Sample records for modis instruments aboard

  1. Validation of MODIS Dust Aerosol Retrieval and Development Ambient Dust Phase Function using PRIDE Data

    NASA Technical Reports Server (NTRS)

    Remer, Lorraine A.; Lau, William (Technical Monitor)

    2002-01-01

    The PRIDE data set of MODIS aerosol retrievals co-located with sunphotometer measurements provides the basis of MODIS validation in a dust environment. The sunphotometer measurements include AERONET automatic instruments, land-based Microtops instruments, ship-board Microtops instruments and the AATS-6 aboard the Navajo aircraft. Analysis of these data indicate that the MODIS retrieval is within pre-launch estimates of uncertainty within the spectral range of 600-900 nm. However, the MODIS algorithm consistently retrieves smaller particles than reality thus leading to incorrect spectral response outside of the 600-900 nm range and improper size information. Further analysis of MODIS retrievals in other dust environments shows the inconsistencies are due to nonspherical effects in the phase function. These data are used to develop an ambient phase function for dust aerosol to be used for remote sensing purposes.

  2. MODIS Sees Hurricane Gonzalo

    NASA Image and Video Library

    2017-12-08

    On Oct. 18 at 17:35 UTC (1:35 p.m EDT) the MODIS instrument aboard NASA's Aqua satellite saw Hurricane Gonzalo approaching Newfoundland. ..Credit: NASA Goddard MODIS Rapid Response Team..NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. Using NASA's Interactive Visualization and Image Extraction Tool AppEEARS to Assess Differences between MODIS and VIIRS

    NASA Astrophysics Data System (ADS)

    Neeley, S.

    2017-12-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) sensor aboard the Suomi-NPP satellite is designed to provide data continuity with the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors aboard NASA's Terra and Aqua satellites. VIIRS data products are generated in a similar format as MODIS using modified algorithms and aim to extend the data lifecycle of MODIS products, which are widely used in a variety of scientific disciplines. However, there are differences in the characteristics of the instruments that could influence decision making when conducting a study involving a combination of products from both sensors. Inter-sensor comparison studies between VIIRS and MODIS have highlighted some of the inconsistencies between the sensors, including calibrated radiances, pixel sizes, swath widths, and spectral response functions of the bands. These differences should be well-understood among the science community as these inconsistencies could potentially effect the results of time-series analyses or land change studies that rely on using VIIRS and MODIS data products in combination. An efficient method to identify and better understand differences between data products will allow for the science community to make informed decisions when conducting analyses using a combination of VIIRS and MODIS data products. NASA's Application for Extracting and Exploring Analysis Ready Samples (AppEEARS) tool enables users to efficiently compare MODIS and VIIRS data products, including surface reflectance from 2012 to present. AppEEARS is a user-friendly image extraction tool used to order spatial and temporal data subsets, reproject data, and visualize output sample results before data download. AppEEARs allows users to compare MODIS and VIIRS data products by providing interactive visualizations and summary statistics of each dataset-either over a specific point or region of interest across a period of time. This tool enhances decision-making when using newly available VIIRS products combined with MODIS as it allows for data inconsistencies to be explored before the data is downloaded. Here, we demonstrate how AppEEARS enables users to perform comparisons across VIIRS and MODIS Surface Reflectance products and provide a detailed review of characteristic differences between the instruments.

  4. Flooding of the Ob River, Russia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A mixture of heavy rainfall, snowmelt, and ice jams in late May and early June of this year caused the Ob River and surrounding tributaries in Western Siberia to overflow their banks. The flooding can be seen in thess image taken on June 16, 2002, by the MODIS (Moderate Resolution Imaging Spectroradiometer) instrument aboard the Terra satellite. Last year, the river flooded farther north. Normally, the river resembles a thin black line, but floods have swollen the river considerably. Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

  5. Snow across the Midwest

    NASA Image and Video Library

    2017-12-08

    On Nov. 22, 2015 at 19:15 UTC the MODIS instrument aboard NASA's Aqua satellite captured this image of Snow across the Midwest. Credit: NASA Goddard MODIS Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. Results and Validation of MODIS Aerosol Retrievals Over Land and Ocean

    NASA Technical Reports Server (NTRS)

    Remer, Lorraine; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The MODerate Resolution Imaging Spectroradiometer (MODIS) instrument aboard the Terra spacecraft has been retrieving aerosol parameters since late February 2000. Initial qualitative checking of the products showed very promising results including matching of land and ocean retrievals at coastlines. Using AERONET ground-based radiometers as our primary validation tool, we have established quantitative validation as well. Our results show that for most aerosol types, the MODIS products fall within the pre-launch estimated uncertainties. Surface reflectance and aerosol model assumptions appear to be sufficiently accurate for the optical thickness retrieval. Dust provides a possible exception, which may be due to non-spherical effects. Over ocean the MODIS products include information on particle size, and these parameters are also validated with AERONET retrievals.

  7. Results and Validation of MODIS Aerosol Retrievals over Land and Ocean

    NASA Technical Reports Server (NTRS)

    Remer, L. A.; Kaufman, Y. J.; Tanre, D.; Ichoku, C.; Chu, D. A.; Mattoo, S.; Levy, R.; Martins, J. V.; Li, R.-R.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The MODerate Resolution Imaging Spectroradiometer (MODIS) instrument aboard the Terra spacecraft has been retrieving aerosol parameters since late February 2000. Initial qualitative checking of the products showed very promising results including matching of land and ocean retrievals at coastlines. Using AERONET ground-based radiometers as our primary validation tool, we have established quantitative validation as well. Our results show that for most aerosol types, the MODIS products fall within the pre-launch estimated uncertainties. Surface reflectance and aerosol model assumptions appear to be sufficiently accurate for the optical thickness retrieval. Dust provides a possible exception, which may be due to non-spherical effects. Over ocean the MODIS products include information on particle size, and these parameters are also validated with AERONET retrievals.

  8. NASA Sees First Land-falling Tropical Cyclone in Yemen

    NASA Image and Video Library

    2017-12-08

    On Nov. 3, 2015 at 07:20 UTC (2:20 a.m. EDT) the MODIS instrument aboard NASA's Aqua satellite captured this image of Tropical Cyclone Chapala over Yemen. Credit: NASA Goddard MODIS Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. Hurricane Patricia over Mexico

    NASA Image and Video Library

    2017-12-08

    On Oct. 23 at 17:30 UTC (1:30 p.m. EDT) the MODIS instrument aboard NASA's Terra satellite saw Hurricane Patricia moving over Mexico. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  10. Tropical Storm Haiyan Makes Landfall in Northern Vietnam

    NASA Image and Video Library

    2013-11-12

    On Nov. 11 at 05:45 UTC, the MODIS instrument aboard NASA's Aqua satellite captured this image of Tropical Storm Haiyan over mainland China. Credit: NASA Goddard MODIS Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  11. Hurricane Gonzalo 10/19

    NASA Image and Video Library

    2017-12-08

    On Oct. 19 at 1500 UTC (11 a.m. EDT), the MODIS instrument aboard NASA's Terra satellite captured this visible image of Hurricane Gonzalo east of Newfoundland, Canada. ..Credit: NASA Goddard MODIS Rapid Response Team ..NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  12. Hurricane Gonzalo 10/17

    NASA Image and Video Library

    2017-12-08

    On Oct. 17 at 15:15 UTC (11:15 a.m EDT) the MODIS instrument aboard NASA's Aqua satellite saw Hurricane Gonzalo's northern quadrant over Bermuda as it moved to landfall. ..Credit: NASA Goddard MODIS Rapid Response Team ..NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. Parameterization of air temperature in high temporal and spatial resolution from a combination of the SEVIRI and MODIS instruments

    NASA Astrophysics Data System (ADS)

    Zakšek, Klemen; Schroedter-Homscheidt, Marion

    Some applications, e.g. from traffic or energy management, require air temperature data in high spatial and temporal resolution at two metres height above the ground ( T2m), sometimes in near-real-time. Thus, a parameterization based on boundary layer physical principles was developed that determines the air temperature from remote sensing data (SEVIRI data aboard the MSG and MODIS data aboard Terra and Aqua satellites). The method consists of two parts. First, a downscaling procedure from the SEVIRI pixel resolution of several kilometres to a one kilometre spatial resolution is performed using a regression analysis between the land surface temperature ( LST) and the normalized differential vegetation index ( NDVI) acquired by the MODIS instrument. Second, the lapse rate between the LST and T2m is removed using an empirical parameterization that requires albedo, down-welling surface short-wave flux, relief characteristics and NDVI data. The method was successfully tested for Slovenia, the French region Franche-Comté and southern Germany for the period from May to December 2005, indicating that the parameterization is valid for Central Europe. This parameterization results in a root mean square deviation RMSD of 2.0 K during the daytime with a bias of -0.01 K and a correlation coefficient of 0.95. This is promising, especially considering the high temporal (30 min) and spatial resolution (1000 m) of the results.

  14. Typhoon Haiyan Near Hainan Island, China

    NASA Image and Video Library

    2013-11-12

    On Nov. 10 at 03:30 UTC/Nov. 9 at 10:30 p.m. EDT, the MODIS instrument aboard NASA's Terra satellite showed the center of Typhoon Haiyan just south of Hainan Island, China in the South China Sea. Credit: NASA Goddard MODIS Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  15. Typhoon Usagi approaching China

    NASA Image and Video Library

    2013-09-23

    The Moderate Resolution Imaging Spectroradiometer or MODIS instrument that flies aboard NASA's Terra satellite captured this image of Typhoon Usagi on Sept. 22 at 02:45 UTC/Sept. 21 at 10:45 p.m. EDT on its approach to a landfall in China. Credit: NASA Goddard MODIS Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  16. Tropical Storm Andrea June 6, 2013

    NASA Image and Video Library

    2017-12-08

    This image from the MODIS instrument aboard NASA's Terra satellite shows tropical storm Andrea on June 6, 2013, at 2:45 p.m. EDT, as the system was making landfall in the big bend area of Florida. Credit: NASA Goddard's MODIS Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. NASA Observes Super Typhoon Hagupit; Philippines Under Warnings

    NASA Image and Video Library

    2017-12-08

    On Dec. 4 at 02:10 UTC, the MODIS instrument aboard NASA's Terra satellite took this visible image of Super Typhoon Hagupit approaching the Philippines. Image Credit: NASA Goddard's MODIS Rapid Response Team Read more: 1.usa.gov/12q3ssK NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  18. A brief comparison of radiometers at NSIDC and their potential to generate long ESDRs

    NASA Astrophysics Data System (ADS)

    Moth, P.; Johnston, T.; Haran, T. M.; Fowler, D. K.

    2017-12-01

    Radiometers have played a big part in Earth observing science. In this poster we compare three such instruments: the Advanced Very-High-resolution Radiometer (AVHRR), the Moderate Resolution Imaging Spectroradiometer (MODIS), and the Visible Infrared Imaging Radiometer Suite (VIIRS). The NASA National Snow and Ice Distributed Active Archive Center (NSIDC DAAC) has archived cryospheric data from all three of these instruments. AVHRR was a 4-channel radiometer that was first launched in 1978 aboard the TIROS-N satellite. Subsequent missions launched improved versions of AVHRR with five and six channels, observing Earth in frequencies ranging from 0.58 μm to 12.5 μm with a resolution at nadir of 1.09 km. MODIS instruments fly onboard NASA's Earth Observing System (EOS) Terra and Aqua satellites. Launched in 1999 and 2002, respectively, they still produce much sought after data observed in 36 spectral bands ranging from 0.4 μm to 14.4 μm. Two bands image Earth at a nominal resolution of 250 m at nadir, five at 500 m, and the remaining 29 bands at 1 km. A ±55-degree scanning pattern at the sun-synchronous orbit of 705 km achieves a 2,330 km swath and provides global coverage every one to two days VIIRS, NOAA's latest radiometer, was launched aboard the Suomi National Polar-orbiting Partnership satellite on October 28, 2011. Working collaboratively, NASA and NOAA are producing data that is archived and distributed via NASA DAACs. The VIIRS radiometer comprises 22 bands; five for high-resolution imagery, 16 at moderate resolution, and one panchromatic day/night band. VIIRS is a whiskbroom scanning radiometer that covers the spectrum between 0.412 μm and 12.01 μm and acquires spatial resolutions at nadir of 750 m, 375 m, and 750 m, respectively. Although these instruments are configured with different spectral bands, each was designed with an eye to the future. MODIS can be thought of as a successor to the AVHRR mission, adding capabilities that yielded better data. Similarly, VIIRS will extend the MODIS record with new, higher quality data. Starting in the early 1980s, the AVHRR-MODIS-VIIRS timeline should span at least four decades and perhaps beyond, enabling researchers to produce and gain valuable insight from very long, high-quality Earth System Data Records (ESDRs).

  19. Validation of MODIS Aerosol Retrievals during PRIDE

    NASA Technical Reports Server (NTRS)

    Levy, R.; Remier, L.; Kaufman, Y.; Kleidman, R.; Holben, B.; Russell, P.; Livingston, J.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The Puerto Rico Dust Experiment (PRIDE) was held in Roosevelt Roads, Puerto Rico from June 26 to July 24, 2000. It was intended to study the radiative and microphysical properties of Saharan dust transported into Puerto Rico. PRIDE had the unique distinction of being the first major field experiment to allow direct comparison of aerosol retrievals from MODIS (MODerate Imaging Spectro-radiometer - aboard the Terra satellite) with data from a variety of ground, shipboard and air-based instruments. Over the ocean the MODIS algorithm retrieves optical depth as well as information about the aerosol's size. During PRIDE, MODIS passed over Roosevelt Roads approximately once per day during daylight hours. Due to sunglint and clouds over Puerto Rico, aerosol retrievals can be made from only about half the MODIS scenes. In this study we try to "validate" our aerosol retrievals by comparing to measurements taken by sun-photometers from multiple platforms, including: Cimel (AERONET) from the ground, Microtops (handheld) from ground and ship, and the NASA-Ames sunphotometer from the air.

  20. NASA Sees Hurricane Arthur's Cloud-Covered Eye

    NASA Image and Video Library

    2014-07-03

    This visible image of Tropical Storm Arthur was taken by the MODIS instrument aboard NASA's Aqua satellite on July 2 at 18:50 UTC (2:50 p.m. EDT). A cloud-covered eye is clearly visible. Credit: NASA Goddard MODIS Rapid Response Team Read more: www.nasa.gov/content/goddard/arthur-atlantic/ NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  1. Crosstalk effect and its mitigation in Aqua MODIS middle wave infrared bands

    NASA Astrophysics Data System (ADS)

    Sun, Junqiang; Madhavan, Sriharsha; Wang, Menghua

    2017-09-01

    The MODerate-resolution Imaging Spectroradiometer (MODIS) is one of the primary instruments in the National Aeronautics and Space Administration (NASA) Earth Observing System (EOS). The first MODIS instrument was launched in December 1999 on-board the Terra spacecraft. A follow on MODIS was launched on an afternoon orbit in 2002 and is aboard the Aqua spacecraft. Both MODIS instruments are very akin, has 36 bands, among which bands 20 to 25 are Middle Wave Infrared (MWIR) bands covering a wavelength range from approximately 3.750 μm to 4.515 μm. It was found that there was severe contamination in these bands early in mission but the effect has not been characterized and mitigated at the time. The crosstalk effect induces strong striping in the Earth View (EV) images and causes significant retrieval errors in the EV Brightness Temperature (BT) in these bands. An algorithm using a linear approximation derived from on-orbit lunar observations has been developed to correct the crosstalk effect and successfully applied to mitigate the effect in both Terra and Aqua MODIS Long Wave Infrared (LWIR) Photovoltaic (PV) bands. In this paper, the crosstalk effect in the Aqua MWIR bands is investigated and characterized by deriving the crosstalk coefficients using the scheduled Aqua MODIS lunar observations for the MWIR bands. It is shown that there are strong crosstalk contaminations among the five MWIR bands and they also have significant crosstalk contaminations from Short Wave Infrared (SWIR) bands. The crosstalk correction algorithm previously developed is applied to correct the crosstalk effect in these bands. It is demonstrated that the crosstalk correction successfully reduces the striping in the EV images and improves the accuracy of the EV BT in the five bands as was done similarly for LWIR PV bands. The crosstalk correction algorithm should thus be applied to improve both the image quality and radiometric accuracy of the Aqua MODIS MWIR bands Level 1B (L1B) products.

  2. Aerosol Lidar and MODIS Satellite Comparisons for Future Aerosol Loading Forecast

    NASA Technical Reports Server (NTRS)

    DeYoung, Russell; Szykman, James; Severance, Kurt; Chu, D. Allen; Rosen, Rebecca; Al-Saadi, Jassim

    2006-01-01

    Knowledge of the concentration and distribution of atmospheric aerosols using both airborne lidar and satellite instruments is a field of active research. An aircraft based aerosol lidar has been used to study the distribution of atmospheric aerosols in the California Central Valley and eastern US coast. Concurrently, satellite aerosol retrievals, from the MODIS (Moderate Resolution Imaging Spectroradiometer) instrument aboard the Terra and Aqua satellites, were take over the Central Valley. The MODIS Level 2 aerosol data product provides retrieved ambient aerosol optical properties (e.g., optical depth (AOD) and size distribution) globally over ocean and land at a spatial resolution of 10 km. The Central Valley topography was overlaid with MODIS AOD (5x5 sq km resolution) and the aerosol scattering vertical profiles from a lidar flight. Backward air parcel trajectories for the lidar data show that air from the Pacific and northern part of the Central Valley converge confining the aerosols to the lower valley region and below the mixed layer. Below an altitude of 1 km, the lidar aerosol and MODIS AOD exhibit good agreement. Both data sets indicate a high presence of aerosols near Bakersfield and the Tehachapi Mountains. These and other results to be presented indicate that the majority of the aerosols are below the mixed layer such that the MODIS AOD should correspond well with surface measurements. Lidar measurements will help interpret satellite AOD retrievals so that one day they can be used on a routine basis for prediction of boundary layer aerosol pollution events.

  3. An Examination of the Nature of Global MODIS Cloud Regimes

    NASA Technical Reports Server (NTRS)

    Oreopoulos, Lazaros; Cho, Nayeong; Lee, Dongmin; Kato, Seiji; Huffman, George J.

    2014-01-01

    We introduce global cloud regimes (previously also referred to as "weather states") derived from cloud retrievals that use measurements by the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard the Aqua and Terra satellites. The regimes are obtained by applying clustering analysis on joint histograms of retrieved cloud top pressure and cloud optical thickness. By employing a compositing approach on data sets from satellites and other sources, we examine regime structural and thermodynamical characteristics. We establish that the MODIS cloud regimes tend to form in distinct dynamical and thermodynamical environments and have diverse profiles of cloud fraction and water content. When compositing radiative fluxes from the Clouds and the Earth's Radiant Energy System instrument and surface precipitation from the Global Precipitation Climatology Project, we find that regimes with a radiative warming effect on the atmosphere also produce the largest implied latent heat. Taken as a whole, the results of the study corroborate the usefulness of the cloud regime concept, reaffirm the fundamental nature of the regimes as appropriate building blocks for cloud system classification, clarify their association with standard cloud types, and underscore their distinct radiative and hydrological signatures.

  4. Passive and Active Detection of Clouds: Comparisons between MODIS and GLAS Observations

    NASA Technical Reports Server (NTRS)

    Mahesh, Ashwin; Gray, Mark A.; Palm, Stephen P.; Hart, William D.; Spinhirne, James D.

    2003-01-01

    The Geoscience Laser Altimeter System (GLAS), launched on board the Ice, Cloud and Land Elevation Satellite in January 2003 provides space-borne laser observations of atmospheric layers. GLAS provides opportunities to validate passive observations of the atmosphere for the first time from space with an active optical instrument. Data from the Moderate Resolution Imaging Spectrometer aboard the Aqua satellite is examined along with GLAS observations of cloud layers. In more than three-quarters of the cases, MODIS scene identification from spectral radiances agrees with GLAS. Disagreement between the two platforms is most significant over snow-covered surfaces in the northern hemisphere. Daytime clouds detected by GLAS are also more easily seen in the MODIS data as well, compared to observations made at night. These comparisons illustrate the capabilities of active remote sensing to validate and assess passive measurements, and also to complement them in studies of atmospheric layers.

  5. Transitioning from MODIS to VIIRS: an analysis of inter-consistency of NDVI data sets for agricultural monitoring.

    PubMed

    Skakun, Sergii; Justice, Christopher O; Vermote, Eric; Roger, Jean-Claude

    2018-01-01

    The Visible/Infrared Imager/Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership (S-NPP) satellite was launched in 2011, in part to provide continuity with the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard National Aeronautics and Space Administration's (NASA) Terra and Aqua remote sensing satellites. The VIIRS will eventually replace MODIS for both land science and applications and add to the coarse-resolution, long term data record. It is, therefore, important to provide the user community with an assessment of the consistency of equivalent products from the two sensors. For this study, we do this in the context of example agricultural monitoring applications. Surface reflectance that is routinely delivered within the M{O,Y}D09 and VNP09 series of products provide critical input for generating downstream products. Given the range of applications utilizing the normalized difference vegetation index (NDVI) generated from M{O,Y}D09 and VNP09 products and the inherent differences between MODIS and VIIRS sensors in calibration, spatial sampling, and spectral bands, the main objective of this study is to quantify uncertainties related the transitioning from using MODIS to VIIRS-based NDVI's. In particular, we compare NDVI's derived from two sets of Level 3 MYD09 and VNP09 products with various spatial-temporal characteristics, namely 8-day composites at 500 m spatial resolution and daily Climate Modelling Grid (CMG) images at 0.05° spatial resolution. Spectral adjustment of VIIRS I1 (red) and I2 (near infra-red - NIR) bands to match MODIS/Aqua b1 (red) and b2 (NIR) bands is performed to remove a bias between MODIS and VIIRS-based red, NIR, and NDVI estimates. Overall, red reflectance, NIR reflectance, NDVI uncertainties were 0.014, 0.029 and 0.056 respectively for the 500 m product and 0.013, 0.016 and 0.032 for the 0.05° product. The study shows that MODIS and VIIRS NDVI data can be used interchangeably for applications with an uncertainty of less than 0.02 to 0.05, depending on the scale of spatial aggregation, which is typically the uncertainty of the individual dataset.

  6. Two decades of satellite observations of AOD over mainland China using ATSR-2, AATSR and MODIS/Terra: data set evaluation and large-scale patterns

    NASA Astrophysics Data System (ADS)

    de Leeuw, Gerrit; Sogacheva, Larisa; Rodriguez, Edith; Kourtidis, Konstantinos; Georgoulias, Aristeidis K.; Alexandri, Georgia; Amiridis, Vassilis; Proestakis, Emmanouil; Marinou, Eleni; Xue, Yong; van der A, Ronald

    2018-02-01

    The retrieval of aerosol properties from satellite observations provides their spatial distribution over a wide area in cloud-free conditions. As such, they complement ground-based measurements by providing information over sparsely instrumented areas, albeit that significant differences may exist in both the type of information obtained and the temporal information from satellite and ground-based observations. In this paper, information from different types of satellite-based instruments is used to provide a 3-D climatology of aerosol properties over mainland China, i.e., vertical profiles of extinction coefficients from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), a lidar flying aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite and the column-integrated extinction (aerosol optical depth - AOD) available from three radiometers: the European Space Agency (ESA)'s Along-Track Scanning Radiometer version 2 (ATSR-2), Advanced Along-Track Scanning Radiometer (AATSR) (together referred to as ATSR) and NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Terra satellite, together spanning the period 1995-2015. AOD data are retrieved from ATSR using the ATSR dual view (ADV) v2.31 algorithm, while for MODIS Collection 6 (C6) the AOD data set is used that was obtained from merging the AODs obtained from the dark target (DT) and deep blue (DB) algorithms, further referred to as the DTDB merged AOD product. These data sets are validated and differences are compared using Aerosol Robotic Network (AERONET) version 2 L2.0 AOD data as reference. The results show that, over China, ATSR slightly underestimates the AOD and MODIS slightly overestimates the AOD. Consequently, ATSR AOD is overall lower than that from MODIS, and the difference increases with increasing AOD. The comparison also shows that neither of the ATSR and MODIS AOD data sets is better than the other one everywhere. However, ATSR ADV has limitations over bright surfaces which the MODIS DB was designed for. To allow for comparison of MODIS C6 results with previous analyses where MODIS Collection 5.1 (C5.1) data were used, also the difference between the C6 and C5.1 merged DTDB data sets from MODIS/Terra over China is briefly discussed. The AOD data sets show strong seasonal differences and the seasonal features vary with latitude and longitude across China. Two-decadal AOD time series, averaged over all of mainland China, are presented and briefly discussed. Using the 17 years of ATSR data as the basis and MODIS/Terra to follow the temporal evolution in recent years when the environmental satellite Envisat was lost requires a comparison of the data sets for the overlapping period to show their complementarity. ATSR precedes the MODIS time series between 1995 and 2000 and shows a distinct increase in the AOD over this period. The two data series show similar variations during the overlapping period between 2000 and 2011, with minima and maxima in the same years. MODIS extends this time series beyond the end of the Envisat period in 2012, showing decreasing AOD.

  7. MODIS Measures Total U.S. Leaf Area

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This composite image over the continental United States was produced with data acquired by the Moderate-resolution Imaging Spectroradiometer (MODIS) during the period March 24 - April 8, 2000. The image is a map of the density of the plant canopy covering the ground. It is the first in a series of images over the continental U.S. produced by the MODIS Land Discipline Group (refer to this site June 2 and 5 for the next two images in the series). The image is a MODIS data product called 'Leaf Area Index,' which is produced by radiometrically measuring the visible and near infrared energy reflected by vegetation. The Leaf Area Index provides information on the structure of plant canopy, showing how much surface area is covered by green foliage relative to total land surface area. In this image, dark green pixels indicate areas where more than 80 percent of the land surface is covered by green vegetation, light green pixels show where leaves cover about 10 to 50 percent of the land surface, and brown pixels show virtually no leaf coverage. The more leaf area a plant has, the more sunlight it can absorb for photosynthesis. Leaf Area Index is one of a new suite of measurements that scientists use to understand how the Earth's land surfaces are changing over time. Their goal is to use these measurements to refine computer models well enough to simulate how the land biosphere influences the natural cycles of water, carbon, and energy throughout the Earth system. This image is the first of its kind from the MODIS instrument, which launched in December 1999 aboard the Terra spacecraft. MODIS began acquiring scientific data on February 24, 2000, when it first opened its aperture door. The MODIS instrument and Terra spacecraft are both managed by NASA's Goddard Space Flight Center, Greenbelt, MD. Image courtesy Steven Running, MODIS Land Group Member, University of Montana

  8. Satellite Remote Sensing for Developing Time and Space Resolved Estimates of Ambient Particulate in Cleveland, OH.

    PubMed

    Kumar, Naresh; Chu, Allen D; Foster, Andrew D; Peters, Thomas; Willis, Robert

    2011-09-01

    This article empirically demonstrates the use of fine resolution satellite-based aerosol optical depth (AOD) to develop time and space resolved estimates of ambient particulate matter (PM) ≤2.5 µm and ≤10 µm in aerodynamic diameters (PM(2.5) and PM(10), respectively). AOD was computed at three different spatial resolutions, i.e., 2 km (means 2 km × 2 km area at nadir), 5 km, and 10 km, by using the data from MODerate Resolution Imaging Spectroradiometer (MODIS), aboard the Terra and Aqua satellites. Multiresolution AOD from MODIS (AOD(MODIS)) was compared with the in situ measurements of AOD by NASA's AErosol RObotic NETwork (AERONET) sunphotometer (AOD(AERONET)) at Bondville, IL, to demonstrate the advantages of the fine resolution AOD(MODIS) over the 10-km AOD(MODIS), especially for air quality prediction. An instrumental regression that corrects AOD(MODIS) for meteorological conditions was used for developing a PM predictive model.The 2-km AOD(MODIS) aggregated within 0.025° and 15-min intervals shows the best association with the in situ measurements of AOD(AERONET). The 2-km AOD(MODIS) seems more promising to estimate time and space resolved estimates of ambient PM than the 10-km AOD(MODIS), because of better location precision and a significantly greater number of data points across geographic space and time. Utilizing the collocated AOD(MODIS) and PM data in Cleveland, OH, a regression model was developed for predicting PM for all AOD(MODIS) data points. Our analysis suggests that the slope of the 2-km AOD(MODIS) (instrumented on meteorological conditions) is close to unity with the PM monitored on the ground. These results should be interpreted with caution, because the slope of AOD(MODIS) ranges from 0.52 to 1.72 in the site-specific models. In the cross validation of the overall model, the root mean square error (RMSE) of PM(10) was smaller (2.04 µg/m(3) in overall model) than that of PM(2.5) (2.5 µg/m(3)). The predicted PM in the AOD(MODIS) data (∼2.34 million data points) was utilized to develop a systematic grid of daily PM at 5-km spatial resolution with the aid of spatiotemporal Kriging.

  9. NASA Sees a Wider-Eyed Typhoon Soudelor Near Taiwan

    NASA Image and Video Library

    2017-12-08

    The MODIS instrument aboard NASA's Aqua satellite flew over Typhoon Soudelor on Aug. 7, 2015, at 4:40 UTC (12:40 a.m. EDT) as it was approaching Taiwan. Credits: NASA Goddard's MODIS Rapid Response Team Clouds in Typhoon Soudelor's western quadrant were already spreading over Taiwan early on August 7 when NASA's Aqua satellite passed overhead. Soudelor is expected to make landfall and cross central Taiwan today and make a second landfall in eastern China. NASA satellite imagery revealed that Soudelor's eye "opened" five more miles since August 4. On Aug. 7 at 4:40 UTC (12:40 a.m. EDT) the Moderate Resolution Imaging Spectroradiometer or MODIS instrument aboard NASA's Aqua satellite captured a visible-light image of Typhoon Soudelor as its western quadrant began brushing eastern Taiwan. The MODIS image showed Soudelor's 17-nautical-mile-wide eye and thick bands of powerful thunderstorms surrounded the storm and spiraled into the center. Just three days before, the eye was 5 nautical miles smaller when the storm was more intense. On Aug. 4 at 4:10 UTC (12:10 a.m. EDT) Aqua's MODIS image showed the eye was 12-nautical-mile-wide eye. At 1500 UTC (11 a.m. EDT) on August 7, 2015, the Joint Typhoon Warning Center (JTWC) noted that Typhoon Soudelor's maximum sustained winds increased from 90 knots (103.6 mph/166.7 kph) to 105 knots (120.8 mph / 194.5 kph). It was centered near 23.1 North latitude and 123.2 East longitude, about 183 nautical miles (210.6 miles/338.9 km) southeast of Taipei, Taiwan. It was moving to the west-northwest at 10 knots (11.5 mph/18.5 kph). For warnings and watches for Taiwan, visit the Central Weather Bureau website: www.cwb.gov.tw/eng/. For warnings in China, visit the China Meteorological Administration website: www.cma.gov.cn/en. Soudelor's final landfall is expected in eastern China on Saturday, August 8. Clouds in Typhoon Soudelor's western quadrant were already spreading over Taiwan early on August 7 when NASA's Aqua satellite passed overhead. Soudelor is expected to make landfall and cross central Taiwan today and make a second landfall in eastern China. NASA satellite imagery revealed that Soudelor's eye "opened" five more miles since August 4. On Aug. 7 at 4:40 UTC (12:40 a.m. EDT) the Moderate Resolution Imaging Spectroradiometer or MODIS instrument aboard NASA's Aqua satellite captured a visible-light image of Typhoon Soudelor as its western quadrant began brushing eastern Taiwan. The MODIS image showed Soudelor's 17-nautical-mile-wide eye and thick bands of powerful thunderstorms surrounded the storm and spiraled into the center. Just three days before, the eye was 5 nautical miles smaller when the storm was more intense. On Aug. 4 at 4:10 UTC (12:10 a.m. EDT) Aqua's MODIS image showed the eye was 12-nautical-mile-wide eye. At 1500 UTC (11 a.m. EDT) on August 7, 2015, the Joint Typhoon Warning Center (JTWC) noted that Typhoon Soudelor's maximum sustained winds increased from 90 knots (103.6 mph/166.7 kph) to 105 knots (120.8 mph / 194.5 kph). It was centered near 23.1 North latitude and 123.2 East longitude, about 183 nautical miles (210.6 miles/338.9 km) southeast of Taipei, Taiwan. It was moving to the west-northwest at 10 knots (11.5 mph/18.5 kph). For warnings and watches for Taiwan, visit the Central Weather Bureau website: www.cwb.gov.tw/eng/. For warnings in China, visit the China Meteorological Administration website: www.cma.gov.cn/en. Soudelor's final landfall is expected in eastern China on Saturday, August 8.

  10. Band-to-Band Misregistration of the Images of MODIS On-Board Calibrators and Its Impact to Calibration

    NASA Technical Reports Server (NTRS)

    Wang, Zhipeng; Xiong, Xiaoxiong

    2017-01-01

    The MODIS instruments aboard Terra and Aqua satellites are radiometrically calibrated on-orbit with a set of onboard calibrators (OBC) including a solar diffuser (SD), a blackbody (BB) and a space view (SV) port through which the detectors can view the dark space. As a whisk-broom scanning spectroradiometer, thirty-six MODIS spectral bands are assembled in the along-scan direction on four focal plane assemblies (FPA). These bands capture images of the same target sequentially with the motion of a scan mirror. Then the images are co-registered on board by delaying appropriate band dependent amount of time depending on the band locations on the FPA. While this co-registration mechanism is functioning well for the "far field" remote targets such as Earth view (EV) scenes or the Moon, noticeable band-to-band misregistration in the along-scan direction has been observed for near field targets, in particular the OBCs. In this paper, the misregistration phenomenon is presented and analyzed. It is concluded that the root cause of the misregistration is that the rotating element of the instrument, the scan mirror, is displaced from the focus of the telescope primary mirror. The amount of the misregistration is proportional to the band location on the FPA and is inversely proportional to the distance between the target and the scan mirror. The impact of this misregistration to the calibration of MODIS bands is discussed. In particular, the calculation of the detector gain coefficient m1 of bands 8-16 (412 nm 870 nm) is improved by up to 1.5% for Aqua MODIS.

  11. Band-to-Band Misregistration of the Images of MODIS Onboard Calibrators and Its Impact on Calibration

    NASA Technical Reports Server (NTRS)

    Wang, Zhipeng; Xiong, Xiaoxiong

    2017-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard Terra and Aqua satellites are radiometrically calibrated on-orbit with a set of onboard calibrators (OBCs), including a solar diffuser, a blackbody, and a space view port through which the detectors can view the dark space. As a whisk-broom scanning spectroradiometer, thirty-six MODIS spectral bands are assembled in the along-scan direction on four focal plane assemblies (FPAs). These bands capture images of the same target sequentially with the motion of a scan mirror. Then the images are coregistered onboard by delaying the appropriate band-dependent amount of time, depending on the band locations on the FPA. While this coregistration mechanismis functioning well for the far-field remote targets such as earth view scenes or the moon, noticeable band-to-band misregistration in the along-scan direction has been observed for near field targets, particularly in OBCs. In this paper, the misregistration phenomenon is presented and analyzed. It is concluded that the root cause of the misregistration is that the rotating element of the instrument, the scan mirror, is displaced from the focus of the telescope primary mirror. The amount of the misregistrationis proportional to the band location on the FPA and is inversely proportional to the distance between the target and the scan mirror. The impact of this misregistration on the calibration of MODIS bands is discussed. In particular, the calculation of the detector gain coefficient m1of bands 8-16 (412 nm 870 nm) is improved by up to 1.5% for Aqua MODIS.

  12. MODIS Retrieval of Dust Aerosol

    NASA Technical Reports Server (NTRS)

    Remer, Lorraine A.; Kaufman, Yoram J.; Tanre, Didier

    2003-01-01

    The MODerate resolution Imaging Spectroradiometer (MODIS) currently aboard both the Terra and Aqua satellites produces a suite of products designed to characterize global aerosol distribution, optical thickness and particle size. Never before has a space-borne instrument been able to provide such detailed information, operationally, on a nearly global basis every day. The three years of Terra-MODIS data have been validated by comparing with co-located AERONET observations of aerosol optical thickness and derivations of aerosol size parameters. Some 8000 comparison points located at 133 AERONET sites around the globe show that the MODIS aerosol optical thickness retrievals are accurate to within the pre-launch expectations. However, the validation in regions dominated by desert dust is less accurate than in regions dominated by fine mode aerosol or background marine sea salt. The discrepancy is most apparent in retrievals of aerosol size parameters over ocean. In dust situations, the MODIS algorithm tends to under predict particle size because the reflectances at top of atmosphere measured by MODIS exhibit the stronger spectral signature expected by smaller particles. This pattern is consistent with the angular and spectral signature of non-spherical particles. All possible aerosol models in the MODIS Look-Up Tables were constructed from Mie theory, assuming a spherical shape. Using a combination of MODIS and AERONET observations, in regimes dominated by desert dust, we construct phase functions, empirically, with no assumption of particle shape. These new phase functions are introduced into the MODIS algorithm, in lieu of the original options for large dust-like particles. The results will be analyzed and examined.

  13. Aircraft Data of the Rodeo/Chediski Fire

    NASA Technical Reports Server (NTRS)

    2002-01-01

    New images of Arizona's Rodeo-Chediski wildfire, which according to news reports is the largest in the state's history, have been acquired by NASA's MODIS Airborne Simulator flying aboard the space agency's ER-2 aircraft. The images show the extent of the burn area-now more than 450,000 acres-and pinpoint areas of active burning as of the morning of July 1. The images below include both true-color images and false-color images designed to highlight the burned areas. They were acquired during a transit of the ER-2 aircraft from NASA's Dryden Flight Research Center, Edwards, Calif. to Key West Naval Air Facility, Fla. in preparation for an upcoming field experiment. The newly acquired wildfire images will be used to validate rapid response wildfire maps produced by NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard the Terra spacecraft. They will also be provided to the U.S. Forest Service for potential use in post-fire damage assessments. The false-color image (top) shows the southern portion of the fire, and reveals that not all the terrain within the fire's perimeter burned to the same degree. Burned areas are red and remaining vegetation is green. In the center of the image, the bright orange pixels are actively burning fire, and the smoke drifting southward from the blaze appears blue. Burned area at the top of the true-color image (bottom) appears charcoal, and a smoke plume drifting southwest from the center of the image reveals the location of actively burning fire. See more images at MODIS Airborne Simulator Images of the Rodeo/Chediski Fire, Arizona and the Earth Observatory's Natural Hazards section. Images courtesy of MODIS Airborne Simulator ER-2 team, NASA GSFC and NASA Dryden Flight Research Center

  14. The Normalization of Surface Anisotropy Effects Present in SEVIRI Reflectances by Using the MODIS BRDF Method

    NASA Technical Reports Server (NTRS)

    Proud, Simon Richard; Zhang, Qingling; Schaaf, Crystal; Fensholt, Rasmus; Rasmussen, Mads Olander; Shisanya, Chris; Mutero, Wycliffe; Mbow, Cheikh; Anyamba, Assaf; Pak, Ed; hide

    2014-01-01

    A modified version of the MODerate resolution Imaging Spectroradiometer (MODIS) bidirectional reflectance distribution function (BRDF) algorithm is presented for use in the angular normalization of surface reflectance data gathered by the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) aboard the geostationary Meteosat Second Generation (MSG) satellites. We present early and provisional daily nadir BRDFadjusted reflectance (NBAR) data in the visible and near-infrared MSG channels. These utilize the high temporal resolution of MSG to produce BRDF retrievals with a greatly reduced acquisition period than the comparable MODIS products while, at the same time, removing many of the angular perturbations present within the original MSG data. The NBAR data are validated against reflectance data from the MODIS instrument and in situ data gathered at a field location in Africa throughout 2008. It is found that the MSG retrievals are stable and are of high-quality across much of the SEVIRI disk while maintaining a higher temporal resolution than the MODIS BRDF products. However, a number of circumstances are discovered whereby the BRDF model is unable to function correctly with the SEVIRI observations-primarily because of an insufficient spread of angular data due to the fixed sensor location or localized cloud contamination.

  15. Comparison of Coincident Multiangle Imaging Spectroradiometer and Moderate Resolution Imaging Spectroradiometer Aerosol Optical Depths over Land and Ocean Scenes Containing Aerosol Robotic Network Sites

    NASA Technical Reports Server (NTRS)

    Abdou, Wedad A.; Diner, David J.; Martonchik, John V.; Bruegge, Carol J.; Kahn, Ralph A.; Gaitley, Barbara J.; Crean, Kathleen A.; Remer, Lorraine A.; Holben, Brent

    2005-01-01

    The Multiangle Imaging Spectroradiometer (MISR) and the Moderate Resolution Imaging Spectroradiometer (MODIS), launched on 18 December 1999 aboard the Terra spacecraft, are making global observations of top-of-atmosphere (TOA) radiances. Aerosol optical depths and particle properties are independently retrieved from these radiances using methodologies and algorithms that make use of the instruments corresponding designs. This paper compares instantaneous optical depths retrieved from simultaneous and collocated radiances measured by the two instruments at locations containing sites within the Aerosol Robotic Network (AERONET). A set of 318 MISR and MODIS images, obtained during the months of March, June, and September 2002 at 62 AERONET sites, were used in this study. The results show that over land, MODIS aerosol optical depths at 470 and 660 nm are larger than those retrieved from MISR by about 35% and 10% on average, respectively, when all land surface types are included in the regression. The differences decrease when coastal and desert areas are excluded. For optical depths retrieved over ocean, MISR is on average about 0.1 and 0.05 higher than MODIS in the 470 and 660 nm bands, respectively. Part of this difference is due to radiometric calibration and is reduced to about 0.01 and 0.03 when recently derived band-to-band adjustments in the MISR radiometry are incorporated. Comparisons with AERONET data show similar patterns.

  16. MODIS 3 Km Aerosol Product: Applications over Land in an Urban/suburban Region

    NASA Technical Reports Server (NTRS)

    Munchak, L. A.; Levy, R. C.; Mattoo, S.; Remer, L. A.; Holben, B. N.; Schafer, J. S.; Hostetler, C. A.; Ferrare, R. A.

    2013-01-01

    MODerate resolution Imaging Spectroradiometer (MODIS) instruments aboard the Terra and Aqua satellites have provided a rich dataset of aerosol information at a 10 km spatial scale. Although originally intended for climate applications, the air quality community quickly became interested in using the MODIS aerosol data. However, 10 km resolution is not sufficient to resolve local scale aerosol features. With this in mind, MODIS Collection 6 is including a global aerosol product with a 3 km resolution. Here, we evaluate the 3 km product over the Baltimore/Washington D.C., USA, corridor during the summer of 2011, by comparing with spatially dense data collected as part of the DISCOVER-AQ campaign these data were measured by the NASA Langley Research Center airborne High Spectral Resolution Lidar (HSRL) and a network of 44 sun photometers (SP) spaced approximately 10 km apart. The HSRL instrument shows that AOD can vary by up to 0.2 within a single 10 km MODIS pixel, meaning that higher resolution satellite retrievals may help to characterize aerosol spatial distributions in this region. Different techniques for validating a high-resolution aerosol product against SP measurements are considered. Although the 10 km product is more statistically reliable than the 3 km product, the 3 km product still performs acceptably, with more than two-thirds of MODIS/SP collocations falling within the expected error envelope with high correlation (R > 0.90). The 3 km product can better resolve aerosol gradients and retrieve closer to clouds and shorelines than the 10 km product, but tends to show more significant noise especially in urban areas. This urban degradation is quantified using ancillary land cover data. Overall, we show that the MODIS 3 km product adds new information to the existing set of satellite derived aerosol products and validates well over the region, but due to noise and problems in urban areas, should be treated with some degree of caution.

  17. Development of a Low Cost Microcontroller-Enabled Handheld Sunphotometer and Comparison with NASA AERONET and MODIS

    NASA Astrophysics Data System (ADS)

    Krintz, I. A.; Ruble, W.; Sherman, J. P.

    2017-12-01

    Satellite-based measurements of aerosol optical depth (AOD), such as those made by NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the TERRA and AQUA spacecraft, are often used in studies of aerosol direct radiative forcing (DRF) on regional to global scales due to daily near-global coverage. However, these measurements require validation by ground-based instrumentation, which is limited due to the cost of research-grade instrumentation. Furthermore, satellite-based AOD agreement with "ground-truth" instruments is weaker over mountainous regions (Levy et al., 2010). To aid in satellite validation, a low cost handheld sunphotometer has been developed which will be suitable for deployment to multiple sites to form a citizen science network as part of an upcoming proposal. A microcontroller, along with temperature and pressure sensors, has been included in this design to ease the process of taking measurements and transferring data for processing. Although LED-based sunphotometers have been used for a number of years (Brooks and Mims, 2001), this design uses filtered photodiodes which appear to have less of a temperature dependence. The interface has been designed to be intuitive to citizen scientists of all ages, nationalities, and backgrounds, so that deployment to primary schools and international sites will be as seamless as possible. Presented here is the instrument design, as well as initial results of a comparison with NASA Aerosol Robotic Network (AERONET) and MODIS-measured AOD. Future revisions to the instrument design, such as incorporation of surface-mount devices to cut down on circuit board size, will allow for an even smaller and more cost effective solution suitable for a global sunphotometer network.

  18. Aerosol Remote Sensing from Space -- What We've Learned, Where We're Heading

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph

    2010-01-01

    The MISR and MODIS instruments aboard the NASA Earth Observing System's Terra Satellite have been collecting data containing information about the state of Earth's atmosphere and surface for over ten years. Among the retrieved quantities are amount and type of wildfire smoke, desert dust, volcanic effluent, urban and industrial pollution particles, and other aerosols. However, the broad scientific challenges of understanding aerosol impacts on climate and health place different, and very exacting demands on our measurement capabilities. And these data sets, though much more advanced in many respects than previous aerosol data records, are imperfect. In this presentation, I will summarize current understanding of MISR and MODIS aerosol product strengths and limitations, discuss how they relate to the bigger aerosol science questions we must address, and give my view of what we will need to do to progress.

  19. Aerosol Remote Sensing from Space - Where We Stand, Where We're Heading

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph

    2011-01-01

    The MISR and MODIS instruments aboard the NASA Earth Observing System's Terra Satellite have been collecting data containing information about the state of Earth's atmosphere and surface for over eleven years. Among the retrieved quantities are amount and type of wildfire smoke, desert dust, volcanic effluent, urban and industrial pollution particles, and other aerosols. However, the broad scientific challenges of understanding aerosol impacts on climate and health place different, and very exacting demands on our measurement capabilities. And these data sets, though much more advanced in many respects than previous aerosol data records, are imperfect. In this presentation, I will summarize current understanding of MISR and MODIS aerosol product strengths and limitations, discuss how they relate to the bigger aerosol science questions we must address, and give my view of the way forward.

  20. Aerosol Remote Sensing from Space - Where We Stand, Where We're Heading

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.

    2013-01-01

    The MISR and MODIS instruments aboard the NASA Earth Observing System's Terra Satellite have been collecting data containing information about the state of Earth's atmosphere and surface for over eleven years. Among the retrieved quantities are amount and type of wildfire smoke, desert dust, volcanic effluent, urban and industrial pollution particles, and other aerosols. However, the broad scientific challenges of understanding aerosol impacts on climate and health place different, and very exacting demands on our measurement capabilities. And these data sets, though much more advanced in many respects than previous aerosol data records, are imperfect. In this presentation, I will summarize current understanding of MISR and MODIS aerosol product strengths and limitations, discuss how they relate to the bigger aerosol science questions we must address, and give my view of the way forward.

  1. Current and Future Applications of Multispectral (RGB) Satellite Imagery for Weather Analysis and Forecasting Applications

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew L.; Fuell, Kevin K.; LaFontaine, Frank; McGrath, Kevin; Smith, Matt

    2013-01-01

    Current and future satellite sensors provide remotely sensed quantities from a variety of wavelengths ranging from the visible to the passive microwave, from both geostationary and low ]Earth orbits. The NASA Short ]term Prediction Research and Transition (SPoRT) Center has a long history of providing multispectral imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA fs Terra and Aqua satellites in support of NWS forecast office activities. Products from MODIS have recently been extended to include a broader suite of multispectral imagery similar to those developed by EUMETSAT, based upon the spectral channels available from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) aboard METEOSAT ]9. This broader suite includes products that discriminate between air mass types associated with synoptic ]scale features, assists in the identification of dust, and improves upon paired channel difference detection of fog and low cloud events. Future instruments will continue the availability of these products and also expand upon current capabilities. The Advanced Baseline Imager (ABI) on GOES ]R will improve the spectral, spatial, and temporal resolution of our current geostationary capabilities, and the recent launch of the Suomi National Polar ]Orbiting Partnership (S ]NPP) carries instruments such as the Visible Infrared Imager Radiometer Suite (VIIRS), the Cross ]track Infrared Sounder (CrIS), and the Advanced Technology Microwave Sounder (ATMS), which have unrivaled spectral and spatial resolution, as precursors to the JPSS era (i.e., the next generation of polar orbiting satellites. New applications from VIIRS extend multispectral composites available from MODIS and SEVIRI while adding new capabilities through incorporation of additional CrIS channels or information from the Near Constant Contrast or gDay ]Night Band h, which provides moonlit reflectance from clouds and detection of fires or city lights. This presentation will present a review of SPoRT, CIRA, and NRL collaborations regarding multispectral satellite imagery and recent applications within the operational forecasting environment

  2. NASA Sees Cyclone Chapala Approaching Landfall in Yemen

    NASA Image and Video Library

    2017-12-08

    On Nov. 2, 2015 at 09:40 UTC (4:40 p.m. EDT) the Moderate Resolution Imaging Spectroradiometer or MODIS instrument aboard NASA's Aqua satellite captured an image of Tropical Cyclone Chapala as the eye of the storm was approaching the Yemen coast. Chapala maintained an eye, although it appeared cloud-covered. Animated multispectral satellite imagery shows the system has maintained a 15-nautical-mile-wide eye and structure. The image was created by the MODIS Rapid Response Team at NASA's Goddard Space Flight Center, Greenbelt, Maryland. Chapala weakened from category four intensity a couple days ago while maintaining a course that steers it toward Yemen. Credit: NASA Goddard MODIS Rapid Response Team Read more: www.nasa.gov/f…/goddard/chapala-northern-indian-ocean NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. Cyclone Hudah As Seen By MODIS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Tropical Cyclone Hudah was one of most powerful storms ever seen in the Indian Ocean. This image from the Moderate-resolution Imaging Spectroradiometer (MODIS) aboard Terra was taken on March 29, 2000. The structure of the eye of the storm is brought out by MODIS' 250-meter resolution. Image by Liam Gumley, Space Science and Engineering Center, University of Wisconsin-Madison

  4. Gross Primary Productivity

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's new Moderate-resolution Imaging Spectroradiometer (MODIS) allows scientists to gauge our planet's metabolism on an almost daily basis. GPP, gross primary production, is the technical term for plant photosynthesis. This composite image over the continental United States, acquired during the period March 26-April 10, 2000, shows regions where plants were more or less productive-i.e., where they 'inhaled' carbon dioxide and then used the carbon from photosynthesis to build new plant structures. This false-color image provides a map of how much carbon was absorbed out of the atmosphere and fixed within land vegetation. Areas colored blue show where plants used as much as 60 grams of carbon per square meter. Areas colored green and yellow indicate a range of anywhere from 40 to 20 grams of carbon absorbed per square meter. Red pixels show an absorption of less than 10 grams of carbon per square meter and white pixels (often areas covered by snow or masked as urban) show little or no absorption. This is one of a number of new measurements that MODIS provides to help scientists understand how the Earth's landscapes are changing over time. Scientists' goal is use of these GPP measurements to refine computer models to simulate how the land biosphere influences the natural cycles of water, carbon, and energy throughout the Earth system. The GPP will be an integral part of global carbon cycle source and sink analysis, an important aspect of Kyoto Protocol assessments. This image is the first of its kind from the MODIS instrument, which launched in December 1999 aboard the Terra spacecraft. MODIS began acquiring scientific data on February 24, 2000, when it first opened its aperture door. The MODIS instrument and Terra spacecraft are both managed by NASA's Goddard Space Flight Center, Greenbelt, MD. Image courtesy Steven Running, MODIS Land Group Member, University of Montana

  5. NASA Catches Tropical Storm Leslie and Hurricane Michael in the Atlantic

    NASA Image and Video Library

    2017-12-08

    This visible image of Tropical Storm Leslie and Hurricane Michael was taken by the MODIS instrument aboard both NASA's Aqua and Terra satellites on Sept. 9 at 12:50 p.m. EDT. Credit: NASA Goddard/MODIS Rapid Response Team -- Satellite images from two NASA satellites were combined to create a full picture of Tropical Storm Leslie and Hurricane Michael spinning in the Atlantic Ocean. Imagery from NASA's Aqua and Terra satellites showed Leslie now past Bermuda and Michael in the north central Atlantic, and Leslie is much larger than the smaller, more powerful Michael. Images of each storm were taken by the Moderate Resolution Imaging Spectroradiometer, or MODIS instrument that flies onboard both the Aqua and Terra satellites. Both satellites captured images of both storms on Sept. 7 and Sept. 10. The image from Sept. 7 showed a much more compact Michael with a visible eye. By Sept. 10, the eye was no longer visible in Michael and the storm appeared more elongated from south to north. To continue reading go to: 1.usa.gov/NkUPqn NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. NASA Sees Typhoon Soudelor's Remnants Over Eastern China

    NASA Image and Video Library

    2017-12-08

    On August 9 at 03:00 UTC (Aug. 8 at 11 p.m. EDT) the MODIS instrument aboard NASA's Terra satellite passed over the remnant clouds of Typhoon Soudelor when it was over eastern China. By 22:35 UTC (6:35 p.m. EDT) on August 8, 2015, Typhoon Soudelor had made landfall in eastern China and was rapidly dissipating. Maximum sustained winds had dropped to 45 knots (51.7 mph/83.3 kph) after landfall, making it a tropical storm. Image credit: NASA Goddard MODIS Rapid Response Team/Jeff Schmaltz..NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. Identifying Hail Signatures in Satellite Imagery from the 9-10 August 2011 Severe Weather Event

    NASA Technical Reports Server (NTRS)

    Dryden, Rachel L.; Molthan, Andrew L.; Cole, Tony A.; Bell, Jordan

    2014-01-01

    Severe thunderstorms can produce large hail that causes property damage, livestock fatalities, and crop failure. However, detailed storm surveys of hail damage conducted by the National Weather Service (NWS) are not required. Current gaps also exist between Storm Prediction Center (SPC) hail damage estimates and crop-insurance payouts. NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard the Terra and Aqua satellites can be used to support NWS damage assessments, particularly to crops during the growing season. The two-day severe weather event across western Nebraska and central Kansas during 9-10 August 2011 offers a case study for investigating hail damage signatures by examining changes in Normalized Difference Vegetation Index (NDVI) derived from MODIS imagery. By analyzing hail damage swaths in satellite imagery, potential economic losses due to crop damage can be quantified and further improve the estimation of weather impacts on agriculture without significantly increasing manpower requirements.

  8. Progress Toward a Global, EOS-Era Aerosol Air Mass Type Climatology

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.

    2012-01-01

    The MISR and MODIS instruments aboard the NASA Earth Observing System's Terra Satellite have been collecting data containing information about the state of Earth's atmosphere and surface for over eleven years. Data from these instruments have been used to develop a global, monthly climatology of aerosol amount that is widely used as a constraint on climate models, including those used for the 2007 IPCC assessment report. The next frontier in assessing aerosol radiative forcing of climate is aerosol type, and in particular, the absorption properties of major aerosol air masses. This presentation will focus on the prospects for constraining aerosol type globally, and the steps we are taking to apply a combination of satellite and suborbital data to this challenge.

  9. Comparison of monthly nighttime cloud fraction products from MODIS and AIRS and ground-based camera over Manila Observatory (14.64N, 121.07E)

    NASA Astrophysics Data System (ADS)

    Gacal, G. F. B.; Lagrosas, N.

    2017-12-01

    Cloud detection nowadays is primarily achieved by the utilization of various sensors aboard satellites. These include MODIS Aqua, MODIS Terra, and AIRS with products that include nighttime cloud fraction. Ground-based instruments are, however, only secondary to these satellites when it comes to cloud detection. Nonetheless, these ground-based instruments (e.g., LIDARs, ceilometers, and sky-cameras) offer significant datasets about a particular region's cloud cover values. For nighttime operations of cloud detection instruments, satellite-based instruments are more reliably and prominently used than ground-based ones. Therefore if a ground-based instrument for nighttime operations is operated, it ought to produce reliable scientific datasets. The objective of this study is to do a comparison between the results of a nighttime ground-based instrument (sky-camera) and that of MODIS Aqua and MODIS Terra. A Canon Powershot A2300 is placed ontop of Manila Observatory (14.64N, 121.07E) and is configured to take images of the night sky at 5min intervals. To detect pixels with clouds, the pictures are converted to grayscale format. Thresholding technique is used to screen pixels with cloud and pixels without clouds. If the pixel value is greater than 17, it is considered as a cloud; otherwise, a noncloud (Gacal et al., 2016). This algorithm is applied to the data gathered from Oct 2015 to Oct 2016. A scatter plot between satellite cloud fraction in the area covering the area 14.2877N, 120.9869E, 14.7711N and 121.4539E and ground cloud cover is graphed to find the monthly correlation. During wet season (June - November), the satellite nighttime cloud fraction vs ground measured cloud cover produce an acceptable R2 (Aqua= 0.74, Terra= 0.71, AIRS= 0.76). However, during dry season, poor R2 values are obtained (AIRS= 0.39, Aqua & Terra = 0.01). The high correlation during wet season can be attributed to a high probability that the camera and satellite see the same clouds. However during dry season, the satellite sees high altitude clouds and the camera can not detect these clouds from the ground as it relies on city lights reflected from low level clouds. With this acknowledged disparity, the ground-based camera has the advantage of detecting haze and thin clouds near the ground that are hardly or not detected by the satellites.

  10. Aerosol Remote Sensing from Space - Where We Stand, Where We're Heading

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph

    2012-01-01

    The MISR and MODIS instruments aboard the NASA Earth Observing System's Terra Satellite have been collecting data containing information about the state of Earth's atmosphere and surface for over twelve years. Among the retrieved quantities are the amount and type of wildfire smoke, desert dust, volcanic effluent, urban and industrial pollution particles, and other aerosols. Data from these instruments have been used to develop a global, monthly climatology of aerosol amount that is widely used as a constraint on climate models, including those used for the 2007 IPCC assessment report. However, the broad scientific challenges of understanding aerosol impacts on climate and health place different, and very exacting demands on our measurement capabilities. And these data sets, though much more advanced in many respects than previous aerosol data records, are imperfect. The next frontier in assessing aerosol radiative forcing of climate is aerosol type, and in particular, the absorption properties of major aerosol air masses. In this presentation, I will summarize current understanding of MISR and MODIS aerosol product strengths and limitations, discuss how they relate to the bigger aerosol science questions we must address, and give my view of the way forward.

  11. Fusing MODIS with Landsat 8 data to downscale weekly normalized difference vegetation index estimates for central Great Basin rangelands, USA

    USGS Publications Warehouse

    Boyte, Stephen; Wylie, Bruce K.; Rigge, Matthew B.; Dahal, Devendra

    2018-01-01

    Data fused from distinct but complementary satellite sensors mitigate tradeoffs that researchers make when selecting between spatial and temporal resolutions of remotely sensed data. We integrated data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor aboard the Terra satellite and the Operational Land Imager sensor aboard the Landsat 8 satellite into four regression-tree models and applied those data to a mapping application. This application produced downscaled maps that utilize the 30-m spatial resolution of Landsat in conjunction with daily acquisitions of MODIS normalized difference vegetation index (NDVI) that are composited and temporally smoothed. We produced four weekly, atmospherically corrected, and nearly cloud-free, downscaled 30-m synthetic MODIS NDVI predictions (maps) built from these models. Model results were strong with R2 values ranging from 0.74 to 0.85. The correlation coefficients (r ≥ 0.89) were strong for all predictions when compared to corresponding original MODIS NDVI data. Downscaled products incorporated into independently developed sagebrush ecosystem models yielded mixed results. The visual quality of the downscaled 30-m synthetic MODIS NDVI predictions were remarkable when compared to the original 250-m MODIS NDVI. These 30-m maps improve knowledge of dynamic rangeland seasonal processes in the central Great Basin, United States, and provide land managers improved resource maps.

  12. Comparison Between NPP-VIIRS Aerosol Data Products and the MODIS AQUA Deep Blue Collection 6 Dataset Over Land

    NASA Technical Reports Server (NTRS)

    Sayer, Andrew M.; Hsu, N. C.; Bettenhausen, C.; Lee, J.; Kondragunta, S.

    2013-01-01

    Aerosols are small particles suspended in the atmosphere and have a variety of natural and man-made sources. Knowledge of aerosol optical depth (AOD), which is a measure of the amount of aerosol in the atmosphere, and its change over time, is important for multiple reasons. These include climate change, air quality (pollution) monitoring, monitoring hazards such as dust storms and volcanic ash, monitoring smoke from biomass burning, determining potential energy yields from solar plants, determining visibility at sea, estimating fertilization of oceans and rainforests by transported mineral dust, understanding changes in weather brought upon by the interaction of aerosols and clouds, and more. The Suomi-NPP satellite was launched late in 2011. The Visible Infrared Imaging Radiometer Suite (VIIRS) aboard Suomi-NPP is being used, among other things, to determine AOD. This study compares the VIIRS dataset to ground-based measurements of AOD, along with a state-of-the-art satellite AOD dataset (the new version of the Moderate Resolution Imaging Spectrometer Deep Blue algorithm) to assess its reliability. The Suomi-NPP satellite was launched late in 2011, carrying several instruments designed to continue the biogeophysical data records of current and previous satellite sensors. The Visible Infrared Imaging Radiometer Suite (VIIRS) aboard Suomi-NPP is being used, among other things, to determine aerosol optical depth (AOD), and related activities since launch have been focused towards validating and understanding this new dataset through comparisons with other satellite and ground-based products. The operational VIIRS AOD product is compared over land with AOD derived from Moderate Resolution Imaging Spectrometer (MODIS) observations using the Deep Blue (DB) algorithm from the forthcoming Collection 6 of MODIS data

  13. Cloud vortices

    NASA Image and Video Library

    2015-11-02

    Cloud vortices off Heard Island, south Indian Ocean. The Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Aqua satellite captured this true-color image of sea ice off Heard Island on Nov 2, 2015 at 5:02 AM EST (09:20 UTC). Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team

  14. Estimating optically-thin cirrus cloud induced cold bias on infrared radiometric satellite sea surface temperature retrieval in the tropics

    NASA Astrophysics Data System (ADS)

    Marquis, Jared Wayne

    Passive longwave infrared radiometric satellite-based retrievals of sea surface temperature (SST) at instrument nadir are investigated for cold bias caused by unscreened optically-thin cirrus (OTC) clouds (cloud optical depth ≤ 0.3; COD). Level 2 split-window SST retrievals over tropical oceans (30° S - 30° N) from Moderate Resolution Imaging Spectroradiometer (MODIS) radiances collected aboard the NASA Aqua satellite (Aqua-MODIS) are collocated with cloud profiles from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument, mounted on the independent NASA CALIPSO satellite. OTC are present in approximately 25% of tropical quality-assured (QA) Aqua-MODIS Level-2 data, representing over 99% of all contaminating cirrus found. This results in cold-biased SST retrievals using either split- (MODIS, AVHRR and VIIRS) or triple-window (AVHRR and VIIRS only) retrieval methods. SST retrievals are modeled based on operational algorithms using radiative transfer model simulations conducted with a hypothetical 1.5 km thick OTC cloud placed incrementally from 10.0 - 18.0 km above mean sea level for cloud optical depths (COD) between 0.0 - 0.3. Corresponding cold bias estimates for each sensor are estimated using relative Aqua-MODIS cloud contamination frequencies as a function of cloud top height and COD (assuming them consistent across each platform) integrated within each corresponding modeled cold bias matrix. Split-window relative OTC cold biases, for any single observation, range from 0.40° - 0.49° C for the three sensors, with an absolute (bulk mean) bias between 0.10° - 0.13° C. Triple-window retrievals are more resilient, ranging from 0.03° - 0.04° C relative and 0.11° - 0.16° C absolute. Cold biases are constant across the Pacific and Indian Ocean domains. Absolute bias is smaller over the Atlantic, but relative bias is larger due to different cloud properties indicating that this issue persists globally.

  15. NASA's Aqua Satellite Sees Partial Solar Eclipse Effect in Alaska

    NASA Image and Video Library

    2017-12-08

    This image shows how the partial solar eclipse darkened clouds over Alaska. It was taken on Oct. 23 at 21:10 UTC (5:10 p.m. EDT) by the Moderate Resolution Imaging Spectroradiometer instrument that flies aboard NASA's Aqua satellite. Credit: NASA Goddard MODIS Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  16. Spatially Complete Surface Albedo Data Sets: Value-Added Products Derived from Terra MODIS Land Products

    NASA Technical Reports Server (NTRS)

    Moody, Eric G.; King, Michael D.; Platnick, Steven; Schaaf, Crystal B.; Gao, Feng

    2004-01-01

    Spectral land surface albedo is an important parameter for describing the radiative properties of the Earth. Accordingly it reflects the consequences of natural and human interactions, such as anthropogenic, meteorological, and phenological effects, on global and local climatological trends. Consequently, albedos are integral parts in a variety of research areas, such as general circulation models (GCMs), energy balance studies, modeling of land use and land use change, and biophysical, oceanographic, and meteorological studies. Recent observations of diffuse bihemispherical (white-sky) and direct beam directional hemispherical (black-sky ) land surface albedo included in the MOD43B3 product from MODIS instruments aboard NASA's Terra and Aqua satellite platforms have provided researchers with unprecedented spatial, spectral, and temporal characteristics. Cloud and seasonal snow cover, however, curtail retrievals to approximately half the global land surfaces on an annual equal-angle basis, precluding MOD43B3 albedo products from direct inclusion in some research projects and production environments.

  17. Calibration Uncertainty in Ocean Color Satellite Sensors and Trends in Long-term Environmental Records

    NASA Technical Reports Server (NTRS)

    Turpie, Kevin R.; Eplee, Robert E., Jr.; Franz, Bryan A.; Del Castillo, Carlos

    2014-01-01

    Launched in late 2011, the Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership (NPP) spacecraft is being evaluated by NASA to determine whether this sensor can continue the ocean color data record established through the Sea-Viewing Wide Field-of-view Sensor (SeaWiFS) and the MODerate resolution Imaging Spectroradiometer (MODIS). To this end, Goddard Space Flight Center generated evaluation ocean color data products using calibration techniques and algorithms established by NASA during the SeaWiFS and MODIS missions. The calibration trending was subjected to some initial sensitivity and uncertainty analyses. Here we present an introductory assessment of how the NASA-produced time series of ocean color is influenced by uncertainty in trending instrument response over time. The results help quantify the uncertainty in measuring regional and global biospheric trends in the ocean using satellite remote sensing, which better define the roles of such records in climate research.

  18. Evaluation of the MODIS Aerosol Retrievals over Ocean and Land during CLAMS.

    NASA Astrophysics Data System (ADS)

    Levy, R. C.; Remer, L. A.; Martins, J. V.; Kaufman, Y. J.; Plana-Fattori, A.; Redemann, J.; Wenny, B.

    2005-04-01

    The Chesapeake Lighthouse Aircraft Measurements for Satellites (CLAMS) experiment took place from 10 July to 2 August 2001 in a combined ocean-land region that included the Chesapeake Lighthouse [Clouds and the Earth's Radiant Energy System (CERES) Ocean Validation Experiment (COVE)] and the Wallops Flight Facility (WFF), both along coastal Virginia. This experiment was designed mainly for validating instruments and algorithms aboard the Terra satellite platform, including the Moderate Resolution Imaging Spectroradiometer (MODIS). Over the ocean, MODIS retrieved aerosol optical depths (AODs) at seven wavelengths and an estimate of the aerosol size distribution. Over the land, MODIS retrieved AOD at three wavelengths plus qualitative estimates of the aerosol size. Temporally coincident measurements of aerosol properties were made with a variety of sun photometers from ground sites and airborne sites just above the surface. The set of sun photometers provided unprecedented spectral coverage from visible (VIS) to the solar near-infrared (NIR) and infrared (IR) wavelengths. In this study, AOD and aerosol size retrieved from MODIS is compared with similar measurements from the sun photometers. Over the nearby ocean, the MODIS AOD in the VIS and NIR correlated well with sun-photometer measurements, nearly fitting a one-to-one line on a scatterplot. As one moves from ocean to land, there is a pronounced discontinuity of the MODIS AOD, where MODIS compares poorly to the sun-photometer measurements. Especially in the blue wavelength, MODIS AOD is too high in clean aerosol conditions and too low under larger aerosol loadings. Using the Second Simulation of the Satellite Signal in the Solar Spectrum (6S) radiative code to perform atmospheric correction, the authors find inconsistency in the surface albedo assumptions used by the MODIS lookup tables. It is demonstrated how the high bias at low aerosol loadings can be corrected. By using updated urban/industrial aerosol climatology for the MODIS lookup table over land, it is shown that the low bias for larger aerosol loadings can also be corrected. Understanding and improving MODIS retrievals over the East Coast may point to strategies for correction in other locations, thus improving the global quality of MODIS. Improvements in regional aerosol detection could also lead to the use of MODIS for monitoring air pollution.

  19. Fires and Smoke in Central Africa

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This year's fire season in central Africa may have been the most severe ever. This true-color image also shows the location of fires (red dots) in the Democratic Republic of the Congo, Angola, and Zambia. The image was taken by the Moderate-Resolution Imaging Spectroradiometer (MODIS) aboard NASA 's Terra spacecraft on August 23, 2000, and was produced using the MODIS Active Fire Detection product. NASA scientists studied these fires during the SAFARI 2000 field campaign. Image By Jacques Descloitres, MODIS Land Team

  20. NASA SPoRT GOES-R Proving Ground Activities

    NASA Technical Reports Server (NTRS)

    Stano, Geoffrey T.; Fuell, Kevin K.; Jedloec, Gary J.

    2010-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) program is a partner with the GOES-R Proving Ground (PG) helping prepare forecasters understand the unique products to come from the GOES-R instrument suite. SPoRT is working collaboratively with other members of the GOES-R PG team and Algorithm Working Group (AWG) scientists to develop and disseminate a suite of proxy products that address specific forecast problems for the WFOs, Regional and National Support Centers, and other NOAA users. These products draw on SPoRT s expertise with the transition and evaluation of products into operations from the MODIS instrument and the North Alabama Lightning Mapping Array (NALMA). The MODIS instrument serves as an excellent proxy for the Advanced Baseline Imager (ABI) that will be aboard GOES-R. SPoRT has transitioned and evaluated several multi-channel MODIS products. The true and false color products are being used in natural hazard detection by several SPoRT partners to provide better observation of land features, such as fires, smoke plumes, and snow cover. Additionally, many of SPoRT s partners are coastal offices and already benefit from the MODIS sea surface temperature composite. This, along with other surface feature observations will be developed into ABI proxy products for diagnostic use in the forecast process as well as assimilation into forecast models. In addition to the MODIS instrument, the NALMA has proven very valuable to WFOs with access to these total lightning data. These data provide situational awareness and enhanced warning decision making to improve lead times for severe thunderstorm and tornado warnings. One effort by SPoRT scientists includes a lightning threat product to create short-term model forecasts of lightning activity. Additionally, SPoRT is working with the AWG to create GLM proxy data from several of the ground based total lightning networks, such as the NALMA. The evaluation will focus on the vastly improved spatial coverage of the GLM, but with the trade-off of lower resolution compared to the NALMA. In addition to the above tasks, SPoRT will make these data available in the NWS next generation display software, AWIPS II. This has already been successfully completed for the two basic GLM proxies. SPoRT will use these products to train forecasters on the capabilities of GOES-R and foster feedback to develop additional products, visualizations, and requirements beneficial to end users needs. These developments and feedback will be made available to the GOES-R Proving Ground for the upcoming 2010 Spring Program in Norman, Oklahoma.

  1. A Prototype MODI- SSM/I Snow Mapping Algorithm

    NASA Technical Reports Server (NTRS)

    Tait, Andrew B.; Barton, Jonathan S.; Hall, Dorothy K.

    1999-01-01

    Data in the wavelength range 0.545 - 1.652 microns from the Moderate Resolution Imaging Spectroradiometer (MODIS), to be launched aboard the Earth Observing System (EOS) Terra in the fall of 1999, will be used to map daily global snow cover at 500m resolution. However, during darkness, or when the satellite's view of the surface is obscured by cloud, snow cover cannot be mapped using MODIS data. We show that during these conditions, it is possible to supplement the MODIS product by mapping the snow cover using passive microwave data from the Special Sensor Microwave Imager (SSM/I), albeit with much poorer resolution. For a 7-day time period in March 1999, a prototype MODIS snow-cover product was compared with a prototype MODIS-SSM/I product for the same area in the mid-western United States. The combined MODIS-SSM/I product mapped 9% more snow cover than the MODIS-only product.

  2. Development of RGB Composite Imagery for Operational Weather Forecasting Applications

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew L.; Fuell, Kevin K.; Oswald, Hayden, K; Knaff, John A.

    2012-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center, in collaboration with the Cooperative Institute for Research in the Atmosphere (CIRA), is providing red-green-blue (RGB) color composite imagery to several of NOAA s National Centers and National Weather Service forecast offices as a demonstration of future capabilities of the Advanced Baseline Imager (ABI) to be implemented aboard GOES-R. Forecasters rely upon geostationary satellite imagery to monitor conditions over their regions of responsibility. Since the ABI will provide nearly three times as many channels as the current GOES imager, the volume of data available for analysis will increase. RGB composite imagery can aid in the compression of large data volumes by combining information from multiple channels or paired channel differences into single products that communicate more information than provided by a single channel image. A standard suite of RGB imagery has been developed by the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT), based upon the Spinning Enhanced Visible and Infrared Imager (SEVIRI). The SEVIRI instrument currently provides visible and infrared wavelengths comparable to the future GOES-R ABI. In addition, the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard the NASA Terra and Aqua satellites can be used to demonstrate future capabilities of GOES-R. This presentation will demonstrate an overview of the products currently disseminated to SPoRT partners within the GOES-R Proving Ground, and other National Weather Service forecast offices, along with examples of their application. For example, CIRA has used the channels of the current GOES sounder to produce an "air mass" RGB originally designed for SEVIRI. This provides hourly imagery over CONUS for looping applications while demonstrating capabilities similar to the future ABI instrument. SPoRT has developed similar "air mass" RGB imagery from MODIS, and through a case study example, synoptic-scale features evident in single-channel water vapor imagery are shown in the context of the air mass product. Other products, such as the "nighttime microphysics" RGB, are useful in the detection of low clouds and fog. Nighttime microphysics products from MODIS offer some advantages over single-channel or spectral difference techniques and will be discussed in the context of a case study. Finally, other RGB products from SEVIRI are being demonstrated as precursors to GOES-R within the GOES-R Proving Ground. Examples of "natural color" and "dust" imagery will be shown with relevant applications.

  3. Summertime Coincident Observations of Ice Water Path in the Visible/Near-IR, Radar, and Microwave Frequencies

    NASA Technical Reports Server (NTRS)

    Pittman, Jasna V.; Robertson, Franklin R.; Atkinson, Robert J.

    2008-01-01

    Accurate representation of the physical and radiative properties of clouds in climate models continues to be a challenge. At present, both remote sensing observations and modeling of microphysical properties of clouds rely heavily on parameterizations or assumptions on particle size distribution (PSD) and cloud phase. In this study, we compare Ice Water Path (IWP), an important physical and radiative property that provides the amount of ice present in a cloud column, using measurements obtained via three different retrieval strategies. The datasets we use in this study include Visible/Near-IR IWP from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument flying aboard the Aqua satellite, Radar-only IWP from the CloudSat instrument operating at 94 GHz, and NOAA/NESDIS operational IWP from the 89 and 157 GHz channels of the Microwave Humidity Sounder (MHS) instrument flying aboard the NOAA-18 satellite. In the Visible/Near-IR, IWP is derived from observations of optical thickness and effective radius. CloudSat IWP is determined from measurements of cloud backscatter and assumed PSD. MHS IWP retrievals depend on scattering measurements at two different, non-water absorbing channels, 89 and 157 GHz. In order to compare IWP obtained from these different techniques and collected at different vertical and horizontal resolutions, we examine summertime cases in the tropics (30S - 30N) when all 3 satellites are within 4 minutes of each other (approximately 1500 km). All measurements are then gridded to a common 15 km x 15 km box determined by MHS. In a grid box comparison, we find CloudSat to report the highest IWP followed by MODIS, followed by MHS. In a statistical comparison, probability density distributions show MHS with the highest frequencies at IWP of 100-1000 g/m(exp 2) and CloudSat with the longest tail reporting IWP of several thousands g/m(exp 2). For IWP greater than 30 g/m(exp 2), MODIS is consistently higher than CloudSat, and it is higher at the lower IWPs but lower at the higher IWPs that overlap with MHS. Some of these differences can be attributed to the limitations of the measuring techniques themselves, but some can result from the assumptions made in the algorithms that generate the IWP product. We investigate this issue by creating categories based on various conditions such as cloud type, precipitation presence, underlying liquid water content, and surface type (land vs. ocean) and by comparing the performance of the IWP products under each condition.

  4. NASA's Aqua Satellite Sees Partial Solar Eclipse Effect in Western Canada

    NASA Image and Video Library

    2017-12-08

    This image shows how a partial solar eclipse darkened clouds over the Yukon and British Columbia in western Canada. It was taken on Oct. 23 at 21:20 UTC (5:20 p.m. EDT) by the Moderate Resolution Imaging Spectroradiometer instrument that flies aboard NASA's Aqua satellite. Credit: NASA Goddard MODIS Rapid Response Team Unlabeled image NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  5. Fires in Philippines

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Roughly a dozen fires (red pixels) dotted the landscape on the main Philippine island of Luzon on April 1, 2002. This true-color image was acquired by the Moderate-resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra spacecraft. Please note that the high-resolution scene provided here is 500 meters per pixel. For a copy of this scene at the sensor's fullest resolution, visit the MODIS Rapidfire site.

  6. Early SAFARI Data

    NASA Technical Reports Server (NTRS)

    2002-01-01

    larger Pietersburg Image larger Blyde River Canyon Image This pair of false-color images shows the first data returned from the MODIS Airborne Simulator (MAS) during the SAFARI 2000 field campaign. The MAS is used to help calibrate the data received from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA's Terra spacecraft. It is carried aboard the ER-2, a high-altitude research aircraft, where it images the Earth's surface in 50 spectral bands. SAFARI marks the first time that the MAS and MODIS have aquired data simultaneously. On the left is Pietersburg South Africa, the current home of the SAFARI field campaign. At upper left is the airport the ER-2 took off from. The red circles in the bottom half of the image are fields watered by central pivot irrigation. The right image is in the area of the Blyde River Canyon. The river cuts across the escarpment that separates South Africa's highlands (Highveld) and lowlands (Lowveld). Images courtesy SAFARI 2000 Recommend this Image to a Friend Back to: Newsroom Also see

  7. Projected Applications of a ``Climate in a Box'' Computing System at the NASA Short-term Prediction Research and Transition (SPoRT) Center

    NASA Astrophysics Data System (ADS)

    Jedlovec, G.; Molthan, A.; Zavodsky, B.; Case, J.; Lafontaine, F.

    2010-12-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center focuses on the transition of unique observations and research capabilities to the operational weather community, with a goal of improving short-term forecasts on a regional scale. Advances in research computing have lead to “Climate in a Box” systems, with hardware configurations capable of producing high resolution, near real-time weather forecasts, but with footprints, power, and cooling requirements that are comparable to desktop systems. The SPoRT Center has developed several capabilities for incorporating unique NASA research capabilities and observations with real-time weather forecasts. Planned utilization includes the development of a fully-cycled data assimilation system used to drive 36-48 hour forecasts produced by the NASA Unified version of the Weather Research and Forecasting (WRF) model (NU-WRF). The horsepower provided by the “Climate in a Box” system is expected to facilitate the assimilation of vertical profiles of temperature and moisture provided by the Atmospheric Infrared Sounder (AIRS) aboard the NASA Aqua satellite. In addition, the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard NASA’s Aqua and Terra satellites provide high-resolution sea surface temperatures and vegetation characteristics. The development of MODIS normalized difference vegetation index (NVDI) composites for use within the NASA Land Information System (LIS) will assist in the characterization of vegetation, and subsequently the surface albedo and processes related to soil moisture. Through application of satellite simulators, NASA satellite instruments can be used to examine forecast model errors in cloud cover and other characteristics. Through the aforementioned application of the “Climate in a Box” system and NU-WRF capabilities, an end goal is the establishment of a real-time forecast system that fully integrates modeling and analysis capabilities developed within the NASA SPoRT Center, with benefits provided to the operational forecasting community.

  8. Projected Applications of a "Climate in a Box" Computing System at the NASA Short-Term Prediction Research and Transition (SPoRT) Center

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; Molthan, Andrew L.; Zavodsky, Bradley; Case, Jonathan L.; LaFontaine, Frank J.

    2010-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center focuses on the transition of unique observations and research capabilities to the operational weather community, with a goal of improving short-term forecasts on a regional scale. Advances in research computing have lead to "Climate in a Box" systems, with hardware configurations capable of producing high resolution, near real-time weather forecasts, but with footprints, power, and cooling requirements that are comparable to desktop systems. The SPoRT Center has developed several capabilities for incorporating unique NASA research capabilities and observations with real-time weather forecasts. Planned utilization includes the development of a fully-cycled data assimilation system used to drive 36-48 hour forecasts produced by the NASA Unified version of the Weather Research and Forecasting (WRF) model (NU-WRF). The horsepower provided by the "Climate in a Box" system is expected to facilitate the assimilation of vertical profiles of temperature and moisture provided by the Atmospheric Infrared Sounder (AIRS) aboard the NASA Aqua satellite. In addition, the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard NASA s Aqua and Terra satellites provide high-resolution sea surface temperatures and vegetation characteristics. The development of MODIS normalized difference vegetation index (NVDI) composites for use within the NASA Land Information System (LIS) will assist in the characterization of vegetation, and subsequently the surface albedo and processes related to soil moisture. Through application of satellite simulators, NASA satellite instruments can be used to examine forecast model errors in cloud cover and other characteristics. Through the aforementioned application of the "Climate in a Box" system and NU-WRF capabilities, an end goal is the establishment of a real-time forecast system that fully integrates modeling and analysis capabilities developed within the NASA SPoRT Center, with benefits provided to the operational forecasting community.

  9. Evaluation of VIIRS, GOCI, and MODIS Collection 6 AOD Retrievals Against Ground Sunphotometer Observations Over East Asia

    NASA Technical Reports Server (NTRS)

    Xiao, Q.; Zhang, H.; Choi, M.; Li, S.; Kondragunta, S.; Kim, J.; Holben, B.; Levy, R. C.; Liu, Y.

