Sample records for modis normalized difference

  1. View Angle Effects on MODIS Snow Mapping in Forests

    NASA Technical Reports Server (NTRS)

    Xin, Qinchuan; Woodcock, Curtis E.; Liu, Jicheng; Tan, Bin; Melloh, Rae A.; Davis, Robert E.

    2012-01-01

    Binary snow maps and fractional snow cover data are provided routinely from MODIS (Moderate Resolution Imaging Spectroradiometer). This paper investigates how the wide observation angles of MODIS influence the current snow mapping algorithm in forested areas. Theoretical modeling results indicate that large view zenith angles (VZA) can lead to underestimation of fractional snow cover (FSC) by reducing the amount of the ground surface that is viewable through forest canopies, and by increasing uncertainties during the gridding of MODIS data. At the end of the MODIS scan line, the total modeled error can be as much as 50% for FSC. Empirical analysis of MODIS/Terra snow products in four forest sites shows high fluctuation in FSC estimates on consecutive days. In addition, the normalized difference snow index (NDSI) values, which are the primary input to the MODIS snow mapping algorithms, decrease as VZA increases at the site level. At the pixel level, NDSI values have higher variances, and are correlated with the normalized difference vegetation index (NDVI) in snow covered forests. These findings are consistent with our modeled results, and imply that consideration of view angle effects could improve MODIS snow monitoring in forested areas.

  2. Variation of MODIS reflectance and vegetation indices with viewing geometry and soybean development.

    PubMed

    Breunig, Fábio M; Galvão, Lênio S; Formaggio, Antônio R; Epiphanio, José C N

    2012-06-01

    Directional effects introduce a variability in reflectance and vegetation index determination, especially when large field-of-view sensors are used (e.g., Moderate Resolution Imaging Spectroradiometer - MODIS). In this study, we evaluated directional effects on MODIS reflectance and four vegetation indices (Normalized Difference Vegetation Index - NDVI; Enhanced Vegetation Index - EVI; Normalized Difference Water Index - NDWI(1640) and NDWI(2120)) with the soybean development in two growing seasons (2004-2005 and 2005-2006). To keep the reproductive stage for a given cultivar as a constant factor while varying viewing geometry, pairs of images obtained in close dates and opposite view angles were analyzed. By using a non-parametric statistics with bootstrapping and by normalizing these indices for angular differences among viewing directions, their sensitivities to directional effects were studied. Results showed that the variation in MODIS reflectance between consecutive phenological stages was generally smaller than that resultant from viewing geometry for closed canopies. The contrary was observed for incomplete canopies. The reflectance of the first seven MODIS bands was higher in the backscattering. Except for the EVI, the other vegetation indices had larger values in the forward scattering direction. Directional effects decreased with canopy closure. The NDVI was lesser affected by directional effects than the other indices, presenting the smallest differences between viewing directions for fixed phenological stages.

  3. Estimating the Effect of Gypsy Moth Defloiation Using MODIS

    NASA Technical Reports Server (NTRS)

    deBeurs, K. M.; Townsend, P. A.

    2008-01-01

    The area of North American forests affected by gypsy moth defoliation continues to expand despite efforts to slow the spread. With the increased area of infestation, ecological, environmental and economic concerns about gypsy moth disturbance remain significant, necessitating coordinated, repeatable and comprehensive monitoring of the areas affected. In this study, our primary objective was to estimate the magnitude of defoliation using Moderate Resolution Imaging Spectroradiometer (MODIS) imagery for a gypsy moth outbreak that occurred in the US central Appalachian Mountains in 2000 and 2001. We focused on determining the appropriate spectral MODIS indices and temporal compositing method to best monitor the effects of gypsy moth defoliation. We tested MODIS-based Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Normalized Difference Water Index (NDWI), and two versions of the Normalized Difference Infrared index (NDIIb6 and NDIIb7, using the channels centered on 1640 nm and 2130 nm respectively) for their capacity to map defoliation as estimated by ground observations. In addition, we evaluated three temporal resolutions: daily, 8-day and 16-day data. We validated the results through quantitative comparison to Landsat based defoliation estimates and traditional sketch maps. Our MODIS based defoliation estimates based on NDIIb6 and NDIIb7 closely matched Landsat defoliation estimates derived from field data as well as sketch maps. We conclude that daily MODIS data can be used with confidence to monitor insect defoliation on an annual time scale, at least for larger patches (greater than 0.63 km2). Eight-day and 16-day MODIS composites may be of lesser use due to the ephemeral character of disturbance by the gypsy moth.

  4. Normalizing Landsat and ASTER Data Using MODIS Data Products for Forest Change Detection

    NASA Technical Reports Server (NTRS)

    Gao, Feng; Masek, Jeffrey G.; Wolfe, Robert E.; Tan, Bin

    2010-01-01

    Monitoring forest cover and its changes are a major application for optical remote sensing. In this paper, we present an approach to integrate Landsat, ASTER and MODIS data for forest change detection. Moderate resolution (10-100m) images (e.g. Landsat and ASTER) acquired from different seasons and times are normalized to one "standard" date using MODIS data products as reference. The normalized data are then used to compute forest disturbance index for forest change detection. Comparing to the results from original data, forest disturbance index from the normalized images is more consistent spatially and temporally. This work demonstrates an effective approach for mapping forest change over a large area from multiple moderate resolution sensors on various acquisition dates.

  5. Monitoring Coastal Marshes for Persistent Saltwater Intrusion

    DTIC Science & Technology

    2010-06-01

    for the normalized difference indices (vegetation, soil, and water– NDVI , NDSI, and NDWI) for both MODIS and Landsat 5 and 7, referred to as the...Normalized Difference Index transformation [4]. The MODIS indices are 250 m ( NDVI ) and 500 m (NDWI and NDSI), and the Landsat indices are 30 m...indices are shown for two locations in Fig. 1 and Fig 2. Each figure shows the NDSI (soil), NDVI (vegetation), and NDWI (water) index as a function of

  6. Comparison of MODIS and AVHRR 16-day normalized difference vegetation index composite data

    USGS Publications Warehouse

    Gallo, Kevin P.; Ji, Lei; Reed, Bradley C.; Dwyer, John L.; Eidenshink, Jeffery C.

    2004-01-01

    Normalized difference vegetation index (NDVI) data derived from visible and near-infrared data acquired by the MODIS and AVHRR sensors were compared over the same time periods and a variety of land cover classes within the conterminous USA. The relationship between the AVHRR derived NDVI values and those of future sensors is critical to continued long term monitoring of land surface properties. The results indicate that the 16-day composite values are quite similar over the 23 intervals of 2001 that were analyzed, and a linear relationship exists between the NDVI values from the two sensors. The composite AVHRR NDVI data were associated with over 90% of the variation in the MODIS NDVI values. Copyright 2004 by the American Geophysical Union.

  7. Downscaling 250-m MODIS growing season NDVI based on multiple-date landsat images and data mining approaches

    USGS Publications Warehouse

    Gu, Yingxin; Wylie, Bruce K.

    2015-01-01

    The satellite-derived growing season time-integrated Normalized Difference Vegetation Index (GSN) has been used as a proxy for vegetation biomass productivity. The 250-m GSN data estimated from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors have been used for terrestrial ecosystem modeling and monitoring. High temporal resolution with a wide range of wavelengths make the MODIS land surface products robust and reliable. The long-term 30-m Landsat data provide spatial detailed information for characterizing human-scale processes and have been used for land cover and land change studies. The main goal of this study is to combine 250-m MODIS GSN and 30-m Landsat observations to generate a quality-improved high spatial resolution (30-m) GSN database. A rule-based piecewise regression GSN model based on MODIS and Landsat data was developed. Results show a strong correlation between predicted GSN and actual GSN (r = 0.97, average error = 0.026). The most important Landsat variables in the GSN model are Normalized Difference Vegetation Indices (NDVIs) in May and August. The derived MODIS-Landsat-based 30-m GSN map provides biophysical information for moderate-scale ecological features. This multiple sensor study retains the detailed seasonal dynamic information captured by MODIS and leverages the high-resolution information from Landsat, which will be useful for regional ecosystem studies.

  8. Fusing MODIS with Landsat 8 data to downscale weekly normalized difference vegetation index estimates for central Great Basin rangelands, USA

    USGS Publications Warehouse

    Boyte, Stephen; Wylie, Bruce K.; Rigge, Matthew B.; Dahal, Devendra

    2018-01-01

    Data fused from distinct but complementary satellite sensors mitigate tradeoffs that researchers make when selecting between spatial and temporal resolutions of remotely sensed data. We integrated data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor aboard the Terra satellite and the Operational Land Imager sensor aboard the Landsat 8 satellite into four regression-tree models and applied those data to a mapping application. This application produced downscaled maps that utilize the 30-m spatial resolution of Landsat in conjunction with daily acquisitions of MODIS normalized difference vegetation index (NDVI) that are composited and temporally smoothed. We produced four weekly, atmospherically corrected, and nearly cloud-free, downscaled 30-m synthetic MODIS NDVI predictions (maps) built from these models. Model results were strong with R2 values ranging from 0.74 to 0.85. The correlation coefficients (r ≥ 0.89) were strong for all predictions when compared to corresponding original MODIS NDVI data. Downscaled products incorporated into independently developed sagebrush ecosystem models yielded mixed results. The visual quality of the downscaled 30-m synthetic MODIS NDVI predictions were remarkable when compared to the original 250-m MODIS NDVI. These 30-m maps improve knowledge of dynamic rangeland seasonal processes in the central Great Basin, United States, and provide land managers improved resource maps.

  9. Monitoring Agricultural Cropping Patterns in the Great Lakes Basin Using MODIS-NDVI Time Series Data

    EPA Science Inventory

    This research examined changes in agricultural cropping patterns across the Great Lakes Basin (GLB) using the Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data. Specific research objectives were to characterize the distribut...

  10. Application-ready expedited MODIS data for operational land surface monitoring of vegetation condition

    USGS Publications Warehouse

    Brown, Jesslyn; Howard, Daniel M.; Wylie, Bruce K.; Friesz, Aaron M.; Ji, Lei; Gacke, Carolyn

    2015-01-01

    Monitoring systems benefit from high temporal frequency image data collected from the Moderate Resolution Imaging Spectroradiometer (MODIS) system. Because of near-daily global coverage, MODIS data are beneficial to applications that require timely information about vegetation condition related to drought, flooding, or fire danger. Rapid satellite data streams in operational applications have clear benefits for monitoring vegetation, especially when information can be delivered as fast as changing surface conditions. An “expedited” processing system called “eMODIS” operated by the U.S. Geological Survey provides rapid MODIS surface reflectance data to operational applications in less than 24 h offering tailored, consistently-processed information products that complement standard MODIS products. We assessed eMODIS quality and consistency by comparing to standard MODIS data. Only land data with known high quality were analyzed in a central U.S. study area. When compared to standard MODIS (MOD/MYD09Q1), the eMODIS Normalized Difference Vegetation Index (NDVI) maintained a strong, significant relationship to standard MODIS NDVI, whether from morning (Terra) or afternoon (Aqua) orbits. The Aqua eMODIS data were more prone to noise than the Terra data, likely due to differences in the internal cloud mask used in MOD/MYD09Q1 or compositing rules. Post-processing temporal smoothing decreased noise in eMODIS data.

  11. Using the Moon to Track MODIS Reflective Solar Bands Calibration Stability

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong; Geng, Xu; Angal, Amit; Sun, Junqiang; Barnes, William

    2011-01-01

    MODIS has 20 reflective solar bands (RSB) in the visible (VIS), near infrared (NIR), and short-wave infrared (SWIR) spectral regions. In addition to instrument on-board calibrators (OBC), lunar observations have been used by both Terra and Aqua MODIS to track their reflective solar bands (RSB) on-orbit calibration stability. On a near monthly basis, lunar observations are scheduled and implemented for each instrument at nearly the same lunar phase angles. A time series of normalized detector responses to the Moon is used to monitor its on-orbit calibration stability. The normalization is applied to correct the differences of lunar viewing geometries and the Sun-Moon-Sensor distances among different lunar observations. Initially, the lunar calibration stability monitoring was only applied to MODIS bands (1-4 and 8-12) that do not saturate while viewing the Moon. As the mission continued, we extended the lunar calibration stability monitoring to other RSB bands (bands 13-16) that contain saturated pixels. For these bands, the calibration stability is monitored by referencing their non-saturated pixels to the matched pixels in a non-saturation band. In this paper, we describe this relative approach and apply it to MODIS regularly scheduled lunar observations. We present lunar trending results for both Terra and Aqua MODIS over their entire missions. Also discussed in the paper are the advantages and limitations of this approach and its potential applications to other earth-observing sensors. Keywords: Terra, Aqua, MODIS, sensor, Moon, calibration, stability

  12. Monitoring Agricultural Cropping Patterns across the Laurentian Great Lakes Basin Using MODIS-NDVI Data

    EPA Science Inventory

    The Moderate Resolution Imaging Spectrometer (MODIS) Normalized Difference Vegetation Index (NDVI) 16-day composite data product (MOD12Q) was used to develop annual cropland and crop-specific map products (corn, soybeans, and wheat) for the Laurentian Great Lakes Basin (GLB). Th...

  13. Sub-Pixel Mapping of Tree Canopy, Impervious Surfaces, and Cropland in the Laurentian Great Lakes Basin Using MODIS Time-Series Data

    EPA Science Inventory

    This research examined sub-pixel land-cover classification performance for tree canopy, impervious surface, and cropland in the Laurentian Great Lakes Basin (GLB) using both timeseries MODIS (MOderate Resolution Imaging Spectroradiometer) NDVI (Normalized Difference Vegetation In...

  14. PRESENTED 11/01/05 LAND-COVER CHARACTERIZATION AND CHANGE DETECTION USING MULTI-TEMPORAL MODIS NDVI DATA

    EPA Science Inventory

    Land-Cover (LC) composition and conversions are important factors that affect ecosystem condition and function. The purpose of this research and development effort is to investigate the feasibility of using MODIS derived Normalized Difference Vegetation Index (NDVI) data to deli...

  15. LAND-COVER CHARACTERIZATION AND CHANGE DETECTION USING MULTI-TEMPORAL MODIS NDVI DATA

    EPA Science Inventory

    The purpose of this research and development effort is to investigate the feasibility of using MODIS derived Normalized Difference Vegetation Index (NDVI) data to delineate areas of LC change on an annual basis and identify the outcome of LC conversions (i.e., new steady state). ...

  16. Use of Normalized Difference Water Index for monitoring live fuel moisture

    Treesearch

    D.A. Roberts; P.E. Dennison; S.H. Peterson; J. Rechel

    2006-01-01

    Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI) were compared for monitoring live fuel moisture in a shrubland ecosystem. Both indices were calculated from 500m spatial resolution Moderate Resolution Imaging Spectroradiometer (MODIS) reflectance data covering a 33-month period from 2000 to 2002. Both NDVI and NDWI were...

  17. Monitoring start of season in Alaska with GLOBE, AVHRR, and MODIS data

    Treesearch

    Jessica Robin; Ralph Dubayah; Elena Sparrow; Elissa Levine

    2008-01-01

    This work evaluates whether continuity between Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index (NDVI) is achievable for monitoring phenological changes in Alaska. This work also evaluates whether NDVI can detect changes in start of the growing season (SOS) in this region....

  18. Mapping Cropland and Major Crop Types Across the Great Lakes Basin Using MODIS-NDVI Data

    EPA Science Inventory

    This research evaluated the potential for using the MODIS Normalized Difference Vegetation Index (NDVI) 16-day composite (MOD13Q) 250-m time-series data to develop a cropland mapping capability throughout the 480 000 km2 Great Lakes Basin (GLB). Cropland mapping was conducted usi...

  19. Assessing the Accuracy of MODIS-NDVI Derived Land-Cover Across the Great Lakes Basin

    EPA Science Inventory

    This research describes the accuracy assessment process for a land-cover dataset developed for the Great Lakes Basin (GLB). This land-cover dataset was developed from the 2007 MODIS Normalized Difference Vegetation Index (NDVI) 16-day composite (MOD13Q) 250 m time-series data. Tr...

  20. Impact of Sensor Degradation on the MODIS NDVI Time Series

    NASA Technical Reports Server (NTRS)

    Wang, Dongdong; Morton, Douglas Christopher; Masek, Jeffrey; Wu, Aisheng; Nagol, Jyoteshwar; Xiong, Xiaoxiong; Levy, Robert; Vermote, Eric; Wolfe, Robert

    2012-01-01

    Time series of satellite data provide unparalleled information on the response of vegetation to climate variability. Detecting subtle changes in vegetation over time requires consistent satellite-based measurements. Here, the impact of sensor degradation on trend detection was evaluated using Collection 5 data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors on the Terra and Aqua platforms. For Terra MODIS, the impact of blue band (Band 3, 470 nm) degradation on simulated surface reflectance was most pronounced at near-nadir view angles, leading to a 0.001-0.004 yr-1 decline in Normalized Difference Vegetation Index (NDVI) under a range of simulated aerosol conditions and surface types. Observed trends in MODIS NDVI over North America were consistentwith simulated results,with nearly a threefold difference in negative NDVI trends derived from Terra (17.4%) and Aqua (6.7%) MODIS sensors during 2002-2010. Planned adjustments to Terra MODIS calibration for Collection 6 data reprocessing will largely eliminate this negative bias in detection of NDVI trends.

  1. Impact of Sensor Degradation on the MODIS NDVI Time Series

    NASA Technical Reports Server (NTRS)

    Wang, Dongdong; Morton, Douglas; Masek, Jeffrey; Wu, Aisheng; Nagol, Jyoteshwar; Xiong, Xiaoxiong; Levy, Robert; Vermote, Eric; Wolfe, Robert

    2011-01-01

    Time series of satellite data provide unparalleled information on the response of vegetation to climate variability. Detecting subtle changes in vegetation over time requires consistent satellite-based measurements. Here, we evaluated the impact of sensor degradation on trend detection using Collection 5 data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors on the Terra and Aqua platforms. For Terra MODIS, the impact of blue band (Band 3, 470nm) degradation on simulated surface reflectance was most pronounced at near-nadir view angles, leading to a 0.001-0.004/yr decline in Normalized Difference Vegetation Index (NDVI) under a range of simulated aerosol conditions and surface types. Observed trends MODIS NDVI over North America were consistent with simulated results, with nearly a threefold difference in negative NDVI trends derived from Terra (17.4%) and Aqua (6.7%) MODIS sensors during 2002-2010. Planned adjustments to Terra MODIS calibration for Collection 6 data reprocessing will largely eliminate this negative bias in NDVI trends over vegetation.

  2. Agreement evaluation of AVHRR and MODIS 16-day composite NDVI data sets

    USGS Publications Warehouse

    Ji, Lei; Gallo, Kevin P.; Eidenshink, Jeffery C.; Dwyer, John L.

    2008-01-01

    Satellite-derived normalized difference vegetation index (NDVI) data have been used extensively to detect and monitor vegetation conditions at regional and global levels. A combination of NDVI data sets derived from AVHRR and MODIS can be used to construct a long NDVI time series that may also be extended to VIIRS. Comparative analysis of NDVI data derived from AVHRR and MODIS is critical to understanding the data continuity through the time series. In this study, the AVHRR and MODIS 16-day composite NDVI products were compared using regression and agreement analysis methods. The analysis shows a high agreement between the AVHRR-NDVI and MODIS-NDVI observed from 2002 and 2003 for the conterminous United States, but the difference between the two data sets is appreciable. Twenty per cent of the total difference between the two data sets is due to systematic difference, with the remainder due to unsystematic difference. The systematic difference can be eliminated with a linear regression-based transformation between two data sets, and the unsystematic difference can be reduced partially by applying spatial filters to the data. We conclude that the continuity of NDVI time series from AVHRR to MODIS is satisfactory, but a linear transformation between the two sets is recommended.

  3. Multi-platform comparisons of MODIS and AVHRR normalized difference vegetation index data

    USGS Publications Warehouse

    Gallo, Kevin P.; Ji, Lei; Reed, Bradley C.; Eidenshink, Jeffery C.; Dwyer, John L.

    2005-01-01

    The relationship between AVHRR-derived normalized difference vegetation index (NDVI) values and those of future sensors is critical to continued long-term monitoring of land surface properties. The follow-on operational sensor to the AVHRR, the Visible/Infrared Imager/Radiometer Suite (VIIRS), will be very similar to the NASA Earth Observing System's Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. NDVI data derived from visible and near-infrared data acquired by the MODIS (Terra and Aqua platforms) and AVHRR (NOAA-16 and NOAA-17) sensors were compared over the same time periods and a variety of land cover classes within the conterminous United States. The results indicate that the 16-day composite NDVI values are quite similar over the composite intervals of 2002 and 2003, and linear relationships exist between the NDVI values from the various sensors. The composite AVHRR NDVI data included water and cloud masks and adjustments for water vapor as did the MODIS NDVI data. When analyzed over a variety of land cover types and composite intervals, the AVHRR derived NDVI data were associated with 89% or more of the variation in the MODIS NDVI values. The results suggest that it may be possible to successfully reprocess historical AVHRR data sets to provide continuity of NDVI products through future sensor systems.

  4. Continuity of MODIS and VIIRS Snow-Cover Maps during Snowmelt in the Catskill Mountains in New York

    NASA Astrophysics Data System (ADS)

    Hall, D. K.; Riggs, G. A., Jr.; Roman, M. O.; DiGirolamo, N. E.

    2015-12-01

    We investigate the local and regional differences and possible biases between the Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible-Infrared Imager Radiometer Suite (VIIRS) snow-cover maps in the winter of 2012 during snowmelt conditions in the Catskill Mountains in New York using a time series of cloud-gap filled daily snow-cover maps. The MODIS Terra instrument has been providing daily global snow-cover maps since February 2000 (Riggs and Hall, 2015). Using the VIIRS instrument, launched in 2011, NASA snow products are being developed based on the heritage MODIS snow-mapping algorithms, and will soon be available to the science community. Continuity of the standard NASA MODIS and VIIRS snow-cover maps is essential to enable environmental-data records (EDR) to be developed for analysis of snow-cover trends using a consistent data record. For this work, we compare daily MODIS and VIIRS snow-cover maps of the Catskill Mountains from 29 February through 14 March 2012. The entire region was snow covered on 29 February and by 14 March the snow had melted; we therefore have a daily time series available to compare normalized difference snow index (NDSI), as an indicator of snow-cover fraction. The MODIS and VIIRS snow-cover maps have different spatial resolutions (500 m for MODIS and 375 m for VIIRS) and different nominal overpass times (10:30 AM for MODIS Terra and 2:30 PM for VIIRS) as well as different cloud masks. The results of this work will provide a quantitative assessment of the continuity of the snow-cover data records for use in development of an EDR of snow cover.http://modis-snow-ice.gsfc.nasa.gov/Riggs, G.A. and D.K. Hall, 2015: MODIS Snow Products User Guide to Collection 6, http://modis-snow-ice.gsfc.nasa.gov/?c=userguides

  5. Estimation of Canopy Clumping Index From MISR and MODIS Sensors Using the Normalized Difference Hotspot and Darkspot (NDHD) Method: The Influence of BRDF Models and Solar Zenith Angle

    NASA Astrophysics Data System (ADS)

    Wei, S.; Fang, H.

    2016-12-01

    The Clumping index (CI) describes the spatial distribution pattern of foliage, and is a critical parameter used to characterize the terrestrial ecosystem and model land-surface processes. Global and regional scale CI maps have been generated from POLDER, MODIS, and MISR sensors based on an empirical relationship with the normalized difference between hotspot and darkspot (NDHD) index by previous studies. However, the hotspot and darkspot values and CI values can be considerably different from different bidirectional reflectance distribution function (BRDF) models and solar zenith angles (SZA). In this study, we evaluated the effects of different configurations of BRDF models and SZA values on CI estimation using the NDHD method. CI maps estimated from MISR and MODIS were compared with reference data at the VALERI sites. Results show that for moderate to least clumped vegetation (CI > 0.5), CIs retrieved with the observational SZA agree well with field values, while SZA =0° results in underestimates, and SZA = 60° results in overestimates. For highly clumped (CI < 0.5) and sparsely vegetated areas (FCOVER<25%), the Ross-Li model with 60° SZA is recommended for CI estimation. The suitable NDHD configuration was further used to estimate a 15-year time series CI from MODIS BRDF data. The time series CI shows a reasonable seasonal trajectory, and varies consistently with the MODIS leaf area index (LAI). This study enables better usage of the NDHD method for CI estimation, and can be a useful reference for research on CI validation.

  6. Vegetation monitoring for Guatemala: a comparison between simulated VIIRS and MODIS satellite data

    USGS Publications Warehouse

    Boken, Vijendra K.; Easson, Gregory L.; Rowland, James

    2010-01-01

    The advanced very high resolution radiometer (AVHRR) and moderate resolution imaging spectroradiometer (MODIS) data are being widely used for vegetation monitoring across the globe. However, sensors will discontinue collecting these data in the near future. National Aeronautics and Space Administration is planning to launch a new sensor, visible infrared imaging radiometer suite (VIIRS), to continue to provide satellite data for vegetation monitoring. This article presents a case study of Guatemala and compares the simulated VIIRS-Normalized Difference Vegetation Index (NDVI) with MODIS-NDVI for four different dates each in 2003 and 2005. The dissimilarity between VIIRS-NDVI and MODIS-NDVI was examined on the basis of the percent difference, the two-tailed student's t-test, and the coefficient of determination, R 2. The per cent difference was found to be within 3%, the p-value ranged between 0.52 and 0.99, and R 2 exceeded 0.88 for all major types of vegetation (basic grains, rubber, sugarcane, coffee and forests) found in Guatemala. It was therefore concluded that VIIRS will be almost equally capable of vegetation monitoring as MODIS.

  7. GCK-MODY diabetes associated with protein misfolding, cellular self-association and degradation.

    PubMed

    Negahdar, Maria; Aukrust, Ingvild; Johansson, Bente B; Molnes, Janne; Molven, Anders; Matschinsky, Franz M; Søvik, Oddmund; Kulkarni, Rohit N; Flatmark, Torgeir; Njølstad, Pål Rasmus; Bjørkhaug, Lise

    2012-11-01

    GCK-MODY, dominantly inherited mild fasting hyperglycemia, has been associated with >600 different mutations in the glucokinase (GK)-encoding gene (GCK). When expressed as recombinant pancreatic proteins, some mutations result in enzymes with normal/near-normal catalytic properties. The molecular mechanism(s) of GCK-MODY due to these mutations has remained elusive. Here, we aimed to explore the molecular mechanisms for two such catalytically 'normal' GCK mutations (S263P and G264S) in the F260-L270 loop of GK. When stably overexpressed in HEK293 cells and MIN6 β-cells, the S263P- and G264S-encoded mutations generated misfolded proteins with an increased rate of degradation (S263P>G264S) by the protein quality control machinery, and a propensity to self-associate (G264S>S263P) and form dimers (SDS resistant) and aggregates (partly Triton X-100 insoluble), as determined by pulse-chase experiments and subcellular fractionation. Thus, the GCK-MODY mutations S263P and G264S lead to protein misfolding causing destabilization, cellular dimerization/aggregation and enhanced rate of degradation. In silico predicted conformational changes of the F260-L270 loop structure are considered to mediate the dimerization of both mutant proteins by a domain swapping mechanism. Thus, similar properties may represent the molecular mechanisms for additional unexplained GCK-MODY mutations, and may also contribute to the disease mechanism in other previously characterized GCK-MODY inactivating mutations. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Potential for Monitoring Snow Cover in Boreal Forests by Combining MODIS Snow Cover and AMSR-E SWE Maps

    NASA Technical Reports Server (NTRS)

    Riggs, George A.; Hall, Dorothy K.; Foster, James L.

    2009-01-01

    Monitoring of snow cover extent and snow water equivalent (SWE) in boreal forests is important for determining the amount of potential runoff and beginning date of snowmelt. The great expanse of the boreal forest necessitates the use of satellite measurements to monitor snow cover. Snow cover in the boreal forest can be mapped with either the Moderate Resolution Imaging Spectroradiometer (MODIS) or the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) microwave instrument. The extent of snow cover is estimated from the MODIS data and SWE is estimated from the AMSR-E. Environmental limitations affect both sensors in different ways to limit their ability to detect snow in some situations. Forest density, snow wetness, and snow depth are factors that limit the effectiveness of both sensors for snow detection. Cloud cover is a significant hindrance to monitoring snow cover extent Using MODIS but is not a hindrance to the use of the AMSR-E. These limitations could be mitigated by combining MODIS and AMSR-E data to allow for improved interpretation of snow cover extent and SWE on a daily basis and provide temporal continuity of snow mapping across the boreal forest regions in Canada. The purpose of this study is to investigate if temporal monitoring of snow cover using a combination of MODIS and AMSR-E data could yield a better interpretation of changing snow cover conditions. The MODIS snow mapping algorithm is based on snow detection using the Normalized Difference Snow Index (NDSI) and the Normalized Difference Vegetation Index (NDVI) to enhance snow detection in dense vegetation. (Other spectral threshold tests are also used to map snow using MODIS.) Snow cover under a forest canopy may have an effect on the NDVI thus we use the NDVI in snow detection. A MODIS snow fraction product is also generated but not used in this study. In this study the NDSI and NDVI components of the snow mapping algorithm were calculated and analyzed to determine how they changed through the seasons. A blended snow product, the Air Force Weather Agency and NASA (ANSA) snow algorithm and product has recently been developed. The ANSA algorithm blends the MODIS snow cover and AMSR-E SWE products into a single snow product that has been shown to improve the performance of snow cover mapping. In this study components of the ANSA snow algorithm are used along with additional MODIS data to monitor daily changes in snow cover over the period of 1 February to 30 June 2008.

  9. Multi-Angle Implementation of Atmospheric Correction for MODIS (MAIAC). Part 3: Atmospheric Correction

    NASA Technical Reports Server (NTRS)

    Lyapustin, A.; Wang, Y.; Laszlo, I.; Hilker, T.; Hall, F.; Sellers, P.; Tucker, J.; Korkin, S.

    2012-01-01

    This paper describes the atmospheric correction (AC) component of the Multi-Angle Implementation of Atmospheric Correction algorithm (MAIAC) which introduces a new way to compute parameters of the Ross-Thick Li-Sparse (RTLS) Bi-directional reflectance distribution function (BRDF), spectral surface albedo and bidirectional reflectance factors (BRF) from satellite measurements obtained by the Moderate Resolution Imaging Spectroradiometer (MODIS). MAIAC uses a time series and spatial analysis for cloud detection, aerosol retrievals and atmospheric correction. It implements a moving window of up to 16 days of MODIS data gridded to 1 km resolution in a selected projection. The RTLS parameters are computed directly by fitting the cloud-free MODIS top of atmosphere (TOA) reflectance data stored in the processing queue. The RTLS retrieval is applied when the land surface is stable or changes slowly. In case of rapid or large magnitude change (as for instance caused by disturbance), MAIAC follows the MODIS operational BRDF/albedo algorithm and uses a scaling approach where the BRDF shape is assumed stable but its magnitude is adjusted based on the latest single measurement. To assess the stability of the surface, MAIAC features a change detection algorithm which analyzes relative change of reflectance in the Red and NIR bands during the accumulation period. To adjust for the reflectance variability with the sun-observer geometry and allow comparison among different days (view geometries), the BRFs are normalized to the fixed view geometry using the RTLS model. An empirical analysis of MODIS data suggests that the RTLS inversion remains robust when the relative change of geometry-normalized reflectance stays below 15%. This first of two papers introduces the algorithm, a second, companion paper illustrates its potential by analyzing MODIS data over a tropical rainforest and assessing errors and uncertainties of MAIAC compared to conventional MODIS products.

  10. Monitoring Phenology as Indicator for Timing of Nutrient Inputs in Northern Gulf Watersheds

    DTIC Science & Technology

    2010-06-01

    region and compared to nutrient monitoring data. A. Image Data This project uses MODIS normalized difference vegetation index ( NDVI ) to create a time...series of land vegetation canopies. MODIS provides a near-daily repeat time for the elimination of cloud contamination, and NDVI has been widely adopted...steps and NDVI was calculated by the defined formula NDVI = (near-infrared reflectance - red reflectance) / (near-infrared reflectance + red

  11. Verification and Validation of NASA-Supported Enhancements to Decision Support Tools of PECAD

    NASA Technical Reports Server (NTRS)

    Ross, Kenton W.; McKellip, Rodney; Moore, Roxzana F.; Fendley, Debbie

    2005-01-01

    This section of the evaluation report summarizes the verification and validation (V&V) of recently implemented, NASA-supported enhancements to the decision support tools of the Production Estimates and Crop Assessment Division (PECAD). The implemented enhancements include operationally tailored Moderate Resolution Imaging Spectroradiometer (MODIS) products and products of the Global Reservoir and Lake Monitor (GRLM). The MODIS products are currently made available through two separate decision support tools: the MODIS Image Gallery and the U.S. Department of Agriculture (USDA) Foreign Agricultural Service (FAS) MODIS Normalized Difference Vegetation Index (NDVI) Database. Both the Global Reservoir and Lake Monitor and MODIS Image Gallery provide near-real-time products through PECAD's CropExplorer. This discussion addresses two areas: 1. Assessments of the standard NASA products on which these enhancements are based. 2. Characterizations of the performance of the new operational products.

  12. eMODIS Expedited: Overview of a Near Real Time MODIS Production System for Operational Vegetation Monitoring

    NASA Astrophysics Data System (ADS)

    Jenkerson, C.; Meyer, D. J.; Werpy, J.; Evenson, K.; Merritt, M.

    2010-12-01

    The expedited MODIS, or eMODIS production system derives near-real time Normalized Difference Vegetation Index (NDVI) from Moderate Resolution Imaging Spectroradiometer (MODIS) surface reflectance provided by the Land and Atmosphere Near-real time Capability for EOS (LANCE). There are currently three regions covered by this U.S. Geological Survey (USGS) capability, including the continental U.S., Africa, and the Central America/Caribbean regions. Each of the eMODIS production streams is configured to output its data in map projections, compositing intervals, spatial resolutions, and file formats specific to its region and user community. The challenges of processing 1,000-meter, 500-m, and especially 250-m products by midnight on the last day of a product interval have been met with increasingly effective software and system architecture. An anonymous file transfer protocol (FTP) distribution site (ftp://emodisftp.cr.usgs.gov/eMODIS) allows users direct access to eMODIS NDVI products for operational (near-real time) monitoring of vegetation conditions like drought, crop failure, insect infestation, and other threats, thus supporting subsequent early warning of famine and the targeting of vulnerable populations for insecure food situations.

  13. Simulating Visible/Infrared Imager Radiometer Suite Normalized Difference Vegetation Index Data Using Hyperion and MODIS

    NASA Technical Reports Server (NTRS)

    Ross, Kenton W.; Russell, Jeffrey; Ryan, Robert E.

    2006-01-01

    The success of MODIS (the Moderate Resolution Imaging Spectrometer) in creating unprecedented, timely, high-quality data for vegetation and other studies has created great anticipation for data from VIIRS (the Visible/Infrared Imager Radiometer Suite). VIIRS will be carried onboard the joint NASA/Department of Defense/National Oceanic and Atmospheric Administration NPP (NPOESS (National Polar-orbiting Operational Environmental Satellite System) Preparatory Project). Because the VIIRS instruments will have lower spatial resolution than the current MODIS instruments 400 m versus 250 m at nadir for the channels used to generate Normalized Difference Vegetation Index data, scientists need the answer to this question: how will the change in resolution affect vegetation studies? By using simulated VIIRS measurements, this question may be answered before the VIIRS instruments are deployed in space. Using simulated VIIRS products, the U.S. Department of Agriculture and other operational agencies can then modify their decision support systems appropriately in preparation for receipt of actual VIIRS data. VIIRS simulations and validations will be based on the ART (Application Research Toolbox), an integrated set of algorithms and models developed in MATLAB(Registerd TradeMark) that enables users to perform a suite of simulations and statistical trade studies on remote sensing systems. Specifically, the ART provides the capability to generate simulated multispectral image products, at various scales, from high spatial hyperspectral and/or multispectral image products. The ART uses acquired ( real ) or synthetic datasets, along with sensor specifications, to create simulated datasets. For existing multispectral sensor systems, the simulated data products are used for comparison, verification, and validation of the simulated system s actual products. VIIRS simulations will be performed using Hyperion and MODIS datasets. The hyperspectral and hyperspatial properties of Hyperion data will be used to produce simulated MODIS and VIIRS products. Hyperion-derived MODIS data will be compared with near-coincident MODIS collects to validate both spectral and spatial synthesis, which will ascertain the accuracy of converting from MODIS to VIIRS. MODIS-derived VIIRS data is needed for global coverage and for the generation of time series for regional and global investigations. These types of simulations will have errors associated with aliasing for some scene types. This study will help quantify these errors and will identify cases where high-quality, MODIS-derived VIIRS data will be available.

  14. A five-year analysis of MODIS NDVI and NDWI for grassland drought assessment over the central Great Plains of the United States

    USGS Publications Warehouse

    Gu, Yingxin; Brown, Jesslyn F.; Verdin, J.P.; Wardlow, B.

    2007-01-01

    A five-year (2001–2005) history of moderate resolution imaging spectroradiometer (MODIS) normalized difference vegetation index (NDVI) and normalized difference water index (NDWI) data was analyzed for grassland drought assessment within the central United States, specifically for the Flint Hills of Kansas and Oklahoma. Initial results show strong relationships among NDVI, NDWI, and drought conditions. During the summer over the Tallgrass Prairie National Preserve, the average NDVI and NDWI were consistently lower (NDVI < 0.5 and NDWI < 0.3) under drought conditions than under non-drought conditions (NDVI>0.6 and NDWI>0.4). NDWI values exhibited a quicker response to drought conditions than NDVI. Analysis revealed that combining information from visible, near infrared, and short wave infrared channels improved sensitivity to drought severity. The proposed normalized difference drought index (NDDI) had a stronger response to summer drought conditions than a simple difference between NDVI and NDWI, and is therefore a more sensitive indicator of drought in grasslands than NDVI alone.

  15. The Use of MODIS NDVI Data for Characterizing Cropland Across the Great Lakes Basin

    EPA Science Inventory

    The Moderate Resolution Imaging Spectroradiometer (MODIS) provides new opportunities for characterizing land-cover (LC) to support monitoring and assessment studies at watershed, regional and global scales. This research evaluated the potential for using the MODIS Normalized Diff...

  16. Evaluation and sensitivity testing of a coupled Landsat-MODIS downscaling method for land surface temperature and vegetation indices in semi-arid regions

    NASA Astrophysics Data System (ADS)

    Kim, Jongyoun; Hogue, Terri S.

    2012-01-01

    The current study investigates a method to provide land surface parameters [i.e., land surface temperature (LST) and normalized difference vegetation index (NDVI)] at a high spatial (˜30 and 60 m) and temporal (daily and 8-day) resolution by combining advantages from Landsat and moderate-resolution imaging spectroradiometer (MODIS) satellites. We adopt a previously developed subtraction method that merges the spatial detail of higher-resolution imagery (Landsat) with the temporal change observed in coarser or moderate-resolution imagery (MODIS). Applying the temporal difference between MODIS images observed at two different dates to a higher-resolution Landsat image allows prediction of a combined or fused image (Landsat+MODIS) at a future date. Evaluation of the resultant merged products is undertaken within the Southeastern Arizona region where data is available from a range of flux tower sites. The Landsat+MODIS fused products capture the raw Landsat values and also reflect the MODIS temporal variation. The predicted Landsat+MODIS LST improves mean absolute error around 5°C at the more heterogeneous sites compared to the original satellite products. The fused Landsat+MODIS NDVI product also shows good correlation to ground-based data and is relatively consistent except during the acute (monsoon) growing season. The sensitivity of the fused product relative to temporal gaps in Landsat data appears to be more affected by uncertainty associated with regional precipitation and green-up, than the length of the gap associated with Landsat viewing, suggesting the potential to use a minimal number of original Landsat images during relatively stable land surface and climate conditions. Our extensive validation yields insight on the ability of the proposed method to integrate multiscale platforms and the potential for reducing costs associated with high-resolution satellite systems (e.g., SPOT, QuickBird, IKONOS).

  17. An enhanced TIMESAT algorithm for estimating vegetation phenology metrics from MODIS data

    USGS Publications Warehouse

    Tan, B.; Morisette, J.T.; Wolfe, R.E.; Gao, F.; Ederer, G.A.; Nightingale, J.; Pedelty, J.A.

    2011-01-01

    An enhanced TIMESAT algorithm was developed for retrieving vegetation phenology metrics from 250 m and 500 m spatial resolution Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation indexes (VI) over North America. MODIS VI data were pre-processed using snow-cover and land surface temperature data, and temporally smoothed with the enhanced TIMESAT algorithm. An objective third derivative test was applied to define key phenology dates and retrieve a set of phenology metrics. This algorithm has been applied to two MODIS VIs: Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI). In this paper, we describe the algorithm and use EVI as an example to compare three sets of TIMESAT algorithm/MODIS VI combinations: a) original TIMESAT algorithm with original MODIS VI, b) original TIMESAT algorithm with pre-processed MODIS VI, and c) enhanced TIMESAT and pre-processed MODIS VI. All retrievals were compared with ground phenology observations, some made available through the National Phenology Network. Our results show that for MODIS data in middle to high latitude regions, snow and land surface temperature information is critical in retrieving phenology metrics from satellite observations. The results also show that the enhanced TIMESAT algorithm can better accommodate growing season start and end dates that vary significantly from year to year. The TIMESAT algorithm improvements contribute to more spatial coverage and more accurate retrievals of the phenology metrics. Among three sets of TIMESAT/MODIS VI combinations, the start of the growing season metric predicted by the enhanced TIMESAT algorithm using pre-processed MODIS VIs has the best associations with ground observed vegetation greenup dates. ?? 2010 IEEE.

  18. An Enhanced TIMESAT Algorithm for Estimating Vegetation Phenology Metrics from MODIS Data

    NASA Technical Reports Server (NTRS)

    Tan, Bin; Morisette, Jeffrey T.; Wolfe, Robert E.; Gao, Feng; Ederer, Gregory A.; Nightingale, Joanne; Pedelty, Jeffrey A.

    2012-01-01

    An enhanced TIMESAT algorithm was developed for retrieving vegetation phenology metrics from 250 m and 500 m spatial resolution Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation indexes (VI) over North America. MODIS VI data were pre-processed using snow-cover and land surface temperature data, and temporally smoothed with the enhanced TIMESAT algorithm. An objective third derivative test was applied to define key phenology dates and retrieve a set of phenology metrics. This algorithm has been applied to two MODIS VIs: Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI). In this paper, we describe the algorithm and use EVI as an example to compare three sets of TIMESAT algorithm/MODIS VI combinations: a) original TIMESAT algorithm with original MODIS VI, b) original TIMESAT algorithm with pre-processed MODIS VI, and c) enhanced TIMESAT and pre-processed MODIS VI. All retrievals were compared with ground phenology observations, some made available through the National Phenology Network. Our results show that for MODIS data in middle to high latitude regions, snow and land surface temperature information is critical in retrieving phenology metrics from satellite observations. The results also show that the enhanced TIMESAT algorithm can better accommodate growing season start and end dates that vary significantly from year to year. The TIMESAT algorithm improvements contribute to more spatial coverage and more accurate retrievals of the phenology metrics. Among three sets of TIMESAT/MODIS VI combinations, the start of the growing season metric predicted by the enhanced TIMESAT algorithm using pre-processed MODIS VIs has the best associations with ground observed vegetation greenup dates.

  19. Absence of diabetes and pancreatic exocrine dysfunction in a transgenic model of carboxyl-ester lipase-MODY (maturity-onset diabetes of the young).

    PubMed

    Ræder, Helge; Vesterhus, Mette; El Ouaamari, Abdelfattah; Paulo, Joao A; McAllister, Fiona E; Liew, Chong Wee; Hu, Jiang; Kawamori, Dan; Molven, Anders; Gygi, Steven P; Njølstad, Pål R; Kahn, C Ronald; Kulkarni, Rohit N

    2013-01-01

    CEL-MODY is a monogenic form of diabetes with exocrine pancreatic insufficiency caused by mutations in CARBOXYL-ESTER LIPASE (CEL). The pathogenic processes underlying CEL-MODY are poorly understood, and the global knockout mouse model of the CEL gene (CELKO) did not recapitulate the disease. We therefore aimed to create and phenotype a mouse model specifically over-expressing mutated CEL in the pancreas. We established a monotransgenic floxed (flanking LOX sequences) mouse line carrying the human CEL mutation c.1686delT and crossed it with an elastase-Cre mouse to derive a bitransgenic mouse line with pancreas-specific over-expression of CEL carrying this disease-associated mutation (TgCEL). Following confirmation of murine pancreatic expression of the human transgene by real-time quantitative PCR, we phenotyped the mouse model fed a normal chow and compared it with mice fed a 60% high fat diet (HFD) as well as the effects of short-term and long-term cerulein exposure. Pancreatic exocrine function was normal in TgCEL mice on normal chow as assessed by serum lipid and lipid-soluble vitamin levels, fecal elastase and fecal fat absorption, and the normoglycemic mice exhibited normal pancreatic morphology. On 60% HFD, the mice gained weight to the same extent as controls, had normal pancreatic exocrine function and comparable glucose tolerance even after resuming normal diet and follow up up to 22 months of age. The cerulein-exposed TgCEL mice gained weight and remained glucose tolerant, and there were no detectable mutation-specific differences in serum amylase, islet hormones or the extent of pancreatic tissue inflammation. In this murine model of human CEL-MODY diabetes, we did not detect mutation-specific endocrine or exocrine pancreatic phenotypes, in response to altered diets or exposure to cerulein.

  20. Assessment of MODIS RSB Detector Uniformity Using Deep Convective Clouds

    NASA Technical Reports Server (NTRS)

    Chang, Tiejun; Xiong, Xiaoxiong (Jack); Angal, Amit; Mu, Qiaozhen

    2016-01-01

    For satellite sensor, the striping observed in images is typically associated with the relative multiple detector gain difference derived from the calibration. A method using deep convective cloud (DCC) measurements to assess the difference among detectors after calibration is proposed and demonstrated for select reflective solar bands (RSBs) of the Moderate Resolution Imaging Spectroradiometer (MODIS). Each detector of MODIS RSB is calibrated independently using a solar diffuser (SD). Although the SD is expected to accurately characterize detector response, the uncertainties associated with the SD degradation and characterization result in inadequacies in the estimation of each detector's gain. This work takes advantage of the DCC technique to assess detector uniformity and scan mirror side difference for RSB. The detector differences for Terra MODIS Collection 6 are less than 1% for bands 1, 3-5, and 18 and up to 2% for bands 6, 19, and 26. The largest difference is up to 4% for band 7. Most Aqua bands have detector differences less than 0.5% except bands 19 and 26 with up to 1.5%. Normally, large differences occur for edge detectors. The long-term trending shows seasonal oscillations in detector differences for some bands, which are correlated with the instrument temperature. The detector uniformities were evaluated for both unaggregated and aggregated detectors for MODIS band 1 and bands 3-7, and their consistencies are verified. The assessment results were validated by applying a direct correction to reflectance images. These assessments can lead to improvements to the calibration algorithm and therefore a reduction in striping observed in the calibrated imagery.

  1. MODIS and GIMMS Inferred Northern Hemisphere Spring Greenup in Responses to Preseason Climate

    NASA Astrophysics Data System (ADS)

    Xu, X.; Riley, W. J.; Koven, C.; Jia, G.

    2017-12-01

    We compare the discrepancies in Normalized Difference Vegetation Index (NDVI) inferred spring greenup (SG) between Terra Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Very High Resolution Radiometer (AVHRR) instruments carried by the Global Inventory Monitoring and Modeling Studies (GIMMS) in North Hemisphere. The interannual variation of SG inferred by MODIS and GIMMS NDVI is well correlated in the mid to high latitudes. However, the presence of NDVI discrepancies leads to discrepancies in SG with remarkable latitudinal characteristics. MODIS NDVI inferred later SG in the high latitude while earlier SG in the mid to low latitudes, in comparison to GIMMS NDVI inferred SG. MODIS NDVI inferred SG is better correlated to preseason climate. Interannual variation of SG is only sensitive to preseason temperature. The GIMMS SG to temperature sensitivity over two periods implied that the inter-biome SG to temperature sensitivity is relatively stable, but SG to temperature sensitivity decreased over time. Over the same period, MODIS SG to temperature sensitivity is much higher than GIMMS. This decreased sensitivity demonstrated the findings from previous studies with continuous GIMMS NDVI analysis that vegetation growth (indicated by growing season NDVI) to temperature sensitivity is reduced over time and SG advance trend ceased after 2000s. Our results also explained the contradictive findings that SG advance accelerated after 2000s according to the merged GIMMS and MODIS NDVI time series. Despite the found discrepancies, without ground data support, the quality of NDVI and its inferred SG cannot be effectively evaluated. The discrepancies and uncertainties in different NDVI products and its inferred SG may bias the scientific significance of climate-vegetation relationship. The different NDVI products when used together should be first evaluated and harmonized.

  2. Verification and Validation of NASA-Supported Enhancements to PECAD's Decision Support Tools

    NASA Technical Reports Server (NTRS)

    McKellipo, Rodney; Ross, Kenton W.

    2006-01-01

    The NASA Applied Sciences Directorate (ASD), part of the Earth-Sun System Division of NASA's Science Mission Directorate, has partnered with the U.S. Department of Agriculture (USDA) to enhance decision support in the area of agricultural efficiency-an application of national importance. The ASD integrated the results of NASA Earth science research into USDA decision support tools employed by the USDA Foreign Agricultural Service (FAS) Production Estimates and Crop Assessment Division (PECAD), which supports national decision making by gathering, analyzing, and disseminating global crop intelligence. Verification and validation of the following enhancements are summarized: 1) Near-real-time Moderate Resolution Imaging Spectroradiometer (MODIS) products through PECAD's MODIS Image Gallery; 2) MODIS Normalized Difference Vegetation Index (NDVI) time series data through the USDA-FAS MODIS NDVI Database; and 3) Jason-1 and TOPEX/Poseidon lake level estimates through PECAD's Global Reservoir and Lake Monitor. Where possible, each enhanced product was characterized for accuracy, timeliness, and coverage, and the characterized performance was compared to PECAD operational requirements. The MODIS Image Gallery and the GRLM are more mature and have achieved a semi-operational status, whereas the USDA-FAS MODIS NDVI Database is still evolving and should be considered

  3. [Comparison of GIMMS and MODIS normalized vegetation index composite data for Qing-Hai-Tibet Plateau].

    PubMed

    Du, Jia-Qiang; Shu, Jian-Min; Wang, Yue-Hui; Li, Ying-Chang; Zhang, Lin-Bo; Guo, Yang

    2014-02-01

    Consistent NDVI time series are basic and prerequisite in long-term monitoring of land surface properties. Advanced very high resolution radiometer (AVHRR) measurements provide the longest records of continuous global satellite measurements sensitive to live green vegetation, and moderate resolution imaging spectroradiometer (MODIS) is more recent typical with high spatial and temporal resolution. Understanding the relationship between the AVHRR-derived NDVI and MODIS NDVI is critical to continued long-term monitoring of ecological resources. NDVI time series acquired by the global inventory modeling and mapping studies (GIMMS) and Terra MODIS were compared over the same time periods from 2000 to 2006 at four scales of Qinghai-Tibet Plateau (whole region, sub-region, biome and pixel) to assess the level of agreement in terms of absolute values and dynamic change by independently assessing the performance of GIMMS and MODIS NDVI and using 495 Landsat samples of 20 km x20 km covering major land cover type. High correlations existed between the two datasets at the four scales, indicating their mostly equal capability of capturing seasonal and monthly phenological variations (mostly at 0. 001 significance level). Simi- larities of the two datasets differed significantly among different vegetation types. The relative low correlation coefficients and large difference of NDVI value between the two datasets were found among dense vegetation types including broadleaf forest and needleleaf forest, yet the correlations were strong and the deviations were small in more homogeneous vegetation types, such as meadow, steppe and crop. 82% of study area was characterized by strong consistency between GIMMS and MODIS NDVI at pixel scale. In the Landsat NDVI vs. GIMMS and MODIS NDVI comparison of absolute values, the MODIS NDVI performed slightly better than GIMMS NDVI, whereas in the comparison of temporal change values, the GIMMS data set performed best. Similar with comparison results of GIMMS and MODIS NDVI, the consistency across the three datasets was clearly different among various vegetation types. In dynamic changes, differences between Landsat and MODIS NDVI were smaller than Landsat NDVI vs. GIMMS NDVI for forest, but Landsat and GIMMS NDVI agreed better for grass and crop. The results suggested that spatial patterns and dynamic trends of GIMMS NDVI were found to be in overall acceptable agreement with MODIS NDVI. It might be feasible to successfully integrate historical GIMMS and more recent MODIS NDVI to provide continuity of NDVI products. The accuracy of merging AVHRR historical data recorded with more modern MODIS NDVI data strongly depends on vegetation type, season and phenological period, and spatial scale. The integration of the two datasets for needleleaf forest, broadleaf forest, and for all vegetation types in the phenological transition periods in spring and autumn should be treated with caution.

  4. Neural Networks as a Tool for Constructing Continuous NDVI Time Series from AVHRR and MODIS

    NASA Technical Reports Server (NTRS)

    Brown, Molly E.; Lary, David J.; Vrieling, Anton; Stathakis, Demetris; Mussa, Hamse

    2008-01-01

    The long term Advanced Very High Resolution Radiometer-Normalized Difference Vegetation Index (AVHRR-NDVI) record provides a critical historical perspective on vegetation dynamics necessary for global change research. Despite the proliferation of new sources of global, moderate resolution vegetation datasets, the remote sensing community is still struggling to create datasets derived from multiple sensors that allow the simultaneous use of spectral vegetation for time series analysis. To overcome the non-stationary aspect of NDVI, we use an artificial neural network (ANN) to map the NDVI indices from AVHRR to those from MODIS using atmospheric, surface type and sensor-specific inputs to account for the differences between the sensors. The NDVI dynamics and range of MODIS NDVI data at one degree is matched and extended through the AVHRR record. Four years of overlap between the two sensors is used to train a neural network to remove atmospheric and sensor specific effects on the AVHRR NDVI. In this paper, we present the resulting continuous dataset, its relationship to MODIS data, and a validation of the product.

  5. Fractional Snowcover Estimates from Earth Observing System (EOS) Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS)

    NASA Technical Reports Server (NTRS)

    Salomonson, Vincent V.

    2002-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) on the NASA Earth Observing System (EOS) Terra and Aqua missions has shown considerable capability for mapping snowcover. The typical approach that has used, along with other criteria, the Normalized Snow Difference Index (NDSI) that takes the difference between 500 meter observations at 1.64 micrometers (MODIS band 6) and 0.555 micrometers (MODIS band 4) over the sum of these observations to determine whether MODIS pixels are snowcovered or not in mapping the extent of snowcover. For many hydrological and climate studies using remote sensing of snowcover, it is desirable to assess if the MODIS snowcover observations could not be enhanced by providing the fraction of snowcover in each MODIS observation (pixel). Pursuant to this objective studies have been conducted to assess whether there is sufficient "signal%o in the NDSI parameter to provide useful estimates of fractional snowcover in each MODIS 500 meter pixel. To accomplish this objective high spatial resolution (30 meter) Landsat snowcover observations were used and co-registered with MODIS 500 meter pixels. The NDSI approach was used to assess whether a Landsat pixel was or was not snowcovered. Then the number of snowcovered Landsat pixels within a MODIS pixel was used to determine the fraction of snowcover within each MODIS pixel. The e results were then used to develop statistical relationships between the NDSI value for each 500 meter MODIS pixel and the fraction of snowcover in the MODIS pixel. Such studies were conducted for three widely different areas covered by Landsat scenes in Alaska, Russia, and the Quebec Province in Canada. The statistical relationships indicate that a 10 percent accuracy can be attained. The variability in the statistical relationship for the three areas was found to be remarkably similar (-0.02 for mean error and less than 0.01 for mean absolute error and standard deviation). Independent tests of the relationships were accomplished by taking the relationship of fractional snow-cover to NDSI from one area (e.g., Alaska) and testing it on the other two areas (e.g. Russia and Quebec). Again the results showed that fractional snow-cover can be estimated to 10 percent. The results have been shown to have advantages over other published fractional snowcover algorithms applied to MODIS data. Most recently the fractional snow-cover algorithm has been applied using 500-meter observations over the state of Colorado for a period spanning 25 days. The results exhibit good behavior in mapping the spatial and temporal variability in snowcover over that 25-day period. Overall these studies indicate that robust estimates of fractional snow-cover can be attained using the NDSI parameter over areas extending in size from watersheds relatively large compared to MODIS pixels to global land cover. Other refinements to this approach as well as different approaches are being examined for mapping fractional snow-cover using MODIS observations.

  6. Monitoring start of season in Alaska with GLOBE, AVHRR, and MODIS data

    NASA Astrophysics Data System (ADS)

    Robin, Jessica; Dubayah, Ralph; Sparrow, Elena; Levine, Elissa

    2008-03-01

    This work evaluates whether continuity between Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index (NDVI) is achievable for monitoring phenological changes in Alaska. This work also evaluates whether NDVI can detect changes in start of the growing season (SOS) in this region. Six quadratic regression models with NDVI as a function of accumulated growing degree days (AGDD) were developed from 2001 through 2004 AVHRR and MODIS NDVI data sets for urban, mixed, and forested land covers. Model parameters determined NDVI values for start of the observational period as well as peak and length of the growing season. NDVI values for start of the growing season were determined from the model equations and field observations of SOS made by GLOBE students and researchers at University of Alaska Fairbanks. AGDD was computed from daily air temperature. AVHRR and MODIS models were significantly different from one another with differences in the start of the observational season as well as start, peak, and length of the growing season. Furthermore, AGDD for SOS was significantly lower during the 1990s than the 1980s. NDVI values at SOS did not detect this change. There are limitations with using NDVI to monitor phenological changes in these regions because of snow, the large extent of conifers, and clouds, which restrict the composite period. In addition, differing processing and spectral characteristics restrict continuity between AVHRR and MODIS NDVI data sets.

  7. Study on generation and sharing of on-demand global seamless data—Taking MODIS NDVI as an example

    NASA Astrophysics Data System (ADS)

    Shen, Dayong; Deng, Meixia; Di, Liping; Han, Weiguo; Peng, Chunming; Yagci, Ali Levent; Yu, Genong; Chen, Zeqiang

    2013-04-01

    By applying advanced Geospatial Data Abstraction Library (GDAL) and BigTIFF technology in a Geographical Information System (GIS) with Service Oriented Architecture (SOA), this study has derived global datasets using tile-based input data and implemented Virtual Web Map Service (VWMS) and Virtual Web Coverage Service (VWCS) to provide software tools for visualization and acquisition of global data. Taking MODIS Normalized Difference Vegetation Index (NDVI) as an example, this study proves the feasibility, efficiency and features of the proposed approach.

  8. eMODIS: A User-Friendly Data Source

    USGS Publications Warehouse

    Jenkerson, Calli B.; Maiersperger, Thomas; Schmidt, Gail

    2010-01-01

    The U.S. Geological Survey's (USGS) Earth Resources Observation and Science (EROS) Center is generating a suite of products called 'eMODIS' based on Moderate Resolution Imaging Spectroradiometer (MODIS) data acquired by the National Aeronautics and Space Administration's (NASA) Earth Observing System (EOS). With a more frequent repeat cycle than Landsat and higher spatial resolutions than the Advanced Very High Resolution Spectroradiometer (AVHRR), MODIS is well suited for vegetation studies. For operational monitoring, however, the benefits of MODIS are counteracted by usability issues with the standard map projection, file format, composite interval, high-latitude 'bow-tie' effects, and production latency. eMODIS responds to a community-specific need for alternatively packaged MODIS data, addressing each of these factors for real-time monitoring and historical trend analysis. eMODIS processes calibrated radiance data (level-1B) acquired by the MODIS sensors on the EOS Terra and Aqua satellites by combining MODIS Land Science Collection 5 Atmospherically Corrected Surface Reflectance production code and USGS EROS MODIS Direct Broadcast System (DBS) software to create surface reflectance and Normalized Difference Vegetation Index (NDVI) products. eMODIS is produced over the continental United States and over Alaska extending into Canada to cover the Yukon River Basin. The 250-meter (m), 500-m, and 1,000-m products are delivered in Geostationary Earth Orbit Tagged Image File Format (Geo- TIFF) and composited in 7-day intervals. eMODIS composites are projected to non-Sinusoidal mapping grids that best suit the geography in their areas of application (see eMODIS Product Description below). For eMODIS products generated over the continental United States (eMODIS CONUS), the Terra (from 2000) and Aqua (from 2002) records are available and continue through present time. eMODIS CONUS also is generated in an expedited process that delivers a 7-day rolling composite, created daily with the most recent 7 days of acquisition, to users monitoring real-time vegetation conditions. eMODIS Alaska is not part of expedited processing, but does cover the Terra mission life (2000-present). A simple file transfer protocol (FTP) distribution site currently is enabled on the Internet for direct download of eMODIS products (ftp://emodisftp.cr.usgs.gov/eMODIS), with plans to expand into an interactive portal environment.

  9. Comparison of Sub-pixel Classification Approaches for Crop-specific Mapping

    EPA Science Inventory

    The Moderate Resolution Imaging Spectroradiometer (MODIS) data has been increasingly used for crop mapping and other agricultural applications. Phenology-based classification approaches using the NDVI (Normalized Difference Vegetation Index) 16-day composite (250 m) data product...

  10. Assessment of MODIS-EVI, MODIS-NDVI and VEGETATION-NDVI composite data using agricultural measurements: an example at corn fields in western Mexico.

    PubMed

    Chen, Pei-Yu; Fedosejevs, Gunar; Tiscareño-López, Mario; Arnold, Jeffrey G

    2006-08-01

    Although several types of satellite data provide temporal information of the land use at no cost, digital satellite data applications for agricultural studies are limited compared to applications for forest management. This study assessed the suitability of vegetation indices derived from the TERRA-Moderate Resolution Imaging Spectroradiometer (MODIS) sensor and SPOT-VEGETATION (VGT) sensor for identifying corn growth in western Mexico. Overall, the Normalized Difference Vegetation Index (NDVI) composites from the VGT sensor based on bi-directional compositing method produced vegetation information most closely resembling actual crop conditions. The NDVI composites from the MODIS sensor exhibited saturated signals starting 30 days after planting, but corresponded to green leaf senescence in April. The temporal NDVI composites from the VGT sensor based on the maximum value method had a maximum plateau for 80 days, which masked the important crop transformation from vegetative stage to reproductive stage. The Enhanced Vegetation Index (EVI) composites from the MODIS sensor reached a maximum plateau 40 days earlier than the occurrence of maximum leaf area index (LAI) and maximum intercepted fraction of photosynthetic active radiation (fPAR) derived from in-situ measurements. The results of this study showed that the 250-m resolution MODIS data did not provide more accurate vegetation information for corn growth description than the 500-m and 1000-m resolution MODIS data.

  11. Monitoring boreal forest leaf area index across a Siberian burn chronosequence: a MODIS validation study

    USGS Publications Warehouse

    Cheng, X.; Vierling, Lee; Deering, D.; Conley, A.

    2005-01-01

    Landscapes containing differing amounts of ecological disturbance provide an excellent opportunity to validate and better understand the emerging Moderate Resolution Imaging Spectrometer (MODIS) vegetation products. Four sites, including 1‐year post‐fire coniferous, 13‐year post‐fire deciduous, 24‐year post‐fire deciduous, and >100 year old post‐fire coniferous forests, were selected to serve as a post‐fire chronosequence in the central Siberian region of Krasnoyarsk (57.3°N, 91.6°E) with which to study the MODIS leaf area index (LAI) and vegetation index (VI) products. The collection 4 MODIS LAI product correctly represented the summer site phenologies, but significantly underestimated the LAI value of the >100 year old coniferous forest during the November to April time period. Landsat 7‐derived enhanced vegetation index (EVI) performed better than normalized difference vegetation index (NDVI) to separate the deciduous and conifer forests, and both indices contained significant correlation with field‐derived LAI values at coniferous forest sites (r 2 = 0.61 and r 2 = 0.69, respectively). The reduced simple ratio (RSR) markedly improved LAI prediction from satellite measurements (r 2 = 0.89) relative to NDVI and EVI. LAI estimates derived from ETM+ images were scaled up to evaluate the 1 km resolution MODIS LAI product; from this analysis MODIS LAI overestimated values in the low LAI deciduous forests (where LAI<5) and underestimated values in the high LAI conifer forests (where LAI>6). Our results indicate that further research on the MODIS LAI product is warranted to better understand and improve remote LAI quantification in disturbed forest landscapes over the course of the year.

  12. GCK-MODY diabetes as a protein misfolding disease: the mutation R275C promotes protein misfolding, self-association and cellular degradation.

    PubMed

    Negahdar, Maria; Aukrust, Ingvild; Molnes, Janne; Solheim, Marie H; Johansson, Bente B; Sagen, Jørn V; Dahl-Jørgensen, Knut; Kulkarni, Rohit N; Søvik, Oddmund; Flatmark, Torgeir; Njølstad, Pål R; Bjørkhaug, Lise

    2014-01-25

    GCK-MODY, dominantly inherited mild hyperglycemia, is associated with more than 600 mutations in the glucokinase gene. Different molecular mechanisms have been shown to explain GCK-MODY. Here, we report a Pakistani family harboring the glucokinase mutation c.823C>T (p.R275C). The recombinant and in cellulo expressed mutant pancreatic enzyme revealed slightly increased enzyme activity (kcat) and normal affinity for α-D-glucose, and resistance to limited proteolysis by trypsin comparable with wild-type. When stably expressed in HEK293 cells and MIN6 β-cells (at different levels), the mutant protein appeared misfolded and unstable with a propensity to form dimers and aggregates. Its degradation rate was increased, involving the lysosomal and proteasomal quality control systems. On mutation, a hydrogen bond between the R275 side-chain and the carbonyl oxygen of D267 is broken, destabilizing the F260-L271 loop structure and the protein. This promotes the formation of dimers/aggregates and suggests that an increased cellular degradation is the molecular mechanism by which R275C causes GCK-MODY. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. A MODIS-based begetation index climatology

    USDA-ARS?s Scientific Manuscript database

    Passive microwave soil moisture algorithms must account for vegetation attenuation of the signal in the retrieval process. One approach to accounting for vegetation is to use vegetation indices such as the Normalized Difference Vegetation Index (NDVI) to estimate the vegetation optical depth. The pa...

  14. Classification and Accuracy Assessment for Coarse Resolution Mapping within the Great Lakes Basin, USA

    EPA Science Inventory

    This study applied a phenology-based land-cover classification approach across the Laurentian Great Lakes Basin (GLB) using time-series data consisting of 23 Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) composite images (250 ...

  15. Phenotype Heterogeneity in Glucokinase-Maturity-Onset Diabetes of the Young (GCK-MODY) Patients.

    PubMed

    Wędrychowicz, Anna; Tobór, Ewa; Wilk, Magdalena; Ziółkowska-Ledwith, Ewa; Rams, Anna; Wzorek, Katarzyna; Sabal, Barbara; Stelmach, Małgorzata; Starzyk, Jerzy B

    2017-09-01

    The aim of the study was to evaluate the clinical phenotypes of glucokinase-maturity-onset diabetes of the young (GCK-MODY) pediatric patients from Southwest Poland and to search for phenotype-genotype correlations. We conducted a retrospective analysis of data on 37 CGK-MODY patients consisting of 21 girls and 16 boys of ages 1.9-20.1 (mean 12.5±5.2) years, treated in our centre in the time period between 2002 and 2013. GCK-MODY carriers were found in a frequency of 3% among 1043 diabetes mellitus (DM) patients and constituted the second most numerous group of DM patients, following type 1 DM, in our centre. The mean age of GCK-MODY diagnosis was 10.4±4.5 years. The findings leading to the diagnosis were impaired fasting glucose (IFG) (15/37), symptoms of hyperglycemia (4/37), and a GCK-MODY family history (18/37). Mean fasting blood glucose level was 6.67±1.64 mmol/L. In the sample, there were patients with normal values (4/37), those with DM (10/37), and IFG (23/37). In OGTT, 120 min glucose level was normal in 8, diabetic in 2, and characteristic for glucose intolerance in 27 of the 37 cases. Twelve of the 37 cases (32%) were identified as GCK-MODY carriers. In the total group, mean C-peptide level was 2.13±0.65 ng/mL and HbA1c was 6.26±0.45% (44.9±-18 mmol/mol). Thirty-two patients had a family history of DM. DM autoantibodies were detected in two patients. The most common mutations were p.Gly318Arg (11/37) and p.Val302Leu (8/37). There was no correlation between type of mutations and plasma glucose levels. The phenotype of GCK-MODY patients may vary from those characteristic for other DM types to an asymptomatic state with normal FG with no correlation with genotype.

  16. USAID Expands eMODIS Coverage for Famine Early Warning

    NASA Astrophysics Data System (ADS)

    Jenkerson, C.; Meyer, D. J.; Evenson, K.; Merritt, M.

    2011-12-01

    Food security in countries at risk is monitored by U.S. Agency for International Development (USAID) through its Famine Early Warning Systems Network (FEWS NET) using many methods including Moderate Resolution Imaging Spectroradiometer (MODIS) data processed by U.S. Geological Survey (USGS) into eMODIS Normalized Difference Vegetation Index (NDVI) products. Near-real time production is used comparatively with trends derived from the eMODIS archive to operationally monitor vegetation anomalies indicating threatened cropland and rangeland conditions. eMODIS production over Central America and the Caribbean (CAMCAR) began in 2009, and processes 10-day NDVI composites every 5 days from surface reflectance inputs produced using predicted spacecraft and climatology information at Land and Atmosphere Near real time Capability for Earth Observing Systems (EOS) (LANCE). These expedited eMODIS composites are backed by a parallel archive of precision-based NDVI calculated from surface reflectance data ordered through Level 1 and Atmosphere Archive and Distribution System (LAADS). Success in the CAMCAR region led to the recent expansion of eMODIS production to include Africa in 2010, and Central Asia in 2011. Near-real time 250-meter products are available for each region on the last day of an acquisition interval (generally before midnight) from an anonymous file transfer protocol (FTP) distribution site (ftp://emodisftp.cr.usgs.gov/eMODIS). The FTP site concurrently hosts the regional historical collections (2000 to present) which are also searchable using the USGS Earth Explorer (http://edcsns17.cr.usgs.gov/NewEarthExplorer). As eMODIS coverage continues to grow, these geographically gridded, georeferenced tagged image file format (GeoTIFF) NDVI composites increase their utility as effective tools for operational monitoring of near-real time vegetation data against historical trends.

  17. Evaluation of Operational Albedo Algorithms For AVHRR, MODIS and VIIRS: Case Studies in Southern Africa

    NASA Astrophysics Data System (ADS)

    Privette, J. L.; Schaaf, C. B.; Saleous, N.; Liang, S.

    2004-12-01

    Shortwave broadband albedo is the fundamental surface variable that partitions solar irradiance into energy available to the land biophysical system and energy reflected back into the atmosphere. Albedo varies with land cover, vegetation phenological stage, surface wetness, solar angle, and atmospheric condition, among other variables. For these reasons, a consistent and normalized albedo time series is needed to accurately model weather, climate and ecological trends. Although an empirically-derived coarse-scale albedo from the 20-year NOAA AVHRR record (Sellers et al., 1996) is available, an operational moderate resolution global product first became available from NASA's MODIS sensor. The validated MODIS product now provides the benchmark upon which to compare albedo generated through 1) reprocessing of the historic AVHRR record and 2) operational processing of data from the future National Polar-Orbiting Environmental Satellite System's (NPOESS) Visible/Infrared Imager Radiometer Suite (VIIRS). Unfortunately, different instrument characteristics (e.g., spectral bands, spatial resolution), processing approaches (e.g., latency requirements, ancillary data availability) and even product definitions (black sky albedo, white sky albedo, actual or blue sky albedo) complicate the development of the desired multi-mission (AVHRR to MODIS to VIIRS) albedo time series -- a so-called Climate Data Record. This presentation will describe the different albedo algorithms used with AVHRR, MODIS and VIIRS, and compare their results against field measurements collected over two semi-arid sites in southern Africa. We also describe the MODIS-derived VIIRS proxy data we developed to predict NPOESS albedo characteristics. We conclude with a strategy to develop a seamless Climate Data Record from 1982- to 2020.

  18. Comparing MODIS C6 'Deep Blue' and 'Dark Target' Aerosol Data

    NASA Technical Reports Server (NTRS)

    Hsu, N. C.; Sayer, A. M.; Bettenhausen, C.; Lee, J.; Levy, R. C.; Mattoo, S.; Munchak, L. A.; Kleidman, R.

    2014-01-01

    The MODIS Collection 6 Atmospheres product suite includes refined versions of both 'Deep Blue' (DB) and 'Dark Target' (DT) aerosol algorithms, with the DB dataset now expanded to include coverage over vegetated land surfaces. This means that, over much of the global land surface, users will have both DB and DT data to choose from. A 'merged' dataset is also provided, primarily for visualization purposes, which takes retrievals from either or both algorithms based on regional and seasonal climatologies of normalized difference vegetation index (NDVI). This poster present some comparisons of these two C6 aerosol algorithms, focusing on AOD at 550 nm derived from MODIS Aqua measurements, with each other and with Aerosol Robotic Network (AERONET) data, with the intent to facilitate user decisions about the suitability of the two datasets for their desired applications.

  19. Annual Corn Yield Estimation through Multi-temporal MODIS Data

    NASA Astrophysics Data System (ADS)

    Shao, Y.; Zheng, B.; Campbell, J. B.

    2013-12-01

    This research employed 13 years of the Moderate Resolution Imaging Spectroradiometer (MODIS) to estimate annual corn yield for the Midwest of the United States. The overall objective of this study was to examine if annual corn yield could be accurately predicted using MODIS time-series NDVI (Normalized Difference Vegetation Index) and ancillary data such monthly precipitation and temperature. MODIS-NDVI 16-Day composite images were acquired from the USGS EROS Data Center for calendar years 2000 to 2012. For the same time-period, county level corn yield statistics were obtained from the National Agricultural Statistics Service (NASS). The monthly precipitation and temperature measures were derived from Precipitation-Elevation Regressions on Independent Slopes Model (PRISM) climate data. A cropland mask was derived using 2006 National Land Cover Database. For each county and within the cropland mask, the MODIS-NDVI time-series data and PRISM climate data were spatially averaged, at their respective time steps. We developed a random forest predictive model with the MODIS-NDVI and climate data as predictors and corn yield as response. To assess the model accuracy, we used twelve years of data as training and the remaining year as hold-out testing set. The training and testing procedures were repeated 13 times. The R2 ranged from 0.72 to 0.83 for testing years. It was also found that the inclusion of climate data did not improve the model predictive performance. MODIS-NDVI time-series data alone might provide sufficient information for county level corn yield prediction.

  20. Evaluation of MODIS NDVI and NDWI for vegetation drought monitoring using Oklahoma Mesonet soil moisture data

    USGS Publications Warehouse

    Gu, Yingxin; Hunt, E.; Wardlow, B.; Basara, J.B.; Brown, Jesslyn F.; Verdin, J.P.

    2008-01-01

    The evaluation of the relationship between satellite-derived vegetation indices (normalized difference vegetation index and normalized difference water index) and soil moisture improves our understanding of how these indices respond to soil moisture fluctuations. Soil moisture deficits are ultimately tied to drought stress on plants. The diverse terrain and climate of Oklahoma, the extensive soil moisture network of the Oklahoma Mesonet, and satellite-derived indices from the Moderate Resolution Imaging Spectroradiometer (MODIS) provided an opportunity to study correlations between soil moisture and vegetation indices over the 2002-2006 growing seasons. Results showed that the correlation between both indices and the fractional water index (FWI) was highly dependent on land cover heterogeneity and soil type. Sites surrounded by relatively homogeneous vegetation cover with silt loam soils had the highest correlation between the FWI and both vegetation-related indices (r???0.73), while sites with heterogeneous vegetation cover and loam soils had the lowest correlation (r???0.22). Copyright 2008 by the American Geophysical Union.

  1. Comparability of Red/Near-Infrared Reflectance and NDVI Based on the Spectral Response Function between MODIS and 30 Other Satellite Sensors Using Rice Canopy Spectra

    PubMed Central

    Huang, Weijiao; Huang, Jingfeng; Wang, Xiuzhen; Wang, Fumin; Shi, Jingjing

    2013-01-01

    Long-term monitoring of regional and global environment changes often depends on the combined use of multi-source sensor data. The most widely used vegetation index is the normalized difference vegetation index (NDVI), which is a function of the red and near-infrared (NIR) spectral bands. The reflectance and NDVI data sets derived from different satellite sensor systems will not be directly comparable due to different spectral response functions (SRF), which has been recognized as one of the most important sources of uncertainty in the multi-sensor data analysis. This study quantified the influence of SRFs on the red and NIR reflectances and NDVI derived from 31 Earth observation satellite sensors. For this purpose, spectroradiometric measurements were performed for paddy rice grown under varied nitrogen levels and at different growth stages. The rice canopy reflectances were convoluted with the spectral response functions of various satellite instruments to simulate sensor-specific reflectances in the red and NIR channels. NDVI values were then calculated using the simulated red and NIR reflectances. The results showed that as compared to the Terra MODIS, the mean relative percentage difference (RPD) ranged from −12.67% to 36.30% for the red reflectance, −8.52% to −0.23% for the NIR reflectance, and −9.32% to 3.10% for the NDVI. The mean absolute percentage difference (APD) compared to the Terra MODIS ranged from 1.28% to 36.30% for the red reflectance, 0.84% to 8.71% for the NIR reflectance, and 0.59% to 9.32% for the NDVI. The lowest APD between MODIS and the other 30 satellite sensors was observed for Landsat5 TM for the red reflectance, CBERS02B CCD for the NIR reflectance and Landsat4 TM for the NDVI. In addition, the largest APD between MODIS and the other 30 satellite sensors was observed for IKONOS for the red reflectance, AVHRR1 onboard NOAA8 for the NIR reflectance and IKONOS for the NDVI. The results also indicated that AVHRRs onboard NOAA7-17 showed higher differences than did the other sensors with respect to MODIS. A series of optimum models were presented for remote sensing data assimilation between MODIS and other sensors. PMID:24287529

  2. Comparability of red/near-infrared reflectance and NDVI based on the spectral response function between MODIS and 30 other satellite sensors using rice canopy spectra.

    PubMed

    Huang, Weijiao; Huang, Jingfeng; Wang, Xiuzhen; Wang, Fumin; Shi, Jingjing

    2013-11-26

    Long-term monitoring of regional and global environment changes often depends on the combined use of multi-source sensor data. The most widely used vegetation index is the normalized difference vegetation index (NDVI), which is a function of the red and near-infrared (NIR) spectral bands. The reflectance and NDVI data sets derived from different satellite sensor systems will not be directly comparable due to different spectral response functions (SRF), which has been recognized as one of the most important sources of uncertainty in the multi-sensor data analysis. This study quantified the influence of SRFs on the red and NIR reflectances and NDVI derived from 31 Earth observation satellite sensors. For this purpose, spectroradiometric measurements were performed for paddy rice grown under varied nitrogen levels and at different growth stages. The rice canopy reflectances were convoluted with the spectral response functions of various satellite instruments to simulate sensor-specific reflectances in the red and NIR channels. NDVI values were then calculated using the simulated red and NIR reflectances. The results showed that as compared to the Terra MODIS, the mean relative percentage difference (RPD) ranged from -12.67% to 36.30% for the red reflectance, -8.52% to -0.23% for the NIR reflectance, and -9.32% to 3.10% for the NDVI. The mean absolute percentage difference (APD) compared to the Terra MODIS ranged from 1.28% to 36.30% for the red reflectance, 0.84% to 8.71% for the NIR reflectance, and 0.59% to 9.32% for the NDVI. The lowest APD between MODIS and the other 30 satellite sensors was observed for Landsat5 TM for the red reflectance, CBERS02B CCD for the NIR reflectance and Landsat4 TM for the NDVI. In addition, the largest APD between MODIS and the other 30 satellite sensors was observed for IKONOS for the red reflectance, AVHRR1 onboard NOAA8 for the NIR reflectance and IKONOS for the NDVI. The results also indicated that AVHRRs onboard NOAA7-17 showed higher differences than did the other sensors with respect to MODIS. A series of optimum models were presented for remote sensing data assimilation between MODIS and other sensors.

  3. Retrieval of seasonal dynamics of forest understory reflectance from semiarid to boreal forests using MODIS BRDF data

    NASA Astrophysics Data System (ADS)

    Pisek, Jan; Chen, Jing M.; Kobayashi, Hideki; Rautiainen, Miina; Schaepman, Michael E.; Karnieli, Arnon; Sprinstin, Michael; Ryu, Youngryel; Nikopensius, Maris; Raabe, Kairi

    2016-03-01

    Spatial and temporal patterns of forest background (understory) reflectance are crucial for retrieving biophysical parameters of forest canopies (overstory) and subsequently for ecosystem modeling. In this communication, we retrieved seasonal courses of understory normalized difference vegetation index (NDVI) from multiangular Moderate Resolution Imaging Spectroradiometer bidirectional reflectance distribution function (MODIS BRDF)/albedo data. We compared satellite-based seasonal courses of understory NDVI to understory NDVI values measured in different types of forests distributed along a wide latitudinal gradient (65.12°N-31.35°N). Our results indicated that the retrieval method performs well particularly over open forests of different types. We also demonstrated the limitations of the method for closed canopies, where the understory signal retrieval is much attenuated.

  4. Comparing MODIS and near-surface vegetation indexes for monitoring tropical dry forest phenology along a successional gradient using optical phenology towers

    NASA Astrophysics Data System (ADS)

    Rankine, C.; Sánchez-Azofeifa, G. A.; Guzmán, J. Antonio; Espirito-Santo, M. M.; Sharp, Iain

    2017-10-01

    Tropical dry forests (TDFs) present strong seasonal greenness signals ideal for tracking phenology and primary productivity using remote sensing techniques. The tightly synchronized relationship these ecosystems have with water availability offer a valuable natural experiment for observing the complex interactions between the atmosphere and the biosphere in the tropics. To investigate how well the MODIS vegetation indices (normalized difference vegetation index (NDVI) and the enhanced vegetation index (EVI)) represented the phenology of different successional stages of naturally regenerating TDFs, within a widely conserved forest fragment in the semi-arid southeast of Brazil, we installed several canopy towers with radiometric sensors to produce high temporal resolution near-surface vegetation greenness indices. Direct comparison of several years of ground measurements with a combined Aqua/Terra 8 day satellite product showed similar broad temporal trends, but MODIS often suffered from cloud contamination during the onset of the growing season and occasionally during the peak growing season. The strength of the in-situ and MODIS linear relationship was greater for NDVI than for EVI across sites but varied with forest stand age. Furthermore, we describe the onset dates and duration of canopy development phases for three years of in-situ monitoring. A seasonality analysis revealed significant discrepancies between tower and MODIS phenology transitions dates, with up to five weeks differences in growing season length estimation. Our results indicate that 8 and 16 day MODIS satellite vegetation monitoring products are suitable for tracking general patterns of tropical dry forest phenology in this region but are not temporally sufficient to characterize inter-annual differences in phenology phase onset dates or changes in productivity due to mid-season droughts. Such rapid transitions in canopy greenness are important indicators of climate change sensitivity of these already endangered forest ecosystems and should be further monitored using both ground and satellite approaches.

  5. Post-hurricane forest damage assessment using satellite remote sensing

    Treesearch

    W. Wang; J.J. Qu; X. Hao; Y. Liu; J.A. Stanturf

    2010-01-01

    This study developed a rapid assessment algorithm for post-hurricane forest damage estimation using moderate resolution imaging spectroradiometer (MODIS) measurements. The performance of five commonly used vegetation indices as post-hurricane forest damage indicators was investigated through statistical analysis. The Normalized Difference Infrared Index (NDII) was...

  6. Estimation on rubber tree disturbance caused by typhoon Damery (200518) with Landsat and MODIS data in Hainan Island of China

    NASA Astrophysics Data System (ADS)

    Tan, Chenyan; Fang, Weihua; Li, Jian

    2016-04-01

    In 2005, Typhoon Damery (200518) caused severe damage to the rubber trees in Hainan Island with its destructive winds and rainfall. Selection of proper vegetation indices using multi-source remote sensing data is critical to the assessment of forest disturbance and damage loss for this event. In this study, we will compare the performance of seven vegetation indices derived from MODIS and Landsat TM imageries prior to and after typhoon Damery, in order to select an optimal index for identifying rubber tree disturbance. The indices to be compared are normalized difference vegetation index (NDVI), Normalized Difference Water Index (NDWI), Normalized Difference Infrared Index (NDII), Enhanced vegetation index (EVI), Leaf area index (LAI), forest z-score (IFZ), and Disturbance Index (DI). The ground truth data of rubber tree damage collected through field investigation was used to verify and compare the results. Our preliminary result for the area with ground-truth data shows that DI has the most significant performance for disturbance detection for this typhoon event. This index DI is then applied to all the areas in Hainan Island hit by Darmey to evaluate the overall forest damage severity. At last, rubber tree damage severity is analyzed with other typhoon hazard factors such as wind, topography, soil and precipitation.

  7. Downscaling of Seasonal Landsat-8 and MODIS Land Surface Temperature (LST) in Kolkata, India

    NASA Astrophysics Data System (ADS)

    Garg, R. D.; Guha, S.; Mondal, A.; Lakshmi, V.; Kundu, S.

    2017-12-01

    The quality of life of urban people is affected by urban heat environment. The urban heat studies can be carried out using remotely sensed thermal infrared imagery for retrieving Land Surface Temperature (LST). Currently, high spatial resolution (<200 m) thermal images are limited and their temporal resolution is low (e.g., 17 days of Landsat-8). Coarse spatial resolution (1000 m) and high temporal resolution (daily) thermal images of MODIS (Moderate Resolution Imaging Spectroradiometer) are frequently available. The present study is to downscale spatially coarser resolution of the thermal image to fine resolution thermal image using regression based downscaling technique. This method is based on the relationship between (LST) and vegetation indices (e.g., Normalized Difference Vegetation Index or NDVI) over a heterogeneous landscape. The Kolkata metropolitan city, which experiences a tropical wet-and-dry type of climate has been selected for the study. This study applied different seasonal open source satellite images viz., Landsat-8 and Terra MODIS. The Landsat-8 images are aggregated at 960 m resolution and downscaled into 480, 240 120 and 60 m. Optical and thermal resolution of Landsat-8 and MODIS are 30 m and 60 m; 250 m and 1000 m respectively. The homogeneous land cover areas have shown better accuracy than heterogeneous land cover areas. The downscaling method plays a crucial role while the spatial resolution of thermal band renders it unable for advanced study. Key words: Land Surface Temperature (LST), Downscale, MODIS, Landsat, Kolkata

  8. [Retrieve of red tide distributions from MODIS data based on the characteristics of water spectrum].

    PubMed

    Qiu, Zhong-Feng; Cui, Ting-Wei; He, Yi-Jun

    2011-08-01

    After comparing the spectral differences between red tide water and normal water, we developed a method to retrieve red tide distributions from MODIS data based on the characteristics of red tide water spectrum. The authors used the 119 series of in situ observations to validate the method and found that only one observation has not been detected correctly. The authors then applied this method to MODIS data on April 4, 2005. In the research areas three locations of red tide water were apparently detected with the total areas about 2 000 km2. The retrieved red tide distributions are in good agreement with the distributions of high chlorophyll a concentrations. The research suggests that the method is available to eliminating the influence of suspended sediments and can be used to retrieve the locations and areas of red tide water.

  9. Rice Crop Monitoring and Yield Assessment with MODIS 250m Gridded Vegetation Products: A Case Study of Sa Kaeo Province, Thailand

    NASA Astrophysics Data System (ADS)

    Wijesingha, J. S. J.; Deshapriya, N. L.; Samarakoon, L.

    2015-04-01

    Billions of people in the world depend on rice as a staple food and as an income-generating crop. Asia is the leader in rice cultivation and it is necessary to maintain an up-to-date rice-related database to ensure food security as well as economic development. This study investigates general applicability of high temporal resolution Moderate Resolution Imaging Spectroradiometer (MODIS) 250m gridded vegetation product for monitoring rice crop growth, mapping rice crop acreage and analyzing crop yield, at the province-level. The MODIS 250m Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) time series data, field data and crop calendar information were utilized in this research in Sa Kaeo Province, Thailand. The following methodology was used: (1) data pre-processing and rice plant growth analysis using Vegetation Indices (VI) (2) extraction of rice acreage and start-of-season dates from VI time series data (3) accuracy assessment, and (4) yield analysis with MODIS VI. The results show a direct relationship between rice plant height and MODIS VI. The crop calendar information and the smoothed NDVI time series with Whittaker Smoother gave high rice acreage estimation (with 86% area accuracy and 75% classification accuracy). Point level yield analysis showed that the MODIS EVI is highly correlated with rice yield and yield prediction using maximum EVI in the rice cycle predicted yield with an average prediction error 4.2%. This study shows the immense potential of MODIS gridded vegetation product for keeping an up-to-date Geographic Information System of rice cultivation.

  10. Sensitivity of Aerosol Multi-Sensor Daily Data Intercomparison to the Level 3 Dataday Definition

    NASA Technical Reports Server (NTRS)

    Leptoukh, Gregory; Lary, David; Shen, Suhung; Lynnes, Christopher

    2010-01-01

    Topics include: why people use Level 3 products, why someone might go wrong with Level 3 products, differences in L3 from different sensors, Level 3 data day definition, MODIS vs. MODIS, AOD MODIS Terra vs. Aqua in Pacific, AOD Aqua MODIS vs. MISR correlation map, MODIS vs MISR on Terra, MODIS atmospheric data day definition, orbit time difference for Terra and Aqua 2009-01-06, maximum time difference for Terra (Calendar day), artifact explains, data day definitions, local time distribution, spatial (local time) data day definition, maximum time difference between Terra and Aqua, Removing the artifact in 16-day AOD correlation, MODIS cloud top pressure, and MODIS Terra and Aqua vs. AIRS cloud top pressure.

  11. Resolution Enhancement of MODIS-derived Water Indices for Studying Persistent Flooding

    NASA Astrophysics Data System (ADS)

    Underwood, L. W.; Kalcic, M. T.; Fletcher, R. M.

    2012-12-01

    Monitoring coastal marshes for persistent flooding and salinity stress is a high priority issue in Louisiana. Remote sensing can identify environmental variables that can be indicators of marsh habitat conditions, and offer timely and relatively accurate information for aiding wetland vegetation management. Monitoring activity accuracy is often limited by mixed pixels which occur when areas represented by the pixel encompasses more than one cover type. Mixtures of marsh grasses and open water in 250m Moderate Resolution Imaging Spectroradiometer (MODIS) data can impede flood area estimation. Flood mapping of such mixtures requires finer spatial resolution data to better represent the cover type composition within 250m MODIS pixel. Fusion of MODIS and Landsat can improve both spectral and temporal resolution of time series products to resolve rapid changes from forcing mechanisms like hurricane winds and storm surge. For this study, using a method for estimating sub-pixel values from a MODIS time series of a Normalized Difference Water Index (NDWI), using temporal weighting, was implemented to map persistent flooding in Louisiana coastal marshes. Ordinarily NDWI computed from daily 250m MODIS pixels represents a mixture of fragmented marshes and water. Here, sub-pixel NDWI values were derived for MODIS data using Landsat 30-m data. Each MODIS pixel was disaggregated into a mixture of the eight cover types according to the classified image pixels falling inside the MODIS pixel. The Landsat pixel means for each cover type inside a MODIS pixel were computed for the Landsat data preceding the MODIS image in time and for the Landsat data succeeding the MODIS image. The Landsat data were then weighted exponentially according to closeness in date to the MODIS data. The reconstructed MODIS data were produced by summing the product of fractional cover type with estimated NDWI values within each cover type. A new daily time series was produced using both the reconstructed 250-m MODIS, with enhanced features, and the approximated daily 30-m high-resolution image based on Landsat data. The algorithm was developed and tested over the Calcasieu-Sabine Basin, which was heavily inundated by storm surge from Hurricane Ike to study the extent and duration of flooding following the storm. Time series for 2000-2009, covering flooding events by Hurricane Rita in 2005 and Hurricane Ike in 2008, were derived. High resolution images were formed for all days in 2008 between the first cloud free Landsat scene and the last cloud-free Landsat scene. To refine and validate flooding maps, each time series was compared to Louisiana Coastwide Reference Monitoring System (CRMS) station water levels adjusted to marsh to optimize thresholds for MODIS-derived time series of NDWI. Seasonal fluctuations were adjusted by subtracting ten year average NDWI for marshes, excluding the hurricane events. Results from different NDWI indices and a combination of indices were compared. Flooding persistence that was mapped with higher-resolution data showed some improvement over the original MODIS time series estimates. The advantage of this novel technique is that improved mapping of extent and duration of inundation can be provided.

  12. Resolution Enhancement of MODIS-Derived Water Indices for Studying Persistent Flooding

    NASA Technical Reports Server (NTRS)

    Underwood, L. W.; Kalcic, Maria; Fletcher, Rose

    2012-01-01

    Monitoring coastal marshes for persistent flooding and salinity stress is a high priority issue in Louisiana. Remote sensing can identify environmental variables that can be indicators of marsh habitat conditions, and offer timely and relatively accurate information for aiding wetland vegetation management. Monitoring activity accuracy is often limited by mixed pixels which occur when areas represented by the pixel encompasses more than one cover type. Mixtures of marsh grasses and open water in 250m Moderate Resolution Imaging Spectroradiometer (MODIS) data can impede flood area estimation. Flood mapping of such mixtures requires finer spatial resolution data to better represent the cover type composition within 250m MODIS pixel. Fusion of MODIS and Landsat can improve both spectral and temporal resolution of time series products to resolve rapid changes from forcing mechanisms like hurricane winds and storm surge. For this study, using a method for estimating sub-pixel values from a MODIS time series of a Normalized Difference Water Index (NDWI), using temporal weighting, was implemented to map persistent flooding in Louisiana coastal marshes. Ordinarily NDWI computed from daily 250m MODIS pixels represents a mixture of fragmented marshes and water. Here, sub-pixel NDWI values were derived for MODIS data using Landsat 30-m data. Each MODIS pixel was disaggregated into a mixture of the eight cover types according to the classified image pixels falling inside the MODIS pixel. The Landsat pixel means for each cover type inside a MODIS pixel were computed for the Landsat data preceding the MODIS image in time and for the Landsat data succeeding the MODIS image. The Landsat data were then weighted exponentially according to closeness in date to the MODIS data. The reconstructed MODIS data were produced by summing the product of fractional cover type with estimated NDWI values within each cover type. A new daily time series was produced using both the reconstructed 250-m MODIS, with enhanced features, and the approximated daily 30-m high-resolution image based on Landsat data. The algorithm was developed and tested over the Calcasieu-Sabine Basin, which was heavily inundated by storm surge from Hurricane Ike to study the extent and duration of flooding following the storm. Time series for 2000-2009, covering flooding events by Hurricane Rita in 2005 and Hurricane Ike in 2008, were derived. High resolution images were formed for all days in 2008 between the first cloud free Landsat scene and the last cloud-free Landsat scene. To refine and validate flooding maps, each time series was compared to Louisiana Coastwide Reference Monitoring System (CRMS) station water levels adjusted to marsh to optimize thresholds for MODIS-derived time series of NDWI. Seasonal fluctuations were adjusted by subtracting ten year average NDWI for marshes, excluding the hurricane events. Results from different NDWI indices and a combination of indices were compared. Flooding persistence that was mapped with higher-resolution data showed some improvement over the original MODIS time series estimates. The advantage of this novel technique is that improved mapping of extent and duration of inundation can be provided.

  13. Multitemporal cross-calibration of the Terra MODIS and Landsat 7 ETM+ reflective solar bands

    USGS Publications Warehouse

    Angal, Amit; Xiong, Xiaoxiong; Wu, Aisheng; Chander, Gyanesh; Choi, Taeyoung

    2013-01-01

    In recent years, there has been a significant increase in the use of remotely sensed data to address global issues. With the open data policy, the data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Enhanced Thematic Mapper Plus (ETM+) sensors have become a critical component of numerous applications. These two sensors have been operational for more than a decade, providing a rich archive of multispectral imagery for analysis of mutitemporal remote sensing data. This paper focuses on evaluating the radiometric calibration agreement between MODIS and ETM+ using the near-simultaneous and cloud-free image pairs over an African pseudo-invariant calibration site, Libya 4. To account for the combined uncertainties in the top-of-atmosphere (TOA) reflectance due to surface and atmospheric bidirectional reflectance distribution function (BRDF), a semiempirical BRDF model was adopted to normalize the TOA reflectance to the same illumination and viewing geometry. In addition, the spectra from the Earth Observing-1 (EO-1) Hyperion were used to compute spectral corrections between the corresponding MODIS and ETM+ spectral bands. As EO-1 Hyperion scenes were not available for all MODIS and ETM+ data pairs, MODerate resolution atmospheric TRANsmission (MODTRAN) 5.0 simulations were also used to adjust for differences due to the presence or lack of absorption features in some of the bands. A MODIS split-window algorithm provides the atmospheric water vapor column abundance during the overpasses for the MODTRAN simulations. Additionally, the column atmospheric water vapor content during the overpass was retrieved using the MODIS precipitable water vapor product. After performing these adjustments, the radiometric cross-calibration of the two sensors was consistent to within 7%. Some drifts in the response of the bands are evident, with MODIS band 3 being the largest of about 6% over 10 years, a change that will be corrected in Collection 6 MODIS processing.

  14. Multitemporal Cross-Calibration of the Terra MODIS and Landsat 7 ETM+ Reflective Solar Bands

    NASA Technical Reports Server (NTRS)

    Angal, Amit; Xiong, Xiaoxiong; Wu, Aisheng; Changler, Gyanesh; Choi, Taeyoyung

    2013-01-01

    In recent years, there has been a significant increase in the use of remotely sensed data to address global issues. With the open data policy, the data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Enhanced Thematic Mapper Plus (ETM+) sensors have become a critical component of numerous applications. These two sensors have been operational for more than a decade, providing a rich archive of multispectral imagery for analysis of mutitemporal remote sensing data. This paper focuses on evaluating the radiometric calibration agreement between MODIS and ETM+ using the near-simultaneous and cloud-free image pairs over an African pseudo-invariant calibration site, Libya 4. To account for the combined uncertainties in the top-of-atmosphere (TOA) reflectance due to surface and atmospheric bidirectional reflectance distribution function (BRDF), a semiempirical BRDF model was adopted to normalize the TOA reflectance to the same illumination and viewing geometry. In addition, the spectra from the Earth Observing-1 (EO-1) Hyperion were used to compute spectral corrections between the corresponding MODIS and ETM+ spectral bands. As EO-1 Hyperion scenes were not available for all MODIS and ETM+ data pairs, MODerate resolution atmospheric TRANsmission (MODTRAN) 5.0 simulations were also used to adjust for differences due to the presence or lack of absorption features in some of the bands. A MODIS split-window algorithm provides the atmospheric water vapor column abundance during the overpasses for the MODTRAN simulations. Additionally, the column atmospheric water vapor content during the overpass was retrieved using the MODIS precipitable water vapor product. After performing these adjustments, the radiometric cross-calibration of the two sensors was consistent to within 7%. Some drifts in the response of the bands are evident, with MODIS band 3 being the largest of about 6% over 10 years, a change that will be corrected in Collection 6 MODIS processing.

  15. Validating MODIS and Sentinel-2 NDVI Products at a Temperate Deciduous Forest Site Using Two Independent Ground-Based Sensors.

    PubMed

    Lange, Maximilian; Dechant, Benjamin; Rebmann, Corinna; Vohland, Michael; Cuntz, Matthias; Doktor, Daniel

    2017-08-11

    Quantifying the accuracy of remote sensing products is a timely endeavor given the rapid increase in Earth observation missions. A validation site for Sentinel-2 products was hence established in central Germany. Automatic multispectral and hyperspectral sensor systems were installed in parallel with an existing eddy covariance flux tower, providing spectral information of the vegetation present at high temporal resolution. Normalized Difference Vegetation Index (NDVI) values from ground-based hyperspectral and multispectral sensors were compared with NDVI products derived from Sentinel-2A and Moderate-resolution Imaging Spectroradiometer (MODIS). The influence of different spatial and temporal resolutions was assessed. High correlations and similar phenological patterns between in situ and satellite-based NDVI time series demonstrated the reliability of satellite-based phenological metrics. Sentinel-2-derived metrics showed better agreement with in situ measurements than MODIS-derived metrics. Dynamic filtering with the best index slope extraction algorithm was nevertheless beneficial for Sentinel-2 NDVI time series despite the availability of quality information from the atmospheric correction procedure.

  16. Validating MODIS and Sentinel-2 NDVI Products at a Temperate Deciduous Forest Site Using Two Independent Ground-Based Sensors

    PubMed Central

    Lange, Maximilian; Rebmann, Corinna; Cuntz, Matthias; Doktor, Daniel

    2017-01-01

    Quantifying the accuracy of remote sensing products is a timely endeavor given the rapid increase in Earth observation missions. A validation site for Sentinel-2 products was hence established in central Germany. Automatic multispectral and hyperspectral sensor systems were installed in parallel with an existing eddy covariance flux tower, providing spectral information of the vegetation present at high temporal resolution. Normalized Difference Vegetation Index (NDVI) values from ground-based hyperspectral and multispectral sensors were compared with NDVI products derived from Sentinel-2A and Moderate-resolution Imaging Spectroradiometer (MODIS). The influence of different spatial and temporal resolutions was assessed. High correlations and similar phenological patterns between in situ and satellite-based NDVI time series demonstrated the reliability of satellite-based phenological metrics. Sentinel-2-derived metrics showed better agreement with in situ measurements than MODIS-derived metrics. Dynamic filtering with the best index slope extraction algorithm was nevertheless beneficial for Sentinel-2 NDVI time series despite the availability of quality information from the atmospheric correction procedure. PMID:28800065

  17. Using normalized difference vegetation index to estimate carbon fluxes from small rotationally grazed pastures

    USGS Publications Warehouse

    Skinner, R.H.; Wylie, B.K.; Gilmanov, T.G.

    2011-01-01

    Satellite-based normalized difference vegetation index (NDVI) data have been extensively used for estimating gross primary productivity (GPP) and yield of grazing lands throughout the world. However, the usefulness of satellite-based images for monitoring rotationally-grazed pastures in the northeastern United States might be limited because paddock size is often smaller than the resolution limits of the satellite image. This research compared NDVI data from satellites with data obtained using a ground-based system capable of fine-scale (submeter) NDVI measurements. Gross primary productivity was measured by eddy covariance on two pastures in central Pennsylvania from 2003 to 2008. Weekly 250-m resolution satellite NDVI estimates were also obtained for each pasture from the moderate resolution imaging spectroradiometer (MODIS) sensor. Ground-based NDVI data were periodically collected in 2006, 2007, and 2008 from one of the two pastures. Multiple-regression and regression-tree estimates of GPP, based primarily on MODIS 7-d NDVI and on-site measurements of photosynthetically active radiation (PAR), were generally able to predict growing-season GPP to within an average of 3% of measured values. The exception was drought years when estimated and measured GPP differed from each other by 11 to 13%. Ground-based measurements improved the ability of vegetation indices to capture short-term grazing management effects on GPP. However, the eMODIS product appeared to be adequate for regional GPP estimates where total growing-season GPP across a wide area would be of greater interest than short-term management-induced changes in GPP at individual sites.

  18. Transitioning from MODIS to VIIRS: an analysis of inter-consistency of NDVI data sets for agricultural monitoring.

    PubMed

    Skakun, Sergii; Justice, Christopher O; Vermote, Eric; Roger, Jean-Claude

    2018-01-01

    The Visible/Infrared Imager/Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership (S-NPP) satellite was launched in 2011, in part to provide continuity with the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard National Aeronautics and Space Administration's (NASA) Terra and Aqua remote sensing satellites. The VIIRS will eventually replace MODIS for both land science and applications and add to the coarse-resolution, long term data record. It is, therefore, important to provide the user community with an assessment of the consistency of equivalent products from the two sensors. For this study, we do this in the context of example agricultural monitoring applications. Surface reflectance that is routinely delivered within the M{O,Y}D09 and VNP09 series of products provide critical input for generating downstream products. Given the range of applications utilizing the normalized difference vegetation index (NDVI) generated from M{O,Y}D09 and VNP09 products and the inherent differences between MODIS and VIIRS sensors in calibration, spatial sampling, and spectral bands, the main objective of this study is to quantify uncertainties related the transitioning from using MODIS to VIIRS-based NDVI's. In particular, we compare NDVI's derived from two sets of Level 3 MYD09 and VNP09 products with various spatial-temporal characteristics, namely 8-day composites at 500 m spatial resolution and daily Climate Modelling Grid (CMG) images at 0.05° spatial resolution. Spectral adjustment of VIIRS I1 (red) and I2 (near infra-red - NIR) bands to match MODIS/Aqua b1 (red) and b2 (NIR) bands is performed to remove a bias between MODIS and VIIRS-based red, NIR, and NDVI estimates. Overall, red reflectance, NIR reflectance, NDVI uncertainties were 0.014, 0.029 and 0.056 respectively for the 500 m product and 0.013, 0.016 and 0.032 for the 0.05° product. The study shows that MODIS and VIIRS NDVI data can be used interchangeably for applications with an uncertainty of less than 0.02 to 0.05, depending on the scale of spatial aggregation, which is typically the uncertainty of the individual dataset.

