat 8 images while the existing cloud detection algorithm, Fmask cannot discriminate them. Compared to the state-of-the-art methods, our algorithms have acquired higher average cloud and snow/ice kappa values for different spatial resolutions.
"Analysis of the multi-layered cloud radiative effects at the surface using A-train data"
NASA Astrophysics Data System (ADS)
Viudez-Mora, A.; Smith, W. L., Jr.; Kato, S.
2017-12-01
Clouds cover about 74% of the planet and they are an important part of the climate system and strongly influence the surface energy budget. The cloud vertical distribution has important implications in the atmospheric heating and cooling rates. Based on observations by active sensors in the A-train satellite constellation, CALIPSO [Winker et. al, 2010] and CloudSat [Stephens et. al, 2002], more than 1/3 of all clouds are multi-layered. Detection and retrieval of multi-layer cloud physical properties are needed in understanding their effects on the surface radiation budget. This study examines the sensitivity of surface irradiances to cloud properties derived from satellite sensors. Surface irradiances were computed in two different ways, one using cloud properties solely from MODerate resolution Imaging Spectroradiometer (MODIS), and the other using MODIS data supplemented with CALIPSO and CloudSat (hereafter CLCS) cloud vertical structure information [Kato et. al, 2010]. Results reveal that incorporating more precise and realistic cloud properties from CLCS into radiative transfer calculations yields improved estimates of cloud radiative effects (CRE) at the surface (CREsfc). The calculations using only MODIS cloud properties, comparisons of the computed CREsfc for 2-layer (2L) overcast CERES footprints, CLCS reduces the SW CRE by 1.5±26.7 Wm-2, increases the LW CRE by 4.1±12.7 Wm-2, and increases the net CREsfc by 0.9±46.7 Wm-2. In a subsequent analysis, we classified up to 6 different combinations of multi-layered clouds depending on the cloud top height as: High-high (HH), high-middle (HM), high-low (HL), middle-middle (MM), middle-low (ML) and low-low (LL). The 3 most frequent 2L cloud systems were: HL (56.1%), HM (22.3%) and HH (12.1%). For these cases, the computed CREsfc estimated using CLCS data presented the most significant differences when compared using only MODIS data. For example, the differences for the SW and Net CRE in the case HH was 12.3±47.3 Wm-2 and 16.0±48.45 Wm-2, respectively. For the case of HM, the LW CRE difference was -9.9±14.0 Wm-2. Kato, S., et al. (2010), J. Geophys. Res., 115. Stephens, G. L., et al. (2002), Bull. Am. Meteorol. Soc., 83. Winker, D. M., et al., (2010),Bull. Amer. Meteor. Soc., 91.
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven; Menzel, W. Paul; Ackerman, Steven A.; Remer, Lorraine A.
2006-01-01
Remote sensing of cloud and aerosol optical properties is routinely obtained using the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Terra and Aqua satellites. Instruments that are being used to enhance our ability to characterize the global distribution of cloud and aerosol properties include well-calibrated multispectral radiometers that measure in the visible, near-infrared, and thermal infrared. The availability of thermal channels to enhance detection of cloud when estimating aerosol properties is an important improvement. In this paper, we describe the radiative properties of clouds as currently determined from satellites (cloud fraction, optical thickness, cloud top pressure, and cloud particle effective radius) and highlight the global/regional cloud microphysical properties currently available for assessing climate variability and forcing. These include the latitudinal distribution of cloud optical and radiative properties of both liquid water and ice clouds, as well as joint histograms of cloud optical thickness and effective particle radius for selected geographical locations around the world. In addition, we will illustrate the radiative and microphysical properties of aerosol particles (in cloud free regions) that are currently available from space-based observations, and show the latitudinal distribution of aerosol optical properties over both land and ocean surfaces.
Overview of the CERES Edition-4 Multilayer Cloud Property Datasets
NASA Astrophysics Data System (ADS)
Chang, F. L.; Minnis, P.; Sun-Mack, S.; Chen, Y.; Smith, R. A.; Brown, R. R.
2014-12-01
Knowledge of the cloud vertical distribution is important for understanding the role of clouds on earth's radiation budget and climate change. Since high-level cirrus clouds with low emission temperatures and small optical depths can provide a positive feedback to a climate system and low-level stratus clouds with high emission temperatures and large optical depths can provide a negative feedback effect, the retrieval of multilayer cloud properties using satellite observations, like Terra and Aqua MODIS, is critically important for a variety of cloud and climate applications. For the objective of the Clouds and the Earth's Radiant Energy System (CERES), new algorithms have been developed using Terra and Aqua MODIS data to allow separate retrievals of cirrus and stratus cloud properties when the two dominant cloud types are simultaneously present in a multilayer system. In this paper, we will present an overview of the new CERES Edition-4 multilayer cloud property datasets derived from Terra as well as Aqua. Assessment of the new CERES multilayer cloud datasets will include high-level cirrus and low-level stratus cloud heights, pressures, and temperatures as well as their optical depths, emissivities, and microphysical properties.
Volcanic Ash Retrievals Using ORAC and Satellite Measurements in the Visible and IR
NASA Astrophysics Data System (ADS)
Mcgarragh, Gregory R.; Thomas, Gareth E.; Povey, Adam C.; Poulsen, Caroline A.; Grainger, Roy G.
2015-11-01
The Optimal Retrieval of Aerosol and Cloud (ORAC) is a generalized optimal estimation system that uses visible to infrared measurements from a wide range of instruments including AATSR, AVHRR, MODIS and SEVIRI. Recently, support to retrieve volcanic ash has been added for which it retrieves optical thickness, effective radius and cloud top pressure. In this proceeding we discuss the implementation of the volcanic ash retrieval in ORAC including the retrieval methodology, forward model, sources of uncertainty and the discrimination of ash from aerosol and cloud. Results are presented that are consistent with a well know eruption from both AATSR and MODIS while results of a full SEVIRI retrieval of ash, aerosol and cloud properties relative to the ash is are discussed.
NASA Technical Reports Server (NTRS)
2002-01-01
This spectacular Moderate Resolution Imaging Spectroradiometer (MODIS) 'blue marble' image is based on the most detailed collection of true-color imagery of the entire Earth to date. Using a collection of satellite-based observations, scientists and visualizers stitched together months of observations of the land surface, oceans, sea ice, and clouds into a seamless, true-color mosaic of every square kilometer (.386 square mile) of our planet. Most of the information contained in this image came from MODIS, illustrating MODIS' outstanding capacity to act as an integrated tool for observing a variety of terrestrial, oceanic, and atmospheric features of the Earth. The land and coastal ocean portions of this image is based on surface observations collected from June through September 2001 and combined, or composited, every eight days to compensate for clouds that might block the satellite's view on any single day. Global ocean color (or chlorophyll) data was used to simulate the ocean surface. MODIS doesn't measure 3-D features of the Earth, so the surface observations were draped over topographic data provided by the U.S. Geological Survey EROS Data Center. MODIS observations of polar sea ice were combined with observations of Antarctica made by the National Oceanic and Atmospheric Administration's AVHRR sensor-the Advanced Very High Resolution Radiometer. The cloud image is a composite of two days of MODIS imagery collected in visible light wavelengths and a third day of thermal infra-red imagery over the poles. A large collection of imagery based on the blue marble in a variety of sizes and formats, including animations and the full (1 km) resolution imagery, is available at the Blue Marble page. Image by Reto Stockli, Render by Robert Simmon. Based on data from the MODIS Science Team
Investigation of Cloud Properties and Atmospheric Profiles with Modis
NASA Technical Reports Server (NTRS)
Menzel, Paul; Ackerman, Steve; Moeller, Chris; Gumley, Liam; Strabala, Kathy; Frey, Richard; Prins, Elaine; Laporte, Dan; Wolf, Walter
1997-01-01
A major milestone was accomplished with the delivery of all five University of Wisconsin MODIS Level 2 science production software packages to the Science Data Support Team (SDST) for integration. These deliveries were the culmination of months of design and testing, with most of the work focused on tasks peripheral to the actual science contained in the code. LTW hosted a MODIS infrared calibration workshop in September. Considerable progress has been made by MCST, with help from LTW, in refining the calibration algorithm, and in identifying and characterization outstanding problems. Work continues on characterizing the effects of non-blackbody earth surfaces on atmospheric profile retrievals and modeling radiative transfer through cirrus clouds.
V2.2 L2AS Detailed Release Description April 15, 2002
Atmospheric Science Data Center
2013-03-14
... 'optically thick atmosphere' algorithm. Implement new experimental aerosol retrieval algorithm over homogeneous surface types. ... Change values: cloud_mask_decision_matrix(1,1): .true. -> .false. cloud_mask_decision_matrix(2,1): .true. -> .false. ...
Cloud Inhomogeneity from MODIS
NASA Technical Reports Server (NTRS)
Oreopoulos, Lazaros; Cahalan, Robert F.
2004-01-01
Two full months (July 2003 and January 2004) of MODIS Atmosphere Level-3 data from the Terra and Aqua satellites are analyzed in order to characterize the horizontal variability of cloud optical thickness and water path at global scales. Various options to derive cloud variability parameters are discussed. The climatology of cloud inhomogeneity is built by first calculating daily parameter values at spatial scales of l degree x 1 degree, and then at zonal and global scales, followed by averaging over monthly time scales. Geographical, diurnal, and seasonal changes of inhomogeneity parameters are examined separately for the two cloud phases, and separately over land and ocean. We find that cloud inhomogeneity is weaker in summer than in winter, weaker over land than ocean for liquid clouds, weaker for local morning than local afternoon, about the same for liquid and ice clouds on a global scale, but with wider probability distribution functions (PDFs) and larger latitudinal variations for ice, and relatively insensitive to whether water path or optical thickness products are used. Typical mean values at hemispheric and global scales of the inhomogeneity parameter nu (roughly the mean over the standard deviation of water path or optical thickness), range from approximately 2.5 to 3, while for the inhomogeneity parameter chi (the ratio of the logarithmic to linear mean) from approximately 0.7 to 0.8. Values of chi for zonal averages can occasionally fall below 0.6 and for individual gridpoints below 0.5. Our results demonstrate that MODIS is capable of revealing significant fluctuations in cloud horizontal inhomogenity and stress the need to model their global radiative effect in future studies.
NASA Astrophysics Data System (ADS)
Chang, Kai-Wei; L'Ecuyer, Tristan S.; Kahn, Brian H.; Natraj, Vijay
2017-05-01
Hyperspectral instruments such as Atmospheric Infrared Sounder (AIRS) have spectrally dense observations effective for ice cloud retrievals. However, due to the large number of channels, only a small subset is typically used. It is crucial that this subset of channels be chosen to contain the maximum possible information about the retrieved variables. This study describes an information content analysis designed to select optimal channels for ice cloud retrievals. To account for variations in ice cloud properties, we perform channel selection over an ensemble of cloud regimes, extracted with a clustering algorithm, from a multiyear database at a tropical Atmospheric Radiation Measurement site. Multiple satellite viewing angles over land and ocean surfaces are considered to simulate the variations in observation scenarios. The results suggest that AIRS channels near wavelengths of 14, 10.4, 4.2, and 3.8 μm contain the most information. With an eye toward developing a joint AIRS-MODIS (Moderate Resolution Imaging Spectroradiometer) retrieval, the analysis is also applied to combined measurements from both instruments. While application of this method to MODIS yields results consistent with previous channel sensitivity studies, the analysis shows that this combination may yield substantial improvement in cloud retrievals. MODIS provides most information on optical thickness and particle size, aided by a better constraint on cloud vertical placement from AIRS. An alternate scenario where cloud top boundaries are supplied by the active sensors in the A-train is also explored. The more robust cloud placement afforded by active sensors shifts the optimal channels toward the window region and shortwave infrared, further constraining optical thickness and particle size.
Himawari Support In The CSPP-GEO Direct Broadcast Package
NASA Astrophysics Data System (ADS)
Cureton, G. P.; Martin, G.
2016-12-01
The Cooperative Institute for Meteorological Satellite Studies (CIMSS) has a long history of supporting the Direct Broadcast (DB) community for various sensors, recently with the International MODIS/AIRS Processing Package (IMAPP) for the NASA EOS polar orbiters Terra and Aqua, and the Community Satellite Processing Package (CSPP) for the NOAA polar orbiter Suomi-NPP. CSPP has been significant in encouraging the early usage of Suomi-NPP data by US and international weather agencies, and it is hoped that a new package, CSPP-GEO, will similarly encourage usage of DB data from GOES-R, Himawari, and other geostationary satellites. The support of Himawari-8 provides several challenges for the CSPP-GEO-Geocat package, which generally revolve around the greatly increased data rate associated with the subsatellite point footprint approaching 1km. CSPP-GEO-Geocat takes advantage of python shared-memory multiprocessor support to divide Himawari data into managable pieces, which are then farmed out to indvidual cores for processing by the underlying geocat code. The resulting product segments are then stitched together to make the final product NetCDF4 files. CSPP-GEO-Geocat will support high-data-rate HRIT input, as well as the reduced resolution HimwariCast direct broadcast data stream. Products supported by CSPP-GEO-Geocat include the level-1 reflective and emissive bands, as well as level-2 products like cloud mask, cloud type, optical depth and particle size, cloud top temperature and pressure.
Land Surface Temperature Measurements from EOS MODIS Data
NASA Technical Reports Server (NTRS)
Wan, Zheng-Ming
2004-01-01
This report summarizes the accomplishments made by the MODIS LST (Land-Surface Temperature) group at University of California, Santa Barbara, under NASA Contract. Version 1 of the MODIS Land-Surface Temperature Algorithm Theoretical Basis Document (ATBD) was reviewed in June 1994, version 2 reviewed in November 1994, version 3.1 in August 1996, and version 3.3 updated in April 1999. Based on the ATBD, two LST algorithms were developed, one is the generalized split-window algorithm and another is the physics-based day/night LST algorithm. These two LST algorithms were implemented into the production generation executive code (PGE 16) for the daily standard MODIS LST products at level-2 (MODII-L2) and level-3 (MODIIA1 at 1 km resolution and MODIIB1 at 5km resolution). PGE codes for 8-day 1 km LST product (MODIIA2) and the daily, 8-day and monthly LST products at 0.05 degree latitude/longitude climate model grids (CMG) were also delivered. Four to six field campaigns were conducted each year since 2000 to validate the daily LST products generated by PGE16 and the calibration accuracies of the MODIS TIR bands used for the LST/emissivity retrieval from versions 2-4 of Terra MODIS data and versions 3-4 of Aqua MODIS data. Validation results from temperature-based and radiance-based methods indicate that the MODIS LST accuracy is better than 1 C in most clear-sky cases in the range from -10 to 58 C. One of the major lessons learn from multi- year temporal analysis of the consistent V4 daily Terra MODIS LST products in 2000-2003 over some selected target areas including lakes, snow/ice fields, and semi-arid sites is that there are variable numbers of cloud-contaminated LSTs in the MODIS LST products depending on surface elevation, land cover types, and atmospheric conditions. A cloud-screen scheme with constraints on spatial and temporal variations in LSTs was developed to remove cloud-contaminated LSTs. The 5km LST product was indirectly validated through comparisons to the 1 km LST product. Twenty three papers related to the LST research work were published in journals over the last decade.
NASA Astrophysics Data System (ADS)
Zhang, Z.; Meyer, K.; Yu, H.; Platnick, S.; Colarco, P.; Liu, Z.; Oreopoulos, L.
2015-09-01
In this paper, we studied the frequency of occurrence and shortwave direct radiative effects (DRE) of above-cloud aerosols (ACAs) over global oceans using eight years of collocated CALIOP and MODIS observations. Similar to previous work, we found high ACA occurrence in four regions: Southeast (SE) Atlantic region where ACAs are mostly light-absorbing aerosols, i.e., smoke and polluted dust according to CALIOP classification, originating from biomass burning over African Savanna; Tropical Northeast Atlantic and Arabian Sea where ACAs are predominantly windblown dust from the Sahara and Arabian desert, respectively; and Northwest Pacific where ACAs are mostly transported smoke and polluted dusts from Asian. From radiative transfer simulations based on CALIOP-MODIS observations and a set of the preselected aerosol optical models, we found the DREs of ACAs at the top of atmosphere (TOA) to be positive (i.e., warming) in the SE Atlantic and NW Pacific regions, but negative (i.e., cooling) in TNE Atlantic and Arabian Sea. The cancellation of positive and negative regional DREs results in a global ocean annual mean diurnally averaged cloudy-sky DRE of 0.015 W m-2 (range of -0.03 to 0.06 W m-2) at TOA. The DREs at surface and within atmosphere are -0.15 W m-2 (range of -0.09 to -0.21 W m-2), and 0.17 W m-2 (range of 0.11 to 0.24 W m-2), respectively. The regional and seasonal mean DREs are much stronger. For example, in the SE Atlantic region the JJA (July ~ August) seasonal mean cloudy-sky DRE is about 0.7 W m-2 (range of 0.2 to 1.2 W m-2) at TOA. The uncertainty in our DRE computations is mainly cause by the uncertainties in the aerosol optical properties, in particular aerosol absorption, and uncertainties in the CALIOP operational aerosol optical thickness retrieval. In situ and remotely sensed measurements of ACA from future field campaigns and satellite missions, and improved lidar retrieval algorithm, in particular vertical feature masking, would help reduce the uncertainty.
Sea Ice Surface Temperature Product from the Moderate Resolution Imaging Spectroradiometer (MODIS)
NASA Technical Reports Server (NTRS)
Hall, Dorothy K.; Key, Jeffrey R.; Casey, Kimberly A.; Riggs, George A.; Cavalieri, Donald J.
2003-01-01
Global sea ice products are produced from the Earth Observing System (EOS) Moderate Resolution Imaging Spectroradiometer (MODIS) on board both the Terra and Aqua satellites. Daily sea ice extent and ice-surface temperature (IST) products are available at 1- and 4-km resolution. Validation activities have been undertaken to assess the accuracy of the MODIS IST product at the South Pole station in Antarctica and in the Arctic Ocean using near-surface air-temperature data from a meteorological station and drifting buoys. Results from the study areas show that under clear skies, the MODIS ISTs are very close to those of the near-surface air temperatures with a bias of -1.1 and -1.2 K, and an uncertainty of 1.6 and 1.7 K, respectively. It is shown that the uncertainties would be reduced if the actual temperature of the ice surface were reported instead of the near-surface air temperature. It is not possible to get an accurate IST from MODIS in the presence of even very thin clouds or fog, however using both the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) and the MODIS on the Aqua satellite, it may be possible to develop a relationship between MODIS-derived IST and ice temperature derived from the AMSR-E. Since the AMSR-E measurements are generally unaffected by cloud cover, they may be used to complement the MODIS IST measurements.
An Assessment of SeaWiFS and MODIS Ocean Coverage
NASA Technical Reports Server (NTRS)
Woodward, Robert H.; Gregg, Watson W.
1998-01-01
Ocean coverages of SeaWiFS and MODIS were assessed for three seasons by considering monthly mean values of surface winds speeds and cloud cover. Mean and maximum coverages combined SeaWiFS and MODIS by considering combined coverages for ten-degree increments of the MODIS orbital mean anomaly. From this analysis the mean and maximum combined coverages for SeaWiFS and MODIS were determined for one and four-day periods for spring, summer, and winter seasons. Loss of coverage due to Sun glint and cloud cover were identified for both the individual and combined cases. Our analyses indicate that MODIS will enhance ocean coverage for all three seasons examined. ne combined SeaWiFS/MODIS show an increase of coverage of 42.2% to 48.7% over SeaWiFS alone for the three seasons studied; the increase in maximum one day coverage ranges from 47.5% to 52.0%. The increase in four-day coverage for the combined case ranged from 31.0% to 35.8% for mean coverage and 33.1 % to 39.2% for maximum coverage. We computed meridional distributions of coverages by binning the data into five-degree latitude bands. Our analysis shows a strong seasonal dependence of coverage. In general the meridional analysis indicates that increase in coverages for SeaWiFS/MODIS over SeaWiFS alone are greatest near the solar declination.
NASA Technical Reports Server (NTRS)
Spruce, Joseph P.; Gasser, Gerald; Hargrove, William; Smoot, James; Kuper, Philip D.
2014-01-01
The on-line near real time (NRT) ForWarn system is currently deployed to monitor regional forest disturbances within the conterminous United States (CONUS), using daily MODIS Aqua and Terra NDVI data to derive monitoring products. The Healthy Forest Restoration Act of 2003 mandated such a system. Work on ForWarn began in 2006 with development and validation of retrospective MODIS NDVI-based forest monitoring products. Subsequently, NRT forest disturbance monitoring products were demonstrated, leading to the actual system deployment in 2010. ForWarn provides new CONUS forest disturbance monitoring products every 8 days, using USGS eMODIS data for current NDVI. ForWarn currently does not cover Alaska, which includes extensive forest lands at risk to multiple biotic and abiotic threats. This poster discusses a case study using Alaska eMODIS Terra data to derive ForWarn like forest change products during the 2010 growing season. The eMODIS system provides current MODIS Terra NDVI products for Alaska. Resulting forest change products were assessed with ground, aerial, and Landsat reference data. When cloud and snow free, these preliminary products appeared to capture regional forest disturbances from insect defoliation and fires; however, more work is needed to mitigate cloud and snow contamination, including integration of eMODIS Aqua data.
NASA Astrophysics Data System (ADS)
Singh, A. K.; Toshniwal, D.
2017-12-01
The MODIS Joint Atmosphere product, MODATML2 and MYDATML2 L2/3 provided by LAADS DAAC (Level-1 and Atmosphere Archive & Distribution System Distributed Active Archive Center) re-sampled from medium resolution MODIS Terra /Aqua Satellites data at 5km scale, contains Cloud Reflectance, Cloud Top Temperature, Water Vapor, Aerosol Optical Depth/Thickness, Humidity data. These re-sampled data, when used for deriving climatic effects of aerosols (particularly in case of cooling effect) still exposes limitations in presence of uncertainty measures in atmospheric artifacts such as aerosol, cloud, cirrus cloud etc. The effect of uncertainty measures in these artifacts imposes an important challenge for estimation of aerosol effects, adequately affecting precise regional weather modeling and predictions: Forecasting and recommendation applications developed largely depend on these short-term local conditions (e.g. City/Locality based recommendations to citizens/farmers based on local weather models). Our approach inculcates artificial intelligence technique for representing heterogeneous data(satellite data along with air quality data from local weather stations (i.e. in situ data)) to learn, correct and predict aerosol effects in the presence of cloud and other atmospheric artifacts, defusing Spatio-temporal correlations and regressions. The Big Data process pipeline consisting correlation and regression techniques developed on Apache Spark platform can easily scale for large data sets including many tiles (scenes) and over widened time-scale. Keywords: Climatic Effects of Aerosols, Situation-Aware, Big Data, Apache Spark, MODIS Terra /Aqua, Time Series
NASA Technical Reports Server (NTRS)
Wen, Guoyong; Marshak, Alexander; Cahalan, Robert F.; Remer, Lorraine A.; Kleidman, Richard G.
2007-01-01
3D aerosol-cloud interaction is examined by analyzing two images containing cumulus clouds in biomass burning regions in Brazil. The research consists of two parts. The first part focuses on identifying 3D clo ud impacts on the reflectance of pixel selected for the MODIS aerosol retrieval based purely on observations. The second part of the resea rch combines the observations with radiative transfer computations to identify key parameters in 3D aerosol-cloud interaction. We found that 3D cloud-induced enhancement depends on optical properties of nearb y clouds as well as wavelength. The enhancement is too large to be ig nored. Associated biased error in 1D aerosol optical thickness retrie val ranges from 50% to 140% depending on wavelength and optical prope rties of nearby clouds as well as aerosol optical thickness. We caution the community to be prudent when applying 1D approximations in comp uting solar radiation in dear regions adjacent to clouds or when usin g traditional retrieved aerosol optical thickness in aerosol indirect effect research.
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, S.; Gray, M. A.; Hubanks, P. A.
2004-01-01
The Moderate Resolution Imaging Spectroradiometer (MODE) was developed by NASA and launched onboard the Terra spacecraft on December 18,1999 and the Aqua spacecraft on April 26,2002. MODIS scans a swath width sufficient to provide nearly complete global coverage every two days from each polar-orbiting, sun-synchronous, platform at an altitude of 705 km, and provides images in 36 spectral bands between 0.415 and 14.235 pm with spatial resolutions of 250 m (2 bands), 500 m (5 bands) and 1000 m (29 bands). In this paper, we describe the radiative properties of clouds as currently determined from satellites (cloud fraction, optical thickness, cloud top pressure, and cloud effective radius), and highlight the global and regional cloud microphysical properties currently available for assessing climate variability and forcing. These include the latitudinal distribution of cloud optical and radiative properties of both liquid water and ice clouds, as well as joint histograms of cloud optical thickness and effective radius for selected geographical locations around the globe.
A Marine Boundary Layer Water Vapor Climatology Derived from Microwave and Near-Infrared Imagery
NASA Astrophysics Data System (ADS)
Millan Valle, L. F.; Lebsock, M. D.; Teixeira, J.
2017-12-01
The synergy of the collocated Advanced Microwave Scanning Radiometer (AMSR) and the Moderate Resolution Imaging Spectroradiometer (MODIS) provides daily global estimates of partial marine planetary boundary layer water vapor. AMSR microwave radiometry provides the total column water vapor, while MODIS near-infrared imagery provides the water vapor above the cloud layers. The difference between the two gives the vapor between the surface and the cloud top, which may be interpreted as the boundary layer water vapor. Comparisons against radiosondes, and GPS-Radio occultation data demonstrate the robustness of these boundary layer water vapor estimates. We exploit the 14 years of AMSR-MODIS synergy to investigate the spatial, seasonal, and inter-annual variations of the boundary layer water vapor. Last, it is shown that the measured AMSR-MODIS partial boundary layer water vapor can be generally prescribed using sea surface temperature, cloud top pressure and the lifting condensation level. The multi-sensor nature of the analysis demonstrates that there exists more information on boundary layer water vapor structure in the satellite observing system than is commonly assumed when considering the capabilities of single instruments. 2017 California Institute of Technology. U.S. Government sponsorship acknowledged.
NASA Astrophysics Data System (ADS)
Lee, Kyeong-sang; Choi, Sungwon; Seo, Minji; Lee, Chang suk; Seong, Noh-hun; Han, Kyung-Soo
2016-10-01
Snow cover is biggest single component of cryosphere. The Snow is covering the ground in the Northern Hemisphere approximately 50% in winter season and is one of climate factors that affects Earth's energy budget because it has higher reflectance than other land types. Also, snow cover has an important role about hydrological modeling and water resource management. For this reason, accurate detection of snow cover acts as an essential element for regional water resource management. Snow cover detection using satellite-based data have some advantages such as obtaining wide spatial range data and time-series observations periodically. In the case of snow cover detection using satellite data, the discrimination of snow and cloud is very important. Typically, Misclassified cloud and snow pixel can lead directly to error factor for retrieval of satellite-based surface products. However, classification of snow and cloud is difficult because cloud and snow have similar optical characteristics and are composed of water or ice. But cloud and snow has different reflectance in 1.5 1.7 μm wavelength because cloud has lower grain size and moisture content than snow. So, cloud and snow shows difference reflectance patterns change according to wavelength. Therefore, in this study, we perform algorithm for classifying snow cover and cloud with satellite-based data using Dynamic Time Warping (DTW) method which is one of commonly used pattern analysis such as speech and fingerprint recognitions and reflectance spectral library of snow and cloud. Reflectance spectral library is constructed in advance using MOD21km (MODIS Level1 swath 1km) data that their reflectance is six channels including 3 (0.466μm), 4 (0.554μm), 1 (0.647μm), 2 (0.857μm), 26 (1.382μm) and 6 (1.629μm). We validate our result using MODIS RGB image and MOD10 L2 swath (MODIS swath snow cover product). And we use PA (Producer's Accuracy), UA (User's Accuracy) and CI (Comparison Index) as validation criteria. The result of our study detect as snow cover in the several regions which are did not detected as snow in MOD10 L2 and detected as snow cover in MODIS RGB image. The result of our study can improve accuracy of other surface product such as land surface reflectance and land surface emissivity. Also it can use input data of hydrological modeling.
