Boyte, Stephen; Wylie, Bruce K.; Rigge, Matthew B.; Dahal, Devendra
2018-01-01
Data fused from distinct but complementary satellite sensors mitigate tradeoffs that researchers make when selecting between spatial and temporal resolutions of remotely sensed data. We integrated data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor aboard the Terra satellite and the Operational Land Imager sensor aboard the Landsat 8 satellite into four regression-tree models and applied those data to a mapping application. This application produced downscaled maps that utilize the 30-m spatial resolution of Landsat in conjunction with daily acquisitions of MODIS normalized difference vegetation index (NDVI) that are composited and temporally smoothed. We produced four weekly, atmospherically corrected, and nearly cloud-free, downscaled 30-m synthetic MODIS NDVI predictions (maps) built from these models. Model results were strong with R2 values ranging from 0.74 to 0.85. The correlation coefficients (r ≥ 0.89) were strong for all predictions when compared to corresponding original MODIS NDVI data. Downscaled products incorporated into independently developed sagebrush ecosystem models yielded mixed results. The visual quality of the downscaled 30-m synthetic MODIS NDVI predictions were remarkable when compared to the original 250-m MODIS NDVI. These 30-m maps improve knowledge of dynamic rangeland seasonal processes in the central Great Basin, United States, and provide land managers improved resource maps.
NASA Astrophysics Data System (ADS)
Neeley, S.
2017-12-01
The Visible Infrared Imaging Radiometer Suite (VIIRS) sensor aboard the Suomi-NPP satellite is designed to provide data continuity with the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors aboard NASA's Terra and Aqua satellites. VIIRS data products are generated in a similar format as MODIS using modified algorithms and aim to extend the data lifecycle of MODIS products, which are widely used in a variety of scientific disciplines. However, there are differences in the characteristics of the instruments that could influence decision making when conducting a study involving a combination of products from both sensors. Inter-sensor comparison studies between VIIRS and MODIS have highlighted some of the inconsistencies between the sensors, including calibrated radiances, pixel sizes, swath widths, and spectral response functions of the bands. These differences should be well-understood among the science community as these inconsistencies could potentially effect the results of time-series analyses or land change studies that rely on using VIIRS and MODIS data products in combination. An efficient method to identify and better understand differences between data products will allow for the science community to make informed decisions when conducting analyses using a combination of VIIRS and MODIS data products. NASA's Application for Extracting and Exploring Analysis Ready Samples (AppEEARS) tool enables users to efficiently compare MODIS and VIIRS data products, including surface reflectance from 2012 to present. AppEEARS is a user-friendly image extraction tool used to order spatial and temporal data subsets, reproject data, and visualize output sample results before data download. AppEEARs allows users to compare MODIS and VIIRS data products by providing interactive visualizations and summary statistics of each dataset-either over a specific point or region of interest across a period of time. This tool enhances decision-making when using newly available VIIRS products combined with MODIS as it allows for data inconsistencies to be explored before the data is downloaded. Here, we demonstrate how AppEEARS enables users to perform comparisons across VIIRS and MODIS Surface Reflectance products and provide a detailed review of characteristic differences between the instruments.
NASA Technical Reports Server (NTRS)
2002-01-01
Roughly a dozen fires (red pixels) dotted the landscape on the main Philippine island of Luzon on April 1, 2002. This true-color image was acquired by the Moderate-resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra spacecraft. Please note that the high-resolution scene provided here is 500 meters per pixel. For a copy of this scene at the sensor's fullest resolution, visit the MODIS Rapidfire site.
Assessment of the Collection 6 Terra and Aqua MODIS bands 1 and 2 calibration performance
NASA Astrophysics Data System (ADS)
Wu, A.; Chen, X.; Angal, A.; Li, Y.; Xiong, X.
2015-09-01
MODIS (Moderate Resolution Imaging Spectroradiometer) is a key sensor aboard the Terra (EOS AM) and Aqua (EOS PM) satellites. MODIS collects data in 36 spectral bands and generates over 40 data products for land, atmosphere, cryosphere and oceans. MODIS bands 1 and 2 have nadir spatial resolution of 250 m, compared with 500 m for bands 3 to 7 and 1000 m for all the remaining bands, and their measurements are crucial to derive key land surface products. This study evaluates the calibration performance of the Collection-6 L1B for both Terra and Aqua MODIS bands 1 and 2 using three vicarious approaches. The first and second approaches focus on stability assessment using data collected from two pseudo-invariant sites, Libya 4 desert and Antarctic Dome C snow surface. The third approach examines the relative stability between Terra and Aqua in reference to a third sensor from a series of NOAA 15-19 Advanced Very High Resolution Radiometer (AVHRR). The comparison is based on measurements from MODIS and AVHRR Simultaneous Nadir Overpasses (SNO) over a thirteen-year period from 2002 to 2015. Results from this study provide a quantitative assessment of Terra and Aqua MODIS bands 1 and 2 calibration stability and the relative calibration differences between the two sensors.
NASA Technical Reports Server (NTRS)
Jeong, Myeong-Jae; Hsu, N. Christina; Kwiatkowska, Ewa J.; Franz, Bryan A.; Meister, Gerhard; Salustro, Clare E.
2012-01-01
The retrieval of aerosol properties from spaceborne sensors requires highly accurate and precise radiometric measurements, thus placing stringent requirements on sensor calibration and characterization. For the Terra/Moderate Resolution Imaging Spedroradiometer (MODIS), the characteristics of the detectors of certain bands, particularly band 8 [(B8); 412 nm], have changed significantly over time, leading to increased calibration uncertainty. In this paper, we explore a possibility of utilizing a cross-calibration method developed for characterizing the Terral MODIS detectors in the ocean bands by the National Aeronautics and Space Administration Ocean Biology Processing Group to improve aerosol retrieval over bright land surfaces. We found that the Terra/MODIS B8 reflectance corrected using the cross calibration method resulted in significant improvements for the retrieved aerosol optical thickness when compared with that from the Multi-angle Imaging Spectroradiometer, Aqua/MODIS, and the Aerosol Robotic Network. The method reported in this paper is implemented for the operational processing of the Terra/MODIS Deep Blue aerosol products.
Detailed Evaluation of MODIS Fire Radiative Power Measurements
NASA Technical Reports Server (NTRS)
Ichoku, Charles
2010-01-01
Satellite remote sensing is providing us tremendous opportunities to measure the fire radiative energy (FRE) release rate or power (FRP) from open biomass burning, which affects many vegetated regions of the world on a seasonal basis. Knowledge of the biomass burning characteristics and emission source strengths of different (particulate and gaseous) smoke constituents is one of the principal ingredients upon which the assessment, modeling, and forecasting of their distribution and impacts depend. This knowledge can be gained through accurate measurement of FRP, which has been shown to have a direct relationship with the rates of biomass consumption and emissions of major smoke constituents. Over the last decade or so, FRP has been routinely measured from space by both the MODIS sensors aboard the polar orbiting Terra and Aqua satellites, and the SEVIRI sensor aboard the Meteosat Second Generation (MSG) geostationary satellite. During the last few years, FRP has been gaining recognition as an important parameter for facilitating the development of various scientific studies relating to the quantitative characterization of biomass burning and their emissions. Therefore, we are conducting a detailed analysis of the FRP products from MODIS to characterize the uncertainties associated with them, such as those due to the MODIS bow-tie effects and other factors, in order to establish their error budget for use in scientific research and applications. In this presentation, we will show preliminary results of the MODIS FRP data analysis, including comparisons with airborne measurements.
A Prototype MODI- SSM/I Snow Mapping Algorithm
NASA Technical Reports Server (NTRS)
Tait, Andrew B.; Barton, Jonathan S.; Hall, Dorothy K.
1999-01-01
Data in the wavelength range 0.545 - 1.652 microns from the Moderate Resolution Imaging Spectroradiometer (MODIS), to be launched aboard the Earth Observing System (EOS) Terra in the fall of 1999, will be used to map daily global snow cover at 500m resolution. However, during darkness, or when the satellite's view of the surface is obscured by cloud, snow cover cannot be mapped using MODIS data. We show that during these conditions, it is possible to supplement the MODIS product by mapping the snow cover using passive microwave data from the Special Sensor Microwave Imager (SSM/I), albeit with much poorer resolution. For a 7-day time period in March 1999, a prototype MODIS snow-cover product was compared with a prototype MODIS-SSM/I product for the same area in the mid-western United States. The combined MODIS-SSM/I product mapped 9% more snow cover than the MODIS-only product.
Phytoplankton Bloom Off Portugal
NASA Technical Reports Server (NTRS)
2002-01-01
Turquoise and greenish swirls marked the presence of a large phytoplankton bloom off the coast of Portugal on April 23, 2002. This true-color image was acquired by the Moderate-resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra satellite. There are also several fires burning in northwest Spain, near the port city of A Coruna. Please note that the high-resolution scene provided here is 500 meters per pixel. For a copy of this scene at the sensor's fullest resolution, visit the MODIS Rapidfire site.
Skakun, Sergii; Justice, Christopher O; Vermote, Eric; Roger, Jean-Claude
2018-01-01
The Visible/Infrared Imager/Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership (S-NPP) satellite was launched in 2011, in part to provide continuity with the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard National Aeronautics and Space Administration's (NASA) Terra and Aqua remote sensing satellites. The VIIRS will eventually replace MODIS for both land science and applications and add to the coarse-resolution, long term data record. It is, therefore, important to provide the user community with an assessment of the consistency of equivalent products from the two sensors. For this study, we do this in the context of example agricultural monitoring applications. Surface reflectance that is routinely delivered within the M{O,Y}D09 and VNP09 series of products provide critical input for generating downstream products. Given the range of applications utilizing the normalized difference vegetation index (NDVI) generated from M{O,Y}D09 and VNP09 products and the inherent differences between MODIS and VIIRS sensors in calibration, spatial sampling, and spectral bands, the main objective of this study is to quantify uncertainties related the transitioning from using MODIS to VIIRS-based NDVI's. In particular, we compare NDVI's derived from two sets of Level 3 MYD09 and VNP09 products with various spatial-temporal characteristics, namely 8-day composites at 500 m spatial resolution and daily Climate Modelling Grid (CMG) images at 0.05° spatial resolution. Spectral adjustment of VIIRS I1 (red) and I2 (near infra-red - NIR) bands to match MODIS/Aqua b1 (red) and b2 (NIR) bands is performed to remove a bias between MODIS and VIIRS-based red, NIR, and NDVI estimates. Overall, red reflectance, NIR reflectance, NDVI uncertainties were 0.014, 0.029 and 0.056 respectively for the 500 m product and 0.013, 0.016 and 0.032 for the 0.05° product. The study shows that MODIS and VIIRS NDVI data can be used interchangeably for applications with an uncertainty of less than 0.02 to 0.05, depending on the scale of spatial aggregation, which is typically the uncertainty of the individual dataset.
NASA Technical Reports Server (NTRS)
Ichoku, Charles; Ellison, Luke
2011-01-01
Satellite remote sensing is providing us tremendous opportunities to measure the fire radiative energy (FRE) release rate or power (FRP) from open biomass burning, which affects many vegetated regions of the world on a seasonal basis. Knowledge of the biomass burning characteristics and emission source strengths of different (particulate and gaseous) smoke constituents is one of the principal ingredients upon which the assessment, modeling, and forecasting of their distribution and impacts depend. This knowledge can be gained through accurate measurement of FRP, which has been shown to have a direct relationship with the rates of biomass consumption and emissions of major smoke constituents. Over the last decade or so, FRP has been routinely measured from space by both the MODIS sensors aboard the polar orbiting Terra and Aqua satellites, and the SEVIRI sensor aboard the Meteosat Second Generation (MSG) geostationary satellite. During the last few years, FRP has steadily gained increasing recognition as an important parameter for facilitating the development of various scientific studies and applications relating to the quantitative characterization of biomass burning and their emissions. To establish the scientific integrity of the FRP as a stable quantity that can be measured consistently across a variety of sensors and platforms, with the potential of being utilized to develop a unified long-term climate data record of fire activity and impacts, it needs to be thoroughly evaluated, calibrated, and validated. Therefore, we are conducting a detailed analysis of the FRP products from MODIS to evaluate the uncertainties associated with them, such as those due to the effects of satellite variable observation geometry and other factors, in order to establish their error budget for use in diverse scientific research and applications. In this presentation, we will show recent results of the MODIS FRP uncertainty analysis and error mitigation solutions, and demonstrate their implications for biomass burning emissions assessment.
NASA Technical Reports Server (NTRS)
2002-01-01
Most of southeastern China has been covered by a thick greyish shroud of aerosol pollution over the last few weeks. The smog is so thick it is difficult to see the surface in some regions of this scene, acquired on January 7, 2002. The city of Hong Kong is the large brown cluster of pixels toward the lower lefthand corner of the image (indicated by the faint black box). The island of Taiwan, due east of mainland China, is also blanketed by the smog. This true-color image was captured by the Moderate-resolution Imaging Spectroradiometer (MODIS) sensor, flying aboard NASA's Terra satellite. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC
NASA Technical Reports Server (NTRS)
Turpie, Kevin R.; Eplee, Robert E., Jr.; Franz, Bryan A.; Del Castillo, Carlos
2014-01-01
Launched in late 2011, the Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership (NPP) spacecraft is being evaluated by NASA to determine whether this sensor can continue the ocean color data record established through the Sea-Viewing Wide Field-of-view Sensor (SeaWiFS) and the MODerate resolution Imaging Spectroradiometer (MODIS). To this end, Goddard Space Flight Center generated evaluation ocean color data products using calibration techniques and algorithms established by NASA during the SeaWiFS and MODIS missions. The calibration trending was subjected to some initial sensitivity and uncertainty analyses. Here we present an introductory assessment of how the NASA-produced time series of ocean color is influenced by uncertainty in trending instrument response over time. The results help quantify the uncertainty in measuring regional and global biospheric trends in the ocean using satellite remote sensing, which better define the roles of such records in climate research.
Creating a consistent dark-target aerosol optical depth record from MODIS and VIIRS
NASA Astrophysics Data System (ADS)
Levy, R. C.; Mattoo, S.; Munchak, L. A.; Patadia, F.; Holz, R.
2014-12-01
To answer fundamental questions about our changing climate, we must quantify how aerosols are changing over time. This is a global question that requires regional characterization, because in some places aerosols are increasing and in others they are decreasing. Although NASA's Moderate resolution Imaging Spectrometer (MODIS) sensors have provided quantitative information about global aerosol optical depth (AOD) for more than a decade, the creation of an aerosol climate data record (CDR) requires consistent multi-decadal data. With the Visible and Infrared Imaging Radiometer Suite (VIIRS) aboard Suomi-NPP, there is potential to continue the MODIS aerosol time series. Yet, since the operational VIIRS aerosol product is produced by a different algorithm, it is not suitable to continue MODIS to create an aerosol CDR. Therefore, we have applied the MODIS Dark-target (DT) algorithm to VIIRS observations, taking into account the slight differences in wavelengths, resolutions and geometries between the two sensors. More specifically, we applied the MODIS DT algorithm to a dataset known as the Intermediate File Format (IFF), created by the University of Wisconsin. The IFF is produced for both MODIS and VIIRS, with the idea that a single (MODIS-like or ML) algorithm can be run either dataset, which can in turn be compared to the MODIS Collection 6 (M6) retrieval that is run on standard MODIS data. After minimizing or characterizing remaining differences between ML on MODIS-IFF (or ML-M) and M6, we have performed apples-to-apples comparison between ML-M and ML on VIIRS IFF (ML-V). Examples of these comparisons include time series of monthly global mean, monthly and seasonal global maps at 1° resolution, and collocations as compared to AERONET. We concentrate on the overlapping period January 2012 through June 2014, and discuss some of the remaining discrepancies between the ML-V and ML-M datasets.
Meyer, D.; Chander, G.
2006-01-01
Increasingly, data from multiple sensors are used to gain a more complete understanding of land surface processes at a variety of scales. Although higher-level products (e.g., vegetation cover, albedo, surface temperature) derived from different sensors can be validated independently, the degree to which these sensors and their products can be compared to one another is vastly improved if their relative spectroradiometric responses are known. Most often, sensors are directly calibrated to diffuse solar irradiation or vicariously to ground targets. However, space-based targets are not traceable to metrological standards, and vicarious calibrations are expensive and provide a poor sampling of a sensor's full dynamic range. Crosscalibration of two sensors can augment these methods if certain conditions can be met: (1) the spectral responses are similar, (2) the observations are reasonably concurrent (similar atmospheric & solar illumination conditions), (3) errors due to misregistrations of inhomogeneous surfaces can be minimized (including scale differences), and (4) the viewing geometry is similar (or, some reasonable knowledge of surface bi-directional reflectance distribution functions is available). This study explores the impacts of cross-calibrating sensors when such conditions are met to some degree but not perfectly. In order to constrain the range of conditions at some level, the analysis is limited to sensors where cross-calibration studies have been conducted (Enhanced Thematic Mapper Plus (ETM+) on Landsat-7 (L7), Advance Land Imager (ALI) and Hyperion on Earth Observer-1 (EO-1)) and including systems having somewhat dissimilar geometry, spatial resolution & spectral response characteristics but are still part of the so-called "A.M. constellation" (Moderate Resolution Imaging Spectrometer (MODIS) aboard the Terra platform). Measures for spectral response differences and methods for cross calibrating such sensors are provided in this study. These instruments are cross calibrated using the Railroad Valley playa in Nevada. Best fit linear coefficients (slope and offset) are provided for ALI-to-MODIS and ETM+-to-MODIS cross calibrations, and root-mean-squared errors (RMSEs) and correlation coefficients are provided to quantify the uncertainty in these relationships. In theory, the linear fits and uncertainties can be used to compare radiance and reflectance products derived from each instrument.
Inter-Comparison of MODIS and VIIRS Vegetation Indices Using One-Year Global Data
NASA Astrophysics Data System (ADS)
Miura, T.; Muratsuchi, J.; Obata, K.; Kato, A.; Vargas, M.; Huete, A. R.
2016-12-01
The Visible Infrared Imaging Radiometer Suite (VIIRS) sensor series of the Joint Polar Satellite System program is slated to continue the highly calibrated data stream initiated with the Earth Observing System Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. A number of geophysical products are being/to be produced from VIIRS data, including the "Top-of-the-Atmosphere (TOA)" Normalized Difference Vegetation Index (NDVI), "Top-of-Canopy (TOC)" Enhanced Vegetation Index (EVI), and TOC NDVI. In this study, we cross-compared vegetation indices (VIs) from the first VIIRS sensor aboard the Suomi National Polar-orbiting Partnership satellite with the Aqua MODIS counterparts using one-year global data. This study was aimed at developing a thorough understanding of radiometric compatibility between the two VI datasets across globe, seasons, a range of viewing angle, and land cover types. VIIRS and MODIS VI data of January-December 2015 were obtained at monthly intervals when their orbital tracks coincided. These data were projected and spatially-aggregated into a .0036-degree grid while screening for cloud and aerosol contaminations using their respective quality flags. VIIRS-MODIS observation pairs with near-identical sun-target-view angles were extracted from each of these monthly image pairs for cross-comparison. The four VIs of TOA NDVI, TOC NDVI, TOC EVI, and TOC EVI2 (a two-band version of the EVI) were analyzed. Between MODIS and VIIRS, TOA NDVI, TOC NDVI, and TOC EVI2 had very small overall mean differences (MD) of .014, .013, and .013 VI units, respectively, whereas TOC EVI had a slightly larger overall MD of 0.023 EVI units attributed to the disparate blue bands of the two sensors. These systematic differences were consistent across the one-year period. With respect to sun-target-viewing geometry, MDs were also consistent across the view zenith angle range, but always lower for forward- than backward-viewing geometry. MDs showed large land cover dependencies for TOA NDVI and TOC NDVI, varying 10 folds from .002 for forests to .02 for sparsely-vegetated areas. They were consistent across land cover types for TOC EVI and TOC EVI2. Future studies should address the impact of sun-target-view geometry on corss-sensor VI comparisons.
Global Aerosol Remote Sensing from MODIS
NASA Technical Reports Server (NTRS)
Ichoku, Charles; Kaufman, Yoram J.; Remer, Lorraine A.; Chu, D. Allen; Mattoo, Shana; Tanre, Didier; Levy, Robert; Li, Rong-Rong; Martins, Jose V.; Lau, William K. M. (Technical Monitor)
2002-01-01
The physical characteristics, composition, abundance, spatial distribution and dynamics of global aerosols are still very poorly known, and new data from satellite sensors have long been awaited to improve current understanding and to give a boost to the effort in future climate predictions. The derivation of aerosol parameters from the MODerate resolution Imaging Spectro-radiometer (MODIS) sensors aboard the Earth Observing System (EOS) Terra and Aqua polar-orbiting satellites ushers in a new era in aerosol remote sensing from space. Terra and Aqua were launched on December 18, 1999 and May 4, 2002 respectively, with daytime equator crossing times of approximately 10:30 am and 1:30 pm respectively. Several aerosol parameters are retrieved at 10-km spatial resolution (level 2) from MODIS daytime data. The MODIS aerosol algorithm employs different approaches to retrieve parameters over land and ocean surfaces, because of the inherent differences in the solar spectral radiance interaction with these surfaces. The parameters retrieved include: aerosol optical thickness (AOT) at 0.47, 0.55 and 0.66 micron wavelengths over land, and at 0.47, 0.55, 0.66, 0.87, 1.2, 1.6, and 2.1 micron over ocean; Angstrom exponent over land and ocean; and effective radii, and the proportion of AOT contributed by the small mode aerosols over ocean. To ensure the quality of these parameters, a substantial part of the Terra-MODIS aerosol products were validated globally and regionally, based on cross correlation with corresponding parameters derived from ground-based measurements from AERONET (AErosol RObotic NETwork) sun photometers. Similar validation efforts are planned for the Aqua-MODIS aerosol products. The MODIS level 2 aerosol products are operationally aggregated to generate global daily, eight-day (weekly), and monthly products at one-degree spatial resolution (level 3). MODIS aerosol data are used for the detailed study of local, regional, and global aerosol concentration, distribution, and temporal dynamics, as well as for radiative forcing calculations. We show several examples of these results and comparisons with model output.
Alonso-Carné, Jorge; García-Martín, Alberto; Estrada-Peña, Agustin
2013-11-01
The modelling of habitat suitability for parasites is a growing area of research due to its association with climate change and ensuing shifts in the distribution of infectious diseases. Such models depend on remote sensing data and require accurate, high-resolution temperature measurements. The temperature is critical for accurate estimation of development rates and potential habitat ranges for a given parasite. The MODIS sensors aboard the Aqua and Terra satellites provide high-resolution temperature data for remote sensing applications. This paper describes comparative analysis of MODIS-derived temperatures relative to ground records of surface temperature in the western Palaearctic. The results show that MODIS overestimated maximum temperature values and underestimated minimum temperatures by up to 5-6 °C. The combined use of both Aqua and Terra datasets provided the most accurate temperature estimates around latitude 35-44° N, with an overestimation during spring-summer months and an underestimation in autumn-winter. Errors in temperature estimation were associated with specific ecological regions within the target area as well as technical limitations in the temporal and orbital coverage of the satellites (e.g. sensor limitations and satellite transit times). We estimated error propagation of temperature uncertainties in parasite habitat suitability models by comparing outcomes of published models. Error estimates reached 36% of annual respective measurements depending on the model used. Our analysis demonstrates the importance of adequate image processing and points out the limitations of MODIS temperature data as inputs into predictive models concerning parasite lifecycles.
Jarchow, Christopher J; Didan, Kamel; Barreto-Muñoz, Armando; Nagler, Pamela L; Glenn, Edward P
2018-05-13
The Enhanced Vegetation Index (EVI) is a key Earth science parameter used to assess vegetation, originally developed and calibrated for the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Terra and Aqua satellites. With the impending decommissioning of the MODIS sensors by the year 2020/2022, alternative platforms will need to be used to estimate EVI. We compared Landsat 5 (2000⁻2011), 8 (2013⁻2016) and the Visible Infrared Imaging Radiometer Suite (VIIRS; 2013⁻2016) to MODIS EVI (2000⁻2016) over a 420,083-ha area of the arid lower Colorado River Delta in Mexico. Over large areas with mixed land cover or agricultural fields, we found high correspondence between Landsat and MODIS EVI (R² = 0.93 for the entire area studied and 0.97 for agricultural fields), but the relationship was weak over bare soil (R² = 0.27) and riparian vegetation (R² = 0.48). The correlation between MODIS and Landsat EVI was higher over large, homogeneous areas and was generally lower in narrow riparian areas. VIIRS and MODIS EVI were highly similar (R² = 0.99 for the entire area studied) and did not show the same decrease in performance in smaller, narrower regions as Landsat. Landsat and VIIRS provide EVI estimates of similar quality and characteristics to MODIS, but scale, seasonality and land cover type(s) should be considered before implementing Landsat EVI in a particular area.
A global hydrographic array for early detection of floods and droughts
NASA Astrophysics Data System (ADS)
Brakenridge, G.; Nghiem, S.; Caquard, S.
An array of over 700 20 km-long river gaging reaches, distributed world-wide, is imaged by the SeaWinds radar scatterometer aboard QuikSCAT every 2.5 days. Strongly negative HH/VV polarity ratios indicate large amounts of surface water. We set individual reach thresholds so that the transition from bankfull to overbank river flow can be identified according to changes in this ratio. Similarly, the wide-swath MODIS optical sensors provide frequent repeat coverage of the reaches at much higher spatial resolution (250 m). In this case, several reach water surface area thresholds can be identified: low flow or drought conditions, normal in-channel flow, overbank flow, and extreme flood conditions. Sustained data collection for the reaches by both sensors allows the radar response to changing surface water to be defined, and allows evaluation of the sensitivity of the MODIS data to river discharge changes. New approaches, such as ``unmixing'' analysis of mixed water/land MODIS pixels can extend detection limits to smaller rivers and streams. It is now possible for wide-area, frequent revisit terrestrial remote sensing to provide human society with early warning of both floods and droughts and by direct observation of the runoff component of the Earth's hydrologic cycle. Examples of both radar and optical approaches towards this end are at the web sites below: http://www.dartmouth.edu/˜ floods/Modisrapidresponse.html http://www.dartmouth.edu/˜ floods/sensorweb/SensorWebindex.html http://www.dartmouth.edu/˜ floods/Quikscat/Regional2/CurrentTisza.jpg} In particular, early flood detection results are obtained over an extensive region in eastern Europe including the Tisza River basin, Romania, Hungary, and adjacent nations. Flood detection maps are updated weekly at the web site. The combination of QuikSCAT and MODIS takes advantage of the large-area coverage of these sensors together with the high temporal resolution of QuikSCAT and the high spatial resolution of MODIS. Such capabilities are also appropriate for early flood detection in Asian monsoon regions including India, Pakistan, Bangladesh, China, and southeast Asia.
NASA Technical Reports Server (NTRS)
Proud, Simon Richard; Zhang, Qingling; Schaaf, Crystal; Fensholt, Rasmus; Rasmussen, Mads Olander; Shisanya, Chris; Mutero, Wycliffe; Mbow, Cheikh; Anyamba, Assaf; Pak, Ed;
2014-01-01
A modified version of the MODerate resolution Imaging Spectroradiometer (MODIS) bidirectional reflectance distribution function (BRDF) algorithm is presented for use in the angular normalization of surface reflectance data gathered by the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) aboard the geostationary Meteosat Second Generation (MSG) satellites. We present early and provisional daily nadir BRDFadjusted reflectance (NBAR) data in the visible and near-infrared MSG channels. These utilize the high temporal resolution of MSG to produce BRDF retrievals with a greatly reduced acquisition period than the comparable MODIS products while, at the same time, removing many of the angular perturbations present within the original MSG data. The NBAR data are validated against reflectance data from the MODIS instrument and in situ data gathered at a field location in Africa throughout 2008. It is found that the MSG retrievals are stable and are of high-quality across much of the SEVIRI disk while maintaining a higher temporal resolution than the MODIS BRDF products. However, a number of circumstances are discovered whereby the BRDF model is unable to function correctly with the SEVIRI observations-primarily because of an insufficient spread of angular data due to the fixed sensor location or localized cloud contamination.
Jarchow, Christopher J.; Didan, Kamel; Barreto-Muñoz, Armando; Glenn, Edward P.
2018-01-01
The Enhanced Vegetation Index (EVI) is a key Earth science parameter used to assess vegetation, originally developed and calibrated for the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Terra and Aqua satellites. With the impending decommissioning of the MODIS sensors by the year 2020/2022, alternative platforms will need to be used to estimate EVI. We compared Landsat 5 (2000–2011), 8 (2013–2016) and the Visible Infrared Imaging Radiometer Suite (VIIRS; 2013–2016) to MODIS EVI (2000–2016) over a 420,083-ha area of the arid lower Colorado River Delta in Mexico. Over large areas with mixed land cover or agricultural fields, we found high correspondence between Landsat and MODIS EVI (R2 = 0.93 for the entire area studied and 0.97 for agricultural fields), but the relationship was weak over bare soil (R2 = 0.27) and riparian vegetation (R2 = 0.48). The correlation between MODIS and Landsat EVI was higher over large, homogeneous areas and was generally lower in narrow riparian areas. VIIRS and MODIS EVI were highly similar (R2 = 0.99 for the entire area studied) and did not show the same decrease in performance in smaller, narrower regions as Landsat. Landsat and VIIRS provide EVI estimates of similar quality and characteristics to MODIS, but scale, seasonality and land cover type(s) should be considered before implementing Landsat EVI in a particular area. PMID:29757265
Synergism of MODIS Aerosol Remote Sensing from Terra and Aqua
NASA Technical Reports Server (NTRS)
Ichoku, Charles; Kaufman, Yoram J.; Remer, Lorraine A.
2003-01-01
The MODerate-resolution Imaging Spectro-radiometer (MODIS) sensors, aboard the Earth Observing System (EOS) Terra and Aqua satellites, are showing excellent competence at measuring the global distribution and properties of aerosols. Terra and Aqua were launched on December 18, 1999 and May 4, 2002 respectively, with daytime equator crossing times of approximately 10:30 am and 1:30 pm respectively. Several aerosol parameters are retrieved at 10-km spatial resolution from MODIS daytime data over land and ocean surfaces. The parameters retrieved include: aerosol optical thickness (AOT) at 0.47, 0.55 and 0.66 micron wavelengths over land, and at 0.47, 0.55, 0.66, 0.87, 1.2, 1.6, and 2.1 microns over ocean; Angstrom exponent over land and ocean; and effective radii, and the proportion of AOT contributed by the small mode aerosols over ocean. Since the beginning of its operation, the quality of Terra-MODIS aerosol products (especially AOT) have been evaluated periodically by cross-correlation with equivalent data sets acquired by ground-based (and occasionally also airborne) sunphotometers, particularly those coordinated within the framework of the AErosol Robotic NETwork (AERONET). Terra-MODIS AOT data have been found to meet or exceed pre-launch accuracy expectations, and have been applied to various studies dealing with local, regional, and global aerosol monitoring. The results of these Terra-MODIS aerosol data validation efforts and studies have been reported in several scientific papers and conferences. Although Aqua-MODIS is still young, it is already yielding formidable aerosol data products, which are also subjected to careful periodic evaluation similar to that implemented for the Terra-MODIS products. This paper presents results of validation of Aqua-MODIS aerosol products with AERONET, as well as comparative evaluation against corresponding Terra-MODIS data. In addition, we show interesting independent and synergistic applications of MODIS aerosol data from both Terra and Aqua. In certain situations, this combined analysis of Terra- and Aqua-MODIS data offers an insight into the diurnal cycle of aerosol loading.
NASA Technical Reports Server (NTRS)
2002-01-01
This spectacular, full-color image of the Earth is a composite of the first full day of data gathered by the Moderate-resolution Imaging Spectroradiometer (MODIS) aboard NASA's Terra spacecraft. MODIS collected the data for each wavelength of red, green, and blue light as Terra passed over the daylit side of the Earth on April 19, 2000. Terra is orbiting close enough to the Earth so that it cannot quite see the entire surface in a day, resulting in the narrow gaps around the equator. Although the sensor's visible channels were combined to form this true-color picture, MODIS collects data in a total of 36 wavelengths, ranging from visible to thermal infrared energy. Scientists use these data to measure regional and global-scale changes in marine and land-based plant life, sea and land surface temperatures, cloud properties, aerosols, fires, and land surface properties. Notice how cloudy the Earth is, and the large differences in brightness between clouds, deserts, oceans, and forests. The Antarctic, surrounded by clockwise swirls of cloud, is shrouded in darkness because the sun is north of the equator at this time of year. The tropical forests of Africa, Southeast Asia, and South America are shrouded by clouds. The bright Sahara and Arabian deserts stand out clearly. Green vegetation is apparent in the southeast United States, the Yucatan Peninsula, and Madagascar. Image by Mark Gray, MODIS Atmosphere Team, NASA GSFC
Development of MODIS data-based algorithm for retrieving sea surface temperature in coastal waters.
Wang, Jiao; Deng, Zhiqiang
2017-06-01
A new algorithm was developed for retrieving sea surface temperature (SST) in coastal waters using satellite remote sensing data from Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Aqua platform. The new SST algorithm was trained using the Artificial Neural Network (ANN) method and tested using 8 years of remote sensing data from MODIS Aqua sensor and in situ sensing data from the US coastal waters in Louisiana, Texas, Florida, California, and New Jersey. The ANN algorithm could be utilized to map SST in both deep offshore and particularly shallow nearshore waters at the high spatial resolution of 1 km, greatly expanding the coverage of remote sensing-based SST data from offshore waters to nearshore waters. Applications of the ANN algorithm require only the remotely sensed reflectance values from the two MODIS Aqua thermal bands 31 and 32 as input data. Application results indicated that the ANN algorithm was able to explaining 82-90% variations in observed SST in US coastal waters. While the algorithm is generally applicable to the retrieval of SST, it works best for nearshore waters where important coastal resources are located and existing algorithms are either not applicable or do not work well, making the new ANN-based SST algorithm unique and particularly useful to coastal resource management.
NASA Technical Reports Server (NTRS)
2002-01-01
This true-color image over the North Pole was acquired by the MODerate-resolution Imaging Spectroradiometer (MODIS), flying aboard the Terra spacecraft, on May 5, 2000. The scene was received and processed by Norway's MODIS Direct Broadcast data receiving station, located in Svalbard, within seconds of photons hitting the sensor's detectors. (Click for more details about MODIS Direct Broadcast data.) In this image, the sea ice appears white and areas of open water, or recently refrozen sea surface, appear black. The irregular whitish shapes toward the bottom of the image are clouds, which are often difficult to distinguish from the white Arctic surface. Notice the considerable number of cracks, or 'leads,' in the ice that appear as dark networks of lines. Throughout the region within the Arctic Circle leads are continually opening and closing due to the direction and intensity of shifting wind and ocean currents. Leads are particularly common during the summer, when temperatures are higher and the ice is thinner. In this image, each pixel is one square kilometer. Such true-color views of the North Pole are quite rare, as most of the time much of the region within the Arctic Circle is cloaked in clouds. Image by Allen Lunsford, NASA GSFC Direct Readout Laboratory; Data courtesy Tromso receiving station, Svalbard, Norway
NASA Technical Reports Server (NTRS)
Schmid, B.; Redemann, J.; Russell, P. B.; Hobbs, P. V.; Hlavka, D. L.; McGill, M. J.; Holben, B. N.; Welton, E. J.; Campbell, J. R.; Torres, O.
2003-01-01
During the dry season airborne campaign of the Southern African Regional Science Initiative (SAFARI 2000), coordinated observations were made of massive thick aerosol layers. These layers were often dominated by aerosols from biomass burning. We report on airborne Sun photometer measurements of aerosol optical depth (lambda = 0.354- 1.557 microns), columnar water vapor, and vertical profiles of aerosol extinction and water vapor density that were obtained aboard the University of Washington's Convair-580 research aircraft. We compare these with ground-based AERONET Sun/sky radiometer results, with ground based lidar data (MPL-Net), and with measurements from a downward pointing lidar aboard the high-flying NASA ER-2 aircraft. Finally, we show comparisons between aerosol optical depths fiom the Sun photometer and those retrieved over land and over water using four spaceborne sensors (TOMS, MODIS, MISR, and ATSR-2).
Estimation of fire emissions from satellite-based measurements
NASA Astrophysics Data System (ADS)
Ichoku, C. M.; Kaufman, Y. J.
2004-12-01
Biomass burning is a worldwide phenomenon affecting many vegetated parts of the globe regularly. Fires emit large quantities of aerosol and trace gases into the atmosphere, thus influencing the atmospheric chemistry and climate. Traditional methods of fire emissions estimation achieved only limited success, because they were based on peripheral information such as rainfall patterns, vegetation types and changes, agricultural practices, and surface ozone concentrations. During the last several years, rapid developments in satellite remote sensing has allowed more direct estimation of smoke emissions using remotely-sensed fire data. However, current methods use fire pixel counts or burned areas, thereby depending on the accuracy of independent estimations of the biomass fuel loadings, combustion efficiency, and emission factors. With the enhanced radiometric range of its 4-micron fire channel, the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor, which flies aboard both of the Earth Observing System (EOS) Terra and Aqua Satellites, is able to measure the rate of release of fire radiative energy (FRE) in MJ/s (something that older sensors could not do). MODIS also measures aerosol distribution. Taking advantage of these new resources, we have developed a procedure combining MODIS fire and aerosol products to derive FRE-based smoke emission coefficients (Ce in kg/MJ) for different regions of the globe. These coefficients are simply used to multiply FRE from MODIS to derive the emitted smoke aerosol mass. Results from this novel methodology are very encouraging. For instance, it was found that the smoke total particulate mass emission coefficient for the Brazilian Cerrado ecosystem (approximately 0.022 kg/MJ) is about twice the value for North America or Australia, but about 50 percent lower than the value for Zambia in southern Africa.
Estimation of Fire Emissions from Satellite-Based Measurements
NASA Technical Reports Server (NTRS)
Ichoku, Charles; Kaufman, Yoram J.
2004-01-01
Biomass burning is a worldwide phenomenon affecting many vegetated parts of the globe regularly. Fires emit large quantities of aerosol and trace gases into the atmosphere, thus influencing the atmospheric chemistry and climate. Traditional methods of fire emissions estimation achieved only limited success, because they were based on peripheral information such as rainfall patterns, vegetation types and changes, agricultural practices, and surface ozone concentrations. During the last several years, rapid developments in satellite remote sensing has allowed more direct estimation of smoke emissions using remotely-sensed fire data. However, current methods use fire pixel counts or burned areas, thereby depending on the accuracy of independent estimations of the biomass fuel loadings, combustion efficiency, and emission factors. With the enhanced radiometric range of its 4-micron fire channel, the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor, which flies aboard both of the Earth Observing System EOS) Terra and Aqua Satellites, is able to measure the rate of release of fire radiative energy (FRE) in MJ/s (something that older sensors could not do). MODIS also measures aerosol distribution. Taking advantage of these new resources, we have developed a procedure combining MODIS fire and aerosol products to derive FRE-based smoke emission coefficients (C(e), in kg/MJ) for different regions of the globe. These coefficients are simply used to multiply FRE from MODIS to derive the emitted smoke aerosol mass. Results from this novel methodology are very encouraging. For instance, it was found that the smoke total particulate mass emission coefficient for the Brazilian Cerrado ecosystem (approximately 0.022 kg/MJ) is about twice the value for North America, Western Europe, or Australia, but about 50% lower than the value for southern Africa.
Cyclone Hudah As Seen By MODIS
NASA Technical Reports Server (NTRS)
2002-01-01
Tropical Cyclone Hudah was one of most powerful storms ever seen in the Indian Ocean. This image from the Moderate-resolution Imaging Spectroradiometer (MODIS) aboard Terra was taken on March 29, 2000. The structure of the eye of the storm is brought out by MODIS' 250-meter resolution. Image by Liam Gumley, Space Science and Engineering Center, University of Wisconsin-Madison
NASA Astrophysics Data System (ADS)
Marquis, Jared Wayne
Passive longwave infrared radiometric satellite-based retrievals of sea surface temperature (SST) at instrument nadir are investigated for cold bias caused by unscreened optically-thin cirrus (OTC) clouds (cloud optical depth ≤ 0.3; COD). Level 2 split-window SST retrievals over tropical oceans (30° S - 30° N) from Moderate Resolution Imaging Spectroradiometer (MODIS) radiances collected aboard the NASA Aqua satellite (Aqua-MODIS) are collocated with cloud profiles from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument, mounted on the independent NASA CALIPSO satellite. OTC are present in approximately 25% of tropical quality-assured (QA) Aqua-MODIS Level-2 data, representing over 99% of all contaminating cirrus found. This results in cold-biased SST retrievals using either split- (MODIS, AVHRR and VIIRS) or triple-window (AVHRR and VIIRS only) retrieval methods. SST retrievals are modeled based on operational algorithms using radiative transfer model simulations conducted with a hypothetical 1.5 km thick OTC cloud placed incrementally from 10.0 - 18.0 km above mean sea level for cloud optical depths (COD) between 0.0 - 0.3. Corresponding cold bias estimates for each sensor are estimated using relative Aqua-MODIS cloud contamination frequencies as a function of cloud top height and COD (assuming them consistent across each platform) integrated within each corresponding modeled cold bias matrix. Split-window relative OTC cold biases, for any single observation, range from 0.40° - 0.49° C for the three sensors, with an absolute (bulk mean) bias between 0.10° - 0.13° C. Triple-window retrievals are more resilient, ranging from 0.03° - 0.04° C relative and 0.11° - 0.16° C absolute. Cold biases are constant across the Pacific and Indian Ocean domains. Absolute bias is smaller over the Atlantic, but relative bias is larger due to different cloud properties indicating that this issue persists globally.
Uncertainties in Coastal Ocean Color Products: Impacts of Spatial Sampling
NASA Technical Reports Server (NTRS)
Pahlevan, Nima; Sarkar, Sudipta; Franz, Bryan A.
2016-01-01
With increasing demands for ocean color (OC) products with improved accuracy and well characterized, per-retrieval uncertainty budgets, it is vital to decompose overall estimated errors into their primary components. Amongst various contributing elements (e.g., instrument calibration, atmospheric correction, inversion algorithms) in the uncertainty of an OC observation, less attention has been paid to uncertainties associated with spatial sampling. In this paper, we simulate MODIS (aboard both Aqua and Terra) and VIIRS OC products using 30 m resolution OC products derived from the Operational Land Imager (OLI) aboard Landsat-8, to examine impacts of spatial sampling on both cross-sensor product intercomparisons and in-situ validations of R(sub rs) products in coastal waters. Various OLI OC products representing different productivity levels and in-water spatial features were scanned for one full orbital-repeat cycle of each ocean color satellite. While some view-angle dependent differences in simulated Aqua-MODIS and VIIRS were observed, the average uncertainties (absolute) in product intercomparisons (due to differences in spatial sampling) at regional scales are found to be 1.8%, 1.9%, 2.4%, 4.3%, 2.7%, 1.8%, and 4% for the R(sub rs)(443), R(sub rs)(482), R(sub rs)(561), R(sub rs)(655), Chla, K(sub d)(482), and b(sub bp)(655) products, respectively. It is also found that, depending on in-water spatial variability and the sensor's footprint size, the errors for an in-situ validation station in coastal areas can reach as high as +/- 18%. We conclude that a) expected biases induced by the spatial sampling in product intercomparisons are mitigated when products are averaged over at least 7 km × 7 km areas, b) VIIRS observations, with improved consistency in cross-track spatial sampling, yield more precise calibration/validation statistics than that of MODIS, and c) use of a single pixel centered on in-situ coastal stations provides an optimal sampling size for validation efforts. These findings will have implications for enhancing our understanding of uncertainties in ocean color retrievals and for planning of future ocean color missions and the associated calibration/validation exercises.
NASA Technical Reports Server (NTRS)
Sayer, Andrew M.; Hsu, N. C.; Bettenhausen, C.; Lee, J.; Kondragunta, S.
2013-01-01
Aerosols are small particles suspended in the atmosphere and have a variety of natural and man-made sources. Knowledge of aerosol optical depth (AOD), which is a measure of the amount of aerosol in the atmosphere, and its change over time, is important for multiple reasons. These include climate change, air quality (pollution) monitoring, monitoring hazards such as dust storms and volcanic ash, monitoring smoke from biomass burning, determining potential energy yields from solar plants, determining visibility at sea, estimating fertilization of oceans and rainforests by transported mineral dust, understanding changes in weather brought upon by the interaction of aerosols and clouds, and more. The Suomi-NPP satellite was launched late in 2011. The Visible Infrared Imaging Radiometer Suite (VIIRS) aboard Suomi-NPP is being used, among other things, to determine AOD. This study compares the VIIRS dataset to ground-based measurements of AOD, along with a state-of-the-art satellite AOD dataset (the new version of the Moderate Resolution Imaging Spectrometer Deep Blue algorithm) to assess its reliability. The Suomi-NPP satellite was launched late in 2011, carrying several instruments designed to continue the biogeophysical data records of current and previous satellite sensors. The Visible Infrared Imaging Radiometer Suite (VIIRS) aboard Suomi-NPP is being used, among other things, to determine aerosol optical depth (AOD), and related activities since launch have been focused towards validating and understanding this new dataset through comparisons with other satellite and ground-based products. The operational VIIRS AOD product is compared over land with AOD derived from Moderate Resolution Imaging Spectrometer (MODIS) observations using the Deep Blue (DB) algorithm from the forthcoming Collection 6 of MODIS data
NASA Astrophysics Data System (ADS)
Miller, S. D.
2002-12-01
The United States Navy gives serious consideration to the subject of dust detection. In a recent study of Naval aviation mishaps over the period 1990-1998 (Cantu, 2001), it was found that 70% were associated with visibility problems and accounted for annual equipment losses of nearly 50 million dollars. This figure does not include the tax dollars lost in jettisoned or off-target ordnance owing to obscured targets or failure of laser-guided systems in the presence of significant dust. Nor can it account for the loss of life during a subset of these mishaps. As such, a strong research emphasis has been placed on detecting and quantifying dust over data-sparse/denied parts of the world. The prolific and complex dust climatology of Southwest Asia has posed considerable challenges to Navy operations over the course of Operation Enduring Freedom. In an effort to support the ongoing needs of the Meteorology/Oceanography (METOC) officers afloat, the Satellite Applications Section of the Naval Research Laboratory (NRL) Marine Meteorology Division has developed a novel approach to enhancing significant dust events that appeals to high spatial and spectral resolution satellite data currently available from state of the art ocean/atmospheric radiometers. This paper summarizes progress made on daytime enhancements of desert dust storms over both land and ocean using multispectral imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS; aboard Earth Observing System Terra and Aqua platforms) and the Sea-viewing Wide Field-of-view Sensor (SeaWiFS; aboard the NASA/Orbimage SeaStar platform). The approach leverages the multi-spectral visible capability of these sensors to distinguish dust from clouds over water bodies, and the high spatial resolution required to refine the fine-scale structures that often accompany these events. The MODIS algorithm combines this information with that of several near-to-far infrared channels, taking advantage of unique spectral properties of dust found in these regimes, to extend the capability to detection of dust over land (bright backgrounds). An account for enhancement contamination in the presence of sun glint is also provided in these products. The SeaWiFS and MODIS telemetries are made available to NRL in near real-time, with product turn-around ranging from 3-6 hours from initial capture. An unprecedented intra-agency collaboration forged between NOAA, NASA (Goddard Space Flight Center), and the Department of Defense has resulted in the recent availability of a global Terra MODIS data stream, with the companion Aqua telemetry soon to follow. Preliminary METOC feedback regarding these products has been overwhelmingly positive, and provides the impetus for continued refinement. Examples of the current product's capabilities and limitations will be presented.
2015-11-02
Cloud vortices off Heard Island, south Indian Ocean. The Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Aqua satellite captured this true-color image of sea ice off Heard Island on Nov 2, 2015 at 5:02 AM EST (09:20 UTC). Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team
NASA Technical Reports Server (NTRS)
Schmid, B.; Redemann, J.; Russell, P. B.; Hobbs, P. V.; Hlavka, D. L.; McGill, M. J.; Holben, B. N.; Welton, E. J.; Campbell, J.; Torres, O.;
2002-01-01
During the dry-season airborne campaign of the Southern African Regional Science Initiative (SAFARI 2000), unique coordinated observations were made of massive, thick aerosol layers. These layers were often dominated by aerosols from biomass burning. We report on airborne Sunphotometer measurements of aerosol optical depth (lambda=354-1558 nm), columnar water vapor, and vertical profiles of aerosol extinction and water vapor density that were obtained aboard the University of Washington's Convair-580 research aircraft. We compare these with ground-based AERONET Sun/sky radiometer results, with ground based lidar data MPL-Net), and with measurements from a downward-pointing lidar aboard the high-flying NASA ER-2 aircraft. Finally, we show comparisons between aerosol optical depths from the Sunphotometer and those retrieved over land and over water using four spaceborne sensors (TOMS (Total Ozone Mapping Spectrometer), MODIS (Moderate Resolution Imaging Spectrometer), MISR (Multiangle Imaging Spectroradiometer) and ATSR-2 (Along Track Scanning Radiometer)).
Comparison of MODIS-derived land surface temperature with air temperature measurements
NASA Astrophysics Data System (ADS)
Georgiou, Andreas; Akçit, Nuhcan
2017-09-01
Air surface temperature is an important parameter for a wide range of applications such as agriculture, hydrology and climate change studies. Air temperature data is usually obtained from measurements made in meteorological stations, providing only limited information about spatial patterns over wide areas. The use of remote sensing data can help overcome this problem, particularly in areas with low station density, having the potential to improve the estimation of air surface temperature at both regional and global scales. Land Surface (skin) Temperatures (LST) derived from Moderate Resolution Imaging Spectroradiometer (MODIS) sensor aboard the Terra and Aqua satellite platforms provide spatial estimates of near-surface temperature values. In this study, LST values from MODIS are compared to groundbased near surface air (Tair) measurements obtained from 14 observational stations during 2011 to 2015, covering coastal, mountainous and urban areas over Cyprus. Combining Terra and Aqua LST-8 Day and Night acquisitions into a mean monthly value, provide a large number of LST observations and a better overall agreement with Tair. Comparison between mean monthly LSTs and mean monthly Tair for all sites and all seasons pooled together yields a very high correlation and biases. In addition, the presented high standard deviation can be explained by the influence of surface heterogeneity within MODIS 1km2 grid cells, the presence of undetected clouds and the inherent difference between LST and Tair. However, MODIS LST data proved to be a reliable proxy for surface temperature and mostly for studies requiring temperature reconstruction in areas with lack of observational stations.
Cross-Calibration of Earth Observing System Terra Satellite Sensors MODIS and ASTER
NASA Technical Reports Server (NTRS)
McCorkel, J.
2014-01-01
The Advanced Spaceborne Thermal Emissive and Reflection Radiometer (ASTER) and Moderate Resolution Imaging Spectrometer (MODIS) are two of the five sensors onboard the Earth Observing System's Terra satellite. These sensors share many similar spectral channels while having much different spatial and operational parameters. ASTER is a tasked sensor and sometimes referred to a zoom camera of the MODIS that collects a full-earth image every one to two days. It is important that these sensors have a consistent characterization and calibration for continued development and use of their data products. This work uses a variety of test sites to retrieve and validate intercalibration results. The refined calibration of Collection 6 of the Terra MODIS data set is leveraged to provide the up-to-date reference for trending and validation of ASTER. Special attention is given to spatially matching radiance measurements using prelaunch spatial response characterization of MODIS. Despite differences in spectral band properties and spatial scales, ASTER-MODIS is an ideal case for intercomparison since the sensors have nearly identical views and acquisitions times and therefore can be used as a baseline of intercalibration performance of other satellite sensor pairs.
Estimates of Single Sensor Error Statistics for the MODIS Matchup Database Using Machine Learning
NASA Astrophysics Data System (ADS)
Kumar, C.; Podesta, G. P.; Minnett, P. J.; Kilpatrick, K. A.
2017-12-01
Sea surface temperature (SST) is a fundamental quantity for understanding weather and climate dynamics. Although sensors aboard satellites provide global and repeated SST coverage, a characterization of SST precision and bias is necessary for determining the suitability of SST retrievals in various applications. Guidance on how to derive meaningful error estimates is still being developed. Previous methods estimated retrieval uncertainty based on geophysical factors, e.g. season or "wet" and "dry" atmospheres, but the discrete nature of these bins led to spatial discontinuities in SST maps. Recently, a new approach clustered retrievals based on the terms (excluding offset) in the statistical algorithm used to estimate SST. This approach resulted in over 600 clusters - too many to understand the geophysical conditions that influence retrieval error. Using MODIS and buoy SST matchups (2002 - 2016), we use machine learning algorithms (recursive and conditional trees, random forests) to gain insight into geophysical conditions leading to the different signs and magnitudes of MODIS SST residuals (satellite SSTs minus buoy SSTs). MODIS retrievals were first split into three categories: < -0.4 C, -0.4 C ≤ residual ≤ 0.4 C, and > 0.4 C. These categories are heavily unbalanced, with residuals > 0.4 C being much less frequent. Performance of classification algorithms is affected by imbalance, thus we tested various rebalancing algorithms (oversampling, undersampling, combinations of the two). We consider multiple features for the decision tree algorithms: regressors from the MODIS SST algorithm, proxies for temperature deficit, and spatial homogeneity of brightness temperatures (BTs), e.g., the range of 11 μm BTs inside a 25 km2 area centered on the buoy location. These features and a rebalancing of classes led to an 81.9% accuracy when classifying SST retrievals into the < -0.4 C and -0.4 C ≤ residual ≤ 0.4 C categories. Spatial homogeneity in BTs consistently appears as a very important variable for classification, suggesting that unidentified cloud contamination still is one of the causes leading to negative SST residuals. Precision and accuracy of error estimates from our decision tree classifier are enhanced using this knowledge.
NASA Astrophysics Data System (ADS)
Zavodsky, B.; Santanello, J. A.; Friedl, M. A.; Susskind, J.; Palm, S. P.
2010-12-01
The planetary boundary layer (PBL) serves as a short-term memory of land-atmosphere (L-A) interactions through the diurnal integration of surface fluxes and subsequent evolution of PBL fluxes and states. Recent advances in satellite remote sensing offer the ability to monitor PBL and land surface properties at increasingly high spatial and temporal resolutions and, consequently, have the potential to provide valuable information on the terrestrial energy and water cycle across a range of scales. In this study, we evaluate the retrieval of PBL structure and temperature and moisture properties from measurements made by NASA's Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), Moderate Resolution Imaging Spectroradiometer (MODIS) , and Atmospheric Infrared Sounder (AIRS) instruments aboard the 'A-Train' constellation. The global coverage of these sensors greatly improves upon the coarse network of synoptic radiosonde and intermittent satellite and ground remote sensing currently available, and combining the high vertical and spectral resolution of these sensors allows for PBL retrievals to be evaluated in the context of their relationship with the land surface. Results include an evaluation of CALIPSO, MODIS, and AIRS temperature and humidity retrievals using radiosonde data, focusing on how well PBL properties (e.g. PBL height, temperature, humidity, and stability) can be discerned from each sensor under a range of conditions. Overall, this research is timely in assessing the potential for merging complimentary information from independent sensors, and provides a unique opportunity to evaluate and apply NASA data to answer fundamental questions regarding observation, understanding, and prediction of L-A interactions and coupling.
Sensor On-orbit Calibration and Characterization Using Spacecraft Maneuvers
NASA Technical Reports Server (NTRS)
Xiong, X.; Butler, Jim; Barnes, W. L.; Guenther, B.
2007-01-01
Spacecraft flight operations often require activities that involve different kinds of maneuvers for orbital adjustments (pitch, yaw, and roll). Different maneuvers, when properly planned and scheduled, can also be applied to support and/or to perform on-board sensor calibration and characterization. This paper uses MODIS (Moderate Resolution Imaging Spectroradiometer) as an example to illustrate applications of spacecraft maneuvers for Earth-observing sensors on-orbit calibration and characterization. MODIS is one of the key instruments for NASA's Earth Observing System (EOS) currently operated on-board the EOS Terra and Aqua spacecraft launched in December 1999 and May 2002, respectively. Since their launch, both Terra and Aqua spacecraft have made a number of maneuvers, specially the yaw and roll maneuvers, to support the MODIS on-orbit calibration and characterization. For both Terra and Aqua MODIS, near-monthly spacecraft roll maneuvers are executed for lunar observations. These maneuvers are carefully scheduled so that the lunar phase angles are nearly identical for each sensor's lunar observations. The lunar observations are used to track MODIS reflective solar bands (RSB) calibration stability and to inter-compare Terra and Aqua MODIS RSB calibration consistency. To date, two sets of yaw maneuvers (each consists of two series of 8 consecutive yaws) by the Terra spacecraft and one set by the Aqua spacecraft have been performed to validate MODIS solar diffuser (SD) bi-directional reflectance factor (BRF) and to derive SD screen transmission. Terra spacecraft pitch maneuvers, first made on March 26, 2003 and the second on April 14, 2003 (with the Moon in the spacecraft nadir view), have been applied to characterize MODIS thermal emissive bands (TEB) response versus scan angle (RVS). This is particularly important since the pre-launch TEB RSV measurements made by the sensor vendor were not successful. Terra MODIS TEB RVS obtained from pitch maneuvers have been used in the current LIB calibration algorithm. Lunq observations from pitch maneuvers also provided information to cross-calibrate MODIS with other sensors (MISR and ASTER) on the same platform. We will provide a summary of MODIS maneuver activities and their applications for MODIS calibration and characterization. The results and lessons learned discussed in this paper from MODIS maneuver activities will provide useful insights into future spacecraft and sensor operation.
NASA Technical Reports Server (NTRS)
Molthan, Andrew L.; Fuell, Kevin K.; LaFontaine, Frank; McGrath, Kevin; Smith, Matt
2013-01-01
Current and future satellite sensors provide remotely sensed quantities from a variety of wavelengths ranging from the visible to the passive microwave, from both geostationary and low ]Earth orbits. The NASA Short ]term Prediction Research and Transition (SPoRT) Center has a long history of providing multispectral imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA fs Terra and Aqua satellites in support of NWS forecast office activities. Products from MODIS have recently been extended to include a broader suite of multispectral imagery similar to those developed by EUMETSAT, based upon the spectral channels available from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) aboard METEOSAT ]9. This broader suite includes products that discriminate between air mass types associated with synoptic ]scale features, assists in the identification of dust, and improves upon paired channel difference detection of fog and low cloud events. Future instruments will continue the availability of these products and also expand upon current capabilities. The Advanced Baseline Imager (ABI) on GOES ]R will improve the spectral, spatial, and temporal resolution of our current geostationary capabilities, and the recent launch of the Suomi National Polar ]Orbiting Partnership (S ]NPP) carries instruments such as the Visible Infrared Imager Radiometer Suite (VIIRS), the Cross ]track Infrared Sounder (CrIS), and the Advanced Technology Microwave Sounder (ATMS), which have unrivaled spectral and spatial resolution, as precursors to the JPSS era (i.e., the next generation of polar orbiting satellites. New applications from VIIRS extend multispectral composites available from MODIS and SEVIRI while adding new capabilities through incorporation of additional CrIS channels or information from the Near Constant Contrast or gDay ]Night Band h, which provides moonlit reflectance from clouds and detection of fires or city lights. This presentation will present a review of SPoRT, CIRA, and NRL collaborations regarding multispectral satellite imagery and recent applications within the operational forecasting environment
Fires and Smoke in Central Africa
NASA Technical Reports Server (NTRS)
2002-01-01
This year's fire season in central Africa may have been the most severe ever. This true-color image also shows the location of fires (red dots) in the Democratic Republic of the Congo, Angola, and Zambia. The image was taken by the Moderate-Resolution Imaging Spectroradiometer (MODIS) aboard NASA 's Terra spacecraft on August 23, 2000, and was produced using the MODIS Active Fire Detection product. NASA scientists studied these fires during the SAFARI 2000 field campaign. Image By Jacques Descloitres, MODIS Land Team
2017-12-08
On Oct. 18 at 17:35 UTC (1:35 p.m EDT) the MODIS instrument aboard NASA's Aqua satellite saw Hurricane Gonzalo approaching Newfoundland. ..Credit: NASA Goddard MODIS Rapid Response Team..NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Chen, Pei-Yu; Fedosejevs, Gunar; Tiscareño-López, Mario; Arnold, Jeffrey G
2006-08-01
Although several types of satellite data provide temporal information of the land use at no cost, digital satellite data applications for agricultural studies are limited compared to applications for forest management. This study assessed the suitability of vegetation indices derived from the TERRA-Moderate Resolution Imaging Spectroradiometer (MODIS) sensor and SPOT-VEGETATION (VGT) sensor for identifying corn growth in western Mexico. Overall, the Normalized Difference Vegetation Index (NDVI) composites from the VGT sensor based on bi-directional compositing method produced vegetation information most closely resembling actual crop conditions. The NDVI composites from the MODIS sensor exhibited saturated signals starting 30 days after planting, but corresponded to green leaf senescence in April. The temporal NDVI composites from the VGT sensor based on the maximum value method had a maximum plateau for 80 days, which masked the important crop transformation from vegetative stage to reproductive stage. The Enhanced Vegetation Index (EVI) composites from the MODIS sensor reached a maximum plateau 40 days earlier than the occurrence of maximum leaf area index (LAI) and maximum intercepted fraction of photosynthetic active radiation (fPAR) derived from in-situ measurements. The results of this study showed that the 250-m resolution MODIS data did not provide more accurate vegetation information for corn growth description than the 500-m and 1000-m resolution MODIS data.
NASA Technical Reports Server (NTRS)
Wind, Galina; Riedi, Jerome; Platnick, Steven; Heidinger, Andrew
2014-01-01
The Cross-platform HIgh resolution Multi-instrument AtmosphEric Retrieval Algorithms (CHIMAERA) system allows us to perform MODIS-like cloud top, optical and microphysical properties retrievals on any sensor that possesses a minimum set of common spectral channels. The CHIMAERA system uses a shared-core architecture that takes retrieval method out of the equation when intercomparisons are made. Here we show an example of such retrieval and a comparison of simultaneous retrievals done using SEVIRI, MODIS and VIIRS sensors. All sensor retrievals are performed using CLAVR-x (or CLAVR-x based) cloud top properties algorithm. SEVIRI uses the SAF_NWC cloud mask. MODIS and VIIRS use the IFF-based cloud mask that is a shared algorithm between MODIS and VIIRS. The MODIS and VIIRS retrievals are performed using a VIIRS branch of CHIMAERA that limits available MODIS channel set. Even though in that mode certain MODIS products such as multilayer cloud map are not available, the cloud retrieval remains fully equivalent to operational Data Collection 6.
Impact of Sensor Degradation on the MODIS NDVI Time Series
NASA Technical Reports Server (NTRS)
Wang, Dongdong; Morton, Douglas Christopher; Masek, Jeffrey; Wu, Aisheng; Nagol, Jyoteshwar; Xiong, Xiaoxiong; Levy, Robert; Vermote, Eric; Wolfe, Robert
2012-01-01
Time series of satellite data provide unparalleled information on the response of vegetation to climate variability. Detecting subtle changes in vegetation over time requires consistent satellite-based measurements. Here, the impact of sensor degradation on trend detection was evaluated using Collection 5 data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors on the Terra and Aqua platforms. For Terra MODIS, the impact of blue band (Band 3, 470 nm) degradation on simulated surface reflectance was most pronounced at near-nadir view angles, leading to a 0.001-0.004 yr-1 decline in Normalized Difference Vegetation Index (NDVI) under a range of simulated aerosol conditions and surface types. Observed trends in MODIS NDVI over North America were consistentwith simulated results,with nearly a threefold difference in negative NDVI trends derived from Terra (17.4%) and Aqua (6.7%) MODIS sensors during 2002-2010. Planned adjustments to Terra MODIS calibration for Collection 6 data reprocessing will largely eliminate this negative bias in detection of NDVI trends.
Impact of Sensor Degradation on the MODIS NDVI Time Series
NASA Technical Reports Server (NTRS)
Wang, Dongdong; Morton, Douglas; Masek, Jeffrey; Wu, Aisheng; Nagol, Jyoteshwar; Xiong, Xiaoxiong; Levy, Robert; Vermote, Eric; Wolfe, Robert
2011-01-01
Time series of satellite data provide unparalleled information on the response of vegetation to climate variability. Detecting subtle changes in vegetation over time requires consistent satellite-based measurements. Here, we evaluated the impact of sensor degradation on trend detection using Collection 5 data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors on the Terra and Aqua platforms. For Terra MODIS, the impact of blue band (Band 3, 470nm) degradation on simulated surface reflectance was most pronounced at near-nadir view angles, leading to a 0.001-0.004/yr decline in Normalized Difference Vegetation Index (NDVI) under a range of simulated aerosol conditions and surface types. Observed trends MODIS NDVI over North America were consistent with simulated results, with nearly a threefold difference in negative NDVI trends derived from Terra (17.4%) and Aqua (6.7%) MODIS sensors during 2002-2010. Planned adjustments to Terra MODIS calibration for Collection 6 data reprocessing will largely eliminate this negative bias in NDVI trends over vegetation.
NASA Technical Reports Server (NTRS)
Xiong, Xiaoxiong; Angal, Amit; Butler, James; Cao, Changyong; Doelling, Daivd; Wu, Aisheng; Wu, Xiangqian
2016-01-01
The MODIS has successfully operated on-board the NASA's EOS Terra and Aqua spacecraft for more than 16 and 14 years, respectively. MODIS instrument was designed with stringent calibration requirements and comprehensive on-board calibration capability. In the reflective solar spectral region, Aqua MODIS has performed better than Terra MODIS and, therefore, has been chosen by the Global Space-based Inter-Calibration System (GSICS) operational community as the calibration reference sensor in cross-sensor calibration and calibration inter-comparisons. For the same reason, it has also been used by a number of earth observing sensors as their calibration reference. Considering that Aqua MODIS has already operated for nearly 14 years, it is essential to transfer its calibration to a follow-on reference sensor with a similar calibration capability and stable performance. The VIIRS is a follow-on instrument to MODIS and has many similar design features as MODIS, including their on-board calibrators (OBC). As a result, VIIRS is an ideal candidate to replace MODIS to serve as the future GSICS reference sensor. Since launch, the S-NPP VIIRS has already operated for more than 4 years and its overall performance has been extensively characterized and demonstrated to meet its overall design requirements. This paper provides an overview of Aqua MODIS and S-NPP VIIRS reflective solar bands (RSB) calibration methodologies and strategies, traceability, and their on-orbit performance. It describes and illustrates different methods and approaches that can be used to facilitate the calibration reference transfer, including the use of desert and Antarctic sites, deep convective clouds (DCC), and the lunar observations.
NASA Technical Reports Server (NTRS)
Butler, James J.; Oudrari, Hassan; Xiong, Sanxiong; Che, Nianzeng; Xiong, Xiaoxiong
2007-01-01
The process of developing new sensors for space flight frequently builds upon the designs and experience of existing heritage space flight sensors. Frequently in the development and testing of new sensors, problems are encountered that pose the risk of serious impact on successful retrieval of geophysical products. This paper describes an approach to assess the importance of optical and electronic cross-talk on retrieval of geophysical products using new MODIS-like sensors through the use of MODIS data sets. These approaches may be extended to any sensor characteristic and any sensor where that characteristic may impact the Level 1 products so long as validated geophysical products are being developed from the heritage sensor. In this study, a set of electronic and/or optical cross-talk coefficients are postulated. These coefficients are sender-receiver influence coefficients and represent a sensor signal contamination on any detector on a focal plane when another band's detectors on that focal plane are stimulated with a monochromatic light. The approach involves using the postulated cross-talk coefficients on an actual set of MODIS data granules. The original MODIS data granules and the cross-talk impacted granules are used with validated geophysical algorithms to create the derived products. Comparison of the products produced with the original and cross-talk impacted granules indicates potential problems, if any, with the characteristics of the developmental sensor that are being studied.
Sulfur Upwelling off the African Coast
NASA Technical Reports Server (NTRS)
2002-01-01
Though these aquamarine clouds in the waters off the coast of northern Namibia may look like algae blooms, they are in fact clouds of sulfur produced by anaerobic bacteria on the ocean's floor. This image of the sulfur-filled water was taken on April 24, 2002, by the Sea-viewing Wide Field-of-View Sensor (SeaWiFS), flying aboard the Orbview-2 satellite. The anaerobic bacteria (bacteria that can live without oxygen) feed upon algae carcasses that exist in abundance on the ocean's floor off of Namibia. As the bacteria ingest the algae husks, they produce hydrogen sulfide, which slowly builds up in the sea-floor sediments. Eventually, the hydrogen sulfide reaches the point where the sediment can no longer contain it, and it bubbles forth. When this poisonous chemical reaches the surface, it combines with the oxygen in the upper layers of the ocean to create clouds of pure sulfur. The sulfur causes the Namibian coast to smell like rotten eggs, and the hydrogen sulfide will often kill fish and drive lobsters away. For more information, read: A Bloom By Any Other Name A high-resolution (250 meters per pixel) image earlier on the 24th taken from the Moderate-Resolution Imaging Spectroradiometer (MODIS) shows additional detail in the plumes. Image courtesy the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE. MODIS image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC
Sensitivity of Aerosol Multi-Sensor Daily Data Intercomparison to the Level 3 Dataday Definition
NASA Technical Reports Server (NTRS)
Leptoukh, Gregory; Lary, David; Shen, Suhung; Lynnes, Christopher
2010-01-01
Topics include: why people use Level 3 products, why someone might go wrong with Level 3 products, differences in L3 from different sensors, Level 3 data day definition, MODIS vs. MODIS, AOD MODIS Terra vs. Aqua in Pacific, AOD Aqua MODIS vs. MISR correlation map, MODIS vs MISR on Terra, MODIS atmospheric data day definition, orbit time difference for Terra and Aqua 2009-01-06, maximum time difference for Terra (Calendar day), artifact explains, data day definitions, local time distribution, spatial (local time) data day definition, maximum time difference between Terra and Aqua, Removing the artifact in 16-day AOD correlation, MODIS cloud top pressure, and MODIS Terra and Aqua vs. AIRS cloud top pressure.
NASA Technical Reports Server (NTRS)
2002-01-01
larger Pietersburg Image larger Blyde River Canyon Image This pair of false-color images shows the first data returned from the MODIS Airborne Simulator (MAS) during the SAFARI 2000 field campaign. The MAS is used to help calibrate the data received from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA's Terra spacecraft. It is carried aboard the ER-2, a high-altitude research aircraft, where it images the Earth's surface in 50 spectral bands. SAFARI marks the first time that the MAS and MODIS have aquired data simultaneously. On the left is Pietersburg South Africa, the current home of the SAFARI field campaign. At upper left is the airport the ER-2 took off from. The red circles in the bottom half of the image are fields watered by central pivot irrigation. The right image is in the area of the Blyde River Canyon. The river cuts across the escarpment that separates South Africa's highlands (Highveld) and lowlands (Lowveld). Images courtesy SAFARI 2000 Recommend this Image to a Friend Back to: Newsroom Also see
Comparasion of Cloud Cover restituted by POLDER and MODIS
NASA Astrophysics Data System (ADS)
Zeng, S.; Parol, F.; Riedi, J.; Cornet, C.; Thieuxleux, F.
2009-04-01
PARASOL and AQUA are two sun-synchronous orbit satellites in the queue of A-Train satellites that observe our earth within a few minutes apart from each other. Aboard these two platforms, POLDER and MODIS provide coincident observations of the cloud cover with very different characteristics. These give us a good opportunity to study the clouds system and evaluate strengths and weaknesses of each dataset in order to provide an accurate representation of global cloud cover properties. This description is indeed of outermost importance to quantify and understand the effect of clouds on global radiation budget of the earth-atmosphere system and their influence on the climate changes. We have developed a joint dataset containing both POLDER and MODIS level 2 cloud products collocated and reprojected on a common sinusoidal grid in order to make the data comparison feasible and veracious. Our foremost work focuses on the comparison of both spatial distribution and temporal variation of the global cloud cover. This simple yet critical cloud parameter need to be clearly understood to allow further comparison of the other cloud parameters. From our study, we demonstrate that on average these two sensors both detect the clouds fairly well. They provide similar spatial distributions and temporal variations:both sensors see high values of cloud amount associated with deep convection in ITCZ, over Indonesia, and in west-central Pacific Ocean warm pool region; they also provide similar high cloud cover associated to mid-latitude storm tracks, to Indian monsoon or to the stratocumulus along the west coast of continents; on the other hand small cloud amounts that typically present over subtropical oceans and deserts in subsidence aeras are well identified by both POLDER and MODIS. Each sensor has its advantages and inconveniences for the detection of a particular cloud types. With higher spatial resolution, MODIS can better detect the fractional clouds thus explaining as one part of a positive bias in any latitude and in any viewing angle with an order of 10% between the POLDER cloud amount and the so-called MODIS "combined" cloud amount. Nevertheless it is worthy to note that a negative bias of about 10% is obtained between the POLDER cloud amount and the MODIS "day-mean" cloud amount. Main differences between the two MODIS cloud amount values are known to be due to the filtering of remaining aerosols or cloud edges. due to both this high spatial resolution of MODIS and the fact that "combined" cloud amount filters cloud edges, we can also explain why appear the high positive bias regions over subtropical ocean in south hemisphere and over east Africa in summer. Thanks to several channels in the thermal infrared spectral domain, MODIS detects probably much better the thin cirrus especially over land, thus causing a general negative bias for ice clouds. The multi-spectral capability of MODIS also allows for a better detection of low clouds over snow or ice, Hence the (POLDER-MODIS) cloud amount difference is often negative over Greenland, Antarctica, and over the continents at middle-high latitudes in spring and autumn associated to the snow coverage. The multi-spectral capability of MODIS also makes the discrimination possible between the biomass burning aerosols and the fractional clouds over the continents. Thus a positive bias appears in central Africa in summer and autumn associated to important biomass burning events. Over transition region between desert and non-desert, the presence of large negative bias (POLDER-MODIS) of cloud amount maybe partly due to MODIS pixel falsely labeled the desert as cloudy, where MODIS algorithm uses static desert mask. This is clearly highlighted in south of Sahara in spring and summer where we find a bias negative with an order of -0.1. What is more, thanks to its multi-angular capability, POLDER can discriminate the sun-glint region thus minimizing the dependence of cloud amount on view angle. It makes the detection of high clouds easier over a black surface thanks to its polarization character.
NASA Technical Reports Server (NTRS)
Xiao, Q.; Zhang, H.; Choi, M.; Li, S.; Kondragunta, S.; Kim, J.; Holben, B.; Levy, R. C.; Liu, Y.
2016-01-01
Persistent high aerosol loadings together with extremely high population densities have raised serious air quality and public health concerns in many urban centers in East Asia. However, ground-based air quality monitoring is relatively limited in this area. Recently, satellite-retrieved Aerosol Optical Depth (AOD) at high resolution has become a powerful tool to characterize aerosol patterns in space and time. Using ground AOD observations from the Aerosol Robotic Network (AERONET) and the Distributed Regional Aerosol Gridded Observation Networks (DRAGON)-Asia Campaign, as well as from handheld sunphotometers, we evaluated emerging aerosol products from the Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership (S-NPP), the Geostationary Ocean Color Imager (GOCI) aboard the Communication, Ocean, and Meteorology Satellite (COMS), and Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) (Collection 6) in East Asia in 2012 and 2013. In the case study in Beijing, when compared with AOD observations from handheld sunphotometers, 51% of VIIRS Environmental Data Record (EDR) AOD, 37% of GOCI AOD, 33% of VIIRS Intermediate Product (IP) AOD, 26% of Terra MODIS C6 3km AOD, and 16% of Aqua MODIS C6 3km AOD fell within the reference expected error (EE) envelope (+/-0.05/+/- 0.15 AOD). Comparing against AERONET AOD over the JapanSouth Korea region, 64% of EDR, 37% of IP, 61% of GOCI, 39% of Terra MODIS, and 56% of Aqua MODIS C6 3km AOD fell within the EE. In general, satellite aerosol products performed better in tracking the day-to-day variability than tracking the spatial variability at high resolutions. The VIIRS EDR and GOCI products provided the most accurate AOD retrievals, while VIIRS IP and MODIS C6 3km products had positive biases.
NASA Astrophysics Data System (ADS)
Xiao, Q.; Zhang, H.; Choi, M.; Li, S.; Kondragunta, S.; Kim, J.; Holben, B.; Levy, R. C.; Liu, Y.
2016-02-01
Persistent high aerosol loadings together with extremely high population densities have raised serious air quality and public health concerns in many urban centers in East Asia. However, ground-based air quality monitoring is relatively limited in this area. Recently, satellite-retrieved Aerosol Optical Depth (AOD) at high resolution has become a powerful tool to characterize aerosol patterns in space and time. Using ground AOD observations from the Aerosol Robotic Network (AERONET) and the Distributed Regional Aerosol Gridded Observation Networks (DRAGON)-Asia Campaign, as well as from handheld sunphotometers, we evaluated emerging aerosol products from the Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership (S-NPP), the Geostationary Ocean Color Imager (GOCI) aboard the Communication, Ocean, and Meteorology Satellite (COMS), and Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) (Collection 6) in East Asia in 2012 and 2013. In the case study in Beijing, when compared with AOD observations from handheld sunphotometers, 51 % of VIIRS Environmental Data Record (EDR) AOD, 37 % of GOCI AOD, 33 % of VIIRS Intermediate Product (IP) AOD, 26 % of Terra MODIS C6 3 km AOD, and 16 % of Aqua MODIS C6 3 km AOD fell within the reference expected error (EE) envelope (±0.05 ± 0.15 AOD). Comparing against AERONET AOD over the Japan-South Korea region, 64 % of EDR, 37 % of IP, 61 % of GOCI, 39 % of Terra MODIS, and 56 % of Aqua MODIS C6 3 km AOD fell within the EE. In general, satellite aerosol products performed better in tracking the day-to-day variability than tracking the spatial variability at high resolutions. The VIIRS EDR and GOCI products provided the most accurate AOD retrievals, while VIIRS IP and MODIS C6 3 km products had positive biases.
A Real-Time MODIS Vegetation Composite for Land Surface Models and Short-Term Forecasting
NASA Technical Reports Server (NTRS)
Case, Jonathan L.; LaFontaine, Frank J.; Kumar, Sujay V.; Jedlovec, Gary J.
2011-01-01
The NASA Short-term Prediction Research and Transition (SPoRT) Center is producing real-time, 1- km resolution Normalized Difference Vegetation Index (NDVI) gridded composites over a Continental U.S. domain. These composites are updated daily based on swath data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor aboard the polar orbiting NASA Aqua and Terra satellites, with a product time lag of about one day. A simple time-weighting algorithm is applied to the NDVI swath data that queries the previous 20 days of data to ensure a continuous grid of data populated at all pixels. The daily composites exhibited good continuity both spatially and temporally during June and July 2010. The composites also nicely depicted high greenness anomalies that resulted from significant rainfall over southwestern Texas, Mexico, and New Mexico during July due to early-season tropical cyclone activity. The SPoRT Center is in the process of computing greenness vegetation fraction (GVF) composites from the MODIS NDVI data at the same spatial and temporal resolution for use in the NASA Land Information System (LIS). The new daily GVF dataset would replace the monthly climatological GVF database (based on Advanced Very High Resolution Radiometer [AVHRR] observations from 1992-93) currently available to the Noah land surface model (LSM) in both LIS and the public version of the Weather Research and Forecasting (WRF) model. The much higher spatial resolution (1 km versus 0.15 degree) and daily updates based on real-time satellite observations have the capability to greatly improve the simulation of the surface energy budget in the Noah LSM within LIS and WRF. Once code is developed in LIS to incorporate the daily updated GVFs, the SPoRT Center will conduct simulation sensitivity experiments to quantify the impacts and improvements realized by the MODIS real-time GVF data. This presentation will describe the methodology used to develop the 1-km MODIS NDVI composites and show sample output from summer 2010, compare the MODIS GVF data to the AVHRR monthly climatology, and illustrate the sensitivity of the Noah LSM within LIS and/or the coupled LIS/WRF system to the new MODIS GVF dataset.
Use of MODIS Sensor Images Combined with Reanalysis Products to Retrieve Net Radiation in Amazonia
de Oliveira, Gabriel; Brunsell, Nathaniel A.; Moraes, Elisabete C.; Bertani, Gabriel; dos Santos, Thiago V.; Shimabukuro, Yosio E.; Aragão, Luiz E. O. C.
2016-01-01
In the Amazon region, the estimation of radiation fluxes through remote sensing techniques is hindered by the lack of ground measurements required as input in the models, as well as the difficulty to obtain cloud-free images. Here, we assess an approach to estimate net radiation (Rn) and its components under all-sky conditions for the Amazon region through the Surface Energy Balance Algorithm for Land (SEBAL) model utilizing only remote sensing and reanalysis data. The study period comprised six years, between January 2001–December 2006, and images from MODIS sensor aboard the Terra satellite and GLDAS reanalysis products were utilized. The estimates were evaluated with flux tower measurements within the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) project. Comparison between estimates obtained by the proposed method and observations from LBA towers showed errors between 12.5% and 16.4% and 11.3% and 15.9% for instantaneous and daily Rn, respectively. Our approach was adequate to minimize the problem related to strong cloudiness over the region and allowed to map consistently the spatial distribution of net radiation components in Amazonia. We conclude that the integration of reanalysis products and satellite data, eliminating the need for surface measurements as input model, was a useful proposition for the spatialization of the radiation fluxes in the Amazon region, which may serve as input information needed by algorithms that aim to determine evapotranspiration, the most important component of the Amazon hydrological balance. PMID:27347957
Use of MODIS Sensor Images Combined with Reanalysis Products to Retrieve Net Radiation in Amazonia.
de Oliveira, Gabriel; Brunsell, Nathaniel A; Moraes, Elisabete C; Bertani, Gabriel; Dos Santos, Thiago V; Shimabukuro, Yosio E; Aragão, Luiz E O C
2016-06-24
In the Amazon region, the estimation of radiation fluxes through remote sensing techniques is hindered by the lack of ground measurements required as input in the models, as well as the difficulty to obtain cloud-free images. Here, we assess an approach to estimate net radiation (Rn) and its components under all-sky conditions for the Amazon region through the Surface Energy Balance Algorithm for Land (SEBAL) model utilizing only remote sensing and reanalysis data. The study period comprised six years, between January 2001-December 2006, and images from MODIS sensor aboard the Terra satellite and GLDAS reanalysis products were utilized. The estimates were evaluated with flux tower measurements within the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) project. Comparison between estimates obtained by the proposed method and observations from LBA towers showed errors between 12.5% and 16.4% and 11.3% and 15.9% for instantaneous and daily Rn, respectively. Our approach was adequate to minimize the problem related to strong cloudiness over the region and allowed to map consistently the spatial distribution of net radiation components in Amazonia. We conclude that the integration of reanalysis products and satellite data, eliminating the need for surface measurements as input model, was a useful proposition for the spatialization of the radiation fluxes in the Amazon region, which may serve as input information needed by algorithms that aim to determine evapotranspiration, the most important component of the Amazon hydrological balance.