    2016-01-01

    Persistent high aerosol loadings together with extremely high population densities have raised serious air quality and public health concerns in many urban centers in East Asia. However, ground-based air quality monitoring is relatively limited in this area. Recently, satellite-retrieved Aerosol Optical Depth (AOD) at high resolution has become a powerful tool to characterize aerosol patterns in space and time. Using ground AOD observations from the Aerosol Robotic Network (AERONET) and the Distributed Regional Aerosol Gridded Observation Networks (DRAGON)-Asia Campaign, as well as from handheld sunphotometers, we evaluated emerging aerosol products from the Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership (S-NPP), the Geostationary Ocean Color Imager (GOCI) aboard the Communication, Ocean, and Meteorology Satellite (COMS), and Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) (Collection 6) in East Asia in 2012 and 2013. In the case study in Beijing, when compared with AOD observations from handheld sunphotometers, 51% of VIIRS Environmental Data Record (EDR) AOD, 37% of GOCI AOD, 33% of VIIRS Intermediate Product (IP) AOD, 26% of Terra MODIS C6 3km AOD, and 16% of Aqua MODIS C6 3km AOD fell within the reference expected error (EE) envelope (+/-0.05/+/- 0.15 AOD). Comparing against AERONET AOD over the JapanSouth Korea region, 64% of EDR, 37% of IP, 61% of GOCI, 39% of Terra MODIS, and 56% of Aqua MODIS C6 3km AOD fell within the EE. In general, satellite aerosol products performed better in tracking the day-to-day variability than tracking the spatial variability at high resolutions. The VIIRS EDR and GOCI products provided the most accurate AOD retrievals, while VIIRS IP and MODIS C6 3km products had positive biases.

  10. Evaluation of VIIRS, GOCI, and MODIS Collection 6 AOD retrievals against ground sunphotometer observations over East Asia

    NASA Astrophysics Data System (ADS)

    Xiao, Q.; Zhang, H.; Choi, M.; Li, S.; Kondragunta, S.; Kim, J.; Holben, B.; Levy, R. C.; Liu, Y.

    2016-02-01

    Persistent high aerosol loadings together with extremely high population densities have raised serious air quality and public health concerns in many urban centers in East Asia. However, ground-based air quality monitoring is relatively limited in this area. Recently, satellite-retrieved Aerosol Optical Depth (AOD) at high resolution has become a powerful tool to characterize aerosol patterns in space and time. Using ground AOD observations from the Aerosol Robotic Network (AERONET) and the Distributed Regional Aerosol Gridded Observation Networks (DRAGON)-Asia Campaign, as well as from handheld sunphotometers, we evaluated emerging aerosol products from the Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership (S-NPP), the Geostationary Ocean Color Imager (GOCI) aboard the Communication, Ocean, and Meteorology Satellite (COMS), and Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) (Collection 6) in East Asia in 2012 and 2013. In the case study in Beijing, when compared with AOD observations from handheld sunphotometers, 51 % of VIIRS Environmental Data Record (EDR) AOD, 37 % of GOCI AOD, 33 % of VIIRS Intermediate Product (IP) AOD, 26 % of Terra MODIS C6 3 km AOD, and 16 % of Aqua MODIS C6 3 km AOD fell within the reference expected error (EE) envelope (±0.05 ± 0.15 AOD). Comparing against AERONET AOD over the Japan-South Korea region, 64 % of EDR, 37 % of IP, 61 % of GOCI, 39 % of Terra MODIS, and 56 % of Aqua MODIS C6 3 km AOD fell within the EE. In general, satellite aerosol products performed better in tracking the day-to-day variability than tracking the spatial variability at high resolutions. The VIIRS EDR and GOCI products provided the most accurate AOD retrievals, while VIIRS IP and MODIS C6 3 km products had positive biases.

  11. Spatially Complete Global Surface Albedos Derived from Terra/MODIS Data

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Moody, Eric G.; Platnick, Steven; Schaaf, Crystal B.

    2005-01-01

    Spectral land surface albedo is an important parameter for describing the radiative properties of the Earth. Accordingly it reflects the consequences of natural and human interactions, such as anthropogenic, meteorological, and phenological effects, on global and local climatological trends. Consequently, albedos are integral parts in a variety of research areas, such as general circulation models (GCMs), energy balance studies, modeling of land use and land use change, and biophysical, oceanographic, and meteorological studies. Recent production of land surface anisotropy, diffuse bihemispherical (white-sky) albedo and direct beam directional hemispherical (black-sky) albedo from observations acquired by the MODIS instruments aboard NASA's Terra and &la satellite platforms have provided researchers with unprecedented spatial, spectral, and temporal information on the land surface's radiative characteristics. Cloud cover, which curtails retrievals, and the presence of ephemeral and seasonal snow limit the snow-free data to approximately half the global land surfaces on an annual equal-angle basis. This precludes the MOD43B3 albedo products from being used in some remote sensing and ground-based applications, &mate models, and global change research projects.

  12. Eruption of Eyjafjallajökull Volcano, Iceland

    NASA Image and Video Library

    2017-12-08

    March 31, 2010..The volcanic eruption near Eyjafjallajökull persists into its second week, with continued lava fountaining and lava flows spilling into nearby canyons. The eruption is located at the Fimmvörduháls Pass between the Eyjafjallajökull ice field to the west (left) and the Mýrdalsjökull ice field to the east (right). This natural-color satellite image was acquired on March 26, 2010, by the MODIS aboard NASA’s Terra satellite. Dark ash and scoria cover the northern half of the Fimmvörduháls Pass. White snow covers the rest of the pass, sandwiched between white glaciers. Snow-free land is tan, brown, or dark gray, devoid of vegetation in early spring. To download a high res version of this image go to: modis.gsfc.nasa.gov/gallery/individual.php?db_date=2010-0... NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

  13. A Consistent EPIC Visible Channel Calibration Using VIIRS and MODIS as a Reference.

    NASA Astrophysics Data System (ADS)

    Haney, C.; Doelling, D. R.; Minnis, P.; Bhatt, R.; Scarino, B. R.; Gopalan, A.

    2017-12-01

    The Earth Polychromatic Imaging Camera (EPIC) aboard the Deep Space Climate Observatory (DSCOVR) satellite constantly images the sunlit disk of Earth from the Lagrange-1 (L1) point in 10 spectral channels spanning the UV, VIS, and NIR spectrums. Recently, the DSCOVR EPIC team has publicly released version 2 dataset, which has implemented improved navigation, stray-light correction, and flat-fielding of the CCD array. The EPIC 2-year data record must be well-calibrated for consistent cloud, aerosol, trace gas, land use and other retrievals. Because EPIC lacks onboard calibrators, the observations made by EPIC channels must be calibrated vicariously using the coincident measurements from radiometrically stable instruments that have onboard calibration systems. MODIS and VIIRS are best-suited instruments for this task as they contain similar spectral bands that are well-calibrated onboard using solar diffusers and lunar tracking. We have previously calibrated the EPIC version 1 dataset by using EPIC and VIIRS angularly matched radiance pairs over both all-sky ocean and deep convective clouds (DCC). We noted that the EPIC image required navigations adjustments, and that the EPIC stray-light correction provided an offset term closer to zero based on the linear regression of the EPIC and VIIRS ray-matched radiance pairs. We will evaluate the EPIC version 2 navigation and stray-light improvements using the same techniques. In addition, we will monitor the EPIC channel calibration over the two years for any temporal degradation or anomalous behavior. These two calibration methods will be further validated using desert and DCC invariant Earth targets. The radiometric characterization of the selected invariant targets is performed using multiple years of MODIS and VIIRS measurements. Results of these studies will be shown at the conference.

  14. A Consistent EPIC Visible Channel Calibration using VIIRS and MODIS as a Reference

    NASA Technical Reports Server (NTRS)

    Haney, C. O.; Doelling, D. R.; Minnis, P.; Bhatt, R.; Scarino, B. R.; Gopalan, A.

    2017-01-01

    The Earth Polychromatic Imaging Camera (EPIC) aboard the Deep Space Climate Observatory (DSCOVR) satellite constantly images the sunlit disk of Earth from the Lagrange-1 (L1) point in 10 spectral channels spanning the UV, VIS, and NIR spectrums. Recently, the DSCOVR EPIC team has publicly released version 2 dataset, which has implemented improved navigation, stray-light correction, and flat-fielding of the CCD array. The EPIC 2-year data record must be well-calibrated for consistent cloud, aerosol, trace gas, land use and other retrievals. Because EPIC lacks onboard calibrators, the observations made by EPIC channels must be calibrated vicariously using the coincident measurements from radiometrically stable instruments that have onboard calibration systems. MODIS and VIIRS are best-suited instruments for this task as they contain similar spectral bands that are well-calibrated onboard using solar diffusers and lunar tracking. We have previously calibrated the EPIC version 1 dataset by using EPIC and VIIRS angularly matched radiance pairs over both all-sky ocean and deep convective clouds (DCC). We noted that the EPIC image required navigations adjustments, and that the EPIC stray-light correction provided an offset term closer to zero based on the linear regression of the EPIC and VIIRS ray-matched radiance pairs. We will evaluate the EPIC version 2 navigation and stray-light improvements using the same techniques. In addition, we will monitor the EPIC channel calibration over the two years for any temporal degradation or anomalous behavior. These two calibration methods will be further validated using desert and DCC invariant Earth targets. The radiometric characterization of the selected invariant targets is performed using multiple years of MODIS and VIIRS measurements. Results of these studies will be shown at the conference.

  15. Detailed Evaluation of MODIS Fire Radiative Power Measurements

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles

    2010-01-01

    Satellite remote sensing is providing us tremendous opportunities to measure the fire radiative energy (FRE) release rate or power (FRP) from open biomass burning, which affects many vegetated regions of the world on a seasonal basis. Knowledge of the biomass burning characteristics and emission source strengths of different (particulate and gaseous) smoke constituents is one of the principal ingredients upon which the assessment, modeling, and forecasting of their distribution and impacts depend. This knowledge can be gained through accurate measurement of FRP, which has been shown to have a direct relationship with the rates of biomass consumption and emissions of major smoke constituents. Over the last decade or so, FRP has been routinely measured from space by both the MODIS sensors aboard the polar orbiting Terra and Aqua satellites, and the SEVIRI sensor aboard the Meteosat Second Generation (MSG) geostationary satellite. During the last few years, FRP has been gaining recognition as an important parameter for facilitating the development of various scientific studies relating to the quantitative characterization of biomass burning and their emissions. Therefore, we are conducting a detailed analysis of the FRP products from MODIS to characterize the uncertainties associated with them, such as those due to the MODIS bow-tie effects and other factors, in order to establish their error budget for use in scientific research and applications. In this presentation, we will show preliminary results of the MODIS FRP data analysis, including comparisons with airborne measurements.

  16. Phytoplankton off the Coast of Portugal

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A large phytoplankton bloom off of the coast of Portugal can be seen in this true-color image taken on April 23, 2002, by the Moderate-resolution Imaging Spectroradiometer (MODIS) aboard NASA's Terra satellite. The bloom is roughly half the size of Portugal and forms a bluish-green cloud in the water. The red spots in northwest Spain denote what are likely small agricultural fires. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  17. Reconciling Simulated and Observed Views of Clouds: MODIS, ISCCP, and the Limits or Instrument Simulators

    NASA Technical Reports Server (NTRS)

    Ackerman, Steven A.; Hemler, Richard S.; Hofman, Robert J. Patrick; Pincus, Robert; Platnick, Steven

    2011-01-01

    The properties of clouds that may be observed by satellite instruments, such as optical depth and cloud top pressure, are only loosely related to the way clouds m-e represented in models of the atmosphere. One way to bridge this gap is through "instrument simulators," diagnostic tools that map the model representation to synthetic observations so that differences between simulator output and observations can be interpreted unambiguously as model error. But simulators may themselves be restricted by limited information available from the host model or by internal assumptions. This paper considers the extent to which instrument simulators are able to capture essential differences between MODIS and ISCCP, two similar but independent estimates of cloud properties. The authors review the measurements and algorithms underlying these two cloud climatologies, introduce a MODIS simulator, and detail data sets developed for comparison with global models using ISCCP and MODIS simulators, In nature MODIS observes less mid-level doudines!> than ISCCP, consistent with the different methods used to determine cloud top pressure; aspects of this difference are reproduced by the simulators running in a climate modeL But stark differences between MODIS and ISCCP observations of total cloudiness and the distribution of cloud optical thickness can be traced to different approaches to marginal pixels, which MODIS excludes and ISCCP treats as homogeneous. These pixels, which likely contain broken clouds, cover about 15 k of the planet and contain almost all of the optically thinnest clouds observed by either instrument. Instrument simulators can not reproduce these differences because the host model does not consider unresolved spatial scales and so can not produce broken pixels. Nonetheless, MODIS and ISCCP observation are consistent for all but the optically-thinnest clouds, and models can be robustly evaluated using instrument simulators by excluding ambiguous observations.

  18. JOVE

    NASA Technical Reports Server (NTRS)

    Schiller, Stephen

    1997-01-01

    The focus of our JOVE research has been to develop a field instrument that provides high quality data for atmospheric corrections and in-flight calibration of airborne and satellite remote sensing imaging systems. The instrument package is known as the Portable Ground-based Atmospheric Monitoring System or PGAMS. PGAMS collects a comprehensive set of spectroscopic/radiometric observations that describe the optical properties of the atmosphere and reflectance of a target area on the earth's surface at the time of the aircraft or satellite overpass. To date, the PGAMS instrument system and control software has been completed and used for data collection in several NASA field experiments across the continental US and Puerto Rico. Where do you see your JOVE research going after the initial JOVE Funding Expires? Our JOVE initiated research will continue to be very active in supporting validation and calibration activities in remote sensing involving NASA, DOE, DOD, NSF, and possibly commercial supported programs. Future effort will focus on projects related to NASA's Mission to Planet Earth. This will include field work using PGAMS and data analysis that evaluates sensor calibration and atmospheric effects in images recorded by ASTER, MODIS, and MISR instruments aboard the AM-1 platform.

  19. Cross-calibration of MODIS with ETM+ and ALI sensors for long-term monitoring of land surface processes

    USGS Publications Warehouse

    Meyer, D.; Chander, G.

    2006-01-01

    Increasingly, data from multiple sensors are used to gain a more complete understanding of land surface processes at a variety of scales. Although higher-level products (e.g., vegetation cover, albedo, surface temperature) derived from different sensors can be validated independently, the degree to which these sensors and their products can be compared to one another is vastly improved if their relative spectroradiometric responses are known. Most often, sensors are directly calibrated to diffuse solar irradiation or vicariously to ground targets. However, space-based targets are not traceable to metrological standards, and vicarious calibrations are expensive and provide a poor sampling of a sensor's full dynamic range. Crosscalibration of two sensors can augment these methods if certain conditions can be met: (1) the spectral responses are similar, (2) the observations are reasonably concurrent (similar atmospheric & solar illumination conditions), (3) errors due to misregistrations of inhomogeneous surfaces can be minimized (including scale differences), and (4) the viewing geometry is similar (or, some reasonable knowledge of surface bi-directional reflectance distribution functions is available). This study explores the impacts of cross-calibrating sensors when such conditions are met to some degree but not perfectly. In order to constrain the range of conditions at some level, the analysis is limited to sensors where cross-calibration studies have been conducted (Enhanced Thematic Mapper Plus (ETM+) on Landsat-7 (L7), Advance Land Imager (ALI) and Hyperion on Earth Observer-1 (EO-1)) and including systems having somewhat dissimilar geometry, spatial resolution & spectral response characteristics but are still part of the so-called "A.M. constellation" (Moderate Resolution Imaging Spectrometer (MODIS) aboard the Terra platform). Measures for spectral response differences and methods for cross calibrating such sensors are provided in this study. These instruments are cross calibrated using the Railroad Valley playa in Nevada. Best fit linear coefficients (slope and offset) are provided for ALI-to-MODIS and ETM+-to-MODIS cross calibrations, and root-mean-squared errors (RMSEs) and correlation coefficients are provided to quantify the uncertainty in these relationships. In theory, the linear fits and uncertainties can be used to compare radiance and reflectance products derived from each instrument.

  20. Use of MODIS-Derived Fire Radiative Energy to Estimate Smoke Aerosol Emissions over Different Ecosystems

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles; Kaufman, Yoram J.

    2003-01-01

    Biomass burning is the main source of smoke aerosols and certain trace gases in the atmosphere. However, estimates of the rates of biomass consumption and emission of aerosols and trace gases from fires have not attained adequate reliability thus far. Traditional methods for deriving emission rates employ the use of emission factors e(sub x), (in g of species x per kg of biomass burned), which are difficult to measure from satellites. In this era of environmental monitoring from space, fire characterization was not a major consideration in the design of the early satellite-borne remote sensing instruments, such as AVHRR. Therefore, although they are able to provide fire location information, they were not adequately sensitive to variations in fire strength or size, because their thermal bands used for fire detection saturated at the lower end of fire radiative temperature range. As such, hitherto, satellite-based emission estimates employ proxy techniques using satellite derived fire pixel counts (which do not express the fire strength or rate of biomass consumption) or burned areas (which can only be obtained after the fire is over). The MODIS sensor, recently launched into orbit aboard EOS Terra (1999) and Aqua (2002) satellites, have a much higher saturation level and can, not only detect the fire locations 4 times daily, but also measures the at-satellite fire radiative energy (which is a measure of the fire strength) based on its 4 micron channel temperature. Also, MODIS measures the optical thickness of smoke and other aerosols. Preliminary analysis shows appreciable correlation between the MODIS-derived rates of emission of fire radiative energy and smoke over different regions across the globe. These relationships hold great promise for deriving emission coefficients, which can be used for estimating smoke aerosol emissions from MODIS active fire products. This procedure has the potential to provide more accurate emission estimates in near real-time, providing opportunities for various disaster management applications such as alerts, evacuation and, smoke dispersion forecasting.

  1. Flooding on Russia's Lena River

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Nearly every year in the late spring, ice blocks the flow of water at the mouth of the Lena River in northeastern Russia and gives rise to floods across the Siberian plains. This year's floods can be seen in this image taken on June 2, 2002, by the MODIS (Moderate Resolution Imaging Spectroradiometer) instrument aboard the Terra satellite. The river runs down the left side of the image, and its delta is shrouded in ice (red) at the top of the image. Normally, the river would resemble a thin black line in MODIS imagery. The river, which is Russia's longest, flows 2,641 miles (4,250 kilometers) south to north through Siberia and into the Laptev Sea. In the winter, the river becomes nearly frozen. In the spring, however, water upstream thaws earlier than water at the mouth of the river. As the southern end of the river begins to melt, blocks of ice travel downstream to the still frozen delta, pile up, and often obstruct the flow of water. Flooding doesn't always occur on the same parts of the river. The floods hit further south last year. If the flooding grows severe enough, explosive charges are typically used to break up the ice jams. In these false-color images land areas are a dull, light green or tan, and water is black. Clouds appear pink, and ice comes across as bright red. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  2. Uncertainties in Coastal Ocean Color Products: Impacts of Spatial Sampling

    NASA Technical Reports Server (NTRS)

    Pahlevan, Nima; Sarkar, Sudipta; Franz, Bryan A.

    2016-01-01

    With increasing demands for ocean color (OC) products with improved accuracy and well characterized, per-retrieval uncertainty budgets, it is vital to decompose overall estimated errors into their primary components. Amongst various contributing elements (e.g., instrument calibration, atmospheric correction, inversion algorithms) in the uncertainty of an OC observation, less attention has been paid to uncertainties associated with spatial sampling. In this paper, we simulate MODIS (aboard both Aqua and Terra) and VIIRS OC products using 30 m resolution OC products derived from the Operational Land Imager (OLI) aboard Landsat-8, to examine impacts of spatial sampling on both cross-sensor product intercomparisons and in-situ validations of R(sub rs) products in coastal waters. Various OLI OC products representing different productivity levels and in-water spatial features were scanned for one full orbital-repeat cycle of each ocean color satellite. While some view-angle dependent differences in simulated Aqua-MODIS and VIIRS were observed, the average uncertainties (absolute) in product intercomparisons (due to differences in spatial sampling) at regional scales are found to be 1.8%, 1.9%, 2.4%, 4.3%, 2.7%, 1.8%, and 4% for the R(sub rs)(443), R(sub rs)(482), R(sub rs)(561), R(sub rs)(655), Chla, K(sub d)(482), and b(sub bp)(655) products, respectively. It is also found that, depending on in-water spatial variability and the sensor's footprint size, the errors for an in-situ validation station in coastal areas can reach as high as +/- 18%. We conclude that a) expected biases induced by the spatial sampling in product intercomparisons are mitigated when products are averaged over at least 7 km × 7 km areas, b) VIIRS observations, with improved consistency in cross-track spatial sampling, yield more precise calibration/validation statistics than that of MODIS, and c) use of a single pixel centered on in-situ coastal stations provides an optimal sampling size for validation efforts. These findings will have implications for enhancing our understanding of uncertainties in ocean color retrievals and for planning of future ocean color missions and the associated calibration/validation exercises.

  3. Model Calculations of Solar Spectral Irradiance in the 3.7 Micron Band for Earth Remote Sensing Applications

    NASA Technical Reports Server (NTRS)

    Platnick, Steven; Fontenla, Juan M.

    2006-01-01

    Since the launch of the first Advanced Very High Resolution Radiometer (AVHRR) instrument aboard TIROS-N, measurements in the 3.7 micron atmospheric window have been exploited for use in cloud detection and screening, cloud thermodynamic phase and surface snow/ice discrimination, and quantitative cloud particle size retrievals. The utility of the band has led to the incorporation of similar channels on a number of existing satellite imagers and future operational imagers. Daytime observations in the band include both reflected solar and thermal emission energy. Since 3.7 micron channels are calibrated to a radiance scale (via onboard blackbodies), knowledge of the top-of-atmosphere solar irradiance in the spectral region is required to infer reflectance. Despite the ubiquity of 3.7 micron channels, absolute solar spectral irradiance data comes from either a single measurement campaign (Thekaekara et al. 1969) or synthetic spectra. In this study, we compare historical 3.7 micron band spectral irradiance data sets with the recent semi-empirical solar model of the quiet-Sun by Fontenla et al. (2006). The model has expected uncertainties of about 2 % in the 3.7 pm spectral region. We find that channel-averaged spectral irradiances using the observations reported by Thekaekara et al. are 3.2-4.1% greater than those derived from the Fontenla et al. model for MODIS and AVHRR instrument bandpasses; the Kurucz spectrum (1995) as included in the MODTRAN4 distribution, gives channel-averaged irradiances 1.2-1.5 % smaller than the Fontenla model. For the MODIS instrument, these solar irradiance uncertainties result in cloud microphysical retrievals uncertainties comparable with other fundamental reflectance error sources.

  4. Phytoplankton Bloom Off Portugal

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Turquoise and greenish swirls marked the presence of a large phytoplankton bloom off the coast of Portugal on April 23, 2002. This true-color image was acquired by the Moderate-resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra satellite. There are also several fires burning in northwest Spain, near the port city of A Coruna. Please note that the high-resolution scene provided here is 500 meters per pixel. For a copy of this scene at the sensor's fullest resolution, visit the MODIS Rapidfire site.

  5. The Calibration of the DSCOVR EPIC Multiple Visible Channel Instrument Using MODIS and VIIRS as a Reference

    NASA Technical Reports Server (NTRS)

    Haney, Conor; Doeling, David; Minnis, Patrick; Bhatt, Rajendra; Scarino, Benjamin; Gopalan, Arun

    2016-01-01

    The Deep Space Climate Observatory (DSCOVR), launched on 11 February 2015, is a satellite positioned near the Lagrange-1 (L1) point, carrying several instruments that monitor space weather, and Earth-view sensors designed for climate studies. The Earth Polychromatic Imaging Camera (EPIC) onboard DSCOVR continuously views the sun-illuminated portion of the Earth with spectral coverage in the UV, VIS, and NIR bands. Although the EPIC instrument does not have any onboard calibration abilities, its constant view of the sunlit Earth disk provides a unique opportunity for simultaneous viewing with several other satellite instruments. This arrangement allows the EPIC sensor to be inter-calibrated using other well-characterized satellite instrument reference standards. Two such instruments with onboard calibration are MODIS, flown on Aqua and Terra, and VIIRS, onboard Suomi-NPP. The MODIS and VIIRS reference calibrations will be transferred to the EPIC instrument using both all-sky ocean and deep convective clouds (DCC) ray-matched EPIC and MODIS/VIIRS radiance pairs. An automated navigation correction routine was developed to more accurately align the EPIC and MODIS/VIIRS granules. The automated navigation correction routine dramatically reduced the uncertainty of the resulting calibration gain based on the EPIC and MODIS/VIIRS radiance pairs. The SCIAMACHY-based spectral band adjustment factors (SBAF) applied to the MODIS/ VIIRS radiances were found to successfully adjust the reference radiances to the spectral response of the specific EPIC channel for over-lapping spectral channels. The SBAF was also found to be effective for the non-overlapping EPIC channel 10. Lastly, both ray-matching techniques found no discernable trends for EPIC channel 7 over the year of publically released EPIC data.

  6. MODIS on-orbit thermal emissive bands lifetime performance

    NASA Astrophysics Data System (ADS)

    Madhavan, Sriharsha; Wu, Aisheng; Chen, Na; Xiong, Xiaoxiong

    2016-05-01

    MODerate resolution Imaging Spectroradiometer (MODIS), a leading heritage sensor in the fleet of Earth Observing System for the National Aeronautics and Space Administration (NASA) is in space orbit on two spacecrafts. They are the Terra (T) and Aqua (A) platforms. Both instruments have successfully continued to operate beyond the 6 year design life time, with the T-MODIS currently functional beyond 15 years and the A-MODIS operating beyond 13 years respectively. The MODIS sensor characteristics include a spectral coverage from 0.41 μm - 14.4 μm, of which wavelengths ranging from 3.7 μm - 14. 4 μm cover the thermal infrared region also referred to as the Thermal Emissive Bands (TEBs). The TEBs is calibrated using a v-grooved BlackBody (BB) whose temperature measurements are traceable to the National Institute of Standards and Technology temperature scales. The TEBs calibration based on the onboard BB is extremely important for its high radiometric fidelity. In this paper, we provide a complete characterization of the lifetime instrument performance of both MODIS instruments in terms of the sensor gain, the Noise Equivalent difference Temperature, key instrument telemetry such as the BB lifetime trends, the instrument temperature trends, the Cold Focal Plane telemetry and finally, the total assessed calibration uncertainty of the TEBs.

  7. MODIS On-Orbit Thermal Emissive Bands Lifetime Performance

    NASA Technical Reports Server (NTRS)

    Madhavan, Sriharsha; Xiong, Xiaoxiong

    2016-01-01

    MODerate resolution Imaging Spectroradiometer (MODIS), a leading heritage sensor in the fleet of Earth Observing System for the National Aeronautics and Space Administration (NASA) is in space orbit on two spacecrafts. They are the Terra (T) and Aqua (A) platforms. Both instruments have successfully continued to operate beyond the 6 year design life time, with the T-MODIS currently functional beyond 15 years and the A-MODIS operating beyond 13 years respectively. The MODIS sensor characteristics include a spectral coverage from 0.41 micron 14.4 micron, of which wavelengths ranging from 3.7 micron 14. 4 micron cover the thermal infrared region also referred to as the Thermal Emissive Bands (TEBs). The TEBs is calibrated using a v-grooved BlackBody (BB) whose temperature measurements are traceable to the National Institute of Standards and Technology temperature scales. The TEBs calibration based on the onboard BB is extremely important for its high radiometric fidelity. In this paper, we provide a complete characterization of the lifetime instrument performance of both MODIS instruments in terms of the sensor gain, the Noise Equivalent difference Temperature, key instrument telemetry such as the BB lifetime trends, the instrument temperature trends, the Cold Focal Plane telemetry and finally, the total assessed calibration uncertainty of the TEBs.

  8. Low pressure system over the eastern United States

    NASA Image and Video Library

    2017-12-08

    This visible image of the Great Lakes low pressure area was taken from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on NASA's Aqua satellite. It was taken at 19:05 UTC (3:05 p.m. EDT) on Monday, Sept. 26, 2011. Credit: NASA Goddard MODIS Rapid Response Team Two Instruments on NASA's Aqua Satellite Catch the Pesky Great Lakes Low A low pressure area has been sitting over the Great Lakes region for about a week now, keeping the region and the U.S. northeast and Mid-Atlantic under cloud cover. NASA's Aqua satellite flew over head yesterday, Sept. 26, and captured two views of it from space. That low pressure area continues to spin counter-clockwise today over the Great Lakes. Its centered over northern Illinois and southeastern Wisconsin and is once again going to keep the region cloudy, cool and wet with showers. When the Aqua satellite passed overhead Monday afternoon at 3:05 p.m. EDT (Sept. 26) a detailed, clear image was captured from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument . The clouds from the low spread over Illinois, Wisconsin, parts of Iowa, northeastern Missouri, southeastern Minnesota, Michigan, Ohio, Indiana, Pennsylvania, Kentucky, Tennessee, Alabama, Mississippi, Georgia, and the northeastern and Mid-Atlantic states. A second visible image was captured by the Atmospheric Infrared Sounder (AIRS) instrument that also flies aboard NASA's Aqua satellite and showed the huge comma shape of the storm that spans the U.S. from its northern to southern borders. (seen here: www.flickr.com/photos/gsfc/6188946564 ) According to the National Weather Service, the low will finally start moving to the east as an upper-atmospheric trough (an elongated area of low pressure) continues to strengthen and move into the upper Midwest. However, a ridge (elongated area) of high pressure will slow its move eastward, so it will be slow clearing this week in the northeastern and Mid-Atlantic U.S. Rob Gutro NASA's Goddard Space Flight Center NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. Improvements to the MODIS Land Products in Collection Version 6

    NASA Astrophysics Data System (ADS)

    Wolfe, R. E.; Devadiga, S.; Masuoka, E. J.; Running, S. W.; Vermote, E.; Giglio, L.; Wan, Z.; Riggs, G. A.; Schaaf, C.; Myneni, R. B.; Friedl, M. A.; Wang, Z.; Sulla-menashe, D. J.; Zhao, M.

    2013-12-01

    The MODIS (Moderate Resolution Imaging Spectroradiometer) Adaptive Processing System (MODAPS), housed at the NASA Goddard Space Flight Center (GSFC), has been processing the earth view data acquired by the MODIS instrument aboard the Terra (EOS AM) and Aqua (EOS PM) satellites to generate suite of land and atmosphere data products using the science algorithms developed by the MODIS Science Team. These data products are used by diverse set of users in research and other applications from both government and non-government agencies around the world. These validated global products are also being used in interactive Earth system models able to predict global change accurately enough to assist policy makers in making sound decisions concerning the protection of our environment. Hence an increased emphasis is being placed on generation of high quality consistent data records from the MODIS data through reprocessing of the records using improved science algorithms. Since the launch of Terra in December 1999, MODIS land data records have been reprocessed four times. The Collection Version 6 (C6) reprocessing of MODIS Land and Atmosphere products is scheduled to start in Fall 2013 and is expected to complete in Spring 2014. This presentation will describe changes made to the C6 science algorithms to correct issues in the C5 products, additional improvements made to the products as deemed necessary by the data users and science teams, and new products introduced in this reprocessing. In addition to the improvements from product specific changes to algorithms, the C6 products will also see significant improvement in the calibration by the MODIS Calibration Science Team (MCST) of the C6 L1B Top of the Atmosphere (TOA) reflectance and radiance product, more accurate geolocation, and an improved Land Water mask. For the a priori land cover input, this reprocessing will use the multi-year land cover product generated with three years of MODIS data as input as opposed to one single land cover product used for the entire mission in the C5 reprocessing. The C6 products are expected to be released from the Distributed Active Archive Center (DAAC) soon after the reprocessing begins. To facilitate user acquaintance with products from the new version and independent evaluation of C6 by comparison of two versions, MODAPS plans to continue generation of products from both versions for at least a year after completion of the C6 reprocessing after which C5 processing will be discontinued.

  10. Evaluation of VIIRS and MODIS Thermal Emissive Band Calibration Stability Using Ground Target

    NASA Technical Reports Server (NTRS)

    Madhavan, Sriharsha; Brinkmann, Jake; Wenny, Brian N.; Wu, Aisheng; Xiong, Xiaoxiong

    2017-01-01

    The S-NPP Visible Infrared Imaging Radiometer Suite (VIIRS) instrument, a polar orbiting Earth remote sensing instrument built using a strong MODIS background, employs a similarly designed on-board calibrating source - a V-grooved blackbody for the thermal emissive bands (TEB). The central wavelengths of most VIIRS TEBs are very close to those of MODIS with the exception of the 10.7 micron channel. To ensure the long term continuity of climate data records derived using VIIRS and MODIS TEB, it is necessary to assess any systematic differences between the two instruments, including scenes with temperatures significantly lower than blackbody operating temperatures at approximately 290 K. Previous work performed by the MODIS Characterization Support Team (MCST) at NASAGSFC used the frequent observations of the Dome Concordia site located in Antarctica to evaluate the calibration stability and consistency of Terra and Aqua MODIS over the mission lifetime. The near-surface temperature measurements from an automatic weather station (AWS) provide a direct reference useful for tracking the stability and determining the relative bias between the two MODIS instruments. In this study, the same technique is applied to the VIIRS TEB and the results are compared with those from the matched MODIS TEB. The results of this study show a small negative bias when comparing the matching VIIRS and Aqua MODIS TEB, implying a higher scene temperature retrieval for S-VIIRS at the cold end. Statistically no significant drift is observed for VIIRS TEB performance over the first 3.5 years of the mission.

  11. Impacts of Cross-Platform Vicarious Calibration on the Deep Blue Aerosol Retrievals for Moderate Resolution Imaging Spectroradiometer Aboard Terra

    NASA Technical Reports Server (NTRS)

    Jeong, Myeong-Jae; Hsu, N. Christina; Kwiatkowska, Ewa J.; Franz, Bryan A.; Meister, Gerhard; Salustro, Clare E.

    2012-01-01

    The retrieval of aerosol properties from spaceborne sensors requires highly accurate and precise radiometric measurements, thus placing stringent requirements on sensor calibration and characterization. For the Terra/Moderate Resolution Imaging Spedroradiometer (MODIS), the characteristics of the detectors of certain bands, particularly band 8 [(B8); 412 nm], have changed significantly over time, leading to increased calibration uncertainty. In this paper, we explore a possibility of utilizing a cross-calibration method developed for characterizing the Terral MODIS detectors in the ocean bands by the National Aeronautics and Space Administration Ocean Biology Processing Group to improve aerosol retrieval over bright land surfaces. We found that the Terra/MODIS B8 reflectance corrected using the cross calibration method resulted in significant improvements for the retrieved aerosol optical thickness when compared with that from the Multi-angle Imaging Spectroradiometer, Aqua/MODIS, and the Aerosol Robotic Network. The method reported in this paper is implemented for the operational processing of the Terra/MODIS Deep Blue aerosol products.

  12. Calibration Challenges and Improvements for Terra and Aqua MODIS Level-1B Data Product Qualit

    NASA Astrophysics Data System (ADS)

    Xiong, X.; Angal, A.; Chen, H.; Geng, X.; Li, Y.; Link, D.; Salomonson, V.; Twedt, K.; Wang, Z.; Wilson, T.; Wu, A.

    2017-12-01

    Terra and Aqua MODIS instruments launched in 1999 and 2002, respectively, have provided the remote sensing community and users worldwide a series of high quality long-term data records. They have enabled a broad range of scientific studies of the Earth's system and changes in its key geophysical and environmental parameters. To date, both MODIS instruments continue to operate nominally with all on-board calibrators (OBC) functioning properly. MODIS reflective solar bands (RSB) are currently calibrated by a solar diffuser (SD) and solar diffuser stability monitor (SDSM) system, coupled with regularly scheduled lunar observations and trending results from selected ground reference targets. The thermal emissive bands (TEB) calibration is performed using an on-board blackbody (BB) on a scan-by-scan basis. The sensor's spectral and spatial characteristics are periodically tracked by the on-board spectroradiometric calibration assembly (SRCA). On-orbit changes in sensor responses or performance characteristics, often in non-deterministic ways, underscore the need for dedicated calibration efforts to be made over the course of the sensor's entire mission. For MODIS instruments, this task has been undertaken by the MODIS Characterization Support Team (MCST). In this presentation, we provide an overview of MODIS instrument operation and calibration activities with a focus on recent challenging issues. We describe the efforts made and methodologies developed to address various challenging issues, including on-orbit characterization of sensor response versus scan angle (RVS) and polarization sensitives in the reflective solar spectral region, and electronic crosstalk impact on sensor calibration. Also discussed are the latest improvements made into the MODIS Level-1B data products as well as lessons that could benefit other instruments (e.g. VIIRS) for their on-orbit calibration and characterization.

  13. Terra and Aqua MODIS Thermal Emissive Bands On-Orbit Calibration and Performance

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong; Wu, Aisheng; Wenny, Brian N.; Madhavan, Sriharsha; Wang, Zhipeng; Li, Yonghong; Chen, Na; Barnes, William L.; Salomonson, Vincent V.

    2015-01-01

    Since launch, the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on the Terra and Aqua spacecraft have operated successfully for more than 14 and 12 years, respectively. A key instrument for National Aeronautics and Space Administration Earth Observing System missions, MODIS was designed to make continuous observations for studies of Earth's land, ocean, and atmospheric properties and to extend existing data records from heritage Earth observing sensors. The 16 thermal emissive bands (TEBs) (3.75-14.24 micrometers) are calibrated on orbit using a temperature controlled blackbody (BB). Both Terra and Aqua MODIS BBs have displayed minimal drift over the mission lifetime, and the seasonal variations of the BB temperature are extremely small in Aqua MODIS. The long-term gain and noise equivalent difference in temperature performance of the 160 TEB detectors on both MODIS instruments have been well behaved and generally very stable. Small but noticeable variations of Aqua MODIS bands 33-36 (13.34-14.24 micrometer) response in recent years are primarily due to loss of temperature control margin of its passive cryoradiative cooler. As a result, fixed calibration coefficients, previously used by bands when the BB temperature is above their saturation temperatures, are replaced by the focal-plane-temperature-dependent calibration coefficients. This paper presents an overview of the MODIS TEB calibration, the on-orbit performance, and the challenging issues likely to impact the instruments as they continue operating well past their designed lifetime of six years.

  14. Development of Fire Emissions Inventory Using Satellite Data

    EPA Science Inventory

    There are multiple satellites observing and reporting fire imagery at various spatial and temporal resolutions and each system has inherent merits and deficiencies. In our study, data are acquired from the Moderate Resolution Imaging Spectro-radiometer (MODIS) aboard the Nationa...

  15. Reconciling Simulated and Observed Views of Clouds: MODIS, ISCCP, and the Limits of Instrument Simulators in Climate Models

    NASA Technical Reports Server (NTRS)

    Pincus, Robert; Platnick, Steven E.; Ackerman, Steve; Hemler, Richard; Hofmann, Patrick

    2011-01-01

    The properties of clouds that may be observed by satellite instruments, such as optical depth and cloud top pressure, are only loosely related to the way clouds are represented in models of the atmosphere. One way to bridge this gap is through "instrument simulators," diagnostic tools that map the model representation to synthetic observations so that differences between simulator output and observations can be interpreted unambiguously as model error. But simulators may themselves be restricted by limited information available from the host model or by internal assumptions. This work examines the extent to which instrument simulators are able to capture essential differences between MODIS and ISCCP, two similar but independent estimates of cloud properties. We focus on the stark differences between MODIS and ISCCP observations of total cloudiness and the distribution of cloud optical thickness can be traced to different approaches to marginal pixels, which MODIS excludes and ISCCP treats as homogeneous. These pixels, which likely contain broken clouds, cover about 15% of the planet and contain almost all of the optically thinnest clouds observed by either instrument. Instrument simulators can not reproduce these differences because the host model does not consider unresolved spatial scales and so can not produce broken pixels. Nonetheless, MODIS and ISCCP observation are consistent for all but the optically-thinnest clouds, and models can be robustly evaluated using instrument simulators by excluding ambiguous observations.

  16. Climatology and Impact of Convection on the Tropical Tropopause Layer

    NASA Technical Reports Server (NTRS)

    Robertson, Franklin; Pittman, Jasna

    2007-01-01

    Water vapor plays an important role in controlling the radiative balance and the chemical composition of the Tropical Tropopause Layer (TTL). Mechanisms ranging from slow transport and dehydration under thermodynamic equilibrium conditions to fast transport in convection have been proposed as regulators of the amount of water vapor in this layer. However,.details of these mechanisms and their relative importance remain poorly understood, The recently completed Tropical Composition, Cloud, and Climate Coupling (TC4) campaign had the opportunity to sample the.TTL over the Eastern Tropical Pacific using ground-based, airborne, and spaceborne instruments. The main goal of this study is to provide the climatological context for this campaign of deep and overshooting convective activity using various satellite observations collected during the summertime. We use the Microwave Humidity Sensor (MRS) aboard the NOAA-18 satellite to investigate the horizontal extent.and the frequency of convection reaching and penetrating into the TTL. We use the Moderate Resolution I1l1aging Spectroradiometer (MODIS) aboard the Aqua satellite to investigate the frequency distribution of daytime cirrus clouds. We use the Tropical Rainfall Measuring Mission(TRMM) and CloudSat to investigate the vertical structure and distribution of hydrometeors in the convective cells, In addition to cloud measurements; we investigate the impact that convection has on the concentration of radiatively important gases such as water vapor and ozone in the TTL by examining satellite measurement obtained from the Microwave Limb Sounder(MLS) aboard the Aura satellite.

  17. MODIS Instrument Operation and Calibration Improvements

    NASA Technical Reports Server (NTRS)

    Xiong, X.; Angal, A.; Madhavan, S.; Link, D.; Geng, X.; Wenny, B.; Wu, A.; Chen, H.; Salomonson, V.

    2014-01-01

    Terra and Aqua MODIS have successfully operated for over 14 and 12 years since their respective launches in 1999 and 2002. The MODIS on-orbit calibration is performed using a set of on-board calibrators, which include a solar diffuser for calibrating the reflective solar bands (RSB) and a blackbody for the thermal emissive bands (TEB). On-orbit changes in the sensor responses as well as key performance parameters are monitored using the measurements of these on-board calibrators. This paper provides an overview of MODIS on-orbit operation and calibration activities, and instrument long-term performance. It presents a brief summary of the calibration enhancements made in the latest MODIS data collection 6 (C6). Future improvements in the MODIS calibration and their potential applications to the S-NPP VIIRS are also discussed.

  18. TERRA/MODIS Data Products and Data Management at the GES-DAAC

    NASA Astrophysics Data System (ADS)

    Sharma, A. K.; Ahmad, S.; Eaton, P.; Koziana, J.; Leptoukh, G.; Ouzounov, D.; Savtchenko, A.; Serafino, G.; Sikder, M.; Zhou, B.

    2001-05-01

    Since February 2000, the Earth Sciences Distributed Active Archive Center (GES-DAAC) at the NASA/Goddard Space Flight Center has been successfully ingesting, processing, archiving, and distributing the Moderate Resolution Imaging Spectroradiometer (MODIS) data. MODIS is the key instrument aboard the Terra satellite, viewing the entire Earth's surface every 1 to 2 days, acquiring data in 36 channels in the visible and infrared spectral bands (0.4 to 14.4 microns). Higher resolution (250m, 500m, and 1km pixel) data are improving our understanding of global dynamics and processes occurring on the land, in the oceans, and in the lower atmosphere and will play a vital role in the future development of validated, global, interactive Earth-system models. MODIS calibrated and uncalibrated radiances, and geolocation products were released to the public in April 2000, and a suite of oceans products and an entire suite of atmospheric products were released by early January 2001. The suite of ocean products is grouped into three categories Ocean Color, SST and Primary Productivity. The suite of atmospheric products includes Aerosol, Total Precipitable Water, Cloud Optical and Physical properties, Atmospheric Profiles and Cloud Mask. The MODIS Data Support Team (MDST) at the GES-DAAC has been providing support for enabling basic scientific research and assistance in accessing the scientific data and information to the Earth Science User Community. Support is also provided for data formats (HDF-EOS), information on visualization tools, documentation for data products, information on the scientific content of products and metadata. Visit the MDST website at http://daac.gsfc.nasa.gov/CAMPAIGN_DOCS/MODIS/index.html The task to process archive and distribute enormous volumes of MODIS data to users (more than 0.5 TB a day) has led to the development of an unique world wide web based GES DAAC Search and Order system http://acdisx.gsfc.nasa.gov/data/, data handling software and tools, as well as a FTP site that contains sample of browse images and MODIS data products. This paper is intended to inform the user community about the data system and services available at the GES-DAAC in support of these information-rich data products. MDST provides support to MODIS data users to access and process data and information for research, applications and educational purposes. This paper will present an overview of the MODIS data products released to public including the suite of atmosphere and oceans data products that can be ordered from the GES-DAAC. Different mechanisms for search and ordering the data, determining data product sizes, data distribution policy, User Assistance System (UAS), and data subscription services will be described.

  19. Summary of Terra and Aqua MODIS Long-Term Performance

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong (Jack); Wenny, Brian N.; Angal, Amit; Barnes, William; Salomonson, Vincent

    2011-01-01

    Since launch in December 1999, the MODIS ProtoFlight Model (PFM) onboard the Terra spacecraft has successfully operated for more than 11 years. Its Flight Model (FM) onboard the Aqua spacecraft, launched in May 2002, has also successfully operated for over 9 years. MODIS observations are made in 36 spectral bands at three nadir spatial resolutions and are calibrated and characterized regularly by a set of on-board calibrators (OBC). Nearly 40 science products, supporting a variety of land, ocean, and atmospheric applications, are continuously derived from the calibrated reflectances and radiances of each MODIS instrument and widely distributed to the world-wide user community. Following an overview of MODIS instrument operation and calibration activities, this paper provides a summary of both Terra and Aqua MODIS long-term performance. Special considerations that are critical to maintaining MODIS data quality and beneficial for future missions are also discussed.

  20. Remote sensing of cloud, aerosol and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS)

    NASA Technical Reports Server (NTRS)

    King, M. D.

    1992-01-01

    The Moderate Resolution Imaging Spectrometer (MODIS) is an Earth-viewing sensor being developed as a facility instrument for the Earth Observing System (EOS) to be launched in the late 1990s. MODIS consists of two separate instruments that scan a swath width sufficient to provide nearly complete global coverage every two days from a polar-orbiting, Sun-synchronous, platform at an altitude of 705 km. Of primary interest for studies of atmospheric physics is the MODIS-N (nadir) instrument which will provide images in 36 spectral bands between 0.415 and 14.235 micrometers with spatial resoulutions of 250 m (2 bands), 500 m (5 bands) and 1000 m (29 bands). These bands have been carefully selected to enable advanced studies of land, ocean and atmosperhic processes. The intent of this lecture is to describe the current status of MODIS-N and its companion instrument MODIS-T (tilt), a tiltable cross-track scanning radiometer with 32 uniformly spaced channels between 0.410 and 0.875 micrometers, and to describe the physical principles behind the development of MODIS for the remote sensing of atmospheric properties. Primary emphasis will be placed on the main atmospheric applications of determining the optical, microphysical and physical properties of clouds and aerosol particles form spectral-reflection and thermal-emission measurements. In addition to cloud and aerosol properties, MODIS-N will be utilized for the determination of the total precipitable water vapor over land and atmospheric stability. The physical principles behind the determination of each of these atmospheric products will be described herein.

  1. Phytoplankton off the West Coast of Africa

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Just off the coast of West Africa, persistent northeasterly trade winds often churn up deep ocean water. When the nutrients in these deep waters reach the ocean's surface, they often give rise to large blooms of phytoplankton. This image of the Mauritanian coast shows swirls of phytoplankton fed by the upwelling of nutrient-rich water. The scene was acquired by the Medium Resolution Imaging Spectrometer (MERIS) aboard the European Space Agency's ENVISAT. MERIS will monitor changes in phytoplankton across Earth's oceans and seas, both for the purpose of managing fisheries and conducting global change research. NASA scientists will use data from this European instrument in the Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) program. The mission of SIMBIOS is to construct a consistent long-term dataset of ocean color (phytoplankton abundance) measurements made by multiple satellite instruments, including the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and the Moderate-Resolution Imaging Spectroradiometer (MODIS). For more information about MERIS and ENVISAT, visit the ENVISAT home page. Image copyright European Space Agency

  2. Remote Sensing of Fires and Smoke from the Earth Observing System MODIS Instrument

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Hao, W. M.; Justice, C.; Giglio, L.; Herring, D.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The talk will include review of the MODIS (Moderate Resolution Imaging Spectrometer) algorithms and performance e.g. the MODIS algorithm and the changes in the algorithm since launch. Comparison of MODIS and ASTER fire observations. Summary of the fall activity with the Forest Service in use of MODIS data for the fires in the North-West. Validation on the ground of the MODIS fire product.

  3. Assessment of the Collection 6 Terra and Aqua MODIS bands 1 and 2 calibration performance

    NASA Astrophysics Data System (ADS)

    Wu, A.; Chen, X.; Angal, A.; Li, Y.; Xiong, X.

    2015-09-01

    MODIS (Moderate Resolution Imaging Spectroradiometer) is a key sensor aboard the Terra (EOS AM) and Aqua (EOS PM) satellites. MODIS collects data in 36 spectral bands and generates over 40 data products for land, atmosphere, cryosphere and oceans. MODIS bands 1 and 2 have nadir spatial resolution of 250 m, compared with 500 m for bands 3 to 7 and 1000 m for all the remaining bands, and their measurements are crucial to derive key land surface products. This study evaluates the calibration performance of the Collection-6 L1B for both Terra and Aqua MODIS bands 1 and 2 using three vicarious approaches. The first and second approaches focus on stability assessment using data collected from two pseudo-invariant sites, Libya 4 desert and Antarctic Dome C snow surface. The third approach examines the relative stability between Terra and Aqua in reference to a third sensor from a series of NOAA 15-19 Advanced Very High Resolution Radiometer (AVHRR). The comparison is based on measurements from MODIS and AVHRR Simultaneous Nadir Overpasses (SNO) over a thirteen-year period from 2002 to 2015. Results from this study provide a quantitative assessment of Terra and Aqua MODIS bands 1 and 2 calibration stability and the relative calibration differences between the two sensors.

  4. Current Usage and Future Prospects of Multispectral (RGB) Satellite Imagery in Support of NWS Forecast Offices and National Centers

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew L.; Fuell, Kevin K.; Knaff, John; Lee, Thomas

    2012-01-01

    Current and future satellite sensors provide remotely sensed quantities from a variety of wavelengths ranging from the visible to the passive microwave, from both geostationary and low-Earth orbits. The NASA Short-term Prediction Research and Transition (SPoRT) Center has a long history of providing multispectral imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA s Terra and Aqua satellites in support of NWS forecast office activities. Products from MODIS have recently been extended to include a broader suite of multispectral imagery similar to those developed by EUMETSAT, based upon the spectral channel s available from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) aboard METEOSAT-9. This broader suite includes products that discriminate between air mass types associated with synoptic-scale features, assists in the identification of dust, and improves upon paired channel difference detection of fog and low cloud events. Similarly, researchers at NOAA/NESDIS and CIRA have developed air mass discrimination capabilities using channels available from the current GOES Sounders. Other applications of multispectral composites include combinations of high and low frequency, horizontal and vertically polarized passive microwave brightness temperatures to discriminate tropical cyclone structures and other synoptic-scale features. Many of these capabilities have been transitioned for evaluation and operational use at NWS Weather Forecast Offices and National Centers through collaborations with SPoRT and CIRA. Future instruments will continue the availability of these products and also expand upon current capabilities. The Advanced Baseline Imager (ABI) on GOES-R will improve the spectral, spatial, and temporal resolution of our current geostationary capabilities, and the recent launch of the Suomi National Polar-Orbiting Partnership (S-NPP) carries instruments such as the Visible Infrared Imager Radiometer Suite (VIIRS), the Cross-track Infrared Sounder (CrIS), and the Advanced Technology Microwave Sounder (ATMS), which have unrivaled spectral and spatial resolution, as precursors to the JPSS era (i.e., the next generation of polar orbiting satellites). At the same time, new image manipulation and display capabilities are available within AWIPS II, the next generation of the NWS forecaster decision support system. This presentation will present a review of SPoRT, CIRA, and NRL collaborations regarding multispectral satellite imagery and articulate an integrated and collaborative path forward with Raytheon AWIPS II development staff for integrating current and future capabilities that support new satellite instrumentation and the AWIPS II decision support system.

  5. Synergistic Use of MODIS and AIRS in a Variational Retrieval of Cloud Parameters.

    NASA Astrophysics Data System (ADS)

    Li, Jun; Menzel, W. Paul; Zhang, Wenjian; Sun, Fengying; Schmit, Timothy J.; Gurka, James J.; Weisz, Elisabeth

    2004-11-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) and the Atmospheric Infrared Sounder (AIRS) measurements from the Earth Observing System's (EOS's) Aqua satellite enable global monitoring of the distribution of clouds. MODIS is able to provide a cloud mask, surface and cloud types, cloud phase, cloud-top pressure (CTP), effective cloud amount (ECA), cloud particle size, and cloud optical thickness at high spatial resolution (1 5 km). The combined MODIS AIRS system offers the opportunity for improved cloud products, better than from either system alone; this improvement is demonstrated in this paper with both simulated and real radiances. A one-dimensional variational (1DVAR) methodology is used to retrieve the CTP and ECA from AIRS longwave (650 790 cm-1 or 15.38 12.65 μm) cloudy radiance measurements (hereinafter referred to as MODIS AIRS 1DVAR). The MODIS AIRS 1DVAR cloud properties show significant improvement over the MODIS-alone cloud properties and slight improvement over AIRS-alone cloud properties in a simulation study, while MODIS AIRS 1DVAR is much more computationally efficient than the AIRS-alone 1DVAR; comparisons with radiosonde observations show that CTPs improve by 10 40 hPa for MODIS AIRS CTPs over those from MODIS alone. The 1DVAR approach is applied to process the AIRS longwave cloudy radiance measurements; results are compared with MODIS and Geostationary Operational Environmental Satellite sounder cloud products. Data from ground-based instrumentation at the Atmospheric Radiation Measurement Program Cloud and Radiation Test Bed in Oklahoma are used for validation; results show that MODIS AIRS improves the MODIS CTP, especially in low-level clouds. The operational use of a high-spatial-resolution imager, along with information from a high-spectral-resolution sounder will be possible with instruments planned for the next-generation geostationary operational instruments.


  6. Corrections to MODIS Terra Calibration and Polarization Trending Derived from Ocean Color Products

    NASA Technical Reports Server (NTRS)

    Meister, Gerhard; Eplee, Robert E.; Franz, Bryan A.

    2014-01-01

    Remotely sensed ocean color products require highly accurate top-of-atmosphere (TOA) radiances, on the order of 0.5% or better. Due to incidents both prelaunch and on-orbit, meeting this requirement has been a consistent problem for the MODIS instrument on the Terra satellite, especially in the later part of the mission. The NASA Ocean Biology Processing Group (OBPG) has developed an approach to correct the TOA radiances of MODIS Terra using spatially and temporally averaged ocean color products from other ocean color sensors (such as the SeaWiFS instrument on Orbview-2 or the MODIS instrument on the Aqua satellite). The latest results suggest that for MODIS Terra, both linear polarization parameters of the Mueller matrix are temporally evolving. A change to the functional form of the scan angle dependence improved the quality of the derived coefficients. Additionally, this paper demonstrates that simultaneously retrieving polarization and gain parameters improves the gain retrieval (versus retrieving the gain parameter only).

  7. Iceberg Nursery

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Almost an iceberg 'nursery,' icebergs continue to break away from the Ross Ice Shelf in Antarctica. This image from the MODerate-resolution Imaging Spectroradiometer (MODIS) aboard the Terra spacecraft, shows the level of activity along the shelf near Ross Island on September 21, 2000. The B-15 fragments are remnants of the huge iceberg (nearly 4,250 sqare miles) which broke away from the Antarctic shelf in late March 2000. Slightly visible is the line where iceberg B-20 broke away from the shelf in the last week of September. Cracks in the Antarctic ice shelf are closely observed by satellite and are of interest to scientists studying the potential effects of global warming. This true-color image was produced using MODIS bands 1, 3, and 4. Image by Brian Montgomery, NASA GSFC; data courtesy MODIS Science Team

  8. Remote Sensing of Aerosol Over the Land from the Earth Observing System MODIS Instrument

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram; Tanre, Didier; Remer, Lorraine; Einaudi, Franco (Technical Monitor)

    2000-01-01

    On Dec 18, 1999, NASA launched the Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument on the Earth Observing System (EOS) Terra mission, in a spectacular launch. The mission will provide morning (10:30 AM) global observations of aerosol and other related parameters. It will be followed a year later by a MODIS instrument on EOS Aqua for afternoon observations (1:30 PM). MODIS will measure aerosol over land and ocean with its eight 500 m and 250 m channels in the solar spectrum (0-41 to 2.2 micrometers). Over the land MODIS will measure the total column aerosol loading, and distinguish between submicron pollution particles and large soil particles. Standard daily products of resolution of ten kilometers and global mapped eight day and monthly products on a 1x1 degree global scale will be produced routinely and make available for no or small reproduction charge to the international community. Though the aerosol products will not be available everywhere over the land, it is expected that they will be useful for assessments of the presence, sources and transport of urban pollution, biomass burning aerosol, and desert dust. Other measurements from MODIS will supplement the aerosol information, e.g., land use change, urbanization, presence and magnitude of biomass burning fires, and effect of aerosol on cloud microphysics. Other instruments on Terra, e.g. Multi-angle Imaging SpectroRadiometer (MISR) and the Clouds and the Earth's Radiant Energy System (CERES), will also measure aerosol, its properties and radiative forcing in tandem with the MODIS measurements. During the Aqua period, there are plans to launch in 2003 the Pathfinder Instruments for Cloud and Aerosol Spaceborne Observations (PICASSO) mission for global measurements of the aerosol vertical structure, and the PARASOL mission for aerosol characterization. Aqua-MODIS, PICASSO and PARASOL will fly in formation for detailed simultaneous characterization of the aerosol three-dimensional field, which will feed and evaluate global aerosol transport and climate models. In this talk, some examples of the MODIS measurements will be shown.

  9. Trends in MODIS Geolocation Error Analysis

    NASA Technical Reports Server (NTRS)

    Wolfe, R. E.; Nishihama, Masahiro

    2009-01-01

    Data from the two MODIS instruments have been accurately geolocated (Earth located) to enable retrieval of global geophysical parameters. The authors describe the approach used to geolocate with sub-pixel accuracy over nine years of data from M0DIS on NASA's E0S Terra spacecraft and seven years of data from MODIS on the Aqua spacecraft. The approach uses a geometric model of the MODIS instruments, accurate navigation (orbit and attitude) data and an accurate Earth terrain model to compute the location of each MODIS pixel. The error analysis approach automatically matches MODIS imagery with a global set of over 1,000 ground control points from the finer-resolution Landsat satellite to measure static biases and trends in the MO0lS geometric model parameters. Both within orbit and yearly thermally induced cyclic variations in the pointing have been found as well as a general long-term trend.

  10. Cloud vortices

    NASA Image and Video Library

    2017-12-08

    Cloud vortices off Heard Island, south Indian Ocean. The Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Aqua satellite captured this true-color image of sea ice off Heard Island on Nov 2, 2015 at 5:02 AM EST (09:20 UTC). Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  11. Terra MODIS Band 27 Electronic Crosstalk Effect and Its Removal

    NASA Technical Reports Server (NTRS)

    Sun, Junqiang; Xiong, Xiaoxiong; Madhavan, Sriharsha; Wenny, Brian

    2012-01-01

    The MODerate-resolution Imaging Spectroradiometer (MODIS) is one of the primary instruments in the NASA Earth Observing System (EOS). The first MODIS instrument was launched in December, 1999 on-board the Terra spacecraft. MODIS has 36 bands, covering a wavelength range from 0.4 micron to 14.4 micron. MODIS band 27 (6.72 micron) is a water vapor band, which is designed to be insensitive to Earth surface features. In recent Earth View (EV) images of Terra band 27, surface feature contamination is clearly seen and striping has become very pronounced. In this paper, it is shown that band 27 is impacted by electronic crosstalk from bands 28-30. An algorithm using a linear approximation is developed to correct the crosstalk effect. The crosstalk coefficients are derived from Terra MODIS lunar observations. They show that the crosstalk is strongly detector dependent and the crosstalk pattern has changed dramatically since launch. The crosstalk contributions are positive to the instrument response of band 27 early in the mission but became negative and much larger in magnitude at later stages of the mission for most detectors of the band. The algorithm is applied to both Black Body (BB) calibration and MODIS L1B products. With the crosstalk effect removed, the calibration coefficients of Terra MODIS band 27 derived from the BB show that the detector differences become smaller. With the algorithm applied to MODIS L1B products, the Earth surface features are significantly removed and the striping is substantially reduced in the images of the band. The approach developed in this report for removal of the electronic crosstalk effect can be applied to other MODIS bands if similar crosstalk behaviors occur.

  12. Moderate Resolution Imaging Spectrometer (MODIS) design evolution and associated development and verification of data product efforts

    NASA Technical Reports Server (NTRS)

    Salomonson, Vincent V.

    1991-01-01

    The Moderate Resolution Imaging Spectrometer (MODIS) is a key observing facility to be flown on the Earth Observing System (EOS). The facility is composed of two instruments called MODIS-N (nadir) and MODIS-T (tilt). The MODIS-N is being built under contract to NASA by the Santa Barbara Research Center. The MODIS-T is being fabricated by the Engineering Directorate at the Goddard Space Flight Center. The MODIS Science Team has defined nearly 40 biogeophysical data products for studies of the ocean and land surface and properties of the atmosphere including clouds that can be expected to be produced from the MODIS instruments shortly after the launch of EOS. The ocean, land, atmosphere, and calibration groups of the MODIS Science Team are now proceeding to plan and implement the operations and facilities involving the analysis of data from existing spaceborne, airborne, and in-situ sensors required to develop and validate the algorithms that will produce the geophysical data products. These algorithm development and validation efforts will be accomplished wherever possible within the context of existing or planned national and international experiments or programs such as those in the World Climate Research Program.

  13. Spatially Complete Global Surface Albedos Derived from Terra/MODIS Data

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Moody, Eric G.; Schaaf, Crystal B.; Platnick, Steven

    2006-01-01

    Spectral land surface albedo is an important parameter for describing the radiative properties of the Earth. Accordingly it reflects the consequences of natural and human interactions, such as anthropogenic, meteorological, and phenological effects, on global and local climatological trends. Consequently, albedos are integral parts in a variety of research areas, such as general circulation models (GCMs), energy balance studies, modeling of land use and land use change, and biophysical, oceanographic, and meteorological studies. , Over five years of land surface anisotropy, diffuse bihemispherical (white-sky) albedo and direct beam directional hemispherical (black-sky) albedo from observations acquired by the MODIS instruments aboard NASA s Terra and Aqua satellite platforms have provided researchers with unprecedented spatial, spectral, and temporal information on the land surface s radiative characteristics. However, roughly 30% of the global land surface, on an annual equal-angle basis, is obscured due to persistent and transient cloud cover, while another 207% is obscured due to ephemeral and seasonal snow effects. This precludes the MOD43B3 albedo products from being directly used in some remote sensing and ground-based applications, climate models, and global change research projects. To provide researchers with the requisite spatially complete global snow-free land surface albedo dataset, an ecosystem-dependent temporal interpolation technique was developed to fill missing or lower quality data and snow covered values from the official MOD43B3 dataset with geophysically realistic values. The method imposes pixel-level and local regional ecosystem-dependent phenological behavior onto retrieved pixel temporal data in such a way as to maintain pixel-level spatial and spectral detail and integrity. The phenological curves are derived from statistics based on the MODIS MOD12Q1 IGBP land cover classification product geolocated with the MOD43B3 data.

  14. MODIS Global Sea Surface Temperature

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Every day the Moderate-resolution Imaging Spectroradiometer (MODIS) measures sea surface temperature over the entire globe with high accuracy. This false-color image shows a one-month composite for May 2001. Red and yellow indicates warmer temperatures, green is an intermediate value, while blues and then purples are progressively colder values. The new MODIS sea surface temperature product will be particularly useful in studies of temperature anomalies, such as El Nino, as well as research into how air-sea interactions drive changes in weather and climate patterns. In the high resolution image, notice the amazing detail in some of the regional current patterns. For instance, notice the cold water currents that move from Antarctica northward along South America's west coast. These cold, deep waters upwell along an equatorial swath around and to the west of the Galapagos Islands. Note the warm, wide currents of the Gulf Stream moving up the United States' east coast, carrying Caribbean warmth toward Newfoundland and across the Atlantic toward Western Europe. Note the warm tongue of water extending from Africa's east coast to well south of the Cape of Good Hope. MODIS was launched in December 1999 aboard NASA's Terra satellite. For more details on this and other MODIS data products, please see NASA Unveils Spectacular Suite of New Global Data Products from MODIS. Image courtesy MODIS Ocean Group, NASA GSFC, and the University of Miami

  15. Application and Comparison of the MODIS-Derived Enhanced Vegetation Index to VIIRS, Landsat 5 TM and Landsat 8 OLI Platforms: A Case Study in the Arid Colorado River Delta, Mexico.

    PubMed

    Jarchow, Christopher J; Didan, Kamel; Barreto-Muñoz, Armando; Nagler, Pamela L; Glenn, Edward P

    2018-05-13

    The Enhanced Vegetation Index (EVI) is a key Earth science parameter used to assess vegetation, originally developed and calibrated for the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Terra and Aqua satellites. With the impending decommissioning of the MODIS sensors by the year 2020/2022, alternative platforms will need to be used to estimate EVI. We compared Landsat 5 (2000⁻2011), 8 (2013⁻2016) and the Visible Infrared Imaging Radiometer Suite (VIIRS; 2013⁻2016) to MODIS EVI (2000⁻2016) over a 420,083-ha area of the arid lower Colorado River Delta in Mexico. Over large areas with mixed land cover or agricultural fields, we found high correspondence between Landsat and MODIS EVI (R² = 0.93 for the entire area studied and 0.97 for agricultural fields), but the relationship was weak over bare soil (R² = 0.27) and riparian vegetation (R² = 0.48). The correlation between MODIS and Landsat EVI was higher over large, homogeneous areas and was generally lower in narrow riparian areas. VIIRS and MODIS EVI were highly similar (R² = 0.99 for the entire area studied) and did not show the same decrease in performance in smaller, narrower regions as Landsat. Landsat and VIIRS provide EVI estimates of similar quality and characteristics to MODIS, but scale, seasonality and land cover type(s) should be considered before implementing Landsat EVI in a particular area.

  16. Space environment's effect on MODIS calibration

    NASA Astrophysics Data System (ADS)

    Dodd, J. L.; Wenny, B. N.; Chiang, K.; Xiong, X.

    2010-09-01

    The MODerate resolution Imaging Spectroradiometer flies on board the Earth Observing System (EOS) satellites Terra and Aqua in a sun-synchronous orbit that crosses the equator at 10:30 AM and 2:30 PM, respectively, at a low earth orbit (LEO) altitude of 705 km. Terra was launched on December 18,1999 and Aqua was launched on May 4, 2002. As the MODIS instruments on board these satellites continue to operate beyond the design lifetime of six years, the cumulative effect of the space environment on MODIS and its calibration is of increasing importance. There are several aspects of the space environment that impact both the top of atmosphere (TOA) calibration and, therefore, the final science products of MODIS. The south Atlantic anomaly (SAA), spacecraft drag, extreme radiative and thermal environment, and the presence of orbital debris have the potential to significantly impact both MODIS and the spacecraft, either directly or indirectly, possibly resulting in data loss. Efforts from the Terra and Aqua Flight Operations Teams (FOT), the MODIS Instrument Operations Team (IOT), and the MODIS Characterization Support Team (MCST) prevent or minimize external impact on the TOA calibrated data. This paper discusses specific effects of the space environment on MODIS and how they are minimized.

  17. Production and Distribution of NASA MODIS Remote Sensing Products

    NASA Technical Reports Server (NTRS)

    Wolfe, Robert

    2007-01-01

    The two Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on-board NASA's Earth Observing System (EOS) Terra and Aqua satellites make key measurements for understanding the Earth's terrestrial ecosystems. Global time-series of terrestrial geophysical parameters have been produced from MODIS/Terra for over 7 years and for MODIS/Aqua for more than 4 1/2 years. These well calibrated instruments, a team of scientists and a large data production, archive and distribution systems have allowed for the development of a new suite of high quality product variables at spatial resolutions as fine as 250m in support of global change research and natural resource applications. This talk describes the MODIS Science team's products, with a focus on the terrestrial (land) products, the data processing approach and the process for monitoring and improving the product quality. The original MODIS science team was formed in 1989. The team's primary role is the development and implementation of the geophysical algorithms. In addition, the team provided feedback on the design and pre-launch testing of the instrument and helped guide the development of the data processing system. The key challenges the science team dealt with before launch were the development of algorithms for a new instrument and provide guidance of the large and complex multi-discipline processing system. Land, Ocean and Atmosphere discipline teams drove the processing system requirements, particularly in the area of the processing loads and volumes needed to daily produce geophysical maps of the Earth at resolutions as fine as 250 m. The processing system had to handle a large number of data products, large data volumes and processing loads, and complex processing requirements. Prior to MODIS, daily global maps from heritage instruments, such as Advanced Very High Resolution Radiometer (AVHRR), were not produced at resolutions finer than 5 km. The processing solution evolved into a combination of processing the lower level (Level 1) products and the higher level discipline specific Land and Atmosphere products in the MODIS Science Investigator Lead Processing System (SIPS), the MODIS Adaptive Processing System (MODAPS), and archive and distribution of the Land products to the user community by two of NASA s EOS Distributed Active Archive Centers (DAACs). Recently, a part of MODAPS, the Level 1 and Atmosphere Archive and Distribution System (LAADS), took over the role of archiving and distributing the Level 1 and Atmosphere products to the user community.

  18. Sixteen Years of Terra MODIS On-Orbit Operation, Calibration, and Performance

    NASA Technical Reports Server (NTRS)

    Xiong, X.; Angal, A.; Wu, A.; Link, D.; Geng, X.; Barnes, W.; Solomonson, V.

    2016-01-01

    Terra MODIS has successfully operated for more than 16 years since its launch in December 1999. From its observations, many science data products have been generated in support of a broad range of research activities and remote sensing applications. Terra MODIS has operated in a number of configurations and experienced a few anomalies, including spacecraft and instrument related events. MODIS collects data in 36 spectral bands that are calibrated regularly by a set of on-board calibrators for their radiometric, spectral, and spatial performance. Periodic lunar observations and long-term radiometric trending over well-characterized ground targets are also used to support sensor on-orbit calibration. Dedicated efforts made by the MODIS Characterization Support Team (MCST) and continuing support from the MODIS Science Team have contributed to the mission success, enabling well-calibrated data products to be continuously generated and routinely delivered to users worldwide. This paper presents an overview of Terra MODIS mission operations, calibration activities, and instrument performance of the past 16 years. It illustrates and describes the results of key sensor performance parameters derived from on-orbit calibration and characterization, such as signal-to-noise ratio (SNR), noise equivalent temperature difference (NEdT), solar diffuser (SD) degradation, changes in sensor responses, center wavelengths, and band-to-band registration (BBR). Also discussed in this paper are the calibration approaches and strategies developed and implemented in support of MODIS Level 1B data production and re-processing, major challenging issues, and lessons learned. (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  19. Interactively Browsing NASA's EOS Imagery in Full Resolution

    NASA Astrophysics Data System (ADS)

    Boller, R. A.; Joshi, T.; Schmaltz, J. E.; Ilavajhala, S.; Davies, D.; Murphy, K. J.

    2012-12-01

    Worldview is a new tool designed to interactively browse full-resolution imagery from NASA's fleet of Earth Observing System (EOS) satellites. It is web-based and developed using open standards (JavaScript, CSS, HTML) for cross-platform compatibility. It addresses growing user demands for access to full-resolution imagery by providing a responsive, interactive interface with global coverage, no artificial boundaries, and views in geographic and polar projections. Currently tailored to the near real-time community, Worldview enables the rapid evaluation and comparison of imagery related to such application areas as fires, floods, and air quality. It is supported by the Global Imagery Browse Services (GIBS), a system that continuously ingests, mosaics, and serves approximately 21GB of imagery daily. This imagery spans over 50 data products that are available within three hours of observation from instruments aboard Terra, Aqua, and Aura. The GIBS image archive began in May 2012 and will have published approximately 4.4TB of imagery as of December 2012. Worldview facilitates rapid access to this archive and is supplemented by socioeconomic data layers from the Socioeconomic Data and Applications Center (SEDAC), including products such as population density and economic risk from cyclones. Future plans include the accessibility of additional products that cover the entire Terra/MODIS and Aqua/MODIS missions (>150TB) and the ability to download the underlying science data of the onscreen imagery.

  20. Flooding Caused by the Collapse of the Zeyzoun Dam, Syria

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On Tuesday the Zeyzoun dam in northern Syria ruptured and collapsed, killing 20 people and leaving thousands more homeless. This false-color image taken on June 5, 2002, (bottom) by the Moderate-resolution Imaging Spectroradiometer (MODIS) instrument aboard NASA's Terra satellite shows the extent of the flooding. Normally, there would be no water present in the center of the image (top, acquired on June 3, 2002). After the dam burst, 71 million cubic meters flowed onto the surrounding landscape and washed over an area of 20,000 acres. Hundreds of homes were destroyed in and around the villages of Zeyzoun, Qastoun, and Ziara, roughly 220 miles (350 kilometers) north of Damascus. Most of the residents fled to higher ground with the help of two helicopters. The Syrians originally constructed the dam to contain the Orontes River and provide a steady flow of water to the surrounding farms, many of which were lost. Rescue workers worry that more bodies may be found as the waters of the dam recede. The Japanese government issued more than $40,000 in aid for the victims, and the Syrian government is petitioning international aid agencies for further assistance. In this false-color image, the ground is sage green and rusty orange, and water is black. Clouds appear pink. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  1. SCAR-B fires in the tropics: Properties and remote sensing from EOS-MODIS

    NASA Astrophysics Data System (ADS)

    Kaufman, Yoram J.; Kleidman, Richard G.; King, Michael D.

    1998-12-01

    Two moderate resolution imaging spectroradiometer (MODIS) instruments are planned for launch in 1999 and 2000 on the NASA Earth Observing System (EOS) AM-1 and EOS PM-1 satellites. The MODIS instrument will sense fires with designated 3.9 and 11 μm channels that saturate at high temperatures (450 and 400 K, respectively). MODIS data will be used to detect fires, to estimate the rate of emission of radiative energy from the fire, and to estimate the fraction of biomass burned in the smoldering phase. The rate of emission of radiative energy is a measure of the rate of combustion of biomass in the fires. In the Smoke, Clouds, and Radiation-Brazil (SCAR-B) experiment the NASA ER-2 aircraft flew the MODIS airborne simulator (MAS) to measure the fire thermal and mid-IR signature with a 50 m spatial resolution. These data are used to observe the thermal properties and sizes of fires in the cerrado grassland and Amazon forests of Brazil and to simulate the performance of the MODIS 1 km resolution fire observations. Although some fires saturated the MAS 3.9 μm channel, all the fires were well within the MODIS instrument saturation levels. Analysis of MAS data over different ecosystems, shows that the fire size varied from single MAS pixels (50×50 m) to over 1 km2. The 1×1 km resolution MODIS instrument can observe only 30-40% of these fires, but the observed fires are responsible for 80 to nearly 100% of the emitted radiative energy and therefore for 80 to 100% of the rate of biomass burning in the region. The rate of emission of radiative energy from the fires correlated very well with the formation of fire burn scars (correlation coefficient = 0.97). This new remotely sensed quantity should be useful in regional estimates of biomass consumption.

  2. Volcanic Activity at Shiveluch and Plosky Tolbachik

    NASA Image and Video Library

    2017-12-08

    On March 7, 2013 the Terra satellite passed over eastern Russia, allowing the Moderate Resolution Imaging Spectroradiometer (MODIS) flying aboard to capture volcanic activity at Shiveluch and Plosky Tolbachik, on the Kamchatka Peninsula, in eastern Russia. This image was captured at 0050 UTC. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. Smog Obscures Chinese Coast

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Most of southeastern China has been covered by a thick greyish shroud of aerosol pollution over the last few weeks. The smog is so thick it is difficult to see the surface in some regions of this scene, acquired on January 7, 2002. The city of Hong Kong is the large brown cluster of pixels toward the lower lefthand corner of the image (indicated by the faint black box). The island of Taiwan, due east of mainland China, is also blanketed by the smog. This true-color image was captured by the Moderate-resolution Imaging Spectroradiometer (MODIS) sensor, flying aboard NASA's Terra satellite. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  4. MODIS Views the Middle-East

    NASA Technical Reports Server (NTRS)

    2002-01-01

    To paraphrase English author T.H. White, borders are the one thing a man sees that a bird cannot see as it flies high overhead. For the 15th consecutive day, differences in ideology have sparked violence and tension in the middle-east as the rest of the world watches, concerned. This true-color image of the region was taken on September 10, 2000, by the MODerate-resolution Imaging Spectroradiometer (MODIS) flying aboard NASA's Terra spacecraft. The image shows the lands of Israel along the eastern shore of the Mediterranean Sea, with the countries of Jordan to the southeast and Syria to the Northeast. Jerusalem, labeled, is Israel's capital city and Aman, labeled, is the capital of Jordan. The region known as the West Bank lies between the two countries. Running from north to south, the Jordan River links the Sea of Galilee to the Dead Sea. Image courtesy Jacques Descloitres, MODIS Land Group, NASA GSFC

  5. Flooding in Central China

    NASA Technical Reports Server (NTRS)

    2002-01-01

    During the summer of 2002, frequent, heavy rains gave rise to floods and landslides throughout China that have killed over 1,000 people and affected millions. This false-color image of the western Yangtze River and Dongting Lake in central China was acquired on August 21, 2002, by the Moderate-resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra spacecraft. (right) The latest flooding crisis in China centers on Dingtong Lake in the center of the image. Heavy rains have caused it to swell over its banks and swamp lakefront towns in the province of Hunan. As of August 23, 2002, more than 250,000 people have been evacuated, and over one million people have been brought in to fortify the dikes around the lake. Normally the lake would appear much smaller and more defined in the MODIS image. Credit: Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC.

  6. Synergism of MODIS Aerosol Remote Sensing from Terra and Aqua

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles; Kaufman, Yoram J.; Remer, Lorraine A.

    2003-01-01

    The MODerate-resolution Imaging Spectro-radiometer (MODIS) sensors, aboard the Earth Observing System (EOS) Terra and Aqua satellites, are showing excellent competence at measuring the global distribution and properties of aerosols. Terra and Aqua were launched on December 18, 1999 and May 4, 2002 respectively, with daytime equator crossing times of approximately 10:30 am and 1:30 pm respectively. Several aerosol parameters are retrieved at 10-km spatial resolution from MODIS daytime data over land and ocean surfaces. The parameters retrieved include: aerosol optical thickness (AOT) at 0.47, 0.55 and 0.66 micron wavelengths over land, and at 0.47, 0.55, 0.66, 0.87, 1.2, 1.6, and 2.1 microns over ocean; Angstrom exponent over land and ocean; and effective radii, and the proportion of AOT contributed by the small mode aerosols over ocean. Since the beginning of its operation, the quality of Terra-MODIS aerosol products (especially AOT) have been evaluated periodically by cross-correlation with equivalent data sets acquired by ground-based (and occasionally also airborne) sunphotometers, particularly those coordinated within the framework of the AErosol Robotic NETwork (AERONET). Terra-MODIS AOT data have been found to meet or exceed pre-launch accuracy expectations, and have been applied to various studies dealing with local, regional, and global aerosol monitoring. The results of these Terra-MODIS aerosol data validation efforts and studies have been reported in several scientific papers and conferences. Although Aqua-MODIS is still young, it is already yielding formidable aerosol data products, which are also subjected to careful periodic evaluation similar to that implemented for the Terra-MODIS products. This paper presents results of validation of Aqua-MODIS aerosol products with AERONET, as well as comparative evaluation against corresponding Terra-MODIS data. In addition, we show interesting independent and synergistic applications of MODIS aerosol data from both Terra and Aqua. In certain situations, this combined analysis of Terra- and Aqua-MODIS data offers an insight into the diurnal cycle of aerosol loading.

  7. An Overview of the Earth Observing System MODIS Instrument Performance, Data Systems Performance, and Data Products Status and Availability

    NASA Technical Reports Server (NTRS)

    Salomonson, Vincent V.

    2002-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) on the Earth Observing System (EOS) Terra Mission began to produce data in February 2000. Now, approximately 2 years from that time, the instrument is operating well. All subsystems of the instrument are performing as expected, the signal-to-noise (S/N) performance meets or exceeds specifications, band-to-band registration meets specifications, geodetic registration of observations is nearing 50 meters (one sigma) and the spectral bands are located where they were intended to be pre-launch and attendant gains and offsets are stable to date. The data systems have performed well and are producing a wide variety of data products useful for scientific and applications studies in relatively consistent fashion extending from November 2000 to the present. Within the approximately 40 MODIS data products, several are new and represent powerful and exciting capabilities. The remainder of the MODIS products exceed or, at a minimum, match the capabilities of products from heritage sensors such as, for example, the Advanced Very High Resolution Radiometer (AVHRR). Efforts are underway to provide data sets for the greater Earth science community and to improve access to these products at the various Distributed Active Archive Centers (DAAC's) or through Direct Broadcast (DB) stations. The MODIS instrument on the EOS Aqua mission should also be expected to be in orbit and functioning in the Spring of 2002.

  8. Application and Comparison of the MODIS-Derived Enhanced Vegetation Index to VIIRS, Landsat 5 TM and Landsat 8 OLI Platforms: A Case Study in the Arid Colorado River Delta, Mexico

    PubMed Central

    Jarchow, Christopher J.; Didan, Kamel; Barreto-Muñoz, Armando; Glenn, Edward P.

    2018-01-01

    The Enhanced Vegetation Index (EVI) is a key Earth science parameter used to assess vegetation, originally developed and calibrated for the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Terra and Aqua satellites. With the impending decommissioning of the MODIS sensors by the year 2020/2022, alternative platforms will need to be used to estimate EVI. We compared Landsat 5 (2000–2011), 8 (2013–2016) and the Visible Infrared Imaging Radiometer Suite (VIIRS; 2013–2016) to MODIS EVI (2000–2016) over a 420,083-ha area of the arid lower Colorado River Delta in Mexico. Over large areas with mixed land cover or agricultural fields, we found high correspondence between Landsat and MODIS EVI (R2 = 0.93 for the entire area studied and 0.97 for agricultural fields), but the relationship was weak over bare soil (R2 = 0.27) and riparian vegetation (R2 = 0.48). The correlation between MODIS and Landsat EVI was higher over large, homogeneous areas and was generally lower in narrow riparian areas. VIIRS and MODIS EVI were highly similar (R2 = 0.99 for the entire area studied) and did not show the same decrease in performance in smaller, narrower regions as Landsat. Landsat and VIIRS provide EVI estimates of similar quality and characteristics to MODIS, but scale, seasonality and land cover type(s) should be considered before implementing Landsat EVI in a particular area. PMID:29757265

  9. Marine Boundary Layer Cloud Property Retrievals from High-Resolution ASTER Observations: Case Studies and Comparison with Terra MODIS

    NASA Technical Reports Server (NTRS)

    Werner, Frank; Wind, Galina; Zhang, Zhibo; Platnick, Steven; Di Girolamo, Larry; Zhao, Guangyu; Amarasinghe, Nandana; Meyer, Kerry

    2016-01-01

    A research-level retrieval algorithm for cloud optical and microphysical properties is developed for the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) aboard the Terra satellite. It is based on the operational MODIS algorithm. This paper documents the technical details of this algorithm and evaluates the retrievals for selected marine boundary layer cloud scenes through comparisons with the operational MODIS Data Collection 6 (C6) cloud product. The newly developed, ASTERspecific cloud masking algorithm is evaluated through comparison with an independent algorithm reported in Zhao and Di Girolamo (2006). To validate and evaluate the cloud optical thickness (tau) and cloud effective radius (r(sub eff)) from ASTER, the high-spatial-resolution ASTER observations are first aggregated to the same 1000m resolution as MODIS. Subsequently, tau(sub aA) and r(sub eff, aA) retrieved from the aggregated ASTER radiances are compared with the collocated MODIS retrievals. For overcast pixels, the two data sets agree very well with Pearson's product-moment correlation coefficients of R greater than 0.970. However, for partially cloudy pixels there are significant differences between r(sub eff, aA) and the MODIS results which can exceed 10 micrometers. Moreover, it is shown that the numerous delicate cloud structures in the example marine boundary layer scenes, resolved by the high-resolution ASTER retrievals, are smoothed by the MODIS observations. The overall good agreement between the research-level ASTER results and the operational MODIS C6 products proves the feasibility of MODIS-like retrievals from ASTER reflectance measurements and provides the basis for future studies concerning the scale dependency of satellite observations and three-dimensional radiative effects.