Evaluation and Assimilation of Cloud Cleared Radiances for AIRS in GEOS-5
NASA Technical Reports Server (NTRS)
Liu, Hui-chun
2008-01-01
The use of clear (cloud-free) channels for AIRS in GEOS-5 had shown positive impact on forecast skills in both hemispheres. However, improvements in forecast skills due to the assimilation of AIRS data are less impressive since the number of assimilated channels from AIRS is much larger than that from other Infrared sounders such as HIRS-3 onboard NOAA 15-17 satellites. This limitation of AIRS radiance data to improve the forecast skill is mainly due to the fact that channels capable of peaking below clouds are not used in the assimilation and yet those have highest vertical resolving capability of AIRS instrument are concentrated in the lower troposphere. On average, the percentage of AIRS footprints completely clear for all channels is less than 10%. The percentage of assimilated AIRS channel radiances however ranges from 100% for channels peaking in the upper stratosphere, above the cloud, to no more that 5% in the lower atmosphere due to cloud contamination. Our current ability to model and predict clouds accurately in global model, and to fully characterize and parameterize optical properties of cloud particles in radiative transfer model are the two major obstacles prohibiting us to use cloudy radiance directly in the assimilation. To further improve forecast skill using AIRS data, we ought to use the channels peaking below the clouds in the troposphere, which can be accomplished by assimilating cloud-cleared radiance. The cloud-cleared radiance data for AIRS used in this study were obtained from optimal cloud clearing procedures developed by researchers at CIMSS of University of Wisconsin at Madison to retrieve clear column radiances for all AIRS channels by collocating multi-band MODIS IR clear radiance observations with the AIRS cloudy radiances on a single footprint basis. Two adjacent AIRS cloudy footprints are used to retrieve one AIRS cloud-cleared radiance spectrum and no background information (first guess) is needed. To assimilate the cloud-cleared radiance data, the errors of the cloud-cleared radiances need to be addressed. The details of convolving AIRS radiances with MODIS spectral response function and comparison with MODIS-measured cloud-free radiance will be presented. The range of errors of cloud-cleared radiances for AIRS using collocated MODIS clear and near-by AIRS clear data will be shown. The NASA. global data assimilation model, GEOS-5, is used to evaluate and assimilate the cloud-cleared radiance for AIRS. The residues between the cloud-cleared brightness temperature and the simulated brightness temperature from background (i.e., OMFs) will be investigated. The quality control procedures will be documented based on error estimation and the OMFs. Finally, the impacts between assimilation of clear channel radiances and cloud-cleared radiances will be addressed.
NASA Technical Reports Server (NTRS)
Jethva, Hiren; Torres, Omar; Bhartia, Pawan K.; Remer, Lorraine; Redemann, Jens; Dunagan, Stephen E.; Livingston, John; Shinozuka, Yohei; Kacenelenbogen, Meloe; Segal-Rosenbeimer, Michal;
2014-01-01
Absorbing aerosols produced from biomass burning and dust outbreaks are often found to overlay lower level cloud decks and pose greater potentials of exerting positive radiative effects (warming) whose magnitude directly depends on the aerosol loading above cloud, optical properties of clouds and aerosols, and cloud fraction. Recent development of a 'color ratio' (CR) algorithm applied to observations made by the Aura/OMI and Aqua/MODIS constitutes a major breakthrough and has provided unprecedented maps of above-cloud aerosol optical depth (ACAOD). The CR technique employs reflectance measurements at TOA in two channels (354 and 388 nm for OMI; 470 and 860 nm for MODIS) to retrieve ACAOD in near-UV and visible regions and aerosol-corrected cloud optical depth, simultaneously. An inter-satellite comparison of ACAOD retrieved from NASA's A-train sensors reveals a good level of agreement between the passive sensors over the homogeneous cloud fields. Direct measurements of ACA such as carried out by the NASA Ames Airborne Tracking Sunphotometer (AATS) and Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) can be of immense help in validating ACA retrievals. We validate the ACA optical depth retrieved using the CR method applied to the MODIS cloudy-sky reflectance against the airborne AATS and 4STAR measurements. A thorough search of the historic AATS-4STAR database collected during different field campaigns revealed five events where biomass burning, dust, and wildfire-emitted aerosols were found to overlay lower level cloud decks observed during SAFARI-2000, ACE-ASIA 2001, and SEAC4RS- 2013, respectively. The co-located satellite-airborne measurements revealed a good agreement (RMSE less than 0.1 for AOD at 500 nm) with most matchups falling within the estimated uncertainties in the MODIS retrievals. An extensive validation of satellite-based ACA retrievals requires equivalent field measurements particularly over the regions where ACA are often observed from satellites, i.e., south-eastern Atlantic Ocean, tropical Atlantic Ocean, northern Arabian Sea, South-East and North-East Asia.
NASA Technical Reports Server (NTRS)
Zhang, Zhibo; Meyer, Kerry G.; Platnick, Steven; Oreopoulos, Lazaros; Lee, Dongmin; Yu, Hongbin
2014-01-01
This paper describes an efficient and unique method for computing the shortwave direct radiative effect (DRE) of aerosol residing above low-level liquid-phase clouds using CALIOP and MODIS data. It addresses the overlap of aerosol and cloud rigorously by utilizing the joint histogram of cloud optical depth and cloud top pressure while also accounting for subgrid-scale variations of aerosols. The method is computationally efficient because of its use of grid-level cloud and aerosol statistics, instead of pixel-level products, and a pre-computed look-up table based on radiative transfer calculations. We verify that for smoke over the southeast Atlantic Ocean the method yields a seasonal mean instantaneous (approximately 1:30PM local time) shortwave DRE of above cloud aerosol (ACA) that generally agrees with more rigorous pixel-level computation within 4 percent. We also estimate the impact of potential CALIOP aerosol optical depth (AOD) retrieval bias of ACA on DRE. We find that the regional and seasonal mean instantaneous DRE of ACA over southeast Atlantic Ocean would increase, from the original value of 6.4 W m(-2) based on operational CALIOP AOD to 9.6 W m(-2) if CALIOP AOD retrieval are biased low by a factor of 1.5 (Meyer et al., 2013) and further to 30.9 W m(-2) if CALIOP AOD retrieval are biased low by a factor of 5 as suggested in (Jethva et al., 2014). In contrast, the instantaneous ACA radiative forcing efficiency (RFE) remains relatively invariant in all cases at about 53 W m(-2) AOD(-1), suggesting a near linear relation between the instantaneous RFE and AOD. We also compute the annual mean instantaneous shortwave DRE of light-absorbing aerosols (i.e., smoke and polluted dust) over global oceans based on 4 years of CALIOP and MODIS data. We find that the variability of the annual mean shortwave DRE of above-cloud light-absorbing aerosol is mainly driven by the optical depth of the underlying clouds. While we demonstrate our method using CALIOP and MODIS data, it can also be extended to other satellite data sets, as well as climate model outputs.
Spatial and Temporal Varying Thresholds for Cloud Detection in Satellite Imagery
NASA Technical Reports Server (NTRS)
Jedlovec, Gary; Haines, Stephanie
2007-01-01
A new cloud detection technique has been developed and applied to both geostationary and polar orbiting satellite imagery having channels in the thermal infrared and short wave infrared spectral regions. The bispectral composite threshold (BCT) technique uses only the 11 micron and 3.9 micron channels, and composite imagery generated from these channels, in a four-step cloud detection procedure to produce a binary cloud mask at single pixel resolution. A unique aspect of this algorithm is the use of 20-day composites of the 11 micron and the 11 - 3.9 micron channel difference imagery to represent spatially and temporally varying clear-sky thresholds for the bispectral cloud tests. The BCT cloud detection algorithm has been applied to GOES and MODIS data over the continental United States over the last three years with good success. The resulting products have been validated against "truth" datasets (generated by the manual determination of the sky conditions from available satellite imagery) for various seasons from the 2003-2005 periods. The day and night algorithm has been shown to determine the correct sky conditions 80-90% of the time (on average) over land and ocean areas. Only a small variation in algorithm performance occurs between day-night, land-ocean, and between seasons. The algorithm performs least well. during he winter season with only 80% of the sky conditions determined correctly. The algorithm was found to under-determine clouds at night and during times of low sun angle (in geostationary satellite data) and tends to over-determine the presence of clouds during the day, particularly in the summertime. Since the spectral tests use only the short- and long-wave channels common to most multispectral scanners; the application of the BCT technique to a variety of satellite sensors including SEVERI should be straightforward and produce similar performance results.
A Blended Global Snow Product using Visible, Passive Microwave and Scatterometer Satellite Data
NASA Technical Reports Server (NTRS)
Foster, James L.; Hall, Dorothy K.; Eylander, John B.; Riggs, George A.; Nghiem, Son V.; Tedesco, Marco; Kim, Edward; Montesano, Paul M.; Kelly, Richard E. J.; Casey, Kimberly A.;
2009-01-01
A joint U.S. Air Force/NASA blended, global snow product that utilizes Earth Observation System (EOS) Moderate Resolution Imaging Spectroradiometer (MODIS), Advanced Microwave Scanning Radiometer for EOS (AMSR-E) and QuikSCAT (Quick Scatterometer) (QSCAT) data has been developed. Existing snow products derived from these sensors have been blended into a single, global, daily, user-friendly product by employing a newly-developed Air Force Weather Agency (AFWA)/National Aeronautics and Space Administration (NASA) Snow Algorithm (ANSA). This initial blended-snow product uses minimal modeling to expeditiously yield improved snow products, which include snow cover extent, fractional snow cover, snow water equivalent (SWE), onset of snowmelt, and identification of actively melting snow cover. The blended snow products are currently 25-km resolution. These products are validated with data from the lower Great Lakes region of the U.S., from Colorado during the Cold Lands Processes Experiment (CLPX), and from Finland. The AMSR-E product is especially useful in detecting snow through clouds; however, passive microwave data miss snow in those regions where the snow cover is thin, along the margins of the continental snowline, and on the lee side of the Rocky Mountains, for instance. In these regions, the MODIS product can map shallow snow cover under cloud-free conditions. The confidence for mapping snow cover extent is greater with the MODIS product than with the microwave product when cloud-free MODIS observations are available. Therefore, the MODIS product is used as the default for detecting snow cover. The passive microwave product is used as the default only in those areas where MODIS data are not applicable due to the presence of clouds and darkness. The AMSR-E snow product is used in association with the difference between ascending and descending satellite passes or Diurnal Amplitude Variations (DAV) to detect the onset of melt, and a QSCAT product will be used to map areas of snow that are actively melting.
Clear-Sky Narrowband Albedo Datasets Derived from Modis Data
NASA Astrophysics Data System (ADS)
Chen, Y.; Minnis, P.; Sun-Mack, S.; Arduini, R. F.; Hong, G.
2013-12-01
Satellite remote sensing of clouds requires an accurate estimate of the clear-sky radiances for a given scene to detect clouds and aerosols and to retrieve their microphysical properties. Knowing the spatial and angular variability of clear-sky albedo is essential for predicting the clear-sky radiance at solar wavelengths. The Clouds and the Earth's Radiant Energy System (CERES) Project uses the near-infrared (NIR; 1.24, 1.6 or 2.13 μm) and visible (VIS; 0.63 μm) channels available on the Terra and Aqua Moderate Resolution Imaging Spectroradiometers (MODIS) to help identify clouds and retrieve their properties. Generally, clear-sky albedo for a given surface type is determined for conditions when the vegetation is either thriving or dormant and free of snow. The clear-sky albedos are derived using a radiative transfer parameterization of the impact of the atmosphere, including aerosols, on the observed reflectances. This paper presents the method of generating monthly clear-sky overhead albedo maps for both snow-free and snow-covered surfaces of these channels using one year of MODIS (Moderate Resolution Imaging Spectroradiometer) CERES products. Maps of 1.24 and 1.6 μm are being used as the background to help retrieve cloud properties (e.g., effective particle size, optical depth) in CERES cloud retrievals in both snow-free and snow-covered conditions.
NASA Astrophysics Data System (ADS)
Riedi, J.; Labonnote, L. C.; Contaut, F.; Platnick, S. E.; Yang, P.
2016-12-01
Realistic assumptions for representation of ice crystal optical properties are key in deriving meaningful information on ice clouds from spaceborne observations. With the increasing number of multi-sensor analysis it is also of paramount importance that ice crystal models be consistents for the interpretation of both passive and active observations in the solar and thermal infrared spectral domains. There has been significant evidences in the past few years that roughened particles might represent an overall good proxy for ice crystal models being able to simultaneously explain visible and infrared observations obtained from either active or passive sensors (Holz et al, 2016). Nevertheless, details of the exact phase function remain very informative fingerprints of ice crystal shapes and can also be critical parameters for retrievals performed under specific viewing geometries. Analysis of lidar observation for instance remains very sensitive to details of phase function in and around the backscatter direction. The relative magnitude and width of the backscatter peak intensity that appears in phase functions of ice crystal has been shown to carry useful information for characterization of ice crystal habits (Zhou & Yang, 2015). Based on these theoretical results we are revisiting here our previous analysis of coincident POLDER, MODIS and CALIOP observations whereby we were able to study the angular variability of ice clouds reflectance in and around the exact backscatter direction. Statistics from 5 years of observations of peak intensities derived from POLDER have been established in relation to coincident MODIS cloud optical thickness and effective radius retrievals as well as CALIOP layer integrated depolarization ratio and attenuated backscatter. Those are analyzed in view of the theoretical results from Zhou & Yang (2015). In particular, correlation of peak intensity and width with particle size retrieved from MODIS will be presented and implications for ice cloud microphysical properties and remote sensing applications will be discussed. Chen Zhou and Ping Yang : Backscattering peak of ice cloud particles, Opt. Express 23, 11995-12003 (2015) Holz, R. E. et al : Resolving ice cloud optical thickness biases between CALIOP and MODIS using infrared retrievals, Atmos. Chem. Phys., 16, 5075-5090 (2016)
Assessment of observed fog/low-cloud trends in central Taiwan
NASA Astrophysics Data System (ADS)
Lai, Yen-Jen; Lin, Po-Hsiung
2017-04-01
Xitou region, as the epitome of mid-elevation cloud forest ecosystems in Taiwan, it possesses a rich diversity of flora and fauna. It is also a popular forest recreation area. Due to rapid development of the local tourist industry, where tourist numbers increased from 0.3 million/year in 2000 to 2 million/year in 2015, the microclimate has changed continually. Global warming and landscape changes would be also the most likely factors. This study reports findings of monitoring systems including 4 visibility observed sites at different altitude, a self-developed atmospheric profile observation system carried by unmanned aerial vehicle (UAV) and a high temporal cloud base height observation system by a ceilometer. Besides this, the cloud top height of MODIS cloud product is evaluated as well. The results indicated the foggy day ratio in 2015 was 24% lower than that in 2005 around the district of the nursery. The foggy day ratio raised along with the increase of altitude and the sharpest increasing range happened in the summer time. The UAV-observed results showed the top heights of the nighttime atmospheric boundary layer (ABL) usually happened under 1300m a.s.l. (250m above ground) and the top heights of daytime ABL rose to 1500m - 2100m a.s.l. Unfortunately, it was difficult to observe the inversion layer/ABL in summer due to the fly height limitation of UAV. The ceilometer-observed results indicated the highest foggy ratio happened around 17:00 (local standard time). The daytime cloudy based height ratio was higher than nighttime and the cloud based height was usually located during 1150m - 1750m a.s.l. which was under the top heights of ABL. In addition, the higher cloud-based-heights-happened ratios were found at 1200m - 1250m a.s.l. and 1350m - 1400m a.s.l.. These results indicated the cloud based height uplifted from ground to at least 150m above ground-level causing the foggy ratio decrease. The MODIS cloud product showed the top height of low cloud uplifted or even became clear sky along with the increase of Xitou tourist numbers. Both ceilometer and MODIS data suggested the low cloud was uplifting. In order to clarify the seasonal characters of cloud thickness, the validation of MODIS cloud top height by atmospheric profiles are on-going. Furthermore, an adapted land-atmospheric model (WRF model is now under testing) will be implemented in order to discover the major factors causing the decrease of foggy ratio and assess the impacts on cloud forest.
NASA Astrophysics Data System (ADS)
Ross, Alexa; Holz, Robert E.; Ackerman, Steven A.
2017-08-01
In April 2006, the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) launched aboard the CALIPSO satellite and into the A-Train constellation of satellites with its transmitter pointed near nadir. This proved problematic due to specular reflection from horizontally oriented ice crystals occurring more frequently than expected. Because the specular backscatter from oriented ice crystals has large attenuated backscatter and almost no depolarization, the standard lidar inversions cannot be applied. To mitigate this issue, the CALIOP transmitter was moved to 3° off nadir in November 2007. Though problematic for global CALIOP retrievals, the sensitivity to oriented ice during the first year of observations provides a unique data set to investigate scenes of this ice crystal signature. This study focuses on the CALIOP-oriented signature that occurs in midlatitude ocean regions whose cloud tops are relatively warm and low, existing below 6 km. A significant seasonal dependence is found in the Northern Hemisphere with up to 19% of clouds below 6 km yielding specular reflection by CALIOP during the colder months. In contrast, the Southern Hemisphere lacks such seasonal dependence and sees fewer oriented ice crystals. Using collocated CloudSat observations with both CALIOP and Moderate Resolution Imaging Spectroradiometer (MODIS), we investigate the correlations of the oriented signature with MODIS cloud properties. Comparing with CloudSat precipitation retrievals, we find that the oriented signature is strongly correlated with surface precipitation with 64% of CALIOP-oriented ice crystal cases precipitating compared to 40% for nonoriented cases.
Cloud Streets over the Bering Sea
2017-12-08
NASA image captured January 4, 2012 Most of us prefer our winter roads free of ice, but one kind of road depends on it: a cloud street. Such streets formed over the Bering Sea in early January 2012, thanks to snow and ice blanketing the nearby land, and sea ice clinging to the shore. The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite captured this natural-color image of the cloud streets on January 4, 2012. Air blowing over frigid ice then warmer ocean water can lead to the development of parallel cylinders of spinning air. Above the upward cycle of these cylinders (rising air), small clouds form. Along the downward cycle (descending air), skies are clear. The resulting cloud formations resemble streets. This image shows that some of the cloud streets begin over the sea ice, but most of the clouds hover over the open ocean water. These streets are not perfectly straight, but curve to the east and west after passing over the sea ice. By lining up along the prevailing wind direction, the tiny clouds comprising the streets indicate the wind patterns around the time of their formation. NASA images courtesy LANCE/EOSDIS MODIS Rapid Response Team at NASA GSFC. Caption by Michon Scott. Instrument: Terra - MODIS Credit: NASA Earth Observatory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Astrophysics Data System (ADS)
El-Askary, H. M.; Prasad, A. K.; Marey, H. M.; El-Raey, M. E.; Asrar, G. R.; Kafatos, M.
2012-04-01
In the past decade, episodes of severe air pollution from biomass burning and/or industrial activities, known as the "black cloud" have occurred over Cairo, and the Nile Delta region situated on the eastern side of the Sahara desert in Egypt, during the autumn season. Previous studies have attributed the increased pollution levels during the black cloud season only to the biomass or open burning of agricultural waste, vehicular, industrial emissions, and secondary aerosols. However, new multi-sensor observations (column and vertical profiles) from satellites, dust transport models and associated meteorology present a different picture of the autumn pollution. It was found that the same region receives as well numerous dust storms along with the anthropogenic aerosols during same season. Such complex combination of these aerosols results in poor air quality and poses significant health hazards for the population in this region. In this study, data from the Moderate Resolution Imaging Spectrometer (MODIS) along with the Multiangle Imaging Spectroradiometer (MISR) are used with meteorological data and trajectory analyses to determine the cause of these events. MODIS fire counts highlighted the anthropogenic component of the dense cloud resulting from the burning of agricultural waste after harvest season. Synchronous MISR data show that these fires create low altitude (<500 m) plumes of smoke and aerosols which flow over Cairo in a few hours, as confirmed by Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) forward trajectory analysis. Much of the burning occurs at night, when a thermal inversion constrains the plumes to remain in the boundary layer (BL). Convection during the day raises the BL, dispersing these smoke particles until the next night. However, we have found a dust transport pathway along the Mauritania/Mali/Algeria/Libya/Egypt axis that significantly affects NE Africa, especially the Nile Delta region, during the biomass burning season. The increase in aerosol loading (A0D>0.9) along with corresponding decrease in the Angstrom Exponent, a typical feature of desert dust, point towards the presence of desert dust over the Delta region. Hence, the high aerosol concentration episodes cannot be solely attributed to biomass burning or local pollution. Our results show that high altitude long range transported dust is a major contributing factor to the black cloud pollution during the biomass burning season. Our new findings may create a new outlook to investigate the chemical and physical nature of air pollution by scientists and informed decisions by policymakers. The complexity of aerosol transport and different sources of origin is a most challenging issue, not just for pollution control in densely populated areas, but also for effects on the overall climate system. We have found that current models such as DREAM that forecasts dust aerosols require revision in estimates during the autumn season since they could show some events observed by satellites. The satellite data such as MODIS provide useful complementary information to validate and constrain forecast from dust models. Our results indicate that hastily assigning origin to aerosols (such as black cloud which implies anthropogenic pollution), may mask the more complex origin of aerosol loadings.
NASA Technical Reports Server (NTRS)
Pittman, Jasna; Robertson, Franklin; Blankenship, Clay
2008-01-01
Accurate measurement of the physical and radiative properties of clouds and their representation in climate models continues to be a challe nge. Model parameterizations are still subject to a large number of t unable parameters; furthermore, accurate and representative in situ o bservations are very sparse, and satellite observations historically have significant quantitative uncertainties, particularly with respect to particle size distribution (PSD) and cloud phase. Ice Water Path (IWP), or amount of ice present in a cloud column, is an important cl oud property to accurately quantify, because it is an integral measur e of the microphysical properties of clouds and the cloud feedback pr ocesses in the climate system. This paper investigates near co-incident retrievals of IWP over tropical oceans using three diverse measurem ent systems: radar from CloudSat, Vis/IR from Aqua/MODIS, and microwa ve from NOAA-18IMHS. CloudSat 94 GHz radar measurements provide high resolution vertical and along-orbit structure of cloud reflectivity a nd enable IWP (and IWC) retrievals. Overlapping MODIS measurements of cloud optical thickness and phase allow estimates of IWP when cloud tops are identified as being ice. Periodically, NOAA18 becomes co-inci dent in space I time to enable comparison of A-Train measurements to IWP inferred from the 157 and 89 GHz channel radiances. This latter m easurement is effective only for thick convective anvil systems. We s tratify these co-incident data (less than 4 minutes separation) into cirrus only, cirrus overlying liquid water clouds, and precipitating d eep convective clouds. Substantial biases in IWP and ice effective ra dius are found. Systematic differences in these retrievals are consid ered in light of the uncertainties in a priori assumptions ofPSDs, sp ectral sensitivity and algorithm strategies, which have a direct impact on the IWP product.
Variability of Aerosol and its Impact on Cloud Properties Over Different Cities of Pakistan
NASA Astrophysics Data System (ADS)
Alam, Khan
Interaction between aerosols and clouds is the subject of considerable scientific research, due to the importance of clouds in controlling climate. Aerosols vary in time in space and can lead to variations in cloud microphysics. This paper is a pilot study to examine the temporal and spatial variation of aerosol particles and their impact on different cloud optical properties in the territory of Pakistan using the Moderate resolution Imaging Spectroradiometer (MODIS) on board NASA's Terra satellite data and Multi-angle Imaging Spectroradiometer (MISR) data. We also use Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model for trajectory analysis to obtain origin of air masses in order to understand the spatial and temporal variability of aerosol concentrations. We validate data of MODIS and MISR by using linear correlation and regression analysis, which shows that there is an excellent agreement between data of these instruments. Seasonal study of Aerosol Optical Depth (AOD) shows that maximum value is found in monsoon season (June-August) over all study areas. We analyze the relationships between aerosol optical depth (AOD) and some cloud parameters like water vapor (WV), cloud fraction (CF), cloud top temperature (CTT) and cloud top pressure (CTP). We construct the regional correlation maps and time series plots for aerosol and cloud parameters mandatory for the better understanding of aerosol-cloud interaction. Our analyses show that there is a strong positive correlation between AOD and water vapor in all cities. The correlation between AOD and CF is positive for the cities where the air masses are moist while the correlation is negative for cities where air masses are relatively dry and with lower aerosol abundance. It shows that these correlations depend on meteorological conditions. Similarly as AOD increases Cloud Top Pressure (CTP) is decreasing while Cloud Top Temperature (CTT) is increasing. Key Words: MODIS, MISR, HYSPLIT, AOD, CF, CTP, CTT
NASA Technical Reports Server (NTRS)
Xi, Baike; Dong, Xiquan; Minnis, Patrick; Sun-Mack, Sunny
2014-01-01
Marine boundary layer (MBL) cloud properties derived from the NASA Clouds and the Earth's Radiant Energy System (CERES) project using Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) data are compared with observations taken at the Department of Energy Atmospheric Radiation Measurement (ARM) Mobile Facility at the Azores (AMF-Azores) site from June 2009 through December 2010. Cloud properties derived from ARM ground-based observations were averaged over a 1 h interval centered at the satellite overpass time, while the CERES-MODIS (CM) results were averaged within a 30 km×30 km grid box centered over the Azores site. A total of 63 daytime and 92 nighttime single-layered overcast MBL cloud cases were selected from 19 months of ARM radar-lidar and satellite observations. The CM cloud top/base heights (Htop/Hbase) were determined from cloud top/base temperatures (Ttop/Tbase) using a regional boundary layer lapse rate method. For daytime comparisons, the CM-derived Htop (Hbase), on average, is 0.063 km (0.068 km) higher (lower) than its ARM radar-lidar-observed counterpart, and the CM-derived Ttop and Tbase are 0.9 K less and 2.5 K greater than the surface values with high correlations (R(sup 2) = 0.82 and 0.84, respectively). In general, the cloud top comparisons agree better than the cloud base comparisons, because the CM cloud base temperatures and heights are secondary products determined from cloud top temperatures and heights. No significant day-night difference was found in the analyses. The comparisons of MBL cloud microphysical properties reveal that when averaged over a 30 km× 30 km area, the CM-retrieved cloud droplet effective radius (re) at 3.7 micrometers is 1.3 micrometers larger than that from the ARM retrievals (12.8 micrometers), while the CM-retrieved cloud liquid water path (LWP) is 13.5 gm( exp -2) less than its ARM counterpart (114.2 gm( exp-2) due to its small optical depth (9.6 versus 13.7). The differences are reduced by 50% when the CM averages are computed only using the MODIS pixel nearest the AMF site. Using the effective radius retrieved using 2.1 micrometers channel to calculate LWP can reduce the difference between the CM and ARM microwave radiometer retrievals from 13.7 to 2.1 gm2. The 10% differences between the ARM and CERES-MODIS LWP and r(sub e) retrievals are within the uncertainties of the ARM LWP (approximately 20gm( exp -2)) and r(sub e) (approximately 10%) retrievals; however, the 30% difference in optical depth is significant. Possible reasons contributing to this discrepancy are increased sensitivities in optical depth from both surface retrievals when t is approximately 10 and topography. The t differences vary with wind direction and are consistent with the island orography.Much better agreement in t is obtained when using only those data taken when the wind is from the northeast, where topographical effects on the sampled clouds are minimal.