NASA Technical Reports Server (NTRS)
Remer, Lorraine A.; Lau, William (Technical Monitor)
2002-01-01
The PRIDE data set of MODIS aerosol retrievals co-located with sunphotometer measurements provides the basis of MODIS validation in a dust environment. The sunphotometer measurements include AERONET automatic instruments, land-based Microtops instruments, ship-board Microtops instruments and the AATS-6 aboard the Navajo aircraft. Analysis of these data indicate that the MODIS retrieval is within pre-launch estimates of uncertainty within the spectral range of 600-900 nm. However, the MODIS algorithm consistently retrieves smaller particles than reality thus leading to incorrect spectral response outside of the 600-900 nm range and improper size information. Further analysis of MODIS retrievals in other dust environments shows the inconsistencies are due to nonspherical effects in the phase function. These data are used to develop an ambient phase function for dust aerosol to be used for remote sensing purposes.
Thermal remote sensing as a part of Exupéry volcano fast response system
NASA Astrophysics Data System (ADS)
Zakšek, Klemen; Hort, Matthias
2010-05-01
In order to understand the eruptive potential of a volcanic system one has to characterize the actual state of stress of a volcanic system that involves proper monitoring strategies. As several volcanoes in highly populated areas especially in south east Asia are still nearly unmonitored a mobile volcano monitoring system is currently being developed in Germany. One of the major novelties of this mobile volcano fast response system called Exupéry is the direct inclusion of satellite based observations. Remote sensing data are introduced together with ground based field measurements into the GIS database, where the statistical properties of all recorded data are estimated. Using physical modelling and statistical methods we hope to constrain the probability of future eruptions. The emphasis of this contribution is on using thermal remote sensing as tool for monitoring active volcanoes. One can detect thermal anomalies originating from a volcano by comparing signals in mid and thermal infrared spectra. A reliable and effective thermal anomalies detection algorithm was developed by Wright (2002) for MODIS sensor; it is based on the threshold of the so called normalized thermal index (NTI). This is the method we use in Exupéry, where we characterize each detected thermal anomaly by temperature, area, heat flux and effusion rate. The recent work has shown that radiant flux is the most robust parameter for this characterization. Its derivation depends on atmosphere, satellite viewing angle and sensor characteristics. Some of these influences are easy to correct using standard remote sensing pre-processing techniques, however, some noise still remains in data. In addition, satellites in polar orbits have long revisit times and thus they might fail to follow a fast evolving volcanic crisis due to long revisit times. Thus we are currently testing Kalman filter on simultaneous use of MODIS and AVHRR data to improve the thermal anomaly characterization. The advantage of this technique is that it increases the temporal resolution through using images from different satellites having different resolution and sensitivity. This algorithm has been tested for an eruption at Mt. Etna (2002) and successfully captures more details of the eruption evolution than would be seen by using only one satellite source. At the moment for Exupéry, merely MODIS (a sensor aboard NASA's Terra and Aqua satellite) data are used for the operational use. As MODIS is a meteorological sensor, it is suitable also for producing general overview images of the crisis area. Therefore, for each processed MODIS image we also produce RGB image where some basic meteorological features are classified: e.g. clouds, volcanic ash plumes, ocean, etc. In the case of detected hotspot an additional image is created; it contains the original measured radiances of the selected channels for the crisis area. All anomaly and processing parameters are additionally written into an XML file. The results are available in web GIS in the worst case two hours after NASA provides level 1b data online.
Beyond MODIS: Developing an aerosol climate data record
NASA Astrophysics Data System (ADS)
Levy, R. C.; Mattoo, S.; Munchak, L. A.; Patadia, F.; Laszlo, I.; Holz, R.
2013-12-01
As defined by the National Research Council, a climate data record (CDR) is a time series of measurements of sufficient length, consistency, and continuity to determine climate variability and change. As one of our most pressing research questions concerns changes in global direct aerosol radiative forcing (DARF), creating an aerosol CDR is of high importance. To reduce our uncertainties in DARF, we need uncertainty in global aerosol optical depth (AOD) reduced to ×0.02 or better, or about 10% of global mean AOD (~0.15-0.20). To quantify aerosol trends with significance, we also need a stable time series at least 20-30 years. By this Fall-2013 AGU meeting, the Moderate Resolution Imaging Spectrometer (MODIS) has been flying on NASA's Terra and Aqua satellites for 14 years and 11.5 years, respectively. During this time, we have fine-tuned the aerosol retrieval algorithms and data processing protocols, resulting in a well characterized product of aerosol optical depth (AOD). MODIS AOD has been extensively compared to ground-based sunphotometer data, showing per-retrieval expected error (EE) of ×(0.03 + 5%) over ocean, and has been generally adopted as a robust and stable environmental data record (EDR). With the 2011 launch of the Visible and Infrared Imaging Radiometer Suite (VIIRS) aboard Suomi-NPP, we have begun a new aerosol time series. The VIIRS AOD product has stabilized to the point where, compared to ground-based AERONET sunphotometer, the VIIRS AOD is within similar EE envelope as MODIS. Thus, if VIIRS continues to perform as expected, it too can provide a robust and stable aerosol EDR. What will it take to stitch MODIS and VIIRS into a robust aerosol CDR? Based on the recent experience of MODIS 'Collection 6' development, there are many details of aerosol retrieval that each lead to ×0.01 uncertainties in global AOD. These include 'radiative transfer' assumptions such as calculations for gas absorption and sea-level Rayleigh optical depth, 'decision making' assumptions such as cloud masking and pixel selection, as well as 'retrieval' assumptions such as aerosol type, and surface reflectance model. Also there are instrument issues such as calibration and geo-location, which even on the level of 1-2%, will lead to 10% error in retrieved AOD. At this point, however, many of these issues have been solved, or are being quantified for MODIS and VIIRS. In the past year, we created a generic dark-target aerosol retrieval algorithm, which can be applied to MODIS, VIIRS, or any other sensor with a similar set of wavelength bands. We applied the same radiative transfer codes for creating lookup tables, the same protocols for deriving non-aerosol assumptions, and the same criteria for cloud masking. Although there are still inconsistencies to work out, this generic algorithm is being applied to selected months having VIIRS/MODIS overlap. Comparing to AERONET, and with each other, we quantify the statistical agreement between MODIS and VIIRS, both for the official algorithms run on each sensor, as well as for our generic algorithm run on both.
Multi-platform comparisons of MODIS and AVHRR normalized difference vegetation index data
Gallo, Kevin P.; Ji, Lei; Reed, Bradley C.; Eidenshink, Jeffery C.; Dwyer, John L.
2005-01-01
The relationship between AVHRR-derived normalized difference vegetation index (NDVI) values and those of future sensors is critical to continued long-term monitoring of land surface properties. The follow-on operational sensor to the AVHRR, the Visible/Infrared Imager/Radiometer Suite (VIIRS), will be very similar to the NASA Earth Observing System's Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. NDVI data derived from visible and near-infrared data acquired by the MODIS (Terra and Aqua platforms) and AVHRR (NOAA-16 and NOAA-17) sensors were compared over the same time periods and a variety of land cover classes within the conterminous United States. The results indicate that the 16-day composite NDVI values are quite similar over the composite intervals of 2002 and 2003, and linear relationships exist between the NDVI values from the various sensors. The composite AVHRR NDVI data included water and cloud masks and adjustments for water vapor as did the MODIS NDVI data. When analyzed over a variety of land cover types and composite intervals, the AVHRR derived NDVI data were associated with 89% or more of the variation in the MODIS NDVI values. The results suggest that it may be possible to successfully reprocess historical AVHRR data sets to provide continuity of NDVI products through future sensor systems.
Calibration Challenges and Improvements for Terra and Aqua MODIS Level-1B Data Product Qualit
NASA Astrophysics Data System (ADS)
Xiong, X.; Angal, A.; Chen, H.; Geng, X.; Li, Y.; Link, D.; Salomonson, V.; Twedt, K.; Wang, Z.; Wilson, T.; Wu, A.
2017-12-01
Terra and Aqua MODIS instruments launched in 1999 and 2002, respectively, have provided the remote sensing community and users worldwide a series of high quality long-term data records. They have enabled a broad range of scientific studies of the Earth's system and changes in its key geophysical and environmental parameters. To date, both MODIS instruments continue to operate nominally with all on-board calibrators (OBC) functioning properly. MODIS reflective solar bands (RSB) are currently calibrated by a solar diffuser (SD) and solar diffuser stability monitor (SDSM) system, coupled with regularly scheduled lunar observations and trending results from selected ground reference targets. The thermal emissive bands (TEB) calibration is performed using an on-board blackbody (BB) on a scan-by-scan basis. The sensor's spectral and spatial characteristics are periodically tracked by the on-board spectroradiometric calibration assembly (SRCA). On-orbit changes in sensor responses or performance characteristics, often in non-deterministic ways, underscore the need for dedicated calibration efforts to be made over the course of the sensor's entire mission. For MODIS instruments, this task has been undertaken by the MODIS Characterization Support Team (MCST). In this presentation, we provide an overview of MODIS instrument operation and calibration activities with a focus on recent challenging issues. We describe the efforts made and methodologies developed to address various challenging issues, including on-orbit characterization of sensor response versus scan angle (RVS) and polarization sensitives in the reflective solar spectral region, and electronic crosstalk impact on sensor calibration. Also discussed are the latest improvements made into the MODIS Level-1B data products as well as lessons that could benefit other instruments (e.g. VIIRS) for their on-orbit calibration and characterization.
Assessment of the short-term radiometric stability between Terra MODIS and Landsat 7 ETM+ sensors
Choi, Taeyoung; Xiong, Xiaoxiong; Chander, Gyanesh; Angal, A.
2009-01-01
Short-term radiometric stability was evaluated using continuous ETM+ scenes within a single orbit (contact period) and the corresponding MODIS scenes for the four matching solar reflective visible and near-infrared (VNIR) band pairs between the two sensors. The near-simultaneous earth observations were limited by the smaller swath size of ETM+ (183 km) compared to MODIS (2330 km). Two sets of continuous granules for Terra MODIS and Landsat 7 ETM+ were selected and mosaicked based on pixel geolocation information for noncloudy pixels over the African continent. The matching pixel pairs were resampled from a fine to a coarse pixel resolution, and the at-sensor spectral radiance values for a wide dynamic range of the sensors were compared and analyzed, covering various surface types. The following study focuses on radiometric stability analysis from the VNIR band-pairs of ETM+ and MODIS. The Libya-4 desert target was included in the path of this continuous orbit, which served as a verification point between the short-term and the long-term trending results from previous studies. MODTRAN at-sensor spectral radiance simulation is included for a representative desert surface type to evaluate the consistency of the results.
Results and Validation of MODIS Aerosol Retrievals Over Land and Ocean
NASA Technical Reports Server (NTRS)
Remer, Lorraine; Einaudi, Franco (Technical Monitor)
2001-01-01
The MODerate Resolution Imaging Spectroradiometer (MODIS) instrument aboard the Terra spacecraft has been retrieving aerosol parameters since late February 2000. Initial qualitative checking of the products showed very promising results including matching of land and ocean retrievals at coastlines. Using AERONET ground-based radiometers as our primary validation tool, we have established quantitative validation as well. Our results show that for most aerosol types, the MODIS products fall within the pre-launch estimated uncertainties. Surface reflectance and aerosol model assumptions appear to be sufficiently accurate for the optical thickness retrieval. Dust provides a possible exception, which may be due to non-spherical effects. Over ocean the MODIS products include information on particle size, and these parameters are also validated with AERONET retrievals.
Results and Validation of MODIS Aerosol Retrievals over Land and Ocean
NASA Technical Reports Server (NTRS)
Remer, L. A.; Kaufman, Y. J.; Tanre, D.; Ichoku, C.; Chu, D. A.; Mattoo, S.; Levy, R.; Martins, J. V.; Li, R.-R.; Einaudi, Franco (Technical Monitor)
2000-01-01
The MODerate Resolution Imaging Spectroradiometer (MODIS) instrument aboard the Terra spacecraft has been retrieving aerosol parameters since late February 2000. Initial qualitative checking of the products showed very promising results including matching of land and ocean retrievals at coastlines. Using AERONET ground-based radiometers as our primary validation tool, we have established quantitative validation as well. Our results show that for most aerosol types, the MODIS products fall within the pre-launch estimated uncertainties. Surface reflectance and aerosol model assumptions appear to be sufficiently accurate for the optical thickness retrieval. Dust provides a possible exception, which may be due to non-spherical effects. Over ocean the MODIS products include information on particle size, and these parameters are also validated with AERONET retrievals.
Abstract Art or Arbiters of Energy?
NASA Technical Reports Server (NTRS)
2002-01-01
More than just the idle stuff of daydreams, clouds help control the flow of radiant energy around our world. Clouds are plentiful and widespread throughout Earth's atmosphere-covering up to 75 percent of our planet at any given time-so they play a dominant role in determining how much sunlight reaches the surface, how much sunlight is reflected back into space, how and where warmth is spread around the globe, and how much heat escapes from the surface and atmosphere back into space. Clouds are also highly variable. Clouds' myriad variations through time and space make them one of the greatest areas of uncertainty in scientists' understanding and predictions of climate change. In short, they play a central role in our world's climate system. The false-color image above shows a one-month composite of cloud optical thickness measured by the Moderate-resolution Imaging Spectroradiometer (MODIS) and averaged globally for April 2001. Optical thickness is a measure of how much solar radiation is not allowed to travel through a column of atmosphere. Areas colored red and yellow indicate very cloudy skies, on average, while areas colored green and light blue show moderately cloudy skies. Dark blue regions show where there is little or no cloud cover. This data product is an important new tool for helping scientists understand the roles clouds play in our global climate system. MODIS gives scientists new capabilities for measuring the structure and composition of clouds. MODIS observes the entire Earth almost every day in 36 spectral bands ranging from visible to thermal infrared wavelengths, enabling it to quantify a wide suite of clouds' physical and radiative properties. Specifically, MODIS can determine whether a cloud is composed of ice or water particles (or some combination of the two), it can measure the effective radius of the particles within a cloud, it can determine the temperature and altitude of cloud tops, and it can observe how much sunlight passes through a cloud. MODIS is one of five sensors flying aboard NASA's Terra satellite, the flagship in NASA's Earth Observing System, launched in December 1999. For more information about this and other new MODIS products, read NASA Unveils Spectacular Suite of New Global Data Products from MODIS. Image courtesy MODIS Atmosphere Group, NASA GSFC
NASA Technical Reports Server (NTRS)
Ichoku, Charles; Kaufman, Yoram J.
2003-01-01
Biomass burning is the main source of smoke aerosols and certain trace gases in the atmosphere. However, estimates of the rates of biomass consumption and emission of aerosols and trace gases from fires have not attained adequate reliability thus far. Traditional methods for deriving emission rates employ the use of emission factors e(sub x), (in g of species x per kg of biomass burned), which are difficult to measure from satellites. In this era of environmental monitoring from space, fire characterization was not a major consideration in the design of the early satellite-borne remote sensing instruments, such as AVHRR. Therefore, although they are able to provide fire location information, they were not adequately sensitive to variations in fire strength or size, because their thermal bands used for fire detection saturated at the lower end of fire radiative temperature range. As such, hitherto, satellite-based emission estimates employ proxy techniques using satellite derived fire pixel counts (which do not express the fire strength or rate of biomass consumption) or burned areas (which can only be obtained after the fire is over). The MODIS sensor, recently launched into orbit aboard EOS Terra (1999) and Aqua (2002) satellites, have a much higher saturation level and can, not only detect the fire locations 4 times daily, but also measures the at-satellite fire radiative energy (which is a measure of the fire strength) based on its 4 micron channel temperature. Also, MODIS measures the optical thickness of smoke and other aerosols. Preliminary analysis shows appreciable correlation between the MODIS-derived rates of emission of fire radiative energy and smoke over different regions across the globe. These relationships hold great promise for deriving emission coefficients, which can be used for estimating smoke aerosol emissions from MODIS active fire products. This procedure has the potential to provide more accurate emission estimates in near real-time, providing opportunities for various disaster management applications such as alerts, evacuation and, smoke dispersion forecasting.
Phytoplankton off the Coast of Portugal
NASA Technical Reports Server (NTRS)
2002-01-01
A large phytoplankton bloom off of the coast of Portugal can be seen in this true-color image taken on April 23, 2002, by the Moderate-resolution Imaging Spectroradiometer (MODIS) aboard NASA's Terra satellite. The bloom is roughly half the size of Portugal and forms a bluish-green cloud in the water. The red spots in northwest Spain denote what are likely small agricultural fires. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC
NASA Technical Reports Server (NTRS)
Dickinson, Matthew B.; Hudak, Andrew T.; Zajkowski, Thomas; Loudermilk, E. Louise; Schroeder, Wilfrid; Ellison, Luke; Kremens, Robert L.; Holley, William; Martinez, Otto; Paxton, Alexander;
2015-01-01
Characterising radiation from wildland fires is an important focus of fire science because radiation relates directly to the combustion process and can be measured across a wide range of spatial extents and resolutions. As part of a more comprehensive set of measurements collected during the 2012 Prescribed Fire Combustion and Atmospheric Dynamics Research (RxCADRE) field campaign, we used ground, airborne and spaceborne sensors to measure fire radiative power (FRP) from whole fires, applying different methods to small (2 ha) and large (.100 ha) burn blocks. For small blocks (n1/46), FRP estimated from an obliquely oriented long-wave infrared (LWIR) camera mounted on a boom lift were compared with FRP derived from combined data from tower-mounted radiometers and remotely piloted aircraft systems (RPAS). For large burn blocks (n1/43), satellite FRP measurements from the Moderate-resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) sensors were compared with near-coincident FRP measurements derived from a LWIR imaging system aboard a piloted aircraft. We describe measurements and consider their strengths and weaknesses. Until quantitative sensors exist for small RPAS, their use in fire research will remain limited. For oblique, airborne and satellite sensors, further FRP measurement development is needed along with greater replication of coincident measurements, which we show to be feasible.
NASA Technical Reports Server (NTRS)
Li, Yonghong; Wu, Aisheng; Xiong, Xiaoxiong
2016-01-01
This paper compares the calibration consistency of the spectrally-matched thermal emissive bands (TEB) between the Suomi National Polar-orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) and the Aqua Moderate Resolution Imaging Spectroradiometer (MODIS), using observations from their simultaneous nadir overpasses (SNO). Nearly-simultaneous hyperspectral measurements from the Aqua Atmospheric Infrared Sounder(AIRS) and the S-NPP Cross-track Infrared Sounder (CrIS) are used to account for existing spectral response differences between MODIS and VIIRS TEB. The comparison uses VIIRS Sensor Data Records (SDR) in MODIS five-minute granule format provided by the NASA Land Product and Evaluation and Test Element (PEATE) and Aqua MODIS Collection 6 Level 1 B (L1B) products. Each AIRS footprint of 13.5 km (or CrIS field of view of 14 km) is co-located with multiple MODIS (or VIIRS) pixels. The corresponding AIRS- and CrIS-simulated MODIS and VIIRS radiances are derived by convolutions based on sensor-dependent relative spectral response (RSR) functions. The VIIRS and MODIS TEB calibration consistency is evaluated and the two sensors agreed within 0.2 K in brightness temperature.Additional factors affecting the comparison such as geolocation and atmospheric water vapor content are also discussed in this paper.
Huang, Weijiao; Huang, Jingfeng; Wang, Xiuzhen; Wang, Fumin; Shi, Jingjing
2013-01-01
Long-term monitoring of regional and global environment changes often depends on the combined use of multi-source sensor data. The most widely used vegetation index is the normalized difference vegetation index (NDVI), which is a function of the red and near-infrared (NIR) spectral bands. The reflectance and NDVI data sets derived from different satellite sensor systems will not be directly comparable due to different spectral response functions (SRF), which has been recognized as one of the most important sources of uncertainty in the multi-sensor data analysis. This study quantified the influence of SRFs on the red and NIR reflectances and NDVI derived from 31 Earth observation satellite sensors. For this purpose, spectroradiometric measurements were performed for paddy rice grown under varied nitrogen levels and at different growth stages. The rice canopy reflectances were convoluted with the spectral response functions of various satellite instruments to simulate sensor-specific reflectances in the red and NIR channels. NDVI values were then calculated using the simulated red and NIR reflectances. The results showed that as compared to the Terra MODIS, the mean relative percentage difference (RPD) ranged from −12.67% to 36.30% for the red reflectance, −8.52% to −0.23% for the NIR reflectance, and −9.32% to 3.10% for the NDVI. The mean absolute percentage difference (APD) compared to the Terra MODIS ranged from 1.28% to 36.30% for the red reflectance, 0.84% to 8.71% for the NIR reflectance, and 0.59% to 9.32% for the NDVI. The lowest APD between MODIS and the other 30 satellite sensors was observed for Landsat5 TM for the red reflectance, CBERS02B CCD for the NIR reflectance and Landsat4 TM for the NDVI. In addition, the largest APD between MODIS and the other 30 satellite sensors was observed for IKONOS for the red reflectance, AVHRR1 onboard NOAA8 for the NIR reflectance and IKONOS for the NDVI. The results also indicated that AVHRRs onboard NOAA7-17 showed higher differences than did the other sensors with respect to MODIS. A series of optimum models were presented for remote sensing data assimilation between MODIS and other sensors. PMID:24287529
Huang, Weijiao; Huang, Jingfeng; Wang, Xiuzhen; Wang, Fumin; Shi, Jingjing
2013-11-26
Long-term monitoring of regional and global environment changes often depends on the combined use of multi-source sensor data. The most widely used vegetation index is the normalized difference vegetation index (NDVI), which is a function of the red and near-infrared (NIR) spectral bands. The reflectance and NDVI data sets derived from different satellite sensor systems will not be directly comparable due to different spectral response functions (SRF), which has been recognized as one of the most important sources of uncertainty in the multi-sensor data analysis. This study quantified the influence of SRFs on the red and NIR reflectances and NDVI derived from 31 Earth observation satellite sensors. For this purpose, spectroradiometric measurements were performed for paddy rice grown under varied nitrogen levels and at different growth stages. The rice canopy reflectances were convoluted with the spectral response functions of various satellite instruments to simulate sensor-specific reflectances in the red and NIR channels. NDVI values were then calculated using the simulated red and NIR reflectances. The results showed that as compared to the Terra MODIS, the mean relative percentage difference (RPD) ranged from -12.67% to 36.30% for the red reflectance, -8.52% to -0.23% for the NIR reflectance, and -9.32% to 3.10% for the NDVI. The mean absolute percentage difference (APD) compared to the Terra MODIS ranged from 1.28% to 36.30% for the red reflectance, 0.84% to 8.71% for the NIR reflectance, and 0.59% to 9.32% for the NDVI. The lowest APD between MODIS and the other 30 satellite sensors was observed for Landsat5 TM for the red reflectance, CBERS02B CCD for the NIR reflectance and Landsat4 TM for the NDVI. In addition, the largest APD between MODIS and the other 30 satellite sensors was observed for IKONOS for the red reflectance, AVHRR1 onboard NOAA8 for the NIR reflectance and IKONOS for the NDVI. The results also indicated that AVHRRs onboard NOAA7-17 showed higher differences than did the other sensors with respect to MODIS. A series of optimum models were presented for remote sensing data assimilation between MODIS and other sensors.
Results and lessons learned from MODIS polarization sensitivity characterization
NASA Astrophysics Data System (ADS)
Sun, J.; Xiong, X.; Wang, X.; Qiu, S.; Xiong, S.; Waluschka, E.
2006-08-01
In addition to radiometric, spatial, and spectral calibration requirements, MODIS design specifications include polarization sensitivity requirements of less than 2% for all Reflective Solar Bands (RSB) except for the band centered at 412nm. To the best of our knowledge, MODIS was the first imaging radiometer that went through comprehensive system level (end-to-end) polarization characterization. MODIS polarization sensitivity was measured pre-launch at a number of sensor view angles using a laboratory Polarization Source Assembly (PSA) that consists of a rotatable source, a polarizer (Ahrens prism design), and a collimator. This paper describes MODIS polarization characterization approaches used by MODIS Characterization Support Team (MCST) at NASA/GSFC and addresses issues and concerns in the measurements. Results (polarization factor and phase angle) using different analyzing methods are discussed. Also included in this paper is a polarization characterization comparison between Terra and Aqua MODIS. Our previous and recent analysis of MODIS RSB polarization sensitivity could provide useful information for future Earth-observing sensor design, development, and characterization.
Phytoplankton off the West Coast of Africa
NASA Technical Reports Server (NTRS)
2002-01-01
Just off the coast of West Africa, persistent northeasterly trade winds often churn up deep ocean water. When the nutrients in these deep waters reach the ocean's surface, they often give rise to large blooms of phytoplankton. This image of the Mauritanian coast shows swirls of phytoplankton fed by the upwelling of nutrient-rich water. The scene was acquired by the Medium Resolution Imaging Spectrometer (MERIS) aboard the European Space Agency's ENVISAT. MERIS will monitor changes in phytoplankton across Earth's oceans and seas, both for the purpose of managing fisheries and conducting global change research. NASA scientists will use data from this European instrument in the Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) program. The mission of SIMBIOS is to construct a consistent long-term dataset of ocean color (phytoplankton abundance) measurements made by multiple satellite instruments, including the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and the Moderate-Resolution Imaging Spectroradiometer (MODIS). For more information about MERIS and ENVISAT, visit the ENVISAT home page. Image copyright European Space Agency
Neural Networks as a Tool for Constructing Continuous NDVI Time Series from AVHRR and MODIS
NASA Technical Reports Server (NTRS)
Brown, Molly E.; Lary, David J.; Vrieling, Anton; Stathakis, Demetris; Mussa, Hamse
2008-01-01
The long term Advanced Very High Resolution Radiometer-Normalized Difference Vegetation Index (AVHRR-NDVI) record provides a critical historical perspective on vegetation dynamics necessary for global change research. Despite the proliferation of new sources of global, moderate resolution vegetation datasets, the remote sensing community is still struggling to create datasets derived from multiple sensors that allow the simultaneous use of spectral vegetation for time series analysis. To overcome the non-stationary aspect of NDVI, we use an artificial neural network (ANN) to map the NDVI indices from AVHRR to those from MODIS using atmospheric, surface type and sensor-specific inputs to account for the differences between the sensors. The NDVI dynamics and range of MODIS NDVI data at one degree is matched and extended through the AVHRR record. Four years of overlap between the two sensors is used to train a neural network to remove atmospheric and sensor specific effects on the AVHRR NDVI. In this paper, we present the resulting continuous dataset, its relationship to MODIS data, and a validation of the product.
An Overview of Lunar Calibration and Characterization for the EOS Terra and Aqua MODIS
NASA Technical Reports Server (NTRS)
Xiong, X.; Salomonson, V. V.; Sun, J.; Chiang, K.; Xiong, S.; Humphries, S.; Barnes, W.; Guenther, B.
2004-01-01
The Moon can be used as a stable source for Earth-observing sensors on-orbit radiometric and spatial stability monitoring in the VIS and NIR spectral regions. It can also serve as a calibration transfer vehicle among multiple sensors. Nearly identical copies of the Moderate Resolution Imaging Spectroradiometer (MODE) have been operating on-board the NASA's Earth Observing System (EOS) Terra and Aqua satellites since their launches in December 1999 and May 2002, respectively. Terra and Aqua MODIS each make observations in 36 spectral bands covering the spectral range from 0.41 to 14.5 microns and are calibrated on-orbit by a set of on-board calibrations (OBCs) including: 1) a solar diffuser (SD), 2) a solar diffuser stability monitor (SDSM), 3) a blackbody (BB), and 4) a spectro-radiometric calibration assembly (SRCA). In addition to fully utilizing the OBCs, the Moon has been used extensively by both Terra and Aqua MODIS to support their on-orbit calibration and characterization. A 4 This paper provides an overview of applications of lunar calibration and characterization from the MODIS perspective, including monitoring radiometric calibration stability for the reflective solar bands (RSBs), tracking changes of the sensors response versus scan-angle (RVS), examining the sensors spatial performance , and characterizing optical leaks and electronic crosstalk among different spectral bands and detectors. On-orbit calibration consistency between the two MODIS instruments is also addressed. Based on the existing on-orbit time series of the Terra and Aqua MODIS lunar observations, the radiometric difference between the two sensors is less than +/-1% for the RSBs. This method provides a powerful means of performing calibration comparisons among Earth-observing sensors and assures consistent data and science products for the long-term studies of climate and environmental changes.
Climatology and Impact of Convection on the Tropical Tropopause Layer
NASA Technical Reports Server (NTRS)
Robertson, Franklin; Pittman, Jasna
2007-01-01
Water vapor plays an important role in controlling the radiative balance and the chemical composition of the Tropical Tropopause Layer (TTL). Mechanisms ranging from slow transport and dehydration under thermodynamic equilibrium conditions to fast transport in convection have been proposed as regulators of the amount of water vapor in this layer. However,.details of these mechanisms and their relative importance remain poorly understood, The recently completed Tropical Composition, Cloud, and Climate Coupling (TC4) campaign had the opportunity to sample the.TTL over the Eastern Tropical Pacific using ground-based, airborne, and spaceborne instruments. The main goal of this study is to provide the climatological context for this campaign of deep and overshooting convective activity using various satellite observations collected during the summertime. We use the Microwave Humidity Sensor (MRS) aboard the NOAA-18 satellite to investigate the horizontal extent.and the frequency of convection reaching and penetrating into the TTL. We use the Moderate Resolution I1l1aging Spectroradiometer (MODIS) aboard the Aqua satellite to investigate the frequency distribution of daytime cirrus clouds. We use the Tropical Rainfall Measuring Mission(TRMM) and CloudSat to investigate the vertical structure and distribution of hydrometeors in the convective cells, In addition to cloud measurements; we investigate the impact that convection has on the concentration of radiatively important gases such as water vapor and ozone in the TTL by examining satellite measurement obtained from the Microwave Limb Sounder(MLS) aboard the Aura satellite.
Development of a Near Real-Time Hail Damage Swath Identification Algorithm for Vegetation
NASA Technical Reports Server (NTRS)
Bell, Jordan R.; Molthan, Andrew L.; Schultz, Kori A.; McGrath, Kevin M.; Burks, Jason E.
2015-01-01
Every year in the Midwest and Great Plains, widespread greenness forms in conjunction with the latter part of the spring-summer growing season. This prevalent greenness forms as a result of the high concentration of agricultural areas having their crops reach their maturity before the fall harvest. This time of year also coincides with an enhanced hail frequency for the Great Plains (Cintineo et al. 2012). These severe thunderstorms can bring damaging winds and large hail that can result in damage to the surface vegetation. The spatial extent of the damage can relatively small concentrated area or be a vast swath of damage that is visible from space. These large areas of damage have been well documented over the years. In the late 1960s aerial photography was used to evaluate crop damage caused by hail. As satellite remote sensing technology has evolved, the identification of these hail damage streaks has increased. Satellites have made it possible to view these streaks in additional spectrums. Parker et al. (2005) documented two streaks using the Moderate Resolution Imaging Spectroradiometer (MODIS) that occurred in South Dakota. He noted the potential impact that these streaks had on the surface temperature and associated surface fluxes that are impacted by a change in temperature. Gallo et al. (2012) examined at the correlation between radar signatures and ground observations from storms that produced a hail damage swath in Central Iowa also using MODIS. Finally, Molthan et al. (2013) identified hail damage streaks through MODIS, Landsat-7, and SPOT observations of different resolutions for the development of a potential near-real time applications. The manual analysis of hail damage streaks in satellite imagery is both tedious and time consuming, and may be inconsistent from event to event. This study focuses on development of an objective and automatic algorithm to detect these areas of damage in a more efficient and timely manner. This study utilizes the MODIS sensor aboard the NASA Aqua satellite. Aqua was chosen due to an afternoon orbit over the United States when land surface temperatures are relatively warm and improve the contrast between damaged and undamaged areas. This orbit is also similar to the orbit of the Suomi-National Polar-orbiting Partnership (NPP) satellite. The Suomi NPP satellite hosts the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument, which is the next generation of a MODIS-like sensor in polar orbit.
Radiometric characterization of hyperspectral imagers using multispectral sensors
NASA Astrophysics Data System (ADS)
McCorkel, Joel; Thome, Kurt; Leisso, Nathan; Anderson, Nikolaus; Czapla-Myers, Jeff
2009-08-01
The Remote Sensing Group (RSG) at the University of Arizona has a long history of using ground-based test sites for the calibration of airborne and satellite based sensors. Often, ground-truth measurements at these tests sites are not always successful due to weather and funding availability. Therefore, RSG has also employed automated ground instrument approaches and cross-calibration methods to verify the radiometric calibration of a sensor. The goal in the cross-calibration method is to transfer the calibration of a well-known sensor to that of a different sensor. This work studies the feasibility of determining the radiometric calibration of a hyperspectral imager using multispectral imagery. The work relies on the Moderate Resolution Imaging Spectroradiometer (MODIS) as a reference for the hyperspectral sensor Hyperion. Test sites used for comparisons are Railroad Valley in Nevada and a portion of the Libyan Desert in North Africa. Hyperion bands are compared to MODIS by band averaging Hyperion's high spectral resolution data with the relative spectral response of MODIS. The results compare cross-calibration scenarios that differ in image acquisition coincidence, test site used for the calibration, and reference sensor. Cross-calibration results are presented that show agreement between the use of coincident and non-coincident image pairs within 2% in most bands as well as similar agreement between results that employ the different MODIS sensors as a reference.
Terra and Aqua MODIS Design, Radiometry, and Geometry in Support of Land Remote Sensing
NASA Technical Reports Server (NTRS)
Xiong, Xiaoxiong; Wolfe, Robert; Barnes, William; Guenther, Bruce; Vermote, Eric; Saleous, Nazmi; Salomonson, Vincent
2011-01-01
The NASA Earth Observing System (EOS) mission includes the construction and launch of two nearly identical Moderate Resolution Imaging Spectroradiometer (MODIS) instruments. The MODIS proto-flight model (PFM) is onboard the EOS Terra satellite (formerly EOS AM-1) launched on December 18, 1999 and hereafter referred to as Terra MODIS. Flight model-1 (FM1) is onboard the EOS Aqua satellite (formerly EOS PM-1) launched on May 04, 2002 and referred to as Aqua MODIS. MODIS was developed based on the science community s desire to collect multiyear continuous datasets for monitoring changes in the Earth s land, oceans and atmosphere, and the human contributions to these changes. It was designed to measure discrete spectral bands, which includes many used by a number of heritage sensors, and thus extends the heritage datasets to better understand both long- and short-term changes in the global environment (Barnes and Salomonson 1993; Salomonson et al. 2002; Barnes et al. 2002). The MODIS development, launch, and operation were managed by NASA/Goddard Space Flight Center (GSFC), Greenbelt, Maryland. The sensors were designed, built, and tested by Raytheon/ Santa Barbara Remote Sensing (SBRS), Goleta, California. Each MODIS instrument offers 36 spectral bands, which span the spectral region from the visible (0.41 m) to long-wave infrared (14.4 m). MODIS collects data at three different nadir spatial resolutions: 0.25, 0.5, and 1 km. Key design specifications, such as spectral bandwidths, typical scene radiances, required signal-to-noise ratios (SNR) or noise equivalent temperature differences (NEDT), and primary applications of each MODIS spectral band are summarized in Table 7.1. These parameters were the basis for the MODIS design. More details on the evolution of the NASA EOS and development of the MODIS instruments are provided in Chap. 1. This chapter focuses on the MODIS sensor design, radiometry, and geometry as they apply to land remote sensing. With near-daily coverage of the Earth's surface, MODIS provides comprehensive measurements that enable scientists and policy makers to better understand and effectively manage the natural resources on both regional and global scales. Terra, the first large multisensor EOS satellite, is operated in a 10:30 am (local equatorial crossing time, descending southwards) polar orbit. Aqua, the second multisensor EOS satellite is operated in a 1:30 pm (local equatorial crossing time, ascending northwards) polar orbit. With complementing morning and afternoon observations, the Terra and Aqua MODIS, together with other sensors housed on both satellites, have greatly improved our understanding of the dynamics of the global environmental system.
Flooding of the Ob River, Russia
NASA Technical Reports Server (NTRS)
2002-01-01
A mixture of heavy rainfall, snowmelt, and ice jams in late May and early June of this year caused the Ob River and surrounding tributaries in Western Siberia to overflow their banks. The flooding can be seen in thess image taken on June 16, 2002, by the MODIS (Moderate Resolution Imaging Spectroradiometer) instrument aboard the Terra satellite. Last year, the river flooded farther north. Normally, the river resembles a thin black line, but floods have swollen the river considerably. Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC
2017-12-08
On Nov. 22, 2015 at 19:15 UTC the MODIS instrument aboard NASA's Aqua satellite captured this image of Snow across the Midwest. Credit: NASA Goddard MODIS Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Astrophysics Data System (ADS)
Wang, Jun; Yue, Yun; Wang, Yi; Ichoku, Charles; Ellison, Luke; Zeng, Jing
2018-01-01
Largely used in several independent estimates of fire emissions, fire products based on MODIS sensors aboard the Terra and Aqua polar-orbiting satellites have a number of inherent limitations, including (a) inability to detect fires below clouds, (b) significant decrease of detection sensitivity at the edge of scan where pixel sizes are much larger than at nadir, and (c) gaps between adjacent swaths in tropical regions. To remedy these limitations, an empirical method is developed here and applied to correct fire emission estimates based on MODIS pixel level fire radiative power measurements and emission coefficients from the Fire Energetics and Emissions Research (FEER) biomass burning emission inventory. The analysis was performed for January 2010 over the northern sub-Saharan African region. Simulations from WRF-Chem model using original and adjusted emissions are compared with the aerosol optical depth (AOD) products from MODIS and AERONET as well as aerosol vertical profile from CALIOP data. The comparison confirmed an 30-50% improvement in the model simulation performance (in terms of correlation, bias, and spatial pattern of AOD with respect to observations) by the adjusted emissions that not only increases the original emission amount by a factor of two but also results in the spatially continuous estimates of instantaneous fire emissions at daily time scales. Such improvement cannot be achieved by simply scaling the original emission across the study domain. Even with this improvement, a factor of two underestimations still exists in the modeled AOD, which is within the current global fire emissions uncertainty envelope.
Terra Data Confirm Warm, Dry U.S. Winter
NASA Technical Reports Server (NTRS)
2002-01-01
New maps of land surface temperature and snow cover produced by NASA's Terra satellite show this year's winter was warmer than last year's, and the snow line stayed farther north than normal. The observations confirm earlier National Oceanic and Atmospheric Administration reports that the United States was unusually warm and dry this past winter. (Click to read the NASA press release and to access higher-resolution images.) For the last two years, a new sensor aboard Terra has been collecting the most detailed global measurements ever made of our world's land surface temperatures and snow cover. The Moderate-resolution Imaging Spectroradiometer (MODIS) is already giving scientists new insights into our changing planet. Average temperatures during December 2001 through February 2002 for the contiguous United States appear to have been unseasonably warm from the Rockies eastward. In the top image the coldest temperatures appear black, while dark green, blue, red, yellow, and white indicate progressively warmer temperatures. MODIS observes both land surface temperature and emissivity, which indicates how efficiently a surface absorbs and emits thermal radiation. Compared to the winter of 2000-01, temperatures throughout much of the U.S. were warmer in 2001-02. The bottom image depicts the differences on a scale from dark blue (colder this year than last) to red (warmer this year than last). A large region of warm temperatures dominated the northern Great Plains, while the area around the Great Salt Lake was a cold spot. Images courtesy Robert Simmon, NASA GSFC, based upon data courtesy Zhengming Wan, MODIS Land Science Team member at the University of California, Santa Barbara's Institute for Computational Earth System Science
Satellite-based peatland mapping: potential of the MODIS sensor.
D. Pflugmacher; O.N. Krankina; W.B. Cohen
2006-01-01
Peatlands play a major role in the global carbon cycle but are largely overlooked in current large-scale vegetation mapping efforts. In this study, we investigated the potential of the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor to capture extent and distribution of peatlands in the St. Petersburg region of Russia.
MODIS On-Board Blackbody Function and Performance
NASA Technical Reports Server (NTRS)
Xiaoxiong, Xiong; Wenny, Brian N.; Wu, Aisheng; Barnes, William
2009-01-01
Two MODIS instruments are currently in orbit, making continuous global observations in visible to long-wave infrared wavelengths. Compared to heritage sensors, MODIS was built with an advanced set of on-board calibrators, providing sensor radiometric, spectral, and spatial calibration and characterization during on-orbit operation. For the thermal emissive bands (TEB) with wavelengths from 3.7 m to 14.4 m, a v-grooved blackbody (BB) is used as the primary calibration source. The BB temperature is accurately measured each scan (1.47s) using a set of 12 temperature sensors traceable to NIST temperature standards. The onboard BB is nominally operated at a fixed temperature, 290K for Terra MODIS and 285K for Aqua MODIS, to compute the TEB linear calibration coefficients. Periodically, its temperature is varied from 270K (instrument ambient) to 315K in order to evaluate and update the nonlinear calibration coefficients. This paper describes MODIS on-board BB functions with emphasis on on-orbit operation and performance. It examines the BB temperature uncertainties under different operational conditions and their impact on TEB calibration and data product quality. The temperature uniformity of the BB is also evaluated using TEB detector responses at different operating temperatures. On-orbit results demonstrate excellent short-term and long-term stability for both the Terra and Aqua MODIS on-board BB. The on-orbit BB temperature uncertainty is estimated to be 10mK for Terra MODIS at 290K and 5mK for Aqua MODIS at 285K, thus meeting the TEB design specifications. In addition, there has been no measurable BB temperature drift over the entire mission of both Terra and Aqua MODIS.
Cross-comparison of the IRS-P6 AWiFS sensor with the L5 TM, L7 ETM+, & Terra MODIS sensors
Chander, G.; Xiong, X.; Angal, A.; Choi, T.; Malla, R.
2009-01-01
As scientists and decision makers increasingly rely on multiple Earth-observing satellites to address urgent global issues, it is imperative that they can rely on the accuracy of Earth-observing data products. This paper focuses on the crosscomparison of the Indian Remote Sensing (IRS-P6) Advanced Wide Field Sensor (AWiFS) with the Landsat 5 (L5) Thematic Mapper (TM), Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM+), and Terra Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. The cross-comparison was performed using image statistics based on large common areas observed by the sensors within 30 minutes. Because of the limited availability of simultaneous observations between the AWiFS and the Landsat and MODIS sensors, only a few images were analyzed. These initial results are presented. Regression curves and coefficients of determination for the top-of-atmosphere (TOA) trends from these sensors were generated to quantify the uncertainty in these relationships and to provide an assessment of the calibration differences between these sensors. ?? 2009 SPIE.
Corrections to the MODIS Aqua Calibration Derived From MODIS Aqua Ocean Color Products
NASA Technical Reports Server (NTRS)
Meister, Gerhard; Franz, Bryan Alden
2013-01-01
Ocean color products such as, e.g., chlorophyll-a concentration, can be derived from the top-of-atmosphere radiances measured by imaging sensors on earth-orbiting satellites. There are currently three National Aeronautics and Space Administration sensors in orbit capable of providing ocean color products. One of these sensors is the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Aqua satellite, whose ocean color products are currently the most widely used of the three. A recent improvement to the MODIS calibration methodology has used land targets to improve the calibration accuracy. This study evaluates the new calibration methodology and describes further calibration improvements that are built upon the new methodology by including ocean measurements in the form of global temporally averaged water-leaving reflectance measurements. The calibration improvements presented here mainly modify the calibration at the scan edges, taking advantage of the good performance of the land target trending in the center of the scan.
Radiometric cross-calibration of the Terra MODIS and Landsat 7 ETM+ using an invariant desert site
Choi, T.; Angal, A.; Chander, G.; Xiong, X.
2008-01-01
A methodology for long-term radiometric cross-calibration between the Terra Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM+) sensors was developed. The approach involves calibration of near-simultaneous surface observations between 2000 and 2007. Fifty-seven cloud-free image pairs were carefully selected over the Libyan desert for this study. The Libyan desert site (+28.55??, +23.39??), located in northern Africa, is a high reflectance site with high spatial, spectral, and temporal uniformity. Because the test site covers about 12 kmx13 km, accurate geometric preprocessing is required to match the footprint size between the two sensors to avoid uncertainties due to residual image misregistration. MODIS Level IB radiometrically corrected products were reprojected to the corresponding ETM+ image's Universal Transverse Mercator (UTM) grid projection. The 30 m pixels from the ETM+ images were aggregated to match the MODIS spatial resolution (250 m in Bands 1 and 2, or 500 m in Bands 3 to 7). The image data from both sensors were converted to absolute units of at-sensor radiance and top-ofatmosphere (TOA) reflectance for the spectrally matching band pairs. For each band pair, a set of fitted coefficients (slope and offset) is provided to quantify the relationships between the testing sensors. This work focuses on long-term stability and correlation of the Terra MODIS and L7 ETM+ sensors using absolute calibration results over the entire mission of the two sensors. Possible uncertainties are also discussed such as spectral differences in matching band pairs, solar zenith angle change during a collection, and differences in solar irradiance models.
Validation of MODIS Aerosol Retrievals during PRIDE
NASA Technical Reports Server (NTRS)
Levy, R.; Remier, L.; Kaufman, Y.; Kleidman, R.; Holben, B.; Russell, P.; Livingston, J.; Einaudi, Franco (Technical Monitor)
2000-01-01
The Puerto Rico Dust Experiment (PRIDE) was held in Roosevelt Roads, Puerto Rico from June 26 to July 24, 2000. It was intended to study the radiative and microphysical properties of Saharan dust transported into Puerto Rico. PRIDE had the unique distinction of being the first major field experiment to allow direct comparison of aerosol retrievals from MODIS (MODerate Imaging Spectro-radiometer - aboard the Terra satellite) with data from a variety of ground, shipboard and air-based instruments. Over the ocean the MODIS algorithm retrieves optical depth as well as information about the aerosol's size. During PRIDE, MODIS passed over Roosevelt Roads approximately once per day during daylight hours. Due to sunglint and clouds over Puerto Rico, aerosol retrievals can be made from only about half the MODIS scenes. In this study we try to "validate" our aerosol retrievals by comparing to measurements taken by sun-photometers from multiple platforms, including: Cimel (AERONET) from the ground, Microtops (handheld) from ground and ship, and the NASA-Ames sunphotometer from the air.
NASA Astrophysics Data System (ADS)
Pugnaghi, Sergio; Guerrieri, Lorenzo; Corradini, Stefano; Merucci, Luca
2016-07-01
Volcanic plume removal (VPR) is a procedure developed to retrieve the ash optical depth, effective radius and mass, and sulfur dioxide mass contained in a volcanic cloud from the thermal radiance at 8.7, 11, and 12 µm. It is based on an estimation of a virtual image representing what the sensor would have seen in a multispectral thermal image if the volcanic cloud were not present. Ash and sulfur dioxide were retrieved by the first version of the VPR using a very simple atmospheric model that ignored the layer above the volcanic cloud. This new version takes into account the layer of atmosphere above the cloud as well as thermal radiance scattering along the line of sight of the sensor. In addition to improved results, the new version also offers an easier and faster preliminary preparation and includes other types of volcanic particles (andesite, obsidian, pumice, ice crystals, and water droplets). As in the previous version, a set of parameters regarding the volcanic area, particle types, and sensor is required to run the procedure. However, in the new version, only the mean plume temperature is required as input data. In this work, a set of parameters to compute the volcanic cloud transmittance in the three quoted bands, for all the aforementioned particles, for both Mt. Etna (Italy) and Eyjafjallajökull (Iceland) volcanoes, and for the Terra and Aqua MODIS instruments is presented. Three types of tests are carried out to verify the results of the improved VPR. The first uses all the radiative transfer simulations performed to estimate the above mentioned parameters. The second one makes use of two synthetic images, one for Mt. Etna and one for Eyjafjallajökull volcanoes. The third one compares VPR and Look-Up Table (LUT) retrievals analyzing the true image of Eyjafjallajökull volcano acquired by MODIS aboard the Aqua satellite on 11 May 2010 at 14:05 GMT.
Development of Fire Emissions Inventory Using Satellite Data
There are multiple satellites observing and reporting fire imagery at various spatial and temporal resolutions and each system has inherent merits and deficiencies. In our study, data are acquired from the Moderate Resolution Imaging Spectro-radiometer (MODIS) aboard the Nationa...
NASA Technical Reports Server (NTRS)
Sayer, A. M.; Hsu, N. C.; Bettenhausen, C.; Lee, J.; Redemann, J.; Shinozuka, Y.; Schmid, B.
2015-01-01
Absorbing smoke or mineral dust aerosols above clouds (AAC) are a frequent occurrence in certain regions and seasons. Operational aerosol retrievals from sensors like MODIS omit AAC because they are designed to work only over cloud-free scenes. However, AAC can in principle be quantified by these sensors in some situations (e.g. Jethva et al., 2013; Meyer et al., 2013). We present a summary of some analyses of the potential of MODIS-like instruments for this purpose, along with two case studies using airborne observations from the Ames Airborne Tracking Sunphotometer (AATS; http://geo.arc.nasa.gov/sgg/AATS-website/) as a validation data source for a preliminary AAC algorithm applied to MODIS measurements. AAC retrievals will eventually be added to the MODIS Deep Blue (Hsu et al., 2013) processing chain.
MODIS on-orbit thermal emissive bands lifetime performance
NASA Astrophysics Data System (ADS)
Madhavan, Sriharsha; Wu, Aisheng; Chen, Na; Xiong, Xiaoxiong
2016-05-01
MODerate resolution Imaging Spectroradiometer (MODIS), a leading heritage sensor in the fleet of Earth Observing System for the National Aeronautics and Space Administration (NASA) is in space orbit on two spacecrafts. They are the Terra (T) and Aqua (A) platforms. Both instruments have successfully continued to operate beyond the 6 year design life time, with the T-MODIS currently functional beyond 15 years and the A-MODIS operating beyond 13 years respectively. The MODIS sensor characteristics include a spectral coverage from 0.41 μm - 14.4 μm, of which wavelengths ranging from 3.7 μm - 14. 4 μm cover the thermal infrared region also referred to as the Thermal Emissive Bands (TEBs). The TEBs is calibrated using a v-grooved BlackBody (BB) whose temperature measurements are traceable to the National Institute of Standards and Technology temperature scales. The TEBs calibration based on the onboard BB is extremely important for its high radiometric fidelity. In this paper, we provide a complete characterization of the lifetime instrument performance of both MODIS instruments in terms of the sensor gain, the Noise Equivalent difference Temperature, key instrument telemetry such as the BB lifetime trends, the instrument temperature trends, the Cold Focal Plane telemetry and finally, the total assessed calibration uncertainty of the TEBs.
MODIS On-Orbit Thermal Emissive Bands Lifetime Performance
NASA Technical Reports Server (NTRS)
Madhavan, Sriharsha; Xiong, Xiaoxiong
2016-01-01
MODerate resolution Imaging Spectroradiometer (MODIS), a leading heritage sensor in the fleet of Earth Observing System for the National Aeronautics and Space Administration (NASA) is in space orbit on two spacecrafts. They are the Terra (T) and Aqua (A) platforms. Both instruments have successfully continued to operate beyond the 6 year design life time, with the T-MODIS currently functional beyond 15 years and the A-MODIS operating beyond 13 years respectively. The MODIS sensor characteristics include a spectral coverage from 0.41 micron 14.4 micron, of which wavelengths ranging from 3.7 micron 14. 4 micron cover the thermal infrared region also referred to as the Thermal Emissive Bands (TEBs). The TEBs is calibrated using a v-grooved BlackBody (BB) whose temperature measurements are traceable to the National Institute of Standards and Technology temperature scales. The TEBs calibration based on the onboard BB is extremely important for its high radiometric fidelity. In this paper, we provide a complete characterization of the lifetime instrument performance of both MODIS instruments in terms of the sensor gain, the Noise Equivalent difference Temperature, key instrument telemetry such as the BB lifetime trends, the instrument temperature trends, the Cold Focal Plane telemetry and finally, the total assessed calibration uncertainty of the TEBs.
NASA Sees First Land-falling Tropical Cyclone in Yemen
2017-12-08
On Nov. 3, 2015 at 07:20 UTC (2:20 a.m. EDT) the MODIS instrument aboard NASA's Aqua satellite captured this image of Tropical Cyclone Chapala over Yemen. Credit: NASA Goddard MODIS Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Hurricane Patricia over Mexico
2017-12-08
On Oct. 23 at 17:30 UTC (1:30 p.m. EDT) the MODIS instrument aboard NASA's Terra satellite saw Hurricane Patricia moving over Mexico. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Tropical Storm Haiyan Makes Landfall in Northern Vietnam
2013-11-12
On Nov. 11 at 05:45 UTC, the MODIS instrument aboard NASA's Aqua satellite captured this image of Tropical Storm Haiyan over mainland China. Credit: NASA Goddard MODIS Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
2017-12-08
On Oct. 19 at 1500 UTC (11 a.m. EDT), the MODIS instrument aboard NASA's Terra satellite captured this visible image of Hurricane Gonzalo east of Newfoundland, Canada. ..Credit: NASA Goddard MODIS Rapid Response Team ..NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
2017-12-08
On Oct. 17 at 15:15 UTC (11:15 a.m EDT) the MODIS instrument aboard NASA's Aqua satellite saw Hurricane Gonzalo's northern quadrant over Bermuda as it moved to landfall. ..Credit: NASA Goddard MODIS Rapid Response Team ..NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
History and Future for the Happy Marriage between the MODIS Land team and Fluxnet
NASA Astrophysics Data System (ADS)
Running, S. W.
2015-12-01
When I wrote the proposal to NASA in 1988 for daily global evapotranspiration and gross primary production algorithms for the MODIS sensor, I had no validation plan. Fluxnet probably saved my MODIS career by developing a global network of rigorously calibrated towers measuring water and carbon fluxes over a wide variety of ecosystems that I could not even envision at the time that first proposal was written. However my enthusiasm for Fluxnet was not reciprocated by the Fluxnet community until we began providing 7 x 7 pixel MODIS Land datasets exactly over each of their towers every 8 days, without them having to crawl thru the global datasets and make individual orders. This system, known informally as the MODIS ASCII cutouts, began in 2002 and operates at the Oak Ridge DAAC to this day, cementing a mutually beneficial data interchange between the Fluxnet and remote sensing communities. This talk will briefly discuss the history of MODIS validation with flux towers, and flux spatial scaling with MODIS data. More importantly I will detail the future continuity of global biophysical datasets in the post-MODIS era, and what next generation sensors will provide.
Sixteen Years of Terra MODIS On-Orbit Operation, Calibration, and Performance
NASA Technical Reports Server (NTRS)
Xiong, X.; Angal, A.; Wu, A.; Link, D.; Geng, X.; Barnes, W.; Solomonson, V.
2016-01-01
Terra MODIS has successfully operated for more than 16 years since its launch in December 1999. From its observations, many science data products have been generated in support of a broad range of research activities and remote sensing applications. Terra MODIS has operated in a number of configurations and experienced a few anomalies, including spacecraft and instrument related events. MODIS collects data in 36 spectral bands that are calibrated regularly by a set of on-board calibrators for their radiometric, spectral, and spatial performance. Periodic lunar observations and long-term radiometric trending over well-characterized ground targets are also used to support sensor on-orbit calibration. Dedicated efforts made by the MODIS Characterization Support Team (MCST) and continuing support from the MODIS Science Team have contributed to the mission success, enabling well-calibrated data products to be continuously generated and routinely delivered to users worldwide. This paper presents an overview of Terra MODIS mission operations, calibration activities, and instrument performance of the past 16 years. It illustrates and describes the results of key sensor performance parameters derived from on-orbit calibration and characterization, such as signal-to-noise ratio (SNR), noise equivalent temperature difference (NEdT), solar diffuser (SD) degradation, changes in sensor responses, center wavelengths, and band-to-band registration (BBR). Also discussed in this paper are the calibration approaches and strategies developed and implemented in support of MODIS Level 1B data production and re-processing, major challenging issues, and lessons learned. (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Comparison of MODIS and AVHRR 16-day normalized difference vegetation index composite data
Gallo, Kevin P.; Ji, Lei; Reed, Bradley C.; Dwyer, John L.; Eidenshink, Jeffery C.
2004-01-01
Normalized difference vegetation index (NDVI) data derived from visible and near-infrared data acquired by the MODIS and AVHRR sensors were compared over the same time periods and a variety of land cover classes within the conterminous USA. The relationship between the AVHRR derived NDVI values and those of future sensors is critical to continued long term monitoring of land surface properties. The results indicate that the 16-day composite values are quite similar over the 23 intervals of 2001 that were analyzed, and a linear relationship exists between the NDVI values from the two sensors. The composite AVHRR NDVI data were associated with over 90% of the variation in the MODIS NDVI values. Copyright 2004 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Santamaría-Artigas, A. E.; Franch, B.; Vermote, E.; Roger, J. C.; Justice, C. O.
2017-12-01
The 30+ years daily surface reflectance long term data record (LTDR) from the Advanced Very High Resolution Radiometer (AVHRR) is a valuable source of information for long-term studies of the Earth surface. This LTDR was generated by combining observations from multiple AVHRR sensors aboard different NOAA satellites starting from the early 1980s, and due to the lack of on-board calibration its quality should be evaluated. Previous studies have used observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) over pseudo-invariant calibration sites (PICS) as a calibrated reference to assess the performance of AVHRR products. However, this limits the evaluation to the period after MODIS launch. In this work, the AVHRR surface reflectance LTDR was evaluated against Landsat-5 Thematic Mapper (TM) data using observations from 4 well known pseudo-invariant calibration sites (i.e. Sonoran, Saharan, Sudan1, and Libya4) over an extended time period (1984-2011). For the intercomparison, AVHRR and TM observations of each site were extracted and averaged over a 20 km x 20 km area and aggregated to monthly mean values. In order to account for the spectral differences between sensors, Hyperion hyperspectral data from the Sonoran and Libya4 sites were convolved with sensor-specific relative spectral responses, and used to compute spectral band adjustment factors (SBAFs). Results of the intercomparison are reported in terms of the root mean square difference (RMSD) and determination coefficient (r2). In general, there is good agreement between the surface reflectance products from both sensors. The overall RMSD and r2 for all the sites and AVHRR/TM combinations were 0.03 and 0.85 for the red band, and 0.04 and 0.81 for the near-infrared band. These results show the strong performance of the AVHRR surface reflectance LTDR through all of the considered period. Thus, remarking its usefulness and value for long term Earth studies. Figure 1 shows the red (filled markers) and near-infrared (empty markers) surface reflectance from AVHRR and TM for the complete evaluation period over the Saharan (diamond), Libya4 (square), Sudan1 (triangle), and Sonoran (circle) PICS.
Using the Moon to Track MODIS Reflective Solar Bands Calibration Stability
NASA Technical Reports Server (NTRS)
Xiong, Xiaoxiong; Geng, Xu; Angal, Amit; Sun, Junqiang; Barnes, William
2011-01-01
MODIS has 20 reflective solar bands (RSB) in the visible (VIS), near infrared (NIR), and short-wave infrared (SWIR) spectral regions. In addition to instrument on-board calibrators (OBC), lunar observations have been used by both Terra and Aqua MODIS to track their reflective solar bands (RSB) on-orbit calibration stability. On a near monthly basis, lunar observations are scheduled and implemented for each instrument at nearly the same lunar phase angles. A time series of normalized detector responses to the Moon is used to monitor its on-orbit calibration stability. The normalization is applied to correct the differences of lunar viewing geometries and the Sun-Moon-Sensor distances among different lunar observations. Initially, the lunar calibration stability monitoring was only applied to MODIS bands (1-4 and 8-12) that do not saturate while viewing the Moon. As the mission continued, we extended the lunar calibration stability monitoring to other RSB bands (bands 13-16) that contain saturated pixels. For these bands, the calibration stability is monitored by referencing their non-saturated pixels to the matched pixels in a non-saturation band. In this paper, we describe this relative approach and apply it to MODIS regularly scheduled lunar observations. We present lunar trending results for both Terra and Aqua MODIS over their entire missions. Also discussed in the paper are the advantages and limitations of this approach and its potential applications to other earth-observing sensors. Keywords: Terra, Aqua, MODIS, sensor, Moon, calibration, stability
Scientific impact of MODIS C5 calibration degradation and C6+ improvements
NASA Astrophysics Data System (ADS)
Lyapustin, A.; Wang, Y.; Xiong, X.; Meister, G.; Platnick, S.; Levy, R.; Franz, B.; Korkin, S.; Hilker, T.; Tucker, J.; Hall, F.; Sellers, P.; Wu, A.; Angal, A.
2014-12-01
The Collection 6 (C6) MODIS (Moderate Resolution Imaging Spectroradiometer) land and atmosphere data sets are scheduled for release in 2014. C6 contains significant revisions of the calibration approach to account for sensor aging. This analysis documents the presence of systematic temporal trends in the visible and near-infrared (500 m) bands of the Collection 5 (C5) MODIS Terra and, to lesser extent, in MODIS Aqua geophysical data sets. Sensor degradation is largest in the blue band (B3) of the MODIS sensor on Terra and decreases with wavelength. Calibration degradation causes negative global trends in multiple MODIS C5 products including the dark target algorithm's aerosol optical depth over land and Ångström exponent over the ocean, global liquid water and ice cloud optical thickness, as well as surface reflectance and vegetation indices, including the normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI). As the C5 production will be maintained for another year in parallel with C6, one objective of this paper is to raise awareness of the calibration-related trends for the broad MODIS user community. The new C6 calibration approach removes major calibrations trends in the Level 1B (L1B) data. This paper also introduces an enhanced C6+ calibration of the MODIS data set which includes an additional polarization correction (PC) to compensate for the increased polarization sensitivity of MODIS Terra since about 2007, as well as detrending and Terra-Aqua cross-calibration over quasi-stable desert calibration sites. The PC algorithm, developed by the MODIS ocean biology processing group (OBPG), removes residual scan angle, mirror side and seasonal biases from aerosol and surface reflectance (SR) records along with spectral distortions of SR. Using the multiangle implementation of atmospheric correction (MAIAC) algorithm over deserts, we have also developed a detrending and cross-calibration method which removes residual decadal trends on the order of several tenths of 1% of the top-of-atmosphere (TOA) reflectance in the visible and near-infrared MODIS bands B1-B4, and provides a good consistency between the two MODIS sensors. MAIAC analysis over the southern USA shows that the C6+ approach removed an additional negative decadal trend of Terra ΔNDVI ~ 0.01 as compared to Aqua data. This change is particularly important for analysis of vegetation dynamics and trends in the tropics, e.g., Amazon rainforest, where the morning orbit of Terra provides considerably more cloud-free observations compared to the afternoon Aqua measurements.
Scientific Impact of MODIS C5 Calibration Degradation and C6+ Improvements
NASA Technical Reports Server (NTRS)
Lyapustin, A.; Wang, Y.; Xiong, X.; Meister, G.; Platnick, S.; Levy, R.; Franz, B.; Korkin, S.; Hilker, T.; Tucker, J.;
2014-01-01
The Collection 6 (C6) MODIS (Moderate Resolution Imaging Spectroradiometer) land and atmosphere data sets are scheduled for release in 2014. C6 contains significant revisions of the calibration approach to account for sensor aging. This analysis documents the presence of systematic temporal trends in the visible and near-infrared (500 m) bands of the Collection 5 (C5) MODIS Terra and, to lesser extent, in MODIS Aqua geophysical data sets. Sensor degradation is largest in the blue band (B3) of the MODIS sensor on Terra and decreases with wavelength. Calibration degradation causes negative global trends in multiple MODIS C5 products including the dark target algorithm's aerosol optical depth over land and Ångstrom exponent over the ocean, global liquid water and ice cloud optical thickness, as well as surface reflectance and vegetation indices, including the normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI). As the C5 production will be maintained for another year in parallel with C6, one objective of this paper is to raise awareness of the calibration-related trends for the broad MODIS user community. The new C6 calibration approach removes major calibrations trends in the Level 1B (L1B) data. This paper also introduces an enhanced C6C calibration of the MODIS data set which includes an additional polarization correction (PC) to compensate for the increased polarization sensitivity of MODIS Terra since about 2007, as well as detrending and Terra- Aqua cross-calibration over quasi-stable desert calibration sites. The PC algorithm, developed by the MODIS ocean biology processing group (OBPG), removes residual scan angle, mirror side and seasonal biases from aerosol and surface reflectance (SR) records along with spectral distortions of SR. Using the multiangle implementation of atmospheric correction (MAIAC) algorithm over deserts, we have also developed a detrending and cross-calibration method which removes residual decadal trends on the order of several tenths of 1% of the top-of-atmosphere (TOA) reflectance in the visible and near-infrared MODIS bands B1-B4, and provides a good consistency between the two MODIS sensors. MAIAC analysis over the southern USA shows that the C6C approach removed an additional negative decadal trend of Terra (Delta)NDVI approx.0.01 as compared to Aqua data. This change is particularly important for analysis of vegetation dynamics and trends in the tropics, e.g., Amazon rainforest, where the morning orbit of Terra provides considerably more cloud-free observations compared to the afternoon Aqua measurements.
NASA Technical Reports Server (NTRS)
Oudrari, Hassan; Schwarting, Thomas; Chiang, Kwo-Fu; McIntire, Jeff; Pan, Chunhui; Xiong, Xiaoxiong; Butler, James
2010-01-01
Electronic and optical crosstalk are radiometric challenges that often exist in the focal plane design in many sensors Such as MODIS. A methodology is described to assess the impact due to optical and electronic crosstalk on the measured radiance, and thereafter, the retrieval of geophysical products using MODIS Level I data sets. Based on a postulated set of electronic and optical crosstalk coefficients, and a set of MODIS scenes, we have simulated a system signal contamination on any detector on a focal plane when another detector on that focal plane is stimulated with a geophysical signal. The original MODIS scenes and the crosstalk impacted scenes can be used with validated geophysical algorithms to derive the final data products. Products contaminated with crosstalk are then compared to those without contamination to assess the impact magnitude and location, and will allow us to separate Out-Of-Band (OOB) leaks from hand-to-hand optical crosstalk, and identify potential failures to meet climate research requirements.
Assessment of Global Carbon Dioxide Concentration Using MODIS and GOSAT Data
Guo, Meng; Wang, Xiufeng; Li, Jing; Yi, Kunpeng; Zhong, Guosheng; Tani, Hiroshi
2012-01-01
Carbon dioxide (CO2) is the most important greenhouse gas (GHG) in the atmosphere and is the greatest contributor to global warming. CO2 concentration data are usually obtained from ground observation stations or from a small number of satellites. Because of the limited number of observations and the short time series of satellite data, it is difficult to monitor CO2 concentrations on regional or global scales for a long time. The use of the remote sensing data such as the Advanced Very High Resolution Radiometer (AVHRR) or Moderate Resolution Imaging Spectroradiometer (MODIS) data can overcome these problems, particularly in areas with low densities of CO2 concentration watch stations. A model based on temperature (MOD11C3), vegetation cover (MOD13C2 and MOD15A2) and productivity (MOD17A2) of MODIS (which we have named the TVP model) was developed in the current study to assess CO2 concentrations on a global scale. We assumed that CO2 concentration from the Thermal And Near infrared Sensor for carbon Observation (TANSO) aboard the Greenhouse gases Observing SATellite (GOSAT) are the true values and we used these values to check the TVP model accuracy. The results indicate that the accuracy of the TVP model is different in different continents: the greatest Pearson’s correlation coefficient (R2) was 0.75 in Eurasia (RMSE = 1.16) and South America (RMSE = 1.17); the lowest R2 was 0.57 in Australia (RMSE = 0.73). Compared with the TANSO-observed CO2 concentration (XCO2), we found that the accuracy throughout the World is between −2.56∼3.14 ppm. Potential sources of TVP model uncertainties were also analyzed and identified. PMID:23443383
NASA Astrophysics Data System (ADS)
Krintz, I. A.; Ruble, W.; Sherman, J. P.
2017-12-01
Satellite-based measurements of aerosol optical depth (AOD), such as those made by NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the TERRA and AQUA spacecraft, are often used in studies of aerosol direct radiative forcing (DRF) on regional to global scales due to daily near-global coverage. However, these measurements require validation by ground-based instrumentation, which is limited due to the cost of research-grade instrumentation. Furthermore, satellite-based AOD agreement with "ground-truth" instruments is weaker over mountainous regions (Levy et al., 2010). To aid in satellite validation, a low cost handheld sunphotometer has been developed which will be suitable for deployment to multiple sites to form a citizen science network as part of an upcoming proposal. A microcontroller, along with temperature and pressure sensors, has been included in this design to ease the process of taking measurements and transferring data for processing. Although LED-based sunphotometers have been used for a number of years (Brooks and Mims, 2001), this design uses filtered photodiodes which appear to have less of a temperature dependence. The interface has been designed to be intuitive to citizen scientists of all ages, nationalities, and backgrounds, so that deployment to primary schools and international sites will be as seamless as possible. Presented here is the instrument design, as well as initial results of a comparison with NASA Aerosol Robotic Network (AERONET) and MODIS-measured AOD. Future revisions to the instrument design, such as incorporation of surface-mount devices to cut down on circuit board size, will allow for an even smaller and more cost effective solution suitable for a global sunphotometer network.
Assessment of global carbon dioxide concentration using MODIS and GOSAT data.
Guo, Meng; Wang, Xiufeng; Li, Jing; Yi, Kunpeng; Zhong, Guosheng; Tani, Hiroshi
2012-11-26
Carbon dioxide (CO(2)) is the most important greenhouse gas (GHG) in the atmosphere and is the greatest contributor to global warming. CO(2) concentration data are usually obtained from ground observation stations or from a small number of satellites. Because of the limited number of observations and the short time series of satellite data, it is difficult to monitor CO(2) concentrations on regional or global scales for a long time. The use of the remote sensing data such as the Advanced Very High Resolution Radiometer (AVHRR) or Moderate Resolution Imaging Spectroradiometer (MODIS) data can overcome these problems, particularly in areas with low densities of CO(2) concentration watch stations. A model based on temperature (MOD11C3), vegetation cover (MOD13C2 and MOD15A2) and productivity (MOD17A2) of MODIS (which we have named the TVP model) was developed in the current study to assess CO(2) concentrations on a global scale. We assumed that CO(2) concentration from the Thermal And Near infrared Sensor for carbon Observation (TANSO) aboard the Greenhouse gases Observing SATellite (GOSAT) are the true values and we used these values to check the TVP model accuracy. The results indicate that the accuracy of the TVP model is different in different continents: the greatest Pearson's correlation coefficient (R2) was 0.75 in Eurasia (RMSE = 1.16) and South America (RMSE = 1.17); the lowest R2 was 0.57 in Australia (RMSE = 0.73). Compared with the TANSO-observed CO(2) concentration (XCO(2)), we found that the accuracy throughout the World is between -2.56~3.14 ppm. Potential sources of TVP model uncertainties were also analyzed and identified.
NASA Technical Reports Server (NTRS)
Knievel, Jason C.; Rife, Daran L.; Grim, Joseph A.; Hahmann, Andrea N.; Hacker, Joshua P.; Ge, Ming; Fisher, Henry H.
2010-01-01
This paper describes a simple technique for creating regional, high-resolution, daytime and nighttime composites of sea surface temperature (SST) for use in operational numerical weather prediction (NWP). The composites are based on observations from NASA s Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Aqua and Terra. The data used typically are available nearly in real time, are applicable anywhere on the globe, and are capable of roughly representing the diurnal cycle in SST. The composites resolution is much higher than that of many other standard SST products used for operational NWP, including the low- and high-resolution Real-Time Global (RTG) analyses. The difference in resolution is key because several studies have shown that highly resolved SSTs are important for driving the air sea interactions that shape patterns of static stability, vertical and horizontal wind shear, and divergence in the planetary boundary layer. The MODIS-based composites are compared to in situ observations from buoys and other platforms operated by the National Data Buoy Center (NDBC) off the coasts of New England, the mid-Atlantic, and Florida. Mean differences, mean absolute differences, and root-mean-square differences between the composites and the NDBC observations are all within tenths of a degree of those calculated between RTG analyses and the NDBC observations. This is true whether or not one accounts for the mean offset between the skin temperatures of the MODIS dataset and the bulk temperatures of the NDBC observations and RTG analyses. Near the coast, the MODIS-based composites tend to agree more with NDBC observations than do the RTG analyses. The opposite is true away from the coast. All of these differences in point-wise comparisons among the SST datasets are small compared to the 61.08C accuracy of the NDBC SST sensors. Because skin-temperature variations from land to water so strongly affect the development and life cycle of the sea breeze, this phenomenon was chosen for demonstrating the use of the MODIS-based composite in an NWP model. A simulated sea breeze in the vicinity of New York City and Long Island shows a small, net, but far from universal improvement when MODIS-based composites are used in place of RTG analyses. The timing of the sea breeze s arrival is more accurate at some stations, and the near-surface temperature, wind, and humidity within the breeze are more realistic.
NASA Technical Reports Server (NTRS)
2002-01-01
Almost an iceberg 'nursery,' icebergs continue to break away from the Ross Ice Shelf in Antarctica. This image from the MODerate-resolution Imaging Spectroradiometer (MODIS) aboard the Terra spacecraft, shows the level of activity along the shelf near Ross Island on September 21, 2000. The B-15 fragments are remnants of the huge iceberg (nearly 4,250 sqare miles) which broke away from the Antarctic shelf in late March 2000. Slightly visible is the line where iceberg B-20 broke away from the shelf in the last week of September. Cracks in the Antarctic ice shelf are closely observed by satellite and are of interest to scientists studying the potential effects of global warming. This true-color image was produced using MODIS bands 1, 3, and 4. Image by Brian Montgomery, NASA GSFC; data courtesy MODIS Science Team
AVHRR, MODIS, and VIIRS radiometric stability and consistency in SST bands
NASA Astrophysics Data System (ADS)
Liang, XingMing; Ignatov, Alexander
2013-06-01
Monitoring of IR Clear-Sky Radiances over Oceans for SST (MICROS; www.star.nesdis.noaa.gov/sod/sst/micros) is NESDIS near-real time web-based radiance monitoring system. It analyzes Model (Community Radiative Transfer Model, CRTM) minus Observation (M-O) biases in brightness temperatures (BT) in three bands centered at 3.7 (IR37), 11 (IR11), and 12 µm (IR12), for several AVHRR (NOAA-16, -17, -18, -19, Metop-A, -B), VIIRS (Suomi National Polar Partnership, S-NPP), and MODIS (Terra, Aqua) sensors. Double-differences (DD) are employed to check BTs for radiometric stability and consistency. All sensors are stable, with the exception of two AVHRRs, onboard NOAA-16 and to a lesser extent NOAA-18, and generally consistent. VIIRS onboard S-NPP, launched in October 2011, is well in-family, especially after its calibration was fine-tuned on 7 March 2012. MODIS M-O biases were initially out-of-family by up to -0.6 K, due to incorrect CRTM transmittance coefficients. Following MICROS feedback, CRTM Team updated coefficients and brought MODIS back in-family. Terra and Aqua BTs are very consistent in IR11 and IR12 but show cross-platform bias of 0.3 K in IR37, likely attributed to MODIS characterization. Work with MODIS Characterization Support Team is underway to resolve this. Initial analyses of AVHRR onboard Metop-B launched in September 2012 suggest that its BTs are offset from Metop-A by up to ˜0.3 K. Overall, MICROS DDs are well suited to evaluate the sensors stability, but dedicated effort is needed to ensure consistent radiative transfer modeling (RTM) calculations for various sensors before DDs can be used in Global Space-based Inter-Calibration System (GSICS) quantitative applications.
Typhoon Haiyan Near Hainan Island, China
2013-11-12
On Nov. 10 at 03:30 UTC/Nov. 9 at 10:30 p.m. EDT, the MODIS instrument aboard NASA's Terra satellite showed the center of Typhoon Haiyan just south of Hainan Island, China in the South China Sea. Credit: NASA Goddard MODIS Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Typhoon Usagi approaching China
2013-09-23
The Moderate Resolution Imaging Spectroradiometer or MODIS instrument that flies aboard NASA's Terra satellite captured this image of Typhoon Usagi on Sept. 22 at 02:45 UTC/Sept. 21 at 10:45 p.m. EDT on its approach to a landfall in China. Credit: NASA Goddard MODIS Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Tropical Storm Andrea June 6, 2013
2017-12-08
This image from the MODIS instrument aboard NASA's Terra satellite shows tropical storm Andrea on June 6, 2013, at 2:45 p.m. EDT, as the system was making landfall in the big bend area of Florida. Credit: NASA Goddard's MODIS Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Observes Super Typhoon Hagupit; Philippines Under Warnings
2017-12-08
On Dec. 4 at 02:10 UTC, the MODIS instrument aboard NASA's Terra satellite took this visible image of Super Typhoon Hagupit approaching the Philippines. Image Credit: NASA Goddard's MODIS Rapid Response Team Read more: 1.usa.gov/12q3ssK NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
2017-12-08
Cloud vortices off Heard Island, south Indian Ocean. The Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Aqua satellite captured this true-color image of sea ice off Heard Island on Nov 2, 2015 at 5:02 AM EST (09:20 UTC). Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Multitemporal cross-calibration of the Terra MODIS and Landsat 7 ETM+ reflective solar bands
Angal, Amit; Xiong, Xiaoxiong; Wu, Aisheng; Chander, Gyanesh; Choi, Taeyoung
2013-01-01
In recent years, there has been a significant increase in the use of remotely sensed data to address global issues. With the open data policy, the data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Enhanced Thematic Mapper Plus (ETM+) sensors have become a critical component of numerous applications. These two sensors have been operational for more than a decade, providing a rich archive of multispectral imagery for analysis of mutitemporal remote sensing data. This paper focuses on evaluating the radiometric calibration agreement between MODIS and ETM+ using the near-simultaneous and cloud-free image pairs over an African pseudo-invariant calibration site, Libya 4. To account for the combined uncertainties in the top-of-atmosphere (TOA) reflectance due to surface and atmospheric bidirectional reflectance distribution function (BRDF), a semiempirical BRDF model was adopted to normalize the TOA reflectance to the same illumination and viewing geometry. In addition, the spectra from the Earth Observing-1 (EO-1) Hyperion were used to compute spectral corrections between the corresponding MODIS and ETM+ spectral bands. As EO-1 Hyperion scenes were not available for all MODIS and ETM+ data pairs, MODerate resolution atmospheric TRANsmission (MODTRAN) 5.0 simulations were also used to adjust for differences due to the presence or lack of absorption features in some of the bands. A MODIS split-window algorithm provides the atmospheric water vapor column abundance during the overpasses for the MODTRAN simulations. Additionally, the column atmospheric water vapor content during the overpass was retrieved using the MODIS precipitable water vapor product. After performing these adjustments, the radiometric cross-calibration of the two sensors was consistent to within 7%. Some drifts in the response of the bands are evident, with MODIS band 3 being the largest of about 6% over 10 years, a change that will be corrected in Collection 6 MODIS processing.
Multitemporal Cross-Calibration of the Terra MODIS and Landsat 7 ETM+ Reflective Solar Bands
NASA Technical Reports Server (NTRS)
Angal, Amit; Xiong, Xiaoxiong; Wu, Aisheng; Changler, Gyanesh; Choi, Taeyoyung
2013-01-01
In recent years, there has been a significant increase in the use of remotely sensed data to address global issues. With the open data policy, the data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Enhanced Thematic Mapper Plus (ETM+) sensors have become a critical component of numerous applications. These two sensors have been operational for more than a decade, providing a rich archive of multispectral imagery for analysis of mutitemporal remote sensing data. This paper focuses on evaluating the radiometric calibration agreement between MODIS and ETM+ using the near-simultaneous and cloud-free image pairs over an African pseudo-invariant calibration site, Libya 4. To account for the combined uncertainties in the top-of-atmosphere (TOA) reflectance due to surface and atmospheric bidirectional reflectance distribution function (BRDF), a semiempirical BRDF model was adopted to normalize the TOA reflectance to the same illumination and viewing geometry. In addition, the spectra from the Earth Observing-1 (EO-1) Hyperion were used to compute spectral corrections between the corresponding MODIS and ETM+ spectral bands. As EO-1 Hyperion scenes were not available for all MODIS and ETM+ data pairs, MODerate resolution atmospheric TRANsmission (MODTRAN) 5.0 simulations were also used to adjust for differences due to the presence or lack of absorption features in some of the bands. A MODIS split-window algorithm provides the atmospheric water vapor column abundance during the overpasses for the MODTRAN simulations. Additionally, the column atmospheric water vapor content during the overpass was retrieved using the MODIS precipitable water vapor product. After performing these adjustments, the radiometric cross-calibration of the two sensors was consistent to within 7%. Some drifts in the response of the bands are evident, with MODIS band 3 being the largest of about 6% over 10 years, a change that will be corrected in Collection 6 MODIS processing.
Cross-calibration of the Oceansat-2 Ocean Colour Monitor (OCM) with Terra and Aqua MODIS
NASA Astrophysics Data System (ADS)
Angal, Amit; Brinkmann, Jake; Kumar, A. Senthil; Xiong, Xiaoxiong
2016-05-01
The Ocean Colour Monitor (OCM) sensor on-board the Oceansat-2 spacecraft has been operational since its launch in September, 2009. The Oceansat 2 OCM primary design goal is to provide continuity to Oceansat-1 OCM to obtain information regarding various ocean-colour variables. OCM acquires Earth scene measurements in eight multi-spectral bands in the range from 402 to 885 nm. The MODIS sensor on the Terra and Aqua spacecraft has been successfully operating for over a decade collecting measurements of the earth's land, ocean surface and atmosphere. The MODIS spectral bands, designed for land and ocean applications, cover the spectral range from 412 to 869 nm. This study focuses on comparing the radiometric calibration stability of OCM using near-simultaneous TOA measurements with Terra and Aqua MODIS acquired over the Libya 4 target. Same-day scene-pairs from all three sensors (OCM, Terra and Aqua MODIS) between August, 2014 and September, 2015 were chosen for this analysis. On a given day, the OCM overpass is approximately an hour after the Terra overpass and an hour before the Aqua overpass. Due to the orbital differences between Terra and Aqua, MODIS images the Libya 4 site at different scan-angles on a given day. Some of the high-gain ocean bands for MODIS tend to saturate while viewing the bright Libya 4 target, but bands 8-10 (412 nm - 486 nm) provide an unsaturated response and are used for comparison with the spectrally similar OCM bands. All the standard corrections such as bidirectional reflectance factor (BRDF), relative spectral response mismatch, and impact for atmospheric water-vapor are applied to obtain the reflectance differences between OCM and the two MODIS instruments. Furthermore, OCM is used as a transfer radiometer to obtain the calibration differences between Terra and Aqua MODIS reflective solar bands.