  10. Marine boundary layer cloud property retrievals from high-resolution ASTER observations: case studies and comparison with Terra MODIS

    NASA Astrophysics Data System (ADS)

    Werner, Frank; Wind, Galina; Zhang, Zhibo; Platnick, Steven; Di Girolamo, Larry; Zhao, Guangyu; Amarasinghe, Nandana; Meyer, Kerry

    2016-12-01

    A research-level retrieval algorithm for cloud optical and microphysical properties is developed for the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) aboard the Terra satellite. It is based on the operational MODIS algorithm. This paper documents the technical details of this algorithm and evaluates the retrievals for selected marine boundary layer cloud scenes through comparisons with the operational MODIS Data Collection 6 (C6) cloud product. The newly developed, ASTER-specific cloud masking algorithm is evaluated through comparison with an independent algorithm reported in [Zhao and Di Girolamo(2006)]. To validate and evaluate the cloud optical thickness (τ) and cloud effective radius (reff) from ASTER, the high-spatial-resolution ASTER observations are first aggregated to the same 1000 m resolution as MODIS. Subsequently, τaA and reff, aA retrieved from the aggregated ASTER radiances are compared with the collocated MODIS retrievals. For overcast pixels, the two data sets agree very well with Pearson's product-moment correlation coefficients of R > 0.970. However, for partially cloudy pixels there are significant differences between reff, aA and the MODIS results which can exceed 10 µm. Moreover, it is shown that the numerous delicate cloud structures in the example marine boundary layer scenes, resolved by the high-resolution ASTER retrievals, are smoothed by the MODIS observations. The overall good agreement between the research-level ASTER results and the operational MODIS C6 products proves the feasibility of MODIS-like retrievals from ASTER reflectance measurements and provides the basis for future studies concerning the scale dependency of satellite observations and three-dimensional radiative effects.

  11. Intercalibration of Two Polar Satellite Instruments Without Simultaneous Nadir Observations

    NASA Astrophysics Data System (ADS)

    Manninen, Terhikki; Riihela, Aku; Schaaf, Crystal; Key, Jeffrey; Lattanzio, Alessio

    2016-08-01

    A new intercalibration method for two polar satellite instruments is presented. It is based on statistical fitting of two data sets covering the same area during the same period, but not simultaneously. Deming regression with iterative weights is used. The accuracy of the method was better than about 0.5 % for the MODIS vs. MODIS and AVHRR vs. AVHRR test data sets. The intercalibration of AVHRR vs. MODIS red and NIR channels is carried out and showed a difference of reflectance values of 2% (red) and 6 % (NIR). The red channel intercalibration has slightly higher accuracy for all cases studied.

  12. Terra and Aqua MODIS Design, Radiometry, and Geometry in Support of Land Remote Sensing

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong; Wolfe, Robert; Barnes, William; Guenther, Bruce; Vermote, Eric; Saleous, Nazmi; Salomonson, Vincent

    2011-01-01

    The NASA Earth Observing System (EOS) mission includes the construction and launch of two nearly identical Moderate Resolution Imaging Spectroradiometer (MODIS) instruments. The MODIS proto-flight model (PFM) is onboard the EOS Terra satellite (formerly EOS AM-1) launched on December 18, 1999 and hereafter referred to as Terra MODIS. Flight model-1 (FM1) is onboard the EOS Aqua satellite (formerly EOS PM-1) launched on May 04, 2002 and referred to as Aqua MODIS. MODIS was developed based on the science community s desire to collect multiyear continuous datasets for monitoring changes in the Earth s land, oceans and atmosphere, and the human contributions to these changes. It was designed to measure discrete spectral bands, which includes many used by a number of heritage sensors, and thus extends the heritage datasets to better understand both long- and short-term changes in the global environment (Barnes and Salomonson 1993; Salomonson et al. 2002; Barnes et al. 2002). The MODIS development, launch, and operation were managed by NASA/Goddard Space Flight Center (GSFC), Greenbelt, Maryland. The sensors were designed, built, and tested by Raytheon/ Santa Barbara Remote Sensing (SBRS), Goleta, California. Each MODIS instrument offers 36 spectral bands, which span the spectral region from the visible (0.41 m) to long-wave infrared (14.4 m). MODIS collects data at three different nadir spatial resolutions: 0.25, 0.5, and 1 km. Key design specifications, such as spectral bandwidths, typical scene radiances, required signal-to-noise ratios (SNR) or noise equivalent temperature differences (NEDT), and primary applications of each MODIS spectral band are summarized in Table 7.1. These parameters were the basis for the MODIS design. More details on the evolution of the NASA EOS and development of the MODIS instruments are provided in Chap. 1. This chapter focuses on the MODIS sensor design, radiometry, and geometry as they apply to land remote sensing. With near-daily coverage of the Earth's surface, MODIS provides comprehensive measurements that enable scientists and policy makers to better understand and effectively manage the natural resources on both regional and global scales. Terra, the first large multisensor EOS satellite, is operated in a 10:30 am (local equatorial crossing time, descending southwards) polar orbit. Aqua, the second multisensor EOS satellite is operated in a 1:30 pm (local equatorial crossing time, ascending northwards) polar orbit. With complementing morning and afternoon observations, the Terra and Aqua MODIS, together with other sensors housed on both satellites, have greatly improved our understanding of the dynamics of the global environmental system.

  13. Validation of MODIS aerosol optical depth product over China using CARSNET measurements

    NASA Astrophysics Data System (ADS)

    Xie, Yong; Zhang, Yan; Xiong, Xiaoxiong; Qu, John J.; Che, Huizheng

    2011-10-01

    This study evaluates Moderate Resolution Imaging Spectroradiometer (MODIS) Aerosol Optical Depth (AOD) retrievals with ground measurements collected by the China Aerosol Remote Sensing NETwork (CARSNET). In current stage, the MODIS Collection 5 (C5) AODs are retrieved by two distinct algorithms: the Dark Target (DT) and the Deep Blue (DB). The CARSNET AODs are derived with measurements of Cimel Electronique CE-318, the same instrument deployed by the AEROsol Robotic Network (AEROENT). The collocation is performed by matching each MODIS AOD pixel (10 × 10 km 2) to CARSNET AOD mean within 7.5 min of satellite overpass. Four-year comparisons (2005-2008) of MODIS/CARSNET at ten sites show the performance of MODIS AOD retrieval is highly dependent on the underlying land surface. The MODIS DT AODs are on average lower than the CARSNET AODs by 6-30% over forest and grassland areas, but can be higher by up to 54% over urban area and 95% over desert-like area. More than 50% of the MODIS DT AODs fall within the expected error envelope over forest and grassland areas. The MODIS DT tends to overestimate for small AOD at urban area. At high vegetated area it underestimates for small AOD and overestimates for large AOD. Generally, its quality reduces with the decreasing AOD value. The MODIS DB is capable of retrieving AOD over desert but with a significant underestimation at CARSNET sites. The best retrieval of the MODIS DB is over grassland area with about 70% retrievals within the expected error. The uncertainties of MODIS AOD retrieval from spatial-temporal collocation and instrument calibration are discussed briefly.

  14. Beyond MODIS: Developing an aerosol climate data record

    NASA Astrophysics Data System (ADS)

    Levy, R. C.; Mattoo, S.; Munchak, L. A.; Patadia, F.; Laszlo, I.; Holz, R.

    2013-12-01

    As defined by the National Research Council, a climate data record (CDR) is a time series of measurements of sufficient length, consistency, and continuity to determine climate variability and change. As one of our most pressing research questions concerns changes in global direct aerosol radiative forcing (DARF), creating an aerosol CDR is of high importance. To reduce our uncertainties in DARF, we need uncertainty in global aerosol optical depth (AOD) reduced to ×0.02 or better, or about 10% of global mean AOD (~0.15-0.20). To quantify aerosol trends with significance, we also need a stable time series at least 20-30 years. By this Fall-2013 AGU meeting, the Moderate Resolution Imaging Spectrometer (MODIS) has been flying on NASA's Terra and Aqua satellites for 14 years and 11.5 years, respectively. During this time, we have fine-tuned the aerosol retrieval algorithms and data processing protocols, resulting in a well characterized product of aerosol optical depth (AOD). MODIS AOD has been extensively compared to ground-based sunphotometer data, showing per-retrieval expected error (EE) of ×(0.03 + 5%) over ocean, and has been generally adopted as a robust and stable environmental data record (EDR). With the 2011 launch of the Visible and Infrared Imaging Radiometer Suite (VIIRS) aboard Suomi-NPP, we have begun a new aerosol time series. The VIIRS AOD product has stabilized to the point where, compared to ground-based AERONET sunphotometer, the VIIRS AOD is within similar EE envelope as MODIS. Thus, if VIIRS continues to perform as expected, it too can provide a robust and stable aerosol EDR. What will it take to stitch MODIS and VIIRS into a robust aerosol CDR? Based on the recent experience of MODIS 'Collection 6' development, there are many details of aerosol retrieval that each lead to ×0.01 uncertainties in global AOD. These include 'radiative transfer' assumptions such as calculations for gas absorption and sea-level Rayleigh optical depth, 'decision making' assumptions such as cloud masking and pixel selection, as well as 'retrieval' assumptions such as aerosol type, and surface reflectance model. Also there are instrument issues such as calibration and geo-location, which even on the level of 1-2%, will lead to 10% error in retrieved AOD. At this point, however, many of these issues have been solved, or are being quantified for MODIS and VIIRS. In the past year, we created a generic dark-target aerosol retrieval algorithm, which can be applied to MODIS, VIIRS, or any other sensor with a similar set of wavelength bands. We applied the same radiative transfer codes for creating lookup tables, the same protocols for deriving non-aerosol assumptions, and the same criteria for cloud masking. Although there are still inconsistencies to work out, this generic algorithm is being applied to selected months having VIIRS/MODIS overlap. Comparing to AERONET, and with each other, we quantify the statistical agreement between MODIS and VIIRS, both for the official algorithms run on each sensor, as well as for our generic algorithm run on both.

  15. MODIS-VIIRS Intercalibration for Dark Target Aerosol Retrieval Over Ocean

    NASA Astrophysics Data System (ADS)

    Sawyer, V. R.; Levy, R. C.; Mattoo, S.; Quinn, G.; Veglio, P.

    2016-12-01

    Any future climate record for satellite aerosol retrieval will require continuity over multiple decades, longer than the lifespan of an individual satellite instrument. The Dark Target algorithm was developed for MODIS, which began taking observations in 1999; the two MODIS instruments currently in orbit are not expected to continue taking observations beyond the early 2020s. However, the algorithm is portable, and a Dark Target product for VIIRS is scheduled for release December 2016. Because MODIS and VIIRS operate at different wavelengths, resolutions, fields of view and orbital timing, the transition can introduce artifacts that must be corrected. Without these corrections, it will be difficult to find any changes that may occur in the global aerosol climate record over time periods that span the transition from MODIS to VIIRS retrievals. The University of Wisconsin-Madison SIPS team found thousands of matches between 2012 and 2016 in which Aqua-MODIS and Suomi-NPP VIIRS observe the same location at similar times and view angles. These matched cases are used to identify corresponding matches in the Intermediate File Format (IFF) aerosol retrievals for MODIS and VIIRS, which are compared to one another in turn. Because most known sources of disagreement between the two instruments have already been corrected during the IFF retrieval, the direct comparison between near-collocated cases shows only the differences that remain at local and regional scales. The comparison is further restricted to clear-sky cases over ocean, so that the investigation of seasonal, diurnal and geographic variation is not affected by uncertainties in the land surface or cloud contamination.

  16. Creating a consistent dark-target aerosol optical depth record from MODIS and VIIRS

    NASA Astrophysics Data System (ADS)

    Levy, R. C.; Mattoo, S.; Munchak, L. A.; Patadia, F.; Holz, R.

    2014-12-01

    To answer fundamental questions about our changing climate, we must quantify how aerosols are changing over time. This is a global question that requires regional characterization, because in some places aerosols are increasing and in others they are decreasing. Although NASA's Moderate resolution Imaging Spectrometer (MODIS) sensors have provided quantitative information about global aerosol optical depth (AOD) for more than a decade, the creation of an aerosol climate data record (CDR) requires consistent multi-decadal data. With the Visible and Infrared Imaging Radiometer Suite (VIIRS) aboard Suomi-NPP, there is potential to continue the MODIS aerosol time series. Yet, since the operational VIIRS aerosol product is produced by a different algorithm, it is not suitable to continue MODIS to create an aerosol CDR. Therefore, we have applied the MODIS Dark-target (DT) algorithm to VIIRS observations, taking into account the slight differences in wavelengths, resolutions and geometries between the two sensors. More specifically, we applied the MODIS DT algorithm to a dataset known as the Intermediate File Format (IFF), created by the University of Wisconsin. The IFF is produced for both MODIS and VIIRS, with the idea that a single (MODIS-like or ML) algorithm can be run either dataset, which can in turn be compared to the MODIS Collection 6 (M6) retrieval that is run on standard MODIS data. After minimizing or characterizing remaining differences between ML on MODIS-IFF (or ML-M) and M6, we have performed apples-to-apples comparison between ML-M and ML on VIIRS IFF (ML-V). Examples of these comparisons include time series of monthly global mean, monthly and seasonal global maps at 1° resolution, and collocations as compared to AERONET. We concentrate on the overlapping period January 2012 through June 2014, and discuss some of the remaining discrepancies between the ML-V and ML-M datasets.

  17. Intercomparison of MODIS, MISR, OMI, and CALIPSO aerosol optical depth retrievals for four locations on the Indo-Gangetic plains and validation against AERONET data

    NASA Astrophysics Data System (ADS)

    Bibi, Humera; Alam, Khan; Chishtie, Farrukh; Bibi, Samina; Shahid, Imran; Blaschke, Thomas

    2015-06-01

    This study provides an intercomparison of aerosol optical depth (AOD) retrievals from satellite-based Moderate Resolution Imaging Spectroradiometer (MODIS), Multiangle Imaging Spectroradiometer (MISR), Ozone Monitoring Instrument (OMI), and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) instrumentation over Karachi, Lahore, Jaipur, and Kanpur between 2007 and 2013, with validation against AOD observations from the ground-based Aerosol Robotic Network (AERONET). Both MODIS Deep Blue (MODISDB) and MODIS Standard (MODISSTD) products were compared with the AERONET products. The MODISSTD-AERONET comparisons revealed a high degree of correlation for the four investigated sites at Karachi, Lahore, Jaipur, and Kanpur, the MODISDB-AERONET comparisons revealed even better correlations, and the MISR-AERONET comparisons also indicated strong correlations, as did the OMI-AERONET comparisons, while the CALIPSO-AERONET comparisons revealed only poor correlations due to the limited number of data points available. We also computed figures for root mean square error (RMSE), mean absolute error (MAE) and root mean bias (RMB). Using AERONET data to validate MODISSTD, MODISDB, MISR, OMI, and CALIPSO data revealed that MODISSTD data was more accurate over vegetated locations than over un-vegetated locations, while MISR data was more accurate over areas close to the ocean than over other areas. The MISR instrument performed better than the other instruments over Karachi and Kanpur, while the MODISSTD AOD retrievals were better than those from the other instruments over Lahore and Jaipur. We also computed the expected error bounds (EEBs) for both MODIS retrievals and found that MODISSTD consistently outperformed MODISDB in all of the investigated areas. High AOD values were observed by the MODISSTD, MODISDB, MISR, and OMI instruments during the summer months (April-August); these ranged from 0.32 to 0.78, possibly due to human activity and biomass burning. In contrast, high AOD values were observed by the CALIPSO instrument between September and December, due to high concentrations of smoke and soot aerosols. The variable monthly AOD figures obtained with different sensors indicate overestimation by MODISSTD, MODISDB, OMI, and CALIPSO instruments over Karachi, Lahore, Jaipur and Kanpur, relative to the AERONET data, but underestimation by the MISR instrument.

  18. Remote Sensing of Aerosol and Aerosol Radiative Forcing of Climate from EOS Terra MODIS Instrument

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram; Tanre, Didier; Remer, Lorraine; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The recent launch of EOS-Terra into polar orbit has begun to revolutionize remote sensing of aerosol and their effect on climate. Terra has five instruments, two of them,Moderate Resolution Imaging Spectroradiometer (MODIS) and Multiangle Imaging Spectro-Radiometer (MISR) are designed to monitor global aerosol in two different complementary ways. Here we shall discuss the use of the multispectral measurements of MODIS to derive: (1) the global distribution of aerosol load (and optical thickness) over ocean and land; (2) to measure the impact of aerosol on reflection of sunlight to space; and (3) to measure the ability of aerosol to absorb solar radiation. These measurements have direct applications on the understanding of the effect of aerosol on climate, the ability to predict climate change, and on the monitoring of dust episodes and man-made pollution. Principles of remote sensing of aerosol from MODIS will be discussed and first examples of measurements from MODIS will be provided.

  19. Spatially Complete Global Surface Albedos Derived from Terra/MODIS Data

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Moody, Eric G.; Platnick, Steven; Schaaf, Crystal B.

    2004-01-01

    Spectral land surface albedo is an important parameter for describing the radiative properties of the Earth. Accordingly it reflects the consequences of natural and human interactions, such as anthropogenic, meteorological, and phenological effects, on global and local climatological trends. Consequently, albedos are integral parts in a variety of research areas, such as general circulation models (GCMs), energy balance studies, modeling of land use and land use change, and biophysical, oceanographic, and meteorological studies. Recent production of land surface anisotropy, diffuse bihemispherical (white-sky) albedo and direct beam directional hemispherical (black-sky) albedo from observations acquired by the MODIS instruments aboard NASA s Terra and Aqua satellite platforms have provided researchers with unprecedented spatial, spectral, and temporal information on the land surface's radiative characteristics. Cloud cover, which cutails retrievals, and the presence of ephemeral and seasonal snow limit the snow-free data to approximately half the global land surfaces on an annual equal-angle basis. This precludes the MOD43B3 albedo products from being used in some remote sensing and ground-based applications, climate models, and global change research projects. An ecosystem-dependent temporal interpolation technique is described that has been developed to fill missing or seasonally snow-covered data in the official MOD43B3 albedo product. The method imposes pixel-level and local regional ecosystem-dependent phenological behavior onto retrieved pixel temporal data in such a way as to maintain pixel-level spatial and spectral detail and integrity. The phenological curves are derived from statistics based on the MODIS MOD12Q1 IGBP land cover classification product geolocated with the MOD43B3 data. The resulting snow-free value-added products provide the scientific community with spatially and temporally complete global white- and black-sky surface albedo maps and statistics. These products are stored on 1'(approximately 10 km) and coarser resolution equal-angle grids, and are computed for the first seven MODIS wavelengths, ranging from 0.47 through 2.1 microns, and for three broadband wavelengths, 0.3-0.7,0.3-5.0 and 0.7-5.0 microns.

  20. Aftermath of World Trade Center Attack

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This true-color image was taken by the Enhanced Thematic Mapper Plus (ETM+) aboard the Landsat 7 satellite on September 12, 2001, at roughly 11:30 a.m. Eastern Daylight Savings Time. Visit the NASA home page for photos from the space station and MODIS, and GlobalSecurity.org for images from other satellites. Image courtesy USGS Landsat 7 team, at the EROS Data Center.

  1. MODIS volcanic ash retrievals vs FALL3D transport model: a quantitative comparison

    NASA Astrophysics Data System (ADS)

    Corradini, S.; Merucci, L.; Folch, A.

    2010-12-01

    Satellite retrievals and transport models represents the key tools to monitor the volcanic clouds evolution. Because of the harming effects of fine ash particles on aircrafts, the real-time tracking and forecasting of volcanic clouds is key for aviation safety. Together with the security reasons also the economical consequences of a disruption of airports must be taken into account. The airport closures due to the recent Icelandic Eyjafjöll eruption caused millions of passengers to be stranded not only in Europe, but across the world. IATA (the International Air Transport Association) estimates that the worldwide airline industry has lost a total of about 2.5 billion of Euro during the disruption. Both security and economical issues require reliable and robust ash cloud retrievals and trajectory forecasting. The intercomparison between remote sensing and modeling is required to assure precise and reliable volcanic ash products. In this work we perform a quantitative comparison between Moderate Resolution Imaging Spectroradiometer (MODIS) retrievals of volcanic ash cloud mass and Aerosol Optical Depth (AOD) with the FALL3D ash dispersal model. MODIS, aboard the NASA-Terra and NASA-Aqua polar satellites, is a multispectral instrument with 36 spectral bands operating in the VIS-TIR spectral range and spatial resolution varying between 250 and 1000 m at nadir. The MODIS channels centered around 11 and 12 micron have been used for the ash retrievals through the Brightness Temperature Difference algorithm and MODTRAN simulations. FALL3D is a 3-D time-dependent Eulerian model for the transport and deposition of volcanic particles that outputs, among other variables, cloud column mass and AOD. Three MODIS images collected the October 28, 29 and 30 on Mt. Etna volcano during the 2002 eruption have been considered as test cases. The results show a general good agreement between the retrieved and the modeled volcanic clouds in the first 300 km from the vents. Even if the modeled volcanic cloud area is systematically wider than the retrieved area, the ash total mass is comparable and varies between 35 and 60 kt and between 20 and 42 kt for FALL3D and MODIS respectively. The mean AOD values are in good agreement and approximately equal to 0.8. When the whole volcanic clouds are considered the ash areas and the total ash masses, computed by FALL3D model are significantly greater than the same parameters retrieved from the MODIS data, while the mean AOD values remain in a very good agreement and equal to about 0.6. The volcanic cloud direction in its distal part is not coincident for the 29 and 30 October 2002 images due to the difference between the real and the modeled local wind fields. Finally the MODIS maps show regions of high mass and AOD due to volcanic puffs not modeled by FALL3D.

  2. Quantitative Evaluation of MODIS Fire Radiative Power Measurement for Global Smoke Emissions Assessment

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles; Ellison, Luke

    2011-01-01

    Satellite remote sensing is providing us tremendous opportunities to measure the fire radiative energy (FRE) release rate or power (FRP) from open biomass burning, which affects many vegetated regions of the world on a seasonal basis. Knowledge of the biomass burning characteristics and emission source strengths of different (particulate and gaseous) smoke constituents is one of the principal ingredients upon which the assessment, modeling, and forecasting of their distribution and impacts depend. This knowledge can be gained through accurate measurement of FRP, which has been shown to have a direct relationship with the rates of biomass consumption and emissions of major smoke constituents. Over the last decade or so, FRP has been routinely measured from space by both the MODIS sensors aboard the polar orbiting Terra and Aqua satellites, and the SEVIRI sensor aboard the Meteosat Second Generation (MSG) geostationary satellite. During the last few years, FRP has steadily gained increasing recognition as an important parameter for facilitating the development of various scientific studies and applications relating to the quantitative characterization of biomass burning and their emissions. To establish the scientific integrity of the FRP as a stable quantity that can be measured consistently across a variety of sensors and platforms, with the potential of being utilized to develop a unified long-term climate data record of fire activity and impacts, it needs to be thoroughly evaluated, calibrated, and validated. Therefore, we are conducting a detailed analysis of the FRP products from MODIS to evaluate the uncertainties associated with them, such as those due to the effects of satellite variable observation geometry and other factors, in order to establish their error budget for use in diverse scientific research and applications. In this presentation, we will show recent results of the MODIS FRP uncertainty analysis and error mitigation solutions, and demonstrate their implications for biomass burning emissions assessment.

  3. Spatially Complete Surface Albedo Data Sets: Value-Added Products Derived from Terra MODIS Land Products

    NASA Technical Reports Server (NTRS)

    Moody, E. G.; King, M. D.; Platnick, S.; Schaaf, C. B.; Gao, F.

    2004-01-01

    Spectral land surface albedo is an important parameter for describing the radiative properties of the Earth. Accordingly it reflects the consequences of natural and human interactions, such as anthropogenic, meteorological, and phenological effects, on global and local climatological trends. Consequently, albedos are integral parts in a variety of research areas, such as general circulation models (GCMs), energy balance studies, modeling of land use and land use change, and biophysical, oceanographic, and meteorological studies. The availability of global albedo data over a large range of spectral channels and at high spatial resolution has dramatically improved with the launch of the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard NASA s Earth Observing System (EOS) Terra spacecraft in December 1999. However, lack of spatial and temporal coverage due to cloud and snow effects can preclude utilization of official products in production and research studies. We report on a technique used to fill incomplete MOD43 albedo data sets with the intention of providing complete value-added maps. The technique is influenced by the phenological concept that within a certain area, a pixel s ecosystem class should exhibit similar growth cycle events over the same time period. The shape of an area s phenological temporal curve can be imposed upon existing pixel-level data to fill missing temporal points. The methodology will be reviewed by showcasing 2001 global and regional results of complete albedo and NDVl data sets.

  4. NASA Sees Winter's Northeastern U.S. Snowcover Extend Farther South

    NASA Image and Video Library

    2015-02-17

    A winter storm that moved through the Mid-Atlantic on Feb. 16 and 17, 2015 extended the northeastern U.S. snowcover farther south. Until this storm hit, southern New Jersey and southeastern Pennsylvania appeared snow-free on satellite imagery from the previous week. The overnight storm blanketed the entire states of New Jersey and Pennsylvania, as seen on this Feb. 16 image. The image was taken from the MODIS or Moderate Resolution Imaging Spectroradiometer instrument that flies aboard NASA's Terra satellite. The snow cover from the storm actually extended even farther south than the image. Snowfall also blanketed West Virginia, Kentucky, Maryland, Delaware and Virginia, while freezing rain and icy conditions affected the Carolinas, Tennessee and Georgia. On Feb. 17, 2015, NOAA's National Weather Service noted "The winter storm that brought widespread snow, sleet and freezing rain to parts of the south-central U.S. and Mid-Atlantic will wind down as it moves offshore Tuesday. Lingering snow and freezing rain is possible early Tuesday for parts of the Northeast and mid-Atlantic, with rain across parts of the Southeast." Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  5. MODIS. Volume 1: MODIS level 1A software baseline requirements

    NASA Technical Reports Server (NTRS)

    Masuoka, Edward; Fleig, Albert; Ardanuy, Philip; Goff, Thomas; Carpenter, Lloyd; Solomon, Carl; Storey, James

    1994-01-01

    This document describes the level 1A software requirements for the moderate resolution imaging spectroradiometer (MODIS) instrument. This includes internal and external requirements. Internal requirements include functional, operational, and data processing as well as performance, quality, safety, and security engineering requirements. External requirements include those imposed by data archive and distribution systems (DADS); scheduling, control, monitoring, and accounting (SCMA); product management (PM) system; MODIS log; and product generation system (PGS). Implementation constraints and requirements for adapting the software to the physical environment are also included.

  6. In situ energetic particle observations at Comet Halley recorded by instrumentation aboard the Giotto and VEGA 1 missions

    NASA Astrophysics Data System (ADS)

    McKenna-Lawlor, S.; Daly, P.; Kirsch, E.; Wilken, B.; O'Sullivan, D.; Thompson, A.; Kecskemety, K.; Somogyi, A.; Coates, A.

    1989-04-01

    Energetic particle data on quasi-periodic variations of cometary ion fluxes recorded by instrumentation aboard the Vega 1 and Giotto spacecraft during March 1986 are compared. It is suggested that the ion fluxes measured by the Giotto EPONA instrument were of the water group. Large fluxes of electrons and ions recorded by the EPONA instrument in the magnetic cavity appear to be cometary in origin.

  7. MODIS On-Board Blackbody Function and Performance

    NASA Technical Reports Server (NTRS)

    Xiaoxiong, Xiong; Wenny, Brian N.; Wu, Aisheng; Barnes, William

    2009-01-01

    Two MODIS instruments are currently in orbit, making continuous global observations in visible to long-wave infrared wavelengths. Compared to heritage sensors, MODIS was built with an advanced set of on-board calibrators, providing sensor radiometric, spectral, and spatial calibration and characterization during on-orbit operation. For the thermal emissive bands (TEB) with wavelengths from 3.7 m to 14.4 m, a v-grooved blackbody (BB) is used as the primary calibration source. The BB temperature is accurately measured each scan (1.47s) using a set of 12 temperature sensors traceable to NIST temperature standards. The onboard BB is nominally operated at a fixed temperature, 290K for Terra MODIS and 285K for Aqua MODIS, to compute the TEB linear calibration coefficients. Periodically, its temperature is varied from 270K (instrument ambient) to 315K in order to evaluate and update the nonlinear calibration coefficients. This paper describes MODIS on-board BB functions with emphasis on on-orbit operation and performance. It examines the BB temperature uncertainties under different operational conditions and their impact on TEB calibration and data product quality. The temperature uniformity of the BB is also evaluated using TEB detector responses at different operating temperatures. On-orbit results demonstrate excellent short-term and long-term stability for both the Terra and Aqua MODIS on-board BB. The on-orbit BB temperature uncertainty is estimated to be 10mK for Terra MODIS at 290K and 5mK for Aqua MODIS at 285K, thus meeting the TEB design specifications. In addition, there has been no measurable BB temperature drift over the entire mission of both Terra and Aqua MODIS.

  8. Global Space-Based Inter-Calibration System Reflective Solar Calibration Reference: From Aqua MODIS to S-NPP VIIRS

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong; Angal, Amit; Butler, James; Cao, Changyong; Doelling, Daivd; Wu, Aisheng; Wu, Xiangqian

    2016-01-01

    The MODIS has successfully operated on-board the NASA's EOS Terra and Aqua spacecraft for more than 16 and 14 years, respectively. MODIS instrument was designed with stringent calibration requirements and comprehensive on-board calibration capability. In the reflective solar spectral region, Aqua MODIS has performed better than Terra MODIS and, therefore, has been chosen by the Global Space-based Inter-Calibration System (GSICS) operational community as the calibration reference sensor in cross-sensor calibration and calibration inter-comparisons. For the same reason, it has also been used by a number of earth observing sensors as their calibration reference. Considering that Aqua MODIS has already operated for nearly 14 years, it is essential to transfer its calibration to a follow-on reference sensor with a similar calibration capability and stable performance. The VIIRS is a follow-on instrument to MODIS and has many similar design features as MODIS, including their on-board calibrators (OBC). As a result, VIIRS is an ideal candidate to replace MODIS to serve as the future GSICS reference sensor. Since launch, the S-NPP VIIRS has already operated for more than 4 years and its overall performance has been extensively characterized and demonstrated to meet its overall design requirements. This paper provides an overview of Aqua MODIS and S-NPP VIIRS reflective solar bands (RSB) calibration methodologies and strategies, traceability, and their on-orbit performance. It describes and illustrates different methods and approaches that can be used to facilitate the calibration reference transfer, including the use of desert and Antarctic sites, deep convective clouds (DCC), and the lunar observations.

  9. Response Versus Scan-Angle Corrections for MODIS Reflective Solar Bands Using Deep Convective Clouds

    NASA Technical Reports Server (NTRS)

    Bhatt, Rajendra; Angal, Amit; Doelling, David R.; Xiong, Xiaoxiong; Wu, Aisheng; Haney, Conor O.; Scarino, Benjamin R.; Gopalan, Arun

    2016-01-01

    The absolute radiometric calibration of the reflective solar bands (RSBs) of Aqua- and Terra-MODIS is performed using on-board calibrators. A solar diffuser (SD) panel along with a solar diffuser stability monitor (SDSM) system, which tracks the performance of the SD over time, provides the absolute reference for calibrating the MODIS sensors. MODIS also views the moon and deep space through its space view (SV) port for lunar-based calibration and computing the zero input radiance, respectively. The MODIS instrument views the Earths surface through a two-sided scan mirror, whose reflectance is a function of angle of incidence (AOI) and is described by response versus scan-angle (RVS). The RVS for both MODIS instruments was characterized prior to launch. MODIS also views the SD and the moon at two different assigned RVS positions. There is sufficient evidence that the RVS is changing on orbit over time and as a function of wavelength. The SD and lunar observation scans can only track the RVS variation at two RVS positions. Consequently, the MODIS Characterization Support Team (MCST) developed enhanced approaches that supplement the onboard calibrator measurements with responses from pseudo-invariant desert sites. This approach has been implemented in Level 1B (L1B) Collection 6 (C6) for selected short-wavelength bands. This paper presents an alternative approach of characterizing the mirror RVS to derive the time-dependent RVS correction factors for MODIS RSBs using tropical deep convective cloud (DCC) targets. An initial assessment of the DCC response from Aqua-MODIS band 1 C6 data indicates evidence of RVS artifacts, which are not uniform across the scans and are more prevalent in the left side Earth-view scans.

  10. Response Versus Scan-Angle Corrections for MODIS Reflective Solar Bands Using Deep Convective Clouds

    NASA Technical Reports Server (NTRS)

    Bhatt, Rajendra; Angal, Amit; Doelling, David R.; Xiong, Xiaoxiong; Wu, Aisheng; Haney, Conor O.; Scarino, Benjamin R.; Gopalan, Arun

    2016-01-01

    The absolute radiometric calibration of the reflective solar bands (RSBs) of Aqua- and Terra-MODIS is performed using on-board calibrators. A solar diffuser (SD) panel along with a solar diffuser stability monitor (SDSM) system, which tracks the performance of the SD over time, provides the absolute reference for calibrating the MODIS sensors. MODIS also views the moon and deep space through its space view (SV) port for lunar-based calibration and computing the zero input radiance, respectively. The MODIS instrument views the Earth's surface through a two-sided scan mirror, whose reflectance is a function of angle of incidence (AOI) and is described by response versus scan-angle (RVS). The RVS for both MODIS instruments was characterized prior to launch. MODIS also views the SD and the moon at two different assigned RVS positions. There is sufficient evidence that the RVS is changing on orbit over time and as a function of wavelength. The SD and lunar observation scans can only track the RVS variation at two RVS positions. Consequently, the MODIS Characterization Support Team (MCST) developed enhanced approaches that supplement the onboard calibrator measurements with responses from pseudo-invariant desert sites. This approach has been implemented in Level 1B (L1B) Collection 6 (C6) for selected short-wavelength bands. This paper presents an alternative approach of characterizing the mirror RVS to derive the time-dependent RVS correction factors for MODIS RSBs using tropical deep convective cloud (DCC) targets. An initial assessment of the DCC response from Aqua-MODIS band 1 C6 data indicates evidence of RVS artifacts, which are not uniform across the scans and are more prevalent in the left side Earth-view scans.

  11. Response versus scan-angle corrections for MODIS reflective solar bands using deep convective clouds

    NASA Astrophysics Data System (ADS)

    Bhatt, Rajendra; Angal, Amit; Doelling, David R.; Xiong, Xiaoxiong; Wu, Aisheng; Haney, Conor O.; Scarino, Benjamin R.; Gopalan, Arun

    2016-05-01

    The absolute radiometric calibration of the reflective solar bands (RSBs) of Aqua- and Terra-MODIS is performed using on-board calibrators. A solar diffuser (SD) panel along with a solar diffuser stability monitor (SDSM) system, which tracks the degradation of the SD over time, provides the baseline for calibrating the MODIS sensors. MODIS also views the moon and deep space through its space view (SV) port for lunar-based calibration and computing the background, respectively. The MODIS instrument views the Earth's surface using a two-sided scan mirror, whose reflectance is a function of the angle of incidence (AOI) and is described by response versus scan-angle (RVS). The RVS for both MODIS instruments was characterized prior to launch. MODIS also views the SD and the moon at two different AOIs. There is sufficient evidence that the RVS is changing on orbit over time and as a function of wavelength. The SD and lunar observation scans can only track the RVS variation at two AOIs. Consequently, the MODIS Characterization Support Team (MCST) developed enhanced approaches that supplement the onboard calibrator measurements with responses from the pseudo-invariant desert sites. This approach has been implemented in Level 1B (L1B) Collection 6 (C6) for select short-wavelength bands. This paper presents an alternative approach of characterizing the mirror RVS to derive the time-dependent RVS correction factors for MODIS RSBs using tropical deep convective cloud (DCC) targets. An initial assessment of the DCC response from Aqua-MODIS band 1 C6 data indicates evidence of RVS artifacts, which are not uniform across the scans and are more prevalent at the beginning of the earth-view scan.

  12. BRDF Characterization and Calibration Inter-Comparison between Terra MODIS, Aqua MODIS, and S-NPP VIIRS

    NASA Technical Reports Server (NTRS)

    Chang, Tiejun; Xiong, Xiaoxiong (Jack); Angal, Amit; Wu, Aisheng

    2016-01-01

    The inter-comparison of reflective solar bands (RSB) between Terra MODIS, Aqua MODIS, and SNPP VIIRS is very important for assessment of each instrument's calibration and to identify calibration improvements. One of the limitations of using their ground observations for the assessment is a lack of the simultaneous nadir overpasses (SNOs) over selected pseudo-invariant targets. In addition, their measurements over a selected Earth view target have significant difference in solar and view angles, and these differences magnify the effects of Bidirectional Reflectance Distribution Function (BRDF). In this work, an inter-comparison technique using a semi-empirical BRDF model is developed for reflectance correction. BRDF characterization requires a broad coverage of solar and view angles in the measurements over selected pseudo-invariant targets. Reflectance measurements over Libya 1, 2, and 4 desert sites from both the Aqua and Terra MODIS are regressed to a BRDF model with an adjustable coefficient accounting for the calibration difference between the two instruments. The BRDF coefficients for three desert sites for MODIS bands 1 to 9 are derived and the wavelength dependencies are presented. The analysis and inter-comparison are for MODIS bands 1 to 9 and VIIRS moderate resolution radiometric bands (M bands) M1, M2, M4, M5, M7, M8, M10 and imaging bands (I bands) I1-I3. Results show that the ratios from different sites are in good agreement. The ratios between Terra and Aqua MODIS from year 2003 to 2014 are presented. The inter-comparison between MODIS and VIIRS are analyzed for year 2014.

  13. Fires Down Under

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This true-color image was taken over northern Australia on October 2, 2000, by the Moderate-resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra spacecraft. There are roughly a dozen wildfires visible in the scene, which spans from Western Australia , across the Northern Territory, and into Queensland. In this image, clouds appear bright white and smoke plume appear darker and greyish. The pixels containing the wildfires are colored red (hot) and yellow (hotter). There are quite a few large burn scars from previous wildfires, which appear as black splotches across the landscape. The large bay along northern shore is the Gulf of Carpentaria (visible in the full size image), which is roughly 400 miles (about 640 km) wide. Image by Brian Montgomery and Robert Simmon; Data courtesy MODIS Science Team, NASA GSFC

  14. Dust Storm Hits Canary Islands

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A thick pall of sand and dust blew out from the Sahara Desert over the Atlantic Ocean yesterday (January 6, 2002), engulfing the Canary Islands in what has become one of the worst sand storms ever recorded there. In this scene, notice how the dust appears particularly thick in the downwind wake of Tenerife, the largest of the Canary Islands. Perhaps the turbulence generated by the air currents flowing past the island's volcanic peaks is churning the dust back up into the atmosphere, rather than allowing it to settle toward the surface. This true-color image was captured by the Moderate-resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra satellite, on January 7, 2002. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  15. Use of the NASA GEOS-5 SEAC4RS Meteorological and Aerosol Reanalysis for assessing simulated aerosol optical properties as a function of smoke age

    NASA Astrophysics Data System (ADS)

    Randles, C. A.; da Silva, A. M., Jr.; Colarco, P. R.; Darmenov, A.; Buchard, V.; Govindaraju, R.; Chen, G.; Hair, J. W.; Russell, P. B.; Shinozuka, Y.; Wagner, N.; Lack, D.

    2014-12-01

    The NASA Goddard Earth Observing System version 5 (GEOS-5) Earth system model, which includes an online aerosol module, provided chemical and weather forecasts during the SEAC4RS field campaign. For post-mission analysis, we have produced a high resolution (25 km) meteorological and aerosol reanalysis for the entire campaign period. In addition to the full meteorological observing system used for routine NWP, we assimilate 550 nm aerosol optical depth (AOD) derived from MODIS (both Aqua and Terra satellites), ground-based AERONET sun photometers, and the MISR instrument (over bright surfaces only). Daily biomass burning emissions of CO, CO2, SO2, and aerosols are derived from MODIS fire radiative power retrievals. We have also introduced novel smoke "age" tracers, which provide, for a given time, a snapshot histogram of the age of simulated smoke aerosol. Because GEOS-5 assimilates remotely sensed AOD data, it generally reproduces observed (column) AOD compared to, for example, the airborne 4-STAR instrument. Constraining AOD, however, does not imply a good representation of either the vertical profile or the aerosol microphysical properties (e.g., composition, absorption). We do find a reasonable vertical structure for aerosols is attained in the model, provided actual smoke injection heights are not much above the planetary boundary layer, as verified with observations from DIAL/HRSL aboard the DC8. The translation of the simulated aerosol microphysical properties to total column AOD, needed in the aerosol assimilation step, is based on prescribed mass extinction efficiencies that depend on wavelength, composition, and relative humidity. Here we also evaluate the performance of the simulated aerosol speciation by examining in situ retrievals of aerosol absorption/single scattering albedo and scattering growth factor (f(RH)) from the LARGE and AOP suite of instruments. Putting these comparisons in the context of smoke age as diagnosed by the model helps us to revise assumed aerosol optical properties for an improved representation of aerosol radiative forcing.

  16. MODIS Land Data Products: Generation, Quality Assurance and Validation

    NASA Technical Reports Server (NTRS)

    Masuoka, Edward; Wolfe, Robert; Morisette, Jeffery; Sinno, Scott; Teague, Michael; Saleous, Nazmi; Devadiga, Sadashiva; Justice, Christopher; Nickeson, Jaime

    2008-01-01

    The Moderate Resolution Imaging Spectrometer (MODIS) on-board NASA's Earth Observing System (EOS) Terra and Aqua Satellites are key instruments for providing data on global land, atmosphere, and ocean dynamics. Derived MODIS land, atmosphere and ocean products are central to NASA's mission to monitor and understand the Earth system. NASA has developed and generated on a systematic basis a suite of MODIS products starting with the first Terra MODIS data sensed February 22, 2000 and continuing with the first MODIS-Aqua data sensed July 2, 2002. The MODIS Land products are divided into three product suites: radiation budget products, ecosystem products, and land cover characterization products. The production and distribution of the MODIS Land products are described, from initial software delivery by the MODIS Land Science Team, to operational product generation and quality assurance, delivery to EOS archival and distribution centers, and product accuracy assessment and validation. Progress and lessons learned since the first MODIS data were in early 2000 are described.

  17. Continuity of MODIS and VIIRS Snow-Cover Maps during Snowmelt in the Catskill Mountains in New York

    NASA Astrophysics Data System (ADS)

    Hall, D. K.; Riggs, G. A., Jr.; Roman, M. O.; DiGirolamo, N. E.

    2015-12-01

    We investigate the local and regional differences and possible biases between the Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible-Infrared Imager Radiometer Suite (VIIRS) snow-cover maps in the winter of 2012 during snowmelt conditions in the Catskill Mountains in New York using a time series of cloud-gap filled daily snow-cover maps. The MODIS Terra instrument has been providing daily global snow-cover maps since February 2000 (Riggs and Hall, 2015). Using the VIIRS instrument, launched in 2011, NASA snow products are being developed based on the heritage MODIS snow-mapping algorithms, and will soon be available to the science community. Continuity of the standard NASA MODIS and VIIRS snow-cover maps is essential to enable environmental-data records (EDR) to be developed for analysis of snow-cover trends using a consistent data record. For this work, we compare daily MODIS and VIIRS snow-cover maps of the Catskill Mountains from 29 February through 14 March 2012. The entire region was snow covered on 29 February and by 14 March the snow had melted; we therefore have a daily time series available to compare normalized difference snow index (NDSI), as an indicator of snow-cover fraction. The MODIS and VIIRS snow-cover maps have different spatial resolutions (500 m for MODIS and 375 m for VIIRS) and different nominal overpass times (10:30 AM for MODIS Terra and 2:30 PM for VIIRS) as well as different cloud masks. The results of this work will provide a quantitative assessment of the continuity of the snow-cover data records for use in development of an EDR of snow cover.http://modis-snow-ice.gsfc.nasa.gov/Riggs, G.A. and D.K. Hall, 2015: MODIS Snow Products User Guide to Collection 6, http://modis-snow-ice.gsfc.nasa.gov/?c=userguides

  18. Scaling Gross Primary Production (GPP) over boreal and deciduous forest landscapes in support of MODIS GPP product validation.

    Treesearch

    David P. Turner; William D. Ritts; Warren B. Cohen; Stith T. Gower; Maosheng Zhao; Steve W. Running; Steven C. Wofsy; Shawn Urbanski; Allison L. Dunn; J.W. Munger

    2003-01-01

    The Moderate Resolution Imaging Radiometer (MODIS) is the primary instrument in the NASA Earth Observing System for monitoring the seasonality of global terrestrial vegetation. Estimates of 8-day mean daily gross primary production (GPP) at the 1 km spatial resolution are now operationally produced by the MODIS Land Science Team for the global terrestrial surface using...

  19. Handling Input and Output for COAMPS

    NASA Technical Reports Server (NTRS)

    Fitzpatrick, Patrick; Tran, Nam; Li, Yongzuo; Anantharaj, Valentine

    2007-01-01

    Two suites of software have been developed to handle the input and output of the Coupled Ocean Atmosphere Prediction System (COAMPS), which is a regional atmospheric model developed by the Navy for simulating and predicting weather. Typically, the initial and boundary conditions for COAMPS are provided by a flat-file representation of the Navy s global model. Additional algorithms are needed for running the COAMPS software using global models. One of the present suites satisfies this need for running COAMPS using the Global Forecast System (GFS) model of the National Oceanic and Atmospheric Administration. The first step in running COAMPS downloading of GFS data from an Internet file-transfer-protocol (FTP) server computer of the National Centers for Environmental Prediction (NCEP) is performed by one of the programs (SSC-00273) in this suite. The GFS data, which are in gridded binary (GRIB) format, are then changed to a COAMPS-compatible format by another program in the suite (SSC-00278). Once a forecast is complete, still another program in the suite (SSC-00274) sends the output data to a different server computer. The second suite of software (SSC- 00275) addresses the need to ingest up-to-date land-use-and-land-cover (LULC) data into COAMPS for use in specifying typical climatological values of such surface parameters as albedo, aerodynamic roughness, and ground wetness. This suite includes (1) a program to process LULC data derived from observations by the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard NASA s Terra and Aqua satellites, (2) programs to derive new climatological parameters for the 17-land-use-category MODIS data; and (3) a modified version of a FORTRAN subroutine to be used by COAMPS. The MODIS data files are processed to reformat them into a compressed American Standard Code for Information Interchange (ASCII) format used by COAMPS for efficient processing.

  20. First Complete Day from MODIS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This spectacular, full-color image of the Earth is a composite of the first full day of data gathered by the Moderate-resolution Imaging Spectroradiometer (MODIS) aboard NASA's Terra spacecraft. MODIS collected the data for each wavelength of red, green, and blue light as Terra passed over the daylit side of the Earth on April 19, 2000. Terra is orbiting close enough to the Earth so that it cannot quite see the entire surface in a day, resulting in the narrow gaps around the equator. Although the sensor's visible channels were combined to form this true-color picture, MODIS collects data in a total of 36 wavelengths, ranging from visible to thermal infrared energy. Scientists use these data to measure regional and global-scale changes in marine and land-based plant life, sea and land surface temperatures, cloud properties, aerosols, fires, and land surface properties. Notice how cloudy the Earth is, and the large differences in brightness between clouds, deserts, oceans, and forests. The Antarctic, surrounded by clockwise swirls of cloud, is shrouded in darkness because the sun is north of the equator at this time of year. The tropical forests of Africa, Southeast Asia, and South America are shrouded by clouds. The bright Sahara and Arabian deserts stand out clearly. Green vegetation is apparent in the southeast United States, the Yucatan Peninsula, and Madagascar. Image by Mark Gray, MODIS Atmosphere Team, NASA GSFC

  1. VIIRS Data and Data Access at the NASA National Snow and Ice Data Center Distributed Active Archive Center

    NASA Astrophysics Data System (ADS)

    Moth, P.; Johnston, T.; Fowler, D. K.

    2017-12-01

    Working collaboratively, NASA and NOAA are producing data from the Visible Infrared Imaging Radiometer Suite (VIIRS). The National Snow and Ice Data Center (NSIDC), a NASA Distributed Active Archive Center (DAAC), is distributing VIIRS snow cover, ice surface temperature, and sea ice cover products. Data is available in .nc and HDF5 formats with a temporal coverage of 1 January 2012 and onward. VIIRS, NOAA's latest radiometer, was launched aboard the Suomi National Polar-orbiting Partnership (SNPP) satellite on October 28, 2011. The instrument comprises 22 bands; five for high-resolution imagery, 16 at moderate resolution, and one panchromatic day/night band. VIIRS is a whiskbroom scanning radiometer that covers the spectrum between 0.412 μm and 12.01 μm and acquires spatial resolutions at nadir of 750 m, 375 m, and 750 m, respectively. One distinct advantage of VIIRS is to ensure continuity that will lead to the development of snow and sea ice climate data records with data from the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on the NASA Earth Observing System (EOS) Aqua and Terra satellites. Combined with the Advanced Very-High-resolution Radiometer (AVHRR), the AVHRR-MODIS-VIIRS timeline will start in the early 1980s and span at least four decades-and perhaps beyond-enabling researchers to produce and gain valuable insight from long, high-quality Earth System Data Records (ESDRs). Several options are available to view and download VIIRS data: Direct download from NSIDC via HTTPS. Using NASA Earthdata Search, users can explore and download VIIRS data with temporal and/or spatial filters, re-format, re-project, and subset by spatial extent and parameter. API access is also available for all these options; Using NASA Worldview, users can view Global Imagery Browse Services (GIBS) from VIIRS data; Users can join a VIIRS subscription list to have new VIIRS data automatically ftp'd or staged on a local server as it is archived at NSIDC.

  2. Infrared Algorithm Development for Ocean Observations with EOS/MODIS

    NASA Technical Reports Server (NTRS)

    Brown, Otis B.

    1997-01-01

    Efforts continue under this contract to develop algorithms for the computation of sea surface temperature (SST) from MODIS infrared measurements. This effort includes radiative transfer modeling, comparison of in situ and satellite observations, development and evaluation of processing and networking methodologies for algorithm computation and data accession, evaluation of surface validation approaches for IR radiances, development of experimental instrumentation, and participation in MODIS (project) related activities. Activities in this contract period have focused on radiative transfer modeling, evaluation of atmospheric correction methodologies, undertake field campaigns, analysis of field data, and participation in MODIS meetings.

  3. Simulating Visible/Infrared Imager Radiometer Suite Normalized Difference Vegetation Index Data Using Hyperion and MODIS

    NASA Technical Reports Server (NTRS)

    Ross, Kenton W.; Russell, Jeffrey; Ryan, Robert E.

    2006-01-01

    The success of MODIS (the Moderate Resolution Imaging Spectrometer) in creating unprecedented, timely, high-quality data for vegetation and other studies has created great anticipation for data from VIIRS (the Visible/Infrared Imager Radiometer Suite). VIIRS will be carried onboard the joint NASA/Department of Defense/National Oceanic and Atmospheric Administration NPP (NPOESS (National Polar-orbiting Operational Environmental Satellite System) Preparatory Project). Because the VIIRS instruments will have lower spatial resolution than the current MODIS instruments 400 m versus 250 m at nadir for the channels used to generate Normalized Difference Vegetation Index data, scientists need the answer to this question: how will the change in resolution affect vegetation studies? By using simulated VIIRS measurements, this question may be answered before the VIIRS instruments are deployed in space. Using simulated VIIRS products, the U.S. Department of Agriculture and other operational agencies can then modify their decision support systems appropriately in preparation for receipt of actual VIIRS data. VIIRS simulations and validations will be based on the ART (Application Research Toolbox), an integrated set of algorithms and models developed in MATLAB(Registerd TradeMark) that enables users to perform a suite of simulations and statistical trade studies on remote sensing systems. Specifically, the ART provides the capability to generate simulated multispectral image products, at various scales, from high spatial hyperspectral and/or multispectral image products. The ART uses acquired ( real ) or synthetic datasets, along with sensor specifications, to create simulated datasets. For existing multispectral sensor systems, the simulated data products are used for comparison, verification, and validation of the simulated system s actual products. VIIRS simulations will be performed using Hyperion and MODIS datasets. The hyperspectral and hyperspatial properties of Hyperion data will be used to produce simulated MODIS and VIIRS products. Hyperion-derived MODIS data will be compared with near-coincident MODIS collects to validate both spectral and spatial synthesis, which will ascertain the accuracy of converting from MODIS to VIIRS. MODIS-derived VIIRS data is needed for global coverage and for the generation of time series for regional and global investigations. These types of simulations will have errors associated with aliasing for some scene types. This study will help quantify these errors and will identify cases where high-quality, MODIS-derived VIIRS data will be available.

  4. The MODIS Aerosol Algorithm, Products and Validation

    NASA Technical Reports Server (NTRS)

    Remer, L. A.; Kaufman, Y. J.; Tanre, D.; Mattoo, S.; Chu, D. A.; Martins, J. V.; Li, R.-R.; Ichoku, C.; Levy, R. C.; Kleidman, R. G.

    2003-01-01

    The MODerate resolution Imaging Spectroradiometer (MODIS) aboard both NASA's Terra and Aqua satellites is making near global daily observations of the earth in a wide spectral range. These measurements are used to derive spectral aerosol optical thickness and aerosol size parameters over both land and ocean. The aerosol products available over land include aerosol optical thickness at three visible wavelengths, a measure of the fraction of aerosol optical thickness attributed to the fine mode and several derived parameters including reflected spectral solar flux at top of atmosphere. Over ocean, the aerosol optical thickness is provided in seven wavelengths from 0.47 microns to 2.13 microns. In addition, quantitative aerosol size information includes effective radius of the aerosol and quantitative fraction of optical thickness attributed to the fine mode. Spectral aerosol flux, mass concentration and number of cloud condensation nuclei round out the list of available aerosol products over the ocean. The spectral optical thickness and effective radius of the aerosol over the ocean are validated by comparison with two years of AERONET data gleaned from 133 AERONET stations. 8000 MODIS aerosol retrievals colocated with AERONET measurements confirm that one-standard deviation of MODIS optical thickness retrievals fall within the predicted uncertainty of delta tauapproximately equal to plus or minus 0.03 plus or minus 0.05 tau over ocean and delta tay equal to plus or minus 0.05 plus or minus 0.15 tau over land. 271 MODIS aerosol retrievals co-located with AERONET inversions at island and coastal sites suggest that one-standard deviation of MODIS effective radius retrievals falls within delta r_eff approximately equal to 0.11 microns. The accuracy of the MODIS retrievals suggests that the product can be used to help narrow the uncertainties associated with aerosol radiative forcing of global climate.

  5. Calibration Improvements in the Detector-to-Detector Differences for the MODIS Ocean Color Bands

    NASA Technical Reports Server (NTRS)

    Li, Yonghong; Angal, Amit; Wu, Aisheng; Geng, Xu; Link, Daniel; Xiong, Xiaoxiong

    2016-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS), a major instrument within NASAs Earth Observation System missions, has operated for over 16 and 14 years onboard the Terra and Aqua satellites, respectively. Its reflective solar bands (RSB) covering a spectral range from 0.4 to 2.1 micrometers are primarily calibrated using the on-board solar diffuser(SD), with its on-orbit degradation monitored using the Solar Diffuser Stability Monitor. RSB calibrations are supplemented by near-monthly lunar measurements acquired from the instruments space-view port. Nine bands (bands 8-16) in the visible to near infrared spectral range from 0.412 to 0.866 micrometers are primarily used for ocean color observations.During a recent reprocessing of ocean color products, performed by the NASA Ocean Biology Processing Group, detector-to-detector differences of up to 1.5% were observed in bands 13-16 of Terra MODIS. This paper provides an overview of the current approach to characterize the MODIS detector-to-detector differences. An alternative methodology was developed to mitigate the observed impacts for bands 13-16. The results indicated an improvement in the detector residuals and in turn are expected to improve the MODIS ocean color products. This paper also discusses the limitations,subsequent enhancements, and the improvements planned for future MODIS calibration collections.

  6. Calibration of the DSCOVR EPIC Visible and NIR Channels using MODIS Terra and Aqua Data and EPIC Lunar Observations

    NASA Technical Reports Server (NTRS)

    Geogdzhayev, Igor V.; Marshak, Alexander

    2018-01-01

    The unique position of the Deep Space Climate Observatory (DSCOVR) Earth Polychromatic Imaging Camera (EPIC) at the Lagrange 1 point makes an important addition to the data from currently operating low Earth orbit observing instruments. EPIC instrument does not have an onboard calibration facility. One approach to its calibration is to compare EPIC observations to the measurements from polar-orbiting radiometers. Moderate Resolution Imaging Spectroradiometer (MODIS) is a natural choice for such comparison due to its well-established calibration record and wide use in remote sensing. We use MODIS Aqua and Terra L1B 1km reflectances to infer calibration coefficients for four EPIC visible and NIR channels: 443, 551, 680 and 780 nm. MODIS and EPIC measurements made between June 2015 and 2016 are employed for comparison. We first identify favorable MODIS pixels with scattering angle matching temporarily collocated EPIC observations. Each EPIC pixel is then spatially collocated to a subset of the favorable MODIS pixels within 25 km radius. Standard deviation of the selected MODIS pixels as well as of the adjacent EPIC pixels is used to find the most homogeneous scenes. These scenes are then used to determine calibration coefficients using a linear regression between EPIC counts/sec and reflectances in the close MODIS spectral channels. We present thus inferred EPIC calibration coefficients and discuss sources of uncertainties. The lunar EPIC observations are used to calibrate EPIC O2 absorbing channels (688 and 764 nm), assuming that there is a small difference between moon reflectances separated by approx.10 nm in wavelength provided the calibration factors of the red (680 nm) and near-IR (780 nm) are known from comparison between EPIC and MODIS.

  7. Moderate Resolution Imaging Spectroradiometer (MODIS) Overview

    USGS Publications Warehouse

    ,

    2008-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) is an instrument that collects remotely sensed data used by scientists for monitoring, modeling, and assessing the effects of natural processes and human actions on the Earth's surface. The continual calibration of the MODIS instruments, the refinement of algorithms used to create higher-level products, and the ongoing product validation make MODIS images a valuable time series (2000-present) of geophysical and biophysical land-surface measurements. Carried on two National Aeronautics and Space Administration (NASA) Earth Observing System (EOS) satellites, MODIS acquires morning (EOS-Terra) and afternoon (EOS-Aqua) views almost daily. Terra data acquisitions began in February 2000 and Aqua data acquisitions began in July 2002. Land data are generated only as higher-level products, removing the burden of common types of data processing from the user community. MODIS-based products describing ecological dynamics, radiation budget, and land cover are projected onto a sinusoidal mapping grid and distributed as 10- by 10-degree tiles at 250-, 500-, or 1,000-meter spatial resolution. Some products are also created on a 0.05-degree geographic grid to support climate modeling studies. All MODIS products are distributed in the Hierarchical Data Format-Earth Observing System (HDF-EOS) file format and are available through file transfer protocol (FTP) or on digital video disc (DVD) media. Versions 4 and 5 of MODIS land data products are currently available and represent 'validated' collections defined in stages of accuracy that are based on the number of field sites and time periods for which the products have been validated. Version 5 collections incorporate the longest time series of both Terra and Aqua MODIS data products.

  8. Updates on the development of Deep Blue aerosol algorithm for constructing consistent long-term data records from MODIS to VIIRS

    NASA Astrophysics Data System (ADS)

    Hsu, N. Y. C.; Sayer, A. M.; Lee, J.; Kim, W. V.

    2017-12-01

    The impacts of natural and anthropogenic sources of air pollution on climate and human health have continued to gain attention from the scientific community. In order to facilitate these effects, high quality consistent long-term global aerosol data records from satellites are essential. Several EOS-era instruments (e.g., SeaWiFS, MODIS, and MISR) are able to provide such information with a high degree of fidelity. However, with the aging MODIS sensors and the launch of the VIIRS instrument on Suomi NPP in late 2011, the continuation of long-term aerosol data records suitable for climate studies from MODIS to VIIRS is needed urgently. Recently, we have successfully modified our MODIS Deep Blue algorithm to process the VIIRS data. Extensive works were performed in refining the surface reflectance determination scheme to account for the wavelength differences between MODIS and VIIRS. Better aerosol models (including non-spherical dust) are also now implemented in our VIIRS algorithm compared to the MODIS C6 algorithm. We will show the global (land and ocean) distributions of various aerosol products from Version 1 of the VIIRS Deep Blue data set. The preliminary validation results of these new VIIRS Deep Blue aerosol products using data from AERONET sunphotometers over land and ocean will be discussed. We will also compare the monthly averaged Deep Blue aerosol optical depth (AOD) from VIIRS with the MODIS C6 products to investigate if any systematic biases may exist between MODIS C6 and VIIRS AOD. The Version 1 VIIRS Deep Blue aerosol products are currently scheduled to be released to the public in 2018.

  9. A Multi-Season Study of the Effects of MODIS Sea-Surface Temperatures on Operational WRF Forecasts at NWS Miami, FL

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; Santos, Pablo; Lazarus, Steven M.; Splitt, Michael E.; Haines, Stephanie L.; Dembek, Scott R.; Lapenta, William M.

    2008-01-01

    Studies at the Short-term Prediction Research and Transition (SPORT) Center have suggested that the use of Moderate Resolution Imaging Spectroradiometer (MODIS) sea-surface temperature (SST) composites in regional weather forecast models can have a significant positive impact on short-term numerical weather prediction in coastal regions. Recent work by LaCasse et al (2007, Monthly Weather Review) highlights lower atmospheric differences in regional numerical simulations over the Florida offshore waters using 2-km SST composites derived from the MODIS instrument aboard the polar-orbiting Aqua and Terra Earth Observing System satellites. To help quantify the value of this impact on NWS Weather Forecast Offices (WFOs), the SPORT Center and the NWS WFO at Miami, FL (MIA) are collaborating on a project to investigate the impact of using the high-resolution MODIS SST fields within the Weather Research and Forecasting (WRF) prediction system. The project's goal is to determine whether more accurate specification of the lower-boundary forcing within WRF will result in improved land/sea fluxes and hence, more accurate evolution of coastal mesoscale circulations and the associated sensible weather elements. The NWS MIA is currently running WRF in real-time to support daily forecast operations, using the National Centers for Environmental Prediction Nonhydrostatic Mesoscale Model dynamical core within the NWS Science and Training Resource Center's Environmental Modeling System (EMS) software. Twenty-seven hour forecasts are run dally initialized at 0300, 0900, 1500, and 2100 UTC on a domain with 4-km grid spacing covering the southern half of Florida and adjacent waters of the Gulf of Mexico and Atlantic Ocean. Each model run is initialized using the Local Analysis and Prediction System (LAPS) analyses available in AWIPS. The SSTs are initialized with the NCEP Real-Time Global (RTG) analyses at 1/12deg resolution (approx.9 km); however, the RTG product does not exhibit fine-scale details consistent with its grid resolution. SPORT is conducting parallel WRF EMS runs identical to the operational runs at NWS MIA except for the use of MODIS SST composites in place of the RTG product as the initial and boundary conditions over water, The MODIS SST composites for initializing the SPORT WRF runs are generated on a 2-km grid four times daily at 0400, 0700, 1600, and 1900 UTC, based on the times of the overhead passes of the Aqua and Terra satellites. The incorporation of the MODIS SST data into the SPORT WRF runs is staggered such that SSTs are updated with a new composite every six hours in each of the WRF runs. From mid-February to July 2007, over 500 parallel WRF simulations have been collected for analysis and verification. This paper will present verification results comparing the NWS MIA operational WRF runs to the SPORT experimental runs, and highlight any substantial differences noted in the predicted mesoscale phenomena for specific cases.

  10. Using Lunar Observations to Validate In-Flight Calibrations of Clouds and Earth Radiant Energy System Instruments

    NASA Technical Reports Server (NTRS)

    Daniels, Janet L.; Smith, G. Louis; Priestley, Kory J.; Thomas, Susan

    2014-01-01

    The validation of in-orbit instrument performance requires stability in both instrument and calibration source. This paper describes a method of validation using lunar observations scanning near full moon by the Clouds and Earth Radiant Energy System (CERES) instruments. Unlike internal calibrations, the Moon offers an external source whose signal variance is predictable and non-degrading. From 2006 to present, in-orbit observations have become standardized and compiled for the Flight Models-1 and -2 aboard the Terra satellite, for Flight Models-3 and -4 aboard the Aqua satellite, and beginning 2012, for Flight Model-5 aboard Suomi-NPP. Instrument performance parameters which can be gleaned are detector gain, pointing accuracy and static detector point response function validation. Lunar observations are used to examine the stability of all three detectors on each of these instruments from 2006 to present. This validation method has yielded results showing trends per CERES data channel of 1.2% per decade or less.

  11. MODIS and SeaWIFS on-orbit lunar calibration

    USGS Publications Warehouse

    Sun, Jielun; Eplee, R.E.; Xiong, X.; Stone, T.; Meister, G.; McClain, C.R.

    2008-01-01

    The Moon plays an important role in the radiometric stability monitoring of the NASA Earth Observing System's (EOS) remote sensors. The MODIS and SeaWIFS are two of the key instruments for NASA's EOS missions. The MODIS Protoflight Model (PFM) on-board the Terra spacecraft and the MODIS Flight Model 1 (FM1) on-board the Aqua spacecraft were launched on December 18, 1999 and May 4, 2002, respectively. They view the Moon through the Space View (SV) port approximately once a month to monitor the long-term radiometric stability of their Reflective Solar Bands (RSB). SeaWIFS was launched on-board the OrbView-2 spacecraft on August 1, 1997. The SeaWiFS lunar calibrations are obtained once a month at a nominal phase angle of 7??. The lunar irradiance observed by these instruments depends on the viewing geometry. The USGS photometric model of the Moon (the ROLO model) has been developed to provide the geometric corrections for the lunar observations. For MODIS, the lunar view responses with corrections for the viewing geometry are used to track the gain change for its reflective solar bands (RSB). They trend the system response degradation at the Angle Of Incidence (AOI) of sensor's SV port. With both the lunar observation and the on-board Solar Diffuser (SD) calibration, it is shown that the MODIS system response degradation is wavelength, mirror side, and AOI dependent. Time-dependent Response Versus Scan angle (RVS) Look-Up Tables (LUT) are applied in MODIS RSB calibration and lunar observations play a key role in RVS derivation. The corrections provided by the RVS in the Terra and Aqua MODIS data from the 412 nm band are as large as 16% and 13%, respectively. For SeaWIFS lunar calibrations, the spacecraft is pitched across the Moon so that the instrument views the Moon near nadir through the same optical path as it views the Earth. The SeaWiFS system gain changes for its eight bands are calibrated using the geometrically-corrected lunar observations. The radiometric corrections to the SeaWiFS data, after more than ten years on orbit, are 19% at 865 nm, 8% at 765 nm, and 1-3% in the other bands. In this report, the lunar calibration algorithms are reviewed and the RSB gain changes observed by the lunar observations are shown for all three sensors. The lunar observations for the three instruments are compared using the USGS photometric model. The USGS lunar model facilitates the cross calibration of instruments with different spectra bandpasses whose measurements of the Moon differ in time and observing geometry.

  12. Development of a Near Real-Time Hail Damage Swath Identification Algorithm for Vegetation

    NASA Technical Reports Server (NTRS)

    Bell, Jordan R.; Molthan, Andrew L.; Schultz, Kori A.; McGrath, Kevin M.; Burks, Jason E.

    2015-01-01

    Every year in the Midwest and Great Plains, widespread greenness forms in conjunction with the latter part of the spring-summer growing season. This prevalent greenness forms as a result of the high concentration of agricultural areas having their crops reach their maturity before the fall harvest. This time of year also coincides with an enhanced hail frequency for the Great Plains (Cintineo et al. 2012). These severe thunderstorms can bring damaging winds and large hail that can result in damage to the surface vegetation. The spatial extent of the damage can relatively small concentrated area or be a vast swath of damage that is visible from space. These large areas of damage have been well documented over the years. In the late 1960s aerial photography was used to evaluate crop damage caused by hail. As satellite remote sensing technology has evolved, the identification of these hail damage streaks has increased. Satellites have made it possible to view these streaks in additional spectrums. Parker et al. (2005) documented two streaks using the Moderate Resolution Imaging Spectroradiometer (MODIS) that occurred in South Dakota. He noted the potential impact that these streaks had on the surface temperature and associated surface fluxes that are impacted by a change in temperature. Gallo et al. (2012) examined at the correlation between radar signatures and ground observations from storms that produced a hail damage swath in Central Iowa also using MODIS. Finally, Molthan et al. (2013) identified hail damage streaks through MODIS, Landsat-7, and SPOT observations of different resolutions for the development of a potential near-real time applications. The manual analysis of hail damage streaks in satellite imagery is both tedious and time consuming, and may be inconsistent from event to event. This study focuses on development of an objective and automatic algorithm to detect these areas of damage in a more efficient and timely manner. This study utilizes the MODIS sensor aboard the NASA Aqua satellite. Aqua was chosen due to an afternoon orbit over the United States when land surface temperatures are relatively warm and improve the contrast between damaged and undamaged areas. This orbit is also similar to the orbit of the Suomi-National Polar-orbiting Partnership (NPP) satellite. The Suomi NPP satellite hosts the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument, which is the next generation of a MODIS-like sensor in polar orbit.

  13. Using the Moon to Track MODIS Reflective Solar Bands Calibration Stability

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong; Geng, Xu; Angal, Amit; Sun, Junqiang; Barnes, William

    2011-01-01

    MODIS has 20 reflective solar bands (RSB) in the visible (VIS), near infrared (NIR), and short-wave infrared (SWIR) spectral regions. In addition to instrument on-board calibrators (OBC), lunar observations have been used by both Terra and Aqua MODIS to track their reflective solar bands (RSB) on-orbit calibration stability. On a near monthly basis, lunar observations are scheduled and implemented for each instrument at nearly the same lunar phase angles. A time series of normalized detector responses to the Moon is used to monitor its on-orbit calibration stability. The normalization is applied to correct the differences of lunar viewing geometries and the Sun-Moon-Sensor distances among different lunar observations. Initially, the lunar calibration stability monitoring was only applied to MODIS bands (1-4 and 8-12) that do not saturate while viewing the Moon. As the mission continued, we extended the lunar calibration stability monitoring to other RSB bands (bands 13-16) that contain saturated pixels. For these bands, the calibration stability is monitored by referencing their non-saturated pixels to the matched pixels in a non-saturation band. In this paper, we describe this relative approach and apply it to MODIS regularly scheduled lunar observations. We present lunar trending results for both Terra and Aqua MODIS over their entire missions. Also discussed in the paper are the advantages and limitations of this approach and its potential applications to other earth-observing sensors. Keywords: Terra, Aqua, MODIS, sensor, Moon, calibration, stability

  14. A Review of Selected MODIS Algorithms, Data Products, and Applications

    EPA Science Inventory

    The Moderate Resolution Imaging Spectroradiometer (MODIS) is one of the key instruments designed as part of NASA’s Earth Observing System (EOS) to provide long-term global observation of the Earth’s land, ocean, and atmospheric properties (Asrar and Dokken, 1993). The developmen...

  15. JPSS Proving Ground Activities with NASA's Short-term Prediction Research and Transition (SPoRT) Center

    NASA Astrophysics Data System (ADS)

    Schultz, L. A.; Smith, M. R.; Fuell, K.; Stano, G. T.; LeRoy, A.; Berndt, E.

    2015-12-01

    Instruments aboard the Joint Polar Satellite System (JPSS) series of satellites will provide imagery and other data sets relevant to operational weather forecasts. To prepare current and future weather forecasters in application of these data sets, Proving Ground activities have been established that demonstrate future JPSS capabilities through use of similar sensors aboard NASA's Terra and Aqua satellites, and the S-NPP mission. As part of these efforts, NASA's Short-term Prediction Research and Transition (SPoRT) Center in Huntsville, Alabama partners with near real-time providers of S-NPP products (e.g., NASA, UW/CIMSS, UAF/GINA, etc.) to demonstrate future capabilities of JPSS. This includes training materials and product distribution of multi-spectral false color composites of the visible, near-infrared, and infrared bands of MODIS and VIIRS. These are designed to highlight phenomena of interest to help forecasters digest the multispectral data provided by the VIIRS sensor. In addition, forecasters have been trained on the use of the VIIRS day-night band, which provides imagery of moonlit clouds, surface, and lights emitted by human activities. Hyperspectral information from the S-NPP/CrIS instrument provides thermodynamic profiles that aid in the detection of extremely cold air aloft, helping to map specific aviation hazards at high latitudes. Hyperspectral data also support the estimation of ozone concentration, which can highlight the presence of much drier stratospheric air, and map its interaction with mid-latitude or tropical cyclones to improve predictions of their strengthening or decay. Proving Ground activities are reviewed, including training materials and methods that have been provided to forecasters, and forecaster feedback on these products that has been acquired through formal, detailed assessment of their applicability to a given forecast threat or task. Future opportunities for collaborations around the delivery of training are proposed, along with other applications of multispectral data and derived, more quantitative products.

  16. Global Aerosol Remote Sensing from MODIS

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles; Kaufman, Yoram J.; Remer, Lorraine A.; Chu, D. Allen; Mattoo, Shana; Tanre, Didier; Levy, Robert; Li, Rong-Rong; Martins, Jose V.; Lau, William K. M. (Technical Monitor)

    2002-01-01

    The physical characteristics, composition, abundance, spatial distribution and dynamics of global aerosols are still very poorly known, and new data from satellite sensors have long been awaited to improve current understanding and to give a boost to the effort in future climate predictions. The derivation of aerosol parameters from the MODerate resolution Imaging Spectro-radiometer (MODIS) sensors aboard the Earth Observing System (EOS) Terra and Aqua polar-orbiting satellites ushers in a new era in aerosol remote sensing from space. Terra and Aqua were launched on December 18, 1999 and May 4, 2002 respectively, with daytime equator crossing times of approximately 10:30 am and 1:30 pm respectively. Several aerosol parameters are retrieved at 10-km spatial resolution (level 2) from MODIS daytime data. The MODIS aerosol algorithm employs different approaches to retrieve parameters over land and ocean surfaces, because of the inherent differences in the solar spectral radiance interaction with these surfaces. The parameters retrieved include: aerosol optical thickness (AOT) at 0.47, 0.55 and 0.66 micron wavelengths over land, and at 0.47, 0.55, 0.66, 0.87, 1.2, 1.6, and 2.1 micron over ocean; Angstrom exponent over land and ocean; and effective radii, and the proportion of AOT contributed by the small mode aerosols over ocean. To ensure the quality of these parameters, a substantial part of the Terra-MODIS aerosol products were validated globally and regionally, based on cross correlation with corresponding parameters derived from ground-based measurements from AERONET (AErosol RObotic NETwork) sun photometers. Similar validation efforts are planned for the Aqua-MODIS aerosol products. The MODIS level 2 aerosol products are operationally aggregated to generate global daily, eight-day (weekly), and monthly products at one-degree spatial resolution (level 3). MODIS aerosol data are used for the detailed study of local, regional, and global aerosol concentration, distribution, and temporal dynamics, as well as for radiative forcing calculations. We show several examples of these results and comparisons with model output.

  17. MODIS Snow and Ice Products from the NSIDC DAAC

    NASA Technical Reports Server (NTRS)

    Scharfen, Greg R.; Hall, Dorothy K.; Riggs, George A.

    1997-01-01

    The National Snow and Ice Data Center (NSIDC) Distributed Active Archive Center (DAAC) provides data and information on snow and ice processes, especially pertaining to interactions among snow, ice, atmosphere and ocean, in support of research on global change detection and model validation, and provides general data and information services to cryospheric and polar processes research community. The NSIDC DAAC is an integral part of the multi-agency-funded support for snow and ice data management services at NSIDC. The Moderate Resolution Imaging Spectroradiometer (MODIS) will be flown on the first Earth Observation System (EOS) platform (AM-1) in 1998. The MODIS Instrument Science Team is developing geophysical products from data collected by the MODIS instrument, including snow and ice products which will be archived and distributed by NSIDC DAAC. The MODIS snow and ice mapping algorithms will generate global snow, lake ice, and sea ice cover products on a daily basis. These products will augment the existing record of satellite-derived snow cover and sea ice products that began about 30 years ago. The characteristics of these products, their utility, and comparisons to other data set are discussed. Current developments and issues are summarized.

  18. Cloud Retrieval Intercomparisons Between SEVIRI, MODIS and VIIRS with CHIMAERA PGE06 Data Collection 6 Products

    NASA Technical Reports Server (NTRS)

    Wind, Galina; Riedi, Jerome; Platnick, Steven; Heidinger, Andrew

    2014-01-01

    The Cross-platform HIgh resolution Multi-instrument AtmosphEric Retrieval Algorithms (CHIMAERA) system allows us to perform MODIS-like cloud top, optical and microphysical properties retrievals on any sensor that possesses a minimum set of common spectral channels. The CHIMAERA system uses a shared-core architecture that takes retrieval method out of the equation when intercomparisons are made. Here we show an example of such retrieval and a comparison of simultaneous retrievals done using SEVIRI, MODIS and VIIRS sensors. All sensor retrievals are performed using CLAVR-x (or CLAVR-x based) cloud top properties algorithm. SEVIRI uses the SAF_NWC cloud mask. MODIS and VIIRS use the IFF-based cloud mask that is a shared algorithm between MODIS and VIIRS. The MODIS and VIIRS retrievals are performed using a VIIRS branch of CHIMAERA that limits available MODIS channel set. Even though in that mode certain MODIS products such as multilayer cloud map are not available, the cloud retrieval remains fully equivalent to operational Data Collection 6.

  19. Evaluation of Enhanced High Resolution MODIS/AMSR-E SSTs and the Impact on Regional Weather Forecast

    NASA Technical Reports Server (NTRS)

    Schiferl, Luke D.; Fuell, Kevin K.; Case, Jonathan L.; Jedlovec, Gary J.

    2010-01-01

    Over the last few years, the NASA Short-term Prediction Research and Transition (SPoRT) Center has been generating a 1-km sea surface temperature (SST) composite derived from retrievals of the Moderate Resolution Imaging Spectroradiometer (MODIS) for use in operational diagnostics and regional model initialization. With the assumption that the day-to-day variation in the SST is nominal, individual MODIS passes aboard the Earth Observing System (EOS) Aqua and Terra satellites are used to create and update four composite SST products each day at 0400, 0700, 1600, and 1900 UTC, valid over the western Atlantic and Caribbean waters. A six month study from February to August 2007 over the marine areas surrounding southern Florida was conducted to compare the use of the MODIS SST composite versus the Real-Time Global SST analysis to initialize the Weather Research and Forecasting (WRF) model. Substantial changes in the forecast heat fluxes were seen at times in the marine boundary layer, but relatively little overall improvement was measured in the sensible weather elements. The limited improvement in the WRF model forecasts could be attributed to the diurnal changes in SST seen in the MODIS SST composites but not accounted for by the model. Furthermore, cloud contamination caused extended periods when individual passes of MODIS were unable to update the SSTs, leading to substantial SST latency and a cool bias during the early summer months. In order to alleviate the latency problems, the SPoRT Center recently enhanced its MODIS SST composite by incorporating information from the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) instruments as well as the Operational Sea Surface Temperature and Sea Ice Analysis. These enhancements substantially decreased the latency due to cloud cover and improved the bias and correlation of the composites at available marine point observations. While these enhancements improved upon the modeled cold bias using the original MODIS SSTs, the discernable impacts on the WRF model were still somewhat limited. This paper explores several factors that may have contributed to this result. First, the original methodology to initialize the model used the most recent SST composite available in a hypothetical real ]time configuration, often matching the forecast initial time with an SST field that was 5-8 hours offset. To minimize the differences that result from the diurnal variations in SST, the previous day fs SST composite is incorporated at a time closest to the model initialization hour (e.g. 1600 UTC composite at 1500 UTC model initialization). Second, the diurnal change seen in the MODIS SST composites was not represented by the WRF model in previous simulations, since the SSTs were held constant throughout the model integration. To address this issue, we explore the use of a water skin-temperature diurnal cycle prediction capability within v3.1 of the WRF model to better represent fluctuations in marine surface forcing. Finally, the verification of the WRF model is limited to very few over-water sites, many of which are located near the coastlines. In order to measure the open ocean improvements from the AMSR-E, we could use an independent 2-dimensional, satellite-derived data set to validate the forecast model by applying an object-based verification method. Such a validation technique could aid in better understanding the benefits of the mesoscale SST spatial structure to regional models applications.

  20. NASA Sees Smoke from California’s Long Valley Wildfire

    NASA Image and Video Library

    2017-12-08

    NASA’s Aqua satellite captured a large area of smoke from the Long Valley Wildfire that was affecting Yosemite National Park. This natural-color satellite image was collected by the Moderate Resolution Imaging Spectroradiometer instrument that flies aboard the Aqua satellite. The image, taken July 20, showed actively burning areas in red, as detected by MODIS’s thermal bands. According to Inciweb, an interagency all-risk incident information management system that coordinates with federal, state and local agencies to manage wildfires, the fire started on Tuesday July 11, 2017. It is located about two miles north of Doyle, California and about 50 miles north of Reno, Nevada. As of July 21 the fire covered 83,733 acres and was 91 percent contained. NASA image courtesy NASA MODIS Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  1. Development of MODIS data-based algorithm for retrieving sea surface temperature in coastal waters.

    PubMed

    Wang, Jiao; Deng, Zhiqiang

    2017-06-01

    A new algorithm was developed for retrieving sea surface temperature (SST) in coastal waters using satellite remote sensing data from Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Aqua platform. The new SST algorithm was trained using the Artificial Neural Network (ANN) method and tested using 8 years of remote sensing data from MODIS Aqua sensor and in situ sensing data from the US coastal waters in Louisiana, Texas, Florida, California, and New Jersey. The ANN algorithm could be utilized to map SST in both deep offshore and particularly shallow nearshore waters at the high spatial resolution of 1 km, greatly expanding the coverage of remote sensing-based SST data from offshore waters to nearshore waters. Applications of the ANN algorithm require only the remotely sensed reflectance values from the two MODIS Aqua thermal bands 31 and 32 as input data. Application results indicated that the ANN algorithm was able to explaining 82-90% variations in observed SST in US coastal waters. While the algorithm is generally applicable to the retrieval of SST, it works best for nearshore waters where important coastal resources are located and existing algorithms are either not applicable or do not work well, making the new ANN-based SST algorithm unique and particularly useful to coastal resource management.