NASA Astrophysics Data System (ADS)
Xi, Baike; Dong, Xiquan; Minnis, Patrick; Sun-Mack, Sunny
2014-08-01
Marine boundary layer (MBL) cloud properties derived from the NASA Clouds and the Earth's Radiant Energy System (CERES) project using Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) data are compared with observations taken at the Department of Energy Atmospheric Radiation Measurement (ARM) Mobile Facility at the Azores (AMF-Azores) site from June 2009 through December 2010. Cloud properties derived from ARM ground-based observations were averaged over a 1 h interval centered at the satellite overpass time, while the CERES-MODIS (CM) results were averaged within a 30 km × 30 km grid box centered over the Azores site. A total of 63 daytime and 92 nighttime single-layered overcast MBL cloud cases were selected from 19 months of ARM radar-lidar and satellite observations. The CM cloud top/base heights (Htop/Hbase) were determined from cloud top/base temperatures (Ttop/Tbase) using a regional boundary layer lapse rate method. For daytime comparisons, the CM-derived Htop (Hbase), on average, is 0.063 km (0.068 km) higher (lower) than its ARM radar-lidar-observed counterpart, and the CM-derived Ttop and Tbase are 0.9 K less and 2.5 K greater than the surface values with high correlations (R2 = 0.82 and 0.84, respectively). In general, the cloud top comparisons agree better than the cloud base comparisons, because the CM cloud base temperatures and heights are secondary products determined from cloud top temperatures and heights. No significant day-night difference was found in the analyses. The comparisons of MBL cloud microphysical properties reveal that when averaged over a 30 km × 30 km area, the CM-retrieved cloud droplet effective radius (re) at 3.7 µm is 1.3 µm larger than that from the ARM retrievals (12.8 µm), while the CM-retrieved cloud liquid water path (LWP) is 13.5 gm-2 less than its ARM counterpart (114.2 gm-2) due to its small optical depth (9.6 versus 13.7). The differences are reduced by 50% when the CM averages are computed only using the MODIS pixel nearest the AMF site. Using the effective radius retrieved using 2.1 µm channel to calculate LWP can reduce the difference between the CM and ARM microwave radiometer retrievals from -13.7 to 2.1 gm-2. The 10% differences between the ARM and CERES-MODIS LWP and re retrievals are within the uncertainties of the ARM LWP ( 20 gm-2) and re ( 10%) retrievals; however, the 30% difference in optical depth is significant. Possible reasons contributing to this discrepancy are increased sensitivities in optical depth from both surface retrievals when τ 10 and topography. The τ differences vary with wind direction and are consistent with the island orography. Much better agreement in τ is obtained when using only those data taken when the wind is from the northeast, where topographical effects on the sampled clouds are minimal.
NASA Astrophysics Data System (ADS)
Shi, Cheng; Liu, Fang; Li, Ling-Ling; Hao, Hong-Xia
2014-01-01
The goal of pan-sharpening is to get an image with higher spatial resolution and better spectral information. However, the resolution of the pan-sharpened image is seriously affected by the thin clouds. For a single image, filtering algorithms are widely used to remove clouds. These kinds of methods can remove clouds effectively, but the detail lost in the cloud removal image is also serious. To solve this problem, a pan-sharpening algorithm to remove thin cloud via mask dodging and nonsampled shift-invariant shearlet transform (NSST) is proposed. For the low-resolution multispectral (LR MS) and high-resolution panchromatic images with thin clouds, a mask dodging method is used to remove clouds. For the cloud removal LR MS image, an adaptive principal component analysis transform is proposed to balance the spectral information and spatial resolution in the pan-sharpened image. Since the clouds removal process causes the detail loss problem, a weight matrix is designed to enhance the details of the cloud regions in the pan-sharpening process, but noncloud regions remain unchanged. And the details of the image are obtained by NSST. Experimental results over visible and evaluation metrics demonstrate that the proposed method can keep better spectral information and spatial resolution, especially for the images with thin clouds.
MODIS Cloud Products Derived from Terra and Aqua During CRYSTAL-FACE
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, S.; Riedi, J. C.; Ackerman, S. A.; Menzel, W. P.
2003-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS), developed as part of the Earth Observing System (EOS) and launched on Terra in December 1999 and Aqua in May 2002, is designed to meet the scientific needs for satellite remote sensing of clouds, aerosols, water vapor, and land and ocean surface properties. During the CRYSTAL-FACE experiment, numerous aircraft coordinated both in situ and remote sensing observations with the Terra and Aqua spacecraft. In this paper we will emphasize the optical, microphysical, and physical properties of both liquid water and ice clouds obtained from an analysis of the satellite observations over Florida and the Gulf of Mexico during July 2002. We will present the frequency distribution of liquid water and ice cloud microphysical properties throughout the region, separating the results over land and ocean. Probability distributions of effective radius and cloud optical thickness will also be shown.
Smoke From Canadian Wildfires Trapped in Clouds
2017-12-08
NASA's Aqua satellite captured this image of the clouds over Canada. Entwined within the clouds is the smoke billowing up from the wildfires that are currently burning across a large expanse of the country. The smoke has become entrained within the clouds causing it to twist within the circular motion of the clouds and wind. This image was taken by the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on the Aqua satellite on May 9, 2016. Image Credit: NASA image courtesy Jeff Schmaltz LANCE/EOSDIS MODIS Rapid Response Team, GSFC NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Astrophysics Data System (ADS)
Wind, Galina; da Silva, Arlindo M.; Norris, Peter M.; Platnick, Steven; Mattoo, Shana; Levy, Robert C.
2016-07-01
The Multi-sensor Cloud Retrieval Simulator (MCRS) produces a "simulated radiance" product from any high-resolution general circulation model with interactive aerosol as if a specific sensor such as the Moderate Resolution Imaging Spectroradiometer (MODIS) were viewing a combination of the atmospheric column and land-ocean surface at a specific location. Previously the MCRS code only included contributions from atmosphere and clouds in its radiance calculations and did not incorporate properties of aerosols. In this paper we added a new aerosol properties module to the MCRS code that allows users to insert a mixture of up to 15 different aerosol species in any of 36 vertical layers.This new MCRS code is now known as MCARS (Multi-sensor Cloud and Aerosol Retrieval Simulator). Inclusion of an aerosol module into MCARS not only allows for extensive, tightly controlled testing of various aspects of satellite operational cloud and aerosol properties retrieval algorithms, but also provides a platform for comparing cloud and aerosol models against satellite measurements. This kind of two-way platform can improve the efficacy of model parameterizations of measured satellite radiances, allowing the assessment of model skill consistently with the retrieval algorithm. The MCARS code provides dynamic controls for appearance of cloud and aerosol layers. Thereby detailed quantitative studies of the impacts of various atmospheric components can be controlled.In this paper we illustrate the operation of MCARS by deriving simulated radiances from various data field output by the Goddard Earth Observing System version 5 (GEOS-5) model. The model aerosol fields are prepared for translation to simulated radiance using the same model subgrid variability parameterizations as are used for cloud and atmospheric properties profiles, namely the ICA technique. After MCARS computes modeled sensor radiances equivalent to their observed counterparts, these radiances are presented as input to operational remote-sensing algorithms.Specifically, the MCARS-computed radiances are input into the processing chain used to produce the MODIS Data Collection 6 aerosol product (M{O/Y}D04). The M{O/Y}D04 product is of course normally produced from M{O/Y}D021KM MODIS Level-1B radiance product directly acquired by the MODIS instrument. MCARS matches the format and metadata of a M{O/Y}D021KM product. The resulting MCARS output can be directly provided to MODAPS (MODIS Adaptive Processing System) as input to various operational atmospheric retrieval algorithms. Thus the operational algorithms can be tested directly without needing to make any software changes to accommodate an alternative input source.We show direct application of this synthetic product in analysis of the performance of the MOD04 operational algorithm. We use biomass-burning case studies over Amazonia employed in a recent Working Group on Numerical Experimentation (WGNE)-sponsored study of aerosol impacts on numerical weather prediction (Freitas et al., 2015). We demonstrate that a known low bias in retrieved MODIS aerosol optical depth appears to be due to a disconnect between actual column relative humidity and the value assumed by the MODIS aerosol product.
NASA Technical Reports Server (NTRS)
Wind, Galina; Da Silva, Arlindo M.; Norris, Peter M.; Platnick, Steven; Mattoo, Shana; Levy, Robert C.
2016-01-01
The Multi-sensor Cloud Retrieval Simulator (MCRS) produces a simulated radiance product from any high-resolution general circulation model with interactive aerosol as if a specific sensor such as the Moderate Resolution Imaging Spectroradiometer (MODIS) were viewing a combination of the atmospheric column and land ocean surface at a specific location. Previously the MCRS code only included contributions from atmosphere and clouds in its radiance calculations and did not incorporate properties of aerosols. In this paper we added a new aerosol properties module to the MCRS code that allows users to insert a mixture of up to 15 different aerosol species in any of 36 vertical layers. This new MCRS code is now known as MCARS (Multi-sensor Cloud and Aerosol Retrieval Simulator). Inclusion of an aerosol module into MCARS not only allows for extensive, tightly controlled testing of various aspects of satellite operational cloud and aerosol properties retrieval algorithms, but also provides a platform for comparing cloud and aerosol models against satellite measurements. This kind of two-way platform can improve the efficacy of model parameterizations of measured satellite radiances, allowing the assessment of model skill consistently with the retrieval algorithm. The MCARS code provides dynamic controls for appearance of cloud and aerosol layers. Thereby detailed quantitative studies of the impacts of various atmospheric components can be controlled. In this paper we illustrate the operation of MCARS by deriving simulated radiances from various data field output by the Goddard Earth Observing System version 5 (GEOS-5) model. The model aerosol fields are prepared for translation to simulated radiance using the same model sub grid variability parameterizations as are used for cloud and atmospheric properties profiles, namely the ICA technique. After MCARS computes modeled sensor radiances equivalent to their observed counterparts, these radiances are presented as input to operational remote-sensing algorithms. Specifically, the MCARS-computed radiances are input into the processing chain used to produce the MODIS Data Collection 6 aerosol product (MOYD04). TheMOYD04 product is of course normally produced from MOYD021KM MODIS Level-1B radiance product directly acquired by the MODIS instrument. MCARS matches the format and metadata of a MOYD021KM product. The resulting MCARS output can be directly provided to MODAPS (MODIS Adaptive Processing System) as input to various operational atmospheric retrieval algorithms. Thus the operational algorithms can be tested directly without needing to make any software changes to accommodate an alternative input source. We show direct application of this synthetic product in analysis of the performance of the MOD04 operational algorithm. We use biomass-burning case studies over Amazonia employed in a recent Working Group on Numerical Experimentation (WGNE)-sponsored study of aerosol impacts on numerical weather prediction (Freitas et al., 2015). We demonstrate that a known low bias in retrieved MODIS aerosol optical depth appears to be due to a disconnect between actual column relative humidity and the value assumed by the MODIS aerosol product.
NASA Astrophysics Data System (ADS)
Minnis, Patrick; Yost, Chris R.; Sun-Mack, Sunny; Chen, Yan
2008-06-01
The difference between cloud-top altitude Z top and infrared effective radiating height Z eff for optically thick ice clouds is examined using April 2007 data taken by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) and the Moderate-Resolution Imaging Spectroradiometer (MODIS). For even days, the difference ΔZ between CALIPSO Z top and MODIS Z eff is 1.58 +/- 1.26 km. The linear fit between Z top and Z eff , applied to odd-day data, yields a difference of 0.03 +/- 1.21 km and can be used to estimate Z top from any infrared-based Z eff for thick ice clouds. Random errors appear to be due primarily to variations in cloud ice-water content (IWC). Radiative transfer calculations show that ΔZ corresponds to an optical depth of ~1, which based on observed ice-particle sizes yields an average cloud-top IWC of ~0.015 gm-3, a value consistent with in situ measurements. The analysis indicates potential for deriving cloud-top IWC using dual-satellite data.
The MODIS Vegetation Canopy Water Content product
NASA Astrophysics Data System (ADS)
Ustin, S. L.; Riano, D.; Trombetti, M.
2008-12-01
Vegetation water stress drives wildfire behavior and risk, having important implications for biogeochemical cycling in natural ecosystems, agriculture, and forestry. Water stress limits plant transpiration and carbon gain. The regulation of photosynthesis creates close linkages between the carbon, water, and energy cycles and through metabolism to the nitrogen cycle. We generated systematic weekly CWC estimated for the USA from 2000-2006. MODIS measures the sunlit reflectance of the vegetation in the visible, near-infrared, and shortwave infrared. Radiative transfer models, such as PROSPECT-SAILH, determine how sunlight interacts with plant and soil materials. These models can be applied over a range of scales and ecosystem types. Artificial Neural Networks (ANN) were used to optimize the inversion of these models to determine vegetation water content. We carried out multi-scale validation of the product using field data, airborne and satellite cross-calibration. An Algorithm Theoretical Basis Document (ATBD) of the product is under evaluation by NASA. The CWC product inputs are 1) The MODIS Terra/Aqua surface reflectance product (MOD09A1/MYD09A1) 2) The MODIS land cover map product (MOD12Q1) reclassified to grassland, shrub-land and forest canopies; 3) An ANN trained with PROSPECT-SAILH; 4) A calibration file for each land cover type. The output is an ENVI file with the CWC values. The code is written in Matlab environment and is being adapted to read not only the 8 day MODIS composites, but also daily surface reflectance data. We plan to incorporate the cloud and snow mask and generate as output a geotiff file. Vegetation water content estimates will help predicting linkages between biogeochemical cycles, which will enable further understanding of feedbacks to atmospheric concentrations of greenhouse gases. It will also serve to estimate primary productivity of the biosphere; monitor/assess natural vegetation health related to drought, pollution or diseases; improve irrigation scheduling by reducing over-watering and under-watering. These estimates will also allow researchers to identify wildfire behavior/risk: drives ignition probability and burning efficiency; to be used as an indicator of soil moisture and Leaf Area Index.
NASA Technical Reports Server (NTRS)
Hall, Dorothy K.; Box, Jason E.; Koenig, Lora S.; DiGirolamo, Nicolo E.; Comiso, Josefino C.; Shuman, Christopher A.
2011-01-01
Surface temperatures on the Greenland Ice Sheet have been studied on the ground, using automatic weather station (AWS) data from the Greenland-Climate Network (GC-Net), and from analysis of satellite sensor data. Using Advanced Very High Frequency Radiometer (AVHRR) weekly surface temperature maps, warming of the surface of the Greenland Ice Sheet has been documented since 1981. We extended and refined this record using higher-resolution Moderate-Resolution Imaging Spectroradiometer (MODIS) data from March 2000 to the present. We developed a daily and monthly climate-data record (CDR) of the "clear-sky" surface temperature of the Greenland Ice Sheet using an ice-surface temperature (1ST) algorithm developed for use with MODIS data. Validation of this CDR is ongoing. MODIS Terra swath data are projected onto a polar stereographic grid at 6.25-km resolution to develop binary, gridded daily and mean-monthly 1ST maps. Each monthly map also has a color-coded image map that is available to download. Also included with the monthly maps is an accompanying map showing number of days in the month that were used to calculate the mean-monthly 1ST. This is important because no 1ST decision is made by the algorithm for cells that are considered cloudy by the internal cloud mask, so a sufficient number of days must be available to produce a mean 1ST for each grid cell. Validation of the CDR consists of several facets: 1) comparisons between ISTs and in-situ measurements; 2) comparisons between ISTs and AWS data; and 3) comparisons of ISTs with surface temperatures derived from other satellite instruments such as the Thermal Emission and Reflection Radiometer (ASTER) and Enhanced Thematic Mapper Plus (ETM+). Previous work shows that Terra MODIS ISTs are about 3 C lower than in-situ temperatures measured at Summit Camp, during the winter of 2008-09 under clear skies. In this work we begin to compare surface temperatures derived from AWS data with ISTs from the MODIS CDR.
MSG SEVIRI Applications for Weather and Climate: Cloud Properties and Calibrations
NASA Technical Reports Server (NTRS)
Minnis, Patrick; Nguyen, Louis; Smith, William L.; Palikonda, Rabindra; Doelling, David R.; Ayers, J. Kirk; Trepte, Qing Z.; Chang, Fu-Lung
2006-01-01
SEVIRI data are cross-calibrated against the corresponding Aqua and Terra MODIS channels. Compared to Terra MODIS, no significant trends are evident in the 0.65, 0.86, and 1.6 micron channel gains between May 2004 and May 2006, indicating excellent stability in the solar-channel sensors. On average, the corresponding Terra reflectances are 12, 14, and 1% greater than the their SEVIRI counterparts. The Terra 3.8- micron channel brightness temperatures T are 7 and 4 K greater than their SEVIRI counterparts during day and night, respectively. The average differences between T for MODIS and SEVIRI 8.6, 10.8, 12.0, and 13.3- micron channels are between 0.5 and 2 K. The cloud properties are being derived hourly over Europe and, in initial comparisons, agree well with surface observations. Errors caused by residual calibration uncertainties, terminator conditions, and inaccurate temperature and humidity profiles are still problematic. Future versions will address those errors and the effects of multilayered clouds.
NASA Astrophysics Data System (ADS)
Neubauer, David; Christensen, Matthew W.; Poulsen, Caroline A.; Lohmann, Ulrike
2017-11-01
Aerosol-cloud interactions (ACIs) are uncertain and the estimates of the ACI effective radiative forcing (ERFaci) magnitude show a large variability. Within the Aerosol_cci project the susceptibility of cloud properties to changes in aerosol properties is derived from the high-resolution AATSR (Advanced Along-Track Scanning Radiometer) data set using the Cloud-Aerosol Pairing Algorithm (CAPA) (as described in our companion paper) and compared to susceptibilities from the global aerosol climate model ECHAM6-HAM2 and MODIS-CERES (Moderate Resolution Imaging Spectroradiometer - Clouds and the Earth's Radiant Energy System) data. For ECHAM6-HAM2 the dry aerosol is analysed to mimic the effect of CAPA. Furthermore the analysis is done for different environmental regimes. The aerosol-liquid water path relationship in ECHAM6-HAM2 is systematically stronger than in AATSR-CAPA data and cannot be explained by an overestimation of autoconversion when using diagnostic precipitation but rather by aerosol swelling in regions where humidity is high and clouds are present. When aerosol water is removed from the analysis in ECHAM6-HAM2 the strength of the susceptibilities of liquid water path, cloud droplet number concentration and cloud albedo as well as ERFaci agree much better with those of AATSR-CAPA or MODIS-CERES. When comparing satellite-derived to model-derived susceptibilities, this study finds it more appropriate to use dry aerosol in the computation of model susceptibilities. We further find that the statistical relationships inferred from different satellite sensors (AATSR-CAPA vs. MODIS-CERES) as well as from ECHAM6-HAM2 are not always of the same sign for the tested environmental conditions. In particular the susceptibility of the liquid water path is negative in non-raining scenes for MODIS-CERES but positive for AATSR-CAPA and ECHAM6-HAM2. Feedback processes like cloud-top entrainment that are missing or not well represented in the model are therefore not well constrained by satellite observations. In addition to aerosol swelling, wet scavenging and aerosol processing have an impact on liquid water path, cloud albedo and cloud droplet number susceptibilities. Aerosol processing leads to negative liquid water path susceptibilities to changes in aerosol index (AI) in ECHAM6-HAM2, likely due to aerosol-size changes by aerosol processing. Our results indicate that for statistical analysis of aerosol-cloud interactions the unwanted effects of aerosol swelling, wet scavenging and aerosol processing need to be minimised when computing susceptibilities of cloud variables to changes in aerosol.
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven; Remer, Lorraine A.; Kaufman, Yoram J.
2004-01-01
Remote sensing of cloud and aerosol optical properties is routinely obtained using the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Terra and Aqua satellites. Techniques that are being used to enhance our ability to characterize the global distribution of cloud and aerosol properties include well-calibrated multispectral radiometers that rely on visible, near-infrared, and thermal infrared channels. The availability of thermal channels to aid in cloud screening for aerosol properties is an important additional piece of information that has not always been incorporated into sensor designs. In this paper, we describe the radiative properties of clouds as currently determined from satellites (cloud fraction, optical thickness, cloud top pressure, and cloud effective radius), and highlight the global and regional cloud microphysical properties currently available for assessing climate variability and forcing. These include the latitudinal distribution of cloud optical and radiative properties of both liquid water and ice clouds, as well as joint histograms of cloud optical thickness and effective radius for selected geographical locations around the world. In addition, we will illustrate the radiative and microphysical properties of aerosol particles that are currently available from space-based observations, and show selected cases in which aerosol particles are observed to modify the cloud optical properties.
Remote Sensing of Aerosol Over the Land from the Earth Observing System MODIS Instrument
NASA Technical Reports Server (NTRS)
Kaufman, Yoram; Tanre, Didier; Remer, Lorraine; Einaudi, Franco (Technical Monitor)
2000-01-01
On Dec 18, 1999, NASA launched the Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument on the Earth Observing System (EOS) Terra mission, in a spectacular launch. The mission will provide morning (10:30 AM) global observations of aerosol and other related parameters. It will be followed a year later by a MODIS instrument on EOS Aqua for afternoon observations (1:30 PM). MODIS will measure aerosol over land and ocean with its eight 500 m and 250 m channels in the solar spectrum (0-41 to 2.2 micrometers). Over the land MODIS will measure the total column aerosol loading, and distinguish between submicron pollution particles and large soil particles. Standard daily products of resolution of ten kilometers and global mapped eight day and monthly products on a 1x1 degree global scale will be produced routinely and make available for no or small reproduction charge to the international community. Though the aerosol products will not be available everywhere over the land, it is expected that they will be useful for assessments of the presence, sources and transport of urban pollution, biomass burning aerosol, and desert dust. Other measurements from MODIS will supplement the aerosol information, e.g., land use change, urbanization, presence and magnitude of biomass burning fires, and effect of aerosol on cloud microphysics. Other instruments on Terra, e.g. Multi-angle Imaging SpectroRadiometer (MISR) and the Clouds and the Earth's Radiant Energy System (CERES), will also measure aerosol, its properties and radiative forcing in tandem with the MODIS measurements. During the Aqua period, there are plans to launch in 2003 the Pathfinder Instruments for Cloud and Aerosol Spaceborne Observations (PICASSO) mission for global measurements of the aerosol vertical structure, and the PARASOL mission for aerosol characterization. Aqua-MODIS, PICASSO and PARASOL will fly in formation for detailed simultaneous characterization of the aerosol three-dimensional field, which will feed and evaluate global aerosol transport and climate models. In this talk, some examples of the MODIS measurements will be shown.
NASA Technical Reports Server (NTRS)
Platnick, Steven; Zhang, Zhibo
2011-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) cloud product provides three separate 1 km resolution retrievals of cloud particle effective radii (r (sub e)), derived from 1.6, 2.1 and 3.7 micron band observations. In this study, differences among the three size retrievals for maritime water clouds (designated as r (sub e), 1.6 r (sub e), 2.1 and r (sub e),3.7) were systematically investigated through a series of case studies and global analyses. Substantial differences are found between r (sub e),3.7 and r (sub e),2.1 retrievals (delta r (sub e),3.7-2.l), with a strong dependence on cloud regime. The differences are typically small, within +/- 2 micron, over relatively spatially homogeneous coastal stratocumulus cloud regions. However, for trade wind cumulus regimes, r (sub e),3.7 was found to be substantially smaller than r (sub e),2.1, sometimes by more than 10 micron. The correlation of delta r(sub e),3.7-2.1 with key cloud parameters, including the cloud optical thickness (tau), r (sub e) and a cloud horizontal heterogeneity index (H-sigma) derived from 250 m resolution MODIS 0.86 micron band observations, were investigated using one month of MODIS Terra data. It was found that differences among the three r (sub e) retrievals for optically thin clouds (tau <5) are highly variable, ranging from - 15 micron to 10 micron, likely due to the large MODIS retrieval uncertainties when the cloud is thin. The delta r (sub e),3.7-2.1 exhibited a threshold-like dependence on both r (sub e),2.l and H-sigma. The re,3.7 is found to agree reasonably well with re,2.! when re,2.l is smaller than about 15J-Lm, but becomes increasingly smaller than re,2.1 once re,2.! exceeds this size. All three re retrievals showed little dependence when H-sigma < 0.3 (defined as standard deviation divided by the mean for the 250 m pixels within a 1 km pixel retrieval). However, for H-=sigma >0.3, both r (sub e),1.6 and r (sub e),2.1 were seen to increase quickly with H-sigma. On the other hand, r (sub e),3.7 statistics showed little dependence on H-sigma and remained relatively stable over the whole range of H-sigma values. Potential contributing causes to the substantial r (sub e),3.7 and r (sub e),2.1 differences are discussed. In particular, based on both 1-D and 3-D radiative transfer simulations, we have elucidated mechanisms by which cloud heterogeneity and 3-D radiative effects can cause large differences between r (sub e),3.7 and r (sub e),2.l retrievals for highly inhomogeneous clouds. Our results suggest that the contrast in observed delta r (sub e)3.7-2.1 between cloud regimes is correlated with increases in both cloud r (sub e) and H-sigma. We also speculate that in some highly inhomogeneous drizzling clouds, vertical structure induced by drizzle and 3-D radiative effects might operate together to cause dramatic differences between r (sub e),3.7 and r (sub e),2.1 retrievals.
Shermeyer, Jacob S.; Haack, Barry N.
2015-01-01
Two forestry-change detection methods are described, compared, and contrasted for estimating deforestation and growth in threatened forests in southern Peru from 2000 to 2010. The methods used in this study rely on freely available data, including atmospherically corrected Landsat 5 Thematic Mapper and Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation continuous fields (VCF). The two methods include a conventional supervised signature extraction method and a unique self-calibrating method called MODIS VCF guided forest/nonforest (FNF) masking. The process chain for each of these methods includes a threshold classification of MODIS VCF, training data or signature extraction, signature evaluation, k-nearest neighbor classification, analyst-guided reclassification, and postclassification image differencing to generate forest change maps. Comparisons of all methods were based on an accuracy assessment using 500 validation pixels. Results of this accuracy assessment indicate that FNF masking had a 5% higher overall accuracy and was superior to conventional supervised classification when estimating forest change. Both methods succeeded in classifying persistently forested and nonforested areas, and both had limitations when classifying forest change.
Detection of single and multilayer clouds in an artificial neural network approach
NASA Astrophysics Data System (ADS)
Sun-Mack, Sunny; Minnis, Patrick; Smith, William L.; Hong, Gang; Chen, Yan
2017-10-01
Determining whether a scene observed with a satellite imager is composed of a thin cirrus over a water cloud or thick cirrus contiguous with underlying layers of ice and water clouds is often difficult because of similarities in the observed radiance values. In this paper an artificial neural network (ANN) algorithm, employing several Aqua MODIS infrared channels and the retrieved total cloud visible optical depth, is trained to detect multilayer ice-over-water cloud systems as identified by matched April 2009 CloudSat and CALIPSO (CC) data. The CC lidar and radar profiles provide the vertical structure that serves as output truth for a multilayer ANN, or MLANN, algorithm. Applying the trained MLANN to independent July 2008 MODIS data resulted in a combined ML and single layer hit rate of 75% (72%) for nonpolar regions during the day (night). The results are comparable to or more accurate than currently available methods. Areas of improvement are identified and will be addressed in future versions of the MLANN.
NASA Astrophysics Data System (ADS)
Grant, G.; Gallaher, D. W.
2017-12-01
New methods for processing massive remotely sensed datasets are used to evaluate Antarctic land surface temperature (LST) extremes. Data from the MODIS/Terra sensor (Collection 6) provides a twice-daily look at Antarctic LSTs over a 17 year period, at a higher spatiotemporal resolution than past studies. Using a data condensation process that creates databases of anomalous values, our processes create statistical images of Antarctic LSTs. In general, the results find few significant trends in extremes; however, they do reveal a puzzling picture of inconsistent cloud detection and possible systemic errors, perhaps due to viewing geometry. Cloud discrimination shows a distinct jump in clear-sky detections starting in 2011, and LSTs around the South Pole exhibit a circular cooling pattern, which may also be related to cloud contamination. Possible root causes are discussed. Ongoing investigations seek to determine whether the results are a natural phenomenon or, as seems likely, the results of sensor degradation or processing artefacts. If the unusual LST patterns or cloud detection discontinuities are natural, they point to new, interesting processes on the Antarctic continent. If the data artefacts are artificial, MODIS LST users should be alerted to the potential issues.
Bayesian cloud detection for MERIS, AATSR, and their combination
NASA Astrophysics Data System (ADS)
Hollstein, A.; Fischer, J.; Carbajal Henken, C.; Preusker, R.
2015-04-01
A broad range of different of Bayesian cloud detection schemes is applied to measurements from the Medium Resolution Imaging Spectrometer (MERIS), the Advanced Along-Track Scanning Radiometer (AATSR), and their combination. The cloud detection schemes were designed to be numerically efficient and suited for the processing of large numbers of data. Results from the classical and naive approach to Bayesian cloud masking are discussed for MERIS and AATSR as well as for their combination. A sensitivity study on the resolution of multidimensional histograms, which were post-processed by Gaussian smoothing, shows how theoretically insufficient numbers of truth data can be used to set up accurate classical Bayesian cloud masks. Sets of exploited features from single and derived channels are numerically optimized and results for naive and classical Bayesian cloud masks are presented. The application of the Bayesian approach is discussed in terms of reproducing existing algorithms, enhancing existing algorithms, increasing the robustness of existing algorithms, and on setting up new classification schemes based on manually classified scenes.
NASA Technical Reports Server (NTRS)
Hall, Dorothy K.; Box, Jason E.; Koenig, Lora S.; DiGirolamo, Nicolo E.; Comiso, Josefino C.; Shuman, Christopher A.