Cross-Calibration of the Oceansat-2 Ocean Colour Monitor (OCM) with Terra and Aqua MODIS
NASA Technical Reports Server (NTRS)
Angal, Amit; Brinkmann, Jake; Kumar, A. Senthil; Xiong, Xiaoxiong
2016-01-01
The Ocean Colour Monitor (OCM) sensor on-board the Oceansat-2 spacecraft has been operational since its launch in September, 2009. The Oceansat 2 OCM primary design goal is to provide continuity to Oceansat-1 OCM to obtain information regarding various ocean-colour variables. OCM acquires Earth scene measurements in eight multi-spectral bands in the range from 402 to 885 nm. The MODIS sensor on the Terra and Aqua spacecraft has been successfully operating for over a decade collecting measurements of the earth's land, ocean surface and atmosphere. The MODIS spectral bands, designed for land and ocean applications, cover the spectral range from 412 to 869 nm. This study focuses on comparing the radiometric calibration stability of OCM using near-simultaneous TOA measurements with Terra and Aqua MODIS acquired over the Libya 4 target. Same-day scene-pairs from all three sensors (OCM, Terra and Aqua MODIS) between August, 2014 and September, 2015 were chosen for this analysis. On a given day, the OCM overpass is approximately an hour after the Terra overpass and an hour before the Aqua overpass. Due to the orbital differences between Terra and Aqua, MODIS images the Libya 4 site at different scan-angles on a given day. Some of the high-gain ocean bands for MODIS tend to saturate while viewing the bright Libya 4 target, but bands 8-10 (412 nm - 486 nm) provide an unsaturated response and are used for comparison with the spectrally similar OCM bands. All the standard corrections such as bidirectional reflectance factor (BRDF), relative spectral response mismatch, and impact for atmospheric water-vapor are applied to obtain the reflectance differences between OCM and the two MODIS instruments. Furthermore, OCM is used as a transfer radiometer to obtain the calibration differences between Terra and Aqua MODIS reflective solar bands.
Terrestrial remote sensing science and algorithms planned for EOS/MODIS
Running, S. W.; Justice, C.O.; Salomonson, V.V.; Hall, D.; Barker, J.; Kaufmann, Y. J.; Strahler, Alan H.; Huete, A.R.; Muller, Jan-Peter; Vanderbilt, V.; Wan, Z.; Teillet, P.; Carneggie, David M. Geological Survey (U.S.) Ohlen
1994-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) will be the primary daily global monitoring sensor on the NASA Earth Observing System (EOS) satellites, scheduled for launch on the EOS-AM platform in June 1998 and the EOS-PM platform in December 2000. MODIS is a 36 channel radiometer covering 0·415-14·235 μm wavelengths, with spatial resolution from 250 m to 1 km at nadir. MODIS will be the primary EOS sensor for providing data on terrestrial biospheric dynamics and process activity. This paper presents the suite of global land products currently planned for EOSDIS implementation, to be developed by the authors of this paper, the MODIS land team (MODLAND). These include spectral albedo, land cover, spectral vegetation indices, snow and ice cover, surface temperature and fire, and a number of biophysical variables that will allow computation of global carbon cycles, hydrologic balances and biogeochemistry of critical greenhouse gases. Additionally, the regular global coverage of these variables will allow accurate surface change detection, a fundamental determinant of global change.
NASA Astrophysics Data System (ADS)
Zakšek, Klemen; Schroedter-Homscheidt, Marion
Some applications, e.g. from traffic or energy management, require air temperature data in high spatial and temporal resolution at two metres height above the ground ( T2m), sometimes in near-real-time. Thus, a parameterization based on boundary layer physical principles was developed that determines the air temperature from remote sensing data (SEVIRI data aboard the MSG and MODIS data aboard Terra and Aqua satellites). The method consists of two parts. First, a downscaling procedure from the SEVIRI pixel resolution of several kilometres to a one kilometre spatial resolution is performed using a regression analysis between the land surface temperature ( LST) and the normalized differential vegetation index ( NDVI) acquired by the MODIS instrument. Second, the lapse rate between the LST and T2m is removed using an empirical parameterization that requires albedo, down-welling surface short-wave flux, relief characteristics and NDVI data. The method was successfully tested for Slovenia, the French region Franche-Comté and southern Germany for the period from May to December 2005, indicating that the parameterization is valid for Central Europe. This parameterization results in a root mean square deviation RMSD of 2.0 K during the daytime with a bias of -0.01 K and a correlation coefficient of 0.95. This is promising, especially considering the high temporal (30 min) and spatial resolution (1000 m) of the results.
NASA Astrophysics Data System (ADS)
de Leeuw, Gerrit; Sogacheva, Larisa; Rodriguez, Edith; Kourtidis, Konstantinos; Georgoulias, Aristeidis K.; Alexandri, Georgia; Amiridis, Vassilis; Proestakis, Emmanouil; Marinou, Eleni; Xue, Yong; van der A, Ronald
2018-02-01
The retrieval of aerosol properties from satellite observations provides their spatial distribution over a wide area in cloud-free conditions. As such, they complement ground-based measurements by providing information over sparsely instrumented areas, albeit that significant differences may exist in both the type of information obtained and the temporal information from satellite and ground-based observations. In this paper, information from different types of satellite-based instruments is used to provide a 3-D climatology of aerosol properties over mainland China, i.e., vertical profiles of extinction coefficients from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), a lidar flying aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite and the column-integrated extinction (aerosol optical depth - AOD) available from three radiometers: the European Space Agency (ESA)'s Along-Track Scanning Radiometer version 2 (ATSR-2), Advanced Along-Track Scanning Radiometer (AATSR) (together referred to as ATSR) and NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Terra satellite, together spanning the period 1995-2015. AOD data are retrieved from ATSR using the ATSR dual view (ADV) v2.31 algorithm, while for MODIS Collection 6 (C6) the AOD data set is used that was obtained from merging the AODs obtained from the dark target (DT) and deep blue (DB) algorithms, further referred to as the DTDB merged AOD product. These data sets are validated and differences are compared using Aerosol Robotic Network (AERONET) version 2 L2.0 AOD data as reference. The results show that, over China, ATSR slightly underestimates the AOD and MODIS slightly overestimates the AOD. Consequently, ATSR AOD is overall lower than that from MODIS, and the difference increases with increasing AOD. The comparison also shows that neither of the ATSR and MODIS AOD data sets is better than the other one everywhere. However, ATSR ADV has limitations over bright surfaces which the MODIS DB was designed for. To allow for comparison of MODIS C6 results with previous analyses where MODIS Collection 5.1 (C5.1) data were used, also the difference between the C6 and C5.1 merged DTDB data sets from MODIS/Terra over China is briefly discussed. The AOD data sets show strong seasonal differences and the seasonal features vary with latitude and longitude across China. Two-decadal AOD time series, averaged over all of mainland China, are presented and briefly discussed. Using the 17 years of ATSR data as the basis and MODIS/Terra to follow the temporal evolution in recent years when the environmental satellite Envisat was lost requires a comparison of the data sets for the overlapping period to show their complementarity. ATSR precedes the MODIS time series between 1995 and 2000 and shows a distinct increase in the AOD over this period. The two data series show similar variations during the overlapping period between 2000 and 2011, with minima and maxima in the same years. MODIS extends this time series beyond the end of the Envisat period in 2012, showing decreasing AOD.
NASA Astrophysics Data System (ADS)
Boiyo, Richard; Kumar, K. Raghavendra; Zhao, Tianliang
2017-11-01
Over the last two decades, a number of space-borne sensors have been used to retrieve aerosol optical depth (AOD). The reliability of these datasets over East Africa (EA), however, is an important issue in the interpretation of regional aerosol variability. This study provides an intercomparison and validation of AOD retrievals from the MODIS-Terra (DT and DB), MISR and OMI sensors against ground-based measurements from the AERONET over three sites (CRPSM_Malindi, Nairobi, and ICIPE_Mbita) in Kenya, EA during the periods 2008-2013, 2005-2009 and 2006-2015, respectively. The analysis revealed that MISR performed better over the three sites with about 82.5% of paired AOD data falling within the error envelope (EE). MODIS-DT showed good agreement against AERONET with 59.05% of paired AOD falling within the sensor EE over terrestrial surfaces with relatively high vegetation cover. The comparison between MODIS-DB and AERONET revealed an overall lower performance with lower Gfraction (48.93%) and lower correlation r = 0.58; while AOD retrieved from OMI showed less correspondence with AERONET data with lower Gfraction (68.89%) and lowest correlation r = 0.31. The monthly evaluation of AODs retrieved from the sensors against AERONET AOD indicates that MODIS-DT has the best performance over the three sites with highest correlation (0.71-0.84), lowest RMSE and spread closer to the AERONET. Regarding seasonal analysis, MISR performed well during most seasons over Nairobi and Mbita; while MODIS-DT performed better than all other sensors during most seasons over Malindi. Furthermore, the best seasonal performance of most sensors relative to AERONET data occurred during June-August (JJA) attributed to modulations induced by a precipitation-vegetation factor to AOD satellite retrieval algorithms. The study revealed the strength and weakness of each of the retrieval algorithm and forms the basis for further research on the validation of satellite retrieved aerosol products over EA.
NASA Astrophysics Data System (ADS)
Chen, Xuexia; Wu, Aisheng; Xiong, Xiaoxiong J.; Chen, Na
2017-09-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) is a key scientific instrument that was launched into Earth orbit by NASA in 1999 on board the Terra (EOS AM) satellite and in 2002 on board the Aqua (EOS PM) satellite. Terra and Aqua MODIS collect the entire Earth's images every 1 to 2 days in 36 spectral bands. MODIS band 1 (0.620- 0.670 μm) and band 2 (0.841-0.876 μm) have nadir spatial resolution of 250 m and their measurements are crucial to derive key land surface products. This study evaluates the performance of the Collection 6 (C6, and C6.1) L1B of both Terra and Aqua MODIS bands 1 and 2 using Simultaneous Nadir Overpass (SNO) data to compare with AVHRR/3 sensors. We examine the relative stability between Terra and Aqua MODIS in reference to NOAA N15 and N19 the Advanced Very High Resolution Radiometer (AVHRR/3). The comparisons for MODIS to AVHRR/3 are over a fifteenyear period from 2002 to 2017. Results from this study provide a quantitative assessment of Terra and Aqua MODIS band 1 and band 2 calibration stability and the relative differences through the NOAA N15 and N19 AVHRR/3 sensors.
Aircraft Data of the Rodeo/Chediski Fire
NASA Technical Reports Server (NTRS)
2002-01-01
New images of Arizona's Rodeo-Chediski wildfire, which according to news reports is the largest in the state's history, have been acquired by NASA's MODIS Airborne Simulator flying aboard the space agency's ER-2 aircraft. The images show the extent of the burn area-now more than 450,000 acres-and pinpoint areas of active burning as of the morning of July 1. The images below include both true-color images and false-color images designed to highlight the burned areas. They were acquired during a transit of the ER-2 aircraft from NASA's Dryden Flight Research Center, Edwards, Calif. to Key West Naval Air Facility, Fla. in preparation for an upcoming field experiment. The newly acquired wildfire images will be used to validate rapid response wildfire maps produced by NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard the Terra spacecraft. They will also be provided to the U.S. Forest Service for potential use in post-fire damage assessments. The false-color image (top) shows the southern portion of the fire, and reveals that not all the terrain within the fire's perimeter burned to the same degree. Burned areas are red and remaining vegetation is green. In the center of the image, the bright orange pixels are actively burning fire, and the smoke drifting southward from the blaze appears blue. Burned area at the top of the true-color image (bottom) appears charcoal, and a smoke plume drifting southwest from the center of the image reveals the location of actively burning fire. See more images at MODIS Airborne Simulator Images of the Rodeo/Chediski Fire, Arizona and the Earth Observatory's Natural Hazards section. Images courtesy of MODIS Airborne Simulator ER-2 team, NASA GSFC and NASA Dryden Flight Research Center
MODIS Global Sea Surface Temperature
NASA Technical Reports Server (NTRS)
2002-01-01
Every day the Moderate-resolution Imaging Spectroradiometer (MODIS) measures sea surface temperature over the entire globe with high accuracy. This false-color image shows a one-month composite for May 2001. Red and yellow indicates warmer temperatures, green is an intermediate value, while blues and then purples are progressively colder values. The new MODIS sea surface temperature product will be particularly useful in studies of temperature anomalies, such as El Nino, as well as research into how air-sea interactions drive changes in weather and climate patterns. In the high resolution image, notice the amazing detail in some of the regional current patterns. For instance, notice the cold water currents that move from Antarctica northward along South America's west coast. These cold, deep waters upwell along an equatorial swath around and to the west of the Galapagos Islands. Note the warm, wide currents of the Gulf Stream moving up the United States' east coast, carrying Caribbean warmth toward Newfoundland and across the Atlantic toward Western Europe. Note the warm tongue of water extending from Africa's east coast to well south of the Cape of Good Hope. MODIS was launched in December 1999 aboard NASA's Terra satellite. For more details on this and other MODIS data products, please see NASA Unveils Spectacular Suite of New Global Data Products from MODIS. Image courtesy MODIS Ocean Group, NASA GSFC, and the University of Miami
NASA Astrophysics Data System (ADS)
Levy, R. C.; Munchak, L. A.; Mattoo, S.; Patadia, F.; Remer, L. A.; Holz, R. E.
2015-10-01
To answer fundamental questions about aerosols in our changing climate, we must quantify both the current state of aerosols and how they are changing. Although NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) sensors have provided quantitative information about global aerosol optical depth (AOD) for more than a decade, this period is still too short to create an aerosol climate data record (CDR). The Visible Infrared Imaging Radiometer Suite (VIIRS) was launched on the Suomi-NPP satellite in late 2011, with additional copies planned for future satellites. Can the MODIS aerosol data record be continued with VIIRS to create a consistent CDR? When compared to ground-based AERONET data, the VIIRS Environmental Data Record (V_EDR) has similar validation statistics as the MODIS Collection 6 (M_C6) product. However, the V_EDR and M_C6 are offset in regards to global AOD magnitudes, and tend to provide different maps of 0.55 μm AOD and 0.55/0.86 μm-based Ångström Exponent (AE). One reason is that the retrieval algorithms are different. Using the Intermediate File Format (IFF) for both MODIS and VIIRS data, we have tested whether we can apply a single MODIS-like (ML) dark-target algorithm on both sensors that leads to product convergence. Except for catering the radiative transfer and aerosol lookup tables to each sensor's specific wavelength bands, the ML algorithm is the same for both. We run the ML algorithm on both sensors between March 2012 and May 2014, and compare monthly mean AOD time series with each other and with M_C6 and V_EDR products. Focusing on the March-April-May (MAM) 2013 period, we compared additional statistics that include global and gridded 1° × 1° AOD and AE, histograms, sampling frequencies, and collocations with ground-based AERONET. Over land, use of the ML algorithm clearly reduces the differences between the MODIS and VIIRS-based AOD. However, although global offsets are near zero, some regional biases remain, especially in cloud fields and over brighter surface targets. Over ocean, use of the ML algorithm actually increases the offset between VIIRS and MODIS-based AOD (to ~ 0.025), while reducing the differences between AE. We characterize algorithm retrievability through statistics of retrieval fraction. In spite of differences between retrieved AOD magnitudes, the ML algorithm will lead to similar decisions about "whether to retrieve" on each sensor. Finally, we discuss how issues of calibration, as well as instrument spatial resolution may be contributing to the statistics and the ability to create a consistent MODIS → VIIRS aerosol CDR.
NASA Astrophysics Data System (ADS)
Levy, R. C.; Munchak, L. A.; Mattoo, S.; Patadia, F.; Remer, L. A.; Holz, R. E.
2015-07-01
To answer fundamental questions about aerosols in our changing climate, we must quantify both the current state of aerosols and how they are changing. Although NASA's Moderate resolution Imaging Spectroradiometer (MODIS) sensors have provided quantitative information about global aerosol optical depth (AOD) for more than a decade, this period is still too short to create an aerosol climate data record (CDR). The Visible Infrared Imaging Radiometer Suite (VIIRS) was launched on the Suomi-NPP satellite in late 2011, with additional copies planned for future satellites. Can the MODIS aerosol data record be continued with VIIRS to create a consistent CDR? When compared to ground-based AERONET data, the VIIRS Environmental Data Record (V_EDR) has similar validation statistics as the MODIS Collection 6 (M_C6) product. However, the V_EDR and M_C6 are offset in regards to global AOD magnitudes, and tend to provide different maps of 0.55 μm AOD and 0.55/0.86 μm-based Ångstrom Exponent (AE). One reason is that the retrieval algorithms are different. Using the Intermediate File Format (IFF) for both MODIS and VIIRS data, we have tested whether we can apply a single MODIS-like (ML) dark-target algorithm on both sensors that leads to product convergence. Except for catering the radiative transfer and aerosol lookup tables to each sensor's specific wavelength bands, the ML algorithm is the same for both. We run the ML algorithm on both sensors between March 2012 and May 2014, and compare monthly mean AOD time series with each other and with M_C6 and V_EDR products. Focusing on the March-April-May (MAM) 2013 period, we compared additional statistics that include global and gridded 1° × 1° AOD and AE, histograms, sampling frequencies, and collocations with ground-based AERONET. Over land, use of the ML algorithm clearly reduces the differences between the MODIS and VIIRS-based AOD. However, although global offsets are near zero, some regional biases remain, especially in cloud fields and over brighter surface targets. Over ocean, use of the ML algorithm actually increases the offset between VIIRS and MODIS-based AOD (to ∼ 0.025), while reducing the differences between AE. We characterize algorithm retrievibility through statistics of retrieval fraction. In spite of differences between retrieved AOD magnitudes, the ML algorithm will lead to similar decisions about "whether to retrieve" on each sensor. Finally, we discuss how issues of calibration, as well as instrument spatial resolution may be contributing to the statistics and the ability to create a consistent MODIS → VIIRS aerosol CDR.
MODIS Cloud Microphysics Product (MOD_PR06OD) Data Collection 6 Updates
NASA Technical Reports Server (NTRS)
Wind, Gala; Platnick, Steven; King, Michael D.
2014-01-01
The MODIS Cloud Optical and Microphysical Product (MOD_PR060D) for Data Collection 6 has entered full scale production. Aqua reprocessing is almost completed and Terra reprocessing will begin shortly. Unlike previous collections, the CHIMAERA code base allows for simultaneous processing for multiple sensors and the operational CHIMAERA 6.0.76 stream is also available for VIIRS and SEVIRI sensors and for our E-MAS airborne platform.
MODIS Retrieval of Dust Aerosol
NASA Technical Reports Server (NTRS)
Remer, Lorraine A.; Kaufman, Yoram J.; Tanre, Didier
2003-01-01
The MODerate resolution Imaging Spectroradiometer (MODIS) currently aboard both the Terra and Aqua satellites produces a suite of products designed to characterize global aerosol distribution, optical thickness and particle size. Never before has a space-borne instrument been able to provide such detailed information, operationally, on a nearly global basis every day. The three years of Terra-MODIS data have been validated by comparing with co-located AERONET observations of aerosol optical thickness and derivations of aerosol size parameters. Some 8000 comparison points located at 133 AERONET sites around the globe show that the MODIS aerosol optical thickness retrievals are accurate to within the pre-launch expectations. However, the validation in regions dominated by desert dust is less accurate than in regions dominated by fine mode aerosol or background marine sea salt. The discrepancy is most apparent in retrievals of aerosol size parameters over ocean. In dust situations, the MODIS algorithm tends to under predict particle size because the reflectances at top of atmosphere measured by MODIS exhibit the stronger spectral signature expected by smaller particles. This pattern is consistent with the angular and spectral signature of non-spherical particles. All possible aerosol models in the MODIS Look-Up Tables were constructed from Mie theory, assuming a spherical shape. Using a combination of MODIS and AERONET observations, in regimes dominated by desert dust, we construct phase functions, empirically, with no assumption of particle shape. These new phase functions are introduced into the MODIS algorithm, in lieu of the original options for large dust-like particles. The results will be analyzed and examined.
Virtual Sensors: Using Data Mining to Efficiently Estimate Spectra
NASA Technical Reports Server (NTRS)
Srivastava, Ashok; Oza, Nikunj; Stroeve, Julienne
2004-01-01
Detecting clouds within a satellite image is essential for retrieving surface geophysical parameters, such as albedo and temperature, from optical and thermal imagery because the retrieval methods tend to be valid for clear skies only. Thus, routine satellite data processing requires reliable automated cloud detection algorithms that are applicable to many surface types. Unfortunately, cloud detection over snow and ice is difficult due to the lack of spectral contrast between clouds and snow. Snow and clouds are both highly reflective in the visible wavelen,ats and often show little contrast in the thermal Infrared. However, at 1.6 microns, the spectral signatures of snow and clouds differ enough to allow improved snow/ice/cloud discrimination. The recent Terra and Aqua Moderate Resolution Imaging Spectro-Radiometer (MODIS) sensors have a channel (channel 6) at 1.6 microns. Presently the most comprehensive, long-term information on surface albedo and temperature over snow- and ice-covered surfaces comes from the Advanced Very High Resolution Radiometer ( AVHRR) sensor that has been providing imagery since July 1981. The earlier AVHRR sensors (e.g. AVHRR/2) did not however have a channel designed for discriminating clouds from snow, such as the 1.6 micron channel available on the more recent AVHRR/3 or the MODIS sensors. In the absence of the 1.6 micron channel, the AVHRR Polar Pathfinder (APP) product performs cloud detection using a combination of time-series analysis and multispectral threshold tests based on the satellite's measuring channels to produce a cloud mask. The method has been found to work reasonably well over sea ice, but not so well over the ice sheets. Thus, improving the cloud mask in the APP dataset would be extremely helpful toward increasing the accuracy of the albedo and temperature retrievals, as well as extending the time-series of albedo and temperature retrievals from the more recent sensors to the historical ones. In this work, we use data mining methods to construct a model of MODIS channel 6 as a function of other channels that are common to both MODIS and AVHRR. The idea is to use the model to generate the equivalent of MODIS channel 6 for AVHRR as a function of the AVHRR equivalents to MODIS channels. We call this a Virtual Sensor because it predicts unmeasured spectra. The goal is to use this virtual channel 6. to yield a cloud mask superior to what is currently used in APP . Our results show that several data mining methods such as multilayer perceptrons (MLPs), ensemble methods (e.g., bagging), and kernel methods (e.g., support vector machines) generate channel 6 for unseen MODIS images with high accuracy. Because the true channel 6 is not available for AVHRR images, we qualitatively assess the virtual channel 6 for several AVHRR images.
Qingyuan Zhang; Xiangming Xiao; Bobby Braswell; Ernst Linder; Scott Ollinger; Marie-Louise Smith; Julian P. Jenkins; Fred Baret; Andrew D. Richardson; Berrien III Moore; Rakesh Minocha
2006-01-01
In this paper, we present an improved procedure for collecting no or little atmosphere- and snow-contaminated observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. The resultant time series of daily MODIS data of a temperate deciduous broadleaf forest (the Bartlett Experimental Forest) in 2004 show strong seasonal dynamics of surface...
NASA Sees Hurricane Arthur's Cloud-Covered Eye
2014-07-03
This visible image of Tropical Storm Arthur was taken by the MODIS instrument aboard NASA's Aqua satellite on July 2 at 18:50 UTC (2:50 p.m. EDT). A cloud-covered eye is clearly visible. Credit: NASA Goddard MODIS Rapid Response Team Read more: www.nasa.gov/content/goddard/arthur-atlantic/ NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Volcanic Activity at Shiveluch and Plosky Tolbachik
2017-12-08
On March 7, 2013 the Terra satellite passed over eastern Russia, allowing the Moderate Resolution Imaging Spectroradiometer (MODIS) flying aboard to capture volcanic activity at Shiveluch and Plosky Tolbachik, on the Kamchatka Peninsula, in eastern Russia. This image was captured at 0050 UTC. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Detector Noise Characterization and Performance of MODIS Thermal Emissive Bands
NASA Technical Reports Server (NTRS)
Xiong, X.; Wu, A.; Chen, N.; Chiang, K.; Xiong, S.; Wenny, B.; Barnes, W. L.
2007-01-01
MODIS has 16 thermal emissive bands, a total of 160 individual detectors (10 for each spectral bands), located on the two cold focal plane assemblies (CFPA). MODIS TEB detectors were fully characterized pre-launch in a thermal vacuum (TV) environment using a NIST traceable blackbody calibration source (BCS) with temperatures ranging from 170 to 340K. On-orbit the TEB detectors are calibrated using an on-board blackbody (BB) on a scan-by-scan basis. For nominal on-orbit operation, the on-board BB temperature is typically controlled at 285K for Aqua MODIS and 290K for Terra MODIS. For the MODIS TEB calibration, each detector's noise equivalent temperature difference (NEdT) is often used to assess its performance and this parameter is a major contributor to the calibration uncertainty. Because of its impact on sensor calibration and data product quality, each MODIS TEB detector's NEdT is monitored on a daily basis at a fixed BB temperature and completely characterized on a regular basis at a number of BB temperatures. In this paper, we describe MODIS on-orbit TEB NEdT characterization activities, approaches, and results. We compare both pre-launch and on-orbit performance with sensor design specification and examine detector noise characterization impact on the calibration uncertainty. To date, 135 TEB detectors (out of a total of 160 detectors) in Terra MODIS (launched in December 1999) and 158 in Aqua MODIS (launched in May 2002) continue to perform with their NEdT below (or better than) their design specifications. A complete summary of all TEB noisy detectors, identified both pre-launch and on-orbit, is provided.
Chander, G.; Xiong, X.(J.); Choi, T.(J.); Angal, A.
2010-01-01
The ability to detect and quantify changes in the Earth's environment depends on sensors that can provide calibrated, consistent measurements of the Earth's surface features through time. A critical step in this process is to put image data from different sensors onto a common radiometric scale. This work focuses on monitoring the long-term on-orbit calibration stability of the Terra Moderate Resolution Imaging Spectroradiometer (MODIS) and the Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM+) sensors using the Committee on Earth Observation Satellites (CEOS) reference standard pseudo-invariant test sites (Libya 4, Mauritania 1/2, Algeria 3, Libya 1, and Algeria 5). These sites have been frequently used as radiometric targets because of their relatively stable surface conditions temporally. This study was performed using all cloud-free calibrated images from the Terra MODIS and the L7 ETM+ sensors, acquired from launch to December 2008. Homogeneous regions of interest (ROI) were selected in the calibrated images and the mean target statistics were derived from sensor measurements in terms of top-of-atmosphere (TOA) reflectance. For each band pair, a set of fitted coefficients (slope and offset) is provided to monitor the long-term stability over very stable pseudo-invariant test sites. The average percent differences in intercept from the long-term trends obtained from the ETM + TOA reflectance estimates relative to the MODIS for all the CEOS reference standard test sites range from 2.5% to 15%. This gives an estimate of the collective differences due to the Relative Spectral Response (RSR) characteristics of each sensor, bi-directional reflectance distribution function (BRDF), spectral signature of the ground target, and atmospheric composition. The lifetime TOA reflectance trends from both sensors over 10 years are extremely stable, changing by no more than 0.4% per year in its TOA reflectance over the CEOS reference standard test sites.
Vegetation monitoring for Guatemala: a comparison between simulated VIIRS and MODIS satellite data
Boken, Vijendra K.; Easson, Gregory L.; Rowland, James
2010-01-01
The advanced very high resolution radiometer (AVHRR) and moderate resolution imaging spectroradiometer (MODIS) data are being widely used for vegetation monitoring across the globe. However, sensors will discontinue collecting these data in the near future. National Aeronautics and Space Administration is planning to launch a new sensor, visible infrared imaging radiometer suite (VIIRS), to continue to provide satellite data for vegetation monitoring. This article presents a case study of Guatemala and compares the simulated VIIRS-Normalized Difference Vegetation Index (NDVI) with MODIS-NDVI for four different dates each in 2003 and 2005. The dissimilarity between VIIRS-NDVI and MODIS-NDVI was examined on the basis of the percent difference, the two-tailed student's t-test, and the coefficient of determination, R 2. The per cent difference was found to be within 3%, the p-value ranged between 0.52 and 0.99, and R 2 exceeded 0.88 for all major types of vegetation (basic grains, rubber, sugarcane, coffee and forests) found in Guatemala. It was therefore concluded that VIIRS will be almost equally capable of vegetation monitoring as MODIS.
NASA Technical Reports Server (NTRS)
2002-01-01
More than 2,000 firefighters continue to battle the 'Viejas Wildfire' which has consumed more than 11,000 acres in the dry, mountainous region just east of San Diego, California. Authorities there believe the blaze may have been started on Wednesday, January 3, by a cigarette thrown from a car on Interstate 8. Shifty winds with gusts of up to 65 miles per hour helped fan and quickly spread the flames. Late Wednesday, eyewitnesses reported seeing thick smoke and dime-sized bits of ash blowing toward downtown San Diego, prompting health officials there to warn residents with respiratory conditions to take necessary precautions. Parts of other communities, such as Alpine, have been evacuated to avoid the rapidly spreading flames. Firefighters estimate that the Viejas Fire, named after a nearby Native American reservation, will be contained by late Saturday, January 6. This image of the wildfire was acquired on January 4, 2001, by the Moderate-resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra spacecraft. The scene shows the wildfire and smoke plume from the Alpine region, east of San Diego. This false-color image was generated using a combination of MODIS' thermal infrared data, at 1-kilometer resolution, along with two of the sensor's 500-meter resolution visible channels. These data were acquired via direct broadcast by the SeaSpace TeraScan SX-EOS receiving station at SeaSpace Corporation in Poway, California. The image was processed, Earth-located and enhanced using TeraScan software. Image courtesy Dave Brooks, SeaSpace Corporation
NASA Technical Reports Server (NTRS)
2002-01-01
Running through the deserts of Iraq (image center) are the Tigris (right) and Euphrates (left) Rivers. The land between the confluence of the two rivers is the culturally, historically, and ecologically significant Mesopotamian Fertile Crescent, situated just southeast of center in this true-color image from NASA's Moderate-resolution Imaging Spectroradiometer (MODIS), acquired on August 29, 2001. Recent reports estimate that within the past two decades, over 85 percent of the wetlands making up the Fertile Crescent have disappeared due to demand for irrigation in the region. In the 250-m (full resolution) image, several remarkable features can be seen. Desert sands and sediments are pouring into the Persian Gulf, bottom right, bringing nutrients that have supported a phytoplankton bloom that colors the waters of the Gulf bright blue and green. In the upper right, beyond the mountainous terrain of northern Iran, the Caspian Sea is banked in by clouds. In the lower left of the image, the reddish-orange sands of Saudi Arabia's An Nafud desert stretch eastward and become the Ad Dahna', a narrow band of sand mountains also called the River of Sand. Several manmade features are also apparent. At Iraq's southeastern border with Kuwait, burning oil smoke is visible. Crisscrossing the deserts of southern Iraq and Saudi Arabia are white lines that reveal the location of oil pipelines. The unusual polygonal shapes that appear to the east of the Ad Dahna' are areas that are protected from grazing. MODIS is one of five sensors flying aboard NASA's Terra satellite.
NASA Technical Reports Server (NTRS)
2002-01-01
To paraphrase English author T.H. White, borders are the one thing a man sees that a bird cannot see as it flies high overhead. For the 15th consecutive day, differences in ideology have sparked violence and tension in the middle-east as the rest of the world watches, concerned. This true-color image of the region was taken on September 10, 2000, by the MODerate-resolution Imaging Spectroradiometer (MODIS) flying aboard NASA's Terra spacecraft. The image shows the lands of Israel along the eastern shore of the Mediterranean Sea, with the countries of Jordan to the southeast and Syria to the Northeast. Jerusalem, labeled, is Israel's capital city and Aman, labeled, is the capital of Jordan. The region known as the West Bank lies between the two countries. Running from north to south, the Jordan River links the Sea of Galilee to the Dead Sea. Image courtesy Jacques Descloitres, MODIS Land Group, NASA GSFC
NASA Technical Reports Server (NTRS)
2002-01-01
During the summer of 2002, frequent, heavy rains gave rise to floods and landslides throughout China that have killed over 1,000 people and affected millions. This false-color image of the western Yangtze River and Dongting Lake in central China was acquired on August 21, 2002, by the Moderate-resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra spacecraft. (right) The latest flooding crisis in China centers on Dingtong Lake in the center of the image. Heavy rains have caused it to swell over its banks and swamp lakefront towns in the province of Hunan. As of August 23, 2002, more than 250,000 people have been evacuated, and over one million people have been brought in to fortify the dikes around the lake. Normally the lake would appear much smaller and more defined in the MODIS image. Credit: Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC.
Passive and Active Detection of Clouds: Comparisons between MODIS and GLAS Observations
NASA Technical Reports Server (NTRS)
Mahesh, Ashwin; Gray, Mark A.; Palm, Stephen P.; Hart, William D.; Spinhirne, James D.
2003-01-01
The Geoscience Laser Altimeter System (GLAS), launched on board the Ice, Cloud and Land Elevation Satellite in January 2003 provides space-borne laser observations of atmospheric layers. GLAS provides opportunities to validate passive observations of the atmosphere for the first time from space with an active optical instrument. Data from the Moderate Resolution Imaging Spectrometer aboard the Aqua satellite is examined along with GLAS observations of cloud layers. In more than three-quarters of the cases, MODIS scene identification from spectral radiances agrees with GLAS. Disagreement between the two platforms is most significant over snow-covered surfaces in the northern hemisphere. Daytime clouds detected by GLAS are also more easily seen in the MODIS data as well, compared to observations made at night. These comparisons illustrate the capabilities of active remote sensing to validate and assess passive measurements, and also to complement them in studies of atmospheric layers.
Gu, Yingxin; Wylie, Bruce K.
2015-01-01
The satellite-derived growing season time-integrated Normalized Difference Vegetation Index (GSN) has been used as a proxy for vegetation biomass productivity. The 250-m GSN data estimated from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors have been used for terrestrial ecosystem modeling and monitoring. High temporal resolution with a wide range of wavelengths make the MODIS land surface products robust and reliable. The long-term 30-m Landsat data provide spatial detailed information for characterizing human-scale processes and have been used for land cover and land change studies. The main goal of this study is to combine 250-m MODIS GSN and 30-m Landsat observations to generate a quality-improved high spatial resolution (30-m) GSN database. A rule-based piecewise regression GSN model based on MODIS and Landsat data was developed. Results show a strong correlation between predicted GSN and actual GSN (r = 0.97, average error = 0.026). The most important Landsat variables in the GSN model are Normalized Difference Vegetation Indices (NDVIs) in May and August. The derived MODIS-Landsat-based 30-m GSN map provides biophysical information for moderate-scale ecological features. This multiple sensor study retains the detailed seasonal dynamic information captured by MODIS and leverages the high-resolution information from Landsat, which will be useful for regional ecosystem studies.
Modis, SeaWIFS, and Pathfinder funded activities
NASA Technical Reports Server (NTRS)
Evans, Robert H.
1995-01-01
MODIS (Moderate Resolution Imaging Spectrometer), SeaWIFS (Sea-viewing Wide Field Sensor), Pathfinder, and DSP (Digital Signal Processor) objectives are summarized. An overview of current progress is given for the automatic processing database, client/server status, matchup database, and DSP support.
NASA Technical Reports Server (NTRS)
Werner, Frank; Wind, Galina; Zhang, Zhibo; Platnick, Steven; Di Girolamo, Larry; Zhao, Guangyu; Amarasinghe, Nandana; Meyer, Kerry
2016-01-01
A research-level retrieval algorithm for cloud optical and microphysical properties is developed for the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) aboard the Terra satellite. It is based on the operational MODIS algorithm. This paper documents the technical details of this algorithm and evaluates the retrievals for selected marine boundary layer cloud scenes through comparisons with the operational MODIS Data Collection 6 (C6) cloud product. The newly developed, ASTERspecific cloud masking algorithm is evaluated through comparison with an independent algorithm reported in Zhao and Di Girolamo (2006). To validate and evaluate the cloud optical thickness (tau) and cloud effective radius (r(sub eff)) from ASTER, the high-spatial-resolution ASTER observations are first aggregated to the same 1000m resolution as MODIS. Subsequently, tau(sub aA) and r(sub eff, aA) retrieved from the aggregated ASTER radiances are compared with the collocated MODIS retrievals. For overcast pixels, the two data sets agree very well with Pearson's product-moment correlation coefficients of R greater than 0.970. However, for partially cloudy pixels there are significant differences between r(sub eff, aA) and the MODIS results which can exceed 10 micrometers. Moreover, it is shown that the numerous delicate cloud structures in the example marine boundary layer scenes, resolved by the high-resolution ASTER retrievals, are smoothed by the MODIS observations. The overall good agreement between the research-level ASTER results and the operational MODIS C6 products proves the feasibility of MODIS-like retrievals from ASTER reflectance measurements and provides the basis for future studies concerning the scale dependency of satellite observations and three-dimensional radiative effects.
NASA Astrophysics Data System (ADS)
Werner, Frank; Wind, Galina; Zhang, Zhibo; Platnick, Steven; Di Girolamo, Larry; Zhao, Guangyu; Amarasinghe, Nandana; Meyer, Kerry
2016-12-01
A research-level retrieval algorithm for cloud optical and microphysical properties is developed for the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) aboard the Terra satellite. It is based on the operational MODIS algorithm. This paper documents the technical details of this algorithm and evaluates the retrievals for selected marine boundary layer cloud scenes through comparisons with the operational MODIS Data Collection 6 (C6) cloud product. The newly developed, ASTER-specific cloud masking algorithm is evaluated through comparison with an independent algorithm reported in [Zhao and Di Girolamo(2006)]. To validate and evaluate the cloud optical thickness (τ) and cloud effective radius (reff) from ASTER, the high-spatial-resolution ASTER observations are first aggregated to the same 1000 m resolution as MODIS. Subsequently, τaA and reff,
NASA Astrophysics Data System (ADS)
Shoko, Cletah; Clark, David; Mengistu, Michael; Dube, Timothy; Bulcock, Hartley
2015-01-01
This study evaluated the effect of two readily available multispectral sensors: the newly launched 30 m spatial resolution Landsat 8 and the long-serving 1000 m moderate resolution imaging spectroradiometer (MODIS) datasets in the spatial representation of total evaporation in the heterogeneous uMngeni catchment, South Africa, using the surface energy balance system model. The results showed that sensor spatial resolution plays a critical role in the accurate estimation of energy fluxes and total evaporation across a heterogeneous catchment. Landsat 8 estimates showed better spatial representation of the biophysical parameters and total evaporation for different land cover types, due to the relatively higher spatial resolution compared to the coarse spatial resolution MODIS sensor. Moreover, MODIS failed to capture the spatial variations of total evaporation estimates across the catchment. Analysis of variance (ANOVA) results showed that MODIS-based total evaporation estimates did not show any significant differences across different land cover types (one-way ANOVA; F1.924=1.412, p=0.186). However, Landsat 8 images yielded significantly different estimates between different land cover types (one-way ANOVA; F1.993=5.185, p<0.001). The validation results showed that Landsat 8 estimates were more comparable to eddy covariance (EC) measurements than the MODIS-based total evaporation estimates. EC measurement on May 23, 2013, was 3.8 mm/day, whereas the Landsat 8 estimate on the same day was 3.6 mm/day, with MODIS showing significantly lower estimates of 2.3 mm/day. The findings of this study underscore the importance of spatial resolution in estimating spatial variations of total evaporation at the catchment scale, thus, they provide critical information on the relevance of the readily available remote sensing products in water resources management in data-scarce environments.
Validation of MODIS 3 km land aerosol optical depth from NASA's EOS Terra and Aqua missions
NASA Astrophysics Data System (ADS)
Gupta, Pawan; Remer, Lorraine A.; Levy, Robert C.; Mattoo, Shana
2018-05-01
In addition to the standard resolution product (10 km), the MODerate resolution Imaging Spectroradiometer (MODIS) Collection 6 (C006) data release included a higher resolution (3 km). Other than accommodations for the two different resolutions, the 10 and 3 km Dark Target (DT) algorithms are basically the same. In this study, we perform global validation of the higher-resolution aerosol optical depth (AOD) over global land by comparing against AErosol RObotic NETwork (AERONET) measurements. The MODIS-AERONET collocated data sets consist of 161 410 high-confidence AOD pairs from 2000 to 2015 for Terra MODIS and 2003 to 2015 for Aqua MODIS. We find that 62.5 and 68.4 % of AODs retrieved from Terra MODIS and Aqua MODIS, respectively, fall within previously published expected error bounds of ±(0.05 + 0.2 × AOD), with a high correlation (R = 0.87). The scatter is not random, but exhibits a mean positive bias of ˜ 0.06 for Terra and ˜ 0.03 for Aqua. These biases for the 3 km product are approximately 0.03 larger than the biases found in similar validations of the 10 km product. The validation results for the 3 km product did not have a relationship to aerosol loading (i.e., true AOD), but did exhibit dependence on quality flags, region, viewing geometry, and aerosol spatial variability. Time series of global MODIS-AERONET differences show that validation is not static, but has changed over the course of both sensors' lifetimes, with Terra MODIS showing more change over time. The likely cause of the change of validation over time is sensor degradation, but changes in the distribution of AERONET stations and differences in the global aerosol system itself could be contributing to the temporal variability of validation.
Angal, A.; Xiong, X.; Choi, T.; Chander, G.; Wu, A.
2009-01-01
Pseudo-invariant ground targets have been extensively used to monitor the long-term radiometric calibration stability of remote sensing instruments. The NASA MODIS Characterization Support Team (MCST), in collaboration with members from the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center, has previously demonstrated the use of pseudo-invariant ground sites for the long-term stability monitoring of Terra MODIS and Landsat 7 ETM+ sensors. This paper focuses on the results derived from observations made over the Sonoran Desert. Additionally, Landsat 5 TM data over the Sonoran Desert site were used to evaluate the temporal stability of this site. Top-ofatmosphere (TOA) reflectances were computed for the closely matched TM, ETM+, and MODIS spectral bands over selected regions of interest. The impacts due to different viewing geometries, or the effect of test site Bi-directional Reflectance Distribution Function (BRDF), are also presented. ?? 2009 SPIE.
On-Orbit Operation and Performance of MODIS Blackbody
NASA Technical Reports Server (NTRS)
Xiong, X.; Chang, T.; Barnes, W.
2009-01-01
MODIS collects data in 36 spectral bands, including 20 reflective solar bands (RSB) and 16 thermal emissive bands (TES). The TEB on-orbit calibration is performed on a scan-by-scan basis using a quadratic algorithm that relates the detector response with the calibration radiance from the sensor on-board blackbody (BB). The calibration radiance is accurately determined each scan from the BB temperature measured using a set of 12 thermistors. The BB thermistors were calibrated pre-launch with traceability to the NIST temperature standard. Unlike many heritage sensors, the MODIS BB can be operated at a constant temperature or with the temperature continuously varying between instrument ambient (about 270K) and 315K. In this paper, we provide an overview of both Terra and Aqua MODIS on-board BB operations, functions, and on-orbit performance. We also examine the impact of key calibration parameters, such as BB emissivity and temperature (stability and gradient) determined from its thermistors, on the TEB calibration and Level I (LIB) data product uncertainty.
NASA Technical Reports Server (NTRS)
Casey, Kimberly A.; Polashenski, Chris M.; Chen, Justin; Tedesco, Marco
2017-01-01
We evaluate Greenland Ice Sheet (GrIS) surface reflectance and albedo trends using the newly released Collection 6 (C6) MODIS (Moderate Resolution Imaging Spectroradiometer) products over the period 2001-2016. We find that the correction of MODIS sensor degradation provided in the new C6 data products reduces the magnitude of the surface reflectance and albedo decline trends obtained from previous MODIS data (i.e., Collection 5, C5). Collection 5 and 6 data product analysis over GrIS is characterized by surface (i.e., wet vs. dry) and elevation (i.e., 500-2000 m, 2000 m and greater) conditions over the summer season from 1 June to 31 August. Notably, the visible-wavelength declining reflectance trends identified in several bands of MODIS C5 data from previous studies are only slightly detected at reduced magnitude in the C6 versions over the dry snow area. Declining albedo in the wet snow and ice area remains over the MODIS record in the C6 product, albeit at a lower magnitude than obtained using C5 data. Further analyses of C6 spectral reflectance trends show both reflectance increases and decreases in select bands and regions, suggesting that several competing processes are contributing to Greenland Ice Sheet albedo change. Investigators using MODIS data for other ocean, atmosphere and/or land analyses are urged to consider similar re-examinations of trends previously established using C5 data.
MODIS Instrument Operation and Calibration Improvements
NASA Technical Reports Server (NTRS)
Xiong, X.; Angal, A.; Madhavan, S.; Link, D.; Geng, X.; Wenny, B.; Wu, A.; Chen, H.; Salomonson, V.
2014-01-01
Terra and Aqua MODIS have successfully operated for over 14 and 12 years since their respective launches in 1999 and 2002. The MODIS on-orbit calibration is performed using a set of on-board calibrators, which include a solar diffuser for calibrating the reflective solar bands (RSB) and a blackbody for the thermal emissive bands (TEB). On-orbit changes in the sensor responses as well as key performance parameters are monitored using the measurements of these on-board calibrators. This paper provides an overview of MODIS on-orbit operation and calibration activities, and instrument long-term performance. It presents a brief summary of the calibration enhancements made in the latest MODIS data collection 6 (C6). Future improvements in the MODIS calibration and their potential applications to the S-NPP VIIRS are also discussed.
Absolute Calibration of Optical Satellite Sensors Using Libya 4 Pseudo Invariant Calibration Site
NASA Technical Reports Server (NTRS)
Mishra, Nischal; Helder, Dennis; Angal, Amit; Choi, Jason; Xiong, Xiaoxiong
2014-01-01
The objective of this paper is to report the improvements in an empirical absolute calibration model developed at South Dakota State University using Libya 4 (+28.55 deg, +23.39 deg) pseudo invariant calibration site (PICS). The approach was based on use of the Terra MODIS as the radiometer to develop an absolute calibration model for the spectral channels covered by this instrument from visible to shortwave infrared. Earth Observing One (EO-1) Hyperion, with a spectral resolution of 10 nm, was used to extend the model to cover visible and near-infrared regions. A simple Bidirectional Reflectance Distribution function (BRDF) model was generated using Terra Moderate Resolution Imaging Spectroradiometer (MODIS) observations over Libya 4 and the resulting model was validated with nadir data acquired from satellite sensors such as Aqua MODIS and Landsat 7 (L7) Enhanced Thematic Mapper (ETM+). The improvements in the absolute calibration model to account for the BRDF due to off-nadir measurements and annual variations in the atmosphere are summarized. BRDF models due to off-nadir viewing angles have been derived using the measurements from EO-1 Hyperion. In addition to L7 ETM+, measurements from other sensors such as Aqua MODIS, UK-2 Disaster Monitoring Constellation (DMC), ENVISAT Medium Resolution Imaging Spectrometer (MERIS) and Operational Land Imager (OLI) onboard Landsat 8 (L8), which was launched in February 2013, were employed to validate the model. These satellite sensors differ in terms of the width of their spectral bandpasses, overpass time, off-nadir-viewing capabilities, spatial resolution and temporal revisit time, etc. The results demonstrate that the proposed empirical calibration model has accuracy of the order of 3% with an uncertainty of about 2% for the sensors used in the study.
Aftermath of World Trade Center Attack
NASA Technical Reports Server (NTRS)
2002-01-01
This true-color image was taken by the Enhanced Thematic Mapper Plus (ETM+) aboard the Landsat 7 satellite on September 12, 2001, at roughly 11:30 a.m. Eastern Daylight Savings Time. Visit the NASA home page for photos from the space station and MODIS, and GlobalSecurity.org for images from other satellites. Image courtesy USGS Landsat 7 team, at the EROS Data Center.
NASA Technical Reports Server (NTRS)
Vermote, E.; Roger, J. C.; Justice, C. O.; Franch, B.; Claverie, M.
2016-01-01
This paper presents a generic approach developed to derive surface reflectance over land from a variety of sensors. This technique builds on the extensive dataset acquired by the Terra platform by combining MODIS and MISR to derive an explicit and dynamic map of band ratio's between blue and red channels and is a refinement of the operational approach used for MODIS and LANDSAT over the past 15 years. We will present the generic approach and the application to MODIS and LANDSAT data and its validation using the AERONET data.
NASA Astrophysics Data System (ADS)
Schultz, L. A.; Smith, M. R.; Fuell, K.; Stano, G. T.; LeRoy, A.; Berndt, E.
2015-12-01
Instruments aboard the Joint Polar Satellite System (JPSS) series of satellites will provide imagery and other data sets relevant to operational weather forecasts. To prepare current and future weather forecasters in application of these data sets, Proving Ground activities have been established that demonstrate future JPSS capabilities through use of similar sensors aboard NASA's Terra and Aqua satellites, and the S-NPP mission. As part of these efforts, NASA's Short-term Prediction Research and Transition (SPoRT) Center in Huntsville, Alabama partners with near real-time providers of S-NPP products (e.g., NASA, UW/CIMSS, UAF/GINA, etc.) to demonstrate future capabilities of JPSS. This includes training materials and product distribution of multi-spectral false color composites of the visible, near-infrared, and infrared bands of MODIS and VIIRS. These are designed to highlight phenomena of interest to help forecasters digest the multispectral data provided by the VIIRS sensor. In addition, forecasters have been trained on the use of the VIIRS day-night band, which provides imagery of moonlit clouds, surface, and lights emitted by human activities. Hyperspectral information from the S-NPP/CrIS instrument provides thermodynamic profiles that aid in the detection of extremely cold air aloft, helping to map specific aviation hazards at high latitudes. Hyperspectral data also support the estimation of ozone concentration, which can highlight the presence of much drier stratospheric air, and map its interaction with mid-latitude or tropical cyclones to improve predictions of their strengthening or decay. Proving Ground activities are reviewed, including training materials and methods that have been provided to forecasters, and forecaster feedback on these products that has been acquired through formal, detailed assessment of their applicability to a given forecast threat or task. Future opportunities for collaborations around the delivery of training are proposed, along with other applications of multispectral data and derived, more quantitative products.
NASA Astrophysics Data System (ADS)
Garcia, V.; Kondragunta, S.; Holland, D.; Dimmick, F.; Boothe, V.; Szykman, J.; Chu, A.; Kittaka, C.; Al-Saadi, J.; Engel-Cox, J.; Hoff, R.; Wayland, R.; Rao, S.; Remer, L.
2006-05-01
Advancements in remote sensing over the past decade have been recognized by governments around the world and led to the development of the international Global Earth Observation System of Systems 10-Year Implementation Plan. The plan for the U.S. contribution to GEOSS has been put forth in The Strategic Plan for the U.S. Integrated Earth Observation System (IEOS) developed under IWGEO-CENR. The approach for the development of the U.S. IEOS is to focus on specific societal benefits that can be achieved by integrating the nation's Earth observation capabilities. One such challenge is our ability to understand the impact of poor air quality on human health and well being. Historically, the air monitoring networks put in place for the Nations air quality programs provided the only aerosol air quality data on an ongoing and systematic basis at national levels. However, scientific advances in the remote sensing of aerosols from space have improved dramatically. The MODIS sensor and GOES Imager aboard NASA and NOAA satellites, respectively, provide synoptic-scale measurements of aerosol optical depth (AOD) which have been demonstrated to correlate with high levels of PM10 and PM2.5 at the surface. The MODIS sensor has been shown to be capable of a 1 km x 1 km (at nadir) AOD product, while the GOES Imager can provide AOD at 4 km x 4 km every 30 minutes. Within the next several years NOAA and EPA will begin to issue PM2.5 air quality forecasts over the entire domain of the eastern United States, eventually extending to national coverage. These forecasts will provide continuous estimated values of PM2.5 on a daily basis. A multi-agency collaborative project among government and academia is underway to improve the spatial prediction of fine particulate matter through the integration of multi-sensor and multi-platform aerosol observations (MODIS and GOES), numerical model output, and air monitoring data. By giving more weight to monitoring data in monitored areas and relying on adjusted model output and satellite data in non-monitored areas, a Bayesian hierarchical space-time model will be used to improve the accuracy of prediction and associated prediction errors. The improved spatial predictions will be tested as estimates of exposure for input to modeling relationships between air quality and asthma/other respiratory diseases through CDC under the Environmental Public Health Tracking Network. We will also focus on the use of the predictive spatial maps within the EPA AIRNow program which provides near real-time spatial maps of daily average PM2.5 concentrations across the US. We will present the overall project plan and preliminary results with emphasis on how GEOSS framework is facilitating this effort.
NASA Astrophysics Data System (ADS)
Farahat, A.; El-Askary, H. M.; Kalashnikova, O. V.; Garay, M. J.
2016-12-01
Several space-borne and ground based sensors can provide long-standing monitoring of aerosols characteristics, but inconsistencies among different sensors reduce data reliability and lead to uncertainty in analysing long-term data. In this study, we perform statistical inter-comparison of the Aerosol Optical Depth (AOD) among MISR, MODIS/Terra, MODIS/Aqua and Aerosol Robotic Network (AERONET) over seven sites located in the Middle East and North Africa during the period (1995 -2015). The sites are categorized into two regions based on their geographic location and possible dominate particles composition. Compared to MISR, MODIS and AERONET AOD data retrievals indicate larger uncertainty over all sites with a larger daily variability in MODIS measurements. In general, MISR and MODIS AOD matches during high dust seasons but MODIS tends to under estimate the AOD values on low dust seasons. While Terra measurements give a negative trend over the time series at the dust-dominated sites, Aqua, MISR and AERONET show a positive trend. In general, MODIS/Aqua displays stable measurements over the time line at the dust dominated sites. MODIS/Terra, MODIS/Aqua and MISR display a positive trend over Cairo_EMA site while AERONET shows a negative trend over the time line. Terra was found to overestimate AOD during 2002 - 2004 and underestimates it after 2004. We also observe a deviation between Aqua and Terra regardless of the region and data sampling. Excluding Bahrain and Cairo_EMA for low data retrievals the performance of MODIS tends to be similar over all region with 68 % of the retrieved AOD values fall within the confidence range of the AERONET matched data, within global averaged level (> 66 %). MISR indicated better data performance with 72 % falls within the same confidence range. Complimentary MISR and MODIS data was found to provide a better picture of dust storms evolution over Arabian Peninsula and the Middle East. Acknowledgement The authors would like to acknowledge the support provided by the Deanship of Scientific Research (DSR) at the King Fahd University of Petroleum and Minerals (KFUPM) for funding this work through project No. IN141051.
Chander, Gyanesh; Angal, Amit; Choi, Taeyoung; Xiong, Xiaoxiong
2013-01-01
The Earth Observing-1 (EO-1) satellite was launched on November 21, 2000, as part of a one-year technology demonstration mission. The mission was extended because of the value it continued to add to the scientific community. EO-1 has now been operational for more than a decade, providing both multispectral and hyperspectral measurements. As part of the EO-1 mission, the Advanced Land Imager (ALI) sensor demonstrates a potential technological direction for the next generation of Landsat sensors. To evaluate the ALI sensor capabilities as a precursor to the Operational Land Imager (OLI) onboard the Landsat Data Continuity Mission (LDCM, or Landsat 8 after launch), its measured top-of-atmosphere (TOA) reflectances were compared to the well-calibrated Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM+) and the Terra Moderate Resolution Imaging Spectroradiometer (MODIS) sensors in the reflective solar bands (RSB). These three satellites operate in a near-polar, sun-synchronous orbit 705 km above the Earth's surface. EO-1 was designed to fly one minute behind L7 and approximately 30 minutes in front of Terra. In this configuration, all the three sensors can view near-identical ground targets with similar atmospheric, solar, and viewing conditions. However, because of the differences in the relative spectral response (RSR), the measured physical quantities can be significantly different while observing the same target. The cross-calibration of ALI with ETM+ and MODIS was performed using near-simultaneous surface observations based on image statistics from areas observed by these sensors over four desert sites (Libya 4, Mauritania 2, Arabia 1, and Sudan 1). The differences in the measured TOA reflectances due to RSR mismatches were compensated by using a spectral band adjustment factor (SBAF), which takes into account the spectral profile of the target and the RSR of each sensor. For this study, the spectral profile of the target comes from the near-simultaneous EO-1 Hyperion data over these sites. The results indicate that the TOA reflectance measurements for ALI agree with those of ETM+ and MODIS to within 5% after the application of SBAF.
Improvements of VIIRS and MODIS Solar Diffuser and Lunar Calibration
NASA Technical Reports Server (NTRS)
Xiong, Xiaoxiong; Butler, James J.; Lei, Ning; Sun, Junqiang; Fulbright, Jon; Wang, Zhipeng; McIntire, Jeff; Angal, Amit Avinash
2013-01-01
Both VIIRS and MODIS instruments use solar diffuser (SD) and lunar observations to calibrate their reflective solar bands (RSB). A solar diffuser stability monitor (SDSM) is used to track the SD on-orbit degradation. On-orbit observations have shown similar wavelength-dependent SD degradation (larger at shorter VIS wavelengths) and SDSM detector response degradation (larger at longer NIR wavelengths) for both VIIRS and MODIS instruments. In general, the MODIS scan mirror has experienced more degradation in the VIS spectral region whereas the VIIRS rotating telescope assembly (RTA) mirrors have seen more degradation in the NIR and SWIR spectral region. Because of this wavelength dependent mirror degradation, the sensor's relative spectral response (RSR) needs to be modulated. Due to differences between the solar and lunar spectral irradiance, the modulated RSR could have different effects on the SD and lunar calibration. In this paper, we identify various factors that should be considered for the improvements of VIIRS and MODIS solar and lunar calibration and examine their potential impact. Specifically, we will characterize and assess the calibration impact due to SD and SDSM attenuation screen transmission (uncertainty), SD BRF uncertainty and onorbit degradation, SDSM detector response degradation, and modulated RSR resulting from the sensor's optics degradation. Also illustrated and discussed in this paper are the calibration strategies implemented in the VIIRS and MODIS SD and lunar calibrations and efforts that could be made for future improvements.
Operationalizing a Research Sensor: MODIS to VIIRS
NASA Astrophysics Data System (ADS)
Grant, K. D.; Miller, S. W.; Puschell, J.
2012-12-01
The National Oceanic and Atmospheric Administration (NOAA) and NASA are jointly acquiring the next-generation civilian environmental satellite system: the Joint Polar Satellite System (JPSS). JPSS will replace the afternoon orbit component and ground processing system of the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA. The JPSS satellite will carry a suite of sensors designed to collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The primary sensor for the JPSS mission is the Visible/Infrared Imager Radiometer Suite (VIIRS) developed by Raytheon Space and Airborne Systems (SAS). The ground processing system for the JPSS mission is known as the Common Ground System (JPSS CGS), and consists of a Command, Control, and Communications Segment (C3S) and the Interface Data Processing Segment (IDPS) which are both developed by Raytheon Intelligence and Information Systems (IIS). The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by Raytheon SAS for the NASA Earth Observing System (EOS) as a research instrument to capture data in 36 spectral bands, ranging in wavelength from 0.4 μm to 14.4 μm and at varying spatial resolutions (2 bands at 250 m, 5 bands at 500 m and 29 bands at 1 km). MODIS data provides unprecedented insight into large-scale Earth system science questions related to cloud and aerosol characteristics, surface emissivity and processes occurring in the oceans, on land, and in the lower atmosphere. MODIS has flown on the EOS Terra satellite since 1999 and on the EOS Aqua satellite since 2002 and provided excellent data for scientific research and operational use for more than a decade. The value of MODIS-derived products for operational environmental monitoring motivated led to the development of an operational counterpart to MODIS for the next-generation polar-orbiting environmental satellites, the Visible/Infrared Imager Radiometer Suite (VIIRS). VIIRS combines the demonstrated high value spectral coverage and radiometric accuracy of MODIS with the legacy spectral bands and radiometric accuracy of the Advanced Very High Resolution Radiometer (AVHRR) and the high spatial resolution (0.75 km) of the Operational Linescan System (OLS). Except for MODIS bands designed for deriving vertical temperature and humidity structure in the atmosphere, VIIRS uses identical or very similar bands from MODIS that have the most interest and usefulness to operational customers in NOAA, the USAF and the USN. The development of VIIRS and JPSS reaps the benefit of investments in MODIS and the NASA EOS and the early development of operational algorithms by NOAA and DoD using MODIS data. This presentation will cover the different aspects of transitioning a research system into an operational system. These aspects include: (1) sensor (hardware & software) operationalization, (2) system performance operational factors, (3) science changes to algorithms reflecting the operational performance factors, and (4) the operationalization and incorporation of the science into a fully 24 x 7 production system, tasked with meeting stringent operational needs. Benefits of early operationalization are discussed along with suggested areas for improvement in this process that could benefit future work such as operationalizing Earth Science Decadal Survey missions.
Scharlemann, Jörn P. W.; Benz, David; Hay, Simon I.; Purse, Bethan V.; Tatem, Andrew J.; Wint, G. R. William; Rogers, David J.
2008-01-01
Background Remotely-sensed environmental data from earth-orbiting satellites are increasingly used to model the distribution and abundance of both plant and animal species, especially those of economic or conservation importance. Time series of data from the MODerate-resolution Imaging Spectroradiometer (MODIS) sensors on-board NASA's Terra and Aqua satellites offer the potential to capture environmental thermal and vegetation seasonality, through temporal Fourier analysis, more accurately than was previously possible using the NOAA Advanced Very High Resolution Radiometer (AVHRR) sensor data. MODIS data are composited over 8- or 16-day time intervals that pose unique problems for temporal Fourier analysis. Applying standard techniques to MODIS data can introduce errors of up to 30% in the estimation of the amplitudes and phases of the Fourier harmonics. Methodology/Principal Findings We present a novel spline-based algorithm that overcomes the processing problems of composited MODIS data. The algorithm is tested on artificial data generated using randomly selected values of both amplitudes and phases, and provides an accurate estimate of the input variables under all conditions. The algorithm was then applied to produce layers that capture the seasonality in MODIS data for the period from 2001 to 2005. Conclusions/Significance Global temporal Fourier processed images of 1 km MODIS data for Middle Infrared Reflectance, day- and night-time Land Surface Temperature (LST), Normalised Difference Vegetation Index (NDVI), and Enhanced Vegetation Index (EVI) are presented for ecological and epidemiological applications. The finer spatial and temporal resolution, combined with the greater geolocational and spectral accuracy of the MODIS instruments, compared with previous multi-temporal data sets, mean that these data may be used with greater confidence in species' distribution modelling. PMID:18183289
Scharlemann, Jörn P W; Benz, David; Hay, Simon I; Purse, Bethan V; Tatem, Andrew J; Wint, G R William; Rogers, David J
2008-01-09
Remotely-sensed environmental data from earth-orbiting satellites are increasingly used to model the distribution and abundance of both plant and animal species, especially those of economic or conservation importance. Time series of data from the MODerate-resolution Imaging Spectroradiometer (MODIS) sensors on-board NASA's Terra and Aqua satellites offer the potential to capture environmental thermal and vegetation seasonality, through temporal Fourier analysis, more accurately than was previously possible using the NOAA Advanced Very High Resolution Radiometer (AVHRR) sensor data. MODIS data are composited over 8- or 16-day time intervals that pose unique problems for temporal Fourier analysis. Applying standard techniques to MODIS data can introduce errors of up to 30% in the estimation of the amplitudes and phases of the Fourier harmonics. We present a novel spline-based algorithm that overcomes the processing problems of composited MODIS data. The algorithm is tested on artificial data generated using randomly selected values of both amplitudes and phases, and provides an accurate estimate of the input variables under all conditions. The algorithm was then applied to produce layers that capture the seasonality in MODIS data for the period from 2001 to 2005. Global temporal Fourier processed images of 1 km MODIS data for Middle Infrared Reflectance, day- and night-time Land Surface Temperature (LST), Normalised Difference Vegetation Index (NDVI), and Enhanced Vegetation Index (EVI) are presented for ecological and epidemiological applications. The finer spatial and temporal resolution, combined with the greater geolocational and spectral accuracy of the MODIS instruments, compared with previous multi-temporal data sets, mean that these data may be used with greater confidence in species' distribution modelling.
NASA Astrophysics Data System (ADS)
Ruecker, Gernot; Schroeder, Wilfrid; Lorenz, Eckehard; Kaiser, Johannes; Caseiro, Alexandre
2016-04-01
According to recent research, black carbon has the second strongest effect on the earth climate system after carbon dioxide. In high Northern latitudes, industrial gas flares are an important source of black carbon, especially in winter. This fact is particularly relevant for the relatively fast observed climate change in the Arctic since deposition of black carbon changes the albedo of snow and ice, thus leading to a positive feedback cycle. Here we explore gas flare detection and Fire Radiative Power (FRP) retrievals of the German FireBird TET-1 and BIRD Hotspot Recognition Systems (HSRS), the VIIRS sensor on board of the S-NPP satellite, and the MODIS sensor using temporally close to near coincident data acquisitions. Comparison is based on level 2 products developed for fire detection for the different sensors; in the case of S-NPP VIIRS we use two products: the new VIIRS 750m algorithm based on MODIS collection 6, and the 350 m algorithm based on the VIIRS mid-infrared I (Imaging) band, which offers high resolution, but no FRP retrievals. Results indicate that the highest resolution FireBird sensors offer the best detection capacities, though the level two product shows false alarms, followed by the VIIRS 350 m and 750 m algorithms. MODIS has the lowest detection rate. Preliminary results of FRP retrievals show that FireBird and VIIRS algorithms have a good agreement. Given the fact that most gas flaring is at the detection limit for medium to coarse resolution space borne sensors - and hence measurement errors may be high - our results indicates that a quantitative evaluation of gas flaring using these sensors is feasible. Results shall be used to develop a gas flare detection algorithm for Sentinel-3, and a similar methodology will be employed to validate the capacity of Sentinel 3 to detect and characterize small high temperature sources such as gas flares.
Airborne Spectral Measurements of Ocean Directional Reflectance
NASA Technical Reports Server (NTRS)
Gatebe, Charles K.; King, Michael D.; Lyapustin, Alexei; Arnold, G. Thomas; Redemann, Jens
2004-01-01
During summer of 2001 NASA's Cloud Absorption Radiometer (CAR) obtained measurement of ocean angular distribution of reflected radiation or BRDF (bidirectional reflectance distribution function) aboard the University of Washington Convair CV-580 research aircraft under cloud-free conditions. The measurements took place aver the Atlantic Ocean off the eastern seaboard of the U.S. in the vicinity of the Chesapeake Light Tower and at nearby National Oceanic and Atmospheric Administration (NOAA) Buoy Stations. The measurements were in support of CLAMS, Chesapeake Lighthouse and Aircraft Measurements for Satellites, field campaign that was primarily designed to validate and improve NASA's Earth Observing System (EOS) satellite data products being derived from three sensors: MODIS (MODerate Resolution Imaging Spectro-Radiometer), MISR (Multi-angle Imaging Spectro-Radiometer) and CERES (Clouds and Earth s Radiant Energy System). Because of the high resolution of the CAR measurements and its high sensitivity to detect weak ocean signals against a noisy background, results of radiance field above the ocean are seen in unprecedented detail. The study also attempts to validate the widely used Cox-Munk model for predicting reflectance from a rough ocean surface.
Aerosol Lidar and MODIS Satellite Comparisons for Future Aerosol Loading Forecast
NASA Technical Reports Server (NTRS)
DeYoung, Russell; Szykman, James; Severance, Kurt; Chu, D. Allen; Rosen, Rebecca; Al-Saadi, Jassim
2006-01-01
Knowledge of the concentration and distribution of atmospheric aerosols using both airborne lidar and satellite instruments is a field of active research. An aircraft based aerosol lidar has been used to study the distribution of atmospheric aerosols in the California Central Valley and eastern US coast. Concurrently, satellite aerosol retrievals, from the MODIS (Moderate Resolution Imaging Spectroradiometer) instrument aboard the Terra and Aqua satellites, were take over the Central Valley. The MODIS Level 2 aerosol data product provides retrieved ambient aerosol optical properties (e.g., optical depth (AOD) and size distribution) globally over ocean and land at a spatial resolution of 10 km. The Central Valley topography was overlaid with MODIS AOD (5x5 sq km resolution) and the aerosol scattering vertical profiles from a lidar flight. Backward air parcel trajectories for the lidar data show that air from the Pacific and northern part of the Central Valley converge confining the aerosols to the lower valley region and below the mixed layer. Below an altitude of 1 km, the lidar aerosol and MODIS AOD exhibit good agreement. Both data sets indicate a high presence of aerosols near Bakersfield and the Tehachapi Mountains. These and other results to be presented indicate that the majority of the aerosols are below the mixed layer such that the MODIS AOD should correspond well with surface measurements. Lidar measurements will help interpret satellite AOD retrievals so that one day they can be used on a routine basis for prediction of boundary layer aerosol pollution events.
The moderate resolution imaging spectrometer (MODIS) science and data system requirements
NASA Technical Reports Server (NTRS)
Ardanuy, Philip E.; Han, Daesoo; Salomonson, Vincent V.
1991-01-01
The Moderate Resolution Imaging Spectrometer (MODIS) has been designated as a facility instrument on the first NASA polar orbiting platform as part of the Earth Observing System (EOS) and is scheduled for launch in the late 1990s. The near-global daily coverage of MODIS, combined with its continuous operation, broad spectral coverage, and relatively high spatial resolution, makes it central to the objectives of EOS. The development, implementation, production, and validation of the core MODIS data products define a set of functional, performance, and operational requirements on the data system that operate between the sensor measurements and the data products supplied to the user community. The science requirements guiding the processing of MODIS data are reviewed, and the aspects of an operations concept for the production of data products from MODIS for use by the scientific community are discussed.
NASA Astrophysics Data System (ADS)
Claverie, M.; Vermote, E.; Franch, B.; Huc, M.; Hagolle, O.; Masek, J.
2013-12-01
Maintaining consistent dataset of Surface Reflectance (SR) data derived from the large panel of in-orbit sensors is an important challenge to ensure long term analysis of earth observation data. Continuous validation of such SR products through comparison with a reference dataset is thus an important challenge. Validating with in situ or airborne SR data is not easy since the sensors rarely match completely the same spectral, spatial and directional characteristics of the satellite measurement. Inter-comparison between satellites sensors data appears as a valuable tool to maintain a long term consistency of the data. However, satellite data are acquired at various times of the day (i.e., variation of the atmosphere content) and within a relative large range of geometry (view and sun angles). Also, even if band-to-band spectral characteristics of optical sensors are closed, they rarely have identical spectral responses. As the results, direct comparisons without consideration of these differences are poorly suitable. In this study, we suggest a new systematic method to assess land optical SR data from high to medium resolution sensors. We used MODIS SR products (MO/YD09CMG) which benefit from a long term calibration/validation process, to assess SR from 3 sensors data: Formosat-2 (280 scenes 24x24km - 5 sites), SPOT-4 (62 scenes 120x60km - 1 site) and Landsat-5/7 (104 180x180km scenes - 50 sites). The main issue concerns the difference in term of geometry acquisition between MODIS and compared sensors data. We used the VJB model (Vermote et al. 2009, TGRS) to correct MODIS SR from BRDF effects and to simulate SR at the corresponding geometry (view and sun angles) of each pixel of the compared sensor data. The comparison is done at the CMG spatial resolution (0.05°) which ensures a constant field-of-view and negligible geometrical errors. Figure 1 displays the summary of the NIR results through APU graphs where metrics A, P and U stands for Accuracy, Precision and Uncertainty (metrics explained in Claverie et al., 2013, RSE) and allows comparison with standard Specifications (S in magenta). The results shows relatively good uncertainty taking into account that atmospheric correction differs from MODIS and the sensors data (LEDAPS for Landsat-5/7 and MACC for Formosat-2 and SPOT-4). Biases (referring to the metric A) are in many cases related to the spectral differences which are analyzed using PROSAIL radiative transfer modeling. Finally some images of Landsat-8 OLI SR (computed using the preliminary adaptation of LEDAPS for Landsat-8) are assessed using this method. Figure 1: APU graph of SR comparison between MODIS NIR (from AQUA) and Landsat-5/7, Formosat-2 and SPOT-4. A, P and U metrics are given per bin (red, green and blue line, respectively) and for the whole range (upper left text values). Magenta line refers to the MODIS SR Specification.
Angal, A.; Chander, Gyanesh; Choi, Taeyoung; Wu, Aisheng; Xiong, Xiaoxiong
2010-01-01
The Sonoran Desert is a large, flat, pseudo-invariant site near the United States-Mexico border. It is one of the largest and hottest deserts in North America, with an area of 311,000 square km. This site is particularly suitable for calibration purposes because of its high spatial and spectral uniformity and reasonable temporal stability. This study uses measurements from four different sensors, Terra Moderate Resolution Imaging Spectroradiometer (MODIS), Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM+), Aqua MODIS, and Landsat 5 (L5) Thematic Mapper (TM), to assess the suitability of this site for long-term stability monitoring and to evaluate the “radiometric calibration differences” between spectrally matching bands of all four sensors. In general, the drift in the top-of-atmosphere (TOA) reflectance of each sensor over a span of nine years is within the specified calibration uncertainties. Monthly precipitation measurements of the Sonoran Desert region were obtained from the Global Historical Climatology Network (GHCN), and their effects on the retrieved TOA reflectances were evaluated. To account for the combined uncertainties in the TOA reflectance due to the surface and atmospheric Bi-directional Reflectance Distribution Function (BRDF), a semi-empirical BRDF model has been adopted to monitor and reduce the impact of illumination geometry differences on the retrieved TOA reflectances. To evaluate calibration differences between the MODIS and Landsat sensors, correction for spectral response differences using a hyperspectral sensor is also demonstrated.
A consideration of the availableness of MODIS data to assess a volcanic ash fall
NASA Astrophysics Data System (ADS)
Tomiyama, N.; Yonezawa, C.; Yamakoshi, T.
It is important to grasp the situation of the ash fall at short interval for a volcanic disaster-prevention. Clouds and volcanic smokes reduce the opportunities to observe a volcano by a satellite's optical sensor. Therefore it is preferable to use data of a sensor that is able to observe same area with high frequency. MODIS sees every point on the earth every 1-2 days and provides NDVI data with 250m spatial resolutions. The purpose of this study is to consider the availableness of MODIS data to assess the situation of the volcanic ash fall. The test site is Miyake-jima, one of the active volcanic island in Japan. It is verified that a rate of change of NDVI between before and after erruptions correlates with the amounts of ash fall.
Assessment of the Short-Term Radiometric Stability between Terra MODIS and Landsat 7 ETM+ Sensors
NASA Technical Reports Server (NTRS)
Choi, Taeyoung; Xiong, Xiaxiong; Chander, G.; Angal, Amit
2009-01-01
The Landsat 7 (L7) Enhanced Thematic Mapper (ETM+) sensor was launched on April 15th, 1999 and has been in operation for over nine years. It has six reflective solar spectral bands located in the visible and shortwave infrared part of the electromagnetic spectrum (0.5 - 2.5 micron) at a spatial resolution of 30 m. The on-board calibrators are used to monitor the on-orbit sensor system changes. The ETM+ performs solar calibrations using on-board Full Aperture Solar Calibrator (FASC) and the Partial Aperture Solar Calibrator (PASC). The Internal Calibrator Lamp (IC) lamps, a blackbody and shutter optics constitute the on-orbit calibration mechanism for ETM+. On 31 May 2003, a malfunction of the scan-line corrector (SLC) mirror assembly resulted in the loss of approximately 22% of the normal scene area. The missing data affects most of the image with scan gaps varying in width from one pixel or less near the centre of the image to 14 pixels along the east and west edges of the image, creating a wedge-shaped pattern. However, the SLC failure has no impacts on the radiometric performance of the valid pixels. On December 18, 1999, the Moderate Resolution Imaging Spectroradiometer (MODIS) Proto-Flight Model (PFM) was launched on-board the NASA's EOS Terra spacecraft. Terra MODIS has 36 spectral bands with wavelengths ranging from 0.41 to 14.5 micron and collects data over a wide field of view angle (+/-55 deg) at three nadir spatial resolutions of 250 m, 500 in 1 km for bands 1 to 2, 3 to 7, and 8 to 36, respectively. It has 20 reflective solar bands (RSB) with spectral wavelengths from 0.41 to 2.1 micron. The RSB radiometric calibration is performed by using on-board solar diffuser (SD), solar diffuser stability monitor (SDSM), space-view (SV), and spectro-radiometric calibration assembly (SRCA). Through the SV port, periodic lunar observations are used to track radiometric response changes at different angles of incidence (AOI) of the scan mirror. As a part of the AM Constellation satellites, Terra MODIS flies approximately 30 minutes behind L7 ETM+ in the same orbit. The orbit of L7 is repetitive, circular, sunsynchronous, and near polar at a nominal altitude of 705 km (438 miles) at the Equator. The spacecraft crosses the Equator from north to south on a descending node between 10:00 AM and 10:15 AM. Circling the Earth at 7.5 km/sec, each orbit takes nearly 99 minutes. The spacecraft completes just over 14 orbits per day, covering the entire Earth between 81 degrees north and south latitude every 16 days. The longest continuous imaging swath that L7 sensor can collect is for a 14-minute subinterval contact period which is equivalent to 35 full WRS-2 scenes. On the other hand, Terra can provide the entire corresponding orbit with wider swath at any given ETM+ collection without contact time limitation. There are six spectral matching band pairs between MODIS (bands 3, 4, 1, 2, 6, 7) and ETM+ (bands 1, 2, 3, 4, 5, 7) sensor. MODIS has narrower spectral responses than ETM+ in all the bands. A short-term radiometric stability was evaluated using continuous ETM+ scenes within the contact period and the corresponding half orbit MODIS scenes. The near simultaneous earth observations (SNO) were limited by the smaller swath size of ETM+ (187 km) as compared to MODIS (2330 km). Two sets of continuous granules for MODIS and ETM+ were selected and mosaiced based on pixel geolocation information for non cloudy pixels over the North American continent. The Top-of- Atmosphere (TOA) reflectances were computed for the spectrally matching bands between ETM+ and MODIS over the regions of interest (ROI). The matching pixel pairs were aggregated from a finer to a coarser pixel resolution and the TOA reflectance values covering a wide dynamic range of the sensors were compared and analyzed. Considering the uncertainties of the absolute calibration of the both sensors, radiometric stability was verified for the band pairs. The Railroad Valley Playa, Nada (RVPN) was included in the path of this continuous orbit, which served as a verification point between the shortterm and the long-term trending results from previous studies. This work focuses on monitoring the short-term on-orbit stability of MODIS and the ETM+ RSB. It also provides an assessment of the absolute calibration differences between the two sensors over their wide dynamic ranges.
Hu, Chuanmin; Chen, Zhiqiang; Clayton, Tonya D.; ,; Brock, John C.; Muller-Karger, Frank E.
2004-01-01
Using Tampa Bay, FL as an example, we explored the potential for using MODIS medium-resolution bands (250- and 500-m data at 469-, 555-, and 645-nm) for estuarine monitoring. Field surveys during 21–22 October 2003 showed that Tampa Bay has Case-II waters, in that for the salinity range of 24–32 psu, (a) chlorophyll concentration (11 to 23 mg m−3), (b) colored dissolved organic matter (CDOM) absorption coefficient at 400 nm (0.9 to 2.5 m−1), and (c) total suspended sediment concentration (TSS: 2 to 11 mg L−1) often do not co-vary. CDOM is the only constituent that showed a linear, inverse relationship with surface salinity, although the slope of the relationship changed with location within the bay. The MODIS medium-resolution bands, although designed for land use, are 4–5 times more sensitive than Landsat-7/ETM+ data and are comparable to or higher than those of CZCS. Several approaches were used to derive synoptic maps of water constituents from concurrent MODIS medium-resolution data. We found that application of various atmospheric-correction algorithms yielded no significant differences, due primarily to uncertainties in the sensor radiometric calibration and other sensor artifacts. However, where each scene could be groundtruthed, simple regressions between in situ observations of constituents and at-sensor radiances provided reasonable synoptic maps. We address the need for improvements of sensor calibration/characterization, atmospheric correction, and bio-optical algorithms to make operational and quantitative use of these medium-resolution bands.
Initial Validation of NDVI time seriesfrom AVHRR, VEGETATION, and MODIS
NASA Technical Reports Server (NTRS)
Morisette, Jeffrey T.; Pinzon, Jorge E.; Brown, Molly E.; Tucker, Jim; Justice, Christopher O.
2004-01-01
The paper will address Theme 7: Multi-sensor opportunities for VEGETATION. We present analysis of a long-term vegetation record derived from three moderate resolution sensors: AVHRR, VEGETATION, and MODIS. While empirically based manipulation can ensure agreement between the three data sets, there is a need to validate the series. This paper uses atmospherically corrected ETM+ data available over the EOS Land Validation Core Sites as an independent data set with which to compare the time series. We use ETM+ data from 15 globally distributed sites, 7 of which contain repeat coverage in time. These high-resolution data are compared to the values of each sensor by spatially aggregating the ETM+ to each specific sensors' spatial coverage. The aggregated ETM+ value provides a point estimate for a specific site on a specific date. The standard deviation of that point estimate is used to construct a confidence interval for that point estimate. The values from each moderate resolution sensor are then evaluated with respect to that confident interval. Result show that AVHRR, VEGETATION, and MODIS data can be combined to assess temporal uncertainties and address data continuity issues and that the atmospherically corrected ETM+ data provide an independent source with which to compare that record. The final product is a consistent time series climate record that links historical observations to current and future measurements.
NASA Astrophysics Data System (ADS)
Gacal, G. F. B.; Lagrosas, N.
2017-12-01
Cloud detection nowadays is primarily achieved by the utilization of various sensors aboard satellites. These include MODIS Aqua, MODIS Terra, and AIRS with products that include nighttime cloud fraction. Ground-based instruments are, however, only secondary to these satellites when it comes to cloud detection. Nonetheless, these ground-based instruments (e.g., LIDARs, ceilometers, and sky-cameras) offer significant datasets about a particular region's cloud cover values. For nighttime operations of cloud detection instruments, satellite-based instruments are more reliably and prominently used than ground-based ones. Therefore if a ground-based instrument for nighttime operations is operated, it ought to produce reliable scientific datasets. The objective of this study is to do a comparison between the results of a nighttime ground-based instrument (sky-camera) and that of MODIS Aqua and MODIS Terra. A Canon Powershot A2300 is placed ontop of Manila Observatory (14.64N, 121.07E) and is configured to take images of the night sky at 5min intervals. To detect pixels with clouds, the pictures are converted to grayscale format. Thresholding technique is used to screen pixels with cloud and pixels without clouds. If the pixel value is greater than 17, it is considered as a cloud; otherwise, a noncloud (Gacal et al., 2016). This algorithm is applied to the data gathered from Oct 2015 to Oct 2016. A scatter plot between satellite cloud fraction in the area covering the area 14.2877N, 120.9869E, 14.7711N and 121.4539E and ground cloud cover is graphed to find the monthly correlation. During wet season (June - November), the satellite nighttime cloud fraction vs ground measured cloud cover produce an acceptable R2 (Aqua= 0.74, Terra= 0.71, AIRS= 0.76). However, during dry season, poor R2 values are obtained (AIRS= 0.39, Aqua & Terra = 0.01). The high correlation during wet season can be attributed to a high probability that the camera and satellite see the same clouds. However during dry season, the satellite sees high altitude clouds and the camera can not detect these clouds from the ground as it relies on city lights reflected from low level clouds. With this acknowledged disparity, the ground-based camera has the advantage of detecting haze and thin clouds near the ground that are hardly or not detected by the satellites.