  19. Evaluating the Usefulness of High-Temporal Resolution Vegetation Indices to Identify Crop Types

    NASA Astrophysics Data System (ADS)

    Hilbert, K.; Lewis, D.; O'Hara, C. G.

    2006-12-01

    The National Aeronautical and Space Agency (NASA) and the United States Department of Agriculture (USDA) jointly sponsored research covering the 2004 to 2006 South American crop seasons that focused on developing methods for the USDA's Foreign Agricultural Service's (FAS) Production Estimates and Crop Assessment Division (PECAD) to identify crop types using MODIS-derived, hyper-temporal Normalized Difference Vegetation Index (NDVI) images. NDVI images were composited in 8 day intervals from daily NDVI images and aggregated to create a hyper-termporal NDVI layerstack. This NDVI layerstack was used as input to image classification algorithms. Research results indicated that creating high-temporal resolution Normalized Difference Vegetation Index (NDVI) composites from NASA's MODerate Resolution Imaging Spectroradiometer (MODIS) data products provides useful input to crop type classifications as well as potential useful input for regional crop productivity modeling efforts. A current NASA-sponsored Rapid Prototyping Capability (RPC) experiment will assess the utility of simulated future Visible Infrared Imager / Radiometer Suite (VIIRS) imagery for conducting NDVI-derived land cover and specific crop type classifications. In the experiment, methods will be considered to refine current MODIS data streams, reduce the noise content of the MODIS, and utilize the MODIS data as an input to the VIIRS simulation process. The effort also is being conducted in concert with an ISS project that will further evaluate, verify and validate the usefulness of specific data products to provide remote sensing-derived input for the Sinclair Model a semi-mechanistic model for estimating crop yield. The study area encompasses a large portion of the Pampas region of Argentina--a major world producer of crops such as corn, soybeans, and wheat which makes it a competitor to the US. ITD partnered with researchers at the Center for Surveying Agricultural and Natural Resources (CREAN) of the National University of Cordoba, Argentina, and CREAN personnel collected and continue to collect field-level, GIS-based in situ information. Current efforts involve both developing and optimizing software tools for the necessary data processing. The software includes the Time Series Product Tool (TSPT), Leica's ERDAS Imagine, and Mississippi State University's Temporal Map Algebra computational tools.

  20. A remote sensing protocol for identifying rangelands with degraded productive capacity

    Treesearch

    Matthew C. Reeves; L. Scott Bagget

    2014-01-01

    Rangeland degradation is a growing problem throughout the world. An assessment process for com-paring the trend and state of vegetation productivity to objectively derived reference conditions wasdeveloped. Vegetation productivity was estimated from 2000 to 2012 using annual maximum Normalized Difference Vegetation Index (NDVI) from the MODIS satellite platform. Each...

  1. Impact of drought on surface albedo in Canadian Prairie observed from Terra- MODIS

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Trishchenko, A. P.; Wang, S.; Khlopenkov, K. V.

    2009-05-01

    A new technology was developed at the Canada Centre for Remote Sensing (CCRS) for generating Canada wide clear-sky surface albedo data based on observations from MODIS sensor onboard TERRA satellite. The data include all seven MODIS land bands (B1-B7) mapped at 250m spatial resolution and 10-day temporal interval from year 2000 through 2008. The new product presents an important spatial enhancement as well as an improved retrieval of water fraction and snow characteristics relative to the standard MODIS archival products. The regional data for the entire Canadian Prairie region are extracted and aggregated for different ecozones, such as north to south, the boreal transition, aspen parkland, moist mixed grassland, and mixed grassland etc. The preliminary results indicate that in comparison to normal summer conditions (2006-2008), the albedo for the drought years (2000-2003) summer increases up to 20 percent in the visible band (B1) and decreases as low as 10 percent in the near infrared band (B2). In the shortwave infrared band (B6) where a large absorption by leaf water occurs, the albedo increases as much as 15 percent for the drought years due to less leaf water content. The derived Normalized Difference Vegetation Index (NDVI), which represents a density of healthy vegetation, drops dramatically (up to 30 percent) for the drought period of 2000-2003. Among the different ecozones, the grassland shows the largest response to droughts while the boreal zone shows the least. Further applications of this product include mapping of snow cover (fraction and grain size), the fraction of absorbed photo-synthetically active radiation (fAPAR), ecosystem productivity, water and energy budget, as well as impact of various disturbances, such as wildfires, and long term climate induced trends. This work was conducted at the Canada Centre for Remote Sensing (CCRS), Earth Sciences Sector of the Department of Natural Resources Canada as part of the Project J35 of the Program on "Enhancing Resilience in a Changing Climate". This work was also supported by the Canadian Space Agency under the Government Related Initiative Program (GRIP) and the Canadian IPY program. The MODIS data files were acquired from the NASA Distributed Data Archive Center (DAAC).

  2. Phenological classification of the United States: A geographic framework for extending multi-sensor time-series data

    USGS Publications Warehouse

    Gu, Yingxin; Brown, Jesslyn F.; Miura, Tomoaki; van Leeuwen, Willem J.D.; Reed, Bradley C.

    2010-01-01

    This study introduces a new geographic framework, phenological classification, for the conterminous United States based on Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) time-series data and a digital elevation model. The resulting pheno-class map is comprised of 40 pheno-classes, each having unique phenological and topographic characteristics. Cross-comparison of the pheno-classes with the 2001 National Land Cover Database indicates that the new map contains additional phenological and climate information. The pheno-class framework may be a suitable basis for the development of an Advanced Very High Resolution Radiometer (AVHRR)-MODIS NDVI translation algorithm and for various biogeographic studies.

  3. Modeling spatial patterns of wildfire susceptibility in southern California: Applications of MODIS remote sensing data and mesoscale numerical weather models

    NASA Astrophysics Data System (ADS)

    Schneider, Philipp

    This dissertation investigates the potential of Moderate Resolution Imaging Spectroradiometer (MODIS) imagery and mesoscale numerical weather models for mapping wildfire susceptibility in general and for improving the Fire Potential Index (FPI) in southern California in particular. The dissertation explores the use of the Visible Atmospherically Resistant Index (VARI) from MODIS data for mapping relative greenness (RG) of vegetation and subsequently for computing the FPI. VARI-based RG was validated against in situ observations of live fuel moisture. The results indicate that VARI is superior to the previously used Normalized Difference Vegetation Index (NDVI) for computing RG. FPI computed using VARI-based RG was found to outperform the traditional FPI when validated against historical fire detections using logistic regression. The study further investigates the potential of using Multiple Endmember Spectral Mixture Analysis (MESMA) on MODIS data for estimating live and dead fractions of vegetation. MESMA fractions were compared against in situ measurements and fractions derived from data of a high-resolution, hyperspectral sensor. The results show that live and dead fractions obtained from MODIS using MESMA are well correlated with the reference data. Further, FPI computed using MESMA-based green vegetation fraction in lieu of RG was validated against historical fire occurrence data. MESMA-based FPI performs at a comparable level to the traditional NDVI-based FPI, but can do so using a single MODIS image rather than an extensive remote sensing time series as required for the RG approach. Finally this dissertation explores the potential of integrating gridded wind speed data obtained from the MM5 mesoscale numerical weather model in the FPI. A new fire susceptibility index, the Wind-Adjusted Fire Potential Index (WAFPI), was introduced. It modifies the FPI algorithm by integrating normalized wind speed. Validating WAFPI against historical wildfire events using logistic regression indicates that gridded data sets of wind speed are a valuable addition to the FPI as they can significantly increase the probability range of the fitted model and can further increase the model's discriminatory power over that of the traditional FPI.

  4. Crop Surveillance Demonstration Using a Near-Daily MODIS Derived Vegetation Index Time Series

    NASA Technical Reports Server (NTRS)

    McKellip, Rodney; Ryan, Robert E.; Blonski, Slawomir; Prados, Don

    2005-01-01

    Effective response to crop disease outbreaks requires rapid identification and diagnosis of an event. A near-daily vegetation index product, such as a Normalized Difference Vegetation Index (NDVI), at moderate spatial resolution may serve as a good method for monitoring quick-acting diseases. NASA s Moderate Resolution Imaging Spectroradiometer (MODIS) instrument flown on the Terra and Aqua satellites has the temporal, spatial, and spectral properties to make it an excellent coarse-resolution data source for rapid, comprehensive surveillance of agricultural areas. A proof-of-concept wide area crop surveillance system using daily MODIS imagery was developed and tested on a set of San Joaquin cotton fields over a growing season. This area was chosen in part because excellent ground truth data were readily available. Preliminary results indicate that, at least in the southwestern part of the United States, near-daily NDVI products can be generated that show the natural variations in the crops as well as specific crop practices. Various filtering methods were evaluated and compared with standard MOD13 NDVI MODIS products. We observed that specific chemical applications that produce defoliation, which would have been missed using the standard 16-day product, were easily detectable with the filtered daily NDVI products.

  5. [Study on the relationship between Terra-MODIS image and the snail distribution in marshland of Jiangning county, Jiangsu province].

    PubMed

    Zhang, Bo; Zhang, Zhi-ying; Xu, De-zhong; Sun, Zhi-dong; Zhou, Xiao-nong; Gong, Zi-li; Liu, Shi-jun; Liu, Cheng; Xu, Bin; Zhou, Yun

    2003-04-01

    To analyze the relationship between the normalized difference vegetation index (NDVI) and the snail distribution in marshland of Jiangning county in Jiangsu province, and to explore the utility of Terra-MODIS image map in the small scale snail habitats surveillance. NDVI were extracted from MODIS image by vector chart of the snail distribution using ArcView 8.1 and ERDAS 8.5 software. The relationship between NDVI and the snail distribution were Investigated using Bivariate correlations and stepwise linear regression. The snail density on marshland was positively correlated with the mean NDVI in the first ten-day of May and the maximum NDVI (N(20max)) in the last ten-day of May. Incidence of pixel with the live snail on marshland was positively correlated with the mean NDVI (N(2mean)) in the first ten-day of May. An equation Y(1) = 0.009 47 x N(20max) (R(2) = 0.73), Y(2) = 0.018 6 x N(2mean) (R(2) = 0.906) was established. This study showed that the Terra-MODIS satellite images reflecting the status of the vegetation on marshland in Jiangning county could be applied to the study to supervise the snail habitat. The results suggested that MODIS images could be used to survey the small scale snail habitats on marshland.

  6. The Normalization of Surface Anisotropy Effects Present in SEVIRI Reflectances by Using the MODIS BRDF Method

    NASA Technical Reports Server (NTRS)

    Proud, Simon Richard; Zhang, Qingling; Schaaf, Crystal; Fensholt, Rasmus; Rasmussen, Mads Olander; Shisanya, Chris; Mutero, Wycliffe; Mbow, Cheikh; Anyamba, Assaf; Pak, Ed; hide

    2014-01-01

    A modified version of the MODerate resolution Imaging Spectroradiometer (MODIS) bidirectional reflectance distribution function (BRDF) algorithm is presented for use in the angular normalization of surface reflectance data gathered by the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) aboard the geostationary Meteosat Second Generation (MSG) satellites. We present early and provisional daily nadir BRDFadjusted reflectance (NBAR) data in the visible and near-infrared MSG channels. These utilize the high temporal resolution of MSG to produce BRDF retrievals with a greatly reduced acquisition period than the comparable MODIS products while, at the same time, removing many of the angular perturbations present within the original MSG data. The NBAR data are validated against reflectance data from the MODIS instrument and in situ data gathered at a field location in Africa throughout 2008. It is found that the MSG retrievals are stable and are of high-quality across much of the SEVIRI disk while maintaining a higher temporal resolution than the MODIS BRDF products. However, a number of circumstances are discovered whereby the BRDF model is unable to function correctly with the SEVIRI observations-primarily because of an insufficient spread of angular data due to the fixed sensor location or localized cloud contamination.

  7. Dynamics of Vegetatin Indices in Tropical and Subtropical Savannas Defined by Ecoregions and Moderate Resolution Imaging Spectoradiometer (MODIS) Land Cover

    NASA Technical Reports Server (NTRS)

    Hill, Michael J.; Roman, Miguel O.; Schaaf, Crytal B.

    2011-01-01

    In this study, we explored the capacity of vegetation indices derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) reflectance products to characterize global savannas in Australia, Africa and South America. The savannas were spatially defined and subdivided using the World Wildlife Fund (WWF) global ecoregions and MODIS land cover classes. Average annual profiles of Normalized Difference Vegetation Index, shortwave infrared ratio (SWIR32), White Sky Albedo (WSA) and the Structural Scattering Index (SSI) were created. Metrics derived from average annual profiles of vegetation indices were used to classify savanna ecoregions. The response spaces between vegetation indices were used to examine the potential to derive structural and fractional cover measures. The ecoregions showed distinct temporal profiles and formed groups with similar structural properties, including higher levels of woody vegetation, similar forest savanna mixtures and similar grassland predominance. The potential benefits from the use of combinations of indices to characterize savannas are discussed.

  8. An evaluation of time-series MODIS 250-meter vegetation index data for crop mapping in the United States Central Great Plains

    NASA Astrophysics Data System (ADS)

    Wardlow, Brian Douglas

    The objectives of this research were to: (1) investigate time-series MODIS (Moderate Resolution Imaging Spectroradiometer) 250-meter EVI (Enhanced Vegetation Index) and NDVI (Normalized Difference Vegetation Index) data for regional-scale crop-related land use/land cover characterization in the U.S. Central Great Plains and (2) develop and test a MODIS-based crop mapping protocol. A pixel-level analysis of the time-series MODIS 250-m VIs for 2,000+ field sites across Kansas found that unique spectral-temporal signatures were detected for the region's major crop types, consistent with the crops' phenology. Intra-class variations were detected in VI data associated with different land use practices, climatic conditions, and planting dates for the crops. The VIs depicted similar seasonal variations and were highly correlated. A pilot study in southwest Kansas found that accurate and detailed cropping patterns could be mapped using the MODIS 250-m VI data. Overall and class-specific accuracies were generally greater than 90% for mapping crop/non-crop, general crops (alfalfa, summer crops, winter wheat, and fallow), summer crops (corn, sorghum, and soybeans), and irrigated/non-irrigated crops using either VI dataset. The classified crop areas also had a high level of agreement (<5% difference) with the USDA reported crop areas. Both VIs produced comparable crop maps with only a 1-2% difference between their classification accuracies and a high level of pixel-level agreement (>90%) between their classified crop patterns. This hierarchical crop mapping protocol was tested for Kansas and produced similar classification results over a larger and more diverse area. Overall and class-specific accuracies were typically between 85% and 95% for the crop maps. At the state level, the maps had a high level of areal agreement (<5% difference) with the USDA crop area figures and their classified patterns were consistent with the state's cropping practices. In general, the protocol's performance was relatively consistent across the state's range of environmental conditions, landscape patterns, and cropping practices. The largest areal differences occurred in eastern Kansas due to the omission of many small cropland areas that were not resolvable at MODIS' 250-m resolution. Notable regional deviations in classified areas also occurred for selected classes due to localized precipitation patterns and specific cropping practices.

  9. The browning of Alaska's boreal forest

    Treesearch

    Mary Beth Parent; David Verbyla

    2010-01-01

    We used twelve Landsat scenes from the 1980s-2009 and regional 2000-2009 MODIS data to examine the long-term trend in the normalized difference vegetation index (NDVI) within unburned areas of the Alaskan boreal forest. Our analysis shows that there has been a declining trend in NDVI in this region, with the strongest "browning trend" occurring in eastern...

  10. Regional-scale assessment of soil salinity in the Red River Valley using multi-year MODIS EVI and NDVI.

    PubMed

    Lobell, D B; Lesch, S M; Corwin, D L; Ulmer, M G; Anderson, K A; Potts, D J; Doolittle, J A; Matos, M R; Baltes, M J

    2010-01-01

    The ability to inventory and map soil salinity at regional scales remains a significant challenge to scientists concerned with the salinization of agricultural soils throughout the world. Previous attempts to use satellite or aerial imagery to assess soil salinity have found limited success in part because of the inability of methods to isolate the effects of soil salinity on vegetative growth from other factors. This study evaluated the use of Moderate Resolution Imaging Spectroradiometer (MODIS) imagery in conjunction with directed soil sampling to assess and map soil salinity at a regional scale (i.e., 10-10(5) km(2)) in a parsimonious manner. Correlations with three soil salinity ground truth datasets differing in scale were made in Kittson County within the Red River Valley (RRV) of North Dakota and Minnesota, an area where soil salinity assessment is a top priority for the Natural Resource Conservation Service (NRCS). Multi-year MODIS imagery was used to mitigate the influence of temporally dynamic factors such as weather, pests, disease, and management influences. The average of the MODIS enhanced vegetation index (EVI) for a 7-yr period exhibited a strong relationship with soil salinity in all three datasets, and outperformed the normalized difference vegetation index (NDVI). One-third to one-half of the spatial variability in soil salinity could be captured by measuring average MODIS EVI and whether the land qualified for the Conservation Reserve Program (a USDA program that sets aside marginally productive land based on conservation principles). The approach has the practical simplicity to allow broad application in areas where limited resources are available for salinity assessment.

  11. Spatial Downscaling of TRMM Precipitation using MODIS product in the Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Cho, H.; Choi, M.

    2013-12-01

    Precipitation is a major driving force in the water cycle. But, it is difficult to provide spatially distributed precipitation data from isolated individual in situ. The Tropical Rainfall Monitoring Mission (TRMM) satellite can provide precipitation data with relatively coarse spatial resolution (0.25° scale) at daily basis. In order to overcome the coarse spatial resolution of TRMM precipitation products, we conducted a downscaling technique using a scaling parameter from the Moderate Resolution Imaging Spectroradiometers (MODIS) sensor. In this study, statistical relations between precipitation estimates derived from the TRMM satellite and the normalized difference vegetation index (NDVI) which is obtained from the MODIS sensor in TERRA satellite are found for different spatial scales on the Korean peninsula in northeast Asia. We obtain the downscaled precipitation mapping by regression equation between yearly TRMM precipitations values and annual average NDVI aggregating 1km to 25 degree. The downscaled precipitation is validated using time series of the ground measurements precipitation dataset provided by Korea Meteorological Organization (KMO) from 2002 to 2005. To improve the spatial downscaling of precipitation, we will conduct a study about correlation between precipitation and land surface temperature, perceptible water and other hydrological parameters.

  12. Quantification of Local Warming Trend: A Remote Sensing-Based Approach

    PubMed Central

    Rahaman, Khan Rubayet; Hassan, Quazi K.

    2017-01-01

    Understanding the warming trends at local level is critical; and, the development of relevant adaptation and mitigation policies at those levels are quite challenging. Here, our overall goal was to generate local warming trend map at 1 km spatial resolution by using: (i) Moderate Resolution Imaging Spectroradiometer (MODIS)-based 8-day composite surface temperature data; (ii) weather station-based yearly average air temperature data; and (iii) air temperature normal (i.e., 30 year average) data over the Canadian province of Alberta during the period 1961–2010. Thus, we analysed the station-based air temperature data in generating relationships between air temperature normal and yearly average air temperature in order to facilitate the selection of year-specific MODIS-based surface temperature data. These MODIS data in conjunction with weather station-based air temperature normal data were then used to model local warming trends. We observed that almost 88% areas of the province experienced warming trends (i.e., up to 1.5°C). The study concluded that remote sensing technology could be useful for delineating generic trends associated with local warming. PMID:28072857

  13. Geospatiotemporal Data Mining of Remotely Sensed Phenology for Unsupervised Forest Threat Detection

    NASA Astrophysics Data System (ADS)

    Mills, R. T.; Hoffman, F. M.; Kumar, J.; Vulli, S. S.; Hargrove, W. W.; Spruce, J.

    2010-12-01

    Hargrove and Hoffman have previously developed and applied a scalable geospatiotemporal data mining approach to define a set of categorical, multivariate classes or states for describing and tracking the behavior of ecosystem properties through time within a multi-dimensional phase or state space. The method employs a standard k-means cluster analysis with enhancements that reduce the number of required comparisons, dramatically accelerating iterative convergence. In support of efforts by the USDA Forest Service to develop a National Early Warning System for Forest Disturbances, we have applied this geospatiotemporal cluster analysis procedure to annual phenology patterns derived from Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) for unsupervised change detection. We will present initial results from the analysis of seven years of 250-m MODIS NDVI data for the conterminous United States. While determining what constitutes a "normal" phenological pattern for any given location is challenging due to interannual climate variability, a spatially varying climate change trend, and the relatively short record of MODIS NDVI observations, these results demonstrate the utility of the method for detecting significant mortality events, like the progressive damage from mountain pine beetle, and suggest that the technique may be successfully implemented as a key component in an early warning system for identifying forest threats from natural and anthropogenic disturbances at a continental scale.

  14. Assessment of Consistencies and Uncertainties between the NASA MODIS and VIIRS Snow-Cover Maps

    NASA Astrophysics Data System (ADS)

    Hall, D. K.; Riggs, G. A., Jr.; DiGirolamo, N. E.; Roman, M. O.

    2017-12-01

    Snow cover has great climatic and economic importance in part due to its high albedo and low thermal conductivity and large areal extent in the Northern Hemisphere winter, and its role as a freshwater source for about one-sixth of the world's population. The Rutgers University Global Snow Lab's 50-year climate-data record (CDR) of Northern Hemisphere snow cover is invaluable for climate studies, but, at 25-km resolution, the spatial resolution is too coarse to provide accurate snow information at the basin scale. Since 2000, global snow-cover maps have been produced from the MODerate-resolution Imaging Spectroradiometer (MODIS) on the Terra and Aqua satellites at 500-m resolution, and from the Suomi-National Polar Program (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) since 2011 at 375-m resolution. Development of a moderate-resolution (375 - 500 m) earth system data record (ESDR) that utilizes both MODIS and VIIRS snow maps is underway. There is a 6-year overlap between the data records. In late 2017 the second in a series of VIIRS sensors will be launched on the Joint Polar Satellite System-1 (JPSS-1), with the JPSS-2 satellite scheduled for launch in 2021, providing the potential to extend NASA's snow-cover ESDR for decades into the future and to create a CDR. Therefore it is important to investigate the continuity between the MODIS and VIIRS NASA snow-cover data products and evaluate whether there are any inconsistencies and biases that would affect their value as CDR. Time series of daily normalized-difference snow index (NDSI) Terra and Aqua MODIS Collection 6 (C6) and NASA VIIRS Collection 1 (C1) snow-cover tile maps (MOD10A1 and VNP10A1) are studied for North America to identify NDSI differences and possible biases between the datasets. Developing a CDR using the MODIS and VIIRS records is challenging. Though the instruments and orbits are similar, differences in bands, viewing geometry, spatial resolution, and cloud- and snow-mapping algorithms affect snow detection.

  15. Investigation the Behavior of Modis Ocean Color Products Under the 2008 Red Tide in the Eastern Persian Gulf

    NASA Astrophysics Data System (ADS)

    Ghanea, M.; Moradi, M.; Kabiri, K.

    2015-12-01

    Biophysical properties of water undergo serious variations under red tide (RT) outbreak. During RT conditions, algal blooms spread out in the estuarine, marine and fresh waters due to different triggering factors such as nutrient loading, marine currents, and monsoonal winds. The Persian Gulf (PG) was a talent region subjected to different RTs in recent decade. A massive RT started from the Strait of Hormuz in October 2008 and extended towards the northern parts of the PG covering more than 1200 km of coastlines. The bloom of microorganism C. Polykrikoides was the main specie that generated large fish mortalities, and hampered marine industries, and water desalination appliances. Ocean color satellite data have many advantages to monitor and alarm RT occurrences, such as wide and continuous extent, short time of imagery, high accessibility, and appropriate estimation of ocean color parameters. Since 1999, MODerate Resolution Imaging Spectroradiometer (MODIS) satellite sensor has estimated satellite derived chlorophyll-a (Chl-a), normalized fluorescence line height (nFLH), and diffuse attenuation coefficient at 490nm (kd490). It provides a capability to study the behavior of these parameters during RT and normal conditions. This study monitors variations in satellite derived Chl-a, nFLH, and kd490 under both RT and normal conditions of the PG between 2002 and 2008. Up to now, daily and monthly variations in these products were no synchronously investigated under RT conditions in the PG. In doing so, the MODIS L1B products were provided from NASA data archive. They were corrected for Rayleigh scattering and gaseous absorption, and atmospheric interference in turbid coastal waters, and then converted to level 2 data. In addition, Enhanced Red Green Blue (ERGB) image was used to illustrate better water variations. ERGB image was built with three normalized leaving water radiance between 443 to 560nm. All the above data processes were applied by SeaDAS 7 software package. The Strait of Hormuz was selected as the study area in the eastern part of the PG. Images including high cloud coverage (>50%) over the study area were filtered out. The classification maps of the above products were shown during RT and normal periods. Monthly variations of mentioned products were calculated for the dates before, during, and after RT appearance. The results were demonstrated as time-series diagrams. All the above calculations and presentations were performed in Matlab 7 software package. The results show that MODIS Chl-a, nFLH, and kd490 increased during the 2008 RT. Based on the feedback of these parameters under RT conditions, hybrid ocean color index (HOCI) is defined. HOCI is able to display better water variations during RT outbreak. High values of HOCI show RT affected areas.

  16. Scientific impact of MODIS C5 calibration degradation and C6+ improvements

    NASA Astrophysics Data System (ADS)

    Lyapustin, A.; Wang, Y.; Xiong, X.; Meister, G.; Platnick, S.; Levy, R.; Franz, B.; Korkin, S.; Hilker, T.; Tucker, J.; Hall, F.; Sellers, P.; Wu, A.; Angal, A.

    2014-12-01

    The Collection 6 (C6) MODIS (Moderate Resolution Imaging Spectroradiometer) land and atmosphere data sets are scheduled for release in 2014. C6 contains significant revisions of the calibration approach to account for sensor aging. This analysis documents the presence of systematic temporal trends in the visible and near-infrared (500 m) bands of the Collection 5 (C5) MODIS Terra and, to lesser extent, in MODIS Aqua geophysical data sets. Sensor degradation is largest in the blue band (B3) of the MODIS sensor on Terra and decreases with wavelength. Calibration degradation causes negative global trends in multiple MODIS C5 products including the dark target algorithm's aerosol optical depth over land and Ångström exponent over the ocean, global liquid water and ice cloud optical thickness, as well as surface reflectance and vegetation indices, including the normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI). As the C5 production will be maintained for another year in parallel with C6, one objective of this paper is to raise awareness of the calibration-related trends for the broad MODIS user community. The new C6 calibration approach removes major calibrations trends in the Level 1B (L1B) data. This paper also introduces an enhanced C6+ calibration of the MODIS data set which includes an additional polarization correction (PC) to compensate for the increased polarization sensitivity of MODIS Terra since about 2007, as well as detrending and Terra-Aqua cross-calibration over quasi-stable desert calibration sites. The PC algorithm, developed by the MODIS ocean biology processing group (OBPG), removes residual scan angle, mirror side and seasonal biases from aerosol and surface reflectance (SR) records along with spectral distortions of SR. Using the multiangle implementation of atmospheric correction (MAIAC) algorithm over deserts, we have also developed a detrending and cross-calibration method which removes residual decadal trends on the order of several tenths of 1% of the top-of-atmosphere (TOA) reflectance in the visible and near-infrared MODIS bands B1-B4, and provides a good consistency between the two MODIS sensors. MAIAC analysis over the southern USA shows that the C6+ approach removed an additional negative decadal trend of Terra ΔNDVI ~ 0.01 as compared to Aqua data. This change is particularly important for analysis of vegetation dynamics and trends in the tropics, e.g., Amazon rainforest, where the morning orbit of Terra provides considerably more cloud-free observations compared to the afternoon Aqua measurements.

  17. Scientific Impact of MODIS C5 Calibration Degradation and C6+ Improvements

    NASA Technical Reports Server (NTRS)

    Lyapustin, A.; Wang, Y.; Xiong, X.; Meister, G.; Platnick, S.; Levy, R.; Franz, B.; Korkin, S.; Hilker, T.; Tucker, J.; hide

    2014-01-01

    The Collection 6 (C6) MODIS (Moderate Resolution Imaging Spectroradiometer) land and atmosphere data sets are scheduled for release in 2014. C6 contains significant revisions of the calibration approach to account for sensor aging. This analysis documents the presence of systematic temporal trends in the visible and near-infrared (500 m) bands of the Collection 5 (C5) MODIS Terra and, to lesser extent, in MODIS Aqua geophysical data sets. Sensor degradation is largest in the blue band (B3) of the MODIS sensor on Terra and decreases with wavelength. Calibration degradation causes negative global trends in multiple MODIS C5 products including the dark target algorithm's aerosol optical depth over land and Ångstrom exponent over the ocean, global liquid water and ice cloud optical thickness, as well as surface reflectance and vegetation indices, including the normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI). As the C5 production will be maintained for another year in parallel with C6, one objective of this paper is to raise awareness of the calibration-related trends for the broad MODIS user community. The new C6 calibration approach removes major calibrations trends in the Level 1B (L1B) data. This paper also introduces an enhanced C6C calibration of the MODIS data set which includes an additional polarization correction (PC) to compensate for the increased polarization sensitivity of MODIS Terra since about 2007, as well as detrending and Terra- Aqua cross-calibration over quasi-stable desert calibration sites. The PC algorithm, developed by the MODIS ocean biology processing group (OBPG), removes residual scan angle, mirror side and seasonal biases from aerosol and surface reflectance (SR) records along with spectral distortions of SR. Using the multiangle implementation of atmospheric correction (MAIAC) algorithm over deserts, we have also developed a detrending and cross-calibration method which removes residual decadal trends on the order of several tenths of 1% of the top-of-atmosphere (TOA) reflectance in the visible and near-infrared MODIS bands B1-B4, and provides a good consistency between the two MODIS sensors. MAIAC analysis over the southern USA shows that the C6C approach removed an additional negative decadal trend of Terra (Delta)NDVI approx.0.01 as compared to Aqua data. This change is particularly important for analysis of vegetation dynamics and trends in the tropics, e.g., Amazon rainforest, where the morning orbit of Terra provides considerably more cloud-free observations compared to the afternoon Aqua measurements.

  18. Spring and autumn phenological variability across environmental gradients of Great Smoky Mountains National Park, USA

    Treesearch

    Steven P. Norman; William W. Hargrove; William M. Christie

    2017-01-01

    Mountainous regions experience complex phenological behavior along climatic, vegetational and topographic gradients. In this paper, we use a MODIS time series of the Normalized Difference Vegetation Index (NDVI) to understand the causes of variations in spring and autumn timing from 2000 to 2015, for a landscape renowned for its biological diversity. By filtering for...

  19. Geospatiotemporal data mining in an early warning system for forest threats in the United States

    Treesearch

    F.M. Hoffman; R.T. Mills; J. Kumar; S.S. Vulli; W.W. Hargrove

    2010-01-01

    We investigate the potential of geospatiotemporal data mining of multi-year land surface phenology data (250 m Normalized Difference Vegetation Index (NDVI) values derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) in this study) for the conterminous United States as part of an early warning system to identify threats to forest ecosystems. Cluster...

  20. Cluster Analysis-Based Approaches for Geospatiotemporal Data Mining of Massive Data Sets for Identification of Forest Threats

    Treesearch

    Richard Trans Mills; Forrest M Hoffman; Jitendra Kumar; William W. Hargrove

    2011-01-01

    We investigate methods for geospatiotemporal data mining of multi-year land surface phenology data (250 m2 Normalized Difference Vegetation Index (NDVI) values derived from the Moderate Resolution Imaging Spectrometer (MODIS) in this study) for the conterminous United States (CONUS) as part of an early warning system for detecting threats to forest ecosystems. The...

  1. Evaluating the species energy relationship with the newest measures of ecosystem energy: NDVI versus MODIS primary production

    Treesearch

    Linda B. Phillips; Andrew J. Hansen; Curtis H. Flather

    2008-01-01

    Ecosystem energy has been shown to be a strong correlate with biological diversity at continental scales. Early efforts to characterize this association used the normalized difference vegetation index (NDVI) to represent ecosystem energy. While this spectral vegetation index covaries with measures of ecosystem energy such as net primary production, the covariation is...

  2. MODIS normalized difference vegetation index (NDVI) and vegetation phenology dynamics in the Inner Mongolia grassland

    NASA Astrophysics Data System (ADS)

    Gong, Z.; Kawamura, K.; Ishikawa, N.; Goto, M.; Wulan, T.; Alateng, D.; Yin, T.; Ito, Y.

    2015-11-01

    The Inner Mongolia grassland, one of the most important grazing regions in China, has long been threatened by land degradation and desertification, mainly due to overgrazing. To understand vegetation responses over the last decade, this study evaluated trends in vegetation cover and phenology dynamics in the Inner Mongolia grassland by applying a normalized difference vegetation index (NDVI) time series obtained by the Terra Moderate Resolution Imaging Spectroradiometer (MODIS) during 2002-2014. The results showed that the cumulative annual NDVI increased to over 77.10 % in the permanent grassland region (2002-2014). The mean value of the total change showed that the start of season (SOS) date and the peak vegetation productivity date of the season (POS) had advanced by 5.79 and 2.43 days, respectively. The end of season (EOS) was delayed by 5.07 days. These changes lengthened the season by 10.86 days. Our results also confirmed that grassland changes are closely related to spring precipitation and increasing temperature at the early growing period because of global warming. Overall, productivity in the Inner Mongolia Autonomous Region tends to increase, but in some grassland areas with grazing, land degradation is ongoing.

  3. Evaluation of the relation between evapotranspiration and normalized difference vegetation index for downscaling the simplified surface energy balance model

    USGS Publications Warehouse

    Haynes, Jonathan V.; Senay, Gabriel B.

    2012-01-01

    The Simplified Surface Energy Balance (SSEB) model uses satellite imagery to estimate actual evapotranspiration (ETa) at 1-kilometer resolution. SSEB ETa is useful for estimating irrigation water use; however, resolution limitations restrict its use to regional scale applications. The U.S. Geological Survey investigated the downscaling potential of SSEB ETa from 1 kilometer to 250 meters by correlating ETa with the Normalized Difference Vegetation Index (NDVI) from the Moderate Resolution Imaging Spectroradiometer instrument (MODIS). Correlations were studied in three arid to semiarid irrigated landscapes of the Western United States (Escalante Valley near Enterprise, Utah; Palo Verde Valley near Blythe, California; and part of the Columbia Plateau near Quincy, Washington) during several periods from 2002 to 2008. Irrigation season ETa-NDVI correlations were lower than expected, ranging from R2 of 0.20 to 0.61 because of an eastward 2–3 kilometer shift in ETadata. The shift is due to a similar shift identified in the land-surface temperature (LST) data from the MODIS Terra satellite, which is used in the SSEB model. Further study is needed to delineate the Terra LST shift, its effect on SSEB ETa, and the relation between ETa and NDVI.

  4. Overview of NASA's MODIS and Visible Infrared Imaging Radiometer Suite (VIIRS) snow-cover Earth System Data Records

    NASA Astrophysics Data System (ADS)

    Riggs, George A.; Hall, Dorothy K.; Román, Miguel O.

    2017-10-01

    Knowledge of the distribution, extent, duration and timing of snowmelt is critical for characterizing the Earth's climate system and its changes. As a result, snow cover is one of the Global Climate Observing System (GCOS) essential climate variables (ECVs). Consistent, long-term datasets of snow cover are needed to study interannual variability and snow climatology. The NASA snow-cover datasets generated from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra and Aqua spacecraft and the Suomi National Polar-orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) are NASA Earth System Data Records (ESDR). The objective of the snow-cover detection algorithms is to optimize the accuracy of mapping snow-cover extent (SCE) and to minimize snow-cover detection errors of omission and commission using automated, globally applied algorithms to produce SCE data products. Advancements in snow-cover mapping have been made with each of the four major reprocessings of the MODIS data record, which extends from 2000 to the present. MODIS Collection 6 (C6; https://nsidc.org/data/modis/data_summaries) and VIIRS Collection 1 (C1; https://doi.org/10.5067/VIIRS/VNP10.001) represent the state-of-the-art global snow-cover mapping algorithms and products for NASA Earth science. There were many revisions made in the C6 algorithms which improved snow-cover detection accuracy and information content of the data products. These improvements have also been incorporated into the NASA VIIRS snow-cover algorithms for C1. Both information content and usability were improved by including the Normalized Snow Difference Index (NDSI) and a quality assurance (QA) data array of algorithm processing flags in the data product, along with the SCE map. The increased data content allows flexibility in using the datasets for specific regions and end-user applications. Though there are important differences between the MODIS and VIIRS instruments (e.g., the VIIRS 375 m native resolution compared to MODIS 500 m), the snow detection algorithms and data products are designed to be as similar as possible so that the 16+ year MODIS ESDR of global SCE can be extended into the future with the S-NPP VIIRS snow products and with products from future Joint Polar Satellite System (JPSS) platforms. These NASA datasets are archived and accessible through the NASA Distributed Active Archive Center at the National Snow and Ice Data Center in Boulder, Colorado.

  5. Developing a 30-m grassland productivity estimation map for central Nebraska using 250-m MODIS and 30-m Landsat-8 observations

    USGS Publications Warehouse

    Gu, Yingxin; Wylie, Bruce K.

    2015-01-01

    Accurately estimating aboveground vegetation biomass productivity is essential for local ecosystem assessment and best land management practice. Satellite-derived growing season time-integrated Normalized Difference Vegetation Index (GSN) has been used as a proxy for vegetation biomass productivity. A 250-m grassland biomass productivity map for the Greater Platte River Basin had been developed based on the relationship between Moderate Resolution Imaging Spectroradiometer (MODIS) GSN and Soil Survey Geographic (SSURGO) annual grassland productivity. However, the 250-m MODIS grassland biomass productivity map does not capture detailed ecological features (or patterns) and may result in only generalized estimation of the regional total productivity. Developing a high or moderate spatial resolution (e.g., 30-m) productivity map to better understand the regional detailed vegetation condition and ecosystem services is preferred. The 30-m Landsat data provide spatial detail for characterizing human-scale processes and have been successfully used for land cover and land change studies. The main goal of this study is to develop a 30-m grassland biomass productivity estimation map for central Nebraska, leveraging 250-m MODIS GSN and 30-m Landsat data. A rule-based piecewise regression GSN model based on MODIS and Landsat (r = 0.91) was developed, and a 30-m MODIS equivalent GSN map was generated. Finally, a 30-m grassland biomass productivity estimation map, which provides spatially detailed ecological features and conditions for central Nebraska, was produced. The resulting 30-m grassland productivity map was generally supported by the SSURGO biomass production map and will be useful for regional ecosystem study and local land management practices.

  6. MODIS comparisons with northeastern Pacific in situ stratocumulus microphysics

    NASA Astrophysics Data System (ADS)

    Noble, Stephen R.; Hudson, James G.

    2015-08-01

    Vertical sounding measurements within stratocumuli during two aircraft field campaigns, Marine Stratus/stratocumulus Experiment (MASE) and Physics of Stratocumulus Top (POST), are used to validate Moderate Resolution Imaging Spectroradiometer (MODIS) cloud optical thickness (COT), cloud liquid water path (LWP), and cloud effective radius (re). In situ COT, LWP, and re were calculated using 5 m vertically averaged droplet probe measurements of complete vertical cloud penetrations. MODIS COT, LWP, and re 1 km pixels were averaged along these penetrations. COT comparisons in POST showed strong correlations and a near 1:1 relationship. In MASE, comparisons showed strong correlations; however, MODIS COT exceeded in situ COT, likely due to larger temporal differences between MODIS and in situ measurements. LWP comparisons between two cloud probes show good agreement for POST but not MASE, giving confidence to POST data. Both projects provided strong LWP correlations but MODIS exceeded in situ by 14-36%. MODIS in situ re correlations were strong, but MODIS 2.1 µm re exceeded in situ re, which contributed to LWP bias; in POST, MODIS re was 20-30% greater than in situ re. Maximum in situ re near cloud top showed comparisons nearer 1:1. Other MODIS re bands (3.7 µm and 1.6 µm) showed similar comparisons. Temporal differences between MODIS and in situ measurements, airplane speed differences, and cloud probe artifacts were likely causes of weaker MASE correlations. POST COT comparison was best for temporal differences under 20 min. POST data validate MODIS COT but it also implies a positive MODIS re bias that propagates to LWP while still capturing variability.

  7. A Five-Year Analysis of MODIS NDVI and NDWI for Rangeland Drought Assessment: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Gu, Y.; Brown, J. F.; Verdin, J. P.; Wardlow, B.

    2006-12-01

    Drought is one of the most costly natural disasters in the United States. Traditionally, drought monitoring has been based on weather station observations, which lack the continuous spatial coverage needed to adequately characterize and monitor detailed spatial patterns of drought conditions. Satellite remote sensing observations can provide a synoptic view of the land and provide a spatial context for measuring drought. A common satellite-based index, the normalized difference vegetation index (NDVI) has a 30-year history of use for vegetation condition monitoring. NDVI is calculated from the visible red and near infrared channels and measures the changes in chlorophyll absorption and reflection in the spongy mesophyll of the vegetation canopy that are reflected in these respective bands. The normalized difference water index (NDWI) is another index, derived from the near-infrared and short wave infrared channels, and reflects changes in both the water content and spongy mesophyll in the vegetation canopy. As a result, the NDWI is influenced by both desiccation and wilting in the vegetation canopy and may be a more sensitive indicator than the NDVI for large- area drought monitoring. The objective of this study was to process and evaluate a 5-year history of 500-meter NDVI and NDWI data derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument and to investigate methods for measuring and monitoring drought in rangeland over the southern plains of the United States. This initial study included: (1) the development of a climatological database for MODIS NDVI and NDWI, (2) a study of the relationship between the NDVI, NDWI, and drought condition over rangeland, (3) the development of a method to provide threshold NDVI/NDWI values under drought conditions based on the 5-year NDVI/NDWI/drought condition analysis, and (4) the investigation of additional vegetation drought information provided by the NDWI versus the NDVI in a 5-year comparison of the two indices. The MODIS data were obtained from the Land Processes Distributed Active Archive System. Results show strong relationships among NDVI, NDWI, and drought analyzed over grasslands in the Flint Hills region of Kansas and Oklahoma. During the summer months, the average NDVI and NDWI values were consistently lower (NDVI<0.5 and NDWI<0.3) for the tallgrass prairie under drought conditions than under normal climate conditions (NDVI>0.6 and NDWI>0.4). The distinctions between drought conditions and normal climate conditions are based on the historic U.S. Drought Monitor maps and the historic Palmer index data. To take advantage of information contained in both indices, we calculated the difference between NDVI and NDWI (NDVI-NDWI). The difference between NDVI and NDWI slightly increases during the summer drought condition. Based on these analyses, the NDWI appears to be more sensitive than NDVI to drought conditions. The results of statistical analysis of the relationships among these indices will be presented in the poster.

  8. MODIS comparisons with northeastern Pacific in situ stratocumulus microphysics

    PubMed Central

    Noble, Stephen R.

    2015-01-01

    Abstract Vertical sounding measurements within stratocumuli during two aircraft field campaigns, Marine Stratus/stratocumulus Experiment (MASE) and Physics of Stratocumulus Top (POST), are used to validate Moderate Resolution Imaging Spectroradiometer (MODIS) cloud optical thickness (COT), cloud liquid water path (LWP), and cloud effective radius (r e). In situ COT, LWP, and r e were calculated using 5 m vertically averaged droplet probe measurements of complete vertical cloud penetrations. MODIS COT, LWP, and r e 1 km pixels were averaged along these penetrations. COT comparisons in POST showed strong correlations and a near 1:1 relationship. In MASE, comparisons showed strong correlations; however, MODIS COT exceeded in situ COT, likely due to larger temporal differences between MODIS and in situ measurements. LWP comparisons between two cloud probes show good agreement for POST but not MASE, giving confidence to POST data. Both projects provided strong LWP correlations but MODIS exceeded in situ by 14–36%. MODIS in situ r e correlations were strong, but MODIS 2.1 µm r e exceeded in situ r e, which contributed to LWP bias; in POST, MODIS r e was 20–30% greater than in situ r e. Maximum in situ r e near cloud top showed comparisons nearer 1:1. Other MODIS r e bands (3.7 µm and 1.6 µm) showed similar comparisons. Temporal differences between MODIS and in situ measurements, airplane speed differences, and cloud probe artifacts were likely causes of weaker MASE correlations. POST COT comparison was best for temporal differences under 20 min. POST data validate MODIS COT but it also implies a positive MODIS r e bias that propagates to LWP while still capturing variability. PMID:27708990

  9. MODIS comparisons with northeastern Pacific in situ stratocumulus microphysics

    DOE PAGES

    Noble, Stephen R.; Hudson, James G.

    2015-07-22

    Here, vertical sounding measurements within stratocumuli during two aircraft field campaigns, Marine Stratus/stratocumulus Experiment (MASE) and Physics of Stratocumulus Top (POST), are used to validate Moderate Resolution Imaging Spectroradiometer (MODIS) cloud optical thickness (COT), cloud liquid water path (LWP), and cloud effective radius (r e). In situ COT, LWP, and r e were calculated using 5 m vertically averaged droplet probe measurements of complete vertical cloud penetrations. MODIS COT, LWP, and r e 1 km pixels were averaged along these penetrations. COT comparisons in POST showed strong correlations and a near 1:1 relationship. In MASE, comparisons showed strong correlations; however,more » MODIS COT exceeded in situ COT, likely due to larger temporal differences between MODIS and in situ measurements. LWP comparisons between two cloud probes show good agreement for POST but not MASE, giving confidence to POST data. Both projects provided strong LWP correlations but MODIS exceeded in situ by 14–36%. MODIS in situ r e correlations were strong, but MODIS 2.1 µm r e exceeded in situ r e, which contributed to LWP bias; in POST, MODIS r e was 20–30% greater than in situ r e. Maximum in situ r e near cloud top showed comparisons nearer 1:1. Other MODIS r e bands (3.7 µm and 1.6 µm) showed similar comparisons. Temporal differences between MODIS and in situ measurements, airplane speed differences, and cloud probe artifacts were likely causes of weaker MASE correlations. POST COT comparison was best for temporal differences under 20 min. POST data validate MODIS COT but it also implies a positive MODIS r e bias that propagates to LWP while still capturing variability.« less

  10. A dizygotic twin pregnancy in a MODY 3-affected woman.

    PubMed

    Bitterman, O; Iafusco, D; Torcia, F; Tinto, N; Napoli, A

    2016-10-01

    MODY diabetes includes rare familiar forms due to genetic mutations resulting in β-cell dysfunction. MODY 3 is due to mutations in the gene transcription factor HNF-1α, with diabetes diagnosis in adolescence or early adult life. Few data are available about MODY 3 in pregnancy. A 36-year-old Italian woman came to our unit at the 5th week of pregnancy. She was diagnosed with diabetes at 18 years, with negative autoimmunity and a strong familiarity for diabetes. She was treated with gliclazide and metformin. She had a previous pregnancy in which she was treated with insulin, giving birth at 38 weeks to a 3.210 kg baby girl, who showed neonatal hypoglycemia. We switched her to insulin treatment according to guidelines. We asked for genetic molecular testing, resulting in a HNF-1α gene mutation. A US examination at 7 weeks revealed a twin, bicorial, biamniotic pregnancy. At 37 weeks of gestation, she gave birth to two normal-weight baby girls; only one showed neonatal hypoglycemia and a genetic test revealed that she was affected by HNF-1α gene mutation. Subsequently, entire family of the woman was tested, showing that the father, the sister and the first daughter had the same HNF-1α mutation. A MODY 3 foetus needs a near-normal maternal glycemic control, because the exposure to intrauterine hyperglycemia can lead to an earlier age of diabetes onset. Neonatal hypoglycemia is generally observed in MODY 1 infants, but it is possible to hypothesize that some HNF-1α mutations could lead to a functionally impaired protein that might dysregulate HNF-4α expression determining hypoglycemia.

  11. An efficient approach for pixel decomposition to increase the spatial resolution of land surface temperature images from MODIS thermal infrared band data.

    PubMed

    Wang, Fei; Qin, Zhihao; Li, Wenjuan; Song, Caiying; Karnieli, Arnon; Zhao, Shuhe

    2014-12-25

    Land surface temperature (LST) images retrieved from the thermal infrared (TIR) band data of Moderate Resolution Imaging Spectroradiometer (MODIS) have much lower spatial resolution than the MODIS visible and near-infrared (VNIR) band data. The coarse pixel scale of MODIS LST images (1000 m under nadir) have limited their capability in applying to many studies required high spatial resolution in comparison of the MODIS VNIR band data with pixel scale of 250-500 m. In this paper we intend to develop an efficient approach for pixel decomposition to increase the spatial resolution of MODIS LST image using the VNIR band data as assistance. The unique feature of this approach is to maintain the thermal radiance of parent pixels in the MODIS LST image unchanged after they are decomposed into the sub-pixels in the resulted image. There are two important steps in the decomposition: initial temperature estimation and final temperature determination. Therefore the approach can be termed double-step pixel decomposition (DSPD). Both steps involve a series of procedures to achieve the final result of decomposed LST image, including classification of the surface patterns, establishment of LST change with normalized difference of vegetation index (NDVI) and building index (NDBI), reversion of LST into thermal radiance through Planck equation, and computation of weights for the sub-pixels of the resulted image. Since the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) with much higher spatial resolution than MODIS data was on-board the same platform (Terra) as MODIS for Earth observation, an experiment had been done in the study to validate the accuracy and efficiency of our approach for pixel decomposition. The ASTER LST image was used as the reference to compare with the decomposed LST image. The result showed that the spatial distribution of the decomposed LST image was very similar to that of the ASTER LST image with a root mean square error (RMSE) of 2.7 K for entire image. Comparison with the evaluation DisTrad (E-DisTrad) and re-sampling methods for pixel decomposition also indicate that our DSPD has the lowest RMSE in all cases, including urban region, water bodies, and natural terrain. The obvious increase in spatial resolution remarkably uplifts the capability of the coarse MODIS LST images in highlighting the details of LST variation. Therefore it can be concluded that, in spite of complicated procedures, the proposed DSPD approach provides an alternative to improve the spatial resolution of MODIS LST image hence expand its applicability to the real world.

  12. Monitoring Invasive Aquatic Vegetation in Lake Okeechobee, Florida, using NDVI Derived from MODIS Data

    NASA Astrophysics Data System (ADS)

    Woods, K. A.; Brozen, M.; Pelkie, A.; Malik, S.

    2009-12-01

    Lake Okeechobee is the second largest freshwater lake located entirely within the continental United States. The lake encompasses approximately 1,700 km2 in South Florida and is a vital part of the Lake Okeechobee and Everglades ecosystems. Lake Okeechobee has been plagued by invasive aquatic floating vegetation and in-water blooms of blue-green algae (cyanobacteria). Major cyanobacterial blooms have been documented in Lake Okeechobee since the 1970s and have continued to plague the ecosystem. Similarly, invasive hydrilla, water hyacinth, and water lettuce frequently overgrow in the lake and threaten the ecosystem. This study examines invasive aquatic vegetation occurrence through the use of the Normalized Difference Vegetation Index calculated on Moderate Resolution Imaging Spectroradiometer (MODIS) MOD09 surface reflectance imagery. Occurrence during 2008 was analyzed using the Time Series Product Tool developed at John C. Stennis Space Center. This project tracked spatial and temporal variability of cyanobacterial blooms and overgrowth of water lettuce, water hyacinth, and hydrilla. In addition, this study presents an application of MODIS data to assist in water quality management.

  13. Monitoring Start of Season in Alaska

    NASA Astrophysics Data System (ADS)

    Robin, J.; Dubayah, R.; Sparrow, E.; Levine, E.

    2006-12-01

    In biomes that have distinct winter seasons, start of spring phenological events, specifically timing of budburst and green-up of leaves, coincides with transpiration. Seasons leave annual signatures that reflect the dynamic nature of the hydrologic cycle and link the different spheres of the Earth system. This paper evaluates whether continuity between AVHRR and MODIS normalized difference vegetation index (NDVI) is achievable for monitoring land surface phenology, specifically start of season (SOS), in Alaska. Additionally, two thresholds, one based on NDVI and the other on accumulated growing degree-days (GDD), are compared to determine which most accurately predicts SOS for Fairbanks. Ratio of maximum greenness at SOS was computed from biweekly AVHRR and MODIS composites for 2001 through 2004 for Anchorage and Fairbanks regions. SOS dates were determined from annual green-up observations made by GLOBE students. Results showed that different processing as well as spectral characteristics of each sensor restrict continuity between the two datasets. MODIS values were consistently higher and had less inter-annual variability during the height of the growing season than corresponding AVHRR values. Furthermore, a threshold of 131-175 accumulated GDD was a better predictor of SOS for Fairbanks than a NDVI threshold applied to AVHRR and MODIS datasets. The NDVI threshold was developed from biweekly AVHRR composites from 1982 through 2004 and corresponding annual green-up observations at University of Alaska-Fairbanks (UAF). The GDD threshold was developed from 20+ years of historic daily mean air temperature data and the same green-up observations. SOS dates computed with the GDD threshold most closely resembled actual green-up dates observed by GLOBE students and UAF researchers. Overall, biweekly composites and effects of clouds, snow, and conifers limit the ability of NDVI to monitor phenological changes in Alaska.

  14. Evaluation of directional normalization methods for Landsat TM/ETM+ over primary Amazonian lowland forests

    NASA Astrophysics Data System (ADS)

    Van doninck, Jasper; Tuomisto, Hanna

    2017-06-01

    Biodiversity mapping in extensive tropical forest areas poses a major challenge for the interpretation of Landsat images, because floristically clearly distinct forest types may show little difference in reflectance. In such cases, the effects of the bidirectional reflection distribution function (BRDF) can be sufficiently strong to cause erroneous image interpretation and classification. Since the opening of the Landsat archive in 2008, several BRDF normalization methods for Landsat have been developed. The simplest of these consist of an empirical view angle normalization, whereas more complex approaches apply the semi-empirical Ross-Li BRDF model and the MODIS MCD43-series of products to normalize directional Landsat reflectance to standard view and solar angles. Here we quantify the effect of surface anisotropy on Landsat TM/ETM+ images over old-growth Amazonian forests, and evaluate five angular normalization approaches. Even for the narrow swath of the Landsat sensors, we observed directional effects in all spectral bands. Those normalization methods that are based on removing the surface reflectance gradient as observed in each image were adequate to normalize TM/ETM+ imagery to nadir viewing, but were less suitable for multitemporal analysis when the solar vector varied strongly among images. Approaches based on the MODIS BRDF model parameters successfully reduced directional effects in the visible bands, but removed only half of the systematic errors in the infrared bands. The best results were obtained when the semi-empirical BRDF model was calibrated using pairs of Landsat observation. This method produces a single set of BRDF parameters, which can then be used to operationally normalize Landsat TM/ETM+ imagery over Amazonian forests to nadir viewing and a standard solar configuration.

  15. Near Real-time Operational Use of eMODIS Expedited NDVI for Monitoring Applications and Famine Early Warning

    NASA Astrophysics Data System (ADS)

    Rowland, J.; Budde, M. E.

    2010-12-01

    The Famine Early Warning Systems Network (FEWS NET) has requirements for near real-time monitoring of vegetation conditions for food security applications. Accurate and timely assessments of crop conditions are an important element of food security decision making. FEWS NET scientists at the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center are utilizing a new Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) dataset for operational monitoring of crop and pasture conditions in parts of the world where food availability is highly dependent on subsistence agriculture and animal husbandry. The expedited MODIS, or eMODIS, production system processes NDVI data using MODIS surface reflectance provided by the Land Atmosphere Near-real-time Capability for EOS (LANCE). Benefits of this production system include customized compositing schedules, near real-time data availability, and minimized re-sampling. FEWS NET has implemented a 10-day compositing scheme every five days to accommodate the need for timely information on vegetation conditions. The data are currently being processed at 250-meter spatial resolution for Central America, Hispaniola, and Africa. Data are further enhanced by the application of a temporal smoothing filter which helps remove contamination due to clouds and other atmospheric effects. The results of this near real-time monitoring capability have been the timely provision of NDVI and NDVI anomaly maps for each of the FEWS NET monitoring regions and the availability of a consistently processed dataset to aid crop assessment missions and to facilitate customized analyses of crop production, drought, and agro-pastoral conditions.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noble, Stephen R.; Hudson, James G.

    Here, vertical sounding measurements within stratocumuli during two aircraft field campaigns, Marine Stratus/stratocumulus Experiment (MASE) and Physics of Stratocumulus Top (POST), are used to validate Moderate Resolution Imaging Spectroradiometer (MODIS) cloud optical thickness (COT), cloud liquid water path (LWP), and cloud effective radius (r e). In situ COT, LWP, and r e were calculated using 5 m vertically averaged droplet probe measurements of complete vertical cloud penetrations. MODIS COT, LWP, and r e 1 km pixels were averaged along these penetrations. COT comparisons in POST showed strong correlations and a near 1:1 relationship. In MASE, comparisons showed strong correlations; however,more » MODIS COT exceeded in situ COT, likely due to larger temporal differences between MODIS and in situ measurements. LWP comparisons between two cloud probes show good agreement for POST but not MASE, giving confidence to POST data. Both projects provided strong LWP correlations but MODIS exceeded in situ by 14–36%. MODIS in situ r e correlations were strong, but MODIS 2.1 µm r e exceeded in situ r e, which contributed to LWP bias; in POST, MODIS r e was 20–30% greater than in situ r e. Maximum in situ r e near cloud top showed comparisons nearer 1:1. Other MODIS r e bands (3.7 µm and 1.6 µm) showed similar comparisons. Temporal differences between MODIS and in situ measurements, airplane speed differences, and cloud probe artifacts were likely causes of weaker MASE correlations. POST COT comparison was best for temporal differences under 20 min. POST data validate MODIS COT but it also implies a positive MODIS r e bias that propagates to LWP while still capturing variability.« less

  17. Comparisons of MODIS vegetation index products with biophysical and flux tower measurements

    NASA Astrophysics Data System (ADS)

    Sirikul, Natthanich

    Vegetation indices (VI) play an important role in studies of global climate and biogeochemical cycles, and are also positively related to many biophysical parameters and satellite products, such as leaf area index (LAI), gross primary production (GPP), land surface water index (LSWI) and land surface temperature (LST). In this study we found that VI's had strong relationships with some biophysical products, such as gross primary production, yet were less well correlated with biophysical structural parameters, such as leaf area index. The relationships between MODIS VI's and biophysical field measured LAI showed poor correlation at semi-arid land and broadleaf forest land cover type whereas cropland showed stronger correlations than the other vegetation types. In addition, the relationship between the enhanced vegetation index (EVI)-LAI and normalized difference vegetation index (NDVI)-LAI did not show significant differences. Comparisons of the relationships between the EVI and NDVI with tower-measured GPP from 11 flux towers in North America, showed that MODIS EVI had much stronger relationships with tower-GPP than did NDVI, and EVI was better correlated with the seasonal dynamics of GPP than was NDVI. In addition, there were no significant differences among the 1x1, 3x3 and 7x7 pixel sample sizes. The comparisons of VIs from the 3 MODIS products from which VI's are generated (Standard VI (MOD13)), Nadir Adjusted Surface Reflectance (NBAR (MOD43)), and Surface Reflectance (MOD09)), showed that MODIS NBAR-EVI (MOD43) was best correlated with GPP compared with the other VI products. In addition, the MODIS VI - tower GPP relationships were significantly improved using NBAR-EVI over the more complex canopy structures, such as the broadleaf and needleleaf forests. The relationship of tower-GPP with other MODIS products would be useful in more thorough characterization of some land cover types in which the VI's have encountered problems. The land surface temperature (LST) product were found useful for empirical estimations of GPP in needleleaf forests, but were not useful for the other land cover types, whereas the land surface water index (LSWI) was more sensitive to noise from snowmelt, ground water table levels, and wet soils than to the canopy moisture levels. Also the MODIS EVI was better correlated with LST than was NDVI. Finally, the cross-site comparisons of GPP and multi-products from MODIS showed that the relationships between EVI and GPP were the strongest while LST and GPP was the weakest. EVI may thus be useful in scaling across landscapes, including heterogeneous ones, for regional estimations of GPP, especially if BRDF effects have been taken into account (such as with the NBAR product). Thus, the relationships of EVI-GPP over space and time would potentially provide much useful information for studies of the global carbon cycle.

  18. Overview of NASA's MODIS and Visible Infrared Imaging Radiometer Suite (VIIRS) snow-cover Earth System Data Records

    NASA Technical Reports Server (NTRS)

    Riggs, George A.; Hall, Dorothy K.; Roman, Miguel O.

    2017-01-01

    Knowledge of the distribution, extent, duration and timing of snowmelt is critical for characterizing the Earth's climate system and its changes. As a result, snow cover is one of the Global Climate Observing System (GCOS) essential climate variables (ECVs). Consistent, long-term datasets of snow cover are needed to study interannual variability and snow climatology. The NASA snow-cover datasets generated from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra and Aqua spacecraft and the Suomi National Polar-orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) are NASA Earth System Data Records (ESDR). The objective of the snow-cover detection algorithms is to optimize the accuracy of mapping snow-cover extent (SCE) and to minimize snow-cover detection errors of omission and commission using automated, globally applied algorithms to produce SCE data products. Advancements in snow-cover mapping have been made with each of the four major reprocessings of the MODIS data record, which extends from 2000 to the present. MODIS Collection 6 (C6) and VIIRS Collection 1 (C1) represent the state-of-the-art global snow cover mapping algorithms and products for NASA Earth science. There were many revisions made in the C6 algorithms which improved snow-cover detection accuracy and information content of the data products. These improvements have also been incorporated into the NASA VIIRS snow cover algorithms for C1. Both information content and usability were improved by including the Normalized Snow Difference Index (NDSI) and a quality assurance (QA) data array of algorithm processing flags in the data product, along with the SCE map.The increased data content allows flexibility in using the datasets for specific regions and end-user applications.Though there are important differences between the MODIS and VIIRS instruments (e.g., the VIIRS 375m native resolution compared to MODIS 500 m), the snow detection algorithms and data products are designed to be as similar as possible so that the 16C year MODIS ESDR of global SCE can be extended into the future with the S-NPP VIIRS snow products and with products from future Joint Polar Satellite System (JPSS) platforms.These NASA datasets are archived and accessible through the NASA Distributed Active Archive Center at the National Snow and Ice Data Center in Boulder, Colorado.

  19. Remote Sensing Time Series Product Tool

    NASA Technical Reports Server (NTRS)

    Predos, Don; Ryan, Robert E.; Ross, Kenton W.

    2006-01-01

    The TSPT (Time Series Product Tool) software was custom-designed for NASA to rapidly create and display single-band and band-combination time series, such as NDVI (Normalized Difference Vegetation Index) images, for wide-area crop surveillance and for other time-critical applications. The TSPT, developed in MATLAB, allows users to create and display various MODIS (Moderate Resolution Imaging Spectroradiometer) or simulated VIIRS (Visible/Infrared Imager Radiometer Suite) products as single images, as time series plots at a selected location, or as temporally processed image videos. Manually creating these types of products is extremely labor intensive; however, the TSPT development tool makes the process simplified and efficient. MODIS is ideal for monitoring large crop areas because of its wide swath (2330 km), its relatively small ground sample distance (250 m), and its high temporal revisit time (twice daily). Furthermore, because MODIS imagery is acquired daily, rapid changes in vegetative health can potentially be detected. The new TSPT technology provides users with the ability to temporally process high-revisit-rate satellite imagery, such as that acquired from MODIS and from its successor, the VIIRS. The TSPT features the important capability of fusing data from both MODIS instruments onboard the Terra and Aqua satellites, which drastically improves cloud statistics. With the TSPT, MODIS metadata is used to find and optionally remove bad and suspect data. Noise removal and temporal processing techniques allow users to create low-noise time series plots and image videos and to select settings and thresholds that tailor particular output products. The TSPT GUI (graphical user interface) provides an interactive environment for crafting what-if scenarios by enabling a user to repeat product generation using different settings and thresholds. The TSPT Application Programming Interface provides more fine-tuned control of product generation, allowing experienced programmers to bypass the GUI and to create more user-specific output products, such as comparison time plots or images. This type of time series analysis tool for remotely sensed imagery could be the basis of a large-area vegetation surveillance system. The TSPT has been used to generate NDVI time series over growing seasons in California and Argentina and for hurricane events, such as Hurricane Katrina.

  20. Analysis Of The Land Surface Temperature And NDVI Using MODIS Data On The Arctic Tundra During The Last Decade

    NASA Astrophysics Data System (ADS)

    Mattar, C.; Duran-Alarcon, C.; Jimenez-Munoz, J. C.; Sobrino, J. A.

    2013-12-01

    The arctic tundra is one of the most sensible biome to climate conditions which has experienced important changes in the spatial distribution of temperature and vegetation in the last decades. In this paper we analyzed the spatio-temporal trend of the Land Surface Temperature (LST) and the Normalized Difference Vegetation Index (NDVI) over the arctic tundra biome during the last decade (2001-2012) derived from Moderate Resolution Imaging Spectroradiometer (MODIS) land products MOD11C3 (LST) and MOD13C2 (NDVI) were used. Anomalies for each variable were analyzed at monthly level, and the magnitude and statistical significance of the trends were computed using the non-parametric tests of Sen's Slope and Mann-Kendal respectively. The results obtained from MODIS LST data showed a significant increase (p-value < 0.05) on surface temperature over the arctic tundra in the last decade. In the case of the NDVI, the trend was positive (increase on NDVI) but statistically not significant (p-value < 0.05). All tundra regions defined in the Circumpolar Arctic Vegetation Map have presented positive and statistically significant trends in NDVI and LST. Values of trends obtained from MODIS data over all the tundra regions were +1.10 [°C/dec] in the case of LST and +0.005 [NDVI value/dec] in the case of NDVI.

  1. Combining HJ CCD, GF-1 WFV and MODIS Data to Generate Daily High Spatial Resolution Synthetic Data for Environmental Process Monitoring.

    PubMed

    Wu, Mingquan; Huang, Wenjiang; Niu, Zheng; Wang, Changyao

    2015-08-20

    The limitations of satellite data acquisition mean that there is a lack of satellite data with high spatial and temporal resolutions for environmental process monitoring. In this study, we address this problem by applying the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM) and the Spatial and Temporal Data Fusion Approach (STDFA) to combine Huanjing satellite charge coupled device (HJ CCD), Gaofen satellite no. 1 wide field of view camera (GF-1 WFV) and Moderate Resolution Imaging Spectroradiometer (MODIS) data to generate daily high spatial resolution synthetic data for land surface process monitoring. Actual HJ CCD and GF-1 WFV data were used to evaluate the precision of the synthetic images using the correlation analysis method. Our method was tested and validated for two study areas in Xinjiang Province, China. The results show that both the ESTARFM and STDFA can be applied to combine HJ CCD and MODIS reflectance data, and GF-1 WFV and MODIS reflectance data, to generate synthetic HJ CCD data and synthetic GF-1 WFV data that closely match actual data with correlation coefficients (r) greater than 0.8989 and 0.8643, respectively. Synthetic red- and near infrared (NIR)-band data generated by ESTARFM are more suitable for the calculation of Normalized Different Vegetation Index (NDVI) than the data generated by STDFA.

  2. Combining HJ CCD, GF-1 WFV and MODIS Data to Generate Daily High Spatial Resolution Synthetic Data for Environmental Process Monitoring

    PubMed Central

    Wu, Mingquan; Huang, Wenjiang; Niu, Zheng; Wang, Changyao

    2015-01-01

    The limitations of satellite data acquisition mean that there is a lack of satellite data with high spatial and temporal resolutions for environmental process monitoring. In this study, we address this problem by applying the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM) and the Spatial and Temporal Data Fusion Approach (STDFA) to combine Huanjing satellite charge coupled device (HJ CCD), Gaofen satellite no. 1 wide field of view camera (GF-1 WFV) and Moderate Resolution Imaging Spectroradiometer (MODIS) data to generate daily high spatial resolution synthetic data for land surface process monitoring. Actual HJ CCD and GF-1 WFV data were used to evaluate the precision of the synthetic images using the correlation analysis method. Our method was tested and validated for two study areas in Xinjiang Province, China. The results show that both the ESTARFM and STDFA can be applied to combine HJ CCD and MODIS reflectance data, and GF-1 WFV and MODIS reflectance data, to generate synthetic HJ CCD data and synthetic GF-1 WFV data that closely match actual data with correlation coefficients (r) greater than 0.8989 and 0.8643, respectively. Synthetic red- and near infrared (NIR)-band data generated by ESTARFM are more suitable for the calculation of Normalized Different Vegetation Index (NDVI) than the data generated by STDFA. PMID:26308017

  3. Frost monitoring of fruit tree with satellite data

    NASA Astrophysics Data System (ADS)

    Fan, Jinlong; Zhang, Mingwei; Cao, Guangzheng; Zhang, Xiaoyu; Liu, Chenchen; Niu, Xinzan; Xu, Wengbo

    2012-09-01

    The orchards are developing very fast in the northern China in recent years with the increasing demands on fruits in China. In most parts of the northern China, the risk of frost damage to fruit tree in early spring is potentially high under the background of global warming. The growing season comes earlier than it does in normal year due to the warm weather in earlier spring and the risk will be higher in this case. According to the reports, frost event in spring happens almost every year in Ningxia Region, China. In bad cases, late frosts in spring can be devastating all fruit. So lots of attention has been given to the study in monitoring, evaluating, preventing and mitigating frost. Two orchards in Ningxia, Taole and Jiaozishan orchards were selected as the study areas. MODIS data were used to monitor frost events in combination with minimum air temperature recorded at weather station. The paper presents the findings. The very good correlation was found between MODIS LST and minimum air temperature in Ningxia. Light, middle and severe frosts were captured in the study area by MODIS LST. The MODIS LST shows the spatial differences of temperature in the orchards. 10 frost events in April from 2000 to 2010 were captured by the satellite data. The monitoring information may be hours ahead circulated to the fruit farmers to prevent the damage and loss of fruit trees.

  4. Inter-Comparison of MODIS and VIIRS Vegetation Indices Using One-Year Global Data

    NASA Astrophysics Data System (ADS)

    Miura, T.; Muratsuchi, J.; Obata, K.; Kato, A.; Vargas, M.; Huete, A. R.

    2016-12-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) sensor series of the Joint Polar Satellite System program is slated to continue the highly calibrated data stream initiated with the Earth Observing System Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. A number of geophysical products are being/to be produced from VIIRS data, including the "Top-of-the-Atmosphere (TOA)" Normalized Difference Vegetation Index (NDVI), "Top-of-Canopy (TOC)" Enhanced Vegetation Index (EVI), and TOC NDVI. In this study, we cross-compared vegetation indices (VIs) from the first VIIRS sensor aboard the Suomi National Polar-orbiting Partnership satellite with the Aqua MODIS counterparts using one-year global data. This study was aimed at developing a thorough understanding of radiometric compatibility between the two VI datasets across globe, seasons, a range of viewing angle, and land cover types. VIIRS and MODIS VI data of January-December 2015 were obtained at monthly intervals when their orbital tracks coincided. These data were projected and spatially-aggregated into a .0036-degree grid while screening for cloud and aerosol contaminations using their respective quality flags. VIIRS-MODIS observation pairs with near-identical sun-target-view angles were extracted from each of these monthly image pairs for cross-comparison. The four VIs of TOA NDVI, TOC NDVI, TOC EVI, and TOC EVI2 (a two-band version of the EVI) were analyzed. Between MODIS and VIIRS, TOA NDVI, TOC NDVI, and TOC EVI2 had very small overall mean differences (MD) of .014, .013, and .013 VI units, respectively, whereas TOC EVI had a slightly larger overall MD of 0.023 EVI units attributed to the disparate blue bands of the two sensors. These systematic differences were consistent across the one-year period. With respect to sun-target-viewing geometry, MDs were also consistent across the view zenith angle range, but always lower for forward- than backward-viewing geometry. MDs showed large land cover dependencies for TOA NDVI and TOC NDVI, varying 10 folds from .002 for forests to .02 for sparsely-vegetated areas. They were consistent across land cover types for TOC EVI and TOC EVI2. Future studies should address the impact of sun-target-view geometry on corss-sensor VI comparisons.

  5. Identification and visualization of dominant patterns and anomalies in remotely sensed vegetation phenology using a parallel tool for principal components analysis

    Treesearch

    Richard Tran Mills; Jitendra Kumar; Forrest M. Hoffman; William W. Hargrove; Joseph P. Spruce; Steven P. Norman

    2013-01-01

    We investigated the use of principal components analysis (PCA) to visualize dominant patterns and identify anomalies in a multi-year land surface phenology data set (231 m × 231 m normalized difference vegetation index (NDVI) values derived from the Moderate Resolution Imaging Spectroradiometer (MODIS)) used for detecting threats to forest health in the conterminous...

  6. Using MODIS NDVI phenoclasses and phenoclusters to characterize wildlife habitat: Mexican spotted owl as a case study

    Treesearch

    Serra J. Hoagland; Paul Beier; Danny Lee

    2018-01-01

    Most uses of remotely sensed satellite data to characterize wildlife habitat have used metrics such as mean NDVI (Normalized Difference Vegetation Index) in a year or season. These simple metrics do not take advantage of the temporal patterns in NDVI within and across years and the spatial arrangement of cells with various temporal NDVI signatures. Here we use 13 years...

  7. Control of ACAT2 liver expression by HNF4{alpha}: lesson from MODY1 patients.

    PubMed

    Pramfalk, C; Karlsson, E; Groop, L; Rudel, L L; Angelin, B; Eriksson, M; Parini, P

    2009-08-01

    ACAT2 is thought to be responsible for cholesteryl ester production in chylomicron and VLDL assembly. Recently, we identified HNF1alpha as an important regulator of the human ACAT2 promoter. Thus, we hypothesized that MODY3 (HNF1alpha gene mutations) and possibly MODY1 (HNF4alpha, upstream regulator of HNF1alpha, gene mutations) subjects may have lower VLDL esterified cholesterol. Serum analysis and lipoprotein separation using size-exclusion chromatography were performed in controls and MODY1 and MODY3 subjects. In vitro analyses included mutagenesis and cotransfections in HuH7 cells. Finally, the relevance in vivo of these findings was tested by ChIP assays in human liver. Whereas patients with MODY3 had normal lipoprotein composition, those with MODY1 had lower levels of VLDL and LDL esterified cholesterol, as well as of VLDL triglyceride. Mutagenesis revealed one important HNF4 binding site in the human ACAT2 promoter. ChIP assays and protein-to-protein interaction studies showed that HNF4alpha, directly or indirectly (via HNF1alpha), can bind to the ACAT2 promoter. We identified HNF4alpha as an important regulator of the hepatocyte-specific expression of the human ACAT2 promoter. Our results suggest that the lower levels of esterified cholesterol in VLDL- and LDL-particles in patients with MODY1 may-at least in part-be attributable to lower ACAT2 activity in these patients.

  8. Glucokinase MODY and implications for treatment goals of common forms of diabetes.

    PubMed

    Ajjan, Ramzi A; Owen, Katharine R

    2014-12-01

    Treatment goals in diabetes concentrate on reducing the risk of vascular complications, largely through setting targets for glycated haemoglobin (HbA1c). These targets are based on epidemiological studies of complication development, but so far have not adequately addressed the adverse effects associated with lowering HbA1c towards the normal range. Glucokinase (GCK) mutations cause a monogenic form of hyperglycaemia (GCK-MODY) characterised by fasting hyperglycaemia with low postprandial glucose excursions and a marginally elevated HbA1c. Minimal levels of vascular complications (comparable with nondiabetic individuals) are observed in GCK-MODY, leading to the hypothesis that GCK-MODY may represent a useful paradigm for assessing treatment goals in all forms of diabetes. In this review, we discuss the evidence behind this concept, suggest ways of translating this hypothesis into clinical practice and address some of the caveats of such an approach.

  9. An Efficient Approach for Pixel Decomposition to Increase the Spatial Resolution of Land Surface Temperature Images from MODIS Thermal Infrared Band Data

    PubMed Central

    Wang, Fei; Qin, Zhihao; Li, Wenjuan; Song, Caiying; Karnieli, Arnon; Zhao, Shuhe

    2015-01-01

    Land surface temperature (LST) images retrieved from the thermal infrared (TIR) band data of Moderate Resolution Imaging Spectroradiometer (MODIS) have much lower spatial resolution than the MODIS visible and near-infrared (VNIR) band data. The coarse pixel scale of MODIS LST images (1000 m under nadir) have limited their capability in applying to many studies required high spatial resolution in comparison of the MODIS VNIR band data with pixel scale of 250–500 m. In this paper we intend to develop an efficient approach for pixel decomposition to increase the spatial resolution of MODIS LST image using the VNIR band data as assistance. The unique feature of this approach is to maintain the thermal radiance of parent pixels in the MODIS LST image unchanged after they are decomposed into the sub-pixels in the resulted image. There are two important steps in the decomposition: initial temperature estimation and final temperature determination. Therefore the approach can be termed double-step pixel decomposition (DSPD). Both steps involve a series of procedures to achieve the final result of decomposed LST image, including classification of the surface patterns, establishment of LST change with normalized difference of vegetation index (NDVI) and building index (NDBI), reversion of LST into thermal radiance through Planck equation, and computation of weights for the sub-pixels of the resulted image. Since the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) with much higher spatial resolution than MODIS data was on-board the same platform (Terra) as MODIS for Earth observation, an experiment had been done in the study to validate the accuracy and efficiency of our approach for pixel decomposition. The ASTER LST image was used as the reference to compare with the decomposed LST image. The result showed that the spatial distribution of the decomposed LST image was very similar to that of the ASTER LST image with a root mean square error (RMSE) of 2.7 K for entire image. Comparison with the evaluation DisTrad (E-DisTrad) and re-sampling methods for pixel decomposition also indicate that our DSPD has the lowest RMSE in all cases, including urban region, water bodies, and natural terrain. The obvious increase in spatial resolution remarkably uplifts the capability of the coarse MODIS LST images in highlighting the details of LST variation. Therefore it can be concluded that, in spite of complicated procedures, the proposed DSPD approach provides an alternative to improve the spatial resolution of MODIS LST image hence expand its applicability to the real world. PMID:25609048

  10. Identification of Candidate Gene Variants in Korean MODY Families by Whole-Exome Sequencing.

    PubMed

    Shim, Ye Jee; Kim, Jung Eun; Hwang, Su-Kyeong; Choi, Bong Seok; Choi, Byung Ho; Cho, Eun-Mi; Jang, Kyoung Mi; Ko, Cheol Woo

    2015-01-01

    To date, 13 genes causing maturity-onset diabetes of the young (MODY) have been identified. However, there is a big discrepancy in the genetic locus between Asian and Caucasian patients with MODY. Thus, we conducted whole-exome sequencing in Korean MODY families to identify causative gene variants. Six MODY probands and their family members were included. Variants in the dbSNP135 and TIARA databases for Koreans and the variants with minor allele frequencies >0.5% of the 1000 Genomes database were excluded. We selected only the functional variants (gain of stop codon, frameshifts and nonsynonymous single-nucleotide variants) and conducted a case-control comparison in the family members. The selected variants were scanned for the previously introduced gene set implicated in glucose metabolism. Three variants c.620C>T:p.Thr207Ile in PTPRD, c.559C>G:p.Gln187Glu in SYT9, and c.1526T>G:p.Val509Gly in WFS1 were respectively identified in 3 families. We could not find any disease-causative alleles of known MODY 1-13 genes. Based on the predictive program, Thr207Ile in PTPRD was considered pathogenic. Whole-exome sequencing is a valuable method for the genetic diagnosis of MODY. Further evaluation is necessary about the role of PTPRD, SYT9 and WFS1 in normal insulin release from pancreatic beta cells. © 2015 S. Karger AG, Basel.

  11. Statistical Considerations of Data Processing in Giovanni Online Tool

    NASA Technical Reports Server (NTRS)

    Suhung, Shen; Leptoukh, G.; Acker, J.; Berrick, S.

    2005-01-01

    The GES DISC Interactive Online Visualization and Analysis Infrastructure (Giovanni) is a web-based interface for the rapid visualization and analysis of gridded data from a number of remote sensing instruments. The GES DISC currently employs several Giovanni instances to analyze various products, such as Ocean-Giovanni for ocean products from SeaWiFS and MODIS-Aqua; TOMS & OM1 Giovanni for atmospheric chemical trace gases from TOMS and OMI, and MOVAS for aerosols from MODIS, etc. (http://giovanni.gsfc.nasa.gov) Foremost among the Giovanni statistical functions is data averaging. Two aspects of this function are addressed here. The first deals with the accuracy of averaging gridded mapped products vs. averaging from the ungridded Level 2 data. Some mapped products contain mean values only; others contain additional statistics, such as number of pixels (NP) for each grid, standard deviation, etc. Since NP varies spatially and temporally, averaging with or without weighting by NP will be different. In this paper, we address differences of various weighting algorithms for some datasets utilized in Giovanni. The second aspect is related to different averaging methods affecting data quality and interpretation for data with non-normal distribution. The present study demonstrates results of different spatial averaging methods using gridded SeaWiFS Level 3 mapped monthly chlorophyll a data. Spatial averages were calculated using three different methods: arithmetic mean (AVG), geometric mean (GEO), and maximum likelihood estimator (MLE). Biogeochemical data, such as chlorophyll a, are usually considered to have a log-normal distribution. The study determined that differences between methods tend to increase with increasing size of a selected coastal area, with no significant differences in most open oceans. The GEO method consistently produces values lower than AVG and MLE. The AVG method produces values larger than MLE in some cases, but smaller in other cases. Further studies indicated that significant differences between AVG and MLE methods occurred in coastal areas where data have large spatial variations and a log-bimodal distribution instead of log-normal distribution.

  12. Comparing Stream Discharge, Dissolved Organic Carbon, and Selected MODIS Indices in Freshwater Basins

    NASA Astrophysics Data System (ADS)

    Shaver, W. T.; Wollheim, W. M.

    2009-12-01

    In a preliminary study of the Ipswich Basin in Massachusetts, a good correlation was found to exist between the MODIS (Moderate Resolution Imaging Spectroradiometer) Enhanced Vegetation Index and stream dissolved organic carbon (DOC). Further study was warranted to determine the utility of MODIS indices in predicting temporal stream DOC. Stream discharge rates and DOC data were obtained from the USGS National Water Quality Assessment Program (NAWQA) database. Twelve NAWQA monitoring sites were selected for evaluation based on the criteria of having drainage basin sizes less than 600 km2 with relatively continuous, long-term DOC and discharge data. MODIS indices were selected based on their connections with terrestrial DOC and were obtained for each site's catchment area. These included the Normalized Vegetation Index (NDVI), the Enhanced Vegetation Index (EVI), the Daily Photosynthesis (PSN) and the Leaf Area Index (LAI). Regression analysis was used to evaluate the relationships between DOC, discharge and MODIS products. Data analysis revealed several important trends. Sites with strong positive correlation coefficients (r values ranging from 0.462 to 0.831) between DOC and discharge displayed weak correlations with all of the MODIS indices (r values ranging from 0 to 0.322). For sites where the DOC/discharge correlation was weak or negative, MODIS indices were moderately correlated, with r values ranging from 0.35 to 0.647, all of which were significant at less than 1 percent. Some sites that had weak positive correlations with MODIS indices displayed a lag time, that is, the MODIS index rose and fell shortly before the DOC concentration rose and fell. Shifting the MODIS data forward in time by roughly one month significantly increased the DOC/MODIS r values by about 10%. NDVI and EVI displayed the strongest correlations with temporal DOC variability (r values ranging from 0.471 to 0.647), and therefore these indices are the most promising for being incorporated into a model for remotely sensing terrestrial DOC.

  13. Automated Land Cover Change Detection and Mapping from Hidden Parameter Estimates of Normalized Difference Vegetation Index (NDVI) Time-Series

    NASA Astrophysics Data System (ADS)

    Chakraborty, S.; Banerjee, A.; Gupta, S. K. S.; Christensen, P. R.; Papandreou-Suppappola, A.

    2017-12-01

    Multitemporal observations acquired frequently by satellites with short revisit periods such as the Moderate Resolution Imaging Spectroradiometer (MODIS), is an important source for modeling land cover. Due to the inherent seasonality of the land cover, harmonic modeling reveals hidden state parameters characteristic to it, which is used in classifying different land cover types and in detecting changes due to natural or anthropogenic factors. In this work, we use an eight day MODIS composite to create a Normalized Difference Vegetation Index (NDVI) time-series of ten years. Improved hidden parameter estimates of the nonlinear harmonic NDVI model are obtained using the Particle Filter (PF), a sequential Monte Carlo estimator. The nonlinear estimation based on PF is shown to improve parameter estimation for different land cover types compared to existing techniques that use the Extended Kalman Filter (EKF), due to linearization of the harmonic model. As these parameters are representative of a given land cover, its applicability in near real-time detection of land cover change is also studied by formulating a metric that captures parameter deviation due to change. The detection methodology is evaluated by considering change as a rare class problem. This approach is shown to detect change with minimum delay. Additionally, the degree of change within the change perimeter is non-uniform. By clustering the deviation in parameters due to change, this spatial variation in change severity is effectively mapped and validated with high spatial resolution change maps of the given regions.

  14. A VARI-Based Relative Greenness from MODIS Data for Computing the Fire Potential Index

    NASA Technical Reports Server (NTRS)

    Schneider, P.; Roberts, D. A.; Kyriakidis, P. C.

    2008-01-01

    The Fire Potential Index (FPI) relies on relative greenness (RG) estimates from remote sensing data. The Normalized Difference Vegetation index (NDVI), derived from NOAA Advanced Very High Resolution Radiometer (AVHRR) imagery is currently used to calculate RG operationally. Here we evaluated an alternate measure of RG using the Visible Atmospheric Resistant Index (VARI) derived from Moderate Resolution Imaging Spectrometer (MODIS) data. VARI was chosen because it has previously been shown to have the strongest relationship with Live Fuel Moisture (LFM) out of a wide selection of MODIS-derived indices in southern California shrublands. To compare MODIS-based NDVI-FPI and VARI-FPI, RG was calculated from a 6-year time series of MODIS composites and validated against in-situ observations of LFM as a surrogate for vegetation greenness. RG from both indices was then compared in terms of its performance for computing the FPI using historical wildfire data. Computed RG values were regressed against ground-sampled LFM at 14 sites within Los Angeles County. The results indicate the VARI-based RG consistently shows a stronger relationship with observed LFM than NDVI-based RG. With an average R2 of 0.727 compared to a value of only 0.622 for NDVI-RG, VARI-RG showed stronger relationships at 13 out of 14 sites. Based on these results, daily FPI maps were computed for the years 2001 through 2005 using both NDVI-RG and VARI-RG. These were then validated against 12,490 fire detections from the MODIS active fire product using logistic regression. Deviance of the logistic regression model was 408.8 for NDVI-FPI and 176.2 for VARI-FPI. The c-index was found to be 0.69 and 0.78, respectively. The results show that VARI-FP outperforms NDVI-FPI in distinguishing between fire and no-fire events for historical wildfire data in southern California for the given time period.

  15. Clinical differences between patients with MODY-3, MODY-2 and type 2 diabetes mellitus with I27L polymorphism in the HNF1alpha gene.

    PubMed

    Pinés Corrales, Pedro José; López Garrido, María P; Aznar Rodríguez, Silvia; Louhibi Rubio, Lynda; López Jiménez, Luz M; Lamas Oliveira, Cristina; Alfaro Martínez, Jose J; Lozano García, Jose J; Hernández López, Antonio; Requejo Castillo, Ramón; Escribano Martínez, Julio; Botella Romero, Francisco

    2010-01-01

    The aim of our study was to describe and evaluate the clinical and metabolic characteristics of patients with MODY-3, MODY-2 or type 2 diabetes who presented I27L polymorphism in the HNF1alpha gene. The study included 31 previously diagnosed subjects under follow-up for MODY-3 (10 subjects from 5 families), MODY-2 (15 subjects from 9 families), or type 2 diabetes (6 subjects) with I27L polymorphism in the HNF1alpha gene. The demographic, clinical, metabolic, and genetic characteristics of all patients were analyzed. No differences were observed in distribution according to sex, age of onset, or form of diagnosis. All patients with MODY-2 or MODY-3 had a family history of diabetes. In contrast, 33.3% of patients with type 2 diabetes mellitus and I27L polymorphism in the HNF1alpha gene had no family history of diabetes (p < 0.05). No differences were observed in body mass index, prevalence of hypertension, or microvascular or macrovascular complications. Drug therapy was required by 100% of MODY-3 patients, but not required by 100% of MODY-2 patients or 16.7% of patients with type 2 diabetes mellitus and I27L polymorphism in the HNF1alpha gene (p < 0.05). Occasional difficulties may be encountered when classifying patients with MODY-2, MODY-3 or type 2 diabetes of atypical characteristics, in this case patients who present I27L polymorphism in the HNF1alpha gene. Copyright 2010 Sociedad Española de Endocrinología y Nutrición. Published by Elsevier Espana. All rights reserved.

  16. A Real-Time MODIS Vegetation Composite for Land Surface Models and Short-Term Forecasting

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; LaFontaine, Frank J.; Kumar, Sujay V.; Jedlovec, Gary J.

    2011-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center is producing real-time, 1- km resolution Normalized Difference Vegetation Index (NDVI) gridded composites over a Continental U.S. domain. These composites are updated daily based on swath data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor aboard the polar orbiting NASA Aqua and Terra satellites, with a product time lag of about one day. A simple time-weighting algorithm is applied to the NDVI swath data that queries the previous 20 days of data to ensure a continuous grid of data populated at all pixels. The daily composites exhibited good continuity both spatially and temporally during June and July 2010. The composites also nicely depicted high greenness anomalies that resulted from significant rainfall over southwestern Texas, Mexico, and New Mexico during July due to early-season tropical cyclone activity. The SPoRT Center is in the process of computing greenness vegetation fraction (GVF) composites from the MODIS NDVI data at the same spatial and temporal resolution for use in the NASA Land Information System (LIS). The new daily GVF dataset would replace the monthly climatological GVF database (based on Advanced Very High Resolution Radiometer [AVHRR] observations from 1992-93) currently available to the Noah land surface model (LSM) in both LIS and the public version of the Weather Research and Forecasting (WRF) model. The much higher spatial resolution (1 km versus 0.15 degree) and daily updates based on real-time satellite observations have the capability to greatly improve the simulation of the surface energy budget in the Noah LSM within LIS and WRF. Once code is developed in LIS to incorporate the daily updated GVFs, the SPoRT Center will conduct simulation sensitivity experiments to quantify the impacts and improvements realized by the MODIS real-time GVF data. This presentation will describe the methodology used to develop the 1-km MODIS NDVI composites and show sample output from summer 2010, compare the MODIS GVF data to the AVHRR monthly climatology, and illustrate the sensitivity of the Noah LSM within LIS and/or the coupled LIS/WRF system to the new MODIS GVF dataset.

  17. Detecting Inter-Annual Variations in the Phenology of Evergreen Conifers Using Long-Term MODIS Vegetation Index Time Series

    NASA Technical Reports Server (NTRS)

    Ulsig, Laura; Nichol, Caroline J.; Huemmrich, Karl F.; Landis, David R.; Middleton, Elizabeth M.; Lyapustin, Alexei I.; Mammarella, Ivan; Levula, Janne; Porcar-Castell, Albert

    2017-01-01

    Long-term observations of vegetation phenology can be used to monitor the response of terrestrial ecosystems to climate change. Satellite remote sensing provides the most efficient means to observe phenological events through time series analysis of vegetation indices such as the Normalized Difference Vegetation Index (NDVI). This study investigates the potential of a Photochemical Reflectance Index (PRI), which has been linked to vegetation light use efficiency, to improve the accuracy of MODIS-based estimates of phenology in an evergreen conifer forest. Timings of the start and end of the growing season (SGS and EGS) were derived from a 13-year-long time series of PRI and NDVI based on a MAIAC (multi-angle implementation of atmospheric correction) processed MODIS dataset and standard MODIS NDVI product data. The derived dates were validated with phenology estimates from ground-based flux tower measurements of ecosystem productivity. Significant correlations were found between the MAIAC time series and ground-estimated SGS (R (sup 2) equals 0.36-0.8), which is remarkable since previous studies have found it difficult to observe inter-annual phenological variations in evergreen vegetation from satellite data. The considerably noisier NDVI product could not accurately predict SGS, and EGS could not be derived successfully from any of the time series. While the strongest relationship overall was found between SGS derived from the ground data and PRI, MAIAC NDVI exhibited high correlations with SGS more consistently (R (sup 2) is greater than 0.6 in all cases). The results suggest that PRI can serve as an effective indicator of spring seasonal transitions, however, additional work is necessary to confirm the relationships observed and to further explore the usefulness of MODIS PRI for detecting phenology.

  18. [MODY type diabetes: overview and recent findings].

    PubMed

    Ben Khelifa, Souhaïra; Barboura, Ilhem; Dandana, Azza; Ferchichi, Selima; Miled, Abdelhedi

    2011-01-01

    We present an update of knowledge on diabetes MODY (maturity onset diabetes of the young), including the recent molecular discoveries, and new diagnostic strategies. Considerable progress has been made in understanding the different molecular abnormalities that cause MODY and the phenotypic consequences resulting therefrom. MODY diabetes is very heterogeneous and is the most common form of monogenic diabetes. Its distribution is worldwide. MODY is an autosomal dominant diabetes mellitus, nonketotic and occurs at an early age (usually before 25 years). To date, at least seven genes are associated with MODY, with frequencies that differ from one population to another. Both 2 and 3 subtypes predominate, while other subtypes (1, 4, 5, 6 and 7) concern only a few families. Since its discovery in the sixties, studies have succeeded to fully clarify the epidemiological, molecular and clinical diagnosis of each subtype, to provide better care for patients. However, the subject of MODY has not yet revealed all its secrets. Indeed, it remains to identify other genes that are associated with MODY X.

  19. MODIS-informed greenness responsesto daytime land surface temperaturefluctuations and wildfire disturbancesin the Alaskan Yukon River Basin

    USGS Publications Warehouse

    Tan, Zhengxi; Liu, Shu-Guang; Jenkerson, Calli B.; Oeding, Jennifer; Wylie, Bruce K.; Rover, Jennifer R.; Young, Claudia J.

    2012-01-01

    Pronounced climate warming and increased wildfire disturbances are known to modify forest composition and control the evolution of the boreal ecosystem over the Yukon River Basin (YRB) in interior Alaska. In this study, we evaluate the post-fire green-up rate using the normalized difference vegetation index (NDVI) derived from 250 m 7 day eMODIS (an alternative and application-ready type of Moderate Resolution Imaging Spectroradiometer (MODIS) data) acquired between 2000 and 2009. Our analyses indicate measureable effects on NDVI values from vegetation type, burn severity, post-fire time, and climatic variables. The NDVI observations from both fire scars and unburned areas across the Alaskan YRB showed a tendency of an earlier start to the growing season (GS); the annual variations in NDVI were significantly correlated to daytime land surface temperature (LST) fluctuations; and the rate of post-fire green-up depended mainly on burn severity and the time of post-fire succession. The higher average NDVI values for the study period in the fire scars than in the unburned areas between 1950 and 2000 suggest that wildfires enhance post-fire greenness due to an increase in post-fire evergreen and deciduous species components

  20. Time-series MODIS image-based retrieval and distribution analysis of total suspended matter concentrations in Lake Taihu (China).

    PubMed

    Zhang, Yuchao; Lin, Shan; Liu, Jianping; Qian, Xin; Ge, Yi

    2010-09-01

    Although there has been considerable effort to use remotely sensed images to provide synoptic maps of total suspended matter (TSM), there are limited studies on universal TSM retrieval models. In this paper, we have developed a TSM retrieval model for Lake Taihu using TSM concentrations measured in situ and a time series of quasi-synchronous MODIS 250 m images from 2005. After simple geometric and atmospheric correction, we found a significant relationship (R = 0.8736, N = 166) between in situ measured TSM concentrations and MODIS band normalization difference of band 3 and band 1. From this, we retrieved TSM concentrations in eight regions of Lake Taihu in 2007 and analyzed the characteristic distribution and variation of TSM. Synoptic maps of model-estimated TSM of 2007 showed clear geographical and seasonal variations. TSM in Central Lake and Southern Lakeshore were consistently higher than in other regions, while TSM in East Taihu was generally the lowest among the regions throughout the year. Furthermore, a wide range of TSM concentrations appeared from winter to summer. TSM in winter could be several times that in summer.

  1. Analysis of MODIS 250 m Time Series Product for LULC Classification and Retrieval of Crop Biophysical Parameter

    NASA Astrophysics Data System (ADS)

    Verma, A. K.; Garg, P. K.; Prasad, K. S. H.; Dadhwal, V. K.

    2016-12-01

    Agriculture is a backbone of Indian economy, providing livelihood to about 70% of the population. The primary objective of this research is to investigate the general applicability of time-series MODIS 250m Normalized difference vegetation index (NDVI) and Enhanced vegetation index (EVI) data for various Land use/Land cover (LULC) classification. The other objective is the retrieval of crop biophysical parameter using MODIS 250m resolution data. The Uttar Pradesh state of India is selected for this research work. A field study of 38 farms was conducted during entire crop season of the year 2015 to evaluate the applicability of MODIS 8-day, 250m resolution composite images for assessment of crop condition. The spectroradiometer is used for ground reflectance and the AccuPAR LP-80 Ceptometer is used to measure the agricultural crops Leaf Area Index (LAI). The AccuPAR measures Photosynthetically Active Radiation (PAR) and can invert these readings to give LAI for plant canopy. Ground-based canopy reflectance and LAI were used to calibrate a radiative transfer model to create look-up table (LUT) that was used to simulate LAI. The seasonal trend of MODIS-derived LAI was used to find crop parameter by adjusting the LAI simulated from climate-based crop yield model. Cloud free MODIS images of 250m resolution (16 day composite period) were downloaded using LP-DAAC website over a period of 12 months (Jan to Dec 2015). MODIS both the VI products were found to have sufficient spectral, spatial and temporal resolution to detect unique signatures for each class (water, fallow land, urban, dense vegetation, orchard, sugarcane and other crops). Ground truth data were collected using JUNO GPS. Multi-temporal VI signatures for vegetation classes were consistent with its general phenological characteristic and were spectrally separable at some point during the growing season. The MODIS NDVI and EVI multi-temporal images tracked similar seasonal responses for all croplands and were highly correlated across the growing season. The confusion matrix method is used for accuracy assessment and reference data which has been taken during the field visit. Total 520 pixels have been selected for various classes to determine the accuracy. The classification accuracy and kappa coefficient is found to be 79.76% and 0.78 respectively.

  2. Sensitivity analysis of the Commonly Used Drought Indices on the different land use Types - Case Study over Turkey

    NASA Astrophysics Data System (ADS)

    Ersoy, E. N.; Hüsami Afşar, M.; Bulut, B.; Onen, A.; Yilmaz, M. T.

    2017-12-01

    Droughts are climatic phenomenon that may impact large and small regions alike for long or short time periods and influence society in terms of industrial, agricultural, domestic and many more aspects. The characteristics of the droughts are commonly investigated using indices like Standardized Precipitation Index (SPI), Palmer Drought Severity Index (PDSI), Standardized Precipitation Evapotranspiration Index (SPEI) and Normalized Difference Vegetation Index (NDVI). On the other hand, these indices may not necessarily yield similar performance over different vegetation types. The aim is to analyze the sensitivity of drought indices (SPI, SPEI, PDSI) to vegetation types over different climatic regions in Turkey. Here the magnitude of the drought severity is measured using MODIS NDVI data, while the vegetation type (e.g., non-irrigated arable lands, vineyards, fruit trees and berry plantations, olive groves, pastures, land principally occupied by agriculture) information is obtained using CORINE land cover classification. This study has compared the drought characteristics and vegetation conditions on different land use types using remotely sensed datasets (e.g., CORINE land use data, MODIS NDVI), and commonly used drought indices between 2000 and 2016 using gauge based precipitation and temperature measurements.

  3. Snow Cover Distribution and Variation using MODIS in the Himalayas of India

    NASA Astrophysics Data System (ADS)

    Mondal, A.; Lakshmi, V.; Jain, S. K.; Kansara, P. H.

    2017-12-01

    Snow cover variation plays a big role in river discharge, permafrost distribution and mass balance of glaciers in mountainous watersheds. Spatial distribution and temporal variation of snow cover varies with elevation and climate. We study the spatial distribution and temporal change of snow cover that has been observed using Terra Moderate Resolution Imaging Spectrometer (MODIS) product (MOD10A2 version 5) from 2001 to 2016. This MODIS product is based on normalized-difference snow index (NDSI) using band 4 (0.545-0.565 μm) and band 6 (1.628-1.652 μm). The spatial resolution of MOD10A2 is 500 m and composited over 8 days. The study area is the Indian Himalayas, major snow covered part of which is located in the states of Jammu and Kashmir, Himachal Pradesh, Uttarakhand, West Bengal, Sikkim, Assam and Arunachal Pradesh. Distribution and variation in snow cover is examined on monthly and annual time scales in this study. The temporal changes in snow cover has been compared with terrain attributes (elevation, slope and aspect). The snow cover depletion and accumulation have been observed during April-August and September-March. The snow cover is highest in the March and lowest in the August in the Himachal region. This study will be helpful to identify the amount of water stored in the glaciers of the Indian Himalaya and also important for water resources management of river basins, which are located in this area. Key words: Snow cover, MODIS, NDSI, terrain attribute

  4. Monitoring Tamarisk Defoliation and Scaling Evapotranspiration Using Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Dennison, P. E.; Hultine, K. R.; Nagler, P. L.; Miura, T.; Glenn, E. P.; Ehleringer, J. R.

    2008-12-01

    Non-native tamarisk (Tamarix spp.) has invaded riparian ecosystems throughout the Western United States. Another non-native species, the saltcedar leaf beetle (Diorhabda elongata), has been released in an attempt to control tamarisk infestations. Most efforts directed towards monitoring tamarisk defoliation by Diorhabda have focused on changes in leaf area or sap flux, but these measurements only give a local view of defoliation impacts. We are assessing the ability of remote sensing data for monitoring tamarisk defoliation and measuring resulting changes in evapotranspiration over space and time. Tamarisk defoliation by Diorhabda has taken place during the past two summers along the Colorado River and its tributaries near Moab, Utah. We are using 15 meter spatial resolution Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and 250 meter spatial resolution Moderate Resolution Imaging Spectrometer (MODIS) data to monitor tamarisk defoliation. An ASTER normalized difference vegetation index (NDVI) time series has revealed large drops in index values associated with loss of leaf area due to defoliation. MODIS data have superior temporal monitoring abilities, but at the sacrifice of much lower spatial resolution. A MODIS enhanced vegetation index time series has revealed that for pixels where the percentage of riparian cover is moderate or high, defoliation is detectable even at 250 meter spatial resolution. We are comparing MODIS vegetation index time series to site measurements of leaf area and sap flux. We are also using an evapotranspiration model to scale potential water savings resulting from the biocontrol of tamarisk.

  5. Identifying Hail Signatures in Satellite Imagery from the 9-10 August 2011 Severe Weather Event

    NASA Technical Reports Server (NTRS)

    Dryden, Rachel L.; Molthan, Andrew L.; Cole, Tony A.; Bell, Jordan

    2014-01-01

    Severe thunderstorms can produce large hail that causes property damage, livestock fatalities, and crop failure. However, detailed storm surveys of hail damage conducted by the National Weather Service (NWS) are not required. Current gaps also exist between Storm Prediction Center (SPC) hail damage estimates and crop-insurance payouts. NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard the Terra and Aqua satellites can be used to support NWS damage assessments, particularly to crops during the growing season. The two-day severe weather event across western Nebraska and central Kansas during 9-10 August 2011 offers a case study for investigating hail damage signatures by examining changes in Normalized Difference Vegetation Index (NDVI) derived from MODIS imagery. By analyzing hail damage swaths in satellite imagery, potential economic losses due to crop damage can be quantified and further improve the estimation of weather impacts on agriculture without significantly increasing manpower requirements.

  6. Monitoring Invasive Aquatic Vegetation in Lake Okeechobee, Florida, Using NDVI Derived from Modis Data

    NASA Technical Reports Server (NTRS)

    Woods, Kate; Brozen, Madeline; Malik, Sadaf; Maki, Angela

    2009-01-01

    Lake Okeechobee, located in southern Florida, encompasses approximately 1,700 sq km and is a vital part of the Lake Okeechobee and Everglades ecosystem. Major cyanobacterial blooms have been documented in Lake Okeechobee since the 1970s and have continued to plague the ecosystem. Similarly, hydrilla, water hyacinth, and water lettuce have been documented in the lake and continue to threaten the ecosystem by their rapid growth. This study examines invasive aquatic vegetation occurrence through the use of the Normalized Difference Vegetation Index (NDVI) calculated on MOD09 surface reflectance imagery. Occurrence during 2008 was analyzed using the Time Series Product Tool (TSPT), a MATLAB-based program developed at John C. Stennis Space Center. This project tracked spatial and temporal variability of cyanobacterial blooms, and overgrowth of water lettuce, water hyacinth, and hydrilla. In addition, this study presents an application of Moderate Resolution Imaging Spectroradiometer (MODIS) data to assist in water quality management.