2011-01-01
Surface temperatures on the Greenland Ice Sheet have been studied on the ground, using automatic weather station (AWS) data from the Greenland-Climate Network (GC-Net), and from analysis of satellite sensor data. Using Advanced Very High Frequency Radiometer (AVHRR) weekly surface temperature maps, warming of the surface of the Greenland Ice Sheet has been documented since 1981. We extended and refined this record using higher-resolution Moderate-Resolution Imaging Spectroradiometer (MODIS) data from March 2000 to the present. We developed a daily and monthly climate-data record (CDR) of the "clear-sky" surface temperature of the Greenland Ice Sheet using an ice-surface temperature (1ST) algorithm developed for use with MODIS data. Validation of this CDR is ongoing. MODIS Terra swath data are projected onto a polar stereographic grid at 6.25-km resolution to develop binary, gridded daily and mean-monthly 1ST maps. Each monthly map also has a color-coded image map that is available to download. Also included with the monthly maps is an accompanying map showing number of days in the month that were used to calculate the mean-monthly 1ST. This is important because no 1ST decision is made by the algorithm for cells that are considered cloudy by the internal cloud mask, so a sufficient number of days must be available to produce a mean 1ST for each grid cell. Validation of the CDR consists of several facets: 1) comparisons between ISTs and in-situ measurements; 2) comparisons between ISTs and AWS data; and 3) comparisons of ISTs with surface temperatures derived from other satellite instruments such as the Thermal Emission and Reflection Radiometer (ASTER) and Enhanced Thematic Mapper Plus (ETM+). Previous work shows that Terra MODIS ISTs are about 3 C lower than in-situ temperatures measured at Summit Camp, during the winter of 2008-09 under clear skies. In this work we begin to compare surface temperatures derived from AWS data with ISTs from the MODIS CDR. The Greenland Ice Sheet 1ST CDR will be useful for monitoring surface-temperature trends and can be used as input or for validation of climate models. The CDR can be extended into the future using MODIS Terra, Aqua and NPOESS Preparatory Project Visible Infrared Imager Radiometer Suite (VII RS) data.
CERES ISCCP-D2like Data Products
Atmospheric Science Data Center
2014-07-24
... D2 format. Merged : Terra + Aqua MODIS and 3-hourly geostationary cloud retrievals for daytime only. GEO : 3-hourly geostationary-only cloud retrievals for daytime only. Day/Nit : Single ...
Response Versus Scan-Angle Corrections for MODIS Reflective Solar Bands Using Deep Convective Clouds
NASA Technical Reports Server (NTRS)
Bhatt, Rajendra; Angal, Amit; Doelling, David R.; Xiong, Xiaoxiong; Wu, Aisheng; Haney, Conor O.; Scarino, Benjamin R.; Gopalan, Arun
2016-01-01
The absolute radiometric calibration of the reflective solar bands (RSBs) of Aqua- and Terra-MODIS is performed using on-board calibrators. A solar diffuser (SD) panel along with a solar diffuser stability monitor (SDSM) system, which tracks the performance of the SD over time, provides the absolute reference for calibrating the MODIS sensors. MODIS also views the moon and deep space through its space view (SV) port for lunar-based calibration and computing the zero input radiance, respectively. The MODIS instrument views the Earths surface through a two-sided scan mirror, whose reflectance is a function of angle of incidence (AOI) and is described by response versus scan-angle (RVS). The RVS for both MODIS instruments was characterized prior to launch. MODIS also views the SD and the moon at two different assigned RVS positions. There is sufficient evidence that the RVS is changing on orbit over time and as a function of wavelength. The SD and lunar observation scans can only track the RVS variation at two RVS positions. Consequently, the MODIS Characterization Support Team (MCST) developed enhanced approaches that supplement the onboard calibrator measurements with responses from pseudo-invariant desert sites. This approach has been implemented in Level 1B (L1B) Collection 6 (C6) for selected short-wavelength bands. This paper presents an alternative approach of characterizing the mirror RVS to derive the time-dependent RVS correction factors for MODIS RSBs using tropical deep convective cloud (DCC) targets. An initial assessment of the DCC response from Aqua-MODIS band 1 C6 data indicates evidence of RVS artifacts, which are not uniform across the scans and are more prevalent in the left side Earth-view scans.
Response Versus Scan-Angle Corrections for MODIS Reflective Solar Bands Using Deep Convective Clouds
NASA Technical Reports Server (NTRS)
Bhatt, Rajendra; Angal, Amit; Doelling, David R.; Xiong, Xiaoxiong; Wu, Aisheng; Haney, Conor O.; Scarino, Benjamin R.; Gopalan, Arun
2016-01-01
The absolute radiometric calibration of the reflective solar bands (RSBs) of Aqua- and Terra-MODIS is performed using on-board calibrators. A solar diffuser (SD) panel along with a solar diffuser stability monitor (SDSM) system, which tracks the performance of the SD over time, provides the absolute reference for calibrating the MODIS sensors. MODIS also views the moon and deep space through its space view (SV) port for lunar-based calibration and computing the zero input radiance, respectively. The MODIS instrument views the Earth's surface through a two-sided scan mirror, whose reflectance is a function of angle of incidence (AOI) and is described by response versus scan-angle (RVS). The RVS for both MODIS instruments was characterized prior to launch. MODIS also views the SD and the moon at two different assigned RVS positions. There is sufficient evidence that the RVS is changing on orbit over time and as a function of wavelength. The SD and lunar observation scans can only track the RVS variation at two RVS positions. Consequently, the MODIS Characterization Support Team (MCST) developed enhanced approaches that supplement the onboard calibrator measurements with responses from pseudo-invariant desert sites. This approach has been implemented in Level 1B (L1B) Collection 6 (C6) for selected short-wavelength bands. This paper presents an alternative approach of characterizing the mirror RVS to derive the time-dependent RVS correction factors for MODIS RSBs using tropical deep convective cloud (DCC) targets. An initial assessment of the DCC response from Aqua-MODIS band 1 C6 data indicates evidence of RVS artifacts, which are not uniform across the scans and are more prevalent in the left side Earth-view scans.
Response versus scan-angle corrections for MODIS reflective solar bands using deep convective clouds
NASA Astrophysics Data System (ADS)
Bhatt, Rajendra; Angal, Amit; Doelling, David R.; Xiong, Xiaoxiong; Wu, Aisheng; Haney, Conor O.; Scarino, Benjamin R.; Gopalan, Arun
2016-05-01
The absolute radiometric calibration of the reflective solar bands (RSBs) of Aqua- and Terra-MODIS is performed using on-board calibrators. A solar diffuser (SD) panel along with a solar diffuser stability monitor (SDSM) system, which tracks the degradation of the SD over time, provides the baseline for calibrating the MODIS sensors. MODIS also views the moon and deep space through its space view (SV) port for lunar-based calibration and computing the background, respectively. The MODIS instrument views the Earth's surface using a two-sided scan mirror, whose reflectance is a function of the angle of incidence (AOI) and is described by response versus scan-angle (RVS). The RVS for both MODIS instruments was characterized prior to launch. MODIS also views the SD and the moon at two different AOIs. There is sufficient evidence that the RVS is changing on orbit over time and as a function of wavelength. The SD and lunar observation scans can only track the RVS variation at two AOIs. Consequently, the MODIS Characterization Support Team (MCST) developed enhanced approaches that supplement the onboard calibrator measurements with responses from the pseudo-invariant desert sites. This approach has been implemented in Level 1B (L1B) Collection 6 (C6) for select short-wavelength bands. This paper presents an alternative approach of characterizing the mirror RVS to derive the time-dependent RVS correction factors for MODIS RSBs using tropical deep convective cloud (DCC) targets. An initial assessment of the DCC response from Aqua-MODIS band 1 C6 data indicates evidence of RVS artifacts, which are not uniform across the scans and are more prevalent at the beginning of the earth-view scan.
Impact of High Resolution SST Data on Regional Weather Forecasts
NASA Technical Reports Server (NTRS)
Jedlovec, Gary J.; Case, Jonathon; LaFontaine, Frank; Vazquez, Jorge; Mattocks, Craig
2010-01-01
Past studies have shown that the use of coarse resolution SST products such as from the real-time global (RTG) SST analysis[1] or other coarse resolution once-a-day products do not properly portray the diurnal variability of fluxes of heat and moisture from the ocean that drive the formation of low level clouds and precipitation over the ocean. For example, the use of high resolution MODIS SST composite [2] to initialize the Advanced Research Weather Research and Forecast (WRF) (ARW) [3] has been shown to improve the prediction of sensible weather parameters in coastal regions [4][5}. In an extend study, [6] compared the MODIS SST composite product to the RTG SST analysis and evaluated forecast differences for a 6 month period from March through August 2007 over the Florida coastal regions. In a comparison to buoy data, they found that that the MODIS SST composites reduced the bias and standard deviation over that of the RTG data. These improvements led to significant changes in the initial and forecasted heat fluxes and the resulting surface temperature fields, wind patterns, and cloud distributions. They also showed that the MODIS composite SST product, produced for the Terra and Aqua satellite overpass times, captured a component of the diurnal cycle in SSTs not represented in the RTG or other one-a-day SST analyses. Failure to properly incorporate these effects in the WRF initialization cycle led to temperature biases in the resulting short term forecasts. The forecast impact was limited in some situations however, due to composite product inaccuracies brought about by data latency during periods of long-term cloud cover. This paper focuses on the forecast impact of an enhanced MODIS/AMSR-E composite SST product designed to reduce inaccuracies due data latency in the MODIS only composite product.
The Effect of Asian Dust Aerosols on Cloud Properties and Radiative Forcing from MODIS and CERES
NASA Technical Reports Server (NTRS)
Huang, Jianping; Minnis, Patrick; Lin, Bing; Wang, Tianhe; Yi, Yuhong; Hu, Yongxiang; Sun-Mack, Sunny; Ayers, Kirk
2005-01-01
The effects of dust storms on cloud properties and radiative forcing are analyzed over northwestern China from April 2001 to June 2004 using data collected by the Moderate Resolution Imaging Spectroradiometer (MODIS) and Clouds and the Earth's Radiant Energy System (CERES) instruments on the Aqua and Terra satellites. On average, ice cloud effective particle diameter, optical depth and ice water path of the cirrus clouds under dust polluted conditions are 11%, 32.8%, and 42% less, respectively, than those derived from ice clouds in dust-free atmospheric environments. The humidity differences are larger in the dusty region than in the dust-free region, and may be caused by removal of moisture by wet dust precipitation. Due to changes in cloud microphysics, the instantaneous net radiative forcing is reduced from -71.2 W/m2 for dust contaminated clouds to -182.7 W/m2 for dust-free clouds. The reduced cooling effects of dusts may lead to a net warming of 1 W/m2, which, if confirmed, would be the strongest aerosol forcing during later winter and early spring dust storm seasons over the studied region.
Clouds off the Aleutian Islands
2017-12-08
March 23, 2010 - Clouds off the Aleutian Islands Interesting cloud patterns were visible over the Aleutian Islands in this image, captured by the MODIS on the Aqua satellite on March 14, 2010. Turbulence, caused by the wind passing over the highest points of the islands, is producing the pronounced eddies that swirl the clouds into a pattern called a vortex "street". In this image, the clouds have also aligned in parallel rows or streets. Cloud streets form when low-level winds move between and over obstacles causing the clouds to line up into rows (much like streets) that match the direction of the winds. At the point where the clouds first form streets, they're very narrow and well-defined. But as they age, they lose their definition, and begin to spread out and rejoin each other into a larger cloud mass. The Aleutians are a chain of islands that extend from Alaska toward the Kamchatka Peninsula in Russia. For more information related to this image go to: modis.gsfc.nasa.gov/gallery/individual.php?db_date=2010-0... For more information about Goddard Space Flight Center go here: www.nasa.gov/centers/goddard/home/index.html
NASA Technical Reports Server (NTRS)
Vasilkov, Alexander; Qin, Wenhan; Krotkov, Nickolay; Lamsal, Lok; Spurr, Robert; Haffner, David; Joiner, Joanna; Yang, Eun-Su; Marchenko, Sergey
2017-01-01
The Ozone Monitoring Instrument (OMI) cloud and NO2 algorithms use a monthly gridded surface reflectivity climatology that does not depend upon the observation geometry. In reality, reflection of incoming direct and diffuse solar light from land or ocean surfaces is sensitive to the sun sensor geometry. This dependence is described by the bidirectional reflectance distribution function (BRDF). To account for the BRDF, we propose to use a new concept of geometry-dependent Lambertian equivalent reflectivity (GLER). Implementation within the existing OMI cloud and NO2 retrieval infrastructure requires changes only to the input surface reflectivity database. GLER is calculated using a vector radiative transfer model with high spatial resolution BRDF information from MODIS over land and the Cox Munk slope distribution over ocean with a contribution from water-leaving radiance. We compare GLER and climatological LER at 466 nm, which is used in the OMI O2-O2cloud algorithm to derive effective cloud fractions. A detailed comparison of the cloud fractions and pressures derived with climatological and GLERs is carried out. GLER and corresponding retrieved cloud products are then used as input to the OMI NO2 algorithm. We find that replacing the climatological OMI-based LERs with GLERs can increase NO2 vertical columns by up to 50 % in highly polluted areas; the differences include both BRDF effects and biases between the MODIS and OMI-based surface reflectance data sets. Only minor changes to NO2 columns (within 5 %) are found over unpolluted and overcast areas.
NASA Astrophysics Data System (ADS)
Painemal, D.; Minnis, P.; Sun-Mack, S.
2013-10-01
The impact of horizontal heterogeneities, liquid water path (LWP from AMSR-E), and cloud fraction (CF) on MODIS cloud effective radius (re), retrieved from the 2.1 μm (re2.1) and 3.8 μm (re3.8) channels, is investigated for warm clouds over the southeast Pacific. Values of re retrieved using the CERES algorithms are averaged at the CERES footprint resolution (∼20 km), while heterogeneities (Hσ) are calculated as the ratio between the standard deviation and mean 0.64 μm reflectance. The value of re2.1 strongly depends on CF, with magnitudes up to 5 μm larger than those for overcast scenes, whereas re3.8 remains insensitive to CF. For cloudy scenes, both re2.1 and re3.8 increase with Hσ for any given AMSR-E LWP, but re2.1 changes more than for re3.8. Additionally, re3.8-re2.1 differences are positive (<1 μm) for homogeneous scenes (Hσ < 0.2) and LWP > 45 gm-2, and negative (up to -4 μm) for larger Hσ. While re3.8-re2.1 differences in homogeneous scenes are qualitatively consistent with in situ microphysical observations over the region of study, negative differences - particularly evinced in mean regional maps - are more likely to reflect the dominant bias associated with cloud heterogeneities rather than information about the cloud vertical structure. The consequences for MODIS LWP are also discussed.
Consistency of Global Modis Aerosol Optical Depths over Ocean on Terra and Aqua Ceres SSF Datasets
NASA Technical Reports Server (NTRS)
Ignatov, Alexander; Minnis, Patrick; Miller, Walter F.; Wielicki, Bruce A.; Remer, Lorraine
2006-01-01
Aerosol retrievals over ocean from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Terra and Aqua platforms are available from the Clouds and the Earth's Radiant Energy System (CERES) Single Scanner Footprint (SSF) datasets generated at NASA Langley Research Center (LaRC). Two aerosol products are reported side-by-side. The primary M product is generated by sub-setting and remapping the multi-spectral (0.47-2.1 micrometer) MODIS produced oceanic aerosol (MOD04/MYD04 for Terra/Aqua) onto CERES footprints. M*D04 processing uses cloud screening and aerosol algorithms developed by the MODIS science team. The secondary AVHRR-like A product is generated in only two MODIS bands 1 and 6 (on Aqua, bands 1 and 7). The A processing uses the CERES cloud screening algorithm, and NOAA/NESDIS glint identification, and single-channel aerosol retrieval algorithms. The M and A products have been documented elsewhere and preliminarily compared using 2 weeks of global Terra CERES SSF Edition 1A data in which the M product was based on MOD04 collection 3. In this study, the comparisons between the M and A aerosol optical depths (AOD) in MODIS band 1 (0.64 micrometers), tau(sub 1M) and tau(sub 1A) are re-examined using 9 days of global CERES SSF Terra Edition 2A and Aqua Edition 1B data from 13 - 21 October 2002, and extended to include cross-platform comparisons. The M and A products on the new CERES SSF release are generated using the same aerosol algorithms as before, but with different preprocessing and sampling procedures, lending themselves to a simple sensitivity check to non-aerosol factors. Both tau(sub 1M) and tau(sub 1A) generally compare well across platforms. However, the M product shows some differences, which increase with ambient cloud amount and towards the solar side of the orbit. Three types of comparisons conducted in this study - cross-platform, cross-product, and cross-release confirm the previously made observation that the major area for improvement in the current aerosol processing lies in a more formalized and standardized sampling (and most importantly, cloud screening) whereas optimization of the aerosol algorithm is deemed to be an important yet less critical element.
NASA Technical Reports Server (NTRS)
2002-01-01
Because clouds represent an area of great uncertainty in studies of global climate, scientists are interested in better understanding the processes by which clouds form and change over time. In recent years, scientists have turned their attention to the ways in which human-produced aerosol pollution modifies clouds. One area that has drawn scientists' attention is 'ship tracks,' or clouds that form from the sulfate aerosols released by large ships. Although ships are not significant sources of pollution themselves, they do release enough sulfur dioxide in the exhaust from their smokestacks to modify overlying clouds. Specifically, the aerosol particles formed by the ship exhaust in the atmosphere cause the clouds to be more reflective, carry more water, and possibly inhibit them from precipitating. This is one example of how humans have been creating and modifying clouds for generations through the burning of fossil fuels. This image was acquired over the northern Pacific Ocean by the Moderate-resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra satellite, on April 29, 2002. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC
Glory over clouds off West Africa
2017-12-08
On April 23, 2013 NASA’s Terra satellite passed off the coast of West Africa, allowing the Moderate Resolution Imaging Spectroradiometer (MODIS) flying aboard to capture a curious phenomenon over the cloud deck below. The rainbow-like discoloration that can be seen streaking across the bank of marine cumulus clouds near the center of this image is known as a “glory”. A glory is caused by the scattering of sunlight by a cloud made of water droplets that are all roughly the same size, and is only produced when the light is just right. In order for a glory to be viewed, the observer’s anti-solar point must fall on the cloud deck below. In this case the observer is the Terra satellite, and the anti-solar point is where the sun is directly behind you – 180° from the MODIS line of sight. Water and ice particles in the cloud bend the light, breaking it into all its wavelengths, and the result is colorful flare, which may contain all of the colors of the rainbow. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Astrophysics Data System (ADS)
Viudez-Mora, A.; Kato, S.; Smith, W. L., Jr.; Chang, F. L.
2016-12-01
Knowledge of the vertical cloud distribution is important for a variety of climate and weather applications. The cloud overlapping variations greatly influence the atmospheric heating/cooling rates, with implications for the surface-troposphere radiative balance, global circulation and precipitation. Additionally, an accurate knowledge of the multi-layer cloud distribution in real-time can be used in applications such safety condition for aviation through storms and adverse weather conditions. In this study, we evaluate a multi-layered cloud algorithm (Chang et al. 2005) based on MODIS measurements aboard Aqua satellite (MCF). This algorithm uses the CO2-slicing technique combined with cloud properties determined from VIS, IR and NIR channels to locate high thin clouds over low-level clouds, and retrieve the τ of each layer. We use CALIPSO (Winker et. al, 2010) and CloudSat (Stephens et. al, 2002) (CLCS) derived cloud vertical profiles included in the C3M data product (Kato et al. 2010) to evaluate MCF derived multi-layer cloud properties. We focus on 2 layer overlapping and 1-layer clouds identified by the active sensors and investigate how well these systems are identified by the MODIS multi-layer technique. The results show that for these multi-layered clouds identified by CLCS, the MCF correctly identifies about 83% of the cases as multi-layer. However, it is found that the upper CTH is underestimated by about 2.6±0.4 km, because the CO2-slicing technique is not as sensitive to the cloud physical top as the CLCS. The lower CTH agree better with differences found to be about 1.2±0.5 km. Another outstanding issue for the MCF approach is the large number of multi-layer false alarms that occur in single-layer conditions. References: Chang, F.-L., and Z. Li, 2005: A new method for detection of cirrus overlapping water clouds and determination of their optical properties. J. Atmos. Sci., 62. Kato, S., et al. (2010), Relationships among cloud occurrence frequency, overlap, and effective thickness derived from CALIPSO and CloudSat merged cloud vertical profiles, J. Geophys. Res., 115. Stephens, G. L., et al. (2002), The CloudSat mission and A-Train, Bull. Am. Meteorol. Soc., 83. Winker, D. M., et al., 2010: The CALIPSO Mission: A global 3D view of aerosols and clouds. Bull. Amer. Meteor. Soc., 91.
NASA Technical Reports Server (NTRS)
Feng, Lian; Hu, Chuanmin; Barnes, Brian B.; Mannino, Antonio; Heidinger, Andrew K.; Strabala, Kathleen; Iraci, Laura T.
2017-01-01
Knowledge of cloud cover, frequency, and duration is not only important to study cloud dynamics, but also critical in determining when and where to take ocean measurements from geostationary orbits such as the Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission due to the challenges in achieving complete hemispheric coverage of coastal oceans, estuaries, and inland waters at hourly frequency. Using GOES hourly measurements at 4 km nadir resolution between 2006 and 2011, the number of cloud-free hourly observations per day (N(sub cf)) for solar zenith angle Theta(sub 0) less than 80 degrees was estimated for each 0.1 degree location of the Intra-Americas Sea. The number of Sun-glint-affected hourly observations per day [Ns(sub sg)] was also calculated based on the planned GEO-CAPE observation geometry and realistic wind speed. High-latitude and equatorial oceans showed the lowest N(sub cf) (less than 2.4) in all climatological months, and highest N(sub cf) was observed in the Gulf of Mexico (GoM) and Caribbean (greater than 4.5). Different regions showed differences in seasonality of cloud-free conditions and also showed differences in the hour of a day at which the satellite observations would have the maximal cloud-free and glint-free probability (Temperature maximum). Cloud cover from Moderate Resolution Imaging Spectroradiometer (MODIS) 1 km measurements are greater than 10 degrees higher than those from the MODIS 250 m measurements, supporting ocean color missions at subkilometer resolutions to enhance both spatial coverage and temporal frequency. These findings provide valuable information for GEO-CAPE mission planning to maximize its science value through minimizing the impacts of clouds and Sun glint.
NASA Astrophysics Data System (ADS)
Feng, Lian; Hu, Chuanmin; Barnes, Brian B.; Mannino, Antonio; Heidinger, Andrew K.; Strabala, Kathleen; Iraci, Laura T.
2017-02-01
Knowledge of cloud cover, frequency, and duration is not only important to study cloud dynamics, but also critical in determining when and where to take ocean measurements from geostationary orbits such as the Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission due to the challenges in achieving complete hemispheric coverage of coastal oceans, estuaries, and inland waters at hourly frequency. Using GOES hourly measurements at 4 km nadir resolution between 2006 and 2011, the number of cloud-free hourly observations per day (Ncf) for solar zenith angle θo < 80° was estimated for each 0.1° location of the Intra-Americas Sea. The number of Sun-glint-affected hourly observations per day (Nsg) was also calculated based on the planned GEO-CAPE observation geometry and realistic wind speed. High-latitude and equatorial oceans showed the lowest Ncf (<2.4) in all climatological months, and highest Ncf was observed in the Gulf of Mexico (GoM) and Caribbean (>4.5). Different regions showed differences in seasonality of cloud-free conditions and also showed differences in the hour of a day at which the satellite observations would have the maximal cloud-free and glint-free probability (Tmax). Cloud cover from Moderate Resolution Imaging Spectroradiometer (MODIS) 1 km measurements are >10% higher than those from the MODIS 250 m measurements, supporting ocean color missions at subkilometer resolutions to enhance both spatial coverage and temporal frequency. These findings provide valuable information for GEO-CAPE mission planning to maximize its science value through minimizing the impacts of clouds and Sun glint.
NASA Astrophysics Data System (ADS)
Zhou, Yongbo; Sun, Xuejin; Mielonen, Tero; Li, Haoran; Zhang, Riwei; Li, Yan; Zhang, Chuanliang
2018-01-01
For inhomogeneous cirrus clouds, cloud optical thickness (COT) and effective diameter (De) provided by the Moderate Resolution Imaging Spectrometer (MODIS) Collection 6 cloud products are associated with errors due to the single habit assumption (SHA), independent pixel assumption (IPA), photon absorption effect (PAE), and plane-parallel assumption (PPA). SHA means that every cirrus cloud is assumed to have the same shape habit of ice crystals. IPA errors are caused by three-dimensional (3D) radiative effects. PPA and PAE errors are caused by cloud inhomogeneity. We proposed a method to single out these different errors. These errors were examined using the Spherical Harmonics Discrete Ordinate Method simulations done for the MODIS 0.86 μm and 2.13 μm bands. Four midlatitude and tropical cirrus cases were studied. For the COT retrieval, the impacts of SHA and IPA were especially large for optically thick cirrus cases. SHA errors in COT varied distinctly with scattering angles. For the De retrieval, SHA decreased De under most circumstances. PAE decreased De for optically thick cirrus cases. For the COT and De retrievals, the dominant error source was SHA for overhead sun whereas for oblique sun, it could be any of SHA, IPA, and PAE, varying with cirrus cases and sun-satellite viewing geometries. On the domain average, the SHA errors in COT (De) were within -16.1%-42.6% (-38.7%-2.0%), whereas the 3-D radiative effects- and cloud inhomogeneity-induced errors in COT (De) were within -5.6%-19.6% (-2.9%-8.0%) and -2.6%-0% (-3.7%-9.8%), respectively.
Verification of NWP Cloud Properties using A-Train Satellite Observations
NASA Astrophysics Data System (ADS)
Kucera, P. A.; Weeks, C.; Wolff, C.; Bullock, R.; Brown, B.
2011-12-01
Recently, the NCAR Model Evaluation Tools (MET) has been enhanced to incorporate satellite observations for the verification of Numerical Weather Prediction (NWP) cloud products. We have developed tools that match fields spatially (both in the vertical and horizontal dimensions) to compare NWP products with satellite observations. These matched fields provide diagnostic evaluation of cloud macro attributes such as vertical distribution of clouds, cloud top height, and the spatial and seasonal distribution of cloud fields. For this research study, we have focused on using CloudSat, CALIPSO, and MODIS observations to evaluate cloud fields for a variety of NWP fields and derived products. We have selected cases ranging from large, mid-latitude synoptic systems to well-organized tropical cyclones. For each case, we matched the observed cloud field with gridded model and/or derived product fields. CloudSat and CALIPSO observations and model fields were matched and compared in the vertical along the orbit track. MODIS data and model fields were matched and compared in the horizontal. We then use MET to compute the verification statistics to quantify the performance of the models in representing the cloud fields. In this presentation we will give a summary of our comparison and show verification results for both synoptic and tropical cyclone cases.
Research on snow cover monitoring of Northeast China using Fengyun Geostationary Satellite
NASA Astrophysics Data System (ADS)
Wu, Tong; Gu, Lingjia; Ren, Ruizhi; Zhou, TIngting
2017-09-01
Snow cover information has great significance for monitoring and preventing snowstorms. With the development of satellite technology, geostationary satellites are playing more important roles in snow monitoring. Currently, cloud interference is a serious problem for obtaining accurate snow cover information. Therefore, the cloud pixels located in the MODIS snow products are usually replaced by cloud-free pixels around the day, which ignores snow cover dynamics. FengYun-2(FY-2) is the first generation of geostationary satellite in our country which complements the polar orbit satellite. The snow cover monitoring of Northeast China using FY-2G data in January and February 2016 is introduced in this paper. First of all, geometric and radiometric corrections are carried out for visible and infrared channels. Secondly, snow cover information is extracted according to its characteristics in different channels. Multi-threshold judgment methods for the different land types and similarity separation techniques are combined to discriminate snow and cloud. Furthermore, multi-temporal data is used to eliminate cloud effect. Finally, the experimental results are compared with the MOD10A1 and MYD10A1 (MODIS daily snow cover) product. The MODIS product can provide higher resolution of the snow cover information in cloudless conditions. Multi-temporal FY-2G data can get more accurate snow cover information in cloudy conditions, which is beneficial for monitoring snowstorms and climate changes.