NASA Technical Reports Server (NTRS)
2002-01-01
This true-color image was taken over northern Australia on October 2, 2000, by the Moderate-resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra spacecraft. There are roughly a dozen wildfires visible in the scene, which spans from Western Australia , across the Northern Territory, and into Queensland. In this image, clouds appear bright white and smoke plume appear darker and greyish. The pixels containing the wildfires are colored red (hot) and yellow (hotter). There are quite a few large burn scars from previous wildfires, which appear as black splotches across the landscape. The large bay along northern shore is the Gulf of Carpentaria (visible in the full size image), which is roughly 400 miles (about 640 km) wide. Image by Brian Montgomery and Robert Simmon; Data courtesy MODIS Science Team, NASA GSFC
Dust Storm Hits Canary Islands
NASA Technical Reports Server (NTRS)
2002-01-01
A thick pall of sand and dust blew out from the Sahara Desert over the Atlantic Ocean yesterday (January 6, 2002), engulfing the Canary Islands in what has become one of the worst sand storms ever recorded there. In this scene, notice how the dust appears particularly thick in the downwind wake of Tenerife, the largest of the Canary Islands. Perhaps the turbulence generated by the air currents flowing past the island's volcanic peaks is churning the dust back up into the atmosphere, rather than allowing it to settle toward the surface. This true-color image was captured by the Moderate-resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra satellite, on January 7, 2002. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC
Lange, Maximilian; Dechant, Benjamin; Rebmann, Corinna; Vohland, Michael; Cuntz, Matthias; Doktor, Daniel
2017-08-11
Quantifying the accuracy of remote sensing products is a timely endeavor given the rapid increase in Earth observation missions. A validation site for Sentinel-2 products was hence established in central Germany. Automatic multispectral and hyperspectral sensor systems were installed in parallel with an existing eddy covariance flux tower, providing spectral information of the vegetation present at high temporal resolution. Normalized Difference Vegetation Index (NDVI) values from ground-based hyperspectral and multispectral sensors were compared with NDVI products derived from Sentinel-2A and Moderate-resolution Imaging Spectroradiometer (MODIS). The influence of different spatial and temporal resolutions was assessed. High correlations and similar phenological patterns between in situ and satellite-based NDVI time series demonstrated the reliability of satellite-based phenological metrics. Sentinel-2-derived metrics showed better agreement with in situ measurements than MODIS-derived metrics. Dynamic filtering with the best index slope extraction algorithm was nevertheless beneficial for Sentinel-2 NDVI time series despite the availability of quality information from the atmospheric correction procedure.
Lange, Maximilian; Rebmann, Corinna; Cuntz, Matthias; Doktor, Daniel
2017-01-01
Quantifying the accuracy of remote sensing products is a timely endeavor given the rapid increase in Earth observation missions. A validation site for Sentinel-2 products was hence established in central Germany. Automatic multispectral and hyperspectral sensor systems were installed in parallel with an existing eddy covariance flux tower, providing spectral information of the vegetation present at high temporal resolution. Normalized Difference Vegetation Index (NDVI) values from ground-based hyperspectral and multispectral sensors were compared with NDVI products derived from Sentinel-2A and Moderate-resolution Imaging Spectroradiometer (MODIS). The influence of different spatial and temporal resolutions was assessed. High correlations and similar phenological patterns between in situ and satellite-based NDVI time series demonstrated the reliability of satellite-based phenological metrics. Sentinel-2-derived metrics showed better agreement with in situ measurements than MODIS-derived metrics. Dynamic filtering with the best index slope extraction algorithm was nevertheless beneficial for Sentinel-2 NDVI time series despite the availability of quality information from the atmospheric correction procedure. PMID:28800065
Angal, Amit; Xiong, Xiaoxiong; Choi, Tae-young; Chander, Gyanesh; Wu, Aisheng
2010-01-01
Remote sensing imagery is effective for monitoring environmental and climatic changes because of the extent of the global coverage and long time scale of the observations. Radiometric calibration of remote sensing sensors is essential for quantitative & qualitative science and applications. Pseudo-invariant ground targets have been extensively used to monitor the long-term radiometric calibration stability of remote sensing sensors. This paper focuses on the use of the Sonoran Desert site to monitor the radiometric stability of the Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM+) and Terra Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. The results are compared with the widely used Libya 4 Desert site in an attempt to evaluate the suitability of the Sonoran Desert site for sensor inter-comparison and calibration stability monitoring. Since the overpass times of ETM+ and MODIS differ by about 30 minutes, the impacts due to different view geometries or test site Bi-directional Reflectance Distribution Function (BRDF) are also presented. In general, the long-term drifts in the visible bands are relatively large compared to the drift in the near-infrared bands of both sensors. The lifetime Top-of-Atmosphere (TOA) reflectance trends from both sensors over 10 years are extremely stable, changing by no more than 0.1% per year (except ETM+ Band 1 and MODIS Band 3) over the two sites used for the study. The use of a semi-empirical BRDF model can reduce the impacts due to view geometries, thus enabling a better estimate of sensor temporal drifts.
Fire monitoring capability of the joint Landsat and Sentinel 2 constellation
NASA Astrophysics Data System (ADS)
Murphy, S.; Wright, R.
2017-12-01
Fires are a global hazard. Landsat and Sentinel 2 can monitor the Earth's surface every 2 - 4 days. This provides an important opportunity to complement the operational (lower resolution) fire monitoring systems. Landsat-class sensors can detect small fires that would be missed by MODIS-classed sensors. All large fires start out as small fires. We analyze fire patterns in California from 1984 to 2017 and compare the performance of Landsat-type and MODIS-type sensors. Had an operational Landsat-Sentinel 2 fire detection system been in place at the time of the Soberanes fire last year (i.e. August 2016), the cost of suppressing of this fire event (US $236 million) could potentially have been reduced by an order of magnitude.
Kumar, Naresh; Chu, Allen D; Foster, Andrew D; Peters, Thomas; Willis, Robert
2011-09-01
This article empirically demonstrates the use of fine resolution satellite-based aerosol optical depth (AOD) to develop time and space resolved estimates of ambient particulate matter (PM) ≤2.5 µm and ≤10 µm in aerodynamic diameters (PM(2.5) and PM(10), respectively). AOD was computed at three different spatial resolutions, i.e., 2 km (means 2 km × 2 km area at nadir), 5 km, and 10 km, by using the data from MODerate Resolution Imaging Spectroradiometer (MODIS), aboard the Terra and Aqua satellites. Multiresolution AOD from MODIS (AOD(MODIS)) was compared with the in situ measurements of AOD by NASA's AErosol RObotic NETwork (AERONET) sunphotometer (AOD(AERONET)) at Bondville, IL, to demonstrate the advantages of the fine resolution AOD(MODIS) over the 10-km AOD(MODIS), especially for air quality prediction. An instrumental regression that corrects AOD(MODIS) for meteorological conditions was used for developing a PM predictive model.The 2-km AOD(MODIS) aggregated within 0.025° and 15-min intervals shows the best association with the in situ measurements of AOD(AERONET). The 2-km AOD(MODIS) seems more promising to estimate time and space resolved estimates of ambient PM than the 10-km AOD(MODIS), because of better location precision and a significantly greater number of data points across geographic space and time. Utilizing the collocated AOD(MODIS) and PM data in Cleveland, OH, a regression model was developed for predicting PM for all AOD(MODIS) data points. Our analysis suggests that the slope of the 2-km AOD(MODIS) (instrumented on meteorological conditions) is close to unity with the PM monitored on the ground. These results should be interpreted with caution, because the slope of AOD(MODIS) ranges from 0.52 to 1.72 in the site-specific models. In the cross validation of the overall model, the root mean square error (RMSE) of PM(10) was smaller (2.04 µg/m(3) in overall model) than that of PM(2.5) (2.5 µg/m(3)). The predicted PM in the AOD(MODIS) data (∼2.34 million data points) was utilized to develop a systematic grid of daily PM at 5-km spatial resolution with the aid of spatiotemporal Kriging.
Evaluation of the MODIS Aerosol Retrievals over Ocean and Land during CLAMS.
NASA Astrophysics Data System (ADS)
Levy, R. C.; Remer, L. A.; Martins, J. V.; Kaufman, Y. J.; Plana-Fattori, A.; Redemann, J.; Wenny, B.
2005-04-01
The Chesapeake Lighthouse Aircraft Measurements for Satellites (CLAMS) experiment took place from 10 July to 2 August 2001 in a combined ocean-land region that included the Chesapeake Lighthouse [Clouds and the Earth's Radiant Energy System (CERES) Ocean Validation Experiment (COVE)] and the Wallops Flight Facility (WFF), both along coastal Virginia. This experiment was designed mainly for validating instruments and algorithms aboard the Terra satellite platform, including the Moderate Resolution Imaging Spectroradiometer (MODIS). Over the ocean, MODIS retrieved aerosol optical depths (AODs) at seven wavelengths and an estimate of the aerosol size distribution. Over the land, MODIS retrieved AOD at three wavelengths plus qualitative estimates of the aerosol size. Temporally coincident measurements of aerosol properties were made with a variety of sun photometers from ground sites and airborne sites just above the surface. The set of sun photometers provided unprecedented spectral coverage from visible (VIS) to the solar near-infrared (NIR) and infrared (IR) wavelengths. In this study, AOD and aerosol size retrieved from MODIS is compared with similar measurements from the sun photometers. Over the nearby ocean, the MODIS AOD in the VIS and NIR correlated well with sun-photometer measurements, nearly fitting a one-to-one line on a scatterplot. As one moves from ocean to land, there is a pronounced discontinuity of the MODIS AOD, where MODIS compares poorly to the sun-photometer measurements. Especially in the blue wavelength, MODIS AOD is too high in clean aerosol conditions and too low under larger aerosol loadings. Using the Second Simulation of the Satellite Signal in the Solar Spectrum (6S) radiative code to perform atmospheric correction, the authors find inconsistency in the surface albedo assumptions used by the MODIS lookup tables. It is demonstrated how the high bias at low aerosol loadings can be corrected. By using updated urban/industrial aerosol climatology for the MODIS lookup table over land, it is shown that the low bias for larger aerosol loadings can also be corrected. Understanding and improving MODIS retrievals over the East Coast may point to strategies for correction in other locations, thus improving the global quality of MODIS. Improvements in regional aerosol detection could also lead to the use of MODIS for monitoring air pollution.
Evaluation of MODIS NPP and GPP products across multiple biomes.
David P. Turner; William D. Ritts; Warren B. Cohen; Stith T. Gower; Steve W. Running; Maosheng Zhao; Marcos H. Costa; Al A. Kirschbaum; Jay M. Ham; Scott R. Saleska; Douglas E. Ahl
2006-01-01
Estimates of daily gross primary production (GPP) and annual net primary production (NPP) at the 1 km spatial resolution are now produced operationally for the global terrestrial surface using imagery from the MODIS (Moderate Resolution Imaging Spectroradiometer) sensor. Ecosystem-level measurements of GPP at eddy covariance flux towers and plot-level measurements of...
NASA Sees a Wider-Eyed Typhoon Soudelor Near Taiwan
2017-12-08
The MODIS instrument aboard NASA's Aqua satellite flew over Typhoon Soudelor on Aug. 7, 2015, at 4:40 UTC (12:40 a.m. EDT) as it was approaching Taiwan. Credits: NASA Goddard's MODIS Rapid Response Team Clouds in Typhoon Soudelor's western quadrant were already spreading over Taiwan early on August 7 when NASA's Aqua satellite passed overhead. Soudelor is expected to make landfall and cross central Taiwan today and make a second landfall in eastern China. NASA satellite imagery revealed that Soudelor's eye "opened" five more miles since August 4. On Aug. 7 at 4:40 UTC (12:40 a.m. EDT) the Moderate Resolution Imaging Spectroradiometer or MODIS instrument aboard NASA's Aqua satellite captured a visible-light image of Typhoon Soudelor as its western quadrant began brushing eastern Taiwan. The MODIS image showed Soudelor's 17-nautical-mile-wide eye and thick bands of powerful thunderstorms surrounded the storm and spiraled into the center. Just three days before, the eye was 5 nautical miles smaller when the storm was more intense. On Aug. 4 at 4:10 UTC (12:10 a.m. EDT) Aqua's MODIS image showed the eye was 12-nautical-mile-wide eye. At 1500 UTC (11 a.m. EDT) on August 7, 2015, the Joint Typhoon Warning Center (JTWC) noted that Typhoon Soudelor's maximum sustained winds increased from 90 knots (103.6 mph/166.7 kph) to 105 knots (120.8 mph / 194.5 kph). It was centered near 23.1 North latitude and 123.2 East longitude, about 183 nautical miles (210.6 miles/338.9 km) southeast of Taipei, Taiwan. It was moving to the west-northwest at 10 knots (11.5 mph/18.5 kph). For warnings and watches for Taiwan, visit the Central Weather Bureau website: www.cwb.gov.tw/eng/. For warnings in China, visit the China Meteorological Administration website: www.cma.gov.cn/en. Soudelor's final landfall is expected in eastern China on Saturday, August 8. Clouds in Typhoon Soudelor's western quadrant were already spreading over Taiwan early on August 7 when NASA's Aqua satellite passed overhead. Soudelor is expected to make landfall and cross central Taiwan today and make a second landfall in eastern China. NASA satellite imagery revealed that Soudelor's eye "opened" five more miles since August 4. On Aug. 7 at 4:40 UTC (12:40 a.m. EDT) the Moderate Resolution Imaging Spectroradiometer or MODIS instrument aboard NASA's Aqua satellite captured a visible-light image of Typhoon Soudelor as its western quadrant began brushing eastern Taiwan. The MODIS image showed Soudelor's 17-nautical-mile-wide eye and thick bands of powerful thunderstorms surrounded the storm and spiraled into the center. Just three days before, the eye was 5 nautical miles smaller when the storm was more intense. On Aug. 4 at 4:10 UTC (12:10 a.m. EDT) Aqua's MODIS image showed the eye was 12-nautical-mile-wide eye. At 1500 UTC (11 a.m. EDT) on August 7, 2015, the Joint Typhoon Warning Center (JTWC) noted that Typhoon Soudelor's maximum sustained winds increased from 90 knots (103.6 mph/166.7 kph) to 105 knots (120.8 mph / 194.5 kph). It was centered near 23.1 North latitude and 123.2 East longitude, about 183 nautical miles (210.6 miles/338.9 km) southeast of Taipei, Taiwan. It was moving to the west-northwest at 10 knots (11.5 mph/18.5 kph). For warnings and watches for Taiwan, visit the Central Weather Bureau website: www.cwb.gov.tw/eng/. For warnings in China, visit the China Meteorological Administration website: www.cma.gov.cn/en. Soudelor's final landfall is expected in eastern China on Saturday, August 8.
The SeaDAS Processing and Analysis System: SeaWiFS, MODIS, and Beyond
NASA Astrophysics Data System (ADS)
MacDonald, M. D.; Ruebens, M.; Wang, L.; Franz, B. A.
2005-12-01
The SeaWiFS Data Analysis System (SeaDAS) is a comprehensive software package for the processing, display, and analysis of ocean data from a variety of satellite sensors. Continuous development and user support by programmers and scientists for more than a decade has helped to make SeaDAS the most widely used software package in the world for ocean color applications, with a growing base of users from the land and sea surface temperature community. Full processing support for past (CZCS, OCTS, MOS) and present (SeaWiFS, MODIS) sensors, and anticipated support for future missions such as NPP/VIIRS, enables end users to reproduce the standard ocean archive product suite distributed by NASA's Ocean Biology Processing Group (OBPG), as well as a variety of evaluation and intermediate ocean, land, and atmospheric products. Availability of the processing algorithm source codes and a software build environment also provide users with the tools to implement custom algorithms. Recent SeaDAS enhancements include synchronization of MODIS processing with the latest code and calibration updates from the MODIS Calibration Support Team (MCST), support for all levels of MODIS processing including Direct Broadcast, a port to the Macintosh OS X operating system, release of the display/analysis-only SeaDAS-Lite, and an extremely active web-based user support forum.
A Total Validation Approach for assessing the RST technique in forest fire detection and monitoring
NASA Astrophysics Data System (ADS)
Mazzeo, Giuseppe; Baldassarre, Giuseppe; Corrado, Rosita; Filizzola, Carolina; Genzano, Nicola; Marchese, Francesco; Paciello, Rossana; Pergola, Nicola; Tramutoli, Valerio
2010-05-01
Several studies have shown that high temporal resolution sensors such as AVHRR (Advanced Very High Resolution Radiometer) aboard NOAA (National Oceanic and Atmospheric Administration) satellites, MODIS (Moderate Resolution Imaging Spectroradiometer) aboard EOS (Earth Observing System) satellites and, more recently, SEVIRI (Spinning Enhanced Visible and Infrared Imager) aboard MSG (Meteosat Second Generation) platforms, are suitable for detecting and monitoring forest fires. At the same time, many satellite-based techniques have been proposed for fire detection, but most of them, based on single image fixed-thresholds, often generate false alarms mainly due to the contribution of the reflected solar radiation in daytime, atmospheric effects, etc., so that they result to have scarce reliability when applied in an operational scenario. Other algorithms, which are quite reliable thanks to their multitemporal and/or contextual nature, may turn out to be hardly applicable so that they cannot be inserted in whatever operative schemes. An innovative approach, named RST - Robust Satellite Technique, already applied for the monitoring of major natural and environmental risks has been recently used for fire detection and monitoring. The RST approach is based on local (in space and time) thresholds which are automatically computed on the basis of long temporal series of satellite data. It demonstrated already good performances in many cases of applications, but recently for the first time a total validation approach (TVA) was experimented in collaboration with administrators, decision makers and local agencies, in order to evaluate the actual reliability and sensitivity of RST in a pre-operational context. TVA, based on a systematic study of the origin of each hot spot identified by RST, allowed us to recognize most of them as actual thermal anomalies (associated to small fires, to variations of thermal emission in industrial plants, etc.) and not as false alarms simply because not associated to officially documented forest fires. Some results of recent campaigns both of winter and summer fire detection and monitoring in Italy will be shown and discussed.
Noise Characterization and Performance of MODIS Thermal Emissive Bands
NASA Technical Reports Server (NTRS)
Madhavan, Sriharsha; Xiong, Xiaoxiong; Wu, Aisheng; Wenny, Brian; Chiang, Kwofu; Chen, Na; Wang, Zhipeng; Li, Yonghong
2016-01-01
The MODerate-resolution Imaging Spectroradiometer (MODIS) is a premier Earth-observing sensor of the early 21st century, flying onboard the Terra (T) and Aqua (A) spacecraft. Both instruments far exceeded their six-year design life and continue to operate satisfactorily for more than 15 and 13 years, respectively. The MODIS instrument is designed to make observations at nearly a 100% duty cycle covering the entire Earth in less than two days. The MODIS sensor characteristics include a spectral coverage from 0.41micrometers to 14.4 micrometers, of which those wavelengths ranging from 3.7 micrometers to 14.4 micrometers cover the thermal infrared region which is interspaced in 16 thermal emissive bands (TEBs). Each of the TEB contains ten detectors which record samples at a spatial resolution of 1 km. In order to ensure a high level of accuracy for the TEB-measured top-of-atmosphere radiances, an onboard blackbody (BB) is used as the calibration source. This paper reports the noise characterization and performance of the TEB on various counts. First, the stability of the onboard BB is evaluated to understand the effectiveness of the calibration source. Next, key noise metrics such as the noise equivalent temperature difference and the noise equivalent dn difference (NEdN) for the various TEBs are determined from multiple temperature sources. These sources include the nominally controlled BB temperature of 290 K for T-MODIS and 285 K for A-MODIS, as well as a BB warm up-cool down cycle that is performed over a temperature range from roughly 270 to 315 K. The space-view port that measures the background signal serves as a viable cold temperature source for measuring noise. In addition, a well characterized Earth-view target, the Dome Concordia site located in the Antarctic plateau, is used for characterizing the stability of the sensor, indirectly providing a measure of the NEdN. Based on this rigorous characterization, a list of the noisy and inoperable detectors for the TEB for both instruments is reported to provide the science user communities quality control of the MODIS Level 1B calibrated product.
NASA Astrophysics Data System (ADS)
Bormann, K.; Rittger, K.; Painter, T. H.
2016-12-01
The continuation of large-scale snow cover records into the future is crucial for monitoring the impacts of global pressures such as climate change and weather variability on the cryosphere. With daily MODIS records since 2000 from a now ageing MODIS constellation (Terra & Aqua) and daily VIIRS records since 2012 from the Suomi-NPP platform, the consistency of information between the two optical sensors must be understood. First, we evaluated snow cover maps derived from both MODIS and VIIRS retrievals with coincident cloud-free Landsat 8 OLI maps across a range of locations. We found that both MODIS and VIIRS snow cover maps show similar errors when evaluated with Landsat OLI retrievals. Preliminary results also show a general agreement in regional snowline between the two sensors that is maintained during the spring snowline retreat where the proportion of mixed pixels is increased. The agreement between sensors supports the future use of VIIRS snow cover maps to continue the long-term record beyond the lifetime of MODIS. Second, we use snowline elevation to quantify large scale snow cover variability and to monitor potential changes in the rain/snow transition zone where climate change pressures may be enhanced. Despite the large inter-annual variability that is often observed in snow metrics, we expect that over the 16-year time series we will see a rise in seasonal elevation of the snowline and consequently an increasing rain/snow transition boundary in mountain environments. These results form the basis for global snowline elevation monitoring using optical remote sensing data and highlight regional differences in snowline elevation dynamics. The long-term variability in observed snowline elevation provides a recent climatology of mountain snowpack across several regions that will likely to be of interest to those interested in climate change impacts in mountain environments. This work will also be of interest to existing users of MODSCAG and VIIRSCAG snow cover products and those working in remote sensing of the mountain snowpack.
The MODIS Aerosol Algorithm, Products and Validation
NASA Technical Reports Server (NTRS)
Remer, L. A.; Kaufman, Y. J.; Tanre, D.; Mattoo, S.; Chu, D. A.; Martins, J. V.; Li, R.-R.; Ichoku, C.; Levy, R. C.; Kleidman, R. G.
2003-01-01
The MODerate resolution Imaging Spectroradiometer (MODIS) aboard both NASA's Terra and Aqua satellites is making near global daily observations of the earth in a wide spectral range. These measurements are used to derive spectral aerosol optical thickness and aerosol size parameters over both land and ocean. The aerosol products available over land include aerosol optical thickness at three visible wavelengths, a measure of the fraction of aerosol optical thickness attributed to the fine mode and several derived parameters including reflected spectral solar flux at top of atmosphere. Over ocean, the aerosol optical thickness is provided in seven wavelengths from 0.47 microns to 2.13 microns. In addition, quantitative aerosol size information includes effective radius of the aerosol and quantitative fraction of optical thickness attributed to the fine mode. Spectral aerosol flux, mass concentration and number of cloud condensation nuclei round out the list of available aerosol products over the ocean. The spectral optical thickness and effective radius of the aerosol over the ocean are validated by comparison with two years of AERONET data gleaned from 133 AERONET stations. 8000 MODIS aerosol retrievals colocated with AERONET measurements confirm that one-standard deviation of MODIS optical thickness retrievals fall within the predicted uncertainty of delta tauapproximately equal to plus or minus 0.03 plus or minus 0.05 tau over ocean and delta tay equal to plus or minus 0.05 plus or minus 0.15 tau over land. 271 MODIS aerosol retrievals co-located with AERONET inversions at island and coastal sites suggest that one-standard deviation of MODIS effective radius retrievals falls within delta r_eff approximately equal to 0.11 microns. The accuracy of the MODIS retrievals suggests that the product can be used to help narrow the uncertainties associated with aerosol radiative forcing of global climate.
NASA Technical Reports Server (NTRS)
Ichoku, Charles; Giglio, Louis; Wooster, Martin J.; Remer, Lorraine A.
2008-01-01
Remote sensing is the most practical means of measuring energy release from large open-air biomass burning. Satellite measurement of fire radiative energy (FRE) release rate or power (FRP) enables distinction between fires of different strengths. Based on a 1-km resolution fire data acquired globally by the MODerate-resolution Imaging Spectro-radiometer (MODIS) sensor aboard the Terra and Aqua satellites from 2000 to 2006, instanteaneous FRP values ranged between 0.02 MW and 1866 MW, with global daily means ranging between 20 and 40 MW. Regionally, at the Aqua-MODIS afternoon overpass, the mean FRP values for Alaska, Western US, Western Australia, Quebec and the rest of Canada are significantly higher than these global means, with Quebec having the overall highest value of 85 MW. Analysis of regional mean FRP per unit area of land (FRP flux) shows that a peak fire season in certain regions, fires can be responsible for up to 0.2 W/m(sup 2) at peak time of day. Zambia has the highest regional monthly mean FRP flux of approximately 0.045 W/m(sup 2) at peak time of day and season, while the Middle East has the lowest value of approximately 0.0005 W/m(sup 2). A simple scheme based on FRP has been devised to classify fires into five categories, to facilitate fire rating by strength, similar to earthquakes and hurricanes. The scheme uses MODIS measurements of FRP at 1-km resolution as follows: catagory 1 (less than 100 MW), category 2 (100 to less than 500 MW), category 3 (500 to less than 1000 MW), category 4 (1000 to less than 1500 MW), catagory 5 (greater than or equal to 1500 MW). In most regions of the world, over 90% of fires fall into category 1, while only less than 1% fall into each of categories 3 to 5, although these proportions may differ significantly from day to day and by season. The frequency of occurence of the larger fires is region specific, and could not be explained by ecosystem type alone. Time-series analysis of the propertions of higher category fires based on MODIS measured FRP from 2002 to 2006 does not show any moticeable trend because of the short time period.
Surface Albedo/BRDF Parameters (Terra/Aqua MODIS)
Trishchenko, Alexander
2008-01-15
Spatially and temporally complete surface spectral albedo/BRDF products over the ARM SGP area were generated using data from two Moderate Resolution Imaging Spectroradiometer (MODIS) sensors on Terra and Aqua satellites. A landcover-based fitting (LBF) algorithm is developed to derive the BRDF model parameters and albedo product (Luo et al., 2004a). The approach employs a landcover map and multi-day clearsky composites of directional surface reflectance. The landcover map is derived from the Landsat TM 30-meter data set (Trishchenko et al., 2004a), and the surface reflectances are from MODIS 500m-resolution 8-day composite products (MOD09/MYD09). The MOD09/MYD09 data are re-arranged into 10-day intervals for compatibility with other satellite products, such as those from the NOVA/AVHRR and SPOT/VGT sensors. The LBF method increases the success rate of the BRDF fitting process and enables more accurate monitoring of surface temporal changes during periods of rapid spring vegetation green-up and autumn leaf-fall, as well as changes due to agricultural practices and snowcover variations (Luo et al., 2004b, Trishchenko et al., 2004b). Albedo/BRDF products for MODIS on Terra and MODIS on Aqua, as well as for Terra/Aqua combined dataset, are generated at 500m spatial resolution and every 10-day since March 2000 (Terra) and July 2002 (Aqua and combined), respectively. The purpose for the latter product is to obtain a more comprehensive dataset that takes advantages of multi-sensor observations (Trishchenko et al., 2002). To fill data gaps due to cloud presence, various interpolation procedures are applied based on a multi-year observation database and referring to results from other locations with similar landcover property. Special seasonal smoothing procedure is also applied to further remove outliers and artifacts in data series.
Cloud Statistics and Discrimination in the Polar Regions
NASA Astrophysics Data System (ADS)
Chan, M.; Comiso, J. C.
2012-12-01
Despite their important role in the climate system, cloud cover and their statistics are poorly known, especially in the polar regions, where clouds are difficult to discriminate from snow covered surfaces. The advent of the A-train, which included Aqua/MODIS, CALIPSO/CALIOP and CloudSat/CPR sensors has provided an opportunity to improve our ability to accurately characterize the cloud cover. MODIS provides global coverage at a relatively good temporal and spatial resolution while CALIOP and CPR provide limited nadir sampling but accurate characterization of the vertical structure and phase of the cloud cover. Over the polar regions, cloud detection from a passive sensors like MODIS is challenging because of the presence of cold and highly reflective surfaces such as snow, sea-ice, glaciers, and ice-sheet, which have surface signatures similar to those of clouds. On the other hand, active sensors such as CALIOP and CPR are not only very sensitive to the presence of clouds but can also provide information about its microphysical characteristics. However, these nadir-looking sensors have sparse spatial coverage and their global data can have data spatial gaps of up to 100 km. We developed a polar cloud detection system for MODIS that is trained using collocated data from CALIOP and CPR. In particular, we employ a machine learning system that reads the radiative profile observed by MODIS and determine whether the field of view is cloudy or clear. Results have shown that the improved cloud detection scheme performs better than typical cloud mask algorithms using a validation data set not used for training. A one-year data set was generated and results indicate that daytime cloud detection accuracies improved from 80.1% to 92.6% (over sea-ice) and 71.2% to 87.4% (over ice-sheet) with CALIOP data used as the baseline. Significant improvements are also observed during nighttime, where cloud detection accuracies increase by 19.8% (over sea-ice) and 11.6% (over ice-sheet). The immediate impact of the new algorithm is that it can minimize large biases of MODIS-derived cloud amount over the Polar Regions and thus a more realistic and high quality global cloud statistics. In particular, our results show that cloud fraction in the Arctic is typically 81.2 % during daytime and 84.0% during nighttime. This is significantly higher than the 71.8% and 58.5%, respectively, derived from standard MODIS cloud product.
Applications of spectral band adjustment factors (SBAF) for cross-calibration
Chander, Gyanesh
2013-01-01
To monitor land surface processes over a wide range of temporal and spatial scales, it is critical to have coordinated observations of the Earth's surface acquired from multiple spaceborne imaging sensors. However, an integrated global observation framework requires an understanding of how land surface processes are seen differently by various sensors. This is particularly true for sensors acquiring data in spectral bands whose relative spectral responses (RSRs) are not similar and thus may produce different results while observing the same target. The intrinsic offsets between two sensors caused by RSR mismatches can be compensated by using a spectral band adjustment factor (SBAF), which takes into account the spectral profile of the target and the RSR of the two sensors. The motivation of this work comes from the need to compensate the spectral response differences of multispectral sensors in order to provide a more accurate cross-calibration between the sensors. In this paper, radiometric cross-calibration of the Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and the Terra Moderate Resolution Imaging Spectroradiometer (MODIS) sensors was performed using near-simultaneous observations over the Libya 4 pseudoinvariant calibration site in the visible and near-infrared spectral range. The RSR differences of the analogous ETM+ and MODIS spectral bands provide the opportunity to explore, understand, quantify, and compensate for the measurement differences between these two sensors. The cross-calibration was initially performed by comparing the top-of-atmosphere (TOA) reflectances between the two sensors over their lifetimes. The average percent differences in the long-term trends ranged from $-$5% to $+$6%. The RSR compensated ETM+ TOA reflectance (ETM+$^{ast}$) measurements were then found to agree with MODIS TOA reflectance to within 5% for all bands when Earth Observing-1 Hy- erion hyperspectral data were used to produce the SBAFs. These differences were later reduced to within 1% for all bands (except band 2) by using Environmental Satellite Scanning Imaging Absorption Spectrometer for Atmospheric Cartography hyperspectral data to produce the SBAFs.
Satellite and airborne IR sensor validation by an airborne interferometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gumley, L.E.; Delst, P.F. van; Moeller, C.C.
1996-11-01
The validation of in-orbit longwave IR radiances from the GOES-8 Sounder and inflight longwave IR radiances from the MODIS Airborne Simulator (MAS) is described. The reference used is the airborne University of Wisconsin High Resolution Interferometer Sounder (HIS). The calibration of each sensor is described. Data collected during the Ocean Temperature Interferometric Survey (OTIS) experiment in January 1995 is used in the comparison between sensors. Detailed forward calculations of at-sensor radiance are used to account for the difference in GOES-8 and HIS altitude and viewing geometry. MAS radiances and spectrally averaged HIS radiances are compared directly. Differences between GOES-8 andmore » HIS brightness temperatures, and GOES-8 and MAS brightness temperatures, are found to be with 1.0 K for the majority of longwave channels examined. The same validation approach will be used for future sensors such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Atmospheric Infrared Sounder (AIRS). 11 refs., 2 figs., 4 tabs.« less
Opoku-Duah, S.; Donoghue, D.N.M.; Burt, T. P.
2008-01-01
This paper compares evapotranspiration estimates from two complementary satellite sensors – NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) and ESA's ENVISAT Advanced Along-Track Scanning Radiometer (AATSR) over the savannah area of the Volta basin in West Africa. This was achieved through solving for evapotranspiration on the basis of the regional energy balance equation, which was computationally-driven by the Surface Energy Balance Algorithm for Land algorithm (SEBAL). The results showed that both sensors are potentially good sources of evapotranspiration estimates over large heterogeneous landscapes. The MODIS sensor measured daily evapotranspiration reasonably well with a strong spatial correlation (R2=0.71) with Landsat ETM+ but underperformed with deviations up to ∼2.0 mm day-1, when compared with local eddy correlation observations and the Penman-Monteith method mainly because of scale mismatch. The AATSR sensor produced much poorer correlations (R2=0.13) with Landsat ETM+ and conventional ET methods also because of differences in atmospheric correction and sensor calibration over land. PMID:27879847
NASA Technical Reports Server (NTRS)
Wind, G.; DaSilva, A. M.; Norris, P. M.; Platnick, S.
2013-01-01
In this paper we describe a general procedure for calculating synthetic sensor radiances from variable output from a global atmospheric forecast model. In order to take proper account of the discrepancies between model resolution and sensor footprint, the algorithm takes explicit account of the model subgrid variability, in particular its description of the probability density function of total water (vapor and cloud condensate.) The simulated sensor radiances are then substituted into an operational remote sensing algorithm processing chain to produce a variety of remote sensing products that would normally be produced from actual sensor output. This output can then be used for a wide variety of purposes such as model parameter verification, remote sensing algorithm validation, testing of new retrieval methods and future sensor studies.We show a specific implementation using the GEOS-5 model, the MODIS instrument and the MODIS Adaptive Processing System (MODAPS) Data Collection 5.1 operational remote sensing cloud algorithm processing chain (including the cloud mask, cloud top properties and cloud optical and microphysical properties products). We focus on clouds because they are very important to model development and improvement.
A brief comparison of radiometers at NSIDC and their potential to generate long ESDRs
NASA Astrophysics Data System (ADS)
Moth, P.; Johnston, T.; Haran, T. M.; Fowler, D. K.
2017-12-01
Radiometers have played a big part in Earth observing science. In this poster we compare three such instruments: the Advanced Very-High-resolution Radiometer (AVHRR), the Moderate Resolution Imaging Spectroradiometer (MODIS), and the Visible Infrared Imaging Radiometer Suite (VIIRS). The NASA National Snow and Ice Distributed Active Archive Center (NSIDC DAAC) has archived cryospheric data from all three of these instruments. AVHRR was a 4-channel radiometer that was first launched in 1978 aboard the TIROS-N satellite. Subsequent missions launched improved versions of AVHRR with five and six channels, observing Earth in frequencies ranging from 0.58 μm to 12.5 μm with a resolution at nadir of 1.09 km. MODIS instruments fly onboard NASA's Earth Observing System (EOS) Terra and Aqua satellites. Launched in 1999 and 2002, respectively, they still produce much sought after data observed in 36 spectral bands ranging from 0.4 μm to 14.4 μm. Two bands image Earth at a nominal resolution of 250 m at nadir, five at 500 m, and the remaining 29 bands at 1 km. A ±55-degree scanning pattern at the sun-synchronous orbit of 705 km achieves a 2,330 km swath and provides global coverage every one to two days VIIRS, NOAA's latest radiometer, was launched aboard the Suomi National Polar-orbiting Partnership satellite on October 28, 2011. Working collaboratively, NASA and NOAA are producing data that is archived and distributed via NASA DAACs. The VIIRS radiometer comprises 22 bands; five for high-resolution imagery, 16 at moderate resolution, and one panchromatic day/night band. VIIRS is a whiskbroom scanning radiometer that covers the spectrum between 0.412 μm and 12.01 μm and acquires spatial resolutions at nadir of 750 m, 375 m, and 750 m, respectively. Although these instruments are configured with different spectral bands, each was designed with an eye to the future. MODIS can be thought of as a successor to the AVHRR mission, adding capabilities that yielded better data. Similarly, VIIRS will extend the MODIS record with new, higher quality data. Starting in the early 1980s, the AVHRR-MODIS-VIIRS timeline should span at least four decades and perhaps beyond, enabling researchers to produce and gain valuable insight from very long, high-quality Earth System Data Records (ESDRs).
NASA Technical Reports Server (NTRS)
Sayer, A. M.; Hsu, N. C.; Bettenhausen, C.; Jeong, M.-J.; Meister, G.
2015-01-01
The Deep Blue (DB) algorithm's primary data product is midvisible aerosol optical depth (AOD). DB applied to Moderate Resolution Imaging Spectroradiometer (MODIS) measurements provides a data record since early 2000 for MODIS Terra and mid-2002 for MODIS Aqua. In the previous data version (Collection 5, C5), DB production from Terra was halted in 2007 due to sensor degradation; the new Collection 6 (C6) has both improved science algorithms and sensor radiometric calibration. This includes additional calibration corrections developed by the Ocean Biology Processing Group to address MODIS Terra's gain, polarization sensitivity, and detector response versus scan angle, meaning DB can now be applied to the whole Terra record. Through validation with Aerosol Robotic Network (AERONET) data, it is shown that the C6 DB Terra AOD quality is stable throughout the mission to date. Compared to the C5 calibration, in recent years the RMS error compared to AERONET is smaller by approximately 0.04 over bright (e.g., desert) and approximately 0.01-0.02 over darker (e.g., vegetated) land surfaces, and the fraction of points in agreement with AERONET within expected retrieval uncertainty higher by approximately 10% and approximately 5%, respectively. Comparisons to the Aqua C6 time series reveal a high level of correspondence between the two MODIS DB data records, with a small positive (Terra-Aqua) average AOD offset <0.01. The analysis demonstrates both the efficacy of the new radiometric calibration efforts and that the C6 MODIS Terra DB AOD data remain stable (to better than 0.01 AOD) throughout the mission to date, suitable for quantitative scientific analyses.
NASA Technical Reports Server (NTRS)
Kaufman, Y. J.; Ichoku, C.; Giglio, L.; Korontzi, S.; Chu, D. A.; Hao, W. M.; Justice, C. O.; Lau, William K. M. (Technical Monitor)
2001-01-01
The MODIS sensor, launched on NASA's Terra satellite at the end of 1999, was designed with 36 spectral channels for a wide array of land, ocean, and atmospheric investigations. MODIS has a unique ability to observe fires, smoke, and burn scars globally. Its main fire detection channels saturate at high brightness temperatures: 500 K at 4 microns and 400 K at 11 microns, which can only be attained in rare circumstances at the I kin fire detection spatial resolution. Thus, unlike other polar orbiting satellite sensors with similar thermal and spatial resolutions, but much lower saturation temperatures (e.g. AVHRR and ATSR), MODIS can distinguish between low intensity ground surface fires and high intensity crown forest fires. Smoke column concentration over land is for the first time being derived from the MOMS solar channels, extending from 0.41 microns to 2.1 microns. The smoke product has been provisionally validated both globally and regionally over southern Africa and central and south America. Burn scars are observed from MODIS even in the presence of smoke, using the 1.2 to 2.1 micron channels. MODIS burned area information is used to estimate pyrogenic emissions. A wide range of these fire and related products and validation are demonstrated for the wild fires that occurred in northwestern United States in the summer of 2000. The MODIS rapid response system and direct broadcast capability is being developed to enable users to obtain and generate data in near real time. It is expected that health and land management organizations will use these systems for monitoring the occurrence of fires and the dispersion of smoke within two to six hours after data acquisition.
Assessment of MODIS On-Orbit Calibration Using a Deep Convective Cloud Technique
NASA Technical Reports Server (NTRS)
Mu, Qiaozhen; Wu, Aisheng; Chang, Tiejun; Angal, Amit; Link, Daniel; Xiong, Xiaoxiong; Doelling, David R.; Bhatt, Rajendra
2016-01-01
The MODerate Resolution Imaging Spectroradiometer (MODIS) sensors onboard Terra and Aqua satellites are calibrated on-orbit with a solar diffuser (SD) for the reflective solar bands (RSB). The MODIS sensors are operating beyond their designed lifetime and hence present a major challenge to maintain the calibration accuracy. The degradation of the onboard SD is tracked by a solar diffuser stability monitor (SDSM) over a wavelength range from 0.41 to 0.94 micrometers. Therefore, any degradation of the SD beyond 0.94 micrometers cannot be captured by the SDSM. The uncharacterized degradation at wavelengths beyond this limit could adversely affect the Level 1B (L1B) product. To reduce the calibration uncertainties caused by the SD degradation, invariant Earth-scene targets are used to monitor and calibrate the MODIS L1B product. The use of deep convective clouds (DCCs) is one such method and particularly significant for the short-wave infrared (SWIR) bands in assessing their long-term calibration stability. In this study, we use the DCC technique to assess the performance of the Terra and Aqua MODIS Collection-6 L1B for RSB 1 3- 7, and 26, with spectral coverage from 0.47 to 2.13 micrometers. Results show relatively stable trends in Terra and Aqua MODIS reflectance for most bands. Careful attention needs to be paid to Aqua band 1, Terra bands 3 and 26 as their trends are larger than 1% during the study time period. We check the feasibility of using the DCC technique to assess the stability in MODIS bands 17-19. The assessment test on response versus scan angle (RVS) calibration shows substantial trend difference for Aqua band 1between different angles of incidence (AOIs). The DCC technique can be used to improve the RVS calibration in the future.
NASA Technical Reports Server (NTRS)
Haney, Conor; Doeling, David; Minnis, Patrick; Bhatt, Rajendra; Scarino, Benjamin; Gopalan, Arun
2016-01-01
The Deep Space Climate Observatory (DSCOVR), launched on 11 February 2015, is a satellite positioned near the Lagrange-1 (L1) point, carrying several instruments that monitor space weather, and Earth-view sensors designed for climate studies. The Earth Polychromatic Imaging Camera (EPIC) onboard DSCOVR continuously views the sun-illuminated portion of the Earth with spectral coverage in the UV, VIS, and NIR bands. Although the EPIC instrument does not have any onboard calibration abilities, its constant view of the sunlit Earth disk provides a unique opportunity for simultaneous viewing with several other satellite instruments. This arrangement allows the EPIC sensor to be inter-calibrated using other well-characterized satellite instrument reference standards. Two such instruments with onboard calibration are MODIS, flown on Aqua and Terra, and VIIRS, onboard Suomi-NPP. The MODIS and VIIRS reference calibrations will be transferred to the EPIC instrument using both all-sky ocean and deep convective clouds (DCC) ray-matched EPIC and MODIS/VIIRS radiance pairs. An automated navigation correction routine was developed to more accurately align the EPIC and MODIS/VIIRS granules. The automated navigation correction routine dramatically reduced the uncertainty of the resulting calibration gain based on the EPIC and MODIS/VIIRS radiance pairs. The SCIAMACHY-based spectral band adjustment factors (SBAF) applied to the MODIS/ VIIRS radiances were found to successfully adjust the reference radiances to the spectral response of the specific EPIC channel for over-lapping spectral channels. The SBAF was also found to be effective for the non-overlapping EPIC channel 10. Lastly, both ray-matching techniques found no discernable trends for EPIC channel 7 over the year of publically released EPIC data.
Early on-orbit calibration results from Aqua MODIS
NASA Astrophysics Data System (ADS)
Xiong, Xiaoxiong; Barnes, William L.
2003-04-01
Aqua MODIS, also known as the MODIS Flight Model 1 (FM1), was launched on May 4, 2002. It opened its nadir aperture door (NAD) on June 24, 2002, beginning its Earth observing mission. In this paper, we present early results from Aqua MODIS on-orbit calibration and characterization and assess the instrument's overall performance. MODIS has 36 spectral bands located on four focal plane assemblies (FPAs). Bands 1-19, and 26 with wavelengths from 0.412 to 2.1 microns are the reflective solar bands (RSB) that are calibrated on-orbit by a solar diffuser (SD). The degradation of the SD is tracked using a solar diffuser stability monitor (SDSM). The bands 20-25, and 27-36 with wavelengths from 3.75 to 14.5 microns are the thermal emissive bands (TEB) that are calibrated on-orbit by a blackbody (BB). Early results indicate that the on-orbit performance has been in good agreement with the predications determined from pre-launch measurements. Except for band 21, the low gain fire band, band 6, known to have some inoperable detectors from pre-launch characterization, and one noisy detector in band 36, all of the detectors' noise characterizations are within their specifications. Examples of the sensor's short-term and limited long-term responses in both TEB and RSB will be provided to illustrate the sensor's on-orbit stability. In addition, we will show some of the improvements that Aqua MODIS made over its predecessor, Terra MODIS (Protoflight Model - PFM), such as removal of the optical leak into the long-wave infrared (LWIR) photoconductive (PC) bands and reduction of electronic crosstalk and out-of-band (OOB) thermal leak into the short-wave infrared (SWIR) bands.
Characterize Aerosols from MODIS/MISR/OMI/MERRA-2: Dynamic Image Browse Perspective
NASA Astrophysics Data System (ADS)
Wei, J. C.; Yang, W.; Shen, S.; Zhao, P.; Albayrak, A.; Johnson, J. E.; Kempler, S. J.; Pham, L.
2016-12-01
Among the known atmospheric constituents, aerosols still represent the greatest uncertainty in climate research. To understand the uncertainty is to bring altogether of observational (in-situ and remote sensing) and modeling datasets and inter-compare them synergistically for a wide variety of applications that can bring far-reaching benefits to the science community and the broader society. These benefits can best be achieved if these earth science data (satellite and modeling) are well utilized and interpreted. Unfortunately, this is not always the case, despite the abundance and relative maturity of numerous satellite-borne sensors routinely measure aerosols. There is often disagreement between similar aerosol parameters retrieved from different sensors, leaving users confused as to which sensors to trust for answering important science questions about the distribution, properties, and impacts of aerosols. NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) have developed multiple MAPSS (Multi-sensor Aerosol Products Sampling System) applications as a part of Giovanni (Geospatial Interactive Online Visualization and Analysis Interface) data visualization and analysis tool since 2007. The MAPSS database provides spatio-temporal statistics for multiple spatial spaceborne Level 2 aerosol products (MODIS Terra, MODIS Aqua, MISR, POLDER, OMI, CALIOP, SeaWiFS Deep Blue, and VIIRS) sampled over AERONET ground stations. In this presentation, I will demonstrate a new visualization service (NASA Level 2 Data Quality Visualization, DQViz) supporting various visualization and data accessing capabilities from satellite Level 2 (MODIS/MISR/OMI) and long term assimilated aerosols from NASA Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2 displaying at their own native physical-retrieved spatial resolution. Functionality will include selecting data sources (e.g., multiple parameters under the same measurement), defining area-of-interest and temporal extents, zooming, panning, overlaying, sliding, and data subsetting and reformatting.
NASA Technical Reports Server (NTRS)
Salomonson, Vincent V.
1991-01-01
The Moderate Resolution Imaging Spectrometer (MODIS) is a key observing facility to be flown on the Earth Observing System (EOS). The facility is composed of two instruments called MODIS-N (nadir) and MODIS-T (tilt). The MODIS-N is being built under contract to NASA by the Santa Barbara Research Center. The MODIS-T is being fabricated by the Engineering Directorate at the Goddard Space Flight Center. The MODIS Science Team has defined nearly 40 biogeophysical data products for studies of the ocean and land surface and properties of the atmosphere including clouds that can be expected to be produced from the MODIS instruments shortly after the launch of EOS. The ocean, land, atmosphere, and calibration groups of the MODIS Science Team are now proceeding to plan and implement the operations and facilities involving the analysis of data from existing spaceborne, airborne, and in-situ sensors required to develop and validate the algorithms that will produce the geophysical data products. These algorithm development and validation efforts will be accomplished wherever possible within the context of existing or planned national and international experiments or programs such as those in the World Climate Research Program.
NASA Technical Reports Server (NTRS)
Guenther, Bruce W.; Godden, Gerald D.; Xiong, Xiao-Xiong; Knight, Edward J.; Qiu, Shi-Yue; Montgomery, Harry; Hopkins, M. M.; Khayat, Mohammad G.; Hao, Zhi-Dong; Smith, David E. (Technical Monitor)
2000-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) radiometric calibration product is described for the thermal emissive and the reflective solar bands. Specific sensor design characteristics are identified to assist in understanding how the calibration algorithm software product is designed. The reflected solar band software products of radiance and reflectance factor both are described. The product file format is summarized and the MODIS Characterization Support Team (MCST) Homepage location for the current file format is provided.
Chander, G.; Angal, A.; Choi, T.; Meyer, D.J.; Xiong, X.; Teillet, P.M.
2007-01-01
A cross-calibration methodology has been developed using coincident image pairs from the Terra Moderate Resolution Imaging Spectroradiometer (MODIS), the Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM+) and the Earth Observing EO-1 Advanced Land Imager (ALI) to verify the absolute radiometric calibration accuracy of these sensors with respect to each other. To quantify the effects due to different spectral responses, the Relative Spectral Responses (RSR) of these sensors were studied and compared by developing a set of "figures-of-merit." Seven cloud-free scenes collected over the Railroad Valley Playa, Nevada (RVPN), test site were used to conduct the cross-calibration study. This cross-calibration approach was based on image statistics from near-simultaneous observations made by different satellite sensors. Homogeneous regions of interest (ROI) were selected in the image pairs, and the mean target statistics were converted to absolute units of at-sensor reflectance. Using these reflectances, a set of cross-calibration equations were developed giving a relative gain and bias between the sensor pair.
IN SITU ESTIMATES OF FOREST LAI FOR MODIS DATA VALIDATION
Satellite remote sensor data are commonly used to assess ecosystem conditions through synoptic monitoring of terrestrial vegetation extent, biomass, and seasonal dynamics. Two commonly used vegetation indices that can be derived from various remote sensor systems include the Norm...
On-Orbit Noise Characterization for MODIS Reflective Solar Bands
NASA Technical Reports Server (NTRS)
Xiong, X.; Xie, X.; Angal, A.
2008-01-01
Since launch, the Moderate Resolution Imaging Spectroradiometer (MODIS) has operated successfully on-board the NASA Earth Observing System (EOS) Terra and EOS Aqua spacecraft. MODIS is a passive cross-track scanning radiometer that makes observations in 36 spectral bands with spectral wavelengths from visible (VIS) to long-wave infrared. MODIS bands 1-19 and 26 are the reflective solar bands (RSB) with wavelengths from 0.41 to 2.2 micrometers. They are calibrated on-orbit using an on-board solar diffuser (SD) and a SD stability monitor (SDSM) system. For MODIS RSB, the level 1B calibration algorithm produces top of the atmosphere reflectance factors and radiances for every pixel of the Earth view. The sensor radiometric calibration accuracy, specified at each spectral band's typical scene radiance, is 2% for the RSB reflectance factors and 5% for the RSB radiances. Also specified at the typical scene radiance is the detector signal-to-noise ratio (SNR), a key sensor performance parameter that directly impacts its radiometric calibration accuracy and stability, as well as the image quality. This paper describes an on-orbit SNR characterization approach developed to evaluate and track MODIS RSB detector performance. In order to perform on-orbit SNR characterization, MODIS RSB detector responses to the solar illumination reflected from the SD panel must be corrected for factors due to variations of the solar angles and the SD bi-directional reflectance factor. This approach enables RSB SNR characterization to be performed at different response levels for each detector. On-orbit results show that both Terra and Aqua MODIS RSB detectors have performed well since launch. Except for a few noisy or inoperable detectors which were identified pre-launch, most RSB detectors continue to meet the SNR design requirements and are able to maintain satisfactory short-term stability. A comparison of on-orbit noise characterization results with results derived from pre-launch calibration and characterization are also provided.
Crosstalk effect and its mitigation in Aqua MODIS middle wave infrared bands
NASA Astrophysics Data System (ADS)
Sun, Junqiang; Madhavan, Sriharsha; Wang, Menghua
2017-09-01
The MODerate-resolution Imaging Spectroradiometer (MODIS) is one of the primary instruments in the National Aeronautics and Space Administration (NASA) Earth Observing System (EOS). The first MODIS instrument was launched in December 1999 on-board the Terra spacecraft. A follow on MODIS was launched on an afternoon orbit in 2002 and is aboard the Aqua spacecraft. Both MODIS instruments are very akin, has 36 bands, among which bands 20 to 25 are Middle Wave Infrared (MWIR) bands covering a wavelength range from approximately 3.750 μm to 4.515 μm. It was found that there was severe contamination in these bands early in mission but the effect has not been characterized and mitigated at the time. The crosstalk effect induces strong striping in the Earth View (EV) images and causes significant retrieval errors in the EV Brightness Temperature (BT) in these bands. An algorithm using a linear approximation derived from on-orbit lunar observations has been developed to correct the crosstalk effect and successfully applied to mitigate the effect in both Terra and Aqua MODIS Long Wave Infrared (LWIR) Photovoltaic (PV) bands. In this paper, the crosstalk effect in the Aqua MWIR bands is investigated and characterized by deriving the crosstalk coefficients using the scheduled Aqua MODIS lunar observations for the MWIR bands. It is shown that there are strong crosstalk contaminations among the five MWIR bands and they also have significant crosstalk contaminations from Short Wave Infrared (SWIR) bands. The crosstalk correction algorithm previously developed is applied to correct the crosstalk effect in these bands. It is demonstrated that the crosstalk correction successfully reduces the striping in the EV images and improves the accuracy of the EV BT in the five bands as was done similarly for LWIR PV bands. The crosstalk correction algorithm should thus be applied to improve both the image quality and radiometric accuracy of the Aqua MODIS MWIR bands Level 1B (L1B) products.
MODIS Measures Total U.S. Leaf Area
NASA Technical Reports Server (NTRS)
2002-01-01
This composite image over the continental United States was produced with data acquired by the Moderate-resolution Imaging Spectroradiometer (MODIS) during the period March 24 - April 8, 2000. The image is a map of the density of the plant canopy covering the ground. It is the first in a series of images over the continental U.S. produced by the MODIS Land Discipline Group (refer to this site June 2 and 5 for the next two images in the series). The image is a MODIS data product called 'Leaf Area Index,' which is produced by radiometrically measuring the visible and near infrared energy reflected by vegetation. The Leaf Area Index provides information on the structure of plant canopy, showing how much surface area is covered by green foliage relative to total land surface area. In this image, dark green pixels indicate areas where more than 80 percent of the land surface is covered by green vegetation, light green pixels show where leaves cover about 10 to 50 percent of the land surface, and brown pixels show virtually no leaf coverage. The more leaf area a plant has, the more sunlight it can absorb for photosynthesis. Leaf Area Index is one of a new suite of measurements that scientists use to understand how the Earth's land surfaces are changing over time. Their goal is to use these measurements to refine computer models well enough to simulate how the land biosphere influences the natural cycles of water, carbon, and energy throughout the Earth system. This image is the first of its kind from the MODIS instrument, which launched in December 1999 aboard the Terra spacecraft. MODIS began acquiring scientific data on February 24, 2000, when it first opened its aperture door. The MODIS instrument and Terra spacecraft are both managed by NASA's Goddard Space Flight Center, Greenbelt, MD. Image courtesy Steven Running, MODIS Land Group Member, University of Montana
A Framework for Mapping Global Evapotranspiration using 375-m VIIRS LST
NASA Astrophysics Data System (ADS)
Hain, C.; Anderson, M. C.; Schull, M. A.; Neale, C. M. U.
2017-12-01
As the world's water resources come under increasing tension due to dual stressors of climate change and population growth, accurate knowledge of water consumption through evapotranspiration (ET) over a range in spatial scales will be critical in developing adaptation strategies. Remote sensing methods for monitoring consumptive water use are becoming increasingly important, especially in areas of food insecurity. One method to estimate ET from satellite-based methods, the Atmosphere Land Exchange Inverse (ALEXI) model uses the change in morning land surface temperature to estimate the partitioning of sensible/latent heat fluxes which are then used to estimate daily ET. This presentation will outline several recent enhancements to the ALEXI modeling system, with a focus on global ET and drought monitoring. Until recently, ALEXI has been limited to areas with high resolution temporal sampling of geostationary sensors. The use of geostationary sensors makes global mapping a complicated process, especially for real-time applications, as data from as many as five different sensors are required to be ingested and harmonized to create a global mosaic. However, our research team has developed a new and novel method of using twice-daily observations from polar-orbiting sensors such as MODIS and VIIRS to estimate the mid-morning rise in LST that is used to drive the energy balance estimations within ALEXI. This allows the method to be applied globally using a single sensor rather than a global compositing of all available geostationary data. Other advantages of this new method include the higher spatial resolution provided by MODIS and VIIRS and the increased sampling at high latitudes where oblique view angles limit the utility of geostationary sensors. Improvements to the spatial resolution of the thermal infrared wavelengths on the VIIRS instrument, as compared to MODIS (375-m VIIRS vs. 1-km MODIS), allows for a much higher resolution ALEXI product than has been previously available. Therefore, recent developments have been to generate 375-m ALEXI ET products over several pilot regions (e.g. western US and the MENA region). The monitoring of consumptive water use over regions where significant groundwater pumping for irrigation is employed is important to accurately quantify the efficiency of water use in the region.
NASA Astrophysics Data System (ADS)
Ba, Yu Tao; xian Liu, Bao; Sun, Feng; Wang, Li hua; Tang, Yu jia; Zhang, Da wei
2017-04-01
High-resolution mapping of PM2.5 is the prerequisite for precise analytics and subsequent anti-pollution interventions. Considering the large variances of particulate distribution, urban-scale mapping is challenging either with ground-based fixed stations, with satellites or via models. In this study, a dynamic fusion method between high-density sensor network and MODIS Aerosol Optical Depth (AOD) was introduced. The sensor network was deployed in Beijing ( > 1000 fixed monitors across 16000 km2 area) to provide raw observations with high temporal resolution (sampling interval < 1 hour), high spatial resolution in flat areas ( < 1 km), and low spatial resolution in mountainous areas ( > 5 km). The MODIS AOD was calibrated to provide distribution map with low temporal resolution (daily) and moderate spatial resolution ( = 3 km). By encoding the data quality and defects (e.g. could, reflectance, abnormal), a hybrid interpolation procedure with cross-validation generated PM2.5 distribution with both high temporal and spatial resolution. Several no-pollutant and high-pollution periods were tested to validate the proposed fusion method for capturing the instantaneous patterns of PM2.5 emission.
David P. Turner; William D. Ritts; Warren B. Cohen; Thomas K. Maeirsperger; Stith T. Gower; Al A. Kirschbaum; Steve W. Runnings; Maosheng Zhaos; Steven C. Wofsy; Allison L. Dunn; Beverly E. Law; John L. Campbell; Walter C. Oechel; Hyo Jung Kwon; Tilden P. Meyers; Eric E. Small; Shirley A. Kurc; John A. Gamon
2005-01-01
Operational monitoring of global terrestrial gross primary production (GPP) and net primary production (NPP) is now underway using imagery from the satellite-borne Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Evaluation of MODIS GPP and NPP products will require site-level studies across a range of biomes, with close attention to numerous scaling...
Xiangming Xiao; Stephen Hagen; Qingyuan Zhang; Michael Keller; Berrien Moore III
2006-01-01
Leaf phenology of tropical evergreen forests affects carbon and water fluxes. In an earlier study of a seasonally moist evergreen tropical forest site in the Amazon basin, time series data of Enhanced Vegetation Index (EVI) from the VEGETATION and Moderate Resolution Imaging Spectroradiometer (MODIS) sensors showed an unexpected seasonal pattern, with higher EVI in the...
NASA Technical Reports Server (NTRS)
Kaufman, Yoram J.; Tanre, Didier; Remer, Lorraine; Martins, Vanderlei; Schoeberl, Mark; Lau, William K. M. (Technical Monitor)
2001-01-01
The MODIS instrument was launched on the NASA Terra satellite in Dec. 1999. Since last Oct, the sensor and the aerosol algorithm reached maturity and provide global daily retrievals of aerosol optical thickness and properties. MODIS has 36 spectral channels in the visible to IR with resolution down to 250 m. This allows accurate cloud screening and multi-spectral aerosol retrievals. We derive the aerosol optical thickness over the ocean and most of the land areas, distinguishing between fine (mainly man-made aerosol) and coarse (mainly natural) aerosol particles. New methods to derive the aerosol absorption of sunlight are also being developed. These measurements are use to track different aerosol sources, transport and the radiative forcing at the top and bottom of the atmosphere. However MODIS or any present satellite sensor cannot measure absorption by Black Carbon over the oceans, a critical component in studying climate change and human health. For this purpose we propose the COBRA mission that observes the ocean at glint and off glint simultaneously measuring the spectral polarized light and deriving precisely the aerosol absorption.
NASA Astrophysics Data System (ADS)
Corbari, C.; Bissolati, M.; Mancini, M.
2015-05-01
Evapotranspiration estimates were performed with a residual energy balance model (REB) over an agricultural area using remote sensing data. REB uses land surface temperature (LST) as main input parameter so that energy fluxes were computed instantaneously at the time of data acquisition. Data from MODIS and SEVIRI sensors were used and downscaling techniques were implemented to improve their spatial resolutions. Energy fluxes at the original spatial resolutions (1000 m for MODIS and 5000 m for SEVIRI) as well as at the downscaled resolutions (250 m for MODIS and 1000 m for SEVIRI) were calculated with the REB model. Ground eddy covariance data and remote sensing information from the Muzza agricultural irrigation district in Italy from 2010 to 2012 gave the opportunity to validate and compare spatially distributed energy fluxes. The model outputs matched quite well ground observations when ground LST data were used, while differences increased when MODIS and SEVIRI LST were used. The spatial analysis revealed significant differences between the two sensors both in term of LST (around 2.8 °C) and of latent heat fluxes with values (around 100 W m-2).
Global dust sources detection using MODIS Deep Blue Collection 6 aerosol products
NASA Astrophysics Data System (ADS)
Pérez García-Pando, C.; Ginoux, P. A.
2015-12-01
Our understanding of the global dust cycle is limited by a dearth of information about dust sources, especially small-scale features which could account for a large fraction of global emissions. Remote sensing sensors are the most useful tool to locate dust sources. These sensors include microwaves, visible channels, and lidar. On the global scale, major dust source regions have been identified using polar orbiting satellite instruments. The MODIS Deep Blue algorithm has been particularly useful to detect small-scale sources such as floodplains, alluvial fans, rivers, and wadis , as well as to identify anthropogenic sources from agriculture. The recent release of Collection 6 MODIS aerosol products allows to extend dust source detection to the entire land surfaces, which is quite useful to identify mid to high latitude dust sources and detect not only dust from agriculture but fugitive dust from transport and industrial activities. This presentation will overview the advantages and drawbacks of using MODIS Deep Blue for dust detection, compare to other instruments (polar orbiting and geostationary). The results of Collection 6 with a new dust screening will be compared against AERONET. Applications to long range transport of anthropogenic dust will be presented.
NASA Astrophysics Data System (ADS)
Hashimoto, H.; Wang, W.; Ganguly, S.; Li, S.; Michaelis, A.; Higuchi, A.; Takenaka, H.; Nemani, R. R.
2017-12-01
New geostationary sensors such as the AHI (Advanced Himawari Imager on Himawari-8) and the ABI (Advanced Baseline Imager on GOES-16) have the potential to advance ecosystem modeling particularly of diurnally varying phenomenon through frequent observations. These sensors have similar channels as in MODIS (MODerate resolution Imaging Spectroradiometer), and allow us to utilize the knowledge and experience in MODIS data processing. Here, we developed sub-hourly Gross Primary Production (GPP) algorithm, leverating the MODIS 17 GPP algorithm. We run the model at 1-km resolution over Japan and Australia using geo-corrected AHI data. Solar radiation was directly calculated from AHI using a neural network technique. The other necessary climate data were derived from weather stations and other satellite data. The sub-hourly estimates of GPP were first compared with ground-measured GPP at various Fluxnet sites. We also compared the AHI GPP with MODIS 17 GPP, and analyzed the differences in spatial patterns and the effect of diurnal changes in climate forcing. The sub-hourly GPP products require massive storage and strong computational power. We use NEX (NASA Earth Exchange) facility to produce the GPP products. This GPP algorithm can be applied to other geostationary satellites including GOES-16 in future.
NASA Technical Reports Server (NTRS)
Wind, Galina; DaSilva, Arlindo M.; Norris, Peter M.; Platnick, Steven E.
2013-01-01
In this paper we describe a general procedure for calculating equivalent sensor radiances from variables output from a global atmospheric forecast model. In order to take proper account of the discrepancies between model resolution and sensor footprint the algorithm takes explicit account of the model subgrid variability, in particular its description of the probably density function of total water (vapor and cloud condensate.) The equivalent sensor radiances are then substituted into an operational remote sensing algorithm processing chain to produce a variety of remote sensing products that would normally be produced from actual sensor output. This output can then be used for a wide variety of purposes such as model parameter verification, remote sensing algorithm validation, testing of new retrieval methods and future sensor studies. We show a specific implementation using the GEOS-5 model, the MODIS instrument and the MODIS Adaptive Processing System (MODAPS) Data Collection 5.1 operational remote sensing cloud algorithm processing chain (including the cloud mask, cloud top properties and cloud optical and microphysical properties products.) We focus on clouds and cloud/aerosol interactions, because they are very important to model development and improvement.
Liu, Yan; Li, Yang; Yang, Yun; Jian, Ji
2014-05-01
Vegetation and bare soil were collected in the areas of Miyaluo district in northwest of Sichuan province, the Qilian Mountains in Qinghai province and northern areas of Xinjiang during the years of 2007 and 2013. Then these data were converted to spectral reflectance by applying sensor response function of MODIS and HJ-1B respectively within the range of visible light, near-infrared and shortwave infrared. Comprehensive analysis was made on spectral characteristics and reflectivity similarities and differences of different sensors between old and new snowmelt, under the condition of different snow depth and different snow cover. The conclusions can be drawn That is, there exists high consistency of spectral response between new snow and dirty snow for each sensor in the visible wavelength range, also it is true for bare soil and low vegetation. However, low consistency happens to other types of snow; especially snowmelt and frozen snow. The range of NDSI is relatively stable under the condition of different snow depth for full snow cover and the trend of NDSI shows great consistency for different sensors; NDSI threshold method for monitoring snow by using MODIS and HJ-1B data showed very obvious difference in spatial scales, which is a reasonable explanation of the existence of mixed pixels.
A-Train Observations of Young Volcanic Eruption Clouds
NASA Astrophysics Data System (ADS)
Carn, S. A.; Prata, F.; Yang, K.; Rose, W. I.
2011-12-01
NASA's A-Train satellite constellation (including Aqua, CloudSat, CALIPSO, and Aura) has been flying in formation since 2006, providing unprecedented synergistic observations of numerous volcanic eruption clouds in various stages of development. Measurements made by A-Train sensors include total column SO2 by the Ozone Monitoring Instrument (OMI) on Aura, upper tropospheric and stratospheric (UTLS) SO2 column by the Atmospheric Infrared Sounder (AIRS) on Aqua and Microwave Limb Sounder (MLS) on Aura, ash mass loading from AIRS and the Moderate resolution Imaging Spectroradiometer (MODIS) on Aqua, UTLS HCl columns and ice water content (IWC) from MLS, aerosol vertical profiles from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument aboard CALIPSO, and hydrometeor profiles from the Cloud Profiling Radar (CPR) on CloudSat. The active vertical profiling capability of CALIPSO, CloudSat and MLS sychronized with synoptic passive sensing of trace gases and aerosols by OMI, AIRS and MODIS provides a unique perspective on the structure and composition of volcanic clouds. A-Train observations during the first hours of atmospheric residence are particularly valuable, as the fallout, segregation and stratification of material in this period determines the concentration and altitude of constituents that remain to be advected downwind. This represents the eruption 'source term' essential for dispersion modeling, and hence for aviation hazard mitigation. In this presentation we show examples of A-Train data collected during recent eruptions including Chaitén (May 2008), Kasatochi (August 2008), Redoubt (March 2009), Eyjafjallajökull (April 2010) and Cordón Caulle (June 2011). We interpret the observations using the canonical three-stage view of volcanic cloud development [e.g., Rose et al., 2000] from initial rapid ash fallout to far-field dispersion of fine ash, gas and aerosol, and results from numerical modeling of volcanic plumes [e.g., Textor et al., 2003] and discuss the degree to which the observations validate existing theory and models. We also describe plans for advanced SO2 and ash retrieval algorithms that will exploit the synergy between UV and IR sensors in the A-Train for improved quantification of ash and SO2 loading by volcanic eruptions.
NASA Astrophysics Data System (ADS)
Tang, Xiaojing
Fast and accurate monitoring of tropical forest disturbance is essential for understanding current patterns of deforestation as well as helping eliminate illegal logging. This dissertation explores the use of data from different satellites for near real-time monitoring of forest disturbance in tropical forests, including: development of new monitoring methods; development of new assessment methods; and assessment of the performance and operational readiness of existing methods. Current methods for accuracy assessment of remote sensing products do not address the priority of near real-time monitoring of detecting disturbance events as early as possible. I introduce a new assessment framework for near real-time products that focuses on the timing and the minimum detectable size of disturbance events. The new framework reveals the relationship between change detection accuracy and the time needed to identify events. In regions that are frequently cloudy, near real-time monitoring using data from a single sensor is difficult. This study extends the work by Xin et al. (2013) and develops a new time series method (Fusion2) based on fusion of Landsat and MODIS (Moderate Resolution Imaging Spectroradiometer) data. Results of three test sites in the Amazon Basin show that Fusion2 can detect 44.4% of the forest disturbance within 13 clear observations (82 days) after the initial disturbance. The smallest event detected by Fusion2 is 6.5 ha. Also, Fusion2 detects disturbance faster and has less commission error than more conventional methods. In a comparison of coarse resolution sensors, MODIS Terra and Aqua combined provides faster and more accurate detection of disturbance events than VIIRS (Visible Infrared Imaging Radiometer Suite) and MODIS single sensor data. The performance of near real-time monitoring using VIIRS is slightly worse than MODIS Terra but significantly better than MODIS Aqua. New monitoring methods developed in this dissertation provide forest protection organizations the capacity to monitor illegal logging events promptly. In the future, combining two Landsat and two Sentinel-2 satellites will provide global coverage at 30 m resolution every 4 days, and routine monitoring may be possible at high resolution. The methods and assessment framework developed in this dissertation are adaptable to newly available datasets.
Analysis of Summer 2002 Melt Extent on the Greenland Ice Sheet using MODIS and SSM/I Data
NASA Technical Reports Server (NTRS)
Hall, Dorothy K.; Williams, Richard S., Jr.; Steffen, Konrad; Chien, Y. L.; Foster, James L.; Robinson, David A.; Riggs, George A.
2004-01-01
Previous work has shown that the summer of 2002 had the greatest area of snow melt extent on the Greenland ice sheet ever recorded using passive-microwave data. In this paper, we compare the 0 degree isotherm derived from the Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument, with Special Sensor Microwave/Imager (SSM/I)-derived melt, at the time of the maximum melt extent in 2002. To validate the MODIS-derived land-surface temperatures (LSTs), we compared the MODIS LSTs with air temperatures from nine stations (using 11 different data points) and found that they agreed to within 2.3 plus or minus 2.09 C, with station temperatures consistently lower than the MODIS LSTs. According to the MODIS LST, the maximum surface melt extended to approximately 2300 m in southern Greenland; while the SSM/I measurements showed that the maximum melt extended to nearly 2700 m in southeastern Greenland. The MODIS and SSM/I data are complementary in providing detailed information about the progression of surface and near-surface melt on the Greenland ice sheet.
Achieving sub-pixel geolocation accuracy in support of MODIS land science
Wolfe, R.E.; Nishihama, M.; Fleig, A.J.; Kuyper, J.A.; Roy, David P.; Storey, James C.; Patt, F.S.
2002-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) was launched in December 1999 on the polar orbiting Terra spacecraft and since February 2000 has been acquiring daily global data in 36 spectral bands—29 with 1 km, five with 500 m, and two with 250 m nadir pixel dimensions. The Terra satellite has on-board exterior orientation (position and attitude) measurement systems designed to enable geolocation of MODIS data to approximately 150 m (1σ) at nadir. A global network of ground control points is being used to determine biases and trends in the sensor orientation. Biases have been removed by updating models of the spacecraft and instrument orientation in the MODIS geolocation software several times since launch and have improved the MODIS geolocation to approximately 50 m (1σ) at nadir. This paper overviews the geolocation approach, summarizes the first year of geolocation analysis, and overviews future work. The approach allows an operational characterization of the MODIS geolocation errors and enables individual MODIS observations to be geolocated to the sub-pixel accuracies required for terrestrial global change applications.
Analysis of Summer 2002 Melt Extent on the Greenland Ice Sheet using MODIS and SSM/I Data
NASA Technical Reports Server (NTRS)
Hall, Dorothy K.; Williams, Richard S.; Steffen, Konrad; Chien, Janet Y. L.
2004-01-01
Previous work has shown that the summer of 2002 had the greatest area of snow melt extent on the Greenland ice sheet ever recorded using passive-microwave data. In this paper, we compare the 0 deg. isotherm derived from the Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument, with Special Sensor Microwave/Imager (SSM/I)-derived melt, at the time of the maximum melt extent in 2002. To validate the MODIS derived land-surface temperatures (LSTs), we compared the MODIS LSTs with air temperatures from nine stations (using 11 different data points) and found that they agreed to within 2.3 +/- 2.09 C, with station temperatures consistently lower than the MODIS LSTs. According to the MODIS LST, the maximum surface melt extended to approx. 2300 m in southern Greenland; while the SSM/I measurements showed that the maximum melt extended to nearly 2700 m in southeastern Greenland. The MODIS and SSM/I data are complementary in providing detailed information about the progression of surface and near- surface melt on the Greenland ice sheet.
Analysis of summer 2002 melt extent on the Greenland ice sheet using MODIS and SSM/I data
Hall, D.K.; Williams, R.S.; Steffen, K.; Chien, Janet Y.L.
2004-01-01
Previous work has shown that the summer of 2002 had the greatest area of snow melt extent on the Greenland ice sheet ever recorded using passive-microwave data. In this paper, we compare the 0?? isotherm derived from the Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument, with Special Sensor Microwave/Imager (SSM/I)-derived melt, at the time of the maximum melt extent in 2002. To validate the MODIS-derived land-surface temperatures (LSTs), we compared the MODIS LSTs with air temperatures from nine stations (using 11 different data points) and found that they agreed to within 2.3??2.09??C, with station temperatures consistently lower than the MODIS LSTs. According to the MODIS LST, the maximum surface melt extended to ???2300 m in southern Greenland; while the SSM/I measurements showed that the maximum melt extended to nearly 2700 m in southeastern Greenland. The MODIS and SSM/I data are complementary in providing detailed information about the progression of surface and near-surface melt on the Greenland ice sheet.
Analysis of summer 2002 melt extent on the Greenland ice sheet using MODIS and SSM/I data
Hall, D. K.; Williams, R.S.; Steffen, K.; Chien, Janet Y.L.
2004-01-01
Previous work has shown that the summer of 2002 had the greatest area of snow melt extent on the Greenland ice sheet ever recorded using passive-microwave data. In this paper, we compare the 0deg isotherm derived from the Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument, with Special Sensor Microwave/Imager (SSM/I)-derived melt, at the time of the maximum melt extent in 2002. To validate the MODIS-derived land-surface temperatures (LSTs), we compared the MODIS LSTs with air temperatures from nine stations (using 11 different data points) and found that they agreed to within 2.3 plusmn 2.09 degC, with station temperatures consistently lower than the MODIS LSTs. According to the MODIS LST, the maximum surface melt extended to ~2300 m in southern Greenland; while the SSM/I measurements showed that the maximum melt extended to nearly 2700 m in southeastern Greenland. The MODIS and SSM/I data are complementary in providing detailed information about the progression of surface and near-surface melt on the Greenland ice sheet.
Comparative Analysis of Aerosol Retrievals from MODIS, OMI and MISR Over Sahara Region
NASA Technical Reports Server (NTRS)
Lyapustin, A.; Wang, Y.; Hsu, C.; Terres, O.; Leptoukh, G.; Kalashnikova, O.; Korkin, S.
2011-01-01
MODIS is a wide field-of-view sensor providing daily global observations of the Earth. Currently, global MODIS aerosol retrievals over land are performed with the main Dark Target algorithm complimented with the Deep Blue (DB) Algorithm over bright deserts. The Dark Target algorithm relies on surface parameterization which relates reflectance in MODIS visible bands with the 2.1 micrometer region, whereas the Deep Blue algorithm uses an ancillary angular distribution model of surface reflectance developed from the time series of clear-sky MODIS observations. Recently, a new Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm has been developed for MODIS. MAIAC uses a time series and an image based processing to perform simultaneous retrievals of aerosol properties and surface bidirectional reflectance. It is a generic algorithm which works over both dark vegetative surfaces and bright deserts and performs retrievals at 1 km resolution. In this work, we will provide a comparative analysis of DB, MAIAC, MISR and OMI aerosol products over bright deserts of northern Africa.
NASA Technical Reports Server (NTRS)
2002-01-01
Over the past two weeks, heavy rains have inundated southern Russia, giving rise to floods that killed up to 83 people and drove thousands from their homes. This false-color image acquired on June 23, 2002, by the Moderate-resolution Imaging Spectroradiometer (MODIS) aboard the Terra satellite shows some of the worst flooding. The Black Sea is the dark patch in the lower left-hand corner. The city of Krasnodor, Russia, which was one of the cities hardest hit, sits on the western edge of the larger lake on the left side of the image, and Stavropol, which lost more lives than any other city, sits just east of the small cluster of lakes on the right-hand side of the image. Normally, the rivers and smaller lakes in this image cannot even be seen clearly on MODIS imagery. In this false-color image, the ground is green and blue and water is black or dark brown. Clouds come across as pink and white. Credit: Image courtesy Jesse Allen, NASA GSFC, based on data provided by the MODIS Rapid Response System.
NASA Sees Cyclone Chapala Approaching Landfall in Yemen
2017-12-08
On Nov. 2, 2015 at 09:40 UTC (4:40 p.m. EDT) the Moderate Resolution Imaging Spectroradiometer or MODIS instrument aboard NASA's Aqua satellite captured an image of Tropical Cyclone Chapala as the eye of the storm was approaching the Yemen coast. Chapala maintained an eye, although it appeared cloud-covered. Animated multispectral satellite imagery shows the system has maintained a 15-nautical-mile-wide eye and structure. The image was created by the MODIS Rapid Response Team at NASA's Goddard Space Flight Center, Greenbelt, Maryland. Chapala weakened from category four intensity a couple days ago while maintaining a course that steers it toward Yemen. Credit: NASA Goddard MODIS Rapid Response Team Read more: www.nasa.gov/f…/goddard/chapala-northern-indian-ocean NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
An Examination of the Nature of Global MODIS Cloud Regimes
NASA Technical Reports Server (NTRS)
Oreopoulos, Lazaros; Cho, Nayeong; Lee, Dongmin; Kato, Seiji; Huffman, George J.
2014-01-01
We introduce global cloud regimes (previously also referred to as "weather states") derived from cloud retrievals that use measurements by the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard the Aqua and Terra satellites. The regimes are obtained by applying clustering analysis on joint histograms of retrieved cloud top pressure and cloud optical thickness. By employing a compositing approach on data sets from satellites and other sources, we examine regime structural and thermodynamical characteristics. We establish that the MODIS cloud regimes tend to form in distinct dynamical and thermodynamical environments and have diverse profiles of cloud fraction and water content. When compositing radiative fluxes from the Clouds and the Earth's Radiant Energy System instrument and surface precipitation from the Global Precipitation Climatology Project, we find that regimes with a radiative warming effect on the atmosphere also produce the largest implied latent heat. Taken as a whole, the results of the study corroborate the usefulness of the cloud regime concept, reaffirm the fundamental nature of the regimes as appropriate building blocks for cloud system classification, clarify their association with standard cloud types, and underscore their distinct radiative and hydrological signatures.
Evaluation of radiative fluxes over the north Indian Ocean
NASA Astrophysics Data System (ADS)
Ramesh Kumar, M. R.; Pinker, Rachel T.; Mathew, Simi; Venkatesan, R.; Chen, W.
2018-05-01
Radiative fluxes are a key component of the surface heat budget of the oceans. Yet, observations over oceanic region are sparse due to the complexity of radiation measurements; moreover, certain oceanic regions are substantially under-sampled, such as the north Indian Ocean. The National Institute of Ocean Technology, Chennai, India, under its Ocean Observation Program has deployed an Ocean Moored Network for the Northern Indian Ocean (OMNI) both in the Arabian Sea and the Bay of Bengal. These buoys are equipped with sensors to measure radiation and rainfall, in addition to other basic meteorological parameters. They are also equipped with sensors to measure sub-surface currents, temperature, and conductivity from the surface up to a depth of 500 m. Observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard the National Aeronautics and Space Administration (NASA) AQUA and TERRA satellites have been used to infer surface radiation over the north Indian Ocean. In this study, we focus only on the shortwave (SW↓) fluxes. The evaluations of the MODIS-based SW↓ fluxes against the RAMA observing network have shown a very good agreement between them, and therefore, we use the MODIS-derived fluxes as a reference for the evaluation of the OMNI observations. In an early deployment of the OMNI buoys, the radiation sensors were placed at 2 m above the sea surface; subsequently, the height of the sensors was raised to 3 m. In this study, we show that there was a substantial improvement in the agreement between the buoy observations and the satellite estimates, once the sensors were raised to higher levels. The correlation coefficient increased from 0.87 to 0.93, and both the bias and standard deviations decreased substantially.
Salvaging of the Final SSMIS Flight Unit for a Future Flight-of-Opportunity
NASA Astrophysics Data System (ADS)
Tratt, D. M.; Boucher, D. J., Jr.; Park, E. S.; Swadley, S. D.; Poe, G.