  2. MODIS Views North Pole

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This true-color image over the North Pole was acquired by the MODerate-resolution Imaging Spectroradiometer (MODIS), flying aboard the Terra spacecraft, on May 5, 2000. The scene was received and processed by Norway's MODIS Direct Broadcast data receiving station, located in Svalbard, within seconds of photons hitting the sensor's detectors. (Click for more details about MODIS Direct Broadcast data.) In this image, the sea ice appears white and areas of open water, or recently refrozen sea surface, appear black. The irregular whitish shapes toward the bottom of the image are clouds, which are often difficult to distinguish from the white Arctic surface. Notice the considerable number of cracks, or 'leads,' in the ice that appear as dark networks of lines. Throughout the region within the Arctic Circle leads are continually opening and closing due to the direction and intensity of shifting wind and ocean currents. Leads are particularly common during the summer, when temperatures are higher and the ice is thinner. In this image, each pixel is one square kilometer. Such true-color views of the North Pole are quite rare, as most of the time much of the region within the Arctic Circle is cloaked in clouds. Image by Allen Lunsford, NASA GSFC Direct Readout Laboratory; Data courtesy Tromso receiving station, Svalbard, Norway

  3. The moderate resolution imaging spectrometer (MODIS) science and data system requirements

    NASA Technical Reports Server (NTRS)

    Ardanuy, Philip E.; Han, Daesoo; Salomonson, Vincent V.

    1991-01-01

    The Moderate Resolution Imaging Spectrometer (MODIS) has been designated as a facility instrument on the first NASA polar orbiting platform as part of the Earth Observing System (EOS) and is scheduled for launch in the late 1990s. The near-global daily coverage of MODIS, combined with its continuous operation, broad spectral coverage, and relatively high spatial resolution, makes it central to the objectives of EOS. The development, implementation, production, and validation of the core MODIS data products define a set of functional, performance, and operational requirements on the data system that operate between the sensor measurements and the data products supplied to the user community. The science requirements guiding the processing of MODIS data are reviewed, and the aspects of an operations concept for the production of data products from MODIS for use by the scientific community are discussed.

  4. Characterizing error distributions for MISR and MODIS optical depth data

    NASA Astrophysics Data System (ADS)

    Paradise, S.; Braverman, A.; Kahn, R.; Wilson, B.

    2008-12-01

    The Multi-angle Imaging SpectroRadiometer (MISR) and Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's EOS satellites collect massive, long term data records on aerosol amounts and particle properties. MISR and MODIS have different but complementary sampling characteristics. In order to realize maximum scientific benefit from these data, the nature of their error distributions must be quantified and understood so that discrepancies between them can be rectified and their information combined in the most beneficial way. By 'error' we mean all sources of discrepancies between the true value of the quantity of interest and the measured value, including instrument measurement errors, artifacts of retrieval algorithms, and differential spatial and temporal sampling characteristics. Previously in [Paradise et al., Fall AGU 2007: A12A-05] we presented a unified, global analysis and comparison of MISR and MODIS measurement biases and variances over lives of the missions. We used AErosol RObotic NETwork (AERONET) data as ground truth and evaluated MISR and MODIS optical depth distributions relative to AERONET using simple linear regression. However, AERONET data are themselves instrumental measurements subject to sources of uncertainty. In this talk, we discuss results from an improved analysis of MISR and MODIS error distributions that uses errors-in-variables regression, accounting for uncertainties in both the dependent and independent variables. We demonstrate on optical depth data, but the method is generally applicable to other aerosol properties as well.

  5. MODIS. Volume 2: MODIS level 1 geolocation, characterization and calibration algorithm theoretical basis document, version 1

    NASA Technical Reports Server (NTRS)

    Barker, John L.; Harnden, Joann M. K.; Montgomery, Harry; Anuta, Paul; Kvaran, Geir; Knight, ED; Bryant, Tom; Mckay, AL; Smid, Jon; Knowles, Dan, Jr.

    1994-01-01

    The EOS Moderate Resolution Imaging Spectrometer (MODIS) is being developed by NASA for flight on the Earth Observing System (EOS) series of satellites, the first of which (EOS-AM-1) is scheduled for launch in 1998. This document describes the algorithms and their theoretical basis for the MODIS Level 1B characterization, calibration, and geolocation algorithms which must produce radiometrically, spectrally, and spatially calibrated data with sufficient accuracy so that Global change research programs can detect minute changes in biogeophysical parameters. The document first describes the geolocation algorithm which determines geodetic latitude, longitude, and elevation of each MODIS pixel and the determination of geometric parameters for each observation (satellite zenith angle, satellite azimuth, range to the satellite, solar zenith angle, and solar azimuth). Next, the utilization of the MODIS onboard calibration sources, which consist of the Spectroradiometric Calibration Assembly (SRCA), Solar Diffuser (SD), Solar Diffuser Stability Monitor (SDSM), and the Blackbody (BB), is treated. Characterization of these sources and integration of measurements into the calibration process is described. Finally, the use of external sources, including the Moon, instrumented sites on the Earth (called vicarious calibration), and unsupervised normalization sites having invariant reflectance and emissive properties is treated. Finally, algorithms for generating utility masks needed for scene-based calibration are discussed. Eight appendices are provided, covering instrument design and additional algorithm details.

  6. Improvements of VIIRS and MODIS Solar Diffuser and Lunar Calibration

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong; Butler, James J.; Lei, Ning; Sun, Junqiang; Fulbright, Jon; Wang, Zhipeng; McIntire, Jeff; Angal, Amit Avinash

    2013-01-01

    Both VIIRS and MODIS instruments use solar diffuser (SD) and lunar observations to calibrate their reflective solar bands (RSB). A solar diffuser stability monitor (SDSM) is used to track the SD on-orbit degradation. On-orbit observations have shown similar wavelength-dependent SD degradation (larger at shorter VIS wavelengths) and SDSM detector response degradation (larger at longer NIR wavelengths) for both VIIRS and MODIS instruments. In general, the MODIS scan mirror has experienced more degradation in the VIS spectral region whereas the VIIRS rotating telescope assembly (RTA) mirrors have seen more degradation in the NIR and SWIR spectral region. Because of this wavelength dependent mirror degradation, the sensor's relative spectral response (RSR) needs to be modulated. Due to differences between the solar and lunar spectral irradiance, the modulated RSR could have different effects on the SD and lunar calibration. In this paper, we identify various factors that should be considered for the improvements of VIIRS and MODIS solar and lunar calibration and examine their potential impact. Specifically, we will characterize and assess the calibration impact due to SD and SDSM attenuation screen transmission (uncertainty), SD BRF uncertainty and onorbit degradation, SDSM detector response degradation, and modulated RSR resulting from the sensor's optics degradation. Also illustrated and discussed in this paper are the calibration strategies implemented in the VIIRS and MODIS SD and lunar calibrations and efforts that could be made for future improvements.

  7. Monitoring the On-Orbit Calibration of Terra MODIS Reflective Solar Bands Using Simultaneous Terra MISR Observations

    NASA Technical Reports Server (NTRS)

    Angal, Amit; Xiong, Xiaoxiong; Wu, Aisheng

    2016-01-01

    On December 18, 2015, the Terra spacecraft completed 16 years of successful operation in space. Terra has five instruments designed to facilitate scientific measurements of the earths land, ocean, and atmosphere. The Moderate Resolution Imaging Spectroradiometer (MODIS) and the Multiangle Imaging Spectroradiometer (MISR) instruments provide information for the temporal studies of the globe. After providing over 16 years of complementary measurements, a synergistic use of the measurements obtained from these sensors is beneficial for various science products. The 20 reflective solar bands (RSBs) of MODIS are calibrated using a combination of solar diffuser and lunar measurements, supplemented by measurements from pseudoinvariant desert sites. MODIS views the on-board calibrators and the earth via a two-sided scan mirror at three spatial resolutions: 250 m using 40 detectors in bands 1 and 2, 500 m using 20 detectors in bands 3 and 4, and 1000 m using 10 detectors in bands 819 and 26. Simultaneous measurements of the earths surface are acquired in a push-broom fashion by MISR at nine view angles spreading out in the forward and backward directions along the flight path. While the swath width for MISR acquisitions is 360 km, MODIS scans a wider swath of 2330 km via its two-sided scan mirror. The reflectance of the MODIS scan mirror has an angle dependence characterized by the response versus scan angle (RVS). Its on-orbit change is derived using the gain from a combination of on-board and earth-view measurements. The on-orbit RVS for MODIS has experienced a significant change, especially for the short-wavelength bands. The on-orbit RVS change for the short-wavelength bands (bands 3, 8, and 9) at nadir is observed to be greater than 10 over the mission lifetime. Due to absence of a scanning mechanism, MISR can serve as an effective tool to evaluate and monitor the on-orbit performance of the MODIS RVS. Furthermore, it can also monitor the detector and scan-mirror differences for the MODIS bands using simultaneous measurements from earth-scene targets, e.g., North Atlantic Ocean and North African desert. Simultaneous measurements provide the benefit of minimizing the impact of earth-scene features while comparing the radiometric performance using vicarious techniques. Long-term observations of both instruments using select ground targets also provide an evaluation of the long-term calibration stability. The goal of this paper is to demonstrate the use of MISR to monitor and enhance the on-orbit calibration of the MODIS RSB. The radiometric calibration requirements for the MODIS RSB are +/- 2% in reflectance and +/- 5% in radiance at typical radiance levels within +/- 45 deg. of nadir. The results show that the long-term changes in the MODIS reflectance at nadir frames are generally within 1. The MODIS level 1B calibrated products, generated after correcting for the on-orbit changes in the gain and RVS, do not have any correction for changes in the instruments polarization sensitivity. The mirror-side-dependent polarization sensitivity exhibits an on-orbit change, primarily in the blue bands, that manifests in noticeable mirror side differences in the MODIS calibrated products. The mirror side differences for other RSB are observed to be less than 1%, therefore demonstrating an excellent on-orbit performance. The detector differences in the blue bands of MODIS exhibit divergence in recent years beyond 1%, and a calibration algorithm improvement has been identified to mitigate this effect. Short-term variations in the recent year caused by the forward updates were identified in bands 1 and 2 and are planned to be corrected in the next reprocess.

  8. An Overview of the Earth Observing System Moderate Resolution Imaging Spectroradiometer (MODIS) Data Products Status and Availability for Environmental Applications and Global Change Studies

    NASA Technical Reports Server (NTRS)

    Salomonson, Vincent V.; Houser, Paul (Technical Monitor)

    2002-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) on the Earth Observing System (EOS) Terra Mission began to produce data in February 2000. The Terra MODIS is in a sun-synchronous orbit going north to south in the daylight portion of the orbit crossing the equator at about 1030 hours local time. The spacecraft, instrument, and data systems are performing well and are producing a wide variety of data products useful for scientific and applications studies in relatively consistent fashion extending from November 2000 to the present. Within the approximately 40 MODIS data products, several are new and represent powerful and exciting capabilities such the ability to provide observations over the globe of fire occurrences, microphysical properties of clouds and sun-stimulated fluorescence from phytoplankton in the surface waters of the ocean. The remainder of the MODIS products exceed or, at a minimum, match the capabilities of products from heritage sensors such as, for example, the Advanced Very High Resolution Radiometer (AVHRR). Efforts are underway to provide data sets for the greater Earth science community and to improve access to these products at the various Distributed Active Archive Centers (DAAC's) or through Direct Broadcast (DB) stations. The MODIS instrument on the EOS Aqua mission should also be expected to be in orbit and functioning in the Spring of 2002. The Aqua spacecraft will operate in a sun-synchronous orbit going south to north in the daylight portion of the orbit crossing the equator at approximately 1330 hours local time. Subsequently the Aqua MODIS observations will substantially add to the capabilities of the Terra MODIS for environmental applications and global change studies.

  9. Flooding in Southern Russia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Over the past two weeks, heavy rains have inundated southern Russia, giving rise to floods that killed up to 83 people and drove thousands from their homes. This false-color image acquired on June 23, 2002, by the Moderate-resolution Imaging Spectroradiometer (MODIS) aboard the Terra satellite shows some of the worst flooding. The Black Sea is the dark patch in the lower left-hand corner. The city of Krasnodor, Russia, which was one of the cities hardest hit, sits on the western edge of the larger lake on the left side of the image, and Stavropol, which lost more lives than any other city, sits just east of the small cluster of lakes on the right-hand side of the image. Normally, the rivers and smaller lakes in this image cannot even be seen clearly on MODIS imagery. In this false-color image, the ground is green and blue and water is black or dark brown. Clouds come across as pink and white. Credit: Image courtesy Jesse Allen, NASA GSFC, based on data provided by the MODIS Rapid Response System.

  10. Remote Sensing of Water Vapor and Thin Cirrus Clouds using MODIS Near-IR Channels

    NASA Technical Reports Server (NTRS)

    Gao, Bo-Cai; Kaufman, Yoram J.

    2001-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS), a major facility instrument on board the Terra Spacecraft, was successfully launched into space in December of 1999. MODIS has several near-IR channels within and around the 0.94 micrometer water vapor bands for remote sensing of integrated atmospheric water vapor over land and above clouds. MODIS also has a special near-IR channel centered at 1.375-micron with a width of 30 nm for remote sensing of cirrus clouds. In this paper, we describe briefly the physical principles on remote sensing of water vapor and cirrus clouds using these channels. We also present sample water vapor images and cirrus cloud images obtained from MODIS data.

  11. Typhoon Chan-Hom "Eyes" NASA's Aqua Satellite

    NASA Image and Video Library

    2017-12-08

    Typhoon Chan-Hom's eye was visible from space when NASA's Aqua satellite passed overhead early on July 8, 2015. The MODIS instrument, known as the Moderate Resolution Imaging Spectrometer, flies aboard NASA's Aqua satellite. When Aqua passed over Typhoon Chan-Hom on July 8 at 04:25 UTC (12:25 a.m. EDT), MODIS captured a visible-light image of the storm that clearly showed its eye. The MODIS image also a ring of powerful thunderstorms surrounding the eye of the storm, and the bulk of thunderstorms wrapping around the system from west to east, along the southern side. At 0900 UTC (5 a.m. EDT), Typhoon Chan-Hom's maximum sustained winds were near 85 knots (97.8 mph/157.4 kph). Tropical-storm-force winds extended 145 nautical miles (166.9 miles/268.5 km) from the center, making the storm almost 300 nautical miles (345 miles/555 km) in diameter. Typhoon-force winds extended out to 35 nautical miles (40 miles/64.8 km) from the center. Chan-Hom's eye was centered near 20.5 North latitude and 132.7 East longitude, about 450 nautical miles (517.9 miles/833.4 km) southeast of Kadena Air Base, Iwo To, Japan. Chan-Hom was moving to the northwest at 11 knots (12.6 mph/20.3 kph). The typhoon was generating very rough seas with wave heights to 28 feet (8.5 meters). The Joint Typhoon Warning Center expects Chan-Hom to continue tracking northwestward over the next three days under the steering influence of a sub-tropical ridge (elongated area of high pressure). Chan-Hom is expected to intensify steadily peaking at 120 knots (138.1 mph/222.2 kph) on July 10. The JTWC forecast predicts that Chan-Hom will make landfall near Wenzhou, Zhejiang, China and begin decaying due to land interaction. For updated warnings and watches from China's National Meteorological Centre, visit: www.cma.gov.cn/en/WeatherWarnings/. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team b>NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  12. On-Orbit Performance and Calibration Improvements For the Reflective Solar Bands of Terra and Aqua MODIS

    NASA Technical Reports Server (NTRS)

    Angal, Amit; Xiong, Xiaoxiong; Wu, Aisheng; Chen, Hongda; Geng, Xu; Link, Daniel; Li, Yonghong; Wald, Andrew; Brinkmann, Jake

    2016-01-01

    Moderate Resolution Imaging Spectroradiometer (MODIS) is the keystone instrument for NASAs EOS Terra and Aqua missions, designed to extend and improve heritage sensor measurements and data records of the land, oceans and atmosphere. The reflective solar bands (RSB) of MODIS covering wavelengths from 0.41 micrometers to 2.2 micrometers, are calibrated on-orbit using a solar diffuser (SD), with its on-orbit bi-directional reflectance factor (BRF) changes tracked using a solar diffuser stability monitor (SDSM). MODIS is a scanning radiometer using a two-sided paddle-wheel mirror to collect earth view (EV) data over a range of (+/-)55 deg. off instrument nadir. In addition to the solar calibration provided by the SD and SDSM system, lunar observations at nearly constant phase angles are regularly scheduled to monitor the RSB calibration stability. For both Terra and Aqua MODIS, the SD and lunar observations are used together to track the on-orbit changes of RSB response versus scan angle (RVS) as the SD and SV port are viewed at different angles of incidence (AOI) on the scan mirror. The MODIS Level 1B (L1B) Collection 6 (C6) algorithm incorporated several enhancements over its predecessor Collection 5 (C5) algorithm. A notable improvement was the use of the earth-view (EV) response trends from pseudo-invariant desert targets to characterize the on-orbit RVS for select RSB (Terra bands 1-4, 8, 9 and Aqua bands 8, 9) and the time, AOI, and wavelength-dependent uncertainty. The MODIS Characterization Support Team (MCST) has been maintaining and enhancing the C6 algorithm since its first update in November, 2011 for Aqua MODIS, and February, 2012 for Terra MODIS. Several calibration improvements have been incorporated that include extending the EV-based RVS approach to other RSB, additional correction for SD degradation at SWIR wavelengths, and alternative approaches for on-orbit RVS characterization. In addition to the on-orbit performance of the MODIS RSB, this paper also discusses in detail the recent calibration improvements implemented in the MODIS L1B C6.

  13. The NASA Earth Observing System (EOS) Terra and Aqua Mission Moderate Resolution Imaging Spectroradiometer (MODIS: Science and Applications

    NASA Technical Reports Server (NTRS)

    Salomnson, Vincent V.

    2003-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) on the Earth Observing System (EOS) Terra Mission began to produce data in February 2000. The EOS Aqua mission was launched successfully May 4,2002 with another MODIS on it and "first light" observations occurred on June 24,2002. The Terra MODIS is in a sun-synchronous orbit going north to south in the daylight portion of the orbit crossing the equator at about 1030 hours local time. The Aqua spacecraft operates in a sun-synchronous orbit going south to north in the daylight portion of the orbit crossing the equator at approximately 1330 hours local time. The spacecraft, instrument, and data systems for both MODIS instruments are performing well and are producing a wide variety of data products useful for scientific and applications studies in relatively consistent fashion extending from November 2000 to the present. Within the approximately 40 MODIS data products, several are new and represent powerful and exciting capabilities such the ability to provide observations over the globe of fire occurrences, microphysical properties of clouds and sun-stimulated fluorescence from phytoplankton in the surface waters of the ocean. The remainder of the MODIS products exceeds or, at a minimum, matches the capabilities of products from heritage sensors such as, for example, the Advanced Very High Resolution Radiometer (AVHRR). Efforts are underway to provide data sets for the greater Earth science community and to improve access to these products at the various Distributed Active Archive Centers (DAAC's) or through Direct Broadcast (DB) stations.

  14. MODIS Solar Diffuser On-orbit Performance

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong; Chen, H.; Choi, T.; Sun, J.; Angal, A.

    2008-01-01

    MODIS is a key instrument for the NASA Earth Observing System (EOS), currently operated on both the Terra and Aqua missions. Each MODIS instrument has 20 reflective solar bands (RSBs) and 16 thermal emissive bands (TEBs). MODIS RSB on-orbit calibration is reflectance based using an on-board solar diffuser (SD). The SD bi-directional reflectance factors (BRFs) were characterized pre-launch using reference diffuser samples, which are traceable to NIST reflectance standards. The SD BRF on-orbit degradation (or change) is tracked by another onboard device, called the solar diffuser stability monitor (SDSM). The SDSM is operated during each scheduled SD calibration event, making alternate observations of direct sunlight and the diffusely reflected sunlight from the SD. The time series of the ratios of SDSM's SD view to its Sun view provide SD degradation information. This paper presents and compares the Terra and Aqua MODIS SD on-orbit performance. Results show that the SD on-orbit degradation depends on the amount of solar exposure of the SD plate. In addition, it is strongly wavelengthdependent, with a larger degradation rate at shorter wavelengths. For Terra MODIS, an SD door anomaly occurred in May 2003 that led to a decision to fix the door permanently at an "open" position. Since then, the SD degradation rate has significantly increased due to more frequent solar exposure. As expected, the SD on-orbit performance directly impacts the RSB calibration performance. The lessons learned from MODIS on-orbit calibration will provide useful insights into the development and operation of future SD calibration systems.

  15. Destination Innovation: Episode 4 CheMin

    NASA Image and Video Library

    2012-08-02

    Destination Innovation is a new series that explores the research, science and other projects underway at the NASA Ames Research Center. Episode 4 focuses on the CheMin instrument aboard the Mars Science Laboratory, NASA' s latest robotic explorer to visit Mars. CheMin, short for 'Chemistry and Mineralogy,' was developed at NASA Ames Research Center and is one of 10 instruments aboard the rover Curiosity. The instrument is an x-ray diffractometer, which will be able to identify minerals in the Martial rock and soil.

  16. Impact of MODIS SWIR Band Calibration Improvements on Level-3 Atmospheric Products

    NASA Technical Reports Server (NTRS)

    Wald, Andrew; Levy, Robert; Angal, Amit; Geng, Xu; Xiong, Jack; Hoffman, Kurt

    2016-01-01

    The spectral reflectance measured by the MODIS reflective solar bands (RSB) is used for retrieving many atmospheric science products. The accuracy of these products depends on the accuracy of the calibration of the RSB. To this end, the RSB of the MODIS instruments are primarily calibrated on-orbit using regular solar diffuser (SD) observations. For lambda < 0.94 microns the SDs on-orbit bi-directional reflectance factor (BRF) change is tracked using solar diffuser stability monitor (SDSM) observations. For lambda > 0.94 microns, the MODIS Characterization Support Team (MCST) developed, in MODIS Collection 6 (C6), a time-dependent correction using observations from pseudo-invariant earth-scene targets. This correction has been implemented in C6 for the Terra MODIS 1.24 micron band over the entire mission, and for the 1.375 micron band in the forward processing. As the instruments continue to operate beyond their design lifetime of six years, a similar correction is planned for other short-wave infrared (SWIR) bands as well. MODIS SWIR bands are used in deriving atmosphere products, including aerosol optical thickness, atmospheric total column water vapor, cloud fraction and cloud optical depth. The SD degradation correction in Terra bands 5 and 26 impact the spectral radiance and therefore the retrieval of these atmosphere products. Here, we describe the corrections to Bands 5 (1.24 microns) and 26 (1.375 microns), and produce three sets (B5, B26 correction on/on, on/off, and off/off) of Terra-MODIS Level 1B (calibrated radiance product) data. By comparing products derived from these corrected and uncorrected Terra MODIS Level 1B (L1B) calibrations, dozens of L3 atmosphere products are surveyed for changes caused by the corrections, and representative results are presented. Aerosol and water vapor products show only small local changes, while some cloud products can change locally by > 10%, which is a large change.

  17. Production and Distribution of Global Products From MODIS

    NASA Technical Reports Server (NTRS)

    Masuoka, Edward; Smith, David E. (Technical Monitor)

    2000-01-01

    The Moderate Resolution Imaging Spectroradiometer was launched on the EOS Terra spacecraft in December 1999 and will also fly on EOS Aqua in December 2000. With 36 spectral bands from the visible through thermal infrared and spatial resolution of 250m to 1 kilometer, each MODIS instrument will image the entire Earth surface in 2 days. This paper traces the flow of MODIS data products from the receipt of Level 0 data at the EDOS facility, through the production and quality assurance process to the Distributed Active Archive Centers (DAACs), which ship products to the user community. It describes where to obtain products and plans for reprocessing MODIS products. As most components of the ground system are severely limited in their capacity to distribute MODIS products, it also describes the key characteristics of MODIS products and their metadata that allow a user to optimize their selection of products given anticipate bottlenecks in distribution.

  18. SeaHawk: an advanced CubeSat mission for sustained ocean colour monitoring

    NASA Astrophysics Data System (ADS)

    Morrison, John M.; Jeffrey, Hazel; Gorter, Hessel; Anderson, Pamela; Clark, Craig; Holmes, Alan; Feldman, Gene C.; Patt, Frederick S.

    2016-10-01

    Sustained ocean color monitoring is vital to understanding the marine ecosystem. It has been identified as an Essential Climate Variable (ECV) and is a vital parameter in understanding long-term climate change. Furthermore, observations can be beneficial in observing oil spills, harmful algal blooms and the health of fisheries. Space-based remote sensing, through MERIS, SeaWiFS and MODIS instruments, have provided a means of observing the vast area covered by the ocean which would otherwise be impossible using ships alone. However, the large pixel size makes measurements of lakes, rivers, estuaries and coastal zones difficult. Furthermore, retirement of a number of widely used and relied upon ocean observation instruments, particularly MERIS and SeaWiFS, leaves a significant gap in ocean color observation opportunities This paper presents an overview of the SeaHawk mission, a collaborative effort between Clyde Space Ltd., the University of North Carolina Wilmington, Cloudland Instruments, and Goddard Spaceflight Center, funded by the Gordon and Betty Moore Foundation. The goal of the project is to enhance the ability to observe ocean color in high temporal and spatial resolution through use of a low-cost, next-generation ocean color sensor flown aboard a CubeSat. The final product will be 530 times smaller (0.0034 vs 1.81m3) and 115 time less massive (3.4 vs 390.0kg) but with a ground resolution 10 times better whilst maintaining a signal/noise ratio 50% that of SeaWiFs. This paper will describe the objectives of the mission, outline the payload specification and the spacecraft platform to support it.

  19. Seahawk: An Advanced Cubesat Mission for Sustained Ocean Color Monitoring

    NASA Technical Reports Server (NTRS)

    Morrison, John M.; Jeffrey, Hazel; Gorter, Hessel; Anderson, Pamela; Clark, Craig; Holmes, Alan; Feldman, Gene C.; Pratt, Frederick S.

    2016-01-01

    Sustained ocean color monitoring is vital to understanding the marine ecosystem. It has been identified as an Essential Climate Variable (ECV) and is a vital parameter in understanding long-term climate change. Furthermore, observations can be beneficial in observing oil spills, harmful algal blooms and the health of fisheries. Space-based remote sensing, through MERIS, SeaWiFS and MODIS instruments, have provided a means of observing the vast area covered by the ocean which would otherwise be impossible using ships alone. However, the large pixel size makes measurements of lakes, rivers, estuaries and coastal zones difficult. Furthermore, retirement of a number of widely used and relied upon ocean observation instruments, particularly MERIS and SeaWiFS, leaves a significant gap in ocean color observation opportunities. This paper presents an overview of the SeaHawk mission, a collaborative effort between Clyde Space Ltd., the University of North Carolina Wilmington, Cloudland Instruments, and Goddard Spaceflight Center, funded by the Gordon and Betty Moore Foundation. The goal of the project is to enhance the ability to observe ocean color in high temporal and spatial resolution through use of a low-cost, next-generation ocean color sensor flown aboard a CubeSat. The final product will be 530 times smaller (0.0034 vs 1.81cu m) and 115 time less massive (3.4 vs 390.0 kg) but with a ground resolution 10 times better whilst maintaining a signal/noise ratio 50 that of SeaWiFs. This paper will describe the objectives of the mission, outline the payload specification and the spacecraft platform to support it.

  20. Noise Characterization and Performance of MODIS Thermal Emissive Bands

    NASA Technical Reports Server (NTRS)

    Madhavan, Sriharsha; Xiong, Xiaoxiong; Wu, Aisheng; Wenny, Brian; Chiang, Kwofu; Chen, Na; Wang, Zhipeng; Li, Yonghong

    2016-01-01

    The MODerate-resolution Imaging Spectroradiometer (MODIS) is a premier Earth-observing sensor of the early 21st century, flying onboard the Terra (T) and Aqua (A) spacecraft. Both instruments far exceeded their six-year design life and continue to operate satisfactorily for more than 15 and 13 years, respectively. The MODIS instrument is designed to make observations at nearly a 100% duty cycle covering the entire Earth in less than two days. The MODIS sensor characteristics include a spectral coverage from 0.41micrometers to 14.4 micrometers, of which those wavelengths ranging from 3.7 micrometers to 14.4 micrometers cover the thermal infrared region which is interspaced in 16 thermal emissive bands (TEBs). Each of the TEB contains ten detectors which record samples at a spatial resolution of 1 km. In order to ensure a high level of accuracy for the TEB-measured top-of-atmosphere radiances, an onboard blackbody (BB) is used as the calibration source. This paper reports the noise characterization and performance of the TEB on various counts. First, the stability of the onboard BB is evaluated to understand the effectiveness of the calibration source. Next, key noise metrics such as the noise equivalent temperature difference and the noise equivalent dn difference (NEdN) for the various TEBs are determined from multiple temperature sources. These sources include the nominally controlled BB temperature of 290 K for T-MODIS and 285 K for A-MODIS, as well as a BB warm up-cool down cycle that is performed over a temperature range from roughly 270 to 315 K. The space-view port that measures the background signal serves as a viable cold temperature source for measuring noise. In addition, a well characterized Earth-view target, the Dome Concordia site located in the Antarctic plateau, is used for characterizing the stability of the sensor, indirectly providing a measure of the NEdN. Based on this rigorous characterization, a list of the noisy and inoperable detectors for the TEB for both instruments is reported to provide the science user communities quality control of the MODIS Level 1B calibrated product.

  1. Accuracy Assessment of Aqua-MODIS Aerosol Optical Depth Over Coastal Regions: Importance of Quality Flag and Sea Surface Wind Speed

    NASA Technical Reports Server (NTRS)

    Anderson, J. C.; Wang, J.; Zeng, J.; Petrenko, M.; Leptoukh, G. G.; Ichoku, C.

    2012-01-01

    Coastal regions around the globe are a major source for anthropogenic aerosols in the atmosphere, but the underlying surface characteristics are not favorable for the Moderate Resolution Imaging Spectroradiometer (MODIS) algorithms designed for retrieval of aerosols over dark land or open-ocean surfaces. Using data collected from 62 coastal stations worldwide from the Aerosol Robotic Network (AERONET) from approximately 2002-2010, accuracy assessments are made for coastal aerosol optical depth (AOD) retrieved from MODIS aboard Aqua satellite. It is found that coastal AODs (at 550 nm) characterized respectively by the MODIS Dark Land (hereafter Land) surface algorithm, the Open-Ocean (hereafter Ocean) algorithm, and AERONET all exhibit a log-normal distribution. After filtering by quality flags, the MODIS AODs respectively retrieved from the Land and Ocean algorithms are highly correlated with AERONET (with R(sup 2) is approximately equal to 0.8), but only the Land algorithm AODs fall within the expected error envelope greater than 66% of the time. Furthermore, the MODIS AODs from the Land algorithm, Ocean algorithm, and combined Land and Ocean product show statistically significant discrepancies from their respective counterparts from AERONET in terms of mean, probability density function, and cumulative density function, which suggest a need for future improvement in retrieval algorithms. Without filtering with quality flag, the MODIS Land and Ocean AOD dataset can be degraded by 30-50% in terms of mean bias. Overall, the MODIS Ocean algorithm overestimates the AERONET coastal AOD by 0.021 for AOD less than 0.25 and underestimates it by 0.029 for AOD greater than 0.25. This dichotomy is shown to be related to the ocean surface wind speed and cloud contamination effects on the satellite aerosol retrieval. The Modern Era Retrospective-Analysis for Research and Applications (MERRA) reveals that wind speeds over the global coastal region 25 (with a mean and median value of 2.94 meters per second and 2.66 meters per second, respectively) are often slower than 6 meters per second assumed in the MODIS Ocean algorithm. As a result of high correlation (R(sup 2) greater than 0.98) between the bias in binned MODIS AOD and the corresponding binned wind speed over the coastal sea surface, an empirical scheme for correcting the bias of AOD retrieved from the MODIS Ocean algorithm is formulated and is shown to be effective over the majority of the coastal AERONET stations, and hence can be used in future analysis of AOD trend and MODIS AOD data assimilation.

  2. Characterization of MODIS and SeaWiFS Solar Diffuser On-Orbit Degradation

    NASA Technical Reports Server (NTRS)

    Xiong, X.; Eplee, R. E., Jr.; Sun, J.; Patt, F. S.; Angal, A.; McClain, C. R.

    2009-01-01

    MODIS has 20 reflective solar bands (RSB), covering the VIS, NIR, and SWIR spectral regions. They are calibrated on-orbit using a solar diffuser (SD) panel, made of space-grade Spectralon. The SD bi-directional reflectance factor (BRF) was characterized pre-launch by the instrument vendor reference to the NIST reflectance standard. Its on-orbit degradation is tracked by an on-board solar diffuser stability monitor (SDSM). The SeaWifS on-orbit calibration strategy uses monthly lunar observations to monitor the long-term radiometric stability of the instrument and applies daily observations of its solar diffuser (an aluminum plate coated with YB71 paint) to track the short-term changes in the instrument response. This paper provides an overview of MODIS and SeaWiFS SD observations, applications, and approaches used to track their on-orbit degradations. Results from sensors are presented with emphasis on the spectral dependence and temporal trends of the SD degradation. Lessons and challenges from the use of SD for sensor on-orbit calibration are also discussed.

  3. The Calibration of AVHRR Visible Dual Gain using Meteosat-8 for NOAA-16 to 18

    NASA Technical Reports Server (NTRS)

    Doelling, David R.; Garber, Donald P.; Avey, L. A.; Nguyen, Louis; Minnis, Patrick

    2007-01-01

    The NOAA AVHRR program has given the remote sensing community over 25 years of imager radiances to retrieve global cloud, vegetation, and aerosol properties. This dataset can be used for long-term climate research, if the AVHRR instrument is well calibrated. Unfortunately, the AVHRR instrument does not have onboard visible calibration and does degrade over time. Vicarious post-launch calibration is necessary to obtain cloud properties that are not biased over time. The recent AVHRR-3 instrument has a dual gain in the visible channels in order to achieve greater radiance resolution in the clear-sky. This has made vicarious calibration of the AVHRR-3 more difficult to unravel. Reference satellite radiances from well-calibrated instruments, usually equipped with solar diffusers, such as MODIS, have been used to successfully vicariously calibrate other visible instruments. Transfer of calibration from one satellite to another using co-angled, collocated, coincident radiances has been well validated. Terra or Aqua MODIS and AVHRR comparisons can only be performed over the poles during summer. However, geostationary satellites offer a transfer medium that captures both parts of the dual gain. This AVHRR-3 calibration strategy uses, calibrated with MODIS, Meteosat-8 radiances simultaneously to determine the dual gains using 50km regions. The dual gain coefficients will be compared with the nominal coefficients. Results will be shown for all visible channels for NOAA-17.

  4. Systematic errors in temperature estimates from MODIS data covering the western Palearctic and their impact on a parasite development model.

    PubMed

    Alonso-Carné, Jorge; García-Martín, Alberto; Estrada-Peña, Agustin

    2013-11-01

    The modelling of habitat suitability for parasites is a growing area of research due to its association with climate change and ensuing shifts in the distribution of infectious diseases. Such models depend on remote sensing data and require accurate, high-resolution temperature measurements. The temperature is critical for accurate estimation of development rates and potential habitat ranges for a given parasite. The MODIS sensors aboard the Aqua and Terra satellites provide high-resolution temperature data for remote sensing applications. This paper describes comparative analysis of MODIS-derived temperatures relative to ground records of surface temperature in the western Palaearctic. The results show that MODIS overestimated maximum temperature values and underestimated minimum temperatures by up to 5-6 °C. The combined use of both Aqua and Terra datasets provided the most accurate temperature estimates around latitude 35-44° N, with an overestimation during spring-summer months and an underestimation in autumn-winter. Errors in temperature estimation were associated with specific ecological regions within the target area as well as technical limitations in the temporal and orbital coverage of the satellites (e.g. sensor limitations and satellite transit times). We estimated error propagation of temperature uncertainties in parasite habitat suitability models by comparing outcomes of published models. Error estimates reached 36% of annual respective measurements depending on the model used. Our analysis demonstrates the importance of adequate image processing and points out the limitations of MODIS temperature data as inputs into predictive models concerning parasite lifecycles.

  5. Comparison of MODIS-derived land surface temperature with air temperature measurements

    NASA Astrophysics Data System (ADS)

    Georgiou, Andreas; Akçit, Nuhcan

    2017-09-01

    Air surface temperature is an important parameter for a wide range of applications such as agriculture, hydrology and climate change studies. Air temperature data is usually obtained from measurements made in meteorological stations, providing only limited information about spatial patterns over wide areas. The use of remote sensing data can help overcome this problem, particularly in areas with low station density, having the potential to improve the estimation of air surface temperature at both regional and global scales. Land Surface (skin) Temperatures (LST) derived from Moderate Resolution Imaging Spectroradiometer (MODIS) sensor aboard the Terra and Aqua satellite platforms provide spatial estimates of near-surface temperature values. In this study, LST values from MODIS are compared to groundbased near surface air (Tair) measurements obtained from 14 observational stations during 2011 to 2015, covering coastal, mountainous and urban areas over Cyprus. Combining Terra and Aqua LST-8 Day and Night acquisitions into a mean monthly value, provide a large number of LST observations and a better overall agreement with Tair. Comparison between mean monthly LSTs and mean monthly Tair for all sites and all seasons pooled together yields a very high correlation and biases. In addition, the presented high standard deviation can be explained by the influence of surface heterogeneity within MODIS 1km2 grid cells, the presence of undetected clouds and the inherent difference between LST and Tair. However, MODIS LST data proved to be a reliable proxy for surface temperature and mostly for studies requiring temperature reconstruction in areas with lack of observational stations.

  6. Update of NASA's ocean colour activities

    NASA Technical Reports Server (NTRS)

    Yoder, J. A.

    1987-01-01

    The NIMBUS-7 Coastal Zone Color Scanner (CZCS) status and processing are reviewed, and future American ocean color instruments are introduced. The CZCS is probably dead, but an attempt to restart it is planned. A wide field instrument for LANDSAT-6 and 7 (WIFS) and a wiskbroom imaging spectrometer (MODIS-T) for Columbus Polar Platforms are outlined. The WIFS and MODIS-T specifications are similar: 64 bands in the range 400 to 1030 nm, with 15 to 30 nm bandwidth; 1 km resolution from 850 km altitude; 64 km footprint along track; 1500 km scan across track; and 10 yr continuous operation life.

  7. Cosmic-Ray Energetics and Mass Processing - Bonding

    NASA Image and Video Library

    2017-06-20

    Research that started aboard balloons a century ago will soon culminate in a three-year stint aboard the International Space Station as scientists work on solving a fundamental astrophysics mystery: What gives cosmic rays such incredible energies, and how does that affect the composition of the universe? The Cosmic-Ray Energetics and Mass investigation, known as CREAM, places a highly successful balloon-borne instrument aboard the International Space Station where it gathers an order of magnitude (ten times) more data, which has lower background interference because Earth's atmosphere is no longer interfering. CREAM's instruments measure the charges of cosmic rays ranging from hydrogen up through iron nuclei, over a broad energy range. The modified balloon instrument is carried aloft on a SpaceX Dragon Lab cargo supply mission and placed on the Japanese Exposed Module for a period of at least three years.

  8. An Imager Gaussian Process Machine Learning Methodology for Cloud Thermodynamic Phase classification

    NASA Astrophysics Data System (ADS)

    Marchant, B.; Platnick, S. E.; Meyer, K.

    2017-12-01

    The determination of cloud thermodynamic phase from MODIS and VIIRS instruments is an important first step in cloud optical retrievals, since ice and liquid clouds have different optical properties. To continue improving the cloud thermodynamic phase classification algorithm, a machine-learning approach, based on Gaussian processes, has been developed. The new proposed methodology provides cloud phase uncertainty quantification and improves the algorithm portability between MODIS and VIIRS. We will present new results, through comparisons between MODIS and CALIOP v4, and for VIIRS as well.

  9. Extending MODIS Deep Blue Aerosol Retrieval Coverage to Cases of Absorbing Aerosols Above Clouds: First Results

    NASA Technical Reports Server (NTRS)

    Sayer, A. M.; Hsu, N. C.; Bettenhausen, C.; Lee, J.; Redemann, J.; Shinozuka, Y.; Schmid, B.

    2015-01-01

    Absorbing smoke or mineral dust aerosols above clouds (AAC) are a frequent occurrence in certain regions and seasons. Operational aerosol retrievals from sensors like MODIS omit AAC because they are designed to work only over cloud-free scenes. However, AAC can in principle be quantified by these sensors in some situations (e.g. Jethva et al., 2013; Meyer et al., 2013). We present a summary of some analyses of the potential of MODIS-like instruments for this purpose, along with two case studies using airborne observations from the Ames Airborne Tracking Sunphotometer (AATS; http://geo.arc.nasa.gov/sgg/AATS-website/) as a validation data source for a preliminary AAC algorithm applied to MODIS measurements. AAC retrievals will eventually be added to the MODIS Deep Blue (Hsu et al., 2013) processing chain.

  10. Using VIIRS/NPP and MODIS/Aqua data to provide a continuous record of suspended particulate matter in a highly turbid inland lake

    NASA Astrophysics Data System (ADS)

    Cao, Zhigang; Duan, Hongtao; Shen, Ming; Ma, Ronghua; Xue, Kun; Liu, Dong; Xiao, Qitao

    2018-02-01

    Inland lakes are generally an important source of drinking water, and information on their water quality needs to be obtained in real time. To date, Moderate-resolution imaging spectroradiometer (MODIS) data have played a critical, effective and long-term role in fulfilling this function. However, the MODIS instruments on board both the Terra and Aqua satellites have operated beyond their designed five-year mission lifespans (Terra was launched in 1999, whereas Aqua was launched in 2002), and these instruments may stop running at any time in the near future. The Visible Infrared Imager Radiometer Suite (VIIRS) on board the Suomi National Polar-Orbiting Partnership (Suomi NPP, which was launched in Oct 2011) is expected to provide a consistent, long-term data record and continue the series of observations initiated by MODIS. To date, few evaluations of the consistency between VIIRS and MODIS have been conducted for turbid inland waters. In this study, we first used synchronous MODIS/Aqua and VIIRS/NPP data (±1 h) collected during 2012-2015 to evaluate the consistency of Rayleigh-corrected reflectance (Rrc) observations over Lake Hongze (the fourth-largest freshwater lake in China), since accurate remote sensing reflectance (Rrs) values cannot be acquired over turbid inland waters. Second, we used recently developed algorithms based on Rrc in the red band to estimate the concentrations of suspended particulate matter (SPM) from MODIS/Aqua and VIIRS/NPP data. Finally, we assessed the consistency of the SPM products derived from MODIS/Aqua and VIIRS/NPP. The results show the following. (1) The differences in Rrc among the green (VIIRS 551 nm and MODIS 555 nm) and red bands (VIIRS 671 nm and MODIS 645 nm) indicate a satisfactory consistency, and the unbiased percentage difference (UPD) is <12%. Meanwhile, the results for the near infrared (NIR) band (MODIS 859 nm and VIIRS 862 nm) indicate relatively large differences (UPD = 21.84%). (2) The satellite-derived SPM products obtained using MODIS/Aqua and VIIRS/NPP have a satisfactory degree of consistency (0-150 mg/L SPM: R2 = 0.81, UPD < 16% and 0-80 mg/L SPM: R2 = 0.85, UPD < 12%, respectively). These results demonstrate that VIIRS/NPP can continue to record the SPM observations initiated by MODIS/Aqua for turbid inland waters and establish environmental datasets over long time periods to support water quality management endeavors.

  11. NASA's Aqua Satellite Sees Extra-Tropical Storm Vongfong Pulling Away from Hokkaido, Japan

    NASA Image and Video Library

    2017-12-08

    NASA's Aqua satellite passed over Extra-Tropical Storm Vongfong on Oct. 4 as it was moving away from Hokkaido, Japan, the northernmost of the big islands. Vongfong transitioned into an extra-tropical storm early on Oct. 4 as its core changed from warm to cold. The MODIS or Moderate Resolution Imaging Spectroradiometer instrument aboard NASA's Aqua satellite captured a visible image of Tropical Storm Vongfong over Japan on Oct. 14 at 03:15 UTC as it was southeast of the island of Hokkaido, Japan. The image showed that south of the center of circulation was almost devoid of clouds and showers, which were all pushed to the north and east of the center as a result of southwesterly wind shear. At 0300 UTC on Oct. 14, the Joint Typhoon Warning Center issued its final advisory on Tropical storm Vongfong. At that time Vongfong's center was located near 29.1 north latitude and 142.9 east longitude, about 111 nautical miles (127.7 miles/205.6 km) southeast of Misawa, Japan. Vongfong was moving to the northeast at a speedy 36 knots (41.4 mph/66.67 kph). Vongfong's maximum sustained winds were near 35 knots (40.2 mph/64.8 kph). Vongfong had transitioned into an extra-tropical system and will continue to move away from northern Japan and over the northwestern Pacific Ocean. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  12. Global Estimates of Average Ground-Level Fine Particulate Matter Concentrations from Satellite-Based Aerosol Optical Depth

    NASA Technical Reports Server (NTRS)

    Van Donkelaar, A.; Martin, R. V.; Brauer, M.; Kahn, R.; Levy, R.; Verduzco, C.; Villeneuve, P.

    2010-01-01

    Exposure to airborne particles can cause acute or chronic respiratory disease and can exacerbate heart disease, some cancers, and other conditions in susceptible populations. Ground stations that monitor fine particulate matter in the air (smaller than 2.5 microns, called PM2.5) are positioned primarily to observe severe pollution events in areas of high population density; coverage is very limited, even in developed countries, and is not well designed to capture long-term, lower-level exposure that is increasingly linked to chronic health effects. In many parts of the developing world, air quality observation is absent entirely. Instruments aboard NASA Earth Observing System satellites, such as the MODerate resolution Imaging Spectroradiometer (MODIS) and the Multi-angle Imaging SpectroRadiometer (MISR), monitor aerosols from space, providing once daily and about once-weekly coverage, respectively. However, these data are only rarely used for health applications, in part because the can retrieve the amount of aerosols only summed over the entire atmospheric column, rather than focusing just on the near-surface component, in the airspace humans actually breathe. In addition, air quality monitoring often includes detailed analysis of particle chemical composition, impossible from space. In this paper, near-surface aerosol concentrations are derived globally from the total-column aerosol amounts retrieved by MODIS and MISR. Here a computer aerosol simulation is used to determine how much of the satellite-retrieved total column aerosol amount is near the surface. The five-year average (2001-2006) global near-surface aerosol concentration shows that World Health Organization Air Quality standards are exceeded over parts of central and eastern Asia for nearly half the year.

  13. The Synergistic Use of NASA's A-Train Observations to Characterize the Planetary Boundary Layer and Enable Improved Understanding and Prediction of Land-Atmosphere Interactions

    NASA Astrophysics Data System (ADS)

    Zavodsky, B.; Santanello, J. A.; Friedl, M. A.; Susskind, J.; Palm, S. P.

    2010-12-01

    The planetary boundary layer (PBL) serves as a short-term memory of land-atmosphere (L-A) interactions through the diurnal integration of surface fluxes and subsequent evolution of PBL fluxes and states. Recent advances in satellite remote sensing offer the ability to monitor PBL and land surface properties at increasingly high spatial and temporal resolutions and, consequently, have the potential to provide valuable information on the terrestrial energy and water cycle across a range of scales. In this study, we evaluate the retrieval of PBL structure and temperature and moisture properties from measurements made by NASA's Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), Moderate Resolution Imaging Spectroradiometer (MODIS) , and Atmospheric Infrared Sounder (AIRS) instruments aboard the 'A-Train' constellation. The global coverage of these sensors greatly improves upon the coarse network of synoptic radiosonde and intermittent satellite and ground remote sensing currently available, and combining the high vertical and spectral resolution of these sensors allows for PBL retrievals to be evaluated in the context of their relationship with the land surface. Results include an evaluation of CALIPSO, MODIS, and AIRS temperature and humidity retrievals using radiosonde data, focusing on how well PBL properties (e.g. PBL height, temperature, humidity, and stability) can be discerned from each sensor under a range of conditions. Overall, this research is timely in assessing the potential for merging complimentary information from independent sensors, and provides a unique opportunity to evaluate and apply NASA data to answer fundamental questions regarding observation, understanding, and prediction of L-A interactions and coupling.

  14. NASA's Aqua Satellite Tracking Super Typhoon Vongfong

    NASA Image and Video Library

    2017-12-08

    The MODIS instrument aboard NASA's Aqua satellite captured this visible image of Super Typhoon Vongfong on Oct. 9 at 04:25 UTC (12:25 a.m. EDT as it moved north through the Philippine Sea. Credit: NASA Goddard MODIS Rapid Response Team --- Vongfong weakened to a Category 4 typhoon on the Saffir-Simpson scale on Thursday, October 9, with maximum sustained winds near 130 knots (149.6 mph/240.8 kph), down from a Category 5 typhoon on Oct. 8. Forecasters at the Joint Typhoon Warning Center predict slow weakening over the next several days. Vongfong was centered near 20.6 north and 129.5 east, about 384 nautical miles south-southeast of Kadena Air Base, Okinawa, Japan. It is moving to the north-northwest at 7 knots (8 mph/12.9 kph) and generating 44 foot (13.4 meter) high seas. For warnings and watches, visit the Japan Meteorological Agency website at: www.jma.go.jp/en/typh/. Vongfong is forecast to continue moving north through the Philippine Sea and is expected to pass just to the east of Kadena Air Base, then track over Amami Oshima before making landfall in Kyushu and moving over the other three big islands of Japan. Residents of all of these islands should prepare for typhoon conditions beginning on October 10. Read more: 1.usa.gov/1s0CCQy NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  15. Comparison between volcanic ash satellite retrievals and FALL3D transport model

    NASA Astrophysics Data System (ADS)

    Corradini, Stefano; Merucci, Luca; Folch, Arnau

    2010-05-01

    Volcanic eruptions represent one of the most important sources of natural pollution because of the large emission of gas and solid particles into the atmosphere. Volcanic clouds can contain different gas species (mainly H2O, CO2, SO2 and HCl) and a mix of silicate-bearing ash particles in the size range from 0.1 μm to few mm. Determining the properties, movement and extent of volcanic ash clouds is an important scientific, economic, and public safety issue because of the harmful effects on environment, public health and aviation. In particular, real-time tracking and forecasting of volcanic clouds is key for aviation safety. Several encounters of en-route aircrafts with volcanic ash clouds have demonstrated the harming effects of fine ash particles on modern aircrafts. Alongside these considerations, the economical consequences caused by disruption of airports must be also taken into account. Both security and economical issues require robust and affordable ash cloud detection and trajectory forecasting, ideally combining remote sensing and modeling. We perform a quantitative comparison between Moderate Resolution Imaging Spectroradiometer (MODIS) retrievals of volcanic ash cloud mass and Aerosol Optical Depth (AOD) with the FALL3D ash dispersal model. MODIS, aboard the NASA-Terra and NASA-Aqua polar satellites, is a multispectral instrument with 36 spectral bands from Visible (VIS) to Thermal InfraRed (TIR) and spatial resolution varying between 250 and 1000 m at nadir. The MODIS channels centered around 11 and 12 mm have been used for the ash retrievals through the Brightness Temperature Difference algorithm and MODTRAN simulations. FALL3D is a 3-D time-dependent Eulerian model for the transport and deposition of volcanic particles that outputs, among other variables, cloud column mass and AOD. We consider the Mt. Etna volcano 2002 eruptive event as a test case. Results show a good agreement between the mean AOT retrieved and the spatial ash dispersion in the different images, while the modeled FALL3D total mass retrieved results significantly overestimated.

  16. Wave clouds over the Central African Republic

    NASA Image and Video Library

    2016-02-04

    On January 27, 2016, the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Aqua satellite passed over the Central African Republic and captured a true-color image of wave clouds rippling over a fire-speckled landscape. Wave clouds typically form when a mountain, island, or even another mass of air forces an air mass to rise, then fall again, in a wave pattern. The air cools as it rises, and if there is moisture in the air, the water condenses into clouds at the top of the wave. As the air begins to sink, the air warms and the cloud dissipates. The result is a line of clouds marking the crests of the wave separated by clear areas in the troughs of the wave. In addition to the long lines of clouds stretching across the central section of the country, clouds appear to line up in parallel rows near the border of the Democratic Republic of the Congo. In this area, small sets of grayish cloud appear to be lined up with the prevailing wind, judging by the plumes of smoke rising from red hotspots near each set of clouds. Clouds like this, that line in parallel rows parallel with the prevailing wind, are known as “cloud streets”. Each red “hotspot” marks an area where the thermal sensors on the MODIS instrument detected high temperatures. When accompanied by typical smoke, such hotspots are diagnostic for actively burning fires. Given the time of the year, the widespread nature, and the location of the fires, they are almost certainly agricultural fires that have been deliberately set to manage land. Image Credit: Jeff Schmaltz, MODIS Land Rapid Response Team, NASA GSFC NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. World Cup Hopes

    NASA Technical Reports Server (NTRS)

    2002-01-01

    From May 31 to June 30 the biggest single-sport event in the world, the 2002 FIFA World Cup (tm), will be taking place in Asia. South Korea and Japan are acting as hosts for the event which is being held in Asia for the first time. This true-color image of the southern Korean peninsula and southern Japan was acquired on May 25, 2002, by the Moderate-resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra satellite. Thirty-two nations are represented at this year's Finals including the 1998 champion France, European powers England and Italy, tournament favorite Argentina, and the United States. The finals are the culmination of a 2-year qualifying process which started with 132 nations competing in regional qualification tournaments. In the round-robin first round of the World Cup, the U.S. team will be competing against teams from Portugal, Poland, and South Korea. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  18. Analysis of Summer 2002 Melt Extent on the Greenland Ice Sheet using MODIS and SSM/I Data

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Williams, Richard S., Jr.; Steffen, Konrad; Chien, Y. L.; Foster, James L.; Robinson, David A.; Riggs, George A.

    2004-01-01

    Previous work has shown that the summer of 2002 had the greatest area of snow melt extent on the Greenland ice sheet ever recorded using passive-microwave data. In this paper, we compare the 0 degree isotherm derived from the Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument, with Special Sensor Microwave/Imager (SSM/I)-derived melt, at the time of the maximum melt extent in 2002. To validate the MODIS-derived land-surface temperatures (LSTs), we compared the MODIS LSTs with air temperatures from nine stations (using 11 different data points) and found that they agreed to within 2.3 plus or minus 2.09 C, with station temperatures consistently lower than the MODIS LSTs. According to the MODIS LST, the maximum surface melt extended to approximately 2300 m in southern Greenland; while the SSM/I measurements showed that the maximum melt extended to nearly 2700 m in southeastern Greenland. The MODIS and SSM/I data are complementary in providing detailed information about the progression of surface and near-surface melt on the Greenland ice sheet.

  19. Achieving sub-pixel geolocation accuracy in support of MODIS land science

    USGS Publications Warehouse

    Wolfe, R.E.; Nishihama, M.; Fleig, A.J.; Kuyper, J.A.; Roy, David P.; Storey, James C.; Patt, F.S.

    2002-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) was launched in December 1999 on the polar orbiting Terra spacecraft and since February 2000 has been acquiring daily global data in 36 spectral bands—29 with 1 km, five with 500 m, and two with 250 m nadir pixel dimensions. The Terra satellite has on-board exterior orientation (position and attitude) measurement systems designed to enable geolocation of MODIS data to approximately 150 m (1σ) at nadir. A global network of ground control points is being used to determine biases and trends in the sensor orientation. Biases have been removed by updating models of the spacecraft and instrument orientation in the MODIS geolocation software several times since launch and have improved the MODIS geolocation to approximately 50 m (1σ) at nadir. This paper overviews the geolocation approach, summarizes the first year of geolocation analysis, and overviews future work. The approach allows an operational characterization of the MODIS geolocation errors and enables individual MODIS observations to be geolocated to the sub-pixel accuracies required for terrestrial global change applications.

  20. Analysis of Summer 2002 Melt Extent on the Greenland Ice Sheet using MODIS and SSM/I Data

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Williams, Richard S.; Steffen, Konrad; Chien, Janet Y. L.

    2004-01-01

    Previous work has shown that the summer of 2002 had the greatest area of snow melt extent on the Greenland ice sheet ever recorded using passive-microwave data. In this paper, we compare the 0 deg. isotherm derived from the Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument, with Special Sensor Microwave/Imager (SSM/I)-derived melt, at the time of the maximum melt extent in 2002. To validate the MODIS derived land-surface temperatures (LSTs), we compared the MODIS LSTs with air temperatures from nine stations (using 11 different data points) and found that they agreed to within 2.3 +/- 2.09 C, with station temperatures consistently lower than the MODIS LSTs. According to the MODIS LST, the maximum surface melt extended to approx. 2300 m in southern Greenland; while the SSM/I measurements showed that the maximum melt extended to nearly 2700 m in southeastern Greenland. The MODIS and SSM/I data are complementary in providing detailed information about the progression of surface and near- surface melt on the Greenland ice sheet.

  1. Analysis of summer 2002 melt extent on the Greenland ice sheet using MODIS and SSM/I data

    USGS Publications Warehouse

    Hall, D.K.; Williams, R.S.; Steffen, K.; Chien, Janet Y.L.

    2004-01-01

    Previous work has shown that the summer of 2002 had the greatest area of snow melt extent on the Greenland ice sheet ever recorded using passive-microwave data. In this paper, we compare the 0?? isotherm derived from the Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument, with Special Sensor Microwave/Imager (SSM/I)-derived melt, at the time of the maximum melt extent in 2002. To validate the MODIS-derived land-surface temperatures (LSTs), we compared the MODIS LSTs with air temperatures from nine stations (using 11 different data points) and found that they agreed to within 2.3??2.09??C, with station temperatures consistently lower than the MODIS LSTs. According to the MODIS LST, the maximum surface melt extended to ???2300 m in southern Greenland; while the SSM/I measurements showed that the maximum melt extended to nearly 2700 m in southeastern Greenland. The MODIS and SSM/I data are complementary in providing detailed information about the progression of surface and near-surface melt on the Greenland ice sheet.

  2. Analysis of summer 2002 melt extent on the Greenland ice sheet using MODIS and SSM/I data

    USGS Publications Warehouse

    Hall, D. K.; Williams, R.S.; Steffen, K.; Chien, Janet Y.L.

    2004-01-01

    Previous work has shown that the summer of 2002 had the greatest area of snow melt extent on the Greenland ice sheet ever recorded using passive-microwave data. In this paper, we compare the 0deg isotherm derived from the Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument, with Special Sensor Microwave/Imager (SSM/I)-derived melt, at the time of the maximum melt extent in 2002. To validate the MODIS-derived land-surface temperatures (LSTs), we compared the MODIS LSTs with air temperatures from nine stations (using 11 different data points) and found that they agreed to within 2.3 plusmn 2.09 degC, with station temperatures consistently lower than the MODIS LSTs. According to the MODIS LST, the maximum surface melt extended to ~2300 m in southern Greenland; while the SSM/I measurements showed that the maximum melt extended to nearly 2700 m in southeastern Greenland. The MODIS and SSM/I data are complementary in providing detailed information about the progression of surface and near-surface melt on the Greenland ice sheet.

  3. ARC-2009-ACD09-0218-002

    NASA Image and Video Library

    2009-10-06

    NASA Conducts Airborne Science Aboard Zeppelin Airship: equipped with two imaging instruments enabling remote sensing and atmospheric science measurements not previously practical. Show here in pre-flight checkouts aboard the Zeppelin NT coupled to mobile mast.

  4. MODIS Observations of Smoke and Fires

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram; Ichoku, Charles; Remer, Lorraine; Lau, William K. M. (Technical Monitor)

    2002-01-01

    The MODIS (Moderate Resolution Imaging Spectroradiometer) instruments collect daily measurements of our planet since early 2000 from the Terra spaceborne polar platform. It has unique channels to observe smoke over land and ocean and to observe fires. Using unsaturated channels at 3.9 micron MODIS detects the fires and estimates the fire radiative energy. Using solar channels in the visible (0.47 and 0.66 micron) and in the mid IR (2.1 micron) MODIS measures the smoke optical thickness distribution and evolution over the land. Seven Channels in the solar spectrum are used to detect the smoke properties and distribution over the oceans. Data from the Aerosol Robotic Network, are used to validate the MODIS observations. The MODIS aerosol data presented in a movie form is used to observe the generation of smoke plumes and their dispersion around the globe. For example a key conclusion is that smoke in particular from Southern Africa can pollute significantly the 'pristine' Southern Hemisphere zonal range of 45'S-60'S, and the Northern Pacific.

  5. A-Train Observations of Young Volcanic Eruption Clouds

    NASA Astrophysics Data System (ADS)

    Carn, S. A.; Prata, F.; Yang, K.; Rose, W. I.

    2011-12-01

    NASA's A-Train satellite constellation (including Aqua, CloudSat, CALIPSO, and Aura) has been flying in formation since 2006, providing unprecedented synergistic observations of numerous volcanic eruption clouds in various stages of development. Measurements made by A-Train sensors include total column SO2 by the Ozone Monitoring Instrument (OMI) on Aura, upper tropospheric and stratospheric (UTLS) SO2 column by the Atmospheric Infrared Sounder (AIRS) on Aqua and Microwave Limb Sounder (MLS) on Aura, ash mass loading from AIRS and the Moderate resolution Imaging Spectroradiometer (MODIS) on Aqua, UTLS HCl columns and ice water content (IWC) from MLS, aerosol vertical profiles from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument aboard CALIPSO, and hydrometeor profiles from the Cloud Profiling Radar (CPR) on CloudSat. The active vertical profiling capability of CALIPSO, CloudSat and MLS sychronized with synoptic passive sensing of trace gases and aerosols by OMI, AIRS and MODIS provides a unique perspective on the structure and composition of volcanic clouds. A-Train observations during the first hours of atmospheric residence are particularly valuable, as the fallout, segregation and stratification of material in this period determines the concentration and altitude of constituents that remain to be advected downwind. This represents the eruption 'source term' essential for dispersion modeling, and hence for aviation hazard mitigation. In this presentation we show examples of A-Train data collected during recent eruptions including Chaitén (May 2008), Kasatochi (August 2008), Redoubt (March 2009), Eyjafjallajökull (April 2010) and Cordón Caulle (June 2011). We interpret the observations using the canonical three-stage view of volcanic cloud development [e.g., Rose et al., 2000] from initial rapid ash fallout to far-field dispersion of fine ash, gas and aerosol, and results from numerical modeling of volcanic plumes [e.g., Textor et al., 2003] and discuss the degree to which the observations validate existing theory and models. We also describe plans for advanced SO2 and ash retrieval algorithms that will exploit the synergy between UV and IR sensors in the A-Train for improved quantification of ash and SO2 loading by volcanic eruptions.

  6. Relative spectral response corrected calibration inter-comparison of S-NPP VIIRS and Aqua MODIS thermal emissive bands

    NASA Astrophysics Data System (ADS)

    Efremova, Boryana; Wu, Aisheng; Xiong, Xiaoxiong

    2014-09-01

    The S-NPP Visible Infrared Imaging Radiometer Suite (VIIRS) instrument is built with strong heritage from EOS MODIS, and has very similar thermal emissive bands (TEB) calibration algorithm and on-board calibrating source - a V-grooved blackbody. The calibration of the two instruments can be assessed by comparing the brightness temperatures retrieved from VIIRS and Aqua MODIS simultaneous nadir observations (SNO) from their spectrally matched TEB. However, even though the VIIRS and MODIS bands are similar there are still relative spectral response (RSR) differences and thus some differences in the retrieved brightness temperatures are expected. The differences depend on both the type and the temperature of the observed scene, and contribute to the bias and the scatter of the comparison. In this paper we use S-NPP Cross-track Infrared Sounder (CrIS) data taken simultaneously with the VIIRS data to derive a correction for the slightly different spectral coverage of VIIRS and MODIS TEB bands. An attempt to correct for RSR differences is also made using MODTRAN models, computed with physical parameters appropriate for each scene, and compared to the value derived from actual CrIS spectra. After applying the CrIS-based correction for RSR differences we see an excellent agreement between the VIIRS and Aqua MODIS measurements in the studied band pairs M13-B23, M15-B31, and M16- B32. The agreement is better than the VIIRS uncertainty at cold scenes, and improves with increasing scene temperature up to about 290K.

  7. The performance of DC restoration function for MODIS thermal emissive bands

    NASA Astrophysics Data System (ADS)

    Wang, Zhipeng; Xiong, Xiaoxiong Jack; Shrestha, Ashish

    2017-09-01

    The DC restore (DCR) process of MODIS instrument maintains the output of a detector at focal plane assembly (FPA) within the dynamic range of subsequent analog-to-digital converter, by adding a specific offset voltage to the output. The DCR offset value is adjusted per scan, based on the comparison of the detector response in digital number (DN) collected from the blackbody (BB) view with target DN saved as an on-board look-up table. In this work, the MODIS DCR mechanism is revisited, with the trends of DCR offset being provided for thermal emissive bands (TEB). Noticeable changes have been occasionally found which coincide with significant detector gain change due to various instrumental events such as safe-mode anomaly or FPA temperature fluctuation. In general, MODIS DCR functionality has been effective and the change of DCR offset has no impact to the quality of MODIS data. One exception is the Earth view (EV) data saturation of Aqua MODIS LWIR bands 33, 35 ad 36 during BB warm-up cool-down (WUCD) cycle which has been observed since 2008. The BB view of their detectors saturate when the BB temperature is above certain threshold so the DCR cannot work as designed. Therefore, the dark signal DN fluctuates with the cold FPA (CFPA) temperature and saturate for a few hours per WUCD cycle, which also saturate the EV data sector within the scan. The CFPA temperature fluctuation peaked in 2012 and has been reduced in recent years and the saturation phenomenon has been easing accordingly. This study demonstrates the importance of DCR to data generation.

  8. Global dust sources detection using MODIS Deep Blue Collection 6 aerosol products

    NASA Astrophysics Data System (ADS)

    Pérez García-Pando, C.; Ginoux, P. A.

    2015-12-01

    Our understanding of the global dust cycle is limited by a dearth of information about dust sources, especially small-scale features which could account for a large fraction of global emissions. Remote sensing sensors are the most useful tool to locate dust sources. These sensors include microwaves, visible channels, and lidar. On the global scale, major dust source regions have been identified using polar orbiting satellite instruments. The MODIS Deep Blue algorithm has been particularly useful to detect small-scale sources such as floodplains, alluvial fans, rivers, and wadis , as well as to identify anthropogenic sources from agriculture. The recent release of Collection 6 MODIS aerosol products allows to extend dust source detection to the entire land surfaces, which is quite useful to identify mid to high latitude dust sources and detect not only dust from agriculture but fugitive dust from transport and industrial activities. This presentation will overview the advantages and drawbacks of using MODIS Deep Blue for dust detection, compare to other instruments (polar orbiting and geostationary). The results of Collection 6 with a new dust screening will be compared against AERONET. Applications to long range transport of anthropogenic dust will be presented.

  9. Cosmic-Ray Energetics and Mass Processing - Unbagging and Inspection

    NASA Image and Video Library

    2017-06-22

    Research that started aboard balloons a century ago will soon culminate in a three-year stint aboard the International Space Station as scientists work on solving a fundamental astrophysics mystery: What gives cosmic rays such incredible energies, and how does that affect the composition of the universe? The Cosmic-Ray Energetics and Mass investigation, known as CREAM, places a highly successful balloon-borne instrument aboard the International Space Station where it gathers an order of magnitude (ten times) more data, which has lower background interference because Earth's atmosphere is no longer interfering. CREAM's instruments measure the charges of cosmic rays ranging from hydrogen up through iron nuclei, over a broad energy range. The modified balloon instrument is carried aloft on a SpaceX Dragon Lab cargo supply mission and placed on the Japanese Exposed Module for a period of at least three years.

  10. Orbiting Carbon Observatory-2 (OCO-2) cloud screening algorithms: validation against collocated MODIS and CALIOP data

    NASA Astrophysics Data System (ADS)

    Taylor, Thomas E.; O'Dell, Christopher W.; Frankenberg, Christian; Partain, Philip T.; Cronk, Heather Q.; Savtchenko, Andrey; Nelson, Robert R.; Rosenthal, Emily J.; Chang, Albert Y.; Fisher, Brenden; Osterman, Gregory B.; Pollock, Randy H.; Crisp, David; Eldering, Annmarie; Gunson, Michael R.

    2016-03-01

    The objective of the National Aeronautics and Space Administration's (NASA) Orbiting Carbon Observatory-2 (OCO-2) mission is to retrieve the column-averaged carbon dioxide (CO2) dry air mole fraction (XCO2) from satellite measurements of reflected sunlight in the near-infrared. These estimates can be biased by clouds and aerosols, i.e., contamination, within the instrument's field of view. Screening of the most contaminated soundings minimizes unnecessary calls to the computationally expensive Level 2 (L2) XCO2 retrieval algorithm. Hence, robust cloud screening methods have been an important focus of the OCO-2 algorithm development team. Two distinct, computationally inexpensive cloud screening algorithms have been developed for this application. The A-Band Preprocessor (ABP) retrieves the surface pressure using measurements in the 0.76 µm O2 A band, neglecting scattering by clouds and aerosols, which introduce photon path-length differences that can cause large deviations between the expected and retrieved surface pressure. The Iterative Maximum A Posteriori (IMAP) Differential Optical Absorption Spectroscopy (DOAS) Preprocessor (IDP) retrieves independent estimates of the CO2 and H2O column abundances using observations taken at 1.61 µm (weak CO2 band) and 2.06 µm (strong CO2 band), while neglecting atmospheric scattering. The CO2 and H2O column abundances retrieved in these two spectral regions differ significantly in the presence of cloud and scattering aerosols. The combination of these two algorithms, which are sensitive to different features in the spectra, provides the basis for cloud screening of the OCO-2 data set.To validate the OCO-2 cloud screening approach, collocated measurements from NASA's Moderate Resolution Imaging Spectrometer (MODIS), aboard the Aqua platform, were compared to results from the two OCO-2 cloud screening algorithms. With tuning of algorithmic threshold parameters that allows for processing of ≃ 20-25 % of all OCO-2 soundings, agreement between the OCO-2 and MODIS cloud screening methods is found to be ≃ 85 % over four 16-day orbit repeat cycles in both the winter (December) and spring (April-May) for OCO-2 nadir-land, glint-land and glint-water observations.No major, systematic, spatial or temporal dependencies were found, although slight differences in the seasonal data sets do exist and validation is more problematic with increasing solar zenith angle and when surfaces are covered in snow and ice and have complex topography. To further analyze the performance of the cloud screening algorithms, an initial comparison of OCO-2 observations was made to collocated measurements from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). These comparisons highlight the strength of the OCO-2 cloud screening algorithms in identifying high, thin clouds but suggest some difficulty in identifying some clouds near the surface, even when the optical thicknesses are greater than 1.

  11. Orbiting Carbon Observatory-2 (OCO-2) cloud screening algorithms; validation against collocated MODIS and CALIOP data

    NASA Astrophysics Data System (ADS)

    Taylor, T. E.; O'Dell, C. W.; Frankenberg, C.; Partain, P.; Cronk, H. Q.; Savtchenko, A.; Nelson, R. R.; Rosenthal, E. J.; Chang, A. Y.; Fisher, B.; Osterman, G.; Pollock, R. H.; Crisp, D.; Eldering, A.; Gunson, M. R.

    2015-12-01

    The objective of the National Aeronautics and Space Administration's (NASA) Orbiting Carbon Observatory-2 (OCO-2) mission is to retrieve the column-averaged carbon dioxide (CO2) dry air mole fraction (XCO2) from satellite measurements of reflected sunlight in the near-infrared. These estimates can be biased by clouds and aerosols within the instrument's field of view (FOV). Screening of the most contaminated soundings minimizes unnecessary calls to the computationally expensive Level 2 (L2) XCO2 retrieval algorithm. Hence, robust cloud screening methods have been an important focus of the OCO-2 algorithm development team. Two distinct, computationally inexpensive cloud screening algorithms have been developed for this application. The A-Band Preprocessor (ABP) retrieves the surface pressure using measurements in the 0.76 μm O2 A-band, neglecting scattering by clouds and aerosols, which introduce photon path-length (PPL) differences that can cause large deviations between the expected and retrieved surface pressure. The Iterative Maximum A-Posteriori (IMAP) Differential Optical Absorption Spectroscopy (DOAS) Preprocessor (IDP) retrieves independent estimates of the CO2 and H2O column abundances using observations taken at 1.61 μm (weak CO2 band) and 2.06 μm (strong CO2 band), while neglecting atmospheric scattering. The CO2 and H2O column abundances retrieved in these two spectral regions differ significantly in the presence of cloud and scattering aerosols. The combination of these two algorithms, which key off of different features in the spectra, provides the basis for cloud screening of the OCO-2 data set. To validate the OCO-2 cloud screening approach, collocated measurements from NASA's Moderate Resolution Imaging Spectrometer (MODIS), aboard the Aqua platform, were compared to results from the two OCO-2 cloud screening algorithms. With tuning to allow throughputs of ≃ 30 %, agreement between the OCO-2 and MODIS cloud screening methods is found to be ≃ 85 % over four 16-day orbit repeat cycles in both the winter (December) and spring (April-May) for OCO-2 nadir-land, glint-land and glint-water observations. No major, systematic, spatial or temporal dependencies were found, although slight differences in the seasonal data sets do exist and validation is more problematic with increasing solar zenith angle and when surfaces are covered in snow and ice and have complex topography. To further analyze the performance of the cloud screening algorithms, an initial comparison of OCO-2 observations was made to collocated measurements from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). These comparisons highlight the strength of the OCO-2 cloud screening algorithms in identifying high, thin clouds but suggest some difficulty in identifying some clouds near the surface, even when the optical thicknesses are greater than 1.

  12. SAMS-II Requirements and Operations

    NASA Technical Reports Server (NTRS)

    Wald, Lawrence W.

    1998-01-01

    The Space Acceleration Measurements System (SAMS) II is the primary instrument for the measurement, storage, and communication of the microgravity environment aboard the International Space Station (ISS). SAMS-II is being developed by the NASA Lewis Research Center Microgravity Science Division to primarily support the Office of Life and Microgravity Science and Applications (OLMSA) Microgravity Science and Applications Division (MSAD) payloads aboard the ISS. The SAMS-II is currently in the test and verification phase at NASA LeRC, prior to its first hardware delivery scheduled for July 1998. This paper will provide an overview of the SAMS-II instrument, including the system requirements and topology, physical and electrical characteristics, and the Concept of Operations for SAMS-II aboard the ISS.

  13. NASA Sees Typhoon Chan-Hom's Strongest Winds in Northern and Eastern Quadrants

    NASA Image and Video Library

    2015-07-09

    On July 9 at 02:05 UTC (July 8 at 10:05 p.m. EDT) the MODIS instrument aboard NASA's Terra satellite captured an image of Typhoon Chan-Hom east of Taiwan. The image clearly showed an eye with powerful bands of thunderstorms spiraling into the center of circulation. At 1500 UTC (11 a.m. EDT) on July 9, Typhoon Chan-Hom's maximum sustained winds were near 100 knots (115.1 mph/185.2 kph) and the storm continued to strengthen. Chan-Hom was centered near 24.2 North latitude and 127.6 East longitude, about 138 nautical miles (158.8 miles/255.6 km) southwest of Kadena Air Force Base, Iwo to, and has tracked westward at 13 knots (15 mph/24 kph). Read more: go.nasa.gov/1LYNdr0 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  14. MODIS Measures Fraction of Sunlight Absorbed by Plants

    NASA Technical Reports Server (NTRS)

    2002-01-01

    At the height of the solar cycle, the Sun is finally displaying some fireworks. This image from the Solar and Heliospheric Observatory (SOHO) shows a large solar flare from June 6, 2000 at 1424 Universal Time (10:24 AM Eastern Daylight Savings Time). Associated with the flare was a coronal mass ejection that sent a wave of fast moving charged particles straight towards Earth. (The image was acquired by the Extreme ultaviolet Imaging Telescope (EIT), one of 12 instruments aboard SOHO) Solar activity affects the Earth in several ways. The particles generated by flares can disrupt satellite communications and interfere with power transmission on the Earth's surface. Earth's climate is tied to the total energy emitted by the sun, cooling when the sun radiates less energy and warming when solar output increases. Solar radiation also produces ozone in the stratosphere, so total ozone levels tend to increase during the solar maximum. For more information about these solar flares and the SOHO mission, see NASA Science News or the SOHO home page. For more about the links between the sun and climate change, see Sunspots and the Solar Max. Image courtesy SOHO Extreme ultaviolet Imaging Telescope, ESA/NASA

  15. Observations of Ocean Primary Productivity Using MODIS

    NASA Technical Reports Server (NTRS)

    Esaias, Wayne E.; Abbott, Mark R.; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    Measuring the magnitude and variability of oceanic net primary productivity (NPP) represents a key advancement toward our understanding of the dynamics of marine ecosystems and the role of the ocean in the global carbon cycle. MODIS observations make two new contributions in addition to continuing the bio-optical time series begun with Orbview-2's SeaWiFS sensor. First, MODIS provides weekly estimates of global ocean net primary productivity on weekly and annual time periods, and annual empirical estimates of carbon export production. Second, MODIS provides additional insight into the spatial and temporal variations in photosynthetic efficiency through the direct measurements of solar-stimulated chlorophyll fluorescence. The two different weekly productivity indexes (first developed by Behrenfeld & Falkowski and by Yoder, Ryan and Howard) are used to derive daily productivity as a function of chlorophyll biomass, incident daily surface irradiance, temperature, euphotic depth, and mixed layer depth. Comparisons between these two estimates using both SeaWiFS and MODIS data show significant model differences in spatial distribution after allowance for the different integration depths. Both estimates are strongly dependence on the accuracy of the chlorophyll determination. In addition, an empirical approach is taken on annual scales to estimate global NPP and export production. Estimates of solar stimulated fluorescence efficiency from chlorophyll have been shown to be inversely related to photosynthetic efficiency by Abbott and co-workers. MODIS provides the first global estimates of oceanic chlorophyll fluorescence, providing an important proof of concept. MODIS observations are revealing spatial patterns of fluorescence efficiency which show expected variations with phytoplankton photo-physiological parameters as measured during in-situ surveys. This has opened the way for research into utilizing this information to improve our understanding of oceanic NPP variability. Deriving the ocean bio-optical properties places severe demands on instrument performance (especially band to band precision) and atmospheric correction. Improvements in MODIS instrument characterization and calibration over the first 16 mission months have greatly improved the accuracy of the chlorophyll input fields and FLH, and therefore the estimates of NPP and fluorescence efficiency. Annual estimates now show the oceanic NPP accounts for 40-50% of the global total NPP, with significant interannual variations related to large scale ocean processes. Spatial variations in ocean NPP, and exported production, have significant effects on exchange of CO2 between the ocean and atmosphere. Further work is underway to improve both the primary productivity model functions, and to refine our understanding of the relationships between fluorescence efficiency and NPP estimates. We expect that the MODIS instruments will prove extremely useful in assessing the time dependencies of oceanic carbon uptake and effects of iron enrichment, within the global carbon cycle.

  16. Coordinated Airborne, Spaceborne and Ground-based Measurements of Massive Thick Aerosol Layers during the Dry Season in Southern Africa

    NASA Technical Reports Server (NTRS)

    Schmid, B.; Redemann, J.; Russell, P. B.; Hobbs, P. V.; Hlavka, D. L.; McGill, M. J.; Holben, B. N.; Welton, E. J.; Campbell, J. R.; Torres, O.

    2003-01-01

    During the dry season airborne campaign of the Southern African Regional Science Initiative (SAFARI 2000), coordinated observations were made of massive thick aerosol layers. These layers were often dominated by aerosols from biomass burning. We report on airborne Sun photometer measurements of aerosol optical depth (lambda = 0.354- 1.557 microns), columnar water vapor, and vertical profiles of aerosol extinction and water vapor density that were obtained aboard the University of Washington's Convair-580 research aircraft. We compare these with ground-based AERONET Sun/sky radiometer results, with ground based lidar data (MPL-Net), and with measurements from a downward pointing lidar aboard the high-flying NASA ER-2 aircraft. Finally, we show comparisons between aerosol optical depths fiom the Sun photometer and those retrieved over land and over water using four spaceborne sensors (TOMS, MODIS, MISR, and ATSR-2).

  17. Characterizing Response Versus Scan-Angle for MODIS Reflective Solar Bands Using Deep Convective Clouds

    NASA Technical Reports Server (NTRS)

    Bhatt, Rajendra; Doelling, David R.; Angal, Amit; Xiong, Xiaoxiong; Scarino, Benjamin; Gopalan, Arun; Haney, Conor; Wu, Aisheng

    2017-01-01

    MODIS consists of a cross-track, two-sided scan mirror, whose reflectance is not uniform but is a function of angle of incidence (AOI). This feature, known as response versusscan-angle (RVS), was characterized for all reflective solar bands of both MODIS instruments prior to launch. The RVS characteristic has changed on orbit, which must be tracked precisely over time to ensure the quality of MODIS products. The MODIS characterization support team utilizes the onboard calibrators and the earth view responses from multiple pseudo invariant desert sites to track the RVS changes at different AOIs. The drawback of using deserts is the assumption that these sites are radiometrically stable during the monitoring period. In addition, the 16-day orbit repeat cycle of MODIS allows for only a limited set of AOIs over a given desert. We propose a novel and robust approach of characterizing the MODIS RVS using tropical deep convective clouds (DCC). The method tracks the monthly DCC response at specified sets of AOIs to compute the temporal RVS changes. Initial results have shown that the Aqua-MODIS collection 6 band 1 level 1B radiances show considerable residual RVS dependencies, with long-term drifts up to 2.3 at certain AOIs.

  18. Characterizing response versus scan-angle for MODIS reflective solar bands using deep convective clouds

    NASA Astrophysics Data System (ADS)

    Bhatt, Rajendra; Doelling, David R.; Angal, Amit; Xiong, Xiaoxiong; Scarino, Benjamin; Gopalan, Arun; Haney, Conor; Wu, Aisheng

    2017-01-01

    MODIS consists of a cross-track, two-sided scan mirror, whose reflectance is not uniform but is a function of angle of incidence (AOI). This feature, known as response versus scan-angle (RVS), was characterized for all reflective solar bands of both MODIS instruments prior to launch. The RVS characteristic has changed on orbit, which must be tracked precisely over time to ensure the quality of MODIS products. The MODIS characterization support team utilizes the onboard calibrators and the earth view responses from multiple pseudoinvariant desert sites to track the RVS changes at different AOIs. The drawback of using deserts is the assumption that these sites are radiometrically stable during the monitoring period. In addition, the 16-day orbit repeat cycle of MODIS allows for only a limited set of AOIs over a given desert. We propose a novel and robust approach of characterizing the MODIS RVS using tropical deep convective clouds (DCC). The method tracks the monthly DCC response at specified sets of AOIs to compute the temporal RVS changes. Initial results have shown that the Aqua-MODIS collection 6 band 1 level 1B radiances show considerable residual RVS dependencies, with long-term drifts up to 2.3% at certain AOIs.

  19. Improving the MODIS Global Snow-Mapping Algorithm

    NASA Technical Reports Server (NTRS)

    Klein, Andrew G.; Hall, Dorothy K.; Riggs, George A.

    1997-01-01

    An algorithm (Snowmap) is under development to produce global snow maps at 500 meter resolution on a daily basis using data from the NASA MODIS instrument. MODIS, the Moderate Resolution Imaging Spectroradiometer, will be launched as part of the first Earth Observing System (EOS) platform in 1998. Snowmap is a fully automated, computationally frugal algorithm that will be ready to implement at launch. Forests represent a major limitation to the global mapping of snow cover as a forest canopy both obscures and shadows the snow underneath. Landsat Thematic Mapper (TM) and MODIS Airborne Simulator (MAS) data are used to investigate the changes in reflectance that occur as a forest stand becomes snow covered and to propose changes to the Snowmap algorithm that will improve snow classification accuracy forested areas.