Determination of Ice Cloud Models Using MODIS and MISR Data
NASA Technical Reports Server (NTRS)
Xie, Yu; Yang, Ping; Kattawar, George W.; Minnis, Patrick; Hu, Yongxiang; Wu, Dong L.
2012-01-01
Representation of ice clouds in radiative transfer simulations is subject to uncertainties associated with the shapes and sizes of ice crystals within cirrus clouds. In this study, we examined several ice cloud models consisting of smooth, roughened, homogeneous and inhomogeneous hexagonal ice crystals with various aspect ratios. The sensitivity of the bulk scattering properties and solar reflectances of cirrus clouds to specific ice cloud models is investigated using the improved geometric optics method (IGOM) and the discrete ordinates radiative transfer (DISORT) model. The ice crystal habit fractions in the ice cloud model may significantly affect the simulations of cloud reflectances. A new algorithm was developed to help determine an appropriate ice cloud model for application to the satellite-based retrieval of ice cloud properties. The ice cloud particle size retrieved from Moderate Resolution Imaging Spectroradiometer (MODIS) data, collocated with Multi-angle Imaging Spectroradiometer (MISR) observations, is used to infer the optical thicknesses of ice clouds for nine MISR viewing angles. The relative differences between view-dependent cloud optical thickness and the averaged value over the nine MISR viewing angles can vary from -0.5 to 0.5 and are used to evaluate the ice cloud models. In the case for 2 July 2009, the ice cloud model with mixed ice crystal habits is the best fit to the observations (the root mean square (RMS) error of cloud optical thickness reaches 0.365). This ice cloud model also produces consistent cloud property retrievals for the nine MISR viewing configurations within the measurement uncertainties.
Cloud Forecasting and 3-D Radiative Transfer Model Validation using Citizen-Sourced Imagery
NASA Astrophysics Data System (ADS)
Gasiewski, A. J.; Heymsfield, A.; Newman Frey, K.; Davis, R.; Rapp, J.; Bansemer, A.; Coon, T.; Folsom, R.; Pfeufer, N.; Kalloor, J.
2017-12-01
Cloud radiative feedback mechanisms are one of the largest sources of uncertainty in global climate models. Variations in local 3D cloud structure impact the interpretation of NASA CERES and MODIS data for top-of-atmosphere radiation studies over clouds. Much of this uncertainty results from lack of knowledge of cloud vertical and horizontal structure. Surface-based data on 3-D cloud structure from a multi-sensor array of low-latency ground-based cameras can be used to intercompare radiative transfer models based on MODIS and other satellite data with CERES data to improve the 3-D cloud parameterizations. Closely related, forecasting of solar insolation and associated cloud cover on time scales out to 1 hour and with spatial resolution of 100 meters is valuable for stabilizing power grids with high solar photovoltaic penetrations. Data for cloud-advection based solar insolation forecasting with requisite spatial resolution and latency needed to predict high ramp rate events obtained from a bottom-up perspective is strongly correlated with cloud-induced fluctuations. The development of grid management practices for improved integration of renewable solar energy thus also benefits from a multi-sensor camera array. The data needs for both 3D cloud radiation modelling and solar forecasting are being addressed using a network of low-cost upward-looking visible light CCD sky cameras positioned at 2 km spacing over an area of 30-60 km in size acquiring imagery on 30 second intervals. Such cameras can be manufactured in quantity and deployed by citizen volunteers at a marginal cost of 200-400 and operated unattended using existing communications infrastructure. A trial phase to understand the potential utility of up-looking multi-sensor visible imagery is underway within this NASA Citizen Science project. To develop the initial data sets necessary to optimally design a multi-sensor cloud camera array a team of 100 citizen scientists using self-owned PDA cameras is being organized to collect distributed cloud data sets suitable for MODIS-CERES cloud radiation science and solar forecasting algorithm development. A low-cost and robust sensor design suitable for large scale fabrication and long term deployment has been developed during the project prototyping phase.
Assessment of 3D cloud radiative transfer effects applied to collocated A-Train data
NASA Astrophysics Data System (ADS)
Okata, M.; Nakajima, T.; Suzuki, K.; Toshiro, I.; Nakajima, T. Y.; Okamoto, H.
2017-12-01
This study investigates broadband radiative fluxes in the 3D cloud-laden atmospheres using a 3D radiative transfer (RT) model, MCstar, and the collocated A-Train cloud data. The 3D extinction coefficients are constructed by a newly devised Minimum cloud Information Deviation Profiling Method (MIDPM) that extrapolates CPR radar profiles at nadir into off-nadir regions within MODIS swath based on collocated information of MODIS-derived cloud properties and radar reflectivity profiles. The method is applied to low level maritime water clouds, for which the 3D-RT simulations are performed. The radiative fluxes thus simulated are compared to those obtained from CERES as a way to validate the MIDPM-constructed clouds and our 3D-RT simulations. The results show that the simulated SW flux agrees with CERES values within 8 - 50 Wm-2. One of the large biases occurred by cyclic boundary condition that was required to pose into our computational domain limited to 20km by 20km with 1km resolution. Another source of the bias also arises from the 1D assumption for cloud property retrievals particularly for thin clouds, which tend to be affected by spatial heterogeneity leading to overestimate of the cloud optical thickness. These 3D-RT simulations also serve to address another objective of this study, i.e. to characterize the "observed" specific 3D-RT effects by the cloud morphology. We extend the computational domain to 100km by 100km for this purpose. The 3D-RT effects are characterized by errors of existing 1D approximations to 3D radiation field. The errors are investigated in terms of their dependence on solar zenith angle (SZA) for the satellite-constructed real cloud cases, and we define two indices from the error tendencies. According to the indices, the 3D-RT effects are classified into three types which correspond to different simple three morphologies types, i.e. isolated cloud type, upper cloud-roughened type and lower cloud-roughened type. These 3D-RT effects linked to cloud morphologies are also visualized in the form of the RGB composite maps constructed from MODIS/Aqua three channels, which show cloud optical thickness and cloud height information. Such a classification offers a novel insight into 3D-RT effect in a manner that directly relates to cloud morphology.
Reconstructing daily clear-sky land surface temperature for cloudy regions from MODIS data
USDA-ARS?s Scientific Manuscript database
Land surface temperature (LST) is a critical parameter in environmental studies and resource management. The MODIS LST data product has been widely used in various studies, such as drought monitoring, evapotranspiration mapping, soil moisture estimation and forest fire detection. However, cloud cont...
On Cirrus Cloud Fields Measured by the Atmospheric Infrared Sounder
NASA Technical Reports Server (NTRS)
Kahn, Brian H.; Eldering, Annmarie; Liou, Kuo Nan
2006-01-01
A viewgraph presentation showing trends in clouds measured by the Atmospheric Infrared Sounder (AIRS) is given. The topics include: 1) Trends in clouds measured by AIRS: Are they reasonable? 2) Single and multilayered cloud trends; 3) Retrievals of thin cirrus D(sub e) and tau: Single-layered cloud only; 4) Relationships between ECF, D(sub e), tau, and T(sub CLD); and 5) MODIS vs. AIRS retrievals.
Detection of long duration cloud contamination in hyper-temporal NDVI imagery
NASA Astrophysics Data System (ADS)
Ali, A.; de Bie, C. A. J. M.; Skidmore, A. K.; Scarrott, R. G.
2012-04-01
NDVI time series imagery are commonly used as a reliable source for land use and land cover mapping and monitoring. However long duration cloud can significantly influence its precision in areas where persistent clouds prevails. Therefore quantifying errors related to cloud contamination are essential for accurate land cover mapping and monitoring. This study aims to detect long duration cloud contamination in hyper-temporal NDVI imagery based land cover mapping and monitoring. MODIS-Terra NDVI imagery (250 m; 16-day; Feb'03-Dec'09) were used after necessary pre-processing using quality flags and upper envelope filter (ASAVOGOL). Subsequently stacked MODIS-Terra NDVI image (161 layers) was classified for 10 to 100 clusters using ISODATA. After classifications, 97 clusters image was selected as best classified with the help of divergence statistics. To detect long duration cloud contamination, mean NDVI class profiles of 97 clusters image was analyzed for temporal artifacts. Results showed that long duration clouds affect the normal temporal progression of NDVI and caused anomalies. Out of total 97 clusters, 32 clusters were found with cloud contamination. Cloud contamination was found more prominent in areas where high rainfall occurs. This study can help to stop error propagation in regional land cover mapping and monitoring, caused by long duration cloud contamination.
Comparison of CERES Cloud Properties Derived from Aqua and Terra MODIS Data and TRMM VIRS Radiances
NASA Astrophysics Data System (ADS)
Minnis, P.; Young, D. F.; Sun-Mack, S.; Trepte, Q. Z.; Chen, Y.; Heck, P. W.; Wielicki, B. A.
2003-12-01
The Clouds and Earth's Radiant Energy System (CERES) Project is obtaining Earth radiation budget measurements of unprecedented accuracy as a result of improved instruments and an analysis system that combines simultaneous, high-resolution cloud property retrievals with the broadband radiance data. The cloud properties are derived from three different satellite imagers: the Visible Infrared Scanner (VIRS) on the Tropical Rainfall Measuring Mission (TRMM) and the Moderate Resolution Imaging Spectroradiometers (MODIS) on the Aqua and Terra satellites. A single set of consistent algorithms using the 0.65, 1.6 or 2.1, 3.7, 10.8, and 12.0-æm channels are applied to all three imagers. The cloud properties include, cloud coverage, height, thickness, temperature, optical depth, phase, effective particle size, and liquid or ice water path. Because each satellite is in a different orbit, the results provide information on the diurnal cycle of cloud properties. Initial intercalibrations show excellent consistency between the three images except for some differences of ~ 1K between the 3.7-æm channel on Terra and those on VIRS and Aqua. The derived cloud properties are consistent with the known diurnal characteristics of clouds in different areas. These datasets should be valuable for exploring the role of clouds in the radiation budget and hydrological cycle.
Clear-sky narrowband albedos derived from VIRS and MODIS
NASA Astrophysics Data System (ADS)
Sun-Mack, Sunny; Minnis, Patrick; Chen, Yan; Arduini, Robert F.
2004-02-01
The Clouds and Earth"s Radiant Energy System (CERES) project is using multispectral imagers, the Visible Infrared Scanner (VIRS) on the tropical Rainfall Measuring Mission (TRMM) satellite and the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra, operating since spring 2000, and Aqua, operating since summer 2002, to provide cloud and clear-sky properties at various wavelengths. This paper presents the preliminary results of an analysis of the CERES clear-sky reflectances to derive a set top-of-atmosphere clear sky albedo for 0.65, 0.86, 1.6, 2.13 μm, for all major surface types using the combined MODIS and VIRS datasets. The variability of snow albedo with surface type is examined using MODIS data. Snow albedo was found to depend on the vertical structure of the vegetation. At visible wavelengths, it is least for forested areas and greatest for smooth desert and tundra surfaces. At 1.6 and 2.1-μm, the snow albedos are relatively insensitive to the underlying surface because snow decreases the reflectance. Additional analyses using all of the MODIS results will provide albedo models that should be valuable for many remote sensing, simulation and radiation budget studies.
Detection rates of the MODIS active fire product in the United States
Hawbaker, T.J.; Radeloff, V.C.; Syphard, A.D.; Zhu, Z.; Stewart, S.I.
2008-01-01
MODIS active fire data offer new information about global fire patterns. However, uncertainties in detection rates can render satellite-derived fire statistics difficult to interpret. We evaluated the MODIS 1??km daily active fire product to quantify detection rates for both Terra and Aqua MODIS sensors, examined how cloud cover and fire size affected detection rates, and estimated how detection rates varied across the United States. MODIS active fire detections were compared to 361 reference fires (??? 18??ha) that had been delineated using pre- and post-fire Landsat imagery. Reference fires were considered detected if at least one MODIS active fire pixel occurred within 1??km of the edge of the fire. When active fire data from both Aqua and Terra were combined, 82% of all reference fires were found, but detection rates were less for Aqua and Terra individually (73% and 66% respectively). Fires not detected generally had more cloudy days, but not when the Aqua data were considered exclusively. MODIS detection rates decreased with fire size, and the size at which 50% of all fires were detected was 105??ha when combining Aqua and Terra (195??ha for Aqua and 334??ha for Terra alone). Across the United States, detection rates were greatest in the West, lower in the Great Plains, and lowest in the East. The MODIS active fire product captures large fires in the U.S. well, but may under-represent fires in areas with frequent cloud cover or rapidly burning, small, and low-intensity fires. We recommend that users of the MODIS active fire data perform individual validations to ensure that all relevant fires are included. ?? 2008 Elsevier Inc. All rights reserved.
Nyiragongo Volcano Erupts in the Congo
NASA Technical Reports Server (NTRS)
2002-01-01
Mount Nyiragongo, located in the Democratic Republic of the Congo, erupted today (January 17, 2002), ejecting a large cloud of smoke and ash high into the sky and spewing lava down three sides of the volcano. Mount Nyiragongo is located roughly 10 km (6 miles) north of the town of Goma, near the Congo's border with Rwanda. According to news reports, one river of lava is headed straight toward Goma, where international aid teams are evacuating residents. Already, the lava flows have burned through large swaths of the surrounding jungle and have destroyed dozens of homes. This false-color image was acquired today (January 17) by the Moderate-resolution Imaging Spectroradiometer (MODIS) roughly 5 hours after the eruption began. Notice Mount Nyiragongo's large plume (bright white) can be seen streaming westward in this scene. The plume appears to be higher than the immediately adjacent clouds and so it is colder in temperature, making it easy for MODIS to distinguish the volcanic plume from the clouds by using image bands sensitive to thermal radiation. Images of the eruption using other band combinations are located on the MODIS Rapid Response System. Nyiragongo eruptions are extremely hazardous because the lava tends to be very fluid and travels down the slopes of the volcano quickly. Eruptions can be large and spectacular, and flows can reach up to 10s of kilometers from the volcano very quickly. Also, biomass burned from Nyriagongo, and nearby Mount Nyamuragira, eruptions tends to create clouds of smoke that adversely affect the Mountain Gorillas living in the adjacent mountain chain. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC
NASA Astrophysics Data System (ADS)
Tang, Zhiguang; Wang, Jian; Li, Hongyi; Yan, Lili
2013-01-01
Snow cover changes over the Tibetan plateau (TP) are examined using moderate resolution imaging spectroradiometer (MODIS) daily fractional snow cover (FSC) data from 2001 to 2011 as well as in situ temperature data. First, the accuracy of the MODIS FSC data under clear sky conditions is evaluated by comparing with Landsat 30-m observations. Then we describe a cloud-gap-filled (CGF) method using cubic spline interpolation algorithm to fill in data gaps caused by clouds. Finally, the spatial and temporal changes of snow cover are analyzed on the basis of the MODIS-derived snow-covered area and snow-covered days (SCD) data. Results show that the mean absolute error of MODIS FSC data under clear sky condition is about 0.098 over the TP. The CGF method is efficient in cloud reduction (overall mean absolute error of the retrieved FSC data is 0.092). There is a very high inter-annual and intra-seasonal variability of snow cover in the 11 years. The higher snow cover corresponds well with the huge mountains. The accumulation and melt periods of snow cover vary in different elevation zones. About 34.14% (5.56% with a significant decline) and 24.75% (3.9% with a significant increase) of the study area presents declining and increasing trend in SCD, respectively. The inter-annual fluctuation of snow cover can be explained by the high negative correlations observed between the snow cover and the in situ temperature, especially in some elevations of February, April, May, August, and September.
Volcanic ash and meteorological clouds detection by neural networks
NASA Astrophysics Data System (ADS)
Picchiani, Matteo; Del Frate, Fabio; Stefano, Corradini; Piscini, Alessandro; Merucci, Luca; Chini, Marco
2014-05-01
The recent eruptions of the Icelandic Eyjafjallajokull and Grímsvötn volcanoes occurred in 2010 and 2011 respectively have been highlighted the necessity to increase the accuracy of the ash detection and retrieval. Follow the evolution of the ash plume is crucial for aviation security. Indeed from the accuracy of the algorithms applied to identify the ash presence may depend the safety of the passengers. The difference between the brightness temperatures (BTD) of thermal infrared channels, centered around 11 µm and 12 µm, is suitable to distinguish the ash plume from the meteorological clouds [Prata, 1989] on satellite images. Anyway in some condition an accurate interpretation is essential to avoid false alarms. In particular Corradini et al. (2008) have developed a correction procedure aimed to avoid the atmospheric water vapour effect that tends to mask, or cancel-out, the ash plume effects on the BTD. Another relevant issue is due to the height of the meteorological clouds since their brightness temperatures is affected by this parameter. Moreover the overlapping of ash plume and meteorological clouds may affects the retrieval result since this latter is dependent by the physical temperature of the surface below the ash cloud. For this reason the correct identification of such condition, that can require a proper interpretation by the analyst, is crucial to address properly the inversion of ash parameters. In this work a fast and automatic procedure based on multispectral data from MODIS and a neural network algorithm is applied to the recent eruptions of Eyjafjallajokull and Grímsvötn volcanoes. A similar approach has been already tested with encouraging results in a previous work [Picchiani et al., 2011]. The algorithm is now improved in order to distinguish the meteorological clouds from the ash plume, dividing the latter between ash above sea and ash overlapped to meteorological clouds. The results have been compared to the BTD ones, properly interpreted considering the information of the visible and infrared channels. The comparison shows that the proposed methodology achieves very promising performances, indeed an overall accuracy greater than 87% can be iteratively obtained classifying new images without human interactions. References: Corradini, S., Spinetti, C., Carboni, E., Tirelli, C., Buongiorno, M. F., Pugnaghi, S., and Gangale, G..; "Mt. Etna tropospheric ash retrieval and sensitivity analysis using Moderate Resolution Imaging Spectroradiometer measurements". J, Atmosph. Rem. Sens., 2, 023550, DOI:10.1117/12.823215, 2008. Prata A. J., "Infrared radiative transfer calculations for volcanic ash clouds", Geophys. Res. Lett., Vol. 16, No. 11, pp. 1293-1296, 1989. Picchiani, M., Chini, M., Corradini, S., Merucci, L., Sellitto, P., Del Frate, F. and Stramondo, S., "Volcanic ash detection and retrievals from MODIS data by means of Neural Networks", Atmos. Meas. Tech., 4, 2619-2631, doi:10.5194/amt-4-2619-2011, 2011.
Cloud removing method for daily snow mapping over Central Asia and Xinjiang, China
NASA Astrophysics Data System (ADS)
Yu, Xiaoqi; Qiu, Yubao; Guo, Huadong; Chen, Lijuan
2017-02-01
Central Asia and Xinjiang, China are conjunct areas, located in the hinterland of the Eurasian continent, where the snowfall is an important water resource supplement form. The induced seasonal snow cover is vita factors to the regional energy and water balance, remote sensing plays a key role in the snow mapping filed, while the daily remote sensing products are normally contaminated by the occurrence of cloud, that obviously obstacles the utility of snow cover parameters. In this paper, based on the daily snow product from Moderate Resolution Imaging Spectroradiometer (MODIS A1), a cloud removing method was developed by considering the regional snow distribution characteristics with latitude and altitude dependence respectively. In the end, the daily cloud free products was compared with the same period of eight days MODIS standard product, revealing that the cloud free snow products are reasonable, while could provide higher temporal resolution, and more details over Center Asia and Xinjiang Province.
NASA Technical Reports Server (NTRS)
Fauchez, T.; Platnick, S.; Meyer, K.; Sourdeval, O.; Cornet, C.; Zhang, Z.; Szczap, F.
2016-01-01
This study presents preliminary results on the effect of cirrus heterogeneities on top-of-atmosphere (TOA) simulated radiances or reflectances for MODIS channels centered at 0.86, 2.21, 8.56, 11.01 and 12.03 micrometers , and on cloud optical properties retrieved with a research-level optimal estimation method (OEM). Synthetic cirrus cloud fields are generated using a 3D cloud generator (3DCLOUD) and radiances/reflectances are simulated using a 3D radiative transfer code (3DMCPOL). We find significant differences between the heterogeneity effects on either visible and near-infrared (VNIR) or thermal infrared (TIR) radiances. However, when both wavelength ranges are combined, heterogeneity effects are dominated by the VNIR horizontal radiative transport effect. As a result, small optical thicknesses are overestimated and large ones are underestimated. Retrieved effective diameter are found to be slightly affected, contrarily to retrievals using TIR channels only.
A Prototype MODI- SSM/I Snow Mapping Algorithm
NASA Technical Reports Server (NTRS)
Tait, Andrew B.; Barton, Jonathan S.; Hall, Dorothy K.
1999-01-01
Data in the wavelength range 0.545 - 1.652 microns from the Moderate Resolution Imaging Spectroradiometer (MODIS), to be launched aboard the Earth Observing System (EOS) Terra in the fall of 1999, will be used to map daily global snow cover at 500m resolution. However, during darkness, or when the satellite's view of the surface is obscured by cloud, snow cover cannot be mapped using MODIS data. We show that during these conditions, it is possible to supplement the MODIS product by mapping the snow cover using passive microwave data from the Special Sensor Microwave Imager (SSM/I), albeit with much poorer resolution. For a 7-day time period in March 1999, a prototype MODIS snow-cover product was compared with a prototype MODIS-SSM/I product for the same area in the mid-western United States. The combined MODIS-SSM/I product mapped 9% more snow cover than the MODIS-only product.
Deep Learning for Discovery of Atmospheric Mountain Waves in MODIS and GPS Data
NASA Astrophysics Data System (ADS)
Pankratius, V.; Li, J. D.; Rude, C. M.; Gowanlock, M.; Herring, T.
2017-12-01
Airflow over mountains can produce gravity waves, called lee waves, which can generate atmospheric turbulence. Since this turbulence poses dangers to aviation, it is critical to identify such regions reliably in an automated fashion. This work leverages two sources of data to go beyond an ad-hoc human visual approach for such identification: MODIS imagery containing cloud patterns formed by lee waves, and patterns in GPS signals resulting from the transmission through atmospheric turbulence due to lee waves. We demonstrate a novel machine learning approach that fuses these two data types to detect atmospheric turbulence associated with lee waves. A convolutional neural network is trained on MODIS tile images to automatically classify the lee wave cloud patterns with 96% correct classifications on a validation set of 20,000 MODIS 64x64 tiles over a test region in the Sierra Nevada Mountains. Signals from GPS stations of the Plate Boundary Observatory are used for feature extraction related to lee waves, in order to improve the confidence of a detection in the MODIS imagery at a given position. To our knowledge, this is the first technique to combine these images and time series data types to improve the spatial and temporal resolutions for large-scale measurements of lee wave formations. First results of this work show great potential for improving weather condition monitoring, hazard and cloud pattern detection, as well as GPS navigation uncertainties. We acknowledge support from NASA AISTNNX15AG84G (PI Pankratius), NASA NNX14AQ03G (PI Herring), and NSF ACI1442997 (PI Pankratius).
FLASH_SSF_Aqua-FM3-MODIS_Version3C
Atmospheric Science Data Center
2018-04-04
... Tool: CERES Order Tool (netCDF) Subset Data: CERES Search and Subset Tool (HDF4 & netCDF) ... Cloud Layer Area Cloud Infared Emissivity Cloud Base Pressure Surface (Radiative) Flux TOA Flux Surface Types TOT ... Radiance SW Filtered Radiance LW Flux Order Data: Earthdata Search: Order Data Guide Documents: ...
FLASH_SSF_Terra-FM1-MODIS_Version3C
Atmospheric Science Data Center
2018-04-04
... Tool: CERES Order Tool (netCDF) Subset Data: CERES Search and Subset Tool (HDF4 & netCDF) ... Cloud Layer Area Cloud Infrared Emissivity Cloud Base Pressure Surface (Radiative) Flux TOA Flux Surface Types TOT ... Radiance SW Filtered Radiance LW Flux Order Data: Earthdata Search: Order Data Guide Documents: ...
NASA Technical Reports Server (NTRS)
Uttal, Taneil; Frisch, Shelby; Wang, Xuan-Ji; Key, Jeff; Schweiger, Axel; Sun-Mack, Sunny; Minnis, Patrick
2005-01-01
A one year comparison is made of mean monthly values of cloud fraction and cloud optical depth over Barrow, Alaska (71 deg 19.378 min North, 156 deg 36.934 min West) between 35 GHz radar-based retrievals, the TOVS Pathfinder Path-P product, the AVHRR APP-X product, and a MODIS based cloud retrieval product from the CERES-Team. The data sets represent largely disparate spatial and temporal scales, however, in this paper, the focus is to provide a preliminary analysis of how the mean monthly values derived from these different data sets compare, and determine how they can best be used separately, and in combination to provide reliable estimates of long-term trends of changing cloud properties. The radar and satellite data sets described here incorporate Arctic specific modifications that account for cloud detection challenges specific to the Arctic environment. The year 2000 was chosen for this initial comparison because the cloud radar data was particularly continuous and reliable that year, and all of the satellite retrievals of interest were also available for the year 2000. Cloud fraction was chosen as a comparison variable as accurate detection of cloud is the primary product that is necessary for any other cloud property retrievals. Cloud optical depth was additionally selected as it is likely the single cloud property that is most closely correlated to cloud influences on surface radiation budgets.
NASA Astrophysics Data System (ADS)
Sockol, Alyssa; Small Griswold, Jennifer D.
2017-08-01
Aerosols are a critical component of the Earth's atmosphere and can affect the climate of the Earth through their interactions with solar radiation and clouds. Cloud fraction (CF) and aerosol optical depth (AOD) at 550 nm from the Moderate Resolution Imaging Spectroradiometer (MODIS) are used with analogous cloud and aerosol properties from Historical Phase 5 of the Coupled Model Intercomparison Project (CMIP5) model runs that explicitly include anthropogenic aerosols and parameterized cloud-aerosol interactions. The models underestimate AOD by approximately 15% and underestimate CF by approximately 10% overall on a global scale. A regional analysis is then used to evaluate model performance in two regions with known biomass burning activity and absorbing aerosol (South America (SAM) and South Africa (SAF)). In SAM, the models overestimate AOD by 4.8% and underestimate CF by 14%. In SAF, the models underestimate AOD by 35% and overestimate CF by 13.4%. Average annual cycles show that the monthly timing of AOD peaks closely match satellite data in both SAM and SAF for all except the Community Atmosphere Model 5 and Geophysical Fluid Dynamics Laboratory (GFDL) models. Monthly timing of CF peaks closely match for all models (except GFDL) for SAM and SAF. Sorting monthly averaged 2° × 2.5° model or MODIS CF as a function of AOD does not result in the previously observed "boomerang"-shaped CF versus AOD relationship characteristic of regions with absorbing aerosols from biomass burning. Cloud-aerosol interactions, as observed using daily (or higher) temporal resolution data, are not reproducible at the spatial or temporal resolution provided by the CMIP5 models.
NASA Astrophysics Data System (ADS)
Dong, X.; Xi, B.; Minnis, P.; Sun-Mack, S.
2014-12-01
Marine Boundary Layer (MBL) cloud properties derived for the NASA CERES Project using Terra and Aqua MODIS data are compared with observations taken at DOE ARM Mobile Facility at the Azores site from Jun. 2009 to Dec. 2010. Cloud properties derived from ARM ground-based observations were averaged over a 1-hour interval centered at the satellite overpass time, while the CERES-MODIS (CM) results were averaged within a 30×30 km2 grid box centered over the Azores site. A total of 63 daytime and 92 nighttime single-layered overcast MBL cloud cases were selected from 19 months of ARM radar-lidar and satellite observations. The CM cloud-top/base heights (Htop/Hbase) were determined from cloud-top/base temperatures (Ttop/Tbase) using a regional boundary-layer lapse rate method. For daytime comparisons, the CM-derived Htop (Hbase), on average, is 0.063 km (0.068 km) higher (lower) than its ARM radar-lidar observed counterpart, and the CM-derived Ttop and Tbase are 0.9 K less and 2.5 K greater than the surface values with high correlations (R2=0.82 and 0.84, respectively). In general, the cloud-top comparisons agree better than cloud-base comparisons because the CM Tbase and Hbase are secondary product determined from Ttop and Htop. No significant day-night difference was found in the analyses. The comparisons of microphysical properties reveal that, when averaged over a 30x30 km2 area, the CM-retrieved cloud-droplet effective radius (re) is 1.3 µm larger than that from the ARM retrievals (12.8 µm). While the CM-retrieved cloud liquid water path (LWP) is 13.5 gm-2 less than its ARM counterpart (114.2 gm-2) due to its small optical depth (τ, 9.6 vs. 13.7). The differences are reduced by 50% when the CM averages are computed only using the MODIS pixel nearest the AMF site. Using effective radius retrieved at 2.1-µm channel to calculate LWP can reduce the difference between the CM and ARM from -13.7 to 2.1 gm-2. The 10% differences between the ARM and CM LWP and re retrievals are within the uncertainties of the ARM LWP (~ 20 gm-2) and re (~ 10%) retrievals, however, the 30% difference in τ is significant. Possible reasons contributed to this discrepancy increased sensitivities in τ from both surface retrievals when τ ~ 10 and topography. The τ differences vary with wind direction and are consistent with the island orography.