2017-12-01
The final Special Sensor Microwave Imager/Sounder (SSMIS) that was originally manifested aboard the DMSP F-20 platform became available when that mission was deactivated. The U.S. Naval Research Laboratory and The Aerospace Corporation have secured the de-manifested SSMIS for potential flight on a future mission-of-opportunity. A number of mission options are under consideration, including installation aboard the International Space Station. The intent is for any such deployment to provide a measure of continuity between SSMIS units currently operating aboard DMSP F-16, F-17, and F-18 and whatever equivalent sensor may be selected for the next-generation DoD Weather Satellite Follow-on program. We will describe the current status of SSMIS preparations for flight.
Wave clouds over the Central African Republic
2016-02-04
On January 27, 2016, the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Aqua satellite passed over the Central African Republic and captured a true-color image of wave clouds rippling over a fire-speckled landscape. Wave clouds typically form when a mountain, island, or even another mass of air forces an air mass to rise, then fall again, in a wave pattern. The air cools as it rises, and if there is moisture in the air, the water condenses into clouds at the top of the wave. As the air begins to sink, the air warms and the cloud dissipates. The result is a line of clouds marking the crests of the wave separated by clear areas in the troughs of the wave. In addition to the long lines of clouds stretching across the central section of the country, clouds appear to line up in parallel rows near the border of the Democratic Republic of the Congo. In this area, small sets of grayish cloud appear to be lined up with the prevailing wind, judging by the plumes of smoke rising from red hotspots near each set of clouds. Clouds like this, that line in parallel rows parallel with the prevailing wind, are known as “cloud streets”. Each red “hotspot” marks an area where the thermal sensors on the MODIS instrument detected high temperatures. When accompanied by typical smoke, such hotspots are diagnostic for actively burning fires. Given the time of the year, the widespread nature, and the location of the fires, they are almost certainly agricultural fires that have been deliberately set to manage land. Image Credit: Jeff Schmaltz, MODIS Land Rapid Response Team, NASA GSFC NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Desert Test Site Uniformity Analysis
NASA Technical Reports Server (NTRS)
Kerola, Dana X.; Bruegge, Carol J.
2009-01-01
Desert test sites such as Railroad Valley (RRV) Nevada, Egypt-1, and Libya-4 are commonly targeted to assess the on-orbit radiometric performance of sensors. Railroad Valley is used for vicarious calibration experiments, where a field-team makes ground measurements to produce accurate estimates of top-of-atmosphere (TOA) radiances. The Sahara desert test sites are not instrumented, but provide a stable target that can be used for sensor cross-comparisons, or for stability monitoring of a single sensor. These sites are of interest to NASA's Atmospheric Carbon Observation from Space (ACOS) and JAXA's Greenhouse Gas Observation SATellite (GOSAT) programs. This study assesses the utility of these three test sites to the ACOS and GOSAT calibration teams. To simulate errors in sensor-measured radiance with pointing errors, simulated data have been created using MODIS Aqua data. MODIS data are further utilized to validate the campaign data acquired from June 22 through July 5, 2009. The first GOSAT vicarious calibration experiment was conducted during this timeframe.
Kim, Minho; Zhang, Xingyou; Holt, James B.; Liu, Yang
2015-01-01
Recent studies have explored the relationship between aerosol optical depth (AOD) measurements by satellite sensors and concentrations of particulate matter with aerodynamic diameters less than 2.5 μm (PM2.5). However, relatively little is known about spatial and temporal patterns in this relationship across the contiguous United States. In this study, we investigated the relationship between US Environmental Protection Agency estimates of PM2.5 concentrations and Moderate Resolution Imaging Spectroradiometer (MODIS) AOD measurements provided by two NASA satellites (Terra and Aqua) across the contiguous United States during 2005. We found that the combined use of both satellite sensors provided more AOD coverage than the use of either satellite sensor alone, that the correlation between AOD measurements and PM2.5 concentrations varied substantially by geographic location, and that this correlation was stronger in the summer and fall than that in the winter and spring. PMID:26336576
NASA Astrophysics Data System (ADS)
Ticehurst, C. J.; Bartsch, A.; Doubkova, M.; van Dijk, A. I. J. M.
2009-11-01
Continuous flood monitoring can support emergency response, water management and environmental monitoring. Optical sensors such as MODIS allow inundation mapping with high spatial and temporal resolution (250-1000 m, twice daily) but are affected by cloud cover. Passive microwave sensors also acquire observations at high temporal resolution, but coarser spatial resolution (e.g. ca. 5-70 km for AMSR-E) and smaller footprints are also affected by cloud and/or rain. ScanSAR systems allow all-weather monitoring but require spatial resolution to be traded off against coverage and/or temporal resolution; e.g. the ENVISAT ASAR Global Mode observes at ca. 1 km over large regions about twice a week. The complementary role of the AMSR-E and ASAR GM data to that of MODIS is here introduced for three flood events and locations across Australia. Additional improvements can be made by integrating digital elevation models and stream flow gauging data.
NASA Technical Reports Server (NTRS)
Schiller, Stephen
1997-01-01
The focus of our JOVE research has been to develop a field instrument that provides high quality data for atmospheric corrections and in-flight calibration of airborne and satellite remote sensing imaging systems. The instrument package is known as the Portable Ground-based Atmospheric Monitoring System or PGAMS. PGAMS collects a comprehensive set of spectroscopic/radiometric observations that describe the optical properties of the atmosphere and reflectance of a target area on the earth's surface at the time of the aircraft or satellite overpass. To date, the PGAMS instrument system and control software has been completed and used for data collection in several NASA field experiments across the continental US and Puerto Rico. Where do you see your JOVE research going after the initial JOVE Funding Expires? Our JOVE initiated research will continue to be very active in supporting validation and calibration activities in remote sensing involving NASA, DOE, DOD, NSF, and possibly commercial supported programs. Future effort will focus on projects related to NASA's Mission to Planet Earth. This will include field work using PGAMS and data analysis that evaluates sensor calibration and atmospheric effects in images recorded by ASTER, MODIS, and MISR instruments aboard the AM-1 platform.
Aerosol Remote Sensing from Space -- What We've Learned, Where We're Heading
NASA Technical Reports Server (NTRS)
Kahn, Ralph
2010-01-01
The MISR and MODIS instruments aboard the NASA Earth Observing System's Terra Satellite have been collecting data containing information about the state of Earth's atmosphere and surface for over ten years. Among the retrieved quantities are amount and type of wildfire smoke, desert dust, volcanic effluent, urban and industrial pollution particles, and other aerosols. However, the broad scientific challenges of understanding aerosol impacts on climate and health place different, and very exacting demands on our measurement capabilities. And these data sets, though much more advanced in many respects than previous aerosol data records, are imperfect. In this presentation, I will summarize current understanding of MISR and MODIS aerosol product strengths and limitations, discuss how they relate to the bigger aerosol science questions we must address, and give my view of what we will need to do to progress.
Aerosol Remote Sensing from Space - Where We Stand, Where We're Heading
NASA Technical Reports Server (NTRS)
Kahn, Ralph
2011-01-01
The MISR and MODIS instruments aboard the NASA Earth Observing System's Terra Satellite have been collecting data containing information about the state of Earth's atmosphere and surface for over eleven years. Among the retrieved quantities are amount and type of wildfire smoke, desert dust, volcanic effluent, urban and industrial pollution particles, and other aerosols. However, the broad scientific challenges of understanding aerosol impacts on climate and health place different, and very exacting demands on our measurement capabilities. And these data sets, though much more advanced in many respects than previous aerosol data records, are imperfect. In this presentation, I will summarize current understanding of MISR and MODIS aerosol product strengths and limitations, discuss how they relate to the bigger aerosol science questions we must address, and give my view of the way forward.
Aerosol Remote Sensing from Space - Where We Stand, Where We're Heading
NASA Technical Reports Server (NTRS)
Kahn, Ralph A.
2013-01-01
The MISR and MODIS instruments aboard the NASA Earth Observing System's Terra Satellite have been collecting data containing information about the state of Earth's atmosphere and surface for over eleven years. Among the retrieved quantities are amount and type of wildfire smoke, desert dust, volcanic effluent, urban and industrial pollution particles, and other aerosols. However, the broad scientific challenges of understanding aerosol impacts on climate and health place different, and very exacting demands on our measurement capabilities. And these data sets, though much more advanced in many respects than previous aerosol data records, are imperfect. In this presentation, I will summarize current understanding of MISR and MODIS aerosol product strengths and limitations, discuss how they relate to the bigger aerosol science questions we must address, and give my view of the way forward.
NASA Technical Reports Server (NTRS)
Ross, Kenton W.; Russell, Jeffrey; Ryan, Robert E.
2006-01-01
The success of MODIS (the Moderate Resolution Imaging Spectrometer) in creating unprecedented, timely, high-quality data for vegetation and other studies has created great anticipation for data from VIIRS (the Visible/Infrared Imager Radiometer Suite). VIIRS will be carried onboard the joint NASA/Department of Defense/National Oceanic and Atmospheric Administration NPP (NPOESS (National Polar-orbiting Operational Environmental Satellite System) Preparatory Project). Because the VIIRS instruments will have lower spatial resolution than the current MODIS instruments 400 m versus 250 m at nadir for the channels used to generate Normalized Difference Vegetation Index data, scientists need the answer to this question: how will the change in resolution affect vegetation studies? By using simulated VIIRS measurements, this question may be answered before the VIIRS instruments are deployed in space. Using simulated VIIRS products, the U.S. Department of Agriculture and other operational agencies can then modify their decision support systems appropriately in preparation for receipt of actual VIIRS data. VIIRS simulations and validations will be based on the ART (Application Research Toolbox), an integrated set of algorithms and models developed in MATLAB(Registerd TradeMark) that enables users to perform a suite of simulations and statistical trade studies on remote sensing systems. Specifically, the ART provides the capability to generate simulated multispectral image products, at various scales, from high spatial hyperspectral and/or multispectral image products. The ART uses acquired ( real ) or synthetic datasets, along with sensor specifications, to create simulated datasets. For existing multispectral sensor systems, the simulated data products are used for comparison, verification, and validation of the simulated system s actual products. VIIRS simulations will be performed using Hyperion and MODIS datasets. The hyperspectral and hyperspatial properties of Hyperion data will be used to produce simulated MODIS and VIIRS products. Hyperion-derived MODIS data will be compared with near-coincident MODIS collects to validate both spectral and spatial synthesis, which will ascertain the accuracy of converting from MODIS to VIIRS. MODIS-derived VIIRS data is needed for global coverage and for the generation of time series for regional and global investigations. These types of simulations will have errors associated with aliasing for some scene types. This study will help quantify these errors and will identify cases where high-quality, MODIS-derived VIIRS data will be available.
Cross-calibration of A.M. constellation sensors for long term monitoring of land surface processes
Meyer, D.; Chander, G.
2006-01-01
Data from multiple sensors must be used together to gain a more complete understanding of land surface processes at a variety of scales. Although higher-level products derived from different sensors (e.g., vegetation cover, albedo, surface temperature) can be validated independently, the degree to which these sensors and their products can be compared to one another is vastly improved if their relative spectro-radiometric responses are known. Most often, sensors are directly calibrated to diffuse solar irradiation or vicariously to ground targets. However, space-based targets are not traceable to metrological standards, and vicarious calibrations are expensive and provide a poor sampling of a sensor's full dynamic range. Cross-calibration of two sensors can augment these methods if certain conditions can be met: (1) the spectral responses are similar, (2) the observations are reasonably concurrent (similar atmospheric & solar illumination conditions), (3) errors due to misregistrations of inhomogeneous surfaces can be minimized (including scale differences), and (4) the viewing geometry is similar (or, some reasonable knowledge of surface bi-directional reflectance distribution functions is available). This study extends on a previous study of Terra/MODIS and Landsat/ETM+ cross calibration by including the Terra/ASTER and EO-1/ALI sensors, exploring the impacts of cross-calibrating sensors when conditions described above are met to some degree but not perfectly. Measures for spectral response differences and methods for cross calibrating such sensors are provided in this study. These instruments are cross calibrated using the Railroad Valley playa in Nevada. Best fit linear coefficients (slope and offset) are provided for ALI-to-MODIS and ETM+-to-MODIS cross calibrations, and root-mean-squared errors (RMSEs) and correlation coefficients are provided to quantify the uncertainty in these relationships. Due to problems with direct calibration of ASTER data, linear fits were developed between ASTER and ETM+ to assess the impacts of spectral bandpass differences between the two systems. In theory, the linear fits and uncertainties can be used to compare radiance and reflectance products derived from each instrument.
Tsuchida, Satoshi; Thome, Kurtis
2017-01-01
Radiometric cross-calibration between the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and the Terra-Moderate Resolution Imaging Spectroradiometer (MODIS) has been partially used to derive the ASTER radiometric calibration coefficient (RCC) curve as a function of date on visible to near-infrared bands. However, cross-calibration is not sufficiently accurate, since the effects of the differences in the sensor’s spectral and spatial responses are not fully mitigated. The present study attempts to evaluate radiometric consistency across two sensors using an improved cross-calibration algorithm to address the spectral and spatial effects and derive cross-calibration-based RCCs, which increases the ASTER calibration accuracy. Overall, radiances measured with ASTER bands 1 and 2 are on averages 3.9% and 3.6% greater than the ones measured on the same scene with their MODIS counterparts and ASTER band 3N (nadir) is 0.6% smaller than its MODIS counterpart in current radiance/reflectance products. The percentage root mean squared errors (%RMSEs) between the radiances of two sensors are 3.7, 4.2, and 2.3 for ASTER band 1, 2, and 3N, respectively, which are slightly greater or smaller than the required ASTER radiometric calibration accuracy (4%). The uncertainty of the cross-calibration is analyzed by elaborating the error budget table to evaluate the International System of Units (SI)-traceability of the results. The use of the derived RCCs will allow further reduction of errors in ASTER radiometric calibration and subsequently improve interoperability across sensors for synergistic applications. PMID:28777329
NASA Astrophysics Data System (ADS)
Jethva, Hiren; Torres, Omar; Remer, Lorraine; Redemann, Jens; Livingston, John; Dunagan, Stephen; Shinozuka, Yohei; Kacenelenbogen, Meloe; Segal Rosenheimer, Michal; Spurr, Rob
2016-10-01
We present the validation analysis of above-cloud aerosol optical depth (ACAOD) retrieved from the "color ratio" method applied to MODIS cloudy-sky reflectance measurements using the limited direct measurements made by NASA's airborne Ames Airborne Tracking Sunphotometer (AATS) and Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) sensors. A thorough search of the airborne database collection revealed a total of five significant events in which an airborne sun photometer, coincident with the MODIS overpass, observed partially absorbing aerosols emitted from agricultural biomass burning, dust, and wildfires over a low-level cloud deck during SAFARI-2000, ACE-ASIA 2001, and SEAC4RS 2013 campaigns, respectively. The co-located satellite-airborne matchups revealed a good agreement (root-mean-square difference < 0.1), with most matchups falling within the estimated uncertainties associated the MODIS retrievals (about -10 to +50 %). The co-retrieved cloud optical depth was comparable to that of the MODIS operational cloud product for ACE-ASIA and SEAC4RS, however, higher by 30-50 % for the SAFARI-2000 case study. The reason for this discrepancy could be attributed to the distinct aerosol optical properties encountered during respective campaigns. A brief discussion on the sources of uncertainty in the satellite-based ACAOD retrieval and co-location procedure is presented. Field experiments dedicated to making direct measurements of aerosols above cloud are needed for the extensive validation of satellite-based retrievals.
NASA Technical Reports Server (NTRS)
Jethva, Hiren; Torres, Omar; Remer, Lorraine; Redemann, Jens; Livingston, John; Dunagan, Stephen; Shinozuka, Yohei; Kacenelenbogen, Meloe; Segal Rozenhaimer, Michal; Spurr, Rob
2016-01-01
We present the validation analysis of above-cloud aerosol optical depth (ACAOD) retrieved from the color ratio method applied to MODIS cloudy-sky reflectance measurements using the limited direct measurements made by NASAs airborne Ames Airborne Tracking Sunphotometer (AATS) and Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) sensors. A thorough search of the airborne database collection revealed a total of five significant events in which an airborne sun photometer, coincident with the MODIS overpass, observed partially absorbing aerosols emitted from agricultural biomass burning, dust, and wildfires over a low-level cloud deck during SAFARI-2000, ACE-ASIA 2001, and SEAC4RS 2013 campaigns, respectively. The co-located satellite-airborne match ups revealed a good agreement (root-mean-square difference less than 0.1), with most match ups falling within the estimated uncertainties associated with the MODIS retrievals (about -10 to +50 ). The co-retrieved cloud optical depth was comparable to that of the MODIS operational cloud product for ACE-ASIA and SEAC4RS, however, higher by 30-50% for the SAFARI-2000 case study. The reason for this discrepancy could be attributed to the distinct aerosol optical properties encountered during respective campaigns. A brief discussion on the sources of uncertainty in the satellite-based ACAOD retrieval and co-location procedure is presented. Field experiments dedicated to making direct measurements of aerosols above cloud are needed for the extensive validation of satellite based retrievals.
Influence of resolution in irrigated area mapping and area estimation
Velpuri, N.M.; Thenkabail, P.S.; Gumma, M.K.; Biradar, C.; Dheeravath, V.; Noojipady, P.; Yuanjie, L.
2009-01-01
The overarching goal of this paper was to determine how irrigated areas change with resolution (or scale) of imagery. Specific objectives investigated were to (a) map irrigated areas using four distinct spatial resolutions (or scales), (b) determine how irrigated areas change with resolutions, and (c) establish the causes of differences in resolution-based irrigated areas. The study was conducted in the very large Krishna River basin (India), which has a high degree of formal contiguous, and informal fragmented irrigated areas. The irrigated areas were mapped using satellite sensor data at four distinct resolutions: (a) NOAA AVHRR Pathfinder 10,000 m, (b) Terra MODIS 500 m, (c) Terra MODIS 250 m, and (d) Landsat ETM+ 30 m. The proportion of irrigated areas relative to Landsat 30 m derived irrigated areas (9.36 million hectares for the Krishna basin) were (a) 95 percent using MODIS 250 m, (b) 93 percent using MODIS 500 m, and (c) 86 percent using AVHRR 10,000 m. In this study, it was found that the precise location of the irrigated areas were better established using finer spatial resolution data. A strong relationship (R2 = 0.74 to 0.95) was observed between irrigated areas determined using various resolutions. This study proved the hypotheses that "the finer the spatial resolution of the sensor used, greater was the irrigated area derived," since at finer spatial resolutions, fragmented areas are detected better. Accuracies and errors were established consistently for three classes (surface water irrigated, ground water/conjunctive use irrigated, and nonirrigated) across the four resolutions mentioned above. The results showed that the Landsat data provided significantly higher overall accuracies (84 percent) when compared to MODIS 500 m (77 percent), MODIS 250 m (79 percent), and AVHRR 10,000 m (63 percent). ?? 2009 American Society for Photogrammetry and Remote Sensing.
NASA Astrophysics Data System (ADS)
Bayat, F.; Hasanlou, M.
2016-06-01
Sea surface temperature (SST) is one of the critical parameters in marine meteorology and oceanography. The SST datasets are incorporated as conditions for ocean and atmosphere models. The SST needs to be investigated for various scientific phenomenon such as salinity, potential fishing zone, sea level rise, upwelling, eddies, cyclone predictions. On the other hands, high spatial resolution SST maps can illustrate eddies and sea surface currents. Also, near real time producing of SST map is suitable for weather forecasting and fishery applications. Therefore satellite remote sensing with wide coverage of data acquisition capability can use as real time tools for producing SST dataset. Satellite sensor such as AVHRR, MODIS and SeaWIFS are capable of extracting brightness values at different thermal spectral bands. These brightness temperatures are the sole input for the SST retrieval algorithms. Recently, Landsat-8 successfully launched and accessible with two instruments on-board: (1) the Operational Land Imager (OLI) with nine spectral bands in the visual, near infrared, and the shortwave infrared spectral regions; and (2) the Thermal Infrared Sensor (TIRS) with two spectral bands in the long wavelength infrared. The two TIRS bands were selected to enable the atmospheric correction of the thermal data using a split window algorithm (SWA). The TIRS instrument is one of the major payloads aboard this satellite which can observe the sea surface by using the split-window thermal infrared channels (CH10: 10.6 μm to 11.2 μm; CH11: 11.5 μm to 12.5 μm) at a resolution of 30 m. The TIRS sensors have three main advantages comparing with other previous sensors. First, the TIRS has two thermal bands in the atmospheric window that provide a new SST retrieval opportunity using the widely used split-window (SW) algorithm rather than the single channel method. Second, the spectral filters of TIRS two bands present narrower bandwidth than that of the thermal band on board on previous Landsat sensors. Third, TIRS is one of the best space born and high spatial resolution with 30 m. in this regards, Landsat-8 can use the Split-Window (SW) algorithm for retrieving SST dataset. Although several SWs have been developed to use with other sensors, some adaptations are required in order to implement them for the TIRS spectral bands. Therefore, the objective of this paper is to develop a SW, adapted for use with Landsat-8 TIRS data, along with its accuracy assessment. In this research, that has been done for modelling SST using thermal Landsat 8-imagery of the Persian Gulf. Therefore, by incorporating contemporary in situ data and SST map estimated from other sensors like MODIS, we examine our proposed method with coefficient of determination (R2) and root mean square error (RMSE) on check point to model SST retrieval for Landsat-8 imagery. Extracted results for implementing different SW's clearly shows superiority of utilized method by R2 = 0.95 and RMSE = 0.24.
Initial Verification of GEOS-4 Aerosols Using CALIPSO and MODIS: Scene Classification
NASA Technical Reports Server (NTRS)
Welton, Ellsworth J.; Colarco, Peter R.; Hlavka, Dennis; Levy, Robert C.; Vaughan, Mark A.; daSilva, Arlindo
2007-01-01
A-train sensors such as MODIS and MISR provide column aerosol properties, and in the process a means of estimating aerosol type (e.g. smoke vs. dust). Correct classification of aerosol type is important because retrievals are often dependent upon selection of the right aerosol model. In addition, aerosol scene classification helps place the retrieved products in context for comparisons and analysis with aerosol transport models. The recent addition of CALIPSO to the A-train now provides a means of classifying aerosol distribution with altitude. CALIPSO level 1 products include profiles of attenuated backscatter at 532 and 1064 nm, and depolarization at 532 nm. Backscatter intensity, wavelength ratio, and depolarization provide information on the vertical profile of aerosol concentration, size, and shape. Thus similar estimates of aerosol type using MODIS or MISR are possible with CALIPSO, and the combination of data from all sensors provides a means of 3D aerosol scene classification. The NASA Goddard Earth Observing System general circulation model and data assimilation system (GEOS-4) provides global 3D aerosol mass for sulfate, sea salt, dust, and black and organic carbon. A GEOS-4 aerosol scene classification algorithm has been developed to provide estimates of aerosol mixtures along the flight track for NASA's Geoscience Laser Altimeter System (GLAS) satellite lidar. GLAS launched in 2003 and did not have the benefit of depolarization measurements or other sensors from the A-train. Aerosol typing from GLAS data alone was not possible, and the GEOS-4 aerosol classifier has been used to identify aerosol type and improve the retrieval of GLAS products. Here we compare 3D aerosol scene classification using CALIPSO and MODIS with the GEOS-4 aerosol classifier. Dust, smoke, and pollution examples will be discussed in the context of providing an initial verification of the 3D GEOS-4 aerosol products. Prior model verification has only been attempted with surface mass comparisons and column optical depth from AERONET and MODIS.
NASA Astrophysics Data System (ADS)
Wind, Galina; da Silva, Arlindo M.; Norris, Peter M.; Platnick, Steven; Mattoo, Shana; Levy, Robert C.
2016-07-01
The Multi-sensor Cloud Retrieval Simulator (MCRS) produces a "simulated radiance" product from any high-resolution general circulation model with interactive aerosol as if a specific sensor such as the Moderate Resolution Imaging Spectroradiometer (MODIS) were viewing a combination of the atmospheric column and land-ocean surface at a specific location. Previously the MCRS code only included contributions from atmosphere and clouds in its radiance calculations and did not incorporate properties of aerosols. In this paper we added a new aerosol properties module to the MCRS code that allows users to insert a mixture of up to 15 different aerosol species in any of 36 vertical layers.This new MCRS code is now known as MCARS (Multi-sensor Cloud and Aerosol Retrieval Simulator). Inclusion of an aerosol module into MCARS not only allows for extensive, tightly controlled testing of various aspects of satellite operational cloud and aerosol properties retrieval algorithms, but also provides a platform for comparing cloud and aerosol models against satellite measurements. This kind of two-way platform can improve the efficacy of model parameterizations of measured satellite radiances, allowing the assessment of model skill consistently with the retrieval algorithm. The MCARS code provides dynamic controls for appearance of cloud and aerosol layers. Thereby detailed quantitative studies of the impacts of various atmospheric components can be controlled.In this paper we illustrate the operation of MCARS by deriving simulated radiances from various data field output by the Goddard Earth Observing System version 5 (GEOS-5) model. The model aerosol fields are prepared for translation to simulated radiance using the same model subgrid variability parameterizations as are used for cloud and atmospheric properties profiles, namely the ICA technique. After MCARS computes modeled sensor radiances equivalent to their observed counterparts, these radiances are presented as input to operational remote-sensing algorithms.Specifically, the MCARS-computed radiances are input into the processing chain used to produce the MODIS Data Collection 6 aerosol product (M{O/Y}D04). The M{O/Y}D04 product is of course normally produced from M{O/Y}D021KM MODIS Level-1B radiance product directly acquired by the MODIS instrument. MCARS matches the format and metadata of a M{O/Y}D021KM product. The resulting MCARS output can be directly provided to MODAPS (MODIS Adaptive Processing System) as input to various operational atmospheric retrieval algorithms. Thus the operational algorithms can be tested directly without needing to make any software changes to accommodate an alternative input source.We show direct application of this synthetic product in analysis of the performance of the MOD04 operational algorithm. We use biomass-burning case studies over Amazonia employed in a recent Working Group on Numerical Experimentation (WGNE)-sponsored study of aerosol impacts on numerical weather prediction (Freitas et al., 2015). We demonstrate that a known low bias in retrieved MODIS aerosol optical depth appears to be due to a disconnect between actual column relative humidity and the value assumed by the MODIS aerosol product.
NASA Technical Reports Server (NTRS)
Wind, Galina; Da Silva, Arlindo M.; Norris, Peter M.; Platnick, Steven; Mattoo, Shana; Levy, Robert C.
2016-01-01
The Multi-sensor Cloud Retrieval Simulator (MCRS) produces a simulated radiance product from any high-resolution general circulation model with interactive aerosol as if a specific sensor such as the Moderate Resolution Imaging Spectroradiometer (MODIS) were viewing a combination of the atmospheric column and land ocean surface at a specific location. Previously the MCRS code only included contributions from atmosphere and clouds in its radiance calculations and did not incorporate properties of aerosols. In this paper we added a new aerosol properties module to the MCRS code that allows users to insert a mixture of up to 15 different aerosol species in any of 36 vertical layers. This new MCRS code is now known as MCARS (Multi-sensor Cloud and Aerosol Retrieval Simulator). Inclusion of an aerosol module into MCARS not only allows for extensive, tightly controlled testing of various aspects of satellite operational cloud and aerosol properties retrieval algorithms, but also provides a platform for comparing cloud and aerosol models against satellite measurements. This kind of two-way platform can improve the efficacy of model parameterizations of measured satellite radiances, allowing the assessment of model skill consistently with the retrieval algorithm. The MCARS code provides dynamic controls for appearance of cloud and aerosol layers. Thereby detailed quantitative studies of the impacts of various atmospheric components can be controlled. In this paper we illustrate the operation of MCARS by deriving simulated radiances from various data field output by the Goddard Earth Observing System version 5 (GEOS-5) model. The model aerosol fields are prepared for translation to simulated radiance using the same model sub grid variability parameterizations as are used for cloud and atmospheric properties profiles, namely the ICA technique. After MCARS computes modeled sensor radiances equivalent to their observed counterparts, these radiances are presented as input to operational remote-sensing algorithms. Specifically, the MCARS-computed radiances are input into the processing chain used to produce the MODIS Data Collection 6 aerosol product (MOYD04). TheMOYD04 product is of course normally produced from MOYD021KM MODIS Level-1B radiance product directly acquired by the MODIS instrument. MCARS matches the format and metadata of a MOYD021KM product. The resulting MCARS output can be directly provided to MODAPS (MODIS Adaptive Processing System) as input to various operational atmospheric retrieval algorithms. Thus the operational algorithms can be tested directly without needing to make any software changes to accommodate an alternative input source. We show direct application of this synthetic product in analysis of the performance of the MOD04 operational algorithm. We use biomass-burning case studies over Amazonia employed in a recent Working Group on Numerical Experimentation (WGNE)-sponsored study of aerosol impacts on numerical weather prediction (Freitas et al., 2015). We demonstrate that a known low bias in retrieved MODIS aerosol optical depth appears to be due to a disconnect between actual column relative humidity and the value assumed by the MODIS aerosol product.
Greenland ice sheet albedo variability and feedback: 2000-2015
NASA Astrophysics Data System (ADS)
Box, J. E.; van As, D.; Fausto, R. S.; Mottram, R.; Langen, P. P.; Steffen, K.
2015-12-01
Absorbed solar irradiance represents the dominant source of surface melt energy for Greenland ice. Surface melting has increased as part of a positive feedback amplifier due to surface darkening. The 16 most recent summers of observations from the NASA MODIS sensor indicate a darkening exceeding 6% in July when most melting occurs. Without the darkening, the increase in surface melting would be roughly half as large. A minority of the albedo decline signal may be from sensor degradation. So, in this study, MOD10A1 and MCD43 albedo products from MODIS are evaluated for sensor degradation and anisotropic reflectance errors. Errors are minimized through calibration to GC-Net and PROMICE Greenland snow and ice ground control data. The seasonal and spatial variability in Greenland snow and ice albedo over a 16 year period is presented, including quantifying changing absorbed solar irradiance and melt enhancement due to albedo feedback using the DMI HIRHAM5 5 km model.
The GEOS-5 Neural Network Retrieval for AOD
NASA Astrophysics Data System (ADS)
Castellanos, P.; da Silva, A. M., Jr.
2017-12-01
One of the difficulties in data assimilation is the need for multi-sensor data merging that can account for temporal and spatial biases between satellite sensors. In the Goddard Earth Observing System Model Version 5 (GEOS-5) aerosol data assimilation system, a neural network retrieval (NNR) is used as a mapping between satellite observed top of the atmosphere (TOA) reflectance and AOD, which is the target variable that is assimilated in the model. By training observations of TOA reflectance from multiple sensors to map to a common AOD dataset (in this case AOD observed by the ground based Aerosol Robotic Network, AERONET), we are able to create a global, homogenous, satellite data record of AOD from MODIS observations on board the Terra and Aqua satellites. In this talk, I will present the implementation of and recent updates to the GEOS-5 NNR for MODIS collection 6 data.
The GEOS-5 Neural Network Retrieval (NNR) for AOD
NASA Technical Reports Server (NTRS)
Castellanos, Patricia; Da Silva, Arlindo
2017-01-01
One of the difficulties in data assimilation is the need for multi-sensor data merging that can account for temporal and spatial biases between satellite sensors. In the Goddard Earth Observing System Model Version 5 (GEOS-5) aerosol data assimilation system, a neural network retrieval (NNR) is used as a mapping between satellite observed top of the atmosphere (TOA) reflectance and AOD, which is the target variable that is assimilated in the model. By training observations of TOA reflectance from multiple sensors to map to a common AOD dataset (in this case AOD observed by the ground based Aerosol Robotic Network, AERONET), we are able to create a global, homogenous, satellite data record of AOD from MODIS observations on board the Terra and Aqua satellites. In this talk, I will present the implementation of and recent updates to the GEOS-5 NNR for MODIS collection 6 data.
NASA Astrophysics Data System (ADS)
Smirnov, Alexander; Petrenko, Maksym; Ichoku, Charles; Holben, Brent N.
2017-10-01
The paper reports on the current status of the Maritime Aerosol Network (MAN) which is a component of the Aerosol Robotic Network (AERONET). A public domain web-based data archive dedicated to MAN activity can be found at https://aeronet.gsfc.nasa.gov/new_web/maritime_aerosol_network.html . Since 2006 over 450 cruises were completed and the data archive consists of more than 6000 measurement days. In this work, we present MAN observations collocated with MODIS Terra, MODIS Aqua, MISR, POLDER, SeaWIFS, OMI, and CALIOP spaceborne aerosol products using a modified version of the Multi-Sensor Aerosol Products Sampling System (MAPSS) framework. Because of different spatio-temporal characteristics of the analyzed products, the number of MAN data points collocated with spaceborne retrievals varied between 1500 matchups for MODIS to 39 for CALIOP (as of August 2016). Despite these unavoidable sampling biases, latitudinal dependencies of AOD differences for all satellite sensors, except for SeaWIFS and POLDER, showed positive biases against ground truth (i.e. MAN) in the southern latitudes (<50° S), and substantial scatter in the Northern Atlantic "dust belt" (5°-15° N). Our analysis did not intend to determine whether satellite retrievals are within claimed uncertainty boundaries, but rather show where bias exists and corrections are needed.
MODIS 3 Km Aerosol Product: Applications over Land in an Urban/suburban Region
NASA Technical Reports Server (NTRS)
Munchak, L. A.; Levy, R. C.; Mattoo, S.; Remer, L. A.; Holben, B. N.; Schafer, J. S.; Hostetler, C. A.; Ferrare, R. A.
2013-01-01
MODerate resolution Imaging Spectroradiometer (MODIS) instruments aboard the Terra and Aqua satellites have provided a rich dataset of aerosol information at a 10 km spatial scale. Although originally intended for climate applications, the air quality community quickly became interested in using the MODIS aerosol data. However, 10 km resolution is not sufficient to resolve local scale aerosol features. With this in mind, MODIS Collection 6 is including a global aerosol product with a 3 km resolution. Here, we evaluate the 3 km product over the Baltimore/Washington D.C., USA, corridor during the summer of 2011, by comparing with spatially dense data collected as part of the DISCOVER-AQ campaign these data were measured by the NASA Langley Research Center airborne High Spectral Resolution Lidar (HSRL) and a network of 44 sun photometers (SP) spaced approximately 10 km apart. The HSRL instrument shows that AOD can vary by up to 0.2 within a single 10 km MODIS pixel, meaning that higher resolution satellite retrievals may help to characterize aerosol spatial distributions in this region. Different techniques for validating a high-resolution aerosol product against SP measurements are considered. Although the 10 km product is more statistically reliable than the 3 km product, the 3 km product still performs acceptably, with more than two-thirds of MODIS/SP collocations falling within the expected error envelope with high correlation (R > 0.90). The 3 km product can better resolve aerosol gradients and retrieve closer to clouds and shorelines than the 10 km product, but tends to show more significant noise especially in urban areas. This urban degradation is quantified using ancillary land cover data. Overall, we show that the MODIS 3 km product adds new information to the existing set of satellite derived aerosol products and validates well over the region, but due to noise and problems in urban areas, should be treated with some degree of caution.
Inter-Sensor Comparison of Satellite Ocean Color Products from GOCI and MODIS
2013-02-26
current map for this region. However the NOCOM modeled and GOCI measured data need to be validate using in-situ measurements. ...collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION...Ocean Model (NCOM). 15. SUBJECT TERMS satellite ocean color products, GOCI, MODIS, phytoplankton 16. SECURITY CLASSIFICATION OF: a. REPORT
NASA Astrophysics Data System (ADS)
Wang, C.; Platnick, S. E.; Meyer, K.; Zhang, Z.
2014-12-01
We developed an optimal estimation (OE)-based method using infrared (IR) observations to retrieve ice cloud optical thickness (COT), cloud effective radius (CER), and cloud top height (CTH) simultaneously. The OE-based retrieval is coupled with a fast IR radiative transfer model (RTM) that simulates observations of different sensors, and corresponding Jacobians in cloudy atmospheres. Ice cloud optical properties are calculated using the MODIS Collection 6 (C6) ice crystal habit (severely roughened hexagonal column aggregates). The OE-based method can be applied to various IR space-borne and airborne sensors, such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and the enhanced MODIS Airborne Simulator (eMAS), by optimally selecting IR bands with high information content. Four major error sources (i.e., the measurement error, fast RTM error, model input error, and pre-assumed ice crystal habit error) are taken into account in our OE retrieval method. We show that measurement error and fast RTM error have little impact on cloud retrievals, whereas errors from the model input and pre-assumed ice crystal habit significantly increase retrieval uncertainties when the cloud is optically thin. Comparisons between the OE-retrieved ice cloud properties and other operational cloud products (e.g., the MODIS C6 and CALIOP cloud products) are shown.
NASA Technical Reports Server (NTRS)
Anderson, J. C.; Wang, J.; Zeng, J.; Petrenko, M.; Leptoukh, G. G.; Ichoku, C.
2012-01-01
Coastal regions around the globe are a major source for anthropogenic aerosols in the atmosphere, but the underlying surface characteristics are not favorable for the Moderate Resolution Imaging Spectroradiometer (MODIS) algorithms designed for retrieval of aerosols over dark land or open-ocean surfaces. Using data collected from 62 coastal stations worldwide from the Aerosol Robotic Network (AERONET) from approximately 2002-2010, accuracy assessments are made for coastal aerosol optical depth (AOD) retrieved from MODIS aboard Aqua satellite. It is found that coastal AODs (at 550 nm) characterized respectively by the MODIS Dark Land (hereafter Land) surface algorithm, the Open-Ocean (hereafter Ocean) algorithm, and AERONET all exhibit a log-normal distribution. After filtering by quality flags, the MODIS AODs respectively retrieved from the Land and Ocean algorithms are highly correlated with AERONET (with R(sup 2) is approximately equal to 0.8), but only the Land algorithm AODs fall within the expected error envelope greater than 66% of the time. Furthermore, the MODIS AODs from the Land algorithm, Ocean algorithm, and combined Land and Ocean product show statistically significant discrepancies from their respective counterparts from AERONET in terms of mean, probability density function, and cumulative density function, which suggest a need for future improvement in retrieval algorithms. Without filtering with quality flag, the MODIS Land and Ocean AOD dataset can be degraded by 30-50% in terms of mean bias. Overall, the MODIS Ocean algorithm overestimates the AERONET coastal AOD by 0.021 for AOD less than 0.25 and underestimates it by 0.029 for AOD greater than 0.25. This dichotomy is shown to be related to the ocean surface wind speed and cloud contamination effects on the satellite aerosol retrieval. The Modern Era Retrospective-Analysis for Research and Applications (MERRA) reveals that wind speeds over the global coastal region 25 (with a mean and median value of 2.94 meters per second and 2.66 meters per second, respectively) are often slower than 6 meters per second assumed in the MODIS Ocean algorithm. As a result of high correlation (R(sup 2) greater than 0.98) between the bias in binned MODIS AOD and the corresponding binned wind speed over the coastal sea surface, an empirical scheme for correcting the bias of AOD retrieved from the MODIS Ocean algorithm is formulated and is shown to be effective over the majority of the coastal AERONET stations, and hence can be used in future analysis of AOD trend and MODIS AOD data assimilation.
NASA Astrophysics Data System (ADS)
Wang, W.; Wang, Y.; Hashimoto, H.; Li, S.; Takenaka, H.; Higuchi, A.; Lyapustin, A.; Nemani, R. R.
2017-12-01
The latest generation of geostationary satellite sensors, including the GOES-16/ABI and the Himawari 8/AHI, provide exciting capability to monitor land surface at very high temporal resolutions (5-15 minute intervals) and with spatial and spectral characteristics that mimic the Earth Observing System flagship MODIS. However, geostationary data feature changing sun angles at constant view geometry, which is almost reciprocal to sun-synchronous observations. Such a challenge needs to be carefully addressed before one can exploit the full potential of the new sources of data. Here we take on this challenge with Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm, recently developed for accurate and globally robust applications like the MODIS Collection 6 re-processing. MAIAC first grids the top-of-atmosphere measurements to a fixed grid so that the spectral and physical signatures of each grid cell are stacked ("remembered") over time and used to dramatically improve cloud/shadow/snow detection, which is by far the dominant error source in the remote sensing. It also exploits the changing sun-view geometry of the geostationary sensor to characterize surface BRDF with augmented angular resolution for accurate aerosol retrievals and atmospheric correction. The high temporal resolutions of the geostationary data indeed make the BRDF retrieval much simpler and more robust as compared with sun-synchronous sensors such as MODIS. As a prototype test for the geostationary-data processing pipeline on NASA Earth Exchange (GEONEX), we apply MAIAC to process 18 months of data from Himawari 8/AHI over Australia. We generate a suite of test results, including the input TOA reflectance and the output cloud mask, aerosol optical depth (AOD), and the atmospherically-corrected surface reflectance for a variety of geographic locations, terrain, and land cover types. Comparison with MODIS data indicates a general agreement between the retrieved surface reflectance products. Furthermore, the geostationary results satisfactorily capture the movement of clouds and variations in atmospheric dust/aerosol concentrations, suggesting that high quality land surface and vegetation datasets from the advanced geostationary sensors can help complement and improve the corresponding EOS products.
NASA Technical Reports Server (NTRS)
Riggs, George A.; Hall, Dorothy K.; Foster, James L.
2009-01-01
Monitoring of snow cover extent and snow water equivalent (SWE) in boreal forests is important for determining the amount of potential runoff and beginning date of snowmelt. The great expanse of the boreal forest necessitates the use of satellite measurements to monitor snow cover. Snow cover in the boreal forest can be mapped with either the Moderate Resolution Imaging Spectroradiometer (MODIS) or the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) microwave instrument. The extent of snow cover is estimated from the MODIS data and SWE is estimated from the AMSR-E. Environmental limitations affect both sensors in different ways to limit their ability to detect snow in some situations. Forest density, snow wetness, and snow depth are factors that limit the effectiveness of both sensors for snow detection. Cloud cover is a significant hindrance to monitoring snow cover extent Using MODIS but is not a hindrance to the use of the AMSR-E. These limitations could be mitigated by combining MODIS and AMSR-E data to allow for improved interpretation of snow cover extent and SWE on a daily basis and provide temporal continuity of snow mapping across the boreal forest regions in Canada. The purpose of this study is to investigate if temporal monitoring of snow cover using a combination of MODIS and AMSR-E data could yield a better interpretation of changing snow cover conditions. The MODIS snow mapping algorithm is based on snow detection using the Normalized Difference Snow Index (NDSI) and the Normalized Difference Vegetation Index (NDVI) to enhance snow detection in dense vegetation. (Other spectral threshold tests are also used to map snow using MODIS.) Snow cover under a forest canopy may have an effect on the NDVI thus we use the NDVI in snow detection. A MODIS snow fraction product is also generated but not used in this study. In this study the NDSI and NDVI components of the snow mapping algorithm were calculated and analyzed to determine how they changed through the seasons. A blended snow product, the Air Force Weather Agency and NASA (ANSA) snow algorithm and product has recently been developed. The ANSA algorithm blends the MODIS snow cover and AMSR-E SWE products into a single snow product that has been shown to improve the performance of snow cover mapping. In this study components of the ANSA snow algorithm are used along with additional MODIS data to monitor daily changes in snow cover over the period of 1 February to 30 June 2008.
USDA-ARS?s Scientific Manuscript database
Vegetation monitoring requires remote sensing data at fine spatial and temporal resolution. While imagery from coarse resolution sensors such as MODIS/VIIRS can provide daily observations, they lack spatial detail to capture surface features for crop and rangeland monitoring. The Landsat satellite s...
USDA-ARS?s Scientific Manuscript database
Vegetation monitoring requires frequent remote sensing observations. While imagery from coarse resolution sensors such as MODIS/VIIRS can provide daily observations, they lack spatial detail to capture surface features for vegetation monitoring. The medium spatial resolution (10-100m) sensors are su...
SATELLITE REMOTE SENSING AND GROUND-BASED ESTIMATES OF FOREST BIOMASS AND CANOPY STRUCTURE
MODIS (Moderate Resolution Imaging Spectroradiometer) launched in 1999 is the first satellite sensor to provide the kind of data necessary to intensively probe the global landscape for LAl. Because it is a new sensor, its data products must be validated with ground data. This res...
NASA Technical Reports Server (NTRS)
Ichoku, Charles; Kaufman, Yoram J.; Hao, Wei Min; Habib, Shahid
2004-01-01
The radiative energy emitted by large fires and the corresponding smoke aerosol loading are simultaneously measured from the MODIS sensor from both the Terra and Aqua satellites. Quantitative relationships between the rates of emission of fire radiative energy and smoke are being developed for different fire-prone regions of the globe. Preliminary results are presented. When fully developed, the system will enable the use of MODIS direct broadcast fire data for near real-time monitoring of fire strength and smoke emission as well as forecasting of fire progression and smoke dispersion, several hours to a few days in advance.
A Spatio-Temporal Approach for Global Validation and Analysis of MODIS Aerosol Products
NASA Technical Reports Server (NTRS)
Ichoku, Charles; Chu, D. Allen; Mattoo, Shana; Kaufman, Yoram J.; Remer, Lorraine A.; Tanre, Didier; Slutsker, Ilya; Holben, Brent N.; Lau, William K. M. (Technical Monitor)
2001-01-01
With the launch of the MODIS sensor on the Terra spacecraft, new data sets of the global distribution and properties of aerosol are being retrieved, and need to be validated and analyzed. A system has been put in place to generate spatial statistics (mean, standard deviation, direction and rate of spatial variation, and spatial correlation coefficient) of the MODIS aerosol parameters over more than 100 validation sites spread around the globe. Corresponding statistics are also computed from temporal subsets of AERONET-derived aerosol data. The means and standard deviations of identical parameters from MOMS and AERONET are compared. Although, their means compare favorably, their standard deviations reveal some influence of surface effects on the MODIS aerosol retrievals over land, especially at low aerosol loading. The direction and rate of spatial variation from MODIS are used to study the spatial distribution of aerosols at various locations either individually or comparatively. This paper introduces the methodology for generating and analyzing the data sets used by the two MODIS aerosol validation papers in this issue.
NASA Astrophysics Data System (ADS)
Xu, B.; Park, T.; Yan, K.; Chen, C.; Jing, L.; Qinhuo, L.; Song, W.; Knyazikhin, Y.; Myneni, R.
2017-12-01
The operational EOS MODIS LAI/FPAR algorithm has been successfully transitioned to Suomi-NPP VIIRS by optimizing a small set of configurable parameters in Look-Up-Tables (LUTs). Our preliminary evaluation results show a reasonable agreement between VIIRS and MODIS LAI/FPAR retrievals. However, we still need more comprehensive investigations to assure the continuity of multi-sensor based global LAI/FPAR time series, as the preliminary evaluation was spatiotemporally limited. Here, we used a multi-year (2012-2016) global LAI/FPAR product generated from VIIRS Version 1 and MODIS Collection 6 to evaluate their spatiotemporal consistency at global and site scales. We also quantified the uncertainty of the product by defining and measuring theoretical and physical terms. For both consistency and uncertainty evaluation, we accounted varying biome types and temporal resolutions (i.e., 8-day, seasonal and annual steps). A newly developed approach (a.k.a., Grading and Upscaling Ground Measurements, GUGM) generating accurate validation datasets was implemented to help validating both products. Our results clearly indicate that the LAI/FPAR retrievals from VIIRS and MODIS are quite consistent at different spatio- (i.e., global and site) and temporal- (i.e., 8-day, seasonal and annual) scales. It is also worthy to note that the rate of retrievals from the radiative transfer based main algorithm is also comparable. However, we also saw a relatively larger LAI/FPAR discrepancy over highly dense tropical forests and a slightly less retrieval rate (main algorithm) from VIIRS over high latitude regions. For the uncertainty assessment, the theoretical uncertainty of VIIRS LAI (FPAR) is less than 0.2 (0.06) for non-forest and 0.9 (0.08) for forest, which is nearly identical to those of MODIS. The physical uncertainties of VIIRS and MODIS LAI (FPAR) products assessed by comparing to ground measurements are estimated by 0.60 (0.10) and 0.55 (0.11), respectively. All of the results presented here imbue confidence in assuring the consistency between VIIRS and MODIS LAI/FPAR retrievals, and the feasibility of generating long-term multi-sensor LAI/FPAR time series.
NASA Technical Reports Server (NTRS)
Wang, Zhipeng; Xiong, Xiaoxiong
2017-01-01
The MODIS instruments aboard Terra and Aqua satellites are radiometrically calibrated on-orbit with a set of onboard calibrators (OBC) including a solar diffuser (SD), a blackbody (BB) and a space view (SV) port through which the detectors can view the dark space. As a whisk-broom scanning spectroradiometer, thirty-six MODIS spectral bands are assembled in the along-scan direction on four focal plane assemblies (FPA). These bands capture images of the same target sequentially with the motion of a scan mirror. Then the images are co-registered on board by delaying appropriate band dependent amount of time depending on the band locations on the FPA. While this co-registration mechanism is functioning well for the "far field" remote targets such as Earth view (EV) scenes or the Moon, noticeable band-to-band misregistration in the along-scan direction has been observed for near field targets, in particular the OBCs. In this paper, the misregistration phenomenon is presented and analyzed. It is concluded that the root cause of the misregistration is that the rotating element of the instrument, the scan mirror, is displaced from the focus of the telescope primary mirror. The amount of the misregistration is proportional to the band location on the FPA and is inversely proportional to the distance between the target and the scan mirror. The impact of this misregistration to the calibration of MODIS bands is discussed. In particular, the calculation of the detector gain coefficient m1 of bands 8-16 (412 nm 870 nm) is improved by up to 1.5% for Aqua MODIS.
NASA Technical Reports Server (NTRS)
Wang, Zhipeng; Xiong, Xiaoxiong
2017-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard Terra and Aqua satellites are radiometrically calibrated on-orbit with a set of onboard calibrators (OBCs), including a solar diffuser, a blackbody, and a space view port through which the detectors can view the dark space. As a whisk-broom scanning spectroradiometer, thirty-six MODIS spectral bands are assembled in the along-scan direction on four focal plane assemblies (FPAs). These bands capture images of the same target sequentially with the motion of a scan mirror. Then the images are coregistered onboard by delaying the appropriate band-dependent amount of time, depending on the band locations on the FPA. While this coregistration mechanismis functioning well for the far-field remote targets such as earth view scenes or the moon, noticeable band-to-band misregistration in the along-scan direction has been observed for near field targets, particularly in OBCs. In this paper, the misregistration phenomenon is presented and analyzed. It is concluded that the root cause of the misregistration is that the rotating element of the instrument, the scan mirror, is displaced from the focus of the telescope primary mirror. The amount of the misregistrationis proportional to the band location on the FPA and is inversely proportional to the distance between the target and the scan mirror. The impact of this misregistration on the calibration of MODIS bands is discussed. In particular, the calculation of the detector gain coefficient m1of bands 8-16 (412 nm 870 nm) is improved by up to 1.5% for Aqua MODIS.
Radiometric Characterization of Hyperspectral Imagers using Multispectral Sensors
NASA Technical Reports Server (NTRS)
McCorkel, Joel; Kurt, Thome; Leisso, Nathan; Anderson, Nikolaus; Czapla-Myers, Jeff
2009-01-01
The Remote Sensing Group (RSG) at the University of Arizona has a long history of using ground-based test sites for the calibration of airborne and satellite based sensors. Often, ground-truth measurements at these test sites are not always successful due to weather and funding availability. Therefore, RSG has also automated ground instrument approaches and cross-calibration methods to verify the radiometric calibration of a sensor. The goal in the cross-calibration method is to transfer the calibration of a well-known sensor to that of a different sensor, This work studies the feasibility of determining the radiometric calibration of a hyperspectral imager using multispectral a imagery. The work relies on the Moderate Resolution Imaging Spectroradiometer (M0DIS) as a reference for the hyperspectral sensor Hyperion. Test sites used for comparisons are Railroad Valley in Nevada and a portion of the Libyan Desert in North Africa. Hyperion bands are compared to MODIS by band averaging Hyperion's high spectral resolution data with the relative spectral response of M0DlS. The results compare cross-calibration scenarios that differ in image acquisition coincidence, test site used for the calibration, and reference sensor. Cross-calibration results are presented that show agreement between the use of coincident and non-coincident image pairs within 2% in most brands as well as similar agreement between results that employ the different MODIS sensors as a reference.
Evaluation on Radiometric Capability of Chinese Optical Satellite Sensors.
Yang, Aixia; Zhong, Bo; Wu, Shanlong; Liu, Qinhuo
2017-01-22
The radiometric capability of on-orbit sensors should be updated on time due to changes induced by space environmental factors and instrument aging. Some sensors, such as Moderate Resolution Imaging Spectroradiometer (MODIS), have onboard calibrators, which enable real-time calibration. However, most Chinese remote sensing satellite sensors lack onboard calibrators. Their radiometric calibrations have been updated once a year based on a vicarious calibration procedure, which has affected the applications of the data. Therefore, a full evaluation of the sensors' radiometric capabilities is essential before quantitative applications can be made. In this study, a comprehensive procedure for evaluating the radiometric capability of several Chinese optical satellite sensors is proposed. In this procedure, long-term radiometric stability and radiometric accuracy are the two major indicators for radiometric evaluation. The radiometric temporal stability is analyzed by the tendency of long-term top-of-atmosphere (TOA) reflectance variation; the radiometric accuracy is determined by comparison with the TOA reflectance from MODIS after spectrally matching. Three Chinese sensors including the Charge-Coupled Device (CCD) camera onboard Huan Jing 1 satellite (HJ-1), as well as the Visible and Infrared Radiometer (VIRR) and Medium-Resolution Spectral Imager (MERSI) onboard the Feng Yun 3 satellite (FY-3) are evaluated in reflective bands based on this procedure. The results are reasonable, and thus can provide reliable reference for the sensors' application, and as such will promote the development of Chinese satellite data.
NASA Astrophysics Data System (ADS)
Sandric, Ionut; Onose, Diana; Vanau, Gabriel; Ioja, Cristian
2016-04-01
The present study is focusing on the identification of urban heat island in Bucharest using both remote sensing products and low cost temperature sensors. The urban heat island in Bucharest was analyzed through a network of sensors located in 56 points (47 inside the administrative boundary of the city, 9 outside) 2009-2011. The network lost progressively its initial density, but was reformed during a new phase, 2013-2015. Time series satellite images from MODIS were intersected with the sensors for both phases. Statistical analysis were conducted to identify the temporal and spatial pattern of extreme temperatures in Bucharest. Several environmental factors like albedou, presence and absence of vegetation were used to fit a regression model between MODIS satellite products sensors in order to upscale the temperatures values recorded by MODIS For Bucharest, an important role for air temperature values in urban environments proved to have the local environmental conditions that leads to differences in air temperature at Bucharest city scale between 3-5 °C (both in the summer and in the winter). The UHI maps shows a good correlation with the presence of green areas. Differences in air temperature between higher tree density areas and isolated trees can reach much higher values, averages over 24 h periods still are in the 3-5 °C range The results have been obtained within the project UCLIMESA (Urban Heat Island Monitoring under Present and Future Climate), ongoing between 2013 and 2015 in the framework of the Programme for Research-DevelopmentInnovation for Space Technology and Advanced Research (STAR), administrated by the Romanian Space Agency Keywords: time series, urban heat island
MODIS and SeaWIFS on-orbit lunar calibration
Sun, Jielun; Eplee, R.E.; Xiong, X.; Stone, T.; Meister, G.; McClain, C.R.
2008-01-01
The Moon plays an important role in the radiometric stability monitoring of the NASA Earth Observing System's (EOS) remote sensors. The MODIS and SeaWIFS are two of the key instruments for NASA's EOS missions. The MODIS Protoflight Model (PFM) on-board the Terra spacecraft and the MODIS Flight Model 1 (FM1) on-board the Aqua spacecraft were launched on December 18, 1999 and May 4, 2002, respectively. They view the Moon through the Space View (SV) port approximately once a month to monitor the long-term radiometric stability of their Reflective Solar Bands (RSB). SeaWIFS was launched on-board the OrbView-2 spacecraft on August 1, 1997. The SeaWiFS lunar calibrations are obtained once a month at a nominal phase angle of 7??. The lunar irradiance observed by these instruments depends on the viewing geometry. The USGS photometric model of the Moon (the ROLO model) has been developed to provide the geometric corrections for the lunar observations. For MODIS, the lunar view responses with corrections for the viewing geometry are used to track the gain change for its reflective solar bands (RSB). They trend the system response degradation at the Angle Of Incidence (AOI) of sensor's SV port. With both the lunar observation and the on-board Solar Diffuser (SD) calibration, it is shown that the MODIS system response degradation is wavelength, mirror side, and AOI dependent. Time-dependent Response Versus Scan angle (RVS) Look-Up Tables (LUT) are applied in MODIS RSB calibration and lunar observations play a key role in RVS derivation. The corrections provided by the RVS in the Terra and Aqua MODIS data from the 412 nm band are as large as 16% and 13%, respectively. For SeaWIFS lunar calibrations, the spacecraft is pitched across the Moon so that the instrument views the Moon near nadir through the same optical path as it views the Earth. The SeaWiFS system gain changes for its eight bands are calibrated using the geometrically-corrected lunar observations. The radiometric corrections to the SeaWiFS data, after more than ten years on orbit, are 19% at 865 nm, 8% at 765 nm, and 1-3% in the other bands. In this report, the lunar calibration algorithms are reviewed and the RSB gain changes observed by the lunar observations are shown for all three sensors. The lunar observations for the three instruments are compared using the USGS photometric model. The USGS lunar model facilitates the cross calibration of instruments with different spectra bandpasses whose measurements of the Moon differ in time and observing geometry.
Chander, Gyanesh; Mishra, N.; Helder, Dennis L.; Aaron, David; Choi, T.; Angal, A.; Xiong, X.
2010-01-01
Different applications and technology developments in Earth observations necessarily require different spectral coverage. Thus, even for the spectral bands designed to look at the same region of the electromagnetic spectrum, the relative spectral responses (RSR) of different sensors may be different. In this study, spectral band adjustment factors (SBAF) are derived using hyperspectral Earth Observing-1 (EO-1) Hyperion measurements to adjust for the spectral band differences between the Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM+) and the Terra Moderate Resolution Imaging Spectroradiometer (MODIS) top-of-atmosphere (TOA) reflectance measurements from 2000 to 2009 over the pseudo-invariant Libya 4 reference standard test site.
Fires and Heavy Smoke in Alaska
NASA Technical Reports Server (NTRS)
2002-01-01
On May 28, 2002, the Moderate Resolution Imaging Spectroradiometer (MODIS) captured this image of fires that continue to burn in central Alaska. Alaska is very dry and warm for this time of year, and has experienced over 230 wildfires so far this season. Please note that the high-resolution scene provided here is 500 meters per pixel. For a copy of the scene at the sensor's fullest resolution, visit the MODIS Rapid Response Image Gallery.
Corrections to MODIS Terra Calibration and Polarization Trending Derived from Ocean Color Products
NASA Technical Reports Server (NTRS)
Meister, Gerhard; Eplee, Robert E.; Franz, Bryan A.
2014-01-01
Remotely sensed ocean color products require highly accurate top-of-atmosphere (TOA) radiances, on the order of 0.5% or better. Due to incidents both prelaunch and on-orbit, meeting this requirement has been a consistent problem for the MODIS instrument on the Terra satellite, especially in the later part of the mission. The NASA Ocean Biology Processing Group (OBPG) has developed an approach to correct the TOA radiances of MODIS Terra using spatially and temporally averaged ocean color products from other ocean color sensors (such as the SeaWiFS instrument on Orbview-2 or the MODIS instrument on the Aqua satellite). The latest results suggest that for MODIS Terra, both linear polarization parameters of the Mueller matrix are temporally evolving. A change to the functional form of the scan angle dependence improved the quality of the derived coefficients. Additionally, this paper demonstrates that simultaneously retrieving polarization and gain parameters improves the gain retrieval (versus retrieving the gain parameter only).
Progress towards NASA MODIS and Suomi NPP Cloud Property Data Record Continuity
NASA Astrophysics Data System (ADS)
Platnick, S.; Meyer, K.; Holz, R.; Ackerman, S. A.; Heidinger, A.; Wind, G.; Platnick, S. E.; Wang, C.; Marchant, B.; Frey, R.
2017-12-01
The Suomi NPP VIIRS imager provides an opportunity to extend the 17+ year EOS MODIS climate data record into the next generation operational era. Similar to MODIS, VIIRS provides visible through IR observations at moderate spatial resolution with a 1330 LT equatorial crossing consistent with the MODIS on the Aqua platform. However, unlike MODIS, VIIRS lacks key water vapor and CO2 absorbing channels used for high cloud detection and cloud-top property retrievals. In addition, there is a significant mismatch in the spectral location of the 2.2 μm shortwave-infrared channels used for cloud optical/microphysical retrievals and cloud thermodynamic phase. Given these instrument differences between MODIS EOS and VIIRS S-NPP/JPSS, a merged MODIS-VIIRS cloud record to serve the science community in the coming decades requires different algorithm approaches than those used for MODIS alone. This new approach includes two parallel efforts: (1) Imager-only algorithms with only spectral channels common to VIIRS and MODIS (i.e., eliminate use of MODIS CO2 and NIR/IR water vapor channels). Since the algorithms are run with similar spectral observations, they provide a basis for establishing a continuous cloud data record across the two imagers. (2) Merged imager and sounder measurements (i.e.., MODIS-AIRS, VIIRS-CrIS) in lieu of higher-spatial resolution MODIS absorption channels absent on VIIRS. The MODIS-VIIRS continuity algorithm for cloud optical property retrievals leverages heritage algorithms that produce the existing MODIS cloud mask (MOD35), optical and microphysical properties product (MOD06), and the NOAA AWG Cloud Height Algorithm (ACHA). We discuss our progress towards merging the MODIS observational record with VIIRS in order to generate cloud optical property climate data record continuity across the observing systems. In addition, we summarize efforts to reconcile apparent radiometric biases between analogous imager channels, a critical consideration for obtaining inter-sensor climate data record continuity.
A Model-based Approach to Scaling GPP and NPP in Support of MODIS Land Product Validation
NASA Astrophysics Data System (ADS)
Turner, D. P.; Cohen, W. B.; Gower, S. T.; Ritts, W. D.
2003-12-01
Global products from the Earth-orbiting MODIS sensor include land cover, leaf area index (LAI), FPAR, 8-day gross primary production (GPP), and annual net primary production (NPP) at the 1 km spatial resolution. The BigFoot Project was designed specifically to validate MODIS land products, and has initiated ground measurements at 9 sites representing a wide array of vegetation types. An ecosystem process model (Biome-BGC) is used to generate estimates of GPP and NPP for each 5 km x 5 km BigFoot site. Model inputs include land cover and LAI (from Landsat ETM+), daily meteorological data (from a centrally located eddy covariance flux tower), and soil characteristics. Model derived outputs are validated against field-measured NPP and flux tower-derived GPP. The resulting GPP and NPP estimates are then aggregated to the 1 km resolution for direct spatial comparison with corresponding MODIS products. At the high latitude sites (tundra and boreal forest), the MODIS GPP phenology closely tracks the BigFoot GPP, but there is a high bias in the MODIS GPP. In the temperate zone sites, problems with the timing and magnitude of the MODIS FPAR introduce differences in MODIS GPP compared to the validation data at some sites. However, the MODIS LAI/FPAR data are currently being reprocessed (=Collection 4) and new comparisons will be made for 2002. The BigFoot scaling approach permits precise overlap in spatial and temporal resolution between the MODIS products and BigFoot products, and thus permits the evaluation of specific components of the MODIS NPP algorithm. These components include meteorological inputs from the NASA Data Assimilation Office, LAI and FPAR from other MODIS algorithms, and biome-specific parameters for base respiration rate and light use efficiency.
NASA Sees Typhoon Soudelor's Remnants Over Eastern China
2017-12-08
On August 9 at 03:00 UTC (Aug. 8 at 11 p.m. EDT) the MODIS instrument aboard NASA's Terra satellite passed over the remnant clouds of Typhoon Soudelor when it was over eastern China. By 22:35 UTC (6:35 p.m. EDT) on August 8, 2015, Typhoon Soudelor had made landfall in eastern China and was rapidly dissipating. Maximum sustained winds had dropped to 45 knots (51.7 mph/83.3 kph) after landfall, making it a tropical storm. Image credit: NASA Goddard MODIS Rapid Response Team/Jeff Schmaltz..NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Identifying Hail Signatures in Satellite Imagery from the 9-10 August 2011 Severe Weather Event
NASA Technical Reports Server (NTRS)
Dryden, Rachel L.; Molthan, Andrew L.; Cole, Tony A.; Bell, Jordan
2014-01-01
Severe thunderstorms can produce large hail that causes property damage, livestock fatalities, and crop failure. However, detailed storm surveys of hail damage conducted by the National Weather Service (NWS) are not required. Current gaps also exist between Storm Prediction Center (SPC) hail damage estimates and crop-insurance payouts. NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard the Terra and Aqua satellites can be used to support NWS damage assessments, particularly to crops during the growing season. The two-day severe weather event across western Nebraska and central Kansas during 9-10 August 2011 offers a case study for investigating hail damage signatures by examining changes in Normalized Difference Vegetation Index (NDVI) derived from MODIS imagery. By analyzing hail damage swaths in satellite imagery, potential economic losses due to crop damage can be quantified and further improve the estimation of weather impacts on agriculture without significantly increasing manpower requirements.
NASA Technical Reports Server (NTRS)
2002-01-01
From May 31 to June 30 the biggest single-sport event in the world, the 2002 FIFA World Cup (tm), will be taking place in Asia. South Korea and Japan are acting as hosts for the event which is being held in Asia for the first time. This true-color image of the southern Korean peninsula and southern Japan was acquired on May 25, 2002, by the Moderate-resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra satellite. Thirty-two nations are represented at this year's Finals including the 1998 champion France, European powers England and Italy, tournament favorite Argentina, and the United States. The finals are the culmination of a 2-year qualifying process which started with 132 nations competing in regional qualification tournaments. In the round-robin first round of the World Cup, the U.S. team will be competing against teams from Portugal, Poland, and South Korea. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC
NASA Astrophysics Data System (ADS)
Alston, E. J.; Sokolik, I. N.; Kalashnikova, O. V.
2011-12-01
This study examines how aerosols measured from the ground and space over the US Southeast change temporally over a regional scale during the past decade. PM2.5 data consist of two datasets that represent the measurements that are used for regulatory purposes by the US EPA and continuous measurements used for quickly disseminating air quality information. AOD data comes from three NASA sensors: the MODIS sensors onboard Terra and Aqua satellites and the MISR sensor onboard the Terra satellite. We analyze all available data over the state of Georgia from 2000-2009 of both types of aerosol data. The analysis reveals that during the summer the large metropolitan area of Atlanta has average PM2.5 concentrations that are 50% more than the remainder of the state. Strong seasonality is detected in both the AOD and PM2.5 datasets; as evidenced by a threefold increase of AOD from mean winter values to mean summer values, and the increase in PM2.5 concentrations is almost twofold from over the same period. Additionally, there is good agreement between MODIS and MISR onboard the Terra satellite during the spring and summer having correlation coefficients of 0.64 and 0.71, respectively. Monthly anomalies were used to determine the presence of a trend in all considered aerosol datasets. We found negative linear trends in both the monthly AOD anomalies from MODIS onboard Terra and the PM2.5 datasets, which are statistically significant for α = 0.05. Decreasing trends were also found for MISR onboard Terra and MODIS onboard Aqua, but those trends were not statistically significant.
NASA Astrophysics Data System (ADS)
Wei, S.; Fang, H.
2016-12-01
The Clumping index (CI) describes the spatial distribution pattern of foliage, and is a critical parameter used to characterize the terrestrial ecosystem and model land-surface processes. Global and regional scale CI maps have been generated from POLDER, MODIS, and MISR sensors based on an empirical relationship with the normalized difference between hotspot and darkspot (NDHD) index by previous studies. However, the hotspot and darkspot values and CI values can be considerably different from different bidirectional reflectance distribution function (BRDF) models and solar zenith angles (SZA). In this study, we evaluated the effects of different configurations of BRDF models and SZA values on CI estimation using the NDHD method. CI maps estimated from MISR and MODIS were compared with reference data at the VALERI sites. Results show that for moderate to least clumped vegetation (CI > 0.5), CIs retrieved with the observational SZA agree well with field values, while SZA =0° results in underestimates, and SZA = 60° results in overestimates. For highly clumped (CI < 0.5) and sparsely vegetated areas (FCOVER<25%), the Ross-Li model with 60° SZA is recommended for CI estimation. The suitable NDHD configuration was further used to estimate a 15-year time series CI from MODIS BRDF data. The time series CI shows a reasonable seasonal trajectory, and varies consistently with the MODIS leaf area index (LAI). This study enables better usage of the NDHD method for CI estimation, and can be a useful reference for research on CI validation.
Hain, Christopher R; Anderson, Martha C
2017-10-16
Observations of land surface temperature (LST) are crucial for the monitoring of surface energy fluxes from satellite. Methods that require high temporal resolution LST observations (e.g., from geostationary orbit) can be difficult to apply globally because several geostationary sensors are required to attain near-global coverage (60°N to 60°S). While these LST observations are available from polar-orbiting sensors, providing global coverage at higher spatial resolutions, the temporal sampling (twice daily observations) can pose significant limitations. For example, the Atmosphere Land Exchange Inverse (ALEXI) surface energy balance model, used for monitoring evapotranspiration and drought, requires an observation of the morning change in LST - a quantity not directly observable from polar-orbiting sensors. Therefore, we have developed and evaluated a data-mining approach to estimate the mid-morning rise in LST from a single sensor (2 observations per day) of LST from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor on the Aqua platform. In general, the data-mining approach produced estimates with low relative error (5 to 10%) and statistically significant correlations when compared against geostationary observations. This approach will facilitate global, near real-time applications of ALEXI at higher spatial and temporal coverage from a single sensor than currently achievable with current geostationary datasets.
Coherent Evaluation of Aerosol Data Products from Multiple Satellite Sensors
NASA Technical Reports Server (NTRS)
Ichoku, Charles
2011-01-01
Aerosol retrieval from satellite has practically become routine, especially during the last decade. However, there is often disagreement between similar aerosol parameters retrieved from different sensors, thereby leaving users confused as to which sensors to trust for answering important science questions about the distribution, properties, and impacts of aerosols. As long as there is no consensus, and the inconsistencies are not well characterized and understood, there will be no way of developing reliable model inputs and climate data records from satellite aerosol measurements. Fortunately, the Aerosol Robotic Network (AERONET) is providing well-calibrated globally representative ground-based aerosol measurements corresponding to the satellite-retrieved products. Through a recently developed web-based Multi-sensor Aerosol Products Sampling System (MAPSS), we are utilizing the advantages offered by collocated AERONET and satellite products to characterize and evaluate aerosol retrieval from multiple sensors. Indeed, MAPSS and its companion statistical tool AeroStat are facilitating detailed comparative uncertainty analysis of satellite aerosol measurements from Terra-MODIS, Aqua-MODIS, Terra-MISR, Aura-OMI, Parasol-POLDER, and Calipso-CALIOP. In this presentation, we will describe the strategy of the MAPSS system, its potential advantages for the aerosol community, and the preliminary results of an integrated comparative uncertainly analysis of aerosol products from multiple satellite sensors.
NASA Technical Reports Server (NTRS)
Ichoku, Charles; Petrenko, Maksym; Leptoukh, Gregory
2010-01-01
Among the known atmospheric constituents, aerosols represent the greatest uncertainty in climate research. Although satellite-based aerosol retrieval has practically become routine, especially during the last decade, there is often disagreement between similar aerosol parameters retrieved from different sensors, leaving users confused as to which sensors to trust for answering important science questions about the distribution, properties, and impacts of aerosols. As long as there is no consensus and the inconsistencies are not well characterized and understood ', there will be no way of developing reliable climate data records from satellite aerosol measurements. Fortunately, the most globally representative well-calibrated ground-based aerosol measurements corresponding to the satellite-retrieved products are available from the Aerosol Robotic Network (AERONET). To adequately utilize the advantages offered by this vital resource,., an online Multi-sensor Aerosol Products Sampling System (MAPSS) was recently developed. The aim of MAPSS is to facilitate detailed comparative analysis of satellite aerosol measurements from different sensors (Terra-MODIS, Aqua-MODIS, Terra-MISR, Aura-OMI, Parasol-POLDER, and Calipso-CALIOP) based on the collocation of these data products over AERONET stations. In this presentation, we will describe the strategy of the MAPSS system, its potential advantages for the aerosol community, and the preliminary results of an integrated comparative uncertainty analysis of aerosol products from multiple satellite sensors.
Toward a Coherent Detailed Evaluation of Aerosol Data Products from Multiple Satellite Sensors
NASA Technical Reports Server (NTRS)
Ichoku, Charles; Petrenko, Maksym; Leptoukh, Gregory
2011-01-01
Atmospheric aerosols represent one of the greatest uncertainties in climate research. Although satellite-based aerosol retrieval has practically become routine, especially during the last decade, there is often disagreement between similar aerosol parameters retrieved from different sensors, leaving users confused as to which sensors to trust for answering important science questions about the distribution, properties, and impacts of aerosols. As long as there is no consensus and the inconsistencies are not well characterized and understood, there will be no way of developing reliable climate data records from satellite aerosol measurements. Fortunately, the most globally representative well-calibrated ground-based aerosol measurements corresponding to the satellite-retrieved products are available from the Aerosol Robotic Network (AERONET). To adequately utilize the advantages offered by this vital resource, an online Multi-sensor Aerosol Products Sampling System (MAPSS) was recently developed. The aim of MAPSS is to facilitate detailed comparative analysis of satellite aerosol measurements from different sensors (Terra-MODIS, Aqua-MODIS, TerraMISR, Aura-OMI, Parasol-POLDER, and Calipso-CALIOP) based on the collocation of these data products over AERONET stations. In this presentation, we will describe the strategy of the MASS system, its potential advantages for the aerosol community, and the preliminary results of an integrated comparative uncertainly analysis of aerosol products from multiple satellite sensors.
Ice Sheet Change Detection by Satellite Image Differencing
NASA Technical Reports Server (NTRS)
Bindschadler, Robert A.; Scambos, Ted A.; Choi, Hyeungu; Haran, Terry M.
2010-01-01
Differencing of digital satellite image pairs highlights subtle changes in near-identical scenes of Earth surfaces. Using the mathematical relationships relevant to photoclinometry, we examine the effectiveness of this method for the study of localized ice sheet surface topography changes using numerical experiments. We then test these results by differencing images of several regions in West Antarctica, including some where changes have previously been identified in altimeter profiles. The technique works well with coregistered images having low noise, high radiometric sensitivity, and near-identical solar illumination geometry. Clouds and frosts detract from resolving surface features. The ETM(plus) sensor on Landsat-7, ALI sensor on EO-1, and MODIS sensor on the Aqua and Terra satellite platforms all have potential for detecting localized topographic changes such as shifting dunes, surface inflation and deflation features associated with sub-glacial lake fill-drain events, or grounding line changes. Availability and frequency of MODIS images favor this sensor for wide application, and using it, we demonstrate both qualitative identification of changes in topography and quantitative mapping of slope and elevation changes.
Characterization of MODIS and SeaWiFS Solar Diffuser On-Orbit Degradation
NASA Technical Reports Server (NTRS)
Xiong, X.; Eplee, R. E., Jr.; Sun, J.; Patt, F. S.; Angal, A.; McClain, C. R.
2009-01-01
MODIS has 20 reflective solar bands (RSB), covering the VIS, NIR, and SWIR spectral regions. They are calibrated on-orbit using a solar diffuser (SD) panel, made of space-grade Spectralon. The SD bi-directional reflectance factor (BRF) was characterized pre-launch by the instrument vendor reference to the NIST reflectance standard. Its on-orbit degradation is tracked by an on-board solar diffuser stability monitor (SDSM). The SeaWifS on-orbit calibration strategy uses monthly lunar observations to monitor the long-term radiometric stability of the instrument and applies daily observations of its solar diffuser (an aluminum plate coated with YB71 paint) to track the short-term changes in the instrument response. This paper provides an overview of MODIS and SeaWiFS SD observations, applications, and approaches used to track their on-orbit degradations. Results from sensors are presented with emphasis on the spectral dependence and temporal trends of the SD degradation. Lessons and challenges from the use of SD for sensor on-orbit calibration are also discussed.
A SOAP Web Service for accessing MODIS land product subsets
DOE Office of Scientific and Technical Information (OSTI.GOV)
SanthanaVannan, Suresh K; Cook, Robert B; Pan, Jerry Yun
2011-01-01
Remote sensing data from satellites have provided valuable information on the state of the earth for several decades. Since March 2000, the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor on board NASA s Terra and Aqua satellites have been providing estimates of several land parameters useful in understanding earth system processes at global, continental, and regional scales. However, the HDF-EOS file format, specialized software needed to process the HDF-EOS files, data volume, and the high spatial and temporal resolution of MODIS data make it difficult for users wanting to extract small but valuable amounts of information from the MODIS record. Tomore » overcome this usability issue, the NASA-funded Distributed Active Archive Center (DAAC) for Biogeochemical Dynamics at Oak Ridge National Laboratory (ORNL) developed a Web service that provides subsets of MODIS land products using Simple Object Access Protocol (SOAP). The ORNL DAAC MODIS subsetting Web service is a unique way of serving satellite data that exploits a fairly established and popular Internet protocol to allow users access to massive amounts of remote sensing data. The Web service provides MODIS land product subsets up to 201 x 201 km in a non-proprietary comma delimited text file format. Users can programmatically query the Web service to extract MODIS land parameters for real time data integration into models, decision support tools or connect to workflow software. Information regarding the MODIS SOAP subsetting Web service is available on the World Wide Web (WWW) at http://daac.ornl.gov/modiswebservice.« less
Results and Lessons from a Decade of Terra MODIS On-Orbit Spectral Characterization
NASA Technical Reports Server (NTRS)
Xiong, X.; Choi, T.; Che, N.; Wang, Z.; Dodd, J.
2010-01-01
Since its launch in December 1999, the NASA EOS Terra MODIS has successfully operated for more than a decade. MODIS makes observations in 36 spectral bands from visible (VIS) to longwave infrared (LWIR) and at three nadir spatial resolutions: 250m (2 bands), 500m (5 bands), and 1km (29 bands). In addition to its on-board calibrators designed for the radiometric calibration, MODIS was built with a unique device, called the spectro-radiometric calibration assembly (SRCA). It can be configured in three different modes: radiometric, spatial, and spectral. When it is operated in the spectral modes, the SRCA can monitor changes in Sensor spectral performance for the VIS and near-infrared (NIR) spectral bands. For more than 10 years, the SRCA operation has continued to provide valuable information for MODIS on-orbit spectral performance. This paper briefly describes SRCA on-orbit operation and calibration activities; it presents decade-long spectral characterization results for Terra MODIS VIS and NIR spectral bands in terms of chances in their center wavelengths (CW) and bandwidths (BW). It is shown that the SRCA on-orbit wavelength calibration capability remains satisfactory. For most spectral bands, the changes in CW and BW are less than 0.5 and 1 nm, respectively. Results and lessons from Terra MODIS on-orbit spectral characterization have and will continue to benefit its successor, Aqua MODIS, and other future missions.
NASA Astrophysics Data System (ADS)
Nikitin, S. A.; Polezhaev, V. I.; Sazonov, V. V.
2001-03-01
The problem of the interpretation of measurements made by means of a convection sensor is considered. The sensor is a cubic chamber filled by a viscous fluid (gas). Fixed and unequal temperatures are maintained on two opposite sides of the cube; the other sides are perfect heat conductors. Two differential thermocouples are placed inside the chamber to measure the temperature difference at two pairs of fixed points. The sensor is mounted aboard the Earth's satellite. Mathematical models of various degrees of complexity are proposed which describe processes of heat and mass transfer under the action of a quasistatic component of microaccelerations. The results of mathematical simulation of the data of sensor thermocouples presenting a response to the real quasistatic component of microaccelerations which took place aboard the Mirstation are given. It is shown that under usual conditions of an orbital mission the sensor presents a linear low-frequency filter. By combining the data of several identical sensors, tightly arranged and oriented in a certain way, it is possible to measure low-frequency components of the angular acceleration of the satellite and linear microaccelerations at the point of the sensor position.
Can MODIS detect trends in aerosol optical depth over land?
NASA Astrophysics Data System (ADS)
Fan, Xuehua; Xia, Xiang'ao; Chen, Hongbin
2018-02-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard NASA's Aqua satellite has been collecting valuable data about the Earth system for more than 14 years, and one of the benefits of this is that it has made it possible to detect the long-term variation in aerosol loading across the globe. However, the long-term aerosol optical depth (AOD) trends derived from MODIS need careful validation and assessment, especially over land. Using AOD products with at least 70 months' worth of measurements collected during 2002-15 at 53 Aerosol Robotic Network (AERONET) sites over land, Mann-Kendall (MK) trends in AOD were derived and taken as the ground truth data for evaluating the corresponding results from MODIS onboard Aqua. The results showed that the AERONET AOD trends over all sites in Europe and North America, as well as most sites in Africa and Asia, can be reproduced by MODIS/Aqua. However, disagreement in AOD trends between MODIS and AERONET was found at a few sites in Australia and South America. The AOD trends calculated from AERONET instantaneous data at the MODIS overpass times were consistent with those from AERONET daily data, which suggests that the AOD trends derived from satellite measurements of 1-2 overpasses may be representative of those from daily measurements.
Multi-sensor data processing method for improved satellite retrievals
NASA Astrophysics Data System (ADS)
Fan, Xingwang
2017-04-01
Satellite remote sensing has provided massive data that improve the overall accuracy and extend the time series of environmental studies. In reflective solar bands, satellite data are related to land surface properties via radiative transfer (RT) equations. These equations generally include sensor-related (calibration coefficients), atmosphere-related (aerosol optical thickness) and surface-related (surface reflectance) parameters. It is an ill-posed problem to solve three parameters with only one RT equation. Even if there are two RT equations (dual-sensor data), the problem is still unsolvable. However, a robust solution can be obtained when any two parameters are known. If surface and atmosphere are known, sensor intercalibration can be performed. For example, the Advanced Very High Resolution Radiometer (AVHRR) was calibrated to the MODerate-resolution Imaging Spectroradiometer (MODIS) in Fan and Liu (2014) [Fan, X., and Liu, Y. (2014). Quantifying the relationship between intersensor images in solar reflective bands: Implications for intercalibration. IEEE Transactions on Geoscience and Remote Sensing, 52(12), 7727-7737.]. If sensor and surface are known, atmospheric data can be retrieved. For example, aerosol data were retrieved using tandem TERRA and AQUA MODIS images in Fan and Liu (2016a) [Fan, X., and Liu, Y. (2016a). Exploiting TERRA-AQUA MODIS relationship in the reflective solar bands for aerosol retrieval. Remote Sensing, 8(12), 996.]. If sensor and atmosphere are known, data consistency can be obtained. For example, Normalized Difference Vegetation Index (NDVI) data were intercalibrated among coarse-resolution sensors in Fan and Liu (2016b) [Fan, X., and Liu, Y. (2016b). A global study of NDVI difference among moderate-resolution satellite sensors. ISPRS Journal of Photogrammetry and Remote Sensing, 121, 177-191.], and among fine-resolution sensors in Fan and Liu (2017) [Fan, X., and Liu, Y. (2017). A generalized model for intersensor NDVI calibration and its comparison with regression approaches. IEEE Transactions on Geoscience and Remote Sensing, 55(3), doi: 10.1109/TGRS.2016.2635802.]. These studies demonstrate the success of multi-sensor data and novel methods in the research domain of geoscience. These data will benefit remote sensing of terrestrial parameters in decadal timescales, such as soil salinity content in Fan et al. (2016) [Fan, X., Weng, Y., and Tao, J. (2016). Towards decadal soil salinity mapping using Landsat time series data. International Journal of Applied Earth Observation and Geoinformation, 52, 32-41.].