  20. Earth-observing satellite intercomparison using the Radiometric Calibration Test Site at Railroad Valley

    NASA Astrophysics Data System (ADS)

    Czapla-Myers, Jeffrey; McCorkel, Joel; Anderson, Nikolaus; Biggar, Stuart

    2018-01-01

    This paper describes the current ground-based calibration results of Landsat 7 Enhanced Thematic Mapper Plus (ETM+), Landsat 8 Operational Land Imager (OLI), Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS), Suomi National Polar orbiting Partnership Visible Infrared Imaging Radiometer Suite (VIIRS), and Sentinel-2A Multispectral Instrument (MSI), using an automated suite of instruments located at Railroad Valley, Nevada, USA. The period of this study is 2012 to 2016 for MODIS, VIIRS, and ETM+, 2013 to 2016 for OLI, and 2015 to 2016 for MSI. The current results show that all sensors agree with the Radiometric Calibration Test Site (RadCaTS) to within ±5% in the solar-reflective regime, except for one band on VIIRS that is within ±6%. In the case of ETM+ and OLI, the agreement is within ±3%, and, in the case of MODIS, the agreement is within ±3.5%. MSI agrees with RadCaTS to within ±4.5% in all applicable bands.

  1. A Real-Time MODIS Vegetation Composite for Land Surface Models and Short-Term Forecasting

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; LaFontaine, Frank J.; Kumar, Sujay V.; Jedlovec, Gary J.

    2011-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center is producing real-time, 1- km resolution Normalized Difference Vegetation Index (NDVI) gridded composites over a Continental U.S. domain. These composites are updated daily based on swath data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor aboard the polar orbiting NASA Aqua and Terra satellites, with a product time lag of about one day. A simple time-weighting algorithm is applied to the NDVI swath data that queries the previous 20 days of data to ensure a continuous grid of data populated at all pixels. The daily composites exhibited good continuity both spatially and temporally during June and July 2010. The composites also nicely depicted high greenness anomalies that resulted from significant rainfall over southwestern Texas, Mexico, and New Mexico during July due to early-season tropical cyclone activity. The SPoRT Center is in the process of computing greenness vegetation fraction (GVF) composites from the MODIS NDVI data at the same spatial and temporal resolution for use in the NASA Land Information System (LIS). The new daily GVF dataset would replace the monthly climatological GVF database (based on Advanced Very High Resolution Radiometer [AVHRR] observations from 1992-93) currently available to the Noah land surface model (LSM) in both LIS and the public version of the Weather Research and Forecasting (WRF) model. The much higher spatial resolution (1 km versus 0.15 degree) and daily updates based on real-time satellite observations have the capability to greatly improve the simulation of the surface energy budget in the Noah LSM within LIS and WRF. Once code is developed in LIS to incorporate the daily updated GVFs, the SPoRT Center will conduct simulation sensitivity experiments to quantify the impacts and improvements realized by the MODIS real-time GVF data. This presentation will describe the methodology used to develop the 1-km MODIS NDVI composites and show sample output from summer 2010, compare the MODIS GVF data to the AVHRR monthly climatology, and illustrate the sensitivity of the Noah LSM within LIS and/or the coupled LIS/WRF system to the new MODIS GVF dataset.

  2. Navy Exploitation of SeaWiFS and MODIS Satellite Imagery for Detection of Desert Dust Storms Over Land and Water

    NASA Astrophysics Data System (ADS)

    Miller, S. D.

    2002-12-01

    The United States Navy gives serious consideration to the subject of dust detection. In a recent study of Naval aviation mishaps over the period 1990-1998 (Cantu, 2001), it was found that 70% were associated with visibility problems and accounted for annual equipment losses of nearly 50 million dollars. This figure does not include the tax dollars lost in jettisoned or off-target ordnance owing to obscured targets or failure of laser-guided systems in the presence of significant dust. Nor can it account for the loss of life during a subset of these mishaps. As such, a strong research emphasis has been placed on detecting and quantifying dust over data-sparse/denied parts of the world. The prolific and complex dust climatology of Southwest Asia has posed considerable challenges to Navy operations over the course of Operation Enduring Freedom. In an effort to support the ongoing needs of the Meteorology/Oceanography (METOC) officers afloat, the Satellite Applications Section of the Naval Research Laboratory (NRL) Marine Meteorology Division has developed a novel approach to enhancing significant dust events that appeals to high spatial and spectral resolution satellite data currently available from state of the art ocean/atmospheric radiometers. This paper summarizes progress made on daytime enhancements of desert dust storms over both land and ocean using multispectral imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS; aboard Earth Observing System Terra and Aqua platforms) and the Sea-viewing Wide Field-of-view Sensor (SeaWiFS; aboard the NASA/Orbimage SeaStar platform). The approach leverages the multi-spectral visible capability of these sensors to distinguish dust from clouds over water bodies, and the high spatial resolution required to refine the fine-scale structures that often accompany these events. The MODIS algorithm combines this information with that of several near-to-far infrared channels, taking advantage of unique spectral properties of dust found in these regimes, to extend the capability to detection of dust over land (bright backgrounds). An account for enhancement contamination in the presence of sun glint is also provided in these products. The SeaWiFS and MODIS telemetries are made available to NRL in near real-time, with product turn-around ranging from 3-6 hours from initial capture. An unprecedented intra-agency collaboration forged between NOAA, NASA (Goddard Space Flight Center), and the Department of Defense has resulted in the recent availability of a global Terra MODIS data stream, with the companion Aqua telemetry soon to follow. Preliminary METOC feedback regarding these products has been overwhelmingly positive, and provides the impetus for continued refinement. Examples of the current product's capabilities and limitations will be presented.

  3. Near-nadir scan overlap in Earth observations from VIIRS and MODIS

    NASA Astrophysics Data System (ADS)

    Blonski, Slawomir; Cao, Changyong

    2017-09-01

    Satellite multi-detector cross-track scanners, such as MODIS (Moderate Resolution Imaging Spectroradiometer) and VIIRS (Visible-Infrared Imaging Radiometer Suite), require synchronization of optical and orbital characteristics to avoid gaps in Earth coverage between scans. Prelaunch tests have revealed that such scan-to-scan gaps will occur near nadir in VIIRS observations from the future JPSS-1 (Joint Polar Satellite System) and JPSS-2 satellites. Our analysis of VIIRS geolocation products shows that the gaps do not occur for the instrument currently on orbit onboard the S-NPP (Suomi National Polar-orbiting Partnership) spacecraft. When the same analysis is applied to the MODIS data products, it reveals that small, near-nadir gaps exist in MODIS observations from both Aqua and Terra satellites. Although magnitude of the MODIS scan overlap gaps (up to 100 m for Terra and 25/175 m for Aqua) is quite small in comparison to the 1-km pixels, it is rather significant for the bands with the 250-m and 500-m pixels. Despite the size of the gaps, it appears that their effects on scientific analyses (e.g., NDVI) have not been reported since launch of the MODIS instruments. Because the gaps currently predicted for the JPSS-1 and -2 VIIRS are similar in size to the ones occurring for MODIS, one can expect that their effects on science data will be similarly negligible. A model that uses S-NPP orbit data as well as the S-NPP VIIRS telescope's focal length and scan rate predicts the overlap that agrees very well with the analysis of the geolocation data. For JPSS-1/-2 VIIRS focal length and scan rate, the model predicts scan overlap gaps of more than 100 m. With a shorter focal length and a faster scan rate than for the JPSS-1/-2 VIIRS, the scan overlap gaps are expected to be avoided altogether for VIIRS on the future JPSS-3 and -4 satellites.

  4. Progress towards NASA MODIS and Suomi NPP Cloud Property Data Record Continuity

    NASA Astrophysics Data System (ADS)

    Platnick, S.; Meyer, K.; Holz, R.; Ackerman, S. A.; Heidinger, A.; Wind, G.; Platnick, S. E.; Wang, C.; Marchant, B.; Frey, R.

    2017-12-01

    The Suomi NPP VIIRS imager provides an opportunity to extend the 17+ year EOS MODIS climate data record into the next generation operational era. Similar to MODIS, VIIRS provides visible through IR observations at moderate spatial resolution with a 1330 LT equatorial crossing consistent with the MODIS on the Aqua platform. However, unlike MODIS, VIIRS lacks key water vapor and CO2 absorbing channels used for high cloud detection and cloud-top property retrievals. In addition, there is a significant mismatch in the spectral location of the 2.2 μm shortwave-infrared channels used for cloud optical/microphysical retrievals and cloud thermodynamic phase. Given these instrument differences between MODIS EOS and VIIRS S-NPP/JPSS, a merged MODIS-VIIRS cloud record to serve the science community in the coming decades requires different algorithm approaches than those used for MODIS alone. This new approach includes two parallel efforts: (1) Imager-only algorithms with only spectral channels common to VIIRS and MODIS (i.e., eliminate use of MODIS CO2 and NIR/IR water vapor channels). Since the algorithms are run with similar spectral observations, they provide a basis for establishing a continuous cloud data record across the two imagers. (2) Merged imager and sounder measurements (i.e.., MODIS-AIRS, VIIRS-CrIS) in lieu of higher-spatial resolution MODIS absorption channels absent on VIIRS. The MODIS-VIIRS continuity algorithm for cloud optical property retrievals leverages heritage algorithms that produce the existing MODIS cloud mask (MOD35), optical and microphysical properties product (MOD06), and the NOAA AWG Cloud Height Algorithm (ACHA). We discuss our progress towards merging the MODIS observational record with VIIRS in order to generate cloud optical property climate data record continuity across the observing systems. In addition, we summarize efforts to reconcile apparent radiometric biases between analogous imager channels, a critical consideration for obtaining inter-sensor climate data record continuity.

  5. Cyclone Chris Hits Australia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This false-color image shows Cyclone Chris shortly after it hit Australia's northwestern coast on February 6, 2002. This scene was acquired by the Moderate-resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra satellite. (Please note that this scene has not been reprojected.) Cyclone Chris is one of the most powerful storms ever to hit Australia. Initially, the storm contained wind gusts of up to 200 km per hour (125 mph), but shortly after making landfall it weakened to a Category 4 storm. Meteorologists expect the cyclone to weaken quickly as it moves further inland.

  6. Optical properties of aerosol contaminated cloud derived from MODIS instrument

    NASA Astrophysics Data System (ADS)

    Mei, Linlu; Rozanov, Vladimir; Lelli, Luca; Vountas, Marco; Burrows, John P.

    2016-04-01

    The presence of absorbing aerosols above/within cloud can reduce the amount of up-welling radiation in visible (VIS) and short-wave infrared and darken the spectral reflectance when compared with a spectrum of a clean cloud observed by satellite instruments (Jethva et al., 2013). Cloud properties retrieval for aerosol contaminated cases is a great challenge. Even small additional injection of aerosol particles into clouds in the cleanest regions of Earth's atmosphere will cause significant effect on those clouds and on climate forcing (Koren et al., 2014; Rosenfeld et al., 2014) because the micro-physical cloud process are non-linear with respect to the aerosol loading. The current cloud products like Moderate Resolution Imaging Spectroradiometer (MODIS) ignoring the aerosol effect for the retrieval, which may cause significant error in the satellite-derived cloud properties. In this paper, a new cloud properties retrieval method, considering aerosol effect, based on the weighting-function (WF) method, is presented. The retrieval results shows that the WF retrieved cloud properties (e.g COT) agrees quite well with MODIS COT product for relative clear atmosphere (AOT ≤ 0.4) while there is a large difference for large aerosol loading. The MODIS COT product is underestimated for at least 2 - 3 times for AOT>0.4, and this underestimation increases with the increase of AOT.

  7. Abstract Art or Arbiters of Energy?

    NASA Technical Reports Server (NTRS)

    2002-01-01

    More than just the idle stuff of daydreams, clouds help control the flow of radiant energy around our world. Clouds are plentiful and widespread throughout Earth's atmosphere-covering up to 75 percent of our planet at any given time-so they play a dominant role in determining how much sunlight reaches the surface, how much sunlight is reflected back into space, how and where warmth is spread around the globe, and how much heat escapes from the surface and atmosphere back into space. Clouds are also highly variable. Clouds' myriad variations through time and space make them one of the greatest areas of uncertainty in scientists' understanding and predictions of climate change. In short, they play a central role in our world's climate system. The false-color image above shows a one-month composite of cloud optical thickness measured by the Moderate-resolution Imaging Spectroradiometer (MODIS) and averaged globally for April 2001. Optical thickness is a measure of how much solar radiation is not allowed to travel through a column of atmosphere. Areas colored red and yellow indicate very cloudy skies, on average, while areas colored green and light blue show moderately cloudy skies. Dark blue regions show where there is little or no cloud cover. This data product is an important new tool for helping scientists understand the roles clouds play in our global climate system. MODIS gives scientists new capabilities for measuring the structure and composition of clouds. MODIS observes the entire Earth almost every day in 36 spectral bands ranging from visible to thermal infrared wavelengths, enabling it to quantify a wide suite of clouds' physical and radiative properties. Specifically, MODIS can determine whether a cloud is composed of ice or water particles (or some combination of the two), it can measure the effective radius of the particles within a cloud, it can determine the temperature and altitude of cloud tops, and it can observe how much sunlight passes through a cloud. MODIS is one of five sensors flying aboard NASA's Terra satellite, the flagship in NASA's Earth Observing System, launched in December 1999. For more information about this and other new MODIS products, read NASA Unveils Spectacular Suite of New Global Data Products from MODIS. Image courtesy MODIS Atmosphere Group, NASA GSFC

  8. Progress towards MODIS and VIIRS Cloud Fraction Data Record Continuity

    NASA Astrophysics Data System (ADS)

    Ackerman, S. A.; Frey, R.; Holz, R.; Platnick, S. E.; Heidinger, A. K.

    2016-12-01

    Satellite-derived clear-sky vs. cloudy-sky discrimination at the pixel scale is an important input parameter used in many real-time applications. Cloud fractions, resulting from integrating over time and space, are also critical to the study of recent decadal climate changes. The NASA NPOESS Preparatory Project (NPP) has funded a science team to develop and study the ability to make continuous climate records from MODIS (2000-2020) and VIIRS (2012-2030). The MODAWG project, led by Dr. Steve Platnick of NASA/GSFC, combines elements of the MODIS processing system and the NOAA Algorithm Working Group (AWG) to achieve this goal. This presentation will focus on the cloud masking aspects of MODAWG, derived primarily from the MODIS cloud mask (MOD35). Challenges to continuity of cloud detection due to differences in instrument characteristics will be discussed. Cloud mask results from use of the same (continuity) algorithm will be shown for both MODIS and VIIRS, including comparisons to collocated CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) cloud data.

  9. On the Use of Deep Convective Clouds to Characterize Response versus Scan-angle for MODIS Reflective Solar Bands

    NASA Astrophysics Data System (ADS)

    Bhatt, R.; Doelling, D. R.; Scarino, B. R.; Gopalan, A.; Haney, C.

    2016-12-01

    MODIS is a cross-track scanning radiometer with a two-sided scan mirror that images the Earth with an angular field of view of 55° on either side of the nadir. The reflectance of the scan mirror is not uniform and is a function of angle of incidence (AOI), as well as wavelength. This feature of the scan mirror is described by response versus scan-angle (RVS), and was characterized for all reflective solar bands (RSBs), for both MODIS instruments prior to launch. The RVS characteristic of the two MODIS instruments has changed on orbit and, therefore, must be tracked precisely over time to ensure high-quality data in the MODIS products. The MODIS Characterization Support Team (MCST) utilizes the onboard solar diffuser (SD) and lunar measurements to track the RVS changes at two fixed AOIs. The RVS at the remaining AOIs is characterized using the earth view (EV) responses from multiple pseudo-invariant desert sites located in Northern Africa. The drawback of this approach is the assumption that all of the desert sites imaged by the MODIS sensors at different AOIs are radiometrically stable during the same period of time. In addition, the desert samples do not always have continuous AOI coverage as they are limited by the 16-day repeat cycle of the satellite orbit, and by clear-sky conditions over the deserts. This paper proposes a novel and robust approach of characterizing the MODIS RVS using tropical deep convective clouds (DCCs) as an invariant calibration target. The method tracks the monthly DCC response at specified sets of AOIs to compute the temporal RVS changes. Because DCCs are distributed across the entirety of the tropics, they provide a continuum of AOI measurements. Initial results have shown that the Aqua-MODIS Collection 6 band 1 level 1b radiances show considerable residual, or artifact, RVS dependencies, especially on the left side of the cross-track scan. Long-term drifts, up to 2.3%, have been observed at certain AOIs. Temporal correction factors are computed using the DCC trends from 12 scan intervals encompassing all AOIs, and their effectiveness in correcting the observed RVS artifact is evaluated using the Libya-1 pseudo-invariant desert site. The desert and DCC temporal scan dependent trends are reduced to less than 1 standard error after the RVS correction.

  10. MODIS Information, Data, and Control System (MIDACS) system specifications and conceptual design

    NASA Technical Reports Server (NTRS)

    Han, D.; Salomonson, V.; Ormsby, J.; Ardanuy, P.; Mckay, A.; Hoyt, D.; Jaffin, S.; Vallette, B.; Sharts, B.; Folta, D.

    1988-01-01

    The MODIS Information, Data, and Control System (MIDACS) Specifications and Conceptual Design Document discusses system level requirements, the overall operating environment in which requirements must be met, and a breakdown of MIDACS into component subsystems, which include the Instrument Support Terminal, the Instrument Control Center, the Team Member Computing Facility, the Central Data Handling Facility, and the Data Archive and Distribution System. The specifications include sizing estimates for the processing and storage capacities of each data system element, as well as traffic analyses of data flows between the elements internally, and also externally across the data system interfaces. The specifications for the data system, as well as for the individual planning and scheduling, control and monitoring, data acquisition and processing, calibration and validation, and data archive and distribution components, do not yet fully specify the data system in the complete manner needed to achieve the scientific objectives of the MODIS instruments and science teams. The teams have not yet been formed; however, it was possible to develop the specifications and conceptual design based on the present concept of EosDIS, the Level-1 and Level-2 Functional Requirements Documents, the Operations Concept, and through interviews and meetings with key members of the scientific community.

  11. Land surface temperature measurements from EOS MODIS data

    NASA Technical Reports Server (NTRS)

    Wan, Zhengming

    1995-01-01

    A significant progress has been made in TIR instrumentation which is required to establish the spectral BRDF/emissivity knowledge base of land-surface materials and to validate the land-surface temperature (LST) algorithms. The SIBRE (spectral Infrared Bidirectional Reflectance and Emissivity) system and a TIR system for measuring spectral directional-hemispherical emissivity have been completed and tested successfully. Optical properties and performance features of key components (including spectrometer, and TIR source) of these systems have been characterized by integrated use of local standards (blackbody and reference plates). The stabilization of the spectrometer performance was improved by a custom designed and built liquid cooling system. Methods and procedures for measuring spectral TIR BRDF and directional-hemispheric emissivity with these two systems have been verified in sample measurements. These TIR instruments have been used in the laboratory and the field, giving very promising results. The measured spectral emissivities of water surface are very close to the calculated values based on well established water refractive index values in published papers. Preliminary results show that the TIR instruments can be used for validation of the MODIS LST algorithm in homogeneous test sites. The beta-3 version of the MODIS LST software is being prepared for its delivery scheduled in the early second half of this year.

  12. Using Lunar Observations to Validate Pointing Accuracy and Geolocation, Detector Sensitivity Stability and Static Point Response of the CERES Instruments

    NASA Technical Reports Server (NTRS)

    Daniels, Janet L.; Smith, G. Louis; Priestley, Kory J.; Thomas, Susan

    2014-01-01

    Validation of in-orbit instrument performance is a function of stability in both instrument and calibration source. This paper describes a method using lunar observations scanning near full moon by the Clouds and Earth Radiant Energy System (CERES) instruments. The Moon offers an external source whose signal variance is predictable and non-degrading. From 2006 to present, these in-orbit observations have become standardized and compiled for the Flight Models -1 and -2 aboard the Terra satellite, for Flight Models-3 and -4 aboard the Aqua satellite, and beginning 2012, for Flight Model-5 aboard Suomi-NPP. Instrument performance measurements studied are detector sensitivity stability, pointing accuracy and static detector point response function. This validation method also shows trends per CERES data channel of 0.8% per decade or less for Flight Models 1-4. Using instrument gimbal data and computed lunar position, the pointing error of each detector telescope, the accuracy and consistency of the alignment between the detectors can be determined. The maximum pointing error was 0.2 Deg. in azimuth and 0.17 Deg. in elevation which corresponds to an error in geolocation near nadir of 2.09 km. With the exception of one detector, all instruments were found to have consistent detector alignment from 2006 to present. All alignment error was within 0.1o with most detector telescopes showing a consistent alignment offset of less than 0.02 Deg.

  13. Cross comparison of the Collection 6 and Collection 6.1 Terra and Aqua MODIS Bands 1 and 2 using AVHRR N15 and N19

    NASA Astrophysics Data System (ADS)

    Chen, Xuexia; Wu, Aisheng; Xiong, Xiaoxiong J.; Chen, Na

    2017-09-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) is a key scientific instrument that was launched into Earth orbit by NASA in 1999 on board the Terra (EOS AM) satellite and in 2002 on board the Aqua (EOS PM) satellite. Terra and Aqua MODIS collect the entire Earth's images every 1 to 2 days in 36 spectral bands. MODIS band 1 (0.620- 0.670 μm) and band 2 (0.841-0.876 μm) have nadir spatial resolution of 250 m and their measurements are crucial to derive key land surface products. This study evaluates the performance of the Collection 6 (C6, and C6.1) L1B of both Terra and Aqua MODIS bands 1 and 2 using Simultaneous Nadir Overpass (SNO) data to compare with AVHRR/3 sensors. We examine the relative stability between Terra and Aqua MODIS in reference to NOAA N15 and N19 the Advanced Very High Resolution Radiometer (AVHRR/3). The comparisons for MODIS to AVHRR/3 are over a fifteenyear period from 2002 to 2017. Results from this study provide a quantitative assessment of Terra and Aqua MODIS band 1 and band 2 calibration stability and the relative differences through the NOAA N15 and N19 AVHRR/3 sensors.

  14. Progress towards MODIS and VIIRS Cloud Optical Property Data Record Continuity

    NASA Astrophysics Data System (ADS)

    Meyer, K.; Platnick, S. E.; Wind, G.; Amarasinghe, N.; Holz, R.; Ackerman, S. A.; Heidinger, A. K.

    2016-12-01

    The launch of Suomi NPP in the fall of 2011 began the next generation of U.S. operational polar orbiting Earth observations, and its VIIRS imager provides an opportunity to extend the 15+ year climate data record of MODIS EOS. Similar to MODIS, VIIRS provides visible through IR observations at moderate spatial resolution with a 1330 LT equatorial crossing consistent with the MODIS on the Aqua platform. However, unlike MODIS, VIIRS lacks key water vapor and CO2 absorbing channels used for high cloud detection and cloud-top property retrievals, and there is a significant change in the spectral location of the 2.1μm shortwave-infrared channel used for cloud optical/microphysical retrievals and cloud thermodynamic phase. Given these instrument differences between MODIS EOS and VIIRS S-NPP/JPSS, we discuss our progress towards merging the MODIS observational record with VIIRS in order to generate cloud optical property climate data record continuity across the observing systems. The MODIS-VIIRS continuity algorithm for cloud optical property retrievals leverages heritage algorithms that produce the existing MODIS cloud optical and microphysical properties product (MOD06); the NOAA AWG/CLAVR-x cloud-top property algorithm and a common MODIS-VIIRS cloud mask feed into the optical property algorithm. To account for the different channel sets of MODIS and VIIRS, each algorithm nominally uses a subset of channels common to both imagers. Data granule and aggregated examples for the current version of the continuity algorithm (MODAWG) will be shown. In addition, efforts to reconcile apparent radiometric biases between analogous channels of the two imagers, a critical consideration for obtaining inter-sensor climate data record continuity, will be discussed.

  15. Phytoplankton bloom in the Bay of Biscay

    NASA Image and Video Library

    2017-12-08

    Phytoplankton growth in the Bay of Biscay intensified in early May, 2013, painting the deep blue waters with huge swirls of jewel-tone colors that were brilliantly visible from space. The Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Terra satellite captured this true-color image on May 4, 2013. Each year, typically from March through April, such blooms occur in the Bay of Biscay. By May, however, conditions are not as favorable and the blooms tend to fade, then disappear. This bloom is expanding in early May this year, but will likely begin to diminish soon. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  16. Nyamuragira Volcano Erupts

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Nyamuragira volcano erupted on July 26, 2002, spewing lava high into the air along with a large plume of steam, ash, and sulfur dioxide. The 3,053-meter (10,013-foot) volcano is located in eastern Congo, very near that country's border with Rwanda. Nyamuragira is the smaller, more violent sibling of Nyiragongo volcano, which devastated the town of Goma with its massive eruption in January 2002. Nyamuragira is situated just 40 km (24 miles) northeast of Goma. This pair of images was acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra satellite, on July 26. The image on the left shows the scene in true color. The small purple box in the upper righthand corner marks the location of Nyamuragira's hot summit. The false-color image on the right shows the plume from the volcano streaming southwestward. This image was made using MODIS' channels sensitive at wavelengths from 8.5 to 11 microns. Red pixels indicate high concentrations of sulphur dioxide. Image courtesy Liam Gumley, Space Science and Engineering Center, University of Wisconsin-Madison

  17. A Simple, Scalable, Script-based Science Processor

    NASA Technical Reports Server (NTRS)

    Lynnes, Christopher

    2004-01-01

    The production of Earth Science data from orbiting spacecraft is an activity that takes place 24 hours a day, 7 days a week. At the Goddard Earth Sciences Distributed Active Archive Center (GES DAAC), this results in as many as 16,000 program executions each day, far too many to be run by human operators. In fact, when the Moderate Resolution Imaging Spectroradiometer (MODIS) was launched aboard the Terra spacecraft in 1999, the automated commercial system for running science processing was able to manage no more than 4,000 executions per day. Consequently, the GES DAAC developed a lightweight system based on the popular Per1 scripting language, named the Simple, Scalable, Script-based Science Processor (S4P). S4P automates science processing, allowing operators to focus on the rare problems occurring from anomalies in data or algorithms. S4P has been reused in several systems ranging from routine processing of MODIS data to data mining and is publicly available from NASA.

  18. Lillehammer, Norway 1994

    NASA Image and Video Library

    2017-12-08

    In this mostly cloud-free true-color scene, much of Scandinavia can be seen to be still covered by snow. From left to right across the top of this image are the countries of Norway, Sweden, Finland, and northwestern Russia. The Baltic Sea is located in the bottom center of this scene, with the Gulf of Bothnia to the north (in the center of this scene) and the Gulf of Finland to the northeast. This image was acquired on March 15, 2002, by the Moderate-resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra satellite. Image courtesy Jacques Descloitres, rapidfire.sci.gsfc.nasa.gov/ MODIS Land Rapid Response Team at NASA GSFC Credit: NASA Earth Observatory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  19. Ocean observations with EOS/MODIS: Algorithm development and post launch studies

    NASA Technical Reports Server (NTRS)

    Gordon, Howard R.

    1996-01-01

    An investigation of the influence of stratospheric aerosol on the performance of the atmospheric correction algorithm is nearly complete. The results indicate how the performance of the algorithm is degraded if the stratospheric aerosol is ignored. Use of the MODIS 1380 nm band to effect a correction for stratospheric aerosols was also studied. Simple algorithms such as subtracting the reflectance at 1380 nm from the visible and near infrared bands can significantly reduce the error; however, only if the diffuse transmittance of the aerosol layer is taken into account. The atmospheric correction code has been modified for use with absorbing aerosols. Tests of the code showed that, in contrast to non absorbing aerosols, the retrievals were strongly influenced by the vertical structure of the aerosol, even when the candidate aerosol set was restricted to a set appropriate to the absorbing aerosol. This will further complicate the problem of atmospheric correction in an atmosphere with strongly absorbing aerosols. Our whitecap radiometer system and solar aureole camera were both tested at sea and performed well. Investigation of a technique to remove the effects of residual instrument polarization sensitivity were initiated and applied to an instrument possessing (approx.) 3-4 times the polarization sensitivity expected for MODIS. Preliminary results suggest that for such an instrument, elimination of the polarization effect is possible at the required level of accuracy by estimating the polarization of the top-of-atmosphere radiance to be that expected for a pure Rayleigh scattering atmosphere. This may be of significance for design of a follow-on MODIS instrument. W.M. Balch participated on two month-long cruises to the Arabian sea, measuring coccolithophore abundance, production, and optical properties. A thorough understanding of the relationship between calcite abundance and light scatter, in situ, will provide the basis for a generic suspended calcite algorithm.

  20. MODIS In-flight Calibration Methodologies

    NASA Technical Reports Server (NTRS)

    Xiong, X.; Barnes, W.

    2004-01-01

    MODIS is a key instrument for the NASA's Earth Observing System (EOS) currently operating on the Terra spacecraft launched in December 1999 and Aqua spacecraft launched in May 2002. It is a cross-track scanning radiometer, making measurements over a wide field of view in 36 spectral bands with wavelengths from 0.41 to 14.5 micrometers and providing calibrated data products for science and research communities in their studies of the Earth s system of land, oceans, and atmosphere. A complete suite of on-board calibrators (OBC) have been designed for the instruments in-flight calibration and characterization, including a solar diffuser (SD) and solar diffuser stability monitor (SDSM) system for the radiometric calibration of the 20 reflective solar bands (RSB), a blackbody (BB) for the radiometric calibration of the 16 thermal emissive bands (TEB), and a spectro-radiometric calibration assembly (SRCA) for the spatial (all bands) and spectral (RSB only) characterization. This paper discusses MODIS in-flight Cali bration methodologies of using its on-board calibrators. Challenging issues and examples of tracking and correcting instrument on-orbit response changes are presented, including SD degradation (20% at 412nm, 12% at 466nm, and 7% at 530nm over four and a half years) and response versus scan angle changes (10%, 4%, and 1% differences between beginning of the scan and end of the scan at 412nm, 466nm, and 530nm) in the VIS spectral region. Current instrument performance and lessons learned are also provided.

  1. Synergistic use of MODIS cloud products and AIRS radiance measurements for retrieval of cloud parameters

    NASA Astrophysics Data System (ADS)

    Li, J.; Menzel, W.; Sun, F.; Schmit, T.

    2003-12-01

    The Moderate-Resolution Imaging Spectroradiometer (MODIS) and Atmospheric Infrared Sounder (AIRS) measurements from the Earth Observing System's (EOS) Aqua satellite will enable global monitoring of the distribution of clouds. MODIS is able to provide at high spatial resolution (1 ~ 5km) the cloud mask, surface and cloud types, cloud phase, cloud-top pressure (CTP), effective cloud amount (ECA), cloud particle size (CPS), and cloud water path (CWP). AIRS is able to provide CTP, ECA, CPS, and CWP within the AIRS footprint with much better accuracy using its greatly enhanced hyperspectral remote sensing capability. The combined MODIS / AIRS system offers the opportunity for cloud products improved over those possible from either system alone. The algorithm developed was applied to process the AIRS longwave cloudy radiance measurements; results are compared with MODIS cloud products, as well as with the Geostationary Operational Environmental Satellite (GOES) sounder cloud products, to demonstrate the advantage of synergistic use of high spatial resolution MODIS cloud products and high spectral resolution AIRS sounder radiance measurements for optimal cloud retrieval. Data from ground-based instrumentation at the Atmospheric Radiation Measurement (ARM) Program Cloud and Radiation Test Bed (CART) in Oklahoma were used for the validation; results show that AIRS improves the MODIS cloud products in certain cases such as low-level clouds.

  2. Phytoplankton bloom off western Iceland

    NASA Image and Video Library

    2017-12-08

    NASA image captured 06/24/2010 at 14 :30 UTC Phytoplankton bloom off western Iceland Satellite: Aqua NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team To learn more about MODIS go to: rapidfire.sci.gsfc.nasa.gov/gallery/?latest NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

  3. ARC-2009-ACD09-0218-006

    NASA Image and Video Library

    2009-10-06

    NASA Conducts Airborne Science Aboard Zeppelin Airship: equipped with two imaging instruments enabling remote sensing and atmospheric science measurements not previously practical. Pre-flight checkout of airship flight systems and instruments.

  4. Measurement of OH, H2SO4, MSA, and HNO3 Aboard the P-3B Aircraft

    NASA Technical Reports Server (NTRS)

    Eisele, F. L.

    2003-01-01

    This paper addresses the measurement of OH, H2SO4, MSA, and HNO3 aboard the P-3B aircraft under the following headings: 1) Performance Report; 2) Highlights of OH, H2SO4, and MSA Measurements Made Aboard the NASA P-3B During TRACE-P; 3) Development and characteristics of an airborne-based instrument used to measure nitric acid during the NASA TRACE-P field experiment.

  5. MODIS Snow-Cover Products

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Riggs, George A.; Salomonson, Vinvent V.; DiGirolamo, Nicolo; Bayr, Klaus J.; Houser, Paul (Technical Monitor)

    2001-01-01

    On December 18, 1999, the Terra satellite was launched with a complement of five instruments including the Moderate Resolution Imaging Spectroradiometer (MODIS). Many geophysical products are derived from MODIS data including global snow-cover products. These products have been available through the National Snow and Ice Data Center (NSIDC) Distributed Active Archive Center (DAAC) since September 13, 2000. MODIS snow-cover products represent potential improvement to the currently available operation products mainly because the MODIS products are global and 500-m resolution, and have the capability to separate most snow and clouds. Also the snow-mapping algorithms are automated which means that a consistent data set is generated for long-term climates studies that require snow-cover information. Extensive quality assurance (QA) information is stored with the product. The snow product suite starts with a 500-m resolution swath snow-cover map which is gridded to the Integerized Sinusoidal Grid to produce daily and eight-day composite tile products. The sequence then proceeds to a climate-modeling grid product at 5-km spatial resolution, with both daily and eight-day composite products. A case study from March 6, 2000, involving MODIS data and field and aircraft measurements, is presented. Near-term enhancements include daily snow albedo and fractional snow cover.

  6. Assessment of the Visible Channel Calibrations of the TRMM VIRS and MODIS on Aqua and Terra

    NASA Technical Reports Server (NTRS)

    Minnis, Patrick; Doelling, David R.; Nguyen, Louis; Miller, Walter F.; Chakrapani, Venketesan

    2007-01-01

    Several recent research satellites carry self-calibrating multispectral imagers that can be used for calibrating operational imagers lacking complete self-calibrating capabilities. In particular, the visible (VIS, 0.65 m) channels on operational meteorological satellites are generally calibrated before launch, but require vicarious calibration techniques to monitor the gains and offsets once they are in orbit. To ensure that the self-calibrating instruments are performing as expected, this paper examines the consistencies between the VIS channel (channel 1) reflectances of the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on the Terra and Aqua satellites and the Version 5a and 6 reflectances of the Visible Infrared Scanner (VIRS) on the Tropical Rainfall Measuring Mission using a variety of techniques. These include comparisons of Terra and Aqua VIS radiances with coincident broadband shortwave radiances from the well-calibrated Clouds and the Earth s Radiant Energy System (CERES), time series of deep convective cloud (DCC) albedos, and ray-matching intercalibrations between each of the three satellites. Time series of matched Terra and VIRS data, Aqua and VIRS data, and DCC reflected fluxes reveal that an older version (Version 5a, ending in early 2004) of the VIRS calibration produced a highly stable record, while the latest version (Version 6) appears to overestimate the sensor gain change by approx.1%/y as the result of a manually induced gain adjustment. Comparisons with the CERES shortwave radiances unearthed a sudden change in the Terra MODIS calibration that caused a 1.17% decrease in the gain on 19 November 2003 that can be easily reversed. After correction for these manual adjustments, the trends in the VIRS and Terra channels are no greater than 0.1%/y. Although the results were more ambiguous, no statistically significant trends were found in the Aqua MODIS channel-1 gain. The Aqua radiances are 1% greater, on average, than their Terra counterparts, and after normalization are 4.6% greater than VIRS radiances, in agreement with theoretical calculations. The discrepancy between the two MODIS instruments should be taken into account to ensure consistency between parameters derived from them. With the adjustments, any of the three instruments can serve as references for calibrating other satellites. Monitoring of the calibrations continues in near-real-time and the results are available via the world wide web.

  7. Investigation of Cloud Properties and Atmospheric Profiles with MODIS

    NASA Technical Reports Server (NTRS)

    Menzel, Paul; Ackerman, Steve; Moeller, Chris; Gumley, Liam; Strabala, Kathy; Frey, Richard; Prins, Elaine; LaPorte, Dan; Wolf, Walter

    1997-01-01

    The WINter Cloud Experiment (WINCE) was directed and supported by personnel from the University of Wisconsin in January and February. Data sets of good quality were collected by the MODIS Airborne Simulator (MAS) and other instruments on the NASA ER2; they will be used to develop and validate cloud detection and cloud property retrievals over winter scenes (especially over snow). Software development focused on utilities needed for all of the UW product executables; preparations for Version 2 software deliveries were almost completed. A significant effort was made, in cooperation with SBRS and MCST, in characterizing and understanding MODIS PFM thermal infrared performance; crosstalk in the longwave infrared channels continues to get considerable attention.

  8. Calipso's Mission Design: Sun-Glint Avoidance Strategies

    NASA Technical Reports Server (NTRS)

    Mailhe, Laurie M.; Schiff, Conrad; Stadler, John H.

    2004-01-01

    CALIPSO will fly in formation with the Aqua spacecraft to obtain a coincident image of a portion of the Aqua/MODIS swath. Since MODIS pixels suffering sun-glint degradation are not processed, it is essential that CALIPSO only co- image the glint h e portion of the MODIS instrument swath. This paper presents sun-glint avoidance strategies for the CALIPSO mission. First, we introduce the Aqua sun-glint geometry and its relation to the CALIPSO-Aqua formation flying parameters. Then, we detail our implementation of the computation and perform a cross-track trade-space analysis. Finally, we analyze the impact of the sun-glint avoidance strategy on the spacecraft power and delta-V budget over the mission lifetime.

  9. Ocean Observations with EOS/MODIS: Algorithm Development and Post Launch Studies

    NASA Technical Reports Server (NTRS)

    Gordon, Howard R.

    1997-01-01

    The following accomplishments were made during the present reporting period: (1) We expanded our new method, for identifying the presence of absorbing aerosols and simultaneously performing atmospheric correction, to the point where it could be added as a subroutine to the MODIS water-leaving radiance algorithm; (2) We successfully acquired micro pulse lidar (MPL) data at sea during a cruise in February; (3) We developed a water-leaving radiance algorithm module for an approximate correction of the MODIS instrument polarization sensitivity; and (4) We participated in one cruise to the Gulf of Maine, a well known region for mesoscale coccolithophore blooms. We measured coccolithophore abundance, production and optical properties.

  10. Impact of MODIS High-Resolution Sea-Surface Temperatures on WRF Forecasts at NWS Miami, FL

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; LaCasse, Katherine M.; Dembek, Scott R.; Santos, Pablo; Lapenta, William M.

    2007-01-01

    Over the past few years,studies at the Short-term Prediction Research and Transition (SPoRT) Center have suggested that the use of Moderate Resolution Imaging Spectroradiometer (MODIS) composite sea-surface temperature (SST) products in regional weather forecast models can have a significant positive impact on short-term numerical weather prediction in coastal regions. The recent paper by LaCasse et al. (2007, Monthly Weather Review) highlights lower atmospheric differences in regional numerical simulations over the Florida offshore waters using 2-km SST composites derived from the MODIS instrument aboard the polar-orbiting Aqua and Terra Earth Observing System satellites. To help quantify the value of this impact on NWS Weather Forecast Offices (WFOs), the SPoRT Center and the NWS WFO at Miami, FL (MIA) are collaborating on a project to investigate the impact of using the high-resolution MODIS SST fields within the Weather Research and Forecasting (WRF) prediction system. The scientific hypothesis being tested is: More accurate specification of the lower-boundary forcing within WRF will result in improved land/sea fluxes and hence, more accurate evolution of coastal mesoscale circulations and the associated sensible weather elements. The NWS MIA is currently running the WRF system in real-time to support daily forecast operations, using the National Centers for Environmental Prediction Nonhydrostatic Mesoscale Model dynamical core within the NWS Science and Training Resource Center's Environmental Modeling System (EMS) software; The EMS is a standalone modeling system capable of downloading the necessary daily datasets, and initializing, running and displaying WRF forecasts in the NWS Advanced Weather Interactive Processing System (AWIPS) with little intervention required by forecasters. Twenty-seven hour forecasts are run daily with start times of 0300,0900, 1500, and 2100 UTC on a domain with 4-km grid spacing covering the southern half of Florida and the far western portions of the Bahamas, the Florida Keys, the Straights of Florida, and adjacent waters of the Gulf of Mexico and Atlantic Ocean. Each model run is initialized using the Local Analysis and Prediction System (LAPS) analyses available in AWIPS, invoking the diabatic. "hot-start" capability. In this WRF model "hot-start", the LAPS-analyzed cloud and precipitation features are converted into model microphysics fields with enhanced vertical velocity profiles, effectively reducing the model spin-up time required to predict precipitation systems. The SSTs are initialized with the NCEP Real-Time Global (RTG) analyses at l/12 degree resolution (approx. 9 km); however, the RTG product does not exhibit fine-scale details consistent with its grid resolution. SPoRT is conducting parallel WRF EMS runs identical to the operational runs at NWS MIA in every respect except for the use of MODIS SST composites in place of the RTG product as the initial and boundary conditions over water. The MODIS SST composites for initializing the SPoRT WRF runs are generated on a 2-km grid four times daily at 0400, 0700, 1600, and 1900 UTC, based on the times of the overhead passes of the Aqua and Terra satellites. The incorporation of the MODIS SST composites into the SPoRTWRF runs is staggered such that the 0400UTC composite initializes the 0900 UTC WRF, the 0700 UTC composite initializes the 1500 UTC WRF, the 1600 UTC composite initializes the 2100 UTC WRF, and the 1900 UTC composite initializes the 0300 UTC WRF. A comparison of the SPoRT and Miami forecasts is underway in 2007, and includes quantitative verification of near-surface temperature, dewpoint, and wind forecasts at surface observation locations. In addition, particular days of interest are being analyzed to determine the impact of the MODIS SST data on the development and evolution of predicted sea/land-breeze circulations, clouds, and precipitation. This paper will present verification results comparing the NWS MIA forecasts the SPoRT experimental WRF forecasts, and highlight any substantial differences noted in the predicted mesoscale phenomena.

  11. Initial Validation and Results of Geoscience Laser Altimeter System Optical Properties Retrievals

    NASA Technical Reports Server (NTRS)

    Hlavka, Dennis L.; Hart, W. D.; Pal, S. P.; McGill, M.; Spinhirne, J. D.

    2004-01-01

    Verification of Geoscience Laser Altimeter System (GLAS) optical retrievals is . problematic in that passage over ground sites is both instantaneous and sparse plus space-borne passive sensors such as MODIS are too frequently out of sync with the GLAS position. In October 2003, the GLAS Validation Experiment was executed from NASA Dryden Research Center, California to greatly increase validation possibilities. The high-altitude NASA ER-2 aircraft and onboard instrumentation of Cloud Physics Lidar (CPL), MODIS Airborne Simulator (MAS), and/or MODIS/ASTER Airborne Simulator (MASTER) under-flew seven orbit tracks of GLAS for cirrus, smoke, and urban pollution optical properties inter-comparisons. These highly calibrated suite of instruments are the best data set yet to validate GLAS atmospheric parameters. In this presentation, we will focus on the inter-comparison with GLAS and CPL and draw preliminary conclusions about the accuracies of the GLAS 532nm retrievals of optical depth, extinction, backscatter cross section, and calculated extinction-to-backscatter ratio. Comparisons to an AERONET/MPL ground-based site at Monterey, California will be attempted. Examples of GLAS operational optical data products will be shown.

  12. Ash plume from Eyjafjallajokull Volcano, Iceland May 6th View [Detail

    NASA Image and Video Library

    2017-12-08

    NASA satellite image acquired May 6, 2010 at 11 :55 UTC To view the full view go to: www.nasa.gov/topics/earth/features/iceland-volcano-plume.... NASA Satellite Sees a Darker Ash Plume From Iceland Volcano NASA's Terra satellite flew over the Eyjafjallajokull Volcano, Iceland, on May 6 at 11:55 UTC (7:55 a.m. EDT). The Moderate Resolution Imaging Spectroradiometer instrument known as MODIS that flies onboard Terra, captured a visible image of the ash plume. The plume was blowing east then southeast over the Northern Atlantic. The satellite image shows that the plume is at a lower level in the atmosphere than the clouds that lie to its east, as the brown plume appears to slide underneath the white clouds. Satellite: Terra NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team To learn more about MODIS go to: rapidfire.sci.gsfc.nasa.gov/gallery/?latest NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

  13. Ash plume from Eyjafjallajokull Volcano, Iceland May 6th View

    NASA Image and Video Library

    2010-05-06

    NASA satellite image acquired May 6, 2010 at 11 :55 UTC To view a detail of this image go to: www.flickr.com/photos/gsfc/4583711511/ NASA Satellite Sees a Darker Ash Plume From Iceland Volcano NASA's Terra satellite flew over the Eyjafjallajokull Volcano, Iceland, on May 6 at 11:55 UTC (7:55 a.m. EDT). The Moderate Resolution Imaging Spectroradiometer instrument known as MODIS that flies onboard Terra, captured a visible image of the ash plume. The plume was blowing east then southeast over the Northern Atlantic. The satellite image shows that the plume is at a lower level in the atmosphere than the clouds that lie to its east, as the brown plume appears to slide underneath the white clouds. Satellite: Terra NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team To learn more about MODIS go to: www.nasa.gov/topics/earth/features/iceland-volcano-plume.... NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

  14. Comparison of MODIS and VIIRS Snow Cover Products for the 2016 Hydrological Year

    NASA Astrophysics Data System (ADS)

    Klein, A. G.; Thapa, S.

    2017-12-01

    The VIIRS (Visible Infrared Imaging Radiometer Suite) instrument on board the Suomi-NPP satellite aims to provide long-term continuity of several environmental data series including snow cover initiated with MODIS. While it is speculated that MODIS and VIIRS snow cover products may differ because of their differing spatial resolutions and spectral coverage quantitative comparisons between their snow products are currently limited. Therefore this study intercompares MODIS and VIIRS snow products for the 2016 Hydrological Year over the Midwestern United States and southern Canada. Two hundred and forty-four swath snow products from MODIS/Aqua (MYD10L2) and the VIIRS EDR (VSCMO/binary) were intercompared using confusion matrices, comparison maps and false color imagery. Thresholding the MODIS NDSI Snow Cover product at a snow cover fraction of 30% generated binary snow maps most comparable to the NOAA VIIRS binary snow product. Overall agreement between MODIS and VIIRS was found to be approximately 98%. This exceeds the VIIRS accuracy requirements of 90% probability of correct typing. Agreement was highest during the winter but lower during late fall and spring. Comparability was lowest over forest. MODIS and VIIRS often mapped snow/no-snow transition zones as cloud. The assessment of total snow and cloud pixels and comparison snow maps of MODIS and VIIRS indicates that VIIRS is mapping more snow cover and less cloud cover compared to MODIS. This is evidenced by the average area of snow in MYD10L2 and VSCMO being 5.72% and 11.43%, no-snow 26.65% and 28.67%, and cloud 65.02% and 59.91%, respectively. Visual comparisons depict good qualitative agreement between snow cover area visible in MODIS and VIIRS false color imagery and mapped in their respective snow cover products. While VIIRS and MODIS have similar capacity to map snow cover, VIIRS has the potential to more accurately map snow cover area for the successive development of climate data records.

  15. U.S. Instruments Aboard Rosetta

    NASA Image and Video Library

    2014-01-24

    Three of NASA contributions to the ESA Rosetta mission are pictured here: an ultraviolet spectrometer called Alice top, the Ion and Electron Sensor IES bottom left, and the Microwave Instrument for Rosetta Orbiter MIRO bottom right.

  16. Fast Longwave and Shortwave Radiative Flux (FLASHFlux) Products from CERES and MODIS Measurements

    NASA Technical Reports Server (NTRS)

    Stackhouse, Paul W., Jr.; Kratz, David P.; McGarragh, Greg R.; Gupta, Shashi K.; Geier, Erika B.

    2006-01-01

    The Clouds and the Earth s Radiant Energy Systems (CERES) project is currently producing world-class climatological data products derived from measurements taken aboard the Terra and Aqua spacecrafts (Wielicki et al., 1996). While of exceptional fidelity, these data products require a considerable amount of processing to assure quality and verify accuracy and precision. Obtaining such high quality assurance, however, means that the CERES data is typically released more than six months after the acquisition of the initial measurements. For climate studies, such delays are of little consequence, especially considering the improved quality of the released data products. There are, however, many uses for the CERES data products on a near real-time basis. These include: CERES instrument calibration and subsystem quality checks, CLOUDSAT operations, seasonal predictions, agricultural and ocean assimilations, support of field campaigns, and outreach programs such as S'Cool. The FLASHflux project was envisioned as a conduit whereby CERES data could be provided to the community within a week of the initial measurements, with the trade-off that some degree of fidelity would be exacted to gain speed. In this paper, we will report on some very encouraging initial results from the FLASHflux project in which we compared the FLASHflux instantaneous surface fluxes to the CERES surface-only flux algorithm data products.

  17. Coordinated Airborne, Spaceborne, and Ground-Based Measurements of Massive, Thick Aerosol Layers During the Dry Season in Southern Africa

    NASA Technical Reports Server (NTRS)

    Schmid, B.; Redemann, J.; Russell, P. B.; Hobbs, P. V.; Hlavka, D. L.; McGill, M. J.; Holben, B. N.; Welton, E. J.; Campbell, J.; Torres, O.; hide

    2002-01-01

    During the dry-season airborne campaign of the Southern African Regional Science Initiative (SAFARI 2000), unique coordinated observations were made of massive, thick aerosol layers. These layers were often dominated by aerosols from biomass burning. We report on airborne Sunphotometer measurements of aerosol optical depth (lambda=354-1558 nm), columnar water vapor, and vertical profiles of aerosol extinction and water vapor density that were obtained aboard the University of Washington's Convair-580 research aircraft. We compare these with ground-based AERONET Sun/sky radiometer results, with ground based lidar data MPL-Net), and with measurements from a downward-pointing lidar aboard the high-flying NASA ER-2 aircraft. Finally, we show comparisons between aerosol optical depths from the Sunphotometer and those retrieved over land and over water using four spaceborne sensors (TOMS (Total Ozone Mapping Spectrometer), MODIS (Moderate Resolution Imaging Spectrometer), MISR (Multiangle Imaging Spectroradiometer) and ATSR-2 (Along Track Scanning Radiometer)).

  18. Analysis of Co-Located MODIS and CALIPSO Observations Near Clouds

    NASA Technical Reports Server (NTRS)

    Varnai, Tamas; Marshak, Alexander

    2011-01-01

    The purpose of this paper is to help researchers combine data from different satellites and thus gain new insights into two critical yet poorly understood aspects of anthropogenic climate change, aerosol-cloud interactions and aerosol radiative effects, For this, the paper explores whether cloud information from the Aqua satellite's MODIS instrument can help characterize systematic aerosol changes near clouds by refining earlier perceptions of these changes that were based on the CALIPSO satellite's CALIOP instrument. Similar to a radar but using visible and ncar-infrared light, CALIOP sends out laser pulses and provides aerosol and cloud information along a single line that tracks the satellite orbit by measuring the reflection of its pulses. In contrast, MODIS takes images of reflected sunlight and emitted infrared radiation at several wavelengths, and covers wide areas around the satellite track. This paper analyzes a year-long global dataset covering all ice-free oceans, and finds that MODIS can greatly help the interpretation of CALIOP observations, especially by detecting clouds that lie outside the line observed by CALlPSO. The paper also finds that complications such as differences in view direction or clouds drifting in the 72 seconds that elapse between MODIS and CALIOP observations have only a minor impact. The study also finds that MODIS data helps refine but does not qualitatively alter perceptions of the systematic aerosol changes that were detected in earlier studies using only CALIOP data. It then proposes a statistical approach to account for clouds lying outside the CALIOP track even when MODIS cannot as reliably detect low clouds, for example at night or over ice. Finally, the paper finds that, because of variations in cloud amount and type, the typical distance to clouds in maritime clear areas varies with season and location. The overall median distance to clouds in maritime clear areas around 4-5 km. The fact that half of all clear areas is closer than 5 km to clouds implies that pronounced near-cloud changes in aerosol properties have significant implications for overall clear-sky characteristics, including the radiative impact of aerosols.

  19. INTERCOMPARISON OF SCIAMACHY AND OMI TROPOSPHERIC NO2 COLUMNS: OBSERVING THE DIURNAL EVOLUTION OF CHEMISTRY AND EMISSIONS FROM SPACE

    EPA Science Inventory

    Concurrent (August 2006) satellite measurements of tropospheric NO2 columns from OMI aboard Aura (13:30 local overpass time) and SCIAMACHY aboard Envisat (10:00 overpass) offer an opportunity to examine the consistency between the two instruments under tropospheric ba...

  20. Adjustments to the MODIS Terra Radiometric Calibration and Polarization Sensitivity in the 2010 Reprocessing

    NASA Technical Reports Server (NTRS)

    Meister, Gerhard; Franz, Bryan A.

    2011-01-01

    The Moderate-Resolution Imaging Spectroradiometer (MODIS) on NASA s Earth Observing System (EOS) satellite Terra provides global coverage of top-of-atmosphere (TOA) radiances that have been successfully used for terrestrial and atmospheric research. The MODIS Terra ocean color products, however, have been compromised by an inadequate radiometric calibration at the short wavelengths. The Ocean Biology Processing Group (OBPG) at NASA has derived radiometric corrections using ocean color products from the SeaWiFS sensor as truth fields. In the R2010.0 reprocessing, these corrections have been applied to the whole mission life span of 10 years. This paper presents the corrections to the radiometric gains and to the instrument polarization sensitivity, demonstrates the improvement to the Terra ocean color products, and discusses issues that need further investigation. Although the global averages of MODIS Terra ocean color products are now in excellent agreement with those of SeaWiFS and MODIS Aqua, and image quality has been significantly improved, the large corrections applied to the radiometric calibration and polarization sensitivity require additional caution when using the data.

  1. Satellite Remote Sensing for Developing Time and Space Resolved Estimates of Ambient Particulate in Cleveland, OH

    PubMed Central

    Kumar, Naresh; Chu, Allen D.; Foster, Andrew D.; Peters, Thomas; Willis, Robert

    2011-01-01

    This article empirically demonstrates the use of fine resolution satellite-based aerosol optical depth (AOD) to develop time and space resolved estimates of ambient particulate matter (PM) ≤2.5 µm and ≤10 µm in aerodynamic diameters (PM2.5 and PM10, respectively). AOD was computed at three different spatial resolutions, i.e., 2 km (means 2 km × 2 km area at nadir), 5 km, and 10 km, by using the data from MODerate Resolution Imaging Spectroradiometer (MODIS), aboard the Terra and Aqua satellites. Multiresolution AOD from MODIS (AODMODIS) was compared with the in situ measurements of AOD by NASA’s AErosol RObotic NETwork (AERONET) sunphotometer (AODAERONET) at Bondville, IL, to demonstrate the advantages of the fine resolution AODMODIS over the 10-km AODMODIS, especially for air quality prediction. An instrumental regression that corrects AODMODIS for meteorological conditions was used for developing a PM predictive model. The 2-km AODMODIS aggregated within 0.025° and 15-min intervals shows the best association with the in situ measurements of AODAERONET. The 2-km AODMODIS seems more promising to estimate time and space resolved estimates of ambient PM than the 10-km AODMODIS, because of better location precision and a significantly greater number of data points across geographic space and time. Utilizing the collocated AODMODIS and PM data in Cleveland, OH, a regression model was developed for predicting PM for all AODMODIS data points. Our analysis suggests that the slope of the 2-km AODMODIS (instrumented on meteorological conditions) is close to unity with the PM monitored on the ground. These results should be interpreted with caution, because the slope of AODMODIS ranges from 0.52 to 1.72 in the site-specific models. In the cross validation of the overall model, the root mean square error (RMSE) of PM10 was smaller (2.04 µg/m3 in overall model) than that of PM2.5 (2.5 µg/m3). The predicted PM in the AODMODIS data (∼2.34 million data points) was utilized to develop a systematic grid of daily PM at 5-km spatial resolution with the aid of spatiotemporal Kriging. PMID:22238503

  2. Assessments and Applications of Terra and Aqua MODIS On-Orbit Electronic Calibration

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong; Chen, Na; Li, Yonghong; Wilson, Truman

    2016-01-01

    MODIS has 36 spectral bands located on four focal plane assemblies (FPAs), covering wavelengths from 0.41 to 14.4 micrometers. MODIS bands 1-30 collect data using photovoltaic (PV) detectors and, therefore, are referred to as the PV bands. Similarly, bands 31-36 using photoconductive (PC) detectors are referred to as the PC bands.The MODIS instrument was built with a set of on-board calibrators (OBCs) in order to track on-orbit changes of its radiometric, spatial, and spectral characteristics. In addition, an electronic calibration (ECAL) function can be used to monitor on-orbit changes of its electronic responses (gains). This is accomplished via a series of stair step signals generated by the ECAL function. These signals, in place of the FPA detector signals, are amplified and digitized just like the detector signals. Over the entire mission of both Terra and Aqua MODIS,the ECAL has been performed for the PV bands and used to assess their on-orbit performance. This paper provides an overview of MODIS on-orbit calibration activities with a focus on the PV ECAL, including its calibration process and approaches used to monitor the electronic performance. It presents the results derived and lessons learned from Terra and Aqua MODIS on-orbit ECAL. Also discussed are some of the applications performed with the information provided by the ECAL data.

  3. Registration and Fusion of Multiple Source Remotely Sensed Image Data

    NASA Technical Reports Server (NTRS)

    LeMoigne, Jacqueline

    2004-01-01

    Earth and Space Science often involve the comparison, fusion, and integration of multiple types of remotely sensed data at various temporal, radiometric, and spatial resolutions. Results of this integration may be utilized for global change analysis, global coverage of an area at multiple resolutions, map updating or validation of new instruments, as well as integration of data provided by multiple instruments carried on multiple platforms, e.g. in spacecraft constellations or fleets of planetary rovers. Our focus is on developing methods to perform fast, accurate and automatic image registration and fusion. General methods for automatic image registration are being reviewed and evaluated. Various choices for feature extraction, feature matching and similarity measurements are being compared, including wavelet-based algorithms, mutual information and statistically robust techniques. Our work also involves studies related to image fusion and investigates dimension reduction and co-kriging for application-dependent fusion. All methods are being tested using several multi-sensor datasets, acquired at EOS Core Sites, and including multiple sensors such as IKONOS, Landsat-7/ETM+, EO1/ALI and Hyperion, MODIS, and SeaWIFS instruments. Issues related to the coregistration of data from the same platform (i.e., AIRS and MODIS from Aqua) or from several platforms of the A-train (i.e., MLS, HIRDLS, OMI from Aura with AIRS and MODIS from Terra and Aqua) will also be considered.

  4. NASA Newest SeaWinds Instrument Breezes Into Operation

    NASA Image and Video Library

    2003-02-24

    One of NASA newest Earth-observing instruments, the SeaWinds scatterometer aboard Japan Advanced Earth Observing Satellite Adeos 2--now renamed Midori 2--has successfully transmitted its first radar data to our home planet.

  5. Utilization of satellite observation of ozone and aerosols in providing initial and boundary condition for regional air quality studies

    NASA Astrophysics Data System (ADS)

    Pour-Biazar, Arastoo; Khan, Maudood; Wang, Lihua; Park, Yun-Hee; Newchurch, Mike; McNider, Richard T.; Liu, Xiong; Byun, Daewon W.; Cameron, Robert

    2011-09-01

    To demonstrate the efficacy of satellite observations in the realization of the background and transboundary transport of pollution in regional air quality modeling practices, satellite observations of ozone and aerosol optical depth were incorporated in the EPA Models-3 Community Multiscale Air Quality (CMAQ) model (http://www.cmascenter.org). Observations from Ozone Monitoring Instrument (OMI) aboard NASA's Aura satellite and AOD products from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Terra (EOS AM) and Aqua (EOS PM) satellites were used to specify initial and lateral boundary conditions (IC/BC) for a simulation that spanned over August 2006. The tools and techniques using the satellite data were tested in the context of current regulatory air quality modeling practices. Daily satellite observations were remapped onto the modeling domain and used as IC/BC for daily segments of a month-long simulation and the results were evaluated against surface and ozonesonde observations. Compared to the standard application of CMAQ, OMI O3 profiles significantly improved model performance in the free troposphere and MODIS aerosol products substantially improved PM2.5 predictions in the boundary layer. The utilization of satellite data for BC helped in the realization of transboundary transport of pollution and was able to explain the recirculation of pollution from Northeast Corridor to the southeastern region. Ozone in the mid- to upper-troposphere was largely dominated by transport and thus benefited most from satellite provided BC. The ozone within the boundary layer was mostly affected by fast production/loss mechanisms that are impacted by surface emissions, chemistry and removal processes and was not impacted as much. A case study for August 18-22 demonstrated that model errors in the placement of a stationary front were the main reason for errors in PM2.5 predictions as the front acted as a boundary between high and low PM2.5 concentrations.

  6. Real time retrieval of volcanic cloud particles and SO2 by satellite using an improved simplified approach

    NASA Astrophysics Data System (ADS)

    Pugnaghi, Sergio; Guerrieri, Lorenzo; Corradini, Stefano; Merucci, Luca

    2016-07-01

    Volcanic plume removal (VPR) is a procedure developed to retrieve the ash optical depth, effective radius and mass, and sulfur dioxide mass contained in a volcanic cloud from the thermal radiance at 8.7, 11, and 12 µm. It is based on an estimation of a virtual image representing what the sensor would have seen in a multispectral thermal image if the volcanic cloud were not present. Ash and sulfur dioxide were retrieved by the first version of the VPR using a very simple atmospheric model that ignored the layer above the volcanic cloud. This new version takes into account the layer of atmosphere above the cloud as well as thermal radiance scattering along the line of sight of the sensor. In addition to improved results, the new version also offers an easier and faster preliminary preparation and includes other types of volcanic particles (andesite, obsidian, pumice, ice crystals, and water droplets). As in the previous version, a set of parameters regarding the volcanic area, particle types, and sensor is required to run the procedure. However, in the new version, only the mean plume temperature is required as input data. In this work, a set of parameters to compute the volcanic cloud transmittance in the three quoted bands, for all the aforementioned particles, for both Mt. Etna (Italy) and Eyjafjallajökull (Iceland) volcanoes, and for the Terra and Aqua MODIS instruments is presented. Three types of tests are carried out to verify the results of the improved VPR. The first uses all the radiative transfer simulations performed to estimate the above mentioned parameters. The second one makes use of two synthetic images, one for Mt. Etna and one for Eyjafjallajökull volcanoes. The third one compares VPR and Look-Up Table (LUT) retrievals analyzing the true image of Eyjafjallajökull volcano acquired by MODIS aboard the Aqua satellite on 11 May 2010 at 14:05 GMT.

  7. First Day of Winter Obvious on NASA Satellite Image of the U.S. Plains States

    NASA Image and Video Library

    2017-12-08

    Winter arrived officially on Dec. 22 at 12:35 a.m. EST, but the U.S. Plains states received an early and cool welcome on Dec. 19 from heavy snowfall that was seen by a NASA satellite. NASA's Aqua satellite passed overhead on Dec. 21 at 20:05 UTC (3:05 p.m. EST) and the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard NASA's Aqua satellite captured a visible image of snow blanketing the ground through west and central Kansas, eastern and central Colorado, much of New Mexico, northern Texas and the panhandle of Oklahoma. According to CBS News, blizzard conditions were reported in northern New Mexico, the Texas Panhandle, Oklahoma and northwestern Kansas. The Associated Press reported snow drifts as high as 10 feet in southeast Colorado. Six people lost their lives in traffic accidents from this storm. Heavy snow is expected again today, Dec. 22 in New Mexico and Colorado. Snow is also expected to stretch across the plains into the upper Midwest today, according to the National Weather Service. Portions of many states are expecting some snow today, including the four corners states, north Texas, Kansas, southern Nebraska, western Oklahoma, northern Missouri, Iowa, northern Illinois and southern Wisconsin stretching east into northern New England. The first day of the winter season occurs when the sun is farthest south, either Dec. 21 or 22. The day is also known as the winter solstice. By the second day of winter, NASA's Aqua satellite is going to have a lot more snowfall to observe. Image Credit: NASA Goddard MODIS Rapid Response Team Caption: NASA, Rob Gutro NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  8. On the potential of RST approach for a continuous monitoring of flooded areas

    NASA Astrophysics Data System (ADS)

    Faruolo, Mariapia; Coviello, Irina; Lacava, Teodosio; Pergola, Nicola; Tramutoli, Valerio

    2010-05-01

    In recent decades many efforts have been made in the field of remote sensing for the management of flood risk. In fact, among all natural disasters floods are probably the most frequent, causing high human suffering and large losses. All activities designed to mitigate and manage flood risk, in order to be effective and to help civil protection agencies in limiting losses of life, human suffering and damages, need of timely information about the onset of floods, their extent, intensity and duration. At present, sensors aboard meteorological satellites, mainly thanks to their high temporal resolution, may furnish frequent and updated images, ensuring a continuous monitoring of areas involved by a flood. In particular, optical instruments on board polar satellites, like NOAA-AVHRR (National Oceanic and Atmospheric Administration-Advanced Very High Resolution Radiometer) and more recently EOS-MODIS (Earth Observing System-Moderate Resolution Imaging Spectroradiometer) have been used for dynamic flood monitoring. A robust methodology for satellite based flood monitoring and detection, named RST (Robust Satellite Technique), has been recently developed and implemented using data acquired by AVHRR and MODIS to identify flooded areas with reliability and timeliness. Such an approach, based on a multi-temporal analysis of co-located satellite records and an automatic change detection scheme, has been used to analyze floods occurred in different geographic areas and observational conditions. In detail, in order to identify flooded areas within the region of interest, the spectral behavior of water in the visible (VIS) and near infrared (NIR) bands of such satellite systems has been successfully exploited. Starting from these satisfactory results, the main purpose of this paper is to show, in the case of several flooding events occurred recently in different parts of the world, the achievements arising from the use of such methodology also to data acquired in the thermal infrared (TIR) region in order to guarantee a continuous monitoring of flooded areas both during night and day.

  9. Spatial and Temporal Monitoring of Aerosol over Selected Urban Areas in Egypt

    NASA Astrophysics Data System (ADS)

    Shokr, Mohammed; El-Tahan, Mohammed; Ibrahim, Alaa

    2015-04-01

    We utilize remote sensing data of atmospheric aerosols from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Terra and Aqua satellites to explore spatio-temporal patterns over selected urban sites in Egypt during 2000-2015. High resolution (10 x 10 km^2) Level 2, collection 5, quality-controlled product was used. The selected sites are characterized by different human and industrial activities as well as landscape and meteorological attributes. These have impacts on the dominant types and intensity of aerosols. Aerosol robotic network (AERONET) data were used to validate the calculations from MODIS. The suitability of the MODIS product in terms of spatial and temporal coverage as well as accuracy and robustness has been established. Seasonal patterns of aerosol concentration are identified and compared between the sites. Spatial gradient of aerosol is assessed in the vicinity of major aerosol-emission sites (e.g. Cairo) to determine the range of influence of the generated pollution. Peak aerosol concentrations are explained in terms of meteorological events and land cover. The limited trends found in the temporal records of the aerosol measurements will be confirmed using calibrated long-term ground observations. The study has been conducted under the PEER 2-239 research project titled "The Impact of Biogenic and Anthropogenic Atmospheric Aerosols to Climate in Egypt". Project website is CleanAirEgypt.org

  10. A CERES-like Cloud Property Climatology Using AVHRR Data

    NASA Astrophysics Data System (ADS)

    Minnis, P.; Bedka, K. M.; Yost, C. R.; Trepte, Q.; Bedka, S. T.; Sun-Mack, S.; Doelling, D.

    2015-12-01

    Clouds affect the climate system by modulating the radiation budget and distributing precipitation. Variations in cloud patterns and properties are expected to accompany changes in climate. The NASA Clouds and the Earth's Radiant Energy System (CERES) Project developed an end-to-end analysis system to measure broadband radiances from a radiometer and retrieve cloud properties from collocated high-resolution MODerate-resolution Imaging Spectroradiometer (MODIS) data to generate a long-term climate data record of clouds and clear-sky properties and top-of-atmosphere radiation budget. The first MODIS was not launched until 2000, so the current CERES record is only 15 years long at this point. The core of the algorithms used to retrieve the cloud properties from MODIS is based on the spectral complement of the Advanced Very High Resolution Radiometer (AVHRR), which has been aboard a string of satellites since 1978. The CERES cloud algorithms were adapted for application to AVHRR data and have been used to produce an ongoing CERES-like cloud property and surface temperature product that includes an initial narrowband-based radiation budget. This presentation will summarize this new product, which covers nearly 37 years, and its comparability with cloud parameters from CERES, CALIPSO, and other satellites. Examples of some applications of this dataset are given and the potential for generating a long-term radiation budget CDR is also discussed.

  11. Sulfur Upwelling off the African Coast

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Though these aquamarine clouds in the waters off the coast of northern Namibia may look like algae blooms, they are in fact clouds of sulfur produced by anaerobic bacteria on the ocean's floor. This image of the sulfur-filled water was taken on April 24, 2002, by the Sea-viewing Wide Field-of-View Sensor (SeaWiFS), flying aboard the Orbview-2 satellite. The anaerobic bacteria (bacteria that can live without oxygen) feed upon algae carcasses that exist in abundance on the ocean's floor off of Namibia. As the bacteria ingest the algae husks, they produce hydrogen sulfide, which slowly builds up in the sea-floor sediments. Eventually, the hydrogen sulfide reaches the point where the sediment can no longer contain it, and it bubbles forth. When this poisonous chemical reaches the surface, it combines with the oxygen in the upper layers of the ocean to create clouds of pure sulfur. The sulfur causes the Namibian coast to smell like rotten eggs, and the hydrogen sulfide will often kill fish and drive lobsters away. For more information, read: A Bloom By Any Other Name A high-resolution (250 meters per pixel) image earlier on the 24th taken from the Moderate-Resolution Imaging Spectroradiometer (MODIS) shows additional detail in the plumes. Image courtesy the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE. MODIS image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  12. Response to "Toward Unified Satellite Climatology of Aerosol Properties. 3. MODIS Versus MISR Versus AERONET"

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.; Garay, Michael J.; Nelson, David L.; Levy, Robert C.; Bull, Michael A.; Diner, David J.; Martonchik, John V.; Hansen, Earl G.; Remer, Lorraine A.; Tanre, Didier

    2010-01-01

    A recent paper by Mishchenko et al. compares near-coincident MISR, MODIS, and AERONET aerosol optical depth (AOD) products, and reports much poorer agreement than that obtained by the instrument teams and others. We trace the reasons for the discrepancies primarily to differences in (1) the treatment of outliers, (2) the application of absolute vs. relative criteria for testing agreement, and (3) the ways in which seasonally varying spatial distributions of coincident retrievals are taken into account.

  13. Tracking and Predicting Fine Scale Sea Ice Motion by Constructing Super-Resolution Images and Fusing Multiple Satellite Sensors

    DTIC Science & Technology

    2013-09-30

    COVERED 00-00-2013 to 00-00-2013 4. TITLE AND SUBTITLE Tracking and Predicting Fine Scale Sea Ice Motion by Constructing Super-Resolution Images...limited, but potentially provide more detailed data. Initial assessments have been made on MODIS data in terms of its suitability. While clouds obscure...estimates. 2 Data from Aqua, Terra, and Suomi NPP satellites were investigated. Aqua and Terra are older satellites that fly the MODIS instrument

  14. [New Retrieval Algorithms for Geophysical Products from GLI and MODIS Data

    NASA Technical Reports Server (NTRS)

    Dodge, James C.; Simpson, James J.

    2004-01-01

    Below is the 1st year progress report for NAG5-13435 "New Retrieval Algorithms for Geophysical Products from GLI and MODIS Data". Activity on this project has been coordinated with our NASA DB project NAG5-9604. For your convenience, this report has six sections and an Appendix. Sections I - III discuss specific activities undertaken during the past year to analyze/use MODIS data. Section IV formally states our intention to no longer pursue any research using JAXA's (formerly NASDA's) GLI instrument which catastrophically failed very early after launch (also see the Appendix). Section V provides some indications of directions for second year activities based on our January 2004 telephone discussions and email exchanges. A brief summary is given in Section VI.

  15. Accessing and Understanding MODIS Data

    NASA Technical Reports Server (NTRS)

    Leptoukh, Gregory; Jenkerson, Calli B.; Jodha, Siri

    2003-01-01

    The National Aeronautics and Space Administration (NASA) launched the Terra satellite in December 1999, as part of the Earth Science Enterprise promotion of interdisciplinary studies of the integrated Earth system. Aqua, the second satellite from the series of EOS constellation, was launched in May 2002. Both satellites carry the MODerate resolution Imaging Spectroradiometer (MODIS) instrument. MODIS data are processed at the Goddard Space Flight Center, Greenbelt, MD, and then archived and distributed by the Distributed Active Archive Centers (DAACs). Data products from the MODIS sensors present new challenges to remote sensing scientists due to specialized production level, data format, and map projection. MODIS data are distributed as calibrated radiances and as higher level products such as: surface reflectance, water-leaving radiances, ocean color and sea surface temperature, land surface kinetic temperature, vegetation indices, leaf area index, land cover, snow cover, sea ice extent, cloud mask, atmospheric profiles, aerosol properties, and many other geophysical parameters. MODIS data are stored in HDF- EOS format in both swath format and in several different map projections. This tutorial guides users through data set characteristics as well as search and order interfaces, data unpacking, data subsetting, and potential applications of the data. A CD-ROM with sample data sets, and software tools for working with the data will be provided to the course participants.

  16. Estimation of fire emissions from satellite-based measurements

    NASA Astrophysics Data System (ADS)

    Ichoku, C. M.; Kaufman, Y. J.

    2004-12-01

    Biomass burning is a worldwide phenomenon affecting many vegetated parts of the globe regularly. Fires emit large quantities of aerosol and trace gases into the atmosphere, thus influencing the atmospheric chemistry and climate. Traditional methods of fire emissions estimation achieved only limited success, because they were based on peripheral information such as rainfall patterns, vegetation types and changes, agricultural practices, and surface ozone concentrations. During the last several years, rapid developments in satellite remote sensing has allowed more direct estimation of smoke emissions using remotely-sensed fire data. However, current methods use fire pixel counts or burned areas, thereby depending on the accuracy of independent estimations of the biomass fuel loadings, combustion efficiency, and emission factors. With the enhanced radiometric range of its 4-micron fire channel, the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor, which flies aboard both of the Earth Observing System (EOS) Terra and Aqua Satellites, is able to measure the rate of release of fire radiative energy (FRE) in MJ/s (something that older sensors could not do). MODIS also measures aerosol distribution. Taking advantage of these new resources, we have developed a procedure combining MODIS fire and aerosol products to derive FRE-based smoke emission coefficients (Ce in kg/MJ) for different regions of the globe. These coefficients are simply used to multiply FRE from MODIS to derive the emitted smoke aerosol mass. Results from this novel methodology are very encouraging. For instance, it was found that the smoke total particulate mass emission coefficient for the Brazilian Cerrado ecosystem (approximately 0.022 kg/MJ) is about twice the value for North America or Australia, but about 50 percent lower than the value for Zambia in southern Africa.

  17. Estimation of Fire Emissions from Satellite-Based Measurements

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles; Kaufman, Yoram J.

    2004-01-01

    Biomass burning is a worldwide phenomenon affecting many vegetated parts of the globe regularly. Fires emit large quantities of aerosol and trace gases into the atmosphere, thus influencing the atmospheric chemistry and climate. Traditional methods of fire emissions estimation achieved only limited success, because they were based on peripheral information such as rainfall patterns, vegetation types and changes, agricultural practices, and surface ozone concentrations. During the last several years, rapid developments in satellite remote sensing has allowed more direct estimation of smoke emissions using remotely-sensed fire data. However, current methods use fire pixel counts or burned areas, thereby depending on the accuracy of independent estimations of the biomass fuel loadings, combustion efficiency, and emission factors. With the enhanced radiometric range of its 4-micron fire channel, the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor, which flies aboard both of the Earth Observing System EOS) Terra and Aqua Satellites, is able to measure the rate of release of fire radiative energy (FRE) in MJ/s (something that older sensors could not do). MODIS also measures aerosol distribution. Taking advantage of these new resources, we have developed a procedure combining MODIS fire and aerosol products to derive FRE-based smoke emission coefficients (C(e), in kg/MJ) for different regions of the globe. These coefficients are simply used to multiply FRE from MODIS to derive the emitted smoke aerosol mass. Results from this novel methodology are very encouraging. For instance, it was found that the smoke total particulate mass emission coefficient for the Brazilian Cerrado ecosystem (approximately 0.022 kg/MJ) is about twice the value for North America, Western Europe, or Australia, but about 50% lower than the value for southern Africa.

  18. MODIS Snow-Cover Products

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Riggs, George A.; Salomonson, Vincent V.; DiGirolamo, Nicole E.; Bayr, Klaus J.; Houser, Paul R. (Technical Monitor)

    2002-01-01

    On December 18, 1999, the Terra satellite was launched with a complement of five instruments including the Moderate Resolution Imaging Spectroradiometer (MODIS). Many geophysical products are derived from MODIS data including global snow-cover products. MODIS snow and ice products have been available through the National Snow and Ice Data Center (NSIDC) Distributed Active Archive Center (DAAC) since September 13, 2000. MODIS snow-cover products represent potential improvement to or enhancement of the currently-available operational products mainly because the MODIS products are global and 500-m resolution, and have the capability to separate most snow and clouds. Also the snow-mapping algorithms are automated which means that a consistent data set may be generated for long-term climate studies that require snow-cover information. Extensive quality assurance (QA) information is stored with the products. The MODIS snow product suite begins with a 500-m resolution, 2330-km swath snow-cover map which is then gridded to an integerized sinusoidal grid to produce daily and 8-day composite tile products. The sequence proceeds to a climate-modeling grid (CMG) product at about 5.6-km spatial resolution, with both daily and 8-day composite products. Each pixel of the CMG contains fraction of snow cover from 40 - 100%. Measured errors of commission in the CMG are low, for example, on the continent of Australia in the spring, they vary from 0.02 - 0.10%. Near-term enhancements include daily snow albedo and fractional snow cover. A case study from March 6, 2000, involving MODIS data and field and aircraft measurements, is presented to show some early validation work.

  19. Skylab

    NASA Image and Video Library

    1971-08-01

    The Apollo Telescope Mount (ATM) was designed and developed by the Marshall Space Flight Center and served as the primary scientific instrument unit aboard Skylab (1973-1979). The ATM consisted of eight scientific instruments as well as a number of smaller experiments. One scientific instrument was the ATM solar shield that formed the base for the rack/frame instrument and the instrument canister. The solar shield contained aperture doors for each instrument to protect against solar radiation and space contamination.

  20. ARC-2009-ACD09-0218-009

    NASA Image and Video Library

    2009-10-06

    NASA Conducts Airborne Science Aboard Zeppelin Airship: equipped with two imaging instruments enabling remote sensing and atmospheric science measurements not previously practical. Shown here is Steve Dunagan, NASA Ames scientist. Cabin viewof instrument operaor Steve Dunagan, Pilot Katharing 'Kate' Board.

  1. Skylab

    NASA Image and Video Library

    1970-05-01

    The Apollo Telescope Mount (ATM) was designed and developed by the Marshall Space Flight Center and served as the primary scientific instrument unit aboard Skylab (1973-1979). The ATM consisted of eight scientific instruments as well as a number of smaller experiments. In this image, the ATM canister, housing the solar instruments, is mated to the thermal rack that provided thermal stability.

  2. Remote Sensing of Aerosol and their Radiative Properties from the MODIS Instrument on EOS-Terra Satellite: First Results and Evaluation

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram; Tanre, Didier; Remer, Lorraine; Holben, Brent; Lau, William K.-M. (Technical Monitor)

    2001-01-01

    The MODIS instrument was launched on the NASA Terra satellite in Dec. 1999. Since last Oct., the sensor and the aerosol algorithm reached maturity and provide global daily retrievals of aerosol optical thickness and properties. MODIS has 36 spectral channels in the visible to IR with resolution down to 250 m. This allows accurate cloud screening and multi-spectral aerosol retrievals. We derive the aerosol optical thickness over the ocean and most of the land areas, distinguishing between fine (mainly man-made aerosol) and coarse aerosol particles. The information is more precise over the ocean where we derive also the effective radius and scattering asymmetry parameter of the aerosol. New methods to derive the aerosol single scattering albedo are also being developed. These measurements are use to track different aerosol sources, transport and the radiative forcing at the top and bottom of the atmosphere. The AErosol RObotic NETwork of ground based radiometers is used for global validation of the satellite derived optical thickness, size parameters and single scattering albedo and measure additional aerosol parameters that cannot be derived from space.

  3. Comparison of the MODIS Collection 5 Multilayer Cloud Detection Product with CALIPSO

    NASA Technical Reports Server (NTRS)

    Platnick, Steven; Wind, Gala; King, Michael D.; Holz, Robert E.; Ackerman, Steven A.; Nagle, Fred W.

    2010-01-01

    CALIPSO, launched in June 2006, provides global active remote sensing measurements of clouds and aerosols that can be used for validation of a variety of passive imager retrievals derived from instruments flying on the Aqua spacecraft and other A-Train platforms. The most recent processing effort for the MODIS Atmosphere Team, referred to as the Collection 5 scream, includes a research-level multilayer cloud detection algorithm that uses both thermodynamic phase information derived from a combination of solar and thermal emission bands to discriminate layers of different phases, as well as true layer separation discrimination using a moderately absorbing water vapor band. The multilayer detection algorithm is designed to provide a means of assessing the applicability of 1D cloud models used in the MODIS cloud optical and microphysical product retrieval, which are generated at a 1 km resolution. Using pixel-level collocations of MODIS Aqua, CALIOP, we investigate the global performance of multilayer cloud detection algorithms (and thermodynamic phase).

  4. Using the Sonoran Desert test site to monitor the long-term radiometric stability of the Landsat TM/ETM+ and Terra MODIS sensors

    USGS Publications Warehouse

    Angal, A.; Xiong, X.; Choi, T.; Chander, G.; Wu, A.

    2009-01-01

    Pseudo-invariant ground targets have been extensively used to monitor the long-term radiometric calibration stability of remote sensing instruments. The NASA MODIS Characterization Support Team (MCST), in collaboration with members from the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center, has previously demonstrated the use of pseudo-invariant ground sites for the long-term stability monitoring of Terra MODIS and Landsat 7 ETM+ sensors. This paper focuses on the results derived from observations made over the Sonoran Desert. Additionally, Landsat 5 TM data over the Sonoran Desert site were used to evaluate the temporal stability of this site. Top-ofatmosphere (TOA) reflectances were computed for the closely matched TM, ETM+, and MODIS spectral bands over selected regions of interest. The impacts due to different viewing geometries, or the effect of test site Bi-directional Reflectance Distribution Function (BRDF), are also presented. ?? 2009 SPIE.

  5. On-Orbit Operation and Performance of MODIS Blackbody

    NASA Technical Reports Server (NTRS)

    Xiong, X.; Chang, T.; Barnes, W.

    2009-01-01

    MODIS collects data in 36 spectral bands, including 20 reflective solar bands (RSB) and 16 thermal emissive bands (TES). The TEB on-orbit calibration is performed on a scan-by-scan basis using a quadratic algorithm that relates the detector response with the calibration radiance from the sensor on-board blackbody (BB). The calibration radiance is accurately determined each scan from the BB temperature measured using a set of 12 thermistors. The BB thermistors were calibrated pre-launch with traceability to the NIST temperature standard. Unlike many heritage sensors, the MODIS BB can be operated at a constant temperature or with the temperature continuously varying between instrument ambient (about 270K) and 315K. In this paper, we provide an overview of both Terra and Aqua MODIS on-board BB operations, functions, and on-orbit performance. We also examine the impact of key calibration parameters, such as BB emissivity and temperature (stability and gradient) determined from its thermistors, on the TEB calibration and Level I (LIB) data product uncertainty.