  7. Capability of MODIS radiance to analyze Iberian turbid plumes

    NASA Astrophysics Data System (ADS)

    Fernandez-Novoa, Diego; deCastro, Maite; Des, Marisela; Costoya, Xurxo; Mendes, Renato; Gomez-Gesteira, Moncho

    2017-04-01

    River plumes are formed near river mouths by freshwater and riverine materials. Therefore, the area influenced by freshwater (salinity plume) is usually negatively correlated with the area occupied by suspension and dissolved material (turbid plume). Suspended material results in a strong signal detected by satellite sensors whereas ocean clear waters have negligible contributions. Thus, remote sensing data, such as radiance obtained from Moderate Resolution Imaging Spectroradiometer (MODIS), are a very useful tool to analyze turbid plumes due to the high spatial and time resolution provided. Here, MODIS capability for characterizing similarities and differences among the most important Iberian plumes was assessed under the influence of their main forcing. Daily radiance data from MODIS-Aqua and MODIS-Terra satellite sensors were processed obtaining a resolution of 500 m. Two approaches are usually used for atmospheric correction treatments: Near-Infrared (NIR) bands and a combined algorithm using NIR and Short Wave Infrared (SWIR) bands. In the particular case of Iberian Peninsula plumes both methods offered similar results, although NIR bands present a lower associated error. MODIS allows working with several bands of normalized water-leaving radiances (nLw). Focusing in the resolution provided, nLw555 and 645 were the most appropriate because both provide the best coverage and correlation with river discharge. The nLw645 band was chosen because has a lower water penetration avoiding overestimations of turbidity caused by shallow seafloor areas and/or upwelling blooms. Daily data from both satellites were merged to enhance the robustness and precision of the study by increasing the number of available pixels. Results indicate that differences between radiance data from both satellites are negligible for Iberian plumes, justifying the merging. By last, each turbid limit, to delimit the respective plume from adjacent seawater, was obtained using two alternative methods. The first method evaluates the maximum correlation between river discharge and plume extension and the second one analyzes a histogram of radiance distribution for days characterized by a negligible plume and days showing a well-developed plume. The capability of MODIS radiance to delimit each river plume was tested by means of salinity data from Atlantic-Iberian Biscay Irish-Ocean Physics Reanalysis (IBI) database. Significant and negative correlations were found in the Atlantic Iberian plumes, showing the capability of MODIS to adequately track them. However, no correlation was found for Ebro River. This discrepancy is due to the presence of fresh water associated to other external sources (Rhone River), promoting low salinity values when Ebro discharge is low. In this particular case, the MODIS methodology is better to determine the river plume. In general, Atlantic Iberian plumes show a moderate or high dependence on river discharge, being wind a secondary forcing and tide the third one, although each plume presents particular features. On the other hand, Ebro plume has low dependence on river discharge and wind, and a negligible one on tide, being mainly driven for the Liguro-Provençal current.

  8. Reconciling Simulated and Observed Views of Clouds: MODIS, ISCCP, and the Limits or Instrument Simulators

    NASA Technical Reports Server (NTRS)

    Ackerman, Steven A.; Hemler, Richard S.; Hofman, Robert J. Patrick; Pincus, Robert; Platnick, Steven

    2011-01-01

    The properties of clouds that may be observed by satellite instruments, such as optical depth and cloud top pressure, are only loosely related to the way clouds m-e represented in models of the atmosphere. One way to bridge this gap is through "instrument simulators," diagnostic tools that map the model representation to synthetic observations so that differences between simulator output and observations can be interpreted unambiguously as model error. But simulators may themselves be restricted by limited information available from the host model or by internal assumptions. This paper considers the extent to which instrument simulators are able to capture essential differences between MODIS and ISCCP, two similar but independent estimates of cloud properties. The authors review the measurements and algorithms underlying these two cloud climatologies, introduce a MODIS simulator, and detail data sets developed for comparison with global models using ISCCP and MODIS simulators, In nature MODIS observes less mid-level doudines!> than ISCCP, consistent with the different methods used to determine cloud top pressure; aspects of this difference are reproduced by the simulators running in a climate modeL But stark differences between MODIS and ISCCP observations of total cloudiness and the distribution of cloud optical thickness can be traced to different approaches to marginal pixels, which MODIS excludes and ISCCP treats as homogeneous. These pixels, which likely contain broken clouds, cover about 15 k of the planet and contain almost all of the optically thinnest clouds observed by either instrument. Instrument simulators can not reproduce these differences because the host model does not consider unresolved spatial scales and so can not produce broken pixels. Nonetheless, MODIS and ISCCP observation are consistent for all but the optically-thinnest clouds, and models can be robustly evaluated using instrument simulators by excluding ambiguous observations.

  9. BRDF Characterization and Calibration Inter-Comparison between Terra MODIS, Aqua MODIS, and S-NPP VIIRS

    NASA Technical Reports Server (NTRS)

    Chang, Tiejun; Xiong, Xiaoxiong (Jack); Angal, Amit; Wu, Aisheng

    2016-01-01

    The inter-comparison of reflective solar bands (RSB) between Terra MODIS, Aqua MODIS, and SNPP VIIRS is very important for assessment of each instrument's calibration and to identify calibration improvements. One of the limitations of using their ground observations for the assessment is a lack of the simultaneous nadir overpasses (SNOs) over selected pseudo-invariant targets. In addition, their measurements over a selected Earth view target have significant difference in solar and view angles, and these differences magnify the effects of Bidirectional Reflectance Distribution Function (BRDF). In this work, an inter-comparison technique using a semi-empirical BRDF model is developed for reflectance correction. BRDF characterization requires a broad coverage of solar and view angles in the measurements over selected pseudo-invariant targets. Reflectance measurements over Libya 1, 2, and 4 desert sites from both the Aqua and Terra MODIS are regressed to a BRDF model with an adjustable coefficient accounting for the calibration difference between the two instruments. The BRDF coefficients for three desert sites for MODIS bands 1 to 9 are derived and the wavelength dependencies are presented. The analysis and inter-comparison are for MODIS bands 1 to 9 and VIIRS moderate resolution radiometric bands (M bands) M1, M2, M4, M5, M7, M8, M10 and imaging bands (I bands) I1-I3. Results show that the ratios from different sites are in good agreement. The ratios between Terra and Aqua MODIS from year 2003 to 2014 are presented. The inter-comparison between MODIS and VIIRS are analyzed for year 2014.

  10. Characterization of drought patterns through remote sensing over The Chihuahua Desert, Mexico"

    NASA Astrophysics Data System (ADS)

    Madrigal, J. M.; Lopez, A.; Garatuza, J.

    2013-12-01

    Drought is a phenomenon that has intensified during the last few decades in the arid and semi-arid zones of northern Mexico. In the Chihuahua desert, across Chihuahua, Durango and Coahuila states has caused loss of food sustainability (agriculture, livestock), an increase in human health problems, and detriment of ecosystem services as well as important economic losses. In order to understand this phenomenon, it is necessary to create tools that allow monitoring the territory's spatial heterogeneity and multi-temporality. With this purpose we propose the implementation of a drought model which includes the traditional indexes of climatic drought, such as the Palmer Drought Severity Index PDSI, the Standardized Index of Rainfall SPI, data from meteorological stations and biophysical variations obtained from the MODIS sensors product MOD13 NDVI from 2001 to 2010, as well as biophysical variables characteristic of the environment, such as land use and vegetation coverage, Eco-regions, soil moisture, digital elevation model and irrigate agriculture districts. With the MODIS images, a spatially coherent time series was created analyzing the study area's phenology (TIMESAT) created the Seasonal Greenness (SG) and Start of Season Anomaly (SOSA) for the mentioned nine years. Through this, the annual cycles were established. With a decision tree model, all the previously mentioned proposed variables were integrated. The proposed model produces a general map which characterizes the vegetation condition (extreme drought, severe drought, moderate drought, near normal). Even though different techniques have been proposed on the monitoring of droughts, most of them generate drought indexes with a spatial resolution of 1km (Wardlow, B. et. al 2008; Levent T. et al. 2013). One of the main concerns of researchers on the matter is on improving the spatial information content and on having a better representation of the phenomenon. We use the normalized difference vegetation index (NDVI) data acquired by MODIS instead of the Advanced Very High Resolution Radiometer (AVHRR). The results show a better drought pattern characterization over The Chihuahua Desert, Mexico". The future work will consist of making a sensibility and optimization study of the variables used in the CART model, including others such as evapotranspiration and rainfall. Additionally, this work will research on the potential of using Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI).

  11. Characterization of beta cell and incretin function in patients with MODY1 (HNF4A MODY) and MODY3 (HNF1A MODY) in a Swedish patient collection.

    PubMed

    Ekholm, E; Shaat, N; Holst, J J

    2012-10-01

    The aim of this study was to evaluate the beta cell and incretin function in patients with HNF4A and HNF1A MODY during a test meal. Clinical characteristics and biochemical data (glucose, proinsulin, insulin, C-peptide, GLP-1 and GIP) during a test meal were compared between MODY patients from eight different families. BMI-matched T2D and healthy subjects were used as two separate control groups. The early phase of insulin secretion was attenuated in HNF4A, HNF1A MODY and T2D (AUC0-30 controls: 558.2 ± 101.2, HNF4A MODY: 93.8 ± 57.0, HNF1A MODY: 170.2 ± 64.5, T2D: 211.2 ± 65.3, P < 0.01). Markedly reduced levels of proinsulin were found in HNF4A MODY compared to T2D and that tended to be so also in HNF1A MODY (HNF4A MODY: 3.7 ± 1.2, HNF1A MODY: 8.3 ± 3.8 vs. T2D: 26.6 ± 14.3). Patients with HNF4A MODY had similar total GLP-1 and GIP responses as controls (GLP-1 AUC: (control: 823.9 ± 703.8, T2D: 556.4 ± 698.2, HNF4A MODY: 1,257.0 ± 999.3, HNF1A MODY: 697.1 ± 818.4) but with a different secretion pattern. The AUC insulin during the test meal was strongly correlated with the GIP secretion (Correlation coefficient 1.0, P < 0.001). No such correlation was seen for insulin and GLP-1. Patients with HNF4A and HNF1A MODY showed an attenuated early phase of insulin secretion similar to T2Ds. AUC insulin during the test meal was strongly correlated with GIP secretion, whereas no such correlation was seen for insulin and GLP-1. Thus, GIP may be a more important factor for insulin secretion than GLP-1 in MODY patients.

  12. Using NASA's Interactive Visualization and Image Extraction Tool AppEEARS to Assess Differences between MODIS and VIIRS

    NASA Astrophysics Data System (ADS)

    Neeley, S.

    2017-12-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) sensor aboard the Suomi-NPP satellite is designed to provide data continuity with the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors aboard NASA's Terra and Aqua satellites. VIIRS data products are generated in a similar format as MODIS using modified algorithms and aim to extend the data lifecycle of MODIS products, which are widely used in a variety of scientific disciplines. However, there are differences in the characteristics of the instruments that could influence decision making when conducting a study involving a combination of products from both sensors. Inter-sensor comparison studies between VIIRS and MODIS have highlighted some of the inconsistencies between the sensors, including calibrated radiances, pixel sizes, swath widths, and spectral response functions of the bands. These differences should be well-understood among the science community as these inconsistencies could potentially effect the results of time-series analyses or land change studies that rely on using VIIRS and MODIS data products in combination. An efficient method to identify and better understand differences between data products will allow for the science community to make informed decisions when conducting analyses using a combination of VIIRS and MODIS data products. NASA's Application for Extracting and Exploring Analysis Ready Samples (AppEEARS) tool enables users to efficiently compare MODIS and VIIRS data products, including surface reflectance from 2012 to present. AppEEARS is a user-friendly image extraction tool used to order spatial and temporal data subsets, reproject data, and visualize output sample results before data download. AppEEARs allows users to compare MODIS and VIIRS data products by providing interactive visualizations and summary statistics of each dataset-either over a specific point or region of interest across a period of time. This tool enhances decision-making when using newly available VIIRS products combined with MODIS as it allows for data inconsistencies to be explored before the data is downloaded. Here, we demonstrate how AppEEARS enables users to perform comparisons across VIIRS and MODIS Surface Reflectance products and provide a detailed review of characteristic differences between the instruments.

  13. Flooding of the Ob River, Russia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A mixture of heavy rainfall, snowmelt, and ice jams in late May and early June of this year caused the Ob River and surrounding tributaries in Western Siberia to overflow their banks. The flooding can be seen in thess image taken on June 16, 2002, by the MODIS (Moderate Resolution Imaging Spectroradiometer) instrument aboard the Terra satellite. Last year, the river flooded farther north. Normally, the river resembles a thin black line, but floods have swollen the river considerably. Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

  14. Progress towards NASA MODIS and Suomi NPP Cloud Property Data Record Continuity

    NASA Astrophysics Data System (ADS)

    Platnick, S.; Meyer, K.; Holz, R.; Ackerman, S. A.; Heidinger, A.; Wind, G.; Platnick, S. E.; Wang, C.; Marchant, B.; Frey, R.

    2017-12-01

    The Suomi NPP VIIRS imager provides an opportunity to extend the 17+ year EOS MODIS climate data record into the next generation operational era. Similar to MODIS, VIIRS provides visible through IR observations at moderate spatial resolution with a 1330 LT equatorial crossing consistent with the MODIS on the Aqua platform. However, unlike MODIS, VIIRS lacks key water vapor and CO2 absorbing channels used for high cloud detection and cloud-top property retrievals. In addition, there is a significant mismatch in the spectral location of the 2.2 μm shortwave-infrared channels used for cloud optical/microphysical retrievals and cloud thermodynamic phase. Given these instrument differences between MODIS EOS and VIIRS S-NPP/JPSS, a merged MODIS-VIIRS cloud record to serve the science community in the coming decades requires different algorithm approaches than those used for MODIS alone. This new approach includes two parallel efforts: (1) Imager-only algorithms with only spectral channels common to VIIRS and MODIS (i.e., eliminate use of MODIS CO2 and NIR/IR water vapor channels). Since the algorithms are run with similar spectral observations, they provide a basis for establishing a continuous cloud data record across the two imagers. (2) Merged imager and sounder measurements (i.e.., MODIS-AIRS, VIIRS-CrIS) in lieu of higher-spatial resolution MODIS absorption channels absent on VIIRS. The MODIS-VIIRS continuity algorithm for cloud optical property retrievals leverages heritage algorithms that produce the existing MODIS cloud mask (MOD35), optical and microphysical properties product (MOD06), and the NOAA AWG Cloud Height Algorithm (ACHA). We discuss our progress towards merging the MODIS observational record with VIIRS in order to generate cloud optical property climate data record continuity across the observing systems. In addition, we summarize efforts to reconcile apparent radiometric biases between analogous imager channels, a critical consideration for obtaining inter-sensor climate data record continuity.

  15. Ocean Primary Production Estimates from Terra MODIS and Their Dependency on Satellite Chlorophyll Alpha Algorithms

    NASA Technical Reports Server (NTRS)

    Essias, Wayne E.; Abbott, Mark; Carder, Kendall; Campbell, Janet; Clark, Dennis; Evans, Robert; Brown, Otis; Kearns, Ed; Kilpatrick, Kay; Balch, W.

    2003-01-01

    Simplistic models relating global satellite ocean color, temperature, and light to ocean net primary production (ONPP) are sensitive to the accuracy and limitations of the satellite estimate of chlorophyll and other input fields, as well as the primary productivity model. The standard MODIS ONPP product uses the new semi-analytic chlorophyll algorithm as its input for two ONPP indexes. The three primary MODIS chlorophyll Q estimates from MODIS, as well as the SeaWiFS 4 chlorophyll product, were used to assess global and regional performance in estimating ONPP for the full mission, but concentrating on 2001. The two standard ONPP algorithms were examined with 8-day and 39 kilometer resolution to quantify chlorophyll algorithm dependency of ONPP. Ancillary data (MLD from FNMOC, MODIS SSTD1, and PAR from the GSFC DAO) were identical. The standard MODIS ONPP estimates for annual production in 2001 was 59 and 58 GT C for the two ONPP algorithms. Differences in ONPP using alternate chlorophylls were on the order of 10% for global annual ONPP, but ranged to 100% regionally. On all scales the differences in ONPP were smaller between MODIS and SeaWiFS than between ONPP models, or among chlorophyll algorithms within MODIS. Largest regional ONPP differences were found in the Southern Ocean (SO). In the SO, application of the semi-analytic chlorophyll resulted in not only a magnitude difference in ONPP (2x), but also a temporal shift in the time of maximum production compared to empirical algorithms when summed over standard oceanic areas. The resulting increase in global ONPP (6-7 GT) is supported by better performance of the semi-analytic chlorophyll in the SO and other high chlorophyll regions. The differences are significant in terms of understanding regional differences and dynamics of ocean carbon transformations.

  16. Reconstructed Solar-Induced Fluorescence: A Machine Learning Vegetation Product Based on MODIS Surface Reflectance to Reproduce GOME-2 Solar-Induced Fluorescence

    NASA Astrophysics Data System (ADS)

    Gentine, P.; Alemohammad, S. H.

    2018-04-01

    Solar-induced fluorescence (SIF) observations from space have resulted in major advancements in estimating gross primary productivity (GPP). However, current SIF observations remain spatially coarse, infrequent, and noisy. Here we develop a machine learning approach using surface reflectances from Moderate Resolution Imaging Spectroradiometer (MODIS) channels to reproduce SIF normalized by clear sky surface irradiance from the Global Ozone Monitoring Experiment-2 (GOME-2). The resulting product is a proxy for ecosystem photosynthetically active radiation absorbed by chlorophyll (fAPARCh). Multiplying this new product with a MODIS estimate of photosynthetically active radiation provides a new MODIS-only reconstruction of SIF called Reconstructed SIF (RSIF). RSIF exhibits much higher seasonal and interannual correlation than the original SIF when compared with eddy covariance estimates of GPP and two reference global GPP products, especially in dry and cold regions. RSIF also reproduces intense productivity regions such as the U.S. Corn Belt contrary to typical vegetation indices and similarly to SIF.

  17. Combining SMOS with visible and near/shortwave/thermal infrared satellite data for high resolution soil moisture estimates

    NASA Astrophysics Data System (ADS)

    Sánchez-Ruiz, Sergio; Piles, María; Sánchez, Nilda; Martínez-Fernández, José; Vall-llossera, Mercè; Camps, Adriano

    2014-08-01

    Sensors in the range of visible and near-shortwave-thermal infrared regions can be used in combination with passive microwave observations to provide soil moisture maps at much higher spatial resolution than the original resolution of current radiometers. To do so, a new downscaling algorithm ultimately based on the land surface temperature (LST) - Normalized Difference Vegetation Index (NDVI) - Brightness Temperature (TB) relationship is used, in which shortwave infrared indices are used as vegetation descriptors, instead of the more common near infrared ones. The theoretical basis of those indices, calculated as the normalized ratio of the 1240, 1640 and 2130 nm shortwave infrared (SWIR) bands and the 858 nm near infrared (NIR) band indicate that they are able to provide estimates of the vegetation water content. These so-called water indices extracted from MODIS products, have been used together with MODIS LST, and SMOS TB to improve the spatial resolution of ∼40 km SMOS soil moisture estimates. The aim was to retrieve soil moisture maps with the same accuracy as SMOS, but at the same resolution of the MODIS dataset, i.e., 500 m, which were then compared against in situ measurements from the REMEDHUS network in Spain. Results using two years of SMOS and MODIS data showed a similar performance for the four indices, with slightly better results when using the index derived from the first SWIR band. For the areal-average, a coefficient of correlation (R) of ∼0.61 and ∼0.72 for the morning and afternoon orbits, respectively, and a centered root mean square difference (cRMSD) of ∼0.04 m3 m-3 for both orbits was obtained. A twofold improvement of the current versions of this downscaling approach has been achieved by using more frequent and higher spatial resolution water indexes as vegetation descriptors: (1) the spatial resolution of the resulting soil moisture maps can be enhanced from ∼40 km up to 500 m, and (2) more accurate soil moisture maps (in terms of R and cRMSD) can be obtained, especially in periods of high vegetation activity. The results of this study support the use of high resolution LST and SWIR-based vegetation indices to disaggregate SMOS observations down to 500 m soil moisture maps, meeting the needs of fine-scale hydrological applications.

  18. MODIS. Volume 2: MODIS level 1 geolocation, characterization and calibration algorithm theoretical basis document, version 1

    NASA Technical Reports Server (NTRS)

    Barker, John L.; Harnden, Joann M. K.; Montgomery, Harry; Anuta, Paul; Kvaran, Geir; Knight, ED; Bryant, Tom; Mckay, AL; Smid, Jon; Knowles, Dan, Jr.

    1994-01-01

    The EOS Moderate Resolution Imaging Spectrometer (MODIS) is being developed by NASA for flight on the Earth Observing System (EOS) series of satellites, the first of which (EOS-AM-1) is scheduled for launch in 1998. This document describes the algorithms and their theoretical basis for the MODIS Level 1B characterization, calibration, and geolocation algorithms which must produce radiometrically, spectrally, and spatially calibrated data with sufficient accuracy so that Global change research programs can detect minute changes in biogeophysical parameters. The document first describes the geolocation algorithm which determines geodetic latitude, longitude, and elevation of each MODIS pixel and the determination of geometric parameters for each observation (satellite zenith angle, satellite azimuth, range to the satellite, solar zenith angle, and solar azimuth). Next, the utilization of the MODIS onboard calibration sources, which consist of the Spectroradiometric Calibration Assembly (SRCA), Solar Diffuser (SD), Solar Diffuser Stability Monitor (SDSM), and the Blackbody (BB), is treated. Characterization of these sources and integration of measurements into the calibration process is described. Finally, the use of external sources, including the Moon, instrumented sites on the Earth (called vicarious calibration), and unsupervised normalization sites having invariant reflectance and emissive properties is treated. Finally, algorithms for generating utility masks needed for scene-based calibration are discussed. Eight appendices are provided, covering instrument design and additional algorithm details.

  19. HNF1 alpha gene coding regions mutations screening, in a Caucasian population clinically characterized as MODY from Argentina.

    PubMed

    Lopez, Ariel Pablo; Foscaldi, Sabrina Andrea; Perez, Maria Silvia; Rodriguez, Martín; Traversa, Mercedes; Puchulu, Félix Miguel; Bergada, Ignacio; Frechtel, Gustavo Daniel

    2011-02-01

    There are at least six subtypes of Maturity Onset Diabetes of the Young (MODY) with distinctive genetic causes. MODY 3 is caused by mutations in HNF1A gene, an insulin transcription factor, so mutations in this gene are associated with impaired insulin secretion. MODY 3 prevalence differs according to the population analyzed, but it is one of the most frequent subtypes. Therefore, our aims in this work were to find mutations present in the HNF1A gene and provide information on their prevalence. Mutations screening was done in a group of 80 unrelated patients (average age 17.1 years) selected by clinical characterization of MODY, by SSCP electrophoresis followed by sequenciation. We found eight mutations, of which six were novel and four sequence variants, which were all novel. Therefore the prevalence of MODY 3 in this group was 10%. Compared clinical data between the non-MODY 3 patients and the MODY 3 diagnosed patients did not show any significant difference. Eight patients were diagnosed as MODY 3 and new data about the prevalence of that subtype is provided. Our results contribute to reveal novel mutations, providing new data about the prevalence of that subtype. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  20. Directional effects on NDVI and LAI retrievals from MODIS: A case study in Brazil with soybean

    NASA Astrophysics Data System (ADS)

    Breunig, Fábio Marcelo; Galvão, Lênio Soares; Formaggio, Antônio Roberto; Epiphanio, José Carlos Neves

    2011-02-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) is largely used to estimate Leaf Area Index (LAI) using radiative transfer modeling (the "main" algorithm). When this algorithm fails for a pixel, which frequently occurs over Brazilian soybean areas, an empirical model (the "backup" algorithm) based on the relationship between the Normalized Difference Vegetation Index (NDVI) and LAI is utilized. The objective of this study is to evaluate directional effects on NDVI and subsequent LAI estimates using global (biome 3) and local empirical models, as a function of the soybean development in two growing seasons (2004-2005 and 2005-2006). The local model was derived from the pixels that had LAI values retrieved from the main algorithm. In order to keep the reproductive stage for a given cultivar as a constant factor while varying the viewing geometry, pairs of MODIS images acquired in close dates from opposite directions (backscattering and forward scattering) were selected. Linear regression relationships between the NDVI values calculated from these two directions were evaluated for different view angles (0-25°; 25-45°; 45-60°) and development stages (<45; 45-90; >90 days after planting). Impacts on LAI retrievals were analyzed. Results showed higher reflectance values in backscattering direction due to the predominance of sunlit soybean canopy components towards the sensor and higher NDVI values in forward scattering direction due to stronger shadow effects in the red waveband. NDVI differences between the two directions were statistically significant for view angles larger than 25°. The main algorithm for LAI estimation failed in the two growing seasons with gradual crop development. As a result, up to 94% of the pixels had LAI values calculated from the backup algorithm at the peak of canopy closure. Most of the pixels selected to compose the 8-day MODIS LAI product came from the forward scattering view because it displayed larger LAI values than the backscattering. Directional effects on the subsequent LAI retrievals were stronger at the peak of the soybean development (NDVI values between 0.70 and 0.85). When the global empirical model was used, LAI differences up to 3.2 for consecutive days and opposite viewing directions were observed. Such differences were reduced to values up to 1.5 with the local model. Because of the predominance of LAI retrievals from the MODIS backup algorithm during the Brazilian soybean development, care is necessary if one considers using these data in agronomic growing/yield models.

  1. Seasonal nitrate algorithms for nitrate retrieval using OCEANSAT-2 and MODIS-AQUA satellite data.

    PubMed

    Durairaj, Poornima; Sarangi, Ranjit Kumar; Ramalingam, Shanthi; Thirunavukarassu, Thangaradjou; Chauhan, Prakash

    2015-04-01

    In situ datasets of nitrate, sea surface temperature (SST), and chlorophyll a (chl a) collected during the monthly coastal samplings and organized cruises along the Tamilnadu and Andhra Pradesh coast between 2009 and 2013 were used to develop seasonal nitrate algorithms. The nitrate algorithms have been built up based on the three-dimensional regressions between SST, chl a, and nitrate in situ data using linear, Gaussian, Lorentzian, and paraboloid function fittings. Among these four functions, paraboloid was found to be better with the highest co-efficient of determination (postmonsoon: R2=0.711, n=357; summer: R2=0.635, n=302; premonsoon: R2=0.829, n=249; and monsoon: R2=0.692, n=272) for all seasons. Based on these fittings, seasonal nitrate images were generated using the concurrent satellite data of SST from Moderate Resolution Imaging Spectroradiometer (MODIS) and chlorophyll (chl) from Ocean Color Monitor (OCM-2) and MODIS. The best retrieval of modeled nitrate (R2=0.527, root mean square error (RMSE)=3.72, and mean normalized bias (MNB)=0.821) was observed for the postmonsoon season due to the better retrieval of both SST MODIS (28 February 2012, R2=0.651, RMSE=2.037, and MNB=0.068) and chl OCM-2 (R2=0.534, RMSE=0.317, and MNB=0.27). Present results confirm that the chl OCM-2 and SST MODIS retrieve nitrate well than the MODIS-derived chl and SST largely due to the better retrieval of chl by OCM-2 than MODIS.

  2. Creating a consistent dark-target aerosol optical depth record from MODIS and VIIRS

    NASA Astrophysics Data System (ADS)

    Levy, R. C.; Mattoo, S.; Munchak, L. A.; Patadia, F.; Holz, R.

    2014-12-01

    To answer fundamental questions about our changing climate, we must quantify how aerosols are changing over time. This is a global question that requires regional characterization, because in some places aerosols are increasing and in others they are decreasing. Although NASA's Moderate resolution Imaging Spectrometer (MODIS) sensors have provided quantitative information about global aerosol optical depth (AOD) for more than a decade, the creation of an aerosol climate data record (CDR) requires consistent multi-decadal data. With the Visible and Infrared Imaging Radiometer Suite (VIIRS) aboard Suomi-NPP, there is potential to continue the MODIS aerosol time series. Yet, since the operational VIIRS aerosol product is produced by a different algorithm, it is not suitable to continue MODIS to create an aerosol CDR. Therefore, we have applied the MODIS Dark-target (DT) algorithm to VIIRS observations, taking into account the slight differences in wavelengths, resolutions and geometries between the two sensors. More specifically, we applied the MODIS DT algorithm to a dataset known as the Intermediate File Format (IFF), created by the University of Wisconsin. The IFF is produced for both MODIS and VIIRS, with the idea that a single (MODIS-like or ML) algorithm can be run either dataset, which can in turn be compared to the MODIS Collection 6 (M6) retrieval that is run on standard MODIS data. After minimizing or characterizing remaining differences between ML on MODIS-IFF (or ML-M) and M6, we have performed apples-to-apples comparison between ML-M and ML on VIIRS IFF (ML-V). Examples of these comparisons include time series of monthly global mean, monthly and seasonal global maps at 1° resolution, and collocations as compared to AERONET. We concentrate on the overlapping period January 2012 through June 2014, and discuss some of the remaining discrepancies between the ML-V and ML-M datasets.

  3. Circulating ghrelin level is higher in HNF1A-MODY and GCK-MODY than in polygenic forms of diabetes mellitus.

    PubMed

    Nowak, Natalia; Hohendorff, Jerzy; Solecka, Iwona; Szopa, Magdalena; Skupien, Jan; Kiec-Wilk, Beata; Mlynarski, Wojciech; Malecki, Maciej T

    2015-12-01

    Ghrelin is a hormone that regulates appetite. It is likely to be involved in the pathophysiology of varying forms of diabetes. In animal studies, the ghrelin expression was regulated by the hepatocyte nuclear factor 1 alpha (HNF1A). Mutations of the HNF1A gene cause maturity onset diabetes of the young (MODY). We aimed to assess the circulating ghrelin levels in HNF1A-MODY and in other types of diabetes and to evaluate its association with HNF1A mutation status. Our cohort included 46 diabetic HNF1A gene mutation carriers, 55 type 2 diabetes (T2DM) subjects, 42 type 1 diabetes (T1DM) patients, and 31 glucokinase (GCK) gene mutation carriers with diabetes as well as 51 healthy controls. Plasma ghrelin concentration was measured using the immunoenzymatic assay with polyclonal antibody against the C-terminal fragment of its acylated and desacylated forms. Ghrelin concentrations were 0.75 ± 0.32, 0.70 ± 0.21, 0.50 ± 0.20, and 0.40 ± 0.16 ng/ml in patients with HNF1A-MODY, GCK-MODY, T1DM, and T2DM, respectively. The ghrelin levels were higher in HNF1A-MODY and GCK-MODY than in T1DM and T2DM (p < 0.001 for all comparisons) but lower than in non-diabetic controls (1.02 ± 0.29 ng/ml, p < 0.001 for both comparisons). In the multivariate linear model, the differences between both MODY groups and common diabetes types remained significant. Analysis by a HNF1A mutation type indicated that ghrelin concentration is similar in patients with different types of sequence differences. Plasma ghrelin level is higher in HNF1A-MODY and GCK-MODY than in the common polygenic forms of diabetes.

  4. Comparison between MODIS-derived day and night cloud cover and surface observations over the North China Plain

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Tan, Saichun; Shi, Guangyu

    2018-02-01

    Satellite and human visual observation are two of the most important observation approaches for cloud cover. In this study, the total cloud cover (TCC) observed by MODIS onboard the Terra and Aqua satellites was compared with Synop meteorological station observations over the North China Plain and its surrounding regions for 11 years during daytime and 7 years during nighttime. The Synop data were recorded eight times a day at 3-h intervals. Linear interpolation was used to interpolate the Synop data to the MODIS overpass time in order to reduce the temporal deviation between the satellite and Synop observations. Results showed that MODIS-derived TCC had good consistency with the Synop observations; the correlation coefficients ranged from 0.56 in winter to 0.73 in summer for Terra MODIS, and from 0.55 in winter to 0.71 in summer for Aqua MODIS. However, they also had certain differences. On average, the MODIS-derived TCC was 15.16% higher than the Synop data, and this value was higher at nighttime (15.58%-16.64%) than daytime (12.74%-14.14%). The deviation between the MODIS and Synop TCC had large seasonal variation, being largest in winter (29.53%-31.07%) and smallest in summer (4.46%-6.07%). Analysis indicated that cloud with low cloud-top height and small cloud optical thickness was more likely to cause observation bias. Besides, an increase in the satellite view zenith angle, aerosol optical depth, or snow cover could lead to positively biased MODIS results, and this affect differed among different cloud types.

  5. Surface Characteristics of Green Island Wakes from Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Cheng, Kai-Ho; Hsu, Po-Chun; Ho, Chung-Ru

    2017-04-01

    Characteristics of an island wake induced by the Kuroshio Current flows pass by Green Island, a small island 40 km off southeast of Taiwan is investigated by the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery. The MODIS sea surface temperature (SST) and chlorophyll-a (chl-a) imagery is produced at 250-meter resolution from 2014 to 2015 using the SeaDAS software package which is developed by the National Aeronautics and Space Administration. The wake occurrence is 59% observed from SST images during the data span. The average cooling area is 190 km2, but the area is significantly changed with wind directions. The wake area is increased during southerly winds and is reduced during northerly winds. Besides, the average cooling SST was about 2.1 oC between the front and rear island. Comparing the temperature difference between the wake and its left side, the difference is 1.96 oC. In addition, the wakes have 1 3 times higher than normal in chlorophyll concentration. The results indicate the island mass effect makes the surface water of Green island wake colder and chl-a higher.

  6. The dynamic monitoring of aeolian desertification land distribution and its response to climate change in northern China

    NASA Astrophysics Data System (ADS)

    Feng, Lili; Jia, Zhiqing; Li, Qingxue

    2016-12-01

    Aeolian desertification is poorly understood despite its importance for indicating environment change. Here we exploit Gaofen-1(GF-1) and Moderate Resolution Imaging Spectroradiometer (MODIS) data to develop a quick and efficient method for large scale aeolian desertification dynamic monitoring in northern China. This method, which is based on Normalized Difference Desertification Index (NDDI) calculated by band1 & band2 of MODIS reflectance data (MODIS09A1). Then we analyze spatial-temporal change of aeolian desertification area and detect its possible influencing factors, such as precipitation, temperature, wind speed and population by Convergent Cross Mapping (CCM) model. It suggests that aeolian desertification area with population indicates feedback (bi-directional causality) between the two variables (P < 0.05), but forcing of aeolian desertification area by population is weak. Meanwhile, we find aeolian desertification area is significantly affected by temperature, as expected. However, there is no obvious forcing for the aeolian desertification area and precipitation. Aeolian desertification area with wind speed indicates feedback (bi-directional causality) between the two variables with significant signal (P < 0.01). We infer that aeolian desertification is greatly affected by natural factors compared with anthropogenic factors. For the desertification in China, we are greatly convinced that desertification prevention is better than control.

  7. The dynamic monitoring of aeolian desertification land distribution and its response to climate change in northern China

    PubMed Central

    Feng, Lili; Jia, Zhiqing; Li, Qingxue

    2016-01-01

    Aeolian desertification is poorly understood despite its importance for indicating environment change. Here we exploit Gaofen-1(GF-1) and Moderate Resolution Imaging Spectroradiometer (MODIS) data to develop a quick and efficient method for large scale aeolian desertification dynamic monitoring in northern China. This method, which is based on Normalized Difference Desertification Index (NDDI) calculated by band1 & band2 of MODIS reflectance data (MODIS09A1). Then we analyze spatial-temporal change of aeolian desertification area and detect its possible influencing factors, such as precipitation, temperature, wind speed and population by Convergent Cross Mapping (CCM) model. It suggests that aeolian desertification area with population indicates feedback (bi-directional causality) between the two variables (P < 0.05), but forcing of aeolian desertification area by population is weak. Meanwhile, we find aeolian desertification area is significantly affected by temperature, as expected. However, there is no obvious forcing for the aeolian desertification area and precipitation. Aeolian desertification area with wind speed indicates feedback (bi-directional causality) between the two variables with significant signal (P < 0.01). We infer that aeolian desertification is greatly affected by natural factors compared with anthropogenic factors. For the desertification in China, we are greatly convinced that desertification prevention is better than control. PMID:28004798

  8. Estimating of gross primary production in an Amazon-Cerrado transitional forest using MODIS and Landsat imagery.

    PubMed

    Danelichen, Victor H M; Biudes, Marcelo S; Velasque, Maísa C S; Machado, Nadja G; Gomes, Raphael S R; Vourlitis, George L; Nogueira, José S

    2015-09-01

    The acceleration of the anthropogenic activity has increased the atmospheric carbon concentration, which causes changes in regional climate. The Gross Primary Production (GPP) is an important variable in the global carbon cycle studies, since it defines the atmospheric carbon extraction rate from terrestrial ecosystems. The objective of this study was to estimate the GPP of the Amazon-Cerrado Transitional Forest by the Vegetation Photosynthesis Model (VPM) using local meteorological data and remote sensing data from MODIS and Landsat 5 TM reflectance from 2005 to 2008. The GPP was estimated using Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) calculated by MODIS and Landsat 5 TM images. The GPP estimates were compared with measurements in a flux tower by eddy covariance. The GPP measured in the tower was consistent with higher values during the wet season and there was a trend to increase from 2005 to 2008. The GPP estimated by VPM showed the same increasing trend observed in measured GPP and had high correlation and Willmott's coefficient and low error metrics in comparison to measured GPP. These results indicated high potential of the Landsat 5 TM images to estimate the GPP of Amazon-Cerrado Transitional Forest by VPM.

  9. Spatiotemporal dynamics of grassland aboveground biomass on the Qinghai-Tibet Plateau based on validated MODIS NDVI.

    PubMed

    Liu, Shiliang; Cheng, Fangyan; Dong, Shikui; Zhao, Haidi; Hou, Xiaoyun; Wu, Xue

    2017-06-23

    Spatiotemporal dynamics of aboveground biomass (AGB) is a fundamental problem for grassland environmental management on the Qinghai-Tibet Plateau (QTP). Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data can feasibly be used to estimate AGB at large scales, and their precise validation is necessary to utilize them effectively. In our study, the clip-harvest method was used at 64 plots in QTP grasslands to obtain actual AGB values, and a handheld hyperspectral spectrometer was used to calculate field-measured NDVI to validate MODIS NDVI. Based on the models between NDVI and AGB, AGB dynamics trends during 2000-2012 were analyzed. The results showed that the AGB in QTP grasslands increased during the study period, with 70% of the grasslands undergoing increases mainly in the Qinghai Province. Also, the meadow showed a larger increasing trend than steppe. Future AGB dynamic trends were also investigated using a combined analysis of the slope values and the Hurst exponent. The results showed high sustainability of AGB dynamics trends after the study period. Predictions indicate 60% of the steppe and meadow grasslands would continue to increase in AGB, while 25% of the grasslands would remain in degradation, with most of them distributing in Tibet.

  10. Potential of VIIRS Time Series Data for Aiding the USDA Forest Service Early Warning System for Forest Health Threats: A Gypsy Moth Defoliation Case Study

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph P.; Ryan, Robert E.; Smoot, James; Kuper, Phillip; Prados, Donald; Russell, Jeffrey; Ross, Kenton; Gasser, Gerald; Sader, Steven; McKellip, Rodney

    2007-01-01

    This report details one of three experiments performed during FY 2007 for the NASA RPC (Rapid Prototyping Capability) at Stennis Space Center. This RPC experiment assesses the potential of VIIRS (Visible/Infrared Imager/Radiometer Suite) and MODIS (Moderate Resolution Imaging Spectroradiometer) data for detecting and monitoring forest defoliation from the non-native Eurasian gypsy moth (Lymantria dispar). The intent of the RPC experiment was to assess the degree to which VIIRS data can provide forest disturbance monitoring information as an input to a forest threat EWS (Early Warning System) as compared to the level of information that can be obtained from MODIS data. The USDA Forest Service (USFS) plans to use MODIS products for generating broad-scaled, regional monitoring products as input to an EWS for forest health threat assessment. NASA SSC is helping the USFS to evaluate and integrate currently available satellite remote sensing technologies and data products for the EWS, including the use of MODIS products for regional monitoring of forest disturbance. Gypsy moth defoliation of the mid-Appalachian highland region was selected as a case study. Gypsy moth is one of eight major forest insect threats listed in the Healthy Forest Restoration Act (HFRA) of 2003; the gypsy moth threatens eastern U.S. hardwood forests, which are also a concern highlighted in the HFRA of 2003. This region was selected for the project because extensive gypsy moth defoliation occurred there over multiple years during the MODIS operational period. This RPC experiment is relevant to several nationally important mapping applications, including agricultural efficiency, coastal management, ecological forecasting, disaster management, and carbon management. In this experiment, MODIS data and VIIRS data simulated from MODIS were assessed for their ability to contribute broad, regional geospatial information on gypsy moth defoliation. Landsat and ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) data were used to assess the quality of gypsy moth defoliation mapping products derived from MODIS data and from simulated VIIRS data. The project focused on use of data from MODIS Terra as opposed to MODIS Aqua mainly because only MODIS Terra data was collected during 2000 and 2001-years with comparatively high amounts of gypsy moth defoliation within the study area. The project assessed the quality of VIIRS data simulation products. Hyperion data was employed to assess the quality of MODIS-based VIIRS simulation datasets using image correlation analysis techniques. The ART (Application Research Toolbox) software was used for data simulation. Correlation analysis between MODIS-simulated VIIRS data and Hyperion-simulated VIIRS data for red, NIR (near-infrared), and NDVI (Normalized Difference Vegetation Index) image data products collectively indicate that useful, effective VIIRS simulations can be produced using Hyperion and MODIS data sources. The r(exp 2) for red, NIR, and NDVI products were 0.56, 0.63, and 0.62, respectively, indicating a moderately high correlation between the 2 data sources. Temporal decorrelation from different data acquisition times and image misregistration may have lowered correlation results. The RPC experiment also generated MODIS-based time series data products using the TSPT (Time Series Product Tool) software. Time series of simulated VIIRS NDVI products were produced at approximately 400-meter resolution GSD (Ground Sampling Distance) at nadir for comparison to MODIS NDVI products at either 250- or 500-meter GSD. The project also computed MODIS (MOD02) NDMI (Normalized Difference Moisture Index) products at 500-meter GSD for comparison to NDVI-based products. For each year during 2000-2006, MODIS and VIIRS (simulated from MOD02) time series were computed during the peak gypsy moth defoliation time frame in the study area (approximately June 10 through July 27). Gypsy moth defoliation mapping products from simated VIIRS and MOD02 time series were produced using multiple methods, including image classification and change detection via image differencing. The latter enabled an automated defoliation detection product computed using percent change in maximum NDVI for a peak defoliation period during 2001 compared to maximum NDVI across the entire 2000-2006 time frame. Final gypsy moth defoliation mapping products were assessed for accuracy using randomly sampled locations found on available geospatial reference data (Landsat and ASTER data in conjunction with defoliation map data from the USFS). Extensive gypsy moth defoliation patches were evident on screen displays of multitemporal color composites derived from MODIS data and from simulated VIIRS vegetation index data. Such defoliation was particularly evident for 2001, although widespread denuded forests were also seen for 2000 and 2003. These visualizations were validated using aforementioned reference data. Defoliation patches were visible on displays of MODIS-based NDVI and NDMI data. The viewing of apparent defoliation patches on all of these products necessitated adoption of a specialized temporal data processing method (e.g., maximum NDVI during the peak defoliation time frame). The frequency of cloud cover necessitated this approach. Multitemporal simulated VIIRS and MODIS Terra data both produced effective general classifications of defoliated forest versus other land cover. For 2001, the MOD02-simulated VIIRS 400-meter NDVI classification produced a similar yet slightly lower overall accuracy (87.28 percent with 0.72 Kappa) than the MOD02 250-meter NDVI classification (88.44 percent with 0.75 Kappa). The MOD13 250-meter NDVI classification had a lower overall accuracy (79.13 percent) and a much lower Kappa (0.46). The report discusses accuracy assessment results in much more detail, comparing overall classification and individual class accuracy statistics for simulated VIIRS 400-meter NDVI, MOD02 250-meter NDVI, MOD02-500 meter NDVI, MOD13 250-meter NDVI, and MOD02 500-meter NDMI classifications. Automated defoliation detection products from simulated VIIRS and MOD02 data for 2001 also yielded similar, relatively high overall classification accuracy (85.55 percent for the VIIRS 400-meter NDVI versus 87.28 percent for the MOD02 250-meter NDVI). In contrast, the USFS aerial sketch map of gypsy moth defoliation showed a lower overall classification accuracy at 73.64 percent. The overall classification Kappa values were also similar for the VIIRS (approximately 0.67 Kappa) versus the MOD02 (approximately 0.72 Kappa) automated defoliation detection product, which were much higher than the values exhibited by the USFS sketch map product (overall Kappa of approximately 0.47). The report provides additional details on the accuracy of automated gypsy moth defoliation detection products compared with USFS sketch maps. The results suggest that VIIRS data can be effectively simulated from MODIS data and that VIIRS data will produce gypsy moth defoliation mapping products that are similar to MODIS-based products. The results of the RPC experiment indicate that VIIRS and MODIS data products have good potential for integration into the forest threat EWS. The accuracy assessment was performed only for 2001 because of time constraints and a relative scarcity of cloud-free Landsat and ASTER data for the peak defoliation period of the other years in the 2000-2006 time series. Additional work should be performed to assess the accuracy of gypsy moth defoliation detection products for additional years.The study area (mid-Appalachian highlands) and application (gypsy moth forest defoliation) are not necessarily representative of all forested regions and of all forest threat disturbance agents. Additional work should be performed on other inland and coastal regions as well as for other major forest threats.

  11. Retrieval of Aerosol Properties from MODIS Terra, MODIS Aqua, and VIIRS SNPP: Calibration Focus

    NASA Technical Reports Server (NTRS)

    Levy, Robert C.; Mattoo, Shana; Sawyer, Virginia; Kleidman, Richard; Patadia, Falguni; Zhou, Yaping; Gupta, Pawan; Shi, Yingxi; Remer, Lorraine; Holz, Robert

    2016-01-01

    MODIS-DT Collection 6 - Aqua/Terra level 2, 3; entire record processed - "Trending" issues reduced - Still a 15% or 0.02 Terra vs Aqua offset. - Terra/Aqua convergence improved with C6+, but bias remains. - Other calibration efforts yield mixed results. VIIRS-­-DT in development - VIIRS is similar, yet different then MODIS - With 50% wider swath, VIIRS has daily coverage - Ensures algorithm consistency with MODIS. - Currently: 20% NPP vs Aqua offset over ocean. - Only small bias (%) over land (2012-­-2016) - Can VIIRS/MODIS create aerosol CDR? Calibration for MODIS - VIIRS continues to fundamentally important. It's not just Terra, or just Aqua, or just NPP-­-VIIRS, I really want to push synergistic calibration.

  12. Effects of Real-Time NASA Vegetation Data on Model Forecasts of Severe Weather

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; Bell, Jordan R.; LaFontaine, Frank J.; Peters-Lidard, Christa D.

    2012-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center has developed a Greenness Vegetation Fraction (GVF) dataset, which is updated daily using swaths of Normalized Difference Vegetation Index data from the Moderate Resolution Imaging Spectroradiometer (MODIS) data aboard the NASA-EOS Aqua and Terra satellites. NASA SPoRT started generating daily real-time GVF composites at 1-km resolution over the Continental United States beginning 1 June 2010. A companion poster presentation (Bell et al.) primarily focuses on impact results in an offline configuration of the Noah land surface model (LSM) for the 2010 warm season, comparing the SPoRT/MODIS GVF dataset to the current operational monthly climatology GVF available within the National Centers for Environmental Prediction (NCEP) and Weather Research and Forecasting (WRF) models. This paper/presentation primarily focuses on individual case studies of severe weather events to determine the impacts and possible improvements by using the real-time, high-resolution SPoRT-MODIS GVFs in place of the coarser-resolution NCEP climatological GVFs in model simulations. The NASA-Unified WRF (NU-WRF) modeling system is employed to conduct the sensitivity simulations of individual events. The NU-WRF is an integrated modeling system based on the Advanced Research WRF dynamical core that is designed to represents aerosol, cloud, precipitation, and land processes at satellite-resolved scales in a coupled simulation environment. For this experiment, the coupling between the NASA Land Information System (LIS) and the WRF model is utilized to measure the impacts of the daily SPoRT/MODIS versus the monthly NCEP climatology GVFs. First, a spin-up run of the LIS is integrated for two years using the Noah LSM to ensure that the land surface fields reach an equilibrium state on the 4-km grid mesh used. Next, the spin-up LIS is run in two separate modes beginning on 1 June 2010, one continuing with the climatology GVFs while the other uses the daily SPoRT/MODIS GVFs. Finally, snapshots of the LIS land surface fields are used to initialize two different simulations of the NU-WRF, one running with climatology LIS and GVFs, and the other running with experimental LIS and NASA/SPoRT GVFs. In this paper/presentation, case study results will be highlighted in regions with significant differences in GVF between the NCEP climatology and SPoRT product during severe weather episodes.

  13. A Drone-based Tropical Forest Experiment to Estimate Vegetation Properties

    NASA Astrophysics Data System (ADS)

    Henke, D.

    2017-12-01

    In mid-latitudes, remote sensing technology is intensively used to monitor vegetation properties. However, in the tropics, high cloud-cover and saturation effects of vegetation indices (VI) hamper the reliability of vegetation parameters derived from satellite data. A drone experiment over the Barro Colorado Island (BCI), Panama, with high temporal repetition rates was conducted in spring 2017 to investigate the robustness and stability of remotely sensed vegetation parameters in tropical environments. For this purpose, three 10-day flight windows in February, March and April were selected and drone flights were repeated on daily intervals when weather conditions and equipment allowed it. In total, 18 days were recorded with two different optical cameras on sensefly's eBee drone: one red, green, blue (RGB) camera and one camera with near infra-red (NIR), green and blue channels. When possible, the data were acquired at the same time of day. Pix4D and Agisoft software were used to calculate the Normalized Difference VI (NDVI) and forest structure. In addition, leave samples were collected ones per month from 16 different plant species and the relative water content was measured as ground reference. Further data sources for the analysis are phenocam images (RGB & NIR) on BCI and satellite images of MODIS (NDVI; Enhanced VI EVI) and Sentinel-1 (radar backscatter). The attached figure illustrates the main data collected on BCI. Initial results suggest that the coefficient of determination (R2) is relatively high between ground samples and drone data, Sentinel-1 backscatter and MODIS EVI with R2 values ranging from 0.4 to 0.6; on the contrary, R2 values between ground measurements and MODIS NDVI or phenocam images are below 0.2. As the experiment took place mainly during dry season on BCI, cloud-cover rates are less dominate than during wet season. Under these conditions, MODIS EVI, which is less vulnerable to saturation effects, seems to be more reliable than MODIS NDVI. During wet season, Sentinel-1 backscatter might be the most reliable satellite option to derive vegetation parameters in the tropics. For a more robust conclusion, additional data takes over several years and during dry as well as wet season are needed to confirm initial findings presented here.

  14. Phenological Metrics Extraction for Agricultural Land-use Types Using RapidEye and MODIS

    NASA Astrophysics Data System (ADS)

    Xu, Xingmei; Doktor, Daniel; Conrad, Christopher

    2016-04-01

    Crop phenology involves the various agricultural events, such as planting, emergence, flowering, development of fruit and harvest. These phenological stages of a crop contain essential information for practical agricultural management, crop productivity estimation, investigations of crop-weather relationships, and also play an important role in improving agricultural land-use classification. In this study, we used MODIS and RapidEye images to extract phenological metrics in central Germany between 2010 and 2014. The Best Index Slope Extraction algorithm was used to remove undesirable data noise from Normalized Difference Vegetation Index (NDVI) time series of both satellite data before fast Fourier transformation was applied. Metrics optimization for phenology of major crops in the study area (winter wheat, winter barley, winter oilseed rape and sugar beet) and validation were performed with intensive ground observations from the German Weather Service (2010-2014) and our own measurements of BBCH code (Biologische Bundesanstalt für Land- und Forstwirtschaft, Bundessortenamt und CHemische Industrie) (in 2014). We found that the dates with maximum NDVI have a close link to the heading stage of cereals (RMSE = 9.48 days for MODIS and RMSE = 13.55 days for RapidEye), and the dates of local half maximum during senescence period of winter crops was strongly related to ripeness stage (BBCH: 87) (RMSE = 8.87 days for MODIS and RMSE = 9.62 days for RapidEye). The root-mean-square errors (RMSE) of derived green up dates for both winter and summer crops were larger than 2 weeks, which was caused by limited number of good quality images during the winter season. Comparison between RapidEye and homogeneous MODIS pixels indicated that phenological metrics derived from both satellites were similar to the crop calendar in this region. We also investigated the influence of spatial aggregation of RapidEye-scale phenology to MODIS scale as well as the effect of decreasing the temporal resolution of MODIS to RapidEye scale. Our method to smooth and construct NDVI time-series works well in monitoring agricultural phenology and can be applied to other areas with daily MODIS data coverage. High spatial resolution data provides us with a unique opportunity to explore within-field phenology variation, and reduce effects of spatial heterogeneity. We suggest that further studies might not have to consider daily or composite-daily observations as first criteria for selection of remote sensing product in terms of phenology extraction, if the crop calendar is reliable.

  15. Method for validating cloud mask obtained from satellite measurements using ground-based sky camera.

    PubMed

    Letu, Husi; Nagao, Takashi M; Nakajima, Takashi Y; Matsumae, Yoshiaki

    2014-11-01

    Error propagation in Earth's atmospheric, oceanic, and land surface parameters of the satellite products caused by misclassification of the cloud mask is a critical issue for improving the accuracy of satellite products. Thus, characterizing the accuracy of the cloud mask is important for investigating the influence of the cloud mask on satellite products. In this study, we proposed a method for validating multiwavelength satellite data derived cloud masks using ground-based sky camera (GSC) data. First, a cloud cover algorithm for GSC data has been developed using sky index and bright index. Then, Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data derived cloud masks by two cloud-screening algorithms (i.e., MOD35 and CLAUDIA) were validated using the GSC cloud mask. The results indicate that MOD35 is likely to classify ambiguous pixels as "cloudy," whereas CLAUDIA is likely to classify them as "clear." Furthermore, the influence of error propagations caused by misclassification of the MOD35 and CLAUDIA cloud masks on MODIS derived reflectance, brightness temperature, and normalized difference vegetation index (NDVI) in clear and cloudy pixels was investigated using sky camera data. It shows that the influence of the error propagation by the MOD35 cloud mask on the MODIS derived monthly mean reflectance, brightness temperature, and NDVI for clear pixels is significantly smaller than for the CLAUDIA cloud mask; the influence of the error propagation by the CLAUDIA cloud mask on MODIS derived monthly mean cloud products for cloudy pixels is significantly smaller than that by the MOD35 cloud mask.

  16. Assessing Seasonal and Inter-Annual Variations of Lake Surface Areas in Mongolia during 2000-2011 Using Minimum Composite MODIS NDVI

    PubMed Central

    Kang, Sinkyu; Hong, Suk Young

    2016-01-01

    A minimum composite method was applied to produce a 15-day interval normalized difference vegetation index (NDVI) dataset from Moderate Resolution Imaging Spectroradiometer (MODIS) daily 250 m reflectance in the red and near-infrared bands. This dataset was applied to determine lake surface areas in Mongolia. A total of 73 lakes greater than 6.25 km2in area were selected, and 28 of these lakes were used to evaluate detection errors. The minimum composite NDVI showed a better detection performance on lake water pixels than did the official MODIS 16-day 250 m NDVI based on a maximum composite method. The overall lake area detection performance based on the 15-day minimum composite NDVI showed -2.5% error relative to the Landsat-derived lake area for the 28 evaluated lakes. The errors increased with increases in the perimeter-to-area ratio but decreased with lake size over 10 km2. The lake area decreased by -9.3% at an annual rate of -53.7 km2 yr-1 during 2000 to 2011 for the 73 lakes. However, considerable spatial variations, such as slight-to-moderate lake area reductions in semi-arid regions and rapid lake area reductions in arid regions, were also detected. This study demonstrated applicability of MODIS 250 m reflectance data for biweekly monitoring of lake area change and diagnosed considerable lake area reduction and its spatial variability in arid and semi-arid regions of Mongolia. Future studies are required for explaining reasons of lake area changes and their spatial variability. PMID:27007233

  17. Assessing Seasonal and Inter-Annual Variations of Lake Surface Areas in Mongolia during 2000-2011 Using Minimum Composite MODIS NDVI.

    PubMed

    Kang, Sinkyu; Hong, Suk Young

    2016-01-01

    A minimum composite method was applied to produce a 15-day interval normalized difference vegetation index (NDVI) dataset from Moderate Resolution Imaging Spectroradiometer (MODIS) daily 250 m reflectance in the red and near-infrared bands. This dataset was applied to determine lake surface areas in Mongolia. A total of 73 lakes greater than 6.25 km2in area were selected, and 28 of these lakes were used to evaluate detection errors. The minimum composite NDVI showed a better detection performance on lake water pixels than did the official MODIS 16-day 250 m NDVI based on a maximum composite method. The overall lake area detection performance based on the 15-day minimum composite NDVI showed -2.5% error relative to the Landsat-derived lake area for the 28 evaluated lakes. The errors increased with increases in the perimeter-to-area ratio but decreased with lake size over 10 km(2). The lake area decreased by -9.3% at an annual rate of -53.7 km(2) yr(-1) during 2000 to 2011 for the 73 lakes. However, considerable spatial variations, such as slight-to-moderate lake area reductions in semi-arid regions and rapid lake area reductions in arid regions, were also detected. This study demonstrated applicability of MODIS 250 m reflectance data for biweekly monitoring of lake area change and diagnosed considerable lake area reduction and its spatial variability in arid and semi-arid regions of Mongolia. Future studies are required for explaining reasons of lake area changes and their spatial variability.

  18. N-MODY: A Code for Collisionless N-body Simulations in Modified Newtonian Dynamics

    NASA Astrophysics Data System (ADS)

    Londrillo, Pasquale; Nipoti, Carlo

    2011-02-01

    N-MODY is a parallel particle-mesh code for collisionless N-body simulations in modified Newtonian dynamics (MOND). N-MODY is based on a numerical potential solver in spherical coordinates that solves the non-linear MOND field equation, and is ideally suited to simulate isolated stellar systems. N-MODY can be used also to compute the MOND potential of arbitrary static density distributions. A few applications of N-MODY indicate that some astrophysically relevant dynamical processes are profoundly different in MOND and in Newtonian gravity with dark matter.

  19. Quantitative Evaluation of Serum Proteins Uncovers a Protein Signature Related to Maturity-Onset Diabetes of the Young (MODY).

    PubMed

    Tuerxunyiming, Muhadasi; Xian, Feng; Zi, Jin; Yimamu, Yilihamujiang; Abuduwayite, Reshalaiti; Ren, Yan; Li, Qidan; Abudula, Abulizi; Liu, SiQi; Mohemaiti, Patamu

    2018-01-05

    Maturity-onset diabetes of the young (MODY) is an inherited monogenic type of diabetes. Genetic mutations in MODY often cause nonsynonymous changes that directly lead to the functional distortion of proteins and the pathological consequences. Herein, we proposed that the inherited mutations found in a MODY family could cause a disturbance of protein abundance, specifically in serum. The serum samples were collected from a Uyghur MODY family through three generations, and the serum proteins after depletion treatment were examined by quantitative proteomics to characterize the MODY-related serum proteins followed by verification using target quantification of proteomics. A total of 32 serum proteins were preliminarily identified as the MODY-related. Further verification test toward the individual samples demonstrated the 12 candidates with the significantly different abundance in the MODY patients. A comparison of the 12 proteins among the sera of type 1 diabetes, type 2 diabetes, MODY, and healthy subjects was conducted and revealed a protein signature related with MODY composed of the serum proteins such as SERPINA7, APOC4, LPA, C6, and F5.

  20. Progress towards MODIS and VIIRS Cloud Optical Property Data Record Continuity

    NASA Astrophysics Data System (ADS)

    Meyer, K.; Platnick, S. E.; Wind, G.; Amarasinghe, N.; Holz, R.; Ackerman, S. A.; Heidinger, A. K.

    2016-12-01

    The launch of Suomi NPP in the fall of 2011 began the next generation of U.S. operational polar orbiting Earth observations, and its VIIRS imager provides an opportunity to extend the 15+ year climate data record of MODIS EOS. Similar to MODIS, VIIRS provides visible through IR observations at moderate spatial resolution with a 1330 LT equatorial crossing consistent with the MODIS on the Aqua platform. However, unlike MODIS, VIIRS lacks key water vapor and CO2 absorbing channels used for high cloud detection and cloud-top property retrievals, and there is a significant change in the spectral location of the 2.1μm shortwave-infrared channel used for cloud optical/microphysical retrievals and cloud thermodynamic phase. Given these instrument differences between MODIS EOS and VIIRS S-NPP/JPSS, we discuss our progress towards merging the MODIS observational record with VIIRS in order to generate cloud optical property climate data record continuity across the observing systems. The MODIS-VIIRS continuity algorithm for cloud optical property retrievals leverages heritage algorithms that produce the existing MODIS cloud optical and microphysical properties product (MOD06); the NOAA AWG/CLAVR-x cloud-top property algorithm and a common MODIS-VIIRS cloud mask feed into the optical property algorithm. To account for the different channel sets of MODIS and VIIRS, each algorithm nominally uses a subset of channels common to both imagers. Data granule and aggregated examples for the current version of the continuity algorithm (MODAWG) will be shown. In addition, efforts to reconcile apparent radiometric biases between analogous channels of the two imagers, a critical consideration for obtaining inter-sensor climate data record continuity, will be discussed.

  1. Generating a Long-Term Land Data Record from the AVHRR and MODIS Instruments

    NASA Technical Reports Server (NTRS)

    Pedelty, Jeffrey; Devadiga, Sadashiva; Masuoka, Edward; Brown, Molly; Pinzon, Jorge; Tucker, Compton; Vermote, Eric; Prince, Stephen; Nagol, Jyotheshwar; Justice, Christopher; hide

    2007-01-01

    The goal of NASA's Land Long Term Iiata Record (LTDR) project is to produce a consistent long term data set from the AVHRR and MODIS instruments for land climate studies. The project will create daily surface reflectance and normalized difference vegetation index (NDVI) products at a resolution of 0.05 deg., which is identical to the Climate Modeling Grid (CMG) used for MODIS products from EOS Terra and Aqua. Higher order products such as burned area, land surface temperature, albedo, bidirectional reflectance distribution function (BRDF) correction, leaf area index (LAI), and fraction of photosyntheticalIy active radiation absorbed by vegetation (fPAR), will be created. The LTDR project will reprocess Global Area Coverage (GAC) data from AVHRR sensors onboard NOAA satellites by applying the preprocessing improvements identified in the AVHRR Pathfinder Il project and atmospheric and BRDF corrections used in MODIS processing. The preprocessing improvements include radiometric in-flight vicarious calibration for the visible and near infrared channels and inverse navigation to relate an Earth location to each sensor instantaneous field of view (IFOV). Atmospheric corrections for Rayleigh scattering, ozone, and water vapor are undertaken, with aerosol correction being implemented. The LTDR also produces a surface reflectance product for channel 3 (3.75 micrometers). Quality assessment (QA) is an integral part of the LTDR production system, which is monitoring temporal trands in the AVHRR products using time-series approaches developed for MODIS land product quality assessment. The land surface reflectance products have been evaluated at AERONET sites. The AVHRR data record from LTDR is also being compared to products from the PAL (Pathfinder AVHRR Land) and GIMMS (Global Inventory Modeling and Mapping Studies) systems to assess the relative merits of this reprocessing vis-a-vis these existing data products. The LTDR products and associated information can be found at http://ltdr.nascom.nasa.gov/ltdr/ltdr.html.

  2. Validation of MODIS 3 km land aerosol optical depth from NASA's EOS Terra and Aqua missions

    NASA Astrophysics Data System (ADS)

    Gupta, Pawan; Remer, Lorraine A.; Levy, Robert C.; Mattoo, Shana

    2018-05-01

    In addition to the standard resolution product (10 km), the MODerate resolution Imaging Spectroradiometer (MODIS) Collection 6 (C006) data release included a higher resolution (3 km). Other than accommodations for the two different resolutions, the 10 and 3 km Dark Target (DT) algorithms are basically the same. In this study, we perform global validation of the higher-resolution aerosol optical depth (AOD) over global land by comparing against AErosol RObotic NETwork (AERONET) measurements. The MODIS-AERONET collocated data sets consist of 161 410 high-confidence AOD pairs from 2000 to 2015 for Terra MODIS and 2003 to 2015 for Aqua MODIS. We find that 62.5 and 68.4 % of AODs retrieved from Terra MODIS and Aqua MODIS, respectively, fall within previously published expected error bounds of ±(0.05 + 0.2 × AOD), with a high correlation (R = 0.87). The scatter is not random, but exhibits a mean positive bias of ˜ 0.06 for Terra and ˜ 0.03 for Aqua. These biases for the 3 km product are approximately 0.03 larger than the biases found in similar validations of the 10 km product. The validation results for the 3 km product did not have a relationship to aerosol loading (i.e., true AOD), but did exhibit dependence on quality flags, region, viewing geometry, and aerosol spatial variability. Time series of global MODIS-AERONET differences show that validation is not static, but has changed over the course of both sensors' lifetimes, with Terra MODIS showing more change over time. The likely cause of the change of validation over time is sensor degradation, but changes in the distribution of AERONET stations and differences in the global aerosol system itself could be contributing to the temporal variability of validation.

  3. Cross-calibration of the Oceansat-2 Ocean Colour Monitor (OCM) with Terra and Aqua MODIS

    NASA Astrophysics Data System (ADS)

    Angal, Amit; Brinkmann, Jake; Kumar, A. Senthil; Xiong, Xiaoxiong

    2016-05-01

    The Ocean Colour Monitor (OCM) sensor on-board the Oceansat-2 spacecraft has been operational since its launch in September, 2009. The Oceansat 2 OCM primary design goal is to provide continuity to Oceansat-1 OCM to obtain information regarding various ocean-colour variables. OCM acquires Earth scene measurements in eight multi-spectral bands in the range from 402 to 885 nm. The MODIS sensor on the Terra and Aqua spacecraft has been successfully operating for over a decade collecting measurements of the earth's land, ocean surface and atmosphere. The MODIS spectral bands, designed for land and ocean applications, cover the spectral range from 412 to 869 nm. This study focuses on comparing the radiometric calibration stability of OCM using near-simultaneous TOA measurements with Terra and Aqua MODIS acquired over the Libya 4 target. Same-day scene-pairs from all three sensors (OCM, Terra and Aqua MODIS) between August, 2014 and September, 2015 were chosen for this analysis. On a given day, the OCM overpass is approximately an hour after the Terra overpass and an hour before the Aqua overpass. Due to the orbital differences between Terra and Aqua, MODIS images the Libya 4 site at different scan-angles on a given day. Some of the high-gain ocean bands for MODIS tend to saturate while viewing the bright Libya 4 target, but bands 8-10 (412 nm - 486 nm) provide an unsaturated response and are used for comparison with the spectrally similar OCM bands. All the standard corrections such as bidirectional reflectance factor (BRDF), relative spectral response mismatch, and impact for atmospheric water-vapor are applied to obtain the reflectance differences between OCM and the two MODIS instruments. Furthermore, OCM is used as a transfer radiometer to obtain the calibration differences between Terra and Aqua MODIS reflective solar bands.

  4. Cross-Calibration of the Oceansat-2 Ocean Colour Monitor (OCM) with Terra and Aqua MODIS

    NASA Technical Reports Server (NTRS)

    Angal, Amit; Brinkmann, Jake; Kumar, A. Senthil; Xiong, Xiaoxiong

    2016-01-01

    The Ocean Colour Monitor (OCM) sensor on-board the Oceansat-2 spacecraft has been operational since its launch in September, 2009. The Oceansat 2 OCM primary design goal is to provide continuity to Oceansat-1 OCM to obtain information regarding various ocean-colour variables. OCM acquires Earth scene measurements in eight multi-spectral bands in the range from 402 to 885 nm. The MODIS sensor on the Terra and Aqua spacecraft has been successfully operating for over a decade collecting measurements of the earth's land, ocean surface and atmosphere. The MODIS spectral bands, designed for land and ocean applications, cover the spectral range from 412 to 869 nm. This study focuses on comparing the radiometric calibration stability of OCM using near-simultaneous TOA measurements with Terra and Aqua MODIS acquired over the Libya 4 target. Same-day scene-pairs from all three sensors (OCM, Terra and Aqua MODIS) between August, 2014 and September, 2015 were chosen for this analysis. On a given day, the OCM overpass is approximately an hour after the Terra overpass and an hour before the Aqua overpass. Due to the orbital differences between Terra and Aqua, MODIS images the Libya 4 site at different scan-angles on a given day. Some of the high-gain ocean bands for MODIS tend to saturate while viewing the bright Libya 4 target, but bands 8-10 (412 nm - 486 nm) provide an unsaturated response and are used for comparison with the spectrally similar OCM bands. All the standard corrections such as bidirectional reflectance factor (BRDF), relative spectral response mismatch, and impact for atmospheric water-vapor are applied to obtain the reflectance differences between OCM and the two MODIS instruments. Furthermore, OCM is used as a transfer radiometer to obtain the calibration differences between Terra and Aqua MODIS reflective solar bands.

  5. The Radiative Consistency of Atmospheric Infrared Sounder and Moderate Resolution Imaging Spectroradiometer Cloud Retrievals

    NASA Technical Reports Server (NTRS)

    Kahn, Brian H.; Fishbein, Evan; Nasiri, Shaima L.; Eldering, Annmarie; Fetzer, Eric J.; Garay, Michael J.; Lee, Sung-Yung

    2007-01-01

    The consistency of cloud top temperature (Tc) and effective cloud fraction (f) retrieved by the Atmospheric Infrared Sounder (AIRS)/Advanced Microwave Sounding Unit (AMSU) observation suite and the Moderate Resolution Imaging Spectroradiometer (MODIS) on the EOS-Aqua platform are investigated. Collocated AIRS and MODIS TC and f are compared via an 'effective scene brightness temperature' (Tb,e). Tb,e is calculated with partial field of view (FOV) contributions from TC and surface temperature (TS), weighted by f and 1-f, respectively. AIRS reports up to two cloud layers while MODIS reports up to one. However, MODIS reports TC, TS, and f at a higher spatial resolution than AIRS. As a result, pixel-scale comparisons of TC and f are difficult to interpret, demonstrating the need for alternatives such as Tb,e. AIRS-MODIS Tb,e differences ((Delta)Tb,e) for identical observing scenes are useful as a diagnostic for cloud quantity comparisons. The smallest values of DTb,e are for high and opaque clouds, with increasing scatter in (Delta)Tb,e for clouds of smaller opacity and lower altitude. A persistent positive bias in DTb,e is observed in warmer and low-latitude scenes, characterized by a mixture of MODIS CO2 slicing and 11-mm window retrievals. These scenes contain heterogeneous cloud cover, including mixtures of multilayered cloudiness and misplaced MODIS cloud top pressure. The spatial patterns of (Delta)Tb,e are systematic and do not correlate well with collocated AIRS-MODIS radiance differences, which are more random in nature and smaller in magnitude than (Delta)Tb,e. This suggests that the observed inconsistencies in AIRS and MODIS cloud fields are dominated by retrieval algorithm differences, instead of differences in the observed radiances. The results presented here have implications for the validation of cloudy satellite retrieval algorithms, and use of cloud products in quantitative analyses.

  6. Evaluation of AIRS, MODIS, and HIRS 11 Micron Brightness Temperature Difference Changes from 2002 through 2006

    NASA Technical Reports Server (NTRS)

    Broberg, Steven E.; Aumann, Hartmut H.; Gregorich, David T.; Xiong, X.

    2006-01-01

    In an effort to validate the accuracy and stability of AIRS data at low scene temperatures (200-250 K range), we evaluated brightness temperatures at 11 microns with Aqua MODIS band 31 and HIRS/3 channel 8 for Antarctic granules between September 2002 and May 2006. We found excellent agreement with MODIS (at the 0.2 K level) over the full emperature range in data from early in the Aqua mission. However, in more recent data, starting in April 2005, we found a scene temperature dependence in MODIS-AIRS brightness temperature differences, with a discrepancy of 1- 1.5 K at 200 K. The comparison between AIRS and HIRS/3 (channel 8) on NOAA 16 for the same time period yields excellent agreement. The cause and time dependence of the disagreement with MODIS is under evaluation, but the change was coincident with a change in the MODIS production software from collection 4 to 5.

  7. Influence of Humidity on the Aerosol Scattering Coefficient and Its Effect on the Upwelling Radiance During ACE-2

    NASA Technical Reports Server (NTRS)

    Gasso, B. S.; Hegg, D. A.; Covert, D. S.; Collins, D.; Noone, K.; Oestroem, E.; Schmid, B.; Russell, P. B.; Livingston, J. M.; Durkee, P. A.; hide

    2000-01-01

    Aerosol scattering coefficients (sigma(sub sp)) have been measured over the ocean at different relative humidities (RH) as a function of attitude in the region surrounding the Canary Islands during the Second Aerosol Characterization Experiment (ACE-2) in June and July 1997. The data were collected by the University of Washington passive humidigraph (UWPH) mounted on the Pelican research aircraft. Concurrently, particle size distributions absorption coefficients and aerosol optical depth were measured throughout 17 flights. A parameterization of sigma(sub sp) as a function of RH was utilized to assess the impact of aerosol hydration on the upwelling radiance (normalized to the solar constant and cosine of zenith angle). The top of the atmosphere radiance signal was simulated at wavelengths corresponding to visible and near-infrared bands or the EOS-AM ("Terra") detectors, MODIS and MISR. The UWPH measured (sigma(sub sp)) at 2 RHs, one below and the other above ambient conditions. Ambient (sigma(sub sp)) was obtained by interpolation of these 2 measurements. The data were stratified in terms of 3 types of aerosols: Saharan dust, clean marine (marine boundary layer background) and polluted marine aerosols (i.e., 2- or 1-day old polluted aerosols advected from Europe). An empirical relation for the dependence of (sigma(sub sp)) on RH, defined by (sigma(sub sp))(RH) = k. ((1 - RH/100)(exp -gamma), was used with the hygroscopic exponent gamma derived from the data. The following gamma values were obtained for the 3 aerosol types: gamma(dust) = 0.23 +/- 0.05, gamma(clean marine) = 0.69 +/- 0.06 and gamma(polluted marine) = 0.57 + 0.06. Based on the measured (gamma)(s), the above equation was utilized to derive aerosol models with different hygroscopicities. The satellite simulation signal code 6S was used to compute the upwelling radiance corresponding to each of those aerosol models at several ambient humidities. For the pre-launch estimated precision of the sensors and the assumed viewing geometry of the instrument, the simulations suggest that the spectral and angular dependence of the reflectance measured by MISR is not sufficient to distinguish aerosol models with various different combinations of values ror dry composition. y and ambient RH. A similar behavior is observed for MODIS at visible wavelengths. However, the 2100 nm band of MODIS appears to be able to differentiate between at least some aerosol models with different aerosol hygroscopicity given the MODIS calibration error requirements. This result suggests the possibility of retrieval of aerosol hygroscopicity by MODIS.

  8. [Effect of different snow depth and area on the snow cover retrieval using remote sensing data].

    PubMed

    Jiang, Hong-bo; Qin, Qi-ming; Zhang, Ning; Dong, Heng; Chen, Chao

    2011-12-01

    For the needs of snow cover monitoring using multi-source remote sensing data, in the present article, based on the spectrum analysis of different depth and area of snow, the effect of snow depth on the results of snow cover retrieval using normalized difference snow index (NDSI) is discussed. Meanwhile, taking the HJ-1B and MODIS remote sensing data as an example, the snow area effect on the snow cover monitoring is also studied. The results show that: the difference of snow depth does not contribute to the retrieval results, while the snow area affects the results of retrieval to some extents because of the constraints of spatial resolution.

  9. Comparison of MODIS and VIIRS Snow Cover Products for the 2016 Hydrological Year

    NASA Astrophysics Data System (ADS)

    Klein, A. G.; Thapa, S.

    2017-12-01

    The VIIRS (Visible Infrared Imaging Radiometer Suite) instrument on board the Suomi-NPP satellite aims to provide long-term continuity of several environmental data series including snow cover initiated with MODIS. While it is speculated that MODIS and VIIRS snow cover products may differ because of their differing spatial resolutions and spectral coverage quantitative comparisons between their snow products are currently limited. Therefore this study intercompares MODIS and VIIRS snow products for the 2016 Hydrological Year over the Midwestern United States and southern Canada. Two hundred and forty-four swath snow products from MODIS/Aqua (MYD10L2) and the VIIRS EDR (VSCMO/binary) were intercompared using confusion matrices, comparison maps and false color imagery. Thresholding the MODIS NDSI Snow Cover product at a snow cover fraction of 30% generated binary snow maps most comparable to the NOAA VIIRS binary snow product. Overall agreement between MODIS and VIIRS was found to be approximately 98%. This exceeds the VIIRS accuracy requirements of 90% probability of correct typing. Agreement was highest during the winter but lower during late fall and spring. Comparability was lowest over forest. MODIS and VIIRS often mapped snow/no-snow transition zones as cloud. The assessment of total snow and cloud pixels and comparison snow maps of MODIS and VIIRS indicates that VIIRS is mapping more snow cover and less cloud cover compared to MODIS. This is evidenced by the average area of snow in MYD10L2 and VSCMO being 5.72% and 11.43%, no-snow 26.65% and 28.67%, and cloud 65.02% and 59.91%, respectively. Visual comparisons depict good qualitative agreement between snow cover area visible in MODIS and VIIRS false color imagery and mapped in their respective snow cover products. While VIIRS and MODIS have similar capacity to map snow cover, VIIRS has the potential to more accurately map snow cover area for the successive development of climate data records.

  10. Estimation of photosynthetic capacity using MODIS polarization: 1988 proposal to NASA Headquarters

    NASA Technical Reports Server (NTRS)

    Vanderbilt, Vern C.

    1992-01-01

    The remote sensing community has clearly identified the utility of NDVI (normalized difference vegetation index) and SR (simple ratio) and other vegetation indices for estimating such metrics of landscape ecology as green foliar biomass, photosynthetic capacity, and net primary production. Both theoretical and empirical investigations have established cause and effect relationships between the photosynthetic process in plant canopies and these combinations of remotely sensed data. Yet it has also been established that the relationships exhibit considerable variability that appears to be ecosystem-dependent and may represent a source of ecologically important information. The overall hypothesis of this proposal is that the ecosystem-dependent variability in the various vegetation indices is in part attributable to the effects of specular reflection. The polarization channels on MODIS provide the potential to estimate this specularly reflected light and allow the modification of the vegetation indices to better measure the photosynthetic process in plant canopies. In addition, these polarization channels potentially provide additional ecologically important information about the plant canopy.

  11. Monitoring Thermal Status of Ecosystems with MODIS Land-Surface Temperature and Vegetation Index Products

    NASA Technical Reports Server (NTRS)

    Wan, Zhengming

    2002-01-01

    The global land-surface temperature (LST) and normalized difference vegetation index (NDVI) products retrieved from Moderate Resolution Imaging Spectroradiometer (MODIS) data in 2001 were used in this study. The yearly peak values of NDVI data at 5km grids were used to define six NDVI peak zones from -0.2 to 1 in steps of 0.2, and the monthly NDVI values at each grid were sorted in decreasing order, resulting in 12 layers of NDVI images for each of the NDVI peak zones. The mean and standard deviation of daytime LSTs and day-night LST differences at the grids corresponding to the first layer of NDVI images characterize the thermal status of terrestrial ecosystems in the NDVI peak zones. For the ecosystems in the 0.8-1 NDVI peak zone, daytime LSTs distribute from 0-35 C and day-night LST differences distribute from -2 to 22 C. The daytime LSTs and day-night LST differences corresponding to the remaining layers of NDVI images show that the growth of vegetation is limited at low and high LSTs. LSTs and NDVI may be used to monitor photosynthetic activity and drought, as shown in their applications to a flood-irrigated grassland in California and an unirrigated grassland in Nevada.

  12. Validation of satellite-retrieved MBL cloud properties using DOE ARM AMF measurements at the Azores

    NASA Astrophysics Data System (ADS)

    Xi, B.; Dong, X.; Minnis, P.; Sun-Mack, S.

    2013-05-01

    Marine Boundary Layer (MBL) cloud properties derived for the Clouds and the Earth's Radiant Energy System (CERES) Project using Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) data are compared with observations taken at the Atmospheric Radiation Measurement (ARM) AMF AZORES site from June 2009 through December 2010. Retrievals from ARM surface-based data were averaged over a 1-hour interval centered at the time of each satellite overpass, and the CERES-MODIS Ed4 cloud properties were averaged within a 30-km x 30-km box centered on the ARM AZORES site. Two datasets were analyzed: all of the single-layered unbroken decks (SL) and those cases without temperature inversions. The CERES-MODIS cloud top/base heights were determined from cloud top/base temperature by using a lapse rate method normalized to the 24-h mean surface air temperature. The preliminary results show: for all SL MBL at daytime, they are, on average, 0.148 km (cloud top) and 0.087 km (cloud base) higher than the ARM radar-lidar observed cloud top and base, respectively. At nighttime, they are 0.446 km (cloud top) and 0.334 km (cloud base). For those cases without temperature inversions, the comparisons are close to their SL counterparts. For cloud temperatures, the MODIS-derived cloud-top and -base temperatures are 1.6 K lower and 0.4 K higher than the surface values with correlations of 0.92 during daytime. At nighttime, the differences are slightly larger and correlations are lower than daytime comparisons. Variations in the height difference are mainly caused by uncertainties in the surface air temperatures and lapse rates. Based on a total of 61 daytime and 87 nighttime samples (ALL SL cases), the temperature inversion layers occur about 72% during daytime and 83% during nighttime. The difference of surface-observed lapse rate and the satellite derived lapse rate can be 1.6 K/km for daytime and 3.3K/km for nighttime. From these lapse rates, we can further analyze the surface air temperature difference that used to calculate these lapse rate, which are ~3K difference between surface-observed and the satellite derived during the daytime and 5.1 K during nighttime. Further studies of the cause of the temperature inversions that may help the cloud heights retrievals by satellite. The preliminary comparisons in MBL microphysical properties have shown that the averaged CERES-MODIS derived MBL cloud-droplet effective radius is only 1.5 μm larger than ARM retrieval (13.2 μm), and LWP values are also very close to each other (112 vs. 124 gm-2) with a relative large difference in optical depth (10.6 vs. 14.4).

  13. N-MODY: a code for collisionless N-body simulations in modified Newtonian dynamics.

    NASA Astrophysics Data System (ADS)

    Londrillo, P.; Nipoti, C.

    We describe the numerical code N-MODY, a parallel particle-mesh code for collisionless N-body simulations in modified Newtonian dynamics (MOND). N-MODY is based on a numerical potential solver in spherical coordinates that solves the non-linear MOND field equation, and is ideally suited to simulate isolated stellar systems. N-MODY can be used also to compute the MOND potential of arbitrary static density distributions. A few applications of N-MODY indicate that some astrophysically relevant dynamical processes are profoundly different in MOND and in Newtonian gravity with dark matter.

  14. Analysis of dynamic thresholds for the normalized difference water index

    USGS Publications Warehouse

    Ji, Lei; Zhang, Li; Wylie, Bruce K.

    2009-01-01

    The normalized difference water index (NDWI) has been successfully used to delineate surface water features. However, two major problems have been often encountered: (a) NDWIs calculated from different band combinations [visible, nearinfrared, or shortwave-infrared (SWIR)] can generate different results, and (b) NDWI thresholds vary depending on the proportions of subpixel water/non-water components. We need to evaluate all the NDWIS for determining the best performing index and to establish appropriate thresholds for clearly identifying water features. We used the spectral data obtained from a spectral library to simulate the satellite sensors Landsat ETM+, SPOT-5, ASTER, and MODIS, and calculated the simulated NDWI in different forms. We found that the NDWI calculated from (green - swm)/(green + SWIR), where SWIR is the shorter wavelength region (1.2 to 1.8 ??m), has the most stable threshold. We recommend this NDWI be employed for mapping water, but adjustment of the threshold based on actual situations is necessary. ?? 2009 American Society for Photogrammetry and Remote Sensing.

  15. Accuracy Assessment of Aqua-MODIS Aerosol Optical Depth Over Coastal Regions: Importance of Quality Flag and Sea Surface Wind Speed

    NASA Technical Reports Server (NTRS)

    Anderson, J. C.; Wang, J.; Zeng, J.; Petrenko, M.; Leptoukh, G. G.; Ichoku, C.

    2012-01-01

    Coastal regions around the globe are a major source for anthropogenic aerosols in the atmosphere, but the underlying surface characteristics are not favorable for the Moderate Resolution Imaging Spectroradiometer (MODIS) algorithms designed for retrieval of aerosols over dark land or open-ocean surfaces. Using data collected from 62 coastal stations worldwide from the Aerosol Robotic Network (AERONET) from approximately 2002-2010, accuracy assessments are made for coastal aerosol optical depth (AOD) retrieved from MODIS aboard Aqua satellite. It is found that coastal AODs (at 550 nm) characterized respectively by the MODIS Dark Land (hereafter Land) surface algorithm, the Open-Ocean (hereafter Ocean) algorithm, and AERONET all exhibit a log-normal distribution. After filtering by quality flags, the MODIS AODs respectively retrieved from the Land and Ocean algorithms are highly correlated with AERONET (with R(sup 2) is approximately equal to 0.8), but only the Land algorithm AODs fall within the expected error envelope greater than 66% of the time. Furthermore, the MODIS AODs from the Land algorithm, Ocean algorithm, and combined Land and Ocean product show statistically significant discrepancies from their respective counterparts from AERONET in terms of mean, probability density function, and cumulative density function, which suggest a need for future improvement in retrieval algorithms. Without filtering with quality flag, the MODIS Land and Ocean AOD dataset can be degraded by 30-50% in terms of mean bias. Overall, the MODIS Ocean algorithm overestimates the AERONET coastal AOD by 0.021 for AOD less than 0.25 and underestimates it by 0.029 for AOD greater than 0.25. This dichotomy is shown to be related to the ocean surface wind speed and cloud contamination effects on the satellite aerosol retrieval. The Modern Era Retrospective-Analysis for Research and Applications (MERRA) reveals that wind speeds over the global coastal region 25 (with a mean and median value of 2.94 meters per second and 2.66 meters per second, respectively) are often slower than 6 meters per second assumed in the MODIS Ocean algorithm. As a result of high correlation (R(sup 2) greater than 0.98) between the bias in binned MODIS AOD and the corresponding binned wind speed over the coastal sea surface, an empirical scheme for correcting the bias of AOD retrieved from the MODIS Ocean algorithm is formulated and is shown to be effective over the majority of the coastal AERONET stations, and hence can be used in future analysis of AOD trend and MODIS AOD data assimilation.

  16. Two decades of satellite observations of AOD over mainland China using ATSR-2, AATSR and MODIS/Terra: data set evaluation and large-scale patterns

    NASA Astrophysics Data System (ADS)

    de Leeuw, Gerrit; Sogacheva, Larisa; Rodriguez, Edith; Kourtidis, Konstantinos; Georgoulias, Aristeidis K.; Alexandri, Georgia; Amiridis, Vassilis; Proestakis, Emmanouil; Marinou, Eleni; Xue, Yong; van der A, Ronald

    2018-02-01

    The retrieval of aerosol properties from satellite observations provides their spatial distribution over a wide area in cloud-free conditions. As such, they complement ground-based measurements by providing information over sparsely instrumented areas, albeit that significant differences may exist in both the type of information obtained and the temporal information from satellite and ground-based observations. In this paper, information from different types of satellite-based instruments is used to provide a 3-D climatology of aerosol properties over mainland China, i.e., vertical profiles of extinction coefficients from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), a lidar flying aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite and the column-integrated extinction (aerosol optical depth - AOD) available from three radiometers: the European Space Agency (ESA)'s Along-Track Scanning Radiometer version 2 (ATSR-2), Advanced Along-Track Scanning Radiometer (AATSR) (together referred to as ATSR) and NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Terra satellite, together spanning the period 1995-2015. AOD data are retrieved from ATSR using the ATSR dual view (ADV) v2.31 algorithm, while for MODIS Collection 6 (C6) the AOD data set is used that was obtained from merging the AODs obtained from the dark target (DT) and deep blue (DB) algorithms, further referred to as the DTDB merged AOD product. These data sets are validated and differences are compared using Aerosol Robotic Network (AERONET) version 2 L2.0 AOD data as reference. The results show that, over China, ATSR slightly underestimates the AOD and MODIS slightly overestimates the AOD. Consequently, ATSR AOD is overall lower than that from MODIS, and the difference increases with increasing AOD. The comparison also shows that neither of the ATSR and MODIS AOD data sets is better than the other one everywhere. However, ATSR ADV has limitations over bright surfaces which the MODIS DB was designed for. To allow for comparison of MODIS C6 results with previous analyses where MODIS Collection 5.1 (C5.1) data were used, also the difference between the C6 and C5.1 merged DTDB data sets from MODIS/Terra over China is briefly discussed. The AOD data sets show strong seasonal differences and the seasonal features vary with latitude and longitude across China. Two-decadal AOD time series, averaged over all of mainland China, are presented and briefly discussed. Using the 17 years of ATSR data as the basis and MODIS/Terra to follow the temporal evolution in recent years when the environmental satellite Envisat was lost requires a comparison of the data sets for the overlapping period to show their complementarity. ATSR precedes the MODIS time series between 1995 and 2000 and shows a distinct increase in the AOD over this period. The two data series show similar variations during the overlapping period between 2000 and 2011, with minima and maxima in the same years. MODIS extends this time series beyond the end of the Envisat period in 2012, showing decreasing AOD.

  17. Optimal use of land surface temperature data to detect changes in tropical forest cover

    NASA Astrophysics Data System (ADS)

    van Leeuwen, Thijs T.; Frank, Andrew J.; Jin, Yufang; Smyth, Padhraic; Goulden, Michael L.; van der Werf, Guido R.; Randerson, James T.

    2011-06-01

    Rapid and accurate assessment of global forest cover change is needed to focus conservation efforts and to better understand how deforestation is contributing to the buildup of atmospheric CO2. Here we examined different ways to use land surface temperature (LST) to detect changes in tropical forest cover. In our analysis we used monthly 0.05° × 0.05° Terra Moderate Resolution Imaging Spectroradiometer (MODIS) observations of LST and Program for the Estimation of Deforestation in the Brazilian Amazon (PRODES) estimates of forest cover change. We also compared MODIS LST observations with an independent estimate of forest cover loss derived from MODIS and Landsat observations. Our study domain of approximately 10° × 10° included the Brazilian state of Mato Grosso. For optimal use of LST data to detect changes in tropical forest cover in our study area, we found that using data sampled during the end of the dry season (˜1-2 months after minimum monthly precipitation) had the greatest predictive skill. During this part of the year, precipitation was low, surface humidity was at a minimum, and the difference between day and night LST was the largest. We used this information to develop a simple temporal sampling algorithm appropriate for use in pantropical deforestation classifiers. Combined with the normalized difference vegetation index, a logistic regression model using day-night LST did moderately well at predicting forest cover change. Annual changes in day-night LST decreased during 2006-2009 relative to 2001-2005 in many regions within the Amazon, providing independent confirmation of lower deforestation levels during the latter part of this decade as reported by PRODES.

  18. Detecting leaf pulvinar movements on NDVI time series of desert trees: a new approach for water stress detection.

    PubMed

    Chávez, Roberto O; Clevers, Jan G P W; Verbesselt, Jan; Naulin, Paulette I; Herold, Martin

    2014-01-01

    Heliotropic leaf movement or leaf 'solar tracking' occurs for a wide variety of plants, including many desert species and some crops. This has an important effect on the canopy spectral reflectance as measured from satellites. For this reason, monitoring systems based on spectral vegetation indices, such as the normalized difference vegetation index (NDVI), should account for heliotropic movements when evaluating the health condition of such species. In the hyper-arid Atacama Desert, Northern Chile, we studied seasonal and diurnal variations of MODIS and Landsat NDVI time series of plantation stands of the endemic species Prosopis tamarugo Phil., subject to different levels of groundwater depletion. As solar irradiation increased during the day and also during the summer, the paraheliotropic leaves of Tamarugo moved to an erectophile position (parallel to the sun rays) making the NDVI signal to drop. This way, Tamarugo stands with no water stress showed a positive NDVI difference between morning and midday (ΔNDVI mo-mi) and between winter and summer (ΔNDVI W-S). In this paper, we showed that the ΔNDVI mo-mi of Tamarugo stands can be detected using MODIS Terra and Aqua images, and the ΔNDVI W-S using Landsat or MODIS Terra images. Because pulvinar movement is triggered by changes in cell turgor, the effects of water stress caused by groundwater depletion can be assessed and monitored using ΔNDVI mo-mi and ΔNDVI W-S. For an 11-year time series without rainfall events, Landsat ΔNDVI W-S of Tamarugo stands showed a positive linear relationship with cumulative groundwater depletion. We conclude that both ΔNDVI mo-mi and ΔNDVI W-S have potential to detect early water stress of paraheliotropic vegetation.

  19. Detecting Leaf Pulvinar Movements on NDVI Time Series of Desert Trees: A New Approach for Water Stress Detection

    PubMed Central

    Chávez, Roberto O.; Clevers, Jan G. P. W.; Verbesselt, Jan; Naulin, Paulette I.; Herold, Martin

    2014-01-01

    Heliotropic leaf movement or leaf ‘solar tracking’ occurs for a wide variety of plants, including many desert species and some crops. This has an important effect on the canopy spectral reflectance as measured from satellites. For this reason, monitoring systems based on spectral vegetation indices, such as the normalized difference vegetation index (NDVI), should account for heliotropic movements when evaluating the health condition of such species. In the hyper-arid Atacama Desert, Northern Chile, we studied seasonal and diurnal variations of MODIS and Landsat NDVI time series of plantation stands of the endemic species Prosopis tamarugo Phil., subject to different levels of groundwater depletion. As solar irradiation increased during the day and also during the summer, the paraheliotropic leaves of Tamarugo moved to an erectophile position (parallel to the sun rays) making the NDVI signal to drop. This way, Tamarugo stands with no water stress showed a positive NDVI difference between morning and midday (ΔNDVImo-mi) and between winter and summer (ΔNDVIW-S). In this paper, we showed that the ΔNDVImo-mi of Tamarugo stands can be detected using MODIS Terra and Aqua images, and the ΔNDVIW-S using Landsat or MODIS Terra images. Because pulvinar movement is triggered by changes in cell turgor, the effects of water stress caused by groundwater depletion can be assessed and monitored using ΔNDVImo-mi and ΔNDVIW-S. For an 11-year time series without rainfall events, Landsat ΔNDVIW-S of Tamarugo stands showed a positive linear relationship with cumulative groundwater depletion. We conclude that both ΔNDVImo-mi and ΔNDVIW-S have potential to detect early water stress of paraheliotropic vegetation. PMID:25188305

  20. Results and lessons learned from MODIS polarization sensitivity characterization

    NASA Astrophysics Data System (ADS)

    Sun, J.; Xiong, X.; Wang, X.; Qiu, S.; Xiong, S.; Waluschka, E.

    2006-08-01

    In addition to radiometric, spatial, and spectral calibration requirements, MODIS design specifications include polarization sensitivity requirements of less than 2% for all Reflective Solar Bands (RSB) except for the band centered at 412nm. To the best of our knowledge, MODIS was the first imaging radiometer that went through comprehensive system level (end-to-end) polarization characterization. MODIS polarization sensitivity was measured pre-launch at a number of sensor view angles using a laboratory Polarization Source Assembly (PSA) that consists of a rotatable source, a polarizer (Ahrens prism design), and a collimator. This paper describes MODIS polarization characterization approaches used by MODIS Characterization Support Team (MCST) at NASA/GSFC and addresses issues and concerns in the measurements. Results (polarization factor and phase angle) using different analyzing methods are discussed. Also included in this paper is a polarization characterization comparison between Terra and Aqua MODIS. Our previous and recent analysis of MODIS RSB polarization sensitivity could provide useful information for future Earth-observing sensor design, development, and characterization.

  1. MODIS On-Board Blackbody Function and Performance

    NASA Technical Reports Server (NTRS)

    Xiaoxiong, Xiong; Wenny, Brian N.; Wu, Aisheng; Barnes, William

    2009-01-01

    Two MODIS instruments are currently in orbit, making continuous global observations in visible to long-wave infrared wavelengths. Compared to heritage sensors, MODIS was built with an advanced set of on-board calibrators, providing sensor radiometric, spectral, and spatial calibration and characterization during on-orbit operation. For the thermal emissive bands (TEB) with wavelengths from 3.7 m to 14.4 m, a v-grooved blackbody (BB) is used as the primary calibration source. The BB temperature is accurately measured each scan (1.47s) using a set of 12 temperature sensors traceable to NIST temperature standards. The onboard BB is nominally operated at a fixed temperature, 290K for Terra MODIS and 285K for Aqua MODIS, to compute the TEB linear calibration coefficients. Periodically, its temperature is varied from 270K (instrument ambient) to 315K in order to evaluate and update the nonlinear calibration coefficients. This paper describes MODIS on-board BB functions with emphasis on on-orbit operation and performance. It examines the BB temperature uncertainties under different operational conditions and their impact on TEB calibration and data product quality. The temperature uniformity of the BB is also evaluated using TEB detector responses at different operating temperatures. On-orbit results demonstrate excellent short-term and long-term stability for both the Terra and Aqua MODIS on-board BB. The on-orbit BB temperature uncertainty is estimated to be 10mK for Terra MODIS at 290K and 5mK for Aqua MODIS at 285K, thus meeting the TEB design specifications. In addition, there has been no measurable BB temperature drift over the entire mission of both Terra and Aqua MODIS.

  2. Comparison of Land Skin Temperature from a Land Model, Remote Sensing, and In-situ Measurement

    NASA Technical Reports Server (NTRS)

    Wang, Aihui; Barlage, Michael; Zeng, Xubin; Draper, Clara Sophie

    2014-01-01

    Land skin temperature (Ts) is an important parameter in the energy exchange between the land surface and atmosphere. Here hourly Ts from the Community Land Model Version 4.0, MODIS satellite observations, and in-situ observations in 2003 were compared. Compared with the in-situ observations over four semi-arid stations, both MODIS and modeled Ts show negative biases, but MODIS shows an overall better performance. Global distribution of differences between MODIS and modeled Ts shows diurnal, seasonal, and spatial variations. Over sparsely vegetated areas, the model Ts is generally lower than the MODIS observed Ts during the daytime, while the situation is opposite at nighttime. The revision of roughness length for heat and the constraint of minimum friction velocity from Zeng et al. [2012] bring the modeled Ts closer to MODIS during the day, and have little effect on Ts at night. Five factors contributing to the Ts differences between the model and MODIS are identified, including the difficulty in properly accounting for cloud cover information at the appropriate temporal and spatial resolutions, and uncertainties in surface energy balance computation, atmospheric forcing data, surface emissivity, and MODIS Ts data. These findings have implications for the cross-evaluation of modeled and remotely sensed Ts, as well as the data assimilation of Ts observations into Earth system models.

  3. MODIS Snowcover in North America: A Comparison of Winter 2013/14 and 2014/15 to Median Condition

    NASA Astrophysics Data System (ADS)

    Trubilowicz, J. W.; Floyd, B. C.; D'Amore, D. V.; Bidlack, A.

    2015-12-01

    The winters from 2013-2015 had exceptionally low snow-packs in much of western North America. In particular, the winter of 2014/2015 had the lowest peak snow-water-equivalent (SWE) depths ever recorded in many areas of the Pacific Northwest. These low snow-packs have contributed to drought conditions from British Columbia to California. Along with the low SWE values, the snow covered area (SCA) of the previous two winters has been a significant departure from normal conditions. SCA is related to SWE, rain-on-snow events and the seasonal water supply, provides insulation for plant root systems from late season frost, and is an important factor in forest fire hazard, delaying the start of soil and fuel drying. Remote sensing can be a useful tool to monitor SCA over large regions, with the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments providing a suitable temporal (twice daily), and spatial resolution (500m) to create detailed maps, even with high frequencies of cloud covered days. While comparison of SWE at snow monitoring sites to historical values is a standard analysis, doing the same for SCA has been difficult due to the technical and logistical problems related to processing the large amounts of spatial data required to determine a 'normal' annual SCA cycle. Through the use of new cloud-based computation methods from Google Earth Engine, we have calculated the monthly median (from 2002-2015) MODIS SCA, at a 500 m resolution, for all of the major Pacific draining watersheds of North America. Determining the 'normal' SCA cycle of the past 13 years allowed us to compare the past two winters to the median SCA levels, showing which basins have seen the most significant departures from normal SCA levels. Results indicate more significant departures from normal in basins with significant maritime-influenced snow-packs.

  4. Downscaling of Aircraft-, Landsat-, and MODIS-based Land Surface Temperature Images with Support Vector Machines

    NASA Astrophysics Data System (ADS)

    Ha, W.; Gowda, P. H.; Oommen, T.; Howell, T. A.; Hernandez, J. E.

    2010-12-01

    High spatial resolution Land Surface Temperature (LST) images are required to estimate evapotranspiration (ET) at a field scale for irrigation scheduling purposes. Satellite sensors such as Landsat 5 Thematic Mapper (TM) and Moderate Resolution Imaging Spectroradiometer (MODIS) can offer images at several spectral bandwidths including visible, near-infrared (NIR), shortwave-infrared, and thermal-infrared (TIR). The TIR images usually have coarser spatial resolutions than those from non-thermal infrared bands. Due to this technical constraint of the satellite sensors on these platforms, image downscaling has been proposed in the field of ET remote sensing. This paper explores the potential of the Support Vector Machines (SVM) to perform downscaling of LST images derived from aircraft (4 m spatial resolution), TM (120 m), and MODIS (1000 m) using normalized difference vegetation index images derived from simultaneously acquired high resolution visible and NIR data (1 m for aircraft, 30 m for TM, and 250 m for MODIS). The SVM is a new generation machine learning algorithm that has found a wide application in the field of pattern recognition and time series analysis. The SVM would be ideally suited for downscaling problems due to its generalization ability in capturing non-linear regression relationship between the predictand and the multiple predictors. Remote sensing data acquired over the Texas High Plains during the 2008 summer growing season will be used in this study. Accuracy assessment of the downscaled 1, 30, and 250 m LST images will be made by comparing them with LST data measured with infrared thermometers at a small spatial scale, upscaled 30 m aircraft-based LST images, and upscaled 250 m TM-based LST images, respectively.

  5. Tornadoes Strike Northern Wisconsin

    NASA Technical Reports Server (NTRS)

    2007-01-01

    A series of tornadoes ripped through the Upper Midwest region of the United States in the evening of June 7, 2007. At least five different tornadoes touched down in Wisconsin, according to the Associated Press, one of which tore through the Bear Paw Resort in northern Wisconsin. Despite dropping as much as fifteen centimeters (six inches) of rain in some places and baseball-size hail in others, authorities were reporting no deaths attributable to the storm system, and only a smattering of injuries, but considerable property damage in some areas. When the MODIS instrument on NASA's Terra satellite observed the area on June 9, 2007, the track torn through the woods by one of the tornadoes stands out quite clearly. This photo-like image uses data collected by MODIS in the normal human vision range to give a familiar natural-looking appearance. The landscape is largely a checkerboard of farms, towns, roads, and cities. The pale land is predominantly farmland where crops have not fully grown in yet. Dark blue shows the winding path of rivers and lakes dotting the landscape. The large blue lake on the east (right) side of the image is Lake Michigan. Towns and cities, including the city of Green Bay, are gray. To the north side, farmland gives way to dark green as land use shifts from agriculture to the Menominee Indian Reservation and Nicolet National Forest. The diagonal slash through the dark green forested land shows the tornado track. Bare land was revealed where the tornado tore down trees or stripped vegetation off the branches. The high-resolution image provided above is at MODIS' full spatial resolution (level of detail) of 250 meters per pixel. The MODIS Rapid Response System provides this image at additional resolutions.

  6. Crop Phenology Detection Using High Spatio-Temporal Resolution Data Fused from SPOT5 and MODIS Products.

    PubMed

    Zheng, Yang; Wu, Bingfang; Zhang, Miao; Zeng, Hongwei

    2016-12-10

    Timely and efficient monitoring of crop phenology at a high spatial resolution are crucial for the precise and effective management of agriculture. Recently, satellite-derived vegetation indices (VIs), such as the Normalized Difference Vegetation Index (NDVI), have been widely used for the phenology detection of terrestrial ecosystems. In this paper, a framework is proposed to detect crop phenology using high spatio-temporal resolution data fused from Systeme Probatoire d'Observation de la Tarre5 (SPOT5) and Moderate Resolution Imaging Spectroradiometer (MODIS) images. The framework consists of a data fusion method to produce a synthetic NDVI dataset at SPOT5's spatial resolution and at MODIS's temporal resolution and a phenology extraction algorithm based on NDVI time-series analysis. The feasibility of our phenology detection approach was evaluated at the county scale in Shandong Province, China. The results show that (1) the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) algorithm can accurately blend SPOT5 and MODIS NDVI, with an R ² of greater than 0.69 and an root mean square error (RMSE) of less than 0.11 between the predicted and referenced data; and that (2) the estimated phenology parameters, such as the start and end of season (SOS and EOS), were closely correlated with the field-observed data with an R ² of the SOS ranging from 0.68 to 0.86 and with an R ² of the EOS ranging from 0.72 to 0.79. Our research provides a reliable approach for crop phenology mapping in areas with high fragmented farmland, which is meaningful for the implementation of precision agriculture.