NPP VIIRS and Aqua MODIS RSB Comparison Using Observations from Simultaneous Nadir Overpasses (SNO)
NASA Technical Reports Server (NTRS)
Xiong, X.; Wu, A.
2012-01-01
Suomi NPP (National Polar-orbiting Partnership) satellite (http://npp.gsfc.nasa.gov/viirs.html) began to daily collect global data following its successful launch on October 28, 2011. The Visible Infrared Imaging Radiometer Suite (VIIRS) is a key NPP sensor. Similar to the design of the OLS, SeaWiFS and MODIS instruments, VIIRS has on-board calibration components including a solar diffuser (SD) and a solar diffuser stability monitor (SDSM) for the reflective solar bands (RSB), a V-groove blackbody for the thermal emissive bands (TEB), and a space view (SV) port for background subtraction. Immediately after the VIIRS nadir door s opening on November 21, 2011, anomalously large degradation in the SD response was identified in the near-IR wavelength region, which was unexpected as decreases in the SD reflectance usually occur gradually in the blue (0.4 m) wavelength region based on past experience. In this study, we use a well-calibrated Aqua MODIS as reference to track and evaluate VIIRS RSB stability and performance. Reflectances observed by both sensors from simultaneous nadir overpasses (SNO) are used to determine VIIRS to MODIS reflectance ratios for their spectral matching bands. Results of this study provide an immediate post-launch assessment, independent validation of the anomalous degradation observed in SD measurements at near-IR wavelengths and initial analysis of calibration stability and consistency.
NASA Astrophysics Data System (ADS)
Sayer, Andrew M.; Hsu, N. Christina; Bettenhausen, Corey; Holz, Robert E.; Lee, Jaehwa; Quinn, Greg; Veglio, Paolo
2017-04-01
The Visible Infrared Imaging Radiometer Suite (VIIRS) is being used to continue the record of Earth Science observations and data products produced routinely from National Aeronautics and Space Administration (NASA) Moderate Resolution Imaging Spectroradiometer (MODIS) measurements. However, the absolute calibration of VIIRS's reflected solar bands is thought to be biased, leading to offsets in derived data products such as aerosol optical depth (AOD) as compared to when similar algorithms are applied to different sensors. This study presents a cross-calibration of these VIIRS bands against MODIS Aqua over dark water scenes, finding corrections to the NASA VIIRS Level 1 (version 2) reflectances between approximately +1 and -7 % (dependent on band) are needed to bring the two into alignment (after accounting for expected differences resulting from different band spectral response functions), and indications of relative trending of up to ˜ 0.35 % per year in some bands. The derived calibration gain corrections are also applied to the VIIRS reflectance and then used in an AOD retrieval, and they are shown to decrease the bias and total error in AOD across the mid-visible spectral region compared to the standard VIIRS NASA reflectance calibration. The resulting AOD bias characteristics are similar to those of NASA MODIS AOD data products, which is encouraging in terms of multi-sensor data continuity.
NASA Technical Reports Server (NTRS)
Redemann, J.; Livingston, J.; Shinozuka, Y.; Kacenelenbogen, M.; Russell, P.; LeBlanc, S.; Vaughan, M.; Ferrare, R.; Hostetler, C.; Rogers, R.;
2014-01-01
We have developed a technique for combining CALIOP aerosol backscatter, MODIS spectral AOD (aerosol optical depth), and OMI AAOD (absorption aerosol optical depth) retrievals for the purpose of estimating full spectral sets of aerosol radiative properties, and ultimately for calculating the 3-D distribution of direct aerosol radiative forcing. We present results using one year of data collected in 2007 and show comparisons of the aerosol radiative property estimates to collocated AERONET retrievals. Use of the recently released MODIS Collection 6 data for aerosol optical depths derived with the dark target and deep blue algorithms has extended the coverage of the multi-sensor estimates towards higher latitudes. We compare the spatio-temporal distribution of our multi-sensor aerosol retrievals and calculations of seasonal clear-sky aerosol radiative forcing based on the aerosol retrievals to values derived from four models that participated in the latest AeroCom model intercomparison initiative. We find significant inter-model differences, in particular for the aerosol single scattering albedo, which can be evaluated using the multi-sensor A-Train retrievals. We discuss the major challenges that exist in extending our clear-sky results to all-sky conditions. On the basis of comparisons to suborbital measurements, we present some of the limitations of the MODIS and CALIOP retrievals in the presence of adjacent or underlying clouds. Strategies for meeting these challenges are discussed.
Giardino, Claudia; Bresciani, Mariano; Cazzaniga, Ilaria; Schenk, Karin; Rieger, Patrizia; Braga, Federica; Matta, Erica; Brando, Vittorio E
2014-12-15
In this study we evaluate the capabilities of three satellite sensors for assessing water composition and bottom depth in Lake Garda, Italy. A consistent physics-based processing chain was applied to Moderate Resolution Imaging Spectroradiometer (MODIS), Landsat-8 Operational Land Imager (OLI) and RapidEye. Images gathered on 10 June 2014 were corrected for the atmospheric effects with the 6SV code. The computed remote sensing reflectance (Rrs) from MODIS and OLI were converted into water quality parameters by adopting a spectral inversion procedure based on a bio-optical model calibrated with optical properties of the lake. The same spectral inversion procedure was applied to RapidEye and to OLI data to map bottom depth. In situ measurements of Rrs and of concentrations of water quality parameters collected in five locations were used to evaluate the models. The bottom depth maps from OLI and RapidEye showed similar gradients up to 7 m (r = 0.72). The results indicate that: (1) the spatial and radiometric resolutions of OLI enabled mapping water constituents and bottom properties; (2) MODIS was appropriate for assessing water quality in the pelagic areas at a coarser spatial resolution; and (3) RapidEye had the capability to retrieve bottom depth at high spatial resolution. Future work should evaluate the performance of the three sensors in different bio-optical conditions.
Progress towards MODIS and VIIRS Cloud Optical Property Data Record Continuity
NASA Astrophysics Data System (ADS)
Meyer, K.; Platnick, S. E.; Wind, G.; Amarasinghe, N.; Holz, R.; Ackerman, S. A.; Heidinger, A. K.
2016-12-01
The launch of Suomi NPP in the fall of 2011 began the next generation of U.S. operational polar orbiting Earth observations, and its VIIRS imager provides an opportunity to extend the 15+ year climate data record of MODIS EOS. Similar to MODIS, VIIRS provides visible through IR observations at moderate spatial resolution with a 1330 LT equatorial crossing consistent with the MODIS on the Aqua platform. However, unlike MODIS, VIIRS lacks key water vapor and CO2 absorbing channels used for high cloud detection and cloud-top property retrievals, and there is a significant change in the spectral location of the 2.1μm shortwave-infrared channel used for cloud optical/microphysical retrievals and cloud thermodynamic phase. Given these instrument differences between MODIS EOS and VIIRS S-NPP/JPSS, we discuss our progress towards merging the MODIS observational record with VIIRS in order to generate cloud optical property climate data record continuity across the observing systems. The MODIS-VIIRS continuity algorithm for cloud optical property retrievals leverages heritage algorithms that produce the existing MODIS cloud optical and microphysical properties product (MOD06); the NOAA AWG/CLAVR-x cloud-top property algorithm and a common MODIS-VIIRS cloud mask feed into the optical property algorithm. To account for the different channel sets of MODIS and VIIRS, each algorithm nominally uses a subset of channels common to both imagers. Data granule and aggregated examples for the current version of the continuity algorithm (MODAWG) will be shown. In addition, efforts to reconcile apparent radiometric biases between analogous channels of the two imagers, a critical consideration for obtaining inter-sensor climate data record continuity, will be discussed.
Remote Sensing of Suspended Sediment Dynamics in the Mississippi Sound
NASA Astrophysics Data System (ADS)
Merritt, D. N.; Skarke, A. D.; Silwal, S.; Dash, P.
2016-02-01
The Mississippi Sound is a semi-enclosed estuary between the coast of Mississippi and a chain of offshore barrier islands with relatively shallow water depths and high marine biodiversity that is wildly utilized for commercial fishing and public recreation. The discharge of sediment-laden rivers into the Mississippi Sound and the adjacent Northern Gulf of Mexico creates turbid plumes that can extend hundreds of square kilometers along the coast and persist for multiple days. The concentration of suspended sediment in these coastal waters is an important parameter in the calculation of regional sediment budgets as well as analysis of water-quality factors such as primary productivity, nutrient dynamics, and the transport of pollutants as well as pathogens. The spectral resolution, sampling frequency, and regional scale spatial domain associated with satellite based sensors makes remote sensing an ideal tool to monitor suspended sediment dynamics in the Northern Gulf of Mexico. Accordingly, the presented research evaluates the validity of published models that relate remote sensing reflectance with suspended sediment concentrations (SSC), for similar environmental settings, with 51 in situ observations of SSC from the Mississippi Sound. Additionally, regression analysis is used to correlate additional in situ observations of SSC in Mississippi Sound with coincident observations of visible and near-infrared band reflectance collected by the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor aboard the Aqua satellite, in order to develop a site-specific empirical predictive model for SSC. Finally, specific parameters of the sampled suspended sediment such as grain size and mineralogy are analyzed in order to quantify their respective contributions to total remotely sensed reflectance.
The summer urban heat island of Bucharest (Romania) as retrieved from satellite imagery
NASA Astrophysics Data System (ADS)
Cheval, Sorin; Dumitrescu, Alexandru
2014-05-01
The summer Urban Heat Island (UHI) of the city of Bucharest (Romania) has been investigated in terms of its shape, intensity, extension, and links to land cover. The study integrates land surface temperature (LST) data retrieved by the MODIS sensors aboard the Terra and Aqua NASA satellites, and SEVIRI sensors on board of the geostationary platform MSG, along 2000-2012. Based on the Rodionov Regime Shift Index, the significant changing points in the land surface temperature values along transverse profiles crossing the city's centre were considered as UHI's limits. The study shows that the intensity calculated as the difference between the LST within the UHI limits and several surrounding buffers is an objective and flexible tool for describing the average thermal state of the urban-rural transition. The method secures the weight of comparing the UHI's intensity of different urban areas. There are little variations from one month to another, but UHI's shapes and intensities under clear-sky conditions are very specific to nighttime (more regular and 2-3°C less in the 7-km width buffer), and daytime (more twisted and more steep temperature decrease). For both cases, strong relationships with the land cover can be assumed. The nighttime UHI's geometry is more regular, and the intensity lower than the day situation, while the land cover exerts a strong influence on the Bucharest LST. After all, the study promotes an objective manner to delimitate and quantify the UHI based on satellite imagery. The study was performed within the STAR project 92/2013 (Urban Heat Island Monitoring under Present and Future Climate - UCLIMESA).
eMODIS: A User-Friendly Data Source
Jenkerson, Calli B.; Maiersperger, Thomas; Schmidt, Gail
2010-01-01
The U.S. Geological Survey's (USGS) Earth Resources Observation and Science (EROS) Center is generating a suite of products called 'eMODIS' based on Moderate Resolution Imaging Spectroradiometer (MODIS) data acquired by the National Aeronautics and Space Administration's (NASA) Earth Observing System (EOS). With a more frequent repeat cycle than Landsat and higher spatial resolutions than the Advanced Very High Resolution Spectroradiometer (AVHRR), MODIS is well suited for vegetation studies. For operational monitoring, however, the benefits of MODIS are counteracted by usability issues with the standard map projection, file format, composite interval, high-latitude 'bow-tie' effects, and production latency. eMODIS responds to a community-specific need for alternatively packaged MODIS data, addressing each of these factors for real-time monitoring and historical trend analysis. eMODIS processes calibrated radiance data (level-1B) acquired by the MODIS sensors on the EOS Terra and Aqua satellites by combining MODIS Land Science Collection 5 Atmospherically Corrected Surface Reflectance production code and USGS EROS MODIS Direct Broadcast System (DBS) software to create surface reflectance and Normalized Difference Vegetation Index (NDVI) products. eMODIS is produced over the continental United States and over Alaska extending into Canada to cover the Yukon River Basin. The 250-meter (m), 500-m, and 1,000-m products are delivered in Geostationary Earth Orbit Tagged Image File Format (Geo- TIFF) and composited in 7-day intervals. eMODIS composites are projected to non-Sinusoidal mapping grids that best suit the geography in their areas of application (see eMODIS Product Description below). For eMODIS products generated over the continental United States (eMODIS CONUS), the Terra (from 2000) and Aqua (from 2002) records are available and continue through present time. eMODIS CONUS also is generated in an expedited process that delivers a 7-day rolling composite, created daily with the most recent 7 days of acquisition, to users monitoring real-time vegetation conditions. eMODIS Alaska is not part of expedited processing, but does cover the Terra mission life (2000-present). A simple file transfer protocol (FTP) distribution site currently is enabled on the Internet for direct download of eMODIS products (ftp://emodisftp.cr.usgs.gov/eMODIS), with plans to expand into an interactive portal environment.
Daily MODIS Data Trends of Hurricane-Induced Forest Impact and Early Recovery
NASA Technical Reports Server (NTRS)
Ramsey, Elijah, III; Spruce, Joseph; Rangoonwala, Amina; Suzuoki, Yukihiro; Smoot, James; Gasser, Jerry; Bannister, Terri
2011-01-01
We studied the use of daily satellite data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors to assess wetland forest damage and recovery from Hurricane Katrina (29 August 2005 landfall). Processed MODIS daily vegetation index (VI) trends were consistent with previously determined impact and recovery patterns provided by the "snapshot" 25 m Landsat Thematic Mapper optical and RADARSAT-1 synthetic aperture radar satellite data. Phenological trends showed high 2004 and 2005 pre-hurricane temporal correspondence within bottomland hardwood forest communities, except during spring green-up, and temporal dissimilarity between these hardwoods and nearby cypress-tupelo swamp forests (Taxodium distichum [baldcypress] and Nyssa aquatica [water tupelo]). MODIS VI trend analyses established that one year after impact, cypress-tupelo and lightly impacted hardwood forests had recovered to near prehurricane conditions. In contrast, canopy recovery lagged in the moderately and severely damaged hardwood forests, possibly reflecting regeneration of pre-hurricane species and stand-level replacement by invasive trees.
Machine learning based cloud mask algorithm driven by radiative transfer modeling
NASA Astrophysics Data System (ADS)
Chen, N.; Li, W.; Tanikawa, T.; Hori, M.; Shimada, R.; Stamnes, K. H.
2017-12-01
Cloud detection is a critically important first step required to derive many satellite data products. Traditional threshold based cloud mask algorithms require a complicated design process and fine tuning for each sensor, and have difficulty over snow/ice covered areas. With the advance of computational power and machine learning techniques, we have developed a new algorithm based on a neural network classifier driven by extensive radiative transfer modeling. Statistical validation results obtained by using collocated CALIOP and MODIS data show that its performance is consistent over different ecosystems and significantly better than the MODIS Cloud Mask (MOD35 C6) during the winter seasons over mid-latitude snow covered areas. Simulations using a reduced number of satellite channels also show satisfactory results, indicating its flexibility to be configured for different sensors.
NASA Technical Reports Server (NTRS)
Molthan, Andrew L.; Fuell, Kevin K.; Knaff, John; Lee, Thomas
2012-01-01
Current and future satellite sensors provide remotely sensed quantities from a variety of wavelengths ranging from the visible to the passive microwave, from both geostationary and low-Earth orbits. The NASA Short-term Prediction Research and Transition (SPoRT) Center has a long history of providing multispectral imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA s Terra and Aqua satellites in support of NWS forecast office activities. Products from MODIS have recently been extended to include a broader suite of multispectral imagery similar to those developed by EUMETSAT, based upon the spectral channel s available from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) aboard METEOSAT-9. This broader suite includes products that discriminate between air mass types associated with synoptic-scale features, assists in the identification of dust, and improves upon paired channel difference detection of fog and low cloud events. Similarly, researchers at NOAA/NESDIS and CIRA have developed air mass discrimination capabilities using channels available from the current GOES Sounders. Other applications of multispectral composites include combinations of high and low frequency, horizontal and vertically polarized passive microwave brightness temperatures to discriminate tropical cyclone structures and other synoptic-scale features. Many of these capabilities have been transitioned for evaluation and operational use at NWS Weather Forecast Offices and National Centers through collaborations with SPoRT and CIRA. Future instruments will continue the availability of these products and also expand upon current capabilities. The Advanced Baseline Imager (ABI) on GOES-R will improve the spectral, spatial, and temporal resolution of our current geostationary capabilities, and the recent launch of the Suomi National Polar-Orbiting Partnership (S-NPP) carries instruments such as the Visible Infrared Imager Radiometer Suite (VIIRS), the Cross-track Infrared Sounder (CrIS), and the Advanced Technology Microwave Sounder (ATMS), which have unrivaled spectral and spatial resolution, as precursors to the JPSS era (i.e., the next generation of polar orbiting satellites). At the same time, new image manipulation and display capabilities are available within AWIPS II, the next generation of the NWS forecaster decision support system. This presentation will present a review of SPoRT, CIRA, and NRL collaborations regarding multispectral satellite imagery and articulate an integrated and collaborative path forward with Raytheon AWIPS II development staff for integrating current and future capabilities that support new satellite instrumentation and the AWIPS II decision support system.
Land ECVs from QA4ECV using an optimal estimation framework
NASA Astrophysics Data System (ADS)
Muller, Jan-Peter; Kharbouche, Said; Lewis, Philip; Danne, Olaf; Blessing, Simon; Giering, Ralf; Gobron, Nadine; Lanconelli, Christian; Govaerts, Yves; Schulz, Joerg; Doutriaux-Boucher, Marie; Lattanzio, Alessio; Aoun, Youva
2017-04-01
In the ESA-DUE GlobAlbedo project (http://www.GlobAlbedo.org), a 15 year record of land surface albedo was generated from the European VEGETATION & MERIS sensors using optimal estimation. This was based on 3 broadbands (0.4-0.7, 0.7-3, 0.4-3µm) and fused data at level-2 after converting from spectral narrowband to these 3 broadbands with surface BRFs. A 10 year long record of land surface albedo climatology was generated from Collection 5 of the MODIS BRDF product for these same broadbands. This was employed as an a priori estimate for an optimal estimation based retrieval of land surface albedo when there were insufficient samples from the European sensors. This so-called MODIS prior was derived at 1km from the 500m MOD43A1,2 BRDF inputs every 8 days using the QA bits and the method described in the GlobAlbedo ATBD which is available from the website (http://www.globalbedo.org/docs/GlobAlbedo_Albedo_ATBD_V4.12.pdf). In the ESA-STSE WACMOS-ET project, FastOpt generated fapar & LAI based on this GlobAlbedo BRDF with associated per pixel uncertainty using the TIP framework. In the successor EU-FP7-QA4ECV* project, we have developed a 33 year record (1981-2014) of Earth surface spectral and broadband albedo (i.e. including the ocean and sea-ice) using optimal estimation for the land and where available, relevant sensors for "instantaneous" retrievals over the poles (Kharbouche & Muller, this conference). This requires the longest possible land surface spectral and broadband BRDF record that can only be supplied by a 16 year of MODIS Collection 6 BRDFs at 500m but produced on a daily basis. The CEMS Big Data computer at RAL was used to generate 7 spectral bands and 3 broadband BRDF with and without snow and snow_only. We will discuss the progress made since the start of the QA4ECV project on the production of a new fused land surface BRDF/albedo spectral and broadband CDR product based on four European sensors: MERIS, (A)ATSR(2), VEGETATION, PROBA-V and two US sensors: MISR & MODIS. For the European sensors, an uniform atmospheric correction scheme has been employed to generate spectral BRF products and these have all been mapped into MODIS spectral bands whilst the US sensors have employed their own level-2 BRF retrieval schemes with associated uncertainty information. Progress is also demonstrated on the use of TIP for fapar/LAI retrieval from the broadband BRDFs as well as fapar from AVHRR based on retrievals from MERIS and OLCI. In parallel, work has taken place at two of our partners on the production of a new geostationary broadband BRF and associated albedo and their fusion with AVHRR-LTDR for a 33 year record. QA4ECV has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 607405
NASA Technical Reports Server (NTRS)
2002-01-01
NASA's new Moderate-resolution Imaging Spectroradiometer (MODIS) allows scientists to gauge our planet's metabolism on an almost daily basis. GPP, gross primary production, is the technical term for plant photosynthesis. This composite image over the continental United States, acquired during the period March 26-April 10, 2000, shows regions where plants were more or less productive-i.e., where they 'inhaled' carbon dioxide and then used the carbon from photosynthesis to build new plant structures. This false-color image provides a map of how much carbon was absorbed out of the atmosphere and fixed within land vegetation. Areas colored blue show where plants used as much as 60 grams of carbon per square meter. Areas colored green and yellow indicate a range of anywhere from 40 to 20 grams of carbon absorbed per square meter. Red pixels show an absorption of less than 10 grams of carbon per square meter and white pixels (often areas covered by snow or masked as urban) show little or no absorption. This is one of a number of new measurements that MODIS provides to help scientists understand how the Earth's landscapes are changing over time. Scientists' goal is use of these GPP measurements to refine computer models to simulate how the land biosphere influences the natural cycles of water, carbon, and energy throughout the Earth system. The GPP will be an integral part of global carbon cycle source and sink analysis, an important aspect of Kyoto Protocol assessments. This image is the first of its kind from the MODIS instrument, which launched in December 1999 aboard the Terra spacecraft. MODIS began acquiring scientific data on February 24, 2000, when it first opened its aperture door. The MODIS instrument and Terra spacecraft are both managed by NASA's Goddard Space Flight Center, Greenbelt, MD. Image courtesy Steven Running, MODIS Land Group Member, University of Montana
NASA Technical Reports Server (NTRS)
Abdou, Wedad A.; Diner, David J.; Martonchik, John V.; Bruegge, Carol J.; Kahn, Ralph A.; Gaitley, Barbara J.; Crean, Kathleen A.; Remer, Lorraine A.; Holben, Brent
2005-01-01
The Multiangle Imaging Spectroradiometer (MISR) and the Moderate Resolution Imaging Spectroradiometer (MODIS), launched on 18 December 1999 aboard the Terra spacecraft, are making global observations of top-of-atmosphere (TOA) radiances. Aerosol optical depths and particle properties are independently retrieved from these radiances using methodologies and algorithms that make use of the instruments corresponding designs. This paper compares instantaneous optical depths retrieved from simultaneous and collocated radiances measured by the two instruments at locations containing sites within the Aerosol Robotic Network (AERONET). A set of 318 MISR and MODIS images, obtained during the months of March, June, and September 2002 at 62 AERONET sites, were used in this study. The results show that over land, MODIS aerosol optical depths at 470 and 660 nm are larger than those retrieved from MISR by about 35% and 10% on average, respectively, when all land surface types are included in the regression. The differences decrease when coastal and desert areas are excluded. For optical depths retrieved over ocean, MISR is on average about 0.1 and 0.05 higher than MODIS in the 470 and 660 nm bands, respectively. Part of this difference is due to radiometric calibration and is reduced to about 0.01 and 0.03 when recently derived band-to-band adjustments in the MISR radiometry are incorporated. Comparisons with AERONET data show similar patterns.
NASA Technical Reports Server (NTRS)
Wilson, Truman; Wu, Aisheng; Wang, Zhipeng; Xiong, Xiaoxiong
2016-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) is one of the key sensors among the suite of remote sensing instruments on board the Earth Observing System Terra and Aqua spacecrafts. For each MODIS spectral band, the sensor degradation has been measured using a set of on-board calibrators. MODIS also uses lunar observations from nearly monthly spacecraft maneuvers, which bring the Moon into view through the space-view port, helping to characterize the scan mirror degradation at a different angles of incidence. Throughout the Terra mission, contamination of the long-wave infrared photovoltaic band (LWIR PV, bands 27-30) signals has been observed in the form of electronic crosstalk, where signal from each of the detectors among the LWIR PV bands can leak to the other detectors, producing a false signal contribution. This contamination has had a noticeable effect on the MODIS science products since 2010 for band 27, and since 2012 for bands 28 and 29. Images of the Moon have been used effectively for determining the contaminating bands, and have also been used to derive correction coefficients for the crosstalk contamination. In this paper, we introduce an updated technique for characterizing the crosstalk contamination among the LWIR PV bands using data from lunar calibration events. This approach takes into account both the in-band and out-of-band contribution to the signal contamination for each detector in bands 27-30, which is not considered in previous works. The crosstalk coefficients can be derived for each lunar calibration event, providing the time dependence of the crosstalk contamination. Application of these coefficients to Earth-view image data results in a significant reduction in image contamination and a correction of the scene radiance for bands 27- 30. Also, this correction shows a significant improvement to certain threshold tests in the MODIS Level-2 Cloud Mask. In this paper, we will detail the methodology used to identify and correct the crosstalk contamination for the LWIR PV bands in Terra MODIS. The derived time-dependent crosstalk coefficients will also be discussed. Finally, the impact of the correction on the downstream data products will be analyzed.
Considerations for blending data from various sensors
Bauer, Brian P.; Barringer, Anthony R.
1980-01-01
A project is being proposed at the EROS Data Center to blend the information from sensors aboard various satellites. The problems of, and considerations for, blending data from several satellite-borne sensors are discussed. System descriptions of the sensors aboard the HCMM, TIROS-N, GOES-D, Landsat 3, Landsat D, Seasat, SPOT, Stereosat, and NOSS satellites, and the quantity, quality, image dimensions, and availability of these data are summaries to define attributes of a multi-sensor satellite data base. Unique configurations of equipment, storage, media, and specialized hardware to meet the data system requirement are described as well as archival media and improved sensors that will be on-line within the next 5 years. Definitions and rigor required for blending various sensor data are given. Problems of merging data from the same sensor (intrasensor comparison) and from different sensors (intersensor comparison), the characteristics and advantages of cross-calibration of data, and integration of data into a product matrix field are addressed. Data processing considerations as affected by formation, resolution, and problems of merging large data sets, and organization of data bases for blending data are presented. Examples utilizing GOES and Landsat data are presented to demonstrate techniques of data blending, and recommendations for future implementation of a set of standard scenes and their characteristics necessary for optimal data blending are discussed.
NASA Astrophysics Data System (ADS)
Stengel, Martin; Stapelberg, Stefan; Sus, Oliver; Schlundt, Cornelia; Poulsen, Caroline; Thomas, Gareth; Christensen, Matthew; Carbajal Henken, Cintia; Preusker, Rene; Fischer, Jürgen; Devasthale, Abhay; Willén, Ulrika; Karlsson, Karl-Göran; McGarragh, Gregory R.; Proud, Simon; Povey, Adam C.; Grainger, Roy G.; Fokke Meirink, Jan; Feofilov, Artem; Bennartz, Ralf; Bojanowski, Jedrzej S.; Hollmann, Rainer
2017-11-01
New cloud property datasets based on measurements from the passive imaging satellite sensors AVHRR, MODIS, ATSR2, AATSR and MERIS are presented. Two retrieval systems were developed that include components for cloud detection and cloud typing followed by cloud property retrievals based on the optimal estimation (OE) technique. The OE-based retrievals are applied to simultaneously retrieve cloud-top pressure, cloud particle effective radius and cloud optical thickness using measurements at visible, near-infrared and thermal infrared wavelengths, which ensures spectral consistency. The retrieved cloud properties are further processed to derive cloud-top height, cloud-top temperature, cloud liquid water path, cloud ice water path and spectral cloud albedo. The Cloud_cci products are pixel-based retrievals, daily composites of those on a global equal-angle latitude-longitude grid, and monthly cloud properties such as averages, standard deviations and histograms, also on a global grid. All products include rigorous propagation of the retrieval and sampling uncertainties. Grouping the orbital properties of the sensor families, six datasets have been defined, which are named AVHRR-AM, AVHRR-PM, MODIS-Terra, MODIS-Aqua, ATSR2-AATSR and MERIS+AATSR, each comprising a specific subset of all available sensors. The individual characteristics of the datasets are presented together with a summary of the retrieval systems and measurement records on which the dataset generation were based. Example validation results are given, based on comparisons to well-established reference observations, which demonstrate the good quality of the data. In particular the ensured spectral consistency and the rigorous uncertainty propagation through all processing levels can be considered as new features of the Cloud_cci datasets compared to existing datasets. In addition, the consistency among the individual datasets allows for a potential combination of them as well as facilitates studies on the impact of temporal sampling and spatial resolution on cloud climatologies.
For each dataset a digital object identifier has been issued:
Cloud_cci AVHRR-AM: https://doi.org/10.5676/DWD/ESA_Cloud_cci/AVHRR-AM/V002
Cloud_cci AVHRR-PM: https://doi.org/10.5676/DWD/ESA_Cloud_cci/AVHRR-PM/V002
Cloud_cci MODIS-Terra: https://doi.org/10.5676/DWD/ESA_Cloud_cci/MODIS-Terra/V002
Cloud_cci MODIS-Aqua: https://doi.org/10.5676/DWD/ESA_Cloud_cci/MODIS-Aqua/V002
Cloud_cci ATSR2-AATSR: https://doi.org/10.5676/DWD/ESA_Cloud_cci/ATSR2-AATSR/V002
Cloud_cci MERIS+AATSR: https://doi.org/10.5676/DWD/ESA_Cloud_cci/MERIS+AATSR/V002
2013-09-30
COVERED 00-00-2013 to 00-00-2013 4. TITLE AND SUBTITLE Tracking and Predicting Fine Scale Sea Ice Motion by Constructing Super-Resolution Images...limited, but potentially provide more detailed data. Initial assessments have been made on MODIS data in terms of its suitability. While clouds obscure...estimates. 2 Data from Aqua, Terra, and Suomi NPP satellites were investigated. Aqua and Terra are older satellites that fly the MODIS instrument
NASA Technical Reports Server (NTRS)
Meister, Gerhard; Franz, Bryan A.
2011-01-01
The Moderate-Resolution Imaging Spectroradiometer (MODIS) on NASA s Earth Observing System (EOS) satellite Terra provides global coverage of top-of-atmosphere (TOA) radiances that have been successfully used for terrestrial and atmospheric research. The MODIS Terra ocean color products, however, have been compromised by an inadequate radiometric calibration at the short wavelengths. The Ocean Biology Processing Group (OBPG) at NASA has derived radiometric corrections using ocean color products from the SeaWiFS sensor as truth fields. In the R2010.0 reprocessing, these corrections have been applied to the whole mission life span of 10 years. This paper presents the corrections to the radiometric gains and to the instrument polarization sensitivity, demonstrates the improvement to the Terra ocean color products, and discusses issues that need further investigation. Although the global averages of MODIS Terra ocean color products are now in excellent agreement with those of SeaWiFS and MODIS Aqua, and image quality has been significantly improved, the large corrections applied to the radiometric calibration and polarization sensitivity require additional caution when using the data.
NASA Astrophysics Data System (ADS)
Fu, D.; Di Girolamo, L.; Liang, L.; Zhao, G.
2017-12-01
Listed as one of the Essential Climate Variables by the Global Climate Observing System, the effective radius (Re) of the cloud drop size distribution plays an important role in the energy and water cycles of the Earth system. Re is retrieved from several passive sensors, such as the Moderate Resolution Imaging Spectroradiometer (MODIS), based on a visible and near-infrared bi-spectral technique that had its foundation more than a quarter century ago. This technique makes a wide range of assumptions, including 1-D radiative transfer, assumed single-mode drop size distribution, and cloud horizontal and vertical homogeneity. It is well known that deviations from these assumptions lead to bias in the retrieved Re. Recently, an effort to characterize the bias in MODIS-retrieved Re through MISR-MODIS data fusion revealed biases in the zonal-mean values of MODIS-retrieved Re that varied from 2 to 11 µm, depending on latitude (Liang et al., 2015). Here, in a push towards bias-correction of MODIS-retrieved Re, we further examine the bias with MISR-MODIS data fusion as it relates to other observed cloud properties, such as cloud-top height and the spatial variability of the radiance field, sun-view geometry, and the driving meteorology had from reanalysis data. Our results show interesting relationships in Re bias behavior with these observed properties, revealing that while Re bias do show a certain degree of dependence on some properties, no single property dominates the behavior in MODIS-retrieved Re bias.
Response Versus Scan-Angle Corrections for MODIS Reflective Solar Bands Using Deep Convective Clouds
NASA Technical Reports Server (NTRS)
Bhatt, Rajendra; Angal, Amit; Doelling, David R.; Xiong, Xiaoxiong; Wu, Aisheng; Haney, Conor O.; Scarino, Benjamin R.; Gopalan, Arun
2016-01-01
The absolute radiometric calibration of the reflective solar bands (RSBs) of Aqua- and Terra-MODIS is performed using on-board calibrators. A solar diffuser (SD) panel along with a solar diffuser stability monitor (SDSM) system, which tracks the performance of the SD over time, provides the absolute reference for calibrating the MODIS sensors. MODIS also views the moon and deep space through its space view (SV) port for lunar-based calibration and computing the zero input radiance, respectively. The MODIS instrument views the Earths surface through a two-sided scan mirror, whose reflectance is a function of angle of incidence (AOI) and is described by response versus scan-angle (RVS). The RVS for both MODIS instruments was characterized prior to launch. MODIS also views the SD and the moon at two different assigned RVS positions. There is sufficient evidence that the RVS is changing on orbit over time and as a function of wavelength. The SD and lunar observation scans can only track the RVS variation at two RVS positions. Consequently, the MODIS Characterization Support Team (MCST) developed enhanced approaches that supplement the onboard calibrator measurements with responses from pseudo-invariant desert sites. This approach has been implemented in Level 1B (L1B) Collection 6 (C6) for selected short-wavelength bands. This paper presents an alternative approach of characterizing the mirror RVS to derive the time-dependent RVS correction factors for MODIS RSBs using tropical deep convective cloud (DCC) targets. An initial assessment of the DCC response from Aqua-MODIS band 1 C6 data indicates evidence of RVS artifacts, which are not uniform across the scans and are more prevalent in the left side Earth-view scans.
Response Versus Scan-Angle Corrections for MODIS Reflective Solar Bands Using Deep Convective Clouds
NASA Technical Reports Server (NTRS)
Bhatt, Rajendra; Angal, Amit; Doelling, David R.; Xiong, Xiaoxiong; Wu, Aisheng; Haney, Conor O.; Scarino, Benjamin R.; Gopalan, Arun
2016-01-01
The absolute radiometric calibration of the reflective solar bands (RSBs) of Aqua- and Terra-MODIS is performed using on-board calibrators. A solar diffuser (SD) panel along with a solar diffuser stability monitor (SDSM) system, which tracks the performance of the SD over time, provides the absolute reference for calibrating the MODIS sensors. MODIS also views the moon and deep space through its space view (SV) port for lunar-based calibration and computing the zero input radiance, respectively. The MODIS instrument views the Earth's surface through a two-sided scan mirror, whose reflectance is a function of angle of incidence (AOI) and is described by response versus scan-angle (RVS). The RVS for both MODIS instruments was characterized prior to launch. MODIS also views the SD and the moon at two different assigned RVS positions. There is sufficient evidence that the RVS is changing on orbit over time and as a function of wavelength. The SD and lunar observation scans can only track the RVS variation at two RVS positions. Consequently, the MODIS Characterization Support Team (MCST) developed enhanced approaches that supplement the onboard calibrator measurements with responses from pseudo-invariant desert sites. This approach has been implemented in Level 1B (L1B) Collection 6 (C6) for selected short-wavelength bands. This paper presents an alternative approach of characterizing the mirror RVS to derive the time-dependent RVS correction factors for MODIS RSBs using tropical deep convective cloud (DCC) targets. An initial assessment of the DCC response from Aqua-MODIS band 1 C6 data indicates evidence of RVS artifacts, which are not uniform across the scans and are more prevalent in the left side Earth-view scans.
Response versus scan-angle corrections for MODIS reflective solar bands using deep convective clouds
NASA Astrophysics Data System (ADS)
Bhatt, Rajendra; Angal, Amit; Doelling, David R.; Xiong, Xiaoxiong; Wu, Aisheng; Haney, Conor O.; Scarino, Benjamin R.; Gopalan, Arun
2016-05-01
The absolute radiometric calibration of the reflective solar bands (RSBs) of Aqua- and Terra-MODIS is performed using on-board calibrators. A solar diffuser (SD) panel along with a solar diffuser stability monitor (SDSM) system, which tracks the degradation of the SD over time, provides the baseline for calibrating the MODIS sensors. MODIS also views the moon and deep space through its space view (SV) port for lunar-based calibration and computing the background, respectively. The MODIS instrument views the Earth's surface using a two-sided scan mirror, whose reflectance is a function of the angle of incidence (AOI) and is described by response versus scan-angle (RVS). The RVS for both MODIS instruments was characterized prior to launch. MODIS also views the SD and the moon at two different AOIs. There is sufficient evidence that the RVS is changing on orbit over time and as a function of wavelength. The SD and lunar observation scans can only track the RVS variation at two AOIs. Consequently, the MODIS Characterization Support Team (MCST) developed enhanced approaches that supplement the onboard calibrator measurements with responses from the pseudo-invariant desert sites. This approach has been implemented in Level 1B (L1B) Collection 6 (C6) for select short-wavelength bands. This paper presents an alternative approach of characterizing the mirror RVS to derive the time-dependent RVS correction factors for MODIS RSBs using tropical deep convective cloud (DCC) targets. An initial assessment of the DCC response from Aqua-MODIS band 1 C6 data indicates evidence of RVS artifacts, which are not uniform across the scans and are more prevalent at the beginning of the earth-view scan.
Sampling Biases in MODIS and SeaWiFS Ocean Chlorophyll Data
NASA Technical Reports Server (NTRS)
Gregg, Watson W.; Casey, Nancy W.
2007-01-01
Although modem ocean color sensors, such as MODIS and SeaWiFS are often considered global missions, in reality it takes many days, even months, to sample the ocean surface enough to provide complete global coverage. The irregular temporal sampling of ocean color sensors can produce biases in monthly and annual mean chlorophyll estimates. We quantified the biases due to sampling using data assimilation to create a "truth field", which we then sub-sampled using the observational patterns of MODIS and SeaWiFS. Monthly and annual mean chlorophyll estimates from these sub-sampled, incomplete daily fields were constructed and compared to monthly and annual means from the complete daily fields of the assimilation model, at a spatial resolution of 1.25deg longitude by 0.67deg latitude. The results showed that global annual mean biases were positive, reaching nearly 8% (MODIS) and >5% (SeaWiFS). For perspective the maximum interannual variability in the SeaWiFS chlorophyll record was about 3%. Annual mean sampling biases were low (<3%) in the midlatitudes (between -40deg and 40deg). Low interannual variability in the global annual mean sampling biases suggested that global scale trend analyses were valid. High latitude biases were much higher than the global annual means, up to 20% as a basin annual mean, and over 80% in some months. This was the result of the high solar zenith angle exclusion in the processing algorithms. Only data where the solar angle is <75deg are permitted, in contrast to the assimilation which samples regularly over the entire area and month. High solar zenith angles do not facilitate phytoplankton photosynthesis and consequently low chlorophyll concentrations occurring here are missed by the data sets. Ocean color sensors selectively sample in locations and times of favorable phytoplankton growth, producing overestimates of chlorophyll. The biases derived from lack of sampling in the high latitudes varied monthly, leading to artifacts in the apparent seasonal cycle from ocean color sensors. A false secondary peak in chlorophyll occurred in May-August, which resulted from lack of sampling in the Antarctic.
Evaluation on Radiometric Capability of Chinese Optical Satellite Sensors
Yang, Aixia; Zhong, Bo; Wu, Shanlong; Liu, Qinhuo
2017-01-01
The radiometric capability of on-orbit sensors should be updated on time due to changes induced by space environmental factors and instrument aging. Some sensors, such as Moderate Resolution Imaging Spectroradiometer (MODIS), have onboard calibrators, which enable real-time calibration. However, most Chinese remote sensing satellite sensors lack onboard calibrators. Their radiometric calibrations have been updated once a year based on a vicarious calibration procedure, which has affected the applications of the data. Therefore, a full evaluation of the sensors’ radiometric capabilities is essential before quantitative applications can be made. In this study, a comprehensive procedure for evaluating the radiometric capability of several Chinese optical satellite sensors is proposed. In this procedure, long-term radiometric stability and radiometric accuracy are the two major indicators for radiometric evaluation. The radiometric temporal stability is analyzed by the tendency of long-term top-of-atmosphere (TOA) reflectance variation; the radiometric accuracy is determined by comparison with the TOA reflectance from MODIS after spectrally matching. Three Chinese sensors including the Charge-Coupled Device (CCD) camera onboard Huan Jing 1 satellite (HJ-1), as well as the Visible and Infrared Radiometer (VIRR) and Medium-Resolution Spectral Imager (MERSI) onboard the Feng Yun 3 satellite (FY-3) are evaluated in reflective bands based on this procedure. The results are reasonable, and thus can provide reliable reference for the sensors’ application, and as such will promote the development of Chinese satellite data. PMID:28117745
Terra and Aqua MODIS Thermal Emissive Bands On-Orbit Calibration and Performance
NASA Technical Reports Server (NTRS)
Xiong, Xiaoxiong; Wu, Aisheng; Wenny, Brian N.; Madhavan, Sriharsha; Wang, Zhipeng; Li, Yonghong; Chen, Na; Barnes, William L.; Salomonson, Vincent V.
2015-01-01
Since launch, the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on the Terra and Aqua spacecraft have operated successfully for more than 14 and 12 years, respectively. A key instrument for National Aeronautics and Space Administration Earth Observing System missions, MODIS was designed to make continuous observations for studies of Earth's land, ocean, and atmospheric properties and to extend existing data records from heritage Earth observing sensors. The 16 thermal emissive bands (TEBs) (3.75-14.24 micrometers) are calibrated on orbit using a temperature controlled blackbody (BB). Both Terra and Aqua MODIS BBs have displayed minimal drift over the mission lifetime, and the seasonal variations of the BB temperature are extremely small in Aqua MODIS. The long-term gain and noise equivalent difference in temperature performance of the 160 TEB detectors on both MODIS instruments have been well behaved and generally very stable. Small but noticeable variations of Aqua MODIS bands 33-36 (13.34-14.24 micrometer) response in recent years are primarily due to loss of temperature control margin of its passive cryoradiative cooler. As a result, fixed calibration coefficients, previously used by bands when the BB temperature is above their saturation temperatures, are replaced by the focal-plane-temperature-dependent calibration coefficients. This paper presents an overview of the MODIS TEB calibration, the on-orbit performance, and the challenging issues likely to impact the instruments as they continue operating well past their designed lifetime of six years.
NASA Technical Reports Server (NTRS)
Hickey, John R.
1992-01-01
The flight spare sensors of the Earth Radiation Budget (ERB) experiment of the Nimbus 6 and 7 missions were flown aboard the LDEF. The preliminary post retrieval examination and test results are presented here for the sensor windows and filters, the thermopile sensors and a cavity radiometer.
NASA Astrophysics Data System (ADS)
Hu, Y.; Vaughan, M.; McClain, C.; Behrenfeld, M.; Maring, H.; Anderson, D.; Sun-Mack, S.; Flittner, D.; Huang, J.; Wielicki, B.; Minnis, P.; Weimer, C.; Trepte, C.; Kuehn, R.
2007-06-01
This study presents an empirical relation that links the volume extinction coefficients of water clouds, the layer integrated depolarization ratios measured by lidar, and the effective radii of water clouds derived from collocated passive sensor observations. Based on Monte Carlo simulations of CALIPSO lidar observations, this method combines the cloud effective radius reported by MODIS with the lidar depolarization ratios measured by CALIPSO to estimate both the liquid water content and the effective number concentration of water clouds. The method is applied to collocated CALIPSO and MODIS measurements obtained during July and October of 2006, and January 2007. Global statistics of the cloud liquid water content and effective number concentration are presented.
Normalizing Landsat and ASTER Data Using MODIS Data Products for Forest Change Detection
NASA Technical Reports Server (NTRS)
Gao, Feng; Masek, Jeffrey G.; Wolfe, Robert E.; Tan, Bin
2010-01-01
Monitoring forest cover and its changes are a major application for optical remote sensing. In this paper, we present an approach to integrate Landsat, ASTER and MODIS data for forest change detection. Moderate resolution (10-100m) images (e.g. Landsat and ASTER) acquired from different seasons and times are normalized to one "standard" date using MODIS data products as reference. The normalized data are then used to compute forest disturbance index for forest change detection. Comparing to the results from original data, forest disturbance index from the normalized images is more consistent spatially and temporally. This work demonstrates an effective approach for mapping forest change over a large area from multiple moderate resolution sensors on various acquisition dates.
Lohrenz, Steven E.; Cai, Wei-Jun; Chen, Xiaogang; Tuel, Merritt
2008-01-01
The impacts of major tropical storms events on coastal waters include sediment resuspension, intense water column mixing, and increased delivery of terrestrial materials into coastal waters. We examined satellite imagery acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) ocean color sensor aboard the Aqua spacecraft following two major hurricane events: Hurricane Katrina, which made landfall on 29 August 2005, and Hurricane Rita, which made landfall on 24 September. MODIS Aqua true color imagery revealed high turbidity levels in shelf waters immediately following the storms indicative of intense resuspension. However, imagery following the landfall of Katrina showed relatively rapid return of shelf water mass properties to pre-storm conditions. Indeed, MODIS Aqua-derived estimates of diffuse attenuation at 490 nm (K_490) and chlorophyll (chlor_a) from mid-August prior to the landfall of Hurricane Katrina were comparable to those observed in mid-September following the storm. Regions of elevated K_490 and chlor_a were evident in offshore waters and appeared to be associated with cyclonic circulation (cold-core eddies) identified on the basis of sea surface height anomaly (SSHA). Imagery acquired shortly after Hurricane Rita made landfall showed increased water column turbidity extending over a large area of the shelf off Louisiana and Texas, consistent with intense resuspension and sediment disturbance. An interannual comparison of satellite-derived estimates of K_490 for late September and early October revealed relatively lower levels in 2005, compared to the mean for the prior three years, in the vicinity of the Mississippi River birdfoot delta. In contrast, levels above the previous three year mean were observed off Texas and Louisiana 7-10 d after the passage of Rita. The lower values of K_490 near the delta could be attributed to relatively low river discharge during the preceding months of the 2005 season. The elevated levels off Texas and Louisiana were speculated to be due to the presence of fine grain sediment or dissolved materials that remained in the water column following the storm, and may also have been associated with enhanced phytoplankton biomass stimulated by the intense vertical mixing and offshore delivery of shelf water and associated nutrients. This latter view was supported by observations of high chlor_a in association with regions of cyclonic circulation. PMID:27879927
Lohrenz, Steven E; Cai, Wei-Jun; Chen, Xiaogang; Tuel, Merritt
2008-07-10
The impacts of major tropical storms events on coastal waters include sediment resuspension, intense water column mixing, and increased delivery of terrestrial materials into coastal waters. We examined satellite imagery acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) ocean color sensor aboard the Aqua spacecraft following two major hurricane events: Hurricane Katrina, which made landfall on 29 August 2005, and Hurricane Rita, which made landfall on 24 September. MODIS Aqua true color imagery revealed high turbidity levels in shelf waters immediately following the storms indicative of intense resuspension. However, imagery following the landfall of Katrina showed relatively rapid return of shelf water mass properties to pre-storm conditions. Indeed, MODIS Aqua-derived estimates of diffuse attenuation at 490 nm (K_490) and chlorophyll (chlor_a) from mid-August prior to the landfall of Hurricane Katrina were comparable to those observed in mid-September following the storm. Regions of elevated K_490 and chlor_a were evident in offshore waters and appeared to be associated with cyclonic circulation (cold-core eddies) identified on the basis of sea surface height anomaly (SSHA). Imagery acquired shortly after Hurricane Rita made landfall showed increased water column turbidity extending over a large area of the shelf off Louisiana and Texas, consistent with intense resuspension and sediment disturbance. An interannual comparison of satellite-derived estimates of K_490 for late September and early October revealed relatively lower levels in 2005, compared to the mean for the prior three years, in the vicinity of the Mississippi River birdfoot delta. In contrast, levels above the previous three year mean were observed off Texas and Louisiana 7-10 d after the passage of Rita. The lower values of K_490 near the delta could be attributed to relatively low river discharge during the preceding months of the 2005 season. The elevated levels off Texas and Louisiana were speculated to be due to the presence of fine grain sediment or dissolved materials that remained in the water column following the storm, and may also have been associated with enhanced phytoplankton biomass stimulated by the intense vertical mixing and offshore delivery of shelf water and associated nutrients. This latter view was supported by observations of high chlor_a in association with regions of cyclonic circulation.
NASA Astrophysics Data System (ADS)
Viudez-Mora, A.; Kato, S.; Smith, W. L., Jr.; Chang, F. L.
2016-12-01
Knowledge of the vertical cloud distribution is important for a variety of climate and weather applications. The cloud overlapping variations greatly influence the atmospheric heating/cooling rates, with implications for the surface-troposphere radiative balance, global circulation and precipitation. Additionally, an accurate knowledge of the multi-layer cloud distribution in real-time can be used in applications such safety condition for aviation through storms and adverse weather conditions. In this study, we evaluate a multi-layered cloud algorithm (Chang et al. 2005) based on MODIS measurements aboard Aqua satellite (MCF). This algorithm uses the CO2-slicing technique combined with cloud properties determined from VIS, IR and NIR channels to locate high thin clouds over low-level clouds, and retrieve the τ of each layer. We use CALIPSO (Winker et. al, 2010) and CloudSat (Stephens et. al, 2002) (CLCS) derived cloud vertical profiles included in the C3M data product (Kato et al. 2010) to evaluate MCF derived multi-layer cloud properties. We focus on 2 layer overlapping and 1-layer clouds identified by the active sensors and investigate how well these systems are identified by the MODIS multi-layer technique. The results show that for these multi-layered clouds identified by CLCS, the MCF correctly identifies about 83% of the cases as multi-layer. However, it is found that the upper CTH is underestimated by about 2.6±0.4 km, because the CO2-slicing technique is not as sensitive to the cloud physical top as the CLCS. The lower CTH agree better with differences found to be about 1.2±0.5 km. Another outstanding issue for the MCF approach is the large number of multi-layer false alarms that occur in single-layer conditions. References: Chang, F.-L., and Z. Li, 2005: A new method for detection of cirrus overlapping water clouds and determination of their optical properties. J. Atmos. Sci., 62. Kato, S., et al. (2010), Relationships among cloud occurrence frequency, overlap, and effective thickness derived from CALIPSO and CloudSat merged cloud vertical profiles, J. Geophys. Res., 115. Stephens, G. L., et al. (2002), The CloudSat mission and A-Train, Bull. Am. Meteorol. Soc., 83. Winker, D. M., et al., 2010: The CALIPSO Mission: A global 3D view of aerosols and clouds. Bull. Amer. Meteor. Soc., 91.
NASA Technical Reports Server (NTRS)
2002-01-01
This false-color image shows Cyclone Chris shortly after it hit Australia's northwestern coast on February 6, 2002. This scene was acquired by the Moderate-resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra satellite. (Please note that this scene has not been reprojected.) Cyclone Chris is one of the most powerful storms ever to hit Australia. Initially, the storm contained wind gusts of up to 200 km per hour (125 mph), but shortly after making landfall it weakened to a Category 4 storm. Meteorologists expect the cyclone to weaken quickly as it moves further inland.
A Sample of What We Have Learned from A-Train Cloud Measurements
NASA Technical Reports Server (NTRS)
Joiner, Joanna; Vasilkov, Alexander; Ziemke, Jerry; Chandra, Sushil; Spurr, Robert; Bhartia, P. K.; Krotkov, Nick; Sneep, Maarten; Menzel, Paul; Platnick, Steve;
2008-01-01
The A-train active sensors CloudSat and CALIPSO provide detailed information about cloud vertical structure. Coarse vertical information can also be obtained from a combination of passive sensors (e.g. cloud liquid water content from AMSR-E, cloud ice properties from MLS and HIRDLS, cloud-top pressure from MODIS and AIRS, and UVNISINear IR absorption and scattering from OMI, MODIS, and POLDER). In addition, the wide swaths of instruments such as MODIS, AIRS, OMI, POLDER, and AMSR-E can be exploited to create estimates of the three-dimensional cloud extent. We will show how data fusion from A-train sensors can be used, e.g., to detect and map the presence of multiple layer/phase clouds. Ultimately, combined cloud information from Atrain instruments will allow for estimates of heating and radiative flux at the surface as well as UV/VIS/Near IR trace-gas absorption at the overpass time on a near-global daily basis. CloudSat has also dramatically improved our interpretation of visible and UV passive measurements in complex cloudy situations such as deep convection and multiple cloud layers. This has led to new approaches for unique and accurate constituent retrievals from A-train instruments. For example, ozone mixing ratios inside tropical deep convective clouds have recently been estimated using the Aura Ozone Monitoring Instrument (OMI). Field campaign data from TC4 provide additional information about the spatial variability and origin of trace-gases inside convective clouds. We will highlight some of the new applications of remote sensing in cloudy conditions that have been enabled by the synergy between the A-train active and passive sensors.
NASA Technical Reports Server (NTRS)
Doelling, David R.; Bhatt, Rajendra; Scarino, Benjamin R.; Gopalan, Arun; Haney, Conor O.; Minnis, Patrick; Bedka, Kristopher M.
2016-01-01
Consistent cross-sensor Advanced Very High Resolution Radiometer (AVHRR) calibration coefficients are determined using desert, polar ice, and deep convective cloud (DCC) invariant Earth targets. The greatest AVHRR calibration challenge is the slow orbit degradation of the host satellite, which precesses toward a terminator orbit. This issue is solved by characterizing the invariant targets with NOAA-16 AVHRR observed radiances that have been referenced to the Aqua Moderate Resolution Imaging Spectrometer (MODIS) calibration using simultaneous nadir overpass (SNO) observations. Another benefit of the NOAA-16 invariant target-modeled reflectance method is that, because of the similarities among the AVHRR spectral response functions, a smaller spectral band adjustment factor is required than when establishing calibrations relative to a non-AVHRR reference instrument. The sensor- and band-specific calibration uncertainties, with respect to the calibration reference, are, on average, 2 percent and 3 percent for channels 1 and 2, respectively. The uncertainties are smaller for sensors that are in afternoon orbits, have longer records, and spend less time in terminator conditions. The multiple invariant targets referenced to Aqua MODIS (MITRAM) AVHRR calibration coefficients are evaluated for individual target consistency, compared against Aqua MODIS/AVHRR SNOs, and selected published calibration gains. The MITRAM and SNO relative calibration biases mostly agree to within 1 percent for channels 1 and 2, respectively. The individual invariant target and MITRAM sensor relative calibration biases are mostly consistent to within 1 percent and 2 percent for channels 1 and 2, respectively. The differences between the MITRAM and other published calibrations are mostly attributed to the reference instrument calibration differences.
NASA Technical Reports Server (NTRS)
Abbott, Mark R.
1996-01-01
Our first activity is based on delivery of code to Bob Evans (University of Miami) for integration and eventual delivery to the MODIS Science Data Support Team. As we noted in our previous semi-annual report, coding required the development and analysis of an end-to-end model of fluorescence line height (FLH) errors and sensitivity. This model is described in a paper in press in Remote Sensing of the Environment. Once the code was delivered to Miami, we continue to use this error analysis to evaluate proposed changes in MODIS sensor specifications and performance. Simply evaluating such changes on a band by band basis may obscure the true impacts of changes in sensor performance that are manifested in the complete algorithm. This is especially true with FLH that is sensitive to band placement and width. The error model will be used by Howard Gordon (Miami) to evaluate the effects of absorbing aerosols on the FLH algorithm performance. Presently, FLH relies only on simple corrections for atmospheric effects (viewing geometry, Rayleigh scattering) without correcting for aerosols. Our analysis suggests that aerosols should have a small impact relative to changes in the quantum yield of fluorescence in phytoplankton. However, the effect of absorbing aerosol is a new process and will be evaluated by Gordon.
NASA Astrophysics Data System (ADS)
Grant, G.; Gallaher, D. W.
2017-12-01
New methods for processing massive remotely sensed datasets are used to evaluate Antarctic land surface temperature (LST) extremes. Data from the MODIS/Terra sensor (Collection 6) provides a twice-daily look at Antarctic LSTs over a 17 year period, at a higher spatiotemporal resolution than past studies. Using a data condensation process that creates databases of anomalous values, our processes create statistical images of Antarctic LSTs. In general, the results find few significant trends in extremes; however, they do reveal a puzzling picture of inconsistent cloud detection and possible systemic errors, perhaps due to viewing geometry. Cloud discrimination shows a distinct jump in clear-sky detections starting in 2011, and LSTs around the South Pole exhibit a circular cooling pattern, which may also be related to cloud contamination. Possible root causes are discussed. Ongoing investigations seek to determine whether the results are a natural phenomenon or, as seems likely, the results of sensor degradation or processing artefacts. If the unusual LST patterns or cloud detection discontinuities are natural, they point to new, interesting processes on the Antarctic continent. If the data artefacts are artificial, MODIS LST users should be alerted to the potential issues.
Spatial Downscaling of TRMM Precipitation using MODIS product in the Korean Peninsula
NASA Astrophysics Data System (ADS)
Cho, H.; Choi, M.
2013-12-01
Precipitation is a major driving force in the water cycle. But, it is difficult to provide spatially distributed precipitation data from isolated individual in situ. The Tropical Rainfall Monitoring Mission (TRMM) satellite can provide precipitation data with relatively coarse spatial resolution (0.25° scale) at daily basis. In order to overcome the coarse spatial resolution of TRMM precipitation products, we conducted a downscaling technique using a scaling parameter from the Moderate Resolution Imaging Spectroradiometers (MODIS) sensor. In this study, statistical relations between precipitation estimates derived from the TRMM satellite and the normalized difference vegetation index (NDVI) which is obtained from the MODIS sensor in TERRA satellite are found for different spatial scales on the Korean peninsula in northeast Asia. We obtain the downscaled precipitation mapping by regression equation between yearly TRMM precipitations values and annual average NDVI aggregating 1km to 25 degree. The downscaled precipitation is validated using time series of the ground measurements precipitation dataset provided by Korea Meteorological Organization (KMO) from 2002 to 2005. To improve the spatial downscaling of precipitation, we will conduct a study about correlation between precipitation and land surface temperature, perceptible water and other hydrological parameters.
NASA Technical Reports Server (NTRS)
Wu, Aisheng; Xiong, Xiaoxiong; Cao, Changyong; Chiang, Kwo-Fu
2016-01-01
The first Visible Infrared Imaging Radiometer Suite (VIIRS) is onboard the Suomi National Polar-orbiting Partnership (SNPP) satellite. As a primary sensor, it collects imagery and radiometric measurements of the land, atmosphere, cryosphere, and oceans in the spectral regions from visible (VIS) to long-wave infrared. NASA's National Polar-orbiting Partnership (NPP) VIIRS Characterization Support Team has been actively involved in the VIIRS radiometric and geometric calibration to support its Science Team Principal Investigators for their independent quality assessment of VIIRS Environmental Data Records. This paper presents the performance assessment of the radiometric calibration stability of the VIIRS VIS and NIR spectral bands using measurements from SNPP VIIRS and Aqua MODIS simultaneous nadir overpasses and over the invariant surface targets at the Libya-4 desert and Antarctic Dome Concordia snow sites. The VIIRS sensor data records (SDRs) used in this paper are reprocessed by the NASA SNPP Land Product Evaluation and Analysis Tool Element. This paper shows that the reprocessed VIIRS SDRs have been consistently calibrated from the beginning of the mission, and the calibration stability is similar to or better than MODIS. Results from different approaches indicate that the calibrations of the VIIRS VIS and NIR spectral bands are maintained to be stable to within 1% over the first three-year mission. The absolute calibration differences between VIIRS and MODIS are within 2%, with an exception for the 0.865-m band, after correction of their spectral response differences.
Global Characterization of Tropospheric Noise for InSAR Analysis Using MODIS Data
NASA Astrophysics Data System (ADS)
Yun, S.; Hensley, S.; Chaubell, M.; Fielding, E. J.; Pan, L.; Rosen, P. A.
2013-12-01
Radio wave's differential phase delay variation through the troposphere is one of the largest error sources in Interferometric Synthetic Aperture Radar (InSAR) measurements, and water vapor variability in the troposphere is known to be the dominant factor. We use the precipitable water vapor products from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) sensors mounted on Terra and Aqua satellites to produce tropospheric noise maps of InSAR. Then we extract a small set of characteristic parameters of its power spectral density curve and 1-D covariance function, and calculate the structure function to estimate the expected tropospheric noise level as a function of distance. The results serve two purposes: 1) to provide guidance on the expected covariance matrix for geophysical modeling, 2) to provide quantitative basis of the measurement requirements for the planned US L-band SAR mission. We build over a decade span (2000-2013) of a lookup table of the parameters derived from 2-by-2 degree tiles at 1-by-1 degree posting of global coverage, representing 10 days of each season in each year. The MODIS data were retrieved from OSCAR (Online Services for Correcting Atmosphere in Radar) server. MODIS images with 5 percent or more cloud cover were discarded. Cloud mask and sensor scanning artifacts were removed with interpolation and spectral filtering, respectively. We also mitigate topography dependent stratified tropospheric delay variation using the European Centre for Medium-Range Weather Forecasts (ECMWF) and Shuttle Radar Topography Mission Digital Elevation Models (SRTM DEMs).
Terrestrial Environmental Variables Derived From EOS Platform Sensors
NASA Technical Reports Server (NTRS)
Stadler, Stephen J.; Czajkowski, Kevin P.; Goward, Samuel N.; Xue, Yongkang
2001-01-01
The three main objectives of the overall project were: 1. Adaptation of environmental constraint methods to take advantage of EOS sensors, specifically, MODIS, ASTER, and Landsat-7, in addition to the PM AVHRR observations 2. Refinement of environmental constraint methods based on fundamental scientific knowledge. 3. Assessment of spatial scaling patterns in environmental constraint measurements to evaluate the potential biases and errors that occur when estimating regional and global-scale NPP patterns with moderate to coarse satellite observations. These goals were modified because, on one hand, MODIS data did not become available until after the first year of the project and because of project staffing issues at the University of Maryland., The OSU portion of the project contained a modest amount of funding and responsibility compared to the University of Maryland and the University of Toledo.
Quality and Consistency of the NASA Ocean Color Data Record
NASA Technical Reports Server (NTRS)
Franz, Bryan A.
2012-01-01
The NASA Ocean Biology Processing Group (OBPG) recently reprocessed the multimission ocean color time-series from SeaWiFS, MODIS-Aqua, and MODIS-Terra using common algorithms and improved instrument calibration knowledge. Here we present an analysis of the quality and consistency of the resulting ocean color retrievals, including spectral water-leaving reflectance, chlorophyll a concentration, and diffuse attenuation. Statistical analysis of satellite retrievals relative to in situ measurements will be presented for each sensor, as well as an assessment of consistency in the global time-series for the overlapping periods of the missions. Results will show that the satellite retrievals are in good agreement with in situ measurements, and that the sensor ocean color data records are highly consistent over the common mission lifespan for the global deep oceans, but with degraded agreement in higher productivity, higher complexity coastal regions.
NASA Astrophysics Data System (ADS)
Redemann, J.; Livingston, J. M.; Shinozuka, Y.; Kacenelenbogen, M. S.; Russell, P. B.; LeBlanc, S. E.; Vaughan, M.; Ferrare, R. A.; Hostetler, C. A.; Rogers, R. R.; Burton, S. P.; Torres, O.; Remer, L. A.; Stier, P.; Schutgens, N.
2014-12-01
We describe a technique for combining CALIOP aerosol backscatter, MODIS spectral AOD (aerosol optical depth), and OMI AAOD (absorption aerosol optical depth) retrievals for the purpose of estimating full spectral sets of aerosol radiative properties, and ultimately for calculating the 3-D distribution of direct aerosol radiative forcing. We present results using one year of data collected in 2007 and show comparisons of the aerosol radiative property estimates to collocated AERONET retrievals. Use of the recently released MODIS Collection 6 data for aerosol optical depths derived with the dark target and deep blue algorithms has extended the coverage of the multi-sensor estimates towards higher latitudes. Initial calculations of seasonal clear-sky aerosol radiative forcing based on our multi-sensor aerosol retrievals compare well with over-ocean and top of the atmosphere IPCC-2007 model-based results, and with more recent assessments in the "Climate Change Science Program Report: Atmospheric Aerosol Properties and Climate Impacts" (2009). For the first time, we present comparisons of our multi-sensor aerosol direct radiative forcing estimates to values derived from a subset of models that participated in the latest AeroCom initiative. We discuss the major challenges that exist in extending our clear-sky results to all-sky conditions. On the basis of comparisons to suborbital measurements, we present some of the limitations of the MODIS and CALIOP retrievals in the presence of adjacent or underlying clouds. Strategies for meeting these challenges are discussed.
Dorji, Passang; Fearns, Peter
2017-01-01
The impact of anthropogenic activities on coastal waters is a cause of concern because such activities add to the total suspended sediment (TSS) budget of the coastal waters, which have negative impacts on the coastal ecosystem. Satellite remote sensing provides a powerful tool in monitoring TSS concentration at high spatiotemporal resolution, but coastal managers should be mindful that the satellite-derived TSS concentrations are dependent on the satellite sensor's radiometric properties, atmospheric correction approaches, the spatial resolution and the limitations of specific TSS algorithms. In this study, we investigated the impact of different spatial resolutions of satellite sensor on the quantification of TSS concentration in coastal waters of northern Western Australia. We quantified the TSS product derived from MODerate resolution Imaging Spectroradiometer (MODIS)-Aqua, Landsat-8 Operational Land Image (OLI), and WorldView-2 (WV2) at native spatial resolutions of 250 m, 30 m and 2 m respectively and coarser spatial resolution (resampled up to 5 km) to quantify the impact of spatial resolution on the derived TSS product in different turbidity conditions. The results from the study show that in the waters of high turbidity and high spatial variability, the high spatial resolution WV2 sensor reported TSS concentration as high as 160 mg L-1 while the low spatial resolution MODIS-Aqua reported a maximum TSS concentration of 23.6 mg L-1. Degrading the spatial resolution of each satellite sensor for highly spatially variable turbid waters led to variability in the TSS concentrations of 114.46%, 304.68% and 38.2% for WV2, Landsat-8 OLI and MODIS-Aqua respectively. The implications of this work are particularly relevant in the situation of compliance monitoring where operations may be required to restrict TSS concentrations to a pre-defined limit.
NASA Astrophysics Data System (ADS)
Xiong, X.; Stone, T. C.
2017-12-01
To meet objectives for assembling continuous Earth environmental data records from multiple satellite instruments, a key consideration is to assure consistent and stable sensor calibration across platforms and spanning mission lifetimes. Maintaining and verifying calibration stability in orbit is particularly challenging for reflected solar band (RSB) radiometer instruments, as options for stable references are limited. The Moon is used regularly as a calibration target, which has capabilities for long-term sensor performance monitoring and for use as a common reference for RSB sensor inter-calibration. Suomi NPP VIIRS has viewed the Moon nearly every month since launch, utilizing spacecraft roll maneuvers to acquire lunar observations within a small range of phase angles. The VIIRS Characterization Support Team (VCST) at NASA GSFC has processed the Moon images acquired by SNPP VIIRS into irradiance measurements for calibration purposes; however, the variations in the Moon's brightness still require normalizing the VIIRS lunar measurements using radiometric reference values generated by the USGS lunar calibration system, i.e. the ROLO model. Comparison of the lunar irradiance time series to the calibration f-factors derived from the VIIRS on-board solar diffuser system shows similar overall trends in sensor response, but also reveals residual geometric anomalies in the lunar model results. The excellent lunar radiometry achieved by SNPP VIIRS is actively being used to advance lunar model development at USGS. Both MODIS instruments also have viewed the Moon regularly since launch, providing a practical application of sensor inter-calibration using the Moon as a common reference. This paper discusses ongoing efforts aimed toward demonstrating and utilizing the full potential of lunar observations to support long-term calibration stability and consistency for SNPP VIIRS and MODIS, thus contributing to level-1B data quality assurance for continuity and monitoring global environmental changes.
Poggio, Laura; Gimona, Alessandro
2017-02-01
Soil is very important for many land functions. To achieve sustainability it is important to understand how soils vary over space in the landscape. Remote sensing data can be instrumental in mapping and spatial modelling of soil properties, resources and their variability. The aims of this study were to compare satellite sensors (MODIS, Landsat, Sentinel-1 and Sentinel-2) with varying spatial, temporal and spectral resolutions for Digital Soil Mapping (DSM) of a set of soil properties in Scotland, evaluate the potential benefits of adding Sentinel-1 data to DSM models, select the most suited mix of sensors for DSM to map the considered set of soil properties and validate the results of topsoil (2D) and whole profile (3D) models. The results showed that the use of a mixture of sensors proved more effective to model and map soil properties than single sensors. The use of radar Sentinel-1 data proved useful for all soil properties, improving the prediction capability of models with only optical bands. The use of MODIS time series provided stronger relationships than the use of temporal snapshots. The results showed good validation statistics with a RMSE below 20% of the range for all considered soil properties. The RMSE improved from previous studies including only MODIS sensor and using a coarser prediction grid. The performance of the models was similar to previous studies at regional, national or continental scale. A mix of optical and radar data proved useful to map soil properties along the profile. The produced maps of soil properties describing both lateral and vertical variability, with associated uncertainty, are important for further modelling and management of soil resources and ecosystem services. Coupled with further data the soil properties maps could be used to assess soil functions and therefore conditions and suitability of soils for a range of purposes. Copyright © 2016 Elsevier B.V. All rights reserved.
On the potential of RST approach for a continuous monitoring of flooded areas
NASA Astrophysics Data System (ADS)
Faruolo, Mariapia; Coviello, Irina; Lacava, Teodosio; Pergola, Nicola; Tramutoli, Valerio
2010-05-01
In recent decades many efforts have been made in the field of remote sensing for the management of flood risk. In fact, among all natural disasters floods are probably the most frequent, causing high human suffering and large losses. All activities designed to mitigate and manage flood risk, in order to be effective and to help civil protection agencies in limiting losses of life, human suffering and damages, need of timely information about the onset of floods, their extent, intensity and duration. At present, sensors aboard meteorological satellites, mainly thanks to their high temporal resolution, may furnish frequent and updated images, ensuring a continuous monitoring of areas involved by a flood. In particular, optical instruments on board polar satellites, like NOAA-AVHRR (National Oceanic and Atmospheric Administration-Advanced Very High Resolution Radiometer) and more recently EOS-MODIS (Earth Observing System-Moderate Resolution Imaging Spectroradiometer) have been used for dynamic flood monitoring. A robust methodology for satellite based flood monitoring and detection, named RST (Robust Satellite Technique), has been recently developed and implemented using data acquired by AVHRR and MODIS to identify flooded areas with reliability and timeliness. Such an approach, based on a multi-temporal analysis of co-located satellite records and an automatic change detection scheme, has been used to analyze floods occurred in different geographic areas and observational conditions. In detail, in order to identify flooded areas within the region of interest, the spectral behavior of water in the visible (VIS) and near infrared (NIR) bands of such satellite systems has been successfully exploited. Starting from these satisfactory results, the main purpose of this paper is to show, in the case of several flooding events occurred recently in different parts of the world, the achievements arising from the use of such methodology also to data acquired in the thermal infrared (TIR) region in order to guarantee a continuous monitoring of flooded areas both during night and day.
Accessing and Understanding MODIS Data
NASA Technical Reports Server (NTRS)
Leptoukh, Gregory; Jenkerson, Calli B.; Jodha, Siri
2003-01-01
The National Aeronautics and Space Administration (NASA) launched the Terra satellite in December 1999, as part of the Earth Science Enterprise promotion of interdisciplinary studies of the integrated Earth system. Aqua, the second satellite from the series of EOS constellation, was launched in May 2002. Both satellites carry the MODerate resolution Imaging Spectroradiometer (MODIS) instrument. MODIS data are processed at the Goddard Space Flight Center, Greenbelt, MD, and then archived and distributed by the Distributed Active Archive Centers (DAACs). Data products from the MODIS sensors present new challenges to remote sensing scientists due to specialized production level, data format, and map projection. MODIS data are distributed as calibrated radiances and as higher level products such as: surface reflectance, water-leaving radiances, ocean color and sea surface temperature, land surface kinetic temperature, vegetation indices, leaf area index, land cover, snow cover, sea ice extent, cloud mask, atmospheric profiles, aerosol properties, and many other geophysical parameters. MODIS data are stored in HDF- EOS format in both swath format and in several different map projections. This tutorial guides users through data set characteristics as well as search and order interfaces, data unpacking, data subsetting, and potential applications of the data. A CD-ROM with sample data sets, and software tools for working with the data will be provided to the course participants.
NASA Astrophysics Data System (ADS)
Doxaran, David; Froidefond, Jean-Marie; Castaing, Patrice; Babin, Marcel
2009-02-01
Over a 1-year period, field and satellite measurements of surface water turbidity were combined in order to study the dynamics of the turbidity maximum zone (TM) in a macrotidal estuary (the Gironde, France). Four fixed platforms equipped with turbidity sensors calibrated to give the suspended particulate matter (SPM) concentration provided continuous information in the upper estuary. Full resolution data recorded by the moderate resolution imaging spectroradiometer (MODIS) sensors onboard the Terra and Aqua satellite platforms provided information in the central and lower estuary twice a day (depending on cloud cover). Field data were used to validate a recently developed SPM quantification algorithm applied to the MODIS 'surface reflectance' product. The algorithm is based on a relationship between the SPM concentration and a reflectance ratio of MODIS bands 2 (near-infrared) and 1 (red). Based on 62 and 75 match-ups identified in 2005 with MODIS Terra and Aqua data, the relative uncertainty of the algorithm applied to these sensors was found to be 22 and 18%, respectively. Field measurements showed the tidal variations of turbidity in the upper estuary, while monthly-averaged MODIS satellite data complemented by field data allowed observing the monthly movements of the TM in the whole estuary. The trapping of fine sediments occurred in the upper estuary during the period of low river flow. This resulted in the formation of a highly concentrated TM during a 4-month period. With increasing river flow, the TM moved rapidly to the central estuary. A part of the TM detached, moved progressively in the lower estuary and was finally either massively exported to the ocean during peak floods or temporary trapped (settled) on intertidal mudflats. The massive export to the ocean was apparently the result of combined favorable environmental conditions: presence of fluid mud near the mouth, high river flow, high tides and limited wind speeds. The mean SPM concentration within surface waters of the whole estuary showed strong seasonal variations but remained almost unchanged on a 1-year-basis. These observations suggest that the masses of suspended sediments exported toward the ocean and supplied by the rivers were almost equivalent during the year investigated (2005). Results show the usefulness of information extracted from combined field and current ocean color satellite data in order to monitor the transport of suspended particles in coastal and estuarine waters.
Multi-sensor analysis of urban ecosystems
Gallo, Kevin P.; Ji, Lei
2004-01-01
This study examines the synthesis of multiple space-based sensors to characterize the urban environment Single scene data (e.g., ASTER visible and near-IR surface reflectance, and land surface temperature data), multi-temporal data (e.g., one year of 16-day MODIS and AVHRR vegetation index data), and DMSP-OLS nighttime light data acquired in the early 1990s and 2000 were evaluated for urban ecosystem analysis. The advantages of a multi-sensor approach for the analysis of urban ecosystem processes are discussed.
Detection of Multi-Layer and Vertically-Extended Clouds Using A-Train Sensors
NASA Technical Reports Server (NTRS)
Joiner, J.; Vasilkov, A. P.; Bhartia, P. K.; Wind, G.; Platnick, S.; Menzel, W. P.
2010-01-01
The detection of mUltiple cloud layers using satellite observations is important for retrieval algorithms as well as climate applications. In this paper, we describe a relatively simple algorithm to detect multiple cloud layers and distinguish them from vertically-extended clouds. The algorithm can be applied to coincident passive sensors that derive both cloud-top pressure from the thermal infrared observations and an estimate of solar photon pathlength from UV, visible, or near-IR measurements. Here, we use data from the A-train afternoon constellation of satellites: cloud-top pressure, cloud optical thickness, the multi-layer flag from the Aqua MODerate-resolution Imaging Spectroradiometer (MODIS) and the optical centroid cloud pressure from the Aura Ozone Monitoring Instrument (OMI). For the first time, we use data from the CloudSat radar to evaluate the results of a multi-layer cloud detection scheme. The cloud classification algorithms applied with different passive sensor configurations compare well with each other as well as with data from CloudSat. We compute monthly mean fractions of pixels containing multi-layer and vertically-extended clouds for January and July 2007 at the OMI spatial resolution (l2kmx24km at nadir) and at the 5kmx5km MODIS resolution used for infrared cloud retrievals. There are seasonal variations in the spatial distribution of the different cloud types. The fraction of cloudy pixels containing distinct multi-layer cloud is a strong function of the pixel size. Globally averaged, these fractions are approximately 20% and 10% for OMI and MODIS, respectively. These fractions may be significantly higher or lower depending upon location. There is a much smaller resolution dependence for fractions of pixels containing vertically-extended clouds (approx.20% for OMI and slightly less for MODIS globally), suggesting larger spatial scales for these clouds. We also find higher fractions of vertically-extended clouds over land as compared with ocean, particularly in the tropics and summer hemisphere.
NASA Astrophysics Data System (ADS)
Alston, E. J.; Sokolik, I. N.; Kalashnikova, O. V.
2012-07-01
This study examines how aerosols measured from the ground and space over the US Southeast change temporally over a regional scale during the past decade. PM2.5 (particulate matter with aerodynamic diameter >2.5 micrometers) data consist of two datasets that represent the measurements that are used for regulatory purposes by the US EPA (Environmental Protection Agency) and continuous measurements used for quickly disseminating air quality information. AOD (aerosol optical depth) data come from three NASA sensors: the MODIS sensors onboard Terra and Aqua satellites and the MISR sensor onboard the Terra satellite. We analyze all available data over the state of Georgia from 2000-2009 of both types of aerosol data. The analysis reveals that during the summer the large metropolitan area of Atlanta has average PM2.5 concentrations that are 50% more than the remainder of the state. Strong seasonality is detected in both the AOD and PM2.5 datasets, as evidenced by a threefold increase of AOD from mean winter values to mean summer values, and the increase in PM2.5 concentrations is almost twofold over the same period. Additionally, there is agreement between MODIS and MISR onboard the Terra satellite during the spring and summer, having correlation coefficients of 0.64 and 0.71, respectively. Monthly anomalies were used to determine the presence of a trend in all considered aerosol datasets. We found negative linear trends for both the monthly AOD anomalies from MODIS onboard Terra and the PM2.5 datasets, which are statistically significant. Decreasing trends were also found for MISR onboard Terra and MODIS onboard Aqua, but those trends were not statistically significant. The observed decrease in AOD and PM2.5 concentrations may be indicative of the brightening over the study region during the past decade.
Suomi NPP VIIRS active fire product status
NASA Astrophysics Data System (ADS)
Ellicott, E. A.; Csiszar, I. A.; Schroeder, W.; Giglio, L.; Wind, B.; Justice, C. O.
2012-12-01
We provide an overview of the evaluation and development of the Active Fires product derived from the Visible Infrared Imager Radiometer Suite (VIIRS) sensor on the Suomi National Polar-orbiting Partnership (SNPP) satellite during the first year of on-orbit data. Results from the initial evaluation of the standard SNPP Active Fires product, generated by the SNPP Interface Data Processing System (IDPS), supported the stabilization of the VIIRS Sensor Data Record (SDR) product. This activity focused in particular on the processing of the dual-gain 4 micron VIIRS M13 radiometric measurements into 750m aggregated data, which are fundamental for active fire detection. Following the VIIRS SDR product's Beta maturity status in April 2012, correlative analysis between VIIRS and near-simultaneous fire detections from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the NASA Earth Observing System Aqua satellite confirmed the expected relative detection rates driven primarily by sensor differences. The VIIRS Active Fires Product Development and Validation Team also developed a science code that is based on the latest MODIS Collection 6 algorithm and provides a full spatially explicit fire mask to replace the sparse array output of fire locations from a MODIS Collection 4 equivalent algorithm in the current IDPS product. The Algorithm Development Library (ADL) was used to support the planning for the transition of the science code into IDPS operations in the future. Product evaluation and user outreach was facilitated by a product website that provided end user access to fire data in user-friendly format over North America as well as examples of VIIRS-MODIS comparisons. The VIIRS fire team also developed an experimental product based on 375m VIIRS Imagery band measurements and provided high quality imagery of major fire events in US. By August 2012 the IDPS product achieved Beta maturity, with some known and documented shortfalls related to the processing of incorrect SDR input data and to apparent algorithm deficiencies in select observing and environmental conditions.
Improvements to the MODIS Land Products in Collection Version 6
NASA Astrophysics Data System (ADS)
Wolfe, R. E.; Devadiga, S.; Masuoka, E. J.; Running, S. W.; Vermote, E.; Giglio, L.; Wan, Z.; Riggs, G. A.; Schaaf, C.; Myneni, R. B.; Friedl, M. A.; Wang, Z.; Sulla-menashe, D. J.; Zhao, M.
2013-12-01
The MODIS (Moderate Resolution Imaging Spectroradiometer) Adaptive Processing System (MODAPS), housed at the NASA Goddard Space Flight Center (GSFC), has been processing the earth view data acquired by the MODIS instrument aboard the Terra (EOS AM) and Aqua (EOS PM) satellites to generate suite of land and atmosphere data products using the science algorithms developed by the MODIS Science Team. These data products are used by diverse set of users in research and other applications from both government and non-government agencies around the world. These validated global products are also being used in interactive Earth system models able to predict global change accurately enough to assist policy makers in making sound decisions concerning the protection of our environment. Hence an increased emphasis is being placed on generation of high quality consistent data records from the MODIS data through reprocessing of the records using improved science algorithms. Since the launch of Terra in December 1999, MODIS land data records have been reprocessed four times. The Collection Version 6 (C6) reprocessing of MODIS Land and Atmosphere products is scheduled to start in Fall 2013 and is expected to complete in Spring 2014. This presentation will describe changes made to the C6 science algorithms to correct issues in the C5 products, additional improvements made to the products as deemed necessary by the data users and science teams, and new products introduced in this reprocessing. In addition to the improvements from product specific changes to algorithms, the C6 products will also see significant improvement in the calibration by the MODIS Calibration Science Team (MCST) of the C6 L1B Top of the Atmosphere (TOA) reflectance and radiance product, more accurate geolocation, and an improved Land Water mask. For the a priori land cover input, this reprocessing will use the multi-year land cover product generated with three years of MODIS data as input as opposed to one single land cover product used for the entire mission in the C5 reprocessing. The C6 products are expected to be released from the Distributed Active Archive Center (DAAC) soon after the reprocessing begins. To facilitate user acquaintance with products from the new version and independent evaluation of C6 by comparison of two versions, MODAPS plans to continue generation of products from both versions for at least a year after completion of the C6 reprocessing after which C5 processing will be discontinued.