The Cloud Detection and Ultraviolet Monitoring Experiment (CLUE)
NASA Technical Reports Server (NTRS)
Barbier, Louis M.; Loh, Eugene C.; Krizmanic, John F.; Sokolsky, Pierre; Streitmatter, Robert E.
2004-01-01
In this paper we describe a new balloon instrument - CLUE - which is designed to monitor ultraviolet (uv) nightglow levels and determine cloud cover and cloud heights with a CO2 slicing technique. The CO2 slicing technique is based on the MODIS instrument on NASA's Aqua and Terra spacecraft. CLUE will provide higher spatial resolution (0.5 km) and correlations between the uv and the cloud cover.
Cloud masking and removal in remote sensing image time series
NASA Astrophysics Data System (ADS)
Gómez-Chova, Luis; Amorós-López, Julia; Mateo-García, Gonzalo; Muñoz-Marí, Jordi; Camps-Valls, Gustau
2017-01-01
Automatic cloud masking of Earth observation images is one of the first required steps in optical remote sensing data processing since the operational use and product generation from satellite image time series might be hampered by undetected clouds. The high temporal revisit of current and forthcoming missions and the scarcity of labeled data force us to cast cloud screening as an unsupervised change detection problem in the temporal domain. We introduce a cloud screening method based on detecting abrupt changes along the time dimension. The main assumption is that image time series follow smooth variations over land (background) and abrupt changes will be mainly due to the presence of clouds. The method estimates the background surface changes using the information in the time series. In particular, we propose linear and nonlinear least squares regression algorithms that minimize both the prediction and the estimation error simultaneously. Then, significant differences in the image of interest with respect to the estimated background are identified as clouds. The use of kernel methods allows the generalization of the algorithm to account for higher-order (nonlinear) feature relations. After the proposed cloud masking and cloud removal, cloud-free time series at high spatial resolution can be used to obtain a better monitoring of land cover dynamics and to generate more elaborated products. The method is tested in a dataset with 5-day revisit time series from SPOT-4 at high resolution and with Landsat-8 time series. Experimental results show that the proposed method yields more accurate cloud masks when confronted with state-of-the-art approaches typically used in operational settings. In addition, the algorithm has been implemented in the Google Earth Engine platform, which allows us to access the full Landsat-8 catalog and work in a parallel distributed platform to extend its applicability to a global planetary scale.
Wave clouds over the Central African Republic
2016-02-04
On January 27, 2016, the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Aqua satellite passed over the Central African Republic and captured a true-color image of wave clouds rippling over a fire-speckled landscape. Wave clouds typically form when a mountain, island, or even another mass of air forces an air mass to rise, then fall again, in a wave pattern. The air cools as it rises, and if there is moisture in the air, the water condenses into clouds at the top of the wave. As the air begins to sink, the air warms and the cloud dissipates. The result is a line of clouds marking the crests of the wave separated by clear areas in the troughs of the wave. In addition to the long lines of clouds stretching across the central section of the country, clouds appear to line up in parallel rows near the border of the Democratic Republic of the Congo. In this area, small sets of grayish cloud appear to be lined up with the prevailing wind, judging by the plumes of smoke rising from red hotspots near each set of clouds. Clouds like this, that line in parallel rows parallel with the prevailing wind, are known as “cloud streets”. Each red “hotspot” marks an area where the thermal sensors on the MODIS instrument detected high temperatures. When accompanied by typical smoke, such hotspots are diagnostic for actively burning fires. Given the time of the year, the widespread nature, and the location of the fires, they are almost certainly agricultural fires that have been deliberately set to manage land. Image Credit: Jeff Schmaltz, MODIS Land Rapid Response Team, NASA GSFC NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Assessing modelled spatial distributions of ice water path using satellite data
NASA Astrophysics Data System (ADS)
Eliasson, S.; Buehler, S. A.; Milz, M.; Eriksson, P.; John, V. O.
2010-05-01
The climate models used in the IPCC AR4 show large differences in monthly mean cloud ice. The most valuable source of information that can be used to potentially constrain the models is global satellite data. For this, the data sets must be long enough to capture the inter-annual variability of Ice Water Path (IWP). PATMOS-x was used together with ISCCP for the annual cycle evaluation in Fig. 7 while ECHAM-5 was used for the correlation with other models in Table 3. A clear distinction between ice categories in satellite retrievals, as desired from a model point of view, is currently impossible. However, long-term satellite data sets may still be used to indicate the climatology of IWP spatial distribution. We evaluated satellite data sets from CloudSat, PATMOS-x, ISCCP, MODIS and MSPPS in terms of monthly mean IWP, to determine which data sets can be used to evaluate the climate models. IWP data from CloudSat cloud profiling radar provides the most advanced data set on clouds. As CloudSat data are too short to evaluate the model data directly, it was mainly used here to evaluate IWP from the other satellite data sets. ISCCP and MSPPS were shown to have comparatively low IWP values. ISCCP shows particularly low values in the tropics, while MSPPS has particularly low values outside the tropics. MODIS and PATMOS-x were in closest agreement with CloudSat in terms of magnitude and spatial distribution, with MODIS being the best of the two. As PATMOS-x extends over more than 25 years and is in fairly close agreement with CloudSat, it was chosen as the reference data set for the model evaluation. In general there are large discrepancies between the individual climate models, and all of the models show problems in reproducing the observed spatial distribution of cloud-ice. Comparisons consistently showed that ECHAM-5 is the GCM from IPCC AR4 closest to satellite observations.
NASA Technical Reports Server (NTRS)
Mu, Qiaozhen; Wu, Aisheng; Xiong, Xiaoxiong; Doelling, David R.; Angal, Amit; Chang, Tiejun; Bhatt, Rajendra
2017-01-01
MODIS reflective solar bands are calibrated on-orbit using a solar diffuser and near-monthly lunar observations. To monitor the performance and effectiveness of the on-orbit calibrations, pseudo-invariant targets such as deep convective clouds (DCCs), Libya-4, and Dome-C are used to track the long-term stability of MODIS Level 1B product. However, the current MODIS operational DCC technique (DCCT) simply uses the criteria set for the 0.65- m band. We optimize several critical DCCT parameters including the 11- micrometer IR-band Brightness Temperature (BT11) threshold for DCC identification, DCC core size and uniformity to help locate DCCs at convection centers, data collection time interval, and probability distribution function (PDF) bin increment for each channel. The mode reflectances corresponding to the PDF peaks are utilized as the DCC reflectances. Results show that the BT11 threshold and time interval are most critical for the Short Wave Infrared (SWIR) bands. The Bidirectional Reflectance Distribution Function model is most effective in reducing the DCC anisotropy for the visible channels. The uniformity filters and PDF bin size have minimal impacts on the visible channels and a larger impact on the SWIR bands. The newly optimized DCCT will be used for future evaluation of MODIS on-orbit calibration by MODIS Characterization Support Team.
A Comparison of Aerosol Measurements from OCO-2 and MODIS
NASA Astrophysics Data System (ADS)
Nelson, R. R.; O'Dell, C.
2016-12-01
The goal of OCO-2 is to use hyperspectral measurements of reflected near-infrared sunlight to retrieve carbon dioxide with high accuracy and precision. This is only possible, however, if the light-path modification effects caused by clouds and aerosols are properly quantified. Even tiny amounts of clouds or aerosols can induce sufficient light-path modifications to lead to large errors in the estimated CO2 column-mean (XCO2). Therefore, it is imperative to evaluate the accuracy of the OCO-2 retrieved aerosol parameters. In this study, we compare OCO-2 retrieved aerosol parameters to Aqua-MODIS observations co-located in time and space. We find that there are significant disagreements between the aerosol information derived from MODIS and the retrieved aerosol parameters from OCO-2. These results are unsurprising, as previous comparisons to AERONET have also been poor. However, the tight co-location between Aqua and OCO-2 in the Afternoon Constellation allows us to examine the potential synergistic use of OCO-2 and MODIS measurements to more accurately constrain aerosol properties, potentially leading to a more accurate CO2 measurement. Specifically, we used select MODIS aerosol properties as the a priori for the OCO-2 retrievals and present the results here. Future studies include investigating the possibility of ingesting the MODIS radiances directly into the OCO-2 retrieval algorithm to further improve OCO-2's aerosol scheme and the resulting measurements.
NASA Astrophysics Data System (ADS)
O, K. T.; Wood, R.; Bretherton, C. S.; Eastman, R. M.; Tseng, H. H.
2016-12-01
During the 2015 Cloud System Evolution in the Trades (CSET) field program (CSET, Jul-Aug 2015, subtropical NE Pacific), the NSF/NCAR G-V aircraft frequently encountered ultra clean layers (hereafter UCLs) with extremely low accumulation mode aerosol (i.e. diameter da> 100nm) concentration (hereafter Na), and low albedo ( 0.2) warm clouds (termed "gray clouds" in our study) with low droplet concentration (hereafter Nd). The analysis of CSET aircraft data shows that (1) UCLs and gray clouds are mostly commonly found at a height of 1.5-2km, typically close to the top of the MBL, (2) UCLs and gray cloud coverage as high as 40-60% between 135W and 155W (i.e. Sc-Cu transition region) but occur very infrequently east of 130W (i.e. shallow, near-coastal stratocumulus region), and (3) UCLs and gray clouds exhibit remarkably low turbulence compared with non-UCL clear sky and clouds. It should be noted that most previous aircraft sampling of low clouds occurred close to the Californian coast, so the prevalence of UCLs and gray clouds has not been previously noted. Based on the analysis of aircraft data, we hypothesize that gray clouds result from detrainment of cloud close to the top of precipitating trade cumuli, and UCLs are remnants of these layers when gray clouds evaporates. The simulations in our study are performed using 2-D bin spectral cloud parcel model and version 6.9 of the System for Atmospheric Modeling (SAM). Our idealized simulations suggest that collision-coalescence plays a crucial role in reducing Nd such that gray clouds can easily form via collision-coalescence in layers detrained from the cloud top at trade cumulus regime, but can not form at stratocumulus regime. Upon evaporation of gray clouds, only few accumulation mode aerosols are returned to the clear sky, leaving horizontally-extensive UCLs (i.e. clean clear sky). Analysis of CSET flight data and idealized model simulations both suggest cloud top/PBL height may play an important role in the formation of UCLs and gray clouds. In our satellite observation study, the comparison between PBL height (from COSMIC and MODIS) and fraction of low optical depth cloud (from MODIS and CALIPSO) at NEP trade cumulus regime (20-35N, 140-155W) also suggest a strong positive correlation.
Low clouds over the Yellow Sea and the East China Sea
2017-12-08
Low clouds over the Yellow Sea and the East China Sea was captured by the MODIS instrument on the Aqua satellite on April 1, 2016 at 4:55 UTC. Credit: NASA/Goddard/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
2017-12-08
Cloud vortices off Heard Island, south Indian Ocean. The Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Aqua satellite captured this true-color image of sea ice off Heard Island on Nov 2, 2015 at 5:02 AM EST (09:20 UTC). Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Astrophysics Data System (ADS)
Jiang, L.; Wang, G.
2017-12-01
Snow cover is one of key elements in the investigations of weather, climatic change, water resource, and snow hazard. Satellites observations from on-board optical sensors provides the ability to snow cover mapping through the discrimination of snow from other surface features and cloud. MODIS provides maximum of snow cover data using 8-day composition data in order to reduce the cloud obscuration impacts. However, snow cover mapping is often required to obtain at the temporal scale of less than one day, especially in the case of disasters. Geostationary satellites provide much higher temporal resolution measurements (typically at 15 min or half or one hour), which has a great potential to reduce cloud cover problem and observe ground surface for identifying snow. The proposed method in this work is that how to take the advantages of polar-orbiting and geostationary optical sensors to accurately map snow cover without data gaps due to cloud. FY-2 geostationary satellites have high temporal resolution observations, however, they are lacking enough spectral bands essential for snow cover monitoring, such as the 1.6 μm band. Based on our recent work (Wang et al., 2017), we improved FY-2/VISSR fractional snow cover estimation with a linear spectral unmixing analysis method. The linear approach is applied then using the reflectance observed at the certain hourly image of FY-2 to calculate pixel-wise snow cover fraction. The composition of daily factional snow cover employs the sun zenith angle, where the snow fraction under lowest sun zenith angle is considered as the most confident result. FY-2/VISSR fractional snow cover map has less cloud due to the composition of multi-temporal snow maps in a single day. In order to get an accurate and cloud-reduced fractional snow cover map, both of MODIS and FY-2/VISSR daily snow fraction maps are blended together. With the combination of FY-2E/VISSR and MODIS, there are still some cloud existing in the daily snow fraction map. Then the combination snow fraction map is temporally reconstructed using MATLAB Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) function to derive a completely daily cloud-free snow cover map under all the sky conditions.
Atmospheric Science Data Center
2018-06-20
... V1 Level: L2 Platform: DEEP SPACE CLIMATE OBSERVATORY Instrument: Enhanced Polychromatic ... assuming ice phase Cloud Optical Thickness – assuming liquid phase EPIC Cloud Mask Oxygen A-band Cloud Effective Height (in ...
Effects of clouds on the surface shortwave radiation at a rural inland mid-latitude site
NASA Astrophysics Data System (ADS)
Salgueiro, Vanda; Costa, Maria João; Silva, Ana Maria; Bortoli, Daniele
2016-09-01
Seven years (2003-2010) of measured shortwave (SW) irradiances were used to obtain estimates of the 10 min averaged effective cloud optical thickness (ECOT) and of the shortwave cloud radiative effect (CRESW) at the surface in a mid-latitude site (Évora - south of Portugal), and its seasonal variability is presented. The ECOT, obtained using transmittance measurements at 415 nm, was compared with the correspondent MODIS cloud optical thickness (MODIS COT) for non-precipitating water clouds and cloud fractions higher than 0.25. This comparison showed that the ECOT represents well the cloud optical thickness over the study area. The CRESW, determined for two SW broadband ranges (300-1100 nm; 285-2800 nm), was normalized (NCRESW) and related with the obtained ECOT. A logarithmic relation between NCRESW and ECOT was found for both SW ranges, presenting lower dispersion for overcast-sky situations than for partially cloudy-sky situations. The NCRESW efficiency (NCRESW per unit of ECOT) was also related with the ECOT for overcast-sky conditions. The relation found is parameterized by a power law function showing that NCRESW efficiency decreases as the ECOT increases, approaching one for ECOT values higher than about 50.
Improving Access to MODIS Biophysical Science Products for NACP Investigators
NASA Technical Reports Server (NTRS)
Wolfe, Robert E.; Gao, Feng; Morisette, Jeffrey T.; Ederer, Gregory A.; Pedelty, Jeffrey A.
2007-01-01
MODIS 4 NACP is a NASA-funded project supporting the North American Carbon Program (NACP). The purpose of this Advancing Collaborative Connections for Earth-Sun System Science (ACCESS) project is to provide researchers with Moderate Resolution Imaging Spectroradiometer (MODIS) biophysical data products that are custom tailored for use in NACP model studies. Standard MODIS biophysical products provide used to improve our understanding on the climate and ecosystem changes. However, direct uses of the MODIS biophysical parameters are constrained by retrieval quality and cloud contamination. Another challenge that NACP users face is acquiring MODIS data in formats and at spatial-temporal resolutions consistent with other data sets they use. We have been working closely with key NACP users to tailor the MODIS products to fit their needs. First, we provide new temporally smoothed and spatially continuous MODIS biophysical data sets. Second, we are distributing MODIS data at suitable spatial-temporal resolutions and in formats consistent with other data integration into model studies.
The Wisconsin Snow and Cloud-Terra 2000 Experiment (WISC-T2000)
NASA Technical Reports Server (NTRS)
2002-01-01
Atmospheric scientists take to the skies this winter for the Wisconsin Snow and Cloud-Terra 2000 experiment, Feb. 25 through March 13. Scientists in WISC-T2000 will use instruments on board NASA's ER-2, a high-altitude research plane, to validate new science products from NASA's earth-observing satellite Terra, which began its five-year mission on Dec. 18, 1999. Contact Terri Gregory Public Information Coordinator Space Science and Engineering Center University of Wisconsin-Madison (608) 263-3373; fax (608) 262-5974 terri.gregory@ssec.wisc.edu Science Goals: WISC-T2000 is the third in a series of field experiments sponsored by the University of Wisconsin-Madison's Space Science and Engineering Center. The center helped develop one of the five science instruments on Terra, the Moderate-Resolution Imaging Spectroradiometer (MODIS). MODIS will make global measurements of clouds, oceans, land, and atmospheric properties in an effort to monitor and predict global climate change. Infrastructure: The ER-2 will be based at Madison's Truax Field and will fly over the upper Midwest and Oklahoma. ER-2 measurements will be coordinated with observations at the Department of Energy's Cloud and Radiation Testbed site in Oklahoma (http://www.arm.gov/), which will be engaged in a complementary cloud experiment. The center will work closely with NASA's Goddard Space Flight Center, which will collect and distribute MODIS data and science products. Additional information on the WISC-T2000 field campaign is available at the project's Web site http://cimss.ssec.wisc.edu/wisct2000/
Open-cell cloud formation over the Bahamas
NASA Technical Reports Server (NTRS)
2002-01-01
What atmospheric scientists refer to as open cell cloud formation is a regular occurrence on the back side of a low-pressure system or cyclone in the mid-latitudes. In the Northern Hemisphere, a low-pressure system will draw in surrounding air and spin it counterclockwise. That means that on the back side of the low-pressure center, cold air will be drawn in from the north, and on the front side, warm air will be drawn up from latitudes closer to the equator. This movement of an air mass is called advection, and when cold air advection occurs over warmer waters, open cell cloud formations often result. This MODIS image shows open cell cloud formation over the Atlantic Ocean off the southeast coast of the United States on February 19, 2002. This particular formation is the result of a low-pressure system sitting out in the North Atlantic Ocean a few hundred miles east of Massachusetts. (The low can be seen as the comma-shaped figure in the GOES-8 Infrared image from February 19, 2002.) Cold air is being drawn down from the north on the western side of the low and the open cell cumulus clouds begin to form as the cold air passes over the warmer Caribbean waters. For another look at the scene, check out the MODIS Direct Broadcast Image from the University of Wisconsin. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC
NASA Astrophysics Data System (ADS)
Krisna, Trismono C.; Wendisch, Manfred; Ehrlich, André; Jäkel, Evelyn; Werner, Frank; Weigel, Ralf; Borrmann, Stephan; Mahnke, Christoph; Pöschl, Ulrich; Andreae, Meinrat O.; Voigt, Christiane; Machado, Luiz A. T.
2018-04-01
Solar radiation reflected by cirrus and deep convective clouds (DCCs) was measured by the Spectral Modular Airborne Radiation Measurement System (SMART) installed on the German High Altitude and Long Range Research Aircraft (HALO) during the Mid-Latitude Cirrus (ML-CIRRUS) and the Aerosol, Cloud, Precipitation, and Radiation Interaction and Dynamic of Convective Clouds System - Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud Resolving Modelling and to the Global Precipitation Measurement (ACRIDICON-CHUVA) campaigns. On particular flights, HALO performed measurements closely collocated with overpasses of the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Aqua satellite. A cirrus cloud located above liquid water clouds and a DCC topped by an anvil cirrus are analyzed in this paper. Based on the nadir spectral upward radiance measured above the two clouds, the optical thickness τ and particle effective radius reff of the cirrus and DCC are retrieved using a radiance ratio technique, which considers the cloud thermodynamic phase, the vertical profile of cloud microphysical properties, the presence of multilayer clouds, and the heterogeneity of the surface albedo. For the cirrus case, the comparison of τ and reff retrieved on the basis of SMART and MODIS measurements yields a normalized mean absolute deviation of up to 1.2 % for τ and 2.1 % for reff. For the DCC case, deviations of up to 3.6 % for τ and 6.2 % for reff are obtained. The larger deviations in the DCC case are mainly attributed to the fast cloud evolution and three-dimensional (3-D) radiative effects. Measurements of spectral upward radiance at near-infrared wavelengths are employed to investigate the vertical profile of reff in the cirrus. The retrieved values of reff are compared with corresponding in situ measurements using a vertical weighting method. Compared to the MODIS observations, measurements of SMART provide more information on the vertical distribution of particle sizes, which allow reconstructing the profile of reff close to the cloud top. The comparison between retrieved and in situ reff yields a normalized mean absolute deviation, which ranges between 1.5 and 10.3 %, and a robust correlation coefficient of 0.82.
Retrieval of Cloud Properties for Partially Cloud-Filled Pixels During CRYSTAL-FACE
NASA Astrophysics Data System (ADS)
Nguyen, L.; Minnis, P.; Smith, W. L.; Khaiyer, M. M.; Heck, P. W.; Sun-Mack, S.; Uttal, T.; Comstock, J.
2003-12-01
Partially cloud-filled pixels can be a significant problem for remote sensing of cloud properties. Generally, the optical depth and effective particle sizes are often too small or too large, respectively, when derived from radiances that are assumed to be overcast but contain radiation from both clear and cloud areas within the satellite imager field of view. This study presents a method for reducing the impact of such partially cloud field pixels by estimating the cloud fraction within each pixel using higher resolution visible (VIS, 0.65mm) imager data. Although the nominal resolution for most channels on the Geostationary Operational Environmental Satellite (GOES) imager and the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra are 4 and 1 km, respectively, both instruments also take VIS channel data at 1 km and 0.25 km, respectively. Thus, it may be possible to obtain an improved estimate of cloud fraction within the lower resolution pixels by using the information contained in the higher resolution VIS data. GOES and MODIS multi-spectral data, taken during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers - Florida Area Cirrus Experiment (CRYSTAL-FACE), are analyzed with the algorithm used for the Atmospheric Radiation Measurement Program (ARM) and the Clouds and Earth's Radiant Energy System (CERES) to derive cloud amount, temperature, height, phase, effective particle size, optical depth, and water path. Normally, the algorithm assumes that each pixel is either entirely clear or cloudy. In this study, a threshold method is applied to the higher resolution VIS data to estimate the partial cloud fraction within each low-resolution pixel. The cloud properties are then derived from the observed low-resolution radiances using the cloud cover estimate to properly extract the radiances due only to the cloudy part of the scene. This approach is applied to both GOES and MODIS data to estimate the improvement in the retrievals for each resolution. Results are compared with the radar reflectivity techniques employed by the NOAA ETL MMCR and the PARSL 94 GHz radars located at the CRYSTAL-FACE Eastern & Western Ground Sites, respectively. This technique is most likely to yield improvements for low and midlevel layer clouds that have little thermal variability in cloud height.
Jiang, Lide; Wang, Menghua
2013-09-20
A new flag/masking scheme has been developed for identifying stray light and cloud shadow pixels that significantly impact the quality of satellite-derived ocean color products. Various case studies have been carried out to evaluate the performance of the new cloud contamination flag/masking scheme on ocean color products derived from the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP). These include direct visual assessments, detailed quantitative case studies, objective statistic analyses, and global image examinations and comparisons. The National Oceanic and Atmospheric Administration (NOAA) Multisensor Level-1 to Level-2 (NOAA-MSL12) ocean color data processing system has been used in the study. The new stray light and cloud shadow identification method has been shown to outperform the current stray light flag in both valid data coverage and data quality of satellite-derived ocean color products. In addition, some cloud-related flags from the official VIIRS-SNPP data processing software, i.e., the Interface Data Processing System (IDPS), have been assessed. Although the data quality with the IDPS flags is comparable to that of the new flag implemented in the NOAA-MSL12 ocean color data processing system, the valid data coverage from the IDPS is significantly less than that from the NOAA-MSL12 using the new stray light and cloud shadow flag method. Thus, the IDPS flag/masking algorithms need to be refined and modified to reduce the pixel loss, e.g., the proposed new cloud contamination flag/masking can be implemented in IDPS VIIRS ocean color data processing.
2017-12-08
Like a ship carving its way through the sea, the South Georgia and South Sandwich Islands parted the clouds. The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite acquired this natural-color image on February 2, 2017. The ripples in the clouds are known as gravity waves. NASA image by Jeff Schmaltz, LANCE/EOSDIS Rapid Response #nasagoddard
NASA Astrophysics Data System (ADS)
Vaquero-Martínez, Javier; Antón, Manuel; Ortiz de Galisteo, José Pablo; Cachorro, Victoria E.; Costa, Maria João; Román, Roberto; Bennouna, Yasmine S.
2017-12-01
In this work, the water vapor product from MODIS (MODerate-resolution Imaging Spectroradiometer) instrument, on-board Aqua and Terra satellites, is compared against GPS water vapor data from 21 stations in the Iberian Peninsula as reference. GPS water vapor data is obtained from ground-based receiver stations which measure the delay caused by water vapor in the GPS microwave signals. The study period extends from 2007 until 2012. Regression analysis in every GPS station show that MODIS overestimates low integrated water vapor (IWV) data and tends to underestimate high IWV data. R2 shows a fair agreement, between 0.38 and 0.71. Inter-quartile range (IQR) in every station is around 30-45%. The dependence on several parameters was also analyzed. IWV dependence showed that low IWV are highly overestimated by MODIS, with high IQR (low precision), sharply decreasing as IWV increases. Regarding dependence on solar zenith angle (SZA), performance of MODIS IWV data decreases between 50° and 90°, while night-time MODIS data (infrared) are quite stable. The seasonal cycles of IWV and SZA cause a seasonal dependence on MODIS performance. In summer and winter, MODIS IWV tends to overestimate the reference IWV value, while in spring and autumn the tendency is to underestimate. Low IWV from coastal stations is highly overestimated (∼60%) and quite imprecise (IQR around 60%). On the contrary, high IWV data show very little dependence along seasons. Cloud-fraction (CF) dependence was also studied, showing that clouds display a negligible impact on IWV over/underestimation. However, IQR increases with CF, except in night-time satellite values, which are quite stable.
NASA Technical Reports Server (NTRS)
Lyapustin, A.; Wang, Y.; Laszlo, I.; Hilker, T.; Hall, F.; Sellers, P.; Tucker, J.; Korkin, S.
2012-01-01
This paper describes the atmospheric correction (AC) component of the Multi-Angle Implementation of Atmospheric Correction algorithm (MAIAC) which introduces a new way to compute parameters of the Ross-Thick Li-Sparse (RTLS) Bi-directional reflectance distribution function (BRDF), spectral surface albedo and bidirectional reflectance factors (BRF) from satellite measurements obtained by the Moderate Resolution Imaging Spectroradiometer (MODIS). MAIAC uses a time series and spatial analysis for cloud detection, aerosol retrievals and atmospheric correction. It implements a moving window of up to 16 days of MODIS data gridded to 1 km resolution in a selected projection. The RTLS parameters are computed directly by fitting the cloud-free MODIS top of atmosphere (TOA) reflectance data stored in the processing queue. The RTLS retrieval is applied when the land surface is stable or changes slowly. In case of rapid or large magnitude change (as for instance caused by disturbance), MAIAC follows the MODIS operational BRDF/albedo algorithm and uses a scaling approach where the BRDF shape is assumed stable but its magnitude is adjusted based on the latest single measurement. To assess the stability of the surface, MAIAC features a change detection algorithm which analyzes relative change of reflectance in the Red and NIR bands during the accumulation period. To adjust for the reflectance variability with the sun-observer geometry and allow comparison among different days (view geometries), the BRFs are normalized to the fixed view geometry using the RTLS model. An empirical analysis of MODIS data suggests that the RTLS inversion remains robust when the relative change of geometry-normalized reflectance stays below 15%. This first of two papers introduces the algorithm, a second, companion paper illustrates its potential by analyzing MODIS data over a tropical rainforest and assessing errors and uncertainties of MAIAC compared to conventional MODIS products.