  7. Photosynthetic Efficiency of Northern Forest Ecosystems Using a MODIS-Derived Photochemical Reflectance Index (PRI)

    NASA Technical Reports Server (NTRS)

    Middleton, E. M.; Huemmrich, K. F.; Landis, D. R.; Black, T. A.; Barr, A. G.; McCaughey, J. H.

    2016-01-01

    This study evaluates a direct remote sensing approach from space for the determination of ecosystem photosynthetic light use efficiency (LUE), through measurement of vegetation reflectance changes expressed with the Photochemical Reflectance Index (PRI). The PRI is a normalized difference index based on spectral changes at a physiologically active wavelength (approximately 531 nanometers) as compared to a reference waveband, and is only available from a very few satellites. These include the two Moderate-Resolution Imaging Spectroradiometers (MODIS) on the Aqua and Terra satellites each of which have a narrow (10-nanometer) ocean band centered at 531 nanometers. We examined several PRI variations computed with candidate reference bands, since MODIS lacks the traditional 570-nanometer reference band. The PRI computed using MODIS land band 1 (620-670 nanometers) gave the best performance for daily LUE estimation. Through rigorous statistical analyses over a large image collection (n equals 420), the success of relating in situ daily tower-derived LUE to MODIS observations for northern forests was strongly influenced by satellite viewing geometry. LUE was calculated from CO2 fluxes (moles per moles of carbon absorbed quanta) measured at instrumented Canadian Carbon Program flux towers in four Canadian forests: a mature fir site in British Columbia, mature aspen and black spruce sites in Saskatchewan, and a mixed deciduous/coniferous forest site in Ontario. All aspects of the viewing geometry had significant effects on the MODIS-PRI, including the view zenith angle (VZA), the view azimuth angle, and the displacement of the view azimuth relative to the solar principal plane, in addition to illumination related variables.Nevertheless, we show that forward scatter sector views (VZA, 16 degrees-45 degrees) provided the strongest relationships to daily LUE, especially those collected in the early afternoon by Aqua (r squared = 0.83, RMSE (root mean square error) equals 0.003 moles per moles of carbon absorbed quanta). Nadir (VZA, 0 degrees plus or minus 15 degrees) and backscatter views (VZA, -16 degrees to -45 degrees) had lower performance in estimating LUE (nadir: r squared approximately equal to 0.62-0.67; backscatter: r squared approximately equal to 0.54-0.59) and similar estimation error (RMSE equals 0.004-0.005).When directional effects were not considered, only a moderately successful MODIS-PRI vs. LUE relationship (r squared equals 0.34, RMSE equals 0.007) was obtained in the full dataset (all views & sites, both satellites), but site-specific relationships were able to discriminate between coniferous and deciduous forests. Overall, MODIS-PRI values from Terra (late morning) were higher than those from Aqua (early afternoon), before/after the onset of diurnal stress responses expressed spectrally. Therefore, we identified ninety-two Terra-Aqua "same day" pairs, for which the sum of Terra morning and Aqua afternoon MODIS-PRI values (PRI (sub sum) using all available directional observations was linearly correlated with daily tower LUE (r squared equals 0.622, RMSE equals 0.013) and independent of site differences or meteorological information. Our study highlights the value of off-nadir directional reflectance observations, and the value of pairing morning and afternoon satellite observations to monitor stress responses that inhibit carbon uptake in Canadian forest ecosystems. In addition, we show that MODIS-PRI values, when derived from either: (i) forward views only, or (ii) Terra/Aqua same day (any view) combined observations, provided more accurate estimates of tower-measured daily LUE than those derived from either nadir or backscatter views or those calculated by the widely used semi-operational MODIS GPP model (MOD17) which is based on a theoretical maximum LUE and environmental data. Consequently, we demonstrate the importance of diurnal as well as off-nadir satellite observations for detecting vegetation physiological processes.

  8. Validation of MODIS Aerosol Retrieval Over Ocean

    NASA Technical Reports Server (NTRS)

    Remer, Lorraine A.; Tanre, Didier; Kaufman, Yoram J.; Ichoku, Charles; Mattoo, Shana; Levy, Robert; Chu, D. Allen; Holben, Brent N.; Dubovik, Oleg; Ahmad, Ziauddin; hide

    2001-01-01

    The MODerate resolution Imaging Spectroradiometer (MODIS) algorithm for determining aerosol characteristics over ocean is performing with remarkable accuracy. A two-month data set of MODIS retrievals co-located with observations from the AErosol RObotic NETwork (AERONET) ground-based sunphotometer network provides the necessary validation. Spectral radiation measured by MODIS (in the range 550 - 2100 nm) is used to retrieve the aerosol optical thickness, effective particle radius and ratio between the submicron and micron size particles. MODIS-retrieved aerosol optical thickness at 660 nm and 870 nm fall within the expected uncertainty, with the ensemble average at 660 nm differing by only 2% from the AERONET observations and having virtually no offset. MODIS retrievals of aerosol effective radius agree with AERONET retrievals to within +/- 0.10 micrometers, while MODIS-derived ratios between large and small mode aerosol show definite correlation with ratios derived from AERONET data.

  9. Using VIIRS/NPP and MODIS/Aqua data to provide a continuous record of suspended particulate matter in a highly turbid inland lake

    NASA Astrophysics Data System (ADS)

    Cao, Zhigang; Duan, Hongtao; Shen, Ming; Ma, Ronghua; Xue, Kun; Liu, Dong; Xiao, Qitao

    2018-02-01

    Inland lakes are generally an important source of drinking water, and information on their water quality needs to be obtained in real time. To date, Moderate-resolution imaging spectroradiometer (MODIS) data have played a critical, effective and long-term role in fulfilling this function. However, the MODIS instruments on board both the Terra and Aqua satellites have operated beyond their designed five-year mission lifespans (Terra was launched in 1999, whereas Aqua was launched in 2002), and these instruments may stop running at any time in the near future. The Visible Infrared Imager Radiometer Suite (VIIRS) on board the Suomi National Polar-Orbiting Partnership (Suomi NPP, which was launched in Oct 2011) is expected to provide a consistent, long-term data record and continue the series of observations initiated by MODIS. To date, few evaluations of the consistency between VIIRS and MODIS have been conducted for turbid inland waters. In this study, we first used synchronous MODIS/Aqua and VIIRS/NPP data (±1 h) collected during 2012-2015 to evaluate the consistency of Rayleigh-corrected reflectance (Rrc) observations over Lake Hongze (the fourth-largest freshwater lake in China), since accurate remote sensing reflectance (Rrs) values cannot be acquired over turbid inland waters. Second, we used recently developed algorithms based on Rrc in the red band to estimate the concentrations of suspended particulate matter (SPM) from MODIS/Aqua and VIIRS/NPP data. Finally, we assessed the consistency of the SPM products derived from MODIS/Aqua and VIIRS/NPP. The results show the following. (1) The differences in Rrc among the green (VIIRS 551 nm and MODIS 555 nm) and red bands (VIIRS 671 nm and MODIS 645 nm) indicate a satisfactory consistency, and the unbiased percentage difference (UPD) is <12%. Meanwhile, the results for the near infrared (NIR) band (MODIS 859 nm and VIIRS 862 nm) indicate relatively large differences (UPD = 21.84%). (2) The satellite-derived SPM products obtained using MODIS/Aqua and VIIRS/NPP have a satisfactory degree of consistency (0-150 mg/L SPM: R2 = 0.81, UPD < 16% and 0-80 mg/L SPM: R2 = 0.85, UPD < 12%, respectively). These results demonstrate that VIIRS/NPP can continue to record the SPM observations initiated by MODIS/Aqua for turbid inland waters and establish environmental datasets over long time periods to support water quality management endeavors.

  10. Flooding in Central China

    NASA Technical Reports Server (NTRS)

    2002-01-01

    During the summer of 2002, frequent, heavy rains gave rise to floods and landslides throughout China that have killed over 1,000 people and affected millions. This false-color image of the western Yangtze River and Dongting Lake in central China was acquired on August 21, 2002, by the Moderate-resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra spacecraft. (right) The latest flooding crisis in China centers on Dingtong Lake in the center of the image. Heavy rains have caused it to swell over its banks and swamp lakefront towns in the province of Hunan. As of August 23, 2002, more than 250,000 people have been evacuated, and over one million people have been brought in to fortify the dikes around the lake. Normally the lake would appear much smaller and more defined in the MODIS image. Credit: Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC.

  11. Using ALS and MODIS data to evaluate degradation in different forests types over the Xingu basin - Brazilian Amazon

    NASA Astrophysics Data System (ADS)

    Moura, Y.; Aragão, L. E.; Galvão, L. S.; Dalagnol, R.; Lyapustin, A.; Santos, E. G.; Espirito-Santo, F.

    2017-12-01

    Degradation of Amazon rainforests represents a vital threat to carbon storage, climate regulation and biodiversity; however its effect on tropical ecosystems is largely unknown. In this study we evaluate the effects of forest degradation on forest structure and functioning over the Xingu Basin in the Brazilian Amazon. The vegetation types in the area is dominated by Open Ombrophilous Forest (Asc), Semi-decidiuous Forest (Fse) and Dense Ombrophilous Forest (Dse). We used Airborne Laser Scanning (ALS) data together with time series of optical remote sensing images from the Moderate Resolution Imaging Spectroradiometer (MODIS) bi-directional corrected using the Multi-Angle Implementation for Atmospheric Correction (MAIAC). We derive time-series (2008 to 2016) of the Enhanced Vegetation Index (EVI) and Green-Red Normalized Difference (GRND) to analyze the dynamics of degraded areas with related changes in canopy structure and greenness values, respectively. Airborne ALS measurements showed the largest tree heights in the Dse class with values up to 40m tall. Asc and Fse vegetation types reached up to 30m and 25m in height, respectively. Differences in canopy structure were also evident from the analysis of canopy volume models (CVMs). Asc showed higher proportion of sunlit, as expected for open forest types. Fse showed gaps predominantly in lower height levels, and a higher overall proportion of shaded crown. Full canopy closure was reached at about15 m height for both Asc and Dse, and at about 20 m height for Fse. We also used a base map of degraded areas (available from Imazon - Instituto do Homen e Meio Ambiente da Amazônia) to follow these regions throughout time using EVI and GRND from MODIS. All three forest types displayed seasonal cycles. Notable differences in amplitude were detected during the periods when degradation occurred and both indexes showed a decrease in their response. However, there were marked differences in timing and amplitude depending on forest type. These responses were influenced by the spatial resolution of 1km of the MODIS images, limited the ability to observe small degraded regions. In conclusion, ASL together with optical remote sensing used in a straight multi-scale approach may contribute to understand the impacts of degradation in the structure and functioning of tropical forest.

  12. Improvement in the Characterization of MODIS Subframe Difference

    NASA Technical Reports Server (NTRS)

    Li, Yonghong; Angal, Amit; Chen, Na; Geng, Xu; Link, Daniel; Wang, Zhipeng; Wu, Aisheng; Xiong, Xiaoxiong

    2016-01-01

    MODIS is a key instrument of NASA's Earth Observing System. It has successfully operated for 16+ years on the Terra satellite and 14+ years on the Aqua satellite, respectively. MODIS has 36 spectral bands at three different nadir spatial resolutions, 250m (bands 1-2), 500m (bands 3-7), and 1km (bands 8-36). MODIS subframe measurement is designed for bands 1-7 to match their spatial resolution in the scan direction to that of the track direction. Within each 1 km frame, the MODIS 250 m resolution bands sample four subframes and the 500 m resolution bands sample two subframes. The detector gains are calibrated at a subframe level. Due to calibration differences between subframes, noticeable subframe striping is observed in the Level 1B (L1B) products, which exhibit a predominant radiance-level dependence. This paper presents results of subframe differences from various onboard and earth-view data sources (e.g. solar diffuser, electronic calibration, spectro-radiometric calibration assembly, Earth view, etc.). A subframe bias correction algorithm is proposed to minimize the subframe striping in MODIS L1B image. The algorithm has been tested using sample L1B images and the vertical striping at lower radiance value is mitigated after applying the corrections. The subframe bias correction approach will be considered for implementation in future versions of the calibration algorithm.

  13. Role of MODIS Vegetation Phenology Products in the ForWarn System for Monitoring of Forest Disturbances in the Conterminous United States

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph P.; Hargrove, William; Norman, Steve; Gasser, Jerry; Smoot, James; Kuper, Philip D,

    2012-01-01

    This presentation discusses MODIS vegetation phenology products used in the ForWarn Early Warning System (EWS) tool for near real time regional forest disturbance detection and surveillance at regional to national scales. The ForWarn EWS is being developed by the USDA Forest Service NASA, ORNL, and USGS to aid federal and state forest health management activities. ForWarn employs multiple historical land surface phenology products that are derived from MODIS MOD13 Normalized Difference Vegetation Index (NDVI) data. The latter is temporally processed into phenology products with the Time Series Product Tool (TSPT) and the Phenological Parameter Estimation Tool (PPET) software produced at NASA Stennis Space Center. TSPT is used to effectively noise reduce, fuse, and void interpolate MODIS NDVI data. PPET employs TSPT-processed NDVI time series data as an input, outputting multiple vegetation phenology products at a 232 meter resolution for 2000 to 2011, including NDVI magnitude and day of year products for seven key points along the growing season (peak of growing season and the minima, 20%, and 80% of the peak NDVI for both the left and right side of growing season), cumulative NDVI integral products for the most active part of the growing season and sequentially across the growing season at 8 day intervals, and maximum value NDVI products composited at 24 day intervals in which each product date has 8 days of overlap between the previous and following product dates. MODIS NDVI phenology products are also used to compute nationwide NRT forest change products refreshed every 8 days. These include percent change in forest NDVI products that compare the current NDVI from USGS eMODIS products to historical MODIS MOD13 NDVI. For each date, three forest change products are produced using three different maximum value NDVI baselines (from the previous year, three previous years, and all previous years). All change products are output with a rainbow color table in which forests with the most severe NDVI decreases are assigned hot colors (yellow to red) and forests with prominent NDVI increases are assigned cold colors (blue tones). All mentioned products have been integrated as data layers into ForWarn s geospatial data viewer known as the U.S. Forest Change Assessment Viewer (FCAV). The latter is used to view and assess the context of the mentioned forest change products with respect to ancillary data layers, such as land cover, elevation, hydrologic features, climatic data, storm data, aerial disturbance surveys, fire data, and land ownership. The FCAV also includes a temporal NDVI profiler for viewing phenological change in multi-year NDVI associated with known or suspected regionally apparent forest disturbances (e.g., from fire and insects). ForWarn forest change products have been used to detect, track, and assess several biotic and abiotic regional forest disturbance events across the country, including ephemeral and longer lasting damage from storms, drought, and insects. Such change products are most effective for viewing severe disturbances affecting multiple MODIS pixels. MODIS vegetation phenology products contribute vital current information on forest conditions to the ForWarn system and this role is expected to grow as these products are refined and derivative products are added.

  14. Maturity onset diabetes of the young (MODY)--history, first case reports and recent advances.

    PubMed

    Siddiqui, Khalid; Musambil, Mohthash; Nazir, Nyla

    2015-01-15

    The world is seemingly facing a global increase in people suffering from diabetes especially in developing countries. The worldwide occurrence of diabetes for all age groups in year 2000 was estimated to be 2.8% and this number is most certainly expected to rise to 4.4% by 2030. Maturity-onset of diabetes of the young, or MODY, is a form of monogenic diabetes that is caused by mutations occurring in a number of different genes. Mutations in different genes tend to cause a slightly different variant of diabetes. MODY is typically diagnosed during late childhood, adolescence, or early adulthood and is usually observed to develop in adults during their late 50's. One of the main drawbacks in its diagnosis is that many people with MODY are misdiagnosed as having type 1 or type 2 diabetes. However, a molecular and genetic diagnosis can result in a better treatment and could also help in identifying other family members with MODY. This article explores the historical prospect and the genetic background of MODY, a brief summary of the first case reported and the significant factors that differentiate it from type 1 and type 2 diabetes. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Calibration Improvements in the Detector-to-Detector Differences for the MODIS Ocean Color Bands

    NASA Technical Reports Server (NTRS)

    Li, Yonghong; Angal, Amit; Wu, Aisheng; Geng, Xu; Link, Daniel; Xiong, Xiaoxiong

    2016-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS), a major instrument within NASAs Earth Observation System missions, has operated for over 16 and 14 years onboard the Terra and Aqua satellites, respectively. Its reflective solar bands (RSB) covering a spectral range from 0.4 to 2.1 micrometers are primarily calibrated using the on-board solar diffuser(SD), with its on-orbit degradation monitored using the Solar Diffuser Stability Monitor. RSB calibrations are supplemented by near-monthly lunar measurements acquired from the instruments space-view port. Nine bands (bands 8-16) in the visible to near infrared spectral range from 0.412 to 0.866 micrometers are primarily used for ocean color observations.During a recent reprocessing of ocean color products, performed by the NASA Ocean Biology Processing Group, detector-to-detector differences of up to 1.5% were observed in bands 13-16 of Terra MODIS. This paper provides an overview of the current approach to characterize the MODIS detector-to-detector differences. An alternative methodology was developed to mitigate the observed impacts for bands 13-16. The results indicated an improvement in the detector residuals and in turn are expected to improve the MODIS ocean color products. This paper also discusses the limitations,subsequent enhancements, and the improvements planned for future MODIS calibration collections.

  16. Relative spectral response corrected calibration inter-comparison of S-NPP VIIRS and Aqua MODIS thermal emissive bands

    NASA Astrophysics Data System (ADS)

    Efremova, Boryana; Wu, Aisheng; Xiong, Xiaoxiong

    2014-09-01

    The S-NPP Visible Infrared Imaging Radiometer Suite (VIIRS) instrument is built with strong heritage from EOS MODIS, and has very similar thermal emissive bands (TEB) calibration algorithm and on-board calibrating source - a V-grooved blackbody. The calibration of the two instruments can be assessed by comparing the brightness temperatures retrieved from VIIRS and Aqua MODIS simultaneous nadir observations (SNO) from their spectrally matched TEB. However, even though the VIIRS and MODIS bands are similar there are still relative spectral response (RSR) differences and thus some differences in the retrieved brightness temperatures are expected. The differences depend on both the type and the temperature of the observed scene, and contribute to the bias and the scatter of the comparison. In this paper we use S-NPP Cross-track Infrared Sounder (CrIS) data taken simultaneously with the VIIRS data to derive a correction for the slightly different spectral coverage of VIIRS and MODIS TEB bands. An attempt to correct for RSR differences is also made using MODTRAN models, computed with physical parameters appropriate for each scene, and compared to the value derived from actual CrIS spectra. After applying the CrIS-based correction for RSR differences we see an excellent agreement between the VIIRS and Aqua MODIS measurements in the studied band pairs M13-B23, M15-B31, and M16- B32. The agreement is better than the VIIRS uncertainty at cold scenes, and improves with increasing scene temperature up to about 290K.

  17. Maturity-onset diabetes of the young as a model for elucidating the multifactorial origin of type 2 diabetes mellitus.

    PubMed

    Horikawa, Yukio

    2018-02-06

    Maturity-onset diabetes of the young (MODY) is a form of diabetes classically characterized as having autosomal dominant inheritance, onset before the age of 25 years in at least one family member and partly preserved pancreatic β-cell function. The 14 responsible genes are reported to be MODY type 1~14, of which MODY 2 and 3 might be the most common forms. Although MODY is currently classified as diabetes of a single gene defect, it has become clear that mutations in rare MODYs, such as MODY 5 and MODY 6, have small mutagenic effects and low penetrance. In addition, as there are differences in the clinical phenotypes caused by the same mutation even in the same family, other phenotypic modifying factors are thought to exist; MODY could well have characteristics of type 2 diabetes mellitus, which is of multifactorial origin. Here, we outline the effects of genetic and environmental factors on the known phenotypes of MODY, focusing mainly on the examples of MODY 5 and 6, which have low penetrance, as suggestive models for elucidating the multifactorial origin of type 2 diabetes mellitus. © 2018 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.

  18. Evaluating NASA S-NPP continuity cloud products for climate research using CALIPSO, CATS and Level-3 analysis

    NASA Astrophysics Data System (ADS)

    Holz, R.; Platnick, S. E.; Meyer, K.; Frey, R.; Wind, G.; Ackerman, S. A.; Heidinger, A. K.; Botambekov, D.; Yorks, J. E.; McGill, M. J.

    2016-12-01

    The launch of VIIRS and CrIS on Suomi NPP in the fall of 2011 introduced the next generation of U.S. operational polar orbiting environmental observations. Similar to MODIS, VIIRS provides visible and IR observations at moderate spatial resolution and has a 1:30 pm equatorial crossing time consistent with the MODIS on Aqua platform. However unlike MODIS, VIIRS lacks water vapor and CO2 absorbing channels that are used by the MODIS cloud algorithms for both cloud detection and to retrieve cloud top height and cloud emissivity for ice clouds. Given the different spectral and spatial characteristics of VIIRS, we seek to understand the extent to which the 15-year MODIS climate record can be continued with VIIRS/CrIS observations while maintaining consistent sensitivities across the observational systems. This presentation will focus on the evaluation of the latest version of the NASA funded cloud retrieval algorithms being developed for climate research. We will present collocated inter-comparisons between the imagers (VIIRS and MODIS Aqua) with CALIPSO and Cloud Aerosol Transport System (CATS) lidar observations as well as long term statistics based on a new Level-3 (L3) product being developed as part the project. The CALIPSO inter-comparisons will focus on cloud detection (cloud mask) with a focus on the impact of recent modifications to the cloud mask and how these changes impact the global statistics. For the first time we will provide inter-comparisons between two different cloud lidar systems (CALIOP and CATS) and investigate how the different sensitivities of the lidars impact the cloud mask and cloud comparisons. Using CALIPSO and CATS as the reference, and applying the same algorithms to VIIRS and MODIS, we will discuss the consistency between products from both imagers. The L3 analysis will focus on the regional and seasonal consistency between the suite of MODIS and VIIRS continuity cloud products. Do systematic biases remains when using consistent algorithms but applied to different observations (MODIS or VIIRS)?

  19. Cystatin C is not a good candidate biomarker for HNF1A-MODY.

    PubMed

    Nowak, Natalia; Szopa, Magdalena; Thanabalasingham, Gaya; McDonald, Tim J; Colclough, Kevin; Skupien, Jan; James, Timothy J; Kiec-Wilk, Beata; Kozek, Elzbieta; Mlynarski, Wojciech; Hattersley, Andrew T; Owen, Katharine R; Malecki, Maciej T

    2013-10-01

    Cystatin C is a marker of glomerular filtration rate (GFR). Its level is influenced, among the others, by CRP whose concentration is decreased in HNF1A-MODY. We hypothesized that cystatin C level might be altered in HNF1A-MODY. We aimed to evaluate cystatin C in HNF1A-MODY both as a diagnostic marker and as a method of assessing GFR. We initially examined 51 HNF1A-MODY patients, 56 subjects with type 1 diabetes (T1DM), 39 with type 2 diabetes (T2DM) and 43 non-diabetic individuals (ND) from Poland. Subjects from two UK centres were used as replication panels: including 215 HNF1A-MODY, 203 T2DM, 39 HNF4A-MODY, 170 GCK-MODY, 17 HNF1B-MODY and 58 T1DM patients. The data were analysed with additive models, adjusting for gender, age, BMI and estimated GFR (creatinine). In the Polish subjects, adjusted cystatin C level in HNF1A-MODY was lower compared with T1DM, T2DM and ND (p < 0.05). Additionally, cystatin C-based GFR was higher than that calculated from creatinine level (p < 0.0001) in HNF1A-MODY, while the two GFR estimates were similar or cystatin C-based lower in the other groups. In the UK subjects, there were no differences in cystatin C between HNF1A-MODY and the other diabetic subgroups, except HNF1B-MODY. In UK HNF1A-MODY, cystatin C-based GFR estimate was higher than the creatinine-based one (p < 0.0001). Concluding, we could not confirm our hypothesis (supported by the Polish results) that cystatin C level is altered by HNF1A mutations; thus, it cannot be used as a biomarker for HNF1A-MODY. In HNF1A-MODY, the cystatin C-based GFR estimate is higher than the creatinine-based one.

  20. Flood Mapping in the Lower Mekong River Basin Using Daily MODIS Observations

    NASA Technical Reports Server (NTRS)

    Fayne, Jessica V.; Bolten, John D.; Doyle, Colin S.; Fuhrmann, Sven; Rice, Matthew T.; Houser, Paul R.; Lakshmi, Venkat

    2017-01-01

    In flat homogenous terrain such as in Cambodia and Vietnam, the monsoon season brings significant and consistent flooding between May and November. To monitor flooding in the Lower Mekong region, the near real-time NASA Flood Extent Product (NASA-FEP) was developed using seasonal normalized difference vegetation index (NDVI) differences from the 250 m resolution Moderate Resolution Imaging Spectroradiometer (MODIS) sensor compared to daily observations. The use of a percentage change interval classification relating to various stages of flooding reduces might be confusing to viewers or potential users, and therefore reducing the product usage. To increase the product usability through simplification, the classification intervals were compared with other commonly used change detection schemes to identify the change classification scheme that best delineates flooded areas. The percentage change method used in the NASA-FEP proved to be helpful in delineating flood boundaries compared to other change detection methods. The results of the accuracy assessments indicate that the -75% NDVI change interval can be reclassified to a descriptive 'flood' classification. A binary system was used to simplify the interpretation of the NASA-FEP by removing extraneous information from lower interval change classes.

  1. Prediction of winter wheat high yield from remote sensing based model: application in United States and Ukraine

    NASA Astrophysics Data System (ADS)

    Franch, B.; Vermote, E.; Roger, J. C.; Skakun, S.; Becker-Reshef, I.; Justice, C. O.

    2017-12-01

    Accurate and timely crop yield forecasts are critical for making informed agricultural policies and investments, as well as increasing market efficiency and stability. In Becker-Reshef et al. (2010) and Franch et al. (2015) we developed an empirical generalized model for forecasting winter wheat yield. It is based on the relationship between the Normalized Difference Vegetation Index (NDVI) at the peak of the growing season and the Growing Degree Day (GDD) information extracted from NCEP/NCAR reanalysis data. These methods were applied to MODIS CMG data in Ukraine, the US and China with errors around 10%. However, the NDVI is saturated for yield values higher than 4 MT/ha. As a consequence, the model had to be re-calibrated in each country and the validation of the national yields showed low correlation coefficients. In this study we present a new model based on the extrapolation of the pure wheat signal (100% of wheat within the pixel) from MODIS data at 1km resolution and using the Difference Vegetation Index (DVI). The model has been applied to monitor the national yield of winter wheat in the United States and Ukraine from 2001 to 2016.

  2. Analysis of vegetation dynamics and climatic variability impacts on greenness across Canada using remotely sensed data from 2000 to 2009

    NASA Astrophysics Data System (ADS)

    Fang, Xiuqin; Zhu, Qiuan; Chen, Huai; Ma, Zhihai; Wang, Weifeng; Song, Xinzhang; Zhao, Pengxiang; Peng, Changhui

    2014-01-01

    Using time series of moderate-resolution imaging spectroradiometer (MODIS) normalized difference vegetation index (NDVI) data from 2000 to 2009, we assessed decadal vegetation dynamics across Canada and examined the relationship between NDVI and climatic variables (precipitation and temperature). The Palmer drought severity index and vapor pressure difference (VPD) were used to relate the vegetation changes to the climate, especially in cases of drought. Results indicated that MODIS NDVI measurements provided a dynamic picture of interannual variation in Canadian vegetation patterns. Greenness declined in 2000, 2002, and 2009 and increased in 2005, 2006, and 2008. Vegetation dynamics varied across regions during the period. Most forest land shows little change, while vegetation in the ecozone of Pacific Maritime, Prairies, and Taiga Shield shows more dynamics than in the others. Significant correlations were found between NDVI and the climatic variables. The variation of NDVI resulting from climatic variability was more highly correlated to temperature than to precipitation in most ecozones. Vegetation grows better with higher precipitation and temperature in almost all ecozones. However, vegetation grows worse under higher temperature in the Prairies ecozone. The annual changes in NDVI corresponded well with the change in VPD in most ecozones.

  3. Optimal use of land surface temperature data to detect changes in tropical forest cover

    NASA Astrophysics Data System (ADS)

    Van Leeuwen, T. T.; Frank, A. J.; Jin, Y.; Smyth, P.; Goulden, M.; van der Werf, G.; Randerson, J. T.

    2011-12-01

    Rapid and accurate assessment of global forest cover change is needed to focus conservation efforts and to better understand how deforestation is contributing to the build up of atmospheric CO2. Here we examined different ways to use remotely sensed land surface temperature (LST) to detect changes in tropical forest cover. In our analysis we used monthly 0.05×0.05 degree Terra MODerate Resolution Imaging Spectroradiometer (MODIS) observations of LST and PRODES (Program for the Estimation of Deforestation in the Brazilian Amazon) estimates of forest cover change. We also compared MODIS LST observations with an independent estimate of forest cover loss derived from MODIS and Landsat observations. Our study domain of approximately 10×10 degree included most of the Brazilian state of Mato Grosso. For optimal use of LST data to detect changes in tropical forest cover in our study area, we found that using data sampled during the end of the dry season (~1-2 months after minimum monthly precipitation) had the greatest predictive skill. During this part of the year, precipitation was low, surface humidity was at a minimum, and the difference between day and night LST was the largest. We used this information to develop a simple temporal sampling algorithm appropriate for use in pan-tropical deforestation classifiers. Combined with the normalized difference vegetation index (NDVI), a logistic regression model using day-night LST did moderately well at predicting forest cover change. Annual changes in day-night LST difference decreased during 2006-2009 relative to 2001-2005 in many regions within the Amazon, providing independent confirmation of lower deforestation levels during the latter part of this decade as reported by PRODES. The use of day-night LST differences may be particularly valuable for use with satellites that do not have spectral bands that allow for the estimation of NDVI or other vegetation indices.

  4. Terra and Aqua MODIS Design, Radiometry, and Geometry in Support of Land Remote Sensing

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong; Wolfe, Robert; Barnes, William; Guenther, Bruce; Vermote, Eric; Saleous, Nazmi; Salomonson, Vincent

    2011-01-01

    The NASA Earth Observing System (EOS) mission includes the construction and launch of two nearly identical Moderate Resolution Imaging Spectroradiometer (MODIS) instruments. The MODIS proto-flight model (PFM) is onboard the EOS Terra satellite (formerly EOS AM-1) launched on December 18, 1999 and hereafter referred to as Terra MODIS. Flight model-1 (FM1) is onboard the EOS Aqua satellite (formerly EOS PM-1) launched on May 04, 2002 and referred to as Aqua MODIS. MODIS was developed based on the science community s desire to collect multiyear continuous datasets for monitoring changes in the Earth s land, oceans and atmosphere, and the human contributions to these changes. It was designed to measure discrete spectral bands, which includes many used by a number of heritage sensors, and thus extends the heritage datasets to better understand both long- and short-term changes in the global environment (Barnes and Salomonson 1993; Salomonson et al. 2002; Barnes et al. 2002). The MODIS development, launch, and operation were managed by NASA/Goddard Space Flight Center (GSFC), Greenbelt, Maryland. The sensors were designed, built, and tested by Raytheon/ Santa Barbara Remote Sensing (SBRS), Goleta, California. Each MODIS instrument offers 36 spectral bands, which span the spectral region from the visible (0.41 m) to long-wave infrared (14.4 m). MODIS collects data at three different nadir spatial resolutions: 0.25, 0.5, and 1 km. Key design specifications, such as spectral bandwidths, typical scene radiances, required signal-to-noise ratios (SNR) or noise equivalent temperature differences (NEDT), and primary applications of each MODIS spectral band are summarized in Table 7.1. These parameters were the basis for the MODIS design. More details on the evolution of the NASA EOS and development of the MODIS instruments are provided in Chap. 1. This chapter focuses on the MODIS sensor design, radiometry, and geometry as they apply to land remote sensing. With near-daily coverage of the Earth's surface, MODIS provides comprehensive measurements that enable scientists and policy makers to better understand and effectively manage the natural resources on both regional and global scales. Terra, the first large multisensor EOS satellite, is operated in a 10:30 am (local equatorial crossing time, descending southwards) polar orbit. Aqua, the second multisensor EOS satellite is operated in a 1:30 pm (local equatorial crossing time, ascending northwards) polar orbit. With complementing morning and afternoon observations, the Terra and Aqua MODIS, together with other sensors housed on both satellites, have greatly improved our understanding of the dynamics of the global environmental system.

  5. MODIS imagery as a tool for synoptic water quality assessments in the southern California coastal ocean

    USGS Publications Warehouse

    Nezlin, N.P.; DiGiacomo, P.M.; Jones, B.H.; Reifel, K.M.; Warrick, J.A.; Johnson, S.C.; Mengel, M.J.

    2007-01-01

    The dynamics of rainstorm plumes in the coastal waters of southern California was studied during the Bight'03 Regional Water Quality Program surveys. Measurements of surface salinity and bacterial counts collected from research vessels were compared to MODIS-Aqua satellite imagery. The spectra of normalized water-leaving radiation (nLw) were different in plumes and ambient ocean waters, enabling plumes discrimination and plume area size assessments from remotely-sensed data. The plume/ocean nLw differences (i.e., plume optical signatures) were most evident during first days after the rainstorm over the San Pedro shelf and in the San Diego region and less evident in Santa Monica Bay, where suspended sediments concentration in discharged water was lower than in other regions. In the Ventura area, plumes contained more suspended sediments than in other regions, but the grid of ship-based stations covered only a small part of the freshwater plume and was insufficient to reveal the differences between the plume and ocean optical signatures. The accuracy of plume area assessments from satellite imagery was not high (77% on average), seemingly because of inexactitude in satellite data processing. Nevertheless, satellite imagery is a useful tool for the estimation of the extent of polluted plumes, which is hardly achievable by contact methods.

  6. Generating Daily Synthetic Landsat Imagery by Combining Landsat and MODIS Data

    PubMed Central

    Wu, Mingquan; Huang, Wenjiang; Niu, Zheng; Wang, Changyao

    2015-01-01

    Owing to low temporal resolution and cloud interference, there is a shortage of high spatial resolution remote sensing data. To address this problem, this study introduces a modified spatial and temporal data fusion approach (MSTDFA) to generate daily synthetic Landsat imagery. This algorithm was designed to avoid the limitations of the conditional spatial temporal data fusion approach (STDFA) including the constant window for disaggregation and the sensor difference. An adaptive window size selection method is proposed in this study to select the best window size and moving steps for the disaggregation of coarse pixels. The linear regression method is used to remove the influence of differences in sensor systems using disaggregated mean coarse reflectance by testing and validation in two study areas located in Xinjiang Province, China. The results show that the MSTDFA algorithm can generate daily synthetic Landsat imagery with a high correlation coefficient (R) ranged from 0.646 to 0.986 between synthetic images and the actual observations. We further show that MSTDFA can be applied to 250 m 16-day MODIS MOD13Q1 products and the Landsat Normalized Different Vegetation Index (NDVI) data by generating a synthetic NDVI image highly similar to actual Landsat NDVI observation with a high R of 0.97. PMID:26393607

  7. Generating Daily Synthetic Landsat Imagery by Combining Landsat and MODIS Data.

    PubMed

    Wu, Mingquan; Huang, Wenjiang; Niu, Zheng; Wang, Changyao

    2015-09-18

    Owing to low temporal resolution and cloud interference, there is a shortage of high spatial resolution remote sensing data. To address this problem, this study introduces a modified spatial and temporal data fusion approach (MSTDFA) to generate daily synthetic Landsat imagery. This algorithm was designed to avoid the limitations of the conditional spatial temporal data fusion approach (STDFA) including the constant window for disaggregation and the sensor difference. An adaptive window size selection method is proposed in this study to select the best window size and moving steps for the disaggregation of coarse pixels. The linear regression method is used to remove the influence of differences in sensor systems using disaggregated mean coarse reflectance by testing and validation in two study areas located in Xinjiang Province, China. The results show that the MSTDFA algorithm can generate daily synthetic Landsat imagery with a high correlation coefficient (R) ranged from 0.646 to 0.986 between synthetic images and the actual observations. We further show that MSTDFA can be applied to 250 m 16-day MODIS MOD13Q1 products and the Landsat Normalized Different Vegetation Index (NDVI) data by generating a synthetic NDVI image highly similar to actual Landsat NDVI observation with a high R of 0.97.

  8. Response of spectral vegetation indices to soil moisture in grasslands and shrublands

    USGS Publications Warehouse

    Zhang, Li; Ji, Lei; Wylie, Bruce K.

    2011-01-01

    The relationships between satellite-derived vegetation indices (VIs) and soil moisture are complicated because of the time lag of the vegetation response to soil moisture. In this study, we used a distributed lag regression model to evaluate the lag responses of VIs to soil moisture for grasslands and shrublands at Soil Climate Analysis Network sites in the central and western United States. We examined the relationships between Moderate Resolution Imaging Spectroradiometer (MODIS)-derived VIs and soil moisture measurements. The Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI) showed significant lag responses to soil moisture. The lag length varies from 8 to 56 days for NDVI and from 16 to 56 days for NDWI. However, the lag response of NDVI and NDWI to soil moisture varied among the sites. Our study suggests that the lag effect needs to be taken into consideration when the VIs are used to estimate soil moisture.

  9. Estimate of the Impact of Absorbing Aerosol Over Cloud on the MODIS Retrievals of Cloud Optical Thickness and Effective Radius Using Two Independent Retrievals of Liquid Water Path

    NASA Technical Reports Server (NTRS)

    Wilcox, Eric M.; Harshvardhan; Platnick, Steven

    2009-01-01

    Two independent satellite retrievals of cloud liquid water path (LWP) from the NASA Aqua satellite are used to diagnose the impact of absorbing biomass burning aerosol overlaying boundary-layer marine water clouds on the Moderate Resolution Imaging Spectrometer (MODIS) retrievals of cloud optical thickness (tau) and cloud droplet effective radius (r(sub e)). In the MODIS retrieval over oceans, cloud reflectance in the 0.86-micrometer and 2.13-micrometer bands is used to simultaneously retrieve tau and r(sub e). A low bias in the MODIS tau retrieval may result from reductions in the 0.86-micrometer reflectance, which is only very weakly absorbed by clouds, owing to absorption by aerosols in cases where biomass burning aerosols occur above water clouds. MODIS LWP, derived from the product of the retrieved tau and r(sub e), is compared with LWP ocean retrievals from the Advanced Microwave Scanning Radiometer-EOS (AMSR-E), determined from cloud microwave emission that is transparent to aerosols. For the coastal Atlantic southern African region investigated in this study, a systematic difference between AMSR-E and MODIS LWP retrievals is found for stratocumulus clouds over three biomass burning months in 2005 and 2006 that is consistent with above-cloud absorbing aerosols. Biomass burning aerosol is detected using the ultraviolet aerosol index from the Ozone Monitoring Instrument (OMI) on the Aura satellite. The LWP difference (AMSR-E minus MODIS) increases both with increasing tau and increasing OMI aerosol index. During the biomass burning season the mean LWP difference is 14 g per square meters, which is within the 15-20 g per square meter range of estimated uncertainties in instantaneous LWP retrievals. For samples with only low amounts of overlaying smoke (OMI AI less than or equal to 1) the difference is 9.4, suggesting that the impact of smoke aerosols on the mean MODIS LWP is 5.6 g per square meter. Only for scenes with OMI aerosol index greater than 2 does the average LWP difference and the estimated bias in MODIS cloud optical thickness attributable to the impact of overlaying biomass burning aerosol exceed the instantaneous uncertainty in the retrievals.

  10. Near-Real Time Cloud Retrievals from Operational and Research Meteorological Satellites

    NASA Technical Reports Server (NTRS)

    Minnis, Patrick; Nguyen, Louis; Palilonda, Rabindra; Heck, Patrick W.; Spangenberg, Douglas A.; Doelling, David R.; Ayers, J. Kirk; Smith, William L., Jr.; Khaiyer, Mandana M.; Trepte, Qing Z.; hide

    2008-01-01

    A set of cloud retrieval algorithms developed for CERES and applied to MODIS data have been adapted to analyze other satellite imager data in near-real time. The cloud products, including single-layer cloud amount, top and base height, optical depth, phase, effective particle size, and liquid and ice water paths, are being retrieved from GOES- 10/11/12, MTSAT-1R, FY-2C, and Meteosat imager data as well as from MODIS. A comprehensive system to normalize the calibrations to MODIS has been implemented to maximize consistency in the products across platforms. Estimates of surface and top-of-atmosphere broadband radiative fluxes are also provided. Multilayered cloud properties are retrieved from GOES-12, Meteosat, and MODIS data. Native pixel resolution analyses are performed over selected domains, while reduced sampling is used for full-disk retrievals. Tools have been developed for matching the pixel-level results with instrumented surface sites and active sensor satellites. The calibrations, methods, examples of the products, and comparisons with the ICESat GLAS lidar are discussed. These products are currently being used for aircraft icing diagnoses, numerical weather modeling assimilation, and atmospheric radiation research and have potential for use in many other applications.

  11. Monitoring the state of vegetation in Hungary using 15 years long MODIS Data

    NASA Astrophysics Data System (ADS)

    Kern, Anikó; Bognár, Péter; Pásztor, Szilárd; Barcza, Zoltán; Timár, Gábor; Lichtenberger, János; Ferencz, Csaba

    2015-04-01

    Monitoring the state and health of the vegetation is essential to understand causes and severity of environmental change and to prepare for the negative effects of climate change on plant growth and productivity. Satellite remote sensing is the fundamental tool to monitor and study the changes of vegetation activity in general and to understand its relationship with the climate fluctuations. Vegetation indices and other vegetation related measures calculated from remotely sensed data are widely used to monitor and characterize the state of the terrestrial vegetation. Normalized Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI) are among the most popular indices that can be calculated from measurements of the MODerate resolution Imaging Spectroradiometer (MODIS) sensor onboard the NASA EOS-AM1/Terra and EOS-PM1/Aqua satellites (since 1999 and 2002 respectively). Based on the available, 15 years long MODIS data (2000-2014) the vegetation characteristics of Hungary was investigated in our research, primarily using vegetation indices. The MODIS NDVI and EVI (both part of the so-called MOD13 product of NASA) are freely available with a finest spatial resolution of 250 meters and a temporal resolution of 16 days since 2000/2002 (for Terra and Aqua respectively). The accuracy, the spatial resolution and temporal continuity of the MODIS products makes these datasets highly valuable despite of its relatively short temporal coverage. NDVI is also calculated routinely from the raw MODIS data collected by the receiving station of Eötvös Loránd University. In order to characterize vegetation activity and its variability within the Carpathian Basin the area-averaged annual cycles and their interannual variability were determined. The main aim was to find those years that can be considered as extreme according to specific indices. Using archive meteorological data the effects of extreme weather on vegetation activity and growth were investigated with emphasis on drought and heat waves. Te relationship between anomalies of vegetation characteristics and crop yield decrease in agricultural regions were characterised as well. The mean NDVI values of Hungary during the 15 years reveal the behaviour of the vegetation in the country, where the main land cover types (forest, agriculture and grassland) were distinguished as well. NDVI anomalies are analyzed separately for the main land cover types. Deviations from the potential maximum vegetation greenness are also calculated for the entire time period.

  12. Sensor On-orbit Calibration and Characterization Using Spacecraft Maneuvers

    NASA Technical Reports Server (NTRS)

    Xiong, X.; Butler, Jim; Barnes, W. L.; Guenther, B.

    2007-01-01

    Spacecraft flight operations often require activities that involve different kinds of maneuvers for orbital adjustments (pitch, yaw, and roll). Different maneuvers, when properly planned and scheduled, can also be applied to support and/or to perform on-board sensor calibration and characterization. This paper uses MODIS (Moderate Resolution Imaging Spectroradiometer) as an example to illustrate applications of spacecraft maneuvers for Earth-observing sensors on-orbit calibration and characterization. MODIS is one of the key instruments for NASA's Earth Observing System (EOS) currently operated on-board the EOS Terra and Aqua spacecraft launched in December 1999 and May 2002, respectively. Since their launch, both Terra and Aqua spacecraft have made a number of maneuvers, specially the yaw and roll maneuvers, to support the MODIS on-orbit calibration and characterization. For both Terra and Aqua MODIS, near-monthly spacecraft roll maneuvers are executed for lunar observations. These maneuvers are carefully scheduled so that the lunar phase angles are nearly identical for each sensor's lunar observations. The lunar observations are used to track MODIS reflective solar bands (RSB) calibration stability and to inter-compare Terra and Aqua MODIS RSB calibration consistency. To date, two sets of yaw maneuvers (each consists of two series of 8 consecutive yaws) by the Terra spacecraft and one set by the Aqua spacecraft have been performed to validate MODIS solar diffuser (SD) bi-directional reflectance factor (BRF) and to derive SD screen transmission. Terra spacecraft pitch maneuvers, first made on March 26, 2003 and the second on April 14, 2003 (with the Moon in the spacecraft nadir view), have been applied to characterize MODIS thermal emissive bands (TEB) response versus scan angle (RVS). This is particularly important since the pre-launch TEB RSV measurements made by the sensor vendor were not successful. Terra MODIS TEB RVS obtained from pitch maneuvers have been used in the current LIB calibration algorithm. Lunq observations from pitch maneuvers also provided information to cross-calibrate MODIS with other sensors (MISR and ASTER) on the same platform. We will provide a summary of MODIS maneuver activities and their applications for MODIS calibration and characterization. The results and lessons learned discussed in this paper from MODIS maneuver activities will provide useful insights into future spacecraft and sensor operation.

  13. Characterization of 2014 summer drought over Henan province using remotely sensed data

    NASA Astrophysics Data System (ADS)

    Lu, Jing; Jia, Li; Zhou, Jie

    2015-12-01

    An exceptional drought struck Henan province during the summer of 2014. It caused directly the financial loss reaching to hundreds of billion Yuan (RMB), and brought the adverse influence for people's life, agricultural production as well as the ecosystem. The study in this paper characterized the Henan 2014 summer drought event through analyzing the spatial distribution of drought severity using precipitation data from Tropical Rainfall Measuring Mission (TRMM) sensor and Normalized difference vegetation index (NDVI) and land surface temperature (LST) products from Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. The trend analysis of the annual precipitation from 2003 to 2014 showed that the region over Henan province is becoming dry. Especially in the east of Henan province, the decrease of precipitation is more obvious with the maximum change rate of ~48 mm/year. The rainfall in summer (from June to August) of 2014 was the largest negtive anomaly in contrast with the same period of historical years, which was 43% lower than the average of the past ten years. Drought severity derived from Standardized Precipitation Index (SPI) indicated that all areas of Henan province experienced drought in summer of 2014 with different severity levels. The extreme drought, accounting for about 22.7 % of Henan total area, mainly occurred in Luohe, Xuchang, and Pingdingshan regions, and partly in Nanyang, Zhengzhou, and Jiaozuo. This is consistent with the statistics from local municipalities. The Normalized Drought Index Anomaly (NDAI), calculated from MODIS NDVI and LST products, can capture the evolution of the Henan 2014 summer drought effectively. Drought severity classified by NDAI also agreed well with the result from the SPI.

  14. A comprehensive assessment of the correlations between field crop yields and commonly used MODIS products

    NASA Astrophysics Data System (ADS)

    Johnson, David M.

    2016-10-01

    An exploratory assessment was undertaken to determine the correlation strength and optimal timing of several commonly used Moderate Resolution Imaging Spectroradiometer (MODIS) composited imagery products against crop yields for 10 globally significant agricultural commodities. The crops analyzed included barley, canola, corn, cotton, potatoes, rice, sorghum, soybeans, sugarbeets, and wheat. The MODIS data investigated included the Normalized Difference Vegetation Index (NDVI), Fraction of Photosynthetically Active Radiation (FPAR), Leaf Area Index (LAI), and Gross Primary Production (GPP), in addition to daytime Land Surface Temperature (DLST) and nighttime LST (NLST). The imagery utilized all had 8-day time intervals, but NDVI had a 250 m spatial resolution while the other products were 1000 m. These MODIS datasets were also assessed from both the Terra and Aqua satellites, with their differing overpass times, to document any differences. A follow-on analysis, using the Terra 250 m NDVI data as a benchmark, looked at the yield prediction utility of NDVI at two spatial scales (250 m vs. 1000 m), two time precisions (8-day vs. 16-day), and also assessed the Enhanced Vegetation Index (EVI, at 250 m, 16-day). The analyses spanned the major farming areas of the United States (US) from the summers of 2008-2013 and used annual county-level average crop yield data from the US Department of Agriculture as a basis. All crops, except rice, showed at least some positive correlations to each of the vegetation related indices in the middle of the growing season, with NDVI performing slightly better than FPAR. LAI was somewhat less strongly correlated and GPP weak overall. Conversely, some of the crops, particularly canola, corn, and soybeans, also showed negative correlations to DLST mid-summer. NLST, however, was never correlated to crop yield, regardless of the crop or seasonal timing. Differences between the Terra and Aqua results were found to be minimal. The 1000 m resolution NDVI showed somewhat poorer performance than the 250 m and suggests spatial resolution is helpful but not a necessity. The 8-day versus 16-day NDVI relationships to yields were very similar other than for the temporal precision. Finally, the EVI often showed the very best performance of all the variables, all things considered.

  15. Evaluation of Surface and Near-Surface Melt Characteristics on the Greenland Ice Sheet using MODIS and QuikSCAT Data

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Nghiem, Son V.; Schaaf, Crystal B.; DiGirolamo, Nicolo E.

    2009-01-01

    The Greenland Ice Sheet has been the focus of much attention recently because of increasing melt in response to regional climate warming. To improve our ability to measure surface melt, we use remote-sensing data products to study surface and near-surface melt characteristics of the Greenland Ice Sheet for the 2007 melt season when record melt extent and runoff occurred. Moderate Resolution Imaging Spectroradiometer (MODIS) daily land-surface temperature (LST), MODIS daily snow albedo, and a special diurnal melt product derived from QuikSCAT (QS) scatterometer data, are all effective in measuring the evolution of melt on the ice sheet. These daily products, produced from different parts of the electromagnetic spectrum, are sensitive to different geophysical features, though QS- and MODIS-derived melt generally show excellent correspondence when surface melt is present on the ice sheet. Values derived from the daily MODIS snow albedo product drop in response to melt, and change with apparent grain-size changes. For the 2007 melt season, the QS and MODIS LST products detect 862,769 square kilometers and 766,184 square kilometers of melt, respectively. The QS product detects about 11% greater melt extent than is detected by the MODIS LST product probably because QS is more sensitive to surface melt, and can detect subsurface melt. The consistency of the response of the different products demonstrates unequivocally that physically-meaningful melt/freeze boundaries can be detected. We have demonstrated that these products, used together, can improve the precision in mapping surface and near-surface melt extent on the Greenland Ice Sheet.

  16. Long-term of analysis of MODIS, NDVI and NDWI for the Mesopotamian Marshlands, Iraq.

    NASA Astrophysics Data System (ADS)

    Al barakat, R. H. R.; Lakshmi, V.

    2016-12-01

    The Mesopotamian marshlands are considered as a one of the most important wetlands in the world. During past decades, the marsh area has varied between 10,500 km² to 20,000 km² in flood seasons. These marshes are located in the Mesopotamain plain lying mostly within Southern Iraq and a portion of South western Iran, along Euphrates,Tigris and Shatt Al-Arab river which formed by the confluence of Tigris and Euphrates rivers. They are characterized by a good environment for various flora such as Phragmites australis and fauna. Through early 1990 to the present the marshes subjected to many changes such as water supply diversions that have dramatically impacted the ecosystem. By using a long-term values of the Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI) data from the Moderate Resolution Imaging Spectroradiometer (MODIS), between 2000 and 2016, we examined the annual changes during entire time series in both of the vegetation and water coverage in the three majar marshes; Al-Huwaizah marsh, the Central marshes and Al-Hammar marsh. The long-term has been divided into three periods (2000-2003, 2004-2008 and 2009-2016) based on ratios of coverage vegetation and water. The 1st period is characterized by low coverage in both vegetation and water due to human activities, which is represented by the construction of a large number of dams on the downstream of Tigris and Euphrates rivers during late 1980s until 2003. The 2nd period shows significantly increasing coverage of greater than 50% were the increases in the vegetation coverage of the original marsh areas. The 3rd period shows increases in the barren lands, while the water bodies and vegetation coverage are decreased. This variations are attributed to different effects. First, the marshes have received little water due to constructions of dams in the upstream countries, and they were completed during 3rd period 2009-2016. Second they occurred during a period of severe drought in the neighboring countries (upstream). Additional to that, this research aims to detect the environmental changes in the marshes by using multi-temporal and multi-spectral satellite images. The spatial resolution of the MODIS imagery is enhanced using Landsat data.

  17. Remote Sensing of Ecosystem Light Use Efficiency Using MODIS

    NASA Astrophysics Data System (ADS)

    Huemmrich, K. F.; Middleton, E.; Landis, D.; Black, T. A.; Barr, A. G.; McCaughey, J. H.; Hall, F.

    2009-12-01

    Understanding the dynamics of the global carbon cycle requires an accurate determination of the spatial and temporal distribution of photosynthetic CO2 uptake by terrestrial vegetation. Optimal photosynthetic function is negatively affected by stress factors that cause down-regulation (i.e., reduced rate of photosynthesis). Present modeling approaches to determine ecosystem carbon exchange rely on meteorological data as inputs to models that predict the relative photosynthetic function in response to environmental conditions inducing stress (e.g., drought, high/low temperatures). This study examines the determination of ecosystem photosynthetic light use efficiency (LUE) from remote sensing, through measurement of vegetation spectral reflectance changes associated with physiologic stress responses exhibited by photosynthetic pigments. This approach uses the Moderate-Resolution Spectroradiometer (MODIS) on Aqua and Terra to provide frequent, narrow-band measurements. The reflective ocean MODIS bands were used to calculate the Photochemical Reflectance Index (PRI), an index that is sensitive to reflectance changes near 531nm associated with vegetation stress responses exhibited by photosynthetic pigments in the xanthophyll cycle. MODIS PRI values were compared with LUE calculated from CO2 flux measured at four Canadian forest sites: A mature Douglas fir site in British Columbia, mature aspen and black spruce sites in Saskatchewan, and a mixed forest site in Ontario, all part of the Canadian Carbon Program network. The relationships between LUE and MODIS PRI were different among forest types, with clear differences in the slopes of the relationships for conifer and deciduous forests. The MODIS based LUE measurements provide a more accurate estimation of observed LUE than the values calculated in the MODIS GPP model. This suggests the possibility of a GPP model that uses MODIS LUE instead of modeled LUE. This type of model may provide a useful contrast to existing models driven by meteorological data. The main impediment to developing such a model is the lack of a MODIS product that provides surface reflectance for the MODIS ocean bands over land.

  18. A browser-based 3D Visualization Tool designed for comparing CERES/CALIOP/CloudSAT level-2 data sets.

    NASA Astrophysics Data System (ADS)

    Chu, C.; Sun-Mack, S.; Chen, Y.; Heckert, E.; Doelling, D. R.

    2017-12-01

    In Langley NASA, Clouds and the Earth's Radiant Energy System (CERES) and Moderate Resolution Imaging Spectroradiometer (MODIS) are merged with Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) and CloudSat Cloud Profiling Radar (CPR). The CERES merged product (C3M) matches up to three CALIPSO footprints with each MODIS pixel along its ground track. It then assigns the nearest CloudSat footprint to each of those MODIS pixels. The cloud properties from MODIS, retrieved using the CERES algorithms, are included in C3M with the matched CALIPSO and CloudSat products along with radiances from 18 MODIS channels. The dataset is used to validate the CERES retrieved MODIS cloud properties and the computed TOA and surface flux difference using MODIS or CALIOP/CloudSAT retrieved clouds. This information is then used to tune the computed fluxes to match the CERES observed TOA flux. A visualization tool will be invaluable to determine the cause of these large cloud and flux differences in order to improve the methodology. This effort is part of larger effort to allow users to order the CERES C3M product sub-setted by time and parameter as well as the previously mentioned visualization capabilities. This presentation will show a new graphical 3D-interface, 3D-CERESVis, that allows users to view both passive remote sensing satellites (MODIS and CERES) and active satellites (CALIPSO and CloudSat), such that the detailed vertical structures of cloud properties from CALIPSO and CloudSat are displayed side by side with horizontally retrieved cloud properties from MODIS and CERES. Similarly, the CERES computed profile fluxes whether using MODIS or CALIPSO and CloudSat clouds can also be compared. 3D-CERESVis is a browser-based visualization tool that makes uses of techniques such as multiple synchronized cursors, COLLADA format data and Cesium.

  19. Cross-Calibration of Earth Observing System Terra Satellite Sensors MODIS and ASTER

    NASA Technical Reports Server (NTRS)

    McCorkel, J.

    2014-01-01

    The Advanced Spaceborne Thermal Emissive and Reflection Radiometer (ASTER) and Moderate Resolution Imaging Spectrometer (MODIS) are two of the five sensors onboard the Earth Observing System's Terra satellite. These sensors share many similar spectral channels while having much different spatial and operational parameters. ASTER is a tasked sensor and sometimes referred to a zoom camera of the MODIS that collects a full-earth image every one to two days. It is important that these sensors have a consistent characterization and calibration for continued development and use of their data products. This work uses a variety of test sites to retrieve and validate intercalibration results. The refined calibration of Collection 6 of the Terra MODIS data set is leveraged to provide the up-to-date reference for trending and validation of ASTER. Special attention is given to spatially matching radiance measurements using prelaunch spatial response characterization of MODIS. Despite differences in spectral band properties and spatial scales, ASTER-MODIS is an ideal case for intercomparison since the sensors have nearly identical views and acquisitions times and therefore can be used as a baseline of intercalibration performance of other satellite sensor pairs.

  20. Influence of Humidity On the Aerosol Scattering Coefficient and Its Effect on the Upwelling Radiance During ACE-2

    NASA Technical Reports Server (NTRS)

    Gasso, S.; Hegg, D. A.; Covert, D. S.; Collins, D.; Noone, K. J.; Oestroem, E.; Schmid, B.; Russell, P. B.; Livingston, J. M.; Durkee, P. A.

    2000-01-01

    Aerosol scattering coefficients (sigma(sub sp)) have been measured over the ocean at different relative humidities (RH) as a function of altitude in the region surrounding the Canary Islands during the Second Aerosol Characterization Experiment (ACE-2) in June and July 1997. The data were collected by the University of Washington passive humidigraph (UWPH) mounted on the Pelican research aircraft. Concurrently, particle size distributions, absorption coefficients and aerosol optical depth were measured throughout 17 flights. A parameterization of sigma(sub sp) as a function of RH was utilized to assess the impact of aerosol hydration on the upwelling radiance (normalized to the solar constant and cosine of zenith angle). The top of the atmosphere radiance signal was simulated at wavelengths corresponding to visible and near-infrared bands of the EOS (Earth Observing System) AM-1 (Terra) detectors, MODIS (Moderate Resolution Imaging Spectroradiometer) and MISR (Multi-angle Imaging Spectroradiometer). The UWPH measured sigma(sub sp) at two RHs, one below and the other above ambient conditions. Ambient sigma(sub sp) was obtained by interpolation of these two measurements. The data were stratified in terms of three types of aerosols: Saharan dust, clean marine (marine boundary layer background) and polluted marine aerosols (i.e., two- or one-day old polluted aerosols advected from Europe). An empirical relation for the dependence of sigma(sub sp) on RH, defined by sigma(sub sp)(RH) = k.(1 - RH/100)(sup gamma), was used with the hygroscopic exponent gamma derived from the data. The following gamma values were obtained for the 3 aerosol types: gamma(dust) = 0.23 +/- 0.05, gamma(clean marine) = 0.69 +/- 0.06 and gamma(polluted marine) = 0.57 +/- 0.06. Based on the measured gammas, the above equation was utilized to derive aerosol models with different hygroscopicities. The satellite simulation signal code 6S was used to compute the upwelling radiance corresponding to each of those aerosol models at several ambient humidities. For the prelaunch estimated precision of the sensors and the assumed viewing geometry of the instrument, the simulations suggest that the spectral and angular dependence of the reflectance measured by MISR is not sufficient to distinguish aerosol models with various different combinations of values for dry composition, gamma and ambient RH. A similar behavior is observed for MODIS at visible wavelengths. However, the 2100 nm band of MODIS appears to be able to differentiate between at least same aerosol models with different aerosol hygroscopicity given the MODIS calibration error requirements. This result suggests the possibility of retrieval of aerosol hygroscopicity by MODIS.

  1. Spectral analysis of amazon canopy phenology during the dry season using a tower hyperspectral camera and modis observations

    NASA Astrophysics Data System (ADS)

    de Moura, Yhasmin Mendes; Galvão, Lênio Soares; Hilker, Thomas; Wu, Jin; Saleska, Scott; do Amaral, Cibele Hummel; Nelson, Bruce Walker; Lopes, Aline Pontes; Wiedeman, Kenia K.; Prohaska, Neill; de Oliveira, Raimundo Cosme; Machado, Carolyne Bueno; Aragão, Luiz E. O. C.

    2017-09-01

    The association between spectral reflectance and canopy processes remains challenging for quantifying large-scale canopy phenological cycles in tropical forests. In this study, we used a tower-mounted hyperspectral camera in an eastern Amazon forest to assess how canopy spectral signals of three species are linked with phenological processes in the 2012 dry season. We explored different approaches to disentangle the spectral components of canopy phenology processes and analyze their variations over time using 17 images acquired by the camera. The methods included linear spectral mixture analysis (SMA); principal component analysis (PCA); continuum removal (CR); and first-order derivative analysis. In addition, three vegetation indices potentially sensitive to leaf flushing, leaf loss and leaf area index (LAI) were calculated: the Enhanced Vegetation Index (EVI), Normalized Difference Vegetation Index (NDVI) and the entitled Green-Red Normalized Difference (GRND) index. We inspected also the consistency of the camera observations using Moderate Resolution Imaging Spectroradiometer (MODIS) and available phenological data on new leaf production and LAI of young, mature and old leaves simulated by a leaf demography-ontogeny model. The results showed a diversity of phenological responses during the 2012 dry season with related changes in canopy structure and greenness values. Because of the differences in timing and intensity of leaf flushing and leaf shedding, Erisma uncinatum, Manilkara huberi and Chamaecrista xinguensis presented different green vegetation (GV) and non-photosynthetic vegetation (NPV) SMA fractions; distinct PCA scores; changes in depth, width and area of the 681-nm chlorophyll absorption band; and variations over time in the EVI, GRND and NDVI. At the end of dry season, GV increased for Erisma uncinatum, while NPV increased for Chamaecrista xinguensis. For Manilkara huberi, the NPV first increased in the beginning of August and then decreased toward September with new foliage. Variations in red-edge position were not statistically significant between the species and across dates at the 95% confidence level. The camera data were affected by view-illumination effects, which reduced the SMA shade fraction over time. When MODIS data were corrected for these effects using the Multi-Angle Implementation of Atmospheric Correction Algorithm (MAIAC), we observed an EVI increase toward September that closely tracked the modeled LAI of mature leaves (3-5 months). Compared to the EVI, the GRND was a better indicator of leaf flushing because the modeled production of new leaves peaked in August and then declined in September following the GRND closely. While the EVI was more related to changes in mature leaf area, the GRND was more associated with new leaf flushing.

  2. Can the physical properties associated with uncertainties in the NASA MODIS AOD retrievals in the western U.S. be determined?

    NASA Astrophysics Data System (ADS)

    Loria Salazar, S. M.; Holmes, H.; Panorska, A. K.; Arnott, W. P.; Barnard, J.

    2016-12-01

    Previous investigations have used satellite remote sensing to estimate surface air pollution concentrations. While most of these studies rely on models developed for the dark-vegetated eastern U.S., they are being used in the semi-arid western U.S without modifications. These models are not robust in the western U.S. due to: 1. Irregular topography that leads to complicated boundary layer physics, 2. Pollutant mixtures, 3. Heterogeneous vertical profile of aerosol concentrations, and 4. High surface reflectance. Here, results from Nevada and California demonstrate poor AOD correlation between AERONET MODIS retrievals. Smoke from wildfires strengthened the aerosol signal, but the MODIS versus AERONET AOD correlation did not improve significantly during fire events [r2 0.17 (non-fire), r2 0.2 (fire)]. Furthermore, aerosol from fires increased the normalized mean bias (NMB) of MODIS retrievals of AOD[NMB 82% (non-fire), NMB 146% (fire)]. Additional results of this investigation found that aerosol plumes confined with the boundary layer improves MODIS AOD retrievals. However, when this condition is not met (i.e., 70% of the time downwind of mountains regions) MODIS AOD has a poor correlation and high bias with respect to AERONET AOD. Fire injection height, complicated boundary layer mixing, and entrainment disperse smoke plumes into the free atmosphere. Therefore, smoke plumes exacerbate the complex aerosol transport typical in the western U.S. and the non-linear relationship between surface pollutant concentrations and conditions aloft. This work uses stochastic methods, including regression to investigate the influence of each of these physical behaviors on the MODIS, AERONET AOD discrepancy using surrogates for each physical phenomenon, e.g., surface albedo for surface reflectance, boundary layer height and elevation for complex mixing, aerosol optical height for vertical aerosol concentrations, and fire radiative power for smoke plume injection height.

  3. Remote Sensing of Cloud, Aerosol, and Water Vapor Properties from MODIS

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2001-01-01

    MODIS is an earth-viewing cross-track scanning spectroradiometer launched on the Terra satellite in December 1999. MODIS scans a swath width sufficient to provide nearly complete global coverage every two days from a polar-orbiting, sun-synchronous, platform at an altitude of 705 km, and provides images in 36 spectral bands from 0.415 to 14.235 microns with spatial resolutions of 250 m (2 bands), 500 m (5 bands) and 1000 m (29 bands). These bands have been carefully selected to enable advanced studies of land, ocean, and atmospheric processes. In this presentation I will review the comprehensive set of remote sensing algorithms that have been developed for the remote sensing of atmospheric properties using MODIS data, placing primary emphasis on the principal atmospheric applications of: (1) developing a cloud mask for distinguishing clear sky from clouds, (2) retrieving global cloud radiative and microphysical properties, including cloud top pressure and temperature, effective emissivity, cloud optical thickness, thermodynamic phase, and effective radius, (3) monitoring tropospheric aerosol optical thickness over the land and ocean and aerosol size distribution over the ocean, (4) determining atmospheric profiles of moisture and temperature, and (5) estimating column water amount. The physical principles behind the determination of each of these atmospheric products will be described, together with an example of their application using MODIS observations. All products are archived into two categories: pixel-level retrievals (referred to as Level-2 products) and global gridded products at a latitude and longitude resolution of 1 deg (Level-3 products). An overview of the MODIS atmosphere algorithms and products, status, validation activities, and early level-2 and -3 results will be presented. Finally, I will present some highlights from the land and ocean algorithms developed for processing global MODIS observations, including: (1) surface reflectance, (2) vegetation indices, leaf area index, and FPAR, (3) albedo and nadir BRDF-adjusted reflectance, (4) normalized water-leaving radiance, (5) chlorophyll-a concentration, and (6) sea surface temperature.

  4. Relating a Spectral Index from MODIS and Tower-based Measurements to Ecosystem Light Use Efficiency for a Fluxnet-Canada Coniferous Forest

    NASA Technical Reports Server (NTRS)

    Middleton, Elizabeth M.; Cheng, Yen-Ben; Hilker, Thomas; Huemmrich, Karl F.; Black, T. Andrew; Krishnan, Praveena; Coops, Nicholas C.

    2008-01-01

    As part of the North American Carbon Program effort to quantify the terrestrial carbon budget of North America, we have been examining the possibility of retrieving ecosystem light use efficiency (LUE, the carbon sequestered per unit photosynthetically active radiation) directly from satellite observations. Our novel approach has been to compare LUE derived from tower fluxes with LUE estimated using spectral indices computed from MODIS satellite observations over forests in the Fluxnet-Canada Research Network, using the MODIS narrow ocean bands acquired over land. We matched carbon flux data collected around the time of the MODIS mid-day overpass for over one hundred relatively clear days in five years (2001-2006) from a mature Douglas fir forest in British Columbia. We also examined hyperspectral reflectance data collected diurnally from the tower in conjunction with the eddy correlation fluxes and meteorological measurements made throughout the 2006 growing season at this site. The tower-based flux data provided an opportunity to examine diurnal and seasonal LUE processes and their relationship to spectral indices at the scale of the forest stand. We evaluated LUE in conjunction with the Photochemical Reflectance Index (PRI), a normalized difference spectral index that uses 531 nm and a reference band to capture responses to high light induced stress afforded by the xanthophyll cycle. Canopy structure information, retrieved from airborne laser scanning radar (LiDAR) observations, was used to partition the forest canopy into sunlit and shaded fractions throughout the day, on numerous days during 2006. At each observation period throughout a day, the PRI was examined for the sunlit, shaded, and intermediate canopy segments defined by their instantaneous position relative to the solar principal plane (SPP). The sunlit sector was associated with the illumination "hotspot" (the reflectance backscatter maximum), the shaded sector with the "cold or dark spot" (the reflectance forward scatter minimum), while the intermediate, mixed sunlit/shade sector was located in the cross-plane to the SPP. The PRI indices clearly captured the differences in leaf groups, with sunlit foliage exhibiting the lowest values on sunny days throughout the 2006 season. When tower-based canopy-level LUE was recalculated to estimate foliage-based values (LUE(sub foilage) for the three foliage groups under their incident light environments, a strong linear relationship for PRI:LUE(sub foilage) was demonstrated (0.6 less than or equal to r(sup 2) less than or equal to 0.8, n=822, P<0.0001). The MODIS data represent relatively large areas when acquired at nadir (approx.1 sq km) or at variable off-nadir view angles (greater than or equal to 1 sq km) looking forward or aft. Nevertheless, a similar relationship between MODIS PRI and tower-based LUE was obtained from satellite observations (r(sup 2) = 0.76, n=105, P= 0.026) when the azimuth offsets from the SPP for off-nadir observations were considered. At this relatively high latitude of 50 degrees, the MODIS directional observations were offset from the SPP by approximately 50 degrees, but still represented backscatter or forward scatter sectors of the bidirectional reflectance distribution function (BRDF). The backscatter observations sampled the sunlit forest and provided lower PRI values, in general, than the forward scatter observations from the shaded forest. Since the hotspot and darkspot were not typically directly observed, the dynamic range for MODIS PRI was less than that observed in the SPP at the canopy level; therefore, MODIS PRI values were more similar to those observed in sifu in the BRDF cross-plane. While not ideal in terms of spatial resolution or optimal viewing configuration, the MODIS observations nevertheless provide a means to monitor forest under stress using narrow spectral band indices and off-nadir observations. This research has stimulated several spin-off studies for remote sensinf LUE, and demonstrates the importance of the connection between ecosystem structure and physiological function.

  5. A Harmful Algal Bloom of Karenia brevis in the Northeastern Gulf of Mexico as Revealed by MODIS and VIIRS: A Comparison

    PubMed Central

    Hu, Chuanmin; Barnes, Brian B.; Qi, Lin; Corcoran, Alina A.

    2015-01-01

    The most recent Visible Infrared Imager Radiometer Suite (VIIRS) is not equipped with a spectral band to detect solar-stimulated phytoplankton fluorescence. The lack of such a band may affect the ability of VIIRS to detect and quantify harmful algal blooms (HABs) in coastal waters rich in colored dissolved organic matter (CDOM) because of the overlap of CDOM and chlorophyll absorption within the blue-green spectrum. A recent HAB dominated by the toxin-producing dinoflagellate Karenia brevis in the northeastern Gulf of Mexico, offshore of Florida's Big Bend region, allowed for comparison of the capacities of VIIRS and Moderate Resolution Imaging Spectroradiometer (MODIS) to detect blooms in CDOM-rich waters. Both VIIRS and MODIS showed general consistency in mapping the CDOM-rich dark water, which measured a maximum area of 8900 km2 by mid-July 2014. However, within the dark water, only MODIS allowed detection of bloom patches—as indicated by high normalized fluorescence line height (nFLH). Field surveys between late July and mid-September confirmed Karenia brevis at bloom abundances up to 20 million cells·L−1 within these patches. The bloom patches were well captured by the MODIS nFLH images, but not by the default chlorophyll a concentration (Chla) images from either MODIS or VIIRS. Spectral analysis showed that VIIRS could not discriminate these high-phytoplankton water patches within the dark water due to its lack of fluorescence band. Such a deficiency may be overcome with new algorithms or future satellite missions such as the U.S. NASA's Pre-Aerosol-Clouds-Ecology mission and the European Space Agency's Sentinel-3 mission. PMID:25635412

  6. A harmful algal bloom of Karenia brevis in the northeastern Gulf of Mexico as revealed by MODIS and VIIRS: a comparison.

    PubMed

    Hu, Chuanmin; Barnes, Brian B; Qi, Lin; Corcoran, Alina A

    2015-01-28

    The most recent Visible Infrared Imager Radiometer Suite (VIIRS) is not equipped with a spectral band to detect solar-stimulated phytoplankton fluorescence. The lack of such a band may affect the ability of VIIRS to detect and quantify harmful algal blooms (HABs) in coastal waters rich in colored dissolved organic matter (CDOM) because of the overlap of CDOM and chlorophyll absorption within the blue-green spectrum. A recent HAB dominated by the toxin-producing dinoflagellate Karenia brevis in the northeastern Gulf of Mexico, offshore of Florida's Big Bend region, allowed for comparison of the capacities of VIIRS and Moderate Resolution Imaging Spectroradiometer (MODIS) to detect blooms in CDOM-rich waters. Both VIIRS and MODIS showed general consistency in mapping the CDOM-rich dark water, which measured a maximum area of 8900 km2 by mid-July 2014. However, within the dark water, only MODIS allowed detection of bloom patches-as indicated by high normalized fluorescence line height (nFLH). Field surveys between late July and mid-September confirmed Karenia brevis at bloom abundances up to 20 million cells·L(-1) within these patches. The bloom patches were well captured by the MODIS nFLH images, but not by the default chlorophyll a concentration (Chla) images from either MODIS or VIIRS. Spectral analysis showed that VIIRS could not discriminate these high-phytoplankton water patches within the dark water due to its lack of fluorescence band. Such a deficiency may be overcome with new algorithms or future satellite missions such as the U.S. NASA's Pre-Aerosol-Clouds-Ecology mission and the European Space Agency's Sentinel-3 mission.

  7. Whole-exome sequencing for mutation detection in pediatric disorders of insulin secretion: Maturity onset diabetes of the young and congenital hyperinsulinism.

    PubMed

    Johnson, S R; Leo, P J; McInerney-Leo, A M; Anderson, L K; Marshall, M; McGown, I; Newell, F; Brown, M A; Conwell, L S; Harris, M; Duncan, E L

    2018-06-01

    To assess the utility of whole-exome sequencing (WES) for mutation detection in maturity-onset diabetes of the young (MODY) and congenital hyperinsulinism (CHI). MODY and CHI are the two commonest monogenic disorders of glucose-regulated insulin secretion in childhood, with 13 causative genes known for MODY and 10 causative genes identified for CHI. The large number of potential genes makes comprehensive screening using traditional methods expensive and time-consuming. Ten subjects with MODY and five with CHI with known mutations underwent WES using two different exome capture kits (Nimblegen SeqCap EZ Human v3.0 Exome Enrichment Kit, Nextera Rapid Capture Exome Kit). Analysis was blinded to previously identified mutations, and included assessment for large deletions. The target capture of five exome capture technologies was also analyzed using sequencing data from >2800 unrelated samples. Four of five MODY mutations were identified using Nimblegen (including a large deletion in HNF1B). Although targeted, one mutation (in INS) had insufficient coverage for detection. Eleven of eleven mutations (six MODY, five CHI) were identified using Nextera Rapid (including the previously missed mutation). On reconciliation, all mutations concorded with previous data and no additional variants in MODY genes were detected. There were marked differences in the performance of the capture technologies. WES can be useful for screening for MODY/CHI mutations, detecting both point mutations and large deletions. However, capture technologies require careful selection. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Evaluation of Detector-to-Detector and Mirror Side Differences for Terra MODIS Reflective Solar Bands Using Simultaneous MISR Observations

    NASA Technical Reports Server (NTRS)

    Wu, Aisheng; Xiong, Xiaoxiong; Angal, A.; Barnes, W.

    2011-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) is one of the five Earth-observing instruments on-board the National Aeronautics and Space Administration (NASA) Earth-Observing System(EOS) Terra spacecraft, launched in December 1999. It has 36 spectral bands with wavelengths ranging from 0.41 to 14.4 mm and collects data at three nadir spatial resolutions: 0.25 km for 2 bands with 40 detectors each, 0.5 km for 5 bands with 20 detectors each and 1 km for the remaining 29 bands with 10 detectors each. MODIS bands are located on four separate focal plane assemblies (FPAs) according to their spectral wavelengths and aligned in the cross-track direction. Detectors of each spectral band are aligned in the along-track direction. MODIS makes observations using a two-sided paddle-wheel scan mirror. Its on-board calibrators (OBCs) for the reflective solar bands (RSBs) include a solar diffuser (SD), a solar diffuser stability monitor (SDSM) and a spectral-radiometric calibration assembly (SRCA). Calibration is performed for each band, detector, sub-sample (for sub-kilometer resolution bands) and mirror side. In this study, a ratio approach is applied to MODIS observed Earth scene reflectances to track the detector-to-detector and mirror side differences. Simultaneous observed reflectances from the Multi-angle Imaging Spectroradiometer (MISR), also onboard the Terra spacecraft, are used with MODIS observed reflectances in this ratio approach for four closely matched spectral bands. Results show that the detector-to-detector difference between two adjacent detectors within each spectral band is typically less than 0.2% and, depending on the wavelengths, the maximum difference among all detectors varies from 0.5% to 0.8%. The mirror side differences are found to be very small for all bands except for band 3 at 0.44 mm. This is the band with the shortest wavelength among the selected matching bands, showing a time-dependent increase for the mirror side difference. This study is part of the effort by the MODIS Characterization Support Team (MCST) in order to track the RSB on-orbit performance for MODIS collection 5 data products. To support MCST efforts for future data re-processing, this analysis will be extended to include more spectral bands and temporal coverage.

  9. A Model-based Approach to Scaling GPP and NPP in Support of MODIS Land Product Validation

    NASA Astrophysics Data System (ADS)

    Turner, D. P.; Cohen, W. B.; Gower, S. T.; Ritts, W. D.

    2003-12-01

    Global products from the Earth-orbiting MODIS sensor include land cover, leaf area index (LAI), FPAR, 8-day gross primary production (GPP), and annual net primary production (NPP) at the 1 km spatial resolution. The BigFoot Project was designed specifically to validate MODIS land products, and has initiated ground measurements at 9 sites representing a wide array of vegetation types. An ecosystem process model (Biome-BGC) is used to generate estimates of GPP and NPP for each 5 km x 5 km BigFoot site. Model inputs include land cover and LAI (from Landsat ETM+), daily meteorological data (from a centrally located eddy covariance flux tower), and soil characteristics. Model derived outputs are validated against field-measured NPP and flux tower-derived GPP. The resulting GPP and NPP estimates are then aggregated to the 1 km resolution for direct spatial comparison with corresponding MODIS products. At the high latitude sites (tundra and boreal forest), the MODIS GPP phenology closely tracks the BigFoot GPP, but there is a high bias in the MODIS GPP. In the temperate zone sites, problems with the timing and magnitude of the MODIS FPAR introduce differences in MODIS GPP compared to the validation data at some sites. However, the MODIS LAI/FPAR data are currently being reprocessed (=Collection 4) and new comparisons will be made for 2002. The BigFoot scaling approach permits precise overlap in spatial and temporal resolution between the MODIS products and BigFoot products, and thus permits the evaluation of specific components of the MODIS NPP algorithm. These components include meteorological inputs from the NASA Data Assimilation Office, LAI and FPAR from other MODIS algorithms, and biome-specific parameters for base respiration rate and light use efficiency.

  10. The Effect of Spatial and Spectral Resolution in Determining NDVI

    NASA Astrophysics Data System (ADS)

    Boelman, N. T.

    2003-12-01

    We explore the impact that varying spatial and spectral resolutions of several sensors (a field portable spectroradiometer, Landsat, MODIS and AVHRR) has in determining the average Normalized Difference Vegetation Index (NDVI) at Imnavait Creek, a small arctic tundra watershed located on the north slope of Alaska. We found that at the field-of-views (FOVs) of less than 20 m2 that were sampled, the average NDVI value for this watershed is 0.65, compared to 0.77 at FOVs equal to and greater than 20 m2. In addition, we found that at FOVs less than 20 m2, the average NDVI value calculated according to each of Landsat, MODIS and AVHRR band definitions (controlled by spectral resolution) was similar. However, at FOVs equal to and greater than 20 m2, the average NDVI value calculated according to AVHRR's broad-band definitions was significantly and consistently higher than that from both Landsat and MODIS's narrow-band NDVI values. We speculate that these differences in NDVI exist because high leaf-area-index vegetation communities associated with watertracks are commonly spaced between 10 and 20 m apart in arctic tundra landscapes and are often only included when spectral sampling is conducted at FOVs greater than tens of square meters. These results suggest that both spatial resolution alone and its interaction with spectral resolution have to be considered when interpreting commonly used global-scale NDVI datasets. This is because traditionally, the fundamental relationships established between NDVI and ecosystem parameters, such as CO2 fluxes, aboveground biomass and net primary productivity, have been established at scales less than 20 m2. Other ecosystems, such as landscapes with isolated tree islands in boreal forest-tundra ecotones, may exhibit similar scaling patterns that need to be considered when interpreting global-scale NDVI datasets.

  11. Monitoring forest cover loss using multiple data streams, a case study of a tropical dry forest in Bolivia

    NASA Astrophysics Data System (ADS)

    Dutrieux, Loïc Paul; Verbesselt, Jan; Kooistra, Lammert; Herold, Martin

    2015-09-01

    Automatically detecting forest disturbances as they occur can be extremely challenging for certain types of environments, particularly those presenting strong natural variations. Here, we use a generic structural break detection framework (BFAST) to improve the monitoring of forest cover loss by combining multiple data streams. Forest change monitoring is performed using Landsat data in combination with MODIS or rainfall data to further improve the modelling and monitoring. We tested the use of the Normalized Difference Vegetation Index (NDVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS) with varying spatial aggregation window sizes as well as a rainfall derived index as external regressors. The method was evaluated on a dry tropical forest area in lowland Bolivia where forest cover loss is known to occur, and we validated the results against a set of ground truth samples manually interpreted using the TimeSync environment. We found that the addition of an external regressor allows to take advantage of the difference in spatial extent between human induced and naturally induced variations and only detect the processes of interest. Of all configurations, we found the 13 by 13 km MODIS NDVI window to be the most successful, with an overall accuracy of 87%. Compared with a single pixel approach, the proposed method produced better time-series model fits resulting in increases of overall accuracy (from 82% to 87%), and decrease in omission and commission errors (from 33% to 24% and from 3% to 0% respectively). The presented approach seems particularly relevant for areas with high inter-annual natural variability, such as forests regularly experiencing exceptional drought events.

  12. Alpine Grassland Phenology as Seen in AVHRR, VEGETATION, and MODIS NDVI Time Series - a Comparison with In Situ Measurements

    PubMed Central

    Fontana, Fabio; Rixen, Christian; Jonas, Tobias; Aberegg, Gabriel; Wunderle, Stefan

    2008-01-01

    This study evaluates the ability to track grassland growth phenology in the Swiss Alps with NOAA-16 Advanced Very High Resolution Radiometer (AVHRR) Normalized Difference Vegetation Index (NDVI) time series. Three growth parameters from 15 alpine and subalpine grassland sites were investigated between 2001 and 2005: Melt-Out (MO), Start Of Growth (SOG), and End Of Growth (EOG). We tried to estimate these phenological dates from yearly NDVI time series by identifying dates, where certain fractions (thresholds) of the maximum annual NDVI amplitude were crossed for the first time. For this purpose, the NDVI time series were smoothed using two commonly used approaches (Fourier adjustment or alternatively Savitzky-Golay filtering). Moreover, AVHRR NDVI time series were compared against data from the newer generation sensors SPOT VEGETATION and TERRA MODIS. All remote sensing NDVI time series were highly correlated with single point ground measurements and therefore accurately represented growth dynamics of alpine grassland. The newer generation sensors VGT and MODIS performed better than AVHRR, however, differences were minor. Thresholds for the determination of MO, SOG, and EOG were similar across sensors and smoothing methods, which demonstrated the robustness of the results. For our purpose, the Fourier adjustment algorithm created better NDVI time series than the Savitzky-Golay filter, since latter appeared to be more sensitive to noisy NDVI time series. Findings show that the application of various thresholds to NDVI time series allows the observation of the temporal progression of vegetation growth at the selected sites with high consistency. Hence, we believe that our study helps to better understand large-scale vegetation growth dynamics above the tree line in the European Alps. PMID:27879852

  13. Intercomparison of clumping index estimates from POLDER, MODIS, and MISR satellite data over reference sites

    NASA Astrophysics Data System (ADS)

    Pisek, Jan; Govind, Ajit; Arndt, Stefan K.; Hocking, Darren; Wardlaw, Timothy J.; Fang, Hongliang; Matteucci, Giorgio; Longdoz, Bernard

    2015-03-01

    Clumping index is the measure of foliage grouping relative to a random distribution of leaves in space. It is a key structural parameter of plant canopies that influences canopy radiation regimes and controls canopy photosynthesis and other land-atmosphere interactions. The Normalized Difference between Hotspot and Darkspot (NDHD) index has been previously used to retrieve global clumping index maps from POLarization and Directionality of the Earth's Reflectances (POLDER) data at ˜6 km resolution and the Bidirectional Reflectance Distribution Function (BRDF) product from Moderate Resolution Imaging Spectroradiometer (MODIS) at 500 m resolution. Most recently the algorithm was also applied with Multi-angle Imaging SpectroRadiometer (MISR) data at 275 m resolution over selected areas. In this study for the first time we characterized and compared the three products over a set of sites representing diverse biomes and different canopy structures. The products were also directly validated with both in-situ vertical profiles and available seasonal trajectories of clumping index over several sites. We demonstrated that the vertical distribution of foliage and especially the effect of understory need to be taken into account while validating foliage clumping products from remote sensing products with values measured in the field. Satellite measurements responded to the structural effects near the top of canopies, while ground measurements may be biased by the lower vegetation layers. Additionally, caution should be taken regarding the misclassification in land cover maps as their errors can propagate into the foliage clumping maps. Our results indicate that MODIS data and MISR data, with 275 m in particular, can provide good quality clumping index estimates at spatial scales pertinent for modeling local carbon and energy fluxes.

  14. Alpine Grassland Phenology as Seen in AVHRR, VEGETATION, and MODIS NDVI Time Series - a Comparison with In Situ Measurements.

    PubMed

    Fontana, Fabio; Rixen, Christian; Jonas, Tobias; Aberegg, Gabriel; Wunderle, Stefan

    2008-04-23

    This study evaluates the ability to track grassland growth phenology in the Swiss Alps with NOAA-16 Advanced Very High Resolution Radiometer (AVHRR) Normalized Difference Vegetation Index (NDVI) time series. Three growth parameters from 15 alpine and subalpine grassland sites were investigated between 2001 and 2005: Melt-Out (MO), Start Of Growth (SOG), and End Of Growth (EOG).We tried to estimate these phenological dates from yearly NDVI time series by identifying dates, where certain fractions (thresholds) of the maximum annual NDVI amplitude were crossed for the first time. For this purpose, the NDVI time series were smoothed using two commonly used approaches (Fourier adjustment or alternatively Savitzky-Golay filtering). Moreover, AVHRR NDVI time series were compared against data from the newer generation sensors SPOT VEGETATION and TERRA MODIS. All remote sensing NDVI time series were highly correlated with single point ground measurements and therefore accurately represented growth dynamics of alpine grassland. The newer generation sensors VGT and MODIS performed better than AVHRR, however, differences were minor. Thresholds for the determination of MO, SOG, and EOG were similar across sensors and smoothing methods, which demonstrated the robustness of the results. For our purpose, the Fourier adjustment algorithm created better NDVI time series than the Savitzky-Golay filter, since latter appeared to be more sensitive to noisy NDVI time series. Findings show that the application of various thresholds to NDVI time series allows the observation of the temporal progression of vegetation growth at the selected sites with high consistency. Hence, we believe that our study helps to better understand largescale vegetation growth dynamics above the tree line in the European Alps.

  15. Land surface temperature downscaling using random forest regression: primary result and sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Pan, Xin; Cao, Chen; Yang, Yingbao; Li, Xiaolong; Shan, Liangliang; Zhu, Xi

    2018-04-01

    The land surface temperature (LST) derived from thermal infrared satellite images is a meaningful variable in many remote sensing applications. However, at present, the spatial resolution of the satellite thermal infrared remote sensing sensor is coarser, which cannot meet the needs. In this study, LST image was downscaled by a random forest model between LST and multiple predictors in an arid region with an oasis-desert ecotone. The proposed downscaling approach was evaluated using LST derived from the MODIS LST product of Zhangye City in Heihe Basin. The primary result of LST downscaling has been shown that the distribution of downscaled LST matched with that of the ecosystem of oasis and desert. By the way of sensitivity analysis, the most sensitive factors to LST downscaling were modified normalized difference water index (MNDWI)/normalized multi-band drought index (NMDI), soil adjusted vegetation index (SAVI)/ shortwave infrared reflectance (SWIR)/normalized difference vegetation index (NDVI), normalized difference building index (NDBI)/SAVI and SWIR/NDBI/MNDWI/NDWI for the region of water, vegetation, building and desert, with LST variation (at most) of 0.20/-0.22 K, 0.92/0.62/0.46 K, 0.28/-0.29 K and 3.87/-1.53/-0.64/-0.25 K in the situation of +/-0.02 predictor perturbances, respectively.

  16. Maturity-onset diabetes of the young (MODY): how many cases are we missing?

    PubMed

    Shields, B M; Hicks, S; Shepherd, M H; Colclough, K; Hattersley, A T; Ellard, S

    2010-12-01

    Maturity-onset diabetes of the young is frequently misdiagnosed as type 1 or type 2 diabetes. A correct diagnosis of MODY is important for determining treatment, but can only be confirmed by molecular genetic testing. We aimed to compare the regional distribution of confirmed MODY cases in the UK and to estimate the minimum prevalence. UK referrals for genetic testing in 2,072 probands and 1,280 relatives between 1996 and 2009 were examined by region, country and test result. Referral rate and prevalence were calculated using UK Census 2001 figures. MODY was confirmed in 1,177 (35%) patients, with HNF1A (52%) and GCK mutations (32%) being most frequent in probands confirmed with MODY. There was considerable regional variation in proband referral rates (from <20 per million in Wales and Northern Ireland to >50 per million for South West England and Scotland) and patients diagnosed with MODY (5.3 per million in Northern Ireland, 48.9 per million in South West England). Referral rates and confirmed cases were highly correlated (r = 0.96, p < 0.0001). The minimum prevalence of MODY was estimated to be 108 cases per million. Assuming this minimal prevalence throughout the UK then >80% of MODY is not diagnosed by molecular testing. The marked regional variation in the prevalence of confirmed MODY directly results from differences in referral rates. This could reflect variation in awareness of MODY or unequal access to genetic testing. Increased referral for diagnostic testing is required if the majority of MODY patients are to have the genetic diagnosis necessary for optimal treatment.

  17. Atmospheric Correction of High-Spatial-Resolution Commercial Satellite Imagery Products Using MODIS Atmospheric Products

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary; Holekamp, Kara; Ryan, Robert E.; Vaughan, Ronand; Russell, Jeff; Prados, Don; Stanley, Thomas

    2005-01-01

    Remotely sensed ground reflectance is the foundation of any interoperability or change detection technique. Satellite intercomparisons and accurate vegetation indices, such as the Normalized Difference Vegetation Index (NDVI), require the generation of accurate reflectance maps (NDVI is used to describe or infer a wide variety of biophysical parameters and is defined in terms of near-infrared (NIR) and red band reflectances). Accurate reflectance-map generation from satellite imagery relies on the removal of solar and satellite geometry and of atmospheric effects and is generally referred to as atmospheric correction. Atmospheric correction of remotely sensed imagery to ground reflectance has been widely applied to a few systems only. The ability to obtain atmospherically corrected imagery and products from various satellites is essential to enable widescale use of remotely sensed, multitemporal imagery for a variety of applications. An atmospheric correction approach derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) that can be applied to high-spatial-resolution satellite imagery under many conditions was evaluated to demonstrate a reliable, effective reflectance map generation method. Additional information is included in the original extended abstract.

  18. A 5-year analysis of crop phenologies from the United States Heartland (Invited)

    NASA Astrophysics Data System (ADS)

    Johnson, D. M.

    2010-12-01

    Time series imagery data from the National Aeronautics and Space Administration (NASA) Moderate Resolution Imaging Spectroradiometer (MODIS) was intersected with annually updated field-level crop data from the United States Department of Agriculture (USDA) Farm Service Agency (FSA). Phenological metrics were derived for major crop types found in the United States (US) Heartland region. The specific MODIS data consisted of the 16-day composited Normalized Difference Vegetation Index (NDVI) 250 meter spatial resolution imagery from the Terra satellite. Crops evaluated included corn, soybeans, wheat, cotton, sorghum, rice, and other small grains. Charts showing the annual average state-level NDVI phenologies by crop were constructed for the five years between 2006 and 2010. The states of interest covered the intensively cultivated regions in the US Great Plains, Corn Belt, and Mississippi River Alluvial Plain. Results demonstrated the recent biophysical growth cycles of prevalent and widespread US crops and how they varied by geography and year. Linkages between the time series data and planting practices, weather impacts, crop progress reports, and yields were also investigated.

  19. Monitoring land surface albedo and vegetation dynamics using high spatial and temporal resolution synthetic time series from Landsat and the MODIS BRDF/NBAR/albedo product

    NASA Astrophysics Data System (ADS)

    Wang, Zhuosen; Schaaf, Crystal B.; Sun, Qingsong; Kim, JiHyun; Erb, Angela M.; Gao, Feng; Román, Miguel O.; Yang, Yun; Petroy, Shelley; Taylor, Jeffrey R.; Masek, Jeffrey G.; Morisette, Jeffrey T.; Zhang, Xiaoyang; Papuga, Shirley A.

    2017-07-01

    Seasonal vegetation phenology can significantly alter surface albedo which in turn affects the global energy balance and the albedo warming/cooling feedbacks that impact climate change. To monitor and quantify the surface dynamics of heterogeneous landscapes, high temporal and spatial resolution synthetic time series of albedo and the enhanced vegetation index (EVI) were generated from the 500 m Moderate Resolution Imaging Spectroradiometer (MODIS) operational Collection V006 daily BRDF/NBAR/albedo products and 30 m Landsat 5 albedo and near-nadir reflectance data through the use of the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM). The traditional Landsat Albedo (Shuai et al., 2011) makes use of the MODIS BRDF/Albedo products (MCD43) by assigning appropriate BRDFs from coincident MODIS products to each Landsat image to generate a 30 m Landsat albedo product for that acquisition date. The available cloud free Landsat 5 albedos (due to clouds, generated every 16 days at best) were used in conjunction with the daily MODIS albedos to determine the appropriate 30 m albedos for the intervening daily time steps in this study. These enhanced daily 30 m spatial resolution synthetic time series were then used to track albedo and vegetation phenology dynamics over three Ameriflux tower sites (Harvard Forest in 2007, Santa Rita in 2011 and Walker Branch in 2005). These Ameriflux sites were chosen as they are all quite nearby new towers coming on line for the National Ecological Observatory Network (NEON), and thus represent locations which will be served by spatially paired albedo measures in the near future. The availability of data from the NEON towers will greatly expand the sources of tower albedometer data available for evaluation of satellite products. At these three Ameriflux tower sites the synthetic time series of broadband shortwave albedos were evaluated using the tower albedo measurements with a Root Mean Square Error (RMSE) less than 0.013 and a bias within the range of ±0.006. These synthetic time series provide much greater spatial detail than the 500 m gridded MODIS data, especially over more heterogeneous surfaces, which improves the efforts to characterize and monitor the spatial variation across species and communities. The mean of the difference between maximum and minimum synthetic time series of albedo within the MODIS pixels over a subset of satellite data of Harvard Forest (16 km by 14 km) was as high as 0.2 during the snow-covered period and reduced to around 0.1 during the snow-free period. Similarly, we have used STARFM to also couple MODIS Nadir BRDF Adjusted Reflectances (NBAR) values with Landsat 5 reflectances to generate daily synthetic times series of NBAR and thus Enhanced Vegetation Index (NBAR-EVI) at a 30 m resolution. While normally STARFM is used with directional reflectances, the use of the view angle corrected daily MODIS NBAR values will provide more consistent time series. These synthetic times series of EVI are shown to capture seasonal vegetation dynamics with finer spatial and temporal details, especially over heterogeneous land surfaces.

  20. Monitoring land surface albedo and vegetation dynamics using high spatial and temporal resolution synthetic time series from Landsat and the MODIS BRDF/NBAR/albedo product

    USGS Publications Warehouse

    Wang, Zhuosen; Schaaf, Crystal B.; Sun, Qingson; Kim, JiHyun; Erb, Angela M.; Gao, Feng; Roman, Miguel O.; Yang, Yun; Petroy, Shelley; Taylor, Jeffrey; Masek, Jeffrey G.; Morisette, Jeffrey T.; Zhang, Xiaoyang; Papuga, Shirley A.

    2017-01-01

    Seasonal vegetation phenology can significantly alter surface albedo which in turn affects the global energy balance and the albedo warming/cooling feedbacks that impact climate change. To monitor and quantify the surface dynamics of heterogeneous landscapes, high temporal and spatial resolution synthetic time series of albedo and the enhanced vegetation index (EVI) were generated from the 500 m Moderate Resolution Imaging Spectroradiometer (MODIS) operational Collection V006 daily BRDF/NBAR/albedo products and 30 m Landsat 5 albedo and near-nadir reflectance data through the use of the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM). The traditional Landsat Albedo (Shuai et al., 2011) makes use of the MODIS BRDF/Albedo products (MCD43) by assigning appropriate BRDFs from coincident MODIS products to each Landsat image to generate a 30 m Landsat albedo product for that acquisition date. The available cloud free Landsat 5 albedos (due to clouds, generated every 16 days at best) were used in conjunction with the daily MODIS albedos to determine the appropriate 30 m albedos for the intervening daily time steps in this study. These enhanced daily 30 m spatial resolution synthetic time series were then used to track albedo and vegetation phenology dynamics over three Ameriflux tower sites (Harvard Forest in 2007, Santa Rita in 2011 and Walker Branch in 2005). These Ameriflux sites were chosen as they are all quite nearby new towers coming on line for the National Ecological Observatory Network (NEON), and thus represent locations which will be served by spatially paired albedo measures in the near future. The availability of data from the NEON towers will greatly expand the sources of tower albedometer data available for evaluation of satellite products. At these three Ameriflux tower sites the synthetic time series of broadband shortwave albedos were evaluated using the tower albedo measurements with a Root Mean Square Error (RMSE) less than 0.013 and a bias within the range of ±0.006. These synthetic time series provide much greater spatial detail than the 500 m gridded MODIS data, especially over more heterogeneous surfaces, which improves the efforts to characterize and monitor the spatial variation across species and communities. The mean of the difference between maximum and minimum synthetic time series of albedo within the MODIS pixels over a subset of satellite data of Harvard Forest (16 km by 14 km) was as high as 0.2 during the snow-covered period and reduced to around 0.1 during the snow-free period. Similarly, we have used STARFM to also couple MODIS Nadir BRDF Adjusted Reflectances (NBAR) values with Landsat 5 reflectances to generate daily synthetic times series of NBAR and thus Enhanced Vegetation Index (NBAR-EVI) at a 30 m resolution. While normally STARFM is used with directional reflectances, the use of the view angle corrected daily MODIS NBAR values will provide more consistent time series. These synthetic times series of EVI are shown to capture seasonal vegetation dynamics with finer spatial and temporal details, especially over heterogeneous land surfaces.

  1. Monitoring Land Surface Albedo and Vegetation Dynamics Using High Spatial and Temporal Resolution Synthetic Time Series from Landsat and the MODIS BRDF/NBAR/Albedo Product

    NASA Technical Reports Server (NTRS)

    Wang, Zhuosen; Schaaf, Crystal B.; Sun, Quingsong; Kim, Jihyun; Erb, Angela M.; Gao, Feng; Roman, Miguel O.; Yang, Yun; Petroy, Shelley; Taylor, Jeffrey R.; hide

    2017-01-01

    Seasonal vegetation phenology can significantly alter surface albedo which in turn affects the global energy balance and the albedo warmingcooling feedbacks that impact climate change. To monitor and quantify the surface dynamics of heterogeneous landscapes, high temporal and spatial resolution synthetic time series of albedo and the enhanced vegetation index (EVI) were generated from the 500-meter Moderate Resolution Imaging Spectroradiometer (MODIS) operational Collection V006 daily BRDF (Bidirectional Reflectance Distribution Function) / NBAR (Nadir BRDF-Adjusted Reflectance) / albedo products and 30-meter Landsat 5 albedo and near-nadir reflectance data through the use of the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM). The traditional Landsat Albedo (Shuai et al., 2011) makes use of the MODIS BRDFAlbedo products (MCD43) by assigning appropriate BRDFs from coincident MODIS products to each Landsat image to generate a 30-meter Landsat albedo product for that acquisition date. The available cloud free Landsat 5 albedos (due to clouds, generated every 16 days at best) were used in conjunction with the daily MODIS albedos to determine the appropriate 30-meter albedos for the intervening daily time steps in this study. These enhanced daily 30-meter spatial resolution synthetic time series were then used to track albedo and vegetation phenology dynamics over three Ameriflux tower sites (Harvard Forest in 2007, Santa Rita in 2011 and Walker Branch in 2005). These Ameriflux sites were chosen as they are all quite nearby new towers coming on line for the National Ecological Observatory Network (NEON), and thus represent locations which will be served by spatially paired albedo measures in the near future. The availability of data from the NEON towers will greatly expand the sources of tower albedometer data available for evaluation of satellite products. At these three Ameriflux tower sites the synthetic time series of broadband shortwave albedos were evaluated using the tower albedo measurements with a Root Mean Square Error (RMSE) less than 0.013 and a bias within the range of 0.006. These synthetic time series provide much greater spatial detail than the 500 meter gridded MODIS data, especially over more heterogeneous surfaces, which improves the efforts to characterize and monitor the spatial variation across species and communities. The mean of the difference between maximum and minimum synthetic time series of albedo within the MODIS pixels over a subset of satellite data of Harvard Forest (16 kilometers by 14 kilometers) was as high as 0.2 during the snow-covered period and reduced to around 0.1 during the snow-free period. Similarly, we have used STARFM to also couple MODIS Nadir BRDF-Adjusted Reflectances (NBAR) values with Landsat 5 reflectances to generate daily synthetic times series of NBAR and thus Enhanced Vegetation Index (NBAR-EVI) at a 30-meter resolution. While normally STARFM is used with directional reflectances, the use of the view angle corrected daily MODIS NBAR values will provide more consistent time series. These synthetic times series of EVI are shown to capture seasonal vegetation dynamics with finer spatial and temporal details, especially over heterogeneous land surfaces.

  2. Reconciling Simulated and Observed Views of Clouds: MODIS, ISCCP, and the Limits of Instrument Simulators in Climate Models

    NASA Technical Reports Server (NTRS)

    Pincus, Robert; Platnick, Steven E.; Ackerman, Steve; Hemler, Richard; Hofmann, Patrick

    2011-01-01

    The properties of clouds that may be observed by satellite instruments, such as optical depth and cloud top pressure, are only loosely related to the way clouds are represented in models of the atmosphere. One way to bridge this gap is through "instrument simulators," diagnostic tools that map the model representation to synthetic observations so that differences between simulator output and observations can be interpreted unambiguously as model error. But simulators may themselves be restricted by limited information available from the host model or by internal assumptions. This work examines the extent to which instrument simulators are able to capture essential differences between MODIS and ISCCP, two similar but independent estimates of cloud properties. We focus on the stark differences between MODIS and ISCCP observations of total cloudiness and the distribution of cloud optical thickness can be traced to different approaches to marginal pixels, which MODIS excludes and ISCCP treats as homogeneous. These pixels, which likely contain broken clouds, cover about 15% of the planet and contain almost all of the optically thinnest clouds observed by either instrument. Instrument simulators can not reproduce these differences because the host model does not consider unresolved spatial scales and so can not produce broken pixels. Nonetheless, MODIS and ISCCP observation are consistent for all but the optically-thinnest clouds, and models can be robustly evaluated using instrument simulators by excluding ambiguous observations.