Phytoplankton bloom in the Bay of Biscay
2017-12-08
Phytoplankton growth in the Bay of Biscay intensified in early May, 2013, painting the deep blue waters with huge swirls of jewel-tone colors that were brilliantly visible from space. The Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Terra satellite captured this true-color image on May 4, 2013. Each year, typically from March through April, such blooms occur in the Bay of Biscay. By May, however, conditions are not as favorable and the blooms tend to fade, then disappear. This bloom is expanding in early May this year, but will likely begin to diminish soon. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Technical Reports Server (NTRS)
2002-01-01
Nyamuragira volcano erupted on July 26, 2002, spewing lava high into the air along with a large plume of steam, ash, and sulfur dioxide. The 3,053-meter (10,013-foot) volcano is located in eastern Congo, very near that country's border with Rwanda. Nyamuragira is the smaller, more violent sibling of Nyiragongo volcano, which devastated the town of Goma with its massive eruption in January 2002. Nyamuragira is situated just 40 km (24 miles) northeast of Goma. This pair of images was acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra satellite, on July 26. The image on the left shows the scene in true color. The small purple box in the upper righthand corner marks the location of Nyamuragira's hot summit. The false-color image on the right shows the plume from the volcano streaming southwestward. This image was made using MODIS' channels sensitive at wavelengths from 8.5 to 11 microns. Red pixels indicate high concentrations of sulphur dioxide. Image courtesy Liam Gumley, Space Science and Engineering Center, University of Wisconsin-Madison
NASA Technical Reports Server (NTRS)
Moody, Eric G.; King, Michael D.; Platnick, Steven; Schaaf, Crystal B.; Gao, Feng
2004-01-01
Spectral land surface albedo is an important parameter for describing the radiative properties of the Earth. Accordingly it reflects the consequences of natural and human interactions, such as anthropogenic, meteorological, and phenological effects, on global and local climatological trends. Consequently, albedos are integral parts in a variety of research areas, such as general circulation models (GCMs), energy balance studies, modeling of land use and land use change, and biophysical, oceanographic, and meteorological studies. Recent observations of diffuse bihemispherical (white-sky) and direct beam directional hemispherical (black-sky ) land surface albedo included in the MOD43B3 product from MODIS instruments aboard NASA's Terra and Aqua satellite platforms have provided researchers with unprecedented spatial, spectral, and temporal characteristics. Cloud and seasonal snow cover, however, curtail retrievals to approximately half the global land surfaces on an annual equal-angle basis, precluding MOD43B3 albedo products from direct inclusion in some research projects and production environments.
A Simple, Scalable, Script-based Science Processor
NASA Technical Reports Server (NTRS)
Lynnes, Christopher
2004-01-01
The production of Earth Science data from orbiting spacecraft is an activity that takes place 24 hours a day, 7 days a week. At the Goddard Earth Sciences Distributed Active Archive Center (GES DAAC), this results in as many as 16,000 program executions each day, far too many to be run by human operators. In fact, when the Moderate Resolution Imaging Spectroradiometer (MODIS) was launched aboard the Terra spacecraft in 1999, the automated commercial system for running science processing was able to manage no more than 4,000 executions per day. Consequently, the GES DAAC developed a lightweight system based on the popular Per1 scripting language, named the Simple, Scalable, Script-based Science Processor (S4P). S4P automates science processing, allowing operators to focus on the rare problems occurring from anomalies in data or algorithms. S4P has been reused in several systems ranging from routine processing of MODIS data to data mining and is publicly available from NASA.
2017-12-08
In this mostly cloud-free true-color scene, much of Scandinavia can be seen to be still covered by snow. From left to right across the top of this image are the countries of Norway, Sweden, Finland, and northwestern Russia. The Baltic Sea is located in the bottom center of this scene, with the Gulf of Bothnia to the north (in the center of this scene) and the Gulf of Finland to the northeast. This image was acquired on March 15, 2002, by the Moderate-resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra satellite. Image courtesy Jacques Descloitres, rapidfire.sci.gsfc.nasa.gov/ MODIS Land Rapid Response Team at NASA GSFC Credit: NASA Earth Observatory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Detection rates of the MODIS active fire product in the United States
Hawbaker, T.J.; Radeloff, V.C.; Syphard, A.D.; Zhu, Z.; Stewart, S.I.
2008-01-01
MODIS active fire data offer new information about global fire patterns. However, uncertainties in detection rates can render satellite-derived fire statistics difficult to interpret. We evaluated the MODIS 1??km daily active fire product to quantify detection rates for both Terra and Aqua MODIS sensors, examined how cloud cover and fire size affected detection rates, and estimated how detection rates varied across the United States. MODIS active fire detections were compared to 361 reference fires (??? 18??ha) that had been delineated using pre- and post-fire Landsat imagery. Reference fires were considered detected if at least one MODIS active fire pixel occurred within 1??km of the edge of the fire. When active fire data from both Aqua and Terra were combined, 82% of all reference fires were found, but detection rates were less for Aqua and Terra individually (73% and 66% respectively). Fires not detected generally had more cloudy days, but not when the Aqua data were considered exclusively. MODIS detection rates decreased with fire size, and the size at which 50% of all fires were detected was 105??ha when combining Aqua and Terra (195??ha for Aqua and 334??ha for Terra alone). Across the United States, detection rates were greatest in the West, lower in the Great Plains, and lowest in the East. The MODIS active fire product captures large fires in the U.S. well, but may under-represent fires in areas with frequent cloud cover or rapidly burning, small, and low-intensity fires. We recommend that users of the MODIS active fire data perform individual validations to ensure that all relevant fires are included. ?? 2008 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Hsu, N. Y. C.; Sayer, A. M.; Lee, J.; Kim, W. V.
2017-12-01
The impacts of natural and anthropogenic sources of air pollution on climate and human health have continued to gain attention from the scientific community. In order to facilitate these effects, high quality consistent long-term global aerosol data records from satellites are essential. Several EOS-era instruments (e.g., SeaWiFS, MODIS, and MISR) are able to provide such information with a high degree of fidelity. However, with the aging MODIS sensors and the launch of the VIIRS instrument on Suomi NPP in late 2011, the continuation of long-term aerosol data records suitable for climate studies from MODIS to VIIRS is needed urgently. Recently, we have successfully modified our MODIS Deep Blue algorithm to process the VIIRS data. Extensive works were performed in refining the surface reflectance determination scheme to account for the wavelength differences between MODIS and VIIRS. Better aerosol models (including non-spherical dust) are also now implemented in our VIIRS algorithm compared to the MODIS C6 algorithm. We will show the global (land and ocean) distributions of various aerosol products from Version 1 of the VIIRS Deep Blue data set. The preliminary validation results of these new VIIRS Deep Blue aerosol products using data from AERONET sunphotometers over land and ocean will be discussed. We will also compare the monthly averaged Deep Blue aerosol optical depth (AOD) from VIIRS with the MODIS C6 products to investigate if any systematic biases may exist between MODIS C6 and VIIRS AOD. The Version 1 VIIRS Deep Blue aerosol products are currently scheduled to be released to the public in 2018.
Daily MODIS data trends of hurricane-induced forest impact and early recovery
Ramsey, Elijah W.; Spruce, Joseph; Rangoonwala, Amina; Suzuoki, Yukihiro; Smoot, James; Gasser, Jerry; Bannister, Terri
2011-01-01
We studied the use of daily satellite data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors to assess wetland forest damage and recovery from Hurricane Katrina (29 August 2005 landfall). Processed MODIS daily vegetation index (VI) trends were consistent with previously determined impact and recovery patterns provided by the "snapshot" 25 m Landsat Thematic Mapper optical and RADARSAT-1 synthetic aperture radar satellite data. Phenological trends showed high 2004 and 2005 pre-hurricane temporal correspondence within bottomland hardwood forest communities, except during spring green-up, and temporal dissimilarity between these hardwoods and nearby cypress-tupelo swamp forests (Taxodium distichum [baldcypress] and Nyssa aquatica [water tupelo]). MODIS VI trend analyses established that one year after impact, cypress-tupelo and lightly impacted hardwood forests had recovered to near pre-hurricane conditions. In contrast, canopy recovery lagged in the moderately and severely damaged hardwood forests, possibly reflecting regeneration of pre-hurricane species and stand-level replacement by invasive trees.
NASA Technical Reports Server (NTRS)
King, Michael D.; Menzel, W. Paul; Kaufman, Yoram J.; Tanre, Didier; Gao, Bo-Cai; Platnick, Steven; Ackerman, Steven A.; Remer, Lorraine A.; Pincus, Robert; Hubanks, Paul A.
2003-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) is an earth-viewing sensor that flies on the Earth Observing System (EOS) Terra and Aqua satellites, launched in 1999 and 2002, respectively. MODIS scans a swath width of 2330 km that is sufficiently wide to provide nearly complete global coverage every two days from a polar-orbiting, sun-synchronous, platform at an altitude of 705 km. MODIS provides images in 36 spectral bands between 0.415 and 14.235 pm with spatial resolutions of 250 m (2 bands), 500 m (5 bands) and 1000 m (29 bands). These bands have been carefully selected to en- able advanced studies of land, ocean, and atmospheric properties. Twenty-six bands are used to derive atmospheric properties such as cloud mask, atmospheric profiles, aerosol properties, total precipitable water, and cloud properties. In this paper we describe each of these atmospheric data products, including characteristics of each of these products such as file size, spatial resolution used in producing the product, and data availability.
NASA Technical Reports Server (NTRS)
King, M. D.
1992-01-01
The Moderate Resolution Imaging Spectrometer (MODIS) is an Earth-viewing sensor being developed as a facility instrument for the Earth Observing System (EOS) to be launched in the late 1990s. MODIS consists of two separate instruments that scan a swath width sufficient to provide nearly complete global coverage every two days from a polar-orbiting, Sun-synchronous, platform at an altitude of 705 km. Of primary interest for studies of atmospheric physics is the MODIS-N (nadir) instrument which will provide images in 36 spectral bands between 0.415 and 14.235 micrometers with spatial resoulutions of 250 m (2 bands), 500 m (5 bands) and 1000 m (29 bands). These bands have been carefully selected to enable advanced studies of land, ocean and atmosperhic processes. The intent of this lecture is to describe the current status of MODIS-N and its companion instrument MODIS-T (tilt), a tiltable cross-track scanning radiometer with 32 uniformly spaced channels between 0.410 and 0.875 micrometers, and to describe the physical principles behind the development of MODIS for the remote sensing of atmospheric properties. Primary emphasis will be placed on the main atmospheric applications of determining the optical, microphysical and physical properties of clouds and aerosol particles form spectral-reflection and thermal-emission measurements. In addition to cloud and aerosol properties, MODIS-N will be utilized for the determination of the total precipitable water vapor over land and atmospheric stability. The physical principles behind the determination of each of these atmospheric products will be described herein.
MODIS Science Algorithms and Data Systems Lessons Learned
NASA Technical Reports Server (NTRS)
Wolfe, Robert E.; Ridgway, Bill L.; Patt, Fred S.; Masuoka, Edward J.
2009-01-01
For almost 10 years, standard global products from NASA's Earth Observing System s (EOS) two Moderate Resolution Imaging Spectroradiometer (MODIS) sensors are being used world-wide for earth science research and applications. This paper discusses the lessons learned in developing the science algorithms and the data systems needed to produce these high quality data products for the earth sciences community. Strong science team leadership and communication, an evolvable and scalable data system, and central coordination of QA and validation activities enabled the data system to grow by two orders of magnitude from the initial at-launch system to the current system able to reprocess data from both the Terra and Aqua missions in less than a year. Many of the lessons learned from MODIS are already being applied to follow-on missions.
NASA Technical Reports Server (NTRS)
Shuman, Christopher A.; Hall, Dorothy K.; DiGirolamo, Nicolo E.; Mefford, Thomas K.; Schnaubelt, Michael J.
2014-01-01
We have investigated the stability of the MODerate resolution Imaging Spectroradiometer (MODIS) infrared-derived ice surface temperature (IST) data from Terra for use as a climate quality data record. The availability of climate quality air temperature data (TA) from a NOAA Global Monitoring Division observatory at Greenlands Summit station has enabled this high temporal resolution study of MODIS ISTs. During a 5 year period (July 2008 to August 2013), more than 2500 IST values were compared with 3-minute average TA values derived from the 1-minute data from NOAAs primary 2 m air temperature sensor. These data enabled an expected small offset between air and surface temperatures at this the ice sheet location to be investigated over multiple annual cycles.
NASA Astrophysics Data System (ADS)
Ninsawat, Sarawut; Yamamoto, Hirokazu; Kamei, Akihide; Nakamura, Ryosuke; Tsuchida, Satoshi; Maeda, Takahisa
2010-05-01
With the availability of network enabled sensing devices, the volume of information being collected by networked sensors has increased dramatically in recent years. Over 100 physical, chemical and biological properties can be sensed using in-situ or remote sensing technology. A collection of these sensor nodes forms a sensor network, which is easily deployable to provide a high degree of visibility into real-world physical processes as events unfold. The sensor observation network could allow gathering of diverse types of data at greater spatial and temporal resolution, through the use of wired or wireless network infrastructure, thus real-time or near-real time data from sensor observation network allow researchers and decision-makers to respond speedily to events. However, in the case of environmental monitoring, only a capability to acquire in-situ data periodically is not sufficient but also the management and proper utilization of data also need to be careful consideration. It requires the implementation of database and IT solutions that are robust, scalable and able to interoperate between difference and distributed stakeholders to provide lucid, timely and accurate update to researchers, planners and citizens. The GEO (Global Earth Observation) Grid is primarily aiming at providing an e-Science infrastructure for the earth science community. The GEO Grid is designed to integrate various kinds of data related to the earth observation using the grid technology, which is developed for sharing data, storage, and computational powers of high performance computing, and is accessible as a set of services. A comprehensive web-based system for integrating field sensor and data satellite image based on various open standards of OGC (Open Geospatial Consortium) specifications has been developed. Web Processing Service (WPS), which is most likely the future direction of Web-GIS, performs the computation of spatial data from distributed data sources and returns the outcome in a standard format. The interoperability capabilities and Service Oriented Architecture (SOA) of web services allow incorporating between sensor network measurement available from Sensor Observation Service (SOS) and satellite remote sensing data from Web Mapping Service (WMS) as distributed data sources for WPS. Various applications have been developed to demonstrate the efficacy of integrating heterogeneous data source. For example, the validation of the MODIS aerosol products (MOD08_D3, the Level-3 MODIS Atmosphere Daily Global Product) by ground-based measurements using the sunphotometer (skyradiometer, Prede POM-02) installed at Phenological Eyes Network (PEN) sites in Japan. Furthermore, the web-based framework system for studying a relationship between calculated Vegetation Index from MODIS satellite image surface reflectance (MOD09GA, the Surface Reflectance Daily L2G Global 1km and 500m Product) and Gross Primary Production (GPP) field measurement at flux tower site in Thailand and Japan has been also developed. The success of both applications will contribute to maximize data utilization and improve accuracy of information by validate MODIS satellite products using high degree of accuracy and temporal measurement of field measurement data.
NASA Astrophysics Data System (ADS)
Pergola, N.; Grimaldi, S. C.; Coviello, I.; Faruolo, M.; Lacava, T.; Tramutoli, V.
2010-12-01
Marine oil spill disasters may have devastating effects on the marine and coastal environment. For monitoring and mitigation purposes, timely detection and continuously updated information on polluted areas are required. Satellite remote sensing can give a significant contribution in such a direction. Nowadays, SAR (Synthetic Aperture Radar) technology has been recognized as the most efficient for oil spill detection and mapping, thanks to the high spatial resolution and all-time/all-weather capability of the present operational sensors. Anyway, the present SARs revisiting time does not allow for a rapid detection and a near real-time monitoring of these phenomena at global scale. Passive optical sensors, on board meteorological satellites, thanks to their high temporal resolution (from a few hours to 15 minutes, depending on the characteristics of the platform/sensor), may represent, at this moment, a suitable SAR alternative/complement for oil spill detection and monitoring. Up to now, some techniques, based on optical satellite data, have been proposed for “a posteriori” mapping of already known oil spill discharges. On the other hand, reliable satellite methods for an automatic and timely detection of oil spills, for surveillance and warning purposes, are still currently missing. Recently, an innovative technique for automatic and near real time oil spill detection and monitoring has been proposed. The technique is based on the general RST (Robust Satellite Technique) approach which exploits multi-temporal satellite records in order to obtain a former characterization of the measured signal, in terms of expected value and natural variability, providing a further identification of signal anomalies by an automatic, unsupervised change detection step. Results obtained by using AVHRR (Advanced Very High Resolution Radiometer) Thermal Infrared data, in different geographic areas and observational conditions, demonstrated excellent detection capabilities both in term of sensitivity (to the presence even of thin/old oil films) and reliability (up to zero occurrence of false alarms), mainly due to the RST invariance regardless of local and environmental conditions. Exploiting its complete independence on the specific satellite platform, RST approach has been successfully exported to the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Terra and Aqua satellites. In this paper, results obtained applying the proposed methodology to the recent oil spill disaster of Deepwater Horizon Platform in the gulf of Mexico, that discharged over 5 million barrels (550 million litres) in the ocean, will be shown. A dense temporal series of RST-based oil spill maps, obtained by using MODIS TIR records, are commented, emphasizing and discussing main peculiarities and specific characteristics of this event. Preliminary findings, possible residual limits and future perspectives will be also presented and discussed.
Select Methodology for Validating Advanced Satellite Measurement Systems
NASA Technical Reports Server (NTRS)
Larar, Allen M.; Zhou, Daniel K.; Liu, Xi; Smith, William L.
2008-01-01
Advanced satellite sensors are tasked with improving global measurements of the Earth's atmosphere, clouds, and surface to enable enhancements in weather prediction, climate monitoring capability, and environmental change detection. Measurement system validation is crucial to achieving this goal and maximizing research and operational utility of resultant data. Field campaigns including satellite under-flights with well calibrated FTS sensors aboard high-altitude aircraft are an essential part of the validation task. This presentation focuses on an overview of validation methodology developed for assessment of high spectral resolution infrared systems, and includes results of preliminary studies performed to investigate the performance of the Infrared Atmospheric Sounding Interferometer (IASI) instrument aboard the MetOp-A satellite.
TERRA/MODIS Data Products and Data Management at the GES-DAAC
NASA Astrophysics Data System (ADS)
Sharma, A. K.; Ahmad, S.; Eaton, P.; Koziana, J.; Leptoukh, G.; Ouzounov, D.; Savtchenko, A.; Serafino, G.; Sikder, M.; Zhou, B.
2001-05-01
Since February 2000, the Earth Sciences Distributed Active Archive Center (GES-DAAC) at the NASA/Goddard Space Flight Center has been successfully ingesting, processing, archiving, and distributing the Moderate Resolution Imaging Spectroradiometer (MODIS) data. MODIS is the key instrument aboard the Terra satellite, viewing the entire Earth's surface every 1 to 2 days, acquiring data in 36 channels in the visible and infrared spectral bands (0.4 to 14.4 microns). Higher resolution (250m, 500m, and 1km pixel) data are improving our understanding of global dynamics and processes occurring on the land, in the oceans, and in the lower atmosphere and will play a vital role in the future development of validated, global, interactive Earth-system models. MODIS calibrated and uncalibrated radiances, and geolocation products were released to the public in April 2000, and a suite of oceans products and an entire suite of atmospheric products were released by early January 2001. The suite of ocean products is grouped into three categories Ocean Color, SST and Primary Productivity. The suite of atmospheric products includes Aerosol, Total Precipitable Water, Cloud Optical and Physical properties, Atmospheric Profiles and Cloud Mask. The MODIS Data Support Team (MDST) at the GES-DAAC has been providing support for enabling basic scientific research and assistance in accessing the scientific data and information to the Earth Science User Community. Support is also provided for data formats (HDF-EOS), information on visualization tools, documentation for data products, information on the scientific content of products and metadata. Visit the MDST website at http://daac.gsfc.nasa.gov/CAMPAIGN_DOCS/MODIS/index.html The task to process archive and distribute enormous volumes of MODIS data to users (more than 0.5 TB a day) has led to the development of an unique world wide web based GES DAAC Search and Order system http://acdisx.gsfc.nasa.gov/data/, data handling software and tools, as well as a FTP site that contains sample of browse images and MODIS data products. This paper is intended to inform the user community about the data system and services available at the GES-DAAC in support of these information-rich data products. MDST provides support to MODIS data users to access and process data and information for research, applications and educational purposes. This paper will present an overview of the MODIS data products released to public including the suite of atmosphere and oceans data products that can be ordered from the GES-DAAC. Different mechanisms for search and ordering the data, determining data product sizes, data distribution policy, User Assistance System (UAS), and data subscription services will be described.
Advantages and Challenges in using Multi-Sensor Data for Studying Aerosols from Space
NASA Astrophysics Data System (ADS)
Leptoukh, Gregory
We are living now in the golden era of numerous sensors measuring aerosols from space, e.g., MODIS, MISR, MERIS, OMI, POLDER, etc. Data from multiple sensors provide a more complete coverage of physical phenomena than data from a single sensor. These sensors are rather different from each other, are sensitive to various parts of the atmosphere, use different aerosol models and treat surface differently when retrieving aerosols. However, they complement each other thus providing more information about spatial, vertical and temporal distribution of aerosols. In addition to differences in instrumentation, retrieval algorithms and calibration, there are quite substantial differences in processing algorithms from Level 0 up to Level 3 and 4. Some of these differences in processing steps, at times not well documented and not widely known by users, can lead to quite significant differences in final products. Without documenting all the steps leading to the final product, data users will not trust the data and/or may use data incorrectly. Data by themselves without quality assessment and provenance are not sufficient to make accurate scientific conclusions. In this paper we provide examples of striking differences between aerosol optical depth data from MODIS, MISR, and MERIS that can be attributed to differences in a certain threshold, aggregation methods, and the dataday definition. We talk about challenges in developing processing provenance. Also, we address issues of harmonization of data, quality and provenance that is needed to guide the multi-sensor data usage and avoid apples-to-oranges comparison and fusion.
NASA Technical Reports Server (NTRS)
Remer, L. A.; Kaufman, Y. J.
2006-01-01
A four year record of MODIS spaceborne data provides a new measurement tool to assess the aerosol direct radiative effect at the top of the atmosphere. MODIS derives the aerosol optical thickness and microphysical properties from the scattered sunlight at 0.55-2.1 microns. The monthly MODIS data used here are accumulated measurements across a wide range of view and scattering angles and represent the aerosol s spectrally resolved angular properties. We use these data consistently to compute with estimated accuracy of +/-0.6W/sq m the reflected sunlight by the aerosol over global oceans in cloud free conditions. The MODIS high spatial resolution (0.5 km) allows observation of the aerosol impact between clouds that can be missed by other sensors with larger footprints. We found that over the clear-sky global ocean the aerosol reflected 5.3+/-0.6W/sq m with an average radiative efficiency of 49+/-2W/sq m per unit optical thickness. The seasonal and regional distribution of the aerosol radiative effects are discussed. The analysis adds a new measurement perspective to a climate change problem dominated so far by models.
A web-based subsetting service for regional scale MODIS land products
DOE Office of Scientific and Technical Information (OSTI.GOV)
SanthanaVannan, Suresh K; Cook, Robert B; Holladay, Susan K
2009-12-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) sensor has provided valuable information on various aspects of the Earth System since March 2000. The spectral, spatial, and temporal characteristics of MODIS products have made them an important data source for analyzing key science questions relating to Earth System processes at regional, continental, and global scales. The size of the MODIS product and native HDF-EOS format are not optimal for use in field investigations at individual sites (100 - 100 km or smaller). In order to make MODIS data readily accessible for field investigations, the NASA-funded Distributed Active Archive Center (DAAC) for Biogeochemicalmore » Dynamics at Oak Ridge National Laboratory (ORNL) has developed an online system that provides MODIS land products in an easy-to-use format and in file sizes more appropriate to field research. This system provides MODIS land products data in a nonproprietary comma delimited ASCII format and in GIS compatible formats (GeoTIFF and ASCII grid). Web-based visualization tools are also available as part of this system and these tools provide a quick snapshot of the data. Quality control tools and a multitude of data delivery options are available to meet the demands of various user communities. This paper describes the important features and design goals for the system, particularly in the context of data archive and distribution for regional scale analysis. The paper also discusses the ways in which data from this system can be used for validation, data intercomparison, and modeling efforts.« less
Ten Years of Cloud Properties from MODIS: Global Statistics and Use in Climate Model Evaluation
NASA Technical Reports Server (NTRS)
Platnick, Steven E.
2011-01-01
The NASA Moderate Resolution Imaging Spectroradiometer (MODIS), launched onboard the Terra and Aqua spacecrafts, began Earth observations on February 24, 2000 and June 24,2002, respectively. Among the algorithms developed and applied to this sensor, a suite of cloud products includes cloud masking/detection, cloud-top properties (temperature, pressure), and optical properties (optical thickness, effective particle radius, water path, and thermodynamic phase). All cloud algorithms underwent numerous changes and enhancements between for the latest Collection 5 production version; this process continues with the current Collection 6 development. We will show example MODIS Collection 5 cloud climatologies derived from global spatial . and temporal aggregations provided in the archived gridded Level-3 MODIS atmosphere team product (product names MOD08 and MYD08 for MODIS Terra and Aqua, respectively). Data sets in this Level-3 product include scalar statistics as well as 1- and 2-D histograms of many cloud properties, allowing for higher order information and correlation studies. In addition to these statistics, we will show trends and statistical significance in annual and seasonal means for a variety of the MODIS cloud properties, as well as the time required for detection given assumed trends. To assist in climate model evaluation, we have developed a MODIS cloud simulator with an accompanying netCDF file containing subsetted monthly Level-3 statistical data sets that correspond to the simulator output. Correlations of cloud properties with ENSO offer the potential to evaluate model cloud sensitivity; initial results will be discussed.
Validation Test Report for the Automated Optical Processing System (AOPS) Version 4.12
2015-09-03
NPP) with the VIIRS sensor package as well as data from the Geostationary Ocean Color Imager (GOCI) sensor, aboard the Communication Ocean and...capability • Prepare the NRT Geostationary Ocean Color Imager (GOCI) data stream for integration into operations. • Improvements in sensor...Navy (DON) Environmental Data Records (EDRs) Expeditionary Warfare (EXW) Geostationary Ocean Color Imager (GOCI) Gulf of Mexico (GOM) Hierarchical
NASA Astrophysics Data System (ADS)
Sharp, Iain; Sanchez, Arturo
2017-04-01
Land-product validation of the MODIS derived FPAR product over the tropical dry-forest of Santa Rosa National Park, Guanacaste, Costa Rica. By Iain Sharp & Dr. Arturo Sanchez-Azofeifa In remote sensing, being able to ensure the accuracy of the satellite data being produced remains an issue; this is especially true for phenological variables such as the Fraction of Photosynthetically Active Radiation (FPAR). FPAR, which is considered an essential climate variable by the Global Terrestrial Observation System (GTOS), utilizes the 400-700 nm wavelength range to quantify the total amount of solar radiation available for photosynthetic use. It is a variable that is strongly influenced by the seasonal, diurnal, and optic properties of vegetation making it an accurate representation of vegetation health. Measurements of ground level FPAR can be completed using flux towers along with a limited number of wireless ground sensors, but due to the finite number and location of these towers, many research initiatives instead use the Moderate resolution Imaging Spectroradiometer (MODIS) FPAR product, which converts Leaf Area Index (LAI) to a FPAR value using Beer's Law. This is done despite there being little consensus on whether this is the best method to use for all ecosystems and vegetation types. One particular ecosystem that has had limited study to determine the accuracy of the MODIS derived FPAR products are the Tropical Dry Forests (TDFs) of Latin America. This ecosystem undergoes drastic seasonal changes from leaf off during the dry season to green-up during the wet seasons. This study aims to test the congruency between the MODIS derived FPAR values and ground-based FPAR values in relation to growing season length, growing season start and end dates, the peak and mean of FPAR values, and overall growth/phenological trends at the Santa Rosa National Park Environmental Monitoring Super Site (SR-EMSS) in Costa Rica and FPAR MODIS products. We derive our FPAR from a Wireless Sensor Network (WSN) consisting of more than 50 nodes measuring transmitted PAR, temperature, relative humidity, and soil moisture over custom time intervals ranging from 2-Hz to 15 min since 2013. Our fundamental goal is to demonstrate how accurate and reflective the MODIS derived FPAR product is of TDF phenology. This will be the first step taken in identifying potential problems with the MODIS derived FPAR products over TDFs in the Americas.
Automated ocean color product validation for the Southern California Bight
NASA Astrophysics Data System (ADS)
Davis, Curtiss O.; Tufillaro, Nicholas; Jones, Burt; Arnone, Robert
2012-06-01
Automated match ups allow us to maintain and improve the products of current satellite ocean color sensors (MODIS, MERIS), and new sensors (VIIRS). As part of the VIIRS mission preparation, we have created a web based automated match up tool that provides access to searchable fields for date, site, and products, and creates match-ups between satellite (MODIS, MERIS, VIIRS), and in-situ measurements (HyperPRO and SeaPRISM). The back end of the system is a 'mySQL' database, and the front end is a `php' web portal with pull down menus for searchable fields. Based on selections, graphics are generated showing match-ups and statistics, and ascii files are created for downloads for the matchup data. Examples are shown for matching the satellite data with the data from Platform Eureka SeaPRISM off L.A. Harbor in the Southern California Bight.
Center pivot mounted infrared sensors: Retrieval of ET and interface with satellite systems
USDA-ARS?s Scientific Manuscript database
Infrared sensors mounted aboard cener pivot irrigation systems can remotely sense the surface temperatures of the crops and soils, which provides important information on crop water status. This can be used for irrigation management and irrigation automation, which can increase crop water productivi...
Combining Satellite and in Situ Data with Models to Support Climate Data Records in Ocean Biology
NASA Technical Reports Server (NTRS)
Gregg, Watson
2011-01-01
The satellite ocean color data record spans multiple decades and, like most long-term satellite observations of the Earth, comes from many sensors. Unfortunately, global and regional chlorophyll estimates from the overlapping missions show substantial biases, limiting their use in combination to construct consistent data records. SeaWiFS and MODIS-Aqua differed by 13% globally in overlapping time segments, 2003-2007. For perspective, the maximum change in annual means over the entire Sea WiFS mission era was about 3%, and this included an El NinoLa Nina transition. These discrepancies lead to different estimates of trends depending upon whether one uses SeaWiFS alone for the 1998-2007 (no significant change), or whether MODIS is substituted for the 2003-2007 period (18% decline, P less than 0.05). Understanding the effects of climate change on the global oceans is difficult if different satellite data sets cannot be brought into conformity. The differences arise from two causes: 1) different sensors see chlorophyll differently, and 2) different sensors see different chlorophyll. In the first case, differences in sensor band locations, bandwidths, sensitivity, and time of observation lead to different estimates of chlorophyll even from the same location and day. In the second, differences in orbit and sensitivities to aerosols lead to sampling differences. A new approach to ocean color using in situ data from the public archives forces different satellite data to agree to within interannual variability. The global difference between Sea WiFS and MODIS is 0.6% for 2003-2007 using this approach. It also produces a trend using the combination of SeaWiFS and MODIS that agrees with SeaWiFS alone for 1998-2007. This is a major step to reducing errors produced by the first cause, sensor-related discrepancies. For differences that arise from sampling, data assimilation is applied. The underlying geographically complete fields derived from a free-running model is unaffected by solar zenith angle requirements and obscuration from clouds and aerosols. Combined with in situ dataenhanced satellite data, the model is forced into consistency using data assimilation. This approach eliminates sampling discrepancies from satellites. Combining the reduced differences of satellite data sets using in situ data, and the removal of sampling biases using data assimilation, we generate consistent data records of ocean color. These data records can support investigations of long-term effects of climate change on ocean biology over multiple satellites, and can improve the consistency of future satellite data sets.
NASA Astrophysics Data System (ADS)
Malakar, N. K.; Hulley, G. C.
2016-12-01
The Los Angeles (LA) metropolitan area is one of the fastest growing urban centers in the United States, and home to roughly 18 million people. Understanding the trends and impacts of warming temperatures in urban environments is an increasingly important issue in our changing climate. We used thermal infrared data from Moderate Resolution Imaging Spectroradiometer (MODIS), and Visible Infrared Imaging Radiometer Suite (VIIRS) sensors to retrieve Land Surface Temperature using a new Temperature Emissivity Separation algorithm adapted for these sensors. We analyzed day and night LST retrievals to study the warming trends of LST for the greater LA region from 2002-2015. The average warming trend over LA for summer days and nights over this period for MODIS Aqua data was 1.1 °C per decade, while a more rapid warming is observed for the years 2012-2016 for both MODIS and VIIRS observations. We have also found that inland LA regions are warming more rapidly than the other regions. We further investigate the underlying cause of the warming by looking into the physical factors such as changes in net radiation, cloud cover, and evapotranspiration. The results will help to understand how indicators of climate change are evolving in the beginning of the 21st century, and how they compare with global climate model projections. Identification of potential impacts, and underlying causes of warming trends in various LA regions will help decision makers to develop policies to help mitigate the effects of rising temperatures.
Scheduling Observations of Celestial Objects for Earth Observing Sensor Calibration
NASA Technical Reports Server (NTRS)
Wilson, Truman; Xiong, Xiaoxiong
2016-01-01
Radiometric calibration of Earth-observing satellite sensors is critical for tracking on-orbit gain changes through- out the satellite's mission. The Moon, being a stable, well-characterized radiometric target, has been used effectively for tracking the relative gain changes of the reflective solar bands for the Moderate Resolution Imaging Spectroradiometer (MODIS) on board EOS AM-1 (Terra) and PM-1 (Aqua). The Moon is viewed through the MODIS space-view port, and the relative phase of the Moon is restricted to within 0.5 degrees of a chosen target phase to increase the accuracy of the calibration. These geometric restrictions require spacecraft maneuvers in order to bring space-view port into proper alignment with the position of the Moon when the phase requirement is met. In this paper, we describe a versatile tool for scheduling such maneuvers based on the required geometry and lunar phase restrictions for a general spacecraft bound instrument. The results of the scheduling tool have been verified using lunar images from Aqua and Terra MODIS after a scheduled roll maneuver was performed. This tool has also been tested for the Visible Infrared Imaging Radiometer Suite (VIIRS) and the Advanced Technology Microwave Sounder on-board the Suomi-NPP spacecraft. As an extension of this work, we have also developed a tool for scheduling views of bright stars. These stars provide another well-characterized radiometric source that can be used for sensor calibration. This tool has been implemented to determine the times in which a chosen star can be viewed by the high gain stages of the day/night band for the VIIRS instrument.
Spatial, Temporal and Spectral Satellite Image Fusion via Sparse Representation
NASA Astrophysics Data System (ADS)
Song, Huihui
Remote sensing provides good measurements for monitoring and further analyzing the climate change, dynamics of ecosystem, and human activities in global or regional scales. Over the past two decades, the number of launched satellite sensors has been increasing with the development of aerospace technologies and the growing requirements on remote sensing data in a vast amount of application fields. However, a key technological challenge confronting these sensors is that they tradeoff between spatial resolution and other properties, including temporal resolution, spectral resolution, swath width, etc., due to the limitations of hardware technology and budget constraints. To increase the spatial resolution of data with other good properties, one possible cost-effective solution is to explore data integration methods that can fuse multi-resolution data from multiple sensors, thereby enhancing the application capabilities of available remote sensing data. In this thesis, we propose to fuse the spatial resolution with temporal resolution and spectral resolution, respectively, based on sparse representation theory. Taking the study case of Landsat ETM+ (with spatial resolution of 30m and temporal resolution of 16 days) and MODIS (with spatial resolution of 250m ~ 1km and daily temporal resolution) reflectance, we propose two spatial-temporal fusion methods to combine the fine spatial information of Landsat image and the daily temporal resolution of MODIS image. Motivated by that the images from these two sensors are comparable on corresponding bands, we propose to link their spatial information on available Landsat- MODIS image pair (captured on prior date) and then predict the Landsat image from the MODIS counterpart on prediction date. To well-learn the spatial details from the prior images, we use a redundant dictionary to extract the basic representation atoms for both Landsat and MODIS images based on sparse representation. Under the scenario of two prior Landsat-MODIS image pairs, we build the corresponding relationship between the difference images of MODIS and ETM+ by training a low- and high-resolution dictionary pair from the given prior image pairs. In the second scenario, i.e., only one Landsat- MODIS image pair being available, we directly correlate MODIS and ETM+ data through an image degradation model. Then, the fusion stage is achieved by super-resolving the MODIS image combining the high-pass modulation in a two-layer fusion framework. Remarkably, the proposed spatial-temporal fusion methods form a unified framework for blending remote sensing images with phenology change or land-cover-type change. Based on the proposed spatial-temporal fusion models, we propose to monitor the land use/land cover changes in Shenzhen, China. As a fast-growing city, Shenzhen faces the problem of detecting the rapid changes for both rational city planning and sustainable development. However, the cloudy and rainy weather in region Shenzhen located makes the capturing circle of high-quality satellite images longer than their normal revisit periods. Spatial-temporal fusion methods are capable to tackle this problem by improving the spatial resolution of images with coarse spatial resolution but frequent temporal coverage, thereby making the detection of rapid changes possible. On two Landsat-MODIS datasets with annual and monthly changes, respectively, we apply the proposed spatial-temporal fusion methods to the task of multiple change detection. Afterward, we propose a novel spatial and spectral fusion method for satellite multispectral and hyperspectral (or high-spectral) images based on dictionary-pair learning and sparse non-negative matrix factorization. By combining the spectral information from hyperspectral image, which is characterized by low spatial resolution but high spectral resolution and abbreviated as LSHS, and the spatial information from multispectral image, which is featured by high spatial resolution but low spectral resolution and abbreviated as HSLS, this method aims to generate the fused data with both high spatial and high spectral resolutions. Motivated by the observation that each hyperspectral pixel can be represented by a linear combination of a few endmembers, this method first extracts the spectral bases of LSHS and HSLS images by making full use of the rich spectral information in LSHS data. The spectral bases of these two categories data then formulate a dictionary-pair due to their correspondence in representing each pixel spectra of LSHS data and HSLS data, respectively. Subsequently, the LSHS image is spatially unmixed by representing the HSLS image with respect to the corresponding learned dictionary to derive its representation coefficients. Combining the spectral bases of LSHS data and the representation coefficients of HSLS data, we finally derive the fused data characterized by the spectral resolution of LSHS data and the spatial resolution of HSLS data.
NASA Technical Reports Server (NTRS)
Levy, R. C.; Kaufman, Y. J.
1999-01-01
Atmospheric aerosol has uncertain impacts on the global climate system, as well as on atmospheric and bio-geo-chemical processes of regional and local scales. EOS-MODIS is one example of a satellite sensor designed to improve understanding of the aerosols' type, size and distribution at all temporal and spatial scales. Ocean scientists also plan to use data from EOS-MODIS to assess the temporal and spatial coverage of in-water chlorophyll. MODIS is the first sensor planned to observe the combined ocean-atmosphere system with a wide spectral range (from 410 to 2200 nm). Dust aerosol and salt aerosol have similar spectral signals for wavelengths longer than 550 nm, but because dust selectively absorbs blue light, they have divergent signals in the blue wavelength regions (412 to 490 nm). Chlorophyll also selectively absorbs blue radiation, so that varying chlorophyll concentrations produces a highly varying signal in the blue regions, but less variability in the green, and almost no signal in the red to mid-infrared regions. Thus, theoretically, it may be difficult to differentiate dust and salt in the presence of unknown chlorophyll in the ocean. This study attempts to address the cases in which aerosol and chlorophyll signals can and cannot be separated. For the aerosol spectra, we use the aerosol lookup table from the operational MODIS aerosol-over-ocean algorithm, and for chlorophyll spectra, we use the SeaBAM data set (created for SeaWiFS). We compare the signals using Principal Component Analysis and attempt to retrieve both chlorophyll and aerosol properties using a variant of the operational MODIS aerosol-over-ocean algorithm. Results show that for small optical depths, less than 0.5, it is not possible to differentiate between dust and salt and to determine the chlorophyll concentration at the same time. For larger aerosol optical depths, the chlorophyll signals are comparatively insignificant, and we can hope to distinguish between dust and salt.
Generating a Long-Term Land Data Record from the AVHRR and MODIS Instruments
NASA Technical Reports Server (NTRS)
Pedelty, Jeffrey; Devadiga, Sadashiva; Masuoka, Edward; Brown, Molly; Pinzon, Jorge; Tucker, Compton; Vermote, Eric; Prince, Stephen; Nagol, Jyotheshwar; Justice, Christopher;
2007-01-01
The goal of NASA's Land Long Term Iiata Record (LTDR) project is to produce a consistent long term data set from the AVHRR and MODIS instruments for land climate studies. The project will create daily surface reflectance and normalized difference vegetation index (NDVI) products at a resolution of 0.05 deg., which is identical to the Climate Modeling Grid (CMG) used for MODIS products from EOS Terra and Aqua. Higher order products such as burned area, land surface temperature, albedo, bidirectional reflectance distribution function (BRDF) correction, leaf area index (LAI), and fraction of photosyntheticalIy active radiation absorbed by vegetation (fPAR), will be created. The LTDR project will reprocess Global Area Coverage (GAC) data from AVHRR sensors onboard NOAA satellites by applying the preprocessing improvements identified in the AVHRR Pathfinder Il project and atmospheric and BRDF corrections used in MODIS processing. The preprocessing improvements include radiometric in-flight vicarious calibration for the visible and near infrared channels and inverse navigation to relate an Earth location to each sensor instantaneous field of view (IFOV). Atmospheric corrections for Rayleigh scattering, ozone, and water vapor are undertaken, with aerosol correction being implemented. The LTDR also produces a surface reflectance product for channel 3 (3.75 micrometers). Quality assessment (QA) is an integral part of the LTDR production system, which is monitoring temporal trands in the AVHRR products using time-series approaches developed for MODIS land product quality assessment. The land surface reflectance products have been evaluated at AERONET sites. The AVHRR data record from LTDR is also being compared to products from the PAL (Pathfinder AVHRR Land) and GIMMS (Global Inventory Modeling and Mapping Studies) systems to assess the relative merits of this reprocessing vis-a-vis these existing data products. The LTDR products and associated information can be found at http://ltdr.nascom.nasa.gov/ltdr/ltdr.html.
NASA Technical Reports Server (NTRS)
Salomonson, V. V.
2003-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) on the Earth Observing System (EOS) Terra Mission began to produce data in February 2000. The Terra MODIS is in a sun-synchronous orbit going north to south in the daylight portion of the orbit crossing the equator at about 1030 hours local time. The spacecraft, instrument, and data systems are performing well and are producing a wide variety of data products useful for scientific and applications studies in relatively consistent fashion extending from November 2000 to the present. Within the approximately 40 MODIS data products, several are new and represent powerful and exciting capabilities such the ability to provide observations over the globe of fire occurrences, microphysical properties of clouds and sun-stimulated fluorescence from phytoplankton in the surface waters of the ocean. The remainder of the MODIS products exceeds or, at a minimum, matches the capabilities of products from heritage sensors such as, for example, the Advanced Very High Resolution Radiometer (AVHRR). Efforts are underway to provide data sets for the greater Earth science community and to improve access to these products at the various Distributed Active Archive Centers (DAACs) or through Direct Broadcast (DB) stations. The EOS Aqua mission was launched successfully May 4,2002 with another MODIS on it. The Aqua spacecraft operates in a sun-synchronous orbit going south to north in the daylight portion of the orbit crossing the equator at approximately 1330 hours local time. Subsequently the Aqua MODIS observations will substantially add to the capabilities of the Terra MODIS for environmental applications and global change studies.
NASA Technical Reports Server (NTRS)
Salomonson, Vincent V.; Houser, Paul (Technical Monitor)
2002-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) on the Earth Observing System (EOS) Terra Mission began to produce data in February 2000. The Terra MODIS is in a sun-synchronous orbit going north to south in the daylight portion of the orbit crossing the equator at about 1030 hours local time. The spacecraft, instrument, and data systems are performing well and are producing a wide variety of data products useful for scientific and applications studies in relatively consistent fashion extending from November 2000 to the present. Within the approximately 40 MODIS data products, several are new and represent powerful and exciting capabilities such the ability to provide observations over the globe of fire occurrences, microphysical properties of clouds and sun-stimulated fluorescence from phytoplankton in the surface waters of the ocean. The remainder of the MODIS products exceed or, at a minimum, match the capabilities of products from heritage sensors such as, for example, the Advanced Very High Resolution Radiometer (AVHRR). Efforts are underway to provide data sets for the greater Earth science community and to improve access to these products at the various Distributed Active Archive Centers (DAAC's) or through Direct Broadcast (DB) stations. The MODIS instrument on the EOS Aqua mission should also be expected to be in orbit and functioning in the Spring of 2002. The Aqua spacecraft will operate in a sun-synchronous orbit going south to north in the daylight portion of the orbit crossing the equator at approximately 1330 hours local time. Subsequently the Aqua MODIS observations will substantially add to the capabilities of the Terra MODIS for environmental applications and global change studies.
NASA Technical Reports Server (NTRS)
Ichoku, Charles; Kaufman, Y. J.; Fraser, R. H.; Jin, J.-Z.; Park, W. M.; Lau, William K. M. (Technical Monitor)
2001-01-01
Two fixed-threshold Canada Centre for Remote Sensing and European Space Agency (CCRS and ESA) and three contextual GIGLIO, International Geosphere and Biosphere Project, and Moderate Resolution Imaging Spectroradiometer (GIGLIO, IGBP, and MODIS) algorithms were used for fire detection with Advanced Very High Resolution Radiometer (AVHRR) data acquired over Canada during the 1995 fire season. The CCRS algorithm was developed for the boreal ecosystem, while the other four are for global application. The MODIS algorithm, although developed specifically for use with the MODIS sensor data, was applied to AVHRR in this study for comparative purposes. Fire detection accuracy assessment for the algorithms was based on comparisons with available 1995 burned area ground survey maps covering five Canadian provinces. Overall accuracy estimations in terms of omission (CCRS=46%, ESA=81%, GIGLIO=75%, IGBP=51%, MODIS=81%) and commission (CCRS=0.35%, ESA=0.08%, GIGLIO=0.56%, IGBP=0.75%, MODIS=0.08%) errors over forested areas revealed large differences in performance between the algorithms, with no relevance to type (fixed-threshold or contextual). CCRS performed best in detecting real forest fires, with the least omission error, while ESA and MODIS produced the highest omission error, probably because of their relatively high threshold values designed for global application. The commission error values appear small because the area of pixels falsely identified by each algorithm was expressed as a ratio of the vast unburned forest area. More detailed study shows that most commission errors in all the algorithms were incurred in nonforest agricultural areas, especially on days with very high surface temperatures. The advantage of the high thresholds in ESA and MODIS was that they incurred the least commission errors.
Validation Test Report for the Automated Optical Processing System (AOPS) Version 4.10
2015-08-25
Geostationary Ocean Color Imager (GOCI) sensors. AOPS enables exploitation of multiple space-borne ocean color satellite sensors to provide optical...package as well as from the Geostationary Ocean Color Imager (GOCI) sensor aboard the Communication Ocean and Meteorological Satellite (COMS) satellite... GEOstationary Coastal and Air Pollution Events (GEO-CAPE) mission and provided to NRL courtesy of Mike Ondrusek and Zhongping Lee. AOP and IOP data were
USDA-ARS?s Scientific Manuscript database
Recent developments in wireless sensor technology and remote sensing algorithms, coupled with increased use of center pivot irrigation systems, have removed several long-standing barriers to adoption of remote sensing for real-time irrigation management. One remote sensing-based algorithm is a two s...
NASA Catches Tropical Storm Leslie and Hurricane Michael in the Atlantic
2017-12-08
This visible image of Tropical Storm Leslie and Hurricane Michael was taken by the MODIS instrument aboard both NASA's Aqua and Terra satellites on Sept. 9 at 12:50 p.m. EDT. Credit: NASA Goddard/MODIS Rapid Response Team -- Satellite images from two NASA satellites were combined to create a full picture of Tropical Storm Leslie and Hurricane Michael spinning in the Atlantic Ocean. Imagery from NASA's Aqua and Terra satellites showed Leslie now past Bermuda and Michael in the north central Atlantic, and Leslie is much larger than the smaller, more powerful Michael. Images of each storm were taken by the Moderate Resolution Imaging Spectroradiometer, or MODIS instrument that flies onboard both the Aqua and Terra satellites. Both satellites captured images of both storms on Sept. 7 and Sept. 10. The image from Sept. 7 showed a much more compact Michael with a visible eye. By Sept. 10, the eye was no longer visible in Michael and the storm appeared more elongated from south to north. To continue reading go to: 1.usa.gov/NkUPqn NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Spatial and Temporal Monitoring of Aerosol over Selected Urban Areas in Egypt
NASA Astrophysics Data System (ADS)
Shokr, Mohammed; El-Tahan, Mohammed; Ibrahim, Alaa
2015-04-01
We utilize remote sensing data of atmospheric aerosols from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Terra and Aqua satellites to explore spatio-temporal patterns over selected urban sites in Egypt during 2000-2015. High resolution (10 x 10 km^2) Level 2, collection 5, quality-controlled product was used. The selected sites are characterized by different human and industrial activities as well as landscape and meteorological attributes. These have impacts on the dominant types and intensity of aerosols. Aerosol robotic network (AERONET) data were used to validate the calculations from MODIS. The suitability of the MODIS product in terms of spatial and temporal coverage as well as accuracy and robustness has been established. Seasonal patterns of aerosol concentration are identified and compared between the sites. Spatial gradient of aerosol is assessed in the vicinity of major aerosol-emission sites (e.g. Cairo) to determine the range of influence of the generated pollution. Peak aerosol concentrations are explained in terms of meteorological events and land cover. The limited trends found in the temporal records of the aerosol measurements will be confirmed using calibrated long-term ground observations. The study has been conducted under the PEER 2-239 research project titled "The Impact of Biogenic and Anthropogenic Atmospheric Aerosols to Climate in Egypt". Project website is CleanAirEgypt.org
A CERES-like Cloud Property Climatology Using AVHRR Data
NASA Astrophysics Data System (ADS)
Minnis, P.; Bedka, K. M.; Yost, C. R.; Trepte, Q.; Bedka, S. T.; Sun-Mack, S.; Doelling, D.
2015-12-01
Clouds affect the climate system by modulating the radiation budget and distributing precipitation. Variations in cloud patterns and properties are expected to accompany changes in climate. The NASA Clouds and the Earth's Radiant Energy System (CERES) Project developed an end-to-end analysis system to measure broadband radiances from a radiometer and retrieve cloud properties from collocated high-resolution MODerate-resolution Imaging Spectroradiometer (MODIS) data to generate a long-term climate data record of clouds and clear-sky properties and top-of-atmosphere radiation budget. The first MODIS was not launched until 2000, so the current CERES record is only 15 years long at this point. The core of the algorithms used to retrieve the cloud properties from MODIS is based on the spectral complement of the Advanced Very High Resolution Radiometer (AVHRR), which has been aboard a string of satellites since 1978. The CERES cloud algorithms were adapted for application to AVHRR data and have been used to produce an ongoing CERES-like cloud property and surface temperature product that includes an initial narrowband-based radiation budget. This presentation will summarize this new product, which covers nearly 37 years, and its comparability with cloud parameters from CERES, CALIPSO, and other satellites. Examples of some applications of this dataset are given and the potential for generating a long-term radiation budget CDR is also discussed.
NASA Astrophysics Data System (ADS)
Waigl, C.; Stuefer, M.; Prakash, A.
2013-12-01
Wildfire is the main disturbance regime of the boreal forest ecosystem, a region acutely sensitive to climate change. Large fires impact the carbon cycle, permafrost, and air quality on a regional and even hemispheric scale. Because of their significance as a hazard to human health and economic activity, monitoring wildfires is relevant not only to science but also to government agencies. The goal of this study is to develop pathways towards a near real-time assessment of fire characteristics in the boreal zones of Alaska based on satellite remote sensing data. We map the location of active burn areas and derive fire parameters such as fire temperature, intensity, stage (smoldering or flaming), emission injection points, carbon consumed, and energy released. For monitoring wildfires in the sub-arctic region, we benefit from the high temporal resolution of data (as high as 8 images a day) from MODIS on the Aqua and Terra platforms and VIIRS on NPP/Suomi, downlinked and processed to level 1 by the Geographic Information Network of Alaska at the University of Alaska Fairbanks. To transcend the low spatial resolution of these sensors, a sub-pixel analysis is carried out. By applying techniques from Bayesian inverse modeling to Dozier's two-component approach, uncertainties and sensitivity of the retrieved fire temperatures and fractional pixel areas to background temperature and atmospheric factors are assessed. A set of test cases - large fires from the 2004 to 2013 fire seasons complemented by a selection of smaller burns at the lower end of the MODIS detection threshold - is used to evaluate the methodology. While the VIIRS principal fire detection band M13 (centered at 4.05 μm, similar to MODIS bands 21 and 22 at 3.959 μm) does not usually saturate for Alaskan wildfire areas, the thermal IR band M15 (10.763 μm, comparable to MODIS band 31 at 11.03 μm) indeed saturates for a percentage, though not all, of the fire pixels of intense burns. As this limits the application of the classical version of Dozier's model for this particular combination to lower intensity and smaller fires, or smaller fractional fire areas, other VIIRS band combinations are evaluated as well. Furthermore, the higher spatial resolution of the VIIRS sensor compared to MODIS and its constant along-scan resolution DNB (day/night band) dataset provide additional options for fire mapping, detection and quantification. Higher spatial resolution satellite-borne remote sensing data is used to validate the pixel and sub-pixel level analysis and to assess lower detection thresholds. For each sample fire, moderate-resolution imagery is paired with data from the ASTER instrument (simultaneous with MODIS data on the Terra platform) and/or Landsat scenes acquired in close temporal proximity. To complement the satellite-borne imagery, aerial surveys using a FLIR thermal imaging camera with a broadband TIR sensor provide additional ground truthing and a validation of fire location and background temperature.
ESA DUE GlobTemperature project: Infrared-based LST Product
NASA Astrophysics Data System (ADS)
Ermida, Sofia; Pires, Ana; Ghent, Darren; Trigo, Isabel; DaCamara, Carlos; Remedios, John
2016-04-01
One of the purposes of the GlobTemperature project is to provide a product of global Land Surface Temperature (LST) based on Geostationary Earth Orbit (GEO) and Low Earth polar Orbit (LEO) satellite data. The objective is to use existing LST products, which are obtained from different sensors/platforms, combining them into a harmonized product for a reference view angle. In a first approach, only infra-red based retrievals are considered, and LEO LSTs will be used as a common denominator among geostationary sensors. LST data is provided by a wide range of sensors to optimize spatial coverage, namely: (i) 2 LEO sensors - the Advanced Along Track Scanning Radiometer (AATSR) series of instruments on-board ESA's Envisat, and the Moderate Resolution Imaging Spectroradiometer (MODIS) on-board NASA's TERRA and AQUA; and (ii) 3 GEO sensors - the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on-board EUMETSAT's Meteosat Second Generation (MSG), the Japanese Meteorological Imager (JAMI) on-board the Japanese Meteorological Association (JMA) Multifunction Transport SATellite (MTSAT-2), and NASA's Geostationary Operational Environmental Satellites (GOES). The merged LST product is generated in two steps: 1) calibration between each LEO and each GEO that consists in the removal of systematic differences (associated to sensor type and LST algorithms, including calibration, atmospheric and surface emissivity corrections, amongst others) represented by linear regressions; 2) angular correction that consists in bringing all LST data to reference (nadir) view. Angular effects on LST are estimated by means of a kernel model of the surface thermal emission, which describes the angular dependence of LST as function of viewing and illumination geometry. The model is adjusted to MODIS and SEVIRI/MSG LST estimates and validated against LST retrievals from those sensors obtained for other years (not used in the calibration). It is shown that the model leads to a reduction of LST differences between the two sensors, indicating that it may be used to effectively estimate/correct angular dependence in LST. A global set of kernel model parameters is finally obtained by adjusting the model to either a GEO and a LEO or the two LEOs (poles). A first version of the merged product will be released in 2016, available for download through the GlobTemperature portal. This includes only the calibration process (step 1), incorporating LST data from SEVIRI, GOES, MTSAT and MODIS; information on directional effects added as an extra layer of information. A second version of the dataset with a better incorporation of the angular correction is currently in preparation.
NASA Technical Reports Server (NTRS)
Angal, Amit; Xiong, Xiaoxiong; Wu, Aisheng; Chen, Hongda; Geng, Xu; Link, Daniel; Li, Yonghong; Wald, Andrew; Brinkmann, Jake
2016-01-01
Moderate Resolution Imaging Spectroradiometer (MODIS) is the keystone instrument for NASAs EOS Terra and Aqua missions, designed to extend and improve heritage sensor measurements and data records of the land, oceans and atmosphere. The reflective solar bands (RSB) of MODIS covering wavelengths from 0.41 micrometers to 2.2 micrometers, are calibrated on-orbit using a solar diffuser (SD), with its on-orbit bi-directional reflectance factor (BRF) changes tracked using a solar diffuser stability monitor (SDSM). MODIS is a scanning radiometer using a two-sided paddle-wheel mirror to collect earth view (EV) data over a range of (+/-)55 deg. off instrument nadir. In addition to the solar calibration provided by the SD and SDSM system, lunar observations at nearly constant phase angles are regularly scheduled to monitor the RSB calibration stability. For both Terra and Aqua MODIS, the SD and lunar observations are used together to track the on-orbit changes of RSB response versus scan angle (RVS) as the SD and SV port are viewed at different angles of incidence (AOI) on the scan mirror. The MODIS Level 1B (L1B) Collection 6 (C6) algorithm incorporated several enhancements over its predecessor Collection 5 (C5) algorithm. A notable improvement was the use of the earth-view (EV) response trends from pseudo-invariant desert targets to characterize the on-orbit RVS for select RSB (Terra bands 1-4, 8, 9 and Aqua bands 8, 9) and the time, AOI, and wavelength-dependent uncertainty. The MODIS Characterization Support Team (MCST) has been maintaining and enhancing the C6 algorithm since its first update in November, 2011 for Aqua MODIS, and February, 2012 for Terra MODIS. Several calibration improvements have been incorporated that include extending the EV-based RVS approach to other RSB, additional correction for SD degradation at SWIR wavelengths, and alternative approaches for on-orbit RVS characterization. In addition to the on-orbit performance of the MODIS RSB, this paper also discusses in detail the recent calibration improvements implemented in the MODIS L1B C6.
NASA Technical Reports Server (NTRS)
Salomnson, Vincent V.
2003-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) on the Earth Observing System (EOS) Terra Mission began to produce data in February 2000. The EOS Aqua mission was launched successfully May 4,2002 with another MODIS on it and "first light" observations occurred on June 24,2002. The Terra MODIS is in a sun-synchronous orbit going north to south in the daylight portion of the orbit crossing the equator at about 1030 hours local time. The Aqua spacecraft operates in a sun-synchronous orbit going south to north in the daylight portion of the orbit crossing the equator at approximately 1330 hours local time. The spacecraft, instrument, and data systems for both MODIS instruments are performing well and are producing a wide variety of data products useful for scientific and applications studies in relatively consistent fashion extending from November 2000 to the present. Within the approximately 40 MODIS data products, several are new and represent powerful and exciting capabilities such the ability to provide observations over the globe of fire occurrences, microphysical properties of clouds and sun-stimulated fluorescence from phytoplankton in the surface waters of the ocean. The remainder of the MODIS products exceeds or, at a minimum, matches the capabilities of products from heritage sensors such as, for example, the Advanced Very High Resolution Radiometer (AVHRR). Efforts are underway to provide data sets for the greater Earth science community and to improve access to these products at the various Distributed Active Archive Centers (DAAC's) or through Direct Broadcast (DB) stations.
Fearns, Peter
2017-01-01
The impact of anthropogenic activities on coastal waters is a cause of concern because such activities add to the total suspended sediment (TSS) budget of the coastal waters, which have negative impacts on the coastal ecosystem. Satellite remote sensing provides a powerful tool in monitoring TSS concentration at high spatiotemporal resolution, but coastal managers should be mindful that the satellite-derived TSS concentrations are dependent on the satellite sensor’s radiometric properties, atmospheric correction approaches, the spatial resolution and the limitations of specific TSS algorithms. In this study, we investigated the impact of different spatial resolutions of satellite sensor on the quantification of TSS concentration in coastal waters of northern Western Australia. We quantified the TSS product derived from MODerate resolution Imaging Spectroradiometer (MODIS)-Aqua, Landsat-8 Operational Land Image (OLI), and WorldView-2 (WV2) at native spatial resolutions of 250 m, 30 m and 2 m respectively and coarser spatial resolution (resampled up to 5 km) to quantify the impact of spatial resolution on the derived TSS product in different turbidity conditions. The results from the study show that in the waters of high turbidity and high spatial variability, the high spatial resolution WV2 sensor reported TSS concentration as high as 160 mg L-1 while the low spatial resolution MODIS-Aqua reported a maximum TSS concentration of 23.6 mg L-1. Degrading the spatial resolution of each satellite sensor for highly spatially variable turbid waters led to variability in the TSS concentrations of 114.46%, 304.68% and 38.2% for WV2, Landsat-8 OLI and MODIS-Aqua respectively. The implications of this work are particularly relevant in the situation of compliance monitoring where operations may be required to restrict TSS concentrations to a pre-defined limit. PMID:28380059
Effects of Data Quality on the Characterization of Aerosol Properties from Multiple Sensors
NASA Technical Reports Server (NTRS)
Petrenko, Maksym; Ichoku, Charles; Leptoukh, Gregory
2011-01-01
Cross-comparison of aerosol properties between ground-based and spaceborne measurements is an important validation technique that helps to investigate the uncertainties of aerosol products acquired using spaceborne sensors. However, it has been shown that even minor differences in the cross-characterization procedure may significantly impact the results of such validation. Of particular consideration is the quality assurance I quality control (QA/QC) information - an auxiliary data indicating a "confidence" level (e.g., Bad, Fair, Good, Excellent, etc.) conferred by the retrieval algorithms on the produced data. Depending on the treatment of available QA/QC information, a cross-characterization procedure has the potential of filtering out invalid data points, such as uncertain or erroneous retrievals, which tend to reduce the credibility of such comparisons. However, under certain circumstances, even high QA/QC values may not fully guarantee the quality of the data. For example, retrievals in proximity of a cloud might be particularly perplexing for an aerosol retrieval algorithm, resulting in an invalid data that, nonetheless, could be assigned a high QA/QC confidence. In this presentation, we will study the effects of several QA/QC parameters on cross-characterization of aerosol properties between the data acquired by multiple spaceborne sensors. We will utilize the Multi-sensor Aerosol Products Sampling System (MAPSS) that provides a consistent platform for multi-sensor comparison, including collocation with measurements acquired by the ground-based Aerosol Robotic Network (AERONET), The multi-sensor spaceborne data analyzed include those acquired by the Terra-MODIS, Aqua-MODIS, Terra-MISR, Aura-OMI, Parasol-POLDER, and CalipsoCALIOP satellite instruments.
NASA Technical Reports Server (NTRS)
2002-01-01
The Goddard Earth Sciences Distributed Active Archive Center (DAAC) is the designated archive for all of the ocean color data produced by NASA satellite missions. The DAAC is a long-term, high volume, secure repository for many different kinds of environmental data. With respect to ocean color, the Goddard DAAC holds all the data obtained during the eight-year mission of the Coastal Zone Color Scanner (CZCS). The DAAC is currently receiving data from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), and the MODIS-Terra instrument. The DAAC recently received reformatted data from the Ocean Color and Temperature Scanner (OCTS) and will also archive MODIS-Aqua Ocean products. In addition to its archive and distribution services, the Goddard DAAC strives to improve data access, ease-of-use, and data applicability for a broad spectrum of customers. The DAAC's data support teams practice dual roles, both insuring the integrity of the DAAC data archive and serving the user community with answers to user inquiries, online and print documentation, and customized data services.
Cloud Forecasting and 3-D Radiative Transfer Model Validation using Citizen-Sourced Imagery
NASA Astrophysics Data System (ADS)
Gasiewski, A. J.; Heymsfield, A.; Newman Frey, K.; Davis, R.; Rapp, J.; Bansemer, A.; Coon, T.; Folsom, R.; Pfeufer, N.; Kalloor, J.
2017-12-01
Cloud radiative feedback mechanisms are one of the largest sources of uncertainty in global climate models. Variations in local 3D cloud structure impact the interpretation of NASA CERES and MODIS data for top-of-atmosphere radiation studies over clouds. Much of this uncertainty results from lack of knowledge of cloud vertical and horizontal structure. Surface-based data on 3-D cloud structure from a multi-sensor array of low-latency ground-based cameras can be used to intercompare radiative transfer models based on MODIS and other satellite data with CERES data to improve the 3-D cloud parameterizations. Closely related, forecasting of solar insolation and associated cloud cover on time scales out to 1 hour and with spatial resolution of 100 meters is valuable for stabilizing power grids with high solar photovoltaic penetrations. Data for cloud-advection based solar insolation forecasting with requisite spatial resolution and latency needed to predict high ramp rate events obtained from a bottom-up perspective is strongly correlated with cloud-induced fluctuations. The development of grid management practices for improved integration of renewable solar energy thus also benefits from a multi-sensor camera array. The data needs for both 3D cloud radiation modelling and solar forecasting are being addressed using a network of low-cost upward-looking visible light CCD sky cameras positioned at 2 km spacing over an area of 30-60 km in size acquiring imagery on 30 second intervals. Such cameras can be manufactured in quantity and deployed by citizen volunteers at a marginal cost of 200-400 and operated unattended using existing communications infrastructure. A trial phase to understand the potential utility of up-looking multi-sensor visible imagery is underway within this NASA Citizen Science project. To develop the initial data sets necessary to optimally design a multi-sensor cloud camera array a team of 100 citizen scientists using self-owned PDA cameras is being organized to collect distributed cloud data sets suitable for MODIS-CERES cloud radiation science and solar forecasting algorithm development. A low-cost and robust sensor design suitable for large scale fabrication and long term deployment has been developed during the project prototyping phase.
Dörnhöfer, Katja; Klinger, Philip; Heege, Thomas; Oppelt, Natascha
2018-01-15
Phytoplankton indicated by its photosynthetic pigment chlorophyll-a is an important pointer on lake ecology and a regularly monitored parameter within the European Water Framework Directive. Along with eutrophication and global warming cyanobacteria gain increasing importance concerning human health aspects. Optical remote sensing may support both the monitoring of horizontal distribution of phytoplankton and cyanobacteria at the lake surface and the reduction of spatial uncertainties associated with limited water sample analyses. Temporal and spatial resolution of using only one satellite sensor, however, may constrain its information value. To discuss the advantages of a multi-sensor approach the sensor-independent, physically based model MIP (Modular Inversion and Processing System) was applied at Lake Kummerow, Germany, and lake surface chlorophyll-a was derived from 33 images of five different sensors (MODIS-Terra, MODIS-Aqua, Landsat 8, Landsat 7 and Sentinel-2A). Remotely sensed lake average chlorophyll-a concentration showed a reasonable development and varied between 2.3±0.4 and 35.8±2.0mg·m -3 from July to October 2015. Match-ups between in situ and satellite chlorophyll-a revealed varying performances of Landsat 8 (RMSE: 3.6 and 19.7mg·m -3 ), Landsat 7 (RMSE: 6.2mg·m -3 ), Sentinel-2A (RMSE: 5.1mg·m -3 ) and MODIS (RMSE: 12.8mg·m -3 ), whereas an in situ data uncertainty of 48% needs to be respected. The temporal development of an index on harmful algal blooms corresponded well with the cyanobacteria biomass development during summer months. Satellite chlorophyll-a maps allowed to follow spatial patterns of chlorophyll-a distribution during a phytoplankton bloom event. Wind conditions mainly explained spatial patterns. Integrating satellite chlorophyll-a into trophic state assessment resulted in different trophic classes. Our study endorsed a combined use of satellite and in situ chlorophyll-a data to alleviate weaknesses of both approaches and to better characterise and understand phytoplankton development in lakes. Copyright © 2017 Elsevier B.V. All rights reserved.
An Investigation of Turbulent Heat Exchange in the Subtropics
2014-09-30
meteorological sensors aboard the research vessel the R/V Revelle during the DYNAMO field program. In situ meteorology and high-rate flux sensors operated...continuously while in the sampling period for DYNAMO Leg 3. This included all sensors operating during Leg 2 with the addition of a closed-path LI...stress; wave data; surface and near surface sea temperatures, salinity and currents; and other key variables specifically requested by DYNAMO /LASP PIs
Modeling the Impact of Drizzle and 3D Cloud Structure on Remote Sensing of Effective Radius
NASA Technical Reports Server (NTRS)
Platnick, Steven; Zinner, Tobias; Ackerman, S.
2008-01-01
Remote sensing of cloud particle size with passive sensors like MODIS is an important tool for cloud microphysical studies. As a measure of the radiatively relevant droplet size, effective radius can be retrieved with different combinations of visible through shortwave infrared channels. MODIS observations sometimes show significantly larger effective radii in marine boundary layer cloud fields derived from the 1.6 and 2.1 pm channel observations than for 3.7 pm retrievals. Possible explanations range from 3D radiative transport effects and sub-pixel cloud inhomogeneity to the impact of drizzle formation on the droplet distribution. To investigate the potential influence of these factors, we use LES boundary layer cloud simulations in combination with 3D Monte Carlo simulations of MODIS observations. LES simulations of warm cloud spectral microphysics for cases of marine stratus and broken stratocumulus, each for two different values of cloud condensation nuclei density, produce cloud structures comprising droplet size distributions with and without drizzle size drops. In this study, synthetic MODIS observations generated from 3D radiative transport simulations that consider the full droplet size distribution will be generated for each scene. The operational MODIS effective radius retrievals will then be applied to the simulated reflectances and the results compared with the LES microphysics.
Variation of MODIS reflectance and vegetation indices with viewing geometry and soybean development.
Breunig, Fábio M; Galvão, Lênio S; Formaggio, Antônio R; Epiphanio, José C N
2012-06-01
Directional effects introduce a variability in reflectance and vegetation index determination, especially when large field-of-view sensors are used (e.g., Moderate Resolution Imaging Spectroradiometer - MODIS). In this study, we evaluated directional effects on MODIS reflectance and four vegetation indices (Normalized Difference Vegetation Index - NDVI; Enhanced Vegetation Index - EVI; Normalized Difference Water Index - NDWI(1640) and NDWI(2120)) with the soybean development in two growing seasons (2004-2005 and 2005-2006). To keep the reproductive stage for a given cultivar as a constant factor while varying viewing geometry, pairs of images obtained in close dates and opposite view angles were analyzed. By using a non-parametric statistics with bootstrapping and by normalizing these indices for angular differences among viewing directions, their sensitivities to directional effects were studied. Results showed that the variation in MODIS reflectance between consecutive phenological stages was generally smaller than that resultant from viewing geometry for closed canopies. The contrary was observed for incomplete canopies. The reflectance of the first seven MODIS bands was higher in the backscattering. Except for the EVI, the other vegetation indices had larger values in the forward scattering direction. Directional effects decreased with canopy closure. The NDVI was lesser affected by directional effects than the other indices, presenting the smallest differences between viewing directions for fixed phenological stages.
Promise and Capability of NASA's Earth Observing System to Monitor Human-Induced Climate Variations
NASA Technical Reports Server (NTRS)
King, M. D.
2003-01-01
The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by which scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. The Moderate Resolution Imaging Spectroradiometer (MODIS), developed as part of the Earth Observing System (EOS) and launched on Terra in December 1999 and Aqua in May 2002, is designed to meet the scientific needs for satellite remote sensing of clouds, aerosols, water vapor, and land and ocean surface properties. This sensor and multi-platform observing system is especially well suited to observing detailed interdisciplinary components of the Earth s surface and atmosphere in and around urban environments, including aerosol optical properties, cloud optical and microphysical properties of both liquid water and ice clouds, land surface reflectance, fire occurrence, and many other properties that influence the urban environment and are influenced by them. In this presentation I will summarize the current capabilities of MODIS and other EOS sensors currently in orbit to study human-induced climate variations.
Spatial and temporal remote sensing data fusion for vegetation monitoring
USDA-ARS?s Scientific Manuscript database
The suite of available remote sensing instruments varies widely in terms of sensor characteristics, spatial resolution and acquisition frequency. For example, the Moderate-resolution Imaging Spectroradiometer (MODIS) provides daily global observations at 250m to 1km spatial resolution. While imagery...
NASA Astrophysics Data System (ADS)
Ha, W.; Gowda, P. H.; Oommen, T.; Howell, T. A.; Hernandez, J. E.
2010-12-01
High spatial resolution Land Surface Temperature (LST) images are required to estimate evapotranspiration (ET) at a field scale for irrigation scheduling purposes. Satellite sensors such as Landsat 5 Thematic Mapper (TM) and Moderate Resolution Imaging Spectroradiometer (MODIS) can offer images at several spectral bandwidths including visible, near-infrared (NIR), shortwave-infrared, and thermal-infrared (TIR). The TIR images usually have coarser spatial resolutions than those from non-thermal infrared bands. Due to this technical constraint of the satellite sensors on these platforms, image downscaling has been proposed in the field of ET remote sensing. This paper explores the potential of the Support Vector Machines (SVM) to perform downscaling of LST images derived from aircraft (4 m spatial resolution), TM (120 m), and MODIS (1000 m) using normalized difference vegetation index images derived from simultaneously acquired high resolution visible and NIR data (1 m for aircraft, 30 m for TM, and 250 m for MODIS). The SVM is a new generation machine learning algorithm that has found a wide application in the field of pattern recognition and time series analysis. The SVM would be ideally suited for downscaling problems due to its generalization ability in capturing non-linear regression relationship between the predictand and the multiple predictors. Remote sensing data acquired over the Texas High Plains during the 2008 summer growing season will be used in this study. Accuracy assessment of the downscaled 1, 30, and 250 m LST images will be made by comparing them with LST data measured with infrared thermometers at a small spatial scale, upscaled 30 m aircraft-based LST images, and upscaled 250 m TM-based LST images, respectively.
Capability of MODIS radiance to analyze Iberian turbid plumes
NASA Astrophysics Data System (ADS)
Fernandez-Novoa, Diego; deCastro, Maite; Des, Marisela; Costoya, Xurxo; Mendes, Renato; Gomez-Gesteira, Moncho
2017-04-01
River plumes are formed near river mouths by freshwater and riverine materials. Therefore, the area influenced by freshwater (salinity plume) is usually negatively correlated with the area occupied by suspension and dissolved material (turbid plume). Suspended material results in a strong signal detected by satellite sensors whereas ocean clear waters have negligible contributions. Thus, remote sensing data, such as radiance obtained from Moderate Resolution Imaging Spectroradiometer (MODIS), are a very useful tool to analyze turbid plumes due to the high spatial and time resolution provided. Here, MODIS capability for characterizing similarities and differences among the most important Iberian plumes was assessed under the influence of their main forcing. Daily radiance data from MODIS-Aqua and MODIS-Terra satellite sensors were processed obtaining a resolution of 500 m. Two approaches are usually used for atmospheric correction treatments: Near-Infrared (NIR) bands and a combined algorithm using NIR and Short Wave Infrared (SWIR) bands. In the particular case of Iberian Peninsula plumes both methods offered similar results, although NIR bands present a lower associated error. MODIS allows working with several bands of normalized water-leaving radiances (nLw). Focusing in the resolution provided, nLw555 and 645 were the most appropriate because both provide the best coverage and correlation with river discharge. The nLw645 band was chosen because has a lower water penetration avoiding overestimations of turbidity caused by shallow seafloor areas and/or upwelling blooms. Daily data from both satellites were merged to enhance the robustness and precision of the study by increasing the number of available pixels. Results indicate that differences between radiance data from both satellites are negligible for Iberian plumes, justifying the merging. By last, each turbid limit, to delimit the respective plume from adjacent seawater, was obtained using two alternative methods. The first method evaluates the maximum correlation between river discharge and plume extension and the second one analyzes a histogram of radiance distribution for days characterized by a negligible plume and days showing a well-developed plume. The capability of MODIS radiance to delimit each river plume was tested by means of salinity data from Atlantic-Iberian Biscay Irish-Ocean Physics Reanalysis (IBI) database. Significant and negative correlations were found in the Atlantic Iberian plumes, showing the capability of MODIS to adequately track them. However, no correlation was found for Ebro River. This discrepancy is due to the presence of fresh water associated to other external sources (Rhone River), promoting low salinity values when Ebro discharge is low. In this particular case, the MODIS methodology is better to determine the river plume. In general, Atlantic Iberian plumes show a moderate or high dependence on river discharge, being wind a secondary forcing and tide the third one, although each plume presents particular features. On the other hand, Ebro plume has low dependence on river discharge and wind, and a negligible one on tide, being mainly driven for the Liguro-Provençal current.
NASA Technical Reports Server (NTRS)
Jethva, Hiren; Torres, Omar; Bhartia, Pawan K.; Remer, Lorraine; Redemann, Jens; Dunagan, Stephen E.; Livingston, John; Shinozuka, Yohei; Kacenelenbogen, Meloe; Segal-Rosenbeimer, Michal;
2014-01-01
Absorbing aerosols produced from biomass burning and dust outbreaks are often found to overlay lower level cloud decks and pose greater potentials of exerting positive radiative effects (warming) whose magnitude directly depends on the aerosol loading above cloud, optical properties of clouds and aerosols, and cloud fraction. Recent development of a 'color ratio' (CR) algorithm applied to observations made by the Aura/OMI and Aqua/MODIS constitutes a major breakthrough and has provided unprecedented maps of above-cloud aerosol optical depth (ACAOD). The CR technique employs reflectance measurements at TOA in two channels (354 and 388 nm for OMI; 470 and 860 nm for MODIS) to retrieve ACAOD in near-UV and visible regions and aerosol-corrected cloud optical depth, simultaneously. An inter-satellite comparison of ACAOD retrieved from NASA's A-train sensors reveals a good level of agreement between the passive sensors over the homogeneous cloud fields. Direct measurements of ACA such as carried out by the NASA Ames Airborne Tracking Sunphotometer (AATS) and Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) can be of immense help in validating ACA retrievals. We validate the ACA optical depth retrieved using the CR method applied to the MODIS cloudy-sky reflectance against the airborne AATS and 4STAR measurements. A thorough search of the historic AATS-4STAR database collected during different field campaigns revealed five events where biomass burning, dust, and wildfire-emitted aerosols were found to overlay lower level cloud decks observed during SAFARI-2000, ACE-ASIA 2001, and SEAC4RS- 2013, respectively. The co-located satellite-airborne measurements revealed a good agreement (RMSE less than 0.1 for AOD at 500 nm) with most matchups falling within the estimated uncertainties in the MODIS retrievals. An extensive validation of satellite-based ACA retrievals requires equivalent field measurements particularly over the regions where ACA are often observed from satellites, i.e., south-eastern Atlantic Ocean, tropical Atlantic Ocean, northern Arabian Sea, South-East and North-East Asia.
NASA Astrophysics Data System (ADS)
Mubenga, K.; Hoff, R.; McCann, K.; Chu, A.; Prados, A.
2006-05-01
The NOAA GOES Aerosol and Smoke Product (GASP) is a product displaying the Aerosol Optical Depth (AOD) over the United States. The GASP retrieval involves discriminating the upwelling radiance from the atmosphere from that of the variable underlying surface. Unlike other sensors with more visible and near- infrared spectral channels such as MODIS, the sensors on GOES 8 through 12 only have one visible and a several far infrared channels. The GASP algorithm uses the detection of the second-darkest pixel from the visible channel over a 28-day period as the reference from which a radiance look-up table gives the corresponding AOD. GASP is reliable in capturing the AOD during large events. As an example, GASP was able to precisely show the Alaska and British Columbia smoke plume advecting from Alaska to the northeastern U.S. during the summer of 2004. Knapp et al. (2005) has shown that the AOD retrieval for GOES- 8 is within +/-0.13 of AERONET ground data with a coefficient of correlation of 0.72. Prados (this meeting) will update that study. However, GASP may not be as reliable when it comes to observing smaller AOD events in the northeast where the surface brightness is relatively high. The presence of large cities, such as New York, increases the surface albedo and produces a bright background against which it may be difficult to deduce the AOD. The Moderate Resolution Imaging Spectroradiometer (MODIS) sensor on the Earth Observing System Terra and Aqua platforms provides an independent measurement of the surface albedo at a resolution greater than available on GOES. In this research, the MODIS and GOES surface albedo product for New York, Washington and Baltimore are compared in order to see how we can improve the AOD retrieval in urban areas for air quality applications. Ref: K. Knapp et al. 2005. Toward aerosol optical depth retrievals over land from GOES visible radiances: determining surface reflectance. Int.Journal of Remote Sensing 26, 4097-4116
Validation of CERES-MODIS Arctic cloud properties using CloudSat/CALIPSO and ARM NSA observations
NASA Astrophysics Data System (ADS)
Giannecchini, K.; Dong, X.; Xi, B.; Minnis, P.; Kato, S.