  6. On-orbit Characterization of RVS for MODIS Thermal Emissive Bands

    NASA Technical Reports Server (NTRS)

    Xiong, X.; Salomonson, V.; Chiang, K.; Wu, A.; Guenther, B.; Barnes, W.

    2004-01-01

    Response versus scan angle (RVS) is a key calibration parameter for remote sensing radiometers that make observations using a scanning optical system, such as a scan mirror in MODIS and GLI or a rotating telescope in SeaWiFS and VIIRS, since the calibration is typically performed at a fixed viewing angle while the Earth scene observations are made over a range of viewing angles. Terra MODIS has been in operation for more than four years since its launch in December 1999. It has 36 spectral bands covering spectral range from visible (VIS) to long-wave infrared (LWIR). It is a cross-track scanning radiometer using a two-sided paddle wheel scan mirror, making observations over a wide field of view (FOV) of +/-55 deg from the instrument nadir. This paper describes on-orbit characterization of MODIS RVS for its thermal emissive bands (TEB), using the Earth view data collected during Terra spacecraft deep space maneuvers (DSM). Comparisons with pre-launch analysis and early on-orbit measurements are also provided.

  7. Autumn snow across the Midwest

    NASA Image and Video Library

    2013-11-15

    An autumn storm brought the first snow of the season to the Upper Mississippi River Valley and the Midwestern United States in early November, 2013. The Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Terra satellite captured this true color image on November 6 just as the storm was clearing. A long band of snow stretching from Colorado in the southwest to Wisconsin in the northeast marked the path of the blowing storm. According to WeatherBug, up to 10 inches blanketed Gordon, Nebraska and Pipestone, Minnesota. Most snow totals in the Central and Northern Plains and Upper Mississippi Valley ranged from 2-5 inches, while Minneapolis-St. Paul metro area picked up 1-2 inches of new snow from the event. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  8. Ship Tracks in the Sky

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Because clouds represent an area of great uncertainty in studies of global climate, scientists are interested in better understanding the processes by which clouds form and change over time. In recent years, scientists have turned their attention to the ways in which human-produced aerosol pollution modifies clouds. One area that has drawn scientists' attention is 'ship tracks,' or clouds that form from the sulfate aerosols released by large ships. Although ships are not significant sources of pollution themselves, they do release enough sulfur dioxide in the exhaust from their smokestacks to modify overlying clouds. Specifically, the aerosol particles formed by the ship exhaust in the atmosphere cause the clouds to be more reflective, carry more water, and possibly inhibit them from precipitating. This is one example of how humans have been creating and modifying clouds for generations through the burning of fossil fuels. This image was acquired over the northern Pacific Ocean by the Moderate-resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra satellite, on April 29, 2002. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  9. Kamchatka Peninsula, Russia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Temperate and green in the summer, the Kamchatka Peninsula in northeastern Russia freezes over completely in the winter. This true-color image of the Kamchatka Peninsula was acquired on December 12, 2001, by the Moderate-resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra spacecraft. The peninsula is surrounded by the Sea of Okhotsk to the west and by the Bering Sea to the east. The ice and snow highlight the stunning valleys and tall peaks of the Sredinnyy Khrebet, which is the volcanic mountain range running down the center of the peninsula. The mountains along the range reach heights of over 3500 meters (11,484 feet). Many of the volcanoes are still active, and ash and volcanic rock has turned the snow a dark gray on the eastern side of the range. The light blue latticework of ridges, valleys, and alluvial fans extending from the center of the range were likely carved out by past and present glaciers and by run-off from spring snowmelt. The small island that extends off of the tip of the peninsula is Ostrov Paramushir (Paramushir Island). Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  10. Fires in Shenandoah National Park

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A large smoke plume has been streaming eastward from Virginia's Shenandoah National Park near Old Rag Mountain. Based on satellite images, it appears the blaze started sometime between October 30 and 31. This true-color image of the fire was obtained on November 1, 2000 by the Moderate-resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra spacecraft. Thermal Infrared data, overlaid on the color image, reveals the presence of two active fires underneath the smoke plume. The northern fire (upper) is burning near the Pinnacles Picnic Area along Skyline Drive. The southern fire (lower) is on Old Rag Mountain. Old Rag is one of the most popular hikes in the Washington, DC area, and features extremely rugged terrain, with granite cliffs up to 90 feet high. This scene was produced using MODIS direct broadcast data received and processed at the Space Science and Engineering Center, University of Wisconsin-Madison. The smoke plume appears blue-grey while the red and yellow pixels show the locations of the smoldering and flaming portions of the fire, respectively. Image by Liam Gumley, Cooperative Institute for Meteorological Satellite Studies, and Robert Simmon, NASA GSFC

  11. Canadian Smoke Now Over U.S. East Coast

    NASA Image and Video Library

    2017-12-08

    The smoke from the Canadian wildfires that was in the middle of the U.S. on June 30 has drifted its way to the East Coast obscuring parts of the coast from New Jersey to North Carolina. Images taken on June 30 showed the smoke covering states from Minnesota to Tennessee. The jet stream has pushed the smoke along so that by July 1 it reached the U.S. East Coast. Residents of the area will get a preview of July 4th fireworks with redder than usual sunrises and sunsets due to particulates in the air. This natural-color satellite image was collected by the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Aqua satellite on July 1, 2015. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  12. Flooding along Danube River

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Heavy rains in Central and Eastern Europe over the past few weeks have led to some of the worst flooding the region has witnessed in over a century. The floods have killed more than 100 people in Germany, Russia, Austria, Hungary and the Czech Republic and have led to as much as $20 billion in damage. This false-color image of the Danube River and its tributaries was taken on August 19, 2002, by the Moderate Resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra satellite. Budapest, the capital of Hungary, sits just south of the large bend in the river at the top of the image. Here the water reached levels not seen since 1965. Fortunately, the riverbanks are lined with 33-foot retainer walls throughout the city, so it did not face the same fate as Dresden or Prague along the Elbe River. But as one can see, the floodwaters hit many rural areas farther south. As last reported, the water was receding along the Danube. Credit: Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC.

  13. Remote sensing and water quality indicators in the Korean West coast: Spatio-temporal structures of MODIS-derived chlorophyll-a and total suspended solids.

    PubMed

    Kim, Hae-Cheol; Son, Seunghyun; Kim, Yong Hoon; Khim, Jong Seong; Nam, Jungho; Chang, Won Keun; Lee, Jung-Ho; Lee, Chang-Hee; Ryu, Jongseong

    2017-08-15

    The Yellow Sea is a shallow marginal sea with a large tidal range. In this study, ten areas located along the western coast of the Korean Peninsula are investigated with respect to remotely sensed water quality indicators derived from NASA MODIS aboard of the satellite Aqua. We found that there was a strong seasonal trend with spatial heterogeneity. In specific, a strong six-month phase-lag was found between chlorophyll-a and total suspended solid owing to their inversed seasonality, which could be explained by different dynamics and environmental settings. Chlorophyll-a concentration seemed to be dominantly influenced by temperature, while total suspended solid was largely governed by local tidal forcing and bottom topography. This study demonstrated the potential and applicability of satellite products in coastal management, and highlighted find that remote-sensing would be a promising tool in resolving orthogonality of large spatio-temporal scale variabilities when combining with proper time series analyses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Haze over eastern China

    NASA Image and Video Library

    2015-10-26

    On October 17, 2015, the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Terra satellite captured this true-color image of a thick haze hanging over eastern China. In the north, the large city of Beijing is completely obscured from view, as is much of the landscape. The haze thins slightly over the Bohai Sea. Further south, sediment pours into the East China Sea near the city of Shanghai. Heavy haze is common in this region, and tends to worsen in October through January, when cold, heavy air traps pollutants near the surface of the Earth. It is likely that this scene was caused by such a temperature inversion. Normally, air is warmest near the surface of the Earth. But sometimes a mass of warm air will move the cooler air, so the atmosphere actually warms with the altitude. Cool air does not have energy to rise through the warm air, vertical circulation slows and air becomes trapped near the surface. Any pollution that is emitted into the cooler air will also get trapped, increasing low-level air pollution and haze. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team

  15. SKYLAB (SL)-2 - HARDWARE (SAW)

    NASA Image and Video Library

    1973-06-04

    S73-27384 (June 1973) --- A close-up view of the surgical band saw, a surgical tool in the therapeutic kit of the Inflight Medical Support System aboard the Skylab 1 & 2 space station cluster now in Earth orbit. Since this instrument can cut through metal (as illustrated here), it can be used in making emergency maintenance repairs aboard the space station. Photo credit: NASA

  16. Operational Observation of Australian Bioregions with Bands 8-19 of Modis

    NASA Astrophysics Data System (ADS)

    McAtee, B. K.; Gray, M.; Broomhall, M.; Lynch, M.; Fearns, P.

    2012-07-01

    Data from bands 1-7 are the most common bands of the MODIS instrument used for near-real time terrestrial earth observation operations in Australia. However, many of Australia's bioregions present unique scenarios which constitute a challenge for quantitative environmental remote sensing. We believe that data from MODIS bands 8-19 may provide significant benefit to Earth observation over particular bioregions of the Australian continent. Examples here include the use of band 8 in characterising aerosol optical depth over typically bright land surfaces and accounting for anomalous retrievals of atmospheric water vapour obtained using MOD05 based on the abundance of Australia's 'red dirt', which exhibits absorption features in the near infrared bands 17-19 of MODIS. Bioregion-focused applications such as those mentioned above have driven the development of automated processing, infrastructure for the atmospheric and BRDF correction of the first 19 bands of MODIS rather than only the first 7, which is more often the case. This work has been facilitated by the AusCover project which is the remote sensing component of the Terrestrial Ecosystem Research Network (TERN), itself a program designed to create a new generation of infrastructure for ecological study of the Australian landscape.

  17. A Technique for Remote Sensing of Suspended Sediments and Shallow Coastal Waters Using MODIS Visible and Near-IR Channels

    NASA Technical Reports Server (NTRS)

    Li, Rong-Rong; Kaufman, Yoram J.

    2002-01-01

    We have developed an algorithm to detect suspended sediments and shallow coastal waters using imaging data acquired with the Moderate Resolution Imaging SpectroRadiometer (MODIS). The MODIS instruments on board the NASA Terra and Aqua Spacecrafts are equipped with one set of narrow channels located in a wide 0.4 - 2.5 micron spectral range. These channels were designed primarily for remote sensing of the land surface and atmosphere. We have found that the set of land and cloud channels are also quite useful for remote sensing of the bright coastal waters. We have developed an empirical algorithm, which uses the narrow MODIS channels in this wide spectral range, for identifying areas with suspended sediments in turbid waters and shallow waters with bottom reflections. In our algorithm, we take advantage of the strong water absorption at wavelengths longer than 1 micron that does not allow illumination of sediments in the water or a shallow ocean floor. MODIS data acquired over the east coast of China, west coast of Africa, Arabian Sea, Mississippi Delta, and west coast of Florida are used in this study.

  18. Can MODIS Data Calibrate and Validate Coastal Sediment Transport Models? Rapid Prototyping Using 250 m Data and the ECOMSED Model for Lake Pontchartrain, LA USA

    NASA Technical Reports Server (NTRS)

    Miller, Richard L.; Georgiou, Ioannis; Glorioso, Mark V.; McCorquodale, J. Alex; Crowder, Keely

    2006-01-01

    Field measurements from small boats and sparse arrays of instrumented buoys often do not provide sufficient data to capture the dynamic nature of biogeophysical parameters in may coastal aquatic environments. Several investigators have shown the MODIS 250 m images can provide daily synoptic views of suspended sediment concentration in coastal waters to determine sediment transport and fate. However, the use of MODIS for coastal environments can be limited due to a lack of cloud-free images. Sediment transport models are not constrained by sky conditions but often suffer from a lack of in situ observations for model calibration or validation. We demonstrate here the utility of MODIS 250 m to calibrate (set model parameters), validate output, and set or reset initial conditions of a hydrodynamic and sediment transport model (ECOMSED) developed for Lake Pontchartrain, LA USA. We present our approach in the context of how to quickly assess of 'prototype' an application of NASA data to support environmental managers and decision makers. The combination of daily MODIS imagery and model simulations offer a more robust monitoring and prediction system of suspended sediments than available from either system alone.

  19. A Technique For Remote Sensing Of Suspended Sediments And Shallow Coastal Waters Using MODIS Visible and Near-IR Channels

    NASA Astrophysics Data System (ADS)

    Li, R.; Kaufman, Y.

    2002-12-01

    ABSTRACT We have developed an algorithm to detect suspended sediments and shallow coastal waters using imaging data acquired with the Moderate Resolution Imaging SpectroRadiometer (MODIS). The MODIS instruments on board the NASA Terra and Aqua Spacecrafts are equipped with one set of narrow channels located in a wide 0.4 - 2.5 micron spectral range. These channels were designed primarily for remote sensing of the land surface and atmosphere. We have found that the set of land and cloud channels are also quite useful for remote sensing of the bright coastal waters. We have developed an empirical algorithm, which uses the narrow MODIS channels in this wide spectral range, for identifying areas with suspended sediments in turbid waters and shallow waters with bottom reflections. In our algorithm, we take advantage of the strong water absorption at wavelengths longer than 1 æm that does not allow illumination of sediments in the water or a shallow ocean floor. MODIS data acquired over the east coast of China, west coast of Africa, Arabian Sea, Mississippi Delta, and west coast of Florida are used in this study.

  20. A Sample of What We Have Learned from A-Train Cloud Measurements

    NASA Technical Reports Server (NTRS)

    Joiner, Joanna; Vasilkov, Alexander; Ziemke, Jerry; Chandra, Sushil; Spurr, Robert; Bhartia, P. K.; Krotkov, Nick; Sneep, Maarten; Menzel, Paul; Platnick, Steve; hide

    2008-01-01

    The A-train active sensors CloudSat and CALIPSO provide detailed information about cloud vertical structure. Coarse vertical information can also be obtained from a combination of passive sensors (e.g. cloud liquid water content from AMSR-E, cloud ice properties from MLS and HIRDLS, cloud-top pressure from MODIS and AIRS, and UVNISINear IR absorption and scattering from OMI, MODIS, and POLDER). In addition, the wide swaths of instruments such as MODIS, AIRS, OMI, POLDER, and AMSR-E can be exploited to create estimates of the three-dimensional cloud extent. We will show how data fusion from A-train sensors can be used, e.g., to detect and map the presence of multiple layer/phase clouds. Ultimately, combined cloud information from Atrain instruments will allow for estimates of heating and radiative flux at the surface as well as UV/VIS/Near IR trace-gas absorption at the overpass time on a near-global daily basis. CloudSat has also dramatically improved our interpretation of visible and UV passive measurements in complex cloudy situations such as deep convection and multiple cloud layers. This has led to new approaches for unique and accurate constituent retrievals from A-train instruments. For example, ozone mixing ratios inside tropical deep convective clouds have recently been estimated using the Aura Ozone Monitoring Instrument (OMI). Field campaign data from TC4 provide additional information about the spatial variability and origin of trace-gases inside convective clouds. We will highlight some of the new applications of remote sensing in cloudy conditions that have been enabled by the synergy between the A-train active and passive sensors.

  1. EOS Terra Validation Program

    NASA Technical Reports Server (NTRS)

    Starr, David

    2000-01-01

    The EOS Terra mission will be launched in July 1999. This mission has great relevance to the atmospheric radiation community and global change issues. Terra instruments include Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Clouds and Earth's Radiant Energy System (CERES), Multi-Angle Imaging Spectroradiometer (MISR), Moderate Resolution Imaging Spectroradiometer (MODIS) and Measurements of Pollution in the Troposphere (MOPITT). In addition to the fundamental radiance data sets, numerous global science data products will be generated, including various Earth radiation budget, cloud and aerosol parameters, as well as land surface, terrestrial ecology, ocean color, and atmospheric chemistry parameters. Significant investments have been made in on-board calibration to ensure the quality of the radiance observations. A key component of the Terra mission is the validation of the science data products. This is essential for a mission focused on global change issues and the underlying processes. The Terra algorithms have been subject to extensive pre-launch testing with field data whenever possible. Intensive efforts will be made to validate the Terra data products after launch. These include validation of instrument calibration (vicarious calibration) experiments, instrument and cross-platform comparisons, routine collection of high quality correlative data from ground-based networks, such as AERONET, and intensive sites, such as the SGP ARM site, as well as a variety field experiments, cruises, etc. Airborne simulator instruments have been developed for the field experiment and underflight activities including the MODIS Airborne Simulator (MAS) AirMISR, MASTER (MODIS-ASTER), and MOPITT-A. All are integrated on the NASA ER-2 though low altitude platforms are more typically used for MASTER. MATR is an additional sensor used for MOPITT algorithm development and validation. The intensive validation activities planned for the first year of the Terra mission will be described with emphasis on derived geophysical parameters of most relevance to the atmospheric radiation community.

  2. EOS Terra Validation Program

    NASA Technical Reports Server (NTRS)

    Starr, David

    1999-01-01

    The EOS Terra mission will be launched in July 1999. This mission has great relevance to the atmospheric radiation community and global change issues. Terra instruments include ASTER, CERES, MISR, MODIS and MOPITT. In addition to the fundamental radiance data sets, numerous global science data products will be generated, including various Earth radiation budget, cloud and aerosol parameters, as well as land surface, terrestrial ecology, ocean color, and atmospheric chemistry parameters. Significant investments have been made in on-board calibration to ensure the quality of the radiance observations. A key component of the Terra mission is the validation of the science data products. This is essential for a mission focused on global change issues and the underlying processes. The Terra algorithms have been subject to extensive pre-launch testing with field data whenever possible. Intensive efforts will be made to validate the Terra data products after launch. These include validation of instrument calibration (vicarious calibration) experiments, instrument and cross-platform comparisons, routine collection of high quality correlative data from ground-based networks, such as AERONET, and intensive sites, such as the SGP ARM site, as well as a variety field experiments, cruises, etc. Airborne simulator instruments have been developed for the field experiment and underflight activities including the MODIS Airborne Simulator (MAS), AirMISR, MASTER (MODIS-ASTER), and MOPITT-A. All are integrated on the NASA ER-2, though low altitude platforms are more typically used for MASTER. MATR is an additional sensor used for MOPITT algorithm development and validation. The intensive validation activities planned for the first year of the Terra mission will be described with emphasis on derived geophysical parameters of most relevance to the atmospheric radiation community. Detailed information about the EOS Terra validation Program can be found on the EOS Validation program homepage i/e.: http://ospso.gsfc.nasa.gov/validation/valpage.html).

  3. Onboard Image Registration from Invariant Features

    NASA Technical Reports Server (NTRS)

    Wang, Yi; Ng, Justin; Garay, Michael J.; Burl, Michael C

    2008-01-01

    This paper describes a feature-based image registration technique that is potentially well-suited for onboard deployment. The overall goal is to provide a fast, robust method for dynamically combining observations from multiple platforms into sensors webs that respond quickly to short-lived events and provide rich observations of objects that evolve in space and time. The approach, which has enjoyed considerable success in mainstream computer vision applications, uses invariant SIFT descriptors extracted at image interest points together with the RANSAC algorithm to robustly estimate transformation parameters that relate one image to another. Experimental results for two satellite image registration tasks are presented: (1) automatic registration of images from the MODIS instrument on Terra to the MODIS instrument on Aqua and (2) automatic stabilization of a multi-day sequence of GOES-West images collected during the October 2007 Southern California wildfires.

  4. NASA's MODIS/VIIRS Land Surface Temperature and Emissivity Products: Asssessment of Accuracy, Continuity and Science Uses

    NASA Astrophysics Data System (ADS)

    Hulley, G. C.; Malakar, N.; Islam, T.

    2017-12-01

    Land Surface Temperature and Emissivity (LST&E) are an important Earth System Data Record (ESDR) and Environmental Climate Variable (ECV) defined by NASA and GCOS respectively. LST&E data are key variables used in land cover/land use change studies, in surface energy balance and atmospheric water vapor retrieval models and retrievals, and in climate research. LST&E products are currently produced on a routine basis using data from the MODIS instruments on the NASA EOS platforms and by the VIIRS instrument on the Suomi-NPP platform that serves as a bridge between NASA EOS and the next-generation JPSS platforms. Two new NASA LST&E products for MODIS (MxD21) and VIIRS (VNP21) are being produced during 2017 using a new approach that addresses discrepancies in accuracy and consistency between the current suite of split-window based LST products. The new approach uses a Temperature Emissivity Separation (TES) algorithm, originally developed for the ASTER instrument, to physically retrieve both LST and spectral emissivity consistently for both sensors with high accuracy and well defined uncertainties. This study provides a rigorous assessment of accuracy of the MxD21/VNP21 products using temperature- and radiance-based validation strategies and demonstrates continuity between the products using collocated matchups over CONUS. We will further demonstrate potential science use of the new products with studies related to heat waves, monitoring snow melt dynamics, and land cover/land use change.

  5. Land and cryosphere products from Suomi NPP VIIRS: Overview and status

    PubMed Central

    Justice, Christopher O; Román, Miguel O; Csiszar, Ivan; Vermote, Eric F; Wolfe, Robert E; Hook, Simon J; Friedl, Mark; Wang, Zhuosen; Schaaf, Crystal B; Miura, Tomoaki; Tschudi, Mark; Riggs, George; Hall, Dorothy K; Lyapustin, Alexei I; Devadiga, Sadashiva; Davidson, Carol; Masuoka, Edward J

    2013-01-01

    [1] The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument was launched in October 2011 as part of the Suomi National Polar-Orbiting Partnership (S-NPP). The VIIRS instrument was designed to improve upon the capabilities of the operational Advanced Very High Resolution Radiometer and provide observation continuity with NASA’s Earth Observing System’s Moderate Resolution Imaging Spectroradiometer (MODIS). Since the VIIRS first-light images were received in November 2011, NASA- and NOAA-funded scientists have been working to evaluate the instrument performance and generate land and cryosphere products to meet the needs of the NOAA operational users and the NASA science community. NOAA’s focus has been on refining a suite of operational products known as Environmental Data Records (EDRs), which were developed according to project specifications under the National Polar-Orbiting Environmental Satellite System. The NASA S-NPP Science Team has focused on evaluating the EDRs for science use, developing and testing additional products to meet science data needs, and providing MODIS data product continuity. This paper presents to-date findings of the NASA Science Team’s evaluation of the VIIRS land and cryosphere EDRs, specifically Surface Reflectance, Land Surface Temperature, Surface Albedo, Vegetation Indices, Surface Type, Active Fires, Snow Cover, Ice Surface Temperature, and Sea Ice Characterization. The study concludes that, for MODIS data product continuity and earth system science, an enhanced suite of land and cryosphere products and associated data system capabilities are needed beyond the EDRs currently available from the VIIRS. PMID:25821661

  6. Land and cryosphere products from Suomi NPP VIIRS: Overview and status.

    PubMed

    Justice, Christopher O; Román, Miguel O; Csiszar, Ivan; Vermote, Eric F; Wolfe, Robert E; Hook, Simon J; Friedl, Mark; Wang, Zhuosen; Schaaf, Crystal B; Miura, Tomoaki; Tschudi, Mark; Riggs, George; Hall, Dorothy K; Lyapustin, Alexei I; Devadiga, Sadashiva; Davidson, Carol; Masuoka, Edward J

    2013-09-16

    [1] The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument was launched in October 2011 as part of the Suomi National Polar-Orbiting Partnership (S-NPP). The VIIRS instrument was designed to improve upon the capabilities of the operational Advanced Very High Resolution Radiometer and provide observation continuity with NASA's Earth Observing System's Moderate Resolution Imaging Spectroradiometer (MODIS). Since the VIIRS first-light images were received in November 2011, NASA- and NOAA-funded scientists have been working to evaluate the instrument performance and generate land and cryosphere products to meet the needs of the NOAA operational users and the NASA science community. NOAA's focus has been on refining a suite of operational products known as Environmental Data Records (EDRs), which were developed according to project specifications under the National Polar-Orbiting Environmental Satellite System. The NASA S-NPP Science Team has focused on evaluating the EDRs for science use, developing and testing additional products to meet science data needs, and providing MODIS data product continuity. This paper presents to-date findings of the NASA Science Team's evaluation of the VIIRS land and cryosphere EDRs, specifically Surface Reflectance, Land Surface Temperature, Surface Albedo, Vegetation Indices, Surface Type, Active Fires, Snow Cover, Ice Surface Temperature, and Sea Ice Characterization. The study concludes that, for MODIS data product continuity and earth system science, an enhanced suite of land and cryosphere products and associated data system capabilities are needed beyond the EDRs currently available from the VIIRS.

  7. Surface BRDF estimation from an aircraft compared to MODIS and ground estimates at the Southern Great Plains site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knobelspiesse, Kirk D.; Cairns, Brian; Schmid, Beat

    2008-10-21

    The surface spectral albedo is an important component of climate models since it determines the amount of incident solar radiation that is absorbed by the ground. The albedo can be highly heterogeneous, both in space and time, and thus adequate measurement and modeling is challenging. One source of measurements that constrain the surface albedo are satellite instruments that observe the Earth, such as the Moderate Resolution Imaging Spectroradiometer (MODIS). Satellites estimate the surface bidirectional reflectance distribution function (BRDF) by correcting top of the atmosphere (TOA) radiances for atmospheric effects and accumulating observations at a variety of viewing geometries. The BRDFmore » can then be used to determine the albedo that is required in climate modeling. Other measurements that provide a more direct constraint on surface albedo are those made by upward and downward looking radiometers at the ground. One product in particular, the Best Estimate Radiation Flux (BEFLUX) value added product of the Department of Energy’s Atmospheric Radiation Measurement (ARM) Program at the Southern Great Plains Central Facility (SGP CF) in central Oklahoma, has been used to evaluate the quality of the albedo products derived from MODIS BRDF estimates. These comparisons have highlighted discrepancies between the energy absorbed at the surface that is calculated from the BEFLUX products and that is predicted from the MODIS BRDF product. This paper attempts to investigate these discrepancies by using data from an airborne scanning radiometer, the Research Scanning Polarimeter (RSP) that was flown at low altitude in the vicinity of the SGP CF site during the Aerosol Lidar Validation Experiment (ALIVE) in September of 2005. The RSP is a polarimeter that scans in the direction of the aircraft ground track, and can thus estimate the BRDF in a period of seconds, rather than the days required by MODIS to accumulate enough viewing angles. Atmospheric correction is aided by the Ames Airborne Tracking Sunphotometer (AATS-14), which was operated on the same aircraft as the RSP. The RSP data can therefore be used to validate the MODIS BRDF product and diagnose the reason for the discrepancies with BEFLUX. Our analysis indicates that MODIS and RSP estimates of surface absorption and BEFLUX measurements do agree and that previously noticed differences between MODIS albedo products and BEFLUX were due as much to the analysis techniques used as to any instrumental effects. We conclude that the MODIS BRDF products provide a useful measure of surface albedo that can be used to determine whether the surface radiative heating in climate models has a realistic spatial and seasonal variation.« less

  8. Oil Spill in Gulf of Mexico April 29th View

    NASA Image and Video Library

    2017-12-08

    2010/119 - 04/29 at 16 :48 UTC Oil slick in the Gulf of Mexico (Input Direct Broadcast data courtesy Direct Readout Lab, NASA/GSFC) Satellite: Terra NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team To learn more about MODIS go to: rapidfire.sci.gsfc.nasa.gov/gallery/?latest NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

  9. Global monitoring of atmospheric properties by the EOS MODIS

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    1993-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) being developed for the Earth Observing System (EOS) is well suited to the global monitoring of atmospheric properties from space. Among the atmospheric properties to be examined using MODIS observations, clouds are especially important, since they are a strong modulator of the shortwave and longwave components of the earth's radiation budget. A knowledge of cloud properties (such as optical thickness and effective radius) and their variation in space and time, which are our task objectives, is also crucial to studies of global climate change. In addition, with the use of related airborne instrumentation, such as the Cloud Absorption Radiometer (CAR) and MODIS Airborne Simulator (MAS) in intensive field experiments (both national and international campaigns, see below), various types of surface and cloud properties can be derived from the measured bidirectional reflectances. These missions have provided valuable experimental data to determine the capability of narrow bandpass channels in examining the Earth's atmosphere and to aid in defining algorithms and building an understanding of the ability of MODIS to remotely sense atmospheric conditions for assessing global change. Therefore, the primary task objective is to extend and expand our algorithm for retrieving the optical thickness and effective radius of clouds from radiation measurements to be obtained from MODIS. The secondary objective is to obtain an enhanced knowledge of surface angular and spectral properties that can be inferred from airborne directional radiance measurements.

  10. Improvement in the Characterization of MODIS Subframe Difference

    NASA Technical Reports Server (NTRS)

    Li, Yonghong; Angal, Amit; Chen, Na; Geng, Xu; Link, Daniel; Wang, Zhipeng; Wu, Aisheng; Xiong, Xiaoxiong

    2016-01-01

    MODIS is a key instrument of NASA's Earth Observing System. It has successfully operated for 16+ years on the Terra satellite and 14+ years on the Aqua satellite, respectively. MODIS has 36 spectral bands at three different nadir spatial resolutions, 250m (bands 1-2), 500m (bands 3-7), and 1km (bands 8-36). MODIS subframe measurement is designed for bands 1-7 to match their spatial resolution in the scan direction to that of the track direction. Within each 1 km frame, the MODIS 250 m resolution bands sample four subframes and the 500 m resolution bands sample two subframes. The detector gains are calibrated at a subframe level. Due to calibration differences between subframes, noticeable subframe striping is observed in the Level 1B (L1B) products, which exhibit a predominant radiance-level dependence. This paper presents results of subframe differences from various onboard and earth-view data sources (e.g. solar diffuser, electronic calibration, spectro-radiometric calibration assembly, Earth view, etc.). A subframe bias correction algorithm is proposed to minimize the subframe striping in MODIS L1B image. The algorithm has been tested using sample L1B images and the vertical striping at lower radiance value is mitigated after applying the corrections. The subframe bias correction approach will be considered for implementation in future versions of the calibration algorithm.

  11. Validation of MODIS integrated water vapor product against reference GPS data at the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Vaquero-Martínez, Javier; Antón, Manuel; Ortiz de Galisteo, José Pablo; Cachorro, Victoria E.; Costa, Maria João; Román, Roberto; Bennouna, Yasmine S.

    2017-12-01

    In this work, the water vapor product from MODIS (MODerate-resolution Imaging Spectroradiometer) instrument, on-board Aqua and Terra satellites, is compared against GPS water vapor data from 21 stations in the Iberian Peninsula as reference. GPS water vapor data is obtained from ground-based receiver stations which measure the delay caused by water vapor in the GPS microwave signals. The study period extends from 2007 until 2012. Regression analysis in every GPS station show that MODIS overestimates low integrated water vapor (IWV) data and tends to underestimate high IWV data. R2 shows a fair agreement, between 0.38 and 0.71. Inter-quartile range (IQR) in every station is around 30-45%. The dependence on several parameters was also analyzed. IWV dependence showed that low IWV are highly overestimated by MODIS, with high IQR (low precision), sharply decreasing as IWV increases. Regarding dependence on solar zenith angle (SZA), performance of MODIS IWV data decreases between 50° and 90°, while night-time MODIS data (infrared) are quite stable. The seasonal cycles of IWV and SZA cause a seasonal dependence on MODIS performance. In summer and winter, MODIS IWV tends to overestimate the reference IWV value, while in spring and autumn the tendency is to underestimate. Low IWV from coastal stations is highly overestimated (∼60%) and quite imprecise (IQR around 60%). On the contrary, high IWV data show very little dependence along seasons. Cloud-fraction (CF) dependence was also studied, showing that clouds display a negligible impact on IWV over/underestimation. However, IQR increases with CF, except in night-time satellite values, which are quite stable.

  12. An Overview of the Earth Observing System Moderate Resolution Imaging Spectroradiometer (MODIS) Data Products and Availability for Environmental Applications and Global Change Studies

    NASA Technical Reports Server (NTRS)

    Salomonson, V. V.

    2003-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) on the Earth Observing System (EOS) Terra Mission began to produce data in February 2000. The Terra MODIS is in a sun-synchronous orbit going north to south in the daylight portion of the orbit crossing the equator at about 1030 hours local time. The spacecraft, instrument, and data systems are performing well and are producing a wide variety of data products useful for scientific and applications studies in relatively consistent fashion extending from November 2000 to the present. Within the approximately 40 MODIS data products, several are new and represent powerful and exciting capabilities such the ability to provide observations over the globe of fire occurrences, microphysical properties of clouds and sun-stimulated fluorescence from phytoplankton in the surface waters of the ocean. The remainder of the MODIS products exceeds or, at a minimum, matches the capabilities of products from heritage sensors such as, for example, the Advanced Very High Resolution Radiometer (AVHRR). Efforts are underway to provide data sets for the greater Earth science community and to improve access to these products at the various Distributed Active Archive Centers (DAACs) or through Direct Broadcast (DB) stations. The EOS Aqua mission was launched successfully May 4,2002 with another MODIS on it. The Aqua spacecraft operates in a sun-synchronous orbit going south to north in the daylight portion of the orbit crossing the equator at approximately 1330 hours local time. Subsequently the Aqua MODIS observations will substantially add to the capabilities of the Terra MODIS for environmental applications and global change studies.

  13. Global Data for Ecology and Epidemiology: A Novel Algorithm for Temporal Fourier Processing MODIS Data

    PubMed Central

    Scharlemann, Jörn P. W.; Benz, David; Hay, Simon I.; Purse, Bethan V.; Tatem, Andrew J.; Wint, G. R. William; Rogers, David J.

    2008-01-01

    Background Remotely-sensed environmental data from earth-orbiting satellites are increasingly used to model the distribution and abundance of both plant and animal species, especially those of economic or conservation importance. Time series of data from the MODerate-resolution Imaging Spectroradiometer (MODIS) sensors on-board NASA's Terra and Aqua satellites offer the potential to capture environmental thermal and vegetation seasonality, through temporal Fourier analysis, more accurately than was previously possible using the NOAA Advanced Very High Resolution Radiometer (AVHRR) sensor data. MODIS data are composited over 8- or 16-day time intervals that pose unique problems for temporal Fourier analysis. Applying standard techniques to MODIS data can introduce errors of up to 30% in the estimation of the amplitudes and phases of the Fourier harmonics. Methodology/Principal Findings We present a novel spline-based algorithm that overcomes the processing problems of composited MODIS data. The algorithm is tested on artificial data generated using randomly selected values of both amplitudes and phases, and provides an accurate estimate of the input variables under all conditions. The algorithm was then applied to produce layers that capture the seasonality in MODIS data for the period from 2001 to 2005. Conclusions/Significance Global temporal Fourier processed images of 1 km MODIS data for Middle Infrared Reflectance, day- and night-time Land Surface Temperature (LST), Normalised Difference Vegetation Index (NDVI), and Enhanced Vegetation Index (EVI) are presented for ecological and epidemiological applications. The finer spatial and temporal resolution, combined with the greater geolocational and spectral accuracy of the MODIS instruments, compared with previous multi-temporal data sets, mean that these data may be used with greater confidence in species' distribution modelling. PMID:18183289

  14. Global data for ecology and epidemiology: a novel algorithm for temporal Fourier processing MODIS data.

    PubMed

    Scharlemann, Jörn P W; Benz, David; Hay, Simon I; Purse, Bethan V; Tatem, Andrew J; Wint, G R William; Rogers, David J

    2008-01-09

    Remotely-sensed environmental data from earth-orbiting satellites are increasingly used to model the distribution and abundance of both plant and animal species, especially those of economic or conservation importance. Time series of data from the MODerate-resolution Imaging Spectroradiometer (MODIS) sensors on-board NASA's Terra and Aqua satellites offer the potential to capture environmental thermal and vegetation seasonality, through temporal Fourier analysis, more accurately than was previously possible using the NOAA Advanced Very High Resolution Radiometer (AVHRR) sensor data. MODIS data are composited over 8- or 16-day time intervals that pose unique problems for temporal Fourier analysis. Applying standard techniques to MODIS data can introduce errors of up to 30% in the estimation of the amplitudes and phases of the Fourier harmonics. We present a novel spline-based algorithm that overcomes the processing problems of composited MODIS data. The algorithm is tested on artificial data generated using randomly selected values of both amplitudes and phases, and provides an accurate estimate of the input variables under all conditions. The algorithm was then applied to produce layers that capture the seasonality in MODIS data for the period from 2001 to 2005. Global temporal Fourier processed images of 1 km MODIS data for Middle Infrared Reflectance, day- and night-time Land Surface Temperature (LST), Normalised Difference Vegetation Index (NDVI), and Enhanced Vegetation Index (EVI) are presented for ecological and epidemiological applications. The finer spatial and temporal resolution, combined with the greater geolocational and spectral accuracy of the MODIS instruments, compared with previous multi-temporal data sets, mean that these data may be used with greater confidence in species' distribution modelling.

  15. Sensor On-orbit Calibration and Characterization Using Spacecraft Maneuvers

    NASA Technical Reports Server (NTRS)

    Xiong, X.; Butler, Jim; Barnes, W. L.; Guenther, B.

    2007-01-01

    Spacecraft flight operations often require activities that involve different kinds of maneuvers for orbital adjustments (pitch, yaw, and roll). Different maneuvers, when properly planned and scheduled, can also be applied to support and/or to perform on-board sensor calibration and characterization. This paper uses MODIS (Moderate Resolution Imaging Spectroradiometer) as an example to illustrate applications of spacecraft maneuvers for Earth-observing sensors on-orbit calibration and characterization. MODIS is one of the key instruments for NASA's Earth Observing System (EOS) currently operated on-board the EOS Terra and Aqua spacecraft launched in December 1999 and May 2002, respectively. Since their launch, both Terra and Aqua spacecraft have made a number of maneuvers, specially the yaw and roll maneuvers, to support the MODIS on-orbit calibration and characterization. For both Terra and Aqua MODIS, near-monthly spacecraft roll maneuvers are executed for lunar observations. These maneuvers are carefully scheduled so that the lunar phase angles are nearly identical for each sensor's lunar observations. The lunar observations are used to track MODIS reflective solar bands (RSB) calibration stability and to inter-compare Terra and Aqua MODIS RSB calibration consistency. To date, two sets of yaw maneuvers (each consists of two series of 8 consecutive yaws) by the Terra spacecraft and one set by the Aqua spacecraft have been performed to validate MODIS solar diffuser (SD) bi-directional reflectance factor (BRF) and to derive SD screen transmission. Terra spacecraft pitch maneuvers, first made on March 26, 2003 and the second on April 14, 2003 (with the Moon in the spacecraft nadir view), have been applied to characterize MODIS thermal emissive bands (TEB) response versus scan angle (RVS). This is particularly important since the pre-launch TEB RSV measurements made by the sensor vendor were not successful. Terra MODIS TEB RVS obtained from pitch maneuvers have been used in the current LIB calibration algorithm. Lunq observations from pitch maneuvers also provided information to cross-calibrate MODIS with other sensors (MISR and ASTER) on the same platform. We will provide a summary of MODIS maneuver activities and their applications for MODIS calibration and characterization. The results and lessons learned discussed in this paper from MODIS maneuver activities will provide useful insights into future spacecraft and sensor operation.

  16. Warm Rivers Play Role in Arctic Sea Ice Melt

    NASA Image and Video Library

    2014-03-05

    Beaufort Sea surface temperatures where Canada Mackenzie River discharges into the Arctic Ocean, measured by NASA MODIS instrument; warm river waters had broken through a shoreline sea ice barrier to enhance sea ice melt.

  17. Orbiting Carbon Observatory-2 (OCO-2) Cloud Screening; Validation Against Collocated MODIS and Initial Comparison to CALIOP Data

    NASA Technical Reports Server (NTRS)

    Taylor, Thomas E.; O'Dell, Christopher W.; Frankenberg, Christian; Partain, Philip; Cronk, Heather W.; Savtchenko, Andrey; Nelson, Robert R.; Rosenthal, Emily J.; Chang, Albert; Crisp, David; hide

    2015-01-01

    The retrieval of the column-averaged carbon dioxide (CO2) dry air mole fraction (XCO2 ) from satellite measurements of reflected sunlight in the near-infrared can be biased due to contamination by clouds and aerosols within the instrument's field of view (FOV). Therefore, accurate aerosol and cloud screening of soundings is required prior to their use in the computationally expensive XCO2 retrieval algorithm. Robust cloud screening methods have been an important focus of the retrieval algorithm team for the National Aeronautics and Space Administration (NASA) Orbiting Carbon Observatory-2 (OCO-2), which was successfully launched into orbit on July 2, 2014. Two distinct spectrally-based algorithms have been developed for the purpose of cloud clearing OCO-2 soundings. The A-Band Preprocessor (ABP) performs a retrieval of surface pressure using measurements in the 0.76 micron O2 A-band to distinguish changes in the expected photon path length. The Iterative Maximum A-Posteriori (IMAP) Differential Optical Absorption Spectroscopy (DOAS) (IDP) algorithm is a non- scattering routine that operates on the O2 A-band as well as two CO2 absorption bands at 1.6 m (weak CO2 band) and 2.0 m (strong CO2 band) to provide band-dependent estimates of CO2 and H2O. Spectral ratios of retrieved CO2 and H2O identify measurements contaminated with cloud and scattering aerosols. Information from the two preprocessors is feed into a sounding selection tool to strategically down select from the order one million daily soundings collected by OCO-2 to a manageable number (order 10 to 20%) to be processed by the OCO-2 L2 XCO2 retrieval algorithm. Regional biases or errors in the selection of clear-sky soundings will introduce errors in the final retrieved XCO2 values, ultimately yielding errors in the flux inversion models used to determine global sources and sinks of CO2. In this work collocated measurements from NASA's Moderate Resolution Imaging Spectrometer (MODIS), aboard the Aqua platform, and the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite, are used as a reference to access the accuracy and strengths and weaknesses of the OCO-2 screening algorithms. The combination of the ABP and IDP algorithms is shown to provide very robust and complimentary cloud filtering as compared to the results from MODIS and CALIOP. With idealized algorithm tuning to allow throughputs of 20-25%, correct classification of scenes, i.e., accuracies, are found to be ' 80-90% over several orbit repeat cycles in both the win ter and spring time for the three main viewing configurations of OCO-2; nadir-land, glint-land and glint-water. Investigation unveiled no major spatial or temporal dependencies, although slight differences in the seasonal data sets do exist and classification tends to be more problematic with increasing solar zenith angle and when surfaces are covered in snow and ice. An in depth analysis on both a simulated data set and real OCO-2 measurements against CALIOP highlight the strength of the ABP in identifying high, thin clouds while it often misses clouds near the surface even when the optical thickness is greater than 1. Fortunately, by combining the ABP with the IDP, the number of thick low clouds passing the preprocessors is partially mitigated.

  18. A Simple Technique for Creating Regional Composites of Sea Surface Temperature from MODIS for Use in Operational Mesoscale NWP

    NASA Technical Reports Server (NTRS)

    Knievel, Jason C.; Rife, Daran L.; Grim, Joseph A.; Hahmann, Andrea N.; Hacker, Joshua P.; Ge, Ming; Fisher, Henry H.

    2010-01-01

    This paper describes a simple technique for creating regional, high-resolution, daytime and nighttime composites of sea surface temperature (SST) for use in operational numerical weather prediction (NWP). The composites are based on observations from NASA s Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Aqua and Terra. The data used typically are available nearly in real time, are applicable anywhere on the globe, and are capable of roughly representing the diurnal cycle in SST. The composites resolution is much higher than that of many other standard SST products used for operational NWP, including the low- and high-resolution Real-Time Global (RTG) analyses. The difference in resolution is key because several studies have shown that highly resolved SSTs are important for driving the air sea interactions that shape patterns of static stability, vertical and horizontal wind shear, and divergence in the planetary boundary layer. The MODIS-based composites are compared to in situ observations from buoys and other platforms operated by the National Data Buoy Center (NDBC) off the coasts of New England, the mid-Atlantic, and Florida. Mean differences, mean absolute differences, and root-mean-square differences between the composites and the NDBC observations are all within tenths of a degree of those calculated between RTG analyses and the NDBC observations. This is true whether or not one accounts for the mean offset between the skin temperatures of the MODIS dataset and the bulk temperatures of the NDBC observations and RTG analyses. Near the coast, the MODIS-based composites tend to agree more with NDBC observations than do the RTG analyses. The opposite is true away from the coast. All of these differences in point-wise comparisons among the SST datasets are small compared to the 61.08C accuracy of the NDBC SST sensors. Because skin-temperature variations from land to water so strongly affect the development and life cycle of the sea breeze, this phenomenon was chosen for demonstrating the use of the MODIS-based composite in an NWP model. A simulated sea breeze in the vicinity of New York City and Long Island shows a small, net, but far from universal improvement when MODIS-based composites are used in place of RTG analyses. The timing of the sea breeze s arrival is more accurate at some stations, and the near-surface temperature, wind, and humidity within the breeze are more realistic.

  19. Unsettled weather across central Australia

    NASA Image and Video Library

    2017-12-08

    In late July 2013, a low pressure system off Australia’s southeast coast and moist onshore winds combined to create unsettled weather across central Australia – and a striking image of a broad cloud band across the stark winter landscape. The Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Terra satellite captured this true-color image on July 22 at 01:05 UTC (10:35 a.m. Australian Central Standard Time). To the west of the low pressure trough the skies are clear and dry. To the east, the broad band of bright white clouds obscures the landscape. The system brought wind, precipitation and cooler temperatures to the region. The same day as MODIS captured this image, the Naval Research Lab (NRL) published an edition of the Global Storm Tracker (GST), which gave a world-wide view of the low-pressure systems across the world. This tracker shows the entire cloud band across Australia, as well as the location of the low pressure system. A good view of the Storm Tracker is provided by Red Orbit at: www.redorbit.com/media/uploads/2013/07/072213-weather-003... Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. Glory over clouds off West Africa

    NASA Image and Video Library

    2017-12-08

    On April 23, 2013 NASA’s Terra satellite passed off the coast of West Africa, allowing the Moderate Resolution Imaging Spectroradiometer (MODIS) flying aboard to capture a curious phenomenon over the cloud deck below. The rainbow-like discoloration that can be seen streaking across the bank of marine cumulus clouds near the center of this image is known as a “glory”. A glory is caused by the scattering of sunlight by a cloud made of water droplets that are all roughly the same size, and is only produced when the light is just right. In order for a glory to be viewed, the observer’s anti-solar point must fall on the cloud deck below. In this case the observer is the Terra satellite, and the anti-solar point is where the sun is directly behind you – 180° from the MODIS line of sight. Water and ice particles in the cloud bend the light, breaking it into all its wavelengths, and the result is colorful flare, which may contain all of the colors of the rainbow. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  1. Fusion of Terra-MODIS and Landsat TM data for geothermal sites investigation in Jiangsu Province, China

    NASA Astrophysics Data System (ADS)

    Chen, Shengbo

    2006-01-01

    Geothermal resources are generally confined to areas of the Earth's crust where heat flow higher than in surrounding areas heats the water contained in permeable rocks (reservoirs) at depth. It is becoming one of attractive solutions for clean and sustainable energy future for the world. The geothermal fields commonly occurs at the boundaries of plates, and only occasionally in the middle of a plate. The study area, Jiangsu Province, as an example, located in the east of China, is a potential area of geothermal energy. In this study, Landsat thematic Mapper (TM) data were georeferenced to position spatially the geothermal energy in the study area. Multi-spectral infrared data of Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Terra platform were georeferenced to Landsat TM images. Based on the Wien Displacement Law, these infrared data indicate the surface emitted radiance under the same atmospheric condition, and stand for surface bright temperature respectively. Thus, different surface bright temperature data from Terra-MODIS band 20 or band 31 (R), together with Landsat TM band 4 (G) and band 3 (B) separately, were made up false color composite images (RGB) to generate the distribution maps of surface bright temperatures. Combing with geologic environment and geophysical anomalies, the potential area of geothermal energy with different geo-temperature were mapped respectively. Specially, one geothermal spot in Qinhu Lake Scenery Area in Taizhou city was validated by drilling, and its groundwater temperature is up to some 51°.

  2. Hallstatt, Austria

    NASA Image and Video Library

    2010-12-01

    This perspective view from the Advanced Spaceborne Thermal Emission and Reflection Radiometer instrument aboard NASA Terra spacecraft shows the magnificent natural landscape of Salzkammergut, Austria.

  3. Inter-Comparison of MODIS and VIIRS Vegetation Indices Using One-Year Global Data

    NASA Astrophysics Data System (ADS)

    Miura, T.; Muratsuchi, J.; Obata, K.; Kato, A.; Vargas, M.; Huete, A. R.

    2016-12-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) sensor series of the Joint Polar Satellite System program is slated to continue the highly calibrated data stream initiated with the Earth Observing System Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. A number of geophysical products are being/to be produced from VIIRS data, including the "Top-of-the-Atmosphere (TOA)" Normalized Difference Vegetation Index (NDVI), "Top-of-Canopy (TOC)" Enhanced Vegetation Index (EVI), and TOC NDVI. In this study, we cross-compared vegetation indices (VIs) from the first VIIRS sensor aboard the Suomi National Polar-orbiting Partnership satellite with the Aqua MODIS counterparts using one-year global data. This study was aimed at developing a thorough understanding of radiometric compatibility between the two VI datasets across globe, seasons, a range of viewing angle, and land cover types. VIIRS and MODIS VI data of January-December 2015 were obtained at monthly intervals when their orbital tracks coincided. These data were projected and spatially-aggregated into a .0036-degree grid while screening for cloud and aerosol contaminations using their respective quality flags. VIIRS-MODIS observation pairs with near-identical sun-target-view angles were extracted from each of these monthly image pairs for cross-comparison. The four VIs of TOA NDVI, TOC NDVI, TOC EVI, and TOC EVI2 (a two-band version of the EVI) were analyzed. Between MODIS and VIIRS, TOA NDVI, TOC NDVI, and TOC EVI2 had very small overall mean differences (MD) of .014, .013, and .013 VI units, respectively, whereas TOC EVI had a slightly larger overall MD of 0.023 EVI units attributed to the disparate blue bands of the two sensors. These systematic differences were consistent across the one-year period. With respect to sun-target-viewing geometry, MDs were also consistent across the view zenith angle range, but always lower for forward- than backward-viewing geometry. MDs showed large land cover dependencies for TOA NDVI and TOC NDVI, varying 10 folds from .002 for forests to .02 for sparsely-vegetated areas. They were consistent across land cover types for TOC EVI and TOC EVI2. Future studies should address the impact of sun-target-view geometry on corss-sensor VI comparisons.

  4. Instrumented experiments aboard the frigate WOLF. Wolf 2: Measurement results of the 5.5 kg TNT in the crew aft sleeping compartment

    NASA Astrophysics Data System (ADS)

    Verhagen, T. L. A.; Vandekasteele, R. M.

    1992-08-01

    Within the framework of the research into the vulnerability of ships, an experimental investigation took place in 1989 aboard the frigate 'Wolf.' The recordings of an instrumented experiment in the crew aft sleeping compartment are presented. During this experiment, a nonfragmenting charge of 5.5 kg TNT was initiated. Preceding the 5.5 kg TNT experiment, a 2 kg TNT experiment was performed on the same day. Later that day the 15 kg TNT experiment took place. Reparation/modification of the instrumentation was not possible. The settings of the instrumentation equipment were based on the expected extreme responses of the 15 kg TNT experiment later that day which had, however, an influence on the signal to noise ratio. The blast measurements seem to have recorded correctly. The quasi static pressure in the experiment compartment as well as in the adjacent compartments showed classical behavior. The strain measurements seemed to be good, although some of them malfunctioned after a period of time.

  5. MODIS polarization performance and anomalous four-cycle polarization phenomenon

    NASA Astrophysics Data System (ADS)

    Young, James B.; Knight, Ed; Merrow, Cindy

    1998-10-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) will be one of the primary instruments observing the earth on the Earth Observing System (EOS) scheduled for launch in 1999. MODIS polarization performance characterization was required for the 0.4 to 0.6 micrometers (VIS), 0.6 micrometers to 1.0 micrometers (NIR), and 1.0 micrometers to 2.3 micrometers (SWIR) regions. A polarized source assembly (PSA) consisting of a collimator with a rotatable Ahrens polarizer was used to illuminate MODIS with a linearly polarized beam. MODIS signal function having two-cycles per 360 degrees prism rotation signal function was expected. However, some spectral bands had a distinct four-cycle anomalous signal. The expected two-cycle function was present in all regions with the four-cycle anomaly being limited to the NIR region. Fourier analysis was very useful tooling determining the cause of the anomaly. A simplified polarization model of the PSA and MODIS was generated using Mueller matrices-Stokes vector formalism. Parametric modeling illustrated that this anomaly could be produced by energy having multiple passes between PSA Ahrens prism and the MODIS focal plane filters. Furthermore, the model gave NIR four-cycle magnitudes that were consistent with observations. The IVS and SWIR optical trans had birefringent elements that served to scramble the multiple pass anomaly. The model validity was demonstrated with an experimental setup that had partial aperture illumination which eliminated the possibility of multiple passes. The four-cycle response was eliminated while producing the same two-cycle polarization response. Data will be shown to illustrate the four-cycle phenomenon.

  6. Comparison of MODIS and VIIRS On-board Blackbody Performance

    NASA Technical Reports Server (NTRS)

    Xiong, Jack; Butler, Jim; Wu, Aisheng; Chiang, Vincent; McIntire, Jeff; Oudari, Hassan

    2012-01-01

    MODIS has 16 thermal emissive bands (TEBs), covering wavelengths from 3.7 to 14.4 microns. MODIS TEBs are calibrated on-orbit by a v-grooved blackbody (BB) on a scan-by-scan basis. The BB temperatures are measured by a set of 12 thennistors. As expected, the BB temperature uncertainty and stability have direct impact on the quality of TEB calibration and, therefore, the quality of the science products derived from TEB observations. Since launch, Terra and Aqua MODIS have successfully operated for more than 12 and 10 years, respectively. Their on-board BB performance has been satisfactory in meeting the TEB calibration requirements. The first VIIRS, launched on-board the Suomi NPP spacecraft on October 28, 2011, has successfully completed its initial Intensive Calibration and Validation (ICV) phase. VIIRS has 7 thermal emissive bands (TEBs), covering wavelengths from 3.7 to 12.4 microns. Designed with strong MODIS heritage, VIIRS uses a similar BB for its TEB calibration. Like MODIS, VIIRS BB is nominally controlled at a pre-determined temperature (set point). Periodically, a BB Warm-Up and Cool-Down (WUCD) operation is performed, during which the BB temperatures vary from instrument ambient (temperature) to 315K. This paper examines NPP VIIRS BB on-orbit performance. It focuses on its BB temperature scan-to-scan variations at nominally controlled temperature as well as during its WUCD operation and their impact on TEB calibration uncertainty. Comparisons of VIIRS (NPP) and MODIS (Terra and Aqua) BB on-orbit performance and lessons learned for future improvements are also presented in this paper.

  7. Intercomparison of Satellite Dust Retrieval Products over the West African Sahara During the Fennec Campaign in June 2011

    NASA Technical Reports Server (NTRS)

    Banks, J.R.; Brindley, H. E.; Flamant, C.; Garay, M. J.; Hsu, N. C.; Kalashnikova, O. V.; Klueser, L.; Sayer, A. M.

    2013-01-01

    Dust retrievals over the Sahara Desert during June 2011 from the IASI, MISR, MODIS, and SEVIRI satellite instruments are compared against each other in order to understand the strengths and weaknesses of each retrieval approach. Particular attention is paid to the effects of meteorological conditions, land surface properties, and the magnitude of the dust loading. The period of study corresponds to the time of the first Fennec intensive measurement campaign, which provides new ground-based and aircraft measurements of the dust characteristics and loading. Validation using ground-based AERONET sunphotometer data indicate that of the satellite instruments, SEVIRI is most able to retrieve dust during optically thick dust events, whereas IASI and MODIS perform better at low dust loadings. This may significantly affect observations of dust emission and the mean dust climatology. MISR and MODIS are least sensitive to variations in meteorological conditions, while SEVIRI tends to overestimate the aerosol optical depth (AOD) under moist conditions (with a bias against AERONET of 0.31), especially at low dust loadings where the AOD<1. Further comparisons are made with airborne LIDAR measurements taken during the Fennec campaign, which provide further evidence for the inferences made from the AERONET comparisons. The effect of surface properties on the retrievals is also investigated. Over elevated surfaces IASI retrieves AODs which are most consistent with AERONET observations, while the AODs retrieved by MODIS tend to be biased low. In contrast, over the least emissive surfaces IASI significantly underestimates the AOD (with a bias of -0.41), while MISR and SEVIRI show closest agreement.

  8. Production of Arctic Sea-ice Albedo by fusion of MISR and MODIS data

    NASA Astrophysics Data System (ADS)

    Kharbouche, Said; Muller, Jan-Peter

    2017-04-01

    We have combined data from the NASA MISR and MODIS spectro-radiometers to create a cloud-free albedo dataset specifically for sea-ice. The MISR (Multi-Angular Spectro-Radiometer) instrument on board Terra satellite has a unique ability to create high-quality Bidirectional Reflectance (BRF) over a 7 minute time interval per single overpass, thanks to its 9 cameras of different view angles (±70°,±60°,±45°,±26°). However, as MISR is limited to narrow spectral bands (443nm, 555nm, 670nm, 865nm), which is not sufficient to mask cloud effectively and robustly, we have used the sea-ice mask MOD09 product (Collection 6) from MODIS (Moderate resolution Imaging Spectoradiometer) instrument, which is also on board Terra satellite and acquiring data simultaneously. Only We have created a new and consistent sea-ice (for Arctic) albedo product that is daily, from 1st March to 22nd September for each and every year between 2000 to 2016 at two spatial grids, 1km x 1km and 5km x 5km in polar stereographic projection. Their analysis is described in a separate report [1]. References [1] Muller & Kharbouche, Variation of Arctic's Sea-ice Albedo between 2000 and 2016 by fusion of MISR and MODIS data. This conference. Acknowledgements This work was supported by www.QA4ECV.eu, a project of European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 607405. We thank our colleagues at JPL and NASA LaRC for processing these data, especially Sebastian Val and Steve Protack.

  9. Improvements in Virtual Sensors: Using Spatial Information to Estimate Remote Sensing Spectra

    NASA Technical Reports Server (NTRS)

    Oza, Nikunj C.; Srivastava, Ashok N.; Stroeve, Julienne

    2005-01-01

    Various instruments are used to create images of the Earth and other objects in the universe in a diverse set of wavelength bands with the aim of understanding natural phenomena. Sometimes these instruments are built in a phased approach, with additional measurement capabilities added in later phases. In other cases, technology may mature to the point that the instrument offers new measurement capabilities that were not planned in the original design of the instrument. In still other cases, high resolution spectral measurements may be too costly to perform on a large sample and therefore lower resolution spectral instruments are used to take the majority of measurements. Many applied science questions that are relevant to the earth science remote sensing community require analysis of enormous amounts of data that were generated by instruments with disparate measurement capabilities. In past work [1], we addressed this problem using Virtual Sensors: a method that uses models trained on spectrally rich (high spectral resolution) data to "fill in" unmeasured spectral channels in spectrally poor (low spectral resolution) data. We demonstrated this method by using models trained on the high spectral resolution Terra MODIS instrument to estimate what the equivalent of the MODIS 1.6 micron channel would be for the NOAA AVHRR2 instrument. The scientific motivation for the simulation of the 1.6 micron channel is to improve the ability of the AVHRR2 sensor to detect clouds over snow and ice. This work contains preliminary experiments demonstrating that the use of spatial information can improve our ability to estimate these spectra.

  10. The Cloud Detection and Ultraviolet Monitoring Experiment (CLUE)

    NASA Technical Reports Server (NTRS)

    Barbier, Louis M.; Loh, Eugene C.; Krizmanic, John F.; Sokolsky, Pierre; Streitmatter, Robert E.

    2004-01-01

    In this paper we describe a new balloon instrument - CLUE - which is designed to monitor ultraviolet (uv) nightglow levels and determine cloud cover and cloud heights with a CO2 slicing technique. The CO2 slicing technique is based on the MODIS instrument on NASA's Aqua and Terra spacecraft. CLUE will provide higher spatial resolution (0.5 km) and correlations between the uv and the cloud cover.

  11. Cross-calibration of the Oceansat-2 Ocean Colour Monitor (OCM) with Terra and Aqua MODIS

    NASA Astrophysics Data System (ADS)

    Angal, Amit; Brinkmann, Jake; Kumar, A. Senthil; Xiong, Xiaoxiong

    2016-05-01

    The Ocean Colour Monitor (OCM) sensor on-board the Oceansat-2 spacecraft has been operational since its launch in September, 2009. The Oceansat 2 OCM primary design goal is to provide continuity to Oceansat-1 OCM to obtain information regarding various ocean-colour variables. OCM acquires Earth scene measurements in eight multi-spectral bands in the range from 402 to 885 nm. The MODIS sensor on the Terra and Aqua spacecraft has been successfully operating for over a decade collecting measurements of the earth's land, ocean surface and atmosphere. The MODIS spectral bands, designed for land and ocean applications, cover the spectral range from 412 to 869 nm. This study focuses on comparing the radiometric calibration stability of OCM using near-simultaneous TOA measurements with Terra and Aqua MODIS acquired over the Libya 4 target. Same-day scene-pairs from all three sensors (OCM, Terra and Aqua MODIS) between August, 2014 and September, 2015 were chosen for this analysis. On a given day, the OCM overpass is approximately an hour after the Terra overpass and an hour before the Aqua overpass. Due to the orbital differences between Terra and Aqua, MODIS images the Libya 4 site at different scan-angles on a given day. Some of the high-gain ocean bands for MODIS tend to saturate while viewing the bright Libya 4 target, but bands 8-10 (412 nm - 486 nm) provide an unsaturated response and are used for comparison with the spectrally similar OCM bands. All the standard corrections such as bidirectional reflectance factor (BRDF), relative spectral response mismatch, and impact for atmospheric water-vapor are applied to obtain the reflectance differences between OCM and the two MODIS instruments. Furthermore, OCM is used as a transfer radiometer to obtain the calibration differences between Terra and Aqua MODIS reflective solar bands.

  12. Cross-Calibration of the Oceansat-2 Ocean Colour Monitor (OCM) with Terra and Aqua MODIS

    NASA Technical Reports Server (NTRS)

    Angal, Amit; Brinkmann, Jake; Kumar, A. Senthil; Xiong, Xiaoxiong

    2016-01-01

    The Ocean Colour Monitor (OCM) sensor on-board the Oceansat-2 spacecraft has been operational since its launch in September, 2009. The Oceansat 2 OCM primary design goal is to provide continuity to Oceansat-1 OCM to obtain information regarding various ocean-colour variables. OCM acquires Earth scene measurements in eight multi-spectral bands in the range from 402 to 885 nm. The MODIS sensor on the Terra and Aqua spacecraft has been successfully operating for over a decade collecting measurements of the earth's land, ocean surface and atmosphere. The MODIS spectral bands, designed for land and ocean applications, cover the spectral range from 412 to 869 nm. This study focuses on comparing the radiometric calibration stability of OCM using near-simultaneous TOA measurements with Terra and Aqua MODIS acquired over the Libya 4 target. Same-day scene-pairs from all three sensors (OCM, Terra and Aqua MODIS) between August, 2014 and September, 2015 were chosen for this analysis. On a given day, the OCM overpass is approximately an hour after the Terra overpass and an hour before the Aqua overpass. Due to the orbital differences between Terra and Aqua, MODIS images the Libya 4 site at different scan-angles on a given day. Some of the high-gain ocean bands for MODIS tend to saturate while viewing the bright Libya 4 target, but bands 8-10 (412 nm - 486 nm) provide an unsaturated response and are used for comparison with the spectrally similar OCM bands. All the standard corrections such as bidirectional reflectance factor (BRDF), relative spectral response mismatch, and impact for atmospheric water-vapor are applied to obtain the reflectance differences between OCM and the two MODIS instruments. Furthermore, OCM is used as a transfer radiometer to obtain the calibration differences between Terra and Aqua MODIS reflective solar bands.

  13. Heavy Ion Flux Comparison of MARIE and ACE/CRIS Instruments

    NASA Technical Reports Server (NTRS)

    Lee, K. T.; Andersen, V.; Atwell, W.; Cleghorn, T.; Cucinotta, F.; Pinsky, L.; Saganti, P.; Turner, R.; Zeitlin, C.

    2003-01-01

    The charged particle spectrum for nuclei from protons to neon, (charge Z=10) has been observed during the cruise phase and in orbit around Mars by the MARIE charge particle spectrometer aboard the Odyssey spacecraft. The cruise data was taken between April 23, 2001 and August 11, 2001. The Mars orbit data was taken from March 5, 2002 through December 2002. Both the cruise data set and the orbital data set are compared with the simultaneous observations made by the CRIS instrument aboard the ACE space-craft, located at L1. Any detectable differences between the two spacecraft data sets could lead to the understanding of the radial dependence of solar modulation.

  14. 2013 Yosemite Fire Assessed by NASA Satellite Data

    NASA Image and Video Library

    2014-09-02

    In this image from NASA Aqua satellite, the red areas seen by the MODIS instrument revealed that live fuel moisture had excessively dried up by more than 50 percent prior to the Rim Fire in August 2013.

  15. In-Flight Simulator for IFR Training

    NASA Technical Reports Server (NTRS)

    Parker, L. C.

    1986-01-01

    Computer-controlled unit feeds navigation signals to airplane instruments. Electronic training system allows students to learn to fly according to instrument flight rules (IFR) in uncrowded airspace. New system self-contained IFR simulator carried aboard training plane. Generates signals and commands for standard instruments on airplane, including navigational receiver, distance-measuring equipment, automatic direction finder, a marker-beacon receiver, altimeter, airspeed indicator, and heading indicator.

  16. Skylab

    NASA Image and Video Library

    1971-12-01

    The Apollo Telescope Mount (ATM) was designed and constructed at the Marshall Space Flight Center and served as the primary scientific instrument unit aboard Skylab. The ATM consisted of eight scientific instruments as well as a number of smaller experiments. This photograph shows the flight unit solar shield for the ATM that formed the base for the rack, a complex frame, and the canister that contained the instruments.

  17. Instrumentation for the Atmospheric Explorer photoelectron spectrometer

    NASA Technical Reports Server (NTRS)

    Peletier, D. P.

    1973-01-01

    The photoelectron spectrometer (PES) is part of the complements of scientific instruments aboard three NASA Atmosphere Explorer (AE) satellites. The PES measures the energy spectrum, angular distribution, and intensity of electrons in the earth's thermosphere. Measurements of energies between 2 and 500 eV are made at altitudes as low as 130 km. The design, characteristics, and performance of the instrument are described.

  18. Generating a Long-Term Land Data Record from the AVHRR and MODIS Instruments

    NASA Technical Reports Server (NTRS)

    Pedelty, Jeffrey; Devadiga, Sadashiva; Masuoka, Edward; Brown, Molly; Pinzon, Jorge; Tucker, Compton; Vermote, Eric; Prince, Stephen; Nagol, Jyotheshwar; Justice, Christopher; hide

    2007-01-01

    The goal of NASA's Land Long Term Iiata Record (LTDR) project is to produce a consistent long term data set from the AVHRR and MODIS instruments for land climate studies. The project will create daily surface reflectance and normalized difference vegetation index (NDVI) products at a resolution of 0.05 deg., which is identical to the Climate Modeling Grid (CMG) used for MODIS products from EOS Terra and Aqua. Higher order products such as burned area, land surface temperature, albedo, bidirectional reflectance distribution function (BRDF) correction, leaf area index (LAI), and fraction of photosyntheticalIy active radiation absorbed by vegetation (fPAR), will be created. The LTDR project will reprocess Global Area Coverage (GAC) data from AVHRR sensors onboard NOAA satellites by applying the preprocessing improvements identified in the AVHRR Pathfinder Il project and atmospheric and BRDF corrections used in MODIS processing. The preprocessing improvements include radiometric in-flight vicarious calibration for the visible and near infrared channels and inverse navigation to relate an Earth location to each sensor instantaneous field of view (IFOV). Atmospheric corrections for Rayleigh scattering, ozone, and water vapor are undertaken, with aerosol correction being implemented. The LTDR also produces a surface reflectance product for channel 3 (3.75 micrometers). Quality assessment (QA) is an integral part of the LTDR production system, which is monitoring temporal trands in the AVHRR products using time-series approaches developed for MODIS land product quality assessment. The land surface reflectance products have been evaluated at AERONET sites. The AVHRR data record from LTDR is also being compared to products from the PAL (Pathfinder AVHRR Land) and GIMMS (Global Inventory Modeling and Mapping Studies) systems to assess the relative merits of this reprocessing vis-a-vis these existing data products. The LTDR products and associated information can be found at http://ltdr.nascom.nasa.gov/ltdr/ltdr.html.

  19. Skylab

    NASA Image and Video Library

    1972-02-01

    The Apollo Telescope Mount (ATM) was designed and developed by the Marshall Space Flight Center and served as the primary scientific instrument unit aboard Skylab (1973-1979). This photograph shows the spar unit, which housed major solar instruments, being lowered into the rack, the outer octagonal complex frame of the ATM flight unit.

  20. Development of Mirror Modules for the ART-XC Instrument aboard the Spectrum-Roentgen-Gamma Mission

    NASA Technical Reports Server (NTRS)

    Gubarev, M.; Ramsey, B.; O'Dell, S. L.; Elsner, R.; Kilaru, K.; McCracken, J.; Atkins, C.; Pavlinsky, M.; Tkachenko, A.; Lapshov, I.

    2013-01-01

    MSFC is developing eight x-ray mirror modules for the ART-XC instrument on board the SRG Mission. The Engineering Unit tests are successful. MSFC is on schedule to deliver flight units in the November of 2013 and January 2014.

  1. ARC-2009-ACD09-0218-012

    NASA Image and Video Library

    2009-10-06

    NASA Conducts Airborne Science Aboard Zeppelin Airship: equipped with two imaging instruments enabling remote sensing and atmospheric science measurements not previously practical. Cabin view of Instrument Operator Steve Dunagan, NASA Ames, Pilot Katharine 'Kate' Board, (left) and Crew Chief Matthew Kilkerr (in flight suit) preforming pre-flight checkouts.

  2. A global hydrographic array for early detection of floods and droughts

    NASA Astrophysics Data System (ADS)

    Brakenridge, G.; Nghiem, S.; Caquard, S.

    An array of over 700 20 km-long river gaging reaches, distributed world-wide, is imaged by the SeaWinds radar scatterometer aboard QuikSCAT every 2.5 days. Strongly negative HH/VV polarity ratios indicate large amounts of surface water. We set individual reach thresholds so that the transition from bankfull to overbank river flow can be identified according to changes in this ratio. Similarly, the wide-swath MODIS optical sensors provide frequent repeat coverage of the reaches at much higher spatial resolution (250 m). In this case, several reach water surface area thresholds can be identified: low flow or drought conditions, normal in-channel flow, overbank flow, and extreme flood conditions. Sustained data collection for the reaches by both sensors allows the radar response to changing surface water to be defined, and allows evaluation of the sensitivity of the MODIS data to river discharge changes. New approaches, such as ``unmixing'' analysis of mixed water/land MODIS pixels can extend detection limits to smaller rivers and streams. It is now possible for wide-area, frequent revisit terrestrial remote sensing to provide human society with early warning of both floods and droughts and by direct observation of the runoff component of the Earth's hydrologic cycle. Examples of both radar and optical approaches towards this end are at the web sites below: http://www.dartmouth.edu/˜ floods/Modisrapidresponse.html http://www.dartmouth.edu/˜ floods/sensorweb/SensorWebindex.html http://www.dartmouth.edu/˜ floods/Quikscat/Regional2/CurrentTisza.jpg} In particular, early flood detection results are obtained over an extensive region in eastern Europe including the Tisza River basin, Romania, Hungary, and adjacent nations. Flood detection maps are updated weekly at the web site. The combination of QuikSCAT and MODIS takes advantage of the large-area coverage of these sensors together with the high temporal resolution of QuikSCAT and the high spatial resolution of MODIS. Such capabilities are also appropriate for early flood detection in Asian monsoon regions including India, Pakistan, Bangladesh, China, and southeast Asia.

  3. Estimates of Single Sensor Error Statistics for the MODIS Matchup Database Using Machine Learning

    NASA Astrophysics Data System (ADS)

    Kumar, C.; Podesta, G. P.; Minnett, P. J.; Kilpatrick, K. A.

    2017-12-01

    Sea surface temperature (SST) is a fundamental quantity for understanding weather and climate dynamics. Although sensors aboard satellites provide global and repeated SST coverage, a characterization of SST precision and bias is necessary for determining the suitability of SST retrievals in various applications. Guidance on how to derive meaningful error estimates is still being developed. Previous methods estimated retrieval uncertainty based on geophysical factors, e.g. season or "wet" and "dry" atmospheres, but the discrete nature of these bins led to spatial discontinuities in SST maps. Recently, a new approach clustered retrievals based on the terms (excluding offset) in the statistical algorithm used to estimate SST. This approach resulted in over 600 clusters - too many to understand the geophysical conditions that influence retrieval error. Using MODIS and buoy SST matchups (2002 - 2016), we use machine learning algorithms (recursive and conditional trees, random forests) to gain insight into geophysical conditions leading to the different signs and magnitudes of MODIS SST residuals (satellite SSTs minus buoy SSTs). MODIS retrievals were first split into three categories: < -0.4 C, -0.4 C ≤ residual ≤ 0.4 C, and > 0.4 C. These categories are heavily unbalanced, with residuals > 0.4 C being much less frequent. Performance of classification algorithms is affected by imbalance, thus we tested various rebalancing algorithms (oversampling, undersampling, combinations of the two). We consider multiple features for the decision tree algorithms: regressors from the MODIS SST algorithm, proxies for temperature deficit, and spatial homogeneity of brightness temperatures (BTs), e.g., the range of 11 μm BTs inside a 25 km2 area centered on the buoy location. These features and a rebalancing of classes led to an 81.9% accuracy when classifying SST retrievals into the < -0.4 C and -0.4 C ≤ residual ≤ 0.4 C categories. Spatial homogeneity in BTs consistently appears as a very important variable for classification, suggesting that unidentified cloud contamination still is one of the causes leading to negative SST residuals. Precision and accuracy of error estimates from our decision tree classifier are enhanced using this knowledge.

  4. MODIS Retrievals of Cloud Optical Thickness and Particle Radius

    NASA Technical Reports Server (NTRS)

    Platnick, S.; King, M. D.; Ackerman, S. A.; Gray, M.; Moody, E.; Arnold, G. T.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) provides an unprecedented opportunity for global cloud studies with 36 spectral bands from the visible through the infrared, and spatial resolution from 250 m to 1 km at nadir. In particular, all solar window bands useful for simultaneous retrievals of cloud optical thickness and particle size (0.67, 0.86, 1.2, 1.6, 2.1, and 3.7 micron bands) are now available on a single satellite instrument/platform for the first time. An operational algorithm for the retrieval of these optical and cloud physical properties (including water path) have been developed for both liquid and ice phase clouds. The product is archived into two categories: pixel-level retrievals at 1 km spatial resolution (referred to as a Level-2 product) and global gridded statistics (Level-3 product). An overview of the MODIS cloud retrieval algorithm and early level-2 and -3 results will be presented. A number of MODIS cloud validation activities are being planned, including the recent Southern Africa Regional Science Initiative 2000 (SAFARI-2000) dry season campaign conducted in August/September 2000. The later part of the experiment concentrated on MODIS validation in the Namibian stratocumulus regime off the southwest coast of Africa. Early retrieval results from this regime will be discussed.

  5. Investigation of cloud properties and atmospheric stability with MODIS

    NASA Technical Reports Server (NTRS)

    Menzel, Paul

    1995-01-01

    In the past six months several milestones were accomplished. The MODIS Airborne Simulator (MAS) was flown in a 50 channel configuration for the first time in January 1995 and the data were calibrated and validated; in the same field campaign the approach for validating MODIS radiances using the MAS and High resolution Interferometer Sounder (HIS) instruments was successfully tested on GOES-8. Cloud masks for two scenes (one winter and the other summer) of AVHRR local area coverage from the Gulf of Mexico to Canada were processed and forwarded to the SDST for MODIS Science Team investigation; a variety of surface and cloud scenes were evident. Beta software preparations continued with incorporation of the EOS SDP Toolkit. SCAR-C data was processed and presented at the biomass burning conference. Preparations for SCAR-B accelerated with generation of a home page for access to real time satellite data related to biomass burning; this will be available to the scientists in Brazil via internet on the World Wide Web. The CO2 cloud algorithm was compared to other algorithms that differ in their construction of clear radiance fields. The HIRS global cloud climatology was completed for six years. The MODIS science team meeting was attended by five of the UW scientists.

  6. Comparison of the MODIS Multilayer Cloud Detection and Thermodynamic Phase Products with CALIPSO and CloudSat

    NASA Technical Reports Server (NTRS)

    Platnick, Steven; King, Michael D.; Wind, Gala; Holz, Robert E.; Ackerman, Steven A.; Nagle, Fred W.

    2008-01-01

    CALIPSO and CloudSat, launched in June 2006, provide global active remote sensing measurements of clouds and aerosols that can be used for validation of a variety of passive imager retrievals derived from instruments flying on the Aqua spacecraft and other A-Train platforms. The most recent processing effort for the MODIS Atmosphere Team, referred to as the "Collection 5" stream, includes a research-level multilayer cloud detection algorithm that uses both thermodynamic phase information derived from a combination of solar and thermal emission bands to discriminate layers of different phases, as well as true layer separation discrimination using a moderately absorbing water vapor band. The multilayer detection algorithm is designed to provide a means of assessing the applicability of 1D cloud models used in the MODIS cloud optical and microphysical product retrieval, which are generated at a 1 h resolution. Using pixel-level collocations of MODIS Aqua, CALIOP, and CloudSat radar measurements, we investigate the global performance of the thermodynamic phase and multilayer cloud detection algorithms.

  7. Ocean Color Data at the Goddard Earth Sciences (GES) DAAC: CZCS, SeaWiFS, OCTS, MODIS-Terra, MODIS-Aqua

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Goddard Earth Sciences Distributed Active Archive Center (DAAC) is the designated archive for all of the ocean color data produced by NASA satellite missions. The DAAC is a long-term, high volume, secure repository for many different kinds of environmental data. With respect to ocean color, the Goddard DAAC holds all the data obtained during the eight-year mission of the Coastal Zone Color Scanner (CZCS). The DAAC is currently receiving data from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), and the MODIS-Terra instrument. The DAAC recently received reformatted data from the Ocean Color and Temperature Scanner (OCTS) and will also archive MODIS-Aqua Ocean products. In addition to its archive and distribution services, the Goddard DAAC strives to improve data access, ease-of-use, and data applicability for a broad spectrum of customers. The DAAC's data support teams practice dual roles, both insuring the integrity of the DAAC data archive and serving the user community with answers to user inquiries, online and print documentation, and customized data services.

  8. Aqua and Terra MODIS RSB Calibration Comparison Using BRDF Modeled Reflectance

    NASA Technical Reports Server (NTRS)

    Chang, Tiejun; Xiong, Xiaoxiong; Angal, Amit; Wu, Aisheng; Geng, Xu

    2017-01-01

    The inter-comparison of MODIS reflective solar bands onboard Aqua and Terra is very important for assessment of each instrument's calibration. One of the limitations is the lack of simultaneous nadir overpasses. Their measurements over a selected Earth view target have significant differences in solar and view angles, which magnify the effects of atmospheric scattering and Bidirectional Reflectance Distribution Function (BRDF). In this work, an intercomparison technique is formulated after correction for site's BRDF and atmospheric effects. The reflectance measurements over Libya desert sites 1, 2, and 4 from both the Aqua and Terra MODIS are regressed to a BRDF model with an adjustable coefficient accounting for calibration difference. The ratio between Aqua and Terra reflectance measurements are derived for bands 1 to 9 and the results from different sites show good agreement. For year 2003, the ratios are in the range of 0.985 to1.010 for band 1 to 9. Band 3 shows the lowest ratio 0.985 and band 1 shows the highest ratio 1.010. For the year 2014, the ratio ranges from approximately 0.983 for bands 2 and 1.012 for band 8. The BRDF corrected reflectance for the two instruments are also derived for every year from 2003 to 2014 for stability assessment. Bands 1 and 2 show greater than 1 differences between the two instruments. Aqua bands 1 and 2 show downward trends while Terra bands 1 and 2 show upward trends. Bands 8 and 9 of both Aqua and Terra show large variations of reflectance measurement over time.

  9. Low clouds over the Yellow Sea and the East China Sea

    NASA Image and Video Library

    2017-12-08

    Low clouds over the Yellow Sea and the East China Sea was captured by the MODIS instrument on the Aqua satellite on April 1, 2016 at 4:55 UTC. Credit: NASA/Goddard/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  10. Adaptation of a Hyperspectral Atmospheric Correction Algorithm for Multi-spectral Ocean Color Data in Coastal Waters. Chapter 3

    NASA Technical Reports Server (NTRS)

    Gao, Bo-Cai; Montes, Marcos J.; Davis, Curtiss O.

    2003-01-01

    This SIMBIOS contract supports several activities over its three-year time-span. These include certain computational aspects of atmospheric correction, including the modification of our hyperspectral atmospheric correction algorithm Tafkaa for various multi-spectral instruments, such as SeaWiFS, MODIS, and GLI. Additionally, since absorbing aerosols are becoming common in many coastal areas, we are making the model calculations to incorporate various absorbing aerosol models into tables used by our Tafkaa atmospheric correction algorithm. Finally, we have developed the algorithms to use MODIS data to characterize thin cirrus effects on aerosol retrieval.

  11. Cavity Attenuated Phase Shift (CAPS) Method for Airborne Aerosol Light Extinction Measurement: Instrument Validation and First Results from Field Deployment

    NASA Astrophysics Data System (ADS)

    Petzold, A.; Perim de Faria, J.; Berg, M.; Bundke, U.; Freedman, A.

    2015-12-01

    Monitoring the direct impact of aerosol particles on climate requires the continuous measurement of aerosol optical parameters like the aerosol extinction coefficient on a regular basis. Remote sensing and ground-based networks are well in place (e.g., AERONET, ACTRIS), whereas the regular in situ measurement of vertical profiles of atmospheric aerosol optical properties remains still an important challenge in quantifying climate change. The European Research Infrastructure IAGOS (In-service Aircraft for a Global Observing System; www.iagos.org) responds to the increasing requests for long-term, routine in situ observational data by using commercial passenger aircraft as measurement platform. However, scientific instrumentation for the measurement of atmospheric constituents requires major modifications before being deployable aboard in-service passenger aircraft. Recently, a compact and robust family of optical instruments based on the cavity attenuated phase shift (CAPS) technique has become available for measuring aerosol light extinction. While this technique was successfully deployed for ground-based atmospheric measurements under various conditions, its suitability for operation aboard aircraft in the free and upper free troposphere still has to be demonstrated. In this work, the modifications of a CAPS PMex instrument for measuring aerosol light extinction on aircraft, the results from subsequent laboratory tests for evaluating the modified instrument prototype, and first results from a field deployment aboard a research aircraft will be covered. In laboratory studies, the instrument showed excellent agreement (deviation < 5%) with theoretical values calculated from Rayleigh scattering cross-sections, when operated on pressurized air and CO2 at ambient and low pressure (~200 hPa). For monodisperse and polydisperse aerosols, reference aerosol extinction coefficients were calculated from measured size distributions and agreed with the CAPS PMex instrument response within 10% deviation. During the field deployment, aerosol extinction coefficients and associated aerosol size distributions have been measured and will be presented as comparison studies between measured and calculated data.