  3. Evaluating MODIS snow products for modelling snowmelt runoff: Case study of the Rio Grande headwaters

    NASA Astrophysics Data System (ADS)

    Steele, Caitriana; Dialesandro, John; James, Darren; Elias, Emile; Rango, Albert; Bleiweiss, Max

    2017-12-01

    Snow-covered area (SCA) is a key variable in the Snowmelt-Runoff Model (SRM) and in other models for simulating discharge from snowmelt. Landsat Thematic Mapper (TM), Enhanced Thematic Mapper (ETM +) or Operational Land Imager (OLI) provide remotely sensed data at an appropriate spatial resolution for mapping SCA in small headwater basins, but the temporal resolution of the data is low and may not always provide sufficient cloud-free dates. The coarser spatial resolution Moderate Resolution Imaging Spectroradiometer (MODIS) offers better temporal resolution and in cloudy years, MODIS data offer the best alternative for mapping snow cover when finer spatial resolution data are unavailable. However, MODIS' coarse spatial resolution (500 m) can obscure fine spatial patterning in snow cover and some MODIS products are not sensitive to end-of-season snow cover. In this study, we aimed to test MODIS snow products for use in simulating snowmelt runoff from smaller headwater basins by a) comparing maps of TM and MODIS-based SCA and b) determining how SRM streamflow simulations are changed by the different estimates of seasonal snow depletion. We compared gridded MODIS snow products (Collection 5 MOD10A1 fractional and binary SCA; SCA derived from Collection 6 MOD10A1 Normalised Difference Snow Index (NDSI) Snow Cover), and the MODIS Snow Covered-Area and Grain size retrieval (MODSCAG) canopy-corrected fractional SCA (SCAMG), with reference SCA maps (SCAREF) generated from binary classification of TM imagery. SCAMG showed strong agreement with SCAREF; excluding true negatives (where both methods agreed no snow was present) the median percent difference between SCAREF and SCAMG ranged between -2.4% and 4.7%. We simulated runoff for each of the four study years using SRM populated with and calibrated for snow depletion curves derived from SCAREF. We then substituted in each of the MODIS-derived depletion curves. With efficiency coefficients ranging between 0.73 and 0.93, SRM simulation results from the SCAMG runs yielded the best results of all the MODIS products and only slightly underestimated discharge volume (between 7 and 11% of measured annual discharge). SRM simulations that used SCA derived from Collection 6 NDSI Snow Cover also yielded promising results, with efficiency coefficients ranging between 0.73 and 0.91. In conclusion, we recommend that when simulating snowmelt runoff from small basins (<4000 km2) with SRM, we recommend that users select either canopy-corrected MODSCAG or create their own site-specific products from the Collection 6 MOD10A1 NDSI.

  4. A novel method for characterizing harmful algal blooms in the Persian Gulf using MODIS measurements

    NASA Astrophysics Data System (ADS)

    Ghanea, Mohsen; Moradi, Masoud; Kabiri, Keivan

    2016-10-01

    Biophysical properties of water undergo meaningful variations under red tide (RT) outbreak. A massive Cochlodinium polykrikoids RT began in the eastern Persian Gulf (PG) in October 2008 and extended to the northern PG in December 2008. It killed large fish and hampered marine industries and water desalination appliances. Yet monthly averages of satellite-derived Chl-a (Chlorophyll-a), nFLH (normalized Fluorescence Line Height), and Kd490 (diffuse attenuation coefficient at 490 nm) have not been compared in the PG. MODIS (MODerate Resolution Imaging Spectroradiometer) sensor provides global coverage, with short revisit time, and accessible, well validated ocean color products. This study compares the behavior of MODIS Chl-a, nFLH, and Kd490 in both normal and RT conditions. In doing so, their color maps are shown during normal and RT periods. Then, monthly variations of these products are shown as time-series between 2002 and 2008. HOCI (Hybrid Ocean Color Index) is defined by integrating these products to detect RT affected areas. The results gained from 100 locations in the PG show that HOCI >0.18 mW cm-2 μm-1 sr-1 mg m-4 and nFLH >0.04 mW cm-2 μm-1 sr-1 discriminates non-bloom waters from algal blooms. Rrs(443)/Rrs(412) > 1 is a proper statement to separate Trichodesmium erythtraeum from Noctiluca millaris, Noctiluca scintillans, and diatoms. Rrs(667)/Rrs(443) > 1 can differentiate Cochlodinium polykrikoids from T. erythtraeum, N. millaris, N. scintillans, and diatoms as well. So, the combination of HOCI and Rrs(667)/Rrs(443) ratio is useful for detection and quantization of C. polykrikoids.

  5. Effect of spatial resolution on remote sensing estimation of total evaporation in the uMngeni catchment, South Africa

    NASA Astrophysics Data System (ADS)

    Shoko, Cletah; Clark, David; Mengistu, Michael; Dube, Timothy; Bulcock, Hartley

    2015-01-01

    This study evaluated the effect of two readily available multispectral sensors: the newly launched 30 m spatial resolution Landsat 8 and the long-serving 1000 m moderate resolution imaging spectroradiometer (MODIS) datasets in the spatial representation of total evaporation in the heterogeneous uMngeni catchment, South Africa, using the surface energy balance system model. The results showed that sensor spatial resolution plays a critical role in the accurate estimation of energy fluxes and total evaporation across a heterogeneous catchment. Landsat 8 estimates showed better spatial representation of the biophysical parameters and total evaporation for different land cover types, due to the relatively higher spatial resolution compared to the coarse spatial resolution MODIS sensor. Moreover, MODIS failed to capture the spatial variations of total evaporation estimates across the catchment. Analysis of variance (ANOVA) results showed that MODIS-based total evaporation estimates did not show any significant differences across different land cover types (one-way ANOVA; F1.924=1.412, p=0.186). However, Landsat 8 images yielded significantly different estimates between different land cover types (one-way ANOVA; F1.993=5.185, p<0.001). The validation results showed that Landsat 8 estimates were more comparable to eddy covariance (EC) measurements than the MODIS-based total evaporation estimates. EC measurement on May 23, 2013, was 3.8 mm/day, whereas the Landsat 8 estimate on the same day was 3.6 mm/day, with MODIS showing significantly lower estimates of 2.3 mm/day. The findings of this study underscore the importance of spatial resolution in estimating spatial variations of total evaporation at the catchment scale, thus, they provide critical information on the relevance of the readily available remote sensing products in water resources management in data-scarce environments.

  6. An annual plant growth proxy in the Mojave Desert using MODIS-EVI data

    USGS Publications Warehouse

    Wallace, C.S.A.; Thomas, K.A.

    2008-01-01

    In the arid Mojave Desert, the phenological response of vegetation is largely dependent upon the timing and amount of rainfall, and maps of annual plant cover at any one point in time can vary widely. Our study developed relative annual plant growth models as proxies for annual plant cover using metrics that captured phenological variability in Moderate-Resolution Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI) satellite images. We used landscape phenologies revealed in MODIS data together with ecological knowledge of annual plant seasonality to develop a suite of metrics to describe annual growth on a yearly basis. Each of these metrics was applied to temporally-composited MODIS-EVI images to develop a relative model of annual growth. Each model was evaluated by testing how well it predicted field estimates of annual cover collected during 2003 and 2005 at the Mojave National Preserve. The best performing metric was the spring difference metric, which compared the average of three spring MODIS-EVI composites of a given year to that of 2002, a year of record drought. The spring difference metric showed correlations with annual plant cover of R2 = 0.61 for 2005 and R 2 = 0.47 for 2003. Although the correlation is moderate, we consider it supportive given the characteristics of the field data, which were collected for a different study in a localized area and are not ideal for calibration to MODIS pixels. A proxy for annual growth potential was developed from the spring difference metric of 2005 for use as an environmental data layer in desert tortoise habitat modeling. The application of the spring difference metric to other imagery years presents potential for other applications such as fuels, invasive species, and dust-emission monitoring in the Mojave Desert.

  7. An Annual Plant Growth Proxy in the Mojave Desert Using MODIS-EVI Data.

    PubMed

    Wallace, Cynthia S A; Thomas, Kathryn A

    2008-12-03

    In the arid Mojave Desert, the phenological response of vegetation is largely dependent upon the timing and amount of rainfall, and maps of annual plant cover at any one point in time can vary widely. Our study developed relative annual plant growth models as proxies for annual plant cover using metrics that captured phenological variability in Moderate-Resolution Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI) satellite images. We used landscape phenologies revealed in MODIS data together with ecological knowledge of annual plant seasonality to develop a suite of metrics to describe annual growth on a yearly basis. Each of these metrics was applied to temporally-composited MODIS-EVI images to develop a relative model of annual growth. Each model was evaluated by testing how well it predicted field estimates of annual cover collected during 2003 and 2005 at the Mojave National Preserve. The best performing metric was the spring difference metric, which compared the average of three spring MODIS-EVI composites of a given year to that of 2002, a year of record drought. The spring difference metric showed correlations with annual plant cover of R² = 0.61 for 2005 and R² = 0.47 for 2003. Although the correlation is moderate, we consider it supportive given the characteristics of the field data, which were collected for a different study in a localized area and are not ideal for calibration to MODIS pixels. A proxy for annual growth potential was developed from the spring difference metric of 2005 for use as an environmental data layer in desert tortoise habitat modeling. The application of the spring difference metric to other imagery years presents potential for other applications such as fuels, invasive species, and dust-emission monitoring in the Mojave Desert.

  8. Energy crop mapping with enhanced TM/MODIS time series in the BCAP agricultural lands

    NASA Astrophysics Data System (ADS)

    Wang, Cuizhen; Fan, Qian; Li, Qingting; SooHoo, William M.; Lu, Linlin

    2017-02-01

    Since the mid-2000s, agricultural lands in the United States have been undergoing rapid change to meet the increasing bioenergy demand. In 2009 the USDA Biomass Crop Assistance Program (BCAP) was established. In its Project Area 1, land owners are financially supported to grow perennial prairie grasses (switchgrass) in their row-crop lands. To promote the program, this study tested the feasibility of biomass crop mapping based on unique timings of crop development. With a previously published data fusion algorithm - the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM), a 10-day normalized difference vegetation index (NDVI) time series in 2007 was established by fusing MODIS reflectance into TM image series. Two critical dates - peak growing (PG) and peak drying (PD) - were extracted and a unique "PG-0-PD" timing sequence was defined for each crop. With a knowledge-based decision tree approach, the classification of enhanced TM/MODIS time series reached an overall accuracy of 76% against the USDA Crop Data layer (CDL). Especially, our results showed that winter wheat single cropping and wheat-soybean double cropping were much better classified, which may provide additional information for the CDL product. More importantly, this study extracted the first spatial layer of warm-season prairie grasses that have not been published in any national land cover products, which could serve as a base map for decision making of bioenergy land use in BCAP land.

  9. Mapping current and potential distribution of non-native Prosopis juliflora in the Afar region of Ethiopia

    USGS Publications Warehouse

    Wakie, Tewodros; Evangelista, Paul H.; Jarnevich, Catherine S.; Laituri, Melinda

    2014-01-01

    We used correlative models with species occurrence points, Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation indices, and topo-climatic predictors to map the current distribution and potential habitat of invasive Prosopis juliflora in Afar, Ethiopia. Time-series of MODIS Enhanced Vegetation Indices (EVI) and Normalized Difference Vegetation Indices (NDVI) with 250 m2 spatial resolution were selected as remote sensing predictors for mapping distributions, while WorldClim bioclimatic products and generated topographic variables from the Shuttle Radar Topography Mission product (SRTM) were used to predict potential infestations. We ran Maxent models using non-correlated variables and the 143 species-occurrence points. Maxent generated probability surfaces were converted into binary maps using the 10-percentile logistic threshold values. Performances of models were evaluated using area under the receiver-operating characteristic (ROC) curve (AUC). Our results indicate that the extent of P. juliflora invasion is approximately 3,605 km2 in the Afar region (AUC = 0.94), while the potential habitat for future infestations is 5,024 km2 (AUC = 0.95). Our analyses demonstrate that time-series of MODIS vegetation indices and species occurrence points can be used with Maxent modeling software to map the current distribution of P. juliflora, while topo-climatic variables are good predictors of potential habitat in Ethiopia. Our results can quantify current and future infestations, and inform management and policy decisions for containing P. juliflora. Our methods can also be replicated for managing invasive species in other East African countries.

  10. Exploring New Methods of Displaying Bit-Level Quality and Other Flags for MODIS Data

    NASA Technical Reports Server (NTRS)

    Khalsa, Siri Jodha Singh; Weaver, Ron

    2003-01-01

    The NASA Distributed Active Archive Center (DAAC) at the National Snow and Ice Data Center (NSIDC) archives and distributes snow and sea ice products derived from the MODerate resolution Imaging Spectroradiometer (MODIS) on board NASA's Terra and Aqua satellites. All MODIS standard products are in the Earth Observing System version of the Hierarchal Data Format (HDF-EOS). The MODIS science team has packed a wealth of information into each HDF-EOS file. In addition to the science data arrays containing the geophysical product, there are often pixel-level Quality Assurance arrays which are important for understanding and interpreting the science data. Currently, researchers are limited in their ability to access and decode information stored as individual bits in many of the MODIS science products. Commercial and public domain utilities give users access, in varying degrees, to the elements inside MODIS HDF-EOS files. However, when attempting to visualize the data, users are confronted with the fact that many of the elements actually represent eight different 1-bit arrays packed into a single byte array. This project addressed the need for researchers to access bit-level information inside MODIS data files. In an previous NASA-funded project (ESDIS Prototype ID 50.0) we developed a visualization tool tailored to polar gridded HDF-EOS data set. This tool,called the Polar researchers to access, geolocate, visualize, and subset data that originate from different sources and have different spatial resolutions but which are placed on a common polar grid. The bit-level visualization function developed under this project was added to PHDIS, resulting in a versatile tool that serves a variety of needs. We call this the EOS Imaging Tool.

  11. Unmanned aerial system nadir reflectance and MODIS nadir BRDF-adjusted surface reflectances intercompared over Greenland

    NASA Astrophysics Data System (ADS)

    Faulkner Burkhart, John; Kylling, Arve; Schaaf, Crystal B.; Wang, Zhuosen; Bogren, Wiley; Storvold, Rune; Solbø, Stian; Pedersen, Christina A.; Gerland, Sebastian

    2017-07-01

    Albedo is a fundamental parameter in earth sciences, and many analyses utilize the Moderate Resolution Imaging Spectroradiometer (MODIS) bidirectional reflectance distribution function (BRDF)/albedo (MCD43) algorithms. While derivative albedo products have been evaluated over Greenland, we present a novel, direct comparison with nadir surface reflectance collected from an unmanned aerial system (UAS). The UAS was flown from Summit, Greenland, on 210 km transects coincident with the MODIS sensor overpass on board the Aqua and Terra satellites on 5 and 6 August 2010. Clear-sky acquisitions were available from the overpasses within 2 h of the UAS flights. The UAS was equipped with upward- and downward-looking spectrometers (300-920 nm) with a spectral resolution of 10 nm, allowing for direct integration into the MODIS bands 1, 3, and 4. The data provide a unique opportunity to directly compare UAS nadir reflectance with the MODIS nadir BRDF-adjusted surface reflectance (NBAR) products. The data show UAS measurements are slightly higher than the MODIS NBARs for all bands but agree within their stated uncertainties. Differences in variability are observed as expected due to different footprints of the platforms. The UAS data demonstrate potentially large sub-pixel variability of MODIS reflectance products and the potential to explore this variability using the UAS as a platform. It is also found that, even at the low elevations flown typically by a UAS, reflectance measurements may be influenced by haze if present at and/or below the flight altitude of the UAS. This impact could explain some differences between data from the two platforms and should be considered in any use of airborne platforms.

  12. Role of MODIS Vegetation Phenology Products in the ForWarn System for Monitoring of Forest Disturbances in the Conterminous United States

    NASA Astrophysics Data System (ADS)

    Spruce, J.; Hargrove, W. W.; Norman, S.; Gasser, J.; Smoot, J.; Kuper, P.

    2012-12-01

    This presentation discusses MODIS vegetation phenology products used in the ForWarn Early Warning System (EWS) tool for near real time regional forest disturbance detection and surveillance at regional to national scales. The ForWarn EWS is being developed by the USDA Forest Service NASA, ORNL, and USGS to aid federal and state forest health management activities. ForWarn employs multiple historical land surface phenology products that are derived from MODIS MOD13 Normalized Difference Vegetation Index (NDVI) data. The latter is temporally processed into phenology products with the Time Series Product Tool (TSPT) and the Phenological Parameter Estimation Tool (PPET) software produced at NASA Stennis Space Center. TSPT is used to effectively noise reduce, fuse, and void interpolate MODIS NDVI data. PPET employs TSPT-processed NDVI time series data as an input, outputting multiple vegetation phenology products at a 232 meter resolution for 2000 to 2011, including NDVI magnitude and day of year products for seven key points along the growing season (peak of growing season and the minima, 20%, and 80% of the peak NDVI for both the left and right side of growing season), cumulative NDVI integral products for the most active part of the growing season and sequentially across the growing season at 8 day intervals, and maximum value NDVI products composited at 24 day intervals in which each product date has 8 days of overlap between the previous and following product dates. MODIS NDVI phenology products are also used to compute nationwide near real time forest change products every 8 days. These include percent change in forest NDVI products that compare the current NDVI from USGS eMODIS products to historical MODIS MOD13 NDVI. For each date, three forest change products are produced using three different maximum value NDVI baselines (from the previous year, three previous years, and all previous years). All change products are output with a rainbow color table in which forests with the most severe NDVI decreases are assigned hot colors (yellow to red) and forests with prominent NDVI increases are assigned cold colors (blue tones). All mentioned products have been integrated as data layers into ForWarn's geospatial data viewer known as the U.S. Forest Change Assessment Viewer (FCAV). The latter is used to view and assess the context of the mentioned forest change products with respect to ancillary data layers, such as land cover, elevation, hydrologic features, climatic data, storm data, aerial disturbance surveys, fire data, and land ownership. The FCAV also includes a temporal NDVI profiler for viewing phenological change in multi-year NDVI associated with known or suspected regionally apparent forest disturbances (e.g., from fire and insects). ForWarn forest change products have been used to detect, track, and assess several biotic and abiotic regional forest disturbance events across the country, including ephemeral and longer lasting damage from storms, drought, and insects. Such change products are most effective for viewing severe disturbance patches of multiple pixels. MODIS vegetation phenology products contribute vital current information on forest conditions to the ForWarn system and this role is expected to grow as these products are refined and derivative products are added.

  13. Remote monitoring of tamarisk defoliation and evapotranspiration following saltcedar leaf beetle attack

    USGS Publications Warehouse

    Dennison, P.E.; Nagler, P.L.; Hultine, K.R.; Glenn, E.P.; Ehleringer, J.R.

    2009-01-01

    Tamarisk (Tamarix spp.) has invaded riparian ecosystems throughout the Western United States, including significant portions of riparian ecosystems within U.S. National Parks and Monuments. Recently, the saltcedar leaf beetle (Diorhabda elongata) was released as a tamarisk biocontrol agent. Although initial releases have been monitored, no comprehensive program is currently in place to monitor the rapid spread of Diorhabda that has resulted from numerous subsequent releases by county and state agencies. Long term monitoring of tamarisk defoliation and its impacts on habitat and water resources is needed. This study examines the potential for using higher spatial resolution Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and lower spatial resolution Moderate Resolution Imaging Spectroradiometer (MODIS) data for monitoring defoliation caused by Diorhabda and subsequent changes in evapotranspiration (ET). Widespread tamarisk defoliation was observed in an eastern Utah study area during summer 2007. ASTER normalized difference vegetation index (NDVI) showed only minor changes between 2005 and 2006, but a significant drop in NDVI was found within riparian areas between 2006 and 2007. The decrease in NDVI caused by defoliation was apparent despite partial refoliation within the study area. MODIS time series data revealed that absolute decline in EVI varied by site, but that the timing of EVI decline during summer 2007 was early with respect to phenological patterns from 2001 through 2006. Defoliation caused decreases in ET values estimated from both ASTER and MODIS data. MODIS estimated ET declined earlier than in previous years, although annual ET was not significantly different than ET in previous years due to high year-to-year variability. Challenges to detection and monitoring of tamarisk defoliation include spectral mixing of tamarisk and other cover types at subpixel spatial resolution, spatial coregistration of time series images, the timing of image acquisition, and changes unrelated to defoliation in non-tamarisk land cover over time. Continued development of the techniques presented in this paper may allow monitoring the spread of Diorhabda and assessment of potential water salvage resulting from biocontrol of tamarisk. ?? 2009 Elsevier Inc.

  14. Analysis of Summer 2002 Melt Extent on the Greenland Ice Sheet using MODIS and SSM/I Data

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Williams, Richard S., Jr.; Steffen, Konrad; Chien, Y. L.; Foster, James L.; Robinson, David A.; Riggs, George A.

    2004-01-01

    Previous work has shown that the summer of 2002 had the greatest area of snow melt extent on the Greenland ice sheet ever recorded using passive-microwave data. In this paper, we compare the 0 degree isotherm derived from the Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument, with Special Sensor Microwave/Imager (SSM/I)-derived melt, at the time of the maximum melt extent in 2002. To validate the MODIS-derived land-surface temperatures (LSTs), we compared the MODIS LSTs with air temperatures from nine stations (using 11 different data points) and found that they agreed to within 2.3 plus or minus 2.09 C, with station temperatures consistently lower than the MODIS LSTs. According to the MODIS LST, the maximum surface melt extended to approximately 2300 m in southern Greenland; while the SSM/I measurements showed that the maximum melt extended to nearly 2700 m in southeastern Greenland. The MODIS and SSM/I data are complementary in providing detailed information about the progression of surface and near-surface melt on the Greenland ice sheet.

  15. Analysis of Summer 2002 Melt Extent on the Greenland Ice Sheet using MODIS and SSM/I Data

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Williams, Richard S.; Steffen, Konrad; Chien, Janet Y. L.

    2004-01-01

    Previous work has shown that the summer of 2002 had the greatest area of snow melt extent on the Greenland ice sheet ever recorded using passive-microwave data. In this paper, we compare the 0 deg. isotherm derived from the Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument, with Special Sensor Microwave/Imager (SSM/I)-derived melt, at the time of the maximum melt extent in 2002. To validate the MODIS derived land-surface temperatures (LSTs), we compared the MODIS LSTs with air temperatures from nine stations (using 11 different data points) and found that they agreed to within 2.3 +/- 2.09 C, with station temperatures consistently lower than the MODIS LSTs. According to the MODIS LST, the maximum surface melt extended to approx. 2300 m in southern Greenland; while the SSM/I measurements showed that the maximum melt extended to nearly 2700 m in southeastern Greenland. The MODIS and SSM/I data are complementary in providing detailed information about the progression of surface and near- surface melt on the Greenland ice sheet.

  16. Analysis of summer 2002 melt extent on the Greenland ice sheet using MODIS and SSM/I data

    USGS Publications Warehouse

    Hall, D.K.; Williams, R.S.; Steffen, K.; Chien, Janet Y.L.

    2004-01-01

    Previous work has shown that the summer of 2002 had the greatest area of snow melt extent on the Greenland ice sheet ever recorded using passive-microwave data. In this paper, we compare the 0?? isotherm derived from the Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument, with Special Sensor Microwave/Imager (SSM/I)-derived melt, at the time of the maximum melt extent in 2002. To validate the MODIS-derived land-surface temperatures (LSTs), we compared the MODIS LSTs with air temperatures from nine stations (using 11 different data points) and found that they agreed to within 2.3??2.09??C, with station temperatures consistently lower than the MODIS LSTs. According to the MODIS LST, the maximum surface melt extended to ???2300 m in southern Greenland; while the SSM/I measurements showed that the maximum melt extended to nearly 2700 m in southeastern Greenland. The MODIS and SSM/I data are complementary in providing detailed information about the progression of surface and near-surface melt on the Greenland ice sheet.

  17. Analysis of summer 2002 melt extent on the Greenland ice sheet using MODIS and SSM/I data

    USGS Publications Warehouse

    Hall, D. K.; Williams, R.S.; Steffen, K.; Chien, Janet Y.L.

    2004-01-01

    Previous work has shown that the summer of 2002 had the greatest area of snow melt extent on the Greenland ice sheet ever recorded using passive-microwave data. In this paper, we compare the 0deg isotherm derived from the Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument, with Special Sensor Microwave/Imager (SSM/I)-derived melt, at the time of the maximum melt extent in 2002. To validate the MODIS-derived land-surface temperatures (LSTs), we compared the MODIS LSTs with air temperatures from nine stations (using 11 different data points) and found that they agreed to within 2.3 plusmn 2.09 degC, with station temperatures consistently lower than the MODIS LSTs. According to the MODIS LST, the maximum surface melt extended to ~2300 m in southern Greenland; while the SSM/I measurements showed that the maximum melt extended to nearly 2700 m in southeastern Greenland. The MODIS and SSM/I data are complementary in providing detailed information about the progression of surface and near-surface melt on the Greenland ice sheet.

  18. An Evaluation of MODIS-Retrieved Aerosol Optical Depth over a Mountainous AERONET Site in the Southeastern US

    NASA Technical Reports Server (NTRS)

    Sherman, James P.; Gupta, Pawan; Levy, Robert C.; Sherman, Peter J.

    2016-01-01

    The literature shows that aerosol optical depth (AOD) derived from the MODIS Collection 5 (C5) dark target algorithm has been extensively validated by spatiotemporal collocation with AERONET sites on both global and regional scales.Although generally comparing well over the eastern US region, poor performance over mountains in other regions indicate the need to evaluate the MODIS product over a mountain site. This study compares MODIS C5 AOD at 550nm to AOD measured at the Appalachian State University AERONET site in Boone, NC over 30 months between August 2010 and September 2013. For the combined Aqua and Terra datasets, although more than 70% of the 500 MODIS AOD measurements agree with collocated AERONET AOD to within error envelope of +/- (0.05 + 15%), MODIS tends to have a low bias (0.02-0.03). The agreement between MODIS and AERONET AOD does not depend on MODIS quality assurance confidence (QAC) value. However, when stratified by satellite, MODIS-Terra data does not perform as well as Aqua, with especially poor correlation (r = 0.39) for low aerosol loading conditions (AERONET AOD less than 0.15).Linear regressions between Terra and AERONET possess statistically-different slopes for AOD < 0.15 and AOD > or = 0.15. AERONET AOD measured only during MODIS overpass hours is highly correlated with daily-averaged AERONET AOD. MODIS monthly-averaged AOD also tracks that of AERONET over the study period. These results indicate that MODIS is sensitive to the day-to-day variability, as well as the annual cycle of AOD over the Appalachian State AERONET site. The complex topography and high seasonality in AOD and vegetation indices allow us to specifically evaluate MODIS dark target algorithm surface albedo and aerosol model assumptions at a regionally-representative SE US mountain site.

  19. Drought impact assessment from monitoring the seasonality of vegetation condition using long-term time-series satellite images: a case study of Mt. Kenya region.

    PubMed

    Song, Youngkeun; Njoroge, John B; Morimoto, Yukihiro

    2013-05-01

    Drought-induced anomalies in vegetation condition over wide areas can be observed by using time-series satellite remote sensing data. Previous methods to assess the anomalies may include limitations in considering (1) the seasonality in terms of each vegetation-cover type, (2) cumulative damage during the drought event, and (3) the application to various types of land cover. This study proposed an improved methodology to assess drought impact from the annual vegetation responses, and discussed the result in terms of diverse landscape mosaics in the Mt. Kenya region (0.4° N 35.8° E ~ 1.6° S 38.4° E). From the 30-year annual rainfall records at the six meteorological stations in the study area, we identified 2000 as the drought year and 2001, 2004, and 2007 as the normal precipitation years. The time-series profiles of vegetation condition in the drought and normal precipitation years were obtained from the values of Enhanced Vegetation Index (EVI; Huete et al. 2002), which were acquired from Terra MODIS remote sensing dataset (MOD13Q1) taken every 16 days at the scale of 250-m spatial resolution. The drought impact was determined by integrating the annual differences in EVI profiles between drought and normal conditions, per pixel based on nearly same day of year. As a result, we successfully described the distribution of landscape vulnerability to drought, considering the seasonality of each vegetation-cover type at every MODIS pixel. This result will contribute to the large-scale landscape management of Mt. Kenya region. Future study should improve this method by considering land-use change occurred during the long-term monitoring period.

  20. Evaluating MODIS satellite versus terrestrial data driven productivity estimates in Austria

    NASA Astrophysics Data System (ADS)

    Petritsch, R.; Boisvenue, C.; Pietsch, S. A.; Hasenauer, H.; Running, S. W.

    2009-04-01

    Sensors, such as the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite, are developed for monitoring global and/or regional ecosystem fluxes like net primary production (NPP). Although these systems should allow us to assess carbon sequestration issues, forest management impacts, etc., relatively little is known about the consistency and accuracy in the resulting satellite driven estimates versus production estimates driven from ground data. In this study we compare the following NPP estimation methods: (i) NPP estimates as derived from MODIS and available on the internet; (ii) estimates resulting from the off-line version of the MODIS algorithm; (iii) estimates using regional meteorological data within the offline algorithm; (iv) NPP estimates from a species specific biogeochemical ecosystem model adopted for Alpine conditions; and (v) NPP estimates calculated from individual tree measurements. Single tree measurements were available from 624 forested sites across Austria but only the data from 165 sample plots included all the necessary information for performing the comparison on plot level. To ensure independence of satellite-driven and ground-based predictions, only latitude and longitude for each site were used to obtain MODIS estimates. Along with the comparison of the different methods, we discuss problems like the differing dates of field campaigns (<1999) and acquisition of satellite images (2000-2005) or incompatible productivity definitions within the methods and come up with a framework for combining terrestrial and satellite data based productivity estimates. On average MODIS estimates agreed well with the output of the models self-initialization (spin-up) and biomass increment calculated from tree measurements is not significantly different from model results; however, correlation between satellite-derived versus terrestrial estimates are relatively poor. Considering the different scales as they are 9km² from MODIS and 1000m² from the sample plots together with the heterogeneous landscape may qualify the low correlation, particularly as the correlation increases when strongly fragmented sites are left out.

  1. Qualitative Parameters of the Colonic Flora in Patients with HNF1A-MODY Are Different from Those Observed in Type 2 Diabetes Mellitus

    PubMed Central

    Mrozinska, Sandra; Radkowski, Piotr; Gosiewski, Tomasz; Szopa, Magdalena; Bulanda, Malgorzata; Ludwig-Galezowska, Agnieszka H.; Morawska, Iwona; Sroka-Oleksiak, Agnieszka; Matejko, Bartlomiej; Kapusta, Przemyslaw; Salamon, Dominika; Malecki, Maciej T.; Wolkow, Pawel

    2016-01-01

    Background. Type 2 diabetes mellitus (T2DM) is determined by genetic and environmental factors. There have been many studies on the relationship between the composition of the gastrointestinal bacterial flora, T2DM, and obesity. There are no data, however, on the gut microbiome structure in monogenic forms of the disease including Maturity Onset Diabetes of the Young (MODY). Methods. The aim of the investigation was to compare the qualitative parameters of the colonic flora in patients with HNF1A-MODY and T2DM and healthy individuals. 16S sequencing of bacterial DNA isolated from the collected fecal samples using the MiSeq platform was performed. Results. There were significant between-group differences in the bacterial profile. At the phylum level, the amount of Proteobacteria was higher (p = 0.0006) and the amount of Bacteroidetes was lower (p = 0.0005) in T2DM group in comparison to the control group. In HNF1A-MODY group, the frequency of Bacteroidetes was lower than in the control group (p = 0.0143). At the order level, Turicibacterales was more abundant in HNF1A-MODY group than in T2DM group. Conclusions. It appears that there are differences in the gut microbiome composition between patients with HNF1A-MODY and type 2 diabetes. Further investigation on this matter should be conducted. PMID:27807544

  2. Qualitative Parameters of the Colonic Flora in Patients with HNF1A-MODY Are Different from Those Observed in Type 2 Diabetes Mellitus.

    PubMed

    Mrozinska, Sandra; Radkowski, Piotr; Gosiewski, Tomasz; Szopa, Magdalena; Bulanda, Malgorzata; Ludwig-Galezowska, Agnieszka H; Morawska, Iwona; Sroka-Oleksiak, Agnieszka; Matejko, Bartlomiej; Kapusta, Przemyslaw; Salamon, Dominika; Malecki, Maciej T; Wolkow, Pawel; Klupa, Tomasz

    2016-01-01

    Background . Type 2 diabetes mellitus (T2DM) is determined by genetic and environmental factors. There have been many studies on the relationship between the composition of the gastrointestinal bacterial flora, T2DM, and obesity. There are no data, however, on the gut microbiome structure in monogenic forms of the disease including Maturity Onset Diabetes of the Young (MODY). Methods . The aim of the investigation was to compare the qualitative parameters of the colonic flora in patients with HNF1A - MODY and T2DM and healthy individuals. 16S sequencing of bacterial DNA isolated from the collected fecal samples using the MiSeq platform was performed. Results . There were significant between-group differences in the bacterial profile. At the phylum level, the amount of Proteobacteria was higher ( p = 0.0006) and the amount of Bacteroidetes was lower ( p = 0.0005) in T2DM group in comparison to the control group. In HNF1A-MODY group, the frequency of Bacteroidetes was lower than in the control group ( p = 0.0143). At the order level, Turicibacterales was more abundant in HNF1A-MODY group than in T2DM group. Conclusions . It appears that there are differences in the gut microbiome composition between patients with HNF1A-MODY and type 2 diabetes. Further investigation on this matter should be conducted.

  3. Multilayer Cloud Detection with the MODIS Near-Infrared Water Vapor Absorption Band

    NASA Technical Reports Server (NTRS)

    Wind, Galina; Platnick, Steven; King, Michael D.; Hubanks, Paul A,; Pavolonis, Michael J.; Heidinger, Andrew K.; Yang, Ping; Baum, Bryan A.

    2009-01-01

    Data Collection 5 processing for the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the NASA Earth Observing System EOS Terra and Aqua spacecraft includes an algorithm for detecting multilayered clouds in daytime. The main objective of this algorithm is to detect multilayered cloud scenes, specifically optically thin ice cloud overlying a lower-level water cloud, that presents difficulties for retrieving cloud effective radius using single layer plane-parallel cloud models. The algorithm uses the MODIS 0.94 micron water vapor band along with CO2 bands to obtain two above-cloud precipitable water retrievals, the difference of which, in conjunction with additional tests, provides a map of where multilayered clouds might potentially exist. The presence of a multilayered cloud results in a large difference in retrievals of above-cloud properties between the CO2 and the 0.94 micron methods. In this paper the MODIS multilayered cloud algorithm is described, results of using the algorithm over example scenes are shown, and global statistics for multilayered clouds as observed by MODIS are discussed. A theoretical study of the algorithm behavior for simulated multilayered clouds is also given. Results are compared to two other comparable passive imager methods. A set of standard cloudy atmospheric profiles developed during the course of this investigation is also presented. The results lead to the conclusion that the MODIS multilayer cloud detection algorithm has some skill in identifying multilayered clouds with different thermodynamic phases

  4. Monitoring post-fire recovery of shrublands in Mediterranean-type ecosystems using MODIS and TM/ETM+ data

    NASA Astrophysics Data System (ADS)

    Hope, Allen; Albers, Noah; Bart, Ryan

    2010-05-01

    Wildland fires in Mediterranean-Type Ecosystems (MTEs) are episodic events that dramatically alter land-cover conditions. Monitoring post-fire vegetation recovery is important for land management applications such as the scheduling of prescribed burns, post-fire resource management and soil erosion control. Full recovery of MTE shrublands may take many years and have a prolonged effect on water, energy and carbon fluxes in these ecosystems. Comparative studies of fynbos ecosystems in the Cape Floristic Region of South Africa (Western Cape Region) and chaparral ecosystems of California have demonstrated that there is a considerable degree of convergence in some aspects of post-fire vegetation regeneration and marked differences in other aspects. Since these MTEs have contrasting rainfall and soil nutrient conditions, an obvious question arises as to the similarity or dissimilarity in remotely sensed post-fire recovery pathways of vegetation stands in these two regions and the extent to which fire severity and drought impact the rate of vegetation recovery. Post-fire recovery pathways of chaparral and fynbos vegetation stands were characterized using the normalized difference vegetation index (NDVI) based on TM/ETM+ and MODIS (250 m) data. Procedures based on stands of unburned vegetation (control) were implemented to normalize the NDVI for variations associated with inter-annual differences in rainfall. Only vegetation stands that had not burned for 20 years were examined in this study to eliminate potential effects of variable fire histories on the recovery pathways. Post-fire recovery patterns of vegetation in both regions and across different vegetation types were found to be very similar. Post-fire stand age was the primary control over vegetation recovery and the NDVI returned to pre-fire values within seven to 10 years of the fires. Droughts were shown to cause slight interruptions in recovery rates while fire severity had no discernable effect. Intra-stand variability in the NDVI (pixel-scale) also returned to pre-fire values within the same time frame but increased with water stress associated with droughts. While these studies indicated that the NDVI of fynbos and chaparral stands recovered to pre-fire values within 10 years, it is recognized that other ecosystem characteristics may take considerably longer to recover. Despite the larger pixel size, MODIS data were found to be more suitable for monitoring vegetation post-fire recovery than TM/ETM+ data, requiring considerably less pre-processing and providing substantially more information regarding phenological characteristics of recovery pathways. Future studies will include consideration of fire history in the post-fire recovery characteristics of vegetation in these two MTEs.

  5. Monitoring the On-Orbit Calibration of Terra MODIS Reflective Solar Bands Using Simultaneous Terra MISR Observations

    NASA Technical Reports Server (NTRS)

    Angal, Amit; Xiong, Xiaoxiong; Wu, Aisheng

    2016-01-01

    On December 18, 2015, the Terra spacecraft completed 16 years of successful operation in space. Terra has five instruments designed to facilitate scientific measurements of the earths land, ocean, and atmosphere. The Moderate Resolution Imaging Spectroradiometer (MODIS) and the Multiangle Imaging Spectroradiometer (MISR) instruments provide information for the temporal studies of the globe. After providing over 16 years of complementary measurements, a synergistic use of the measurements obtained from these sensors is beneficial for various science products. The 20 reflective solar bands (RSBs) of MODIS are calibrated using a combination of solar diffuser and lunar measurements, supplemented by measurements from pseudoinvariant desert sites. MODIS views the on-board calibrators and the earth via a two-sided scan mirror at three spatial resolutions: 250 m using 40 detectors in bands 1 and 2, 500 m using 20 detectors in bands 3 and 4, and 1000 m using 10 detectors in bands 819 and 26. Simultaneous measurements of the earths surface are acquired in a push-broom fashion by MISR at nine view angles spreading out in the forward and backward directions along the flight path. While the swath width for MISR acquisitions is 360 km, MODIS scans a wider swath of 2330 km via its two-sided scan mirror. The reflectance of the MODIS scan mirror has an angle dependence characterized by the response versus scan angle (RVS). Its on-orbit change is derived using the gain from a combination of on-board and earth-view measurements. The on-orbit RVS for MODIS has experienced a significant change, especially for the short-wavelength bands. The on-orbit RVS change for the short-wavelength bands (bands 3, 8, and 9) at nadir is observed to be greater than 10 over the mission lifetime. Due to absence of a scanning mechanism, MISR can serve as an effective tool to evaluate and monitor the on-orbit performance of the MODIS RVS. Furthermore, it can also monitor the detector and scan-mirror differences for the MODIS bands using simultaneous measurements from earth-scene targets, e.g., North Atlantic Ocean and North African desert. Simultaneous measurements provide the benefit of minimizing the impact of earth-scene features while comparing the radiometric performance using vicarious techniques. Long-term observations of both instruments using select ground targets also provide an evaluation of the long-term calibration stability. The goal of this paper is to demonstrate the use of MISR to monitor and enhance the on-orbit calibration of the MODIS RSB. The radiometric calibration requirements for the MODIS RSB are +/- 2% in reflectance and +/- 5% in radiance at typical radiance levels within +/- 45 deg. of nadir. The results show that the long-term changes in the MODIS reflectance at nadir frames are generally within 1. The MODIS level 1B calibrated products, generated after correcting for the on-orbit changes in the gain and RVS, do not have any correction for changes in the instruments polarization sensitivity. The mirror-side-dependent polarization sensitivity exhibits an on-orbit change, primarily in the blue bands, that manifests in noticeable mirror side differences in the MODIS calibrated products. The mirror side differences for other RSB are observed to be less than 1%, therefore demonstrating an excellent on-orbit performance. The detector differences in the blue bands of MODIS exhibit divergence in recent years beyond 1%, and a calibration algorithm improvement has been identified to mitigate this effect. Short-term variations in the recent year caused by the forward updates were identified in bands 1 and 2 and are planned to be corrected in the next reprocess.

  6. Characterizing Response Versus Scan-Angle for MODIS Reflective Solar Bands Using Deep Convective Clouds

    NASA Technical Reports Server (NTRS)

    Bhatt, Rajendra; Doelling, David R.; Angal, Amit; Xiong, Xiaoxiong; Scarino, Benjamin; Gopalan, Arun; Haney, Conor; Wu, Aisheng

    2017-01-01

    MODIS consists of a cross-track, two-sided scan mirror, whose reflectance is not uniform but is a function of angle of incidence (AOI). This feature, known as response versusscan-angle (RVS), was characterized for all reflective solar bands of both MODIS instruments prior to launch. The RVS characteristic has changed on orbit, which must be tracked precisely over time to ensure the quality of MODIS products. The MODIS characterization support team utilizes the onboard calibrators and the earth view responses from multiple pseudo invariant desert sites to track the RVS changes at different AOIs. The drawback of using deserts is the assumption that these sites are radiometrically stable during the monitoring period. In addition, the 16-day orbit repeat cycle of MODIS allows for only a limited set of AOIs over a given desert. We propose a novel and robust approach of characterizing the MODIS RVS using tropical deep convective clouds (DCC). The method tracks the monthly DCC response at specified sets of AOIs to compute the temporal RVS changes. Initial results have shown that the Aqua-MODIS collection 6 band 1 level 1B radiances show considerable residual RVS dependencies, with long-term drifts up to 2.3 at certain AOIs.

  7. Characterizing response versus scan-angle for MODIS reflective solar bands using deep convective clouds

    NASA Astrophysics Data System (ADS)

    Bhatt, Rajendra; Doelling, David R.; Angal, Amit; Xiong, Xiaoxiong; Scarino, Benjamin; Gopalan, Arun; Haney, Conor; Wu, Aisheng

    2017-01-01

    MODIS consists of a cross-track, two-sided scan mirror, whose reflectance is not uniform but is a function of angle of incidence (AOI). This feature, known as response versus scan-angle (RVS), was characterized for all reflective solar bands of both MODIS instruments prior to launch. The RVS characteristic has changed on orbit, which must be tracked precisely over time to ensure the quality of MODIS products. The MODIS characterization support team utilizes the onboard calibrators and the earth view responses from multiple pseudoinvariant desert sites to track the RVS changes at different AOIs. The drawback of using deserts is the assumption that these sites are radiometrically stable during the monitoring period. In addition, the 16-day orbit repeat cycle of MODIS allows for only a limited set of AOIs over a given desert. We propose a novel and robust approach of characterizing the MODIS RVS using tropical deep convective clouds (DCC). The method tracks the monthly DCC response at specified sets of AOIs to compute the temporal RVS changes. Initial results have shown that the Aqua-MODIS collection 6 band 1 level 1B radiances show considerable residual RVS dependencies, with long-term drifts up to 2.3% at certain AOIs.

  8. Inter-Comparison of S-NPP VIIRS and Aqua MODIS Thermal Emissive Bands Using Hyperspectral Infrared Sounder Measurements as a Transfer Reference

    NASA Technical Reports Server (NTRS)

    Li, Yonghong; Wu, Aisheng; Xiong, Xiaoxiong

    2016-01-01

    This paper compares the calibration consistency of the spectrally-matched thermal emissive bands (TEB) between the Suomi National Polar-orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) and the Aqua Moderate Resolution Imaging Spectroradiometer (MODIS), using observations from their simultaneous nadir overpasses (SNO). Nearly-simultaneous hyperspectral measurements from the Aqua Atmospheric Infrared Sounder(AIRS) and the S-NPP Cross-track Infrared Sounder (CrIS) are used to account for existing spectral response differences between MODIS and VIIRS TEB. The comparison uses VIIRS Sensor Data Records (SDR) in MODIS five-minute granule format provided by the NASA Land Product and Evaluation and Test Element (PEATE) and Aqua MODIS Collection 6 Level 1 B (L1B) products. Each AIRS footprint of 13.5 km (or CrIS field of view of 14 km) is co-located with multiple MODIS (or VIIRS) pixels. The corresponding AIRS- and CrIS-simulated MODIS and VIIRS radiances are derived by convolutions based on sensor-dependent relative spectral response (RSR) functions. The VIIRS and MODIS TEB calibration consistency is evaluated and the two sensors agreed within 0.2 K in brightness temperature.Additional factors affecting the comparison such as geolocation and atmospheric water vapor content are also discussed in this paper.

  9. Monitoring cotton root rot by synthetic Sentinel-2 NDVI time series using improved spatial and temporal data fusion.

    PubMed

    Wu, Mingquan; Yang, Chenghai; Song, Xiaoyu; Hoffmann, Wesley Clint; Huang, Wenjiang; Niu, Zheng; Wang, Changyao; Li, Wang; Yu, Bo

    2018-01-31

    To better understand the progression of cotton root rot within the season, time series monitoring is required. In this study, an improved spatial and temporal data fusion approach (ISTDFA) was employed to combine 250-m Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Different Vegetation Index (NDVI) and 10-m Sentinetl-2 NDVI data to generate a synthetic Sentinel-2 NDVI time series for monitoring this disease. Then, the phenology of healthy cotton and infected cotton was modeled using a logistic model. Finally, several phenology parameters, including the onset day of greenness minimum (OGM), growing season length (GLS), onset of greenness increase (OGI), max NDVI value, and integral area of the phenology curve, were calculated. The results showed that ISTDFA could be used to combine time series MODIS and Sentinel-2 NDVI data with a correlation coefficient of 0.893. The logistic model could describe the phenology curves with R-squared values from 0.791 to 0.969. Moreover, the phenology curve of infected cotton showed a significant difference from that of healthy cotton. The max NDVI value, OGM, GSL and the integral area of the phenology curve for infected cotton were reduced by 0.045, 30 days, 22 days, and 18.54%, respectively, compared with those for healthy cotton.

  10. Searching for Maturity-Onset Diabetes of the Young (MODY): When and What for?

    PubMed

    Timsit, José; Saint-Martin, Cécile; Dubois-Laforgue, Danièle; Bellanné-Chantelot, Christine

    2016-10-01

    Maturity-onset diabetes of the young (MODY) is a group of monogenic diseases that results in primary defects in insulin secretion and dominantly inherited forms of nonautoimmune diabetes. Although many genes may be associated with monogenic diabetes, heterozygous mutations in 6 of them are responsible for the majority of cases of MODY. Glucokinase (GCK)-MODY is due to mutations in the glucokinase gene, 3 MODY subtypes are associated with mutations in the hepatocyte nuclear factor (HNF) transcription factors, and 2 others with mutations in ABCC8 and KCNJ11, which encode the subunits of the ATP-dependent potassium channel in pancreatic beta cells. GCK-MODY and HNF1A-MODY are the most common subtypes. The clinical presentation of MODY subtypes has been reported to differ according to the gene involved, and the diagnosis of MODY may be considered in various clinical circumstances. However, except in patients with GCK-MODY whose phenotype is very homogeneous, in most cases the penetrance and expressivity of a given molecular abnormality vary greatly among patients and, conversely, alterations in various genes may lead to similar phenotypes. Moreover, differential diagnosis among more common forms of diabetes may be difficult, particularly with type 2 diabetes. Thus, careful assessment of the personal and family histories of patients with diabetes is mandatory to select those in whom genetic screening is worthwhile. The diagnosis of monogenic diabetes has many consequences in terms of prognosis, therapeutics and family screening. Copyright © 2015 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.

  11. A Spatio-Temporal Enhancement Method for medium resolution LAI (STEM-LAI)

    NASA Astrophysics Data System (ADS)

    Houborg, Rasmus; McCabe, Matthew F.; Gao, Feng

    2016-05-01

    Satellite remote sensing has been used successfully to map leaf area index (LAI) across landscapes, but advances are still needed to exploit multi-scale data streams for producing LAI at both high spatial and temporal resolution. A multi-scale Spatio-Temporal Enhancement Method for medium resolution LAI (STEM-LAI) has been developed to generate 4-day time-series of Landsat-scale LAI from existing medium resolution LAI products. STEM-LAI has been designed to meet the demands of applications requiring frequent and spatially explicit information, such as effectively resolving rapidly evolving vegetation dynamics at sub-field (30 m) scales. In this study, STEM-LAI is applied to Moderate Resolution Imaging Spectroradiometer (MODIS) based LAI data and utilizes a reference-based regression tree approach for producing MODIS-consistent, but Landsat-based, LAI. The Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) is used to interpolate the downscaled LAI between Landsat acquisition dates, providing a high spatial and temporal resolution improvement over existing LAI products. STARFM predicts high resolution LAI by blending MODIS and Landsat based information from a common acquisition date, with MODIS data from a prediction date. To demonstrate its capacity to reproduce fine-scale spatial features observed in actual Landsat LAI, the STEM-LAI approach is tested over an agricultural region in Nebraska. The implementation of a 250 m resolution LAI product, derived from MODIS 1 km data and using a scale consistent approach based on the Normalized Difference Vegetation Index (NDVI), is found to significantly improve accuracies of spatial pattern prediction, with the coefficient of efficiency (E) ranging from 0.77-0.94 compared to 0.01-0.85 when using 1 km LAI inputs alone. Comparisons against an 11-year record of in-situ measured LAI over maize and soybean highlight the utility of STEM-LAI in reproducing observed LAI dynamics (both characterized by r2 = 0.86) over a range of plant development stages. Overall, STEM-LAI represents an effective downscaling and temporal enhancement mechanism that predicts in-situ measured LAI better than estimates derived through linear interpolation between Landsat acquisitions. This is particularly true when the in-situ measurement date is greater than 10 days from the nearest Landsat acquisition, with prediction errors reduced by up to 50%. With a streamlined and completely automated processing interface, STEM-LAI represents a flexible tool for LAI disaggregation in space and time that is adaptable to different land cover types, landscape heterogeneities, and cloud cover conditions.

  12. Studies on MODIS NDVI and its relation with the south west monsoon, western ghats, India

    NASA Astrophysics Data System (ADS)

    Lakshmi Kumar, Tv; Barbosa, Humberto; Uma, R.; Rao, Koteswara

    2012-07-01

    Eleven years (2000 to 2010) of Normalized Difference Vegetation Index (NDVI) data, derived from Moderate Imaging Spectroradiometer (MODIS) Terra with 250m resolution are used in the present study to discuss the changes in the trends of vegetal cover. The interannual variability of NDVI over western ghats (number of test sites are 17) showed increasing trend and the pronounced changes are resulted due to the monsoon variability in terms of its distribution (wide spread/fairly wide spread/scattered/isolated) and activity (vigorous/normal/weak) and are studied in detail. The NDVI progression is observed from June with a minimum value of 0.179 and yielded to maximum at 0.565 during September/October, on average. The study then relates the NDVI with the no of light, moderate and heavy rainfall events via statistical techniques such as correlation and regression to understand the connection in between the ground vegetation and the south west monsoon. The results of the study inferred i) NDVI, Antecedent Precipitation Index (API) are in good agreement throughout the monsoon which is evidenced by correlation as well as by Morlett Wavelet Analysis, ii) NDVI maintained good correlation with no of Light Rainy and Moderate Rainy alternatively but not with no of Heavy Rainy days, iii) Relation of NDVI with Isolated, Scattered distributions and active monsoons is substantial and iv) Phenological stages captured the Rate of Green Up during the crop season over western ghats.

  13. A Wetness Index Using Terrain-Corrected Surface Temperature and Normalized Difference Vegetation Index Derived from Standard MODIS Products: An Evaluation of Its Use in a Humid Forest-Dominated Region of Eastern Canada

    PubMed Central

    Hassan, Quazi K.; Bourque, Charles P.-A.; Meng, Fan-Rui; Cox, Roger M.

    2007-01-01

    In this paper we develop a method to estimate land-surface water content in a mostly forest-dominated (humid) and topographically-varied region of eastern Canada. The approach is centered on a temperature-vegetation wetness index (TVWI) that uses standard 8-day MODIS-based image composites of land surface temperature (TS) and surface reflectance as primary input. In an attempt to improve estimates of TVWI in high elevation areas, terrain-induced variations in TS are removed by applying grid, digital elevation model-based calculations of vertical atmospheric pressure to calculations of surface potential temperature (θS). Here, θS corrects TS to the temperature value to what it would be at mean sea level (i.e., ∼101.3 kPa) in a neutral atmosphere. The vegetation component of the TVWI uses 8-day composites of surface reflectance in the calculation of normalized difference vegetation index (NDVI) values. TVWI and corresponding wet and dry edges are based on an interpretation of scatterplots generated by plotting θS as a function of NDVI. A comparison of spatially-averaged field measurements of volumetric soil water content (VSWC) and TVWI for the 2003-2005 period revealed that variation with time to both was similar in magnitudes. Growing season, point mean measurements of VSWC and TVWI were 31.0% and 28.8% for 2003, 28.6% and 29.4% for 2004, and 40.0% and 38.4% for 2005, respectively. An evaluation of the long-term spatial distribution of land-surface wetness generated with the new θS-NDVI function and a process-based model of soil water content showed a strong relationship (i.e., r2 = 95.7%). PMID:28903212

  14. Photon Recollision Probability: a Useful Concept for Cross Scale Consistency Check between Leaf Area Index and Foliage Clumping Products

    NASA Astrophysics Data System (ADS)

    Pisek, J.

    2017-12-01

    Clumping index (CI) is the measure of foliage aggregation relative to a random distribution of leaves in space. CI is an important factor for the correct quantification of true leaf area index (LAI). Global and regional scale CI maps have been generated from various multi-angle sensors based on an empirical relationship with the normalized difference between hotspot and darkspot (NDHD) index (Chen et al., 2005). Ryu et al. (2011) suggested that accurate calculation of radiative transfer in a canopy, important for controlling gross primary productivity (GPP) and evapotranspiration (ET) (Baldocchi and Harley, 1995), should be possible by integrating CI with incoming solar irradiance and LAI from MODIS land and atmosphere products. It should be noted that MODIS LAI/FPAR product uses internal non-empirical, stochastic equations for parameterization of foliage clumping. This raises a question if integration of the MODIS LAI product with empirically-based CI maps does not introduce any inconsistencies. Here, the consistency is examined independently through the `recollision probability theory' or `p-theory' (Knyazikhin et al., 1998) along with raw LAI-2000/2200 Plant Canopy Analyzer (PCA) data from > 30 sites, surveyed across a range of vegetation types. The theory predicts that the amount of radiation scattered by a canopy should depend only on the wavelength and the spectrally invariant canopy structural parameter p. The parameter p is linked to the foliage clumping (Stenberg et al., 2016). Results indicate that integration of the MODIS LAI product with empirically-based CI maps is feasible. Importantly, for the first time it is shown that it is possible to obtain p values for any location solely from Earth Observation data. This is very relevant for future applications of photon recollision probability concept for global and local monitoring of vegetation using Earth Observation data.

  15. Validation of MODIS aerosol optical depth over the Mediterranean Coast

    NASA Astrophysics Data System (ADS)

    Díaz-Martínez, J. Vicente; Segura, Sara; Estellés, Víctor; Utrillas, M. Pilar; Martínez-Lozano, J. Antonio

    2013-04-01

    Atmospheric aerosols, due to their high spatial and temporal variability, are considered one of the largest sources of uncertainty in different processes affecting visibility, air quality, human health, and climate. Among their effects on climate, they play an important role in the energy balance of the Earth. On one hand they have a direct effect by scattering and absorbing solar radiation; on the other, they also have an impact in precipitation, modifying clouds, or affecting air quality. The application of remote sensing techniques to investigate aerosol effects on climate has advanced significatively over last years. In this work, the products employed have been obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS). MODIS is a sensor located onboard both Earth Observing Systems (EOS) Terra and Aqua satellites, which provide almost complete global coverage every day. These satellites have been acquiring data since early 2000 (Terra) and mid 2002 (Aqua) and offer different products for land, ocean and atmosphere. Atmospheric aerosol products are presented as level 2 products with a pixel size of 10 x 10 km2 in nadir. MODIS aerosol optical depth (AOD) is retrieved by different algorithms depending on the pixel surface, distinguishing between land and ocean. For its validation, ground based sunphotometer data from AERONET (Aerosol Robotic Network) has been employed. AERONET is an international operative network of Cimel CE318 sky-sunphotometers that provides the most extensive aerosol data base globally available of ground-based measurements. The ground sunphotometric technique is considered the most accurate for the retrieval of radiative properties of aerosols in the atmospheric column. In this study we present a validation of MODIS C051 AOD employing AERONET measurements over different Mediterranean coastal sites centered over an area of 50 x 50 km2, which includes both pixels over land and ocean. The validation is done comparing spatial statistics from MODIS with corresponding temporal statistics from AERONET, as proposed by Ichoku et al. (2002). Eight Mediterranean coastal sites (in Spain, France, Italy, Crete, Turkey and Israel) with available AERONET and MODIS data have been used. These stations have been selected following QA criteria (minimum 1000 days of level 2.0 data) and a maximum distance of 8 km from the coast line. Results of the validation over each site show analogous behaviour, giving similar results regarding to the accuracy of the algorithms. Greatest differences are found for the AOD obtained over land, especially for drier regions, where the surface tends to be brighter. In general, the MODIS AOD has better a agreement with AERONET retrievals for the ocean algorithm than the land algorithm when validated over coastal sites, and the agreement is within the expected uncertainty estimated for MODIS data. References: - C. Ichoku et al., "A spatio-temporal approach for global validation and analysis of MODIS aerosol products", Geophysical Research Letters, 219, 12, 10.1029/2001GL013206, 2002.

  16. Prevalence of Retinopathy in Adult Patients with GCK-MODY and HNF1A-MODY.

    PubMed

    Szopa, M; Wolkow, J; Matejko, B; Skupien, J; Klupa, T; Wybrańska, I; Trznadel-Morawska, I; Kiec-Wilk, B; Borowiec, M; Malecki, M T

    2015-10-01

    We aimed to assess the prevalence of diabetic retinopathy (DR) in adult patients with GCK-MODY and HNF1A-MODY in Poland and to identify biochemical and clinical risk factors associated with its occurrence.We examined 74 GCK mutation carriers, 51 with diabetes and 23 with prediabetes, respectively, and 63 patients with HNF1A-MODY. Retinal photographs, 12 for each patient, were done by a fundus camera. Signs of DR were graded according to the DR disease severity scale. Statistical tests were performed to assess differences between the groups and logistic regression was done for the association with DR.The mean age at examination was 34.5±14.8 and 39.9±15.2 in the GCK-MODY and HNF1A-MODY groups, respectively. Mild nonproliferative DR (NPDR) was found in one patient with the GCK mutation and likely concomitant type 1 diabetes, whereas DR was diagnosed in 15 HNF1A-MODY patients: 9 with proliferative, 3 with moderate NPDR and 2 with mild NPDR. In univariate logistic regression analysis in the HNF1A-MODY group, significant results were found for diabetes duration, fasting glycemia, HbA1c, arterial hypertension, age at the examination, and eGFR. The strongest independent predictors of DR in HNF1A-MODY were markers of glucose control: HbA1c (OR: 2.05, CL%95: 1.2-3.83, p=0.01) and glucose (p=0.006, OR: 1.40, CL%95: 1.12-1.83) analyzed in 2 separated models. Additionally, arterial hypertension independently predicted DR (OR: 9.06, CL%95: 1.19-98.99, p=0.04) in the model with HbA1c as glycaemic control marker.In conclusion, DR of any degree was not present in our GCK-MODY group, while in spite of young age almost every fourth subject with HNF1A-MODY showed signs of this complication. © Georg Thieme Verlag KG Stuttgart · New York.

  17. Anopheles atroparvus density modeling using MODIS NDVI in a former malarious area in Portugal.

    PubMed

    Lourenço, Pedro M; Sousa, Carla A; Seixas, Júlia; Lopes, Pedro; Novo, Maria T; Almeida, A Paulo G

    2011-12-01

    Malaria is dependent on environmental factors and considered as potentially re-emerging in temperate regions. Remote sensing data have been used successfully for monitoring environmental conditions that influence the patterns of such arthropod vector-borne diseases. Anopheles atroparvus density data were collected from 2002 to 2005, on a bimonthly basis, at three sites in a former malarial area in Southern Portugal. The development of the Remote Vector Model (RVM) was based upon two main variables: temperature and the Normalized Differential Vegetation Index (NDVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS) Terra satellite. Temperature influences the mosquito life cycle and affects its intra-annual prevalence, and MODIS NDVI was used as a proxy for suitable habitat conditions. Mosquito data were used for calibration and validation of the model. For areas with high mosquito density, the model validation demonstrated a Pearson correlation of 0.68 (p<0.05) and a modelling efficiency/Nash-Sutcliffe of 0.44 representing the model's ability to predict intra- and inter-annual vector density trends. RVM estimates the density of the former malarial vector An. atroparvus as a function of temperature and of MODIS NDVI. RVM is a satellite data-based assimilation algorithm that uses temperature fields to predict the intra- and inter-annual densities of this mosquito species using MODIS NDVI. RVM is a relevant tool for vector density estimation, contributing to the risk assessment of transmission of mosquito-borne diseases and can be part of the early warning system and contingency plans providing support to the decision making process of relevant authorities. © 2011 The Society for Vector Ecology.

  18. Evaluation of the MODIS Retrievals of Dust Aerosol over the Ocean during PRIDE

    NASA Technical Reports Server (NTRS)

    Levy, Robert C.; Remer, Lorraine A.; Tanre, Didier; Kaufman, Yoram J.; Ichoku, Charles; Holben, Brent N.; Livingston, John M.; Russell, Philip B.; Maring, Hal

    2002-01-01

    The Puerto Rico Dust Experiment (PRIDE) took place in Roosevelt Roads, Puerto Rico from June 26 to July 24,2000 to study the radiative and physical properties of African dust aerosol transported into the region. PRIDE had the unique distinction of being the first major field experiment to allow direct comparison of aerosol retrievals from the MODerate Imaging Spectro-radiometer (MODIS) with sunphotometer and in-situ aerosol measurements. Over the ocean, the MODIS algorithm retrieves aerosol optical depth (AOD) as well as information about the aerosols size distribution. During PRIDE, MODIS derived AODs in the red wavelengths (0.66 micrometers) compare closely with AODs measured from sunphotometers, but, are too large at blue and green wavelengths (0.47 and 0.55 micrometers) and too small in the infrared (0.87 micrometers). This discrepancy of spectral slope results in particle size distributions retrieved by MODIS that are small compared to in-situ measurements, and smaller still when compared to sunphotometer sky radiance inversions. The differences in size distributions are, at least in part, associated with MODIS simplification of dust as spherical particles. Analysis of this PRIDE data set is a first step towards derivation of realistic non-spherical models for future MODIS retrievals.

  19. Retrievals and Comparisons of Various MODIS-Spectrum Inferred Water Cloud Droplet Effective Radii

    NASA Technical Reports Server (NTRS)

    Fu-Lung, Chang; Minnis, Patrick; Lin, Bin; Sunny, Sun-Mack; Khaiyer, Mandana M.

    2007-01-01

    Cloud droplet effective radius retrievals from different Aqua MODIS nearinfrared channels (2.1- micrometer, 3.7- micrometer, and 1.6- micrometer) show considerable differences even among most confident QC pixels. Both Collection 004 and Collection 005 MOD06 show smaller mean effective radii at 3.7- micrometer wavelength than at 2.1- micrometer and 1.6- micrometer wavelengths. Differences in effective radius retrievals between Collection 004 and Collection 005 may be affected by cloud top height/temperature differences, which mainly occur for optically thin clouds. Changes in cloud top height and temperature for thin clouds have different impacts on the effective radius retrievals from 2.1- micrometer, 3.7- micrometer, and 1.6- micrometer channels. Independent retrievals (this study) show, on average, more consistency in the three effective radius retrievals. This study is for Aqua MODIS only.

  20. Mechanisms for landscape evolution: Correlations between topography, lithology, erosion, and rock uplift in the central Nepalese Himalaya

    NASA Astrophysics Data System (ADS)

    Walsh, L. S.; Martin, A. J.; Ojha, T. P.; Fedenczuk, T.

    2009-12-01

    To investigate feedbacks between tectonics and erosion in the Himalaya-Tibet orogen we compare high resolution digital topography with detailed geologic maps of the Modi Khola valley in central Nepal. We examine the influence of lithologic contacts and structures on river steepness and concavity. The trace of the Bhanuwa fault, a large normal fault in Greater Himalayan rocks, coincides with the steepest location on the river profile where river steepness (ksn) reaches 884 m0.9. Transitions in ksn also occur at 1) the Romi fault, another normal fault, 2) within the Kuncha formation, 3) within Greater Himalayan rocks at the Formation I - Formation II boundary, and 4) between quartzite- and phyllite-rich parts of the Fagfog Formation. We assess mechanisms for ksn transitions on the Modi Khola by examining the influence of precipitation variability, glacial and landslide dams, tributary junctions, changes in lithology, and rock uplift on the topography. Although changes in lithology and/or landslide dams potentially explain all ksn extrema and transitions, these changes in river steepness consistently occur at normal faults suggesting possible recent motion on some of them. In detail, the Main Central thrust appears not to be the location of a major steepness change. Correlations of ksn with normal faults and lithologic contacts exhibit an important component of the landscape evolution process occurring in central Nepal and potentially other mountain belts.

  1. MODIS-VIIRS Intercalibration for Dark Target Aerosol Retrieval Over Ocean

    NASA Astrophysics Data System (ADS)

    Sawyer, V. R.; Levy, R. C.; Mattoo, S.; Quinn, G.; Veglio, P.

    2016-12-01

    Any future climate record for satellite aerosol retrieval will require continuity over multiple decades, longer than the lifespan of an individual satellite instrument. The Dark Target algorithm was developed for MODIS, which began taking observations in 1999; the two MODIS instruments currently in orbit are not expected to continue taking observations beyond the early 2020s. However, the algorithm is portable, and a Dark Target product for VIIRS is scheduled for release December 2016. Because MODIS and VIIRS operate at different wavelengths, resolutions, fields of view and orbital timing, the transition can introduce artifacts that must be corrected. Without these corrections, it will be difficult to find any changes that may occur in the global aerosol climate record over time periods that span the transition from MODIS to VIIRS retrievals. The University of Wisconsin-Madison SIPS team found thousands of matches between 2012 and 2016 in which Aqua-MODIS and Suomi-NPP VIIRS observe the same location at similar times and view angles. These matched cases are used to identify corresponding matches in the Intermediate File Format (IFF) aerosol retrievals for MODIS and VIIRS, which are compared to one another in turn. Because most known sources of disagreement between the two instruments have already been corrected during the IFF retrieval, the direct comparison between near-collocated cases shows only the differences that remain at local and regional scales. The comparison is further restricted to clear-sky cases over ocean, so that the investigation of seasonal, diurnal and geographic variation is not affected by uncertainties in the land surface or cloud contamination.

  2. Towards a long-term global aerosol optical depth record: applying a consistent aerosol retrieval algorithm to MODIS and VIIRS-observed reflectance

    NASA Astrophysics Data System (ADS)

    Levy, R. C.; Munchak, L. A.; Mattoo, S.; Patadia, F.; Remer, L. A.; Holz, R. E.

    2015-10-01

    To answer fundamental questions about aerosols in our changing climate, we must quantify both the current state of aerosols and how they are changing. Although NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) sensors have provided quantitative information about global aerosol optical depth (AOD) for more than a decade, this period is still too short to create an aerosol climate data record (CDR). The Visible Infrared Imaging Radiometer Suite (VIIRS) was launched on the Suomi-NPP satellite in late 2011, with additional copies planned for future satellites. Can the MODIS aerosol data record be continued with VIIRS to create a consistent CDR? When compared to ground-based AERONET data, the VIIRS Environmental Data Record (V_EDR) has similar validation statistics as the MODIS Collection 6 (M_C6) product. However, the V_EDR and M_C6 are offset in regards to global AOD magnitudes, and tend to provide different maps of 0.55 μm AOD and 0.55/0.86 μm-based Ångström Exponent (AE). One reason is that the retrieval algorithms are different. Using the Intermediate File Format (IFF) for both MODIS and VIIRS data, we have tested whether we can apply a single MODIS-like (ML) dark-target algorithm on both sensors that leads to product convergence. Except for catering the radiative transfer and aerosol lookup tables to each sensor's specific wavelength bands, the ML algorithm is the same for both. We run the ML algorithm on both sensors between March 2012 and May 2014, and compare monthly mean AOD time series with each other and with M_C6 and V_EDR products. Focusing on the March-April-May (MAM) 2013 period, we compared additional statistics that include global and gridded 1° × 1° AOD and AE, histograms, sampling frequencies, and collocations with ground-based AERONET. Over land, use of the ML algorithm clearly reduces the differences between the MODIS and VIIRS-based AOD. However, although global offsets are near zero, some regional biases remain, especially in cloud fields and over brighter surface targets. Over ocean, use of the ML algorithm actually increases the offset between VIIRS and MODIS-based AOD (to ~ 0.025), while reducing the differences between AE. We characterize algorithm retrievability through statistics of retrieval fraction. In spite of differences between retrieved AOD magnitudes, the ML algorithm will lead to similar decisions about "whether to retrieve" on each sensor. Finally, we discuss how issues of calibration, as well as instrument spatial resolution may be contributing to the statistics and the ability to create a consistent MODIS → VIIRS aerosol CDR.

  3. Towards a long-term global aerosol optical depth record: applying a consistent aerosol retrieval algorithm to MODIS and VIIRS-observed reflectance

    NASA Astrophysics Data System (ADS)

    Levy, R. C.; Munchak, L. A.; Mattoo, S.; Patadia, F.; Remer, L. A.; Holz, R. E.

    2015-07-01

    To answer fundamental questions about aerosols in our changing climate, we must quantify both the current state of aerosols and how they are changing. Although NASA's Moderate resolution Imaging Spectroradiometer (MODIS) sensors have provided quantitative information about global aerosol optical depth (AOD) for more than a decade, this period is still too short to create an aerosol climate data record (CDR). The Visible Infrared Imaging Radiometer Suite (VIIRS) was launched on the Suomi-NPP satellite in late 2011, with additional copies planned for future satellites. Can the MODIS aerosol data record be continued with VIIRS to create a consistent CDR? When compared to ground-based AERONET data, the VIIRS Environmental Data Record (V_EDR) has similar validation statistics as the MODIS Collection 6 (M_C6) product. However, the V_EDR and M_C6 are offset in regards to global AOD magnitudes, and tend to provide different maps of 0.55 μm AOD and 0.55/0.86 μm-based Ångstrom Exponent (AE). One reason is that the retrieval algorithms are different. Using the Intermediate File Format (IFF) for both MODIS and VIIRS data, we have tested whether we can apply a single MODIS-like (ML) dark-target algorithm on both sensors that leads to product convergence. Except for catering the radiative transfer and aerosol lookup tables to each sensor's specific wavelength bands, the ML algorithm is the same for both. We run the ML algorithm on both sensors between March 2012 and May 2014, and compare monthly mean AOD time series with each other and with M_C6 and V_EDR products. Focusing on the March-April-May (MAM) 2013 period, we compared additional statistics that include global and gridded 1° × 1° AOD and AE, histograms, sampling frequencies, and collocations with ground-based AERONET. Over land, use of the ML algorithm clearly reduces the differences between the MODIS and VIIRS-based AOD. However, although global offsets are near zero, some regional biases remain, especially in cloud fields and over brighter surface targets. Over ocean, use of the ML algorithm actually increases the offset between VIIRS and MODIS-based AOD (to ∼ 0.025), while reducing the differences between AE. We characterize algorithm retrievibility through statistics of retrieval fraction. In spite of differences between retrieved AOD magnitudes, the ML algorithm will lead to similar decisions about "whether to retrieve" on each sensor. Finally, we discuss how issues of calibration, as well as instrument spatial resolution may be contributing to the statistics and the ability to create a consistent MODIS → VIIRS aerosol CDR.

  4. Advances in Remote Sensing of Vegetation Merging NDVI, Soil Moisture, and Chlorophyll Fluorescence

    NASA Astrophysics Data System (ADS)

    Tucker, Compton

    2016-04-01

    I will describe an advance in remote sensing of vegetation in the time domain that combines simultaneous measurements of the normalized difference vegetation index, soil moisture, and chlorophyll fluorescence, all from different satellite sensors but acquired for the same areas at the same time step. The different sensor data are MODIS NDVI data from both Terra and Aqua platforms, soil moisture data from SMOS & SMP (aka SMAP but with only the passive radiometer), and chlorophyll fluorescence data from GOME-2. The complementary combination of these data provide important crop yield information for agricultural production estimates at critical phenological times in the growing season, provide a scientific basis to map land degradation, and enable quantitative determination of the end of the growing season in temperate zones.

  5. Spatial and Temporal Dust Source Variability in Northern China Identified Using Advanced Remote Sensing Analysis

    NASA Technical Reports Server (NTRS)

    Taramelli, A.; Pasqui, M.; Barbour, J.; Kirschbaum, D.; Bottai, L.; Busillo, C.; Calastrini, F.; Guarnieri, F.; Small, C.

    2013-01-01

    The aim of this research is to provide a detailed characterization of spatial patterns and temporal trends in the regional and local dust source areas within the desert of the Alashan Prefecture (Inner Mongolia, China). This problem was approached through multi-scale remote sensing analysis of vegetation changes. The primary requirements for this regional analysis are high spatial and spectral resolution data, accurate spectral calibration and good temporal resolution with a suitable temporal baseline. Landsat analysis and field validation along with the low spatial resolution classifications from MODIS and AVHRR are combined to provide a reliable characterization of the different potential dust-producing sources. The representation of intra-annual and inter-annual Normalized Difference Vegetation Index (NDVI) trend to assess land cover discrimination for mapping potential dust source using MODIS and AVHRR at larger scale is enhanced by Landsat Spectral Mixing Analysis (SMA). The combined methodology is to determine the extent to which Landsat can distinguish important soils types in order to better understand how soil reflectance behaves at seasonal and inter-annual timescales. As a final result mapping soil surface properties using SMA is representative of responses of different land and soil cover previously identified by NDVI trend. The results could be used in dust emission models even if they are not reflecting aggregate formation, soil stability or particle coatings showing to be critical for accurately represent dust source over different regional and local emitting areas.

  6. Using data from Landsat, MODIS, VIIRS and PhenoCams to monitor the phenology of California oak/grass savanna and open grassland across spatial scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yan; Hill, Michael J.; Zhang, Xiaoyang

    tThe Mediterranean-type oak/grass savanna of California is composed of widely spaced oak trees withunderstory grasses. These savanna regions are interspersed with large areas of more open grasslands.The ability of remotely sensed data (with various spatial resolutions) to monitor the phenology in thesewater-limited oak/grass savannas and open grasslands is explored over the 2012–2015 timeframe usingdata from Landsat (30 m), the MODerate resolution Imaging Spectroradiometer (MODIS – gridded 500 m),and the Visible Infrared Imaging Radiometer Suite (VIIRS – gridded 500 m) data. Vegetation phenologydetected from near-ground level, webcam based PhenoCam imagery from two sites in the Ameriflux Net-work (long-term flux measurement networkmore » of the Americas) (Tonzi Ranch and Vaira Ranch) is upscaled,using a National Agriculture Imagery Program (NAIP) aerial image (1 m), to evaluate the detection ofvegetation phenology of these savannas and grasslands with the satellite data. Results show that the Nor-malized Difference Vegetation Index (NDVI) time series observed from the satellite sensors are all stronglycorrelated with the PhenoCam NDVI values from Tonzi Ranch (R2> 0.67) and Vaira Ranch (R2> 0.81). How-ever, the different viewing geometries and spatial coverage of the PhenoCams and the various satellitesensors may cause differences in the absolute phenological transition dates. Analysis of frequency his-tograms of phenological dates illustrate that the phenological dates in the relatively homogeneous opengrasslands are consistent across the different spatial resolutions, in contrast, the relatively heterogeneousoak/grass savannas display has somewhat later greenup, maturity, and dormancy dates at 30 m resolu-tion than at 500 m scale due to the different phenological cycles exhibited by the overstory trees and theunderstory grasses. In addition, phenologies derived from the MODIS view angle corrected reflectance(Nadir BRDF-Adjusted Reflectance – NBAR) and the newly developed VIIRS NBAR are shown to providecomparable phenological dates (majority absolute bias ≤2 days) in this area.« less

  7. Using data from Landsat, MODIS, VIIRS and PhenoCams to monitor the phenology of California oak/grass savanna and open grassland across spatial scales

    DOE PAGES

    Liu, Yan; Hill, Michael J.; Zhang, Xiaoyang; ...

    2017-03-03

    tThe Mediterranean-type oak/grass savanna of California is composed of widely spaced oak trees withunderstory grasses. These savanna regions are interspersed with large areas of more open grasslands.The ability of remotely sensed data (with various spatial resolutions) to monitor the phenology in thesewater-limited oak/grass savannas and open grasslands is explored over the 2012–2015 timeframe usingdata from Landsat (30 m), the MODerate resolution Imaging Spectroradiometer (MODIS – gridded 500 m),and the Visible Infrared Imaging Radiometer Suite (VIIRS – gridded 500 m) data. Vegetation phenologydetected from near-ground level, webcam based PhenoCam imagery from two sites in the Ameriflux Net-work (long-term flux measurement networkmore » of the Americas) (Tonzi Ranch and Vaira Ranch) is upscaled,using a National Agriculture Imagery Program (NAIP) aerial image (1 m), to evaluate the detection ofvegetation phenology of these savannas and grasslands with the satellite data. Results show that the Nor-malized Difference Vegetation Index (NDVI) time series observed from the satellite sensors are all stronglycorrelated with the PhenoCam NDVI values from Tonzi Ranch (R2> 0.67) and Vaira Ranch (R2> 0.81). How-ever, the different viewing geometries and spatial coverage of the PhenoCams and the various satellitesensors may cause differences in the absolute phenological transition dates. Analysis of frequency his-tograms of phenological dates illustrate that the phenological dates in the relatively homogeneous opengrasslands are consistent across the different spatial resolutions, in contrast, the relatively heterogeneousoak/grass savannas display has somewhat later greenup, maturity, and dormancy dates at 30 m resolu-tion than at 500 m scale due to the different phenological cycles exhibited by the overstory trees and theunderstory grasses. In addition, phenologies derived from the MODIS view angle corrected reflectance(Nadir BRDF-Adjusted Reflectance – NBAR) and the newly developed VIIRS NBAR are shown to providecomparable phenological dates (majority absolute bias ≤2 days) in this area.« less

  8. Improvements of VIIRS and MODIS Solar Diffuser and Lunar Calibration

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong; Butler, James J.; Lei, Ning; Sun, Junqiang; Fulbright, Jon; Wang, Zhipeng; McIntire, Jeff; Angal, Amit Avinash

    2013-01-01

    Both VIIRS and MODIS instruments use solar diffuser (SD) and lunar observations to calibrate their reflective solar bands (RSB). A solar diffuser stability monitor (SDSM) is used to track the SD on-orbit degradation. On-orbit observations have shown similar wavelength-dependent SD degradation (larger at shorter VIS wavelengths) and SDSM detector response degradation (larger at longer NIR wavelengths) for both VIIRS and MODIS instruments. In general, the MODIS scan mirror has experienced more degradation in the VIS spectral region whereas the VIIRS rotating telescope assembly (RTA) mirrors have seen more degradation in the NIR and SWIR spectral region. Because of this wavelength dependent mirror degradation, the sensor's relative spectral response (RSR) needs to be modulated. Due to differences between the solar and lunar spectral irradiance, the modulated RSR could have different effects on the SD and lunar calibration. In this paper, we identify various factors that should be considered for the improvements of VIIRS and MODIS solar and lunar calibration and examine their potential impact. Specifically, we will characterize and assess the calibration impact due to SD and SDSM attenuation screen transmission (uncertainty), SD BRF uncertainty and onorbit degradation, SDSM detector response degradation, and modulated RSR resulting from the sensor's optics degradation. Also illustrated and discussed in this paper are the calibration strategies implemented in the VIIRS and MODIS SD and lunar calibrations and efforts that could be made for future improvements.

  9. Scaling estimates of vegetation structure in Amazonian tropical forests using multi-angle MODIS observations

    PubMed Central

    de Moura, Yhasmin Mendes; Hilker, Thomas; Goncalves, Fabio Guimarães; Galvão, Lênio Soares; dos Santos, João Roberto; Lyapustin, Alexei; Maeda, Eduardo Eiji; de Jesus Silva, Camila Valéria

    2018-01-01

    Detailed knowledge of vegetation structure is required for accurate modelling of terrestrial ecosystems, but direct measurements of the three dimensional distribution of canopy elements, for instance from LiDAR, are not widely available. We investigate the potential for modelling vegetation roughness, a key parameter for climatological models, from directional scattering of visible and near-infrared (NIR) reflectance acquired from NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS). We compare our estimates across different tropical forest types to independent measures obtained from: (1) airborne laser scanning (ALS), (2) spaceborne Geoscience Laser Altimeter System (GLAS)/ICESat, and (3) the spaceborne SeaWinds/QSCAT. Our results showed linear correlation between MODIS-derived anisotropy to ALS-derived entropy (r2= 0.54, RMSE=0.11), even in high biomass regions. Significant relationships were also obtained between MODIS-derived anisotropy and GLAS-derived entropy (0.52≤ r2≤ 0.61; p<0.05), with similar slopes and offsets found throughout the season, and RMSE between 0.26 and 0.30 (units of entropy). The relationships between the MODIS-derived anisotropy and backscattering measurements (σ0) from SeaWinds/QuikSCAT presented an r2 of 0.59 and a RMSE of 0.11. We conclude that multi-angular MODIS observations are suitable to extrapolate measures of canopy entropy across different forest types, providing additional estimates of vegetation structure in the Amazon. PMID:29618964

  10. Global Space-Based Inter-Calibration System Reflective Solar Calibration Reference: From Aqua MODIS to S-NPP VIIRS

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong; Angal, Amit; Butler, James; Cao, Changyong; Doelling, Daivd; Wu, Aisheng; Wu, Xiangqian

    2016-01-01

    The MODIS has successfully operated on-board the NASA's EOS Terra and Aqua spacecraft for more than 16 and 14 years, respectively. MODIS instrument was designed with stringent calibration requirements and comprehensive on-board calibration capability. In the reflective solar spectral region, Aqua MODIS has performed better than Terra MODIS and, therefore, has been chosen by the Global Space-based Inter-Calibration System (GSICS) operational community as the calibration reference sensor in cross-sensor calibration and calibration inter-comparisons. For the same reason, it has also been used by a number of earth observing sensors as their calibration reference. Considering that Aqua MODIS has already operated for nearly 14 years, it is essential to transfer its calibration to a follow-on reference sensor with a similar calibration capability and stable performance. The VIIRS is a follow-on instrument to MODIS and has many similar design features as MODIS, including their on-board calibrators (OBC). As a result, VIIRS is an ideal candidate to replace MODIS to serve as the future GSICS reference sensor. Since launch, the S-NPP VIIRS has already operated for more than 4 years and its overall performance has been extensively characterized and demonstrated to meet its overall design requirements. This paper provides an overview of Aqua MODIS and S-NPP VIIRS reflective solar bands (RSB) calibration methodologies and strategies, traceability, and their on-orbit performance. It describes and illustrates different methods and approaches that can be used to facilitate the calibration reference transfer, including the use of desert and Antarctic sites, deep convective clouds (DCC), and the lunar observations.

  11. Response Versus Scan-Angle Corrections for MODIS Reflective Solar Bands Using Deep Convective Clouds

    NASA Technical Reports Server (NTRS)

    Bhatt, Rajendra; Angal, Amit; Doelling, David R.; Xiong, Xiaoxiong; Wu, Aisheng; Haney, Conor O.; Scarino, Benjamin R.; Gopalan, Arun

    2016-01-01

    The absolute radiometric calibration of the reflective solar bands (RSBs) of Aqua- and Terra-MODIS is performed using on-board calibrators. A solar diffuser (SD) panel along with a solar diffuser stability monitor (SDSM) system, which tracks the performance of the SD over time, provides the absolute reference for calibrating the MODIS sensors. MODIS also views the moon and deep space through its space view (SV) port for lunar-based calibration and computing the zero input radiance, respectively. The MODIS instrument views the Earths surface through a two-sided scan mirror, whose reflectance is a function of angle of incidence (AOI) and is described by response versus scan-angle (RVS). The RVS for both MODIS instruments was characterized prior to launch. MODIS also views the SD and the moon at two different assigned RVS positions. There is sufficient evidence that the RVS is changing on orbit over time and as a function of wavelength. The SD and lunar observation scans can only track the RVS variation at two RVS positions. Consequently, the MODIS Characterization Support Team (MCST) developed enhanced approaches that supplement the onboard calibrator measurements with responses from pseudo-invariant desert sites. This approach has been implemented in Level 1B (L1B) Collection 6 (C6) for selected short-wavelength bands. This paper presents an alternative approach of characterizing the mirror RVS to derive the time-dependent RVS correction factors for MODIS RSBs using tropical deep convective cloud (DCC) targets. An initial assessment of the DCC response from Aqua-MODIS band 1 C6 data indicates evidence of RVS artifacts, which are not uniform across the scans and are more prevalent in the left side Earth-view scans.

  12. Response Versus Scan-Angle Corrections for MODIS Reflective Solar Bands Using Deep Convective Clouds

    NASA Technical Reports Server (NTRS)

    Bhatt, Rajendra; Angal, Amit; Doelling, David R.; Xiong, Xiaoxiong; Wu, Aisheng; Haney, Conor O.; Scarino, Benjamin R.; Gopalan, Arun

    2016-01-01

    The absolute radiometric calibration of the reflective solar bands (RSBs) of Aqua- and Terra-MODIS is performed using on-board calibrators. A solar diffuser (SD) panel along with a solar diffuser stability monitor (SDSM) system, which tracks the performance of the SD over time, provides the absolute reference for calibrating the MODIS sensors. MODIS also views the moon and deep space through its space view (SV) port for lunar-based calibration and computing the zero input radiance, respectively. The MODIS instrument views the Earth's surface through a two-sided scan mirror, whose reflectance is a function of angle of incidence (AOI) and is described by response versus scan-angle (RVS). The RVS for both MODIS instruments was characterized prior to launch. MODIS also views the SD and the moon at two different assigned RVS positions. There is sufficient evidence that the RVS is changing on orbit over time and as a function of wavelength. The SD and lunar observation scans can only track the RVS variation at two RVS positions. Consequently, the MODIS Characterization Support Team (MCST) developed enhanced approaches that supplement the onboard calibrator measurements with responses from pseudo-invariant desert sites. This approach has been implemented in Level 1B (L1B) Collection 6 (C6) for selected short-wavelength bands. This paper presents an alternative approach of characterizing the mirror RVS to derive the time-dependent RVS correction factors for MODIS RSBs using tropical deep convective cloud (DCC) targets. An initial assessment of the DCC response from Aqua-MODIS band 1 C6 data indicates evidence of RVS artifacts, which are not uniform across the scans and are more prevalent in the left side Earth-view scans.

  13. Substantial proportion of MODY among multiplex families participating in a Type 1 diabetes prediction programme.

    PubMed

    Petruzelkova, L; Dusatkova, P; Cinek, O; Sumnik, Z; Pruhova, S; Hradsky, O; Vcelakova, J; Lebl, J; Kolouskova, S

    2016-12-01

    Patients with maturity-onset diabetes of the young (MODY) might be over-represented in families with histories of Type 1 diabetes. Our aim was to re-evaluate families participating in the Czech T1D Prediction Programme (PREDIA.CZ) with at least two members affected with diabetes to assess the proportion of MODY among these families and determine its most significant clinical predictors. Of the 557 families followed up by the PREDIA.CZ, 53 (9.5%) had two or more family members with diabetes. One proband with diabetes from these families was chosen for direct sequencing of the GCK, HNF1A, HNF4A and INS genes. Non-parametric tests and a linear logistic regression model were used to evaluate differences between MODY and non-MODY families. MODY was genetically diagnosed in 24 of the 53 families with multiple occurrences of diabetes (45%). Mutations were detected most frequently in GCK (58%), followed by HNF1A (38%) and INS (4%). MODY families were more likely to have a parent with diabetes and had a higher proportion of females with diabetes than non-MODY families. Higher age (P < 0.001), a lower level of HbA 1c (P < 0.001) at clinical onset and at least two generations affected by diabetes were the variables most predictive for probands of MODY families already presenting with diabetes. A prediction programme for Type 1 diabetes would provide a useful new source of patients with MODY most likely to benefit from an accurate diagnosis. This identification has implications for patient treatment and disease prognosis. © 2015 Diabetes UK.

  14. Detector Noise Characterization and Performance of MODIS Thermal Emissive Bands

    NASA Technical Reports Server (NTRS)

    Xiong, X.; Wu, A.; Chen, N.; Chiang, K.; Xiong, S.; Wenny, B.; Barnes, W. L.

    2007-01-01

    MODIS has 16 thermal emissive bands, a total of 160 individual detectors (10 for each spectral bands), located on the two cold focal plane assemblies (CFPA). MODIS TEB detectors were fully characterized pre-launch in a thermal vacuum (TV) environment using a NIST traceable blackbody calibration source (BCS) with temperatures ranging from 170 to 340K. On-orbit the TEB detectors are calibrated using an on-board blackbody (BB) on a scan-by-scan basis. For nominal on-orbit operation, the on-board BB temperature is typically controlled at 285K for Aqua MODIS and 290K for Terra MODIS. For the MODIS TEB calibration, each detector's noise equivalent temperature difference (NEdT) is often used to assess its performance and this parameter is a major contributor to the calibration uncertainty. Because of its impact on sensor calibration and data product quality, each MODIS TEB detector's NEdT is monitored on a daily basis at a fixed BB temperature and completely characterized on a regular basis at a number of BB temperatures. In this paper, we describe MODIS on-orbit TEB NEdT characterization activities, approaches, and results. We compare both pre-launch and on-orbit performance with sensor design specification and examine detector noise characterization impact on the calibration uncertainty. To date, 135 TEB detectors (out of a total of 160 detectors) in Terra MODIS (launched in December 1999) and 158 in Aqua MODIS (launched in May 2002) continue to perform with their NEdT below (or better than) their design specifications. A complete summary of all TEB noisy detectors, identified both pre-launch and on-orbit, is provided.

  15. Response versus scan-angle corrections for MODIS reflective solar bands using deep convective clouds

    NASA Astrophysics Data System (ADS)

    Bhatt, Rajendra; Angal, Amit; Doelling, David R.; Xiong, Xiaoxiong; Wu, Aisheng; Haney, Conor O.; Scarino, Benjamin R.; Gopalan, Arun

    2016-05-01

    The absolute radiometric calibration of the reflective solar bands (RSBs) of Aqua- and Terra-MODIS is performed using on-board calibrators. A solar diffuser (SD) panel along with a solar diffuser stability monitor (SDSM) system, which tracks the degradation of the SD over time, provides the baseline for calibrating the MODIS sensors. MODIS also views the moon and deep space through its space view (SV) port for lunar-based calibration and computing the background, respectively. The MODIS instrument views the Earth's surface using a two-sided scan mirror, whose reflectance is a function of the angle of incidence (AOI) and is described by response versus scan-angle (RVS). The RVS for both MODIS instruments was characterized prior to launch. MODIS also views the SD and the moon at two different AOIs. There is sufficient evidence that the RVS is changing on orbit over time and as a function of wavelength. The SD and lunar observation scans can only track the RVS variation at two AOIs. Consequently, the MODIS Characterization Support Team (MCST) developed enhanced approaches that supplement the onboard calibrator measurements with responses from the pseudo-invariant desert sites. This approach has been implemented in Level 1B (L1B) Collection 6 (C6) for select short-wavelength bands. This paper presents an alternative approach of characterizing the mirror RVS to derive the time-dependent RVS correction factors for MODIS RSBs using tropical deep convective cloud (DCC) targets. An initial assessment of the DCC response from Aqua-MODIS band 1 C6 data indicates evidence of RVS artifacts, which are not uniform across the scans and are more prevalent at the beginning of the earth-view scan.

  16. Terra MODIS Band 27 Electronic Crosstalk Effect and Its Removal

    NASA Technical Reports Server (NTRS)

    Sun, Junqiang; Xiong, Xiaoxiong; Madhavan, Sriharsha; Wenny, Brian

    2012-01-01

    The MODerate-resolution Imaging Spectroradiometer (MODIS) is one of the primary instruments in the NASA Earth Observing System (EOS). The first MODIS instrument was launched in December, 1999 on-board the Terra spacecraft. MODIS has 36 bands, covering a wavelength range from 0.4 micron to 14.4 micron. MODIS band 27 (6.72 micron) is a water vapor band, which is designed to be insensitive to Earth surface features. In recent Earth View (EV) images of Terra band 27, surface feature contamination is clearly seen and striping has become very pronounced. In this paper, it is shown that band 27 is impacted by electronic crosstalk from bands 28-30. An algorithm using a linear approximation is developed to correct the crosstalk effect. The crosstalk coefficients are derived from Terra MODIS lunar observations. They show that the crosstalk is strongly detector dependent and the crosstalk pattern has changed dramatically since launch. The crosstalk contributions are positive to the instrument response of band 27 early in the mission but became negative and much larger in magnitude at later stages of the mission for most detectors of the band. The algorithm is applied to both Black Body (BB) calibration and MODIS L1B products. With the crosstalk effect removed, the calibration coefficients of Terra MODIS band 27 derived from the BB show that the detector differences become smaller. With the algorithm applied to MODIS L1B products, the Earth surface features are significantly removed and the striping is substantially reduced in the images of the band. The approach developed in this report for removal of the electronic crosstalk effect can be applied to other MODIS bands if similar crosstalk behaviors occur.

  17. Evaluation and Validation of Updated MODIS C6 and VIIRS LAI/FPAR

    NASA Astrophysics Data System (ADS)

    Yan, K.; Park, T.; Chen, C.; Yang, B.; Yan, G.; Knyazikhin, Y.; Myneni, R. B.; CHOI, S.

    2015-12-01

    Leaf Area Index (LAI) and Fraction of Photosynthetically Active Radiation (0.4-0.7 μm) absorbed by vegetation (FPAR) play a key role in characterizing vegetation canopy functioning and energy absorption capacity. With radiative transfer realization, MODIS onboard NASA EOS Terra and Aqua satellites has provided globally continuous LAI/FPAR since 2000 and continuously updated the products with better quality. And NPP VIIRS shows the measurement capability to extend high-quality LAI/FPAR time series data records as a successor of MODIS. The primary objectives of this study are 1) to evaluate and validate newly updated MODIS Collection 6 (C6) LAI/FPAR product which has finer resolution (500m) and improved biome type input, and 2) to examine and adjust VIIRS LAI/FPAR algorithm for continuity with MODIS'. For MODIS C6 investigation, we basically measure the spatial coverage (i.e., main radiative transfer algorithm execution), continuity and consistency with Collection 5 (C5), and accuracy with field measured LAI/FPAR. And we also validate C6 LAI/FPAR via comparing other possible global LAI/FPAR products (e.g., GLASS and CYCLOPES) and capturing co-varying seasonal signatures with climatic variables (e.g., temperature and precipitation). For VIIRS evaluation and adjustment, we first quantify possible difference between C5 and MODIS heritage based VIIRS LAI/FPAR. Then based on the radiative transfer theory of canopy spectral invariants, we find VIIRS- and biome-specific configurable parameters (single scattering albedo and uncertainty). These two practices for MODIS C6 and VIIRS LAI/FPAR products clearly suggest that (a) MODIS C6 has better coverage and accuracy than C5, (b) C6 shows consistent spatiotemporal pattern with C5, (c) VIIRS has the potential for producing MODIS-like global LAI/FPAR Earth System Data Records.

  18. Cross comparison of the Collection 6 and Collection 6.1 Terra and Aqua MODIS Bands 1 and 2 using AVHRR N15 and N19

    NASA Astrophysics Data System (ADS)

    Chen, Xuexia; Wu, Aisheng; Xiong, Xiaoxiong J.; Chen, Na

    2017-09-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) is a key scientific instrument that was launched into Earth orbit by NASA in 1999 on board the Terra (EOS AM) satellite and in 2002 on board the Aqua (EOS PM) satellite. Terra and Aqua MODIS collect the entire Earth's images every 1 to 2 days in 36 spectral bands. MODIS band 1 (0.620- 0.670 μm) and band 2 (0.841-0.876 μm) have nadir spatial resolution of 250 m and their measurements are crucial to derive key land surface products. This study evaluates the performance of the Collection 6 (C6, and C6.1) L1B of both Terra and Aqua MODIS bands 1 and 2 using Simultaneous Nadir Overpass (SNO) data to compare with AVHRR/3 sensors. We examine the relative stability between Terra and Aqua MODIS in reference to NOAA N15 and N19 the Advanced Very High Resolution Radiometer (AVHRR/3). The comparisons for MODIS to AVHRR/3 are over a fifteenyear period from 2002 to 2017. Results from this study provide a quantitative assessment of Terra and Aqua MODIS band 1 and band 2 calibration stability and the relative differences through the NOAA N15 and N19 AVHRR/3 sensors.

  19. Results and Lessons from a Decade of Terra MODIS On-Orbit Spectral Characterization

    NASA Technical Reports Server (NTRS)

    Xiong, X.; Choi, T.; Che, N.; Wang, Z.; Dodd, J.

    2010-01-01

    Since its launch in December 1999, the NASA EOS Terra MODIS has successfully operated for more than a decade. MODIS makes observations in 36 spectral bands from visible (VIS) to longwave infrared (LWIR) and at three nadir spatial resolutions: 250m (2 bands), 500m (5 bands), and 1km (29 bands). In addition to its on-board calibrators designed for the radiometric calibration, MODIS was built with a unique device, called the spectro-radiometric calibration assembly (SRCA). It can be configured in three different modes: radiometric, spatial, and spectral. When it is operated in the spectral modes, the SRCA can monitor changes in Sensor spectral performance for the VIS and near-infrared (NIR) spectral bands. For more than 10 years, the SRCA operation has continued to provide valuable information for MODIS on-orbit spectral performance. This paper briefly describes SRCA on-orbit operation and calibration activities; it presents decade-long spectral characterization results for Terra MODIS VIS and NIR spectral bands in terms of chances in their center wavelengths (CW) and bandwidths (BW). It is shown that the SRCA on-orbit wavelength calibration capability remains satisfactory. For most spectral bands, the changes in CW and BW are less than 0.5 and 1 nm, respectively. Results and lessons from Terra MODIS on-orbit spectral characterization have and will continue to benefit its successor, Aqua MODIS, and other future missions.

  20. Comparison of sampling designs for estimating deforestation from landsat TM and MODIS imagery: a case study in Mato Grosso, Brazil.

    PubMed

    Zhu, Shanyou; Zhang, Hailong; Liu, Ronggao; Cao, Yun; Zhang, Guixin

    2014-01-01

    Sampling designs are commonly used to estimate deforestation over large areas, but comparisons between different sampling strategies are required. Using PRODES deforestation data as a reference, deforestation in the state of Mato Grosso in Brazil from 2005 to 2006 is evaluated using Landsat imagery and a nearly synchronous MODIS dataset. The MODIS-derived deforestation is used to assist in sampling and extrapolation. Three sampling designs are compared according to the estimated deforestation of the entire study area based on simple extrapolation and linear regression models. The results show that stratified sampling for strata construction and sample allocation using the MODIS-derived deforestation hotspots provided more precise estimations than simple random and systematic sampling. Moreover, the relationship between the MODIS-derived and TM-derived deforestation provides a precise estimate of the total deforestation area as well as the distribution of deforestation in each block.

  1. Comparison of Sampling Designs for Estimating Deforestation from Landsat TM and MODIS Imagery: A Case Study in Mato Grosso, Brazil

    PubMed Central

    Zhu, Shanyou; Zhang, Hailong; Liu, Ronggao; Cao, Yun; Zhang, Guixin

    2014-01-01

    Sampling designs are commonly used to estimate deforestation over large areas, but comparisons between different sampling strategies are required. Using PRODES deforestation data as a reference, deforestation in the state of Mato Grosso in Brazil from 2005 to 2006 is evaluated using Landsat imagery and a nearly synchronous MODIS dataset. The MODIS-derived deforestation is used to assist in sampling and extrapolation. Three sampling designs are compared according to the estimated deforestation of the entire study area based on simple extrapolation and linear regression models. The results show that stratified sampling for strata construction and sample allocation using the MODIS-derived deforestation hotspots provided more precise estimations than simple random and systematic sampling. Moreover, the relationship between the MODIS-derived and TM-derived deforestation provides a precise estimate of the total deforestation area as well as the distribution of deforestation in each block. PMID:25258742

  2. Variations of Global Terrestrial Primary Production Observed by Moderate Resolution Imaging Spectroradiometer (MODIS) From 2000 to 2005

    NASA Astrophysics Data System (ADS)

    Zhao, M.; Running, S.; Heinsch, F. A.

    2006-12-01

    Since the first Earth Observing System (EOS) satellite Terra was launched in December 1999 and Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard Terra began to provide data in February 2000, we have had six-year MODIS global 1-km terrestrial Gross and Net Primary Production (GPP &NPP) datasets. In this article, we present the variations (seasonality and inter-annual variability) of global GPP/NPP from the latest improved Collection 4.8 (C4.8) MODIS datasets for the past six-year (2000 - 2005), as well as improvements of the algorithm, validations of GPP and NPP. Validation results show that the C4.8 data have higher accuracy and quality than the previous version. Analyses of the variations in GPP/NPP show that GPP not only can reflect strong seasonality of photosynthesis activities by plants in mid- and high-latitude, but importantly, can reveal enhanced growth of Amazon rainforests during dry season, consistent with the reports by Huete et al. (2006) on GRL. Spatially, plants over mid- and high-latitude (north to 22.5°N) are the major contributor of global GPP seasonality. Inter-annual variability of MODIS NPP for 2000 - 2005 reveals the negative effects of major droughts on carbon sequestration at the regional and continental scales. A striking phenomenon is that the severe drought in 2005 over Amazon reduced NPP, indicating water availability becomes the dominant limiting factor rather than solar radiation under normal conditions. GMAO and NCEP driven global total NPPs have the similar interannual anomalies, and they generally follow the inverted CO2 growth rate anomaly with correlation of 0.85 and 0.91, respectively, which are higher than the correlation of 0.7 found by Nemani et al. (2003) on Science. Though there are only 6 years of MODIS data, results show that global NPP decreased from 2000 to 2005, and spatially most decreased NPP areas are in tropic and south hemisphere.

  3. Prolonged episodes of hypoglycaemia in HNF4A-MODY mutation carriers with IGT. Evidence of persistent hyperinsulinism into early adulthood.

    PubMed

    Bacon, S; Kyithar, M P; Condron, E M; Vizzard, N; Burke, M; Byrne, M M

    2016-12-01

    HNF4A is an established cause of maturity onset diabetes of the young (MODY). Congenital hyperinsulinism can also be associated with mutations in the HNF4A gene. A dual phenotype is observed in HNF4A-MODY with hyperinsulinaemic hypoglycaemia in the neonatal period progressing to diabetes in adulthood. The nature and timing of the transition remain poorly defined. We performed an observational study to establish changes in glycaemia and insulin secretion over a 6-year period. We investigated glycaemic variability and hypoglycaemia in HNF4A-MODY using a continuous glucose monitoring system (CGMS). An OGTT with measurement of glucose, insulin and C-peptide was performed in HNF4A participants with diabetes mellitus (DM) (n = 14), HNF4A-IGT (n = 7) and age- and BMI-matched MODY negative family members (n = 10). Serial assessment was performed in the HNF4A-IGT cohort. In a subset of HNF4A-MODY mutation carriers (n = 10), CGMS was applied over a 72-h period. There was no deterioration in glycaemic control in the HNF4A-IGT cohort. The fasting glucose-to-insulin ratio was significantly lower in the HNF4A-IGT cohort when compared to the normal control group (0.13 vs. 0.24, p = 0.03). CGMS profiling demonstrated prolonged periods of hypoglycaemia in the HNF4A-IGT group when compared to the HNF4A-DM group (432 vs. 138 min p = 0.04). In a young adult HNF4A-IGT cohort, we demonstrate preserved glucose, insulin and C-peptide secretory responses to oral glucose. Utilising CGMS, prolonged periods of hypoglycaemia are evident despite a median age of 21 years. We propose a prolonged hyperinsulinaemic phase into adulthood is responsible for the notable hypoglycaemic episodes.

  4. Comparison of Glomerular Filtration Rate Estimation from Serum Creatinine and Cystatin C in HNF1A-MODY and Other Types of Diabetes.