New insights about cloud vertical structure from CloudSat and CALIPSO observations
NASA Astrophysics Data System (ADS)
Oreopoulos, Lazaros; Cho, Nayeong; Lee, Dongmin
2017-09-01
Active cloud observations from A-Train's CloudSat and CALIPSO satellites offer new opportunities to examine the vertical structure of hydrometeor layers. We use the 2B-CLDCLASS-LIDAR merged CloudSat-CALIPSO product to examine global aspects of hydrometeor vertical stratification. We group the data into major cloud vertical structure (CVS) classes based on our interpretation of how clouds in three standard atmospheric layers overlap and provide their global frequency of occurrence. The two most frequent CVS classes are single-layer (per our definition) low and high clouds that represent 53% of cloudy skies, followed by high clouds overlying low clouds, and vertically extensive clouds that occupy near-contiguously a large portion of the troposphere. The prevalence of these configurations changes seasonally and geographically, between daytime and nighttime, and between continents and oceans. The radiative effects of the CVS classes reveal the major radiative warmers and coolers from the perspective of the planet as a whole, the surface, and the atmosphere. Single-layer low clouds dominate planetary and atmospheric cooling and thermal infrared surface warming. We also investigate the consistency between passive and active views of clouds by providing the CVS breakdowns of Moderate Resolution Imaging Spectroradiometer cloud regimes for spatiotemporally coincident MODIS-Aqua (also on the A-Train) and CloudSat-CALIPSO daytime observations. When the analysis is expanded for a more in-depth look at the most heterogeneous of the MODIS cloud regimes, it ultimately confirms previous interpretations of their makeup that did not have the benefit of collocated active observations.
Cloud Regimes as a Tool for Systematic Study of Various Aerosol-Cloud-Precipitation Interactions
NASA Technical Reports Server (NTRS)
Oreopoulos, Lazaros; Cho, Nayeong; Lee, Dongmin
2016-01-01
Systematic changes of clouds and precipitation are notoriously difficult to ascribe to aerosols. This presentation will showcase yet one more attempt to at least credibly detect the signal of aerosol-cloud-precipitation interactions. We surmise that the concept of cloud regimes (CRs) is appropriate to conduct such an investigation. Previous studies focused on what we call here dynamical CRs, and while we continue to adopt those too for our analysis, we have found that a different way of organizing cloud systems, namely via microphysical regimes is also promising. Our analysis relies on MODIS Collection 6 Level-3 data for clouds and aerosols, and TRMM-TMPA data for precipitation. The regimes are derived by applying clustering analysis on MODIS joint histograms, and once each grid cell is assigned a regime, aerosol and precipitation data can be spatiotemporally matched and composited by regime. The composites of various cloud and precipitation variables for high (upper quartile of distribution) and low (lower quartile) aerosol loadings can then be contrasted. We seek evidence of aerosol effects both in regimes with large fractions of deep ice-rich clouds, as well as regimes where low liquid phase clouds dominate. Signals can be seen, especially when the analysis is broken by land-ocean and when additional filters are applied, but there are of course caveats which will be discussed.
NASA Astrophysics Data System (ADS)
Guo, Jianping; Wang, Fu; Huang, Jingfeng; Li, Xiaowen
2015-04-01
Aerosol, one of key components of the climate system, is highly variable, both temporally and spatially. It often exerts great influences on the cloud-precipitation chain processes by serving as CCN/IN, altering cloud microphysics and its life cycle. Yet, the aerosol indirect effect on clouds remains largely unknown, because the initial changes in clouds due to aerosols may be enhanced or dampened by such feedback processes as modified cloud dynamics, or evaporation of the smaller droplets due to the competition for water vapor. In this study, we attempted to quantify the aerosol effects on warm cloud over eastern China, based on near-simultaneous retrievals from MODIS/AQUA, CALIOP/CALIPSO and CPR/CLOUDSAT during the period 2006 to 2010. The seasonality of aerosol from ground-based PM10 is quite different from that estimated from MODIS AOD. This result is corroborated by lower level profile of aerosol occurrence frequency from CALIOP, indicating the significant role CALIOP could play in aerosol-cloud interaction. The combined use of CALIOP and CPR facilitate the process to exactly determine the (vertical) position of warm cloud relative to aerosol, out of six scenarios in terms of aerosol-cloud mixing status in terms of aerosol-cloud mixing status, which shows as follows: AO (Aerosol only), CO (Cloud only), SASC (Single aerosol-single cloud), SADC (single aerosol-double cloud), DASC (double aerosol-single cloud), and others. Results shows that about 54% of all the cases belong to mixed status, among all the collocated aerosol-cloud cases. Under mixed condition, a boomerang shape is observed, i.e., reduced cloud droplet radius (CDR) is associated with increasing aerosol at moderate aerosol pollution (AOD<0.4), becoming saturated at AOD of 0.5, followed by an increase in CDR with aerosol. In contrast, there is no such boomerang shape found for (aerosol-cloud) separated cases. We categorize dataset into warm-season and cold-season subsets to figure out how the boomerang shape varies with season. For moderate aerosol loading (AOD<0.4), the effect on the droplet size for the "Mixed" cases is greater during cold season (denoted by a large slope), as compared with that during warm season. It is likely associated with an increase in the emission of light absorbing aerosol like smoke (black carbon), mainly caused by coal-fired heating during the cold season in China. As expected, the sensitivity of CDR to AOD is much weaker for "Separated" cases, irrespective of warm or cold seasons, indicating no real aerosol indirect effect occurring in this case. In contrast, for heavy aerosol loading (AOD>0.4), an increasing CDR with AOD can be seen in "Mixed" scenario during the warm season. Conversely, a closer look at the responses of CDR during the cold season shows that CDR decreases with AOD, although the strength is not much large. Therefore, we argue that cloud droplet size decreases with aerosol loading during cold season, irrespective of moderate or heavy atmospheric pollution. Finally, we discuss the possible factors that may influence the aerosol indirect effects on warm clouds investigated here. For instance, aerosol-cloud interaction conundrum might be affected by aerosol humidification, which is the case for MODIS AOD during warm seasons. But this issue can be partly overcome by categorizing dataset into warm-season and cold-season subsets, representing different ambient humidity condition in the atmosphere. The different boomerang shapes observed during various seasons, particularly after transition zone due to droplet saturation effect, have great implications for climate forcing by aerosol in eastern China.
MODIS Snow Cover Recovery Using Variational Interpolation
NASA Astrophysics Data System (ADS)
Tran, H.; Nguyen, P.; Hsu, K. L.; Sorooshian, S.
2017-12-01
Cloud obscuration is one of the major problems that limit the usages of satellite images in general and in NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) global Snow-Covered Area (SCA) products in particular. Among the approaches to resolve the problem, the Variational Interpolation (VI) algorithm method, proposed by Xia et al., 2012, obtains cloud-free dynamic SCA images from MODIS. This method is automatic and robust. However, computational deficiency is a main drawback that degrades applying the method for larger scales (i.e., spatial and temporal scales). To overcome this difficulty, this study introduces an improved version of the original VI. The modified VI algorithm integrates the MINimum RESidual (MINRES) iteration (Paige and Saunders., 1975) to prevent the system from breaking up when applied to much broader scales. An experiment was done to demonstrate the crash-proof ability of the new algorithm in comparison with the original VI method, an ability that is obtained when maintaining the distribution of the weights set after solving the linear system. After that, the new VI algorithm was applied to the whole Contiguous United States (CONUS) over four winter months of 2016 and 2017, and validated using the snow station network (SNOTEL). The resulting cloud free images have high accuracy in capturing the dynamical changes of snow in contrast with the MODIS snow cover maps. Lastly, the algorithm was applied to create a Cloud free images dataset from March 10, 2000 to February 28, 2017, which is able to provide an overview of snow trends over CONUS for nearly two decades. ACKNOWLEDGMENTSWe would like to acknowledge NASA, NOAA Office of Hydrologic Development (OHD) National Weather Service (NWS), Cooperative Institute for Climate and Satellites (CICS), Army Research Office (ARO), ICIWaRM, and UNESCO for supporting this research.
NASA Technical Reports Server (NTRS)
Platnick, Steven E.
2010-01-01
Though the emphasis of the Southern Africa Regional Science Initiative 2000 (SAFARI-2000) dry season campaign was largely on emission sources and transport, the assemblage of aircraft (including the high altitude NASA ER-2 remote sensing platform and the University of Washington CV-580, UK MRF C-130, and South African Weather Bureau JRA in situ aircrafts) provided a unique opportunity for cloud studies. Therefore, as part of the SAFARI initiative, investigations were undertaken to assess regional aerosol-cloud interactions and cloud remote sensing algorithms. In particular, the latter part of the experiment concentrated on marine boundary layer stratocumulus clouds off the southwest coast of Africa. Associated with cold water upwelling along the Benguela current, the Namibian stratocumulus regime has received limited attention but appears to be unique for several reasons. During the dry season, outflow of continental fires and industrial pollution over this area can be extreme. From below, upwelling provides a rich nutrient source for phytoplankton (a source of atmospheric sulfur through DMS production as well as from decay processes). The impact of these natural and anthropogenic sources on the microphysical and optical properties of the stratocumulus is unknown. Continental and Indian Ocean cloud systems of opportunity were also studied during the campaign. SAFARI 2000 aircraft flights off the coast of Namibia were coordinated with NASA Terra Satellite overpasses for synergy with the Moderate Resolution Imaging Spectroradiometer (MODIS) and other Terra instruments. MODIS was developed by NASA and launched onboard the Terra spacecraft on December 18, 1999 (and Aqua spacecraft on May 4, 2002). Among the remote sensing algorithms developed and applied to this sensor are cloud optical and microphysical properties that include cloud thermodynamic phase, optical thickness, and effective particle radius of both liquid water and ice clouds. The archived products from these algorithms have applications in climate change studies, climate modeling, numerical weather prediction, and fundamental atmospheric research. The archived MODIS Collection 5 cloud products processing stream will be used to analyze low water cloud scenes off the Namibian and Angolan coasts during SAFARI 2000 time period, as well as other years. Pixel-level Terra and Aqua MODIS retrievals (l. km spatial resolution at nadir) and gridded (1' uniform grid) statistics of cloud optical thickness and effective particle radius will be presented, including joint probability distributions between the two quantities. In addition, perspectives from the MODIS Airborne Simulator, which flew on the ER-2 during SAFARI 2000 providing high spatial resolution retrievals (50 m at nadir), will be presented as appropriate. The H-SAF Program requires an experimental operational European-centric Satellite Precipitation Algorithm System (E-SPAS) that produces medium spatial resolution and high temporal resolution surface rainfall and snowfall estimates over the Greater European Region including the Greater Mediterranean Basin. Currently, there are various types of experimental operational algorithm methods of differing spatiotemporal resolutions that generate global precipitation estimates. This address will first assess the current status of these methods and then recommend a methodology for the H-SAF Program that deviates somewhat from the current approach under development but one that takes advantage of existing techniques and existing software developed for the TRMM Project and available through the public domain.
NASA Astrophysics Data System (ADS)
Kato, Seiji; Rose, Fred G.; Sun-Mack, Sunny; Miller, Walter F.; Chen, Yan; Rutan, David A.; Stephens, Graeme L.; Loeb, Norman G.; Minnis, Patrick; Wielicki, Bruce A.; Winker, David M.; Charlock, Thomas P.; Stackhouse, Paul W., Jr.; Xu, Kuan-Man; Collins, William D.
2011-10-01
One year of instantaneous top-of-atmosphere (TOA) and surface shortwave and longwave irradiances are computed using cloud and aerosol properties derived from instruments on the A-Train Constellation: the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite, the CloudSat Cloud Profiling Radar (CPR), and the Aqua Moderate Resolution Imaging Spectrometer (MODIS). When modeled irradiances are compared with those computed with cloud properties derived from MODIS radiances by a Clouds and the Earth's Radiant Energy System (CERES) cloud algorithm, the global and annual mean of modeled instantaneous TOA irradiances decreases by 12.5 W m-2 (5.0%) for reflected shortwave and 2.5 W m-2 (1.1%) for longwave irradiances. As a result, the global annual mean of instantaneous TOA irradiances agrees better with CERES-derived irradiances to within 0.5W m-2 (out of 237.8 W m-2) for reflected shortwave and 2.6W m-2 (out of 240.1 W m-2) for longwave irradiances. In addition, the global annual mean of instantaneous surface downward longwave irradiances increases by 3.6 W m-2 (1.0%) when CALIOP- and CPR-derived cloud properties are used. The global annual mean of instantaneous surface downward shortwave irradiances also increases by 8.6 W m-2 (1.6%), indicating that the net surface irradiance increases when CALIOP- and CPR-derived cloud properties are used. Increasing the surface downward longwave irradiance is caused by larger cloud fractions (the global annual mean by 0.11, 0.04 excluding clouds with optical thickness less than 0.3) and lower cloud base heights (the global annual mean by 1.6 km). The increase of the surface downward longwave irradiance in the Arctic exceeds 10 W m-2 (˜4%) in winter because CALIOP and CPR detect more clouds in comparison with the cloud detection by the CERES cloud algorithm during polar night. The global annual mean surface downward longwave irradiance of 345.4 W m-2 is estimated by combining the modeled instantaneous surface longwave irradiance computed with CALIOP and CPR cloud profiles with the global annual mean longwave irradiance from the CERES product (AVG), which includes the diurnal variation of the irradiance. The estimated bias error is -1.5 W m-2 and the uncertainty is 6.9 W m-2. The uncertainty is predominately caused by the near-surface temperature and column water vapor amount uncertainties.
NASA Astrophysics Data System (ADS)
Hubbard, A. B.; Carroll, M.
2017-12-01
Accurate maps of surface water resources are critical for long-term resource management, characterization of extreme events, and integration into various science products. Unfortunately, most of the currently available surface water products do not adequately represent inter- and intra-annual variation in water extent, resulting from both natural fluctuations in the hydrologic cycle and human activities. To capture this variability, annual water maps were generated from Terra MODIS data at 250 m resolution for the years 2000 through 2016, using the same algorithm employed to generate the previously released MOD44W Collection 5 static water mask (Carroll et al., 2009). Following efforts to verify the data and remove false positives, the final maps were submitted to the Land Processes DAAC for publication as MOD44W Collection 6.1. Analysis of these maps indicate that only about two thirds of inland water pixels were persistent throughout all 16 years of data, meaning that roughly one third of the surface water detected in this period displayed some degree of inter-annual variation. In addition to the annual datasets, water observations were aggregated by quarter for each year from 2003 through 2016 using the same algorithm and observations from both Terra and Aqua. Analysis of these seasonal maps is ongoing, but preliminary investigation indicates they capture dramatic intra-annual fluctuations of water extent in many regions. In cloudy regions, it is difficult or impossible to consistently measure this intra-annual variation without the twice-daily temporal resolution of the MODIS sensors. While the moderate spatial resolution of MODIS is a constraint, these datasets are suitable for studying such fluctuations in medium to large water bodies, or at regional to global scales. These maps also provide a baseline record of historical surface water resources, against which future change can be compared. Finally, comparisons with the MOD44W Collection 5 static water mask indicate that major changes have occurred in many areas since the early 2000s, rendering these maps an equally valuable update for static water masking applications. ReferencesCarroll, M.L., Townshend, J.R., DiMiceli, C.M., Noojipady, P., & Sohlberg, R.A. (2009). A new global raster water mask at 250 m resolution. Int J Digit Earth, 2, 291-308.
Comparison Between CCCM and CloudSat Radar-Lidar (RL) Cloud and Radiation Products
NASA Technical Reports Server (NTRS)
Ham, Seung-Hee; Kato, Seiji; Rose, Fred G.; Sun-Mack, Sunny
2015-01-01
To enhance cloud properties, LaRC and CIRA developed each combination algorithm for obtained properties from passive, active and imager in A-satellite constellation. When comparing global cloud fraction each other, LaRC-produced CERES-CALIPSO-CloudSat-MODIS (CCCM) products larger low-level cloud fraction over tropic ocean, while CIRA-produced Radar-Lidar (RL) shows larger mid-level cloud fraction for high latitude region. The reason for different low-level cloud fraction is due to different filtering method of lidar-detected cloud layers. Meanwhile difference in mid-level clouds is occurred due to different priority of cloud boundaries from lidar and radar.
Open-cell and closed-cell clouds off Peru
2010-04-27
2010/107 - 04/17 at 21 :05 UTC. Open-cell and closed-cell clouds off Peru, Pacific Ocean Resembling a frosted window on a cold winter's day, this lacy pattern of marine clouds was captured off the coast of Peru in the Pacific Ocean by the MODIS on the Aqua satellite on April 19, 2010. The image reveals both open- and closed-cell cumulus cloud patterns. These cells, or parcels of air, often occur in roughly hexagonal arrays in a layer of fluid (the atmosphere often behaves like a fluid) that begins to "boil," or convect, due to heating at the base or cooling at the top of the layer. In "closed" cells warm air is rising in the center, and sinking around the edges, so clouds appear in cell centers, but evaporate around cell edges. This produces cloud formations like those that dominate the lower left. The reverse flow can also occur: air can sink in the center of the cell and rise at the edge. This process is called "open cell" convection, and clouds form at cell edges around open centers, which creates a lacy, hollow-looking pattern like the clouds in the upper right. Closed and open cell convection represent two stable atmospheric configurations — two sides of the convection coin. But what determines which path the "boiling" atmosphere will take? Apparently the process is highly chaotic, and there appears to be no way to predict whether convection will result in open or closed cells. Indeed, the atmosphere may sometimes flip between one mode and another in no predictable pattern. Satellite: Aqua NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team To learn more about MODIS go to: rapidfire.sci.gsfc.nasa.gov/gallery/?latest NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.
NASA Technical Reports Server (NTRS)
Vasilkov, Alexander; Joiner, Joanna; Spurr, Robert; Bhartia, Pawan K.; Levelt, Pieternel; Stephens, Graeme
2009-01-01
In this paper we examine differences between cloud pressures retrieved from the Ozone Monitoring Instrument (OMI) using the ultraviolet rotational Raman scattering (RRS) algorithm and those from the thermal infrared (IR) Aqua/MODIS. Several cloud data sets are currently being used in OMI trace gas retrieval algorithms including climatologies based on IR measurements and simultaneous cloud parameters derived from OMI. From a validation perspective, it is important to understand the OMI retrieved cloud parameters and how they differ with those derived from the IR. To this end, we perform radiative transfer calculations to simulate the effects of different geophysical conditions on the OMI RRS cloud pressure retrievals. We also quantify errors related to the use of the Mixed Lambert-Equivalent Reflectivity (MLER) concept as currently implemented of the OMI algorithms. Using properties from the Cloudsat radar and MODIS, we show that radiative transfer calculations support the following: (1) The MLER model is adequate for single-layer optically thick, geometrically thin clouds, but can produce significant errors in estimated cloud pressure for optically thin clouds. (2) In a two-layer cloud, the RRS algorithm may retrieve a cloud pressure that is either between the two cloud decks or even beneath the top of the lower cloud deck because of scattering between the cloud layers; the retrieved pressure depends upon the viewing geometry and the optical depth of the upper cloud deck. (3) Absorbing aerosol in and above a cloud can produce significant errors in the retrieved cloud pressure. (4) The retrieved RRS effective pressure for a deep convective cloud will be significantly higher than the physical cloud top pressure derived with thermal IR.
Antarctica Cloud Cover for October 2003 from GLAS Satellite Lidar Profiling
NASA Technical Reports Server (NTRS)
Spinhirne, J. D.; Palm, S. P.; Hart, W. D.
2005-01-01
Seeing clouds in polar regions has been a problem for the imagers used on satellites. Both clouds and snow and ice are white, which makes clouds over snow hard to see. And for thermal infrared imaging both the surface and the clouds cold. The Geoscience Laser Altimeter System (GLAS) launched in 2003 gives an entirely new way to see clouds from space. Pulses of laser light scatter from clouds giving a signal that is separated in time from the signal from the surface. The scattering from clouds is thus a sensitive and direct measure of the presence and height of clouds. The GLAS instrument orbits over Antarctica 16 times a day. All of the cloud observations for October 2003 were summarized and compared to the results from the MODIS imager for the same month. There are two basic cloud types that are observed, low stratus with tops below 3 km and high cirrus form clouds with cloud top altitude and thickness tending at 12 km and 1.3 km respectively. The average cloud cover varies from over 93 % for ocean and coastal regions to an average of 40% over the East Antarctic plateau and 60-90% over West Antarctica. When the GLAS monthly average cloud fractions are compared to the MODIS cloud fraction data product, differences in the amount of cloud cover are as much as 40% over the continent. The results will be used to improve the way clouds are detected from the imager observations. These measurements give a much improved understanding of distribution of clouds over Antarctica and may show how they are changing as a result of global warming.
NASA Astrophysics Data System (ADS)
Grosvenor, D. P.; Wood, R.
2012-12-01
As part of one of the Climate Process Teams (CPTs) we have been testing the implementation of a new cloud parameterization into the CAM5 and AM3 GCMs. The CLUBB parameterization replaces all but the deep convection cloud scheme and uses an innovative PDF based approach to diagnose cloud water content and turbulence. We have evaluated the base models and the CLUBB parameterization in the SE Pacific stratocumulus region using a suite of satellite observation metrics including: Liquid Water Path (LWP) measurements from AMSRE; cloud fractions from CloudSat/CALIPSO; droplet concentrations (Nd) and Cloud Top Temperatures from MODIS; CloudSat precipitation; and relationships between Estimated Inversion Strength (calculated from AMSRE SSTs, Cloud Top Temperatures from MODIS and ECMWF re-analysis fields) and cloud fraction. This region has the advantage of an abundance of in-situ aircraft observations taken during the VOCALS campaign, which is facilitating the diagnosis of the model problems highlighted by the model evaluation. This data has also been recently used to demonstrate the reliability of MODIS Nd estimates. The satellite data needs to be filtered to ensure accurate retrievals and we have been careful to apply the same screenings to the model fields. For example, scenes with high cloud fractions and with output times near to the satellite overpass times can be extracted from the model for a fair comparison with MODIS Nd estimates. To facilitate this we have been supplied with instantaneous model output since screening would not be possible based on time averaged data. We also have COSP satellite simulator output, which allows a fairer comparison between satellite and model. For example, COSP cloud fraction is based upon the detection threshold of the satellite instrument in question. These COSP fields are also used for the model output filtering just described. The results have revealed problems with both the base models and the versions with the CLUBB parameterization. The CAM5 model produces realistic near-coast cloud cover, but too little further west in the stratocumulus to cumulus regions. The implementation of CLUBB has vastly improved this situation with cloud cover that is very similar to that observed. CLUBB also improves the Nd field in CAM5 by producing realistic near-coast increases and by removing high Nd values associated with the detrainment of droplets by cumulus clouds. AM3 has a lack of stratocumulus cloud near the South American coast and has much lower droplet concentrations than observed. VOCALS measurements showed that sulfate mass loadings were generally too high in both base models, whereas CCN concentrations were too low. This suggests a problem with the mass distribution partitioning of sulfate that is being investigated. Diurnal and seasonal comparisons have been very illuminating. CLUBB produces very little diurnal variation in LWP, but large variations in precipitation rates. This is likely to point to problems that are now being addressed by the modeling part of the CPT team, creating an iterative workflow process between the model developers and the model testers, which should facilitate efficient parameterization improvement. We will report on the latest developments of this process.
Science Enabling Applications of Gridded Radiances and Products
NASA Astrophysics Data System (ADS)
Goldberg, M.; Wolf, W.; Zhou, L.
2005-12-01
New generations of hyperspectral sounders and imagers are not only providing vastly improved information to monitor, assess and predict the Earth's environment, they also provide tremendous volumes of data to manage. Key management challenges must include data processing, distribution, archive and utilization. At the NOAA/NESDIS Office of Research and Applications, we have started to address the challenge of utilizing high volume satellite by thinning observations and developing gridded datasets from the observations made from the NASA AIRS, AMSU and MODIS instrument. We have developed techniques for intelligent thinning of AIRS data for numerical weather prediction, by selecting the clearest AIRS 14 km field of view within a 3 x 3 array. The selection uses high spatial resolution 1 km MODIS data which are spatially convolved to the AIRS field of view. The MODIS cloud masks and AIRS cloud tests are used to select the clearest. During the real-time processing the data are thinned and gridded to support monitoring, validation and scientific studies. Products from AIRS, which includes profiles of temperature, water vapor and ozone and cloud-corrected infrared radiances for more than 2000 channels, are derived from a single AIRS/AMSU field of regard, which is a 3 x 3 array of AIRS footprints (each with a 14 km spatial resolution) collocated with a single AMSU footprint (42 km). One of our key gridded dataset is a daily 3 x 3 latitude/longitude projection which contains the nearest AIRS/AMSU field of regard with respect to the center of the 3 x 3 lat/lon grid. This particular gridded dataset is 1/40 the size of the full resolution data. This gridded dataset is the type of product request that can be used to support algorithm validation and improvements. It also provides for a very economical approach for reprocessing, testing and improving algorithms for climate studies without having to reprocess the full resolution data stored at the DAAC. For example, on a single CPU workstation, all the AIRS derived products can be derived from a single year of gridded data in 5 days. This relatively short turnaround time, which can be reduced considerably to 3 hours by using a cluster of 40 pc G5processors, allows for repeated reprocessing at the PIs home institution before substantial investments are made to reprocess the full resolution data sets archived at the DAAC. In other words, do not reprocess the full resolution data until the science community have tested and selected the optimal algorithm on the gridded data. Development and applications of gridded radiances and products will be discussed. The applications can be provided as part of a web-based service.
A-Train Observations of Deep Convective Storm Tops
NASA Technical Reports Server (NTRS)
Setvak, Martin; Bedka, Kristopher; Lindsey, Daniel T.; Sokol, Alois; Charvat, Zdenek; Stastka, Jindrich; Wang, Pao K.
2013-01-01
The paper highlights simultaneous observations of tops of deep convective clouds from several space-borne instruments including the Moderate Resolution Imaging Spectroradiometer (MODIS) of the Aqua satellite, Cloud Profiling Radar (CPR) of the CloudSat satellite, and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) flown on the CALIPSO satellite. These satellites share very close orbits, thus together with several other satellites they are referred to as the "A-Train" constellation. Though the primary responsibility of these satellites and their instrumentation is much broader than observations of fine-scale processes atop convective storms, in this study we document how data from the A-Train can contribute to a better understanding and interpretation of various storm-top features, such as overshooting tops, cold-U/V and cold ring features with their coupled embedded warm areas, above anvil ice plumes and jumping cirrus. The relationships between MODIS multi-spectral brightness temperature difference (BTD) fields and cloud top signatures observed by the CPR and CALIOP are also examined in detail to highlight the variability in BTD signals across convective storm events.
NASA Astrophysics Data System (ADS)
Jethva, H. T.; Torres, O.; Remer, L. A.; Redemann, J.; Dunagan, S. E.; Livingston, J. M.; Shinozuka, Y.; Kacenelenbogen, M. S.; Segal-Rosenhaimer, M.
2014-12-01
Absorbing aerosols produced from biomass burning and dust outbreaks are often found to overlay the lower level cloud decks as evident in the satellite images. In contrast to the cloud-free atmosphere, in which aerosols generally tend to cool the atmosphere, the presence of absorbing aerosols above cloud poses greater potential of exerting positive radiative effects (warming) whose magnitude directly depends on the aerosol loading above cloud, optical properties of clouds and aerosols, and cloud fraction. In recent years, development of algorithms that exploit satellite-based passive measurements of ultraviolet (UV), visible, and polarized light as well as lidar-based active measurements constitute a major breakthrough in the field of remote sensing of aerosols. While the unprecedented quantitative information on aerosol loading above cloud is now available from NASA's A-train sensors, a greater question remains ahead: How to validate the satellite retrievals of above-cloud aerosols (ACA)? Direct measurements of ACA such as carried out by the NASA Ames Airborne Tracking Sunphotometer (AATS) and Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) can be of immense help in validating ACA retrievals. In this study, we validate the ACA optical depth retrieved using the 'color ratio' (CR) method applied to the MODIS cloudy-sky reflectance by using the airborne AATS and 4STAR measurements. A thorough search of the historic AATS-4STAR database collected during different field campaigns revealed five events where biomass burning, dust, and wildfire-emitted aerosols were found to overlay lower level cloud decks observed during SAFARI-2000, ACE-ASIA 2001, and SEAC4RS-2013, respectively. The co-located satellite-airborne measurements revealed a good agreement (root-mean-square-error<0.1 for Aerosol Optical Depth (AOD) at 500 nm) with most matchups falling within the estimated uncertainties in the MODIS retrievals (-10% to +50%). An extensive validation of satellite-based ACA retrievals requires equivalent field measurements particularly over the regions where ACA are often observed from satellites, i.e., south-eastern Atlantic Ocean, tropical Atlantic Ocean, northern Arabian Sea, South-East and North-East Asia.