  12. Neural network cloud top pressure and height for MODIS

    NASA Astrophysics Data System (ADS)

    Håkansson, Nina; Adok, Claudia; Thoss, Anke; Scheirer, Ronald; Hörnquist, Sara

    2018-06-01

    Cloud top height retrieval from imager instruments is important for nowcasting and for satellite climate data records. A neural network approach for cloud top height retrieval from the imager instrument MODIS (Moderate Resolution Imaging Spectroradiometer) is presented. The neural networks are trained using cloud top layer pressure data from the CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) dataset. Results are compared with two operational reference algorithms for cloud top height: the MODIS Collection 6 Level 2 height product and the cloud top temperature and height algorithm in the 2014 version of the NWC SAF (EUMETSAT (European Organization for the Exploitation of Meteorological Satellites) Satellite Application Facility on Support to Nowcasting and Very Short Range Forecasting) PPS (Polar Platform System). All three techniques are evaluated using both CALIOP and CPR (Cloud Profiling Radar for CloudSat (CLOUD SATellite)) height. Instruments like AVHRR (Advanced Very High Resolution Radiometer) and VIIRS (Visible Infrared Imaging Radiometer Suite) contain fewer channels useful for cloud top height retrievals than MODIS, therefore several different neural networks are investigated to test how infrared channel selection influences retrieval performance. Also a network with only channels available for the AVHRR1 instrument is trained and evaluated. To examine the contribution of different variables, networks with fewer variables are trained. It is shown that variables containing imager information for neighboring pixels are very important. The error distributions of the involved cloud top height algorithms are found to be non-Gaussian. Different descriptive statistic measures are presented and it is exemplified that bias and SD (standard deviation) can be misleading for non-Gaussian distributions. The median and mode are found to better describe the tendency of the error distributions and IQR (interquartile range) and MAE (mean absolute error) are found to give the most useful information of the spread of the errors. For all descriptive statistics presented MAE, IQR, RMSE (root mean square error), SD, mode, median, bias and percentage of absolute errors above 0.25, 0.5, 1 and 2 km the neural network perform better than the reference algorithms both validated with CALIOP and CPR (CloudSat). The neural networks using the brightness temperatures at 11 and 12 µm show at least 32 % (or 623 m) lower MAE compared to the two operational reference algorithms when validating with CALIOP height. Validation with CPR (CloudSat) height gives at least 25 % (or 430 m) reduction of MAE.

  13. Ozone and Aerosol Retrieval from Backscattered Ultraviolet Radiation

    NASA Technical Reports Server (NTRS)

    Bhartia, Pawan K.

    2012-01-01

    In this presentation we will discuss the techniques to estimate total column ozone and aerosol absorption optical depth from the measurements of back scattered ultraviolet (buv) radiation. The total ozone algorithm has been used to create a unique record of the ozone layer, spanning more than 3 decades, from a series of instruments (BUV, SBUV, TOMS, SBUV/2) flown on NASA, NOAA, Japanese and Russian satellites. We will discuss how this algorithm can be considered a generalization of the well-known Dobson/Brewer technique that has been used to process data from ground-based instruments for many decades, and how it differs from the DOAS techniques that have been used to estimate vertical column densities of a host of trace gases from data collected by GOME and SCIAMACHY instruments. The buv aerosol algorithm is most suitable for the detection of UV absorbing aerosols (smoke, desert dust, volcanic ash) and is the only technique that can detect aerosols embedded in clouds. This algorithm has been used to create a quarter century record of aerosol absorption optical depth using the buv data collected by a series of TOMS instruments. We will also discuss how the data from the OMI instrument launched on July 15, 2004 will be combined with data from MODIS and CALIPSO lidar data to enhance the accuracy and information content of satellite-derived aerosol measurements. The OMI and MODIS instruments are currently flying on EOS Aura and EOS Aqua satellites respectively, part of a constellation of satellites called the "A-train".

  14. Skylab

    NASA Image and Video Library

    1971-10-01

    The Apollo Telescope Mount (ATM) was designed and developed by the Marshall Space Flight Center (MSFC) and served as the primary scientific instrument unit aboard Skylab (1973-1979). The ATM consisted of eight scientific instruments as well as a number of smaller experiments. This image is of the ATM flight unit sun end canister in MSFC's building 4755.

  15. Comparasion of Cloud Cover restituted by POLDER and MODIS

    NASA Astrophysics Data System (ADS)

    Zeng, S.; Parol, F.; Riedi, J.; Cornet, C.; Thieuxleux, F.

    2009-04-01

    PARASOL and AQUA are two sun-synchronous orbit satellites in the queue of A-Train satellites that observe our earth within a few minutes apart from each other. Aboard these two platforms, POLDER and MODIS provide coincident observations of the cloud cover with very different characteristics. These give us a good opportunity to study the clouds system and evaluate strengths and weaknesses of each dataset in order to provide an accurate representation of global cloud cover properties. This description is indeed of outermost importance to quantify and understand the effect of clouds on global radiation budget of the earth-atmosphere system and their influence on the climate changes. We have developed a joint dataset containing both POLDER and MODIS level 2 cloud products collocated and reprojected on a common sinusoidal grid in order to make the data comparison feasible and veracious. Our foremost work focuses on the comparison of both spatial distribution and temporal variation of the global cloud cover. This simple yet critical cloud parameter need to be clearly understood to allow further comparison of the other cloud parameters. From our study, we demonstrate that on average these two sensors both detect the clouds fairly well. They provide similar spatial distributions and temporal variations:both sensors see high values of cloud amount associated with deep convection in ITCZ, over Indonesia, and in west-central Pacific Ocean warm pool region; they also provide similar high cloud cover associated to mid-latitude storm tracks, to Indian monsoon or to the stratocumulus along the west coast of continents; on the other hand small cloud amounts that typically present over subtropical oceans and deserts in subsidence aeras are well identified by both POLDER and MODIS. Each sensor has its advantages and inconveniences for the detection of a particular cloud types. With higher spatial resolution, MODIS can better detect the fractional clouds thus explaining as one part of a positive bias in any latitude and in any viewing angle with an order of 10% between the POLDER cloud amount and the so-called MODIS "combined" cloud amount. Nevertheless it is worthy to note that a negative bias of about 10% is obtained between the POLDER cloud amount and the MODIS "day-mean" cloud amount. Main differences between the two MODIS cloud amount values are known to be due to the filtering of remaining aerosols or cloud edges. due to both this high spatial resolution of MODIS and the fact that "combined" cloud amount filters cloud edges, we can also explain why appear the high positive bias regions over subtropical ocean in south hemisphere and over east Africa in summer. Thanks to several channels in the thermal infrared spectral domain, MODIS detects probably much better the thin cirrus especially over land, thus causing a general negative bias for ice clouds. The multi-spectral capability of MODIS also allows for a better detection of low clouds over snow or ice, Hence the (POLDER-MODIS) cloud amount difference is often negative over Greenland, Antarctica, and over the continents at middle-high latitudes in spring and autumn associated to the snow coverage. The multi-spectral capability of MODIS also makes the discrimination possible between the biomass burning aerosols and the fractional clouds over the continents. Thus a positive bias appears in central Africa in summer and autumn associated to important biomass burning events. Over transition region between desert and non-desert, the presence of large negative bias (POLDER-MODIS) of cloud amount maybe partly due to MODIS pixel falsely labeled the desert as cloudy, where MODIS algorithm uses static desert mask. This is clearly highlighted in south of Sahara in spring and summer where we find a bias negative with an order of -0.1. What is more, thanks to its multi-angular capability, POLDER can discriminate the sun-glint region thus minimizing the dependence of cloud amount on view angle. It makes the detection of high clouds easier over a black surface thanks to its polarization character.

  16. Skylab

    NASA Image and Video Library

    1971-11-01

    The Apollo Telescope Mount (ATM) was designed and developed by the Marshall Space Flight Center and served as the primary scientific instrument unit aboard Skylab (1973-1979). The ATM consisted of eight scientific instruments as well as a number of smaller experiments. This is a photograph of the assembly of an ATM flight unit rack. The flight unit rack was an octagonal shaped complex outer frame that housed the canister containing the solar instruments.

  17. Skylab

    NASA Image and Video Library

    1971-10-01

    The Apollo Telescope Mount (ATM) was designed and developed by the Marshall Space Flight Center and served as the primary scientific instrument unit aboard Skylab (1973-1979). The ATM consisted of eight scientific instruments as well as a number of smaller experiments. This is a photograph of the assembly of an ATM flight unit rack. The flight unit rack was an octagonal shaped complex outer frame that housed the canister containing the solar instruments.

  18. Compact, Automated, Frequency-Agile Microspectrofluorimeter

    NASA Technical Reports Server (NTRS)

    Fernandez, Salvador M.; Guignon, Ernest F.

    1995-01-01

    Compact, reliable, rugged, automated cell-culture and frequency-agile microspectrofluorimetric apparatus developed to perform experiments involving photometric imaging observations of single live cells. In original application, apparatus operates mostly unattended aboard spacecraft; potential terrestrial applications include automated or semiautomated diagnosis of pathological tissues in clinical laboratories, biomedical instrumentation, monitoring of biological process streams, and portable instrumentation for testing biological conditions in various environments. Offers obvious advantages over present laboratory instrumentation.

  19. Earth Scanner Bearing Accelerated Life Test

    NASA Technical Reports Server (NTRS)

    Dietz, Brian J.; VanDyk, Steven G.; Predmore, Roamer E.

    2000-01-01

    The Moderate Resolution Imaging Spectrometer (MODIS) optical instrument for NASA Goddard will measure biological and physical processes on the Earth's surface and in the lower atmosphere. A key component of the instrument is an extremely accurate scan mirror motor/encoder assembly. Of prime concern in the performance and reliability of the scan motor/encoder is bearing selection and lubrication. This paper describes life testing of the bearings and lubrication selected for the program.

  20. True colour classification of natural waters with medium-spectral resolution satellites: SeaWiFS, MODIS, MERIS and OLCI.

    PubMed

    Woerd, Hendrik J van der; Wernand, Marcel R

    2015-10-09

    The colours from natural waters differ markedly over the globe, depending on the water composition and illumination conditions. The space-borne "ocean colour" instruments are operational instruments designed to retrieve important water-quality indicators, based on the measurement of water leaving radiance in a limited number (5 to 10) of narrow (≈10 nm) bands. Surprisingly, the analysis of the satellite data has not yet paid attention to colour as an integral optical property that can also be retrieved from multispectral satellite data. In this paper we re-introduce colour as a valuable parameter that can be expressed mainly by the hue angle (α). Based on a set of 500 synthetic spectra covering a broad range of natural waters a simple algorithm is developed to derive the hue angle from SeaWiFS, MODIS, MERIS and OLCI data. The algorithm consists of a weighted linear sum of the remote sensing reflectance in all visual bands plus a correction term for the specific band-setting of each instrument. The algorithm is validated by a set of 603 hyperspectral measurements from inland-, coastal- and near-ocean waters. We conclude that the hue angle is a simple objective parameter of natural waters that can be retrieved uniformly for all space-borne ocean colour instruments.

  1. MODIS and GIMMS Inferred Northern Hemisphere Spring Greenup in Responses to Preseason Climate

    NASA Astrophysics Data System (ADS)

    Xu, X.; Riley, W. J.; Koven, C.; Jia, G.

    2017-12-01

    We compare the discrepancies in Normalized Difference Vegetation Index (NDVI) inferred spring greenup (SG) between Terra Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Very High Resolution Radiometer (AVHRR) instruments carried by the Global Inventory Monitoring and Modeling Studies (GIMMS) in North Hemisphere. The interannual variation of SG inferred by MODIS and GIMMS NDVI is well correlated in the mid to high latitudes. However, the presence of NDVI discrepancies leads to discrepancies in SG with remarkable latitudinal characteristics. MODIS NDVI inferred later SG in the high latitude while earlier SG in the mid to low latitudes, in comparison to GIMMS NDVI inferred SG. MODIS NDVI inferred SG is better correlated to preseason climate. Interannual variation of SG is only sensitive to preseason temperature. The GIMMS SG to temperature sensitivity over two periods implied that the inter-biome SG to temperature sensitivity is relatively stable, but SG to temperature sensitivity decreased over time. Over the same period, MODIS SG to temperature sensitivity is much higher than GIMMS. This decreased sensitivity demonstrated the findings from previous studies with continuous GIMMS NDVI analysis that vegetation growth (indicated by growing season NDVI) to temperature sensitivity is reduced over time and SG advance trend ceased after 2000s. Our results also explained the contradictive findings that SG advance accelerated after 2000s according to the merged GIMMS and MODIS NDVI time series. Despite the found discrepancies, without ground data support, the quality of NDVI and its inferred SG cannot be effectively evaluated. The discrepancies and uncertainties in different NDVI products and its inferred SG may bias the scientific significance of climate-vegetation relationship. The different NDVI products when used together should be first evaluated and harmonized.

  2. MISR Aerosol Product Attributes and Statistical Comparisons with MODIS

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.; Nelson, David L.; Garay, Michael J.; Levy, Robert C.; Bull, Michael A.; Diner, David J.; Martonchik, John V.; Paradise, Susan R.; Hansen, Earl G.; Remer, Lorraine A.

    2009-01-01

    In this paper, Multi-angle Imaging SpectroRadiometer (MISR) aerosol product attributes are described, including geometry and algorithm performance flags. Actual retrieval coverage is mapped and explained in detail using representative global monthly data. Statistical comparisons are made with coincident aerosol optical depth (AOD) and Angstrom exponent (ANG) retrieval results from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument. The relationship between these results and the ones previously obtained for MISR and MODIS individually, based on comparisons with coincident ground-truth observations, is established. For the data examined, MISR and MODIS each obtain successful aerosol retrievals about 15% of the time, and coincident MISR-MODIS aerosol retrievals are obtained for about 6%-7% of the total overlap region. Cloud avoidance, glint and oblique-Sun exclusions, and other algorithm physical limitations account for these results. For both MISR and MODIS, successful retrievals are obtained for over 75% of locations where attempts are made. Where coincident AOD retrievals are obtained over ocean, the MISR-MODIS correlation coefficient is about 0.9; over land, the correlation coefficient is about 0.7. Differences are traced to specific known algorithm issues or conditions. Over-ocean ANG comparisons yield a correlation of 0.67, showing consistency in distinguishing aerosol air masses dominated by coarse-mode versus fine-mode particles. Sampling considerations imply that care must be taken when assessing monthly global aerosol direct radiative forcing and AOD trends with these products, but they can be used directly for many other applications, such as regional AOD gradient and aerosol air mass type mapping and aerosol transport model validation. Users are urged to take seriously the published product data-quality statements.

  3. Fires and Smoke Observed from the Earth Observing System MODIS Instrument: Products, Validation, and Operational Use

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Ichoku, C.; Giglio, L.; Korontzi, S.; Chu, D. A.; Hao, W. M.; Justice, C. O.; Lau, William K. M. (Technical Monitor)

    2001-01-01

    The MODIS sensor, launched on NASA's Terra satellite at the end of 1999, was designed with 36 spectral channels for a wide array of land, ocean, and atmospheric investigations. MODIS has a unique ability to observe fires, smoke, and burn scars globally. Its main fire detection channels saturate at high brightness temperatures: 500 K at 4 microns and 400 K at 11 microns, which can only be attained in rare circumstances at the I kin fire detection spatial resolution. Thus, unlike other polar orbiting satellite sensors with similar thermal and spatial resolutions, but much lower saturation temperatures (e.g. AVHRR and ATSR), MODIS can distinguish between low intensity ground surface fires and high intensity crown forest fires. Smoke column concentration over land is for the first time being derived from the MOMS solar channels, extending from 0.41 microns to 2.1 microns. The smoke product has been provisionally validated both globally and regionally over southern Africa and central and south America. Burn scars are observed from MODIS even in the presence of smoke, using the 1.2 to 2.1 micron channels. MODIS burned area information is used to estimate pyrogenic emissions. A wide range of these fire and related products and validation are demonstrated for the wild fires that occurred in northwestern United States in the summer of 2000. The MODIS rapid response system and direct broadcast capability is being developed to enable users to obtain and generate data in near real time. It is expected that health and land management organizations will use these systems for monitoring the occurrence of fires and the dispersion of smoke within two to six hours after data acquisition.

  4. Early on-orbit calibration results from Aqua MODIS

    NASA Astrophysics Data System (ADS)

    Xiong, Xiaoxiong; Barnes, William L.

    2003-04-01

    Aqua MODIS, also known as the MODIS Flight Model 1 (FM1), was launched on May 4, 2002. It opened its nadir aperture door (NAD) on June 24, 2002, beginning its Earth observing mission. In this paper, we present early results from Aqua MODIS on-orbit calibration and characterization and assess the instrument's overall performance. MODIS has 36 spectral bands located on four focal plane assemblies (FPAs). Bands 1-19, and 26 with wavelengths from 0.412 to 2.1 microns are the reflective solar bands (RSB) that are calibrated on-orbit by a solar diffuser (SD). The degradation of the SD is tracked using a solar diffuser stability monitor (SDSM). The bands 20-25, and 27-36 with wavelengths from 3.75 to 14.5 microns are the thermal emissive bands (TEB) that are calibrated on-orbit by a blackbody (BB). Early results indicate that the on-orbit performance has been in good agreement with the predications determined from pre-launch measurements. Except for band 21, the low gain fire band, band 6, known to have some inoperable detectors from pre-launch characterization, and one noisy detector in band 36, all of the detectors' noise characterizations are within their specifications. Examples of the sensor's short-term and limited long-term responses in both TEB and RSB will be provided to illustrate the sensor's on-orbit stability. In addition, we will show some of the improvements that Aqua MODIS made over its predecessor, Terra MODIS (Protoflight Model - PFM), such as removal of the optical leak into the long-wave infrared (LWIR) photoconductive (PC) bands and reduction of electronic crosstalk and out-of-band (OOB) thermal leak into the short-wave infrared (SWIR) bands.

  5. Response to Toward Unified Satellite Climatology of Aerosol Properties. 3; MODIS versus MISR versus AERONET

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.; Garay, Michael J.; Nelson, David L.; Levy, Robert C.; Bull, Michael A.; Diner, David J.; Martonchik, John V.; Hansen, Earl G.; Remer, Lorraine A.; Tanre, Didler

    2010-01-01

    A recent paper by Mishchenko et al. compares near-coincident MISR, MODIS, and AERONET aerosol optical depth (AOD), and gives a much less favorable impression of the utility of the satellite products than that presented by the instrument teams and other groups. We trace the reasons for the differing pictures to whether known and previously documented limitations of the products are taken into account in the assessments. Specifically, the analysis approaches differ primarily in (1) the treatment of outliers, (2) the application of absolute vs. relative criteria for testing agreement, and (3) the ways in which seasonally varying spatial distributions of coincident retrievals are taken into account. Mishchenko et al. also do not distinguish between observational sampling differences and retrieval algorithm error. We assess the implications of the different analysis approaches, and cite examples demonstrating how the MISR and MODIS aerosol products have been applied successfully to a range of scientific investigations.

  6. Use of MODIS Satellite Images and an Atmospheric Dust Transport Model to Evaluate Juniperus spp. Pollen Phenology and Dispersal

    NASA Technical Reports Server (NTRS)

    Luvall, J. C.; Sprigg, W. A.; Levetin, E.; Huete, A.; Nickovic, S.; Pejanovic, G. A.; Vukovic, A.; VandeWater, P. K.; Myers, O. B.; Budge, A. M.; hide

    2011-01-01

    Pollen can be transported great distances. Van de Water et. al. reported Juniperus spp. pollen was transported 200-600 km. Hence local observations of plant phenology may not be consistent with the timing and source of pollen collected by pollen sampling instruments. The DREAM (Dust REgional Atmospheric Model) is a verified model for atmospheric dust transport modeling using MODIS data products to identify source regions and quantities of dust. We are modifying the DREAM model to incorporate pollen transport. Pollen release will be estimated based on MODIS derived phenology of Juniperus spp. communities. Ground based observational records of pollen release timing and quantities will be used as verification. This information will be used to support the Centers for Disease Control and Prevention's National Environmental Public Health Tracking Program and the State of New Mexico environmental public health decision support for asthma and allergies alerts.

  7. An Integrated Cloud-Aerosol-Radiation Product Using CERES, MODIS, CALIPSO and CloudSat Data

    NASA Astrophysics Data System (ADS)

    Sun-Mack, S.; Gibson, S.; Chen, Y.; Wielicki, B.; Minnis, P.

    2006-12-01

    The goal of this paper is to provide the first integrated data set of global vertical profiles of aerosols, clouds, and radiation using the combined NASA A-Train data from Aqua CERES and MODIS, CALIPSO, and CloudSat. All of these instruments are flying in formation as part of the Aqua Train, or A-Train. This paper will present the preliminary results of merging aerosol and cloud data from the CALIPSO active lidar, cloud data from CloudSat, integrated column aerosol and cloud data from the MODIS CERES analyses, and surface and top-of-atmosphere broadband radiation fluxes from CERES. These new data will provide unprecedented ability to test and improve global cloud and aerosol models, to investigate aerosol direct and indirect radiative forcing, and to validate the accuracy of global aerosol, cloud, and radiation data sets especially in polar regions and for multi-layered cloud conditions.

  8. Validation of MODIS Aerosol Optical Depth Retrieval Over Land

    NASA Technical Reports Server (NTRS)

    Chu, D. A.; Kaufman, Y. J.; Ichoku, C.; Remer, L. A.; Tanre, D.; Holben, B. N.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Aerosol optical depths are derived operationally for the first time over land in the visible wavelengths by MODIS (Moderate Resolution Imaging Spectroradiometer) onboard the EOSTerra spacecraft. More than 300 Sun photometer data points from more than 30 AERONET (Aerosol Robotic Network) sites globally were used in validating the aerosol optical depths obtained during July - September 2000. Excellent agreement is found with retrieval errors within (Delta)tau=+/- 0.05 +/- 0.20 tau, as predicted, over (partially) vegetated surfaces, consistent with pre-launch theoretical analysis and aircraft field experiments. In coastal and semi-arid regions larger errors are caused predominantly by the uncertainty in evaluating the surface reflectance. The excellent fit was achieved despite the ongoing improvements in instrument characterization and calibration. This results show that MODIS-derived aerosol optical depths can be used quantitatively in many applications with cautions for residual clouds, snow/ice, and water contamination.

  9. Evaluation of AIRS cloud properties using MPACE data

    NASA Astrophysics Data System (ADS)

    Wu, Xuebao; Li, Jun; Menzel, W. Paul; Huang, Allen; Baggett, Kevin; Revercomb, Henry

    2005-12-01

    Retrieval of cloud properties from the Atmospheric Infrared Sounder (AIRS) aboard the NASA Aqua satellite has been investigated. The cloud products from the collocated MODerate resolution Imaging Spectroradiometer (MODIS) data are used to characterize the AIRS sub-pixel cloud information such as cloud phase, cloud coverage, and cloud layer information. A Minimum Residual (MR) approach is used to retrieve cloud microphysical properties once the cloud top pressure (CTP) and effective cloud amount (ECA) are determined from AIRS CO2 absorption channels between 720 and 790 cm-1. The cloud microphysical properties can be retrieved by minimizing the differences between the observations and the calculations using AIRS longwave window channels between 790 and 1130 cm-1. AIRS is used to derive cloud properties during the Mixed Phase Arctic Cloud Experiment (MPACE) field campaign. Comparison with measurements obtained from lidar data is made for a test day, showing that AIRS cloud property retrievals agree with in situ lidar observations. Due to the large solar zenith angle, the MODIS operational retrieval approach is not able to provide cloud microphysics north of Barrow, Alaska; however, AIRS provides cloud microphysical properties with its high spectral resolution IR measurements.

  10. Flooding on Elbe River

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Heavy rains in Central Europe over the past few weeks have led to some of the worst flooding the region has witnessed in more than a century. The floods have killed more than 100 people in Germany, Russia, Austria, Hungary, and the Czech Republic and have led to as much as $20 billion in damage. This false-color image of the Elbe River and its tributaries was taken on August 20, 2002, by the Moderate Resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra satellite. The floodwaters that inundated Dresden, Germany, earlier this week have moved north. As can be seen, the river resembles a fairly large lake in the center of the image just south of the town of Wittenberg. Flooding was also bad further downriver in the towns of Maqgdeburge and Hitzacker. Roughly 20,000 people were evacuated from their homes in northern Germany. Fifty thousand troops, border police, and technical assistance workers were called in to combat the floods along with 100,000 volunteers. The floodwaters are not expected to badly affect Hamburg, which sits on the mouth of the river on the North Sea. Credit:Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  11. Red Tide off Texas Coast

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Red tides (algae) bloomed late this summer along a 300-mile stretch of Texas' Gulf Coast, killing millions of fish and shellfish as well as making some people sick. State officials are calling this the worst red tide bloom in 14 years. The algae produces a poison that paralyzes fish and prevents them from breathing. There is concern that the deadly algae could impact or even wipe out this year's oyster harvest in Texas, which usually peaks during the Thanksgiving and Christmas holidays. The red tides were first observed off the Texas coast in mid-August and have been growing steadily in size ever since. Red tides tend to bloom and subside rapidly, depending upon changes in wind speed and direction, water temperature, salinity, and rainfall patterns (as the algae doesn't do as well in fresher water). This true-color image of the Texas Gulf Coast was acquired on September 29, 2000, by the Moderate-resolution Imaging Spectroradiometer (MODIS) flying aboard NASA's Terra spacecraft. The red tide can be seen as the dark reddish discoloration in the ocean running southwest to northeast along the coast. In this scene, the bloom appears to be concentrated north and east of Corpus Christi, just off Matagorda Island. The image was made at 500-meter resolution using a combination of MODIS' visible bands 1 (red), 4 (green), and 3 (blue). The city of Houston can be seen clearly as the large, greyish cluster of pixels to the north and west of Galveston Bay, which is about mid-way up the coastline in this image. Also visible in this image are plumes of smoke, perhaps wildfires, both to the north and northeast of Houston. For more information about red tides, refer to the Texas Red Tide Web site. Image courtesy Andrey Savtchenko, MODIS Data Support Team, and the MODIS Ocean Team, NASA's Goddard Space Flight Center

  12. Sensitivity Study of IROE Cloud Retrievals Using VIIRS M-Bands and Combined VIIRS/CrIS IR Observations

    NASA Astrophysics Data System (ADS)

    Wang, C.; Platnick, S. E.; Meyer, K.; Ackerman, S. A.; Holz, R.; Heidinger, A.

    2017-12-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) on board the Suomi-NPP spacecraft is considered as the next generation of instrument providing operational moderate resolution imaging capabilities after the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua. However, cloud-top property (CTP) retrieval algorithms designed for the two instruments cannot be identical because of the absence of CO2 bands on VIIRS. In this study, we conduct a comprehensive sensitivity study of cloud retrievals utilizing a IR-Optimal Estimation (IROE) based algorithm. With a fast IR radiative transfer model, the IROE simultaneously retrieves cloud-top height (CTH), cloud optical thickness (COT), cloud effective radius (CER) and corresponding uncertainties using a set of IR bands. Three retrieval runs are implemented for this sensitivity study: retrievals using 1) three native VIIRS M-Bands at 750m resolution (8.5-, 11-, and 12-μm), 2) three native VIIRS M-Bands with spectrally integrated CO2 bands from the Cross-Track Infrared Sounder (CrIS), and 3) six MODIS IR bands (8.5-, 11-, 12-, 13.3-, 13.6-, and 13.9-μm). We select a few collocated MODIS and VIIRS granules for pixel-level comparison. Furthermore, aggregated daily and monthly cloud properties from the three runs are also compared. It shows that, the combined VIIRS/CrIS run agrees well with the MODIS-only run except for pixels near cloud edges. The VIIRS-only run is close to its counterparts when clouds are optically thick. However, for optically thin clouds, the VIIRS-only run can be readily influenced by the initial guess. Large discrepancies and uncertainties can be found for optically thin clouds from the VIIRS-only run.

  13. MODIS Collection 6 Data at the National Snow and Ice Data Center (NSIDC)

    NASA Astrophysics Data System (ADS)

    Fowler, D. K.; Steiker, A. E.; Johnston, T.; Haran, T. M.; Fowler, C.; Wyatt, P.

    2015-12-01

    For over 15 years, the NASA National Snow and Ice Data Center Distributed Active Archive Center (NSIDC DAAC) has archived and distributed snow and sea ice products derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on the NASA Earth Observing System (EOS) Aqua and Terra satellites. Collection 6 represents the next revision to NSIDC's MODIS archive, mainly affecting the snow-cover products. Collection 6 specifically addresses the needs of the MODIS science community by targeting the scenarios that have historically confounded snow detection and introduced errors into the snow-cover and fractional snow-cover maps even though MODIS snow-cover maps are typically 90 percent accurate or better under good observing conditions, Collection 6 uses revised algorithms to discriminate between snow and clouds, resolve uncertainties along the edges of snow-covered regions, and detect summer snow cover in mountains. Furthermore, Collection 6 applies modified and additional snow detection screens and new Quality Assessment protocols that enhance the overall accuracy of the snow maps compared with Collection 5. Collection 6 also introduces several new MODIS snow products, including a daily Climate Modelling Grid (CMG) cloud gap-filled (CGF) snow-cover map which generates cloud-free maps by using the most recent clear observations.. The MODIS Collection 6 sea ice extent and ice surface temperature algorithms and products are much the same as Collection 5; however, Collection 6 updates to algorithm inputs—in particular, the L1B calibrated radiances, land and water mask, and cloud mask products—have improved the sea ice outputs. The MODIS sea ice products are currently available at NSIDC, and the snow cover products are soon to follow in 2016 NSIDC offers a variety of methods for obtaining these data. Users can download data directly from an online archive or use the NASA Reverb Search & Order Tool to perform spatial, temporal, and parameter subsetting, reformatting, and re-projection of the data.

  14. Comparisons of Wind Speed Retrievals from an Airborne Microwave Radiometer (AMPR) with Satellite-Based Observations During the OLYMPEX/RADEX Field Campaign

    NASA Technical Reports Server (NTRS)

    Lang, Timothy J.; Biswas, Sayak

    2017-01-01

    AMPR is an airborne instrument that flew aboard the NASA ER-2 during the OLYMPEX/RADEX field campaign in late 2015. This poster's goal is to explore how well the instrument can retrieve near-surface wind speed over the ocean.

  15. Saturn Apollo Program

    NASA Image and Video Library

    1967-08-01

    The Apollo Telescope Mount (ATM), designed and developed by the Marshall Space Flight Center, served as the primary scientific instrument unit aboard the Skylab. The ATM contained eight complex astronomical instruments designed to observe the Sun over a wide spectrum from visible light to x-rays. This photo depicts a mockup of the ATM contamination monitor camera and photometer.

  16. Saturn Apollo Program

    NASA Image and Video Library

    1967-08-01

    The Apollo Telescope Mount (ATM), designed and developed by the Marshall Space Flight Center, served as the primary scientific instrument unit aboard the Skylab. The ATM contained eight complex astronomical instruments designed to observe the Sun over a wide spectrum from visible light to x-rays. This angle view is of an ATM contamination monitor meter mockup.

  17. Correlations of oriented ice and precipitation in marine midlatitude low clouds using collocated CloudSat, CALIOP, and MODIS observations

    NASA Astrophysics Data System (ADS)

    Ross, Alexa; Holz, Robert E.; Ackerman, Steven A.

    2017-08-01

    In April 2006, the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) launched aboard the CALIPSO satellite and into the A-Train constellation of satellites with its transmitter pointed near nadir. This proved problematic due to specular reflection from horizontally oriented ice crystals occurring more frequently than expected. Because the specular backscatter from oriented ice crystals has large attenuated backscatter and almost no depolarization, the standard lidar inversions cannot be applied. To mitigate this issue, the CALIOP transmitter was moved to 3° off nadir in November 2007. Though problematic for global CALIOP retrievals, the sensitivity to oriented ice during the first year of observations provides a unique data set to investigate scenes of this ice crystal signature. This study focuses on the CALIOP-oriented signature that occurs in midlatitude ocean regions whose cloud tops are relatively warm and low, existing below 6 km. A significant seasonal dependence is found in the Northern Hemisphere with up to 19% of clouds below 6 km yielding specular reflection by CALIOP during the colder months. In contrast, the Southern Hemisphere lacks such seasonal dependence and sees fewer oriented ice crystals. Using collocated CloudSat observations with both CALIOP and Moderate Resolution Imaging Spectroradiometer (MODIS), we investigate the correlations of the oriented signature with MODIS cloud properties. Comparing with CloudSat precipitation retrievals, we find that the oriented signature is strongly correlated with surface precipitation with 64% of CALIOP-oriented ice crystal cases precipitating compared to 40% for nonoriented cases.

  18. Mitigating Satellite-Based Fire Sampling Limitations in Deriving Biomass Burning Emission Rates: Application to WRF-Chem Model Over the Northern sub-Saharan African Region

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Yue, Yun; Wang, Yi; Ichoku, Charles; Ellison, Luke; Zeng, Jing

    2018-01-01

    Largely used in several independent estimates of fire emissions, fire products based on MODIS sensors aboard the Terra and Aqua polar-orbiting satellites have a number of inherent limitations, including (a) inability to detect fires below clouds, (b) significant decrease of detection sensitivity at the edge of scan where pixel sizes are much larger than at nadir, and (c) gaps between adjacent swaths in tropical regions. To remedy these limitations, an empirical method is developed here and applied to correct fire emission estimates based on MODIS pixel level fire radiative power measurements and emission coefficients from the Fire Energetics and Emissions Research (FEER) biomass burning emission inventory. The analysis was performed for January 2010 over the northern sub-Saharan African region. Simulations from WRF-Chem model using original and adjusted emissions are compared with the aerosol optical depth (AOD) products from MODIS and AERONET as well as aerosol vertical profile from CALIOP data. The comparison confirmed an 30-50% improvement in the model simulation performance (in terms of correlation, bias, and spatial pattern of AOD with respect to observations) by the adjusted emissions that not only increases the original emission amount by a factor of two but also results in the spatially continuous estimates of instantaneous fire emissions at daily time scales. Such improvement cannot be achieved by simply scaling the original emission across the study domain. Even with this improvement, a factor of two underestimations still exists in the modeled AOD, which is within the current global fire emissions uncertainty envelope.

  19. Terra Data Confirm Warm, Dry U.S. Winter

    NASA Technical Reports Server (NTRS)

    2002-01-01

    New maps of land surface temperature and snow cover produced by NASA's Terra satellite show this year's winter was warmer than last year's, and the snow line stayed farther north than normal. The observations confirm earlier National Oceanic and Atmospheric Administration reports that the United States was unusually warm and dry this past winter. (Click to read the NASA press release and to access higher-resolution images.) For the last two years, a new sensor aboard Terra has been collecting the most detailed global measurements ever made of our world's land surface temperatures and snow cover. The Moderate-resolution Imaging Spectroradiometer (MODIS) is already giving scientists new insights into our changing planet. Average temperatures during December 2001 through February 2002 for the contiguous United States appear to have been unseasonably warm from the Rockies eastward. In the top image the coldest temperatures appear black, while dark green, blue, red, yellow, and white indicate progressively warmer temperatures. MODIS observes both land surface temperature and emissivity, which indicates how efficiently a surface absorbs and emits thermal radiation. Compared to the winter of 2000-01, temperatures throughout much of the U.S. were warmer in 2001-02. The bottom image depicts the differences on a scale from dark blue (colder this year than last) to red (warmer this year than last). A large region of warm temperatures dominated the northern Great Plains, while the area around the Great Salt Lake was a cold spot. Images courtesy Robert Simmon, NASA GSFC, based upon data courtesy Zhengming Wan, MODIS Land Science Team member at the University of California, Santa Barbara's Institute for Computational Earth System Science

  20. A strategy to assess the pointing accuracy of the CERES FM1-FM5 scanners

    NASA Astrophysics Data System (ADS)

    Smith, Nathaniel P.; Szewczyk, Z. Peter; Hess, Phillip C.; Priestley, Kory J.

    2017-09-01

    The Clouds and the Earth's Radiant Energy System (CERES) scanning radiometer is designed to measure the solar radiation reflected by the Earth and thermal radiation emitted by the Earth. Five CERES instruments are currently in service; two aboard the Terra spacecraft, launched in 1999; two aboard the Aqua spacecraft, launched in 2002; and one instrument about the NPP spacecraft, launched in 2011. Verifying the pointing accuracy of the CERES instruments is required to assure that all earth viewing data is correctly geolocated. The CERES team has developed an on-orbit technique for assessing the pointing accuracy of the CERES sensors that relies on a rapid gradient change of measurements taken over a well-defined and known Earth target, such as a coastline, where a strong contrast in brightness and temperature exists. The computed coastline is then compared with World Bank II map to verify the accuracy of the measurement location. This paper briefly restates the algorithm used in the study, describes collection of coastline data, and summarizes the results of the study the CERES FM1, FM2, FM3, and FM5 instruments.

  1. NASA Sees Hurricane Olaf Move into Central Pacific Ocean

    NASA Image and Video Library

    2017-12-08

    On Oct. 19 at 19:35 UTC (3:35 p.m. EDT) the MODIS instrument aboard NASA's Terra satellite saw Hurricane Olaf moving into the central Pacific Ocean with a visible eye. Powerful thunderstorms circled the eye and extended in a thick band in the eastern quadrant from north to south. At 5 a.m. EDT (0900 UTC) on Oct. 20, Hurricane Olaf's center was located near latitude 10.3 north and longitude 140.4 west. That's about 1,175 miles (1,890 km) east-southeast of Hilo, Hawaii. Despite being so far from Hawaii and because Olaf is a powerful hurricane, large swells generated by Olaf will begin to arrive along east facing shores of the main Hawaiian Islands over the next couple of days. The CPHC said that resultant surf will be large...potentially life-threatening and damaging. Olaf is moving toward the west-northwest near 10 mph (17 kph) and the Central Pacific Hurricane Center (CPHC), who has taken over forecast responsibilities now that Olaf has crossed the 140 degree longitude line, expects Olaf to turn toward the west-northwest and then northwest by October 21. Maximum sustained winds are near 150 mph (240 kph). Olaf is a category four hurricane on the Saffir-Simpson Hurricane wind scale. Some additional strengthening is forecast on Tuesday, Oct. 20 and fluctuations in intensity are possible Tuesday night and Wednesday. The estimated minimum central pressure is 938 millibars. Olaf is expected to remain a major hurricane for the next couple of days and begin curving to the northeast and away from Hawaii by Friday, October 23. For updates, visit: www.prh.noaa.gov/cphc. Credit: NASA Goddard's MODIS Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. Space-based Observational Constraints for 1-D Plume Rise Models

    NASA Technical Reports Server (NTRS)

    Martin, Maria Val; Kahn, Ralph A.; Logan, Jennifer A.; Paguam, Ronan; Wooster, Martin; Ichoku, Charles

    2012-01-01

    We use a space-based plume height climatology derived from observations made by the Multi-angle Imaging SpectroRadiometer (MISR) instrument aboard the NASA Terra satellite to evaluate the ability of a plume-rise model currently embedded in several atmospheric chemical transport models (CTMs) to produce accurate smoke injection heights. We initialize the plume-rise model with assimilated meteorological fields from the NASA Goddard Earth Observing System and estimated fuel moisture content at the location and time of the MISR measurements. Fire properties that drive the plume-rise model are difficult to estimate and we test the model with four estimates for active fire area and four for total heat flux, obtained using empirical data and Moderate Resolution Imaging Spectroradiometer (MODIS) re radiative power (FRP) thermal anomalies available for each MISR plume. We show that the model is not able to reproduce the plume heights observed by MISR over the range of conditions studied (maximum r2 obtained in all configurations is 0.3). The model also fails to determine which plumes are in the free troposphere (according to MISR), key information needed for atmospheric models to simulate properly smoke dispersion. We conclude that embedding a plume-rise model using currently available re constraints in large-scale atmospheric studies remains a difficult proposition. However, we demonstrate the degree to which the fire dynamical heat flux (related to active fire area and sensible heat flux), and atmospheric stability structure influence plume rise, although other factors less well constrained (e.g., entrainment) may also be significant. Using atmospheric stability conditions, MODIS FRP, and MISR plume heights, we offer some constraints on the main physical factors that drive smoke plume rise. We find that smoke plumes reaching high altitudes are characterized by higher FRP and weaker atmospheric stability conditions than those at low altitude, which tend to remain confined below the BL, consistent with earlier results. We propose two simplified parameterizations for computing injection heights for fires in CTMs and discuss current challenges to representing plume injection heights in large scale atmospheric models.

  3. Smoke over Hudson Bay

    NASA Image and Video Library

    2017-12-08

    A vigorous summer fire season continued through July, 2013 as many large wildfires continued to burn in the forests of northern Canada. The high fire activity not only laid waste to thousands of hectares of boreal forest, but sent thick smoke billowing high into the atmosphere, where it was carried far across the Atlantic Ocean. On July 30, the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Aqua satellite captured this true-color image of a river of smoke spreading south across the Hudson Bay. The blue background is formed by the waters of Hudson Bay. In the southeast the green, forest-covered land of Quebec province peeks from under a large cloud bank. Another large bank of white cloud covers the water in the southwest, and a smaller cloud bank covers the territory of Nunavut in the northwest. A bit of Baffin Island can be seen near the top center of the image. Looking closely at the image, it appears that the gray smoke mixes with whiter cloud in the south, suggesting they may be at the same level in the atmosphere. In the northeast corner of the image, a ribbon of smoke appears to blow over a bank of popcorn clouds as well as over a few lower-lying clouds, causing some of the clouds to appear gray beneath the smoky veil. Where cloud meets smoke in the northeast, however, the line of the cloud bank remains sharp, while the smoke appears to continue traveling under the edge. Although these interpretations are somewhat subjective in this true-color image, the false-color image of the same scene (not shown here) lends strength to the interpretation. Data from other NASA instruments, designed to measure cloud height and characteristics, agree that clouds vary in height, and that smoke mingles with cloud in the south. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  4. Spatial and temporal remote sensing data fusion for vegetation monitoring

    USDA-ARS?s Scientific Manuscript database

    The suite of available remote sensing instruments varies widely in terms of sensor characteristics, spatial resolution and acquisition frequency. For example, the Moderate-resolution Imaging Spectroradiometer (MODIS) provides daily global observations at 250m to 1km spatial resolution. While imagery...

  5. Soho and Cluster - The scientific instruments

    NASA Technical Reports Server (NTRS)

    Domingo, V.; Schmidt, R.; Poland, A. I.; Goldstein, M. L.

    1988-01-01

    The mission goals and instrumentation of the Soho and cluster spacecraft to be launched in 1995 as part of the international Solar-Terrestrial Science Program are discussed. Instruments such as normal-incidence, grazing-incidence, and EUV coronal spectrometers aboard the Soho spacecraft will study the origin of the solar wind and the physical properties of the solar atmosphere. The four Cluster spacecraft will measure electric and magnetic fields, plasmas, and energetic particles using instruments including a wide-band receiver system, a relaxation sounder, and a search coil magnetometer.

  6. Enhanced clear sky reflectance near clouds: What can be learned from it about aerosol properties?

    NASA Astrophysics Data System (ADS)

    Marshak, A.; Varnai, T.; Wen, G.; Chiu, J.

    2009-12-01

    Studies on aerosol direct and indirect effects require a precise separation of cloud-free and cloudy air. However, separation between cloud-free and cloudy areas from remotely-sensed measurements is ambiguous. The transition zone in the regions around clouds often stretches out tens of km, which are neither precisely clear nor precisely cloudy. We study the transition zone between cloud-free and cloudy air using MODerate-resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) measurements. Both instruments show enhanced clear-sky reflectance (MODIS) and clear-sky backscatterer (CALIPSO) near clouds. Analyzing a large dataset of MODIS observations, we examine the effect of three-dimensional radiative interactions between clouds and cloud-free areas, also known as a cloud adjacency effect. The cloud adjacency effect is well observed in MODIS clear-sky data in the vicinity of clouds. Comparing with CALIPSO clear-sky backscatterer measurements, we show that this effect may be responsible for a large portion of the enhanced clear-sky reflectance observed by MODIS. Finally, we describe a simple model that estimates the cloud-induced enhanced reflectances of cloud-free areas in the vicinity of clouds. The model assumes that the enhancement is due entirely to Rayleigh scattering and is therefore bigger at shorter wavelengths, thus creating a so-called apparent “bluing” of aerosols in remote sensing retrievals.

  7. Use of MODIS Satellite Data to Evaluate Juniperus spp. Pollen Phenology to Support a Pollen Dispersal Model, PREAM, to Support Public Health Allergy Alerts

    NASA Technical Reports Server (NTRS)

    Luvall, J. C.; Sprigg, W.; Levetin, E.; Huete, A.; Nickovic, S.; Pejanovic, G. A.; Vukovic, A.; VandeWater, P.; Budge, A.; Hudspeth, W.; hide

    2012-01-01

    Juniperus spp. pollen is a significant aeroallergen that can be transported 200-600 km from the source. Local observations of Juniperus spp. phenology may not be consistent with the timing and source of pollen collected by pollen sampling instruments. Methods: The Dust REgional Atmospheric Model (DREAM)is a verified model for atmospheric dust transport modeling using MODIS data products to identify source regions and quantities of dust. We successfully modified the DREAM model to incorporate pollen transport (PREAM) and used MODIS satellite images to develop Juniperus ashei pollen input source masks. The Pollen Release Potential Source Map, also referred to as a source mask in model applications, may use different satellite platforms and sensors and a variety of data sets other than the USGS GAP data we used to map J. ashei cover type. MODIS derived percent tree cover is obtained from MODIS Vegetation Continuous Fields (VCF) product (collection 3 and 4, MOD44B, 500 and 250 m grid resolution). We use updated 2010 values to calculate pollen concentration at source (J. ashei ). The original MODIS derived values are converted from native approx. 250 m to 990m (approx. 1 km) for the calculation of a mask to fit the model (PREAM) resolution. Results: The simulation period is chosen following the information that in the last 2 weeks of December 2010. The PREAM modeled near-surface concentrations (Nm-3) shows the transport patterns of J. ashei pollen over a 5 day period (Fig. 2). Typical scales of the simulated transport process are regional.

  8. Evaluation of Operational Albedo Algorithms For AVHRR, MODIS and VIIRS: Case Studies in Southern Africa

    NASA Astrophysics Data System (ADS)

    Privette, J. L.; Schaaf, C. B.; Saleous, N.; Liang, S.

    2004-12-01

    Shortwave broadband albedo is the fundamental surface variable that partitions solar irradiance into energy available to the land biophysical system and energy reflected back into the atmosphere. Albedo varies with land cover, vegetation phenological stage, surface wetness, solar angle, and atmospheric condition, among other variables. For these reasons, a consistent and normalized albedo time series is needed to accurately model weather, climate and ecological trends. Although an empirically-derived coarse-scale albedo from the 20-year NOAA AVHRR record (Sellers et al., 1996) is available, an operational moderate resolution global product first became available from NASA's MODIS sensor. The validated MODIS product now provides the benchmark upon which to compare albedo generated through 1) reprocessing of the historic AVHRR record and 2) operational processing of data from the future National Polar-Orbiting Environmental Satellite System's (NPOESS) Visible/Infrared Imager Radiometer Suite (VIIRS). Unfortunately, different instrument characteristics (e.g., spectral bands, spatial resolution), processing approaches (e.g., latency requirements, ancillary data availability) and even product definitions (black sky albedo, white sky albedo, actual or blue sky albedo) complicate the development of the desired multi-mission (AVHRR to MODIS to VIIRS) albedo time series -- a so-called Climate Data Record. This presentation will describe the different albedo algorithms used with AVHRR, MODIS and VIIRS, and compare their results against field measurements collected over two semi-arid sites in southern Africa. We also describe the MODIS-derived VIIRS proxy data we developed to predict NPOESS albedo characteristics. We conclude with a strategy to develop a seamless Climate Data Record from 1982- to 2020.

  9. Evaluation of Aerosol Properties over Ocean from Moderate Resolution Imaging Spectroradiometer (MODIS) during ACE-Asia

    NASA Technical Reports Server (NTRS)

    Chu, D. A.; Remer, L. A.; Kaufman, Y. J.; Schmid, B.; Redemann, J.; Knobelspiesse, K.; Chern, J.-D.; Livingston, J.; Russell, P. B.; Xiong, X.; hide

    2005-01-01

    The Aerosol Characterization Experiment-Asia (ACE-Asia) was conducted in March-May 2001 in the western North Pacific in order to characterize the complex mix of dust, smoke, urban/industrial pollution, and background marine aerosol that is observed in that region in springtime. The Moderate Resolution Imaging Spectroradiometer (MODIS) provides a large-scale regional view of the aerosol during the ACE-Asia time period. Focusing only on aerosol retrievals over ocean, MODIS data show latitudinal and longitudinal variation in the aerosol characteristics. Typically, aerosol optical depth (tau(sub a)) values at 0.55 micrometers are highest in the 30 deg. - 50 deg. latitude band associated with dust outbreaks. Monthly mean tau(sub a) in this band ranges approx. 0.40-70, although large differences between monthly mean and median values indicate the periodic nature of these dust outbreaks. The size parameters, fine mode fraction (eta), and effective radius (r(sub eff)) vary between monthly mean values of eta = 0.47 and r(sub eff)= 0.75 micrometers in the cleanest regions far offshore to approximately eta = 0.85 and r(sub eff) =.30 micrometers in near-shore regions dominated by biomass burning smoke. The collocated MODIS retrievals with airborne, ship-based, and ground-based radiometers measurements suggest that MODIS retrievals of spectral optical depth fall well within expected error (DELTA tau(sub a) = plus or minus 0.03 plus or minus 0.05 tau(sub a)) except in situations dominated by dust, in which cases MODIS overestimate both the aerosol loading and the aerosol spectral dependence. Such behavior is consistent with issues related to particle nonsphericity. Comparisons of MODIS-derived r(sub eff) with AERONET retrievals at the few occurrences of collocations show MODIS systematically underestimates particle size by 0.2 micrometers. Multiple-year analysis of MODIS aerosol size parameters suggests systematic differences between the year 2001 and the years 2000 and 2002, which are traced to instrumental electronic cross talk. Sensitivity studies show that such calibration errors are negligible in tau(sub a) retrievals but are more pronounced in size parameter retrievals, especially for dust and sea salt.

  10. Oil Spill in Gulf of Mexico April 29th View [detail

    NASA Image and Video Library

    2017-12-08

    2010/119 - 04/29 at 16 :48 UTC Oil slick in the Gulf of Mexico To see a full view of this image go to: www.flickr.com/photos/gsfc/4563296541/ (Input Direct Broadcast data courtesy Direct Readout Lab, NASA/GSFC) Satellite: Terra NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team To learn more about MODIS go to: rapidfire.sci.gsfc.nasa.gov/gallery/?latest NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

  11. Ship Tracks

    NASA Image and Video Library

    2017-12-08

    Ship tracks above the northern Pacific Ocean. NASA image captured July 3, 2010. Satellite: Aqua NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team To learn more about MODIS go to: rapidfire.sci.gsfc.nasa.gov/gallery/?latest To learn more about ship tracks go to: visibleearth.nasa.gov/view_rec.php?id=2370 To watch a video on ship tracks go to: www.youtube.com/watch?v=Vsri2sOAjWo&feature=player_em...! NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

  12. Ireland

    NASA Image and Video Library

    2017-12-08

    On August 7, 2003, the NASA Aqua MODIS instrument acquired this image of Ireland on the first day this summer that most of the island hasn´t been completely obscured by cloud cover. Called the Emerald Isle for a good reason, Ireland is draped in vibrant shades of green amidst the blue Atlantic Ocean and Celtic (south) and Irish (east) Seas. Faint ribbons of blue-green phytoplankton drift in the waters of the Celtic Sea, just south of Dublin. Dublin itself appears as a large grayish-brown spot on the Republic of Ireland´s northeastern coast. This large capital city (population 1.12 million) sits on the River Liffey, effectively splitting the city in half. Northern Ireland´s capital city, Belfast, also sits on a river: the River Lagan. This city, though its population is only a fifth of the size of Dublin´s, is also clearly visible in the image as a grayish-brown spot on the coast of the Irish Sea. Sensor Aqua/MODIS Credit Jeff Schmaltz, MODIS Rapid Response Team, NASA/GSFC For more information go to: visibleearth.nasa.gov/view_rec.php?id=5744 NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook

  13. 10 Years of Asian Dust Storm Observations from SeaWiFS: Source, Pathway, and Interannual Variability

    NASA Technical Reports Server (NTRS)

    Hsu, N. Christina; Tsay, S.-C.; King, M.D.; Jeong, M.-J.

    2008-01-01

    In this paper, we will demonstrate the capability of a new satellite algorithm to retrieve aerosol optical thickness and single scattering albedo over bright-reflecting surfaces such as urban areas and deserts. Such retrievals have been difficult to perform using previously available algorithms that use wavelengths from the mid-visible to the near IR because they have trouble separating the aerosol signal from the contribution due to the bright surface reflectance. The new algorithm, called Deep Blue, utilizes blue-wavelength measurements from instruments such as SeaWiFS and MODIS to infer the properties of aerosols, since the surface reflectance over land in the blue part of the spectrum is much lower than for longer wavelength channels. We have validated the satellite retrieved aerosol optical thickness with data from AERONET sunphotometers over desert and semi-desert regions. The comparisons show reasonable agreements between these two. These new satellite products will allow scientists to determine quantitatively the aerosol properties near sources using high spatial resolution measurements from SeaWiFS and MODIS-like instruments. The multiyear satellite measurements (1998 - 2007) from SeaWiFS will be utilized to investigate the interannual variability of source, pathway, and dust loading associated with these dust outbreaks in East Asia. The monthly averaged aerosol optical thickness during the springtime from SeaWiFS will also be compared with the MODIS Deep Blue products.

  14. Astronomy Books of 1981.

    ERIC Educational Resources Information Center

    Fraknoi, Andrew

    1982-01-01

    Presents 21 photographs (with accompanying text) taken by instruments aboard interplanetary probes, including those of the Earth, Mercury, Mars, the Moon, Venus, Jupiter, planetary satellites, and Saturn and its rings. (JN)

  15. Ozone and Aerosol Retrieval from Backscattered Ultraviolet Radiation

    NASA Technical Reports Server (NTRS)

    Bhartia, Pawan K.

    2004-01-01

    In this presentation we will discuss the techniques to estimate total column ozone and aerosol absorption optical depth from the measurements of backscattered ultraviolet (buv) radiation. The total ozone algorithm has been used to create a unique record of the ozone layer, spanning more than 3 decades, from a series of instruments (BUV, SBUV, TOMS, SBUV/2) flown on NASA, NOAA, Japanese and Russian satellites. We will discuss how this algorithm can be considered a generalization of the well-known Dobson/Brewer technique that has been used to process data from ground-based instruments for many decades, and how it differs from the DOAS techniques that have been used to estimate vertical column densities of a host of trace gases from data collected by GOME and SCIAMACHY instruments. The BUV aerosol algorithm is most suitable for the detection of UV absorbing aerosols (smoke, desert dust, volcanic ash) and is the only technique that can detect aerosols embedded in clouds. This algorithm has been used to create a quarter century record of aerosol absorption optical depth using the BUV data collected by a series of TOMS instruments. We will also discuss how the data from the OM1 instrument launched on July 15,2004 will be combined with data from MODIS and CALIPSO lidar data to enhance the accuracy and information content of satellite-derived aerosol measurements. The OM1 and MODIS instruments are currently flying on EOS Aura and EOS Aqua satellites respectively, part of a constellation of satellites called the "A-train". The CALIPSO satellite is expected to join this constellation in mid 2005.

  16. Variability of Surface Temperature and Melt on the Greenland Ice Sheet, 2000-2011

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Comiso, Josefino, C.; Shuman, Christopher A.; Koenig, Lora S.; DiGirolamo, Nicolo E.

    2012-01-01

    Enhanced melting along with surface-temperature increases measured using infrared satellite data, have been documented for the Greenland Ice Sheet. Recently we developed a climate-quality data record of ice-surface temperature (IST) of the Greenland Ice Sheet using the Moderate-Resolution Imaging Spectroradiometer (MODIS) 1ST product -- http://modis-snow-ice.gsfc.nasa.gov. Using daily and mean monthly MODIS 1ST maps from the data record we show maximum extent of melt for the ice sheet and its six major drainage basins for a 12-year period extending from March of 2000 through December of 2011. The duration of the melt season on the ice sheet varies in different drainage basins with some basins melting progressively earlier over the study period. Some (but not all) of the basins also show a progressively-longer duration of melt. The short time of the study period (approximately 12 years) precludes an evaluation of statistically-significant trends. However the dataset provides valuable information on natural variability of IST, and on the ability of the MODIS instrument to capture changes in IST and melt conditions indifferent drainage basins of the ice sheet.

  17. The New MODIS-Terra, and the Proposed COBRA Mission: First Global Aerosol Distribution and Properties Over Land and Ocean, and Plans to Measure Global Black Carbon Absorption Over the Ocean Glint

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Tanre, Didier; Remer, Lorraine; Martins, Vanderlei; Schoeberl, Mark; Lau, William K. M. (Technical Monitor)

    2001-01-01

    The MODIS instrument was launched on the NASA Terra satellite in Dec. 1999. Since last Oct, the sensor and the aerosol algorithm reached maturity and provide global daily retrievals of aerosol optical thickness and properties. MODIS has 36 spectral channels in the visible to IR with resolution down to 250 m. This allows accurate cloud screening and multi-spectral aerosol retrievals. We derive the aerosol optical thickness over the ocean and most of the land areas, distinguishing between fine (mainly man-made aerosol) and coarse (mainly natural) aerosol particles. New methods to derive the aerosol absorption of sunlight are also being developed. These measurements are use to track different aerosol sources, transport and the radiative forcing at the top and bottom of the atmosphere. However MODIS or any present satellite sensor cannot measure absorption by Black Carbon over the oceans, a critical component in studying climate change and human health. For this purpose we propose the COBRA mission that observes the ocean at glint and off glint simultaneously measuring the spectral polarized light and deriving precisely the aerosol absorption.

  18. Assessment of MODIS and VIIRS Solar Diffuser On-Orbit Degradation

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong; Fulbright, Jon; Angal, Amit; Wang, Zhipeng; Geng, Xu; Butler, Jim

    2015-01-01

    Both MODIS and VIIRS instruments use a solar diffuser (SD) for their reflective solar bands (RSB) on-orbit calibration. On-orbit changes in SD bi-directional reflectance factor (BRF) are tracked by a solar diffuser stability monitor (SDSM) using its alternate measurements of the sunlight reflected off the SD panel and direct sunlight through a fixed attenuation screen. The SDSM calibration data are collected by a number of filtered detectors, covering wavelengths from 0.41 to 0.94 micrometers. In this paper we describe briefly the Terra and Aqua MODIS and S-NPP VIIRS SDSM on-orbit operation and calibration activities and strategies, provide an overall assessment of their SDSM on-orbit performance, including wavelength-dependent changes in the SDSM detector responses and changes in their SD BRF, and discuss remaining challenging issues and their potential impact on RSB calibration quality. Due to different launch dates, operating configurations, and calibration frequencies, the Terra and Aqua MODIS and S-NPP VIIRS SD have experienced different amount of SD degradation. However, in general the shorter the wavelength, the larger is the SD on-orbit degradation. On the other hand, the larger changes in SDSM detector responses are observed at longer wavelengths in the near infrared (NIR).

  19. Crop Surveillance Demonstration Using a Near-Daily MODIS Derived Vegetation Index Time Series

    NASA Technical Reports Server (NTRS)

    McKellip, Rodney; Ryan, Robert E.; Blonski, Slawomir; Prados, Don

    2005-01-01

    Effective response to crop disease outbreaks requires rapid identification and diagnosis of an event. A near-daily vegetation index product, such as a Normalized Difference Vegetation Index (NDVI), at moderate spatial resolution may serve as a good method for monitoring quick-acting diseases. NASA s Moderate Resolution Imaging Spectroradiometer (MODIS) instrument flown on the Terra and Aqua satellites has the temporal, spatial, and spectral properties to make it an excellent coarse-resolution data source for rapid, comprehensive surveillance of agricultural areas. A proof-of-concept wide area crop surveillance system using daily MODIS imagery was developed and tested on a set of San Joaquin cotton fields over a growing season. This area was chosen in part because excellent ground truth data were readily available. Preliminary results indicate that, at least in the southwestern part of the United States, near-daily NDVI products can be generated that show the natural variations in the crops as well as specific crop practices. Various filtering methods were evaluated and compared with standard MOD13 NDVI MODIS products. We observed that specific chemical applications that produce defoliation, which would have been missed using the standard 16-day product, were easily detectable with the filtered daily NDVI products.

  20. Assessment of MODIS and VIIRS solar diffuser on-orbit degradation

    NASA Astrophysics Data System (ADS)

    Xiong, Xiaoxiong; Fulbright, Jon; Angal, Amit; Wang, Zhipeng; Geng, Xu; Butler, Jim

    2015-09-01

    Both MODIS and VIIRS instruments use a solar diffuser (SD) for their reflective solar bands (RSB) on-orbit calibration. On-orbit changes in SD bi-directional reflectance factor (BRF) are tracked by a solar diffuser stability monitor (SDSM) using its alternate measurements of the sunlight reflected off the SD panel and direct sunlight through a fixed attenuation screen. The SDSM calibration data are collected by a number of filtered detectors, covering wavelengths from 0.41 to 0.94μm. In this paper we describe briefly the Terra and Aqua MODIS and S-NPP VIIRS SDSM on-orbit operation and calibration activities and strategies, provide an overall assessment of their SDSM on-orbit performance, including wavelength-dependent changes in the SDSM detector responses and changes in their SD BRF, and discuss remaining challenging issues and their potential impact on RSB calibration quality. Due to different launch dates, operating configurations, and calibration frequencies, the Terra and Aqua MODIS and S-NPP VIIRS SD have experienced different amount of SD degradation. However, in general the shorter the wavelength, the larger is the SD on-orbit degradation. On the other hand, the larger changes in SDSM detector responses are observed at longer wavelengths in the near infrared (NIR).

  1. A Marine Boundary Layer Water Vapor Climatology Derived from Microwave and Near-Infrared Imagery

    NASA Astrophysics Data System (ADS)

    Millan Valle, L. F.; Lebsock, M. D.; Teixeira, J.

    2017-12-01

    The synergy of the collocated Advanced Microwave Scanning Radiometer (AMSR) and the Moderate Resolution Imaging Spectroradiometer (MODIS) provides daily global estimates of partial marine planetary boundary layer water vapor. AMSR microwave radiometry provides the total column water vapor, while MODIS near-infrared imagery provides the water vapor above the cloud layers. The difference between the two gives the vapor between the surface and the cloud top, which may be interpreted as the boundary layer water vapor. Comparisons against radiosondes, and GPS-Radio occultation data demonstrate the robustness of these boundary layer water vapor estimates. We exploit the 14 years of AMSR-MODIS synergy to investigate the spatial, seasonal, and inter-annual variations of the boundary layer water vapor. Last, it is shown that the measured AMSR-MODIS partial boundary layer water vapor can be generally prescribed using sea surface temperature, cloud top pressure and the lifting condensation level. The multi-sensor nature of the analysis demonstrates that there exists more information on boundary layer water vapor structure in the satellite observing system than is commonly assumed when considering the capabilities of single instruments. 2017 California Institute of Technology. U.S. Government sponsorship acknowledged.

  2. A Synthesis of VIIRS Solar and Lunar Calibrations

    NASA Technical Reports Server (NTRS)

    Eplee, Robert E.; Turpie, Kevin R.; Meister, Gerhard; Patt, Frederick S.; Fireman, Gwyn F.; Franz, Bryan A.; McClain, Charles R.

    2013-01-01

    The NASA VIIRS Ocean Science Team (VOST) has developed two independent calibrations of the SNPP VIIRS moderate resolution reflective solar bands using solar diffuser and lunar observations through June 2013. Fits to the solar calibration time series show mean residuals per band of 0.078-0.10%. There are apparent residual lunar libration correlations in the lunar calibration time series that are not accounted for by the ROLO photometric model of the Moon. Fits to the lunar time series that account for residual librations show mean residuals per band of 0.071-0.17%. Comparison of the solar and lunar time series shows that the relative differences in the two calibrations are 0.12-0.31%. Relative uncertainties in the VIIRS solar and lunar calibration time series are comparable to those achieved for SeaWiFS, Aqua MODIS, and Terra MODIS. Intercomparison of the VIIRS lunar time series with those from SeaWiFS, Aqua MODIS, and Terra MODIS shows that the scatter in the VIIRS lunar observations is consistent with that observed for the heritage instruments. Based on these analyses, the VOST has derived a calibration lookup table for VIIRS ocean color data based on fits to the solar calibration time series.

  3. Near-Real Time Cloud Retrievals from Operational and Research Meteorological Satellites

    NASA Technical Reports Server (NTRS)

    Minnis, Patrick; Nguyen, Louis; Palilonda, Rabindra; Heck, Patrick W.; Spangenberg, Douglas A.; Doelling, David R.; Ayers, J. Kirk; Smith, William L., Jr.; Khaiyer, Mandana M.; Trepte, Qing Z.; hide

    2008-01-01

    A set of cloud retrieval algorithms developed for CERES and applied to MODIS data have been adapted to analyze other satellite imager data in near-real time. The cloud products, including single-layer cloud amount, top and base height, optical depth, phase, effective particle size, and liquid and ice water paths, are being retrieved from GOES- 10/11/12, MTSAT-1R, FY-2C, and Meteosat imager data as well as from MODIS. A comprehensive system to normalize the calibrations to MODIS has been implemented to maximize consistency in the products across platforms. Estimates of surface and top-of-atmosphere broadband radiative fluxes are also provided. Multilayered cloud properties are retrieved from GOES-12, Meteosat, and MODIS data. Native pixel resolution analyses are performed over selected domains, while reduced sampling is used for full-disk retrievals. Tools have been developed for matching the pixel-level results with instrumented surface sites and active sensor satellites. The calibrations, methods, examples of the products, and comparisons with the ICESat GLAS lidar are discussed. These products are currently being used for aircraft icing diagnoses, numerical weather modeling assimilation, and atmospheric radiation research and have potential for use in many other applications.

  4. Violent Storm Strikes Western Europe

    NASA Image and Video Library

    2010-03-03

    Image acquired February 27, 2010: An extratropical cyclone named Xynthia brought hurricane-force winds and high waves to Western Europe at the end of February 2010, CNN reported. Winds as fast as 200 kilometers (125 miles) per hour reached as far inland as Paris, and at the storm’s peak, hurricane-force winds extended from Portugal to the Netherlands. Hundreds of people had to take refuge from rising waters on their rooftops. By March 1, at least 58 people had died, some of them struck by falling trees. Most of the deaths occurred in France, but the storm also caused casualties in England, Germany, Belgium, Spain, and Portugal. The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Aqua satellite captured this image of Western Europe, acquired in two separate overpasses on February 27, 2010. MODIS captured the eastern half of the image around 10:50 UTC, and the western half about 12:30 UTC. Forming a giant comma shape, clouds stretch from the Atlantic Ocean to northern Italy. NASA image courtesy MODIS Rapid Response Team at NASA Goddard Space Flight Center. Caption by Michon Scott. Instrument: Aqua - MODIS For more information related to this image go to: earthobservatory.nasa.gov/NaturalHazards/view.php?id=42881

  5. Saturn V Instrument Unit Being Checked At MSFC

    NASA Technical Reports Server (NTRS)

    1967-01-01

    A technician checks the systems of the Saturn V instrument unit in a test facility in Huntsville. This instrument unit was flown aboard Apollo 4 on November 7, 1967, which was the first test flight of the Saturn V. The towering 363-foot Saturn V was a multi-stage, multi-engine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams.

  6. Dome Degradation Characterization of Wide-Field-of-View Nonscanner Aboard ERBE and Its Reprocessing

    NASA Technical Reports Server (NTRS)

    Shrestha, Alok K.; Kato, Seiji; Wong, Takmeng; Su, Wenying; Stackhouse, Paul W., Jr.; Rose, Fred; Miller, Walter F.; Bush, Kathryn; Rutan, David A.; Minnis, Patrick; hide

    2015-01-01

    Earth Radiation Budget Experiment (ERBE) wide-field-of-view (WFOV) nonscanners aboard ERBS and NOAA- 9/NOAA-10 provided broadband shortwave and longwave irradiances from 1985 to 1999. The previous analysis showed dome degradation in the shortwave nonscanner instruments. The correction was performed with a constant spectral (gray assumption) degradation. We suspect that the gray assumption affected daytime longwave irradiance and led to a day-minus-night longwave flux differences (little change in night time longwave) increase over time. Based on knowledge from the CERES process, we will reprocess entire ERBE nonscanner radiation dataset by characterizing shortwave dome transmissivity with spectral dependent degradation using the solar data observed by these instruments. Once spectral dependent degradation is derived, imager derived cloud fraction and the cloud phase as well as surface type over the FOV of nonscanner instruments will be used to model unfiltering coefficients. This poster primarily explains the reprocessing techniques and includes initial comparison of several months of data processed with existing and our recent methods.

  7. Design progress of the solar UV-Vis-IR telescope (SUVIT) aboard SOLAR-C

    NASA Astrophysics Data System (ADS)

    Katsukawa, Y.; Ichimoto, K.; Suematsu, Y.; Hara, H.; Kano, R.; Shimizu, T.; Matsuzaki, K.

    2013-09-01

    We present a design progress of the Solar UV-Vis-IR Telescope (SUVIT) aboard the next Japanese solar mission SOLAR-C. SUVIT has an aperture diameter of ~1.4 m for achieving spectro-polarimetric observations with spatial and temporal resolution exceeding the Hinode Solar Optical Telescope (SOT). We have studied structural and thermal designs of the optical telescope as well as the optical interface between the telescope and the focal plane instruments. The focal plane instruments are installed into two packages, filtergraph and spectrograph packages. The spectropolarimeter is the instrument dedicated to accurate polarimetry in the three spectrum windows at 525 nm, 854 nm, and 1083 nm for observing magnetic fields at both the photospheric and chromospheric layers. We made optical design of the spectrograph accommodating the conventional slit spectrograph and the integral field unit (IFU) for two-dimensional coverage. We are running feasibility study of the IFU using fiber arrays consisting of rectangular cores.

  8. Skylab

    NASA Image and Video Library

    1970-03-01

    The Apollo Telescope Mount (ATM) was designed and developed by the Marshall Space Flight Center (MSFC) and served as the primary scientific instrument unit aboard Skylab (1973-1979). The ATM consisted of eight scientific instruments as well as a number of smaller experiments. In this image, the thermal unit, that controlled the temperature stability of the ATM, is being installed into a vacuum chamber.

  9. Saturn Apollo Program

    NASA Image and Video Library

    1967-08-01

    The Apollo Telescope Mount (ATM), designed and developed by the Marshall Space Flight Center, served as the primary scientific instrument unit aboard the Skylab. The ATM contained eight complex astronomical instruments designed to observe the Sun over a wide spectrum from visible light to x-rays. This photo depicts a side view is of a fully extended ATM contamination monitor mockup.

  10. Saturn Apollo Program

    NASA Image and Video Library

    1967-08-01

    The Apollo Telescope Mount (ATM), designed and developed by the Marshall Space Flight Center, served as the primary scientific instrument unit aboard the Skylab. The ATM contained eight complex astronomical instruments designed to observe the Sun over a wide spectrum from visible light to x-rays. This photo of the ATM contamination monitor mockup offers an extended view of the sunshield interior.

  11. Retrieving Aerosol in a Cloudy Environment: Aerosol Availability as a Function of Spatial and Temporal Resolution

    NASA Technical Reports Server (NTRS)

    Remer, Lorraine A.; Mattoo, Shana; Levy, Robert C.; Heidinger, Andrew; Pierce, R. Bradley; Chin, Mian

    2011-01-01

    The challenge of using satellite observations to retrieve aerosol properties in a cloudy environment is to prevent contamination of the aerosol signal from clouds, while maintaining sufficient aerosol product yield to satisfy specific applications. We investigate aerosol retrieval availability at different instrument pixel resolutions, using the standard MODIS aerosol cloud mask applied to MODIS data and a new GOES-R cloud mask applied to GOES data for a domain covering North America and surrounding oceans. Aerosol availability is not the same as the cloud free fraction and takes into account the technqiues used in the MODIS algorithm to avoid clouds, reduce noise and maintain sufficient numbers of aerosol retrievals. The inherent spatial resolution of each instrument, 0.5x0.5 km for MODIS and 1x1 km for GOES, is systematically degraded to 1x1 km, 2x2 km, 4x4 km and 8x8 km resolutions and then analyzed as to how that degradation would affect the availability of an aerosol retrieval, assuming an aerosol product resolution at 8x8 km. The results show that as pixel size increases, availability decreases until at 8x8 km 70% to 85% of the retrievals available at 0.5 km have been lost. The diurnal pattern of aerosol retrieval availability examined for one day in the summer suggests that coarse resolution sensors (i.e., 4x4 km or 8x8 km) may be able to retrieve aerosol early in the morning that would otherwise be missed at the time of current polar orbiting satellites, but not the diurnal aerosol properties due to cloud cover developed during the day. In contrast finer resolution sensors (i.e., 1x1 km or 2x2 km) have much better opportunity to retrieve aerosols in the partly cloudy scenes and better chance of returning the diurnal aerosol properties. Large differences in the results of the two cloud masks designed for MODIS aerosol and GOES cloud products strongly reinforce that cloud masks must be developed with specific purposes in mind and that a generic cloud mask applied to an independent aerosol retrieval will likely fail.

  12. Impact of Spatial Sampling on Continuity of MODIS-VIIRS Land Surface Reflectance Products: A Simulation Approach

    NASA Technical Reports Server (NTRS)

    Pahlevan, Nima; Sarkar, Sudipta; Devadiga, Sadashiva; Wolfe, Robert E.; Roman, Miguel; Vermote, Eric; Lin, Guoqing; Xiong, Xiaoxiong

    2016-01-01

    With the increasing need to construct long-term climate-quality data records to understand, monitor, and predict climate variability and change, it is vital to continue systematic satellite measurements along with the development of new technology for more quantitative and accurate observations. The Suomi National Polar-orbiting Partnership mission provides continuity in monitoring the Earths surface and its atmosphere in a similar fashion as the heritage MODIS instruments onboard the National Aeronautics and Space Administrations Terra and Aqua satellites. In this paper, we aim at quantifying the consistency of Aqua MODIS and Suomi-NPP Visible Infrared Imaging Radiometer Suite (VIIRS) Land Surface Reflectance (LSR) and NDVI products as related to their inherent spatial sampling characteristics. To avoid interferences from sources of measurement and/or processing errors other than spatial sampling, including calibration, atmospheric correction, and the effects of the bidirectional reflectance distribution function, the MODIS and VIIRSLSR products were simulated using the Landsat-8s Operational Land Imager (OLI) LSR products. The simulations were performed using the instruments point spread functions on a daily basis for various OLI scenes over a 16-day orbit cycle. It was found that the daily mean differences due to discrepancies in spatial sampling remain below 0.0015 (1) in absolute surface reflectance at subgranule scale (i.e., OLI scene size).We also found that the MODISVIIRS product intercomparisons appear to be minimally impacted when differences in the corresponding view zenith angles (VZAs) are within the range of -15deg to -35deg (VZA(sub v) - VZA(sub m)), where VIIRS and MODIS footprints resemble in size. In general, depending on the spatial heterogeneity of the OLI scene contents, per-grid-cell differences can reach up to 20.Further spatial analysis of the simulated NDVI and LSR products revealed that, depending on the user accuracy requirements for product intercomparisons, spatial aggregations may be used. It was found that if per-grid-cell differences on the order of 10(in LSR or NDVI) are tolerated, the product intercomparisons are expected to be immune from differences in spatial sampling.

  13. True Colour Classification of Natural Waters with Medium-Spectral Resolution Satellites: SeaWiFS, MODIS, MERIS and OLCI

    PubMed Central

    van der Woerd, Hendrik J.; Wernand, Marcel R.

    2015-01-01

    The colours from natural waters differ markedly over the globe, depending on the water composition and illumination conditions. The space-borne “ocean colour” instruments are operational instruments designed to retrieve important water-quality indicators, based on the measurement of water leaving radiance in a limited number (5 to 10) of narrow (≈10 nm) bands. Surprisingly, the analysis of the satellite data has not yet paid attention to colour as an integral optical property that can also be retrieved from multispectral satellite data. In this paper we re-introduce colour as a valuable parameter that can be expressed mainly by the hue angle (α). Based on a set of 500 synthetic spectra covering a broad range of natural waters a simple algorithm is developed to derive the hue angle from SeaWiFS, MODIS, MERIS and OLCI data. The algorithm consists of a weighted linear sum of the remote sensing reflectance in all visual bands plus a correction term for the specific band-setting of each instrument. The algorithm is validated by a set of 603 hyperspectral measurements from inland-, coastal- and near-ocean waters. We conclude that the hue angle is a simple objective parameter of natural waters that can be retrieved uniformly for all space-borne ocean colour instruments. PMID:26473859

  14. Programmable Low-Voltage Circuit Breaker and Tester

    NASA Technical Reports Server (NTRS)

    Greenfield, Terry

    2008-01-01

    An instrumentation system that would comprise a remotely controllable and programmable low-voltage circuit breaker plus several electric-circuit-testing subsystems has been conceived, originally for use aboard a spacecraft during all phases of operation from pre-launch testing through launch, ascent, orbit, descent, and landing. The system could also be adapted to similar use aboard aircraft. In comparison with remotely controllable circuit breakers heretofore commercially available, this system would be smaller, less massive, and capable of performing more functions, as needed for aerospace applications.

  15. Potential for Monitoring Snow Cover in Boreal Forests by Combining MODIS Snow Cover and AMSR-E SWE Maps

    NASA Technical Reports Server (NTRS)

    Riggs, George A.; Hall, Dorothy K.; Foster, James L.

    2009-01-01

    Monitoring of snow cover extent and snow water equivalent (SWE) in boreal forests is important for determining the amount of potential runoff and beginning date of snowmelt. The great expanse of the boreal forest necessitates the use of satellite measurements to monitor snow cover. Snow cover in the boreal forest can be mapped with either the Moderate Resolution Imaging Spectroradiometer (MODIS) or the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) microwave instrument. The extent of snow cover is estimated from the MODIS data and SWE is estimated from the AMSR-E. Environmental limitations affect both sensors in different ways to limit their ability to detect snow in some situations. Forest density, snow wetness, and snow depth are factors that limit the effectiveness of both sensors for snow detection. Cloud cover is a significant hindrance to monitoring snow cover extent Using MODIS but is not a hindrance to the use of the AMSR-E. These limitations could be mitigated by combining MODIS and AMSR-E data to allow for improved interpretation of snow cover extent and SWE on a daily basis and provide temporal continuity of snow mapping across the boreal forest regions in Canada. The purpose of this study is to investigate if temporal monitoring of snow cover using a combination of MODIS and AMSR-E data could yield a better interpretation of changing snow cover conditions. The MODIS snow mapping algorithm is based on snow detection using the Normalized Difference Snow Index (NDSI) and the Normalized Difference Vegetation Index (NDVI) to enhance snow detection in dense vegetation. (Other spectral threshold tests are also used to map snow using MODIS.) Snow cover under a forest canopy may have an effect on the NDVI thus we use the NDVI in snow detection. A MODIS snow fraction product is also generated but not used in this study. In this study the NDSI and NDVI components of the snow mapping algorithm were calculated and analyzed to determine how they changed through the seasons. A blended snow product, the Air Force Weather Agency and NASA (ANSA) snow algorithm and product has recently been developed. The ANSA algorithm blends the MODIS snow cover and AMSR-E SWE products into a single snow product that has been shown to improve the performance of snow cover mapping. In this study components of the ANSA snow algorithm are used along with additional MODIS data to monitor daily changes in snow cover over the period of 1 February to 30 June 2008.

  16. CERES Single Scanner Satellite Footprint, TOA, Surface Fluxes and Clouds (SSF) data in HDF (CER_SSF_Terra-FM2-MODIS_Edition2A)

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A. (Principal Investigator)

    The Single Scanner Footprint TOA/Surface Fluxes and Clouds (SSF) product contains one hour of instantaneous Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The SSF combines instantaneous CERES data with scene information from a higher-resolution imager such as Visible/Infrared Scanner (VIRS) on TRMM or Moderate-Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua. Scene identification and cloud properties are defined at the higher imager resolution and these data are averaged over the larger CERES footprint. For each CERES footprint, the SSF contains the number of cloud layers and for each layer the cloud amount, height, temperature, pressure, optical depth, emissivity, ice and liquid water path, and water particle size. The SSF also contains the CERES filtered radiances for the total, shortwave (SW), and window (WN) channels and the unfiltered SW, longwave (LW), and WN radiances. The SW, LW, and WN radiances at spacecraft altitude are converted to Top-of-the-Atmosphere (TOA) fluxes based on the imager defined scene. These TOA fluxes are used to estimate surface fluxes. Only footprints with adequate imager coverage are included on CER_SSF_TRMM-PFM-VIRS_Subset_Edition1the SSF which is much less than the full set of footprints on the CERES ES-8 product. The following CERES SSF data sets are currently available: CER_SSF_TRMM-PFM-VIRS_Edition1 CER_SSF_TRMM-PFM-VIRS_Subset_Edition1 CER_SSF_TRMM-PFM-VIRS_Edition2A CER_SSF_TRMM-SIM-VIRS_Edition2_VIRSonly CER_SSF_TRMM-PFM-VIRS_Edition2A-TransOps CER_SSF_TRMM-PFM-VIRS_Edition2B-TransOps CER_SSF_TRMM-PFM-VIRS_Edition2B CER_SSF_Terra-FM1-MODIS_Edition1A CER_SSF_Terra-FM1-MODIS_Edition1A CER_SSF_Terra-FM1-MODIS_Edition2A CER_SSF_Terra-FM2-MODIS_Edition2A CER_SSF_Terra-FM1-MODIS_Edition2B CER_SSF_Terra-FM2-MODIS_Edition2B CER_SSF_Aqua-FM4-MODIS_Beta1 CER_SSF_Aqua-FM3-MODIS_Beta2 CER_SSF_Aqua-FM4-MODIS_Beta2. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2003-12-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Temporal_Resolution=1 hour; Temporal_Resolution_Range=Hourly - < Daily].

  17. CERES Single Satellite Footprint, TOA and Surface Fluxes, Clouds (SSF) data in HDF (CER_SSF_Aqua-FM4-MODIS_Edition2A)

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A. (Principal Investigator)

    The Single Scanner Footprint TOA/Surface Fluxes and Clouds (SSF) product contains one hour of instantaneous Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The SSF combines instantaneous CERES data with scene information from a higher-resolution imager such as Visible/Infrared Scanner (VIRS) on TRMM or Moderate-Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua. Scene identification and cloud properties are defined at the higher imager resolution and these data are averaged over the larger CERES footprint. For each CERES footprint, the SSF contains the number of cloud layers and for each layer the cloud amount, height, temperature, pressure, optical depth, emissivity, ice and liquid water path, and water particle size. The SSF also contains the CERES filtered radiances for the total, shortwave (SW), and window (WN) channels and the unfiltered SW, longwave (LW), and WN radiances. The SW, LW, and WN radiances at spacecraft altitude are converted to Top-of-the-Atmosphere (TOA) fluxes based on the imager defined scene. These TOA fluxes are used to estimate surface fluxes. Only footprints with adequate imager coverage are included on CER_SSF_TRMM-PFM-VIRS_Subset_Edition1the SSF which is much less than the full set of footprints on the CERES ES-8 product. The following CERES SSF data sets are currently available: CER_SSF_TRMM-PFM-VIRS_Edition1 CER_SSF_TRMM-PFM-VIRS_Subset_Edition1 CER_SSF_TRMM-PFM-VIRS_Edition2A CER_SSF_TRMM-SIM-VIRS_Edition2_VIRSonly CER_SSF_TRMM-PFM-VIRS_Edition2A-TransOps CER_SSF_TRMM-PFM-VIRS_Edition2B-TransOps CER_SSF_TRMM-PFM-VIRS_Edition2B CER_SSF_Terra-FM1-MODIS_Edition1A CER_SSF_Terra-FM1-MODIS_Edition1A CER_SSF_Terra-FM1-MODIS_Edition2A CER_SSF_Terra-FM2-MODIS_Edition2A CER_SSF_Terra-FM1-MODIS_Edition2B CER_SSF_Terra-FM2-MODIS_Edition2B CER_SSF_Aqua-FM4-MODIS_Beta1 CER_SSF_Aqua-FM3-MODIS_Beta2 CER_SSF_Aqua-FM4-MODIS_Beta2. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2005-09-16] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Temporal_Resolution=1 hour; Temporal_Resolution_Range=Hourly - < Daily].