    PubMed

    Szopa, Magdalena; Kapusta, Maria; Matejko, Bartlomiej; Klupa, Tomasz; Koblik, Teresa; Kiec-Wilk, Beata; Borowiec, Maciej; Malecki, Maciej T

    2015-01-01

    We previously showed that in HNF1A-MODY the cystatin C-based glomerular filtration rate (GFR) estimate is higher than the creatinine-based estimate. Currently, we aimed to replicate this finding and verify its clinical significance. The study included 72 patients with HNF1A-MODY, 72 with GCK-MODY, 53 with type 1 diabetes (T1DM), 70 with type 2 diabetes (T2DM), and 65 controls. Serum creatinine and cystatin C levels were measured. GFR was calculated from creatinine and cystatin C using the CKD-EPI creatinine equation (eGRF-cr) and CKD-EPI cystatin C equation (eGFR-cys), respectively. Cystatin C levels were lower (p < 0.001) in the control (0.70 ± 0.13 mg/L), HNF1A (0.75 ± 0.21), and GCK (0.72 ± 0.16 mg/L) groups in comparison to those with either T1DM (0.87 ± 0.15 mg/L) or T2DM (0.9 ± 0.23 mg/L). Moreover, eGFR-cys was higher than eGRF-cr in HNF1A-MODY, GCK-MODY, and the controls (p = 0.004; p = 0.003; p < 0.0001). This corresponded to 8.9 mL/min/1.73 m2, 9.7 mL/min/1.73 m2, and 16.9 mL/min/1.73 m2 of difference. Additionally, T1DM patients had higher eGFR-cr than eGFR-cys (11.6 mL/min/1.73 m(2); p = 0.0004); no difference occurred in T2DM (p = 0.91). We confirmed that eGFR-cys values in HNF1A-MODY patients are higher compared to eGFR-cr. Some other differences were also described in diabetic groups. However, none of them appears to be clinically relevant.

  5. Seasonal Biophysical Dynamics of the Amazon from Space Using MODIS Vegetation Indices

    NASA Astrophysics Data System (ADS)

    Huete, A. R.; Didan, K.; Ratana, P.; Ferreira, L.

    2002-12-01

    We utilized the Terra- Moderate Resolution Imaging Spectroradiometer (MODIS) Vegetation Index (VI) products to analyze the seasonal and spatial patterns of photosynthetic vegetation activity over the Amazon Basin and surrounding regions of Brazil. The seasonal patterns of vegetation activity were studied along two, eco-climatic transects extending from (1) the cerrado region (Brasilia National Park) to the seasonal tropical forest (Tapajos National Forest) and (2) the caatinga biome to the seasonal and per-humid tropical forests. In addition to the climatic transects, we also investigated the seasonal dynamics of altered, land conversion areas associated with pastures and clearcutting land use activities. Both the normalized difference vegetation index (NDVI) and the enhanced vegetation index (EVI) at 250-m, 500-m, and 1-km were used to extract seasonal profile curves. The quality assurance (QA) information of the output products was used in noise removal and data filtering prior to the generation of the seasonal profiles. Histogram analyses were also performed at coarse (biome) scale and fine, site intensive (flux towers) scale. The seasonal patterns of the cerrado and caatinga were very pronounced with distinct dry and wet seasonal trends. We observed decreasing dry-wet seasonal patterns in the transitional areas near Araguaia National Park. In contrast, the seasonal behavior of the tropical forests were much harder to assess, but indicated slight seasonal trends that ran counter to rainfall activity. This may be attributed to new leaf growth in the dry season. We further found MODIS VI seasonal patterns to vary significantly in land converted and land degraded areas.

  6. Terra Data Confirm Warm, Dry U.S. Winter

    NASA Technical Reports Server (NTRS)

    2002-01-01

    New maps of land surface temperature and snow cover produced by NASA's Terra satellite show this year's winter was warmer than last year's, and the snow line stayed farther north than normal. The observations confirm earlier National Oceanic and Atmospheric Administration reports that the United States was unusually warm and dry this past winter. (Click to read the NASA press release and to access higher-resolution images.) For the last two years, a new sensor aboard Terra has been collecting the most detailed global measurements ever made of our world's land surface temperatures and snow cover. The Moderate-resolution Imaging Spectroradiometer (MODIS) is already giving scientists new insights into our changing planet. Average temperatures during December 2001 through February 2002 for the contiguous United States appear to have been unseasonably warm from the Rockies eastward. In the top image the coldest temperatures appear black, while dark green, blue, red, yellow, and white indicate progressively warmer temperatures. MODIS observes both land surface temperature and emissivity, which indicates how efficiently a surface absorbs and emits thermal radiation. Compared to the winter of 2000-01, temperatures throughout much of the U.S. were warmer in 2001-02. The bottom image depicts the differences on a scale from dark blue (colder this year than last) to red (warmer this year than last). A large region of warm temperatures dominated the northern Great Plains, while the area around the Great Salt Lake was a cold spot. Images courtesy Robert Simmon, NASA GSFC, based upon data courtesy Zhengming Wan, MODIS Land Science Team member at the University of California, Santa Barbara's Institute for Computational Earth System Science

  7. Satellite Remote Sensing for Developing Time and Space Resolved Estimates of Ambient Particulate in Cleveland, OH.

    PubMed

    Kumar, Naresh; Chu, Allen D; Foster, Andrew D; Peters, Thomas; Willis, Robert

    2011-09-01

    This article empirically demonstrates the use of fine resolution satellite-based aerosol optical depth (AOD) to develop time and space resolved estimates of ambient particulate matter (PM) ≤2.5 µm and ≤10 µm in aerodynamic diameters (PM(2.5) and PM(10), respectively). AOD was computed at three different spatial resolutions, i.e., 2 km (means 2 km × 2 km area at nadir), 5 km, and 10 km, by using the data from MODerate Resolution Imaging Spectroradiometer (MODIS), aboard the Terra and Aqua satellites. Multiresolution AOD from MODIS (AOD(MODIS)) was compared with the in situ measurements of AOD by NASA's AErosol RObotic NETwork (AERONET) sunphotometer (AOD(AERONET)) at Bondville, IL, to demonstrate the advantages of the fine resolution AOD(MODIS) over the 10-km AOD(MODIS), especially for air quality prediction. An instrumental regression that corrects AOD(MODIS) for meteorological conditions was used for developing a PM predictive model.The 2-km AOD(MODIS) aggregated within 0.025° and 15-min intervals shows the best association with the in situ measurements of AOD(AERONET). The 2-km AOD(MODIS) seems more promising to estimate time and space resolved estimates of ambient PM than the 10-km AOD(MODIS), because of better location precision and a significantly greater number of data points across geographic space and time. Utilizing the collocated AOD(MODIS) and PM data in Cleveland, OH, a regression model was developed for predicting PM for all AOD(MODIS) data points. Our analysis suggests that the slope of the 2-km AOD(MODIS) (instrumented on meteorological conditions) is close to unity with the PM monitored on the ground. These results should be interpreted with caution, because the slope of AOD(MODIS) ranges from 0.52 to 1.72 in the site-specific models. In the cross validation of the overall model, the root mean square error (RMSE) of PM(10) was smaller (2.04 µg/m(3) in overall model) than that of PM(2.5) (2.5 µg/m(3)). The predicted PM in the AOD(MODIS) data (∼2.34 million data points) was utilized to develop a systematic grid of daily PM at 5-km spatial resolution with the aid of spatiotemporal Kriging.

  8. A single dose of dapagliflozin, an SGLT-2 inhibitor, induces higher glycosuria in GCK- and HNF1A-MODY than in type 2 diabetes mellitus.

    PubMed

    Hohendorff, J; Szopa, M; Skupien, J; Kapusta, M; Zapala, B; Platek, T; Mrozinska, S; Parpan, T; Glodzik, W; Ludwig-Galezowska, A; Kiec-Wilk, B; Klupa, T; Malecki, M T

    2017-08-01

    SGLT2 inhibitors are a new class of oral hypoglycemic agents used in type 2 diabetes (T2DM). Their effectiveness in maturity onset diabetes of the young (MODY) is unknown. We aimed to assess the response to a single dose of 10 mg dapagliflozin in patients with Hepatocyte Nuclear Factor 1 Alpha (HNF1A)-MODY, Glucokinase (GCK)-MODY, and type 2 diabetes. We examined 14 HNF1A-MODY, 19 GCK-MODY, and 12 type 2 diabetes patients. All studied individuals received a single morning dose of 10 mg of dapagliflozin added to their current therapy of diabetes. To assess the response to dapagliflozin we analyzed change in urinary glucose to creatinine ratio and serum 1,5-Anhydroglucitol (1,5-AG) level. There were only four patients with positive urine glucose before dapagliflozin administration (one with HNF1A-MODY, two with GCK-MODY, and one with T2DM), whereas after SGLT-2 inhibitor use, glycosuria occurred in all studied participants. Considerable changes in mean glucose to creatinine ratio after dapagliflozin administration were observed in all three groups (20.51 ± 12.08, 23.19 ± 8.10, and 9.84 ± 6.68 mmol/mmol for HNF1A-MODY, GCK-MODY, and T2DM, respectively, p < 0.001 for all comparisons). Post-hoc analysis revealed significant differences in mean glucose to creatinine ratio change between type 2 diabetes and each monogenic diabetes in response to dapagliflozin (p = 0.02, p = 0.003 for HNF1-A and GCK MODY, respectively), but not between the two MODY forms (p = 0.7231). Significant change in serum 1,5-AG was noticed only in T2DM and it was -6.57 ± 7.34 mg/ml (p = 0.04). A single dose of dapagliflozin, an SGLT-2 inhibitor, induces higher glycosuria in GCK- and HNF1A-MODY than in T2DM. Whether flozins are a valid therapeutic option in these forms of MODY requires long-term clinical studies.

  9. Spectral analysis of amazon canopy phenology during the dry season using a tower hyperspectral camera and modis observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Moura, Yhasmin Mendes; Galvão, Lênio Soares; Hilker, Thomas

    The association between spectral reflectance and canopy processes remains challenging for quantifying large-scale canopy phenological cycles in tropical forests. In this paper, we used a tower-mounted hyperspectral camera in an eastern Amazon forest to assess how canopy spectral signals of three species are linked with phenological processes in the 2012 dry season. We explored different approaches to disentangle the spectral components of canopy phenology processes and analyze their variations over time using 17 images acquired by the camera. The methods included linear spectral mixture analysis (SMA); principal component analysis (PCA); continuum removal (CR); and first-order derivative analysis. In addition, threemore » vegetation indices potentially sensitive to leaf flushing, leaf loss and leaf area index (LAI) were calculated: the Enhanced Vegetation Index (EVI), Normalized Difference Vegetation Index (NDVI) and the entitled Green-Red Normalized Difference (GRND) index. We inspected also the consistency of the camera observations using Moderate Resolution Imaging Spectroradiometer (MODIS) and available phenological data on new leaf production and LAI of young, mature and old leaves simulated by a leaf demography-ontogeny model. The results showed a diversity of phenological responses during the 2012 dry season with related changes in canopy structure and greenness values. Because of the differences in timing and intensity of leaf flushing and leaf shedding, Erisma uncinatum, Manilkara huberi and Chamaecrista xinguensis presented different green vegetation (GV) and non-photosynthetic vegetation (NPV) SMA fractions; distinct PCA scores; changes in depth, width and area of the 681-nm chlorophyll absorption band; and variations over time in the EVI, GRND and NDVI. At the end of dry season, GV increased for Erisma uncinatum, while NPV increased for Chamaecrista xinguensis. For Manilkara huberi, the NPV first increased in the beginning of August and then decreased toward September with new foliage. Variations in red-edge position were not statistically significant between the species and across dates at the 95% confidence level. The camera data were affected by view-illumination effects, which reduced the SMA shade fraction over time. When MODIS data were corrected for these effects using the Multi-Angle Implementation of Atmospheric Correction Algorithm (MAIAC), we observed an EVI increase toward September that closely tracked the modeled LAI of mature leaves (3–5 months). Compared to the EVI, the GRND was a better indicator of leaf flushing because the modeled production of new leaves peaked in August and then declined in September following the GRND closely. Finally, while the EVI was more related to changes in mature leaf area, the GRND was more associated with new leaf flushing.« less

  10. Spectral analysis of amazon canopy phenology during the dry season using a tower hyperspectral camera and modis observations

    DOE PAGES

    de Moura, Yhasmin Mendes; Galvão, Lênio Soares; Hilker, Thomas; ...

    2017-09-01

    The association between spectral reflectance and canopy processes remains challenging for quantifying large-scale canopy phenological cycles in tropical forests. In this paper, we used a tower-mounted hyperspectral camera in an eastern Amazon forest to assess how canopy spectral signals of three species are linked with phenological processes in the 2012 dry season. We explored different approaches to disentangle the spectral components of canopy phenology processes and analyze their variations over time using 17 images acquired by the camera. The methods included linear spectral mixture analysis (SMA); principal component analysis (PCA); continuum removal (CR); and first-order derivative analysis. In addition, threemore » vegetation indices potentially sensitive to leaf flushing, leaf loss and leaf area index (LAI) were calculated: the Enhanced Vegetation Index (EVI), Normalized Difference Vegetation Index (NDVI) and the entitled Green-Red Normalized Difference (GRND) index. We inspected also the consistency of the camera observations using Moderate Resolution Imaging Spectroradiometer (MODIS) and available phenological data on new leaf production and LAI of young, mature and old leaves simulated by a leaf demography-ontogeny model. The results showed a diversity of phenological responses during the 2012 dry season with related changes in canopy structure and greenness values. Because of the differences in timing and intensity of leaf flushing and leaf shedding, Erisma uncinatum, Manilkara huberi and Chamaecrista xinguensis presented different green vegetation (GV) and non-photosynthetic vegetation (NPV) SMA fractions; distinct PCA scores; changes in depth, width and area of the 681-nm chlorophyll absorption band; and variations over time in the EVI, GRND and NDVI. At the end of dry season, GV increased for Erisma uncinatum, while NPV increased for Chamaecrista xinguensis. For Manilkara huberi, the NPV first increased in the beginning of August and then decreased toward September with new foliage. Variations in red-edge position were not statistically significant between the species and across dates at the 95% confidence level. The camera data were affected by view-illumination effects, which reduced the SMA shade fraction over time. When MODIS data were corrected for these effects using the Multi-Angle Implementation of Atmospheric Correction Algorithm (MAIAC), we observed an EVI increase toward September that closely tracked the modeled LAI of mature leaves (3–5 months). Compared to the EVI, the GRND was a better indicator of leaf flushing because the modeled production of new leaves peaked in August and then declined in September following the GRND closely. Finally, while the EVI was more related to changes in mature leaf area, the GRND was more associated with new leaf flushing.« less

  11. Exploring the Genomic Roadmap and Molecular Phylogenetics Associated with MODY Cascades Using Computational Biology.

    PubMed

    Chakraborty, Chiranjib; Bandyopadhyay, Sanghamitra; Doss, C George Priya; Agoramoorthy, Govindasamy

    2015-04-01

    Maturity onset diabetes of the young (MODY) is a metabolic and genetic disorder. It is different from type 1 and type 2 diabetes with low occurrence level (1-2%) among all diabetes. This disorder is a consequence of β-cell dysfunction. Till date, 11 subtypes of MODY have been identified, and all of them can cause gene mutations. However, very little is known about the gene mapping, molecular phylogenetics, and co-expression among MODY genes and networking between cascades. This study has used latest servers and software such as VarioWatch, ClustalW, MUSCLE, G Blocks, Phylogeny.fr, iTOL, WebLogo, STRING, and KEGG PATHWAY to perform comprehensive analyses of gene mapping, multiple sequences alignment, molecular phylogenetics, protein-protein network design, co-expression analysis of MODY genes, and pathway development. The MODY genes are located in chromosomes-2, 7, 8, 9, 11, 12, 13, 17, and 20. Highly aligned block shows Pro, Gly, Leu, Arg, and Pro residues are highly aligned in the positions of 296, 386, 437, 455, 456 and 598, respectively. Alignment scores inform us that HNF1A and HNF1B proteins have shown high sequence similarity among MODY proteins. Protein-protein network design shows that HNF1A, HNF1B, HNF4A, NEUROD1, PDX1, PAX4, INS, and GCK are strongly connected, and the co-expression analyses between MODY genes also show distinct association between HNF1A and HNF4A genes. This study has used latest tools of bioinformatics to develop a rapid method to assess the evolutionary relationship, the network development, and the associations among eleven MODY genes and cascades. The prediction of sequence conservation, molecular phylogenetics, protein-protein network and the association between the MODY cascades enhances opportunities to get more insights into the less-known MODY disease.

  12. Evaluation of VIIRS and MODIS Thermal Emissive Band Calibration Stability Using Ground Target

    NASA Technical Reports Server (NTRS)

    Madhavan, Sriharsha; Brinkmann, Jake; Wenny, Brian N.; Wu, Aisheng; Xiong, Xiaoxiong

    2017-01-01

    The S-NPP Visible Infrared Imaging Radiometer Suite (VIIRS) instrument, a polar orbiting Earth remote sensing instrument built using a strong MODIS background, employs a similarly designed on-board calibrating source - a V-grooved blackbody for the thermal emissive bands (TEB). The central wavelengths of most VIIRS TEBs are very close to those of MODIS with the exception of the 10.7 micron channel. To ensure the long term continuity of climate data records derived using VIIRS and MODIS TEB, it is necessary to assess any systematic differences between the two instruments, including scenes with temperatures significantly lower than blackbody operating temperatures at approximately 290 K. Previous work performed by the MODIS Characterization Support Team (MCST) at NASAGSFC used the frequent observations of the Dome Concordia site located in Antarctica to evaluate the calibration stability and consistency of Terra and Aqua MODIS over the mission lifetime. The near-surface temperature measurements from an automatic weather station (AWS) provide a direct reference useful for tracking the stability and determining the relative bias between the two MODIS instruments. In this study, the same technique is applied to the VIIRS TEB and the results are compared with those from the matched MODIS TEB. The results of this study show a small negative bias when comparing the matching VIIRS and Aqua MODIS TEB, implying a higher scene temperature retrieval for S-VIIRS at the cold end. Statistically no significant drift is observed for VIIRS TEB performance over the first 3.5 years of the mission.

  13. Mutations in HNF1A Result in Marked Alterations of Plasma Glycan Profile

    PubMed Central

    Thanabalasingham, Gaya; Huffman, Jennifer E.; Kattla, Jayesh J.; Novokmet, Mislav; Rudan, Igor; Gloyn, Anna L.; Hayward, Caroline; Adamczyk, Barbara; Reynolds, Rebecca M.; Muzinic, Ana; Hassanali, Neelam; Pucic, Maja; Bennett, Amanda J.; Essafi, Abdelkader; Polasek, Ozren; Mughal, Saima A.; Redzic, Irma; Primorac, Dragan; Zgaga, Lina; Kolcic, Ivana; Hansen, Torben; Gasperikova, Daniela; Tjora, Erling; Strachan, Mark W.J.; Nielsen, Trine; Stanik, Juraj; Klimes, Iwar; Pedersen, Oluf B.; Njølstad, Pål R.; Wild, Sarah H.; Gyllensten, Ulf; Gornik, Olga; Wilson, James F.; Hastie, Nicholas D.; Campbell, Harry; McCarthy, Mark I.; Rudd, Pauline M.; Owen, Katharine R.; Lauc, Gordan; Wright, Alan F.

    2013-01-01

    A recent genome-wide association study identified hepatocyte nuclear factor 1-α (HNF1A) as a key regulator of fucosylation. We hypothesized that loss-of-function HNF1A mutations causal for maturity-onset diabetes of the young (MODY) would display altered fucosylation of N-linked glycans on plasma proteins and that glycan biomarkers could improve the efficiency of a diagnosis of HNF1A-MODY. In a pilot comparison of 33 subjects with HNF1A-MODY and 41 subjects with type 2 diabetes, 15 of 29 glycan measurements differed between the two groups. The DG9-glycan index, which is the ratio of fucosylated to nonfucosylated triantennary glycans, provided optimum discrimination in the pilot study and was examined further among additional subjects with HNF1A-MODY (n = 188), glucokinase (GCK)-MODY (n = 118), hepatocyte nuclear factor 4-α (HNF4A)-MODY (n = 40), type 1 diabetes (n = 98), type 2 diabetes (n = 167), and nondiabetic controls (n = 98). The DG9-glycan index was markedly lower in HNF1A-MODY than in controls or other diabetes subtypes, offered good discrimination between HNF1A-MODY and both type 1 and type 2 diabetes (C statistic ≥0.90), and enabled us to detect three previously undetected HNF1A mutations in patients with diabetes. In conclusion, glycan profiles are altered substantially in HNF1A-MODY, and the DG9-glycan index has potential clinical value as a diagnostic biomarker of HNF1A dysfunction. PMID:23274891

  14. Flooding in Southern Russia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Over the past two weeks, heavy rains have inundated southern Russia, giving rise to floods that killed up to 83 people and drove thousands from their homes. This false-color image acquired on June 23, 2002, by the Moderate-resolution Imaging Spectroradiometer (MODIS) aboard the Terra satellite shows some of the worst flooding. The Black Sea is the dark patch in the lower left-hand corner. The city of Krasnodor, Russia, which was one of the cities hardest hit, sits on the western edge of the larger lake on the left side of the image, and Stavropol, which lost more lives than any other city, sits just east of the small cluster of lakes on the right-hand side of the image. Normally, the rivers and smaller lakes in this image cannot even be seen clearly on MODIS imagery. In this false-color image, the ground is green and blue and water is black or dark brown. Clouds come across as pink and white. Credit: Image courtesy Jesse Allen, NASA GSFC, based on data provided by the MODIS Rapid Response System.

  15. Evaluation of Aerosol Properties over Ocean from Moderate Resolution Imaging Spectroradiometer (MODIS) during ACE-Asia

    NASA Technical Reports Server (NTRS)

    Chu, D. A.; Remer, L. A.; Kaufman, Y. J.; Schmid, B.; Redemann, J.; Knobelspiesse, K.; Chern, J.-D.; Livingston, J.; Russell, P. B.; Xiong, X.; hide

    2005-01-01

    The Aerosol Characterization Experiment-Asia (ACE-Asia) was conducted in March-May 2001 in the western North Pacific in order to characterize the complex mix of dust, smoke, urban/industrial pollution, and background marine aerosol that is observed in that region in springtime. The Moderate Resolution Imaging Spectroradiometer (MODIS) provides a large-scale regional view of the aerosol during the ACE-Asia time period. Focusing only on aerosol retrievals over ocean, MODIS data show latitudinal and longitudinal variation in the aerosol characteristics. Typically, aerosol optical depth (tau(sub a)) values at 0.55 micrometers are highest in the 30 deg. - 50 deg. latitude band associated with dust outbreaks. Monthly mean tau(sub a) in this band ranges approx. 0.40-70, although large differences between monthly mean and median values indicate the periodic nature of these dust outbreaks. The size parameters, fine mode fraction (eta), and effective radius (r(sub eff)) vary between monthly mean values of eta = 0.47 and r(sub eff)= 0.75 micrometers in the cleanest regions far offshore to approximately eta = 0.85 and r(sub eff) =.30 micrometers in near-shore regions dominated by biomass burning smoke. The collocated MODIS retrievals with airborne, ship-based, and ground-based radiometers measurements suggest that MODIS retrievals of spectral optical depth fall well within expected error (DELTA tau(sub a) = plus or minus 0.03 plus or minus 0.05 tau(sub a)) except in situations dominated by dust, in which cases MODIS overestimate both the aerosol loading and the aerosol spectral dependence. Such behavior is consistent with issues related to particle nonsphericity. Comparisons of MODIS-derived r(sub eff) with AERONET retrievals at the few occurrences of collocations show MODIS systematically underestimates particle size by 0.2 micrometers. Multiple-year analysis of MODIS aerosol size parameters suggests systematic differences between the year 2001 and the years 2000 and 2002, which are traced to instrumental electronic cross talk. Sensitivity studies show that such calibration errors are negligible in tau(sub a) retrievals but are more pronounced in size parameter retrievals, especially for dust and sea salt.

  16. Global Aerosol Remote Sensing from MODIS

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles; Kaufman, Yoram J.; Remer, Lorraine A.; Chu, D. Allen; Mattoo, Shana; Tanre, Didier; Levy, Robert; Li, Rong-Rong; Martins, Jose V.; Lau, William K. M. (Technical Monitor)

    2002-01-01

    The physical characteristics, composition, abundance, spatial distribution and dynamics of global aerosols are still very poorly known, and new data from satellite sensors have long been awaited to improve current understanding and to give a boost to the effort in future climate predictions. The derivation of aerosol parameters from the MODerate resolution Imaging Spectro-radiometer (MODIS) sensors aboard the Earth Observing System (EOS) Terra and Aqua polar-orbiting satellites ushers in a new era in aerosol remote sensing from space. Terra and Aqua were launched on December 18, 1999 and May 4, 2002 respectively, with daytime equator crossing times of approximately 10:30 am and 1:30 pm respectively. Several aerosol parameters are retrieved at 10-km spatial resolution (level 2) from MODIS daytime data. The MODIS aerosol algorithm employs different approaches to retrieve parameters over land and ocean surfaces, because of the inherent differences in the solar spectral radiance interaction with these surfaces. The parameters retrieved include: aerosol optical thickness (AOT) at 0.47, 0.55 and 0.66 micron wavelengths over land, and at 0.47, 0.55, 0.66, 0.87, 1.2, 1.6, and 2.1 micron over ocean; Angstrom exponent over land and ocean; and effective radii, and the proportion of AOT contributed by the small mode aerosols over ocean. To ensure the quality of these parameters, a substantial part of the Terra-MODIS aerosol products were validated globally and regionally, based on cross correlation with corresponding parameters derived from ground-based measurements from AERONET (AErosol RObotic NETwork) sun photometers. Similar validation efforts are planned for the Aqua-MODIS aerosol products. The MODIS level 2 aerosol products are operationally aggregated to generate global daily, eight-day (weekly), and monthly products at one-degree spatial resolution (level 3). MODIS aerosol data are used for the detailed study of local, regional, and global aerosol concentration, distribution, and temporal dynamics, as well as for radiative forcing calculations. We show several examples of these results and comparisons with model output.

  17. Application of a new leaf area index algorithm to China's landmass using MODIS data for carbon cycle research.

    PubMed

    Liu, R; Chen, J M; Liu, J; Deng, F; Sun, R

    2007-11-01

    An operational system was developed for mapping the leaf area index (LAI) for carbon cycle models from the moderate resolution imaging spectroradiometer (MODIS) data. The LAI retrieval algorithm is based on Deng et al. [2006. Algorithm for global leaf area index retrieval using satellite imagery. IEEE Transactions on Geoscience and Remote Sensing, 44, 2219-2229], which uses the 4-scale radiative transfer model [Chen, J.M., Leblancs, 1997. A 4-scale bidirectional reflection model based on canopy architecture. IEEE Transactions on Geoscience and Remote Sensing, 35, 1316-1337] to simulate the relationship of LAI with vegetated surface reflectance measured from space for various spectral bands and solar and view angles. This algorithm has been integrated to the MODISoft platform, a software system designed for processing MODIS data, to generate 250 m, 500 m and 1 km resolution LAI products covering all of China from MODIS MOD02 or MOD09 products. The multi-temporal interpolation method was implemented to remove the residual cloud and other noise in the final LAI product so that it can be directly used in carbon models without further processing. The retrieval uncertainties from land cover data were evaluated using five different data sets available in China. The results showed that mean LAI discrepancies can reach 27%. The current product was also compared with the NASA MODIS MOD15 LAI product to determine the agreement and disagreement of two different product series. LAI values in the MODIS product were found to be 21% larger than those in the new product. These LAI products were compared against ground TRAC measurements in forests in Qilian Mountain and Changbaishan. On average, the new LAI product agrees with the field measurement in Changbaishan within 2%, but the MODIS product is positively biased by about 20%. In Qilian Mountain, where forests are sparse, the new product is lower than field measurements by about 38%, while the MODIS product is larger by about 65%.

  18. Improving Post-Hurricane Katrina Forest Management with MODIS Time Series Products

    NASA Technical Reports Server (NTRS)

    Lewis, Mark David; Spruce, Joseph; Evans, David; Anderson, Daniel

    2012-01-01

    Hurricane damage to forests can be severe, causing millions of dollars of timber damage and loss. To help mitigate loss, state agencies require information on location, intensity, and extent of damaged forests. NASA's MODerate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) time series data products offers a potential means for state agencies to monitor hurricane-induced forest damage and recovery across a broad region. In response, a project was conducted to produce and assess 250 meter forest disturbance and recovery maps for areas in southern Mississippi impacted by Hurricane Katrina. The products and capabilities from the project were compiled to aid work of the Mississippi Institute for Forest Inventory (MIFI). A series of NDVI change detection products were computed to assess hurricane induced damage and recovery. Hurricane-induced forest damage maps were derived by computing percent change between MODIS MOD13 16-day composited NDVI pre-hurricane "baseline" products (2003 and 2004) and post-hurricane NDVI products (2005). Recovery products were then computed in which post storm 2006, 2007, 2008 and 2009 NDVI data was each singularly compared to the historical baseline NDVI. All percent NDVI change considered the 16-day composite period of August 29 to September 13 for each year in the study. This provided percent change in the maximum NDVI for the 2 week period just after the hurricane event and for each subsequent anniversary through 2009, resulting in forest disturbance products for 2005 and recovery products for the following 4 years. These disturbance and recovery products were produced for the Mississippi Institute for Forest Inventory's (MIFI) Southeast Inventory District and also for the entire hurricane impact zone. MIFI forest inventory products were used as ground truth information for the project. Each NDVI percent change product was classified into 6 categories of forest disturbance intensity. Stand age and stand type raster data, also provided by MIFI, were used along with the forest disturbance/recovery products to create forest damage stratification products integrating 3 stand type classes, 6 stand age classes, and 6 forest disturbance intensity classes. This stratification product will be used to aid MIFI timber inventory planning and to prepare for damage assessments due to future hurricane events. Validation of MODIS percent NDVI change products was performed by comparing the MODIS percent NDVI change products to those from Landsat data for the same time and MIFI inventory district area.

  19. Assessment of MODIS On-Orbit Calibration Using a Deep Convective Cloud Technique

    NASA Technical Reports Server (NTRS)

    Mu, Qiaozhen; Wu, Aisheng; Chang, Tiejun; Angal, Amit; Link, Daniel; Xiong, Xiaoxiong; Doelling, David R.; Bhatt, Rajendra

    2016-01-01

    The MODerate Resolution Imaging Spectroradiometer (MODIS) sensors onboard Terra and Aqua satellites are calibrated on-orbit with a solar diffuser (SD) for the reflective solar bands (RSB). The MODIS sensors are operating beyond their designed lifetime and hence present a major challenge to maintain the calibration accuracy. The degradation of the onboard SD is tracked by a solar diffuser stability monitor (SDSM) over a wavelength range from 0.41 to 0.94 micrometers. Therefore, any degradation of the SD beyond 0.94 micrometers cannot be captured by the SDSM. The uncharacterized degradation at wavelengths beyond this limit could adversely affect the Level 1B (L1B) product. To reduce the calibration uncertainties caused by the SD degradation, invariant Earth-scene targets are used to monitor and calibrate the MODIS L1B product. The use of deep convective clouds (DCCs) is one such method and particularly significant for the short-wave infrared (SWIR) bands in assessing their long-term calibration stability. In this study, we use the DCC technique to assess the performance of the Terra and Aqua MODIS Collection-6 L1B for RSB 1 3- 7, and 26, with spectral coverage from 0.47 to 2.13 micrometers. Results show relatively stable trends in Terra and Aqua MODIS reflectance for most bands. Careful attention needs to be paid to Aqua band 1, Terra bands 3 and 26 as their trends are larger than 1% during the study time period. We check the feasibility of using the DCC technique to assess the stability in MODIS bands 17-19. The assessment test on response versus scan angle (RVS) calibration shows substantial trend difference for Aqua band 1between different angles of incidence (AOIs). The DCC technique can be used to improve the RVS calibration in the future.

  20. Assessment of the Collection 6 Terra and Aqua MODIS bands 1 and 2 calibration performance

    NASA Astrophysics Data System (ADS)

    Wu, A.; Chen, X.; Angal, A.; Li, Y.; Xiong, X.

    2015-09-01

    MODIS (Moderate Resolution Imaging Spectroradiometer) is a key sensor aboard the Terra (EOS AM) and Aqua (EOS PM) satellites. MODIS collects data in 36 spectral bands and generates over 40 data products for land, atmosphere, cryosphere and oceans. MODIS bands 1 and 2 have nadir spatial resolution of 250 m, compared with 500 m for bands 3 to 7 and 1000 m for all the remaining bands, and their measurements are crucial to derive key land surface products. This study evaluates the calibration performance of the Collection-6 L1B for both Terra and Aqua MODIS bands 1 and 2 using three vicarious approaches. The first and second approaches focus on stability assessment using data collected from two pseudo-invariant sites, Libya 4 desert and Antarctic Dome C snow surface. The third approach examines the relative stability between Terra and Aqua in reference to a third sensor from a series of NOAA 15-19 Advanced Very High Resolution Radiometer (AVHRR). The comparison is based on measurements from MODIS and AVHRR Simultaneous Nadir Overpasses (SNO) over a thirteen-year period from 2002 to 2015. Results from this study provide a quantitative assessment of Terra and Aqua MODIS bands 1 and 2 calibration stability and the relative calibration differences between the two sensors.

  1. Cell Adhesion and in Vivo Osseointegration of Sandblasted/Acid Etched/Anodized Dental Implants

    PubMed Central

    Kim, Mu-Hyon; Park, Kyeongsoon; Choi, Kyung-Hee; Kim, Soo-Hong; Kim, Se Eun; Jeong, Chang-Mo; Huh, Jung-Bo

    2015-01-01

    The authors describe a new type of titanium (Ti) implant as a Modi-anodized (ANO) Ti implant, the surface of which was treated by sandblasting, acid etching (SLA), and anodized techniques. The aim of the present study was to evaluate the adhesion of MG-63 cells to Modi-ANO surface treated Ti in vitro and to investigate its osseointegration characteristics in vivo. Four different types of Ti implants were examined, that is, machined Ti (control), SLA, anodized, and Modi-ANO Ti. In the cell adhesion study, Modi-ANO Ti showed higher initial MG-63 cell adhesion and induced greater filopodia growth than other groups. In vivo study in a beagle model revealed the bone-to-implant contact (BIC) of Modi-ANO Ti (74.20% ± 10.89%) was much greater than those of machined (33.58% ± 8.63%), SLA (58.47% ± 12.89), or ANO Ti (59.62% ± 18.30%). In conclusion, this study demonstrates that Modi-ANO Ti implants produced by sandblasting, acid etching, and anodizing improve cell adhesion and bone ongrowth as compared with machined, SLA, or ANO Ti implants. These findings suggest that the application of Modi-ANO surface treatment could improve the osseointegration of dental implant. PMID:25955650

  2. Retrieval of ice cloud properties using an optimal estimation algorithm and MODIS infrared observations: 1. Forward model, error analysis, and information content

    NASA Astrophysics Data System (ADS)

    Wang, Chenxi; Platnick, Steven; Zhang, Zhibo; Meyer, Kerry; Yang, Ping

    2016-05-01

    An optimal estimation (OE) retrieval method is developed to infer three ice cloud properties simultaneously: optical thickness (τ), effective radius (reff), and cloud top height (h). This method is based on a fast radiative transfer (RT) model and infrared (IR) observations from the MODerate resolution Imaging Spectroradiometer (MODIS). This study conducts thorough error and information content analyses to understand the error propagation and performance of retrievals from various MODIS band combinations under different cloud/atmosphere states. Specifically, the algorithm takes into account four error sources: measurement uncertainty, fast RT model uncertainty, uncertainties in ancillary data sets (e.g., atmospheric state), and assumed ice crystal habit uncertainties. It is found that the ancillary and ice crystal habit error sources dominate the MODIS IR retrieval uncertainty and cannot be ignored. The information content analysis shows that for a given ice cloud, the use of four MODIS IR observations is sufficient to retrieve the three cloud properties. However, the selection of MODIS IR bands that provide the most information and their order of importance varies with both the ice cloud properties and the ambient atmospheric and the surface states. As a result, this study suggests the inclusion of all MODIS IR bands in practice since little a priori information is available.

  3. Retrieval of ice cloud properties using an optimal estimation algorithm and MODIS infrared observations. Part I: Forward model, error analysis, and information content.

    PubMed

    Wang, Chenxi; Platnick, Steven; Zhang, Zhibo; Meyer, Kerry; Yang, Ping

    2016-05-27

    An optimal estimation (OE) retrieval method is developed to infer three ice cloud properties simultaneously: optical thickness ( τ ), effective radius ( r eff ), and cloud-top height ( h ). This method is based on a fast radiative transfer (RT) model and infrared (IR) observations from the MODerate resolution Imaging Spectroradiometer (MODIS). This study conducts thorough error and information content analyses to understand the error propagation and performance of retrievals from various MODIS band combinations under different cloud/atmosphere states. Specifically, the algorithm takes into account four error sources: measurement uncertainty, fast RT model uncertainty, uncertainties in ancillary datasets (e.g., atmospheric state), and assumed ice crystal habit uncertainties. It is found that the ancillary and ice crystal habit error sources dominate the MODIS IR retrieval uncertainty and cannot be ignored. The information content analysis shows that, for a given ice cloud, the use of four MODIS IR observations is sufficient to retrieve the three cloud properties. However, the selection of MODIS IR bands that provide the most information and their order of importance varies with both the ice cloud properties and the ambient atmospheric and the surface states. As a result, this study suggests the inclusion of all MODIS IR bands in practice since little a priori information is available.

  4. Indices for estimating fractional snow cover in the western Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Shreve, Cheney M.; Okin, Gregory S.; Painter, Thomas H.

    Snow cover in the Tibetan Plateau is highly variable in space and time and plays a key role in ecological processes of this cold-desert ecosystem. Resolution of passive microwave data is too low for regional-scale estimates of snow cover on the Tibetan Plateau, requiring an alternate data source. Optically derived snow indices allow for more accurate quantification of snow cover using higher-resolution datasets subject to the constraint of cloud cover. This paper introduces a new optical snow index and assesses four optically derived MODIS snow indices using Landsat-based validation scenes: MODIS Snow-Covered Area and Grain Size (MODSCAG), Relative Multiple Endmember Spectral Mixture Analysis (RMESMA), Relative Spectral Mixture Analysis (RSMA) and the normalized-difference snow index (NDSI). Pearson correlation coefficients were positively correlated with the validation datasets for all four optical snow indices, suggesting each provides a good measure of total snow extent. At the 95% confidence level, linear least-squares regression showed that MODSCAG and RMESMA had accuracy comparable to validation scenes. Fusion of optical snow indices with passive microwave products, which provide snow depth and snow water equivalent, has the potential to contribute to hydrologic and energy-balance modeling in the Tibetan Plateau.

  5. MODIS NDVI and vegetation phenology dynamics in the Inner Mongolia grassland

    NASA Astrophysics Data System (ADS)

    Gong, Z.; Kawamura, K.; Ishikawa, N.; Goto, M.; Wulan, T.; Alateng, D.; Yin, T.; Ito, Y.

    2015-08-01

    The Inner Mongolia grassland, one of the most important grazing regions in China, has long been threatened by land degradation and desertification, mainly due to overgrazing. To understand vegetation responses over the last decade, this study evaluated trends in vegetation cover and phenology dynamics in the Inner Mongolia grassland by applying a normalized difference vegetation index (NDVI) time series obtained by the Terra Moderate Resolution Imaging Spectroradiometer (MODIS) during 2002-2014. The results showed that the cumulative annual NDVI increased to over 77.10 % in the permanent grassland region (2002-2014). The mean value of the total change showed that the start of season (SOS) date and the peak vegetation productivity date of the season (POS) had advanced by 5.79 and 2.43 days respectively. The end of season (EOS) was delayed by 5.07 days. These changes lengthened the season by 10.86 days. Our results also confirmed that grassland changes are closely related to spring precipitation (February-May) and increasing temperature during the growing period because of the global warming. Overall, productivity in the Inner Mongolia Autonomous Region tends to increase, but in some grassland areas with grazing, land degradation is ongoing.

  6. Influence of Aerosols And Surface Reflectance On NO2 Retrieval Over China From 2005 to 2015

    NASA Astrophysics Data System (ADS)

    Liu, M.; Lin, J.

    2016-12-01

    Satellite observation is a powerful way to analysis annual and seasonal variations of nitrogen dioxide (NO2). However, much retrieval of vertical column densities (VCDs) of normally do not explicitly account for aerosol optical effects and surface reflectance anisotropy that vary with space and time. In traditional retrieval, aerosols' effects are often considered as cloud. However, China has complicated aerosols type and aerosol loading. Their optical properties may be very different from the cloud. Furthermore, China has undergone big changes in land use type in recent 10 years. Traditional climatology surface reflectance data may not have representation. In order to study spatial-temporal variation of and influences of these two factors on variations and trends, we use an improved retrieval method of VCDs over China, called the POMINO, based on measurements from the Ozone Monitoring Instrument (OMI), and we compare the results of without aerosol, without surface reflectance treatments and without both to the original POMINO product from 2005 to 2015. Furthermore, we will study correspondent spatial-temporal variations of aerosols, represented by MODIS aerosol optical depth (AOD) data and CALIOP extinction data; surface reflectance, represented by MODIS bidirectional reflectance distribution function (BRDF) data.

  7. MODIS Views Variations in Cloud Types

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This MODIS image, centered over the Great Lakes region in North America, shows a variety of cloud types. The clouds at the top of the image, colored pink, are cold, high-level snow and ice clouds, while the neon green clouds are lower-level water clouds. Because different cloud types reflect and emit radiant energy differently, scientists can use MODIS' unique data set to measure the sizes of cloud particles and distinguish between water, snow, and ice clouds. This scene was acquired on Feb. 24, 2000, and is a red, green, blue composite of bands 1, 6, and 31 (0.66, 1.6, and 11.0 microns, respectively). Image by Liam Gumley, Space Science and Engineering Center, University of Wisconsin-Madison

  8. Different combination of MODIS land surface temperature data for daily air surface temperature estimation in North West Vietnam

    NASA Astrophysics Data System (ADS)

    Noi Phan, Thanh; Kappas, Martin; Degener, Jan

    2017-04-01

    Land air temperature (Ta) with high spatial and temporal resolution plays an important role in various applications, such as: crop growth monitoring and simulations, environmental risk models, weather forecasting, land use cover change, urban heat islands, etc. Daily Ta (including Ta-max, Ta-min, and Ta-mean) is usually measured by weather stations (often at 2 m above the ground); thus, Ta is limited in spatial coverage. Satellite data, especially MODIS land surface temperature (LST) data at 1 kilometre and high temporal resolution (4 times per day, combining TERRA and AQUA) are free available and easily to access. However, there is a difference between Ta and LST because of the complex surface energy budget and multiple related variables between them. Several researches states that the Ta could be estimated using MODIS LST data with accurate of 2-4oC. However, there are only a handful of studies using dynamically combining of four MODIS LST data for Ta estimation. In this study, we evaluated all 15 - possible - combinations of four MODIS LST using support vector machine (SVM) and random forests (RFs) models. MODIS LST and Ta data was extracted from 4 weather stations in rural area in North West Vietnam from 2010 to 2012 (three years). Our results indicated that the accuracy of Ta estimation was affected by the different combination and the combined data (multiple variables) gave better results than those of single LST (solely variable), the best result was achieved (coefficient of determination (R2) = 0.95, 0.97, 0.97; root mean square error (RMSE) =1.7, 1.4, 1.2 oC for Ta-min, Ta-max, Ta-mean respectively) when all four LSTs were combined and RFs performed better than SVM.

  9. Statistical Inter-comparison Analysis of MODIS, MISR, and AERONET Over the Middle East and North Africa

    NASA Astrophysics Data System (ADS)

    Farahat, A.; El-Askary, H. M.; Kalashnikova, O. V.; Garay, M. J.

    2016-12-01

    Several space-borne and ground based sensors can provide long-standing monitoring of aerosols characteristics, but inconsistencies among different sensors reduce data reliability and lead to uncertainty in analysing long-term data. In this study, we perform statistical inter-comparison of the Aerosol Optical Depth (AOD) among MISR, MODIS/Terra, MODIS/Aqua and Aerosol Robotic Network (AERONET) over seven sites located in the Middle East and North Africa during the period (1995 -2015). The sites are categorized into two regions based on their geographic location and possible dominate particles composition. Compared to MISR, MODIS and AERONET AOD data retrievals indicate larger uncertainty over all sites with a larger daily variability in MODIS measurements. In general, MISR and MODIS AOD matches during high dust seasons but MODIS tends to under estimate the AOD values on low dust seasons. While Terra measurements give a negative trend over the time series at the dust-dominated sites, Aqua, MISR and AERONET show a positive trend. In general, MODIS/Aqua displays stable measurements over the time line at the dust dominated sites. MODIS/Terra, MODIS/Aqua and MISR display a positive trend over Cairo_EMA site while AERONET shows a negative trend over the time line. Terra was found to overestimate AOD during 2002 - 2004 and underestimates it after 2004. We also observe a deviation between Aqua and Terra regardless of the region and data sampling. Excluding Bahrain and Cairo_EMA for low data retrievals the performance of MODIS tends to be similar over all region with 68 % of the retrieved AOD values fall within the confidence range of the AERONET matched data, within global averaged level (> 66 %). MISR indicated better data performance with 72 % falls within the same confidence range. Complimentary MISR and MODIS data was found to provide a better picture of dust storms evolution over Arabian Peninsula and the Middle East. Acknowledgement The authors would like to acknowledge the support provided by the Deanship of Scientific Research (DSR) at the King Fahd University of Petroleum and Minerals (KFUPM) for funding this work through project No. IN141051.

  10. Intima-media thickness and endothelial dysfunction in GCK and HNF1A-MODY patients.

    PubMed

    Szopa, Magdalena; Osmenda, Grzegorz; Wilk, Grzegorz; Matejko, Bartłomiej; Skupien, Jan; Zapala, Barbara; Młynarski, Wojciech; Guzik, Tomasz; Malecki, Maciej T

    2015-03-01

    Mutations in the glucokinase (GCK) gene, along with hepatocyte nuclear factor 1A (HNF1A) gene mutations, are the most frequent cause of maturity-onset diabetes of the young (MODY). GCK-MODY patients are typically characterized by a moderate fasting hyperglycemia; however, little is known about atherosclerosis and intermediate-related phenotypes in these subjects. To examine carotid artery intima-media thickness (IMT) and endothelial function assessed by brachial artery flow-mediated dilatation (FMD) in GCK gene mutations carriers and HNF1A-MODY. A total of 64 subjects with GCK gene mutations, and 52 HNF1A gene mutation carriers as well as 53 nondiabetic controls were examined. IMT and FMD were assessed by ultrasonography. Appropriate statistical tests were performed to assess differences between the groups, and multivariate linear regression was done for the association with IMT and FMD. The clinical characteristics of all groups were similar with the mean age at examination of 35.1, 41.1, and 39.5 years for GCK, HNF1A and the control group respectively. The highest mean IMT value was in the HNF1A-MODY group: 7.0±1.4 mm, whereas it reached 6.3±1.4 mm in GCK mutation carriers and 6.3±1.3 mm in controls (P=0.008). After adjustment for possible clinical and biochemical cofounders, IMT remained higher in HNF1A-MODY patients as compared with GCK-MODY patients (P=0.02) and controls (P=0.0003). FMD was significantly lower in HNF1A (9.9±4.6%) and GCK-MODY (11.1±4.6%) patients in comparison with controls (13.9±4.7%; P=0.0001). After adjustment, FMD remained lower in HNF1A-MODY (P=0.0005) and GCK-MODY patients (P=0.01) as compared with controls. Both examined MODY groups demonstrated evidence of endothelial dysfunction. In addition, HNF1-MODY patients seem to be more prone to an early atherosclerotic phenotype. © 2015 European Society of Endocrinology.

  11. Combining ground-based measurements and satellite-based spectral vegetation indices to track biomass accumulation in post-fire chaparral

    NASA Astrophysics Data System (ADS)

    Uyeda, K. A.; Stow, D. A.; Roberts, D. A.; Riggan, P. J.

    2015-12-01

    Multi-temporal satellite imagery can provide valuable information on patterns of vegetation growth over large spatial extents and long time periods, but corresponding ground-referenced biomass information is often difficult to acquire, especially at an annual scale. In this study, I test the relationship between annual biomass estimated using shrub growth rings and metrics of seasonal growth derived from Moderate Resolution Imaging Spectroradiometer (MODIS) spectral vegetation indices (SVIs) for a small area of southern California chaparral to evaluate the potential for mapping biomass at larger spatial extents. The site had most recently burned in 2002, and annual biomass accumulation measurements were available from years 5 - 11 post-fire. I tested metrics of seasonal growth using six SVIs (Normalized Difference Vegetation Index, Enhanced Vegetation Index, Soil Adjusted Vegetation Index, Normalized Difference Water Index, Normalized Difference Infrared Index 6, and Vegetation Atmospherically Resistant Index). While additional research would be required to determine which of these metrics and SVIs are most promising over larger spatial extents, several of the seasonal growth metrics/ SVI combinations have a very strong relationship with annual biomass, and all SVIs have a strong relationship with annual biomass for at least one of the seasonal growth metrics.

  12. Scaling Estimates of Vegetation Structure in Amazonian Tropical Forests Using Multi-Angle MODIS Observations

    NASA Technical Reports Server (NTRS)

    Mendes De Moura, Yhasmin; Hilker, Thomas; Goncalves, Fabio Guimaraes; Galvao, Lenio Soares; Roberto dos Santos, Joao; Lyapustin, Alexei; Maeda, Eduardo Eiji; de Jesus Silva, Camila Valeria

    2016-01-01

    Detailed knowledge of vegetation structure is required for accurate modelling of terrestrial ecosystems, but direct measurements of the three dimensional distribution of canopy elements, for instance from LiDAR, are not widely available. We investigate the potential for modelling vegetation roughness, a key parameter for climatological models, from directional scattering of visible and near-infrared (NIR) reflectance acquired from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS). We compare our estimates across different tropical forest types to independent measures obtained from: (1) airborne laser scanning (ALS), (2) spaceborne Geoscience Laser Altimeter System (GLAS)/ICESat, and (3) the spaceborne SeaWinds/QSCAT. Our results showed linear correlation between MODIS-derived anisotropy to ALS-derived entropy (r(exp 2)= 0.54, RMSE= 0.11), even in high biomass regions. Significant relationships were also obtained between MODIS-derived anisotropy and GLAS-derived entropy(0.52 less than or equal to r(exp 2) less than or equal to 0.61; p less than 0.05), with similar slopes and offsets found throughout the season, and RMSE between 0.26 and 0.30 (units of entropy). The relationships between the MODIS-derived anisotropy and backscattering measurements (sigma(sup 0)) from SeaWinds/QuikSCAT presented an r(exp 2) of 0.59 and a RMSE of 0.11. We conclude that multi-angular MODIS observations are suitable to extrapolate measures of canopy entropy across different forest types, providing additional estimates of vegetation structure in the Amazon.

  13. Cloud vertical profiles derived from CALIPSO and CloudSat and a comparison with MODIS derived clouds

    NASA Astrophysics Data System (ADS)

    Kato, S.; Sun-Mack, S.; Miller, W. F.; Rose, F. G.; Minnis, P.; Wielicki, B. A.; Winker, D. M.; Stephens, G. L.; Charlock, T. P.; Collins, W. D.; Loeb, N. G.; Stackhouse, P. W.; Xu, K.

    2008-05-01

    CALIPSO and CloudSat from the a-train provide detailed information of vertical distribution of clouds and aerosols. The vertical distribution of cloud occurrence is derived from one month of CALIPSO and CloudSat data as a part of the effort of merging CALIPSO, CloudSat and MODIS with CERES data. This newly derived cloud profile is compared with the distribution of cloud top height derived from MODIS on Aqua from cloud algorithms used in the CERES project. The cloud base from MODIS is also estimated using an empirical formula based on the cloud top height and optical thickness, which is used in CERES processes. While MODIS detects mid and low level clouds over the Arctic in April fairly well when they are the topmost cloud layer, it underestimates high- level clouds. In addition, because the CERES-MODIS cloud algorithm is not able to detect multi-layer clouds and the empirical formula significantly underestimates the depth of high clouds, the occurrence of mid and low-level clouds is underestimated. This comparison does not consider sensitivity difference to thin clouds but we will impose an optical thickness threshold to CALIPSO derived clouds for a further comparison. The effect of such differences in the cloud profile to flux computations will also be discussed. In addition, the effect of cloud cover to the top-of-atmosphere flux over the Arctic using CERES SSF and FLASHFLUX products will be discussed.

  14. Terra and Aqua MODIS Thermal Emissive Bands On-Orbit Calibration and Performance

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong; Wu, Aisheng; Wenny, Brian N.; Madhavan, Sriharsha; Wang, Zhipeng; Li, Yonghong; Chen, Na; Barnes, William L.; Salomonson, Vincent V.

    2015-01-01

    Since launch, the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on the Terra and Aqua spacecraft have operated successfully for more than 14 and 12 years, respectively. A key instrument for National Aeronautics and Space Administration Earth Observing System missions, MODIS was designed to make continuous observations for studies of Earth's land, ocean, and atmospheric properties and to extend existing data records from heritage Earth observing sensors. The 16 thermal emissive bands (TEBs) (3.75-14.24 micrometers) are calibrated on orbit using a temperature controlled blackbody (BB). Both Terra and Aqua MODIS BBs have displayed minimal drift over the mission lifetime, and the seasonal variations of the BB temperature are extremely small in Aqua MODIS. The long-term gain and noise equivalent difference in temperature performance of the 160 TEB detectors on both MODIS instruments have been well behaved and generally very stable. Small but noticeable variations of Aqua MODIS bands 33-36 (13.34-14.24 micrometer) response in recent years are primarily due to loss of temperature control margin of its passive cryoradiative cooler. As a result, fixed calibration coefficients, previously used by bands when the BB temperature is above their saturation temperatures, are replaced by the focal-plane-temperature-dependent calibration coefficients. This paper presents an overview of the MODIS TEB calibration, the on-orbit performance, and the challenging issues likely to impact the instruments as they continue operating well past their designed lifetime of six years.

  15. Response to Toward Unified Satellite Climatology of Aerosol Properties. 3; MODIS versus MISR versus AERONET

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.; Garay, Michael J.; Nelson, David L.; Levy, Robert C.; Bull, Michael A.; Diner, David J.; Martonchik, John V.; Hansen, Earl G.; Remer, Lorraine A.; Tanre, Didler

    2010-01-01

    A recent paper by Mishchenko et al. compares near-coincident MISR, MODIS, and AERONET aerosol optical depth (AOD), and gives a much less favorable impression of the utility of the satellite products than that presented by the instrument teams and other groups. We trace the reasons for the differing pictures to whether known and previously documented limitations of the products are taken into account in the assessments. Specifically, the analysis approaches differ primarily in (1) the treatment of outliers, (2) the application of absolute vs. relative criteria for testing agreement, and (3) the ways in which seasonally varying spatial distributions of coincident retrievals are taken into account. Mishchenko et al. also do not distinguish between observational sampling differences and retrieval algorithm error. We assess the implications of the different analysis approaches, and cite examples demonstrating how the MISR and MODIS aerosol products have been applied successfully to a range of scientific investigations.

  16. Long-term vegetation activity trends in the Iberian Peninsula and The Balearic Islands using high spatial resolution NOAA-AVHRR data (1981 - 2015).

    NASA Astrophysics Data System (ADS)

    Martin-Hernandez, Natalia; Vicente-Serrano, Sergio; Azorin-Molina, Cesar; Begueria-Portugues, Santiago; Reig-Gracia, Fergus; Zabalza-Martínez, Javier

    2017-04-01

    We have analysed trends in the Normalized Difference Vegetation Index (NDVI) in the Iberian Peninsula and The Balearic Islands over the period 1981 - 2015 using a new high resolution data set from the entire available NOAA - AVHRR images (IBERIAN NDVI dataset). After a complete processing including geocoding, calibration, cloud removal, topographic correction and temporal filtering, we obtained bi-weekly time series. To assess the accuracy of the new IBERIAN NDVI time-series, we have compared temporal variability and trends of NDVI series with those results reported by GIMMS 3g and MODIS (MOD13A3) NDVI datasets. In general, the IBERIAN NDVI showed high reliability with these two products but showing higher spatial resolution than the GIMMS dataset and covering two more decades than the MODIS dataset. Using the IBERIAN NDVI dataset, we analysed NDVI trends by means of the non-parametric Mann-Kendall test and Theil-Sen slope estimator. In average, vegetation trends in the study area show an increase over the last decades. However, there are local spatial differences: the main increase has been recorded in humid regions of the north of the Iberian Peninsula. The statistical techniques allow finding abrupt and gradual changes in different land cover types during the analysed period. These changes are related with human activity due to land transformations (from dry to irrigated land), land abandonment and forest recovery.

  17. Marine Boundary Layer Cloud Property Retrievals from High-Resolution ASTER Observations: Case Studies and Comparison with Terra MODIS

    NASA Technical Reports Server (NTRS)

    Werner, Frank; Wind, Galina; Zhang, Zhibo; Platnick, Steven; Di Girolamo, Larry; Zhao, Guangyu; Amarasinghe, Nandana; Meyer, Kerry

    2016-01-01

    A research-level retrieval algorithm for cloud optical and microphysical properties is developed for the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) aboard the Terra satellite. It is based on the operational MODIS algorithm. This paper documents the technical details of this algorithm and evaluates the retrievals for selected marine boundary layer cloud scenes through comparisons with the operational MODIS Data Collection 6 (C6) cloud product. The newly developed, ASTERspecific cloud masking algorithm is evaluated through comparison with an independent algorithm reported in Zhao and Di Girolamo (2006). To validate and evaluate the cloud optical thickness (tau) and cloud effective radius (r(sub eff)) from ASTER, the high-spatial-resolution ASTER observations are first aggregated to the same 1000m resolution as MODIS. Subsequently, tau(sub aA) and r(sub eff, aA) retrieved from the aggregated ASTER radiances are compared with the collocated MODIS retrievals. For overcast pixels, the two data sets agree very well with Pearson's product-moment correlation coefficients of R greater than 0.970. However, for partially cloudy pixels there are significant differences between r(sub eff, aA) and the MODIS results which can exceed 10 micrometers. Moreover, it is shown that the numerous delicate cloud structures in the example marine boundary layer scenes, resolved by the high-resolution ASTER retrievals, are smoothed by the MODIS observations. The overall good agreement between the research-level ASTER results and the operational MODIS C6 products proves the feasibility of MODIS-like retrievals from ASTER reflectance measurements and provides the basis for future studies concerning the scale dependency of satellite observations and three-dimensional radiative effects.

  18. Calibration of the DSCOVR EPIC Visible and NIR Channels using MODIS Terra and Aqua Data and EPIC Lunar Observations

    NASA Technical Reports Server (NTRS)

    Geogdzhayev, Igor V.; Marshak, Alexander

    2018-01-01

    The unique position of the Deep Space Climate Observatory (DSCOVR) Earth Polychromatic Imaging Camera (EPIC) at the Lagrange 1 point makes an important addition to the data from currently operating low Earth orbit observing instruments. EPIC instrument does not have an onboard calibration facility. One approach to its calibration is to compare EPIC observations to the measurements from polar-orbiting radiometers. Moderate Resolution Imaging Spectroradiometer (MODIS) is a natural choice for such comparison due to its well-established calibration record and wide use in remote sensing. We use MODIS Aqua and Terra L1B 1km reflectances to infer calibration coefficients for four EPIC visible and NIR channels: 443, 551, 680 and 780 nm. MODIS and EPIC measurements made between June 2015 and 2016 are employed for comparison. We first identify favorable MODIS pixels with scattering angle matching temporarily collocated EPIC observations. Each EPIC pixel is then spatially collocated to a subset of the favorable MODIS pixels within 25 km radius. Standard deviation of the selected MODIS pixels as well as of the adjacent EPIC pixels is used to find the most homogeneous scenes. These scenes are then used to determine calibration coefficients using a linear regression between EPIC counts/sec and reflectances in the close MODIS spectral channels. We present thus inferred EPIC calibration coefficients and discuss sources of uncertainties. The lunar EPIC observations are used to calibrate EPIC O2 absorbing channels (688 and 764 nm), assuming that there is a small difference between moon reflectances separated by approx.10 nm in wavelength provided the calibration factors of the red (680 nm) and near-IR (780 nm) are known from comparison between EPIC and MODIS.

  19. Updates on the development of Deep Blue aerosol algorithm for constructing consistent long-term data records from MODIS to VIIRS

    NASA Astrophysics Data System (ADS)

    Hsu, N. Y. C.; Sayer, A. M.; Lee, J.; Kim, W. V.

    2017-12-01

    The impacts of natural and anthropogenic sources of air pollution on climate and human health have continued to gain attention from the scientific community. In order to facilitate these effects, high quality consistent long-term global aerosol data records from satellites are essential. Several EOS-era instruments (e.g., SeaWiFS, MODIS, and MISR) are able to provide such information with a high degree of fidelity. However, with the aging MODIS sensors and the launch of the VIIRS instrument on Suomi NPP in late 2011, the continuation of long-term aerosol data records suitable for climate studies from MODIS to VIIRS is needed urgently. Recently, we have successfully modified our MODIS Deep Blue algorithm to process the VIIRS data. Extensive works were performed in refining the surface reflectance determination scheme to account for the wavelength differences between MODIS and VIIRS. Better aerosol models (including non-spherical dust) are also now implemented in our VIIRS algorithm compared to the MODIS C6 algorithm. We will show the global (land and ocean) distributions of various aerosol products from Version 1 of the VIIRS Deep Blue data set. The preliminary validation results of these new VIIRS Deep Blue aerosol products using data from AERONET sunphotometers over land and ocean will be discussed. We will also compare the monthly averaged Deep Blue aerosol optical depth (AOD) from VIIRS with the MODIS C6 products to investigate if any systematic biases may exist between MODIS C6 and VIIRS AOD. The Version 1 VIIRS Deep Blue aerosol products are currently scheduled to be released to the public in 2018.

  20. Marine boundary layer cloud property retrievals from high-resolution ASTER observations: case studies and comparison with Terra MODIS

    NASA Astrophysics Data System (ADS)

    Werner, Frank; Wind, Galina; Zhang, Zhibo; Platnick, Steven; Di Girolamo, Larry; Zhao, Guangyu; Amarasinghe, Nandana; Meyer, Kerry

    2016-12-01

    A research-level retrieval algorithm for cloud optical and microphysical properties is developed for the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) aboard the Terra satellite. It is based on the operational MODIS algorithm. This paper documents the technical details of this algorithm and evaluates the retrievals for selected marine boundary layer cloud scenes through comparisons with the operational MODIS Data Collection 6 (C6) cloud product. The newly developed, ASTER-specific cloud masking algorithm is evaluated through comparison with an independent algorithm reported in [Zhao and Di Girolamo(2006)]. To validate and evaluate the cloud optical thickness (τ) and cloud effective radius (reff) from ASTER, the high-spatial-resolution ASTER observations are first aggregated to the same 1000 m resolution as MODIS. Subsequently, τaA and reff, aA retrieved from the aggregated ASTER radiances are compared with the collocated MODIS retrievals. For overcast pixels, the two data sets agree very well with Pearson's product-moment correlation coefficients of R > 0.970. However, for partially cloudy pixels there are significant differences between reff, aA and the MODIS results which can exceed 10 µm. Moreover, it is shown that the numerous delicate cloud structures in the example marine boundary layer scenes, resolved by the high-resolution ASTER retrievals, are smoothed by the MODIS observations. The overall good agreement between the research-level ASTER results and the operational MODIS C6 products proves the feasibility of MODIS-like retrievals from ASTER reflectance measurements and provides the basis for future studies concerning the scale dependency of satellite observations and three-dimensional radiative effects.

  1. Grassland Npp Monitoring Based on Multi-Source Remote Sensing Data Fusion

    NASA Astrophysics Data System (ADS)

    Cai, Y. R.; Zheng, J. H.; Du, M. J.; Mu, C.; Peng, J.

    2018-04-01

    Vegetation is an important part of the terrestrial ecosystem. It plays an important role in the energy and material exchange of the ground-atmosphere system and is a key part of the global carbon cycle process.Climate change has an important influence on the carbon cycle of terrestrial ecosystems. Net Primary Productivity (Net Primary Productivity)is an important parameter for evaluating global terrestrial ecosystems. For the Xinjiang region, the study of grassland NPP has gradually become a hot issue in the ecological environment.Increasing the estimation accuracy of NPP is of great significance to the development of the ecosystem in Xinjiang. Based on the third-generation GIMMS AVHRR NDVI global vegetation dataset and the MODIS NDVI (MOD13A3) collected each month by the United States Atmospheric and Oceanic Administration (NOAA),combining the advantages of different remotely sensed datasets, this paper obtained the maximum synthesis fusion for New normalized vegetation index (NDVI) time series in 2006-2015.Analysis of Net Primary Productivity of Grassland Vegetation in Xinjiang Using Improved CASA Model The method described in this article proves the feasibility of applying data processing, and the accuracy of the NPP calculation using the fusion processed NDVI has been greatly improved. The results show that: (1) The NPP calculated from the new normalized vegetation index (NDVI) obtained from the fusion of GIMMS AVHRR NDVI and MODIS NDVI is significantly higher than the NPP calculated from these two raw data; (2) The grassland NPP in Xinjiang Interannual changes show an overall increase trend; interannual changes in NPP have a certain relationship with precipitation.

  2. Atmospheric correction at AERONET locations: A new science and validation data set

    USGS Publications Warehouse

    Wang, Y.; Lyapustin, A.I.; Privette, J.L.; Morisette, J.T.; Holben, B.

    2009-01-01

    This paper describes an Aerosol Robotic Network (AERONET)-based Surface Reflectance Validation Network (ASRVN) and its data set of spectral surface bidirectional reflectance and albedo based on Moderate Resolution Imaging Spectroradiometer (MODIS) TERRA and AQUA data. The ASRVN is an operational data collection and processing system. It receives 50 ?? 50 km2; subsets of MODIS level 1B (L1B) data from MODIS adaptive processing system and AERONET aerosol and water-vapor information. Then, it performs an atmospheric correction (AC) for about 100 AERONET sites based on accurate radiative-transfer theory with complex quality control of the input data. The ASRVN processing software consists of an L1B data gridding algorithm, a new cloud-mask (CM) algorithm based on a time-series analysis, and an AC algorithm using ancillary AERONET aerosol and water-vapor data. The AC is achieved by fitting the MODIS top-of-atmosphere measurements, accumulated for a 16-day interval, with theoretical reflectance parameterized in terms of the coefficients of the Li SparseRoss Thick (LSRT) model of the bidirectional reflectance factor (BRF). The ASRVN takes several steps to ensure high quality of results: 1) the filtering of opaque clouds by a CM algorithm; 2) the development of an aerosol filter to filter residual semitransparent and subpixel clouds, as well as cases with high inhomogeneity of aerosols in the processing area; 3) imposing the requirement of the consistency of the new solution with previously retrieved BRF and albedo; 4) rapid adjustment of the 16-day retrieval to the surface changes using the last day of measurements; and 5) development of a seasonal backup spectral BRF database to increase data coverage. The ASRVN provides a gapless or near-gapless coverage for the processing area. The gaps, caused by clouds, are filled most naturally with the latest solution for a given pixel. The ASRVN products include three parameters of the LSRT model (kL, kG, and kV), surface albedo, normalized BRF (computed for a standard viewing geometry, VZA = 0, SZA = 45??), and instantaneous BRF (or one-angle BRF value derived from the last day of MODIS measurement for specific viewing geometry) for the MODIS 500-m bands 17. The results are produced daily at a resolution of 1 km in gridded format. We also provide a cloud mask, a quality flag, and a browse bitmap image. The ASRVN data set, including 6 years of MODIS TERRA and 1.5 years of MODIS AQUA data, is available now as a standard MODIS product (MODASRVN) which can be accessed through the Level 1 and Atmosphere Archive and Distribution System website ( http://ladsweb.nascom.nasa.gov/data/search.html). It can be used for a wide range of applications including validation analysis and science research. ?? 2006 IEEE.

  3. An Imager Gaussian Process Machine Learning Methodology for Cloud Thermodynamic Phase classification

    NASA Astrophysics Data System (ADS)

    Marchant, B.; Platnick, S. E.; Meyer, K.

    2017-12-01

    The determination of cloud thermodynamic phase from MODIS and VIIRS instruments is an important first step in cloud optical retrievals, since ice and liquid clouds have different optical properties. To continue improving the cloud thermodynamic phase classification algorithm, a machine-learning approach, based on Gaussian processes, has been developed. The new proposed methodology provides cloud phase uncertainty quantification and improves the algorithm portability between MODIS and VIIRS. We will present new results, through comparisons between MODIS and CALIOP v4, and for VIIRS as well.

  4. Modeling the Impact of Drizzle and 3D Cloud Structure on Remote Sensing of Effective Radius

    NASA Technical Reports Server (NTRS)

    Platnick, Steven; Zinner, Tobias; Ackerman, S.

    2008-01-01

    Remote sensing of cloud particle size with passive sensors like MODIS is an important tool for cloud microphysical studies. As a measure of the radiatively relevant droplet size, effective radius can be retrieved with different combinations of visible through shortwave infrared channels. MODIS observations sometimes show significantly larger effective radii in marine boundary layer cloud fields derived from the 1.6 and 2.1 pm channel observations than for 3.7 pm retrievals. Possible explanations range from 3D radiative transport effects and sub-pixel cloud inhomogeneity to the impact of drizzle formation on the droplet distribution. To investigate the potential influence of these factors, we use LES boundary layer cloud simulations in combination with 3D Monte Carlo simulations of MODIS observations. LES simulations of warm cloud spectral microphysics for cases of marine stratus and broken stratocumulus, each for two different values of cloud condensation nuclei density, produce cloud structures comprising droplet size distributions with and without drizzle size drops. In this study, synthetic MODIS observations generated from 3D radiative transport simulations that consider the full droplet size distribution will be generated for each scene. The operational MODIS effective radius retrievals will then be applied to the simulated reflectances and the results compared with the LES microphysics.

  5. Differences in liquid cloud droplet effective radius and number concentration estimates between MODIS Collections 5.1 and 6 over global oceans.

    PubMed

    Rausch, John; Meyer, Kerry; Bennartz, Ralf; Platnick, Steven

    2017-01-01

    Differences in cloud droplet effective radius and cloud droplet number concentration (CDNC) estimates inferred from the Aqua MODIS Collections 5.1 and 6 cloud products (MYD06) are examined for warm clouds over global oceans for the year 2008. Individual pixel level retrievals for both collections are aggregated to 1° × 1° and compared globally and regionally for the three main spectral channel pairs used for MODIS cloud optical property retrievals. Comparisons between both collections are performed for cases in which all three effective radii retrievals are classified by the MODIS Cloud Product as valid. The contribution to the observed differences of several key MYD06 Collection 6 algorithm updates are also explored, with a focus on changes to the surface reflectance model, assumed solar irradiance, above cloud emission, cloud top pressure, and pixel registration. Global results show a neutral to positive (> 50 cm -3 ) change for C6-derived CDNC relative to C5.1 for the 1.6 µm and 2.1 µm channel retrievals, corresponding to a neutral to -2 µm difference in droplet effective radius. For 3.7 µm retrievals, CDNC results show a negative change in the tropics, with differences transitioning toward positive values with increasing latitude spanning -25 to +50 cm -3 related to a +2.5 to -1 µm transition in effective radius. Cloud optical thickness differences were small relative to effective radius, and found to not significantly impact CDNC estimates. Regionally, the magnitude and behavior of the annual CDNC cycle are compared for each effective radius retrieval. Results from this study indicate significant intercollection differences in aggregated values of effective radius due to changes to the pre-computed retrieval lookup tables for ocean scenes, changes to retrieved cloud top pressure, solar irradiance, or above cloud thermal emission, depending upon spectral channel. The observed differences between collections may have implications for existing MODIS derived climatologies and validation studies of effective radius and CDNC.

  6. Can Biomarkers Help Target Maturity-Onset Diabetes of the Young Genetic Testing in Antibody-Negative Diabetes?

    PubMed

    Majidi, Shideh; Fouts, Alexandra; Pyle, Laura; Chambers, Christina; Armstrong, Taylor; Wang, Zhenyuan; Batish, Sat Dev; Klingensmith, Georgeanna; Steck, Andrea K

    2018-02-01

    Maturity-onset diabetes of the young (MODY) is an antibody-negative, autosomal dominant form of diabetes. With the increasing prevalence of diabetes and the expense of MODY testing, markers to identify those who need further genetic testing would be beneficial. We investigated whether HLA genotypes, random C-peptide, and/or high-sensitivity C-reactive protein (hsCRP) levels could be helpful biomarkers for identifying MODY in antibody-negative diabetes. Subjects (N = 97) with diabetes onset ≤age 25, measurable C-peptide (≥0.1 ng/mL), and negative for all four diabetes autoantibodies were enrolled at a large academic center and tested for MODY 1-5 through Athena Diagnostics. A total of 22 subjects had a positive or very likely pathogenic mutation for MODY. Random C-peptide levels were significantly different between MODY-positive and MODY-negative subjects (0.16 nmol/L vs. 0.02 nmol/L; P = 0.02). After adjusting for age and diabetes duration, hsCRP levels were significantly lower in MODY-positive subjects (0.37 mg/L vs. 0.87 mg/L; P = 0.02). Random C-peptide level ≥0.15 nmol/L obtained at ≥6 months after diagnosis had 83% sensitivity for diagnosis of MODY with a negative predictive value of 96%. Receiver operating characteristic curves showed that area under the curve for random C-peptide (0.75) was significantly better than hsCRP (0.54), high-risk HLA DR3/4-DQB1*0302 (0.59), and high-risk HLA/random C-peptide combined (0.54; P = 0.03). Random C-peptide obtained at ≥6 months after diagnosis can be a useful biomarker to identify antibody-negative individuals who need further genetic testing for MODY, whereas hsCRP and HLA do not appear to improve this antibody/C-peptide-based approach.

  7. Intercomparisons of Marine Boundary Layer Cloud Properties from the ARM CAP-MBL Campaign and Two MODIS Cloud Products

    NASA Technical Reports Server (NTRS)

    Zhang, Zhibo; Dong, Xiquan; Xi, Baike; Song, Hua; Ma, Po-Lun; Ghan, Steven J.; Platnick, Steven; Minnis, Patrick

    2017-01-01

    From April 2009 to December 2010, the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program carried out an observational field campaign on Graciosa Island, targeting the marine boundary layer (MBL) clouds over the Azores region. In this paper, we present an inter-comparison of the MBL cloud properties, namely, cloud liquid water path (LWP), cloud optical thickness (COT) and cloud-droplet effective radius (CER), among retrievals from the ARM mobile facility (AMF) and two Moderate Resolution Spectroradiometer (MODIS) cloud products (GSFC-MODIS and CERES-MODIS). A total of 63 daytime single-layer MBL cloud cases are selected for inter-comparison. Comparison of collocated retrievals indicates that the two MODIS cloud products agree well on both COT and CER retrievals, with the correlation coefficient R greater than 0.95 despite their significant difference in spatial sampling. In both MODIS products, the CER retrievals based on the 2.1 micrometers band (CER(sub 2.1)) is significantly smaller than that based on the 3.7 micrometers band (CER(sub 3.7)). The GSFC-MODIS cloud product is collocated and compared with ground-based ARM observations at several temporal spatial scales. In general, the correlation increases with more precise collocation. For the 63 selected MBL cloud cases, the GSFC-MODIS LWP and COT retrievals agree reasonably well with the ground-based observations with no apparent bias and correlation coefficient R around 0.85 and 0.70, respectively. However, GSFC-MODIS CER(sub 3.7) and CER(sub 2.1) retrievals have a lower correlation (R is approximately 0.5) with the ground-based retrievals. For the 63 selected cases, they are on average larger than ground observations by about 1.5 micrometers and 3.0 micrometers, respectively. Taking into account that the MODIS CER retrievals are only sensitive to cloud top reduces the bias only by 0.5 micrometers.

  8. Intercomparisons of marine boundary layer cloud properties from the ARM CAP-MBL campaign and two MODIS cloud products

    NASA Astrophysics Data System (ADS)

    Zhang, Zhibo; Dong, Xiquan; Xi, Baike; Song, Hua; Ma, Po-Lun; Ghan, Steven J.; Platnick, Steven; Minnis, Patrick

    2017-02-01

    From April 2009 to December 2010, the Department of Energy Atmospheric Radiation Measurement (ARM) program carried out an observational field campaign on Graciosa Island, targeting the marine boundary layer (MBL) clouds over the Azores region. In this paper, we present an intercomparison of the MBL cloud properties, namely, cloud liquid water path (LWP), cloud optical thickness (COT), and cloud-droplet effective radius (CER), among retrievals from the ARM mobile facility and two Moderate Resolution Imaging Spectroradiometer (MODIS) cloud products (Goddard Space Flight Center (GSFC)-MODIS and Clouds and Earth's Radiant Energy System-MODIS). A total of 63 daytime single-layer MBL cloud cases are selected for intercomparison. Comparison of collocated retrievals indicates that the two MODIS cloud products agree well on both COT and CER retrievals, with the correlation coefficient R > 0.95, despite their significant difference in spatial sampling. In both MODIS products, the CER retrievals based on the 2.1 µm band (CER2.1) are significantly larger than those based on the 3.7 µm band (CER3.7). The GSFC-MODIS cloud product is collocated and compared with ground-based ARM observations at several temporal-spatial scales. In general, the correlation increases with more precise collocation. For the 63 selected MBL cloud cases, the GSFC-MODIS LWP and COT retrievals agree reasonably well with the ground-based observations with no apparent bias and correlation coefficient R around 0.85 and 0.70, respectively. However, GSFC-MODIS CER3.7 and CER2.1 retrievals have a lower correlation (R 0.5) with the ground-based retrievals. For the 63 selected cases, they are on average larger than ground observations by about 1.5 µm and 3.0 µm, respectively. Taking into account that the MODIS CER retrievals are only sensitive to cloud top reduces the bias only by 0.5 µm.

  9. Comparasion of Cloud Cover restituted by POLDER and MODIS

    NASA Astrophysics Data System (ADS)

    Zeng, S.; Parol, F.; Riedi, J.; Cornet, C.; Thieuxleux, F.

    2009-04-01

    PARASOL and AQUA are two sun-synchronous orbit satellites in the queue of A-Train satellites that observe our earth within a few minutes apart from each other. Aboard these two platforms, POLDER and MODIS provide coincident observations of the cloud cover with very different characteristics. These give us a good opportunity to study the clouds system and evaluate strengths and weaknesses of each dataset in order to provide an accurate representation of global cloud cover properties. This description is indeed of outermost importance to quantify and understand the effect of clouds on global radiation budget of the earth-atmosphere system and their influence on the climate changes. We have developed a joint dataset containing both POLDER and MODIS level 2 cloud products collocated and reprojected on a common sinusoidal grid in order to make the data comparison feasible and veracious. Our foremost work focuses on the comparison of both spatial distribution and temporal variation of the global cloud cover. This simple yet critical cloud parameter need to be clearly understood to allow further comparison of the other cloud parameters. From our study, we demonstrate that on average these two sensors both detect the clouds fairly well. They provide similar spatial distributions and temporal variations:both sensors see high values of cloud amount associated with deep convection in ITCZ, over Indonesia, and in west-central Pacific Ocean warm pool region; they also provide similar high cloud cover associated to mid-latitude storm tracks, to Indian monsoon or to the stratocumulus along the west coast of continents; on the other hand small cloud amounts that typically present over subtropical oceans and deserts in subsidence aeras are well identified by both POLDER and MODIS. Each sensor has its advantages and inconveniences for the detection of a particular cloud types. With higher spatial resolution, MODIS can better detect the fractional clouds thus explaining as one part of a positive bias in any latitude and in any viewing angle with an order of 10% between the POLDER cloud amount and the so-called MODIS "combined" cloud amount. Nevertheless it is worthy to note that a negative bias of about 10% is obtained between the POLDER cloud amount and the MODIS "day-mean" cloud amount. Main differences between the two MODIS cloud amount values are known to be due to the filtering of remaining aerosols or cloud edges. due to both this high spatial resolution of MODIS and the fact that "combined" cloud amount filters cloud edges, we can also explain why appear the high positive bias regions over subtropical ocean in south hemisphere and over east Africa in summer. Thanks to several channels in the thermal infrared spectral domain, MODIS detects probably much better the thin cirrus especially over land, thus causing a general negative bias for ice clouds. The multi-spectral capability of MODIS also allows for a better detection of low clouds over snow or ice, Hence the (POLDER-MODIS) cloud amount difference is often negative over Greenland, Antarctica, and over the continents at middle-high latitudes in spring and autumn associated to the snow coverage. The multi-spectral capability of MODIS also makes the discrimination possible between the biomass burning aerosols and the fractional clouds over the continents. Thus a positive bias appears in central Africa in summer and autumn associated to important biomass burning events. Over transition region between desert and non-desert, the presence of large negative bias (POLDER-MODIS) of cloud amount maybe partly due to MODIS pixel falsely labeled the desert as cloudy, where MODIS algorithm uses static desert mask. This is clearly highlighted in south of Sahara in spring and summer where we find a bias negative with an order of -0.1. What is more, thanks to its multi-angular capability, POLDER can discriminate the sun-glint region thus minimizing the dependence of cloud amount on view angle. It makes the detection of high clouds easier over a black surface thanks to its polarization character.

  10. Progress towards MODIS and VIIRS Cloud Fraction Data Record Continuity

    NASA Astrophysics Data System (ADS)

    Ackerman, S. A.; Frey, R.; Holz, R.; Platnick, S. E.; Heidinger, A. K.

    2016-12-01

    Satellite-derived clear-sky vs. cloudy-sky discrimination at the pixel scale is an important input parameter used in many real-time applications. Cloud fractions, resulting from integrating over time and space, are also critical to the study of recent decadal climate changes. The NASA NPOESS Preparatory Project (NPP) has funded a science team to develop and study the ability to make continuous climate records from MODIS (2000-2020) and VIIRS (2012-2030). The MODAWG project, led by Dr. Steve Platnick of NASA/GSFC, combines elements of the MODIS processing system and the NOAA Algorithm Working Group (AWG) to achieve this goal. This presentation will focus on the cloud masking aspects of MODAWG, derived primarily from the MODIS cloud mask (MOD35). Challenges to continuity of cloud detection due to differences in instrument characteristics will be discussed. Cloud mask results from use of the same (continuity) algorithm will be shown for both MODIS and VIIRS, including comparisons to collocated CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) cloud data.

  11. Remote Sensing of Aerosol and Aerosol Radiative Forcing of Climate from EOS Terra MODIS Instrument

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram; Tanre, Didier; Remer, Lorraine; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The recent launch of EOS-Terra into polar orbit has begun to revolutionize remote sensing of aerosol and their effect on climate. Terra has five instruments, two of them,Moderate Resolution Imaging Spectroradiometer (MODIS) and Multiangle Imaging Spectro-Radiometer (MISR) are designed to monitor global aerosol in two different complementary ways. Here we shall discuss the use of the multispectral measurements of MODIS to derive: (1) the global distribution of aerosol load (and optical thickness) over ocean and land; (2) to measure the impact of aerosol on reflection of sunlight to space; and (3) to measure the ability of aerosol to absorb solar radiation. These measurements have direct applications on the understanding of the effect of aerosol on climate, the ability to predict climate change, and on the monitoring of dust episodes and man-made pollution. Principles of remote sensing of aerosol from MODIS will be discussed and first examples of measurements from MODIS will be provided.

  12. Characterization, validation and intercomparison of clumping index maps from POLDER, MODIS, and MISR satellite data over reference sites

    NASA Astrophysics Data System (ADS)

    Pisek, Jan; He, Liming; Chen, Jing; Govind, Ajit; Sprintsin, Michael; Ryu, Youngryel; Arndt, Stefan; Hocking, Darren; Wardlaw, Timothy; Kuusk, Joel; Oliphant, Andrew; Korhonen, Lauri; Fang, Hongliang; Matteucci, Giorgio; Longdoz, Bernard; Raabe, Kairi

    2015-04-01

    Vegetation foliage clumping significantly alters its radiation environment and therefore affects vegetation growth as well as water and carbon cycles. The clumping index is useful in ecological and meteorological models because it provides new structural information in addition to the effective leaf area index (LAI) retrieved from mono-angle remote sensing and allows accurate separation of sunlit and shaded leaves in the canopy. Not accounting for the foliage clumping in LAI retrieval algorithms leads to substantial underestimation of actual LAI, especially for needleleaf forests. Normalized Difference between Hotspot and Darkspot (NDHD) index has been previously used to retrieve global clumping index maps from POLarization and Directionality of the Earth's Reflectances (POLDER) data at ~6 km resolution, from Moderate Resolution Imaging Spectroradiometer (MODIS) Bidirectional Reflectance Distribution Function (BRDF) product at 500 m resolution. Most recently the algorithm was applied with Multi-angle Imaging SpectroRadiometer (MISR) data at 275 m resolution over selected areas. In this presentation we characterize and intercompare the three products over a set of sites representing diverse biomes and different canopy structures. The products are also directly validated with both in-situ vertical profiles and seasonal trajectories of clumping index. We illustrate that the vertical distribution of foliage and especially the effect of understory needs to be taken into account while validating foliage clumping products from remote sensing products with values measured in the field. Satellite measurements respond to the structural effects near the top of canopies, while ground measurements may be biased by the lower vegetation layers. Additionally, caution should be taken regarding the misclassification in land cover maps as their errors can be propagated into the foliage clumping maps. Our results indicate that MODIS data and MISR data with 275 m in particular can provide good quality clumping index estimates at pertinent scales for modeling local carbon and energy fluxes.

  13. Characterization, Validation and Intercomparison of Clumping Index Maps from POLDER, MODIS, and MISR Satellite Data Over Reference Sites

    NASA Astrophysics Data System (ADS)

    Pisek, J.; He, L.; Chen, J. M.; Govind, A.; Sprintsin, M.; Ryu, Y.; Arndt, S. K.; Hocking, D.; Wardlaw, T.; Kuusk, J.; Oliphant, A. J.; Korhonen, L.; Fang, H.; Matteucci, G.; Longdoz, B.; Raabe, K.

    2015-12-01

    Vegetation foliage clumping significantly alters its radiation environment and therefore affects vegetation growth as well as water and carbon cycles. The clumping index is useful in ecological and meteorological models because it provides new structural information in addition to the effective leaf area index (LAI) retrieved from mono-angle remote sensing and allows accurate separation of sunlit and shaded leaves in the canopy. Not accounting for the foliage clumping in LAI retrieval algorithms leads to substantial underestimation of actual LAI, especially for needleleaf forests. Normalized Difference between Hotspot and Darkspot (NDHD) index has been previously used to retrieve global clumping index maps from POLarization and Directionality of the Earth's Reflectances (POLDER) data at ~6 km resolution, from Moderate Resolution Imaging Spectroradiometer (MODIS) Bidirectional Reflectance Distribution Function (BRDF) product at 500 m resolution. Most recently the algorithm was applied with Multi-angle Imaging SpectroRadiometer (MISR) data at 275 m resolution over selected areas. In this presentation we characterize and intercompare the three products over a set of sites representing diverse biomes and different canopy structures. The products are also directly validated with both in-situ vertical profiles and seasonal trajectories of clumping index. We illustrate that the vertical distribution of foliage and especially the effect of understory needs to be taken into account while validating foliage clumping products from remote sensing products with values measured in the field. Satellite measurements respond to the structural effects near the top of canopies, while ground measurements may be biased by the lower vegetation layers. Additionally, caution should be taken regarding the misclassification in land cover maps as their errors can be propagated into the foliage clumping maps. Our results indicate that MODIS data and MISR data with 275 m resolution in particular can provide good quality clumping index estimates at pertinent scales for modeling local carbon and energy fluxes.

  14. Estimation of daily minimum land surface air temperature using MODIS data in southern Iran

    NASA Astrophysics Data System (ADS)

    Didari, Shohreh; Norouzi, Hamidreza; Zand-Parsa, Shahrokh; Khanbilvardi, Reza

    2017-11-01

    Land surface air temperature (LSAT) is a key variable in agricultural, climatological, hydrological, and environmental studies. Many of their processes are affected by LSAT at about 5 cm from the ground surface (LSAT5cm). Most of the previous studies tried to find statistical models to estimate LSAT at 2 m height (LSAT2m) which is considered as a standardized height, and there is not enough study for LSAT5cm estimation models. Accurate measurements of LSAT5cm are generally acquired from meteorological stations, which are sparse in remote areas. Nonetheless, remote sensing data by providing rather extensive spatial coverage can complement the spatiotemporal shortcomings of meteorological stations. The main objective of this study was to find a statistical model from the previous day to accurately estimate spatial daily minimum LSAT5cm, which is very important in agricultural frost, in Fars province in southern Iran. Land surface temperature (LST) data were obtained using the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Aqua and Terra satellites at daytime and nighttime periods with normalized difference vegetation index (NDVI) data. These data along with geometric temperature and elevation information were used in a stepwise linear model to estimate minimum LSAT5cm during 2003-2011. The results revealed that utilization of MODIS Aqua nighttime data of previous day provides the most applicable and accurate model. According to the validation results, the accuracy of the proposed model was suitable during 2012 (root mean square difference ( RMSD) = 3.07 °C, {R}_{adj}^2 = 87 %). The model underestimated (overestimated) high (low) minimum LSAT5cm. The accuracy of estimation in the winter time was found to be lower than the other seasons ( RMSD = 3.55 °C), and in summer and winter, the errors were larger than in the remaining seasons.

  15. Study on ice cloud optical thickness retrieval with MODIS IR spectral bands

    NASA Astrophysics Data System (ADS)

    Zhang, Hong; Li, Jun

    2005-01-01

    The operational Moderate-Resolution Imaging Spectroradiometer (MODIS) products for cloud properties such as cloud-top pressure (CTP), effective cloud amount (ECA), cloud particle size (CPS), cloud optical thickness (COT), and cloud phase (CP) have been available for users globally. An approach to retrieve COT is investigated using MODIS infrared (IR) window spectral bands (8.5 mm, 11mm, and 12 mm). The COT retrieval from MODIS IR bands has the potential to provide microphysical properties with high spatial resolution during night. The results are compared with those from operational MODIS products derived from the visible (VIS) and near-infrared (NIR) bands during day. Sensitivity of COT to MODIS spectral brightness temperature (BT) and BT difference (BTD) values is studied. A look-up table is created from the cloudy radiative transfer model accounting for the cloud absorption and scattering for the cloud microphysical property retrieval. The potential applications and limitations are also discussed. This algorithm can be applied to the future imager systems such as Visible/Infrared Imager/Radiometer Suite (VIIRS) on the National Polar-orbiting Operational Environmental Satellite System (NPOESS) and Advanced Baseline Imager (ABI) on the Geostationary Operational Environmental Satellite (GOES)-R.

  16. Assessment of the Short-Term Radiometric Stability between Terra MODIS and Landsat 7 ETM+ Sensors

    NASA Technical Reports Server (NTRS)

    Choi, Taeyoung; Xiong, Xiaxiong; Chander, G.; Angal, Amit

    2009-01-01

    The Landsat 7 (L7) Enhanced Thematic Mapper (ETM+) sensor was launched on April 15th, 1999 and has been in operation for over nine years. It has six reflective solar spectral bands located in the visible and shortwave infrared part of the electromagnetic spectrum (0.5 - 2.5 micron) at a spatial resolution of 30 m. The on-board calibrators are used to monitor the on-orbit sensor system changes. The ETM+ performs solar calibrations using on-board Full Aperture Solar Calibrator (FASC) and the Partial Aperture Solar Calibrator (PASC). The Internal Calibrator Lamp (IC) lamps, a blackbody and shutter optics constitute the on-orbit calibration mechanism for ETM+. On 31 May 2003, a malfunction of the scan-line corrector (SLC) mirror assembly resulted in the loss of approximately 22% of the normal scene area. The missing data affects most of the image with scan gaps varying in width from one pixel or less near the centre of the image to 14 pixels along the east and west edges of the image, creating a wedge-shaped pattern. However, the SLC failure has no impacts on the radiometric performance of the valid pixels. On December 18, 1999, the Moderate Resolution Imaging Spectroradiometer (MODIS) Proto-Flight Model (PFM) was launched on-board the NASA's EOS Terra spacecraft. Terra MODIS has 36 spectral bands with wavelengths ranging from 0.41 to 14.5 micron and collects data over a wide field of view angle (+/-55 deg) at three nadir spatial resolutions of 250 m, 500 in 1 km for bands 1 to 2, 3 to 7, and 8 to 36, respectively. It has 20 reflective solar bands (RSB) with spectral wavelengths from 0.41 to 2.1 micron. The RSB radiometric calibration is performed by using on-board solar diffuser (SD), solar diffuser stability monitor (SDSM), space-view (SV), and spectro-radiometric calibration assembly (SRCA). Through the SV port, periodic lunar observations are used to track radiometric response changes at different angles of incidence (AOI) of the scan mirror. As a part of the AM Constellation satellites, Terra MODIS flies approximately 30 minutes behind L7 ETM+ in the same orbit. The orbit of L7 is repetitive, circular, sunsynchronous, and near polar at a nominal altitude of 705 km (438 miles) at the Equator. The spacecraft crosses the Equator from north to south on a descending node between 10:00 AM and 10:15 AM. Circling the Earth at 7.5 km/sec, each orbit takes nearly 99 minutes. The spacecraft completes just over 14 orbits per day, covering the entire Earth between 81 degrees north and south latitude every 16 days. The longest continuous imaging swath that L7 sensor can collect is for a 14-minute subinterval contact period which is equivalent to 35 full WRS-2 scenes. On the other hand, Terra can provide the entire corresponding orbit with wider swath at any given ETM+ collection without contact time limitation. There are six spectral matching band pairs between MODIS (bands 3, 4, 1, 2, 6, 7) and ETM+ (bands 1, 2, 3, 4, 5, 7) sensor. MODIS has narrower spectral responses than ETM+ in all the bands. A short-term radiometric stability was evaluated using continuous ETM+ scenes within the contact period and the corresponding half orbit MODIS scenes. The near simultaneous earth observations (SNO) were limited by the smaller swath size of ETM+ (187 km) as compared to MODIS (2330 km). Two sets of continuous granules for MODIS and ETM+ were selected and mosaiced based on pixel geolocation information for non cloudy pixels over the North American continent. The Top-of- Atmosphere (TOA) reflectances were computed for the spectrally matching bands between ETM+ and MODIS over the regions of interest (ROI). The matching pixel pairs were aggregated from a finer to a coarser pixel resolution and the TOA reflectance values covering a wide dynamic range of the sensors were compared and analyzed. Considering the uncertainties of the absolute calibration of the both sensors, radiometric stability was verified for the band pairs. The Railroad Valley Playa, Nada (RVPN) was included in the path of this continuous orbit, which served as a verification point between the shortterm and the long-term trending results from previous studies. This work focuses on monitoring the short-term on-orbit stability of MODIS and the ETM+ RSB. It also provides an assessment of the absolute calibration differences between the two sensors over their wide dynamic ranges.

  17. Linking Landsat observations with MODIS derived Land Surface Phenology data to map agricultural expansion and contraction in Russia

    NASA Astrophysics Data System (ADS)

    Caliskan, S.; de Beurs, K.

    2010-12-01

    Direct human impacts on the land surface are especially pronounced in agricultural regions that cover a substantial portion of the global land surface: 12% of the terrestrial surface is under active agricultural management. Crops display phenologies distinct from natural vegetation; the growing seasons are often shifted in time, crop establishment is generally fast and the vegetation is rapidly removed at harvest. Previously we have demonstrated that agricultural land abandonment alters land surface phenology sufficiently to be detectable from a time series of coarse resolution imagery. With land surface phenology models based on accumulated growing degree-days (AGDD) and AVHRR NDVI, we demonstrated that abandoned croplands covered with native grasses and weeds typically greened-up and peaked sooner than active croplands. Here we present an expansion of these analyses for the MODIS time period with the ultimate goal to map agricultural abandonment and expansion in European Russia from 2000 to 2010. We used the 8-day, 1km L3 Land Surface Temperature data (MOD11A2) to generate the accumulated growing degree days and the 16-day L3 Nadir BRDF-Adjusted reflectance data at 500m resolution (MCD43A4) to calculate NDVI. We calculated phenological metrics based on three methods: 1) Double-logistic models such as those applied to produce the standard MODIS phenology product (MOD12Q2); 2) A combination of NDII and NDVI; this method has been shown to provide start/end of season measurement closest to field observations in snowy areas; and 3) A quadratic model linking accumulated growing degree days and vegetation indices which we successfully applied in agricultural areas of Kazakhstan and semi-arid Africa. We selected Landsat imagery for two vastly different regions in Russia and present a Landsat-guided probabilistic detection of abandoned and active croplands for all available years of the MODIS image time series (2000-2010). For each region, we selected at least two images during the growing season and calculated the following indices: Normalized Difference Vegetation Index (NDVI), Tasseled Cap indices (Brightness, Greenness, Wetness), as well as the first three principal components for each image. We used the selected images to distinguish between the basic classes of agriculture, water, forest and urban areas, with the primary goal to separate between agricultural and non-agricultural regions. We compared class membership with ancillary regional agricultural statistics and targeted field observations collected in the summer of 2010. In the last part, we linked the Landsat based agricultural estimates and the MODIS phenological measurements using logistic regression and compared the agricultural maps with globally available land cover classifications.

  18. Evaluating the Impacts of NASA/SPoRT Daily Greenness Vegetation Fraction on Land Surface Model and Numerical Weather Forecasts

    NASA Technical Reports Server (NTRS)

    Bell, Jordan R.; Case, Jonathan L.; LaFontaine, Frank J.; Kumar, Sujay V.

    2012-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center has developed a Greenness Vegetation Fraction (GVF) dataset, which is updated daily using swaths of Normalized Difference Vegetation Index data from the Moderate Resolution Imaging Spectroradiometer (MODIS) data aboard the NASA EOS Aqua and Terra satellites. NASA SPoRT began generating daily real-time GVF composites at 1-km resolution over the Continental United States (CONUS) on 1 June 2010. The purpose of this study is to compare the National Centers for Environmental Prediction (NCEP) climatology GVF product (currently used in operational weather models) to the SPoRT-MODIS GVF during June to October 2010. The NASA Land Information System (LIS) was employed to study the impacts of the SPoRT-MODIS GVF dataset on a land surface model (LSM) apart from a full numerical weather prediction (NWP) model. For the 2010 warm season, the SPoRT GVF in the western portion of the CONUS was generally higher than the NCEP climatology. The eastern CONUS GVF had variations both above and below the climatology during the period of study. These variations in GVF led to direct impacts on the rates of heating and evaporation from the land surface. In the West, higher latent heat fluxes prevailed, which enhanced the rates of evapotranspiration and soil moisture depletion in the LSM. By late Summer and Autumn, both the average sensible and latent heat fluxes increased in the West as a result of the more rapid soil drying and higher coverage of GVF. The impacts of the SPoRT GVF dataset on NWP was also examined for a single severe weather case study using the Weather Research and Forecasting (WRF) model. Two separate coupled LIS/WRF model simulations were made for the 17 July 2010 severe weather event in the Upper Midwest using the NCEP and SPoRT GVFs, with all other model parameters remaining the same. Based on the sensitivity results, regions with higher GVF in the SPoRT model runs had higher evapotranspiration and lower direct surface heating, which typically resulted in lower (higher) predicted 2-m temperatures (2-m dewpoint temperatures). Portions of the Northern Plains states experienced substantial increases in convective available potential energy as a result of the higher SPoRT/MODIS GVFs. These differences produced subtle yet quantifiable differences in the simulated convective precipitation systems for this event.

  19. The effect of variations in relative spectral response on the retrieval of land surface parameters from multiple sources of remotely sensed imagery

    USGS Publications Warehouse

    Meyer, D.J.; Chander, G.

    2008-01-01

    Airborne Visible Infrared Imaging Spectrometer (AVIRIS) images , collected over Sioux Falls, South Dakota, were used to quantify the effect of spectral response on different surface materials and to develop spectral "figures-of-merit" for spectral responses covering similar, but not identical spectral bands. In this simulation, AVIRIS images were converted to radiance, then spectrally resampled to six wavelength bands commonly used for terrestrial observation. Preliminary results indicate that differences between the simulations can be attributed to variations in surface reflectance within spectral bands, and suggest influences due to water vapor absorption. Radiance simulated from the spectrally narrow Moderate Resolution Imaging Spectroradiometer (MODIS) Relative Spectral Responses (RSR) was generally higher than that using the broader Enhanced Thematic Mapper Plus (ETM+) RSRs over most targets encountered over the test area. This is consistent with many MODIS bands being biased toward shorter wavelengths compared to corresponding ETM+ bands when viewing targets whose radiance decreases with wavelength. In some cases the higher radiance values appeared to occur where the MODIS RSR is better situated over peak reflected wavelengths. Simulation differences between MODIS & ETM+ bands in the near-infrared indicated higher MODIS radiance values that suggest the influence of water vapor absorption at 820 nanometers. This result agreed with water vapor values retrieved from the AVIRIS images themselves at around 2.7 cm precipitable water, and measurements made at a nearby AERONET node at around 2.8cm during the AVIRIS overflight ?? 2007 IEEE.

  20. Retrieval of ice cloud properties using an optimal estimation algorithm and MODIS infrared observations. Part I: Forward model, error analysis, and information content

    PubMed Central

    Wang, Chenxi; Platnick, Steven; Zhang, Zhibo; Meyer, Kerry; Yang, Ping

    2018-01-01

    An optimal estimation (OE) retrieval method is developed to infer three ice cloud properties simultaneously: optical thickness (τ), effective radius (reff), and cloud-top height (h). This method is based on a fast radiative transfer (RT) model and infrared (IR) observations from the MODerate resolution Imaging Spectroradiometer (MODIS). This study conducts thorough error and information content analyses to understand the error propagation and performance of retrievals from various MODIS band combinations under different cloud/atmosphere states. Specifically, the algorithm takes into account four error sources: measurement uncertainty, fast RT model uncertainty, uncertainties in ancillary datasets (e.g., atmospheric state), and assumed ice crystal habit uncertainties. It is found that the ancillary and ice crystal habit error sources dominate the MODIS IR retrieval uncertainty and cannot be ignored. The information content analysis shows that, for a given ice cloud, the use of four MODIS IR observations is sufficient to retrieve the three cloud properties. However, the selection of MODIS IR bands that provide the most information and their order of importance varies with both the ice cloud properties and the ambient atmospheric and the surface states. As a result, this study suggests the inclusion of all MODIS IR bands in practice since little a priori information is available. PMID:29707470

  1. Retrieval of Ice Cloud Properties Using an Optimal Estimation Algorithm and MODIS Infrared Observations. Part I: Forward Model, Error Analysis, and Information Content

    NASA Technical Reports Server (NTRS)

    Wang, Chenxi; Platnick, Steven; Zhang, Zhibo; Meyer, Kerry; Yang, Ping

    2016-01-01

    An optimal estimation (OE) retrieval method is developed to infer three ice cloud properties simultaneously: optical thickness (tau), effective radius (r(sub eff)), and cloud-top height (h). This method is based on a fast radiative transfer (RT) model and infrared (IR) observations from the MODerate resolution Imaging Spectroradiometer (MODIS). This study conducts thorough error and information content analyses to understand the error propagation and performance of retrievals from various MODIS band combinations under different cloud/atmosphere states. Specifically, the algorithm takes into account four error sources: measurement uncertainty, fast RT model uncertainty, uncertainties in ancillary datasets (e.g., atmospheric state), and assumed ice crystal habit uncertainties. It is found that the ancillary and ice crystal habit error sources dominate the MODIS IR retrieval uncertainty and cannot be ignored. The information content analysis shows that, for a given ice cloud, the use of four MODIS IR observations is sufficient to retrieve the three cloud properties. However, the selection of MODIS IR bands that provide the most information and their order of importance varies with both the ice cloud properties and the ambient atmospheric and the surface states. As a result, this study suggests the inclusion of all MODIS IR bands in practice since little a priori information is available.

  2. Retrieval of Ice Cloud Properties Using an Optimal Estimation Algorithm and MODIS Infrared Observations. Part I: Forward Model, Error Analysis, and Information Content

    NASA Technical Reports Server (NTRS)

    Wang, Chenxi; Platnick, Steven; Zhang, Zhibo; Meyer, Kerry; Yang, Ping

    2016-01-01

    An optimal estimation (OE) retrieval method is developed to infer three ice cloud properties simultaneously: optical thickness (tau), effective radius (r(sub eff)), and cloud top height (h). This method is based on a fast radiative transfer (RT) model and infrared (IR) observations from the MODerate resolution Imaging Spectroradiometer (MODIS). This study conducts thorough error and information content analyses to understand the error propagation and performance of retrievals from various MODIS band combinations under different cloud/atmosphere states. Specifically, the algorithm takes into account four error sources: measurement uncertainty, fast RT model uncertainty, uncertainties in ancillary data sets (e.g., atmospheric state), and assumed ice crystal habit uncertainties. It is found that the ancillary and ice crystal habit error sources dominate the MODIS IR retrieval uncertainty and cannot be ignored. The information content analysis shows that for a given ice cloud, the use of four MODIS IR observations is sufficient to retrieve the three cloud properties. However, the selection of MODIS IR bands that provide the most information and their order of importance varies with both the ice cloud properties and the ambient atmospheric and the surface states. As a result, this study suggests the inclusion of all MODIS IR bands in practice since little a priori information is available.