2015-05-08
Decades of satellite observations and astronaut photographs show that clouds dominate space-based views of Earth. One study based on nearly a decade of satellite data estimated that about 67 percent of Earth’s surface is typically covered by clouds. This is especially the case over the oceans, where other research shows less than 10 percent of the sky is completely clear of clouds at any one time. Over land, 30 percent of skies are completely cloud free. Earth’s cloudy nature is unmistakable in this global cloud fraction map, based on data collected by the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Aqua satellite. While MODIS collects enough data to make a new global map of cloudiness every day, this version of the map shows an average of all of the satellite’s cloud observations between July 2002 and April 2015. Colors range from dark blue (no clouds) to light blue (some clouds) to white (frequent clouds). Read more here: 1.usa.gov/1P6lbMU Credit: NASA Earth Observatory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Sees Hurricane Arthur's Cloud-Covered Eye
2014-07-03
This visible image of Tropical Storm Arthur was taken by the MODIS instrument aboard NASA's Aqua satellite on July 2 at 18:50 UTC (2:50 p.m. EDT). A cloud-covered eye is clearly visible. Credit: NASA Goddard MODIS Rapid Response Team Read more: www.nasa.gov/content/goddard/arthur-atlantic/ NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Astrophysics Data System (ADS)
Ten Hoeve, J. E.; Jacobson, M. Z.
2010-12-01
Satellite observational studies have found an increase in cloud fraction (CF) and cloud optical depth (COD) with increasing aerosol optical depth (AOD) followed by a decreasing CF/COD with increasing AOD at higher AODs over the Amazon Basin. The shape of this curve is similar to that of a boomerang, and thus the effect has been dubbed the "boomerang effect.” The increase in CF/COD with increasing AOD at low AODs is ascribed to the first and second indirect effects and is referred to as a microphysical effect of aerosols on clouds. The decrease in CF/COD at higher AODs is ascribed to enhanced warming of clouds due to absorbing aerosols, either as inclusions in drops or interstitially between drops. This is referred to as a radiative effect. To date, the interaction of the microphysical and radiative effects has not been simulated with a regional or global computer model. Here, we simulate the boomerang effect with the nested global-through-urban climate, air pollution, weather forecast model, GATOR-GCMOM, for the Amazon biomass burning season of 2006. We also compare the model with an extensive set of data, including satellite data from MODIS, TRMM, and CALIPSO, in situ surface observations, upper-air data, and AERONET data. Biomass burning emissions are obtained from the Global Fire Emissions Database (GFEDv2), and are combined with MODIS land cover data along with biomass burning emission factors. A high-resolution domain, nested within three increasingly coarser domains, is employed over the heaviest biomass burning region within the arc of deforestation. Modeled trends in cloud properties with aerosol loading compare well with MODIS observed trends, allowing causation of these observed correlations, including of the boomerang effect, to be determined by model results. The impact of aerosols on various cloud parameters, such as cloud optical thickness, cloud fraction, cloud liquid water/ice content, and precipitation, are shown through differences between simulations that include and exclude biomass burning emissions. This study suggests by cause and effect through numerical modeling that aerosol radiative effects counteract microphysical effects at high AODs, a result previously shown by correlation alone. As such, computer models that exclude treatment of cloud radiative effects are likely to overpredict the indirect effects of aerosols on clouds and underestimate the warming due to aerosols containing black carbon.
NASA Astrophysics Data System (ADS)
Stillinger, T.; Dozier, J.; Phares, N.; Rittger, K.
2015-12-01
Discrimination between snow and clouds poses a serious but tractable challenge to the consistent delivery of high-quality information on mountain snow from remote sensing. Clouds obstruct the surface from the sensor's view, and the similar optical properties of clouds and snow make accurate discrimination difficult. We assess the performance of the current Landsat 8 operational snow and cloud mask products (LDCM CCA and CFmask), along with a new method, using over one million manually identified snow and clouds pixels in Landsat 8 scenes. The new method uses physically based scattering models to generate spectra in each Landsat 8 band, at that scene's solar illumination, for snow and cloud particle sizes that cover the plausible range for each. The modeled spectra are compared to pixels' spectra via several independent ways to identify snow and clouds. The results are synthesized to create a final snow/cloud mask, and the method can be applied to any multispectral imager with bands covering the visible, near-infrared, and shortwave-infrared regions. Each algorithm we tested misidentifies snow and clouds in both directions to varying degrees. We assess performance with measures of Precision, Recall, and the F statistic, which are based on counts of true and false positives and negatives. Tests for significance in differences between spectra in the measured and modeled values among incorrectly identified pixels help ascertain reasons for misidentification. A cloud mask specifically designed to separate snow from clouds is a valuable tool for those interested in remotely sensing snow cover. Given freely available remote sensing datasets and computational tools to feasibly process entire mission histories for an area of interest, enabling researchers to reliably identify and separate snow and clouds increases the usability of the data for hydrological and climatological studies.
Quality assessment and improvement of the EUMETSAT Meteosat Surface Albedo Climate Data Record
NASA Astrophysics Data System (ADS)
Lattanzio, A.; Fell, F.; Bennartz, R.; Trigo, I. F.; Schulz, J.
2015-10-01
Surface albedo has been identified as an important parameter for understanding and quantifying the Earth's radiation budget. EUMETSAT generated the Meteosat Surface Albedo (MSA) Climate Data Record (CDR) currently comprising up to 24 years (1982-2006) of continuous surface albedo coverage for large areas of the Earth. This CDR has been created within the Sustained, Coordinated Processing of Environmental Satellite Data for Climate Monitoring (SCOPE-CM) framework. The long-term consistency of the MSA CDR is high and meets the Global Climate Observing System (GCOS) stability requirements for desert reference sites. The limitation in quality due to non-removed clouds by the embedded cloud screening procedure is the most relevant weakness in the retrieval process. A twofold strategy is applied to efficiently improve the cloud detection and removal. The first step consists of the application of a robust and reliable cloud mask, taking advantage of the information contained in the measurements of the infrared and visible bands. Due to the limited information available from old radiometers, some clouds can still remain undetected. A second step relies on a post-processing analysis of the albedo seasonal variation together with the usage of a background albedo map in order to detect and screen out such outliers. The usage of a reliable cloud mask has a double effect. It enhances the number of high-quality retrievals for tropical forest areas sensed under low view angles and removes the most frequently unrealistic retrievals on similar surfaces sensed under high view angles. As expected, the usage of a cloud mask has a negligible impact on desert areas where clear conditions dominate. The exploitation of the albedo seasonal variation for cloud removal has good potentialities but it needs to be carefully addressed. Nevertheless it is shown that the inclusion of cloud masking and removal strategy is a key point for the generation of the next MSA CDR release.
NASA Astrophysics Data System (ADS)
Saponaro, Giulia; Kolmonen, Pekka; Sogacheva, Larisa; Rodriguez, Edith; Virtanen, Timo; de Leeuw, Gerrit
2017-02-01
Retrieved from the Moderate Resolution Imaging Spectroradiometer (MODIS) on-board the Aqua satellite, 12 years (2003-2014) of aerosol and cloud properties were used to statistically quantify aerosol-cloud interaction (ACI) over the Baltic Sea region, including the relatively clean Fennoscandia and the more polluted central-eastern Europe. These areas allowed us to study the effects of different aerosol types and concentrations on macro- and microphysical properties of clouds: cloud effective radius (CER), cloud fraction (CF), cloud optical thickness (COT), cloud liquid water path (LWP) and cloud-top height (CTH). Aerosol properties used are aerosol optical depth (AOD), Ångström exponent (AE) and aerosol index (AI). The study was limited to low-level water clouds in the summer. The vertical distributions of the relationships between cloud properties and aerosols show an effect of aerosols on low-level water clouds. CF, COT, LWP and CTH tend to increase with aerosol loading, indicating changes in the cloud structure, while the effective radius of cloud droplets decreases. The ACI is larger at relatively low cloud-top levels, between 900 and 700 hPa. Most of the studied cloud variables were unaffected by the lower-tropospheric stability (LTS), except for the cloud fraction. The spatial distribution of aerosol and cloud parameters and ACI, here defined as the change in CER as a function of aerosol concentration for a fixed LWP, shows positive and statistically significant ACI over the Baltic Sea and Fennoscandia, with the former having the largest values. Small negative ACI values are observed in central-eastern Europe, suggesting that large aerosol concentrations saturate the ACI.
Evaluation of ERA-interim and MERRA Cloudiness in the Southern Oceans
NASA Technical Reports Server (NTRS)
Naud, Catherine M.; Booth, James F.; Del Genio, Anthony D.
2014-01-01
The Southern Ocean cloud cover modeled by the Interim ECMWF Re-Analysis (ERA-Interim) and Modern- Era Retrospective Analysis for Research and Applications (MERRA) reanalyses are compared against Moderate Resolution Imaging Spectroradiometer (MODIS) and Multiangle Imaging Spectroradiometer (MISR) observations. ERA-Interim monthly mean cloud amounts match the observations within 5%, while MERRA significantly underestimates the cloud amount. For a compositing analysis of clouds in warm season extratropical cyclones, both reanalyses show a low bias in cloud cover. They display a larger bias to the west of the cyclones in the region of subsidence behind the cold fronts. This low bias is larger for MERRA than for ERA-Interim. Both MODIS and MISR retrievals indicate that the clouds in this sector are at a low altitude, often composed of liquid, and of a broken nature. The combined CloudSat-Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) cloud profiles confirm these passive observations, but they also reveal that low-level clouds in other parts of the cyclones are also not properly represented in the reanalyses. The two reanalyses are in fairly good agreement for the dynamic and thermodynamic characteristics of the cyclones, suggesting that the cloud, convection, or boundary layer schemes are the problem instead. An examination of the lower-tropospheric stability distribution in the cyclones from both reanalyses suggests that the parameterization of shallow cumulus clouds may contribute in a large part to the problem. However, the differences in the cloud schemes and in particular in the precipitation processes, which may also contribute, cannot be excluded.
Optimal Exploitation of the Temporal and Spatial Resolution of SEVIRI for the Nowcasting of Clouds
NASA Astrophysics Data System (ADS)
Sirch, Tobias; Bugliaro, Luca
2015-04-01
Optimal Exploitation of the Temporal and Spatial Resolution of SEVIRI for the Nowcasting of Clouds An algorithm was developed to forecast the development of water and ice clouds for the successive 5-120 minutes separately using satellite data from SEVIRI (Spinning Enhanced Visible and Infrared Imager) aboard Meteosat Second Generation (MSG). In order to derive cloud cover, optical thickness and cloud top height of high ice clouds "The Cirrus Optical properties derived from CALIOP and SEVIRI during day and night" (COCS, Kox et al. [2014]) algorithm is applied. For the determination of the liquid water clouds the APICS ("Algorithm for the Physical Investigation of Clouds with SEVIRI", Bugliaro e al. [2011]) cloud algorithm is used, which provides cloud cover, optical thickness and effective radius. The forecast rests upon an optical flow method determining a motion vector field from two satellite images [Zinner et al., 2008.] With the aim of determining the ideal time separation of the satellite images that are used for the determination of the cloud motion vector field for every forecast horizon time the potential of the better temporal resolution of the Meteosat Rapid Scan Service (5 instead of 15 minutes repetition rate) has been investigated. Therefore for the period from March to June 2013 forecasts up to 4 hours in time steps of 5 min based on images separated by a time interval of 5 min, 10 min, 15 min, 30 min have been created. The results show that Rapid Scan data produces a small reduction of errors for a forecast horizon up to 30 minutes. For the following time steps forecasts generated with a time interval of 15 min should be used and for forecasts up to several hours computations with a time interval of 30 min provide the best results. For a better spatial resolution the HRV channel (High Resolution Visible, 1km instead of 3km maximum spatial resolution at the subsatellite point) has been integrated into the forecast. To detect clouds the difference of the measured albedo from SEVIRI and the clear-sky albedo provided by MODIS has been used and additionally the temporal development of this quantity. A pre-requisite for this work was an adjustment of the geolocation accuracy for MSG and MODIS by shifting the MODIS data and quantifying the correlation between both data sets.
NASA Technical Reports Server (NTRS)
Roman, Miguel O.; Gatebe, Charles K.; Shuai, Yanmin; Wang, Zhuosen; Gao, Feng; Masek, Jeff; Schaaf, Crystal B.
2012-01-01
The quantification of uncertainty of global surface albedo data and products is a critical part of producing complete, physically consistent, and decadal land property data records for studying ecosystem change. A current challenge in validating satellite retrievals of surface albedo is the ability to overcome the spatial scaling errors that can contribute on the order of 20% disagreement between satellite and field-measured values. Here, we present the results from an uncertain ty analysis of MODerate Resolution Imaging Spectroradiometer (MODIS) and Landsat albedo retrievals, based on collocated comparisons with tower and airborne multi-angular measurements collected at the Atmospheric Radiation Measurement Program s (ARM) Cloud and Radiation Testbed (CART) site during the 2007 Cloud and Land Surface Interaction Campaign (CLAS33 IC 07). Using standard error propagation techniques, airborne measurements obtained by NASA s Cloud Absorption Radiometer (CAR) were used to quantify the uncertainties associated with MODIS and Landsat albedos across a broad range of mixed vegetation and structural types. Initial focus was on evaluating inter-sensor consistency through assessments of temporal stability, as well as examining the overall performance of satellite-derived albedos obtained at all diurnal solar zenith angles. In general, the accuracy of the MODIS and Landsat albedos remained under a 10% margin of error in the SW(0.3 - 5.0 m) domain. However, results reveal a high degree of variability in the RMSE (root mean square error) and bias of albedos in both the visible (0.3 - 0.7 m) and near-infrared (0.3 - 5.0 m) broadband channels; where, in some cases, retrieval uncertainties were found to be in excess of 20%. For the period of CLASIC 07, the primary factors that contributed to uncertainties in the satellite-derived albedo values include: (1) the assumption of temporal stability in the retrieval of 500 m MODIS BRDF values over extended periods of cloud-contaminated observations; and (2) the assumption of spatial 45 and structural uniformity at the Landsat (30 m) pixel scale.
Trends in Arctic Sea Ice Leads Detection
NASA Astrophysics Data System (ADS)
Ackerman, S. A.; Hoffman, J.; Liu, Y.; Key, J. R.
2016-12-01
Sea ice leads (fractures) play a critical role in the exchange of mass and energy between the ocean and atmosphere in the polar regions, particularly in the Arctic. Leads result in warming water and accelerated melting because leads absorb more solar energy than the surrounding ice. In the autumn, winter, and spring leads impact the local atmospheric structure and cloud properties because of the large flux of heat and moisture into the atmosphere. Given the rapid thinning and loss of Arctic sea ice over the last few decades, changes in the distribution of leads can be expected in response. Leads are largely wind driven, so their distributions will also be affected by the changes in atmospheric circulation that have occurred. From a climate perspective, identifying trends in lead characteristics (width, orientation, and spatial distribution) will advance our understanding of both thermodynamic and mechanical processes. This study presents the spatial and temporal distributions of Arctic sea ice leads since 2002 using a new method to detect and characterize sea ice leads with optical (visible, infrared) satellite data from the Moderate Resolution Imaging Spectroradiometer (MODIS). Using reflective and emissive channels, ice concentration is derived in cloud-free regions and used to create a mask of potential leads. An algorithm then uses a combination of image processing techniques to identify and characterizes leads. The results show interannual variability of leads positioning as well as parameters such as area, length, orientation and width.
The Global Aerosol System As Viewed By MODIS Today
NASA Technical Reports Server (NTRS)
Remer, Lorraine
2008-01-01
The MODerate resolution Imaging Spectroradiometer (MODIS) aerosol algorithms have been working steadily since early 2000 to transform the MODIS-measured spectral solar reflectance from the Earth's surface and atmosphere into a variety of aerosol products. In this lecture I will proceed through a survey of these products, answering the following questions as I proceed. What are the products? How do they compare with ground truth? How do we use these products to describe the global aerosol system? Are aerosols increasing or decreasing? How do aerosols affect climate and clouds?
Assessment of MODIS On-Orbit Calibration Using a Deep Convective Cloud Technique
NASA Technical Reports Server (NTRS)
Mu, Qiaozhen; Wu, Aisheng; Chang, Tiejun; Angal, Amit; Link, Daniel; Xiong, Xiaoxiong; Doelling, David R.; Bhatt, Rajendra
2016-01-01
The MODerate Resolution Imaging Spectroradiometer (MODIS) sensors onboard Terra and Aqua satellites are calibrated on-orbit with a solar diffuser (SD) for the reflective solar bands (RSB). The MODIS sensors are operating beyond their designed lifetime and hence present a major challenge to maintain the calibration accuracy. The degradation of the onboard SD is tracked by a solar diffuser stability monitor (SDSM) over a wavelength range from 0.41 to 0.94 micrometers. Therefore, any degradation of the SD beyond 0.94 micrometers cannot be captured by the SDSM. The uncharacterized degradation at wavelengths beyond this limit could adversely affect the Level 1B (L1B) product. To reduce the calibration uncertainties caused by the SD degradation, invariant Earth-scene targets are used to monitor and calibrate the MODIS L1B product. The use of deep convective clouds (DCCs) is one such method and particularly significant for the short-wave infrared (SWIR) bands in assessing their long-term calibration stability. In this study, we use the DCC technique to assess the performance of the Terra and Aqua MODIS Collection-6 L1B for RSB 1 3- 7, and 26, with spectral coverage from 0.47 to 2.13 micrometers. Results show relatively stable trends in Terra and Aqua MODIS reflectance for most bands. Careful attention needs to be paid to Aqua band 1, Terra bands 3 and 26 as their trends are larger than 1% during the study time period. We check the feasibility of using the DCC technique to assess the stability in MODIS bands 17-19. The assessment test on response versus scan angle (RVS) calibration shows substantial trend difference for Aqua band 1between different angles of incidence (AOIs). The DCC technique can be used to improve the RVS calibration in the future.
NASA Astrophysics Data System (ADS)
Chen, H.; Schmidt, S.; Coddington, O.; Wind, G.; Bucholtz, A.; Segal-Rosenhaimer, M.; LeBlanc, S. E.
2017-12-01
Cloud Optical Parameters (COPs: e.g., cloud optical thickness and cloud effective radius) and surface albedo are the most important inputs for determining the Cloud Radiative Effect (CRE) at the surface. In the Arctic, the COPs derived from passive remote sensing such as from the Moderate Resolution Imaging Spectroradiometer (MODIS) are difficult to obtain with adequate accuracy owing mainly to insufficient knowledge about the snow/ice surface, but also because of the low solar zenith angle. This study aims to validate COPs derived from passive remote sensing in the Arctic by using aircraft measurements collected during two field campaigns based in Fairbanks, Alaska. During both experiments, ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites) and ARISE (Arctic Radiation-IceBridge Sea and Ice Experiment), the Solar Spectral Flux Radiometer (SSFR) measured upwelling and downwelling shortwave spectral irradiances, which can be used to derive surface and cloud albedo, as well as the irradiance transmitted by clouds. We assess the variability of the Arctic sea ice/snow surfaces albedo through these aircraft measurements and incorporate this variability into cloud retrievals for SSFR. We then compare COPs as derived from SSFR and MODIS for all suitable aircraft underpasses of the satellites. Finally, the sensitivities of the COPs to surface albedo and solar zenith angle are investigated.
Aerosol-cloud interaction determined by satellite data over the Baltic Sea countries
NASA Astrophysics Data System (ADS)
Saponaro, Giulia; Kolmonen, Pekka; Sogacheva, Larisa; de Leeuw, Gerrit
2015-04-01
The present study investigates the use of long-term satellite data to assess the influence of aerosols upon cloud parameters over the Baltic Sea region. This particular area offers the contrast of a very clean environment (Fennoscandia) against a more polluted one (Germany, Poland). The datasets consists of Collection 6 Level 3 daily observations from 2002 to 2014 collected by the NASA's Moderate-Resolution Imaging Spectrometer (MODIS) instrument on-board the Aqua platform. The MODIS aerosol optical depth (AOD) product is used as a proxy for the number concentration of aerosol particles while the cloud effective radius (CER) and cloud optical thickness (COT) describe cloud microphysical and optical properties respectively. Satellite data have certain limitations, such as the restriction to summer season due to solar zenith angle restrictions and the known problem of the ambiguity of the aerosol-cloud interface, for instance. Through the analysis of a 12-years dataset, distribution maps provide information on a regional scale about the first aerosol indirect effect (AIE) by determining the aerosol-cloud interaction (ACI). The ACI is defined as the change in cloud optical depth or effective radius as a function of aerosol load for a fixed liquid water path (LWP). The focusing point of the current study is the evaluation of regional trends of ACI over the observed area of the Baltic Sea.
NASA Astrophysics Data System (ADS)
de Leeuw, Gerrit; Sogacheva, Larisa; Rodriguez, Edith; Kourtidis, Konstantinos; Georgoulias, Aristeidis K.; Alexandri, Georgia; Amiridis, Vassilis; Proestakis, Emmanouil; Marinou, Eleni; Xue, Yong; van der A, Ronald
2018-02-01
The retrieval of aerosol properties from satellite observations provides their spatial distribution over a wide area in cloud-free conditions. As such, they complement ground-based measurements by providing information over sparsely instrumented areas, albeit that significant differences may exist in both the type of information obtained and the temporal information from satellite and ground-based observations. In this paper, information from different types of satellite-based instruments is used to provide a 3-D climatology of aerosol properties over mainland China, i.e., vertical profiles of extinction coefficients from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), a lidar flying aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite and the column-integrated extinction (aerosol optical depth - AOD) available from three radiometers: the European Space Agency (ESA)'s Along-Track Scanning Radiometer version 2 (ATSR-2), Advanced Along-Track Scanning Radiometer (AATSR) (together referred to as ATSR) and NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Terra satellite, together spanning the period 1995-2015. AOD data are retrieved from ATSR using the ATSR dual view (ADV) v2.31 algorithm, while for MODIS Collection 6 (C6) the AOD data set is used that was obtained from merging the AODs obtained from the dark target (DT) and deep blue (DB) algorithms, further referred to as the DTDB merged AOD product. These data sets are validated and differences are compared using Aerosol Robotic Network (AERONET) version 2 L2.0 AOD data as reference. The results show that, over China, ATSR slightly underestimates the AOD and MODIS slightly overestimates the AOD. Consequently, ATSR AOD is overall lower than that from MODIS, and the difference increases with increasing AOD. The comparison also shows that neither of the ATSR and MODIS AOD data sets is better than the other one everywhere. However, ATSR ADV has limitations over bright surfaces which the MODIS DB was designed for. To allow for comparison of MODIS C6 results with previous analyses where MODIS Collection 5.1 (C5.1) data were used, also the difference between the C6 and C5.1 merged DTDB data sets from MODIS/Terra over China is briefly discussed. The AOD data sets show strong seasonal differences and the seasonal features vary with latitude and longitude across China. Two-decadal AOD time series, averaged over all of mainland China, are presented and briefly discussed. Using the 17 years of ATSR data as the basis and MODIS/Terra to follow the temporal evolution in recent years when the environmental satellite Envisat was lost requires a comparison of the data sets for the overlapping period to show their complementarity. ATSR precedes the MODIS time series between 1995 and 2000 and shows a distinct increase in the AOD over this period. The two data series show similar variations during the overlapping period between 2000 and 2011, with minima and maxima in the same years. MODIS extends this time series beyond the end of the Envisat period in 2012, showing decreasing AOD.
NASA Astrophysics Data System (ADS)
Garnier, Anne; Scott, Noëlle A.; Pelon, Jacques; Armante, Raymond; Crépeau, Laurent; Six, Bruno; Pascal, Nicolas
2017-04-01
The quality of the calibrated radiances of the medium-resolution Imaging Infrared Radiometer (IIR) on-board the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) satellite is quantitatively evaluated from the beginning of the mission in June 2006. Two complementary relative
and stand-alone
approaches are used, which are related to comparisons of measured brightness temperatures and to model-to-observations comparisons, respectively. In both cases, IIR channels 1 (8.65 µm), 2 (10.6 µm), and 3 (12.05 µm) are paired with the Moderate Resolution Imaging Spectroradiometer (MODIS)/Aqua Collection 5 companion
channels 29, 31, and 32, respectively, as well as with the Spinning Enhanced Visible and Infrared Imager (SEVIRI)/Meteosat companion channels IR8.7, IR10.8, and IR12, respectively. These pairs were selected before launch to meet radiometric, geometric, and space-time constraints. The prelaunch studies were based on simulations and sensitivity studies using the 4A/OP radiative transfer model and the more than 2300 atmospheres of the climatological Thermodynamic Initial Guess Retrieval (TIGR) input dataset further sorted into five air mass types. Using data from over 9.5 years of on-orbit operation, and following the relative approach technique, collocated measurements of IIR and of its companion channels have been compared at all latitudes over ocean, during day and night, and for all types of scenes in a wide range of brightness temperatures. The relative approach shows an excellent stability of IIR2-MODIS31 and IIR3-MODIS32 brightness temperature differences (BTDs) since launch. A slight trend within the IIR1-MODIS29 BTD, that equals -0.02 K yr-1 on average over 9.5 years, is detected when using the relative approach at all latitudes and all scene temperatures. For very cold scene temperatures (190-200 K) in the tropics, each IIR channel is warmer than its MODIS companion channel by 1.6 K on average. For the stand-alone approach, clear sky measurements only are considered, which are directly compared with simulations using 4A/OP and collocated ERA-Interim (ERA-I) reanalyses. The clear sky mask is derived from collocated observations from IIR and the CALIPSO lidar. Simulations for clear sky pixels in the tropics reproduce the differences between IIR1 and MODIS29 within 0.02 K and between IIR2 and MODIS31 within 0.04 K, whereas IIR3-MODIS32 is larger than simulated by 0.26 K. The stand-alone approach indicates that the trend identified from the relative approach originates from MODIS29, whereas no trend (less than ±0.004 K yr-1) is identified for any of the IIR channels. Finally, using the relative approach, a year-by-year seasonal bias between nighttime and daytime IIR-MODIS BTD was found at mid-latitude in the Northern Hemisphere. It is due to a nighttime IIR bias as determined by the stand-alone approach, which originates from a calibration drift during day-to-night transitions. The largest bias is in June and July when IIR2 and IIR3 are warmer by 0.4 K on average, and IIR1 is warmer by 0.2 K.
A cloud masking algorithm for EARLINET lidar systems
NASA Astrophysics Data System (ADS)
Binietoglou, Ioannis; Baars, Holger; D'Amico, Giuseppe; Nicolae, Doina
2015-04-01
Cloud masking is an important first step in any aerosol lidar processing chain as most data processing algorithms can only be applied on cloud free observations. Up to now, the selection of a cloud-free time interval for data processing is typically performed manually, and this is one of the outstanding problems for automatic processing of lidar data in networks such as EARLINET. In this contribution we present initial developments of a cloud masking algorithm that permits the selection of the appropriate time intervals for lidar data processing based on uncalibrated lidar signals. The algorithm is based on a signal normalization procedure using the range of observed values of lidar returns, designed to work with different lidar systems with minimal user input. This normalization procedure can be applied to measurement periods of only few hours, even if no suitable cloud-free interval exists, and thus can be used even when only a short period of lidar measurements is available. Clouds are detected based on a combination of criteria including the magnitude of the normalized lidar signal and time-space edge detection performed using the Sobel operator. In this way the algorithm avoids misclassification of strong aerosol layers as clouds. Cloud detection is performed using the highest available time and vertical resolution of the lidar signals, allowing the effective detection of low-level clouds (e.g. cumulus humilis). Special attention is given to suppress false cloud detection due to signal noise that can affect the algorithm's performance, especially during day-time. In this contribution we present the details of algorithm, the effect of lidar characteristics (space-time resolution, available wavelengths, signal-to-noise ratio) to detection performance, and highlight the current strengths and limitations of the algorithm using lidar scenes from different lidar systems in different locations across Europe.