  18. CERES Single Scanner Satellite Footprint, TOA, Surface Fluxes and Clouds (SSF) data in HDF (CER_SSF_Aqua-FM4-MODIS_Edition1B)

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A. (Principal Investigator)

    The Single Scanner Footprint TOA/Surface Fluxes and Clouds (SSF) product contains one hour of instantaneous Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The SSF combines instantaneous CERES data with scene information from a higher-resolution imager such as Visible/Infrared Scanner (VIRS) on TRMM or Moderate-Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua. Scene identification and cloud properties are defined at the higher imager resolution and these data are averaged over the larger CERES footprint. For each CERES footprint, the SSF contains the number of cloud layers and for each layer the cloud amount, height, temperature, pressure, optical depth, emissivity, ice and liquid water path, and water particle size. The SSF also contains the CERES filtered radiances for the total, shortwave (SW), and window (WN) channels and the unfiltered SW, longwave (LW), and WN radiances. The SW, LW, and WN radiances at spacecraft altitude are converted to Top-of-the-Atmosphere (TOA) fluxes based on the imager defined scene. These TOA fluxes are used to estimate surface fluxes. Only footprints with adequate imager coverage are included on CER_SSF_TRMM-PFM-VIRS_Subset_Edition1the SSF which is much less than the full set of footprints on the CERES ES-8 product. The following CERES SSF data sets are currently available: CER_SSF_TRMM-PFM-VIRS_Edition1 CER_SSF_TRMM-PFM-VIRS_Subset_Edition1 CER_SSF_TRMM-PFM-VIRS_Edition2A CER_SSF_TRMM-SIM-VIRS_Edition2_VIRSonly CER_SSF_TRMM-PFM-VIRS_Edition2A-TransOps CER_SSF_TRMM-PFM-VIRS_Edition2B-TransOps CER_SSF_TRMM-PFM-VIRS_Edition2B CER_SSF_Terra-FM1-MODIS_Edition1A CER_SSF_Terra-FM1-MODIS_Edition1A CER_SSF_Terra-FM1-MODIS_Edition2A CER_SSF_Terra-FM2-MODIS_Edition2A CER_SSF_Terra-FM1-MODIS_Edition2B CER_SSF_Terra-FM2-MODIS_Edition2B CER_SSF_Aqua-FM4-MODIS_Beta1 CER_SSF_Aqua-FM3-MODIS_Beta2 CER_SSF_Aqua-FM4-MODIS_Beta2. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2005-03-29] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Temporal_Resolution=1 hour; Temporal_Resolution_Range=Hourly - < Daily].

  19. CERES Single Satellite Footprint, TOA and Surface Fluxes, Clouds (SSF) data in HDF (CER_SSF_Aqua-FM4-MODIS_Ed2A-NoSW)

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A. (Principal Investigator)

    The Single Scanner Footprint TOA/Surface Fluxes and Clouds (SSF) product contains one hour of instantaneous Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The SSF combines instantaneous CERES data with scene information from a higher-resolution imager such as Visible/Infrared Scanner (VIRS) on TRMM or Moderate-Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua. Scene identification and cloud properties are defined at the higher imager resolution and these data are averaged over the larger CERES footprint. For each CERES footprint, the SSF contains the number of cloud layers and for each layer the cloud amount, height, temperature, pressure, optical depth, emissivity, ice and liquid water path, and water particle size. The SSF also contains the CERES filtered radiances for the total, shortwave (SW), and window (WN) channels and the unfiltered SW, longwave (LW), and WN radiances. The SW, LW, and WN radiances at spacecraft altitude are converted to Top-of-the-Atmosphere (TOA) fluxes based on the imager defined scene. These TOA fluxes are used to estimate surface fluxes. Only footprints with adequate imager coverage are included on CER_SSF_TRMM-PFM-VIRS_Subset_Edition1the SSF which is much less than the full set of footprints on the CERES ES-8 product. The following CERES SSF data sets are currently available: CER_SSF_TRMM-PFM-VIRS_Edition1 CER_SSF_TRMM-PFM-VIRS_Subset_Edition1 CER_SSF_TRMM-PFM-VIRS_Edition2A CER_SSF_TRMM-SIM-VIRS_Edition2_VIRSonly CER_SSF_TRMM-PFM-VIRS_Edition2A-TransOps CER_SSF_TRMM-PFM-VIRS_Edition2B-TransOps CER_SSF_TRMM-PFM-VIRS_Edition2B CER_SSF_Terra-FM1-MODIS_Edition1A CER_SSF_Terra-FM1-MODIS_Edition1A CER_SSF_Terra-FM1-MODIS_Edition2A CER_SSF_Terra-FM2-MODIS_Edition2A CER_SSF_Terra-FM1-MODIS_Edition2B CER_SSF_Terra-FM2-MODIS_Edition2B CER_SSF_Aqua-FM4-MODIS_Beta1 CER_SSF_Aqua-FM3-MODIS_Beta2 CER_SSF_Aqua-FM4-MODIS_Beta2. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2006-01-01] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Temporal_Resolution=1 hour; Temporal_Resolution_Range=Hourly - < Daily].

  20. CERES Single Scanner Satellite Footprint, TOA, Surface Fluxes and Clouds (SSF) data in HDF (CER_SSF_Terra-FM2-MODIS_Edition2B)

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A. (Principal Investigator)

    The Single Scanner Footprint TOA/Surface Fluxes and Clouds (SSF) product contains one hour of instantaneous Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The SSF combines instantaneous CERES data with scene information from a higher-resolution imager such as Visible/Infrared Scanner (VIRS) on TRMM or Moderate-Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua. Scene identification and cloud properties are defined at the higher imager resolution and these data are averaged over the larger CERES footprint. For each CERES footprint, the SSF contains the number of cloud layers and for each layer the cloud amount, height, temperature, pressure, optical depth, emissivity, ice and liquid water path, and water particle size. The SSF also contains the CERES filtered radiances for the total, shortwave (SW), and window (WN) channels and the unfiltered SW, longwave (LW), and WN radiances. The SW, LW, and WN radiances at spacecraft altitude are converted to Top-of-the-Atmosphere (TOA) fluxes based on the imager defined scene. These TOA fluxes are used to estimate surface fluxes. Only footprints with adequate imager coverage are included on CER_SSF_TRMM-PFM-VIRS_Subset_Edition1the SSF which is much less than the full set of footprints on the CERES ES-8 product. The following CERES SSF data sets are currently available: CER_SSF_TRMM-PFM-VIRS_Edition1 CER_SSF_TRMM-PFM-VIRS_Subset_Edition1 CER_SSF_TRMM-PFM-VIRS_Edition2A CER_SSF_TRMM-SIM-VIRS_Edition2_VIRSonly CER_SSF_TRMM-PFM-VIRS_Edition2A-TransOps CER_SSF_TRMM-PFM-VIRS_Edition2B-TransOps CER_SSF_TRMM-PFM-VIRS_Edition2B CER_SSF_Terra-FM1-MODIS_Edition1A CER_SSF_Terra-FM1-MODIS_Edition1A CER_SSF_Terra-FM1-MODIS_Edition2A CER_SSF_Terra-FM2-MODIS_Edition2A CER_SSF_Terra-FM1-MODIS_Edition2B CER_SSF_Terra-FM2-MODIS_Edition2B CER_SSF_Aqua-FM4-MODIS_Beta1 CER_SSF_Aqua-FM3-MODIS_Beta2 CER_SSF_Aqua-FM4-MODIS_Beta2. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2006-01-01] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Temporal_Resolution=1 hour; Temporal_Resolution_Range=Hourly - < Daily].

  1. CERES Single Scanner Satellite Footprint, TOA, Surface Fluxes and Clouds (SSF) data in HDF (CER_SSF_Terra-FM1-MODIS_Edition2A)

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A. (Principal Investigator)

    The Single Scanner Footprint TOA/Surface Fluxes and Clouds (SSF) product contains one hour of instantaneous Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The SSF combines instantaneous CERES data with scene information from a higher-resolution imager such as Visible/Infrared Scanner (VIRS) on TRMM or Moderate-Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua. Scene identification and cloud properties are defined at the higher imager resolution and these data are averaged over the larger CERES footprint. For each CERES footprint, the SSF contains the number of cloud layers and for each layer the cloud amount, height, temperature, pressure, optical depth, emissivity, ice and liquid water path, and water particle size. The SSF also contains the CERES filtered radiances for the total, shortwave (SW), and window (WN) channels and the unfiltered SW, longwave (LW), and WN radiances. The SW, LW, and WN radiances at spacecraft altitude are converted to Top-of-the-Atmosphere (TOA) fluxes based on the imager defined scene. These TOA fluxes are used to estimate surface fluxes. Only footprints with adequate imager coverage are included on CER_SSF_TRMM-PFM-VIRS_Subset_Edition1the SSF which is much less than the full set of footprints on the CERES ES-8 product. The following CERES SSF data sets are currently available: CER_SSF_TRMM-PFM-VIRS_Edition1 CER_SSF_TRMM-PFM-VIRS_Subset_Edition1 CER_SSF_TRMM-PFM-VIRS_Edition2A CER_SSF_TRMM-SIM-VIRS_Edition2_VIRSonly CER_SSF_TRMM-PFM-VIRS_Edition2A-TransOps CER_SSF_TRMM-PFM-VIRS_Edition2B-TransOps CER_SSF_TRMM-PFM-VIRS_Edition2B CER_SSF_Terra-FM1-MODIS_Edition1A CER_SSF_Terra-FM1-MODIS_Edition1A CER_SSF_Terra-FM1-MODIS_Edition2A CER_SSF_Terra-FM2-MODIS_Edition2A CER_SSF_Terra-FM1-MODIS_Edition2B CER_SSF_Terra-FM2-MODIS_Edition2B CER_SSF_Aqua-FM4-MODIS_Beta1 CER_SSF_Aqua-FM3-MODIS_Beta2 CER_SSF_Aqua-FM4-MODIS_Beta2. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2003-12-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Temporal_Resolution=1 hour; Temporal_Resolution_Range=Hourly - < Daily].

  2. Hispaniola

    NASA Image and Video Library

    2010-01-14

    This image, produced from instrument data aboard NASA Space Shuttle Endeavour, is a perspective view of the topography of Port-au-Prince, Haiti and Hispianola. A magnitude 7.0 earthquake occurred on Haiti on January 12, 2010.

  3. Port-au-Prince, Haiti

    NASA Image and Video Library

    2010-01-14

    This image, produced from instrument data aboard NASA Space Shuttle Endeavour, is a perspective view of the topography of Port-au-Prince, Haiti where a magnitude 7.0 earthquake occurred on January 12, 2010.

  4. Radon measurements aboard the Kuiper Airborne Observatory

    NASA Technical Reports Server (NTRS)

    Kritz, Mark A.; Rosner, Stefan W.

    1995-01-01

    We have carried out three (piggyback) radon-related projects aboard the KAO. The first, which was limited to upper tropospheric measurements while in level flight, revealed the systematic occurrence of unexpectedly high radon concentrations in this region of the atmosphere. The second project was an instrument development project, which led to the installation of an automatic radon measurement system aboard the NASA ER-2 High Altitude Research Aircraft. In the third, we installed a new system capable of collecting samples during the normal climb and descent of the KAO. The results obtained in these projects have resulted in significant contributions to our knowledge of atmospheric transport processes, and are currently playing a key role in the validation of global circulation and transport models.

  5. Effects of Real-Time NASA Vegetation Data on Model Forecasts of Severe Weather

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; Bell, Jordan R.; LaFontaine, Frank J.; Peters-Lidard, Christa D.

    2012-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center has developed a Greenness Vegetation Fraction (GVF) dataset, which is updated daily using swaths of Normalized Difference Vegetation Index data from the Moderate Resolution Imaging Spectroradiometer (MODIS) data aboard the NASA-EOS Aqua and Terra satellites. NASA SPoRT started generating daily real-time GVF composites at 1-km resolution over the Continental United States beginning 1 June 2010. A companion poster presentation (Bell et al.) primarily focuses on impact results in an offline configuration of the Noah land surface model (LSM) for the 2010 warm season, comparing the SPoRT/MODIS GVF dataset to the current operational monthly climatology GVF available within the National Centers for Environmental Prediction (NCEP) and Weather Research and Forecasting (WRF) models. This paper/presentation primarily focuses on individual case studies of severe weather events to determine the impacts and possible improvements by using the real-time, high-resolution SPoRT-MODIS GVFs in place of the coarser-resolution NCEP climatological GVFs in model simulations. The NASA-Unified WRF (NU-WRF) modeling system is employed to conduct the sensitivity simulations of individual events. The NU-WRF is an integrated modeling system based on the Advanced Research WRF dynamical core that is designed to represents aerosol, cloud, precipitation, and land processes at satellite-resolved scales in a coupled simulation environment. For this experiment, the coupling between the NASA Land Information System (LIS) and the WRF model is utilized to measure the impacts of the daily SPoRT/MODIS versus the monthly NCEP climatology GVFs. First, a spin-up run of the LIS is integrated for two years using the Noah LSM to ensure that the land surface fields reach an equilibrium state on the 4-km grid mesh used. Next, the spin-up LIS is run in two separate modes beginning on 1 June 2010, one continuing with the climatology GVFs while the other uses the daily SPoRT/MODIS GVFs. Finally, snapshots of the LIS land surface fields are used to initialize two different simulations of the NU-WRF, one running with climatology LIS and GVFs, and the other running with experimental LIS and NASA/SPoRT GVFs. In this paper/presentation, case study results will be highlighted in regions with significant differences in GVF between the NCEP climatology and SPoRT product during severe weather episodes.

  6. Assembling Large, Multi-Sensor Climate Datasets Using the SciFlo Grid Workflow System

    NASA Astrophysics Data System (ADS)

    Wilson, B. D.; Manipon, G.; Xing, Z.; Fetzer, E.

    2008-12-01

    NASA's Earth Observing System (EOS) is the world's most ambitious facility for studying global climate change. The mandate now is to combine measurements from the instruments on the A-Train platforms (AIRS, AMSR-E, MODIS, MISR, MLS, and CloudSat) and other Earth probes to enable large-scale studies of climate change over periods of years to decades. However, moving from predominantly single-instrument studies to a multi-sensor, measurement-based model for long-duration analysis of important climate variables presents serious challenges for large-scale data mining and data fusion. For example, one might want to compare temperature and water vapor retrievals from one instrument (AIRS) to another instrument (MODIS), and to a model (ECMWF), stratify the comparisons using a classification of the cloud scenes from CloudSat, and repeat the entire analysis over years of AIRS data. To perform such an analysis, one must discover & access multiple datasets from remote sites, find the space/time matchups between instruments swaths and model grids, understand the quality flags and uncertainties for retrieved physical variables, and assemble merged datasets for further scientific and statistical analysis. To meet these large-scale challenges, we are utilizing a Grid computing and dataflow framework, named SciFlo, in which we are deploying a set of versatile and reusable operators for data query, access, subsetting, co-registration, mining, fusion, and advanced statistical analysis. SciFlo is a semantically-enabled ("smart") Grid Workflow system that ties together a peer-to-peer network of computers into an efficient engine for distributed computation. The SciFlo workflow engine enables scientists to do multi-instrument Earth Science by assembling remotely-invokable Web Services (SOAP or http GET URLs), native executables, command-line scripts, and Python codes into a distributed computing flow. A scientist visually authors the graph of operation in the VizFlow GUI, or uses a text editor to modify the simple XML workflow documents. The SciFlo client & server engines optimize the execution of such distributed workflows and allow the user to transparently find and use datasets and operators without worrying about the actual location of the Grid resources. The engine transparently moves data to the operators, and moves operators to the data (on the dozen trusted SciFlo nodes). SciFlo also deploys a variety of Data Grid services to: query datasets in space and time, locate & retrieve on-line data granules, provide on-the-fly variable and spatial subsetting, and perform pairwise instrument matchups for A-Train datasets. These services are combined into efficient workflows to assemble the desired large-scale, merged climate datasets. SciFlo is currently being applied in several large climate studies: comparisons of aerosol optical depth between MODIS, MISR, AERONET ground network, and U. Michigan's IMPACT aerosol transport model; characterization of long-term biases in microwave and infrared instruments (AIRS, MLS) by comparisons to GPS temperature retrievals accurate to 0.1 degrees Kelvin; and construction of a decade-long, multi-sensor water vapor climatology stratified by classified cloud scene by bringing together datasets from AIRS/AMSU, AMSR-E, MLS, MODIS, and CloudSat (NASA MEASUREs grant, Fetzer PI). The presentation will discuss the SciFlo technologies, their application in these distributed workflows, and the many challenges encountered in assembling and analyzing these massive datasets.

  7. Assembling Large, Multi-Sensor Climate Datasets Using the SciFlo Grid Workflow System

    NASA Astrophysics Data System (ADS)

    Wilson, B.; Manipon, G.; Xing, Z.; Fetzer, E.

    2009-04-01

    NASA's Earth Observing System (EOS) is an ambitious facility for studying global climate change. The mandate now is to combine measurements from the instruments on the "A-Train" platforms (AIRS, AMSR-E, MODIS, MISR, MLS, and CloudSat) and other Earth probes to enable large-scale studies of climate change over periods of years to decades. However, moving from predominantly single-instrument studies to a multi-sensor, measurement-based model for long-duration analysis of important climate variables presents serious challenges for large-scale data mining and data fusion. For example, one might want to compare temperature and water vapor retrievals from one instrument (AIRS) to another instrument (MODIS), and to a model (ECMWF), stratify the comparisons using a classification of the "cloud scenes" from CloudSat, and repeat the entire analysis over years of AIRS data. To perform such an analysis, one must discover & access multiple datasets from remote sites, find the space/time "matchups" between instruments swaths and model grids, understand the quality flags and uncertainties for retrieved physical variables, assemble merged datasets, and compute fused products for further scientific and statistical analysis. To meet these large-scale challenges, we are utilizing a Grid computing and dataflow framework, named SciFlo, in which we are deploying a set of versatile and reusable operators for data query, access, subsetting, co-registration, mining, fusion, and advanced statistical analysis. SciFlo is a semantically-enabled ("smart") Grid Workflow system that ties together a peer-to-peer network of computers into an efficient engine for distributed computation. The SciFlo workflow engine enables scientists to do multi-instrument Earth Science by assembling remotely-invokable Web Services (SOAP or http GET URLs), native executables, command-line scripts, and Python codes into a distributed computing flow. A scientist visually authors the graph of operation in the VizFlow GUI, or uses a text editor to modify the simple XML workflow documents. The SciFlo client & server engines optimize the execution of such distributed workflows and allow the user to transparently find and use datasets and operators without worrying about the actual location of the Grid resources. The engine transparently moves data to the operators, and moves operators to the data (on the dozen trusted SciFlo nodes). SciFlo also deploys a variety of Data Grid services to: query datasets in space and time, locate & retrieve on-line data granules, provide on-the-fly variable and spatial subsetting, perform pairwise instrument matchups for A-Train datasets, and compute fused products. These services are combined into efficient workflows to assemble the desired large-scale, merged climate datasets. SciFlo is currently being applied in several large climate studies: comparisons of aerosol optical depth between MODIS, MISR, AERONET ground network, and U. Michigan's IMPACT aerosol transport model; characterization of long-term biases in microwave and infrared instruments (AIRS, MLS) by comparisons to GPS temperature retrievals accurate to 0.1 degrees Kelvin; and construction of a decade-long, multi-sensor water vapor climatology stratified by classified cloud scene by bringing together datasets from AIRS/AMSU, AMSR-E, MLS, MODIS, and CloudSat (NASA MEASUREs grant, Fetzer PI). The presentation will discuss the SciFlo technologies, their application in these distributed workflows, and the many challenges encountered in assembling and analyzing these massive datasets.

  8. Mission description and in-flight operations of ERBE instruments on ERBS and NOAA 9 spacecraft, November 1984 - January 1986

    NASA Technical Reports Server (NTRS)

    Weaver, William L.; Bush, Kathryn A.; Harris, Chris J.; Howerton, Clayton E.; Tolson, Carol J.

    1991-01-01

    Instruments of the Earth Radiation Budget Experiment (ERBE) are operating on three different Earth orbiting spacecrafts: the Earth Radiation Budget Satellite (ERBS), NOAA-9, and NOAA-10. An overview is presented of the ERBE mission, in-orbit environments, and instrument design and operational features. An overview of science data processing and validation procedures is also presented. In-flight operations are described for the ERBE instruments aboard the ERBS and NOAA-9. Calibration and other operational procedures are described, and operational and instrument housekeeping data are presented and discussed.

  9. Ground-based intercomparisons of SBUV/2 flight instruments the world standard Dobson spectrophotometer 83 and overpass observations from Nimbus-7 TOMS and NOAA-11 SBUV/2

    NASA Technical Reports Server (NTRS)

    Heath, D. F.; Ahmad, Z.; Torres, O.; Evans, R. D.; Grass, R. D.; Komhyr, W. A.; Nelson, W.

    1994-01-01

    Total ozone data obtained during summers at Mauna Loa Observatory, Hawaii, with Dobson Spectrophotometer 83 are routinely compared with overpass total ozone data from the Total Ozone Mapping Spectrometer (TOMS) and the Solar Backscatter Ultraviolet (SBUV) spectrometer launched aboard the Nimbus 7 satellite in 1978. Results from the TOMS/Dobson instrument comparisons through 1990 have been presented by McPeters and Komhyr (1991). Dobson spectrophotometer 83 was established as the standard instrument for the U.S.A. Dobson instrument station network in 1962. In 1980, the instrument was designated by the World Meteorological Organization (WMO) as the Standard Dobson Spectrophotometer for the World. Long-term ozone measurement precision of the instrument has been maintained at plus or minus 0.5 percent (Komhyr et al., 1989). On an absolute scale, the ozone measurement accuracy of the instrument is estimated to plus or minus 3 percent. In early April, 1990, comparison of total ozone and vertical distribution (Umkehr) observations were made for the first time with Dobson spectrophotometer 8.3. The work was conducted at the NOAA Climate Monitoring and Diagnostics Laboratory (CMDL) in Boulder, Colorado, and at the research and instrument manufacturing facility of the Ball Aerospace System Division located about 2 km east of Boulder. (The SBUV-2 S/N-2 instrument, built by Ball Aerospace Systems Division, is scheduled for launch aboard the NOAA-13 satellite). We present results of the comparisons which include ozone vertical distribution data obtained with a balloon-borne electrochemical concentration cell (ECC) ozonesonde (Komhyr, 1969).

  10. Development of dedicated target tracking capability for the CERES instruments through flight software: enhancing radiometric validation and on-orbit calibration

    NASA Astrophysics Data System (ADS)

    Teague, Kelly K.; Smith, G. Louis; Priestley, Kory; Lukashin, Constantine; Roithmayr, Carlos

    2012-09-01

    Five CERES scanning radiometers have been flown to date. The Proto-Flight Model flew aboard the Tropical Rainfall Measurement Mission spacecraft in November 1997. Two CERES instruments, Flight Models (FM) 1 and 2, are aboard the Terra spacecraft, which was launched in December 1999. Two more CERES instruments, FM-3 and FM-4, are on the Aqua spacecraft, which was placed in orbit in May 2002. These instruments continue to operate after providing over a decade of Earth Radiation Budget data. The CERES FM-5 instrument, onboard the Suomi-NPP spacecraft, launched in October 2011. The CERES FM- 6 instrument is manifested on the JPPS-1 spacecraft to be launched in December 2016. A successor to these instruments is presently in the definition stage. This paper describes the evolving role of flight software in the operation of these instruments to meet the Science objectives of the mission and also the ability to execute supplemental tasks as they evolve. In order to obtain and maintain high accuracy in the data products from these instruments, a number of operational activities have been developed and implemented since the instruments were originally designed and placed in orbit. These new activities are possible because of the ability to exploit and modify the flight software, which operates the instruments. The CERES Flight Software interface was designed to allow for on-orbit modification, and as such, constantly evolves to meet changing needs. The purpose of this paper is to provide a brief overview of modifications which have been developed to allow dedicated targeting of specific geographic locations as the CERES sensor flies overhead on its host spacecraft. This new observing strategy greatly increases the temporal and angular sampling for specific targets of high scientific interest.

  11. Nimbus-F to carry advanced weather instruments

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Meteorological research instruments launched aboard NASA's Nimbus-F spacecraft are briefly described along with the Nimbus satellite program initiated to develop an observatory system capable of meeting the research and development needs of the nation's atmospheric and earth sciences program. The following aspects of the mission are described: spacecraft design, launch operations, sequence of orbital events, and operations control and tracking. The Global Atmospheric Research program is discussed in terms of the Nimbus-F experiments and atmospheric sounding instruments.

  12. KENNEDY SPACE CENTER, FLA. - Workers in KSC's Vertical Processing Facility inspect the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) on its handling fixture. NICMOS is one of two new scientific instruments that will replace two outdated instruments on the Hubble Space Telescope (HST). NICMOS will provide HST with the capability for infrared imaging and spectroscopic observations of astronomical targets. The refrigerator-sized NICMOS also is HST's first cryogenic instrument — its sensitive infrared detectors must operate at very cold temperatures of minus 355 degrees Fahrenheit or 58 degrees Kelvin. NICMOS will be installed in Hubble during STS-82, the second Hubble Space Telescope servicing mission. Liftoff is targeted Feb. 11 aboard Discovery with a crew of seven.

    NASA Image and Video Library

    1997-01-18

    KENNEDY SPACE CENTER, FLA. - Workers in KSC's Vertical Processing Facility inspect the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) on its handling fixture. NICMOS is one of two new scientific instruments that will replace two outdated instruments on the Hubble Space Telescope (HST). NICMOS will provide HST with the capability for infrared imaging and spectroscopic observations of astronomical targets. The refrigerator-sized NICMOS also is HST's first cryogenic instrument — its sensitive infrared detectors must operate at very cold temperatures of minus 355 degrees Fahrenheit or 58 degrees Kelvin. NICMOS will be installed in Hubble during STS-82, the second Hubble Space Telescope servicing mission. Liftoff is targeted Feb. 11 aboard Discovery with a crew of seven.

  13. KENNEDY SPACE CENTER, FLA. - Workers in KSC's Vertical Processing Facility lift the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) prior to its installation in the Second Axial Carrier. NICMOS is one of two new scientific instruments that will replace two outdated instruments on the Hubble Space Telescope (HST). NICMOS will provide HST with the capability for infrared imaging and spectroscopic observations of astronomical targets. The refrigerator-sized NICMOS also is HST's first cryogenic instrument — its sensitive infrared detectors must operate at very cold temperatures of minus 355 degrees Fahrenheit or 58 degrees Kelvin. NICMOS will be installed in Hubble during STS-82, the second Hubble Space Telescope servicing mission. Liftoff is targeted Feb. 11 aboard Discovery with a crew of seven.

    NASA Image and Video Library

    1997-01-18

    KENNEDY SPACE CENTER, FLA. - Workers in KSC's Vertical Processing Facility lift the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) prior to its installation in the Second Axial Carrier. NICMOS is one of two new scientific instruments that will replace two outdated instruments on the Hubble Space Telescope (HST). NICMOS will provide HST with the capability for infrared imaging and spectroscopic observations of astronomical targets. The refrigerator-sized NICMOS also is HST's first cryogenic instrument — its sensitive infrared detectors must operate at very cold temperatures of minus 355 degrees Fahrenheit or 58 degrees Kelvin. NICMOS will be installed in Hubble during STS-82, the second Hubble Space Telescope servicing mission. Liftoff is targeted Feb. 11 aboard Discovery with a crew of seven.

  14. KENNEDY SPACE CENTER, FLA. - Workers in KSC's Vertical Processing Facility lower the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) into the Second Axial Carrier. NICMOS is one of two new scientific instruments that will replace two outdated instruments on the Hubble Space Telescope (HST). NICMOS will provide HST with the capability for infrared imaging and spectroscopic observations of astronomical targets. The refrigerator-sized NICMOS also is HST's first cryogenic instrument — its sensitive infrared detectors must operate at very cold temperatures of minus 355 degrees Fahrenheit or 58 degrees Kelvin. NICMOS will be installed in Hubble during STS-82, the second Hubble Space Telescope servicing mission. Liftoff is targeted Feb. 11 aboard Discovery with a crew of seven.

    NASA Image and Video Library

    1997-01-18

    KENNEDY SPACE CENTER, FLA. - Workers in KSC's Vertical Processing Facility lower the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) into the Second Axial Carrier. NICMOS is one of two new scientific instruments that will replace two outdated instruments on the Hubble Space Telescope (HST). NICMOS will provide HST with the capability for infrared imaging and spectroscopic observations of astronomical targets. The refrigerator-sized NICMOS also is HST's first cryogenic instrument — its sensitive infrared detectors must operate at very cold temperatures of minus 355 degrees Fahrenheit or 58 degrees Kelvin. NICMOS will be installed in Hubble during STS-82, the second Hubble Space Telescope servicing mission. Liftoff is targeted Feb. 11 aboard Discovery with a crew of seven.

  15. KENNEDY SPACE CENTER, FLA. - Workers in KSC's Vertical Processing Facility lower the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) into the Second Axial Carrier. NICMOS is one of two new scientific instruments that will replace two outdated instruments on the Hubble Space Telescope (HST). NICMOS will provide HST with the capability for infrared imaging and spectroscopic observations of astronomical targets. The refrigerator-sized NICMOS is HST's first cryogenic instrument -- its sensitive infrared detectors must operate at very cold temperatures of minus 355 degrees Fahrenheit or 58 derees Kelvin. NICMOS will be installed in Hubble during STS-82, the second Hubble Space Telescope servicing mission. Liftoff is targeted Feb. 11 aboard Discovery with a crew of seven.

    NASA Image and Video Library

    1997-01-16

    KENNEDY SPACE CENTER, FLA. - Workers in KSC's Vertical Processing Facility lower the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) into the Second Axial Carrier. NICMOS is one of two new scientific instruments that will replace two outdated instruments on the Hubble Space Telescope (HST). NICMOS will provide HST with the capability for infrared imaging and spectroscopic observations of astronomical targets. The refrigerator-sized NICMOS is HST's first cryogenic instrument -- its sensitive infrared detectors must operate at very cold temperatures of minus 355 degrees Fahrenheit or 58 derees Kelvin. NICMOS will be installed in Hubble during STS-82, the second Hubble Space Telescope servicing mission. Liftoff is targeted Feb. 11 aboard Discovery with a crew of seven.

  16. Use of MODIS Satellite Images and an Atmospheric Dust Transport Model to Evaluate Juniperus spp. Pollen Phenology and Dispersal

    NASA Technical Reports Server (NTRS)

    Luvall, Jeffrey C.

    2011-01-01

    Pollen can be transported great distances. Van de Water et. al. reported Juniperus spp. pollen was transported 200-600 km. Hence local obse rvations of plant phenology may not be consistent with the timing and source of pollen collected by pollen sampling instruments. The DREAM (Dust REgional Atmospheric Model, Nickovic et al. 2001) is a verified model for atmospheric dust transport modeling using MODIS data produ cts to identify source regions and quantities of dust. We are modifyi ng the DREAM model to incorporate pollen transport. Pollen release wi ll be estimated based on MODIS derived phenology of Juniperus spp. communities. Ground based observations records of pollen release timing and quantities will be used as verification. This information will be used to support the Centers for Disease Control and Prevention?s Nat ional Environmental Public Health Tracking Program and the State of New Mexico environmental public health decision support for asthma and allergies alerts.

  17. Use of MODIS Satellite Images and an Atmospheric Dust Transport Model To Evaluate Juniperus spp. Pollen Phenology and Dispersal

    NASA Technical Reports Server (NTRS)

    Luvall, J. C.; Sprigg, W. A.; Levetin, Estelle; Huete, Alfredo; Nickovic, S.; Pejanovic, G. A.; Vukovic, A.; VandeWater, P. K.; Myers, O. B.; Budge, A. M.; hide

    2011-01-01

    Pollen can be transported great distances. Van de Water et. al., 2003 reported Juniperus spp. pollen was transported 200-600 km. Hence local observations of plant phenology may not be consistent with the timing and source of pollen collected by pollen sampling instruments. The DREAM (Dust REgional Atmospheric Model, Nickovic et al. 2001) is a verified model for atmospheric dust transport modeling using MODIS data products to identify source regions and quantities of dust. We are modifying the DREAM model to incorporate pollen transport. Pollen release will be estimated based on MODIS derived phenology of Juniperus spp. communities. Ground based observational records of pollen release timing and quantities will be used as verification. This information will be used to support the Centers for Disease Control and Prevention's National Environmental Public Health Tracking Program and the State of New Mexico environmental public health decision support for asthma and allergies alerts.

  18. Use of MODIS Satellite Data to Evaluate Juniperus spp. Pollen Phenology to Support a Pollen Dispersal Model, PREAM, to Support Public Health Allergy Alerts

    NASA Technical Reports Server (NTRS)

    Luvall, J. C.; Sprigg, W. A.; Levetin, E.; Huete, A.; Nickovic, S.; Prasad, A.; Pejanovic, G. A.; Vukovic, A.; VandeWater, P. K.; Budge, A. M.; hide

    2013-01-01

    Pollen can be transported great distances. Van de Water et. al., 2003 reported Juniperus spp. pollen was transported 200-600 km. Hence local observations of plant phenology may not be consistent with the timing and source of pollen collected by pollen sampling instruments. The DREAM (Dust REgional Atmospheric Model) is a verified model for atmospheric dust transport modeling using MODIS data products to identify source regions and concentrations of dust. We are modifying the DREAM model to incorporate pollen transport. Pollen emission is based on MODIS-derived phenology of Juniperus spp. communities. Ground-based observational records of pollen release timing and quantities will be used as model verification. This information will be used to support the Centers for Disease Control and Prevention s National Environmental Public Health Tracking Program and the State of New Mexico environmental public health decision support for asthma and allergies alerts

  19. Use of MODIS Satellite Data to Evaluate Juniperus spp. Pollen Phenology to Support a Pollen Dispersal Model, PREAM, to Support Public Health Allergy Alerts

    NASA Technical Reports Server (NTRS)

    Luvall, J. C.; Sprigg, W. A.; Levetin, E.; Huete, A.; Nickovic, S.; Prasad, A.; Pejanovic, G. A.; Vukovic, A.; VandeWater, P. K.; Budge, A. M.; hide

    2012-01-01

    Pollen can be transported great distances. Van de Water et. al., 2003 reported Juniperus spp. pollen was transported 200-600 km. Hence local observations of plant phenology may not be consistent with the timing and source of pollen collected by pollen sampling instruments. The DREAM (Dust REgional Atmospheric Model, Nickovic et al. 2001) is a verified model for atmospheric dust transport modeling using MODIS data products to identify source regions and concentrations of dust. We are modifying the DREAM model to incorporate pollen transport. Pollen emission is based on MODIS-derived phenology of Juniperus spp. communities. Ground-based observational records of pollen release timing and quantities will be used as model verification. This information will be used to support the Centers for Disease Control and Prevention's National Environmental Public Health Tracking Program and the State of New Mexico environmental public health decision support for asthma and allergies alerts.

  20. Use of MODIS Satellite Data to Evaluate Juniperus spp. Pollen Phenology to Support a Pollen Dispersal Model, PREAM, to Support Public Health Allergy Alerts

    NASA Astrophysics Data System (ADS)

    Luvall, J. C.; Sprigg, W. A.; Levetin, E.; Huete, A. R.; Nickovic, S.; Prasad, A. K.; Pejanovic, G.; Vukovic, A.; Van De Water, P. K.; Budge, A.; Hudspeth, W. B.; Krapfl, H.; Toth, B.; Zelicoff, A.; Myers, O.; Bunderson, L.; Ponce-Campos, G.; Menache, M.; Crimmins, T. M.; Vujadinovic, M.

    2012-12-01

    Pollen can be transported great distances. Van de Water et. al., 2003 reported Juniperus spp. pollen was transported 200-600 km. Hence local observations of plant phenology may not be consistent with the timing and source of pollen collected by pollen sampling instruments. The DREAM (Dust REgional Atmospheric Model, Nickovic et al. 2001) is a verified model for atmospheric dust transport modeling using MODIS data products to identify source regions and concentrations of dust. We are modifying the DREAM model to incorporate pollen transport. Pollen emission is based on MODIS-derived phenology of Juniperus spp. communities. Ground-based observational records of pollen release timing and quantities will be used as model verification. This information will be used to support the Centers for Disease Control and Prevention's National Environmental Public Health Tracking Program and the State of New Mexico environmental public health decision support for asthma and allergies alerts.

  1. Radiometric Quality of the MODIS Bands at 667 and 678nm

    NASA Technical Reports Server (NTRS)

    Meister, Gerhard; Franz, Bryan A.

    2010-01-01

    The MODIS instruments on Terra and Aqua were designed to allow the measurement of chlorophyll fluorescence effects over ocean. The retrieval algorithm is based on the difference between the water-leaving radiances at 667nm and 678nm. The water-leaving radiances at these wavelengths are usually very low relative to the top- of-atmosphere radiances. The high radiometric accuracy needed to retrieve the small fluorescence signal lead to a dual gain design for the 667 and 678nm bands. This paper discusses the benefits obtained from this design choice and provides justification for the use of only one set of gains for global processing of ocean color products. Noise characteristics of the two bands and their related products are compared to other products of bands from 412nm to 2130nm. The impact of polarization on the two bands is discussed. In addition, the impact of stray light on the two bands is compared to other MODIS bands.

  2. Radiometric Quality of the MODIS Bands at 667 and 678nm

    NASA Technical Reports Server (NTRS)

    Meister, Gerhard; Franz, Bryan A.

    2011-01-01

    The MODIS instruments on Terra and Aqua were designed to allow the measurement of chlorophyll fluorescence effects over ocean. The retrieval algorithm is based on the difference between the water-leaving radiances at 667nm and 678nm. The water-leaving radiances at these wavelengths are usually very low relative to the top-of-atmosphere radiances. The high radiometric accuracy needed to retrieve the small fluorescence signal lead to a dual gain design for the 667 and 678nm bands. This paper discusses the benefits obtained from this design choice and provides justification for the use of only one set of gains for global processing of ocean color products. Noise characteristics of the two bands and their related products are compared to other products of bands from 412nm to 2130nm. The impact of polarization on the two bands is discussed. In addition, the impact of stray light on the two bands is compared to other MODIS bands.

  3. Assessment of the Broadleaf Crops Leaf Area Index Product from the Terra MODIS Instrument

    NASA Technical Reports Server (NTRS)

    Tan, Bin; Hu, Jiannan; Huang, Dong; Yang, Wenze; Zhang, Ping; Shabanov, Nikolay V.; Knyazikhin, Yuri; Nemani, Ramakrishna R.; Myneni, Ranga B.

    2005-01-01

    The first significant processing of Terra MODIS data, called Collection 3, covered the period from November 2000 to December 2002. The Collection 3 leaf area index (LAI) and fraction vegetation absorbed photosynthetically active radiation (FPAR) products for broadleaf crops exhibited three anomalies (a) high LAI values during the peak growing season, (b) differences in LAI seasonality between the radiative transfer-based main algorithm and the vegetation index based back-up algorithm, and (c) too few retrievals from the main algorithm during the summer period when the crops are at full flush. The cause of these anomalies is a mismatch between reflectances modeled by the algorithm and MODIS measurements. Therefore, the Look-Up-Tables accompanying the algorithm were revised and implemented in Collection 4 processing. The main algorithm with the revised Look-Up-Tables generated retrievals for over 80% of the pixels with valid data. Retrievals from the back-up algorithm, although few, should be used with caution as they are generated from surface reflectances with high uncertainties.

  4. Evaluation of NCAR CAM5 Simulated Marine Boundary Layer Cloud Properties Using a Combination of Satellite and Surface Observations

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Song, H.; Wang, M.; Ghan, S. J.; Dong, X.

    2016-12-01

    he main objective of this study is to systematically evaluate the MBL cloud properties simulated in CAM5 family models using a combination of satellite-based CloudSat/MODIS observations and ground-based observations from the ARM Azores site, with a special focus on MBL cloud microphysics and warm rain process. First, we will present a global evaluation based on satellite observations and retrievals. We will compare global cloud properties (e.g., cloud fraction, cloud vertical structure, cloud CER, COT, and LWP, as well as drizzle frequency and intensity diagnosed using the CAM5-COSP instrumental simulators) simulated in the CAM5 models with the collocated CloudSat and MODIS observations. We will also present some preliminary results from a regional evaluation based mainly on ground observations from ARM Azores site. We will compare MBL cloud properties simulated in CAM5 models over the ARM Azores site with collocated satellite (MODIS and CloudSat) and ground-based observations from the ARM site.

  5. Estimate of the Aerosol Anthropogenic Component and Focusing from Satellite Data

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram; Remer, Lorraine A.; Chin, Mian

    2004-01-01

    Satellite measurements of aerosol do not contain information on the chemical composition needed to resolve anthropogenic vs. natural aerosol components. Besides, the same chemical species can have natural and anthropogenic origins. However the ability of the new satellite instruments (MODIS, MISR, POLDER) to distinguish fine from coarse aerosols over the oceans, can be used as a signature of the presence of anthropogenic component and used to measure the fraction of the aerosol originating from anthropogenic activity with an uncertainty of 10 percent for aerosol optical thickness larger than 0.1. We develop the methods and investigated it using model calculations (GOCART) and satellite data (MODIS). Preliminary application to 2 years of global MODIS data shows that 0.200.08 of the aerosol optical thickness and radiative effect has anthropogenic origin. The resultant aerosol forcing over cloud free oceans is 1.30.6 W/sq m, larger than model simulations. Further research until the presentation will probably modify these values.

  6. Scientific requirements for a Moderate-Resolution Imaging Spectrometer (MODIS) for EOS

    NASA Technical Reports Server (NTRS)

    Barnes, W. L.

    1985-01-01

    The MODIS is an instrument planned for the sun-synchronous polar orbiting segment of the Space Station system. The radiometer is required to have 1 km resolution in terrestrial remote sensing applications. The monitoring program is targeted to last 10 yr in order to provide a sufficient database for discerning trends as opposed to natural variations. The study areas of interest include tropical deforestation, regrowth and areal distributions, acid rain effects on northern forests, desertification rates and locations, snow cover/albedo relationships and total biomass. MODIS will have 192 channels with 30 m spatial resolution and cover seven bands in the 3.5-12 microns interval for land viewing. Ocean studies will be carried out in 17 bands from 0.4-1.0 micron, and atmospheric scans will be performed over the land and ocean intervals at narrowband wavelengths (1.2 nm). Si detector arrays will be used and will be accompanied by an expected 600:1 SNR and produce data at a rate of 1.4-9.1 Mb/sec.

  7. Using Airborne High Spectral Resolution Lidar Data to Evaluate Combined Active Plus Passive Retrievals of Aerosol Extinction Profiles

    NASA Technical Reports Server (NTRS)

    Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.; Kittaka, C.; Vaughn, M. A.; Remer, L. A.

    2010-01-01

    We derive aerosol extinction profiles from airborne and space-based lidar backscatter signals by constraining the retrieval with column aerosol optical thickness (AOT), with no need to rely on assumptions about aerosol type or lidar ratio. The backscatter data were acquired by the NASA Langley Research Center airborne High Spectral Resolution Lidar (HSRL) and by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite. The HSRL also simultaneously measures aerosol extinction coefficients independently using the high spectral resolution lidar technique, thereby providing an ideal data set for evaluating the retrieval. We retrieve aerosol extinction profiles from both HSRL and CALIOP attenuated backscatter data constrained with HSRL, Moderate-Resolution Imaging Spectroradiometer (MODIS), and Multiangle Imaging Spectroradiometer column AOT. The resulting profiles are compared with the aerosol extinction measured by HSRL. Retrievals are limited to cases where the column aerosol thickness is greater than 0.2 over land and 0.15 over water. In the case of large AOT, the results using the Aqua MODIS constraint over water are poorer than Aqua MODIS over land or Terra MODIS. The poorer results relate to an apparent bias in Aqua MODIS AOT over water observed in August 2007. This apparent bias is still under investigation. Finally, aerosol extinction coefficients are derived from CALIPSO backscatter data using AOT from Aqua MODIS for 28 profiles over land and 9 over water. They agree with coincident measurements by the airborne HSRL to within +/-0.016/km +/- 20% for at least two-thirds of land points and within +/-0.028/km +/- 20% for at least two-thirds of ocean points.

  8. Land Surface Temperature Measurements form EOS MODIS Data

    NASA Technical Reports Server (NTRS)

    Wan, Zhengming

    1996-01-01

    We have developed a physics-based land-surface temperature (LST) algorithm for simultaneously retrieving surface band-averaged emissivities and temperatures from day/night pairs of MODIS (Moderate Resolution Imaging Spectroradiometer) data in seven thermal infrared bands. The set of 14 nonlinear equations in the algorithm is solved with the statistical regression method and the least-squares fit method. This new LST algorithm was tested with simulated MODIS data for 80 sets of band-averaged emissivities calculated from published spectral data of terrestrial materials in wide ranges of atmospheric and surface temperature conditions. Comprehensive sensitivity and error analysis has been made to evaluate the performance of the new LST algorithm and its dependence on variations in surface emissivity and temperature, upon atmospheric conditions, as well as the noise-equivalent temperature difference (NE(Delta)T) and calibration accuracy specifications of the MODIS instrument. In cases with a systematic calibration error of 0.5%, the standard deviations of errors in retrieved surface daytime and nighttime temperatures fall between 0.4-0.5 K over a wide range of surface temperatures for mid-latitude summer conditions. The standard deviations of errors in retrieved emissivities in bands 31 and 32 (in the 10-12.5 micrometer IR spectral window region) are 0.009, and the maximum error in retrieved LST values falls between 2-3 K. Several issues related to the day/night LST algorithm (uncertainties in the day/night registration and in surface emissivity changes caused by dew occurrence, and the cloud cover) have been investigated. The LST algorithms have been validated with MODIS Airborne Simulator (MAS) dada and ground-based measurement data in two field campaigns conducted in Railroad Valley playa, NV in 1995 and 1996. The MODIS LST version 1 software has been delivered.

  9. Evaluating the impact of aerosol particles above cloud on cloud optical depth retrievals from MODIS

    NASA Astrophysics Data System (ADS)

    Alfaro-Contreras, Ricardo; Zhang, Jianglong; Campbell, James R.; Holz, Robert E.; Reid, Jeffrey S.

    2014-05-01

    Using two different operational Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) cloud optical depth (COD) retrievals (0.86 versus 1.6 µm), we evaluate the impact of above-cloud smoke aerosol particles on near-IR (0.86 µm) COD retrievals. Aerosol Index (AI) from the collocated Ozone Monitoring Instrument (OMI) are used to identify above-cloud aerosol particle loading over the southern Atlantic Ocean, including both smoke and dust from the African subcontinent. Collocated Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation data constrain cloud phase and provide contextual above-cloud aerosol optical depth. The frequency of occurrence of above-cloud aerosol events is depicted on a global scale for the spring and summer seasons from OMI and Cloud Aerosol Lidar with Orthogonal Polarization. Seasonal frequencies for smoke-over-cloud off the southwestern Africa coastline reach 20-50% in boreal summer. We find a corresponding low COD bias of 10-20% for standard MODIS COD retrievals when averaged OMI AI are larger than 1. No such bias is found over the Saharan dust outflow region off northern Africa, since both MODIS 0.86 and 1.6 µm channels are vulnerable to radiance attenuation due to dust particles. A similar result is found for a smaller domain, in the Gulf of Tonkin region, from smoke advection over marine stratocumulus clouds and outflow into the northern South China Sea in spring. This study shows the necessity of accounting for the above-cloud aerosol events for future studies using standard MODIS cloud products in biomass burning outflow regions, through the use of collocated OMI AI and supplementary MODIS 1.6 µm COD products.

  10. Examination of Regional Trends in Cloud Properties over Surface Sites Derived from MODIS and AVHRR using the CERES Cloud Algorithm

    NASA Astrophysics Data System (ADS)

    Smith, W. L., Jr.; Minnis, P.; Bedka, K. M.; Sun-Mack, S.; Chen, Y.; Doelling, D. R.; Kato, S.; Rutan, D. A.

    2017-12-01

    Recent studies analyzing long-term measurements of surface insolation at ground sites suggest that decadal-scale trends of increasing (brightening) and decreasing (dimming) downward solar flux have occurred at various times over the last century. Regional variations have been reported that range from near 0 Wm-2/decade to as large as 9 Wm-2/decade depending on the location and time period analyzed. The more significant trends have been attributed to changes in overhead clouds and aerosols, although quantifying their relative impacts using independent observations has been difficult, owing in part to a lack of consistent long-term measurements of cloud properties. This paper examines new satellite based records of cloud properties derived from MODIS (2000-present) and AVHRR (1981- present) data to infer cloud property trends over a number of surface radiation sites across the globe. The MODIS cloud algorithm was developed for the NASA Clouds and the Earth's Radiant Energy System (CERES) project to provide a consistent record of cloud properties to help improve broadband radiation measurements and to better understand cloud radiative effects. The CERES-MODIS cloud algorithm has been modified to analyze other satellites including the AVHRR on the NOAA satellites. Compared to MODIS, obtaining consistent cloud properties over a long period from AVHRR is a much more significant challenge owing to the number of different satellites, instrument calibration uncertainties, orbital drift and other factors. Nevertheless, both the MODIS and AVHRR cloud properties will be analyzed to determine trends, and their level of consistency and correspondence with surface radiation trends derived from the ground-based radiometer data. It is anticipated that this initial study will contribute to an improved understanding of surface solar radiation trends and their relationship to clouds.

  11. An Overview of Lunar Calibration and Characterization for the EOS Terra and Aqua MODIS

    NASA Technical Reports Server (NTRS)

    Xiong, X.; Salomonson, V. V.; Sun, J.; Chiang, K.; Xiong, S.; Humphries, S.; Barnes, W.; Guenther, B.

    2004-01-01

    The Moon can be used as a stable source for Earth-observing sensors on-orbit radiometric and spatial stability monitoring in the VIS and NIR spectral regions. It can also serve as a calibration transfer vehicle among multiple sensors. Nearly identical copies of the Moderate Resolution Imaging Spectroradiometer (MODE) have been operating on-board the NASA's Earth Observing System (EOS) Terra and Aqua satellites since their launches in December 1999 and May 2002, respectively. Terra and Aqua MODIS each make observations in 36 spectral bands covering the spectral range from 0.41 to 14.5 microns and are calibrated on-orbit by a set of on-board calibrations (OBCs) including: 1) a solar diffuser (SD), 2) a solar diffuser stability monitor (SDSM), 3) a blackbody (BB), and 4) a spectro-radiometric calibration assembly (SRCA). In addition to fully utilizing the OBCs, the Moon has been used extensively by both Terra and Aqua MODIS to support their on-orbit calibration and characterization. A 4 This paper provides an overview of applications of lunar calibration and characterization from the MODIS perspective, including monitoring radiometric calibration stability for the reflective solar bands (RSBs), tracking changes of the sensors response versus scan-angle (RVS), examining the sensors spatial performance , and characterizing optical leaks and electronic crosstalk among different spectral bands and detectors. On-orbit calibration consistency between the two MODIS instruments is also addressed. Based on the existing on-orbit time series of the Terra and Aqua MODIS lunar observations, the radiometric difference between the two sensors is less than +/-1% for the RSBs. This method provides a powerful means of performing calibration comparisons among Earth-observing sensors and assures consistent data and science products for the long-term studies of climate and environmental changes.

  12. STS-40 orbital acceleration research experiment flight results during a typical sleep period

    NASA Technical Reports Server (NTRS)

    Blanchard, R. C.; Nicholson, J. Y.; Ritter, J. R.

    1992-01-01

    The Orbital Acceleration Research Experiment (OARE), an electrostatic accelerometer package with complete on-orbit calibration capabilities, was flown for the first time aboard the Space Shuttle on STS-40. This is also the first time an accelerometer package with nano-g sensitivity and a calibration facility has flown aboard the Space Shuttle. The instrument is designed to measure and record the Space Shuttle aerodynamic acceleration environment from the free molecule flow regime through the rarified flow transition into the hypersonic continuum regime. Because of its sensitivity, the OARE instrument defects aerodynamic behavior of the Space Shuttle while in low-earth orbit. A 2-hour orbital time period on day seven of the mission, when the crew was asleep and other spacecraft activities were at a minimum, was examined. During the flight, a 'trimmed-mean' filter was used to produce high quality, low frequency data which was successfully stored aboard the Space Shuttle in the OARE data storage system. Initial review of the data indicated that, although the expected precision was achieved, some equipment problems occurred resulting in uncertain accuracy. An acceleration model which includes aerodynamic, gravity-gradient, and rotational effects was constructed and compared with flight data. Examination of the model with the flight data shows the instrument to be sensitive to all major expected low frequency acceleration phenomena; however, some erratic instrument bias behavior persists in two axes. In these axes, the OARE data can be made to match a comprehensive atmospheric-aerodynamic model by making bias adjustments and slight linear corrections for drift. The other axis does not exhibit these difficulties and gives good agreement with the acceleration model.

  13. Merging the MODIS and NESDIS Monthly Snow-Cover Records to Study Decade-Scale Changes in Northern Hemisphere Snow Cover

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Foster, James L.; Robinson, David A.; Riggs, George A.

    2004-01-01

    A decade-scale record of Northern Hemisphere snow cover has been available from the National Oceanic and Atmospheric Administration (NOAA) National Environmental Satellite Data and Information Service (NESDIS) and has been reconstructed and validated by Rutgers University following adjustments for inconsistencies that were discovered in the early years of the data set. This record provides weekly, monthly (and, in recent years, daily) snow cover from 1966 to the present for the Northern Hemisphere. With the December 1999 launch of NASA's Earth observing System (EOS) Terra satellite, snow maps are being produced globally, using automated algorithms, on a daily, weekly and monthly basis from the Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument. The resolution of the MODIS monthly snow maps (0.05deg or about 5 km) is an improvement over that of the NESDIS-derived monthly snow maps (>approx.10 km) the maps, it is necessary to study the datasets carefully to determine if it is possible to merge the datasets into a continuous record. The months in which data are available for both the NESDIS and MODIS maps (March 2000 to the present) will be compared quantitatively to analyze differences in North American and Eurasian snow cover. Results from the NESDIS monthly maps show that for North America (including all 12 months), there is a trend toward slightly less snow cover in each succeeding decade. Interannual snow-cover extent has varied significantly since 2000 as seen in both the NESDIS and MODIS maps. As the length of the satellite record increases through the MODIS era, and into the National Polar-orbiting Environmental Satellite System (NPOESS) era, it should become easier to identify trends in areal extent of snow cover, if present, that may have climatic significance. Thus it is necessary to analyze the validity of merging the NESDIS and MODIS, and, in the future, the NPOESS datasets for determination of long-term continuity in measurement of Northern Hemisphere snow cover.

  14. Evaluating the impact of above-cloud aerosols on cloud optical depth retrievals from MODIS

    NASA Astrophysics Data System (ADS)

    Alfaro, Ricardo

    Using two different operational Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) cloud optical depth (COD) retrievals (visible and shortwave infrared), the impacts of above-cloud absorbing aerosols on the standard COD retrievals are evaluated. For fine-mode aerosol particles, aerosol optical depth (AOD) values diminish sharply from the visible to the shortwave infrared channels. Thus, a suppressed above-cloud particle radiance aliasing effect occurs for COD retrievals using shortwave infrared channels. Aerosol Index (AI) from the spatially and temporally collocated Ozone Monitoring Instrument (OMI) are used to identify above-cloud aerosol particle loading over the southern Atlantic Ocean, including both smoke and dust from the African sub-continent. MODIS and OMI Collocated Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) data are used to constrain cloud phase and provide contextual above-cloud AOD values. The frequency of occurrence of above-cloud aerosols is depicted on a global scale for the spring and summer seasons from OMI and CALIOP, thus indicating the significance of the problem. Seasonal frequencies for smoke-over-cloud off the southwestern Africa coastline reach 20--50% in boreal summer. We find a corresponding low COD bias of 10--20% for standard MODIS COD retrievals when averaged OMI AI are larger than 1.0. No such bias is found over the Saharan dust outflow region off northern Africa, since both MODIS visible and shortwave in channels are vulnerable to dust particle aliasing, and thus a COD impact cannot be isolated with this method. A similar result is found for a smaller domain, in the Gulf of Tonkin region, from smoke advection over marine stratocumulus clouds and outflow into the northern South China Sea in spring. This study shows the necessity of accounting for the above-cloud aerosol events for future studies using standard MODIS cloud products in biomass burning outflow regions, through the use of collocated OMI AI and supplementary MODIS shortwave infrared COD products.

  15. Comparison of CALIPSO-Like, LaRC, and MODIS Retrievals of Ice Cloud Properties over SIRTA in France and Florida during CRYSTAL-FACE

    NASA Technical Reports Server (NTRS)

    Chiriaco, M.; Chepfer, H.; Haeffelin, M.; Minnis, P.; Noel, V.; Platnick, S.; McGill, M.; Baumgardner, D.; Dubuisson, P.; Pelon, J.; hide

    2007-01-01

    This study compares cirrus particle effective radius retrieved by a CALIPSO-like method with two similar methods using MODIS, MODI Airborne Simulator (MAS), and GOES imagery. The CALIPSO-like method uses lidar measurements coupled with the split-window technique that uses the infrared spectral information contained at the 8.65-micrometer, 11.15-micrometer and 12.05-micrometer bands to infer the microphysical properties of cirrus clouds. The two other methods, sing passive remote sensing at visible and infrared wavelengths, are the operational MODIS cloud products (referred to by its archival product identifier MOD06 for MODIS Terra) and MODIS retrievals performed by the CERES team at LaRC (Langley Research Center) in support of CERES algorithms; the two algorithms will be referred to as MOD06- and LaRC-method, respectively. The three techniques are compared at two different latitudes: (i) the mid-latitude ice clouds study uses 18 days of observations at the Palaiseau ground-based site in France (SIRTA: Site Instrumental de Recherche par Teledetection Atmospherique) including a ground-based 532 nm lidar and the Moderate Resolution Imaging Spectrometer (MODIS) overpasses on the Terra Platform, (ii) the tropical ice clouds study uses 14 different flight legs of observations collected in Florida, during the intensive field experiment CRYSTAL-FACE (Cirrus Regional Study of Tropical Anvils and cirrus Layers-Florida Area Cirrus Experiment), including the airborne Cloud Physics Lidar (CPL) and the MAS. The comparison of the three methods gives consistent results for the particle effective radius and the optical thickness, but discrepancies in cloud detection and altitudes. The study confirms the value of an active remote-sensing method (CALIPSO-like) for the study of sub-visible ice clouds, in both mid-latitudes and tropics. Nevertheless, this method is not reliable in optically very thick tropical ice clouds.

  16. Time-Dependent Response Versus Scan Angle for MODIS Reflective Solar Bands

    NASA Technical Reports Server (NTRS)

    Sun, Junqiang; Xiong, Xiaoxiong; Angal, Amit; Chen, Hongda; Wu, Aisheng; Geng, Xu

    2014-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) instruments currently operate onboard the National Aeronautics and Space Administration (NASA's) Terra and Aqua spacecraft, launched on December 18, 1999 and May 4, 2002, respectively. MODIS has 36 spectral bands, among which 20 are reflective solar bands (RSBs) covering a spectral range from 0.412 to 2.13 µm. The RSBs are calibrated on orbit using a solar diffuser (SD) and an SD stability monitor and with additional measurements from lunar observations via a space view (SV) port. Selected pseudo-invariant desert sites are also used to track the RSB on-orbit gain change, particularly for short-wavelength bands. MODIS views the Earth surface, SV, and the onboard calibrators using a two-sided scan mirror. The response versus scan angle (RVS) of the scan mirror was characterized prior to launch, and its changes are tracked using observations made at different angles of incidence from onboard SD, lunar, and Earth view (EV) measurements. These observations show that the optical properties of the scan mirror have experienced large wavelength-dependent degradation in both the visible and near infrared spectral regions. Algorithms have been developed to track the on-orbit RVS change using the calibrators and the selected desert sites. These algorithms have been applied to both Terra and Aqua MODIS Level 1B (L1B) to improve the EV data accuracy since L1B Collection 4, refined in Collection 5, and further improved in the latest Collection 6 (C6). In C6, two approaches have been used to derive the time-dependent RVS for MODIS RSB. The first approach relies on data collected from sensor onboard calibrators and mirror side ratios from EV observations. The second approach uses onboard calibrators and EV response trending from selected desert sites. This approach is mainly used for the bands with much larger changes in their time-dependent RVS, such as the Terra MODIS bands 1-4, 8, and 9 and the Aqua MODIS bands 8- and 9. In this paper, the algorithms of these approaches are described, their performance is demonstrated, and their impact on L1B products is discussed. In general, the shorter wavelength bands have experienced a larger on-orbit RVS change, which, in general, are mirror side and detector dependent. The on-orbit RVS change due to the degradation of band 8 can be as large as 35 percent for Terra MODIS and 20 percent for Aqua MODIS. Vital to maintaining the accuracy of the MODIS L1B products is an accurate characterization of the on-orbit RVS change. The derived time-independent RVS, implemented in C6, makes an important improvement to the quality of the MODIS L1B products.

  17. Cloud Photogrammetry from Space

    NASA Astrophysics Data System (ADS)

    Zaksek, K.; Gerst, A.; von der Lieth, J.; Ganci, G.; Hort, M.

    2015-04-01

    The most commonly used method for satellite cloud top height (CTH) compares brightness temperature of the cloud with the atmospheric temperature profile. Because of the uncertainties of this method, we propose a photogrammetric approach. As clouds can move with high velocities, even instruments with multiple cameras are not appropriate for accurate CTH estimation. Here we present two solutions. The first is based on the parallax between data retrieved from geostationary (SEVIRI, HRV band; 1000 m spatial resolution) and polar orbiting satellites (MODIS, band 1; 250 m spatial resolution). The procedure works well if the data from both satellites are retrieved nearly simultaneously. However, MODIS does not retrieve the data at exactly the same time as SEVIRI. To compensate for advection in the atmosphere we use two sequential SEVIRI images (one before and one after the MODIS retrieval) and interpolate the cloud position from SEVIRI data to the time of MODIS retrieval. CTH is then estimated by intersection of corresponding lines-of-view from MODIS and interpolated SEVIRI data. The second method is based on NASA program Crew Earth observations from the International Space Station (ISS). The ISS has a lower orbit than most operational satellites, resulting in a shorter minimal time between two images, which is needed to produce a suitable parallax. In addition, images made by the ISS crew are taken by a full frame sensor and not a push broom scanner that most operational satellites use. Such data make it possible to observe also short time evolution of clouds.

  18. Improving Scene Classifications with Combined Active/Passive Measurements

    NASA Astrophysics Data System (ADS)

    Hu, Y.; Rodier, S.; Vaughan, M.; McGill, M.

    The uncertainties in cloud and aerosol physical properties derived from passive instruments such as MODIS are not insignificant And the uncertainty increases when the optical depths decrease Lidar observations do much better for the thin clouds and aerosols Unfortunately space-based lidar measurements such as the one onboard CALIPSO satellites are limited to nadir view only and thus have limited spatial coverage To produce climatologically meaningful thin cloud and aerosol data products it is necessary to combine the spatial coverage of MODIS with the highly sensitive CALIPSO lidar measurements Can we improving the quality of cloud and aerosol remote sensing data products by extending the knowledge about thin clouds and aerosols learned from CALIPSO-type of lidar measurements to a larger portion of the off-nadir MODIS-like multi-spectral pixels To answer the question we studied the collocated Cloud Physics Lidar CPL with Modis-Airborne-Simulation MAS observations and established an effective data fusion technique that will be applied in the combined CALIPSO MODIS cloud aerosol product algorithms This technique performs k-mean and Kohonen self-organized map cluster analysis on the entire swath of MAS data as well as on the combined CPL MAS data at the nadir track Interestingly the clusters generated from the two approaches are almost identical It indicates that the MAS multi-spectral data may have already captured most of the cloud and aerosol scene types such as cloud ice water phase multi-layer information aerosols

  19. Focal plane instrument for the Solar UV-Vis-IR Telescope aboard SOLAR-C

    NASA Astrophysics Data System (ADS)

    Katsukawa, Yukio; Suematsu, Yoshinori; Shimizu, Toshifumi; Ichimoto, Kiyoshi; Takeyama, Norihide

    2011-10-01

    It is presented the conceptual design of a focal plane instrument for the Solar UV-Vis-IR Telescope (SUVIT) aboard the next Japanese solar mission SOLAR-C. A primary purpose of the telescope is to achieve precise as well as high resolution spectroscopic and polarimetric measurements of the solar chromosphere with a big aperture of 1.5 m, which is expected to make a significant progress in understanding basic MHD processes in the solar atmosphere. The focal plane instrument consists of two packages: A filtergraph package is to get not only monochromatic images but also Dopplergrams and magnetograms using a tunable narrow-band filter and interference filters. A spectrograph package is to perform accurate spectro-polarimetric observations for measuring chromospheric magnetic fields, and is employing a Littrow-type spectrograph. The most challenging aspect in the instrument design is wide wavelength coverage from 280 nm to 1.1 μm to observe multiple chromospheric lines, which is to be realized with a lens unit including fluoride glasses. A high-speed camera for correlation tracking of granular motion is also implemented in one of the packages for an image stabilization system, which is essential to achieve high spatial resolution and high polarimetric accuracy.

  20. Stealth life detection instruments aboard Curiosity

    NASA Astrophysics Data System (ADS)

    Levin, Gilbert V.

    2012-10-01

    NASA has often stated (e.g. MSL Science Corner1) that it's Mars Science Laboratory (MSL), "Curiosity," Mission to Mars carries no life detection experiments. This is in keeping with NASA's 36-year explicit ban on such, imposed immediately after the 1976 Viking Mission to Mars. The space agency attributes the ban to the "ambiguity" of that Mission's Labeled Release (LR) life detection experiment, fearing an adverse effect on the space program should a similar "inconclusive" result come from a new robotic quest. Yet, despite the NASA ban, this author, the Viking LR Experimenter, contends there are "stealth life detection instruments" aboard Curiosity. These are life detection instruments in the sense that they can free the Viking LR from the pall of ambiguity that has held it prisoner so long. Curiosity's stealth instruments are those seeking organic compounds, and the mission's high-resolution camera system. Results from any or all of these devices, coupled with the Viking LR data, can confirm the LR's life detection claim. In one possible scenario, Curiosity can, of itself, completely corroborate the finding of life on Mars. MSL has just successfully landed on Mars. Hopefully, its stealth confirmations of life will be reported shortly.

  1. Status Report on Speech Research, July 1994-December 1995.

    ERIC Educational Resources Information Center

    Fowler, Carol A., Ed.

    This publication (one of a series) contains 19 articles which report the status and progress of studies on the nature of speech, instruments for its investigation, and practical applications. Articles are: "Speech Perception Deficits in Poor Readers: Auditory Processing or Phonological Coding?" (Maria Mody and others); "Auditory…

  2. Improving crop condition monitoring at field scale by using optimal Landsat and MODIS images

    USDA-ARS?s Scientific Manuscript database

    Satellite remote sensing data at coarse resolution (kilometers) have been widely used in monitoring crop condition for decades. However, crop condition monitoring at field scale requires high resolution data in both time and space. Although a large number of remote sensing instruments with different...

  3. Phytoplankton Bloom off Coast of Australia

    NASA Image and Video Library

    2017-12-08

    Phytoplankton bloom in the Great Australian Bight captured by the MODIS instrument on the Aqua satellite on December 30, 2013 at 6:05 UTC. The Great Australian Bight is a large bight, or open bay, off the central and western portions of the southern coastline of mainland Australia. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  4. MODIS Solar Diffuser: Modelled and Actual Performance

    NASA Technical Reports Server (NTRS)

    Waluschka, Eugene; Xiong, Xiao-Xiong; Esposito, Joe; Wang, Xin-Dong; Krebs, Carolyn (Technical Monitor)

    2001-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument's solar diffuser is used in its radiometric calibration for the reflective solar bands (VIS, NTR, and SWIR) ranging from 0.41 to 2.1 micron. The sun illuminates the solar diffuser either directly or through a attenuation screen. The attenuation screen consists of a regular array of pin holes. The attenuated illumination pattern on the solar diffuser is not uniform, but consists of a multitude of pin-hole images of the sun. This non-uniform illumination produces small, but noticeable radiometric effects. A description of the computer model used to simulate the effects of the attenuation screen is given and the predictions of the model are compared with actual, on-orbit, calibration measurements.

  5. Assessment of Global Carbon Dioxide Concentration Using MODIS and GOSAT Data

    PubMed Central

    Guo, Meng; Wang, Xiufeng; Li, Jing; Yi, Kunpeng; Zhong, Guosheng; Tani, Hiroshi

    2012-01-01

    Carbon dioxide (CO2) is the most important greenhouse gas (GHG) in the atmosphere and is the greatest contributor to global warming. CO2 concentration data are usually obtained from ground observation stations or from a small number of satellites. Because of the limited number of observations and the short time series of satellite data, it is difficult to monitor CO2 concentrations on regional or global scales for a long time. The use of the remote sensing data such as the Advanced Very High Resolution Radiometer (AVHRR) or Moderate Resolution Imaging Spectroradiometer (MODIS) data can overcome these problems, particularly in areas with low densities of CO2 concentration watch stations. A model based on temperature (MOD11C3), vegetation cover (MOD13C2 and MOD15A2) and productivity (MOD17A2) of MODIS (which we have named the TVP model) was developed in the current study to assess CO2 concentrations on a global scale. We assumed that CO2 concentration from the Thermal And Near infrared Sensor for carbon Observation (TANSO) aboard the Greenhouse gases Observing SATellite (GOSAT) are the true values and we used these values to check the TVP model accuracy. The results indicate that the accuracy of the TVP model is different in different continents: the greatest Pearson’s correlation coefficient (R2) was 0.75 in Eurasia (RMSE = 1.16) and South America (RMSE = 1.17); the lowest R2 was 0.57 in Australia (RMSE = 0.73). Compared with the TANSO-observed CO2 concentration (XCO2), we found that the accuracy throughout the World is between −2.56∼3.14 ppm. Potential sources of TVP model uncertainties were also analyzed and identified. PMID:23443383

  6. Smoke over the Bering Sea

    NASA Image and Video Library

    2017-12-08

    Smoke from Far Eastern Russia’s spring wildfires reached the Bering Sea by May 11, 2012. The Moderate Resolution Imaging Spectroradiometer aboard NASA’s Terra satellite passed over the region at 23:30 UTC on that same day and acquired this true-color image of a broad band of smoke stretching across the blue waters. In this image, the plume of smoke appears light gray while banks of cloud are bright white. Snow covers much of Kamchatka the land mass in the west. Karaginsky Island, just off Kamchatka’s eastern shore, is surrounded by sea ice. Clouds stream off the southwest shores of Beringa and Medny Islands. To the east, Attu Station, Alaska, is surrounded by cloud. In early May, numerous wildfires burned near Lake Baikal, in Siberia. These fires billowed heavy smoke across eastern Mongolia, China and Russia’s Far East. An image of the smoke and fires was captured on May 8 and appeared as the MODIS image of the day on May 11. That image can be viewed here: modis.gsfc.nasa.gov/gallery/individual.php?db_date=2012-0.... According to a model by the National Oceanic and Atmospheric Administration (NOAA), it is possible that smoke from the Lake Baikal region could take just a few days to reach the Bering Sea. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. Heron Island, Australia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The skies over Northern India are filled with a thick soup of aerosol particles all along the southern edge of the Himalayan Mountains, and streaming southward over Bangladesh and the Bay of Bengal. Notice that the air over the Tibetan Plateau to the north of the Himalayas is very clear, whereas the view of the land surface south of the mountains is obstructed by the brownish haze. Most of this air pollution comes from human activities. The aerosol over this region is notoriously rich in sulfates, nitrates, organic and black carbon, and fly ash. These particles not only represent a health hazard to those people living in the region, but scientists have also recently found that they can have a significant impact on the region's hydrological cycle and climate (click to read the relevant NASA press release). This true-color image was acquired on December 4, 2001, by the Moderate-resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra satellite. It is interesting to compare the image above with this earlier MODIS image over the region, acquired on October 23, 2001. Notice the difference in the clarity of the air over the region in the earlier image. Under the thick plume of aerosol, the Brahmaputra (upper right) and Ganges Rivers are still visible. The many mouths of the Ganges have turned the northern waters of the Bay of Bengal a murky brown as they empty their sediment-laden waters into the bay. Toward the upper lefthand corner of the image, there appears to be a fresh swath of snow on the ground just south of the Himalayas. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  8. Assessment of global carbon dioxide concentration using MODIS and GOSAT data.

    PubMed

    Guo, Meng; Wang, Xiufeng; Li, Jing; Yi, Kunpeng; Zhong, Guosheng; Tani, Hiroshi

    2012-11-26

    Carbon dioxide (CO(2)) is the most important greenhouse gas (GHG) in the atmosphere and is the greatest contributor to global warming. CO(2) concentration data are usually obtained from ground observation stations or from a small number of satellites. Because of the limited number of observations and the short time series of satellite data, it is difficult to monitor CO(2) concentrations on regional or global scales for a long time. The use of the remote sensing data such as the Advanced Very High Resolution Radiometer (AVHRR) or Moderate Resolution Imaging Spectroradiometer (MODIS) data can overcome these problems, particularly in areas with low densities of CO(2) concentration watch stations. A model based on temperature (MOD11C3), vegetation cover (MOD13C2 and MOD15A2) and productivity (MOD17A2) of MODIS (which we have named the TVP model) was developed in the current study to assess CO(2) concentrations on a global scale. We assumed that CO(2) concentration from the Thermal And Near infrared Sensor for carbon Observation (TANSO) aboard the Greenhouse gases Observing SATellite (GOSAT) are the true values and we used these values to check the TVP model accuracy. The results indicate that the accuracy of the TVP model is different in different continents: the greatest Pearson's correlation coefficient (R2) was 0.75 in Eurasia (RMSE = 1.16) and South America (RMSE = 1.17); the lowest R2 was 0.57 in Australia (RMSE = 0.73). Compared with the TANSO-observed CO(2) concentration (XCO(2)), we found that the accuracy throughout the World is between -2.56~3.14 ppm. Potential sources of TVP model uncertainties were also analyzed and identified.

  9. The Roiling Clouds of Katrina

    NASA Image and Video Library

    2005-08-31

    This anaglyph from the MISR instrument aboard NASA Terra spacecraft shows the strong convective development of Hurricane Katrina as it moved west through the Gulf of Mexico. 3D glasses are necessary to view this image.

  10. NASA Spacecraft Spots Florida Wildfire

    NASA Image and Video Library

    2011-06-16

    The Espanola wildfire had consumed more than 4,300 acres when the Advanced Spaceborne Thermal Emission and Reflection Radiometer ASTER instrument aboard NASA Terra spacecraft acquired this image on June 16, 2011, over Flagler County, Fla.

  11. New Zealand Southern Alps

    NASA Image and Video Library

    2001-06-20

    This anaglyph from the MISR instrument aboard NASA Terra spacecraft shows the rugged Southern Alps extending some 650 kilometers along the western side of New Zealand South Island. 3D glasses are necessary to view this image.

  12. Okefenokee Swamp Fire, Georgia

    NASA Image and Video Library

    2002-05-22

    Large smoke plumes were produced by the Blackjack complex fire in southeastern Georgia Okefenokee Swamp as seen by the MISR instrument aboard NASA Terra spacecraft May 8, 2002. 3D glasses are necessary to view this image.

  13. NASA Moon Mineralogy Mapper

    NASA Image and Video Library

    2008-12-17

    Different wavelengths of light provide new information about the Orientale Basin region of the moon in a composite image taken by NASA Moon Mineralogy Mapper, a guest instrument aboard the Indian Space Research Organization Chandrayaan-1 spacecraft.

  14. ARC-2009-ACD09-0218-005

    NASA Image and Video Library

    2009-10-06

    NASA Conducts Airborne Science Aboard Zeppelin Airship: equipped with two imaging instruments enabling remote sensing and atmospheric science measurements not previously practical. Hyperspectral imager and large format camera mounted inside the Zeppelin nose fairing.

  15. Photogrammetric retrieval of volcanic ash cloud top height from SEVIRI and MODIS

    NASA Astrophysics Data System (ADS)

    Zakšek, Klemen; Hort, Matthias; Zaletelj, Janez; Langmann, Bärbel

    2013-04-01

    Even if erupting in remote areas, volcanoes can have a significant impact on the modern society due to volcanic ash dispersion in the atmosphere. The ash does not affect merely air traffic - its transport in the atmosphere and its deposition on land and in the oceans may also significantly influence the climate through modifications of atmospheric CO2. The emphasis of this contribution is the retrieval of volcanic ash plume height (ACTH). ACTH is important information especially for air traffic but also to predict ash transport and to estimate the mass flux of the ejected material. ACTH is usually estimated from ground measurements, pilot reports, or satellite remote sensing. But ground based instruments are often not available at remote volcanoes and also the pilots reports are a matter of chance. Volcanic ash cloud top height (ACTH) can be monitored on the global level using satellite remote sensing. The most often used method compares brightness temperature of the cloud with the atmospheric temperature profile. Because of uncertainties of this method (unknown emissivity of the ash cloud, tropopause, etc.) we propose photogrammetric methods based on the parallax between data retrieved from geostationary (SEVIRI) and polar orbiting satellites (MODIS). The parallax is estimated using automatic image matching in three level image pyramids. The procedure works well if the data from both satellites are retrieved nearly simultaneously. MODIS does not retrieve the data at exactly the same time as SEVIRI. To compensate for advection we use two sequential SEVIRI images (one before and one after the MODIS retrieval) and interpolate the cloud position from SEVIRI data to the time of MODIS retrieval. ACTH is then estimated by intersection of corresponding lines-of-view from MODIS and interpolated SEVIRI data. The proposed method was tested using MODIS band 1 and SEVIRI HRV band for the case of the Eyjafjallajökull eruption in April 2010. The parallax between MODIS and SEVIRI data can reach over 30 km which implies ACTH of more than 12 km. The accuracy of ACTH was estimated to 0.6 km. The limitation of this procedure is that it has difficulties with automatic image matching if the ash cloud is not opaque.

  16. Phytoplankton bloom off Iceland

    NASA Image and Video Library

    2014-08-13

    A massive phytoplankton bloom stained the waters of the Atlantic Ocean north of Iceland with brilliant jewel tones in late summer, 2014. The Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Aqua satellite captured this true-color image on August 2. Huge colonies of the floating, plant-like organisms create swirls of green, teal and turquoise and cover over 80% of the visible ocean off the northeast coast of Iceland. Marine phytoplankton require just the right amount of sunlight, dissolved nutrients and water temperatures which are not too hot, nor too cold to spark explosive reproduction and result in blooms which can cover hundreds of square kilometers. Phytoplankton form the base of the marine food chain, and are a rich food source for zooplankton, fish and other marine species. Some species, however, can deplete the water of oxygen and may become toxic to marine life. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. Rocky Mountains

    NASA Image and Video Library

    2015-05-06

    On April 29, 2015 the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Terra satellite captured a true-color image of a typical spring scene in the western United State: snow-crowned Rocky Mountains rising above the faintly greening plains. The Rocky Mountains stretch from British Columbia, Canada to the Rio Grande in New Mexico, a span of roughly 3,000 miles, and contains many of the highest peaks in the continental United States. The tallest, Mount Elbert, rises 14,400 ft. (4,401 m) above sea level, and is located in the San Isabel National Forest, near Leadville, Colorado. This image covers seven Rocky Mountain states. From north to south they are: Montana and Idaho, Wyoming; Utah (with the Great Salt Lake visible) and Colorado; Arizona and New Mexico. To the east, the Great Plain states captured are, from north to south: North Dakota, South Dakota, Nebraska, Kansas, Oklahoma and northwestern Texas. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  18. Snow in northern Alaska

    NASA Image and Video Library

    2017-12-08

    As autumn colors moved across much of the lower forty-eight states in mid-October 2015, winter weather had already arrived in Alaska. The Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Terra satellite captured this true-color image of the icy scene on October 16 as it passed over the region. Point Barrow, the northern-most location in the United States sits between the Chukchi Sea (west) and the Beaufort Sea on the east. The rugged peaks of the Brooks Range can be seen along the southern section of the image. North of the Brooks Range the land is almost entirely covered with snow; to the south the tan and browns visible between snow marks uncovered land. Sea ice lies over the waters near the coasts of much of Alaska’s North Slope, especially east of Point Barrow. White cloud banks are notable in the northeast and southeast sections of the image. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  19. Developing and Evaluating RGB Composite MODIS Imagery for Applications in National Weather Service Forecast Offices

    NASA Technical Reports Server (NTRS)

    Oswald, Hayden; Molthan, Andrew L.

    2011-01-01

    Satellite remote sensing has gained widespread use in the field of operational meteorology. Although raw satellite imagery is useful, several techniques exist which can convey multiple types of data in a more efficient way. One of these techniques is multispectral compositing. The NASA Short-term Prediction Research and Transition (SPoRT) Center has developed two multispectral satellite imagery products which utilize data from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA's Terra and Aqua satellites, based upon products currently generated and used by the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT). The nighttime microphysics product allows users to identify clouds occurring at different altitudes, but emphasizes fog and low cloud detection. This product improves upon current spectral difference and single channel infrared techniques. Each of the current products has its own set of advantages for nocturnal fog detection, but each also has limiting drawbacks which can hamper the analysis process. The multispectral product combines each current product with a third channel difference. Since the final image is enhanced with color, it simplifies the fog identification process. Analysis has shown that the nighttime microphysics imagery product represents a substantial improvement to conventional fog detection techniques, as well as provides a preview of future satellite capabilities to forecasters.

  20. Galapagos Islands

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This true-color image of the Galapagos Islands was acquired on March 12, 2002, by the Moderate-resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra satellite. The Galapagos Islands, which are part of Ecuador, sit in the Pacific Ocean about 1000 km (620 miles) west of South America. As the three craters on the largest island (Isabela Island) suggest, the archipelago was created by volcanic eruptions, which took place millions of years ago. Unlike most remote islands in the Pacific, the Galapagos have gone relatively untouched by humans over the past few millennia. As a result, many unique species have continued to thrive on the islands. Over 95 percent of the islands' reptile species and nearly three quarters of its land bird species cannot be found anywhere else in the world. Two of the more well known are the Galapagos giant tortoise and marine iguanas. The unhindered evolutionary development of the islands' species inspired Charles Darwin to begin The Origin of Species eight years after his visit there. To preserve the unique wildlife on the islands, the Ecuadorian government made the entire archipelago a national park in 1959. Each year roughly 60,000 tourists visit these islands to experience what Darwin did over a century and a half ago. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

Top