  3. Clinical application of ACMG-AMP guidelines in HNF1A and GCK variants in a cohort of MODY families.

    PubMed

    Santana, L S; Caetano, L A; Costa-Riquetto, A D; Quedas, E P S; Nery, M; Collett-Solberg, P; Boguszewski, M C S; Vendramini, M F; Crisostomo, L G; Floh, F O; Zarabia, Z I; Kohara, S K; Guastapaglia, L; Passone, C G B; Sewaybricker, L E; Jorge, A A L; Teles, M G

    2017-10-01

    Maturity-onset diabetes of the young (MODY) is a form of monogenic diabetes with autosomal dominant inheritance. GCK -MODY and HNF1A -MODY are the prevalent subtypes. Currently, there is growing concern regarding the correct interpretation of molecular genetic findings. The American College of Medical Genetics and Genomics (ACMG) updated guidelines to interpret and classify molecular variants. This study aimed to determine the prevalence of MODY ( GCK / HNF1A ) in a large cohort of Brazilian families, to report variants related to phenotype, and to classify them according to ACMG guidelines. One hundred and nine probands were investigated, 45% with clinical suspicion of GCK -MODY and 55% with suspicion of HNF1A -MODY. Twenty-five different variants were identified in GCK gene (30 probands-61% of positivity), and 7 variants in HNF1A (10 probands-17% of positivity). Fourteen of them were novel (12- GCK /2- HNF1A ). ACMG guidelines were able to classify a large portion of variants as pathogenic (36%- GCK /86%- HNF1A ) and likely pathogenic (44%- GCK /14%- HNF1A ), with 16% (5/32) as uncertain significance. This allows us to determine the pathogenicity classification more efficiently, and also reinforces the suspected associations with the phenotype among novel variants. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. A Satellite-Derived Climate-Quality Data Record of the Clear-Sky Surface Temperature of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Comiso, Josefino C.; DiGirolamo, Nikolo E.; Shuman, Christopher A.; Key, Jeffrey R.; Koenig, Lora S.

    2012-01-01

    We have developed a climate-quality data record of the clear-sky surface temperature of the Greenland Ice Sheet using the Moderate-Resolution Imaging Spectroradiometer (MODIS) ice-surface temperature (1ST) algorithm. A climate-data record (CDR) is a time series of measurements of sufficient length, consistency, and continuity to determine climate variability and change. We present daily and monthly MODIS ISTs of the Greenland Ice Sheet beginning on 1 March 2000 and continuing through 31 December 2010 at 6.25-km spatial resolution on a polar stereographic grid. This record will be elevated in status to a CDR when at least nine more years of data become available either from MODIS Terra or Aqua, or from the Visible Infrared Imager Radiometer Suite (VIIRS) to be launched in October 2011. Our ultimate goal is to develop a CDR that starts in 1981 with the Advanced Very High Resolution (AVHRR) Polar Pathfinder (APP) dataset and continues with MODIS data from 2000 to the present, and into the VIIRS era. Differences in the APP and MODIS cloud masks have so far precluded the current 1ST records from spanning both the APP and MODIS time series in a seamless manner though this will be revisited when the APP dataset has been reprocessed. The complete MODIS 1ST daily and monthly data record is available online.

  5. Identification of HNF1A-MODY and HNF4A-MODY in Irish families: phenotypic characteristics and therapeutic implications.

    PubMed

    Kyithar, M P; Bacon, S; Pannu, K K; Rizvi, S R; Colclough, K; Ellard, S; Byrne, M M

    2011-12-01

    The prevalence of hepatocyte nuclear factor (HNF)-1A and HNF4A mutations, and the clinical implications following the genetic diagnosis of maturity-onset diabetes of the young (MODY) in the Irish population, remain unknown. The aim of this study was to establish the occurrence of HNF1A and HNF4A mutations in subjects classified clinically as MODY to identify novel mutations, and to determine the phenotypic features and response to therapy. A total of 36 unrelated index cases with a clinical diagnosis of MODY were analyzed for HNF1A/HNF4A mutations. OGTT was performed to determine the degree of glucose tolerance and insulin secretory response. Also, 38 relatives underwent OGTT and were tested for the relevant known mutations. HNF1A-/HNF4A-MODY subjects were compared with nine HNF1A mutation-negative relatives and 20 type 2 diabetic (T2DM) patients. Seven different HNF1A mutations were identified in 11/36 (30.5%) index cases, two of which were novel (S352fsdelG and F426X), as well as two novel HNF4A mutations (M1? and R290C; 6%). Family screening revealed 20 subjects with HNF1A and seven with HNF4A mutations. Only 51.6% of HNF1A mutation carriers were diagnosed with diabetes by age 25 years; 11 of the mutation carriers were overweight and four were obese. Insulin secretory response to glucose was significantly lower in HNF1A-MODY subjects than in T2DM patients and HNF1A mutation-negative relatives (P=0.01). Therapeutic changes occurred in 48% of mutation carriers following genetic diagnosis. There was an HNF1A-MODY pick-up rate of 30.5% and an HNF4A-MODY pick-up rate of 6% in Irish MODY families. Genetically confirmed MODY has significant therapeutic implications. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  6. On-Orbit Calibration and Performance of Aqua MODIS Reflective Solar Bands

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong; Sun, Junqiang; Xie, Xiaobo; Barnes, William; Salomonson, Vincent

    2009-01-01

    Aqua MODIS has successfully operated on-orbit for more than 6 years since its launch in May 2002, continuously making global observations and improving studies of changes in the Earth's climate and environment. 20 of the 36 MODIS spectral bands, covering wavelengths from 0.41 to 2.2 microns, are the reflective solar bands (RSB). They are calibrated on-orbit using an on-board solar diffuser (SD) and a solar diffuser stability monitor (SDSM). In addition, regularly scheduled lunar observations are made to track the RSB calibration stability. This paper presents Aqua MODIS RSB on-orbit calibration and characterization activities, methodologies, and performance. Included in this study are characterizations of detector signal-to-noise ratio (SNR), short-term stability, and long-term response change. Spectral wavelength dependent degradation of the SD bidirectional reflectance factor (BRF) and scan mirror reflectance, which also varies with angle of incidence (AOI), are examined. On-orbit results show that Aqua MODIS onboard calibrators have performed well, enabling accurate calibration coefficients to be derived and updated for the Level 1B (L1B) production and assuring high quality science data products to be continuously generated and distributed. Since launch, the short-term response, on a scan-by-scan basis, has remained extremely stable for most RSB detectors. With the exception of band 6, there have been no new RSB noisy or inoperable detectors. Like its predecessor, Terra MODIS, launched in December 1999, the Aqua MODIS visible (VIS) spectral bands have experienced relatively large changes, with an annual response decrease (mirror side 1) of 3.6% for band 8 at 0.412 microns, 2.3% for band 9 at 0.443 microns, 1.6% for band 3 at 0.469 microns, and 1.2% for band 10 at 0.488 microns. For other RSB bands with wavelengths greater than 0.5 microns, the annual response changes are typically less than 0.5%. In general, Aqua MODIS optics degradation is smaller than Terra MODIS and the mirror side differences are much smaller. Overall, Aqua MODIS RSB on-orbit performance is better than Terra MODIS.

  7. On-Orbit Performance and Calibration Improvements For the Reflective Solar Bands of Terra and Aqua MODIS

    NASA Technical Reports Server (NTRS)

    Angal, Amit; Xiong, Xiaoxiong; Wu, Aisheng; Chen, Hongda; Geng, Xu; Link, Daniel; Li, Yonghong; Wald, Andrew; Brinkmann, Jake

    2016-01-01

    Moderate Resolution Imaging Spectroradiometer (MODIS) is the keystone instrument for NASAs EOS Terra and Aqua missions, designed to extend and improve heritage sensor measurements and data records of the land, oceans and atmosphere. The reflective solar bands (RSB) of MODIS covering wavelengths from 0.41 micrometers to 2.2 micrometers, are calibrated on-orbit using a solar diffuser (SD), with its on-orbit bi-directional reflectance factor (BRF) changes tracked using a solar diffuser stability monitor (SDSM). MODIS is a scanning radiometer using a two-sided paddle-wheel mirror to collect earth view (EV) data over a range of (+/-)55 deg. off instrument nadir. In addition to the solar calibration provided by the SD and SDSM system, lunar observations at nearly constant phase angles are regularly scheduled to monitor the RSB calibration stability. For both Terra and Aqua MODIS, the SD and lunar observations are used together to track the on-orbit changes of RSB response versus scan angle (RVS) as the SD and SV port are viewed at different angles of incidence (AOI) on the scan mirror. The MODIS Level 1B (L1B) Collection 6 (C6) algorithm incorporated several enhancements over its predecessor Collection 5 (C5) algorithm. A notable improvement was the use of the earth-view (EV) response trends from pseudo-invariant desert targets to characterize the on-orbit RVS for select RSB (Terra bands 1-4, 8, 9 and Aqua bands 8, 9) and the time, AOI, and wavelength-dependent uncertainty. The MODIS Characterization Support Team (MCST) has been maintaining and enhancing the C6 algorithm since its first update in November, 2011 for Aqua MODIS, and February, 2012 for Terra MODIS. Several calibration improvements have been incorporated that include extending the EV-based RVS approach to other RSB, additional correction for SD degradation at SWIR wavelengths, and alternative approaches for on-orbit RVS characterization. In addition to the on-orbit performance of the MODIS RSB, this paper also discusses in detail the recent calibration improvements implemented in the MODIS L1B C6.

  8. Sixteen Years of Terra MODIS On-Orbit Operation, Calibration, and Performance

    NASA Technical Reports Server (NTRS)

    Xiong, X.; Angal, A.; Wu, A.; Link, D.; Geng, X.; Barnes, W.; Solomonson, V.

    2016-01-01

    Terra MODIS has successfully operated for more than 16 years since its launch in December 1999. From its observations, many science data products have been generated in support of a broad range of research activities and remote sensing applications. Terra MODIS has operated in a number of configurations and experienced a few anomalies, including spacecraft and instrument related events. MODIS collects data in 36 spectral bands that are calibrated regularly by a set of on-board calibrators for their radiometric, spectral, and spatial performance. Periodic lunar observations and long-term radiometric trending over well-characterized ground targets are also used to support sensor on-orbit calibration. Dedicated efforts made by the MODIS Characterization Support Team (MCST) and continuing support from the MODIS Science Team have contributed to the mission success, enabling well-calibrated data products to be continuously generated and routinely delivered to users worldwide. This paper presents an overview of Terra MODIS mission operations, calibration activities, and instrument performance of the past 16 years. It illustrates and describes the results of key sensor performance parameters derived from on-orbit calibration and characterization, such as signal-to-noise ratio (SNR), noise equivalent temperature difference (NEdT), solar diffuser (SD) degradation, changes in sensor responses, center wavelengths, and band-to-band registration (BBR). Also discussed in this paper are the calibration approaches and strategies developed and implemented in support of MODIS Level 1B data production and re-processing, major challenging issues, and lessons learned. (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  9. Lower Frequency of HLA-DRB1 Type 1 Diabetes Risk Alleles in Pediatric Patients with MODY.

    PubMed

    Urrutia, Inés; Martínez, Rosa; López-Euba, Tamara; Velayos, Teresa; Martínez de LaPiscina, Idoia; Bilbao, José Ramón; Rica, Itxaso; Castaño, Luis

    2017-01-01

    The aim of this study was to determine the frequency of susceptible HLA-DRB1 alleles for type 1 diabetes in a cohort of pediatric patients with a confirmed genetic diagnosis of MODY. 160 families with a proband diagnosed with type 1 diabetes and 74 families with a molecular diagnosis of MODY (61 GCK-MODY and 13 HNF1A-MODY) were categorized at high definition for HLA-DRB1 locus. According to the presence or absence of the susceptible HLA-DRB1 alleles for type 1 diabetes, we considered three different HLA-DRB1 genotypes: 0 risk alleles (no DR3 no DR4); 1 risk allele (DR3 or DR4); 2 risk alleles (DR3 and/or DR4). Compared with type 1 diabetes, patients with MODY carried higher frequency of 0 risk alleles, OR 22.7 (95% CI: 10.7-48.6) and lower frequency of 1 or 2 risk alleles, OR 0.53 (95% CI: 0.29-0.96) and OR 0.06 (95% CI: 0.02-0.18), respectively. The frequency of HLA-DRB1 risk alleles for type 1 diabetes is significantly lower in patients with MODY. In children and adolescents with diabetes, the presence of 2 risk alleles (DR3 and/or DR4) reduces the probability of MODY diagnosis, whereas the lack of risk alleles increases it. Therefore, we might consider that HLA-DRB1 provides additional information for the selection of patients with high probability of monogenic diabetes.

  10. Intercomparison and validation of MODIS and GLASS leaf area index (LAI) products over mountain areas: A case study in southwestern China

    NASA Astrophysics Data System (ADS)

    Jin, Huaan; Li, Ainong; Bian, Jinhu; Nan, Xi; Zhao, Wei; Zhang, Zhengjian; Yin, Gaofei

    2017-03-01

    The validation study of leaf area index (LAI) products over rugged surfaces not only gives additional insights into data quality of LAI products, but deepens understanding of uncertainties regarding land surface process models depended on LAI data over complex terrain. This study evaluated the performance of MODIS and GLASS LAI products using the intercomparison and direct validation methods over southwestern China. The spatio-temporal consistencies, such as the spatial distributions of LAI products and their statistical relationship as a function of topographic indices, time, and vegetation types, respectively, were investigated through intercomparison between MODIS and GLASS products during the period 2011-2013. The accuracies and change ranges of these two products were evaluated against available LAI reference maps over 10 sampling regions which standed for typical vegetation types and topographic gradients in southwestern China. The results show that GLASS LAI exhibits higher percentage of good quality data (i.e. successful retrievals) and smoother temporal profiles than MODIS LAI. The percentage of successful retrievals for MODIS and GLASS is vulnerable to topographic indices, especially to relief amplitude. Besides, the two products do not capture seasonal dynamics of crop, especially in spring over heterogeneously hilly regions. The yearly mean LAI differences between MODIS and GLASS are within ±0.5 for 64.70% of the total retrieval pixels over southwestern China. The spatial distribution of mean differences and temporal profiles of these two products are inclined to be dominated by vegetation types other than topographic indices. The spatial and temporal consistency of these two products is good over most area of grasses/cereal crops; however, it is poor for evergreen broadleaf forest. MODIS presents more reliable change range of LAI than GLASS through comparison with fine resolution reference maps over most of sampling regions. The accuracies of direct validation are obtained for GLASS LAI (r = 0.35, RMSE = 1.72, mean bias = -0.71) and MODIS LAI (r = 0.49, RMSE = 1.75, mean bias = -0.67). GLASS performs similarly to MODIS, but may be marginally inferior to MODIS based on our direct validation results. The validation experience demonstrates the necessity and importance of topographic consideration for LAI estimation over mountain areas. Considerable attention will be paid to the improvements of surface reflectance, retrieval algorithm and land cover types so as to enhance the quality of LAI products in topographically complex terrain.

  11. CALIPSO IIR Version 2 Level 1b calibrated radiances: analysis and reduction of residual biases in the Northern Hemisphere

    NASA Astrophysics Data System (ADS)

    Garnier, Anne; Trémas, Thierry; Pelon, Jacques; Lee, Kam-Pui; Nobileau, Delphine; Gross-Colzy, Lydwine; Pascal, Nicolas; Ferrage, Pascale; Scott, Noëlle A.

    2018-04-01

    Version 2 of the Level 1b calibrated radiances of the Imaging Infrared Radiometer (IIR) on board the Cloud-Aerosol Lidar and Infrared Satellite Observation (CALIPSO) satellite has been released recently. This new version incorporates corrections of small but systematic seasonal calibration biases previously revealed in Version 1 data products mostly north of 30° N. These biases - of different amplitudes in the three IIR channels 8.65 µm (IIR1), 10.6 µm (IIR2), and 12.05 µm (IIR3) - were made apparent by a striping effect in images of IIR inter-channel brightness temperature differences (BTDs) and through seasonal warm biases of nighttime IIR brightness temperatures in the 30-60° N latitude range. The latter were highlighted through observed and simulated comparisons with similar channels of the Moderate Resolution Imaging Spectroradiometer (MODIS) on board the Aqua spacecraft. To characterize the calibration biases affecting Version 1 data, a semi-empirical approach is developed, which is based on the in-depth analysis of the IIR internal calibration procedure in conjunction with observations such as statistical comparisons with similar MODIS/Aqua channels. Two types of calibration biases are revealed: an equalization bias affecting part of the individual IIR images and a global bias affecting the radiometric level of each image. These biases are observed only when the temperature of the instrument increases, and they are found to be functions of elapsed time since night-to-day transition, regardless of the season. Correction coefficients of Version 1 radiances could thus be defined and implemented in the Version 2 code. As a result, the striping effect seen in Version 1 is significantly attenuated in Version 2. Systematic discrepancies between nighttime and daytime IIR-MODIS BTDs in the 30-60° N latitude range in summer are reduced from 0.2 K in Version 1 to 0.1 K in Version 2 for IIR1-MODIS29. For IIR2-MODIS31 and IIR3-MODIS32, they are reduced from 0.4 K to close to zero, except for IIR3-MODIS32 in June, where the night-minus-day difference is around -0.1 K.

  12. Statistical variability comparison in MODIS and AERONET derived aerosol optical depth over Indo-Gangetic Plains using time series modeling.

    PubMed

    Soni, Kirti; Parmar, Kulwinder Singh; Kapoor, Sangeeta; Kumar, Nishant

    2016-05-15

    A lot of studies in the literature of Aerosol Optical Depth (AOD) done by using Moderate Resolution Imaging Spectroradiometer (MODIS) derived data, but the accuracy of satellite data in comparison to ground data derived from ARrosol Robotic NETwork (AERONET) has been always questionable. So to overcome from this situation, comparative study of a comprehensive ground based and satellite data for the period of 2001-2012 is modeled. The time series model is used for the accurate prediction of AOD and statistical variability is compared to assess the performance of the model in both cases. Root mean square error (RMSE), mean absolute percentage error (MAPE), stationary R-squared, R-squared, maximum absolute percentage error (MAPE), normalized Bayesian information criterion (NBIC) and Ljung-Box methods are used to check the applicability and validity of the developed ARIMA models revealing significant precision in the model performance. It was found that, it is possible to predict the AOD by statistical modeling using time series obtained from past data of MODIS and AERONET as input data. Moreover, the result shows that MODIS data can be formed from AERONET data by adding 0.251627 ± 0.133589 and vice-versa by subtracting. From the forecast available for AODs for the next four years (2013-2017) by using the developed ARIMA model, it is concluded that the forecasted ground AOD has increased trend. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Normalization of time-series satellite reflectance data to a standard sun-target-sensor geometry using a semi-empirical model

    NASA Astrophysics Data System (ADS)

    Zhao, Yongguang; Li, Chuanrong; Ma, Lingling; Tang, Lingli; Wang, Ning; Zhou, Chuncheng; Qian, Yonggang

    2017-10-01

    Time series of satellite reflectance data have been widely used to characterize environmental phenomena, describe trends in vegetation dynamics and study climate change. However, several sensors with wide spatial coverage and high observation frequency are usually designed to have large field of view (FOV), which cause variations in the sun-targetsensor geometry in time-series reflectance data. In this study, on the basis of semiempirical kernel-driven BRDF model, a new semi-empirical model was proposed to normalize the sun-target-sensor geometry of remote sensing image. To evaluate the proposed model, bidirectional reflectance under different canopy growth conditions simulated by Discrete Anisotropic Radiative Transfer (DART) model were used. The semi-empirical model was first fitted by using all simulated bidirectional reflectance. Experimental result showed a good fit between the bidirectional reflectance estimated by the proposed model and the simulated value. Then, MODIS time-series reflectance data was normalized to a common sun-target-sensor geometry by the proposed model. The experimental results showed the proposed model yielded good fits between the observed and estimated values. The noise-like fluctuations in time-series reflectance data was also reduced after the sun-target-sensor normalization process.

  14. Apolipoprotein M can discriminate HNF1A-MODY from Type 1 diabetes.

    PubMed

    Mughal, S A; Park, R; Nowak, N; Gloyn, A L; Karpe, F; Matile, H; Malecki, M T; McCarthy, M I; Stoffel, M; Owen, K R

    2013-02-01

    Missed diagnosis of maturity-onset diabetes of the young (MODY) has led to an interest in biomarkers that enable efficient prioritization of patients for definitive molecular testing. Apolipoprotein M (apoM) was suggested as a biomarker for hepatocyte nuclear factor 1 alpha (HNF1A)-MODY because of its reduced expression in Hnf1a(-/-) mice. However, subsequent human studies examining apoM as a biomarker have yielded conflicting results. We aimed to evaluate apoM as a biomarker for HNF1A-MODY using a highly specific and sensitive ELISA. ApoM concentration was measured in subjects with HNF1A-MODY (n = 69), Type 1 diabetes (n = 50), Type 2 diabetes (n = 120) and healthy control subjects (n = 100). The discriminative accuracy of apoM and of the apoM/HDL ratio for diabetes aetiology was evaluated. Mean (standard deviation) serum apoM concentration (μmol/l) was significantly lower for subjects with HNF1A-MODY [0.86 (0.29)], than for those with Type 1 diabetes [1.37 (0.26), P = 3.1 × 10(-18) ) and control subjects [1.34 (0.22), P = 7.2 × 10(-19) ). There was no significant difference in apoM concentration between subjects with HNF1A-MODY and Type 2 diabetes [0.89 (0.28), P = 0.13]. The C-statistic measure of discriminative accuracy for apoM was 0.91 for HNF1A-MODY vs. Type 1 diabetes, indicating high discriminative accuracy. The apoM/HDL ratio was significantly lower in HNF1A-MODY than other study groups. However, this ratio did not perform well in discriminating HNF1A-MODY from either Type 1 diabetes (C-statistic = 0.79) or Type 2 diabetes (C-statistic = 0.68). We confirm an earlier report that serum apoM levels are lower in HNF1A-MODY than in controls. Serum apoM provides good discrimination between HNF1A-MODY and Type 1 diabetes and warrants further investigation for clinical utility in diabetes diagnostics. © 2012 The Authors. Diabetic Medicine © 2012 Diabetes UK.

  15. A MODIS-based automated flood monitoring system for southeast asia

    NASA Astrophysics Data System (ADS)

    Ahamed, A.; Bolten, J. D.

    2017-09-01

    Flood disasters in Southeast Asia result in significant loss of life and economic damage. Remote sensing information systems designed to spatially and temporally monitor floods can help governments and international agencies formulate effective disaster response strategies during a flood and ultimately alleviate impacts to population, infrastructure, and agriculture. Recent destructive flood events in the Lower Mekong River Basin occurred in 2000, 2011, 2013, and 2016 (http://ffw.mrcmekong.org/historical_rec.htm, April 24, 2017). The large spatial distribution of flooded areas and lack of proper gauge data in the region makes accurate monitoring and assessment of impacts of floods difficult. Here, we discuss the utility of applying satellite-based Earth observations for improving flood inundation monitoring over the flood-prone Lower Mekong River Basin. We present a methodology for determining near real-time surface water extent associated with current and historic flood events by training surface water classifiers from 8-day, 250-m Moderate-resolution Imaging Spectroradiometer (MODIS) data spanning the length of the MODIS satellite record. The Normalized Difference Vegetation Index (NDVI) signature of permanent water bodies (MOD44W; Carroll et al., 2009) is used to train surface water classifiers which are applied to a time period of interest. From this, an operational nowcast flood detection component is produced using twice daily imagery acquired at 3-h latency which performs image compositing routines to minimize cloud cover. Case studies and accuracy assessments against radar-based observations for historic flood events are presented. The customizable system has been transferred to regional organizations and near real-time derived surface water products are made available through a web interface platform. Results highlight the potential of near real-time observation and impact assessment systems to serve as effective decision support tools for governments, international agencies, and disaster responders.

  16. Monitoring forest dynamics with multi-scale and time series imagery.

    PubMed

    Huang, Chunbo; Zhou, Zhixiang; Wang, Di; Dian, Yuanyong

    2016-05-01

    To learn the forest dynamics and evaluate the ecosystem services of forest effectively, a timely acquisition of spatial and quantitative information of forestland is very necessary. Here, a new method was proposed for mapping forest cover changes by combining multi-scale satellite remote-sensing imagery with time series data. Using time series Normalized Difference Vegetation Index products derived from the Moderate Resolution Imaging Spectroradiometer images (MODIS-NDVI) and Landsat Thematic Mapper/Enhanced Thematic Mapper Plus (TM/ETM+) images as data source, a hierarchy stepwise analysis from coarse scale to fine scale was developed for detecting the forest change area. At the coarse scale, MODIS-NDVI data with 1-km resolution were used to detect the changes in land cover types and a land cover change map was constructed using NDVI values at vegetation growing seasons. At the fine scale, based on the results at the coarse scale, Landsat TM/ETM+ data with 30-m resolution were used to precisely detect the forest change location and forest change trend by analyzing time series forest vegetation indices (IFZ). The method was tested using the data for Hubei Province, China. The MODIS-NDVI data from 2001 to 2012 were used to detect the land cover changes, and the overall accuracy was 94.02 % at the coarse scale. At the fine scale, the available TM/ETM+ images at vegetation growing seasons between 2001 and 2012 were used to locate and verify forest changes in the Three Gorges Reservoir Area, and the overall accuracy was 94.53 %. The accuracy of the two layer hierarchical monitoring results indicated that the multi-scale monitoring method is feasible and reliable.

  17. Estimating Evaporative Fraction From Readily Obtainable Variables in Mangrove Forests of the Everglades, U.S.A.

    NASA Technical Reports Server (NTRS)

    Yagci, Ali Levent; Santanello, Joseph A.; Jones, John; Barr, Jordan

    2017-01-01

    A remote-sensing-based model to estimate evaporative fraction (EF) the ratio of latent heat (LE; energy equivalent of evapotranspiration -ET-) to total available energy from easily obtainable remotely-sensed and meteorological parameters is presented. This research specifically addresses the shortcomings of existing ET retrieval methods such as calibration requirements of extensive accurate in situ micro-meteorological and flux tower observations, or of a large set of coarse-resolution or model-derived input datasets. The trapezoid model is capable of generating spatially varying EF maps from standard products such as land surface temperature [T(sub s)] normalized difference vegetation index (NDVI)and daily maximum air temperature [T(sub a)]. The 2009 model results were validated at an eddy-covariance tower (Fluxnet ID: US-Skr) in the Everglades using T(sub s) and NDVI products from Landsat as well as the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. Results indicate that the model accuracy is within the range of instrument uncertainty, and is dependent on the spatial resolution and selection of end-members (i.e. wet/dry edge). The most accurate results were achieved with the T(sub s) from Landsat relative to the T(sub s) from the MODIS flown on the Terra and Aqua platforms due to the fine spatial resolution of Landsat (30 m). The bias, mean absolute percentage error and root mean square percentage error were as low as 2.9% (3.0%), 9.8% (13.3%), and 12.1% (16.1%) for Landsat-based (MODIS-based) EF estimates, respectively. Overall, this methodology shows promise for bridging the gap between temporally limited ET estimates at Landsat scales and more complex and difficult to constrain global ET remote-sensing models.

  18. Estimating evaporative fraction from readily obtainable variables in mangrove forests of the Everglades, U.S.A.

    USGS Publications Warehouse

    Yagci, Ali Levent; Santanello, Joseph A.; Jones, John W.; Barr, Jordan G.

    2017-01-01

    A remote-sensing-based model to estimate evaporative fraction (EF) – the ratio of latent heat (LE; energy equivalent of evapotranspiration –ET–) to total available energy – from easily obtainable remotely-sensed and meteorological parameters is presented. This research specifically addresses the shortcomings of existing ET retrieval methods such as calibration requirements of extensive accurate in situ micrometeorological and flux tower observations or of a large set of coarse-resolution or model-derived input datasets. The trapezoid model is capable of generating spatially varying EF maps from standard products such as land surface temperature (Ts) normalized difference vegetation index (NDVI) and daily maximum air temperature (Ta). The 2009 model results were validated at an eddy-covariance tower (Fluxnet ID: US-Skr) in the Everglades using Ts and NDVI products from Landsat as well as the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. Results indicate that the model accuracy is within the range of instrument uncertainty, and is dependent on the spatial resolution and selection of end-members (i.e. wet/dry edge). The most accurate results were achieved with the Ts from Landsat relative to the Ts from the MODIS flown on the Terra and Aqua platforms due to the fine spatial resolution of Landsat (30 m). The bias, mean absolute percentage error and root mean square percentage error were as low as 2.9% (3.0%), 9.8% (13.3%), and 12.1% (16.1%) for Landsat-based (MODIS-based) EF estimates, respectively. Overall, this methodology shows promise for bridging the gap between temporally limited ET estimates at Landsat scales and more complex and difficult to constrain global ET remote-sensing models.

  19. Crop Phenology Detection Using High Spatio-Temporal Resolution Data Fused from SPOT5 and MODIS Products

    PubMed Central

    Zheng, Yang; Wu, Bingfang; Zhang, Miao; Zeng, Hongwei

    2016-01-01

    Timely and efficient monitoring of crop phenology at a high spatial resolution are crucial for the precise and effective management of agriculture. Recently, satellite-derived vegetation indices (VIs), such as the Normalized Difference Vegetation Index (NDVI), have been widely used for the phenology detection of terrestrial ecosystems. In this paper, a framework is proposed to detect crop phenology using high spatio-temporal resolution data fused from Systeme Probatoire d'Observation de la Tarre5 (SPOT5) and Moderate Resolution Imaging Spectroradiometer (MODIS) images. The framework consists of a data fusion method to produce a synthetic NDVI dataset at SPOT5’s spatial resolution and at MODIS’s temporal resolution and a phenology extraction algorithm based on NDVI time-series analysis. The feasibility of our phenology detection approach was evaluated at the county scale in Shandong Province, China. The results show that (1) the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) algorithm can accurately blend SPOT5 and MODIS NDVI, with an R2 of greater than 0.69 and an root mean square error (RMSE) of less than 0.11 between the predicted and referenced data; and that (2) the estimated phenology parameters, such as the start and end of season (SOS and EOS), were closely correlated with the field-observed data with an R2 of the SOS ranging from 0.68 to 0.86 and with an R2 of the EOS ranging from 0.72 to 0.79. Our research provides a reliable approach for crop phenology mapping in areas with high fragmented farmland, which is meaningful for the implementation of precision agriculture. PMID:27973404

  20. Metabolic profiling in Maturity-onset diabetes of the young (MODY) and young onset type 2 diabetes fails to detect robust urinary biomarkers.

    PubMed

    Gloyn, Anna L; Faber, Johan H; Malmodin, Daniel; Thanabalasingham, Gaya; Lam, Francis; Ueland, Per Magne; McCarthy, Mark I; Owen, Katharine R; Baunsgaard, Dorrit

    2012-01-01

    It is important to identify patients with Maturity-onset diabetes of the young (MODY) as a molecular diagnosis determines both treatment and prognosis. Genetic testing is currently expensive and many patients are therefore not assessed and are misclassified as having either type 1 or type 2 diabetes. Biomarkers could facilitate the prioritisation of patients for genetic testing. We hypothesised that patients with different underlying genetic aetiologies for their diabetes could have distinct metabolic profiles which may uncover novel biomarkers. The aim of this study was to perform metabolic profiling in urine from patients with MODY due to mutations in the genes encoding glucokinase (GCK) or hepatocyte nuclear factor 1 alpha (HNF1A), type 2 diabetes (T2D) and normoglycaemic control subjects. Urinary metabolic profiling by Nuclear Magnetic Resonance (NMR) and ultra performance liquid chromatography hyphenated to Q-TOF mass spectrometry (UPLC-MS) was performed in a Discovery set of subjects with HNF1A-MODY (n = 14), GCK-MODY (n = 17), T2D (n = 14) and normoglycaemic controls (n = 34). Data were used to build a valid partial least squares discriminate analysis (PLS-DA) model where HNF1A-MODY subjects could be separated from the other diabetes subtypes. No single metabolite contributed significantly to the separation of the patient groups. However, betaine, valine, glycine and glucose were elevated in the urine of HNF1A-MODY subjects compared to the other subgroups. Direct measurements of urinary amino acids and betaine in an extended dataset did not support differences between patients groups. Elevated urinary glucose in HNF1A-MODY is consistent with the previously reported low renal threshold for glucose in this genetic subtype. In conclusion, we report the first metabolic profiling study in monogenic diabetes and show that, despite the distinct biochemical pathways affected, there are unlikely to be robust urinary biomarkers which distinguish monogenic subtypes from T2D. Our results have implications for studies investigating metabolic profiles in complex traits including T2D.

  1. Stormwater plume detection by MODIS imagery in the southern California coastal ocean

    USGS Publications Warehouse

    Nezlin, N.P.; DiGiacomo, P.M.; Diehl, D.W.; Jones, B.H.; Johnson, S.C.; Mengel, M.J.; Reifel, K.M.; Warrick, J.A.; Wang, M.

    2008-01-01

    Stormwater plumes in the southern California coastal ocean were detected by MODIS-Aqua satellite imagery and compared to ship-based data on surface salinity and fecal indicator bacterial (FIB) counts collected during the Bight'03 Regional Water Quality Program surveys in February-March of 2004 and 2005. MODIS imagery was processed using a combined near-infrared/shortwave-infrared (NIR-SWIR) atmospheric correction method, which substantially improved normalized water-leaving radiation (nLw) optical spectra in coastal waters with high turbidity. Plumes were detected using a minimum-distance supervised classification method based on nLw spectra averaged within the training areas, defined as circular zones of 1.5-5.0-km radii around field stations with a surface salinity of S 33.0 ('ocean'). The plume optical signatures (i.e., the nLw differences between 'plume' and 'ocean') were most evident during the first 2 days after the rainstorms. To assess the accuracy of plume detection, stations were classified into 'plume' and 'ocean' using two criteria: (1) 'plume' included the stations with salinity below a certain threshold estimated from the maximum accuracy of plume detection; and (2) FIB counts in 'plume' exceeded the California State Water Board standards. The salinity threshold between 'plume' and 'ocean' was estimated as 32.2. The total accuracy of plume detection in terms of surface salinity was not high (68% on average), seemingly because of imperfect correlation between plume salinity and ocean color. The accuracy of plume detection in terms of FIB exceedances was even lower (64% on average), resulting from low correlation between ocean color and bacterial contamination. Nevertheless, satellite imagery was shown to be a useful tool for the estimation of the extent of potentially polluted plumes, which was hardly achievable by direct sampling methods (in particular, because the grids of ship-based stations covered only small parts of the plumes detected via synoptic MODIS imagery). In most southern California coastal areas, the zones of bacterial contamination were much smaller than the areas of turbid plumes; an exception was the plume of the Tijuana River, where the zone of bacterial contamination was comparable with the zone of plume detected by ocean color. ?? 2008 Elsevier Ltd.

  2. VIS and NIR land surface albedo sensitivity of the Ent Terrestrial Biosphere Model to forcing leaf area index

    NASA Astrophysics Data System (ADS)

    Montes, C.; Kiang, N. Y.; Ni-Meister, W.; Yang, W.; Schaaf, C.; Aleinov, I. D.; Jonas, J.; Zhao, F. A.; Yao, T.; Wang, Z.; Sun, Q.; Carrer, D.

    2016-12-01

    Land surface albedo is a major controlling factor in vegetation-atmosphere transfers, modifying the components of the energy budget, the ecosystem productivity and patterns of regional and global climate. General Circulation Models (GCMs) are coupled to Dynamic Global Vegetation Models (DGVMs) to solve vegetation albedo by using simple schemes prescribing albedo based on vegetation classification, and approximations of canopy radiation transport for multiple plant functional types (PFTs). In this work, we aim at evaluating the sensitivity of the NASA Ent Terrestrial Biosphere Model (TBM), a demographic DGVM coupled to the NASA Goddard Institute for Space Studies (GISS) GCM, in estimating VIS and NIR surface albedo by using variable forcing leaf area index (LAI). The Ent TBM utilizes a new Global Vegetation Structure Dataset (GVSD) to account for geographically varying vegetation tree heights and densities, as boundary conditions to the gap-probability based Analytical Clumped Two-Stream (ACTS) canopy radiative transfer scheme (Ni-Meister et al., 2010). Land surface and vegetation characteristics for the Ent GVSD are obtained from a number of earth observation platforms and algorithms, including the Moderate Resolution Imaging Spectroradiometer (MODIS) land cover and plant functional types (PFTs) (Friedl et al., 2010), soil albedo derived from MODIS (Carrer et al., 2014), and vegetation height from the Geoscience Laser Altimeter System (GLAS) on board ICESat (Ice, Cloud, and land Elevation Satellite) (Simard et al., 2011; Tang et al., 2014). Three LAI products are used as input to ACTS/Ent TBM: MODIS MOD15A2H product (Yang et al., 2006), Beijing Normal University LAI (Yuan et al., 2011), and Global Data Sets of Vegetation (LAI3g) (Zhu et al. 2013). The sensitivity of the Ent TBM VIS and NIR albedo to the three LAI products is assessed, compared against the previous GISS GCM vegetation classification and prescribed Lambertian albedoes (Matthews, 1984), and against MODIS snow-free black-sky and white-sky albedo estimates. In addition, we test the sensitivity of the Ent/ACTS albedo to different sets of leaf spectral albedos derived from the literature.

  3. Advances in regional crop yield estimation over the United States using satellite remote sensing data

    NASA Astrophysics Data System (ADS)

    Johnson, D. M.; Dorn, M. F.; Crawford, C.

    2015-12-01

    Since the dawn of earth observation imagery, particularly from systems like Landsat and the Advanced Very High Resolution Radiometer, there has been an overarching desire to regionally estimate crop production remotely. Research efforts integrating space-based imagery into yield models to achieve this need have indeed paralleled these systems through the years, yet development of a truly useful crop production monitoring system has been arguably mediocre in coming. As a result, relatively few organizations have yet to operationalize the concept, and this is most acute in regions of the globe where there are not even alternative sources of crop production data being collected. However, the National Agricultural Statistics Service (NASS) has continued to push for this type of data source as a means to complement its long-standing, traditional crop production survey efforts which are financially costly to the government and create undue respondent burden on farmers. Corn and soybeans, the two largest field crops in the United States, have been the focus of satellite-based production monitoring by NASS for the past decade. Data from the Moderate Resolution Imaging Spectroradiometer (MODIS) has been seen as the most pragmatic input source for modeling yields primarily based on its daily revisit capabilities and reasonable ground sample resolution. The research methods presented here will be broad but provides a summary of what is useful and adoptable with satellite imagery in terms of crop yield estimation. Corn and soybeans will be of particular focus but other major staple crops like wheat and rice will also be presented. NASS will demonstrate that while MODIS provides a slew of vegetation related products, the traditional normalized difference vegetation index (NDVI) is still ideal. Results using land surface temperature products, also generated from MODIS, will also be shown. Beyond the MODIS data itself, NASS research has also focused efforts on understanding a variety of data mining and modeling options and results strongly lean toward solutions of ensemble decision trees like Cubist and Random Forest. Those comparisons of what are seen as best will be also be shown. And finally, important model refinements accounting for temporal and spatial trends have also been considered and results will be presented.

  4. Evaluation of the Event Driven Phenology Model Coupled with the VegET Evapotranspiration Model Through Comparisons with Reference Datasets in a Spatially Explicit Manner

    NASA Technical Reports Server (NTRS)

    Kovalskyy, V.; Henebry, G. M.; Adusei, B.; Hansen, M.; Roy, D. P.; Senay, G.; Mocko, D. M.

    2011-01-01

    A new model coupling scheme with remote sensing data assimilation was developed for estimation of daily actual evapotranspiration (ET). The scheme represents a mix of the VegET, a physically based model to estimate ET from a water balance, and an event driven phenology model (EDPM), where the EDPM is an empirically derived crop specific model capable of producing seasonal trajectories of canopy attributes. In this experiment, the scheme was deployed in a spatially explicit manner within the croplands of the Northern Great Plains. The evaluation was carried out using 2007-2009 land surface forcing data from the North American Land Data Assimilation System (NLDAS) and crop maps derived from remotely sensed data of NASA's Moderate Resolution Imaging Spectroradiometer (MODIS). We compared the canopy parameters produced by the phenology model with normalized difference vegetation index (NDVI) data derived from the MODIS nadir bi-directional reflectance distribution function (BRDF) adjusted reflectance (NBAR) product. The expectations of the EDPM performance in prognostic mode were met, producing determination coefficient (r2) of 0.8 +/-.0.15. Model estimates of NDVI yielded root mean square error (RMSE) of 0.1 +/-.0.035 for the entire study area. Retrospective correction of canopy dynamics with MODIS NDVI brought the errors down to just below 10% of observed data range. The ET estimates produced by the coupled scheme were compared with ones from the MODIS land product suite. The expected r2=0.7 +/-.15 and RMSE = 11.2 +/-.4 mm per 8 days were met and even exceeded by the coupling scheme0 functioning in both prognostic and retrospective modes. Minor setbacks of the EDPM and VegET performance (r2 about 0.5 and additional 30 % of RMSR) were found on the peripheries of the study area and attributed to the insufficient EDPM training and to spatially varying accuracy of crop maps. Overall the experiment provided sufficient evidence of soundness and robustness of the EDPM and VegET coupling scheme, assuring its potential for spatially explicit applications.

  5. Improved atmospheric correction and chlorophyll-a remote sensing models for turbid waters in a dusty environment

    NASA Astrophysics Data System (ADS)

    Al Shehhi, Maryam R.; Gherboudj, Imen; Zhao, Jun; Ghedira, Hosni

    2017-11-01

    This study presents a comprehensive assessment of the performance of the commonly used atmospheric correction models (NIR, SWIR, NIR-SWIR and FM) and ocean color products (OC3 and OC2) derived from MODIS images over the Arabian Gulf, Sea of Oman, and Arabian Sea. The considered atmospheric correction models have been used to derive MODIS normalized water-leaving radiances (nLw), which are compared to in situ water nLw(λ) data collected at different locations by Masdar Institute, United Arab of Emirates, and from AERONET-OC (the ocean color component of the Aerosol Robotic Network) database. From this comparison, the NIR model has been found to be the best performing model among the considered atmospheric correction models, which in turn shows disparity, especially at short wavelengths (400-500 nm) under high aerosol optical depth conditions (AOT (869) > 0.3) and over turbid waters. To reduce the error induced by these factors, a modified model taking into consideration the atmospheric and water turbidity conditions has been proposed. A turbidity index was used to identify the turbid water and a threshold of AOT (869) = 0.3 was used to identify the dusty atmosphere. Despite improved results in the MODIS nLw(λ) using the proposed approach, Chl-a models (OC3 and OC2) show low performance when compared to the in situ Chl-a measurements collected during several field campaigns organized by local, regional and international organizations. This discrepancy might be caused by the improper parametrization of these models or/and the improper selection of bands. Thus, an adaptive power fit algorithm (R2 = 0.95) has been proposed to improve the estimation of Chl-a concentration from 0.07 to 10 mg/m3 by using a new blue/red MODIS band ratio of (443,488)/645 instead of the default band ratio used for OC3(443,488)/547. The selection of this new band ratio (443,488)/645 has been based on using band 645 nm which has been found to represent both water turbidity and algal absorption.

  6. Stormwater plume detection by MODIS imagery in the southern California coastal ocean

    NASA Astrophysics Data System (ADS)

    Nezlin, Nikolay P.; DiGiacomo, Paul M.; Diehl, Dario W.; Jones, Burton H.; Johnson, Scott C.; Mengel, Michael J.; Reifel, Kristen M.; Warrick, Jonathan A.; Wang, Menghua

    2008-10-01

    Stormwater plumes in the southern California coastal ocean were detected by MODIS-Aqua satellite imagery and compared to ship-based data on surface salinity and fecal indicator bacterial (FIB) counts collected during the Bight'03 Regional Water Quality Program surveys in February-March of 2004 and 2005. MODIS imagery was processed using a combined near-infrared/shortwave-infrared (NIR-SWIR) atmospheric correction method, which substantially improved normalized water-leaving radiation (nLw) optical spectra in coastal waters with high turbidity. Plumes were detected using a minimum-distance supervised classification method based on nLw spectra averaged within the training areas, defined as circular zones of 1.5-5.0-km radii around field stations with a surface salinity of S < 32.0 ("plume") and S > 33.0 ("ocean"). The plume optical signatures (i.e., the nLw differences between "plume" and "ocean") were most evident during the first 2 days after the rainstorms. To assess the accuracy of plume detection, stations were classified into "plume" and "ocean" using two criteria: (1) "plume" included the stations with salinity below a certain threshold estimated from the maximum accuracy of plume detection; and (2) FIB counts in "plume" exceeded the California State Water Board standards. The salinity threshold between "plume" and "ocean" was estimated as 32.2. The total accuracy of plume detection in terms of surface salinity was not high (68% on average), seemingly because of imperfect correlation between plume salinity and ocean color. The accuracy of plume detection in terms of FIB exceedances was even lower (64% on average), resulting from low correlation between ocean color and bacterial contamination. Nevertheless, satellite imagery was shown to be a useful tool for the estimation of the extent of potentially polluted plumes, which was hardly achievable by direct sampling methods (in particular, because the grids of ship-based stations covered only small parts of the plumes detected via synoptic MODIS imagery). In most southern California coastal areas, the zones of bacterial contamination were much smaller than the areas of turbid plumes; an exception was the plume of the Tijuana River, where the zone of bacterial contamination was comparable with the zone of plume detected by ocean color.

  7. Forest fires in the insular Caribbean

    Treesearch

    A.M.J. Robbins; C.M. Eckelmann; M. Quinones

    2008-01-01

    This paper presents a summary of the forest fire reports in the insular Caribbean derived from both management reports and an analysis of publicly available Moderate Resolution Imaging Spectrodiometer (MODIS) satellite active fire products from the region. A vast difference between the amount of fires reported by land managers and fire points in the MODIS Fire...

  8. Characterizing Urban Heat Islands of Global Settlements Using MODIS and Nighttime Lights Products

    NASA Technical Reports Server (NTRS)

    Zhang, Ping; Imhoff, Marc L.; Wolfe, Robert E.; Bounoua, Lahouari

    2010-01-01

    Impervious surface area (ISA) from the National Geophysical Data Center (NGDC) and land surface temperature (LST) from the Moderate Resolution Imaging Spectroradiometer (MODIS) averaged over three annual cycles (2003-2005) are used in a spatial analysis to assess the urban heat island (UHI) signature on LST amplitude and its relationship with development intensity, size, and ecological setting for more than 3000 urban settlements globally. Development intensity zones based on fractional ISA are defined for each urban area emanating outward from the urban core to the nearby nonurban rural areas and used to stratify sampling for LST. Sampling is further constrained by biome type and elevation data to ensure objective intercomparisons between zones and between cities in different biomes. We find that the ecological context and settlement size significantly influence the amplitude of summer daytime UHI. Globally, an average of 3.8 C UHI is found in cities built in biomes dominated by forests; 1.9 C UHI in cities embedded in grass shrubs biomes; and only a weak UHI or sometimes an urban heat sink (UHS) in cities in arid and semi-arid biomes. Overall, the amplitude of the UHI is negatively correlated (R = -0.66) with the difference in vegetation density between urban and rural zones represented by the MODIS normalized difference vegetation index (NDVI). Globally averaged, the daytime UHI amplitude for all settlements is 2.6 C in summer and 1.4 C in winter. Globally, the average summer daytime UHI is 4.7 C for settlements larger than 500 square kilometers compared with 2.5 C for settlements smaller than 50 square kilometers and larger than 10 square kilometers. The stratification of cities by size indicates that the aggregated amount of ISA is the primary driver of UHI amplitude, with variations between ecological contexts and latitudinal zones. More than 60% of the total LST variance is explained by ISA for urban settlements within forests at mid to high latitudes. This percentage will increase to more than 80% when only settlements in the US are examined.

  9. Characterizing Urban Heat Islands of Global Settlements Using MODIS and Nighttime Lights Products

    NASA Technical Reports Server (NTRS)

    Zhang, Ping; Imhoff, Marc L.; Wolfe, Robert E.; Bounoua, Lahouari

    2010-01-01

    Impervious surface area (ISA) from the National Geophysical Data Center (NGDC) and land surface temperature (LST) from MODIS averaged over three annual cycles (2003-2005) are used in a spatial analysis to assess the urban heat island (UHI) signature on LST amplitude and its relationship to development intensity, size, and ecological setting for more than 3000 urban settlements over the globe. Development intensity zones based on fractional ISA are defined for each urban area emanating outward from the urban core to the nearby non-urban rural areas and used to stratify sampling for LST. Sampling is further constrained by biome type and elevation data to insure objective inter-comparisons between zones and between cities in different biomes. We find that the ecological context and settlement size significantly influence the amplitude of summer daytime UHI. Globally, an average of 3.8 C UHI is found in cities built in biomes dominated by forests; 1.9 C UHI in cities embedded in grass/shrub biomes, and only a weak UHI or sometimes an Urban Heat Sink (UHS) in cities in and and semi-arid biomes. Overall, the amplitude of the UHI is negatively correlated (R = -0.66) to the difference in vegetation density between urban and rural zones represented by MODIS Normalized Difference Vegetation Index (NDVI). Globally averaged, the daytime UHI amplitude for all settlement is 2.6 C in summer and 1.4 C in winter. Globally, the average summer daytime UHI is 4.7 C for settlements larger than 500 square kilometers, compared to 2.5 C for settlements smaller than 50 square kilometers and larger than 10 square kilometers. The stratification of cities by size indicates that the aggregated amount of ISA is the primary driver of UHI amplitude with variations between ecological contexts and latitudinal zones. More than 60% of the total LST variances is explained by ISA for urban settlements within forests at mid-to-high latitudes. This percentage will increase to more than 80% when only USA settlements are examined.

  10. Evaluation of MODIS columnar aerosol retrievals using AERONET in semi-arid Nevada and California, U.S.A., during the summer of 2012

    NASA Astrophysics Data System (ADS)

    Loría-Salazar, S. Marcela; Holmes, Heather A.; Patrick Arnott, W.; Barnard, James C.; Moosmüller, Hans

    2016-11-01

    Satellite characterization of local aerosol pollution is desirable because of the potential for broad spatial coverage, enabling transport studies of pollution from major sources, such as biomass burning events. However, retrieval of quantitative measures of air pollution such as Aerosol Optical Depth (AOD) from satellite measurements is challenging over land because the underlying surface albedo may be heterogeneous in space and time. Ground-based sunphotometer measurements of AOD are unaffected by surface albedo and are crucial in enabling evaluation, testing, and further development of satellite instruments and retrieval algorithms. Columnar aerosol optical properties from ground-based sunphotometers (Cimel CE-318) as part of AERONET and MODIS aerosol retrievals from Aqua and Terra satellites were compared over semi-arid California and Nevada during the summer season of 2012. Sunphotometer measurements were used as a 'ground truth' to evaluate the current state of satellite retrievals in this spatiotemporal domain. Satellite retrieved (MODIS Collection 6) AOD showed the presence of wildfires in northern California during August. During the study period, the dark-target (DT) retrieval algorithm appears to overestimate AERONET AOD by an average factor of 3.85 in the entire study domain. AOD from the deep-blue (DB) algorithm overestimates AERONET AOD by an average factor of 1.64. Low AOD correlation was also found between AERONET, DT, and DB retrievals. Smoke from fires strengthened the aerosol signal, but MODIS versus AERONET AOD correlation hardly increased during fire events (r2∼0.1-0.2 during non-fire periods and r2∼0-0.31 during fire periods). Furthermore, aerosol from fires increased the normalized mean bias (NMB) of MODIS retrievals of AOD (NMB∼23%-154% for non-fire periods and NMB∼77%-196% for fire periods). Ångström Extinction Exponent (AEE) from DB for both Terra and Aqua did not correlate with AERONET observations. High surface reflectance and incorrect aerosol physical parametrizations may still be affecting the DT and DB MODIS AOD retrievals in the semi-arid western U.S.

  11. A Simple Technique for Creating Regional Composites of Sea Surface Temperature from MODIS for Use in Operational Mesoscale NWP

    NASA Technical Reports Server (NTRS)

    Knievel, Jason C.; Rife, Daran L.; Grim, Joseph A.; Hahmann, Andrea N.; Hacker, Joshua P.; Ge, Ming; Fisher, Henry H.

    2010-01-01

    This paper describes a simple technique for creating regional, high-resolution, daytime and nighttime composites of sea surface temperature (SST) for use in operational numerical weather prediction (NWP). The composites are based on observations from NASA s Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Aqua and Terra. The data used typically are available nearly in real time, are applicable anywhere on the globe, and are capable of roughly representing the diurnal cycle in SST. The composites resolution is much higher than that of many other standard SST products used for operational NWP, including the low- and high-resolution Real-Time Global (RTG) analyses. The difference in resolution is key because several studies have shown that highly resolved SSTs are important for driving the air sea interactions that shape patterns of static stability, vertical and horizontal wind shear, and divergence in the planetary boundary layer. The MODIS-based composites are compared to in situ observations from buoys and other platforms operated by the National Data Buoy Center (NDBC) off the coasts of New England, the mid-Atlantic, and Florida. Mean differences, mean absolute differences, and root-mean-square differences between the composites and the NDBC observations are all within tenths of a degree of those calculated between RTG analyses and the NDBC observations. This is true whether or not one accounts for the mean offset between the skin temperatures of the MODIS dataset and the bulk temperatures of the NDBC observations and RTG analyses. Near the coast, the MODIS-based composites tend to agree more with NDBC observations than do the RTG analyses. The opposite is true away from the coast. All of these differences in point-wise comparisons among the SST datasets are small compared to the 61.08C accuracy of the NDBC SST sensors. Because skin-temperature variations from land to water so strongly affect the development and life cycle of the sea breeze, this phenomenon was chosen for demonstrating the use of the MODIS-based composite in an NWP model. A simulated sea breeze in the vicinity of New York City and Long Island shows a small, net, but far from universal improvement when MODIS-based composites are used in place of RTG analyses. The timing of the sea breeze s arrival is more accurate at some stations, and the near-surface temperature, wind, and humidity within the breeze are more realistic.

  12. Intercalibration of Two Polar Satellite Instruments Without Simultaneous Nadir Observations

    NASA Astrophysics Data System (ADS)

    Manninen, Terhikki; Riihela, Aku; Schaaf, Crystal; Key, Jeffrey; Lattanzio, Alessio

    2016-08-01

    A new intercalibration method for two polar satellite instruments is presented. It is based on statistical fitting of two data sets covering the same area during the same period, but not simultaneously. Deming regression with iterative weights is used. The accuracy of the method was better than about 0.5 % for the MODIS vs. MODIS and AVHRR vs. AVHRR test data sets. The intercalibration of AVHRR vs. MODIS red and NIR channels is carried out and showed a difference of reflectance values of 2% (red) and 6 % (NIR). The red channel intercalibration has slightly higher accuracy for all cases studied.

  13. Ocean Data from MODIS at the NASA Goddard DAAC

    NASA Technical Reports Server (NTRS)

    Leptoukh, Gregory G.; Wharton, Stephen (Technical Monitor)

    2000-01-01

    Terra satellite carrying the Moderate Resolution Imaging Spectroradiometer (MODIS) was successfully launched on December 18, 1999. Some of the 36 different wavelengths that MODIS samples have never before been measured from space. New ocean data products, which have not been derived on a global scale before, are made available for research to the scientific community. For example, MODIS uses a new split window in the four-micron region for the better measurement of Sea Surface Temperature (SST), and provides the unprecedented ability (683 nm band) to measure chlorophyll fluorescence. At full ocean production, more than a thousand different ocean products in three major categories (ocean color, sea surface temperature, and ocean primary production) are archived at the NASA Goddard Earth Sciences (GES) Distributed Active Archive Center (DAAC) at the rate of approx. 230GB/day. The challenge is to distribute such large volumes of data to the ocean community. It is achieved through a combination of public and restricted EOS Data Gateways, the GES DAAC Search and Order WWW interface, and an FTP site that contains samples of MODIS data. A new Search and Order WWW interface at http://acdisx.gsfc.nasa.gov/data/ developed at the GES DAAC is based on a hierarchical organization of data, will always return non-zero results. It has a very convenient geographical representation of five-minute data granule coverage for each day MODIS Data Support Team (MDST) continues the tradition of quality support at the GES DAAC for the ocean color data from the Coastal Zone Color Scanner (CZCS) and the Sea Viewing Wide Field-of-View Sensor (SeaWiFS) by providing expert assistance to users in accessing data products, information on visualization tools, documentation for data products and formats (Hierarchical Data Format-Earth Observing System (HDF-EOS)), information on the scientific content of products and metadata. Visit the MDST website at http://daac.gsfc.nasa.gov/CAMPAIGN DOCS/MODIS/index.html

  14. Comparison of CALIPSO-Like, LaRC, and MODIS Retrievals of Ice Cloud Properties over SIRTA in France and Florida during CRYSTAL-FACE

    NASA Technical Reports Server (NTRS)

    Chiriaco, M.; Chepfer, H.; Haeffelin, M.; Minnis, P.; Noel, V.; Platnick, S.; McGill, M.; Baumgardner, D.; Dubuisson, P.; Pelon, J.; hide

    2007-01-01

    This study compares cirrus particle effective radius retrieved by a CALIPSO-like method with two similar methods using MODIS, MODI Airborne Simulator (MAS), and GOES imagery. The CALIPSO-like method uses lidar measurements coupled with the split-window technique that uses the infrared spectral information contained at the 8.65-micrometer, 11.15-micrometer and 12.05-micrometer bands to infer the microphysical properties of cirrus clouds. The two other methods, sing passive remote sensing at visible and infrared wavelengths, are the operational MODIS cloud products (referred to by its archival product identifier MOD06 for MODIS Terra) and MODIS retrievals performed by the CERES team at LaRC (Langley Research Center) in support of CERES algorithms; the two algorithms will be referred to as MOD06- and LaRC-method, respectively. The three techniques are compared at two different latitudes: (i) the mid-latitude ice clouds study uses 18 days of observations at the Palaiseau ground-based site in France (SIRTA: Site Instrumental de Recherche par Teledetection Atmospherique) including a ground-based 532 nm lidar and the Moderate Resolution Imaging Spectrometer (MODIS) overpasses on the Terra Platform, (ii) the tropical ice clouds study uses 14 different flight legs of observations collected in Florida, during the intensive field experiment CRYSTAL-FACE (Cirrus Regional Study of Tropical Anvils and cirrus Layers-Florida Area Cirrus Experiment), including the airborne Cloud Physics Lidar (CPL) and the MAS. The comparison of the three methods gives consistent results for the particle effective radius and the optical thickness, but discrepancies in cloud detection and altitudes. The study confirms the value of an active remote-sensing method (CALIPSO-like) for the study of sub-visible ice clouds, in both mid-latitudes and tropics. Nevertheless, this method is not reliable in optically very thick tropical ice clouds.

  15. Observations of Ocean Primary Productivity Using MODIS

    NASA Technical Reports Server (NTRS)

    Esaias, Wayne E.; Abbott, Mark R.; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    Measuring the magnitude and variability of oceanic net primary productivity (NPP) represents a key advancement toward our understanding of the dynamics of marine ecosystems and the role of the ocean in the global carbon cycle. MODIS observations make two new contributions in addition to continuing the bio-optical time series begun with Orbview-2's SeaWiFS sensor. First, MODIS provides weekly estimates of global ocean net primary productivity on weekly and annual time periods, and annual empirical estimates of carbon export production. Second, MODIS provides additional insight into the spatial and temporal variations in photosynthetic efficiency through the direct measurements of solar-stimulated chlorophyll fluorescence. The two different weekly productivity indexes (first developed by Behrenfeld & Falkowski and by Yoder, Ryan and Howard) are used to derive daily productivity as a function of chlorophyll biomass, incident daily surface irradiance, temperature, euphotic depth, and mixed layer depth. Comparisons between these two estimates using both SeaWiFS and MODIS data show significant model differences in spatial distribution after allowance for the different integration depths. Both estimates are strongly dependence on the accuracy of the chlorophyll determination. In addition, an empirical approach is taken on annual scales to estimate global NPP and export production. Estimates of solar stimulated fluorescence efficiency from chlorophyll have been shown to be inversely related to photosynthetic efficiency by Abbott and co-workers. MODIS provides the first global estimates of oceanic chlorophyll fluorescence, providing an important proof of concept. MODIS observations are revealing spatial patterns of fluorescence efficiency which show expected variations with phytoplankton photo-physiological parameters as measured during in-situ surveys. This has opened the way for research into utilizing this information to improve our understanding of oceanic NPP variability. Deriving the ocean bio-optical properties places severe demands on instrument performance (especially band to band precision) and atmospheric correction. Improvements in MODIS instrument characterization and calibration over the first 16 mission months have greatly improved the accuracy of the chlorophyll input fields and FLH, and therefore the estimates of NPP and fluorescence efficiency. Annual estimates now show the oceanic NPP accounts for 40-50% of the global total NPP, with significant interannual variations related to large scale ocean processes. Spatial variations in ocean NPP, and exported production, have significant effects on exchange of CO2 between the ocean and atmosphere. Further work is underway to improve both the primary productivity model functions, and to refine our understanding of the relationships between fluorescence efficiency and NPP estimates. We expect that the MODIS instruments will prove extremely useful in assessing the time dependencies of oceanic carbon uptake and effects of iron enrichment, within the global carbon cycle.

  16. Assessing the Success of Postfire Reseeding in Semiarid Rangelands Using Terra MODIS

    NASA Technical Reports Server (NTRS)

    Chen, Fang; Weber, Keith T.; Scbnase, John L.

    2012-01-01

    Successful postfire reseeding efforts can aid rangeland ecosystem recovery by rapidly establishing a desired plant community and thereby reducing the likelihood of infestation by invasive plants. Although the success of postfire remediation is critical, few efforts have been made to leverage existing geospatial technologies to develop methodologies to assess reseeding success following a fire. In this study, Terra Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data were used to improve the capacity to assess postfire reseeding rehabilitation efforts, with particular emphasis on the semiarid rangelands of Idaho. Analysis of MODIS data demonstrated a positive effect of reseeding on rangeland ecosystem recovery, as well as differences in vegetation between reseeded areas and burned areas where no reseeding had occurred (P,0.05). We conclude that MODIS provides useful data to assess the success of postfire reseeding.

  17. Estimation of daily maximum and minimum air temperatures in urban landscapes using MODIS time series satellite data

    NASA Astrophysics Data System (ADS)

    Yoo, Cheolhee; Im, Jungho; Park, Seonyoung; Quackenbush, Lindi J.

    2018-03-01

    Urban air temperature is considered a significant variable for a variety of urban issues, and analyzing the spatial patterns of air temperature is important for urban planning and management. However, insufficient weather stations limit accurate spatial representation of temperature within a heterogeneous city. This study used a random forest machine learning approach to estimate daily maximum and minimum air temperatures (Tmax and Tmin) for two megacities with different climate characteristics: Los Angeles, USA, and Seoul, South Korea. This study used eight time-series land surface temperature (LST) data from Moderate Resolution Imaging Spectroradiometer (MODIS), with seven auxiliary variables: elevation, solar radiation, normalized difference vegetation index, latitude, longitude, aspect, and the percentage of impervious area. We found different relationships between the eight time-series LSTs with Tmax/Tmin for the two cities, and designed eight schemes with different input LST variables. The schemes were evaluated using the coefficient of determination (R2) and Root Mean Square Error (RMSE) from 10-fold cross-validation. The best schemes produced R2 of 0.850 and 0.777 and RMSE of 1.7 °C and 1.2 °C for Tmax and Tmin in Los Angeles, and R2 of 0.728 and 0.767 and RMSE of 1.1 °C and 1.2 °C for Tmax and Tmin in Seoul, respectively. LSTs obtained the day before were crucial for estimating daily urban air temperature. Estimated air temperature patterns showed that Tmax was highly dependent on the geographic factors (e.g., sea breeze, mountains) of the two cities, while Tmin showed marginally distinct temperature differences between built-up and vegetated areas in the two cities.

  18. Do we need a dynamic snow depth threshold when comparing hydrological models with remote sensing products in mountain catchments?

    NASA Astrophysics Data System (ADS)

    Engel, Michael; Bertoldi, Giacomo; Notarnicola, Claudia; Comiti, Francesco

    2017-04-01

    To assess the performance of simulated snow cover of hydrological models, it is common practice to compare simulated data with observed ones derived from satellite images such as MODIS. However, technical and methodological limitations such as data availability of MODIS products, its spatial resolution or difficulties in finding appropriate parameterisations of the model need to be solved previously. Another important assumption usually made is the threshold of minimum simulated snow depth, generally set to 10 mm of snow depth, to respect the MODIS detection thresholds for snow cover. But is such a constant threshold appropriate for complex alpine terrain? How important is the impact of different snow depth thresholds on the spatial and temporal distribution of the pixel-based overall accuracy (OA)? To address this aspect, we compared the snow covered area (SCA) simulated by the GEOtop 2.0 snow model to the daily composite 250 m EURAC MODIS SCA in the upper Saldur basin (61 km2, Eastern Italian Alps) during the period October 2011 - October 2013. Initially, we calibrated the snow model against snow depths and snow water equivalents at point scale, taken from measurements at different meteorological stations. We applied different snow depth thresholds (0 mm, 10 mm, 50 mm, and 100 mm) to obtain the simulated snow cover and assessed the changes in OA both in time (during the entire evaluation period, accumulation and melting season) and space (entire catchment and specific areas of topographic characteristics such as elevation, slope, aspect, landcover, and roughness). Results show remarkable spatial and temporal differences in OA with respect to different snow depth thresholds. Inaccuracies of simulated and observed SCA during the accumulation season September to November 2012 were located in areas with north-west aspect, slopes of 30° or little elevation differences at sub-pixel scale (-0.25 to 0 m). We obtained best agreements with MODIS SCA for a snow depth threshold of 100 mm, leading to increased OA (> 0.8) in 13‰ of the catchment area. SCA agreement in January 2012 and 2013 was slightly limited by MODIS sensor detection due to shading effects and low illumination in areas exposed north-west to north. On the contrary, during the melting season in April 2013 and after the September 2013 snowfall event seemed to depend more on parameterisation than on snow depth thresholds. In contrast, inaccuracies during the melting season March to June 2013 could hardly be attributed to topographic characteristics and different snow depth thresholds but rather on model parameterisation. We identified specific conditions (p.e. specific snowfall events in autumn 2012 and spring 2013) when either MODIS data or the hydrological model was less accurate, thus justifying the need for improvements of precision in the snow cover detection algorithms or in the model's process description. In consequence, our study observations could support future snow cover evaluations in mountain areas, where spatially and temporally dynamic snow depth thresholds are transferred from the catchment scale to the regional scale. Keywords: snow cover, snow modelling, MODIS, snow depth sensitivity, alpine catchment

  19. Genetic Testing of Maturity-Onset Diabetes of the Young Current Status and Future Perspectives

    PubMed Central

    Firdous, Parveena; Nissar, Kamran; Ali, Sajad; Ganai, Bashir Ahmad; Shabir, Uzma; Hassan, Toyeeba; Masoodi, Shariq Rashid

    2018-01-01

    Diabetes is a global epidemic problem growing exponentially in Asian countries posing a serious threat. Among diabetes, maturity-onset diabetes of the young (MODY) is a heterogeneous group of monogenic disorders that occurs due to β cell dysfunction. Genetic defects in the pancreatic β-cells result in the decrease of insulin production required for glucose utilization thereby lead to early-onset diabetes (often <25 years). It is generally considered as non-insulin dependent form of diabetes and comprises of 1–5% of total diabetes. Till date, 14 genes have been identified and mutation in them may lead to MODY. Different genetic testing methodologies like linkage analysis, restriction fragment length polymorphism, and DNA sequencing are used for the accurate and correct investigation of gene mutations associated with MODY. The next-generation sequencing has emerged as one of the most promising and effective tools to identify novel mutated genes related to MODY. Diagnosis of MODY is mainly relying on the sequential screening of the three marker genes like hepatocyte nuclear factor 1 alpha (HNF1α), hepatocyte nuclear factor 4 alpha (HNF4α), and glucokinase (GCK). Interestingly, MODY patients can be managed by diet alone for many years and may also require minimal doses of sulfonylureas. The primary objective of this article is to provide a review on current status of MODY, its prevalence, genetic testing/diagnosis, possible treatment, and future perspective. PMID:29867778

  20. Multi-sensor cloud and aerosol retrieval simulator and remote sensing from model parameters - Part 2: Aerosols

    NASA Astrophysics Data System (ADS)

    Wind, Galina; da Silva, Arlindo M.; Norris, Peter M.; Platnick, Steven; Mattoo, Shana; Levy, Robert C.

    2016-07-01

    The Multi-sensor Cloud Retrieval Simulator (MCRS) produces a "simulated radiance" product from any high-resolution general circulation model with interactive aerosol as if a specific sensor such as the Moderate Resolution Imaging Spectroradiometer (MODIS) were viewing a combination of the atmospheric column and land-ocean surface at a specific location. Previously the MCRS code only included contributions from atmosphere and clouds in its radiance calculations and did not incorporate properties of aerosols. In this paper we added a new aerosol properties module to the MCRS code that allows users to insert a mixture of up to 15 different aerosol species in any of 36 vertical layers.This new MCRS code is now known as MCARS (Multi-sensor Cloud and Aerosol Retrieval Simulator). Inclusion of an aerosol module into MCARS not only allows for extensive, tightly controlled testing of various aspects of satellite operational cloud and aerosol properties retrieval algorithms, but also provides a platform for comparing cloud and aerosol models against satellite measurements. This kind of two-way platform can improve the efficacy of model parameterizations of measured satellite radiances, allowing the assessment of model skill consistently with the retrieval algorithm. The MCARS code provides dynamic controls for appearance of cloud and aerosol layers. Thereby detailed quantitative studies of the impacts of various atmospheric components can be controlled.In this paper we illustrate the operation of MCARS by deriving simulated radiances from various data field output by the Goddard Earth Observing System version 5 (GEOS-5) model. The model aerosol fields are prepared for translation to simulated radiance using the same model subgrid variability parameterizations as are used for cloud and atmospheric properties profiles, namely the ICA technique. After MCARS computes modeled sensor radiances equivalent to their observed counterparts, these radiances are presented as input to operational remote-sensing algorithms.Specifically, the MCARS-computed radiances are input into the processing chain used to produce the MODIS Data Collection 6 aerosol product (M{O/Y}D04). The M{O/Y}D04 product is of course normally produced from M{O/Y}D021KM MODIS Level-1B radiance product directly acquired by the MODIS instrument. MCARS matches the format and metadata of a M{O/Y}D021KM product. The resulting MCARS output can be directly provided to MODAPS (MODIS Adaptive Processing System) as input to various operational atmospheric retrieval algorithms. Thus the operational algorithms can be tested directly without needing to make any software changes to accommodate an alternative input source.We show direct application of this synthetic product in analysis of the performance of the MOD04 operational algorithm. We use biomass-burning case studies over Amazonia employed in a recent Working Group on Numerical Experimentation (WGNE)-sponsored study of aerosol impacts on numerical weather prediction (Freitas et al., 2015). We demonstrate that a known low bias in retrieved MODIS aerosol optical depth appears to be due to a disconnect between actual column relative humidity and the value assumed by the MODIS aerosol product.

  1. Multi-Sensor Cloud and Aerosol Retrieval Simulator and Remote Sensing from Model Parameters . Part 2; Aerosols

    NASA Technical Reports Server (NTRS)

    Wind, Galina; Da Silva, Arlindo M.; Norris, Peter M.; Platnick, Steven; Mattoo, Shana; Levy, Robert C.

    2016-01-01

    The Multi-sensor Cloud Retrieval Simulator (MCRS) produces a simulated radiance product from any high-resolution general circulation model with interactive aerosol as if a specific sensor such as the Moderate Resolution Imaging Spectroradiometer (MODIS) were viewing a combination of the atmospheric column and land ocean surface at a specific location. Previously the MCRS code only included contributions from atmosphere and clouds in its radiance calculations and did not incorporate properties of aerosols. In this paper we added a new aerosol properties module to the MCRS code that allows users to insert a mixture of up to 15 different aerosol species in any of 36 vertical layers. This new MCRS code is now known as MCARS (Multi-sensor Cloud and Aerosol Retrieval Simulator). Inclusion of an aerosol module into MCARS not only allows for extensive, tightly controlled testing of various aspects of satellite operational cloud and aerosol properties retrieval algorithms, but also provides a platform for comparing cloud and aerosol models against satellite measurements. This kind of two-way platform can improve the efficacy of model parameterizations of measured satellite radiances, allowing the assessment of model skill consistently with the retrieval algorithm. The MCARS code provides dynamic controls for appearance of cloud and aerosol layers. Thereby detailed quantitative studies of the impacts of various atmospheric components can be controlled. In this paper we illustrate the operation of MCARS by deriving simulated radiances from various data field output by the Goddard Earth Observing System version 5 (GEOS-5) model. The model aerosol fields are prepared for translation to simulated radiance using the same model sub grid variability parameterizations as are used for cloud and atmospheric properties profiles, namely the ICA technique. After MCARS computes modeled sensor radiances equivalent to their observed counterparts, these radiances are presented as input to operational remote-sensing algorithms. Specifically, the MCARS-computed radiances are input into the processing chain used to produce the MODIS Data Collection 6 aerosol product (MOYD04). TheMOYD04 product is of course normally produced from MOYD021KM MODIS Level-1B radiance product directly acquired by the MODIS instrument. MCARS matches the format and metadata of a MOYD021KM product. The resulting MCARS output can be directly provided to MODAPS (MODIS Adaptive Processing System) as input to various operational atmospheric retrieval algorithms. Thus the operational algorithms can be tested directly without needing to make any software changes to accommodate an alternative input source. We show direct application of this synthetic product in analysis of the performance of the MOD04 operational algorithm. We use biomass-burning case studies over Amazonia employed in a recent Working Group on Numerical Experimentation (WGNE)-sponsored study of aerosol impacts on numerical weather prediction (Freitas et al., 2015). We demonstrate that a known low bias in retrieved MODIS aerosol optical depth appears to be due to a disconnect between actual column relative humidity and the value assumed by the MODIS aerosol product.

  2. MODIS on-orbit thermal emissive bands lifetime performance

    NASA Astrophysics Data System (ADS)

    Madhavan, Sriharsha; Wu, Aisheng; Chen, Na; Xiong, Xiaoxiong

    2016-05-01

    MODerate resolution Imaging Spectroradiometer (MODIS), a leading heritage sensor in the fleet of Earth Observing System for the National Aeronautics and Space Administration (NASA) is in space orbit on two spacecrafts. They are the Terra (T) and Aqua (A) platforms. Both instruments have successfully continued to operate beyond the 6 year design life time, with the T-MODIS currently functional beyond 15 years and the A-MODIS operating beyond 13 years respectively. The MODIS sensor characteristics include a spectral coverage from 0.41 μm - 14.4 μm, of which wavelengths ranging from 3.7 μm - 14. 4 μm cover the thermal infrared region also referred to as the Thermal Emissive Bands (TEBs). The TEBs is calibrated using a v-grooved BlackBody (BB) whose temperature measurements are traceable to the National Institute of Standards and Technology temperature scales. The TEBs calibration based on the onboard BB is extremely important for its high radiometric fidelity. In this paper, we provide a complete characterization of the lifetime instrument performance of both MODIS instruments in terms of the sensor gain, the Noise Equivalent difference Temperature, key instrument telemetry such as the BB lifetime trends, the instrument temperature trends, the Cold Focal Plane telemetry and finally, the total assessed calibration uncertainty of the TEBs.

  3. MODIS On-Orbit Thermal Emissive Bands Lifetime Performance

    NASA Technical Reports Server (NTRS)

    Madhavan, Sriharsha; Xiong, Xiaoxiong

    2016-01-01

    MODerate resolution Imaging Spectroradiometer (MODIS), a leading heritage sensor in the fleet of Earth Observing System for the National Aeronautics and Space Administration (NASA) is in space orbit on two spacecrafts. They are the Terra (T) and Aqua (A) platforms. Both instruments have successfully continued to operate beyond the 6 year design life time, with the T-MODIS currently functional beyond 15 years and the A-MODIS operating beyond 13 years respectively. The MODIS sensor characteristics include a spectral coverage from 0.41 micron 14.4 micron, of which wavelengths ranging from 3.7 micron 14. 4 micron cover the thermal infrared region also referred to as the Thermal Emissive Bands (TEBs). The TEBs is calibrated using a v-grooved BlackBody (BB) whose temperature measurements are traceable to the National Institute of Standards and Technology temperature scales. The TEBs calibration based on the onboard BB is extremely important for its high radiometric fidelity. In this paper, we provide a complete characterization of the lifetime instrument performance of both MODIS instruments in terms of the sensor gain, the Noise Equivalent difference Temperature, key instrument telemetry such as the BB lifetime trends, the instrument temperature trends, the Cold Focal Plane telemetry and finally, the total assessed calibration uncertainty of the TEBs.

  4. Accessing and Understanding MODIS Data

    NASA Technical Reports Server (NTRS)

    Leptoukh, Gregory; Jenkerson, Calli B.; Jodha, Siri

    2003-01-01

    The National Aeronautics and Space Administration (NASA) launched the Terra satellite in December 1999, as part of the Earth Science Enterprise promotion of interdisciplinary studies of the integrated Earth system. Aqua, the second satellite from the series of EOS constellation, was launched in May 2002. Both satellites carry the MODerate resolution Imaging Spectroradiometer (MODIS) instrument. MODIS data are processed at the Goddard Space Flight Center, Greenbelt, MD, and then archived and distributed by the Distributed Active Archive Centers (DAACs). Data products from the MODIS sensors present new challenges to remote sensing scientists due to specialized production level, data format, and map projection. MODIS data are distributed as calibrated radiances and as higher level products such as: surface reflectance, water-leaving radiances, ocean color and sea surface temperature, land surface kinetic temperature, vegetation indices, leaf area index, land cover, snow cover, sea ice extent, cloud mask, atmospheric profiles, aerosol properties, and many other geophysical parameters. MODIS data are stored in HDF- EOS format in both swath format and in several different map projections. This tutorial guides users through data set characteristics as well as search and order interfaces, data unpacking, data subsetting, and potential applications of the data. A CD-ROM with sample data sets, and software tools for working with the data will be provided to the course participants.

  5. Comparative Analysis of Daytime Fire Detection Algorithms, Using AVHRR Data for the 1995 Fire Season in Canda: Perspective for MODIS

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles; Kaufman, Y. J.; Fraser, R. H.; Jin, J.-Z.; Park, W. M.; Lau, William K. M. (Technical Monitor)

    2001-01-01

    Two fixed-threshold Canada Centre for Remote Sensing and European Space Agency (CCRS and ESA) and three contextual GIGLIO, International Geosphere and Biosphere Project, and Moderate Resolution Imaging Spectroradiometer (GIGLIO, IGBP, and MODIS) algorithms were used for fire detection with Advanced Very High Resolution Radiometer (AVHRR) data acquired over Canada during the 1995 fire season. The CCRS algorithm was developed for the boreal ecosystem, while the other four are for global application. The MODIS algorithm, although developed specifically for use with the MODIS sensor data, was applied to AVHRR in this study for comparative purposes. Fire detection accuracy assessment for the algorithms was based on comparisons with available 1995 burned area ground survey maps covering five Canadian provinces. Overall accuracy estimations in terms of omission (CCRS=46%, ESA=81%, GIGLIO=75%, IGBP=51%, MODIS=81%) and commission (CCRS=0.35%, ESA=0.08%, GIGLIO=0.56%, IGBP=0.75%, MODIS=0.08%) errors over forested areas revealed large differences in performance between the algorithms, with no relevance to type (fixed-threshold or contextual). CCRS performed best in detecting real forest fires, with the least omission error, while ESA and MODIS produced the highest omission error, probably because of their relatively high threshold values designed for global application. The commission error values appear small because the area of pixels falsely identified by each algorithm was expressed as a ratio of the vast unburned forest area. More detailed study shows that most commission errors in all the algorithms were incurred in nonforest agricultural areas, especially on days with very high surface temperatures. The advantage of the high thresholds in ESA and MODIS was that they incurred the least commission errors.

  6. Global Data for Ecology and Epidemiology: A Novel Algorithm for Temporal Fourier Processing MODIS Data

    PubMed Central

    Scharlemann, Jörn P. W.; Benz, David; Hay, Simon I.; Purse, Bethan V.; Tatem, Andrew J.; Wint, G. R. William; Rogers, David J.

    2008-01-01

    Background Remotely-sensed environmental data from earth-orbiting satellites are increasingly used to model the distribution and abundance of both plant and animal species, especially those of economic or conservation importance. Time series of data from the MODerate-resolution Imaging Spectroradiometer (MODIS) sensors on-board NASA's Terra and Aqua satellites offer the potential to capture environmental thermal and vegetation seasonality, through temporal Fourier analysis, more accurately than was previously possible using the NOAA Advanced Very High Resolution Radiometer (AVHRR) sensor data. MODIS data are composited over 8- or 16-day time intervals that pose unique problems for temporal Fourier analysis. Applying standard techniques to MODIS data can introduce errors of up to 30% in the estimation of the amplitudes and phases of the Fourier harmonics. Methodology/Principal Findings We present a novel spline-based algorithm that overcomes the processing problems of composited MODIS data. The algorithm is tested on artificial data generated using randomly selected values of both amplitudes and phases, and provides an accurate estimate of the input variables under all conditions. The algorithm was then applied to produce layers that capture the seasonality in MODIS data for the period from 2001 to 2005. Conclusions/Significance Global temporal Fourier processed images of 1 km MODIS data for Middle Infrared Reflectance, day- and night-time Land Surface Temperature (LST), Normalised Difference Vegetation Index (NDVI), and Enhanced Vegetation Index (EVI) are presented for ecological and epidemiological applications. The finer spatial and temporal resolution, combined with the greater geolocational and spectral accuracy of the MODIS instruments, compared with previous multi-temporal data sets, mean that these data may be used with greater confidence in species' distribution modelling. PMID:18183289

  7. Reassessment of the putative role of BLK-p.A71T loss-of-function mutation in MODY and type 2 diabetes.

    PubMed

    Bonnefond, A; Yengo, L; Philippe, J; Dechaume, A; Ezzidi, I; Vaillant, E; Gjesing, A P; Andersson, E A; Czernichow, S; Hercberg, S; Hadjadj, S; Charpentier, G; Lantieri, O; Balkau, B; Marre, M; Pedersen, O; Hansen, T; Froguel, P; Vaxillaire, M

    2013-03-01

    MODY is believed to be caused by at least 13 different genes. Five rare mutations at the BLK locus, including only one non-synonymous p.A71T variant, were reported to segregate with diabetes in three MODY families. The p.A71T mutation was shown to abolish the enhancing effect of BLK on insulin content and secretion from pancreatic beta cell lines. Here, we reassessed the contribution of BLK to MODY and tested the effect of BLK-p.A71T on type 2 diabetes risk and variations in related traits. BLK was sequenced in 64 unelucidated MODY samples. The BLK-p.A71T variant was genotyped in a French type 2 diabetes case-control study including 4,901 cases and 4,280 controls, and in the DESIR (Data from an Epidemiological Study on the Insulin Resistance Syndrome) and SUVIMAX (Supplementation en Vitamines et Mineraux Antioxydants) population-based cohorts (n = 6,905). The variant effects were assessed by logistic and linear regression models. No rare non-synonymous BLK mutations were found in the MODY patients. The BLK p.A71T mutation was present in 52 normoglycaemic individuals, making it very unlikely that this loss-of-function mutation causes highly penetrant MODY. We found a nominal association between this variant and increased type 2 diabetes risk, with an enrichment of the mutation in the obese diabetic patients, although no significant association with BMI was identified. No mutation in BLK was found in our MODY cohort. From our findings, the BLK-p.A71T mutation may weakly influence type 2 diabetes risk in the context of obesity; however, this will require further validation.

  8. A Satellite-Derived Climate-Quality Data Record of the Clear-Sky Surface Temperature of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Comiso, Josefino C.; DiGirolamo, Nicolo E.; Shuman, Christopher A.; Key, Jeffrey R.; Koenig, Lora S.

    2011-01-01

    We have developed a climate-quality data record of the clear-sky surface temperature of the Greenland Ice Sheet using the Moderate-Resolution Imaging Spectroradiometer (MODIS) Terra ice-surface temperature (1ST) algorithm. A climate-data record (CDR) is a time series of measurements of sufficient length, consistency, and continuity to determine climate variability and change. We present daily and monthly Terra MODIS ISTs of the Greenland Ice Sheet beginning on 1 March 2000 and continuing through 31 December 2010 at 6.25-km spatial resolution on a polar stereographic grid within +/-3 hours of 17:00Z or 2:00 PM Local Solar Time. Preliminary validation of the ISTs at Summit Camp, Greenland, during the 2008-09 winter, shows that there is a cold bias using the MODIS IST which underestimates the measured surface temperature by approximately 3 C when temperatures range from approximately -50 C to approximately -35 C. The ultimate goal is to develop a CDR that starts in 1981 with the Advanced Very High Resolution (AVHRR) Polar Pathfinder (APP) dataset and continues with MODIS data from 2000 to the present. Differences in the APP and MODIS cloud masks have so far precluded the current IST records from spanning both the APP and MODIS IST time series in a seamless manner though this will be revisited when the APP dataset has been reprocessed. The Greenland IST climate-quality data record is suitable for continuation using future Visible Infrared Imager Radiometer Suite (VIIRS) data and will be elevated in status to a CDR when at least 9 more years of climate-quality data become available either from MODIS Terra or Aqua, or from the VIIRS. The complete MODIS IST data record will be available online in the summer of 2011.

  9. Evaluation of MODIS aerosol optical depth for semi­-arid environments in complex terrain

    NASA Astrophysics Data System (ADS)

    Holmes, H.; Loria Salazar, S. M.; Panorska, A. K.; Arnott, W. P.; Barnard, J.

    2015-12-01

    The use of satellite remote sensing to estimate spatially resolved ground level air pollutant concentrations is increasing due to advancements in remote sensing technology and the limited number of surface observations. Satellite retrievals provide global, spatiotemporal air quality information and are used to track plumes, estimate human exposures, model emissions, and determine sources (i.e., natural versus anthropogenic) in regulatory applications. Ground level PM2.5 concentrations can be estimated using columnar aerosol optical depth (AOD) from MODIS, where the satellite retrieval serves as a spatial surrogate to simulate surface PM2.5 gradients. The spatial statistical models and MODIS AOD retrieval algorithms have been evaluated for the dark, vegetated eastern US, while the semi-arid western US continues to be an understudied region with associated complexity due to heterogeneous emissions, smoke from wildfires, and complex terrain. The objective of this work is to evaluate the uncertainty of MODIS AOD retrievals by comparing with columnar AOD and surface PM2.5 measurements from AERONET and EPA networks. Data is analyzed from multiple stations in California and Nevada for three years where four major wildfires occurred. Results indicate that MODIS retrievals fail to estimate column-integrated aerosol pollution in the summer months. This is further investigated by quantifying the statistical relationships between MODIS AOD, AERONET AOD, and surface PM2.5 concentrations. Data analysis indicates that the distribution of MODIS AOD is significantly (p<0.05) different than AERONET AOD. Further, using the results of distributional and association analysis the impacts of MODIS AOD uncertainties on the spatial gradients are evaluated. Additionally, the relationships between these uncertainties and physical parameters in the retrieval algorithm (e.g., surface reflectance, Ångström Extinction Exponent) are discussed.

  10. Global data for ecology and epidemiology: a novel algorithm for temporal Fourier processing MODIS data.

    PubMed

    Scharlemann, Jörn P W; Benz, David; Hay, Simon I; Purse, Bethan V; Tatem, Andrew J; Wint, G R William; Rogers, David J

    2008-01-09

    Remotely-sensed environmental data from earth-orbiting satellites are increasingly used to model the distribution and abundance of both plant and animal species, especially those of economic or conservation importance. Time series of data from the MODerate-resolution Imaging Spectroradiometer (MODIS) sensors on-board NASA's Terra and Aqua satellites offer the potential to capture environmental thermal and vegetation seasonality, through temporal Fourier analysis, more accurately than was previously possible using the NOAA Advanced Very High Resolution Radiometer (AVHRR) sensor data. MODIS data are composited over 8- or 16-day time intervals that pose unique problems for temporal Fourier analysis. Applying standard techniques to MODIS data can introduce errors of up to 30% in the estimation of the amplitudes and phases of the Fourier harmonics. We present a novel spline-based algorithm that overcomes the processing problems of composited MODIS data. The algorithm is tested on artificial data generated using randomly selected values of both amplitudes and phases, and provides an accurate estimate of the input variables under all conditions. The algorithm was then applied to produce layers that capture the seasonality in MODIS data for the period from 2001 to 2005. Global temporal Fourier processed images of 1 km MODIS data for Middle Infrared Reflectance, day- and night-time Land Surface Temperature (LST), Normalised Difference Vegetation Index (NDVI), and Enhanced Vegetation Index (EVI) are presented for ecological and epidemiological applications. The finer spatial and temporal resolution, combined with the greater geolocational and spectral accuracy of the MODIS instruments, compared with previous multi-temporal data sets, mean that these data may be used with greater confidence in species' distribution modelling.

  11. Using multi-source satellite data to assess snow-cover change in Qinghai-Tibetan Plateau in last decade

    NASA Astrophysics Data System (ADS)

    Jiang, Y.; Chen, F.; Gao, Y.; Barlage, M. J.

    2017-12-01

    Snow cover in Qinghai-Tibetan Plateau (QTP) is a critical component of water cycle and affects regional climate of East Asia. Satellite data from three different sources (i.e., FY3A/B/C, MODIS and IMS) were used to analyze the QTP fractional-snow-cover (FSC) change and associated uncertainties in the last decade. To reduce the high percentage of cloud in FY3A/B/C and MODIS, a four-step cloud removal procedure was applied and effectively reduced the cloud percentage from 40.8-56.1% to 2.2­-­3.3%. The averaged error introduced by the cloud removal procedure was about 2% estimated by a random sampling method. Results show that the snow cover in QTP significantly decreased in recent 5 years. Three data sets (FY3B, MODIS and IMS) showed significant decreased annual FSC at all elevation bands from 2012-2016, and a significant shorter snow season with delayed snow onset and earlier melting. Both IMS and MODIS had a slightly decline annual FSC from 2000 to 3000 m, while MODIS FSC slightly decreased in 2002-2016 and IMS FSC slightly increased from 2006-2016 in the region with elevation higher than 3000 m. Results also show significant uncertainties among the five data sets (FY3A/B/C, MODIS, IMS), although they showed similar fluctuations of daily FSC. IMS had largest snow-cover extent and highest daily FSC due to its multi data sources. FY3A/C and MODIS (observed in the morning) had around 5% higher mean FSC than FY3B (observed in the afternoon) due to the 3 hours detection time gap. The relative error of daily FSC (taking MODIS as `truth') between FY3A/B/C, IMS and MODIS is 23%, -35%, 8% and 63%, respectively, averaged in five elevation bands in 2015-2017.

  12. Low Frequencies of Autoimmunity-Associated PTPN22 Polymorphisms in MODY Patients, Including Those Transiently Expressing Islet Cell Autoantibodies.

    PubMed

    Heneberg, Petr; Malá, Milena; Yorifuji, Tohru; Gat-Yablonski, Galia; Lebenthal, Yael; Tajima, Toshihiro; Nogaroto, Viviane; Rypáčková, Blanka; Kocková, Lucie; Urbanová, Jana; Anděl, Michal

    2015-01-01

    The protein tyrosine phosphatase nonreceptor type 22 (PTPN22) gene encodes lymphoid tyrosine phosphatase (LYP), which is expressed primarily in lymphoid tissues. The functional but geographically highly variable PTPN22 single-nucleotide polymorphisms (SNPs), particularly c.1858C>T, contribute to the onset and progression of autoimmunity-associated diseases and facilitate the expression of disease-associated autoantibodies. In Central Europe, 17-25% of patients with monogenic diabetes (maturity-onset diabetes of the young, MODY) transiently express islet cell autoantibodies. We addressed the links between the functional and geographically variable PTPN22 SNPs with MODY manifestation and the expression of islet cell autoantibodies in 276 MODY patients who originated from four regions (the Czech Republic, Israel, Japan and Brazil). The frequency of PTPN22 polymorphisms in the MODY patients was similar to those in geographically matched healthy populations, with the exception of c.788G>A, the minor allele frequency of which was significantly elevated in the Czech hepatocyte nuclear factor 1-α (HNF1A) MODY patients [odds ratio (OR) 4.8, 95% confidence interval (CI) 2.2-10.7] and the Brazilian MODY patients (OR 8.4, 95% CI 1.8-39.1). A barely significant increase in the c.788G>A minor allele was also detected in the islet cell autoantibody-positive Czech MODY patients. However, c.788A behaves as a loss-of-function mutant in T cells, and thus protects against autoimmunity. MODY patients (including islet cell autoantibody-positive cases) do not display any increase in autoimmunity-associated PTPN22 alleles. The absence of autoimmunity-associated PTPN22 alleles was also demonstrated in latent autoimmune diabetes in adults, which suggests that the slow kinetics of the onset of autoantibodies is subject to a regulation that is different from that experienced in type 1 diabetes and other autoimmune disorders. © 2015 S. Karger AG, Basel.

  13. Characterization of turbidity in Florida's Lake Okeechobee and Caloosahatchee and St. Lucie estuaries using MODIS-Aqua measurements.

    PubMed

    Wang, Menghua; Nim, Carl J; Son, Seunghyun; Shi, Wei

    2012-10-15

    This paper describes the use of ocean color remote sensing data from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Aqua satellite to characterize turbidity in Lake Okeechobee and its primary drainage basins, the Caloosahatchee and St. Lucie estuaries from 2002 to 2010. Drainage modification and agricultural development in southern Florida transport sediments and nutrients from watershed agricultural areas to Lake Okeechobee. As a result of development around Lake Okeechobee and the estuaries that are connected to Lake Okeechobee, estuarine conditions have also been adversely impacted, resulting in salinity and nutrient fluctuations. The measurement of water turbidity in lacustrine and estuarine ecosystems allows researchers to understand important factors such as light limitation and the potential release of nutrients from re-suspended sediments. Based on a strong correlation between water turbidity and normalized water-leaving radiance at the near-infrared (NIR) band (nL(w)(869)), a new satellite water turbidity algorithm has been developed for Lake Okeechobee. This study has shown important applications with satellite-measured nL(w)(869) data for water quality monitoring and measurements for turbid inland lakes. MODIS-Aqua-measured water property data are derived using the shortwave infrared (SWIR)-based atmospheric correction algorithm in order to remotely obtain synoptic turbidity data in Lake Okeechobee and normalized water-leaving radiance using the red band (nL(w)(645)) in the Caloosahatchee and St. Lucie estuaries. We found varied, but distinct seasonal, spatial, and event driven turbidity trends in Lake Okeechobee and the Caloosahatchee and St. Lucie estuary regions. Wind waves and hurricanes have the largest influence on turbidity trends in Lake Okeechobee, while tides, currents, wind waves, and hurricanes influence the Caloosahatchee and St. Lucie estuarine areas. Published by Elsevier Ltd.

  14. Improvement of distributed snowmelt energy balance modeling with MODIS-based NDSI-derived fractional snow-covered area data

    Treesearch

    Joel W. Homan; Charles H. Luce; James P. McNamara; Nancy F. Glenn

    2011-01-01

    Describing the spatial variability of heterogeneous snowpacks at a watershed or mountain-front scale is important for improvements in large-scale snowmelt modelling. Snowmelt depletion curves, which relate fractional decreases in snowcovered area (SCA) against normalized decreases in snow water equivalent (SWE), are a common approach to scale-up snowmelt models....

  15. Monitoring the Effects of Forest Restoration Treatments on Post-Fire Vegetation Recovery with MODIS Multitemporal Data

    PubMed Central

    van Leeuwen, Willem J. D.

    2008-01-01

    This study examines how satellite based time-series vegetation greenness data and phenological measurements can be used to monitor and quantify vegetation recovery after wildfire disturbances and examine how pre-fire fuel reduction restoration treatments impact fire severity and impact vegetation recovery trajectories. Pairs of wildfire affected sites and a nearby unburned reference site were chosen to measure the post-disturbance recovery in relation to climate variation. All site pairs were chosen in forested uplands in Arizona and were restricted to the area of the Rodeo-Chediski fire that occurred in 2002. Fuel reduction treatments were performed in 1999 and 2001. The inter-annual and seasonal vegetation dynamics before, during, and after wildfire events can be monitored using a time series of biweekly composited MODIS NDVI (Moderate Resolution Imaging Spectroradiometer - Normalized Difference Vegetation Index) data. Time series analysis methods included difference metrics, smoothing filters, and fitting functions that were applied to extract seasonal and inter-annual change and phenological metrics from the NDVI time series data from 2000 to 2007. Pre- and post-fire Landsat data were used to compute the Normalized Burn Ratio (NBR) and examine burn severity at the selected sites. The phenological metrics (pheno-metrics) included the timing and greenness (i.e. NDVI) for the start, peak and end of the growing season as well as proxy measures for the rate of green-up and senescence and the annual vegetation productivity. Pre-fire fuel reduction treatments resulted in lower fire severity, which reduced annual productivity much less than untreated areas within the Rodeo-Chediski fire perimeter. The seasonal metrics were shown to be useful for estimating the rate of post-fire disturbance recovery and the timing of phenological greenness phases. The use of satellite time series NDVI data and derived pheno-metrics show potential for tracking vegetation cover dynamics and successional changes in response to drought, wildfire disturbances, and forest restoration treatments in fire-suppressed forests. PMID:27879809

  16. Toward a National Early Warning System for Forest Disturbances Using Remotely Sensed Land-Surface Phenology

    NASA Astrophysics Data System (ADS)

    Hargrove, W. W.; Spruce, J.

    2010-12-01

    A prototype National Early Warning System (EWS) for Forest Disturbances was established in 2010 by producing national maps showing potential forest disturbance across the conterminous United States at 231m resolution every 8 days. Each map is based on Land-Surface Phenology (LSP), calculated using temporally smoothed MODIS MOD13 imagery obtained over the preceding 24-day analysis window. Potential disturbance maps are generated by comparing a spatially and temporally specific historical expectation of normal NDVI "greenness" with NDVI "greenness" from a series of current satellite views. Three different disturbance products are produced using differing lengths of historical baseline periods to calculate the expected normal greenness. The short-term baseline products show only disturbances newer than one year ago, while the intermediate baseline products show disturbances since the prior three years, and the long-term baseline products show all disturbances over the MODIS historical period. A Forest Change Assessment Viewer website, http://ews.forestthreats.org/NPDE/NPDE.html, showcases the three most recent national disturbance maps in full spatial context. Although 2010 was a wet el Nino year without major forest problems, disturbances in 2010 in MI, NY, CO and LA will be highlighted. Forest disturbances caused by wildfire, hurricanes, tornadoes, hail, ice storms, and defoliating insects, including fall cankerworms, forest tent caterpillars, gypsy moths, baldcypress leafrollers and winter moths were successfully detected during the 2009 and 2010 field seasons. The EWS was used in 2010 to detect and alert Forest Health Monitoring (FHM) Aerial Disturbance Survey personnel to an otherwise-unknown outbreak of forest tent caterpillar and baldcypress leafroller in the Atchafalaya and Pearl River regions of southern Louisiana. A local FHM Program Coordinator verified these EWS-detected outbreaks. Many defoliator-induced disturbances were ephemeral, and were followed by recovery in LSP, presumably due to refoliation. 2009 Vegetation Disturbances mapped as percent change in max NDVI from June 10 - July 27 2000-2008

  17. An Overview of Lunar Calibration and Characterization for the EOS Terra and Aqua MODIS

    NASA Technical Reports Server (NTRS)

    Xiong, X.; Salomonson, V. V.; Sun, J.; Chiang, K.; Xiong, S.; Humphries, S.; Barnes, W.; Guenther, B.

    2004-01-01

    The Moon can be used as a stable source for Earth-observing sensors on-orbit radiometric and spatial stability monitoring in the VIS and NIR spectral regions. It can also serve as a calibration transfer vehicle among multiple sensors. Nearly identical copies of the Moderate Resolution Imaging Spectroradiometer (MODE) have been operating on-board the NASA's Earth Observing System (EOS) Terra and Aqua satellites since their launches in December 1999 and May 2002, respectively. Terra and Aqua MODIS each make observations in 36 spectral bands covering the spectral range from 0.41 to 14.5 microns and are calibrated on-orbit by a set of on-board calibrations (OBCs) including: 1) a solar diffuser (SD), 2) a solar diffuser stability monitor (SDSM), 3) a blackbody (BB), and 4) a spectro-radiometric calibration assembly (SRCA). In addition to fully utilizing the OBCs, the Moon has been used extensively by both Terra and Aqua MODIS to support their on-orbit calibration and characterization. A 4 This paper provides an overview of applications of lunar calibration and characterization from the MODIS perspective, including monitoring radiometric calibration stability for the reflective solar bands (RSBs), tracking changes of the sensors response versus scan-angle (RVS), examining the sensors spatial performance , and characterizing optical leaks and electronic crosstalk among different spectral bands and detectors. On-orbit calibration consistency between the two MODIS instruments is also addressed. Based on the existing on-orbit time series of the Terra and Aqua MODIS lunar observations, the radiometric difference between the two sensors is less than +/-1% for the RSBs. This method provides a powerful means of performing calibration comparisons among Earth-observing sensors and assures consistent data and science products for the long-term studies of climate and environmental changes.

  18. Mapping irrigated areas in Afghanistan over the past decade using MODIS NDVI

    USGS Publications Warehouse

    Pervez, Md Shahriar; Budde, Michael; Rowland, James

    2014-01-01

    Agricultural production capacity contributes to food security in Afghanistan and is largely dependent on irrigated farming, mostly utilizing surface water fed by snowmelt. Because of the high contribution of irrigated crops (> 80%) to total agricultural production, knowing the spatial distribution and year-to-year variability in irrigated areas is imperative to monitoring food security for the country. We used 16-day composites of the Normalized Difference Vegetation Index (NDVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor to create 23-point time series for each year from 2000 through 2013. Seasonal peak values and time series were used in a threshold-dependent decision tree algorithm to map irrigated areas in Afghanistan for the last 14 years. In the absence of ground reference irrigated area information, we evaluated these maps with the irrigated areas classified from multiple snapshots of the landscape during the growing season from Landsat 5 optical and thermal sensor images. We were able to identify irrigated areas using Landsat imagery by selecting as irrigated those areas with Landsat-derived NDVI greater than 0.30–0.45, depending on the date of the Landsat image and surface temperature less than or equal to 310 Kelvin (36.9 ° C). Due to the availability of Landsat images, we were able to compare with the MODIS-derived maps for four years: 2000, 2009, 2010, and 2011. The irrigated areas derived from Landsat agreed well r2 = 0.91 with the irrigated areas derived from MODIS, providing confidence in the MODIS NDVI threshold approach. The maps portrayed a highly dynamic irrigated agriculture practice in Afghanistan, where the amount of irrigated area was largely determined by the availability of surface water, especially snowmelt, and varied by as much as 30% between water surplus and water deficit years. During the past 14 years, 2001, 2004, and 2008 showed the lowest levels of irrigated area (~ 1.5 million hectares), attesting to the severe drought conditions in those years, whereas 2009, 2012 and 2013 registered the largest irrigated area (~ 2.5 million hectares) due to record snowpack and snowmelt in the region. The model holds promise the ability to provide near-real-time (by the end of the growing seasons) estimates of irrigated area, which are beneficial for food security monitoring as well as subsequent decision making for the country. While the model is developed for Afghanistan, it can be adopted with appropriate adjustments in the derived threshold values to map irrigated areas elsewhere.

  19. Snow Cover and Vegetation-Induced Decrease in Global Albedo From 2002 to 2016

    NASA Astrophysics Data System (ADS)

    Li, Qiuping; Ma, Mingguo; Wu, Xiaodan; Yang, Hong

    2018-01-01

    Land surface albedo is an essential parameter in regional and global climate models, and it is markedly influenced by land cover change. Variations in the albedo can affect the surface radiation budget and further impact the global climate. In this study, the interannual variation of albedo from 2002 to 2016 was estimated on the global scale using Moderate Resolution Imaging Spectroradiometer (MODIS) datasets. The presence and causes of the albedo changes for each specific region were also explored. From 2002 to 2016, the MODIS-based albedo decreased globally, snow cover declined by 0.970 (percent per pixel), while the seasonally integrated normalized difference vegetation index increased by 0.175. Some obvious increases in the albedo were detected in Central Asia, northeastern China, parts of the boreal forest in Canada, and the temperate steppe in North America. In contrast, noticeable decreases in the albedo were found in the Siberian tundra, Europe, southeastern Australia, and northeastern regions of North America. In the Northern Hemisphere, the greening trend at high latitudes made more contribution to the decline in the albedo. However, the dramatic fluctuation of snow-cover at midlatitudes predominated in the change of albedo. Our analysis can help to understand the roles that vegetation and snow cover play in the variation of albedo on global and regional scales.

  20. Assessing Field-Specific Risk of Soybean Sudden Death Syndrome Using Satellite Imagery in Iowa.

    PubMed

    Yang, S; Li, X; Chen, C; Kyveryga, P; Yang, X B

    2016-08-01

    Moderate resolution imaging spectroradiometer (MODIS) satellite imagery from 2004 to 2013 were used to assess the field-specific risks of soybean sudden death syndrome (SDS) caused by Fusarium virguliforme in Iowa. Fields with a high frequency of significant decrease (>10%) of the normalized difference vegetation index (NDVI) observed in late July to middle August on historical imagery were hypothetically considered as high SDS risk. These high-risk fields had higher slopes and shorter distances to flowlines, e.g., creeks and drainages, particularly in the Des Moines lobe. Field data in 2014 showed a significantly higher SDS level in the high-risk fields than fields selected without considering NDVI information. On average, low-risk fields had 10 times lower F. virguliforme soil density, determined by quantitative polymerase chain reaction, compared with other surveyed fields. Ordinal logistic regression identified positive correlations between SDS and slope, June NDVI, and May maximum temperature, but high June maximum temperature hindered SDS. A modeled SDS risk map showed a clear trend of potential disease occurrences across Iowa. Landsat imagery was analyzed similarly, to discuss the ability to utilize higher spatial resolution data. The results demonstrated the great potential of both MODIS and Landsat imagery for SDS field-specific risk assessment.

  1. Global Operational Remotely Sensed Evapotranspiration System for Water Resources Management: Case Study for the State of New Mexico

    NASA Astrophysics Data System (ADS)

    Halverson, G. H.; Fisher, J.; Magnuson, M.; John, L.

    2017-12-01

    An operational system to produce and disseminate remotely sensed evapotranspiration using the PT-JPL model and support its analysis and use in water resources decision making is being integrated into the New Mexico state government. A partnership between the NASA Western Water Applications Office (WWAO), the Jet Propulsion Laboratory (JPL), and the New Mexico Office of the State Engineer (NMOSE) has enabled collaboration with a variety of state agencies to inform decision making processes for agriculture, rangeland, and forest management. This system improves drought understanding and mobilization, litigation support, and economic, municipal, and ground-water planning through interactive mapping of daily rates of evapotranspiration at 1 km spatial resolution with near real-time latency. This is facilitated by daily remote sensing acquisitions of land-surface temperature and near-surface air temperature and humidity from the Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument on the Terra satellite as well as the short-term composites of Normalized Difference Vegetation Index (NDVI) and albedo provided by MODIS. Incorporating evapotranspiration data into agricultural water management better characterizes imbalances between water requirements and supplies. Monitoring evapotranspiration over rangeland areas improves remediation and prevention of aridification. Monitoring forest evapotranspiration improves wildlife management and response to wildfire risk. Continued implementation of this decision support system should enhance water and food security.

  2. Analysis of Leaf Area Index and Fraction of PAR Absorbed by Vegetation Products from the Terra MODIS Sensor: 2000-2005

    NASA Technical Reports Server (NTRS)

    Yang, Wenze; Huang, Dong; Tan, Bin; Stroeve, Julienne C.; Shabanov, Nikolay V.; Knyazikhin, Yuri; Nemani, Ramakrishna R.; Myneni, Ranga B.

    2006-01-01

    The analysis of two years of Collection 3 and five years of Collection 4 Terra Moderate Resolution Imaging Spectroradiometer (MODIS) Leaf Area Index (LAI) and Fraction of Photosynthetically Active Radiation (FPAR) data sets is presented in this article with the goal of understanding product quality with respect to version (Collection 3 versus 4), algorithm (main versus backup), snow (snow-free versus snow on the ground), and cloud (cloud-free versus cloudy) conditions. Retrievals from the main radiative transfer algorithm increased from 55% in Collection 3 to 67% in Collection 4 due to algorithm refinements and improved inputs. Anomalously high LAI/FPAR values observed in Collection 3 product in some vegetation types were corrected in Collection 4. The problem of reflectance saturation and too few main algorithm retrievals in broadleaf forests persisted in Collection 4. The spurious seasonality in needleleaf LAI/FPAR fields was traced to fewer reliable input data and retrievals during the boreal winter period. About 97% of the snow covered pixels were processed by the backup Normalized Difference Vegetation Index-based algorithm. Similarly, a majority of retrievals under cloudy conditions were obtained from the backup algorithm. For these reasons, the users are advised to consult the quality flags accompanying the LAI and FPAR product.

  3. Estimation of Subpixel Snow-Covered Area by Nonparametric Regression Splines

    NASA Astrophysics Data System (ADS)

    Kuter, S.; Akyürek, Z.; Weber, G.-W.

    2016-10-01

    Measurement of the areal extent of snow cover with high accuracy plays an important role in hydrological and climate modeling. Remotely-sensed data acquired by earth-observing satellites offer great advantages for timely monitoring of snow cover. However, the main obstacle is the tradeoff between temporal and spatial resolution of satellite imageries. Soft or subpixel classification of low or moderate resolution satellite images is a preferred technique to overcome this problem. The most frequently employed snow cover fraction methods applied on Moderate Resolution Imaging Spectroradiometer (MODIS) data have evolved from spectral unmixing and empirical Normalized Difference Snow Index (NDSI) methods to latest machine learning-based artificial neural networks (ANNs). This study demonstrates the implementation of subpixel snow-covered area estimation based on the state-of-the-art nonparametric spline regression method, namely, Multivariate Adaptive Regression Splines (MARS). MARS models were trained by using MODIS top of atmospheric reflectance values of bands 1-7 as predictor variables. Reference percentage snow cover maps were generated from higher spatial resolution Landsat ETM+ binary snow cover maps. A multilayer feed-forward ANN with one hidden layer trained with backpropagation was also employed to estimate the percentage snow-covered area on the same data set. The results indicated that the developed MARS model performed better than th

  4. Development of an Operational Land Water Mask for MODIS Collection 6, and Influence on Downstream Data Products

    NASA Technical Reports Server (NTRS)

    Carroll, M. L.; DiMiceli, C. M.; Townshend, J. R. G.; Sohlberg, R. A.; Elders, A. I.; Devadiga, S.; Sayer, A. M.; Levy, R. C.

    2016-01-01

    Data from the Moderate Resolution Imaging Spectro-radiometer (MODIS)on-board the Earth Observing System Terra and Aqua satellites are processed using a land water mask to determine when an algorithm no longer needs to be run or when an algorithm needs to follow a different pathway. Entering the fourth reprocessing (Collection 6 (C6)) the MODIS team replaced the 1 km water mask with a 500 m water mask for improved representation of the continental surfaces. The new water mask represents more small water bodies for an overall increase in water surface from 1 to 2 of the continental surface. While this is still a small fraction of the overall global surface area the increase is more dramatic in certain areas such as the Arctic and Boreal regions where there are dramatic increases in water surface area in the new mask. MODIS products generated by the on-going C6 reprocessing using the new land water mask show significant impact in areas with high concentrations of change in the land water mask. Here differences between the Collection 5 (C5) and C6 water masks and the impact of these differences on the MOD04 aerosol product and the MOD11 land surface temperature product are shown.

  5. Two MODIS Aerosol Products Over Ocean on the Terra and Aqua CERES SSF Datasets

    NASA Technical Reports Server (NTRS)

    Ignatov, Alexander; Minnis, Patrick; Loeb, Norman; Wielicki, Bruce; Miller, Walter; Sun-Mack, Sunny; Tanre, Didier; Remer, Lorraine; Laszlo, Istvan; Geier, Erika

    2004-01-01

    Over ocean, two aerosol products are reported on the Terra and Aqua CERES SSFs. Both are derived from MODIS, but using different sampling and aerosol algorithms. This study briefly summarizes these products, and compares using 2 weeks of global Terra data from 15-21 December 2000, and 1-7 June 2001.

  6. Contribution of National near Real Time MODIS Forest Maximum Percentage NDVI Change Products to the U.S. ForWarn System

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph P.; Hargrove, William; Gasser, Gerald; Smoot, James; Kuper, Philip D.

    2012-01-01

    This presentation reviews the development, integration, and testing of Near Real Time (NRT) MODIS forest % maximum NDVI change products resident to the USDA Forest Service (USFS) ForWarn System. ForWarn is an Early Warning System (EWS) tool for detection and tracking of regionally evident forest change, which includes the U.S. Forest Change Assessment Viewer (FCAV) (a publically available on-line geospatial data viewer for visualizing and assessing the context of this apparent forest change). NASA Stennis Space Center (SSC) is working collaboratively with the USFS, ORNL, and USGS to contribute MODIS forest change products to ForWarn. These change products compare current NDVI derived from expedited eMODIS data, to historical NDVI products derived from MODIS MOD13 data. A new suite of forest change products are computed every 8 days and posted to the ForWarn system; this includes three different forest change products computed using three different historical baselines: 1) previous year; 2) previous three years; and 3) all previous years in the MODIS record going back to 2000. The change product inputs are maximum value NDVI that are composited across a 24 day interval and refreshed every 8 days so that resulting images for the conterminous U.S. are predominantly cloud-free yet still retain temporally relevant fresh information on changes in forest canopy greenness. These forest change products are computed at the native nominal resolution of the input reflectance bands at 231.66 meters, which equates to approx 5.4 hectares or 13.3 acres per pixel. The Time Series Product Tool, a MATLAB-based software package developed at NASA SSC, is used to temporally process, fuse, reduce noise, interpolate data voids, and re-aggregate the historical NDVI into 24 day composites, and then custom MATLAB scripts are used to temporally process the eMODIS NDVIs so that they are in synch with the historical NDVI products. Prior to posting, an in-house snow mask classification product is computed for the current compositing period and integrated into the change images to account for snow related NDVI drops. The supplemental snow classification product was needed because other available QA cloud/snow mask typically underestimates snow cover. MODIS true and false color composites were also computed from eMODIS reflectance data and the true color RGBs are also posted on ForWarn?s FCAV; this data is used for assessing apparent occasional quality issues on the change products due to residual unmasked cloud cover. New forest change products are posted with typical latencies of 1-2 days after the last input eMODIS data collection date for a given 24 day compositing period.

  7. Evaluation of radiosonde, MODIS-NIR-Clear, and AERONET precipitable water vapor using IGS ground-based GPS measurements over China

    NASA Astrophysics Data System (ADS)

    Gui, Ke; Che, Huizheng; Chen, Quanliang; Zeng, Zhaoliang; Liu, Haizhi; Wang, Yaqiang; Zheng, Yu; Sun, Tianze; Liao, Tingting; Wang, Hong; Zhang, Xiaoye

    2017-11-01

    Water vapor is one of the major greenhouse gases in the atmosphere and also the key parameter affecting the hydrological cycle, aerosol properties, aerosol-cloud interactions, the energy budget, and the climate. This study analyzed the temporal and spatial distribution of precipitable water vapor (PWV) in China using MODerate resolution Imaging Spectroradiometer near-infrared (MODIS-NIR)-Clear PWV products from 2011 to 2013. We then compared the four PWV products (Global Positioning System PWV (GPS-PWV), radiosonde PWV (RS-PWV), MODIS-NIR-Clear PWV, and Aerosol Robotic Network sunphotometer PWV (AERONET-PWV)) at six typical sites in China from 2011 to 2013. The analysis of the temporal and spatial distribution showed that the PWV distribution in China has clear geographical differences, and its basic distribution characteristics gradually change from the coast in the southeast to inland in the northwest. Affected by the East Asian monsoon, the PWV over China showed clear seasonal distribution features, with highest values in the summer, followed by autumn and spring, and the lowest values in winter. Intercomparison results showed that GPS-PWV and RS-PWV had a slightly higher correlation (R2 = 0.975) at 0000 UTC than that at 1200 UTC (R2 = 0.967). The mean values of Bias, SD, and RMSE between GPS-PWV and RS-PWV (GPS-RS) were - 0.03 mm, 2.36 mm, and 2.60 mm at 0000 UTC, and - 0.23 mm, 2.76 mm, and 2.95 mm at 1200 UTC, respectively. This showed that GPS-PWV was slightly lower than RS-PWV, and this difference was more obvious during the nighttime. The MODIS-NIR-Clear PWV product showed a similar correlation coefficient (R2 = 0.88) with GPS-PWV compared with RS-PWV. In addition, MODIS-NIR-Clear PWV was greater than GPS-PWV and RS-PWV. The MODIS-NIR-Clear PWV showed a larger deviation from GPS-PWV (MODIS-GPS Bias = 1.50 mm, RMSE = 5.76 mm) compared with RS PWV (MODIS-RS Bias = 0.75 mm, RMSE = 5.31 mm). The correlation coefficients between AERONET-PWV and the PWV from GPS, RS, and MODIS-NIR-Clear were 0.970, 0.963, and 0.923 (with RMSE of 2.53 mm, 3.67 mm, and 4.39 mm), respectively. In the Beijing area, the overall mean bias of the AERONET-PWV product with GPS-PWV, RS-PWV and MODIS-NIR-Clear PWV was - 0.09 mm, - 1.82 mm, and - 1.54 mm, respectively, which shows that the AERONET-PWV product was lower than the other three PWV products.

  8. Differences in liquid cloud droplet effective radius and number concentration estimates between MODIS Collections 5.1 and 6 over global oceans

    PubMed Central

    Rausch, John; Meyer, Kerry; Bennartz, Ralf; Platnick, Steven

    2017-01-01

    Differences in cloud droplet effective radius and cloud droplet number concentration (CDNC) estimates inferred from the Aqua MODIS Collections 5.1 and 6 cloud products (MYD06) are examined for warm clouds over global oceans for the year 2008. Individual pixel level retrievals for both collections are aggregated to 1° × 1° and compared globally and regionally for the three main spectral channel pairs used for MODIS cloud optical property retrievals. Comparisons between both collections are performed for cases in which all three effective radii retrievals are classified by the MODIS Cloud Product as valid. The contribution to the observed differences of several key MYD06 Collection 6 algorithm updates are also explored, with a focus on changes to the surface reflectance model, assumed solar irradiance, above cloud emission, cloud top pressure, and pixel registration. Global results show a neutral to positive (> 50 cm−3) change for C6-derived CDNC relative to C5.1 for the 1.6 µm and 2.1 µm channel retrievals, corresponding to a neutral to −2 µm difference in droplet effective radius. For 3.7 µm retrievals, CDNC results show a negative change in the tropics, with differences transitioning toward positive values with increasing latitude spanning −25 to +50 cm−3 related to a +2.5 to −1 µm transition in effective radius. Cloud optical thickness differences were small relative to effective radius, and found to not significantly impact CDNC estimates. Regionally, the magnitude and behavior of the annual CDNC cycle are compared for each effective radius retrieval. Results from this study indicate significant intercollection differences in aggregated values of effective radius due to changes to the pre-computed retrieval lookup tables for ocean scenes, changes to retrieved cloud top pressure, solar irradiance, or above cloud thermal emission, depending upon spectral channel. The observed differences between collections may have implications for existing MODIS derived climatologies and validation studies of effective radius and CDNC. PMID:29098040

  9. Differences in Liquid Cloud Droplet Effective Radius and Number Concentration Estimates Between MODIS Collections 5.1 and 6 Over Global Oceans

    NASA Technical Reports Server (NTRS)

    Rausch, John; Meyer, Kerry; Bennartz, Ralf; Platnick, Steven

    2017-01-01

    Differences in cloud droplet effective radius and cloud droplet number concentration (CDNC) estimates inferred from the Aqua MODIS Collections 5.1 and 6 cloud products (MYD06) are examined for warm clouds over global oceans for the year 2008. Individual pixel level retrievals for both collections are aggregated to 1 degree x 1 degree and compared globally and regionally for the three main spectral channel pairs used for MODIS cloud optical property retrievals. Comparisons between both collections are performed for cases in which all three effective radii retrievals are classified by the MODIS Cloud Product as valid. The contribution to the observed differences of several key MYD06 Collection 6 algorithm updates are also explored, with a focus on changes to the surface reflectance model, assumed solar irradiance, above cloud emission, cloud top pressure, and pixel registration. Global results show a neutral to positive ( greater than 50cm(exp. -3) change for C6-derived CDNC relative to C5.1 for the 1.6 micrometers and 2.1 micrometers channel retrievals, corresponding to a neutral to -2 micrometers difference in droplet effective radius. For 3.7 micrometer retrievals, CDNC results show a negative change in the tropics, with differences transitioning toward positive values with increasing latitude spanning -25 to +50 cm(exp. -3) related to a +2.5 to -1 micrometers transition in effective radius. Cloud optical thickness differences were small relative to effective radius, and found to not significantly impact CDNC estimates. Regionally, the magnitude and behavior of the annual CDNC cycle are compared for each effective radius retrieval. Results from this study indicate significant intercollection differences in aggregated values of effective radius due to changes to the pre-computed retrieval lookup tables for ocean scenes, changes to retrieved cloud top pressure, solar irradiance, or above cloud thermal emission, depending upon spectral channel. The observed differences between collections may have implications for existing MODIS derived climatologies and validation studies of effective radius and CDNC.

  10. Mapping Cropland and Crop-type Distribution Using Time Series MODIS Data

    NASA Astrophysics Data System (ADS)

    Lu, D.; Chen, Y.; Moran, E. F.; Batistella, M.; Luo, L.; Pokhrel, Y.; Deb, K.

    2016-12-01

    Mapping regional and global cropland distribution has attracted great attention in the past decade, but the separation of crop types is challenging due to the spectral confusion and cloud cover problems during the growing season in Brazil. The objective of this study is to develop a new approach to identify crop types (including soybean, cotton, maize) and planting patterns (soybean-maize, soybean-cotton, and single crop) in Mato Grosso, Goias and Tocantins States, Brazil. The time series moderate resolution imaging spectroradiometer (MODIS) normalized difference vegetation index (NDVI) (MOD13Q1) in 2015/2016 were used in this research and field survey data were collected in May 2016. The major steps include: (1) reconstruct time series NDVI data contaminated by noise and clouds using the temporal interpolation algorithm; (2) identify the best periods and develop temporal indices and phenology parameters to distinguish cropland from other land cover types based on time series NDVI data; (3) develop a crop temporal difference index (CTDI) to extract crop types and patterns using time series NDVI data. This research shows that (1) the cropland occupied approximately 16.85% of total land in these three states; (2) soybean-maize and soybean-cotton were two major crop patterns which occupied 54.80% and 19.30% of total cropland area. This research indicates that the proposed approach is promising for accurately and rapidly mapping cropland and crop-type distribution in these three states of Brazil.

  11. [A cloud detection algorithm for MODIS images combining Kmeans clustering and multi-spectral threshold method].

    PubMed

    Wang, Wei; Song, Wei-Guo; Liu, Shi-Xing; Zhang, Yong-Ming; Zheng, Hong-Yang; Tian, Wei

    2011-04-01

    An improved method for detecting cloud combining Kmeans clustering and the multi-spectral threshold approach is described. On the basis of landmark spectrum analysis, MODIS data is categorized into two major types initially by Kmeans method. The first class includes clouds, smoke and snow, and the second class includes vegetation, water and land. Then a multi-spectral threshold detection is applied to eliminate interference such as smoke and snow for the first class. The method is tested with MODIS data at different time under different underlying surface conditions. By visual method to test the performance of the algorithm, it was found that the algorithm can effectively detect smaller area of cloud pixels and exclude the interference of underlying surface, which provides a good foundation for the next fire detection approach.

  12. Application of MODIS-Derived Active Fire Radiative Energy to Fire Disaster and Smoke Pollution Monitoring

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles; Kaufman, Yoram J.; Hao, Wei Min; Habib, Shahid

    2004-01-01

    The radiative energy emitted by large fires and the corresponding smoke aerosol loading are simultaneously measured from the MODIS sensor from both the Terra and Aqua satellites. Quantitative relationships between the rates of emission of fire radiative energy and smoke are being developed for different fire-prone regions of the globe. Preliminary results are presented. When fully developed, the system will enable the use of MODIS direct broadcast fire data for near real-time monitoring of fire strength and smoke emission as well as forecasting of fire progression and smoke dispersion, several hours to a few days in advance.

  13. Effects of Cloud Horizontal Inhomogeneity and Drizzle on Remote Sensing of Cloud Droplet Effective Radius: Case Studies Based on Large-eddy Simulations

    NASA Technical Reports Server (NTRS)

    Zhang, Zhibo; Ackerman, Andrew S.; Feingold, Graham; Platnick, Steven; Pincus, Robert; Xue, Huiwen

    2012-01-01

    This study investigates effects of drizzle and cloud horizontal inhomogeneity on cloud effective radius (re) retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS). In order to identify the relative importance of various factors, we developed a MODIS cloud property retrieval simulator based on the combination of large-eddy simulations (LES) and radiative transfer computations. The case studies based on synthetic LES cloud fields indicate that at high spatial resolution (100 m) 3-D radiative transfer effects, such as illumination and shadowing, can induce significant differences between retrievals ofre based on reflectance at 2.1 m (re,2.1) and 3.7 m (re,3.7). It is also found that 3-D effects tend to have stronger impact onre,2.1 than re,3.7, leading to positive difference between the two (re,3.72.1) from illumination and negative re,3.72.1from shadowing. The cancellation of opposing 3-D effects leads to overall reasonable agreement betweenre,2.1 and re,3.7 at high spatial resolution as far as domain averages are concerned. At resolutions similar to MODIS, however, re,2.1 is systematically larger than re,3.7when averaged over the LES domain, with the difference exhibiting a threshold-like dependence on bothre,2.1and an index of the sub-pixel variability in reflectance (H), consistent with MODIS observations. In the LES cases studied, drizzle does not strongly impact reretrievals at either wavelength. It is also found that opposing 3-D radiative transfer effects partly cancel each other when cloud reflectance is aggregated from high spatial resolution to MODIS resolution, resulting in a weaker net impact of 3-D radiative effects onre retrievals. The large difference at MODIS resolution between re,3.7 and re,2.1 for highly inhomogeneous pixels with H 0.4 can be largely attributed to what we refer to as the plane-parallelrebias, which is attributable to the impact of sub-pixel level horizontal variability of cloud optical thickness onre retrievals and is greater for re,2.1 than re,3.7. These results suggest that there are substantial uncertainties attributable to 3-D radiative effects and plane-parallelre bias in the MODIS re,2.1retrievals for pixels with strong sub-pixel scale variability, and theH index can be used to identify these uncertainties.

  14. Comprehensive genomic analysis identifies pathogenic variants in maturity-onset diabetes of the young (MODY) patients in South India.

    PubMed

    Mohan, Viswanathan; Radha, Venkatesan; Nguyen, Thong T; Stawiski, Eric W; Pahuja, Kanika Bajaj; Goldstein, Leonard D; Tom, Jennifer; Anjana, Ranjit Mohan; Kong-Beltran, Monica; Bhangale, Tushar; Jahnavi, Suresh; Chandni, Radhakrishnan; Gayathri, Vijay; George, Paul; Zhang, Na; Murugan, Sakthivel; Phalke, Sameer; Chaudhuri, Subhra; Gupta, Ravi; Zhang, Jingli; Santhosh, Sam; Stinson, Jeremy; Modrusan, Zora; Ramprasad, V L; Seshagiri, Somasekar; Peterson, Andrew S

    2018-02-13

    Maturity-onset diabetes of the young (MODY) is an early-onset, autosomal dominant form of non-insulin dependent diabetes. Genetic diagnosis of MODY can transform patient management. Earlier data on the genetic predisposition to MODY have come primarily from familial studies in populations of European origin. In this study, we carried out a comprehensive genomic analysis of 289 individuals from India that included 152 clinically diagnosed MODY cases to identify variants in known MODY genes. Further, we have analyzed exome data to identify putative MODY relevant variants in genes previously not implicated in MODY. Functional validation of MODY relevant variants was also performed. We found MODY 3 (HNF1A; 7.2%) to be most frequently mutated followed by MODY 12 (ABCC8; 3.3%). They together account for ~ 11% of the cases. In addition to known MODY genes, we report the identification of variants in RFX6, WFS1, AKT2, NKX6-1 that may contribute to development of MODY. Functional assessment of the NKX6-1 variants showed that they are functionally impaired. Our findings showed HNF1A and ABCC8 to be the most frequently mutated MODY genes in south India. Further we provide evidence for additional MODY relevant genes, such as NKX6-1, and these require further validation.

  15. Susceptibility of Glucokinase-MODY Mutants to Inactivation by Oxidative Stress in Pancreatic β-Cells

    PubMed Central

    Cullen, Kirsty S.; Matschinsky, Franz M.; Agius, Loranne; Arden, Catherine

    2011-01-01

    OBJECTIVE The posttranslational regulation of glucokinase (GK) differs in hepatocytes and pancreatic β-cells. We tested the hypothesis that GK mutants that cause maturity-onset diabetes of the young (GK-MODY) show compromised activity and posttranslational regulation in β-cells. RESEARCH DESIGN AND METHODS Activity and protein expression of GK-MODY and persistent hyperinsulinemic hypoglycemia of infancy (PHHI) mutants were studied in β-cell (MIN6) and non–β-cell (H4IIE) models. Binding of GK to phosphofructo-2-kinase, fructose-2,6-bisphosphatase (PFK2/FBPase2) was studied by bimolecular fluorescence complementation in cell-based models. RESULTS Nine of 11 GK-MODY mutants that have minimal effect on enzyme kinetics in vitro showed decreased specific activity relative to wild type when expressed in β-cells. A subset of these were stable in non–β-cells but showed increased inactivation in conditions of oxidative stress and partial reversal of inactivation by dithiothreitol. Unlike the GK-MODY mutants, four of five GK-PHHI mutants had similar specific activity to wild type and Y214C had higher activity than wild type. The GK-binding protein PFK2/FBPase2 protected wild-type GK from oxidative inactivation and the decreased stability of GK-MODY mutants correlated with decreased interaction with PFK2/FBPase2. CONCLUSIONS Several GK-MODY mutants show posttranslational defects in β-cells characterized by increased susceptibility to oxidative stress and/or protein instability. Regulation of GK activity through modulation of thiol status may be a physiological regulatory mechanism for the control of GK activity in β-cells. PMID:22028181

  16. Susceptibility of glucokinase-MODY mutants to inactivation by oxidative stress in pancreatic β-cells.

    PubMed

    Cullen, Kirsty S; Matschinsky, Franz M; Agius, Loranne; Arden, Catherine

    2011-12-01

    The posttranslational regulation of glucokinase (GK) differs in hepatocytes and pancreatic β-cells. We tested the hypothesis that GK mutants that cause maturity-onset diabetes of the young (GK-MODY) show compromised activity and posttranslational regulation in β-cells. Activity and protein expression of GK-MODY and persistent hyperinsulinemic hypoglycemia of infancy (PHHI) mutants were studied in β-cell (MIN6) and non-β-cell (H4IIE) models. Binding of GK to phosphofructo-2-kinase, fructose-2,6-bisphosphatase (PFK2/FBPase2) was studied by bimolecular fluorescence complementation in cell-based models. Nine of 11 GK-MODY mutants that have minimal effect on enzyme kinetics in vitro showed decreased specific activity relative to wild type when expressed in β-cells. A subset of these were stable in non-β-cells but showed increased inactivation in conditions of oxidative stress and partial reversal of inactivation by dithiothreitol. Unlike the GK-MODY mutants, four of five GK-PHHI mutants had similar specific activity to wild type and Y214C had higher activity than wild type. The GK-binding protein PFK2/FBPase2 protected wild-type GK from oxidative inactivation and the decreased stability of GK-MODY mutants correlated with decreased interaction with PFK2/FBPase2. Several GK-MODY mutants show posttranslational defects in β-cells characterized by increased susceptibility to oxidative stress and/or protein instability. Regulation of GK activity through modulation of thiol status may be a physiological regulatory mechanism for the control of GK activity in β-cells.

  17. Determination of the single scattering albedo and direct radiative forcing of biomass burning aerosol with data from the MODIS (Moderate Resolution Imaging Spectroradiometer) satellite instrument

    NASA Astrophysics Data System (ADS)

    Zhu, Li

    Biomass burning aerosols absorb and scatter solar radiation and therefore affect the energy balance of the Earth-atmosphere system. The single scattering albedo (SSA), the ratio of the scattering coefficient to the extinction coefficient, is an important parameter to describe the optical properties of aerosols and to determine the effect of aerosols on the energy balance of the planet and climate. Aerosol effects on radiation also depend strongly on surface albedo. Large uncertainties remain in current estimates of radiative impacts of biomass burning aerosols, due largely to the lack of reliable measurements of aerosol and surface properties. In this work we investigate how satellite measurements can be used to estimate the direct radiative forcing of biomass burning aerosols. We developed a method using the critical reflectance technique to retrieve SSA from the Moderate Resolution Imaging Spectroradiometer (MODIS) observed reflectance at the top of the atmosphere (TOA). We evaluated MODIS retrieved SSAs with AErosol RObotic NETwork (AERONET) retrievals and found good agreements within the published uncertainty of the AERONET retrievals. We then developed an algorithm, the MODIS Enhanced Vegetation Albedo (MEVA), to improve the representations of spectral variations of vegetation surface albedo based on MODIS observations at the discrete 0.67, 0.86, 0.47, 0.55, 1.24, 1.64, and 2.12 mu-m channels. This algorithm is validated using laboratory measurements of the different vegetation types from the Amazon region, data from the Johns Hopkins University (JHU) spectral library, and data from the U.S. Geological Survey (USGS) digital spectral library. We show that the MEVA method can improve the accuracy of flux and aerosol forcing calculations at the TOA compared to more traditional interpolated approaches. Lastly, we combine the MODIS retrieved biomass burning aerosol SSA and the surface albedo spectrum determined from the MEVA technique to calculate TOA flux and aerosol direct radiative forcing over the Amazon region and compare it with Clouds and the Earth's Radiant Energy System (CERES) satellite results. The results show that MODIS based forcing calculations present similar averaged results compared to CERES, but MODIS shows greater spatial variation of aerosol forcing than CERES. Possible reasons for these differences are explored and discussed in this work. Potential future research based on these results is discussed as well.

  18. Recent Progress on Deep Blue Aerosol Algorithm as Applied TO MODIS, SEA WIFS, and VIIRS, and Their Intercomparisons with Ground Based and Other Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Hsu, N. Christina; Bettenhausen, Corey; Sawyer, Andrew; Tsay, Si-Chee

    2012-01-01

    The impact of natural and anthropogenic sources of aerosols has gained increasing attention from scientific communities in recent years. Indeed, tropospheric aerosols not only perturb radiative energy balance by interacting with solar and terrestrial radiation, but also by changing cloud properties and lifetime. Furthermore, these anthropogenic and natural air particles, once generated over the source regions, can be transported out of the boundary layer into the free troposphere and can travel thousands of kilometers across oceans and continents resulting in important biogeochemical impacts on the ecosystem. With the launch of SeaWiFS in 1997, Terra/MODIS in 1999, and Aqua/MODIS in 2002, high quality comprehensive aerosol climatology is becoming feasible for the first time. As a result of these unprecedented data records, studies of the radiative and biogeochemical effects due to tropospheric aerosols are now possible. In this talk, we will demonstrate how this newly available SeaWiFS/MODIS aerosol climatology can provide an important piece of puzzles in reducing the uncertainty of estimated climatic forcing due to aerosols. We will start with the global distribution of aerosol loading and their variabilities over both land and ocean on short- and long-term temporal scales observed over the last decade. The recent progress made in Deep Blue aerosol algorithm on improving accuracy of these Sea WiFS / MODIS aerosol products in particular over land will be discussed. The impacts on quantifying physical and optical processes of aerosols over source regions of adding the Deep Blue products of aerosol properties over bright-reflecting surfaces into Sea WiFS / MODIS as well as VIIRS data suite will also be addressed. We will also show the intercomparison results of SeaWiFS/MODIS retrieved aerosol optical thickness with data from ground based AERONET sunphotometers over land and ocean as well as with other satellite measurements. The trends observed in global aerosol loadings of both natural and anthropogenic sources based upon more than a decade of combined MODIS/SeaWiFS data (1997-2011) will be discussed. We will also address the importance of various key issues such as differences in spatial-temporal sampling rates and observation time between different satellite measurements could potentially impact these intercomparisons results, especially for using the monthly mean data, and thus on estimates of long-term aerosol trends.

  19. Characterizing error distributions for MISR and MODIS optical depth data

    NASA Astrophysics Data System (ADS)

    Paradise, S.; Braverman, A.; Kahn, R.; Wilson, B.

    2008-12-01

    The Multi-angle Imaging SpectroRadiometer (MISR) and Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's EOS satellites collect massive, long term data records on aerosol amounts and particle properties. MISR and MODIS have different but complementary sampling characteristics. In order to realize maximum scientific benefit from these data, the nature of their error distributions must be quantified and understood so that discrepancies between them can be rectified and their information combined in the most beneficial way. By 'error' we mean all sources of discrepancies between the true value of the quantity of interest and the measured value, including instrument measurement errors, artifacts of retrieval algorithms, and differential spatial and temporal sampling characteristics. Previously in [Paradise et al., Fall AGU 2007: A12A-05] we presented a unified, global analysis and comparison of MISR and MODIS measurement biases and variances over lives of the missions. We used AErosol RObotic NETwork (AERONET) data as ground truth and evaluated MISR and MODIS optical depth distributions relative to AERONET using simple linear regression. However, AERONET data are themselves instrumental measurements subject to sources of uncertainty. In this talk, we discuss results from an improved analysis of MISR and MODIS error distributions that uses errors-in-variables regression, accounting for uncertainties in both the dependent and independent variables. We demonstrate on optical depth data, but the method is generally applicable to other aerosol properties as well.

  20. Multi-scales and multi-satellites estimates of evapotranspiration with a residual energy balance model in the Muzza agricultural district in Northern Italy

    NASA Astrophysics Data System (ADS)

    Corbari, C.; Bissolati, M.; Mancini, M.

    2015-05-01

    Evapotranspiration estimates were performed with a residual energy balance model (REB) over an agricultural area using remote sensing data. REB uses land surface temperature (LST) as main input parameter so that energy fluxes were computed instantaneously at the time of data acquisition. Data from MODIS and SEVIRI sensors were used and downscaling techniques were implemented to improve their spatial resolutions. Energy fluxes at the original spatial resolutions (1000 m for MODIS and 5000 m for SEVIRI) as well as at the downscaled resolutions (250 m for MODIS and 1000 m for SEVIRI) were calculated with the REB model. Ground eddy covariance data and remote sensing information from the Muzza agricultural irrigation district in Italy from 2010 to 2012 gave the opportunity to validate and compare spatially distributed energy fluxes. The model outputs matched quite well ground observations when ground LST data were used, while differences increased when MODIS and SEVIRI LST were used. The spatial analysis revealed significant differences between the two sensors both in term of LST (around 2.8 °C) and of latent heat fluxes with values (around 100 W m-2).

  1. Assessment of MODIS and VIIRS Solar Diffuser On-Orbit Degradation

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong; Fulbright, Jon; Angal, Amit; Wang, Zhipeng; Geng, Xu; Butler, Jim

    2015-01-01

    Both MODIS and VIIRS instruments use a solar diffuser (SD) for their reflective solar bands (RSB) on-orbit calibration. On-orbit changes in SD bi-directional reflectance factor (BRF) are tracked by a solar diffuser stability monitor (SDSM) using its alternate measurements of the sunlight reflected off the SD panel and direct sunlight through a fixed attenuation screen. The SDSM calibration data are collected by a number of filtered detectors, covering wavelengths from 0.41 to 0.94 micrometers. In this paper we describe briefly the Terra and Aqua MODIS and S-NPP VIIRS SDSM on-orbit operation and calibration activities and strategies, provide an overall assessment of their SDSM on-orbit performance, including wavelength-dependent changes in the SDSM detector responses and changes in their SD BRF, and discuss remaining challenging issues and their potential impact on RSB calibration quality. Due to different launch dates, operating configurations, and calibration frequencies, the Terra and Aqua MODIS and S-NPP VIIRS SD have experienced different amount of SD degradation. However, in general the shorter the wavelength, the larger is the SD on-orbit degradation. On the other hand, the larger changes in SDSM detector responses are observed at longer wavelengths in the near infrared (NIR).

  2. Assessment of MODIS and VIIRS solar diffuser on-orbit degradation

    NASA Astrophysics Data System (ADS)

    Xiong, Xiaoxiong; Fulbright, Jon; Angal, Amit; Wang, Zhipeng; Geng, Xu; Butler, Jim

    2015-09-01

    Both MODIS and VIIRS instruments use a solar diffuser (SD) for their reflective solar bands (RSB) on-orbit calibration. On-orbit changes in SD bi-directional reflectance factor (BRF) are tracked by a solar diffuser stability monitor (SDSM) using its alternate measurements of the sunlight reflected off the SD panel and direct sunlight through a fixed attenuation screen. The SDSM calibration data are collected by a number of filtered detectors, covering wavelengths from 0.41 to 0.94μm. In this paper we describe briefly the Terra and Aqua MODIS and S-NPP VIIRS SDSM on-orbit operation and calibration activities and strategies, provide an overall assessment of their SDSM on-orbit performance, including wavelength-dependent changes in the SDSM detector responses and changes in their SD BRF, and discuss remaining challenging issues and their potential impact on RSB calibration quality. Due to different launch dates, operating configurations, and calibration frequencies, the Terra and Aqua MODIS and S-NPP VIIRS SD have experienced different amount of SD degradation. However, in general the shorter the wavelength, the larger is the SD on-orbit degradation. On the other hand, the larger changes in SDSM detector responses are observed at longer wavelengths in the near infrared (NIR).

  3. Thermal remote sensing as a part of Exupéry volcano fast response system

    NASA Astrophysics Data System (ADS)

    Zakšek, Klemen; Hort, Matthias

    2010-05-01

    In order to understand the eruptive potential of a volcanic system one has to characterize the actual state of stress of a volcanic system that involves proper monitoring strategies. As several volcanoes in highly populated areas especially in south east Asia are still nearly unmonitored a mobile volcano monitoring system is currently being developed in Germany. One of the major novelties of this mobile volcano fast response system called Exupéry is the direct inclusion of satellite based observations. Remote sensing data are introduced together with ground based field measurements into the GIS database, where the statistical properties of all recorded data are estimated. Using physical modelling and statistical methods we hope to constrain the probability of future eruptions. The emphasis of this contribution is on using thermal remote sensing as tool for monitoring active volcanoes. One can detect thermal anomalies originating from a volcano by comparing signals in mid and thermal infrared spectra. A reliable and effective thermal anomalies detection algorithm was developed by Wright (2002) for MODIS sensor; it is based on the threshold of the so called normalized thermal index (NTI). This is the method we use in Exupéry, where we characterize each detected thermal anomaly by temperature, area, heat flux and effusion rate. The recent work has shown that radiant flux is the most robust parameter for this characterization. Its derivation depends on atmosphere, satellite viewing angle and sensor characteristics. Some of these influences are easy to correct using standard remote sensing pre-processing techniques, however, some noise still remains in data. In addition, satellites in polar orbits have long revisit times and thus they might fail to follow a fast evolving volcanic crisis due to long revisit times. Thus we are currently testing Kalman filter on simultaneous use of MODIS and AVHRR data to improve the thermal anomaly characterization. The advantage of this technique is that it increases the temporal resolution through using images from different satellites having different resolution and sensitivity. This algorithm has been tested for an eruption at Mt. Etna (2002) and successfully captures more details of the eruption evolution than would be seen by using only one satellite source. At the moment for Exupéry, merely MODIS (a sensor aboard NASA's Terra and Aqua satellite) data are used for the operational use. As MODIS is a meteorological sensor, it is suitable also for producing general overview images of the crisis area. Therefore, for each processed MODIS image we also produce RGB image where some basic meteorological features are classified: e.g. clouds, volcanic ash plumes, ocean, etc. In the case of detected hotspot an additional image is created; it contains the original measured radiances of the selected channels for the crisis area. All anomaly and processing parameters are additionally written into an XML file. The results are available in web GIS in the worst case two hours after NASA provides level 1b data online.

  4. Great Lakes, No Clouds

    NASA Image and Video Library

    2017-12-08

    NASA image acquired August 28, 2010 Late August 2010 provided a rare satellite view of a cloudless summer day over the entire Great Lakes region. North Americans trying to sneak in a Labor Day weekend getaway on the lakes were hoping for more of the same. The Great Lakes comprise the largest collective body of fresh water on the planet, containing roughly 18 percent of Earth's supply. Only the polar ice caps contain more fresh water. The region around the Great Lakes basin is home to more than 10 percent of the population of the United States and 25 percent of the population of Canada. Many of those people have tried to escape record heat this summer by visiting the lakes. What they found, according to The Hamilton Spectator, was record-breaking water temperatures fueled by record-breaking air temperatures in the spring and summer. By mid-August, the waters of Lake Superior were 6 to 8°C (11 to 14°F) above normal. Lake Michigan set records at about 4°C (7°F) above normal. The other three Great Lakes – Huron, Erie, and Ontario -- were above normal temperatures, though no records were set. The image was gathered by the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Aqua satellite at 1:30 p.m. Central Daylight Time (18:30 UTC) on August 28. Open water appears blue or nearly black. The pale blue and green swirls near the coasts are likely caused by algae or phytoplankton blooms, or by calcium carbonate (chalk) from the lake floor. The sweltering summer temperatures have produced an unprecedented bloom of toxic blue-green algae in western Lake Erie, according to the Cleveland Plain Dealer. NASA image by Jeff Schmaltz, MODIS Rapid Response Team, Goddard Space Flight Center. Caption by Mike Carlowicz. Instrument: Aqua - MODIS Click here to see more images from NASA Goddard’s Earth Observatory NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook

  5. Tracking four-decade inundation changes with multi-temporal satellite images in China's largest freshwater lake

    NASA Astrophysics Data System (ADS)

    Wu, Guiping

    2017-04-01

    Poyang Lake is the largest freshwater lake in China. The lake has undergone remarkable spatio-temporal changes in both short- and long-term scales since 1970s, resulting in significant hydrological, ecological and economic consequences. Remote sensing techniques have advantages for large-scale studies, by offering images at different spatial and spectral resolutions. However, due to technical difficulties, no single satellite sensor can meet the needs for high spatio-temporal resolution required for such monitoring. In this study, using Landsat Thematic Mapper (TM) and Moderate Resolution Imaging Spectroradiometer (MODIS) images collected between 1973 and 2012, we documented and investigated the short- and long-term characteristics of lake inundation based on Normalized Difference Water Index (NDWI). First, we presented a novel downscaling method based on the NDWI statistical regression algorithm to generate small-scale resolution inundation map (30m) from coarse MODIS data (500m). The downscaling is a linear calibration of the NDWI index from MODIS imagery to Landsat imagery, which is based on the assumption that the relationships between fine resolution and coarse resolution are invariable. Second, Tupu analysis method was further performed to explore the spatial-temporal distribution and changing processes of lake inundation based on downscaling inundation maps. Then, a defined water variation rate (WVR) and inundation frequency (IF) indicator was used to reveal seasonal water surface submersion/exposure processes of lake expansion and shrinkage in different zones. Finally, mathematical statistics methods were utilized to explore the possible driving mechanisms of the revealed change patterns with meteorological data and hydrological data. The results show that, there is a high correlation (mean absolute error of 3.95% and an R2 of 0.97) between the MODIS- and Landsat-derived water surface areas in Poyang Lake. Over the past 40 years, a declining trend to a certain extent for the Poyang Lake's area could be detected. The lake surface displayed comparatively low values ( 2000 km2) in wet periods of 1980, 2006, 2009 and 2011, corresponding to severe hydrological droughts in the lake. In addition, the water surface variation in Poyang Lake had a typical seasonal behavior. It mostly followed a unimodal cycle with area peaks appeared in the wet season. The earliest beginning of the inundation cycle was emerged in 2000 and the latest in 2006. In general, the change of lake area is a synthetic result of climate change, land-cover change and construction of dykes. Our findings should be valuable to a comprehensive understanding of Poyang Lake's decadal and seasonal variation, which is critical for flood/drought prevention, land use planning and lake ecological conservation.

  6. Continental-Scale Validation of Modis-Based and LEDAPS Landsat ETM + Atmospheric Correction Methods

    NASA Technical Reports Server (NTRS)

    Ju, Junchang; Roy, David P.; Vermote, Eric; Masek, Jeffrey; Kovalskyy, Valeriy

    2012-01-01

    The potential of Landsat data processing to provide systematic continental scale products has been demonstratedby several projects including the NASA Web-enabled Landsat Data (WELD) project. The recent freeavailability of Landsat data increases the need for robust and efficient atmospheric correction algorithms applicableto large volume Landsat data sets. This paper compares the accuracy of two Landsat atmospheric correctionmethods: a MODIS-based method and the Landsat Ecosystem Disturbance Adaptive ProcessingSystem (LEDAPS) method. Both methods are based on the 6SV radiative transfer code but have different atmosphericcharacterization approaches. The MODIS-based method uses the MODIS Terra derived dynamicaerosol type, aerosol optical thickness, and water vapor to atmospherically correct ETM+ acquisitions ineach coincident orbit. The LEDAPS method uses aerosol characterizations derived independently from eachLandsat acquisition and assumes a fixed continental aerosol type and uses ancillary water vapor. Validationresults are presented comparing ETM+ atmospherically corrected data generated using these two methodswith AERONET corrected ETM+ data for 95 10 km10 km 30 m subsets, a total of nearly 8 million 30 mpixels, located across the conterminous United States. The results indicate that the MODIS-based methodhas better accuracy than the LEDAPS method for the ETM+ red and longer wavelength bands.

  7. Noise Characterization and Performance of MODIS Thermal Emissive Bands

    NASA Technical Reports Server (NTRS)

    Madhavan, Sriharsha; Xiong, Xiaoxiong; Wu, Aisheng; Wenny, Brian; Chiang, Kwofu; Chen, Na; Wang, Zhipeng; Li, Yonghong

    2016-01-01

    The MODerate-resolution Imaging Spectroradiometer (MODIS) is a premier Earth-observing sensor of the early 21st century, flying onboard the Terra (T) and Aqua (A) spacecraft. Both instruments far exceeded their six-year design life and continue to operate satisfactorily for more than 15 and 13 years, respectively. The MODIS instrument is designed to make observations at nearly a 100% duty cycle covering the entire Earth in less than two days. The MODIS sensor characteristics include a spectral coverage from 0.41micrometers to 14.4 micrometers, of which those wavelengths ranging from 3.7 micrometers to 14.4 micrometers cover the thermal infrared region which is interspaced in 16 thermal emissive bands (TEBs). Each of the TEB contains ten detectors which record samples at a spatial resolution of 1 km. In order to ensure a high level of accuracy for the TEB-measured top-of-atmosphere radiances, an onboard blackbody (BB) is used as the calibration source. This paper reports the noise characterization and performance of the TEB on various counts. First, the stability of the onboard BB is evaluated to understand the effectiveness of the calibration source. Next, key noise metrics such as the noise equivalent temperature difference and the noise equivalent dn difference (NEdN) for the various TEBs are determined from multiple temperature sources. These sources include the nominally controlled BB temperature of 290 K for T-MODIS and 285 K for A-MODIS, as well as a BB warm up-cool down cycle that is performed over a temperature range from roughly 270 to 315 K. The space-view port that measures the background signal serves as a viable cold temperature source for measuring noise. In addition, a well characterized Earth-view target, the Dome Concordia site located in the Antarctic plateau, is used for characterizing the stability of the sensor, indirectly providing a measure of the NEdN. Based on this rigorous characterization, a list of the noisy and inoperable detectors for the TEB for both instruments is reported to provide the science user communities quality control of the MODIS Level 1B calibrated product.

  8. Analysis of Co-Located MODIS and CALIPSO Observations Near Clouds

    NASA Technical Reports Server (NTRS)

    Varnai, Tamas; Marshak, Alexander

    2011-01-01

    The purpose of this paper is to help researchers combine data from different satellites and thus gain new insights into two critical yet poorly understood aspects of anthropogenic climate change, aerosol-cloud interactions and aerosol radiative effects, For this, the paper explores whether cloud information from the Aqua satellite's MODIS instrument can help characterize systematic aerosol changes near clouds by refining earlier perceptions of these changes that were based on the CALIPSO satellite's CALIOP instrument. Similar to a radar but using visible and ncar-infrared light, CALIOP sends out laser pulses and provides aerosol and cloud information along a single line that tracks the satellite orbit by measuring the reflection of its pulses. In contrast, MODIS takes images of reflected sunlight and emitted infrared radiation at several wavelengths, and covers wide areas around the satellite track. This paper analyzes a year-long global dataset covering all ice-free oceans, and finds that MODIS can greatly help the interpretation of CALIOP observations, especially by detecting clouds that lie outside the line observed by CALlPSO. The paper also finds that complications such as differences in view direction or clouds drifting in the 72 seconds that elapse between MODIS and CALIOP observations have only a minor impact. The study also finds that MODIS data helps refine but does not qualitatively alter perceptions of the systematic aerosol changes that were detected in earlier studies using only CALIOP data. It then proposes a statistical approach to account for clouds lying outside the CALIOP track even when MODIS cannot as reliably detect low clouds, for example at night or over ice. Finally, the paper finds that, because of variations in cloud amount and type, the typical distance to clouds in maritime clear areas varies with season and location. The overall median distance to clouds in maritime clear areas around 4-5 km. The fact that half of all clear areas is closer than 5 km to clouds implies that pronounced near-cloud changes in aerosol properties have significant implications for overall clear-sky characteristics, including the radiative impact of aerosols.

  9. The Algorithm for MODIS Wavelength On-Orbit Calibration Using the SRCA

    NASA Technical Reports Server (NTRS)

    Montgomery, Harry; Che, Nianzeng; Parker, Kirsten; Bowser, Jeff

    1998-01-01

    The Spectro-Radiometric Calibration Assembly (SRCA) provides on-orbit spectral calibration of the MODerate resolution Imaging Spectroradiometer (MODIS) reflected solar bands and this paper describes how it is accomplished. The SRCA has two adjacent exit slits: 1) Main slit and 2) Calibration slit. The output from the main slit is measured by a reference silicon photo-diode (SIPD) and then passes through the MODIS. The output from the calibration slit passes through a piece of didymium transmission glass and then it is measured by a calibration SIPD. The centroids of the sharp spectral peaks of a didymium glass are utilized as wavelength standards. After normalization using the reference SIPD signal to eliminate the effects of the illuminating source spectra, the calibration SIPD establishes the relationship between the peaks of the didymium spectra and the grating angle; this is accomplished through the grating equation. In the grating equation the monochromator parameters, Beta (half angle between the incident and diffractive beams) and Theta(sub off) (offset angle of the grating motor) are determined by matching, in a least square sense, the known centroid wavelengths of the didymium peaks and the calculated centroid grating angles from the calibration SIPD signals for the peaks. A displacement between the calibration SIPD and the reference SIPD complicates the signal processing.

  10. [Endoplasmic reticulum stress in INS-1-3 cell associated with the expression changes of MODY gene pathway].

    PubMed

    Liu, Y T; Li, S R; Wang, Z; Xiao, J Z

    2016-09-13

    Objective: To profile the gene expression changes associated with endoplasmic reticulum stress in INS-1-3 cells induced by thapsigargin (TG) and tunicamycin (TM). Methods: Normal cultured INS-1-3 cells were used as a control. TG and TM were used to induce endoplasmic reticulum stress in INS-1-3 cells. Digital gene expression profiling technique was used to detect differentially expressed gene. The changes of gene expression were detected by expression pattern clustering analysis, gene ontology (GO) function and pathway enrichment analysis. Real time polymerase chain reaction (RT-PCR) was used to verify the key changes of gene expression. Results: Compared with the control group, there were 57 (45 up-regulated, 12 down-regulated) and 135 (99 up-regulated, 36 down-regulated) differentially expressed genes in TG and TM group, respectively. GO function enrichment analyses indicated that the main enrichment was in the endoplasmic reticulum. In signaling pathway analysis, the identified pathways were related with endoplasmic reticulum stress, antigen processing and presentation, protein export, and most of all, the maturity onset diabetes of the young (MODY) pathway. Conclusion: Under the condition of endoplasmic reticulum stress, the related expression changes of transcriptional factors in MODY signaling pathway may be related with the impaired function in islet beta cells.

  11. Monitoring Regional Forest Disturbances across the US with near Real Time MODIS NDVI Products Resident to the ForWarn Forest Threat Early Warning System

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph P.; Hargrove, William W.; Gasser, Gerald

    2013-01-01

    Forest threats across the US have become increasingly evident in recent years. Sometimes these have resulted in regionally evident disturbance progressions (e.g., from drought, bark beetle outbreaks, and wildfires) that can occur across multiyear durations and have resulted in extensive forest overstory mortality. In addition to stand replacement disturbances, other forests are subject to ephemeral, sometimes yearly defoliation from various insects and varying types and intensities of ephemeral damage from storms. Sometimes, after prolonged severe disturbance, signs of recovery in terms of Normalized Difference Vegetation Index (NDVI) can occur. The growing prominence and threat of forest disturbances in part have led to the formation and implementation of the 2003 Healthy Forest Restoration Act which mandated that national forest threat early warning system be developed and deployed. In response, the US Forest Service collaborated with NASA, DOE Oakridge National Laboratory, and the USGS Eros Data Center to build and roll-out the near real time ForWarn early warning system for monitoring regionally evident forest disturbances. Given the diversity of disturbance types, severities, and durations, ForWarn employs multiple historical baselines that are used with current NDVI to derive a suite of six forest change products that are refreshed every 8 days. ForWarn employs daily quarter kilometer MODIS NDVI data from the Aqua and Terra satellites, including MOD13 data for deriving historical baseline NDVIs and eMODIS 7 NDVI for compiling current NDVI. In doing so, the Time Series Product Tool and the Phenological Parameters Estimation Tool are used to temporally de-noise, fuse, and aggregate current and historical MODIS NDVIs into 24 day composites refreshed every 8 days with 46 dates of products per year. The 24 day compositing interval enables disturbances to be detected, while minimizing the frequency of residual atmospheric contamination. Forest change products are computed versus the previous 1, previous 3, and all previous years in the MODIS record for a given 24 day interval. Other "weekly" forest change products include one computed using an adaptive length compositing method for quicker detection of disturbances, two others that adjust for seasonal fluctuations in normal vegetation phenology (e.g., early versus late springs). This overall approach enables forest disturbance dynamics from a variety of regionally evident biotic and abiotic forest disturbances to be viewed and assessed through the calendar year. The change products are also being utilized for forest change trend analysis and for developing regional forest overstory mortality products. ForWarn's forest change products are used to alert forest health specialists about new forest disturbances. Such alerts are also typically based on available Landsat, aerial, and ground data as well as communications with forest health specialists and previous experience. ForWarn products have been used to detect and track many types of regional disturbances to multiple forest types, including defoliation from caterpillars and severe storms, as well as mortality from both biotic and abiotic agents (e.g., bark beetles, drought, fire, anthropogenic clearing). ForWarn offers products that could be combined with other geospatial data on forest biomass to assess forest disturbance carbon impacts within the conterminous US.

  12. Inter-Annual Variability of Burned Area in Brazil Based on a Synergistic use of Information Derived from MODIS and Landsat-TM

    NASA Astrophysics Data System (ADS)

    Libonati, R.; Dacamara, C. C.; Setzer, A. W.; Morelli, F.

    2014-12-01

    A procedure is presented that allows using information from the MODerate resolution Imaging Spectroradiometer (MODIS) sensor to improve the quality of monthly burned area estimates over Brazil. The method integrates MODIS derived information from two sources; the NASA MCD64A1 Direct Broadcast Monthly Burned Area Product and INPE's Monthly Burned Area MODIS product (AQM-MODIS). The latter product relies on an algorithm that was specifically designed for ecosystems in Brazil, taking advantage of the ability of MIR reflectances to discriminate burned areas. Information from both MODIS products is incorporated by means of a linear regression model where an optimal estimate of the burned area is obtained as a linear combination of burned area estimates from MCD64A1 and AQM-MODIS. The linear regression model is calibrated using as optimal estimates values of burned area derived from Landsat TM during 2005 and 2006 over Jalapão, a region of Cerrado covering an area of 187 x 187 km2. Obtained values of coefficients for MCD64A1 and AQM-MODIS were 0.51 and 0.35, respectively and the root mean square error was 7.6 km2. Robustness of the model was checked by calibrating the model separately for 2005 and 2006 and cross-validating with 2006 and 2005; coefficients for 2005 (2006) were 0.46 (0.54) for MCD64A1 and 0.35 (0.35) for AQM-MODIS and the corresponding root mean square errors for 2006 (2005) were 7.8 (7.4) km2. The linear model was then applied to Brazil as well as to the six Brazilian main biomes, namely Cerrado, Amazônia, Caatinga, Pantanal, Mata Atlântica and Pampa. As to be expected the interannual variability based on the proposed synergistic use of MCD64A1, AQM-MODIS and Landsat Tm data for the period 2005-2010 presents marked differences with the corresponding amounts derived from MCD64A1 alone. For instance during the considered period, values (in 103 km2) from the proposed approach (from MCD64A1) are 399 (142), 232 (62), 559 (259), 274 (73), 219 (31) and 415 (251). Values obtained with the proposed approach may be viewed as an improved alternative to the currently available products over Brazil.

  13. Radiometric characterization of hyperspectral imagers using multispectral sensors

    NASA Astrophysics Data System (ADS)

    McCorkel, Joel; Thome, Kurt; Leisso, Nathan; Anderson, Nikolaus; Czapla-Myers, Jeff

    2009-08-01

    The Remote Sensing Group (RSG) at the University of Arizona has a long history of using ground-based test sites for the calibration of airborne and satellite based sensors. Often, ground-truth measurements at these tests sites are not always successful due to weather and funding availability. Therefore, RSG has also employed automated ground instrument approaches and cross-calibration methods to verify the radiometric calibration of a sensor. The goal in the cross-calibration method is to transfer the calibration of a well-known sensor to that of a different sensor. This work studies the feasibility of determining the radiometric calibration of a hyperspectral imager using multispectral imagery. The work relies on the Moderate Resolution Imaging Spectroradiometer (MODIS) as a reference for the hyperspectral sensor Hyperion. Test sites used for comparisons are Railroad Valley in Nevada and a portion of the Libyan Desert in North Africa. Hyperion bands are compared to MODIS by band averaging Hyperion's high spectral resolution data with the relative spectral response of MODIS. The results compare cross-calibration scenarios that differ in image acquisition coincidence, test site used for the calibration, and reference sensor. Cross-calibration results are presented that show agreement between the use of coincident and non-coincident image pairs within 2% in most bands as well as similar agreement between results that employ the different MODIS sensors as a reference.

  14. Cross-calibration of S-NPP VIIRS moderate-resolution reflective solar bands against MODIS Aqua over dark water scenes

    NASA Astrophysics Data System (ADS)

    Sayer, Andrew M.; Hsu, N. Christina; Bettenhausen, Corey; Holz, Robert E.; Lee, Jaehwa; Quinn, Greg; Veglio, Paolo

    2017-04-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) is being used to continue the record of Earth Science observations and data products produced routinely from National Aeronautics and Space Administration (NASA) Moderate Resolution Imaging Spectroradiometer (MODIS) measurements. However, the absolute calibration of VIIRS's reflected solar bands is thought to be biased, leading to offsets in derived data products such as aerosol optical depth (AOD) as compared to when similar algorithms are applied to different sensors. This study presents a cross-calibration of these VIIRS bands against MODIS Aqua over dark water scenes, finding corrections to the NASA VIIRS Level 1 (version 2) reflectances between approximately +1 and -7 % (dependent on band) are needed to bring the two into alignment (after accounting for expected differences resulting from different band spectral response functions), and indications of relative trending of up to ˜ 0.35 % per year in some bands. The derived calibration gain corrections are also applied to the VIIRS reflectance and then used in an AOD retrieval, and they are shown to decrease the bias and total error in AOD across the mid-visible spectral region compared to the standard VIIRS NASA reflectance calibration. The resulting AOD bias characteristics are similar to those of NASA MODIS AOD data products, which is encouraging in terms of multi-sensor data continuity.

  15. Mapping Snow Grain Size over Greenland from MODIS

    NASA Technical Reports Server (NTRS)

    Lyapustin, Alexei; Tedesco, Marco; Wang, Yujie; Kokhanovsky, Alexander

    2008-01-01

    This paper presents a new automatic algorithm to derive optical snow grain size (SGS) at 1 km resolution using Moderate Resolution Imaging Spectroradiometer (MODIS) measurements. Differently from previous approaches, snow grains are not assumed to be spherical but a fractal approach is used to account for their irregular shape. The retrieval is conceptually based on an analytical asymptotic radiative transfer model which predicts spectral bidirectional snow reflectance as a function of the grain size and ice absorption. The analytical form of solution leads to an explicit and fast retrieval algorithm. The time series analysis of derived SGS shows a good sensitivity to snow metamorphism, including melting and snow precipitation events. Preprocessing is performed by a Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm, which includes gridding MODIS data to 1 km resolution, water vapor retrieval, cloud masking and an atmospheric correction. MAIAC cloud mask (CM) is a new algorithm based on a time series of gridded MODIS measurements and an image-based rather than pixel-based processing. Extensive processing of MODIS TERRA data over Greenland shows a robust performance of CM algorithm in discrimination of clouds over bright snow and ice. As part of the validation analysis, SGS derived from MODIS over selected sites in 2004 was compared to the microwave brightness temperature measurements of SSM\\I radiometer, which is sensitive to the amount of liquid water in the snowpack. The comparison showed a good qualitative agreement, with both datasets detecting two main periods of snowmelt. Additionally, MODIS SGS was compared with predictions of the snow model CROCUS driven by measurements of the automatic whether stations of the Greenland Climate Network. We found that CROCUS grain size is on average a factor of two larger than MODIS-derived SGS. Overall, the agreement between CROCUS and MODIS results was satisfactory, in particular before and during the first melting period in mid-June. Following detailed time series analysis of SGS for four permanent sites, the paper presents SGS maps over the Greenland ice sheet for the March-September period of 2004.

  16. HNF1α defect influences post-prandial lipid regulation

    PubMed Central

    St-Jean, Matthieu; Boudreau, François; Carpentier, André C.

    2017-01-01

    Purpose Hepatocyte nuclear factor 1 alpha (HNF1α) defects cause Mature Onset Diabetes of the Young type 3 (MODY3), characterized by defects in beta-cell insulin secretion. However, HNF1α is involved in many other metabolic pathways with relevance for monogenic or polygenic type 2 diabetes. We aimed to investigate gut hormones, lipids, and insulin regulation in response to a meal test in HNF1α defect carriers (MODY3) compared to non-diabetic subjects (controls) and type 2 diabetes (T2D). Methods We administered a standardized liquid meal to each participant. Over 6 hours, we measured post-meal responses of insulin regulation (blood glucose, c-peptide, insulin), gut hormones (ghrelin, glucose-dependent insulinotropic polypeptide, glucagon-like peptide-1) and lipids (non-esterified fatty acids [NEFA] and triglycerides). Results We found that MODY3 participants had lower insulin secretion indices than controls and T2D participants, showing the expected β-cell defect. MODY3 had similar glycated hemoglobin levels (HbA1c median [IQR]: 6.5 [5.6–7.6]%) compared to T2D (median: 6.6 [6.2–6.9]%; P<0.05). MODY3 had greater insulin sensitivity (Matsuda index: 71.9 [29.6; 125.5]) than T2D (3.2 [4.0; 6.0]; P<0.05). MODY3 experienced a larger decrease in the ratio of NEFA to insulin (NEFA 30–0 / insulin 30–0: -39 [-78; -30] x104) in the early post-prandial period (0–30 minutes) compared to controls and to T2D (-2.0 [-0.6; -6.4] x104; P<0.05). MODY3 had lower fasting (0.66 [0.46; 1.2] mM) and post-meal triglycerides levels compared to T2D (fasting: 2.3 [1.7; 2.7] mM; P<0.05). We did not detect significant post-meal differences in ghrelin and incretins between MODY3 and other groups. Conclusion In response to a standard meal test, MODY3 showed greater early post-prandial NEFA diminution in response to relatively low early insulin secretion, and they maintained very low post-prandial triglycerides levels. PMID:28493909

  17. Comparing near-earth and satellite remote sensing based phenophase estimates: an analysis using multiple webcams and MODIS (Invited)

    NASA Astrophysics Data System (ADS)

    Hufkens, K.; Richardson, A. D.; Migliavacca, M.; Frolking, S. E.; Braswell, B. H.; Milliman, T.; Friedl, M. A.

    2010-12-01

    In recent years several studies have used digital cameras and webcams to monitor green leaf phenology. Such "near-surface" remote sensing has been shown to be a cost effective means of accurately capturing phenology. Specifically, it allows for accurate tracking of intra- and inter-annual phenological dynamics at high temporal frequency and over broad spatial scales compared to visual observations or tower-based fAPAR and broadband NDVI measurements. Near surface remote sensing measurements therefore show promise for bridging the gap between traditional in-situ measurements of phenology and satellite remote sensing data. For this work, we examined the relationship between phenophase estimates derived from satellite remote sensing (MODIS) and near-earth remote sensing derived from webcams for a select set of sites with high-quality webcam data. A logistic model was used to characterize phenophases for both the webcam and MODIS data. We documented model fit accuracy, phenophase estimates, and model biases for both data sources. Our results show that different vegetation indices (VI's) derived from MODIS produce significantly different phenophase estimates compared to corresponding estimates derived from webcam data. Different VI's showed markedly different radiometric properties, and as a result, influenced phenophase estimates. The study shows that phenophase estimates are not only highly dependent on the algorithm used but also depend on the VI used by the phenology retrieval algorithm. These results highlight the need for a better understanding of how near-earth and satellite remote data relate to eco-physiological and canopy changes during different parts of the growing season.

  18. Time-Dependent Response Versus Scan Angle for MODIS Reflective Solar Bands

    NASA Technical Reports Server (NTRS)

    Sun, Junqiang; Xiong, Xiaoxiong; Angal, Amit; Chen, Hongda; Wu, Aisheng; Geng, Xu

    2014-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) instruments currently operate onboard the National Aeronautics and Space Administration (NASA's) Terra and Aqua spacecraft, launched on December 18, 1999 and May 4, 2002, respectively. MODIS has 36 spectral bands, among which 20 are reflective solar bands (RSBs) covering a spectral range from 0.412 to 2.13 µm. The RSBs are calibrated on orbit using a solar diffuser (SD) and an SD stability monitor and with additional measurements from lunar observations via a space view (SV) port. Selected pseudo-invariant desert sites are also used to track the RSB on-orbit gain change, particularly for short-wavelength bands. MODIS views the Earth surface, SV, and the onboard calibrators using a two-sided scan mirror. The response versus scan angle (RVS) of the scan mirror was characterized prior to launch, and its changes are tracked using observations made at different angles of incidence from onboard SD, lunar, and Earth view (EV) measurements. These observations show that the optical properties of the scan mirror have experienced large wavelength-dependent degradation in both the visible and near infrared spectral regions. Algorithms have been developed to track the on-orbit RVS change using the calibrators and the selected desert sites. These algorithms have been applied to both Terra and Aqua MODIS Level 1B (L1B) to improve the EV data accuracy since L1B Collection 4, refined in Collection 5, and further improved in the latest Collection 6 (C6). In C6, two approaches have been used to derive the time-dependent RVS for MODIS RSB. The first approach relies on data collected from sensor onboard calibrators and mirror side ratios from EV observations. The second approach uses onboard calibrators and EV response trending from selected desert sites. This approach is mainly used for the bands with much larger changes in their time-dependent RVS, such as the Terra MODIS bands 1-4, 8, and 9 and the Aqua MODIS bands 8- and 9. In this paper, the algorithms of these approaches are described, their performance is demonstrated, and their impact on L1B products is discussed. In general, the shorter wavelength bands have experienced a larger on-orbit RVS change, which, in general, are mirror side and detector dependent. The on-orbit RVS change due to the degradation of band 8 can be as large as 35 percent for Terra MODIS and 20 percent for Aqua MODIS. Vital to maintaining the accuracy of the MODIS L1B products is an accurate characterization of the on-orbit RVS change. The derived time-independent RVS, implemented in C6, makes an important improvement to the quality of the MODIS L1B products.

  19. How consistent are global long-term satellite LAI products in terms of interannual variability and trend?

    NASA Astrophysics Data System (ADS)

    Jiang, C.; Ryu, Y.; Fang, H.

    2016-12-01

    Proper usage of global satellite LAI products requires comprehensive evaluation. To address this issue, the Committee on Earth Observation Satellites (CEOS) Land Product Validation (LPV) subgroup proposed a four-stage validation hierarchy. During the past decade, great efforts have been made following this validation framework, mainly focused on absolute magnitude, seasonal trajectory, and spatial pattern of those global satellite LAI products. However, interannual variability and trends of global satellite LAI products have been investigated marginally. Targeting on this gap, we made an intercomparison between seven global satellite LAI datasets, including four short-term ones: MODIS C5, MODIS C6, GEOV1, MERIS, and three long-term products ones: LAI3g, GLASS, and GLOBMAP. We calculated global annual LAI time series for each dataset, among which we found substantial differences. During the overlapped period (2003 - 2011), MODIS C5, GLASS and GLOBMAP have positive correlation (r > 0.6) between each other, while MODIS C6, GEOV1, MERIS, and LAI3g are highly consistent (r > 0.7) in interannual variations. However, the previous three datasets show negative trends, all of which use MODIS C5 reflectance data, whereas the latter four show positive trends, using MODIS C6, SPOT/VGT, ENVISAT/MERIS, and NOAA/AVHRR, respectively. During the pre-MODIS era (1982 - 1999), the three AVHRR-based datasets (LAI3g, GLASS and GLOBMAP) agree well (r > 0.7), yet all of them show oscillation related with NOAA platform changes. In addition, both GLASS and GLOBMAP show clear cut-points around 2000 when they move from AVHRR to MODIS. Such inconsistency is also visible for GEOV1, which uses SPOT-4 and SPOT-5 before and after 2002. We further investigate the map-to-map deviations among these products. This study highlights that continuous sensor calibration and cross calibration are essential to obtain reliable global LAI time series.

  20. SCAR-B fires in the tropics: Properties and remote sensing from EOS-MODIS

    NASA Astrophysics Data System (ADS)

    Kaufman, Yoram J.; Kleidman, Richard G.; King, Michael D.

    1998-12-01

    Two moderate resolution imaging spectroradiometer (MODIS) instruments are planned for launch in 1999 and 2000 on the NASA Earth Observing System (EOS) AM-1 and EOS PM-1 satellites. The MODIS instrument will sense fires with designated 3.9 and 11 μm channels that saturate at high temperatures (450 and 400 K, respectively). MODIS data will be used to detect fires, to estimate the rate of emission of radiative energy from the fire, and to estimate the fraction of biomass burned in the smoldering phase. The rate of emission of radiative energy is a measure of the rate of combustion of biomass in the fires. In the Smoke, Clouds, and Radiation-Brazil (SCAR-B) experiment the NASA ER-2 aircraft flew the MODIS airborne simulator (MAS) to measure the fire thermal and mid-IR signature with a 50 m spatial resolution. These data are used to observe the thermal properties and sizes of fires in the cerrado grassland and Amazon forests of Brazil and to simulate the performance of the MODIS 1 km resolution fire observations. Although some fires saturated the MAS 3.9 μm channel, all the fires were well within the MODIS instrument saturation levels. Analysis of MAS data over different ecosystems, shows that the fire size varied from single MAS pixels (50×50 m) to over 1 km2. The 1×1 km resolution MODIS instrument can observe only 30-40% of these fires, but the observed fires are responsible for 80 to nearly 100% of the emitted radiative energy and therefore for 80 to 100% of the rate of biomass burning in the region. The rate of emission of radiative energy from the fires correlated very well with the formation of fire burn scars (correlation coefficient = 0.97). This new remotely sensed quantity should be useful in regional estimates of biomass consumption.

  1. Improvement in the cloud mask for Terra MODIS mitigated by electronic crosstalk correction in the 6.7 μm and 8.5 μm channels

    NASA Astrophysics Data System (ADS)

    Sun, Junqiang; Madhavan, S.; Wang, M.

    2016-09-01

    MODerate resolution Imaging Spectroradiometer (MODIS), a remarkable heritage sensor in the fleet of Earth Observing System for the National Aeronautics and Space Administration (NASA) is in space orbit on two spacecrafts. They are the Terra (T) and Aqua (A) platforms which tracks the Earth in the morning and afternoon orbits. T-MODIS has continued to operate over 15 years easily surpassing the 6 year design life time on orbit. Of the several science products derived from MODIS, one of the primary derivatives is the MODIS Cloud Mask (MOD035). The cloud mask algorithm incorporates several of the MODIS channels in both reflective and thermal infrared wavelengths to identify cloud pixels from clear sky. Two of the thermal infrared channels used in detecting clouds are the 6.7 μm and 8.5 μm. Based on a difference threshold with the 11 μm channel, the 6.7 μm channel helps in identifying thick high clouds while the 8.5 μm channel being useful for identifying thin clouds. Starting 2010, it had been observed in the cloud mask products that several pixels have been misclassified due to the change in the thermal band radiometry. The long-term radiometric changes in these thermal channels have been attributed to the electronic crosstalk contamination. In this paper, the improvement in cloud detection using the 6.7 μm and 8.5 μm channels are demonstrated using the electronic crosstalk correction. The electronic crosstalk phenomena analysis and characterization were developed using the regular moon observation of MODIS and reported in several works. The results presented in this paper should significantly help in improving the MOD035 product, maintaining the long term dataset from T-MODIS which is important for global change monitoring.

  2. On-Orbit Noise Characterization for MODIS Reflective Solar Bands

    NASA Technical Reports Server (NTRS)

    Xiong, X.; Xie, X.; Angal, A.

    2008-01-01

    Since launch, the Moderate Resolution Imaging Spectroradiometer (MODIS) has operated successfully on-board the NASA Earth Observing System (EOS) Terra and EOS Aqua spacecraft. MODIS is a passive cross-track scanning radiometer that makes observations in 36 spectral bands with spectral wavelengths from visible (VIS) to long-wave infrared. MODIS bands 1-19 and 26 are the reflective solar bands (RSB) with wavelengths from 0.41 to 2.2 micrometers. They are calibrated on-orbit using an on-board solar diffuser (SD) and a SD stability monitor (SDSM) system. For MODIS RSB, the level 1B calibration algorithm produces top of the atmosphere reflectance factors and radiances for every pixel of the Earth view. The sensor radiometric calibration accuracy, specified at each spectral band's typical scene radiance, is 2% for the RSB reflectance factors and 5% for the RSB radiances. Also specified at the typical scene radiance is the detector signal-to-noise ratio (SNR), a key sensor performance parameter that directly impacts its radiometric calibration accuracy and stability, as well as the image quality. This paper describes an on-orbit SNR characterization approach developed to evaluate and track MODIS RSB detector performance. In order to perform on-orbit SNR characterization, MODIS RSB detector responses to the solar illumination reflected from the SD panel must be corrected for factors due to variations of the solar angles and the SD bi-directional reflectance factor. This approach enables RSB SNR characterization to be performed at different response levels for each detector. On-orbit results show that both Terra and Aqua MODIS RSB detectors have performed well since launch. Except for a few noisy or inoperable detectors which were identified pre-launch, most RSB detectors continue to meet the SNR design requirements and are able to maintain satisfactory short-term stability. A comparison of on-orbit noise characterization results with results derived from pre-launch calibration and characterization are also provided.

  3. [Temporal and spatial variation of MODIS vegetation indices in Hunan Province].

    PubMed

    Lin, Hui; Xiong, Yu-Jiu; Wan, Ling-Feng; Mo, Deng-Kui; Sun, Hua

    2007-03-01

    Based on MODIS images and by using the algorithm of maximum value composite (MVC), the monthly vegetation indices (VIs) in 2005 in Hunan Province were obtained. Through the analysis of the MODIS VIs, Hunan Province was divided into six districts to describe the spatial distribution of the VIs, and by using the monthly mean temperature and rainfall data collected from 5 climatic monitoring stations in this province, the temporal variation of the VIs was analyzed. The results showed that the spatial distribution of MODIS VIs was positively correlated with vegetation cover, and appeared regional characteristics. The MODIS VIs varied with season, and the curves of their monthly mean values were downwards opening quadratic parabolas, with the maximum appeared in July. The value of MODIS EVI was smaller than that of MODIS NDVI. MODIS VI was mainly affected by monthly mean temperature, but this effect was decreased with decreasing latitude. The variation pattern of MODIS EVI was more apparent than that of MODIS NDVI, i. e. , the quadratic parabola of MODIS EVI was smoother, going gradually from minimum to maximum and then going down, while that of MODIS NDVI had tiny fluctuations on both sides of the maximum point.

  4. Multi-Resolution Analysis of MODIS and ASTER Satellite Data for Water Classification

    DTIC Science & Technology

    2006-09-01

    spectral bands, but also with different pixel resolutions . The overall goal... the total water surface. Due to the constraint that high spatial resolution satellite images are low temporal resolution , one needs a reliable method...at 15 m resolution , were processed. We used MODIS reflectance data from MOD02 Level 1B data. Even the spatial resolution of the 1240 nm

  5. MISR Aerosol Product Attributes and Statistical Comparisons with MODIS

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.; Nelson, David L.; Garay, Michael J.; Levy, Robert C.; Bull, Michael A.; Diner, David J.; Martonchik, John V.; Paradise, Susan R.; Hansen, Earl G.; Remer, Lorraine A.

    2009-01-01

    In this paper, Multi-angle Imaging SpectroRadiometer (MISR) aerosol product attributes are described, including geometry and algorithm performance flags. Actual retrieval coverage is mapped and explained in detail using representative global monthly data. Statistical comparisons are made with coincident aerosol optical depth (AOD) and Angstrom exponent (ANG) retrieval results from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument. The relationship between these results and the ones previously obtained for MISR and MODIS individually, based on comparisons with coincident ground-truth observations, is established. For the data examined, MISR and MODIS each obtain successful aerosol retrievals about 15% of the time, and coincident MISR-MODIS aerosol retrievals are obtained for about 6%-7% of the total overlap region. Cloud avoidance, glint and oblique-Sun exclusions, and other algorithm physical limitations account for these results. For both MISR and MODIS, successful retrievals are obtained for over 75% of locations where attempts are made. Where coincident AOD retrievals are obtained over ocean, the MISR-MODIS correlation coefficient is about 0.9; over land, the correlation coefficient is about 0.7. Differences are traced to specific known algorithm issues or conditions. Over-ocean ANG comparisons yield a correlation of 0.67, showing consistency in distinguishing aerosol air masses dominated by coarse-mode versus fine-mode particles. Sampling considerations imply that care must be taken when assessing monthly global aerosol direct radiative forcing and AOD trends with these products, but they can be used directly for many other applications, such as regional AOD gradient and aerosol air mass type mapping and aerosol transport model validation. Users are urged to take seriously the published product data-quality statements.

  6. Performance of MODIS satellite and mesoscale model based land surface temperature for soil moisture deficit estimation using Neural Network

    NASA Astrophysics Data System (ADS)

    Srivastava, Prashant K.; Petropoulos, George P.; Gupta, Manika; Islam, Tanvir

    2015-04-01

    Soil Moisture Deficit (SMD) is a key variable in the water and energy exchanges that occur at the land-surface/atmosphere interface. Monitoring SMD is an alternate method of irrigation scheduling and represents the use of the suitable quantity of water at the proper time by combining measurements of soil moisture deficit. In past it is found that LST has a strong relation to SMD, which can be estimated by MODIS or numerical weather prediction model such as WRF (Weather Research and Forecasting model). By looking into the importance of SMD, this work focused on the application of Artificial Neural Network (ANN) for evaluating its capabilities towards SMD estimation using the LST data estimated from MODIS and WRF mesoscale model. The benchmark SMD estimated from Probability Distribution Model (PDM) over the Brue catchment, Southwest of England, U.K. is used for all the calibration and validation experiments. The performances between observed and simulated SMD are assessed in terms of the Nash-Sutcliffe Efficiency (NSE), the Root Mean Square Error (RMSE) and the percentage of bias (%Bias). The application of the ANN confirmed a high capability WRF and MODIS LST for prediction of SMD. Performance during the ANN calibration and validation showed a good agreement between benchmark and estimated SMD with MODIS LST information with significantly higher performance than WRF simulated LST. The work presented showed the first comprehensive application of LST from MODIS and WRF mesoscale model for hydrological SMD estimation, particularly for the maritime climate. More studies in this direction are recommended to hydro-meteorological community, so that useful information will be accumulated in the technical literature domain for different geographical locations and climatic conditions. Keyword: WRF, Land Surface Temperature, MODIS satellite, Soil Moisture Deficit, Neural Network

  7. The Q Continuum: Encounter with the Cloud Mask

    NASA Astrophysics Data System (ADS)

    Ackerman, S. A.; Frey, R.; Holz, R.; Philips, C.; Dutcher, S.

    2017-12-01

    We are developing a common cloud mask for MODIS and VIIRS observations, referred to as the MODIS VIIRS Continuity Mask (MVCM). Our focus is on extending the MODIS-heritage cloud detection approach in order to generate appropriate climate data records for clouds and climate studies. The MVCM is based on heritage from the MODIS cloud mask (MOD35 and MYD35) and employs a series of tests on MODIS reflectances and brightness temperatures. Cloud detection is based on contrasts (i.e., cloud versus background surface) at pixel resolution. The MVCM follows the same approach. These cloud masks use multiple cloud detection tests to indicate the confidence level that the observation is of a clear-sky scene. The outcome of a test ranges from 0 (cloudy) to 1 (clear-sky scene). Because of overlap in the sensitivities of the various spectral tests to the type of cloud, each test is considered in one of several groups. The final cloud mask is determined from the product of the minimum confidence of each group and is referred to as the Q value as defined in Ackerman et al (1998). In MOD35 and MYD35 processing, the Q value is not output, rather predetermined Q values determine the result: If Q ≥ .99 the scene is clear; .95 ≤ Q < .99 the pixel is probably a clear scene, .66 ≤ Q < .95 is probably cloudy and Q < .66 is cloudy. Thus representing Q discretely and not as a continuum. For the MVCM, the numerical value of the Q is output along with the classification of clear, probably clear, probably cloudy, and cloudy. Through comparisons with collocated CALIOP and MODIS observations, we will assess the categorization of the Q values as a function of scene type ). While validation studies have indicated the utility and statistical correctness of the cloud mask approach, the algorithm does not possess immeasurable power and perfection. This comparison will assess the time and space dependence of Q and assure that the laws of physics are followed, at least according to normal human notions. Using CALIOP as representing truth, a receiver operating characteristic curve (ROC) will be analyzed to determine the optimum Q for various scenes and seasons, thus providing a continuum of discriminating thresholds.

  8. Comparison of bio-physical marine products from SeaWiFS, MODIS and a bio-optical model with in situ measurements from Northern European waters

    NASA Astrophysics Data System (ADS)

    Blondeau-Patissier, D.; Tilstone, G. H.; Martinez-Vicente, V.; Moore, G. F.

    2004-09-01

    In this paper, we compare bio-physical marine products from SeaWiFS, MODIS and a novel bio-optical absorption model with in situ measurements of chlorophyll-a (Chla) concentrations, total suspended material (TSM) concentrations, normalized water-leaving radiances (nLw) and absorption coefficients of coloured dissolved organic matter (aCDOM), total particulate (atotal) and phytoplankton (aphy) for 26 satellite match-ups in three Northern European seas. Cruises were undertaken in 2002 and 2003 in phytoplankton dominated open ocean waters of the Celtic Sea and optically complex waters of the Western English Channel (WEC) and North Sea. For all environments, Chla concentrations varied from 0.4 to 7.8 mg m-3, TSM from 0.2 to 6.0 mg l-1 and aCDOM at 440 nm from 0.02 to 0.30 m-1. SeaWiFS OC4v4, with the Remote Sensing Data Analysis Service (RSDAS) atmospheric correction for turbid waters, showed the most accurate retrieval of in situ Chla (RMS = 0.24; n = 26), followed by MODIS chlor_a_3 (RMS = 0.40; n = 26). This suggested that improving the atmospheric correction over optically complex waters results in more accurate Chla concentrations compared to those obtained using more complicated Chla algorithms. We found that the SeaWiFS OC4v4 and the MODIS chlor_a_2 switching band ratio algorithms, which mainly use longer wavebands than 443 nm, were less affected by CDOM. They were both more accurate than chlor_MODIS in the higher CDOM waters of the North Sea. Compared to MODIS the absorption model was better at retrieving atotal (RMS = 0.39; n = 78) and aCDOM (RMS = 0.79; n = 12) in all study areas and TSM in the WEC (RMS = 0.04; n = 10) but it underestimated Chla concentrations (RMS = 0.45; n = 26). The results are discussed in terms of atmospheric correction, sensor characteristics and the functioning and performance of Chla algorithms. This paper was presented at the Institute of Physics Meeting on Underwater Optics held during Photonex 03 at Warwick, UK, in October 2003. Four companion papers from this conference were published in Journal of Optics A: Pure and Applied Optics, volume 6, issue 7 (July 2004), on pages 684, 690, 698 and 703.

  9. Phenology from Landsat when data is scarce: Using MODIS and Dynamic Time-Warping to combine multi-year Landsat imagery to derive annual phenology curves

    NASA Astrophysics Data System (ADS)

    Baumann, Matthias; Ozdogan, Mutlu; Richardson, Andrew D.; Radeloff, Volker C.

    2017-02-01

    Green-leaf phenology describes the development of vegetation throughout a growing season and greatly affects the interaction between climate and the biosphere. Remote sensing is a valuable tool to characterize phenology over large areas but doing at fine- to medium resolution (e.g., with Landsat data) is difficult because of low numbers of cloud-free images in a single year. One way to overcome data availability limitations is to merge multi-year imagery into one time series, but this requires accounting for phenological differences among years. Here we present a new approach that employed a time series of a MODIS vegetation index data to quantify interannual differences in phenology, and Dynamic Time Warping (DTW) to re-align multi-year Landsat images to a common phenology that eliminates year-to-year phenological differences. This allowed us to estimate annual phenology curves from Landsat between 2002 and 2012 from which we extracted key phenological dates in a Monte-Carlo simulation design, including green-up (GU), start-of-season (SoS), maturity (Mat), senescence (Sen), end-of-season (EoS) and dormancy (Dorm). We tested our approach in eight locations across the United States that represented forests of different types and without signs of recent forest disturbance. We compared Landsat-based phenological transition dates to those derived from MODIS and ground-based camera data from the PhenoCam-network. The Landsat and MODIS comparison showed strong agreement. Dates of green-up, start-of-season and maturity were highly correlated (r 0.86-0.95), as were senescence and end-of-season dates (r > 0.85) and dormancy (r > 0.75). Agreement between the Landsat and PhenoCam was generally lower, but correlation coefficients still exceeded 0.8 for all dates. In addition, because of the high data density in the new Landsat time series, the confidence intervals of the estimated keydates were substantially lower than in case of MODIS and PhenoCam. Our study thus suggests that by exploiting multi-year Landsat imagery and calibrating it with MODIS data it is possible to describe green-leaf phenology at much finer spatial resolution than previously possible, highlighting the potential for fine scale phenology maps using the rich Landsat data archive over large areas.

  10. Producing remote sensing-based emission estimates of prescribed burning in the contiguous United States for the U.S. Environmental Protection Agency 2011 National Emissions Inventory

    NASA Astrophysics Data System (ADS)

    McCarty, J. L.; Pouliot, G. A.; Soja, A. J.; Miller, M. E.; Rao, T.

    2013-12-01

    Prescribed fires in agricultural landscapes generally produce smaller burned areas than wildland fires but are important contributors to emissions impacting air quality and human health. Currently, there are a variety of available satellite-based estimates of crop residue burning, including the NOAA/NESDIS Hazard Mapping System (HMS) the Satellite Mapping Automated Reanalysis Tool for Fire Incident Reconciliation (SMARTFIRE 2), the Moderate Resolution Imaging Spectroradiometer (MODIS) Official Burned Area Product (MCD45A1)), the MODIS Direct Broadcast Burned Area Product (MCD64A1) the MODIS Active Fire Product (MCD14ML), and a regionally-tuned 8-day cropland differenced Normalized Burn Ratio product for the contiguous U.S. The purpose of this NASA-funded research was to refine the regionally-tuned product utilizing higher spatial resolution crop type data from the USDA NASS Cropland Data Layer and burned area training data from field work and high resolution commercial satellite data to improve the U.S. Environmental Protection Agency's (EPA) National Emissions Inventory (NEI). The final product delivered to the EPA included a detailed database of 25 different atmospheric emissions at the county level, emission distributions by crop type and seasonality, and GIS data. The resulting emission databases were shared with the U.S. EPA and regional offices, the National Wildfire Coordinating Group (NWGC) Smoke Committee, and all 48 states in the contiguous U.S., with detailed error estimations for Wyoming and Indiana and detailed analyses of results for Florida, Minnesota, North Dakota, Oklahoma, and Oregon. This work also provided opportunities in discovering the different needs of federal and state partners, including the various geospatial abilities and platforms across the many users and how to incorporate expert air quality, policy, and land management knowledge into quantitative earth observation-based estimations of prescribed fire emissions. Finally, this work created direct communication paths between federal and state partners to the scientists creating the remote sensing-based products, further improving the geospatial products and understanding of air quality impacts of prescribed burning at the state, regional, and national scales.

  11. Spatial, Temporal and Spectral Satellite Image Fusion via Sparse Representation

    NASA Astrophysics Data System (ADS)

    Song, Huihui

    Remote sensing provides good measurements for monitoring and further analyzing the climate change, dynamics of ecosystem, and human activities in global or regional scales. Over the past two decades, the number of launched satellite sensors has been increasing with the development of aerospace technologies and the growing requirements on remote sensing data in a vast amount of application fields. However, a key technological challenge confronting these sensors is that they tradeoff between spatial resolution and other properties, including temporal resolution, spectral resolution, swath width, etc., due to the limitations of hardware technology and budget constraints. To increase the spatial resolution of data with other good properties, one possible cost-effective solution is to explore data integration methods that can fuse multi-resolution data from multiple sensors, thereby enhancing the application capabilities of available remote sensing data. In this thesis, we propose to fuse the spatial resolution with temporal resolution and spectral resolution, respectively, based on sparse representation theory. Taking the study case of Landsat ETM+ (with spatial resolution of 30m and temporal resolution of 16 days) and MODIS (with spatial resolution of 250m ~ 1km and daily temporal resolution) reflectance, we propose two spatial-temporal fusion methods to combine the fine spatial information of Landsat image and the daily temporal resolution of MODIS image. Motivated by that the images from these two sensors are comparable on corresponding bands, we propose to link their spatial information on available Landsat- MODIS image pair (captured on prior date) and then predict the Landsat image from the MODIS counterpart on prediction date. To well-learn the spatial details from the prior images, we use a redundant dictionary to extract the basic representation atoms for both Landsat and MODIS images based on sparse representation. Under the scenario of two prior Landsat-MODIS image pairs, we build the corresponding relationship between the difference images of MODIS and ETM+ by training a low- and high-resolution dictionary pair from the given prior image pairs. In the second scenario, i.e., only one Landsat- MODIS image pair being available, we directly correlate MODIS and ETM+ data through an image degradation model. Then, the fusion stage is achieved by super-resolving the MODIS image combining the high-pass modulation in a two-layer fusion framework. Remarkably, the proposed spatial-temporal fusion methods form a unified framework for blending remote sensing images with phenology change or land-cover-type change. Based on the proposed spatial-temporal fusion models, we propose to monitor the land use/land cover changes in Shenzhen, China. As a fast-growing city, Shenzhen faces the problem of detecting the rapid changes for both rational city planning and sustainable development. However, the cloudy and rainy weather in region Shenzhen located makes the capturing circle of high-quality satellite images longer than their normal revisit periods. Spatial-temporal fusion methods are capable to tackle this problem by improving the spatial resolution of images with coarse spatial resolution but frequent temporal coverage, thereby making the detection of rapid changes possible. On two Landsat-MODIS datasets with annual and monthly changes, respectively, we apply the proposed spatial-temporal fusion methods to the task of multiple change detection. Afterward, we propose a novel spatial and spectral fusion method for satellite multispectral and hyperspectral (or high-spectral) images based on dictionary-pair learning and sparse non-negative matrix factorization. By combining the spectral information from hyperspectral image, which is characterized by low spatial resolution but high spectral resolution and abbreviated as LSHS, and the spatial information from multispectral image, which is featured by high spatial resolution but low spectral resolution and abbreviated as HSLS, this method aims to generate the fused data with both high spatial and high spectral resolutions. Motivated by the observation that each hyperspectral pixel can be represented by a linear combination of a few endmembers, this method first extracts the spectral bases of LSHS and HSLS images by making full use of the rich spectral information in LSHS data. The spectral bases of these two categories data then formulate a dictionary-pair due to their correspondence in representing each pixel spectra of LSHS data and HSLS data, respectively. Subsequently, the LSHS image is spatially unmixed by representing the HSLS image with respect to the corresponding learned dictionary to derive its representation coefficients. Combining the spectral bases of LSHS data and the representation coefficients of HSLS data, we finally derive the fused data characterized by the spectral resolution of LSHS data and the spatial resolution of HSLS data.

  12. Characterization of extreme years in Central Europe between 2000 and 2016 according to specific vegetation characteristics based on Earth Observatory data

    NASA Astrophysics Data System (ADS)

    Kern, Anikó; Marjanović, Hrvoje; Barcza, Zoltán

    2017-04-01

    Extreme weather events frequently occur in Central Europe, affecting the state of the vegetation in large areas. Droughts and heat-waves affect all plant functional types, but the response of the vegetation is not uniform and depends on other parameters, plant strategies and the antecedent meteorological conditions as well. Meteorologists struggle with the definition of extreme events and selection of years that can be considered as extreme in terms of meteorological conditions due to the large variability of the meteorological parameters both in time and space. One way to overcome this problem is the definition of extreme weather based on its observed effect on plant state. The Normalized Difference Vegetation Index (NDVI), the Enhanced Vegetation Index (EVI), the Leaf Area Index (LAI), the Fraction of Photosynthetically Active Radiation (FPAR) and the Gross Primary Production (GPP) are different measures of the land vegetation derived from remote sensing data, providing information about the plant state, but it is less known how weather anomalies affect these measures. We used the vegetation related official products created from the measurements of the MODerate resolution Imaging Spectroradiometer (MODIS) on board satellite Terra to select and characterize the extreme years in Central European countries during the 2000-2016 time period. The applied Collection-6 MOD13 NDVI/EVI, MOD15 LAI/FPAR and MOD17 GPP datasets have 500 m × 500 m spatial resolution covering the region of the Carpathian-Basin. After quality and noise filtering (and temporal interpolation in case of MOD13) 8-day anomaly values were derived to investigate the different years. The freely available FORESEE meteorological database was used to study climate variability in the region. Daily precipitation and maximum/minimum temperature fields at 1/12° × 1/12° grid were resampled to the 8-day temporal and 500 m × 500 m spatial resolution of the MODIS products. To discriminate the different behavior of the various plant functional types MODIS (MCD12) and CORINE (CLC2012) land cover datasets were applied and handled together. Based on the determination of the reliable pixels with different plant types the response of broadleaf forests, coniferous forests, grasslands and croplands were discriminated and investigated. Characteristic time periods were selected based on the remote sensing data to define anomalies, and then the meteorological data were used to define critical time periods within the year that has the strongest effect on the observed anomalies. Similarities/dissimilarities between the behaviors of the different remotely sensed measures are also studied to elucidate the consistency of the indices. The results indicate that the diverse remote sensing indices typically co-vary but reveal strong plant functional type dependency. The study suggest that the selection of extreme years based on annual data is not the best choice, as shorter time periods within the years explain the anomalies to a higher degree than annual data. The results can be used to select anomalous years outside of the satellite era as well. Keywords: Remote sensing, meteorology; extreme years; MODIS, NDVI; EVI; LAI; FPAR; GPP; phenology

  13. Comparison of the MODIS Collection 5 Multilayer Cloud Detection Product with CALIPSO

    NASA Technical Reports Server (NTRS)

    Platnick, Steven; Wind, Gala; King, Michael D.; Holz, Robert E.; Ackerman, Steven A.; Nagle, Fred W.

    2010-01-01

    CALIPSO, launched in June 2006, provides global active remote sensing measurements of clouds and aerosols that can be used for validation of a variety of passive imager retrievals derived from instruments flying on the Aqua spacecraft and other A-Train platforms. The most recent processing effort for the MODIS Atmosphere Team, referred to as the Collection 5 scream, includes a research-level multilayer cloud detection algorithm that uses both thermodynamic phase information derived from a combination of solar and thermal emission bands to discriminate layers of different phases, as well as true layer separation discrimination using a moderately absorbing water vapor band. The multilayer detection algorithm is designed to provide a means of assessing the applicability of 1D cloud models used in the MODIS cloud optical and microphysical product retrieval, which are generated at a 1 km resolution. Using pixel-level collocations of MODIS Aqua, CALIOP, we investigate the global performance of multilayer cloud detection algorithms (and thermodynamic phase).

  14. Using the Sonoran Desert test site to monitor the long-term radiometric stability of the Landsat TM/ETM+ and Terra MODIS sensors

    USGS Publications Warehouse

    Angal, A.; Xiong, X.; Choi, T.; Chander, G.; Wu, A.

    2009-01-01

    Pseudo-invariant ground targets have been extensively used to monitor the long-term radiometric calibration stability of remote sensing instruments. The NASA MODIS Characterization Support Team (MCST), in collaboration with members from the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center, has previously demonstrated the use of pseudo-invariant ground sites for the long-term stability monitoring of Terra MODIS and Landsat 7 ETM+ sensors. This paper focuses on the results derived from observations made over the Sonoran Desert. Additionally, Landsat 5 TM data over the Sonoran Desert site were used to evaluate the temporal stability of this site. Top-ofatmosphere (TOA) reflectances were computed for the closely matched TM, ETM+, and MODIS spectral bands over selected regions of interest. The impacts due to different viewing geometries, or the effect of test site Bi-directional Reflectance Distribution Function (BRDF), are also presented. ?? 2009 SPIE.

  15. MODIS Land Data Products: Generation, Quality Assurance and Validation

    NASA Technical Reports Server (NTRS)

    Masuoka, Edward; Wolfe, Robert; Morisette, Jeffery; Sinno, Scott; Teague, Michael; Saleous, Nazmi; Devadiga, Sadashiva; Justice, Christopher; Nickeson, Jaime

    2008-01-01

    The Moderate Resolution Imaging Spectrometer (MODIS) on-board NASA's Earth Observing System (EOS) Terra and Aqua Satellites are key instruments for providing data on global land, atmosphere, and ocean dynamics. Derived MODIS land, atmosphere and ocean products are central to NASA's mission to monitor and understand the Earth system. NASA has developed and generated on a systematic basis a suite of MODIS products starting with the first Terra MODIS data sensed February 22, 2000 and continuing with the first MODIS-Aqua data sensed July 2, 2002. The MODIS Land products are divided into three product suites: radiation budget products, ecosystem products, and land cover characterization products. The production and distribution of the MODIS Land products are described, from initial software delivery by the MODIS Land Science Team, to operational product generation and quality assurance, delivery to EOS archival and distribution centers, and product accuracy assessment and validation. Progress and lessons learned since the first MODIS data were in early 2000 are described.

  16. [A Method to Reconstruct Surface Reflectance Spectrum from Multispectral Image Based on Canopy Radiation Transfer Model].

    PubMed

    Zhao, Yong-guang; Ma, Ling-ling; Li, Chuan-rong; Zhu, Xiao-hua; Tang, Ling-li

    2015-07-01

    Due to the lack of enough spectral bands for multi-spectral sensor, it is difficult to reconstruct surface retlectance spectrum from finite spectral information acquired by multi-spectral instrument. Here, taking into full account of the heterogeneity of pixel from remote sensing image, a method is proposed to simulate hyperspectral data from multispectral data based on canopy radiation transfer model. This method first assumes the mixed pixels contain two types of land cover, i.e., vegetation and soil. The sensitive parameters of Soil-Leaf-Canopy (SLC) model and a soil ratio factor were retrieved from multi-spectral data based on Look-Up Table (LUT) technology. Then, by combined with a soil ratio factor, all the parameters were input into the SLC model to simulate the surface reflectance spectrum from 400 to 2 400 nm. Taking Landsat Enhanced Thematic Mapper Plus (ETM+) image as reference image, the surface reflectance spectrum was simulated. The simulated reflectance spectrum revealed different feature information of different surface types. To test the performance of this method, the simulated reflectance spectrum was convolved with the Landsat ETM + spectral response curves and Moderate Resolution Imaging Spectrometer (MODIS) spectral response curves to obtain the simulated Landsat ETM+ and MODIS image. Finally, the simulated Landsat ETM+ and MODIS images were compared with the observed Landsat ETM+ and MODIS images. The results generally showed high correction coefficients (Landsat: 0.90-0.99, MODIS: 0.74-0.85) between most simulated bands and observed bands and indicated that the simulated reflectance spectrum was well simulated and reliable.

  17. Monitoring Reservoir Storage in South Asia from Satellite Remote Sensing

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Gao, H.; Naz, B.

    2013-12-01

    Realtime reservoir storage information is essential for accurate flood monitoring and prediction in South Asia, where the fatality rate (by area) due to floods is among the highest in the world. However, South Asia is dominated by international river basins where communications among neighboring countries about reservoir storage and management are extremely limited. In this study, we use a suite of NASA satellite observations to achieve high quality estimation of reservoir storage and storage variations at near realtime in South Asia. The monitoring approach employs vegetation indices from the Moderate Resolution Imaging Spectroradiometer (MODIS) 16-day 250 m MOD13Q1 product and the surface elevation data from the Geoscience Laser Altimeter System (GLAS) on board the Ice, Cloud and land Elevation Satellite (ICESat). This approach contains four steps: 1) identifying the reservoirs with ICESat GLAS overpasses and extracting the elevation data for these locations; 2) using the K-means method for water classification from MODIS andapplying a novel post-classification algorithm to enhance water area estimation accuracy; 3) deriving the relationship between the MODIS water surface area and the ICESat elevation; and 4) estimating the storage of reservoirs over time based on the elevation-area relationship and the MODIS water area time series. For evaluation purposes, we compared the satellite-based reservoir storage with gauge observations for 16 reservoirs in South Asia. The storage estimates were highly correlated with observations (R = 0.92 to 0.98), with values for the normalized root mean square error (NRMSE) ranging from 8.7% to 25.2%. Using this approach, storage and storage variations were estimated for 16 South Asia reservoirs from 2000 to 2012.

  18. MODIS NDVI Change Detection Techniques and Products Used in the Near Real Time ForWarn System for Detecting, Monitoring, and Analyzing Regional Forest Disturbances

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph P.; Hargrove, William; Gasser, Jerry; Smoot, James; Kuper, Philip D.

    2014-01-01

    This presentation discusses MODIS NDVI change detection methods and products used in the ForWarn Early Warning System (EWS) for near real time (NRT) recognition and tracking of regionally evident forest disturbances throughout the conterminous US (CONUS). The latter has provided NRT forest change products to the forest health protection community since 2010, using temporally processed MODIS Aqua and Terra NDVI time series data to currently compute and post 6 different forest change products for CONUS every 8 days. Multiple change products are required to improve detectability and to more fully assess the nature of apparent disturbances. Each type of forest change product reports per pixel percent change in NDVI for a given 24 day interval, comparing current versus a given historical baseline NDVI. EMODIS 7 day expedited MODIS MOD13 data are used to obtain current and historical NDVIs, respectively. Historical NDVI data is processed with Time Series Product Tool (TSPT); and 2) the Phenological Parameters Estimation Tool (PPET) software. While each change products employ maximum value compositing (MVC) of NDVI, the design of specific products primarily differs in terms of the historical baseline. The three main change products use either 1, 3, or all previous years of MVC NDVI as a baseline. Another product uses an Adaptive Length Compositing (ALC) version of MVC to derive an alternative current NDVI that is the freshest quality NDVI as opposed to merely the MVC NDVI across a 24 day time frame. The ALC approach can improve detection speed by 8 to 16 days. ForWarn also includes 2 change products that improve detectability of forest disturbances in lieu of climatic fluctuations, especially in the spring and fall. One compares current MVC NDVI to the zonal maximum under the curve NDVI per pheno-region cluster class, considering all previous years in the MODIS record. The other compares current maximum NDVI to the mean of maximum NDVI for all previous MODIS years.

  19. Remote Sensing of Fires and Smoke from the Earth Observing System MODIS Instrument

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Hao, W. M.; Justice, C.; Giglio, L.; Herring, D.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The talk will include review of the MODIS (Moderate Resolution Imaging Spectrometer) algorithms and performance e.g. the MODIS algorithm and the changes in the algorithm since launch. Comparison of MODIS and ASTER fire observations. Summary of the fall activity with the Forest Service in use of MODIS data for the fires in the North-West. Validation on the ground of the MODIS fire product.

  20. Phenotypical aspects of maturity-onset diabetes of the young (MODY diabetes) in comparison with Type 2 diabetes mellitus (T2DM) in children and adolescents: experience from a large multicentre database.

    PubMed

    Schober, E; Rami, B; Grabert, M; Thon, A; Kapellen, Th; Reinehr, Th; Holl, R W

    2009-05-01

    To analyse and compare clinical characteristics in young patients with maturity-onset diabetes of the young (MODY) and Type 2 diabetes mellitus (T2DM). We conducted an observational investigation using the DPV-Wiss database containing clinical data on 40 757 diabetic patients < 20 years of age from Germany and Austria. Three hundred and thirty-nine cases were clinically categorized as MODY (0.83%); 562 patients were diagnosed as T2DM (1.4%). In 20% of cases, the diagnosis of MODY was based on clinical findings only. Of the 272 subjects where genetic testing was available, 3% did not carry mutations in the three examined MODY genes. Glucokinase-MODY was commoner than HNF1A-MODY and HNF4A-MODY. Age at diagnosis was younger in MODY patients. The body mass index of T2DM was significantly higher compared with all MODY subgroups. Macrovascular risk factors such as dyslipidaemia and hypertension were commoner in T2DM, but 23% of MODY patients had dyslipidaemia and 10% hypertension. Glycaemic control was within the therapeutic target (HbA(1c) < 7.5%) in 86% of MODY and 70% of T2DM patients. The prevalence of MODY in children and adolescents in Germany and Austria is lower than that of T2DM in this age group. Dyslipidaemia and hypertension are less frequent in MODY compared with T2DM patients, but do occur.

Top