2011-12-01
The traditional passive satellite studies of cloud properties in the Arctic are often affected by the complex surface features present across the region. Nominal visual and thermal contrast exists between Arctic clouds and the snow- and ice-covered surfaces beneath them, which can lead to difficulties in satellite retrievals of cloud properties. However, the addition of active sensors to the A-Train constellation of satellites has increased the availability of validation sources for cloud properties derived from passive sensors in the data-sparse high-latitude regions. In this study, Arctic cloud fraction and cloud heights derived from the NASA CERES team (CERES-MODIS) have been compared with CloudSat/CALIPSO and DOE ARM NSA radar-lidar observations over Barrow, AK, for the two-year period from 2007 to 2008. An Arctic-wide comparison of cloud fraction and height between CERES-MODIS and CloudSat/CALIPSO was then conducted for the same time period. The CERES-MODIS cloud properties, which include cloud fraction and cloud effective heights, were retrieved using the 4-channel VISST (Visible Infrared Solar-Infrared Split-window Technique) [Minnis et al.,1995]. CloudSat/CALIPSO cloud fraction and cloud-base and -top heights were from version RelB1 data products determined by both the 94 GHz radar onboard CloudSat and the lidar on CALIPSO with a vertical resolution of 30 m below 8.2 km and 60 m above. To match the surface and satellite observations/retrievals, the ARM surface observations were averaged into 3-hour intervals centered at the time of the satellite overpass, while satellite observations were averaged within a 3°x3° grid box centered on the Barrow site. The preliminary results have shown that all observed CFs have peaks during April-May and September-October, and dips during winter months (January-February) and summer months (June-July) during the study period of 2007-2008. ARM radar-lidar and CloudSat/CALIPSO show generally good agreement in CF (0.79 vs. 0.74), while CERES-MODIS derived values are much lower (0.60). CERES-MODIS derived cloud effective height (2.7 km) falls between the CloudSat/CALIPSO derived cloud base (0.6 km) and top (6.4 km) and the ARM ceilometers and MMCR derived cloud base (0.9 km) and radar derived cloud top (5.8 km). When extended to the entire Arctic, although the CERES-MODIS and Cloudsat/CALIPSO derived annual mean CFs agree within a few percents, there are significant differences over several regions, and the maximum cloud heights derived from CloudSat/CALIPSO (13.4 km) and CERES-MODIS (10.7 km) show the largest disagreement during early spring.
NASA Technical Reports Server (NTRS)
Huang, Dong; Yang, Wenze; Tan, Bin; Rautiainen, Miina; Zhang, Ping; Hu, Jiannan; Shabanov, Nikolay V.; Linder, Sune; Knyazikhin, Yuri; Myneni, Ranga B.
2006-01-01
The validation of moderate-resolution satellite leaf area index (LAI) products such as those operationally generated from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor data requires reference LAI maps developed from field LAI measurements and fine-resolution satellite data. Errors in field measurements and satellite data determine the accuracy of the reference LAI maps. This paper describes a method by which reference maps of known accuracy can be generated with knowledge of errors in fine-resolution satellite data. The method is demonstrated with data from an international field campaign in a boreal coniferous forest in northern Sweden, and Enhanced Thematic Mapper Plus images. The reference LAI map thus generated is used to assess modifications to the MODIS LAI/fPAR algorithm recently implemented to derive the next generation of the MODIS LAI/fPAR product for this important biome type.
MODIS Validation, Data Merger and Other Activities Accomplished by the SIMBIOS Project: 2002-2003
NASA Technical Reports Server (NTRS)
Fargion, Giulietta S.; McClain, Charles R.
2003-01-01
The purpose of this technical report is to provide current documentation of the Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Project activities, satellite data processing, and data product validation. This documentation is necessary to ensure that critical information is related to the scientific community and NASA management. This critical information includes the technical difficulties and challenges of validating and combining ocean color data from an array of independent satellite systems to form consistent and accurate global bio-optical time series products. This technical report focuses on the SIMBIOS Project s efforts in support of the Moderate-Resolution Imaging Spectroradiometer (MODIS) on the Earth Observing System (EOS) Terra platform (similar evaluations of MODIS/Aqua are underway). This technical report is not meant as a substitute for scientific literature. Instead, it will provide a ready and responsive vehicle for the multitude of technical reports issued by an operational project.
Fontana, Fabio; Rixen, Christian; Jonas, Tobias; Aberegg, Gabriel; Wunderle, Stefan
2008-01-01
This study evaluates the ability to track grassland growth phenology in the Swiss Alps with NOAA-16 Advanced Very High Resolution Radiometer (AVHRR) Normalized Difference Vegetation Index (NDVI) time series. Three growth parameters from 15 alpine and subalpine grassland sites were investigated between 2001 and 2005: Melt-Out (MO), Start Of Growth (SOG), and End Of Growth (EOG). We tried to estimate these phenological dates from yearly NDVI time series by identifying dates, where certain fractions (thresholds) of the maximum annual NDVI amplitude were crossed for the first time. For this purpose, the NDVI time series were smoothed using two commonly used approaches (Fourier adjustment or alternatively Savitzky-Golay filtering). Moreover, AVHRR NDVI time series were compared against data from the newer generation sensors SPOT VEGETATION and TERRA MODIS. All remote sensing NDVI time series were highly correlated with single point ground measurements and therefore accurately represented growth dynamics of alpine grassland. The newer generation sensors VGT and MODIS performed better than AVHRR, however, differences were minor. Thresholds for the determination of MO, SOG, and EOG were similar across sensors and smoothing methods, which demonstrated the robustness of the results. For our purpose, the Fourier adjustment algorithm created better NDVI time series than the Savitzky-Golay filter, since latter appeared to be more sensitive to noisy NDVI time series. Findings show that the application of various thresholds to NDVI time series allows the observation of the temporal progression of vegetation growth at the selected sites with high consistency. Hence, we believe that our study helps to better understand large-scale vegetation growth dynamics above the tree line in the European Alps. PMID:27879852
NASA Astrophysics Data System (ADS)
Alston, E. J.; Sokolik, I. N.
2011-12-01
This study examines how aerosols measured from the ground and space over the U. S. Southeast change temporally over a regional scale and their radiative impacts. PM2.5 data consist of two datasets that represent the measurements that are used for regulatory purposes by the U.S. EPA and continuous measurements used for quickly disseminating air quality information. Aerosol optical depth (AOD) data come from three NASA sensors: the MODIS sensors onboard Terra and Aqua satellites and the MISR sensor onboard the Terra satellite. We analyze all available aerosol data over the state of Georgia from 2000 - 2009. In additional to aerosol data, we examine the surface albedo and cloud cover products from MODIS Terra over the same time period. Strong seasonality is detected in both the AOD and PM2.5 datasets; as evidenced by a threefold increase of AOD from mean winter values to mean summer values, and the increase in PM2.5 concentrations is almost twofold from over the same period. We found good agreement between MODIS and MISR onboard the Terra satellite during the spring and summer having correlation coefficients of 0.64 in spring and 0.71 in summer. Monthly anomalies were used to determine the presence of a trend in the both AODs and PM2.5 aerosol datasets. In addition, radiative transfer modeling was performed to assess the aerosol radiative forcing in the region over the past decade. The results of this analysis suggest that the Southeastern U.S. is experiencing solar brightening likely due to better air quality control policies. Our results also hint that if the brightening continues, the radiative forcing from these aerosols will become less negative, which could have potential impacts on climate for the region.
Fontana, Fabio; Rixen, Christian; Jonas, Tobias; Aberegg, Gabriel; Wunderle, Stefan
2008-04-23
This study evaluates the ability to track grassland growth phenology in the Swiss Alps with NOAA-16 Advanced Very High Resolution Radiometer (AVHRR) Normalized Difference Vegetation Index (NDVI) time series. Three growth parameters from 15 alpine and subalpine grassland sites were investigated between 2001 and 2005: Melt-Out (MO), Start Of Growth (SOG), and End Of Growth (EOG).We tried to estimate these phenological dates from yearly NDVI time series by identifying dates, where certain fractions (thresholds) of the maximum annual NDVI amplitude were crossed for the first time. For this purpose, the NDVI time series were smoothed using two commonly used approaches (Fourier adjustment or alternatively Savitzky-Golay filtering). Moreover, AVHRR NDVI time series were compared against data from the newer generation sensors SPOT VEGETATION and TERRA MODIS. All remote sensing NDVI time series were highly correlated with single point ground measurements and therefore accurately represented growth dynamics of alpine grassland. The newer generation sensors VGT and MODIS performed better than AVHRR, however, differences were minor. Thresholds for the determination of MO, SOG, and EOG were similar across sensors and smoothing methods, which demonstrated the robustness of the results. For our purpose, the Fourier adjustment algorithm created better NDVI time series than the Savitzky-Golay filter, since latter appeared to be more sensitive to noisy NDVI time series. Findings show that the application of various thresholds to NDVI time series allows the observation of the temporal progression of vegetation growth at the selected sites with high consistency. Hence, we believe that our study helps to better understand largescale vegetation growth dynamics above the tree line in the European Alps.
Autumn snow across the Midwest
2013-11-15
An autumn storm brought the first snow of the season to the Upper Mississippi River Valley and the Midwestern United States in early November, 2013. The Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Terra satellite captured this true color image on November 6 just as the storm was clearing. A long band of snow stretching from Colorado in the southwest to Wisconsin in the northeast marked the path of the blowing storm. According to WeatherBug, up to 10 inches blanketed Gordon, Nebraska and Pipestone, Minnesota. Most snow totals in the Central and Northern Plains and Upper Mississippi Valley ranged from 2-5 inches, while Minneapolis-St. Paul metro area picked up 1-2 inches of new snow from the event. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Spatially Complete Global Surface Albedos Derived from Terra/MODIS Data
NASA Technical Reports Server (NTRS)
King, Michael D.; Moody, Eric G.; Platnick, Steven; Schaaf, Crystal B.
2005-01-01
Spectral land surface albedo is an important parameter for describing the radiative properties of the Earth. Accordingly it reflects the consequences of natural and human interactions, such as anthropogenic, meteorological, and phenological effects, on global and local climatological trends. Consequently, albedos are integral parts in a variety of research areas, such as general circulation models (GCMs), energy balance studies, modeling of land use and land use change, and biophysical, oceanographic, and meteorological studies. Recent production of land surface anisotropy, diffuse bihemispherical (white-sky) albedo and direct beam directional hemispherical (black-sky) albedo from observations acquired by the MODIS instruments aboard NASA's Terra and &la satellite platforms have provided researchers with unprecedented spatial, spectral, and temporal information on the land surface's radiative characteristics. Cloud cover, which curtails retrievals, and the presence of ephemeral and seasonal snow limit the snow-free data to approximately half the global land surfaces on an annual equal-angle basis. This precludes the MOD43B3 albedo products from being used in some remote sensing and ground-based applications, &mate models, and global change research projects.
NASA Technical Reports Server (NTRS)
2002-01-01
Because clouds represent an area of great uncertainty in studies of global climate, scientists are interested in better understanding the processes by which clouds form and change over time. In recent years, scientists have turned their attention to the ways in which human-produced aerosol pollution modifies clouds. One area that has drawn scientists' attention is 'ship tracks,' or clouds that form from the sulfate aerosols released by large ships. Although ships are not significant sources of pollution themselves, they do release enough sulfur dioxide in the exhaust from their smokestacks to modify overlying clouds. Specifically, the aerosol particles formed by the ship exhaust in the atmosphere cause the clouds to be more reflective, carry more water, and possibly inhibit them from precipitating. This is one example of how humans have been creating and modifying clouds for generations through the burning of fossil fuels. This image was acquired over the northern Pacific Ocean by the Moderate-resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra satellite, on April 29, 2002. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC
NASA Technical Reports Server (NTRS)
2002-01-01
Temperate and green in the summer, the Kamchatka Peninsula in northeastern Russia freezes over completely in the winter. This true-color image of the Kamchatka Peninsula was acquired on December 12, 2001, by the Moderate-resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra spacecraft. The peninsula is surrounded by the Sea of Okhotsk to the west and by the Bering Sea to the east. The ice and snow highlight the stunning valleys and tall peaks of the Sredinnyy Khrebet, which is the volcanic mountain range running down the center of the peninsula. The mountains along the range reach heights of over 3500 meters (11,484 feet). Many of the volcanoes are still active, and ash and volcanic rock has turned the snow a dark gray on the eastern side of the range. The light blue latticework of ridges, valleys, and alluvial fans extending from the center of the range were likely carved out by past and present glaciers and by run-off from spring snowmelt. The small island that extends off of the tip of the peninsula is Ostrov Paramushir (Paramushir Island). Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC
Eruption of Eyjafjallajökull Volcano, Iceland
2017-12-08
March 31, 2010..The volcanic eruption near Eyjafjallajökull persists into its second week, with continued lava fountaining and lava flows spilling into nearby canyons. The eruption is located at the Fimmvörduháls Pass between the Eyjafjallajökull ice field to the west (left) and the Mýrdalsjökull ice field to the east (right). This natural-color satellite image was acquired on March 26, 2010, by the MODIS aboard NASA’s Terra satellite. Dark ash and scoria cover the northern half of the Fimmvörduháls Pass. White snow covers the rest of the pass, sandwiched between white glaciers. Snow-free land is tan, brown, or dark gray, devoid of vegetation in early spring. To download a high res version of this image go to: modis.gsfc.nasa.gov/gallery/individual.php?db_date=2010-0... NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.
Fires in Shenandoah National Park
NASA Technical Reports Server (NTRS)
2002-01-01
A large smoke plume has been streaming eastward from Virginia's Shenandoah National Park near Old Rag Mountain. Based on satellite images, it appears the blaze started sometime between October 30 and 31. This true-color image of the fire was obtained on November 1, 2000 by the Moderate-resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra spacecraft. Thermal Infrared data, overlaid on the color image, reveals the presence of two active fires underneath the smoke plume. The northern fire (upper) is burning near the Pinnacles Picnic Area along Skyline Drive. The southern fire (lower) is on Old Rag Mountain. Old Rag is one of the most popular hikes in the Washington, DC area, and features extremely rugged terrain, with granite cliffs up to 90 feet high. This scene was produced using MODIS direct broadcast data received and processed at the Space Science and Engineering Center, University of Wisconsin-Madison. The smoke plume appears blue-grey while the red and yellow pixels show the locations of the smoldering and flaming portions of the fire, respectively. Image by Liam Gumley, Cooperative Institute for Meteorological Satellite Studies, and Robert Simmon, NASA GSFC
Canadian Smoke Now Over U.S. East Coast
2017-12-08
The smoke from the Canadian wildfires that was in the middle of the U.S. on June 30 has drifted its way to the East Coast obscuring parts of the coast from New Jersey to North Carolina. Images taken on June 30 showed the smoke covering states from Minnesota to Tennessee. The jet stream has pushed the smoke along so that by July 1 it reached the U.S. East Coast. Residents of the area will get a preview of July 4th fireworks with redder than usual sunrises and sunsets due to particulates in the air. This natural-color satellite image was collected by the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Aqua satellite on July 1, 2015. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Technical Reports Server (NTRS)
2002-01-01
Heavy rains in Central and Eastern Europe over the past few weeks have led to some of the worst flooding the region has witnessed in over a century. The floods have killed more than 100 people in Germany, Russia, Austria, Hungary and the Czech Republic and have led to as much as $20 billion in damage. This false-color image of the Danube River and its tributaries was taken on August 19, 2002, by the Moderate Resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra satellite. Budapest, the capital of Hungary, sits just south of the large bend in the river at the top of the image. Here the water reached levels not seen since 1965. Fortunately, the riverbanks are lined with 33-foot retainer walls throughout the city, so it did not face the same fate as Dresden or Prague along the Elbe River. But as one can see, the floodwaters hit many rural areas farther south. As last reported, the water was receding along the Danube. Credit: Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC.
Kim, Hae-Cheol; Son, Seunghyun; Kim, Yong Hoon; Khim, Jong Seong; Nam, Jungho; Chang, Won Keun; Lee, Jung-Ho; Lee, Chang-Hee; Ryu, Jongseong
2017-08-15
The Yellow Sea is a shallow marginal sea with a large tidal range. In this study, ten areas located along the western coast of the Korean Peninsula are investigated with respect to remotely sensed water quality indicators derived from NASA MODIS aboard of the satellite Aqua. We found that there was a strong seasonal trend with spatial heterogeneity. In specific, a strong six-month phase-lag was found between chlorophyll-a and total suspended solid owing to their inversed seasonality, which could be explained by different dynamics and environmental settings. Chlorophyll-a concentration seemed to be dominantly influenced by temperature, while total suspended solid was largely governed by local tidal forcing and bottom topography. This study demonstrated the potential and applicability of satellite products in coastal management, and highlighted find that remote-sensing would be a promising tool in resolving orthogonality of large spatio-temporal scale variabilities when combining with proper time series analyses. Copyright © 2017 Elsevier Ltd. All rights reserved.
2015-10-26
On October 17, 2015, the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Terra satellite captured this true-color image of a thick haze hanging over eastern China. In the north, the large city of Beijing is completely obscured from view, as is much of the landscape. The haze thins slightly over the Bohai Sea. Further south, sediment pours into the East China Sea near the city of Shanghai. Heavy haze is common in this region, and tends to worsen in October through January, when cold, heavy air traps pollutants near the surface of the Earth. It is likely that this scene was caused by such a temperature inversion. Normally, air is warmest near the surface of the Earth. But sometimes a mass of warm air will move the cooler air, so the atmosphere actually warms with the altitude. Cool air does not have energy to rise through the warm air, vertical circulation slows and air becomes trapped near the surface. Any pollution that is emitted into the cooler air will also get trapped, increasing low-level air pollution and haze. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team
NASA Technical Reports Server (NTRS)
Franz, B. A.; Behrenfeld, M. J.; Siegel, D. A.; Werdell, P. J.
2014-01-01
Marine phytoplankton are responsible for roughly half the net primary production (NPP) on Earth, fixing atmospheric CO2 into food that fuels global ocean ecosystems and drives the ocean's biogeochemical cycles. Phytoplankton growth is highly sensitive to variations in ocean physical properties, such as upper ocean stratification and light availability within this mixed layer. Satellite ocean color sensors, such as the Sea-viewing Wide Field-of-view Sensor (SeaWiFS; McClain 2009) and Moderate Resolution Imaging Spectroradiometer (MODIS; Esaias 1998), provide observations of sufficient frequency and geographic coverage to globally monitor physically-driven changes in phytoplankton distributions. In practice, ocean color sensors retrieve the spectral distribution of visible solar radiation reflected upward from beneath the ocean surface, which can then be related to changes in the photosynthetic phytoplankton pigment, chlorophyll- a (Chla; measured in mg m-3). Here, global Chla data for 2013 are evaluated within the context of the 16-year continuous record provided through the combined observations of SeaWiFS (1997-2010) and MODIS on Aqua (MODISA; 2002-present). Ocean color measurements from the recently launched Visible and Infrared Imaging Radiometer Suite (VIIRS; 2011-present) are also considered, but results suggest that the temporal calibration of the VIIRS sensor is not yet sufficiently stable for quantitative global change studies. All MODISA (version 2013.1), SeaWiFS (version 2010.0), and VIIRS (version 2013.1) data presented here were produced by NASA using consistent Chla algorithms.
32 CFR 813.2 - Sources of VIDOC.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) Air Digital Recorder (ADR) images from airborne imagery systems, such as heads up displays, radar scopes, and images from electro-optical sensors carried aboard aircraft and weapons systems. (e...
32 CFR 813.2 - Sources of VIDOC.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Air Digital Recorder (ADR) images from airborne imagery systems, such as heads up displays, radar scopes, and images from electro-optical sensors carried aboard aircraft and weapons systems. (e...
32 CFR 813.2 - Sources of VIDOC.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) Air Digital Recorder (ADR) images from airborne imagery systems, such as heads up displays, radar scopes, and images from electro-optical sensors carried aboard aircraft and weapons systems. (e...
32 CFR 813.2 - Sources of VIDOC.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) Air Digital Recorder (ADR) images from airborne imagery systems, such as heads up displays, radar scopes, and images from electro-optical sensors carried aboard aircraft and weapons systems. (e...
32 CFR 813.2 - Sources of VIDOC.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Air Digital Recorder (ADR) images from airborne imagery systems, such as heads up displays, radar scopes, and images from electro-optical sensors carried aboard aircraft and weapons systems. (e...
A PIXEL COMPOSITION-BASED REFERENCE DATA SET FOR THEMATIC ACCURACY ASSESSMENT
Developing reference data sets for accuracy assessment of land-cover classifications derived from coarse spatial resolution sensors such as MODIS can be difficult due to the large resolution differences between the image data and available reference data sources. Ideally, the spa...
Sun glint requirement for the remote detection of surface oil films
NASA Astrophysics Data System (ADS)
Sun, Shaojie; Hu, Chuanmin
2016-01-01
Natural oil slicks in the western Gulf of Mexico are used to determine the sun glint threshold required for optical remote sensing of oil films. The threshold is determined using the same-day image pairs collected by Moderate Resolution Imaging Spectroradiometer (MODIS) Terra (MODIST), MODIS Aqua (MODISA), and Visible Infrared Imaging Radiometer Suite (VIIRS) (N = 2297 images) over the same oil slick locations where at least one of the sensors captures the oil slicks. For each sensor, statistics of sun glint strengths, represented by the normalized glint reflectance (LGN, sr-1), when oil slicks can and cannot be observed are generated. The LGN threshold for oil film detections is determined to be 10-5-10-6 sr-1 for MODIST and MODISA, and 10-6-10-7 sr-1 for VIIRS. Below these thresholds, no oil films can be detected, while above these thresholds, oil films can always be detected except near the critical-angle zone where oil slicks reverse their contrast against the background water.
Kooistra, Lammert; Bergsma, Aldo; Chuma, Beatus; de Bruin, Sytze
2009-01-01
This paper describes the development of a sensor web based approach which combines earth observation and in situ sensor data to derive typical information offered by a dynamic web mapping service (WMS). A prototype has been developed which provides daily maps of vegetation productivity for the Netherlands with a spatial resolution of 250 m. Daily available MODIS surface reflectance products and meteorological parameters obtained through a Sensor Observation Service (SOS) were used as input for a vegetation productivity model. This paper presents the vegetation productivity model, the sensor data sources and the implementation of the automated processing facility. Finally, an evaluation is made of the opportunities and limitations of sensor web based approaches for the development of web services which combine both satellite and in situ sensor sources. PMID:22574019
NASA Technical Reports Server (NTRS)
Zhang, Yan
2012-01-01
Quantifying above-cloud aerosols can help improve the assessment of aerosol intercontinental transport and climate impacts. Large-scale measurements of aerosol above low-level clouds had been generally unexplored until very recently when CALIPSO lidar started to acquire aerosol and cloud profiles in June 2006. Despite CALIPSO s unique capability of measuring above-cloud aerosol optical depth (AOD), such observations are substantially limited in spatial coverage because of the lidar s near-zero swath. We developed an approach that integrates measurements from A-Train satellite sensors (including CALIPSO lidar, OMI, and MODIS) to extend CALIPSO above-cloud AOD observations to substantially larger areas. We first examine relationships between collocated CALIPSO above-cloud AOD and OMI absorbing aerosol index (AI, a qualitative measure of AOD for elevated dust and smoke aerosol) as a function of MODIS cloud optical depth (COD) by using 8-month data in the Saharan dust outflow and southwest African smoke outflow regions. The analysis shows that for a given cloud albedo, above-cloud AOD correlates positively with AI in a linear manner. We then apply the derived relationships with MODIS COD and OMI AI measurements to derive above-cloud AOD over the whole outflow regions. In this talk, we will present spatial and day-to-day variations of the above-cloud AOD and the estimated direct radiative forcing by the above-cloud aerosols.
Registration and Fusion of Multiple Source Remotely Sensed Image Data
NASA Technical Reports Server (NTRS)
LeMoigne, Jacqueline
2004-01-01
Earth and Space Science often involve the comparison, fusion, and integration of multiple types of remotely sensed data at various temporal, radiometric, and spatial resolutions. Results of this integration may be utilized for global change analysis, global coverage of an area at multiple resolutions, map updating or validation of new instruments, as well as integration of data provided by multiple instruments carried on multiple platforms, e.g. in spacecraft constellations or fleets of planetary rovers. Our focus is on developing methods to perform fast, accurate and automatic image registration and fusion. General methods for automatic image registration are being reviewed and evaluated. Various choices for feature extraction, feature matching and similarity measurements are being compared, including wavelet-based algorithms, mutual information and statistically robust techniques. Our work also involves studies related to image fusion and investigates dimension reduction and co-kriging for application-dependent fusion. All methods are being tested using several multi-sensor datasets, acquired at EOS Core Sites, and including multiple sensors such as IKONOS, Landsat-7/ETM+, EO1/ALI and Hyperion, MODIS, and SeaWIFS instruments. Issues related to the coregistration of data from the same platform (i.e., AIRS and MODIS from Aqua) or from several platforms of the A-train (i.e., MLS, HIRDLS, OMI from Aura with AIRS and MODIS from Terra and Aqua) will also be considered.
Trend analysis of the aerosol optical depth from fusion of MISR and MODIS retrievals over China
NASA Astrophysics Data System (ADS)
Guo, Jing; Gu, Xingfa; Yu, Tao; Cheng, Tianhai; Chen, Hao
2014-03-01
Atmospheric aerosol plays an important role in the climate change though direct and indirect processes. In order to evaluate the effects of aerosols on climate, it is necessary to have a research on their spatial and temporal distributions. Satellite aerosol remote sensing is a developing technology that may provide good temporal sampling and superior spatial coverage to study aerosols. The Moderate Resolution Imaging Spectroradiometer (MODIS) and Multi-angle Imaging Spectroradiometer (MISR) have provided aerosol observations since 2000, with large coverage and high accuracy. However, due to the complex surface, cloud contamination, and aerosol models used in the retrieving process, the uncertainties still exist in current satellite aerosol products. There are several observed differences in comparing the MISR and MODIS AOD data with the AERONET AOD. Combing multiple sensors could reduce uncertainties and improve observational accuracy. The validation results reveal that a better agreement between fusion AOD and AERONET AOD. The results confirm that the fusion AOD values are more accurate than single sensor. We have researched the trend analysis of the aerosol properties over China based on nine-year (2002-2010) fusion data. Compared with trend analysis in Jingjintang and Yangtze River Delta, the accuracy has increased by 5% and 3%, respectively. It is obvious that the increasing trend of the AOD occurred in Yangtze River Delta, where human activities may be the main source of the increasing AOD.
Matsu: An Elastic Cloud Connected to a SensorWeb for Disaster Response
NASA Technical Reports Server (NTRS)
Mandl, Daniel
2011-01-01
This slide presentation reviews the use of cloud computing combined with the SensorWeb in aiding disaster response planning. Included is an overview of the architecture of the SensorWeb, and overviews of the phase 1 of the EO-1 system and the steps to improve it to transform it to an On-demand product cloud as part of the Open Cloud Consortium (OCC). The effectiveness of this system is demonstrated in the SensorWeb for the Namibia flood in 2010, using information blended from MODIS, TRMM, River Gauge data, and the Google Earth version of Namibia the system enabled river surge predictions and could enable planning for future disaster responses.
NASA's Aqua Satellite Sees Partial Solar Eclipse Effect in Alaska
2017-12-08
This image shows how the partial solar eclipse darkened clouds over Alaska. It was taken on Oct. 23 at 21:10 UTC (5:10 p.m. EDT) by the Moderate Resolution Imaging Spectroradiometer instrument that flies aboard NASA's Aqua satellite. Credit: NASA Goddard MODIS Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Technical Reports Server (NTRS)
2002-01-01
This spectacular Moderate Resolution Imaging Spectroradiometer (MODIS) 'blue marble' image is based on the most detailed collection of true-color imagery of the entire Earth to date. Using a collection of satellite-based observations, scientists and visualizers stitched together months of observations of the land surface, oceans, sea ice, and clouds into a seamless, true-color mosaic of every square kilometer (.386 square mile) of our planet. Most of the information contained in this image came from MODIS, illustrating MODIS' outstanding capacity to act as an integrated tool for observing a variety of terrestrial, oceanic, and atmospheric features of the Earth. The land and coastal ocean portions of this image is based on surface observations collected from June through September 2001 and combined, or composited, every eight days to compensate for clouds that might block the satellite's view on any single day. Global ocean color (or chlorophyll) data was used to simulate the ocean surface. MODIS doesn't measure 3-D features of the Earth, so the surface observations were draped over topographic data provided by the U.S. Geological Survey EROS Data Center. MODIS observations of polar sea ice were combined with observations of Antarctica made by the National Oceanic and Atmospheric Administration's AVHRR sensor-the Advanced Very High Resolution Radiometer. The cloud image is a composite of two days of MODIS imagery collected in visible light wavelengths and a third day of thermal infra-red imagery over the poles. A large collection of imagery based on the blue marble in a variety of sizes and formats, including animations and the full (1 km) resolution imagery, is available at the Blue Marble page. Image by Reto Stockli, Render by Robert Simmon. Based on data from the MODIS Science Team
NASA Astrophysics Data System (ADS)
Faulkner Burkhart, John; Kylling, Arve; Schaaf, Crystal B.; Wang, Zhuosen; Bogren, Wiley; Storvold, Rune; Solbø, Stian; Pedersen, Christina A.; Gerland, Sebastian
2017-07-01
Albedo is a fundamental parameter in earth sciences, and many analyses utilize the Moderate Resolution Imaging Spectroradiometer (MODIS) bidirectional reflectance distribution function (BRDF)/albedo (MCD43) algorithms. While derivative albedo products have been evaluated over Greenland, we present a novel, direct comparison with nadir surface reflectance collected from an unmanned aerial system (UAS). The UAS was flown from Summit, Greenland, on 210 km transects coincident with the MODIS sensor overpass on board the Aqua and Terra satellites on 5 and 6 August 2010. Clear-sky acquisitions were available from the overpasses within 2 h of the UAS flights. The UAS was equipped with upward- and downward-looking spectrometers (300-920 nm) with a spectral resolution of 10 nm, allowing for direct integration into the MODIS bands 1, 3, and 4. The data provide a unique opportunity to directly compare UAS nadir reflectance with the MODIS nadir BRDF-adjusted surface reflectance (NBAR) products. The data show UAS measurements are slightly higher than the MODIS NBARs for all bands but agree within their stated uncertainties. Differences in variability are observed as expected due to different footprints of the platforms. The UAS data demonstrate potentially large sub-pixel variability of MODIS reflectance products and the potential to explore this variability using the UAS as a platform. It is also found that, even at the low elevations flown typically by a UAS, reflectance measurements may be influenced by haze if present at and/or below the flight altitude of the UAS. This impact could explain some differences between data from the two platforms and should be considered in any use of airborne platforms.
Direct Temperature Measurements during Netlander Descent on Mars
NASA Astrophysics Data System (ADS)
Colombatti, G.; Angrilli, F.; Ferri, F.; Francesconi, A.; Fulchignoni, M.; Lion Stoppato, P. F.; Saggi, B.
1999-09-01
A new design for a platinum thermoresistance temperature sensor has been developed and tested in Earth's atmosphere and stratosphere. It will be one of the sensors equipping the scientific package ATMIS (Atmospheric and Meteorology Instrument System), which will be devoted to the measurement of the meteorological parameters during both the entry/descent phase and the surface phase, aboard the Netlanders. In particular vertical profiles of temperature, density and pressure will allow the resolution of vertical gradients to investigate the atmospheric structure and dynamics. In view of the future missions to Mars, Netlander represents a unique chance to increase significantly the climate record both in time and in space, doubling the current knowledge of the atmospheric parameters. Furthermore is the only opportunity to conduct direct measurement of temperature and pressure (outside the boundary layer of the airbags used for the landing). The temperature sensor proposed is a platinum thermoresistance, enhancement of HASI TEM (Cassini/Huygens Mission); a substantial improvement of the performances, i.e. a faster dynamic response, has been obtained. Two different prototypes of new design sensor have been built, laboratory test are proceeding and the second one has been already flown aboard a stratospheric balloon.
NASA Astrophysics Data System (ADS)
Jiang, C.; Ryu, Y.; Fang, H.
2016-12-01
Proper usage of global satellite LAI products requires comprehensive evaluation. To address this issue, the Committee on Earth Observation Satellites (CEOS) Land Product Validation (LPV) subgroup proposed a four-stage validation hierarchy. During the past decade, great efforts have been made following this validation framework, mainly focused on absolute magnitude, seasonal trajectory, and spatial pattern of those global satellite LAI products. However, interannual variability and trends of global satellite LAI products have been investigated marginally. Targeting on this gap, we made an intercomparison between seven global satellite LAI datasets, including four short-term ones: MODIS C5, MODIS C6, GEOV1, MERIS, and three long-term products ones: LAI3g, GLASS, and GLOBMAP. We calculated global annual LAI time series for each dataset, among which we found substantial differences. During the overlapped period (2003 - 2011), MODIS C5, GLASS and GLOBMAP have positive correlation (r > 0.6) between each other, while MODIS C6, GEOV1, MERIS, and LAI3g are highly consistent (r > 0.7) in interannual variations. However, the previous three datasets show negative trends, all of which use MODIS C5 reflectance data, whereas the latter four show positive trends, using MODIS C6, SPOT/VGT, ENVISAT/MERIS, and NOAA/AVHRR, respectively. During the pre-MODIS era (1982 - 1999), the three AVHRR-based datasets (LAI3g, GLASS and GLOBMAP) agree well (r > 0.7), yet all of them show oscillation related with NOAA platform changes. In addition, both GLASS and GLOBMAP show clear cut-points around 2000 when they move from AVHRR to MODIS. Such inconsistency is also visible for GEOV1, which uses SPOT-4 and SPOT-5 before and after 2002. We further investigate the map-to-map deviations among these products. This study highlights that continuous sensor calibration and cross calibration are essential to obtain reliable global LAI time series.
NASA Astrophysics Data System (ADS)
Sun, Junqiang; Madhavan, S.; Wang, M.
2016-09-01
MODerate resolution Imaging Spectroradiometer (MODIS), a remarkable heritage sensor in the fleet of Earth Observing System for the National Aeronautics and Space Administration (NASA) is in space orbit on two spacecrafts. They are the Terra (T) and Aqua (A) platforms which tracks the Earth in the morning and afternoon orbits. T-MODIS has continued to operate over 15 years easily surpassing the 6 year design life time on orbit. Of the several science products derived from MODIS, one of the primary derivatives is the MODIS Cloud Mask (MOD035). The cloud mask algorithm incorporates several of the MODIS channels in both reflective and thermal infrared wavelengths to identify cloud pixels from clear sky. Two of the thermal infrared channels used in detecting clouds are the 6.7 μm and 8.5 μm. Based on a difference threshold with the 11 μm channel, the 6.7 μm channel helps in identifying thick high clouds while the 8.5 μm channel being useful for identifying thin clouds. Starting 2010, it had been observed in the cloud mask products that several pixels have been misclassified due to the change in the thermal band radiometry. The long-term radiometric changes in these thermal channels have been attributed to the electronic crosstalk contamination. In this paper, the improvement in cloud detection using the 6.7 μm and 8.5 μm channels are demonstrated using the electronic crosstalk correction. The electronic crosstalk phenomena analysis and characterization were developed using the regular moon observation of MODIS and reported in several works. The results presented in this paper should significantly help in improving the MOD035 product, maintaining the long term dataset from T-MODIS which is important for global change monitoring.
Flooding on Russia's Lena River
NASA Technical Reports Server (NTRS)
2002-01-01
Nearly every year in the late spring, ice blocks the flow of water at the mouth of the Lena River in northeastern Russia and gives rise to floods across the Siberian plains. This year's floods can be seen in this image taken on June 2, 2002, by the MODIS (Moderate Resolution Imaging Spectroradiometer) instrument aboard the Terra satellite. The river runs down the left side of the image, and its delta is shrouded in ice (red) at the top of the image. Normally, the river would resemble a thin black line in MODIS imagery. The river, which is Russia's longest, flows 2,641 miles (4,250 kilometers) south to north through Siberia and into the Laptev Sea. In the winter, the river becomes nearly frozen. In the spring, however, water upstream thaws earlier than water at the mouth of the river. As the southern end of the river begins to melt, blocks of ice travel downstream to the still frozen delta, pile up, and often obstruct the flow of water. Flooding doesn't always occur on the same parts of the river. The floods hit further south last year. If the flooding grows severe enough, explosive charges are typically used to break up the ice jams. In these false-color images land areas are a dull, light green or tan, and water is black. Clouds appear pink, and ice comes across as bright red. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC
Unsettled weather across central Australia
2017-12-08
In late July 2013, a low pressure system off Australia’s southeast coast and moist onshore winds combined to create unsettled weather across central Australia – and a striking image of a broad cloud band across the stark winter landscape. The Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Terra satellite captured this true-color image on July 22 at 01:05 UTC (10:35 a.m. Australian Central Standard Time). To the west of the low pressure trough the skies are clear and dry. To the east, the broad band of bright white clouds obscures the landscape. The system brought wind, precipitation and cooler temperatures to the region. The same day as MODIS captured this image, the Naval Research Lab (NRL) published an edition of the Global Storm Tracker (GST), which gave a world-wide view of the low-pressure systems across the world. This tracker shows the entire cloud band across Australia, as well as the location of the low pressure system. A good view of the Storm Tracker is provided by Red Orbit at: www.redorbit.com/media/uploads/2013/07/072213-weather-003... Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Glory over clouds off West Africa
2017-12-08
On April 23, 2013 NASA’s Terra satellite passed off the coast of West Africa, allowing the Moderate Resolution Imaging Spectroradiometer (MODIS) flying aboard to capture a curious phenomenon over the cloud deck below. The rainbow-like discoloration that can be seen streaking across the bank of marine cumulus clouds near the center of this image is known as a “glory”. A glory is caused by the scattering of sunlight by a cloud made of water droplets that are all roughly the same size, and is only produced when the light is just right. In order for a glory to be viewed, the observer’s anti-solar point must fall on the cloud deck below. In this case the observer is the Terra satellite, and the anti-solar point is where the sun is directly behind you – 180° from the MODIS line of sight. Water and ice particles in the cloud bend the light, breaking it into all its wavelengths, and the result is colorful flare, which may contain all of the colors of the rainbow. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Astrophysics Data System (ADS)
Chen, Shengbo
2006-01-01
Geothermal resources are generally confined to areas of the Earth's crust where heat flow higher than in surrounding areas heats the water contained in permeable rocks (reservoirs) at depth. It is becoming one of attractive solutions for clean and sustainable energy future for the world. The geothermal fields commonly occurs at the boundaries of plates, and only occasionally in the middle of a plate. The study area, Jiangsu Province, as an example, located in the east of China, is a potential area of geothermal energy. In this study, Landsat thematic Mapper (TM) data were georeferenced to position spatially the geothermal energy in the study area. Multi-spectral infrared data of Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Terra platform were georeferenced to Landsat TM images. Based on the Wien Displacement Law, these infrared data indicate the surface emitted radiance under the same atmospheric condition, and stand for surface bright temperature respectively. Thus, different surface bright temperature data from Terra-MODIS band 20 or band 31 (R), together with Landsat TM band 4 (G) and band 3 (B) separately, were made up false color composite images (RGB) to generate the distribution maps of surface bright temperatures. Combing with geologic environment and geophysical anomalies, the potential area of geothermal energy with different geo-temperature were mapped respectively. Specially, one geothermal spot in Qinhu Lake Scenery Area in Taizhou city was validated by drilling, and its groundwater temperature is up to some 51°.
System Measures Pressures Aboard A Compressor Rotor
NASA Technical Reports Server (NTRS)
Freedman, Robert J.; Senyitko, Richard G.; Blumenthal, Philip Z.
1994-01-01
Rotating pressure-measuring instrumentation includes on-board calibration standard. Computer-controlled, multichannel instrumentation system acquires pressure measurements from sensors mounted in 1.52-m-diameter rotor of compressor. Includes 5 miniature, electronically scanned pressure (ESP) modules, each containing 48 piezoresistive pressure sensors, pneumatic calibration valve, and electronic circuits for addressing and amplifying output of each sensor. Modules mounted on centerline of rotor, on instrumentation tower located inside nose cone of rotor. Subsystem designed to convert analog signal to distinct frequency without significantly affecting accuracy.
NASA Technical Reports Server (NTRS)
1971-01-01
The earth observations capability of the space station and space shuttle program definition is discussed. The stress in the functional program element has been to update the sensor specifications and to shift some of the emphasis from sensors to experiments to be done aboard the facility. The earth observations facility will include provisions for data acquisition, sensor control and display, data analysis, and maintenance and repair. The facility is research and development in nature with a potential for operational applications.
NASA Technical Reports Server (NTRS)
Salomonson, Vincent V.
2002-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) on the Earth Observing System (EOS) Terra Mission began to produce data in February 2000. Now, approximately 2 years from that time, the instrument is operating well. All subsystems of the instrument are performing as expected, the signal-to-noise (S/N) performance meets or exceeds specifications, band-to-band registration meets specifications, geodetic registration of observations is nearing 50 meters (one sigma) and the spectral bands are located where they were intended to be pre-launch and attendant gains and offsets are stable to date. The data systems have performed well and are producing a wide variety of data products useful for scientific and applications studies in relatively consistent fashion extending from November 2000 to the present. Within the approximately 40 MODIS data products, several are new and represent powerful and exciting capabilities. The remainder of the MODIS products exceed or, at a minimum, match the capabilities of products from heritage sensors such as, for example, the Advanced Very High Resolution Radiometer (AVHRR). Efforts are underway to provide data sets for the greater Earth science community and to improve access to these products at the various Distributed Active Archive Centers (DAAC's) or through Direct Broadcast (DB) stations. The MODIS instrument on the EOS Aqua mission should also be expected to be in orbit and functioning in the Spring of 2002.
NASA Astrophysics Data System (ADS)
Patadia, Falguni; Levy, Robert C.; Mattoo, Shana
2018-06-01
Retrieving aerosol optical depth (AOD) from top-of-atmosphere (TOA) satellite-measured radiance requires separating the aerosol signal from the total observed signal. Total TOA radiance includes signal from the underlying surface and from atmospheric constituents such as aerosols, clouds and gases. Multispectral retrieval algorithms, such as the dark-target (DT) algorithm that operates upon the Moderate Resolution Imaging Spectroradiometer (MODIS, on board Terra and Aqua satellites) and Visible Infrared Imaging Radiometer Suite (VIIRS, on board Suomi-NPP) sensors, use wavelength bands in window
regions. However, while small, the gas absorptions in these bands are non-negligible and require correction. In this paper, we use the High-resolution TRANsmission (HITRAN) database and Line-By-Line Radiative Transfer Model (LBLRTM) to derive consistent gas corrections for both MODIS and VIIRS wavelength bands. Absorptions from H2O, CO2 and O3 are considered, as well as other trace gases. Even though MODIS and VIIRS bands are similar
, they are different enough that applying MODIS-specific gas corrections to VIIRS observations results in an underestimate of global mean AOD (by 0.01), but with much larger regional AOD biases of up to 0.07. As recent studies have been attempting to create a long-term data record by joining multiple satellite data sets, including MODIS and VIIRS, the consistency of gas correction has become even more crucial.
Nagler, Pamela L.; Pearlstein, Susanna; Glenn, Edward P.; Brown, Tim B.; Bateman, Heather L.; Bean, Dan W.; Hultine, Kevin R.
2013-01-01
We measured the rate of dispersal of saltcedar leaf beetles (Diorhabda carinulata), a defoliating insect released on western rivers to control saltcedar shrubs (Tamarix spp.), on a 63 km reach of the Virgin River, U.S. Dispersal was measured by satellite imagery, ground surveys and phenocams. Pixels from the Moderate Resolution Imaging Spectrometer (MODIS) sensors on the Terra satellite showed a sharp drop in NDVI in midsummer followed by recovery, correlated with defoliation events as revealed in networked digital camera images and ground surveys. Ground surveys and MODIS imagery showed that beetle damage progressed downstream at a rate of about 25 km yr−1 in 2010 and 2011, producing a 50% reduction in saltcedar leaf area index and evapotranspiration by 2012, as estimated by algorithms based on MODIS Enhanced Vegetation Index values and local meteorological data for Mesquite, Nevada. This reduction is the equivalent of 10.4% of mean annual river flows on this river reach. Our results confirm other observations that saltcedar beetles are dispersing much faster than originally predicted in pre-release biological assessments, presenting new challenges and opportunities for land, water and wildlife managers on western rivers. Despite relatively coarse resolution (250 m) and gridding artifacts, single MODIS pixels can be useful in tracking the effects of defoliating insects in riparian corridors.
NASA Astrophysics Data System (ADS)
Levitan, Nathaniel; Gross, Barry
2016-10-01
New, high-resolution aerosol products are required in urban areas to improve the spatial coverage of the products, in terms of both resolution and retrieval frequency. These new products will improve our understanding of the spatial variability of aerosols in urban areas and will be useful in the detection of localized aerosol emissions. Urban aerosol retrieval is challenging for existing algorithms because of the high spatial variability of the surface reflectance, indicating the need for improved urban surface reflectance models. This problem can be stated in the language of novelty detection as the problem of selecting aerosol parameters whose effective surface reflectance spectrum is not an outlier in some space. In this paper, empirical orthogonal functions, a reconstruction-based novelty detection technique, is used to perform single-pixel aerosol retrieval using the single angular and temporal sample provided by the MODIS sensor. The empirical orthogonal basis functions are trained for different land classes using the MODIS BRDF MCD43 product. Existing land classification products are used in training and aerosol retrieval. The retrieval is compared against the existing operational MODIS 3 KM Dark Target (DT) aerosol product and co-located AERONET data. Based on the comparison, our method allows for a significant increase in retrieval frequency and a moderate decrease in the known biases of MODIS urban aerosol retrievals.
Evaluation of the MODIS Albedo Product over a Heterogeneous Agricultural Area
NASA Technical Reports Server (NTRS)
Sobrino, Jose Antonio; Franch, B.; Oltra-Carrio, R.; Vermote, E. F.; Fedele, E.
2013-01-01
In this article, the Moderate Resolution Imaging Spectroradiometer (MODIS) Bidirectional Reflectance Distribution Function (BRDF)/Albedo product (MCD43) is evaluated over a heterogeneous agricultural area in the framework of the Earth Observation: Optical Data Calibration and Information Extraction (EODIX) project campaign, which was developed in Barrax (Spain) in June 2011. In this method, two models, the RossThick-LiSparse-Reciprocal (RTLSR) (which corresponds to the MODIS BRDF algorithm) and the RossThick-Maignan-LiSparse-Reciprocal (RTLSR-HS), were tested over airborne data by processing high-resolution images acquired with the Airborne Hyperspectral Scanner (AHS) sensor. During the campaign, airborne images were retrieved with different view zenith angles along the principal and orthogonal planes. Comparing the results of applying the models to the airborne data with ground measurements, we obtained a root mean square error (RMSE) of 0.018 with both RTLSR and RTLSR-HS models. The evaluation of the MODIS BRDF/Albedo product (MCD43) was performed by comparing satellite images with AHS estimations. The results reported an RMSE of 0.04 with both models. Additionally, taking advantage of a homogeneous barley pixel, we compared in situ albedo data to satellite albedo data. In this case, the MODIS albedo estimation was (0.210 +/- 0.003), while the in situ measurement was (0.204 +/- 0.003). This result shows good agreement in regard to a homogeneous pixel.
NASA Astrophysics Data System (ADS)
Bleiweiss, M. P.; Rampini, A.; Pepe, M.; Rango, A.; Steele, C.; Stein, W. L.; Schmugge, T.
2008-12-01
Current efforts for simulating or forecasting snowmelt are time-consuming and laborious; the AWARE project (A tool for monitoring and forecasting Available WAter REsource in mountain environments) has been motivated by the urgent need to facilitate the prediction of medium-term flows from snowmelt for an effective and sustainable water resources management. Its main goal is to provide innovative tools for monitoring and predicting water availability and distribution in drainage basins where snowmelt is a major component of the annual water balance. The particular objective of the effort reported here is to compare results obtained from the MODIS sensor on NASA Terra and Aqua satellite and next generation sensors AATSR and MERIS on board ESA Envisat satellite. The vehicle for this comparison is the AWARE Geoportal (http://www.aware- eu.info/eng/home.htm) which is a WWW implementation of the Snowmelt Runoff Model (SRM). The river basin chosen for analysis is the Upper Rio Grande of North America. The time period for analysis encompasses the Water Years 2005, 2006, and 2007 (October 2004 - September 2007). The reason for this is to ensure that data from all three sensors are available for use and to investigate variable climate conditions. A successful comparison between the various sensors will help demonstrate that the AWARE approach will facilitate future processing of several years' worth of snow cover data from a variety of sensors that covers large extremes in climate variability. This will allow greater success in developing forecasts and understanding of longer term climate change impacts.
A Marine Boundary Layer Water Vapor Climatology Derived from Microwave and Near-Infrared Imagery
NASA Astrophysics Data System (ADS)
Millan Valle, L. F.; Lebsock, M. D.; Teixeira, J.
2017-12-01
The synergy of the collocated Advanced Microwave Scanning Radiometer (AMSR) and the Moderate Resolution Imaging Spectroradiometer (MODIS) provides daily global estimates of partial marine planetary boundary layer water vapor. AMSR microwave radiometry provides the total column water vapor, while MODIS near-infrared imagery provides the water vapor above the cloud layers. The difference between the two gives the vapor between the surface and the cloud top, which may be interpreted as the boundary layer water vapor. Comparisons against radiosondes, and GPS-Radio occultation data demonstrate the robustness of these boundary layer water vapor estimates. We exploit the 14 years of AMSR-MODIS synergy to investigate the spatial, seasonal, and inter-annual variations of the boundary layer water vapor. Last, it is shown that the measured AMSR-MODIS partial boundary layer water vapor can be generally prescribed using sea surface temperature, cloud top pressure and the lifting condensation level. The multi-sensor nature of the analysis demonstrates that there exists more information on boundary layer water vapor structure in the satellite observing system than is commonly assumed when considering the capabilities of single instruments. 2017 California Institute of Technology. U.S. Government sponsorship acknowledged.
Near-Real Time Cloud Retrievals from Operational and Research Meteorological Satellites
NASA Technical Reports Server (NTRS)
Minnis, Patrick; Nguyen, Louis; Palilonda, Rabindra; Heck, Patrick W.; Spangenberg, Douglas A.; Doelling, David R.; Ayers, J. Kirk; Smith, William L., Jr.; Khaiyer, Mandana M.; Trepte, Qing Z.;
2008-01-01
A set of cloud retrieval algorithms developed for CERES and applied to MODIS data have been adapted to analyze other satellite imager data in near-real time. The cloud products, including single-layer cloud amount, top and base height, optical depth, phase, effective particle size, and liquid and ice water paths, are being retrieved from GOES- 10/11/12, MTSAT-1R, FY-2C, and Meteosat imager data as well as from MODIS. A comprehensive system to normalize the calibrations to MODIS has been implemented to maximize consistency in the products across platforms. Estimates of surface and top-of-atmosphere broadband radiative fluxes are also provided. Multilayered cloud properties are retrieved from GOES-12, Meteosat, and MODIS data. Native pixel resolution analyses are performed over selected domains, while reduced sampling is used for full-disk retrievals. Tools have been developed for matching the pixel-level results with instrumented surface sites and active sensor satellites. The calibrations, methods, examples of the products, and comparisons with the ICESat GLAS lidar are discussed. These products are currently being used for aircraft icing diagnoses, numerical weather modeling assimilation, and atmospheric radiation research and have potential for use in many other applications.
NASA Astrophysics Data System (ADS)
Riedi, J.; Labonnote, L. C.; Contaut, F.; Platnick, S. E.; Yang, P.
2016-12-01
Realistic assumptions for representation of ice crystal optical properties are key in deriving meaningful information on ice clouds from spaceborne observations. With the increasing number of multi-sensor analysis it is also of paramount importance that ice crystal models be consistents for the interpretation of both passive and active observations in the solar and thermal infrared spectral domains. There has been significant evidences in the past few years that roughened particles might represent an overall good proxy for ice crystal models being able to simultaneously explain visible and infrared observations obtained from either active or passive sensors (Holz et al, 2016). Nevertheless, details of the exact phase function remain very informative fingerprints of ice crystal shapes and can also be critical parameters for retrievals performed under specific viewing geometries. Analysis of lidar observation for instance remains very sensitive to details of phase function in and around the backscatter direction. The relative magnitude and width of the backscatter peak intensity that appears in phase functions of ice crystal has been shown to carry useful information for characterization of ice crystal habits (Zhou & Yang, 2015). Based on these theoretical results we are revisiting here our previous analysis of coincident POLDER, MODIS and CALIOP observations whereby we were able to study the angular variability of ice clouds reflectance in and around the exact backscatter direction. Statistics from 5 years of observations of peak intensities derived from POLDER have been established in relation to coincident MODIS cloud optical thickness and effective radius retrievals as well as CALIOP layer integrated depolarization ratio and attenuated backscatter. Those are analyzed in view of the theoretical results from Zhou & Yang (2015). In particular, correlation of peak intensity and width with particle size retrieved from MODIS will be presented and implications for ice cloud microphysical properties and remote sensing applications will be discussed. Chen Zhou and Ping Yang : Backscattering peak of ice cloud particles, Opt. Express 23, 11995-12003 (2015) Holz, R. E. et al : Resolving ice cloud optical thickness biases between CALIOP and MODIS using infrared retrievals, Atmos. Chem. Phys., 16, 5075-5090 (2016)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maclaurin, Galen; Sengupta, Manajit; Xie, Yu
A significant source of bias in the transposition of global horizontal irradiance to plane-of-array (POA) irradiance arises from inaccurate estimations of surface albedo. The current physics-based model used to produce the National Solar Radiation Database (NSRDB) relies on model estimations of surface albedo from a reanalysis climatalogy produced at relatively coarse spatial resolution compared to that of the NSRDB. As an input to spectral decomposition and transposition models, more accurate surface albedo data from remotely sensed imagery at finer spatial resolutions would improve accuracy in the final product. The National Renewable Energy Laboratory (NREL) developed an improved white-sky (bi-hemispherical reflectance)more » broadband (0.3-5.0 ..mu..m) surface albedo data set for processing the NSRDB from two existing data sets: a gap-filled albedo product and a daily snow cover product. The Moderate Resolution Imaging Spectroradiometer (MODIS) sensors onboard the Terra and Aqua satellites have provided high-quality measurements of surface albedo at 30 arc-second spatial resolution and 8-day temporal resolution since 2001. The high spatial and temporal resolutions and the temporal coverage of the MODIS sensor will allow for improved modeling of POA irradiance in the NSRDB. However, cloud and snow cover interfere with MODIS observations of ground surface albedo, and thus they require post-processing. The MODIS production team applied a gap-filling methodology to interpolate observations obscured by clouds or ephemeral snow. This approach filled pixels with ephemeral snow cover because the 8-day temporal resolution is too coarse to accurately capture the variability of snow cover and its impact on albedo estimates. However, for this project, accurate representation of daily snow cover change is important in producing the NSRDB. Therefore, NREL also used the Integrated Multisensor Snow and Ice Mapping System data set, which provides daily snow cover observations of the Northern Hemisphere for the temporal extent of the NSRDB (1998-2015). We provide a review of validation studies conducted on these two products and describe the methodology developed by NREL to remap the data products to the NSRDB grid and integrate them into a seamless daily data set.« less
NASA Technical Reports Server (NTRS)
Remer, Lorraine A.; Mattoo, Shana; Levy, Robert C.; Heidinger, Andrew; Pierce, R. Bradley; Chin, Mian
2011-01-01
The challenge of using satellite observations to retrieve aerosol properties in a cloudy environment is to prevent contamination of the aerosol signal from clouds, while maintaining sufficient aerosol product yield to satisfy specific applications. We investigate aerosol retrieval availability at different instrument pixel resolutions, using the standard MODIS aerosol cloud mask applied to MODIS data and a new GOES-R cloud mask applied to GOES data for a domain covering North America and surrounding oceans. Aerosol availability is not the same as the cloud free fraction and takes into account the technqiues used in the MODIS algorithm to avoid clouds, reduce noise and maintain sufficient numbers of aerosol retrievals. The inherent spatial resolution of each instrument, 0.5x0.5 km for MODIS and 1x1 km for GOES, is systematically degraded to 1x1 km, 2x2 km, 4x4 km and 8x8 km resolutions and then analyzed as to how that degradation would affect the availability of an aerosol retrieval, assuming an aerosol product resolution at 8x8 km. The results show that as pixel size increases, availability decreases until at 8x8 km 70% to 85% of the retrievals available at 0.5 km have been lost. The diurnal pattern of aerosol retrieval availability examined for one day in the summer suggests that coarse resolution sensors (i.e., 4x4 km or 8x8 km) may be able to retrieve aerosol early in the morning that would otherwise be missed at the time of current polar orbiting satellites, but not the diurnal aerosol properties due to cloud cover developed during the day. In contrast finer resolution sensors (i.e., 1x1 km or 2x2 km) have much better opportunity to retrieve aerosols in the partly cloudy scenes and better chance of returning the diurnal aerosol properties. Large differences in the results of the two cloud masks designed for MODIS aerosol and GOES cloud products strongly reinforce that cloud masks must be developed with specific purposes in mind and that a generic cloud mask applied to an independent aerosol retrieval will likely fail.
NASA Astrophysics Data System (ADS)
García-Santos, Vicente; Niclòs, Raquel; Coll, César; Valor, Enric; Caselles, Vicente
2015-04-01
The MOD21 Land Surface Temperature and Emissivity (LST&E) product will be included in forthcoming MODIS Collection 6. Surface temperature and emissivities for thermal infrared (TIR) bands 29 (8.55 μm), 31 (11 μm) and 32 (12 μm) will be retrieved using the ASTER TES method adapted to MODIS at-sensor spectral radiances, previously corrected with the Water Vapor Scaling method (MODTES algorithm). LSE of most natural surfaces changes with soil moisture content, type of surface cover, surface roughness or sensor viewing geometry. The present study addresses the observation of anisotropy effects on LSE of bare soils using MODIS data and a processor simulator of the MOD21 product, since it is not available yet. Two highly homogeneous and quasi-invariant desert sites were selected to carry out the present study. The first one is the White Sands National Monument, located in Tularosa Valley (South-central New Mexico, USA), which is a dune system desert at 1216 m above sea level, with an area of 704 km2 and a maximum dune height of 10 m. The grain size is considered fine sand and the major mineralogy component is gypsum. The second site selected was the Great Sands National Park, located in the San Luis Valley (Colorado, USA). Great Sands is also a sand dune system desert, created from quartz and volcanic fragments derived from Santa Fe and Alamosa formations. The major mineral is quartz, with minor traces of potassium and feldspar. The grain size of the sand is medium to coarse according to the X-Ray Diffraction measurements. Great Sands covers an area of 104 km2 at 2560 m above sea level and the maximum dune height is 230 m. The obtained LSEs and their dependence on azimuth and zenith viewing angles were analyzed, based on series of MODIS scenes from 2010 to 2013. MODTES nadir and off-nadir LSEs showed a good agreement with laboratory emissivity measurements. Results show that band 29 LSE decreases with the zenithal angle up to 0.041 from its nadir value, while LSEs for bands 31 and 32 do not show significant changes with zenith angle.
NASA Technical Reports Server (NTRS)
Luvall, J. C.; Sprigg, W.; Levetin, E.; Huete, A.; Nickovic, S.; Pejanovic, G. A.; Vukovic, A.; VandeWater, P.; Budge, A.; Hudspeth, W.;
2012-01-01
Juniperus spp. pollen is a significant aeroallergen that can be transported 200-600 km from the source. Local observations of Juniperus spp. phenology may not be consistent with the timing and source of pollen collected by pollen sampling instruments. Methods: The Dust REgional Atmospheric Model (DREAM)is a verified model for atmospheric dust transport modeling using MODIS data products to identify source regions and quantities of dust. We successfully modified the DREAM model to incorporate pollen transport (PREAM) and used MODIS satellite images to develop Juniperus ashei pollen input source masks. The Pollen Release Potential Source Map, also referred to as a source mask in model applications, may use different satellite platforms and sensors and a variety of data sets other than the USGS GAP data we used to map J. ashei cover type. MODIS derived percent tree cover is obtained from MODIS Vegetation Continuous Fields (VCF) product (collection 3 and 4, MOD44B, 500 and 250 m grid resolution). We use updated 2010 values to calculate pollen concentration at source (J. ashei ). The original MODIS derived values are converted from native approx. 250 m to 990m (approx. 1 km) for the calculation of a mask to fit the model (PREAM) resolution. Results: The simulation period is chosen following the information that in the last 2 weeks of December 2010. The PREAM modeled near-surface concentrations (Nm-3) shows the transport patterns of J. ashei pollen over a 5 day period (Fig. 2). Typical scales of the simulated transport process are regional.
Evaluation and Windspeed Dependence of MODIS Aerosol Retrievals Over Open Ocean
NASA Technical Reports Server (NTRS)
Kleidman, Richard G.; Smirnov, Alexander; Levy, Robert C.; Mattoo, Shana; Tanre, Didier
2011-01-01
The Maritime Aerosol Network (MAN) data set provides high quality ground-truth to validate the MODIS aerosol product over open ocean. Prior validation of the ocean aerosol product has been limited to coastal and island sites. Comparing MODIS Collection 5 ocean aerosol retrieval products with collocated MAN measurements from ships shows that MODIS is meeting the pre-launch uncertainty estimates for aerosol optical depth (AOD) with 64% and 67% of retrievals at 550 nm, and 74% and 78% of retrievals at 870 nm, falling within expected uncertainty for Terra and Aqua, respectively. Angstrom Exponent comparisons show a high correlation between MODIS retrievals and shipboard measurements (R= 0.85 Terra, 0.83 Aqua), although the MODIS aerosol algorithm tends to underestimate particle size for large particles and overestimate size for small particles, as seen in earlier Collections. Prior analysis noted an offset between Terra and Aqua ocean AOD, without concluding which sensor was more accurate. The simple linear regression reported here, is consistent with other anecdotal evidence that Aqua agreement with AERONET is marginally better. However we cannot claim based on the current study that the better Aqua comparison is statistically significant. Systematic increase of error as a function of wind speed is noted in both Terra and Aqua retrievals. This wind speed dependency enters the retrieval when winds deviate from the 6 m/s value assumed in the rough ocean surface and white cap parameterizations. Wind speed dependency in the results can be mitigated by using auxiliary NCEP wind speed information in the retrieval process.
NASA Astrophysics Data System (ADS)
Loehman, R.; Heinsch, F. A.; Mills, J. N.; Wagoner, K.; Running, S.
2003-12-01
Recent predictive models for hantavirus pulmonary syndrome (HPS) have used remotely sensed spectral reflectance data to characterize risk areas with limited success. We present an alternative method using gross primary production (GPP) from the MODIS sensor to estimate the effects of biomass accumulation on population density of Peromyscus maniculatus (deer mouse), the principal reservoir species for Sin Nombre virus (SNV). The majority of diagnosed HPS cases in North America are attributed to SNV, which is transmitted to humans through inhalation of excretions and secretions from infected rodents. A logistic model framework is used to evaluate MODIS GPP, temperature, and precipitation as predictors of P. maniculatus density at established trapping sites across the western United States. Rodent populations are estimated using monthly minimum number alive (MNA) data for 2000 through 2002. Both local meteorological data from nearby weather stations and 1.25 degree x 1 degree gridded data from the NASA DAO were used in the regression model to determine the spatial sensitivity of the response. MODIS eight-day GPP data (1-km resolution) were acquired and binned to monthly average and monthly sum GPP for 3km x 3km grids surrounding each rodent trapping site. The use of MODIS GPP to forecast HPS risk may result in a marked improvement over past reflectance-based risk area characterizations. The MODIS GPP product provides a vegetation dynamics estimate that is unique to disease models, and targets the fundamental ecological processes responsible for increased rodent density and amplified disease risk.
NASA Astrophysics Data System (ADS)
Privette, J. L.; Schaaf, C. B.; Saleous, N.; Liang, S.
2004-12-01
Shortwave broadband albedo is the fundamental surface variable that partitions solar irradiance into energy available to the land biophysical system and energy reflected back into the atmosphere. Albedo varies with land cover, vegetation phenological stage, surface wetness, solar angle, and atmospheric condition, among other variables. For these reasons, a consistent and normalized albedo time series is needed to accurately model weather, climate and ecological trends. Although an empirically-derived coarse-scale albedo from the 20-year NOAA AVHRR record (Sellers et al., 1996) is available, an operational moderate resolution global product first became available from NASA's MODIS sensor. The validated MODIS product now provides the benchmark upon which to compare albedo generated through 1) reprocessing of the historic AVHRR record and 2) operational processing of data from the future National Polar-Orbiting Environmental Satellite System's (NPOESS) Visible/Infrared Imager Radiometer Suite (VIIRS). Unfortunately, different instrument characteristics (e.g., spectral bands, spatial resolution), processing approaches (e.g., latency requirements, ancillary data availability) and even product definitions (black sky albedo, white sky albedo, actual or blue sky albedo) complicate the development of the desired multi-mission (AVHRR to MODIS to VIIRS) albedo time series -- a so-called Climate Data Record. This presentation will describe the different albedo algorithms used with AVHRR, MODIS and VIIRS, and compare their results against field measurements collected over two semi-arid sites in southern Africa. We also describe the MODIS-derived VIIRS proxy data we developed to predict NPOESS albedo characteristics. We conclude with a strategy to develop a seamless Climate Data Record from 1982- to 2020.
Identifying Severe Weather Impacts and Damage with Google Earth Engine
NASA Astrophysics Data System (ADS)
Molthan, A.; Burks, J. E.; Bell, J. R.
2015-12-01
Hazards associated with severe convective storms can lead to rapid changes in land surface vegetation. Depending upon the type of vegetation that has been impacted, their impacts can be relatively short lived, such as damage to seasonal crops that are eventually removed by harvest, or longer-lived, such as damage to a stand of trees or expanse of forest that require several years to recover. Since many remote sensing imagers provide their highest spatial resolution bands in the red and near-infrared to support monitoring of vegetation, these impacts can be readily identified as short-term and marked decreases in common vegetation indices such as NDVI, along with increases in land surface temperature that are observed at a reduced spatial resolution. The ability to identify an area of vegetation change is improved by understanding the conditions that are normal for a given time of year and location, along with a typical range of variability in a given parameter. This analysis requires a period of record well beyond the availability of near real-time data. These activities would typically require an analyst to download large volumes of data from sensors such as NASA's MODIS (aboard Terra and Aqua) or higher resolution imagers from the Landsat series of satellites. Google's Earth Engine offers a "big data" solution to these challenges, by providing a streamlined API and option to process the period of record of NASA MODIS and Landsat products through relatively simple Javascript coding. This presentation will highlight efforts to date in using Earth Engine holdings to produce vegetation and land surface temperature anomalies that are associated with damage to agricultural and other vegetation caused by severe thunderstorms across the Central and Southeastern United States. Earth Engine applications will show how large data holdings can be used to map severe weather damage, ascertain longer-term impacts, and share best practices learned and challenges with applying Earth Engine holdings to the analysis of severe weather damage. Other applications are also demonstrated, such as use of Earth Engine to prepare pre-event composites that can be used to subjectively identify other severe weather impacts. Future extension to flooding and wildfires is also proposed.
MULTISCALE THERMAL-INFRARED MEASUREMENTS OF THE MAUNA LOA CALDERA, HAWAII
DOE Office of Scientific and Technical Information (OSTI.GOV)
L. BALICK; A. GILLESPIE; ET AL
2001-03-01
Until recently, most thermal infrared measurements of natural scenes have been made at disparate scales, typically 10{sup {minus}3}-10{sup {minus}2} m (spectra) and 10{sup 2}-10{sup 3} m (satellite images), with occasional airborne images (10{sup 1} m) filling the gap. Temperature and emissivity fields are spatially heterogeneous over a similar range of scales, depending on scene composition. A common problem for the land surface, therefore, has been relating field spectral and temperature measurements to satellite data, yet in many cases this is necessary if satellite data are to be interpreted to yield meaningful information about the land surface. Recently, three new satellitesmore » with thermal imaging capability at the 10{sup 1}-10{sup 2} m scale have been launched: MTI, TERRA, and Landsat 7. MTI acquires multispectral images in the mid-infrared (3-5{micro}m) and longwave infrared (8-10{micro}m) with 20m resolution. ASTER and MODIS aboard TERRA acquire multispectral longwave images at 90m and 500-1000m, respectively, and MODIS also acquires multispectral mid-infrared images. Landsat 7 acquires broadband longwave images at 60m. As part of an experiment to validate the temperature and thermal emissivity values calculated from MTI and ASTER images, we have targeted the summit region of Mauna Loa for field characterization and near-simultaneous satellite imaging, both on daytime and nighttime overpasses, and compare the results to previously acquired 10{sup {minus}1} m airborne images, ground-level multispectral FLIR images, and the field spectra. Mauna Loa was chosen in large part because the 4x6km summit caldera, flooded with fresh basalt in 1984, appears to be spectrally homogeneous at scales between 10{sup {minus}1} and 10{sup 2} m, facilitating the comparison of sensed temperature. The validation results suggest that, with careful atmospheric compensation, it is possible to match ground measurements with measurements from space, and to use the Mauna Loa validation site for cross-comparison of thermal infrared sensors and temperature/emissivity extraction algorithms.« less
U.S. Instruments Aboard Rosetta
2014-01-24
Three of NASA contributions to the ESA Rosetta mission are pictured here: an ultraviolet spectrometer called Alice top, the Ion and Electron Sensor IES bottom left, and the Microwave Instrument for Rosetta Orbiter MIRO bottom right.
We compare biomass burning emissions estimates from four different techniques that use satellite based fire products to determine area burned over regional to global domains. Three of the techniques use active fire detections from polar-orbiting MODIS sensors and one uses detec...
Array Of Sensors Measures Broadband Radiation
NASA Technical Reports Server (NTRS)
Hoffman, James W.; Grush, Ronald G.
1994-01-01
Multiple broadband radiation sensors aimed at various portions of total field of view. All sensors mounted in supporting frame, serving as common heat sink and temperature reference. Each sensor includes heater winding and differential-temperature-sensing bridge circuit. Power in heater winding adjusted repeatedly in effort to balance bridge circuit. Intended to be used aboard satellite in orbit around Earth to measure total radiation emitted, at various viewing angles, by mosaic of "footprint" areas (each defined by its viewing angle) on surface of Earth. Modified versions of array useful for angle-resolved measurements of broadband radiation in laboratory and field settings on Earth.
NASA Astrophysics Data System (ADS)
Campagnolo, M.; Schaaf, C.
2016-12-01
Due to the necessity of time compositing and other user requirements, vegetation indices, as well as many other EOS derived products, are distributed in a gridded format (level L2G or higher) using an equal area sinusoidal grid, at grid sizes of 232 m, 463 m or 926 m. In this process, the actual surface signal suffers somewhat of a degradation, caused by both the sensor's point spread function and this resampling from swath to the regular grid. The magnitude of that degradation depends on a number of factors, such as surface heterogeneity, band nominal resolution, observation geometry and grid size. In this research, the effect of grid size is quantified for MODIS and VIIRS (at five EOS validation sites with distinct land covers), for the full range of view zenith angles, and at grid sizes of 232 m, 253 m, 309 m, 371 m, 397 m and 463 m. This allows us to compare MODIS and VIIRS gridded products for the same scenes, and to determine the grid size at which these products are most similar. Towards that end, simulated MODIS and VIIRS bands are generated from Landsat 8 surface reflectance images at each site and gridded products are then derived by using maximum obscov resampling. Then, for every grid size, the original Landsat 8 NDVI and the derived MODIS and VIIRS NDVI products are compared. This methodology can be applied to other bands and products, to determine which spatial aggregation overall is best suited for EOS to S-NPP product continuity. Results for MODIS (250 m bands) and VIIRS (375 m bands) NDVI products show that finer grid sizes tend to be better at preserving the original signal. Significant degradation for gridded NDVI occurs when grid size is larger then 253 m (MODIS) and 371 m (VIIRS). Our results suggest that current MODIS "500 m" (actually 463 m) grid size is best for product continuity. Note however, that up to that grid size value, MODIS gridded products are somewhat better at preserving the surface signal than VIIRS, except for at very high VZA.
NASA Technical Reports Server (NTRS)
Clark, Dennis K.; Yarbrough, Mark A.; Feinholz, Mike; Flora, Stephanie; Broenkow, William; Kim, Yong Sung; Johnson, B. Carol; Brown, Steven W.; Yuen, Marilyn; Mueller, James L.
2003-01-01
The Marine Optical Buoy (MOBY) is the centerpiece of the primary ocean measurement site for calibration of satellite ocean color sensors based on independent in situ measurements. Since late 1996, the time series of normalized water-leaving radiances L(sub WN)(lambda) determined from the array of radiometric sensors attached to MOBY are the primary basis for the on-orbit calibrations of the USA Sea-viewing Wide Field-of-view Sensor (SeaWiFS), the Japanese Ocean Color and Temperature Sensor (OCTS), the French Polarization Detection Environmental Radiometer (POLDER), the German Modular Optoelectronic Scanner on the Indian Research Satellite (IRS1-MOS), and the USA Moderate Resolution Imaging Spectrometer (MODIS). The MOBY vicarious calibration L(sub WN)(lambda) reference is an essential element in the international effort to develop a global, multi-year time series of consistently calibrated ocean color products using data from a wide variety of independent satellite sensors. A longstanding goal of the SeaWiFS and MODIS (Ocean) Science Teams is to determine satellite-derived L(sub WN)(labda) with a relative combined standard uncertainty of 5 %. Other satellite ocean color projects and the Sensor Intercomparison for Marine Biology and Interdisciplinary Oceanic Studies (SIMBIOS) project have also adopted this goal, at least implicitly. Because water-leaving radiance contributes at most 10 % of the total radiance measured by a satellite sensor above the atmosphere, a 5 % uncertainty in L(sub WN)(lambda) implies a 0.5 % uncertainty in the above-atmosphere radiance measurements. This level of uncertainty can only be approached using vicarious-calibration approaches as described below. In practice, this means that the satellite radiance responsivity is adjusted to achieve the best agreement, in a least-squares sense, for the L(sub WN)(lambda) results determined using the satellite and the independent optical sensors (e.g. MOBY). The end result of this approach is to implicitly absorb unquantified, but systematic, errors in the atmospheric correction, incident solar flux, and satellite sensor calibration into a single correction factor to produce consistency with the in situ data.
Radioactive Quality Evaluation and Cross Validation of Data from the HJ-1A/B Satellites' CCD Sensors
Zhang, Xin; Zhao, Xiang; Liu, Guodong; Kang, Qian; Wu, Donghai
2013-01-01
Data from multiple sensors are frequently used in Earth science to gain a more complete understanding of spatial information changes. Higher quality and mutual consistency are prerequisites when multiple sensors are jointly used. The HJ-1A/B satellites successfully launched on 6 September 2008. There are four charge-coupled device (CCD) sensors with uniform spatial resolutions and spectral range onboard the HJ-A/B satellites. Whether these data are keeping consistency is a major issue before they are used. This research aims to evaluate the data consistency and radioactive quality from the four CCDs. First, images of urban, desert, lake and ocean are chosen as the objects of evaluation. Second, objective evaluation variables, such as mean, variance and angular second moment, are used to identify image performance. Finally, a cross validation method are used to ensure the correlation of the data from the four HJ-1A/B CCDs and that which is gathered from the moderate resolution imaging spectro-radiometer (MODIS). The results show that the image quality of HJ-1A/B CCDs is stable, and the digital number distribution of CCD data is relatively low. In cross validation with MODIS, the root mean square errors of bands 1, 2 and 3 range from 0.055 to 0.065, and for band 4 it is 0.101. The data from HJ-1A/B CCD have better consistency. PMID:23881127
Zhang, Xin; Zhao, Xiang; Liu, Guodong; Kang, Qian; Wu, Donghai
2013-07-05
Data from multiple sensors are frequently used in Earth science to gain a more complete understanding of spatial information changes. Higher quality and mutual consistency are prerequisites when multiple sensors are jointly used. The HJ-1A/B satellites successfully launched on 6 September 2008. There are four charge-coupled device (CCD) sensors with uniform spatial resolutions and spectral range onboard the HJ-A/B satellites. Whether these data are keeping consistency is a major issue before they are used. This research aims to evaluate the data consistency and radioactive quality from the four CCDs. First, images of urban, desert, lake and ocean are chosen as the objects of evaluation. Second, objective evaluation variables, such as mean, variance and angular second moment, are used to identify image performance. Finally, a cross validation method are used to ensure the correlation of the data from the four HJ-1A/B CCDs and that which is gathered from the moderate resolution imaging spectro-radiometer (MODIS). The results show that the image quality of HJ-1A/B CCDs is stable, and the digital number distribution of CCD data is relatively low. In cross validation with MODIS, the root mean square errors of bands 1, 2 and 3 range from 0.055 to 0.065, and for band 4 it is 0.101. The data from HJ-1A/B CCD have better consistency.
Gu, Yingxin; Brown, Jesslyn F.; Miura, Tomoaki; van Leeuwen, Willem J.D.; Reed, Bradley C.
2010-01-01
This study introduces a new geographic framework, phenological classification, for the conterminous United States based on Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) time-series data and a digital elevation model. The resulting pheno-class map is comprised of 40 pheno-classes, each having unique phenological and topographic characteristics. Cross-comparison of the pheno-classes with the 2001 National Land Cover Database indicates that the new map contains additional phenological and climate information. The pheno-class framework may be a suitable basis for the development of an Advanced Very High Resolution Radiometer (AVHRR)-MODIS NDVI translation algorithm and for various biogeographic studies.
Evaluation of VIIRS ocean color products
NASA Astrophysics Data System (ADS)
Wang, Menghua; Liu, Xiaoming; Jiang, Lide; Son, SeungHyun; Sun, Junqiang; Shi, Wei; Tan, Liqin; Naik, Puneeta; Mikelsons, Karlis; Wang, Xiaolong; Lance, Veronica
2014-11-01
The Suomi National Polar-orbiting Partnership (SNPP) was successfully launched on October 28, 2011. The Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi NPP, which has 22 spectral bands (from visible to infrared) similar to the NASA's Moderate Resolution Imaging Spectroradiometer (MODIS), is a multi-disciplinary sensor providing observations for the Earth's atmosphere, land, and ocean properties. In this paper, we provide some evaluations and assessments of VIIRS ocean color data products, or ocean color Environmental Data Records (EDR), including normalized water-leaving radiance spectra nLw(λ) at VIIRS five spectral bands, chlorophyll-a (Chl-a) concentration, and water diffuse attenuation coefficient at the wavelength of 490 nm Kd(490). Specifically, VIIRS ocean color products derived from the NOAA Multi-Sensor Level-1 to Level-2 (NOAA-MSL12) ocean color data processing system are evaluated and compared with MODIS ocean color products and in situ measurements. MSL12 is now NOAA's official ocean color data processing system for VIIRS. In addition, VIIRS Sensor Data Records (SDR or Level- 1B data) have been evaluated. In particular, VIIRS SDR and ocean color EDR have been compared with a series of in situ data from the Marine Optical Buoy (MOBY) in the waters off Hawaii. A notable discrepancy of global deep water Chl-a derived from MODIS and VIIRS between 2012 and 2013 is observed. This discrepancy is attributed to the SDR (or Level-1B data) calibration issue and particularly related to VIIRS green band at 551 nm. To resolve this calibration issue, we have worked on our own sensor calibration by combining the lunar calibration effect into the current calibration method. The ocean color products derived from our new calibrated SDR in the South Pacific Gyre show that the Chl-a differences between 2012 and 2013 are significantly reduced. Although there are still some issues, our results show that VIIRS is capable of providing high-quality global ocean color products in support of science research and operational applications. The VIIRS evaluation and monitoring results can be found at the website: http://www.star.nesdis.noaa.gov/sod/mecb/color/index.html.
NASA Astrophysics Data System (ADS)
Fillmore, D. W.; Galloy, M. D.; Kindig, D.
2013-12-01
SatelliteDL is an IDL toolkit for the analysis of satellite Earth observations from a diverse set of platforms and sensors. The design features an abstraction layer that allows for easy inclusion of new datasets in a modular way. The core function of the toolkit is the spatial and temporal alignment of satellite swath and geostationary data. IDL has a powerful suite of statistical and visualization tools that can be used in conjunction with SatelliteDL. Our overarching objective is to create utilities that automate the mundane aspects of satellite data analysis, are extensible and maintainable, and do not place limitations on the analysis itself. Toward this end we have constructed SatelliteDL to include (1) HTML and LaTeX API document generation, (2) a unit test framework, (3) automatic message and error logs, (4) HTML and LaTeX plot and table generation, and (5) several real world examples with bundled datasets available for download. For ease of use, datasets, variables and optional workflows may be specified in a flexible format configuration file. Configuration statements may specify, for example, a region and date range, and the creation of images, plots and statistical summary tables for a long list of variables. SatelliteDL enforces data provenance; all data should be traceable and reproducible. The output NetCDF file metadata holds a complete history of the original datasets and their transformations, and a method exists to reconstruct a configuration file from this information. Release 0.1.0 of SatelliteDL is anticipated for the 2013 Fall AGU conference. It will distribute with ingest methods for GOES, MODIS, VIIRS and CERES radiance data (L1) as well as select 2D atmosphere products (L2) such as aerosol and cloud (MODIS and VIIRS) and radiant flux (CERES). Future releases will provide ingest methods for ocean and land surface products, gridded and time averaged datasets (L3 Daily, Monthly and Yearly), and support for 3D products such as temperature and water vapor profiles. Emphasis will be on NPP Sensor, Environmental and Climate Data Records as they become available. To obtain SatelliteDL (from 2013 December onward) please visit the project website at the indicated URL. Our poster exhibits three regional weather examples of SatelliteDL in action: (1) a mesoscale convective complex over the Great Plains (GOES, MODIS, VIIRS and CERES), (2) a dust storm over Arabia (MODIS, VIIRS and CERES) and (3) a volcanic ash plume over Patagonia and the South Atlantic (GOES, MODIS and CERES). In these examples the GOES radiances are cross-calibrated with MODIS. Cloud products are shown in examples (1) and (3) and aerosol products in examples (2) and (3).
NASA Astrophysics Data System (ADS)
Rengarajan, Rajagopalan; Goodenough, Adam A.; Schott, John R.
2016-10-01
Many remote sensing applications rely on simulated scenes to perform complex interaction and sensitivity studies that are not possible with real-world scenes. These applications include the development and validation of new and existing algorithms, understanding of the sensor's performance prior to launch, and trade studies to determine ideal sensor configurations. The accuracy of these applications is dependent on the realism of the modeled scenes and sensors. The Digital Image and Remote Sensing Image Generation (DIRSIG) tool has been used extensively to model the complex spectral and spatial texture variation expected in large city-scale scenes and natural biomes. In the past, material properties that were used to represent targets in the simulated scenes were often assumed to be Lambertian in the absence of hand-measured directional data. However, this assumption presents a limitation for new algorithms that need to recognize the anisotropic behavior of targets. We have developed a new method to model and simulate large-scale high-resolution terrestrial scenes by combining bi-directional reflectance distribution function (BRDF) products from Moderate Resolution Imaging Spectroradiometer (MODIS) data, high spatial resolution data, and hyperspectral data. The high spatial resolution data is used to separate materials and add textural variations to the scene, and the directional hemispherical reflectance from the hyperspectral data is used to adjust the magnitude of the MODIS BRDF. In this method, the shape of the BRDF is preserved since it changes very slowly, but its magnitude is varied based on the high resolution texture and hyperspectral data. In addition to the MODIS derived BRDF, target/class specific BRDF values or functions can also be applied to features of specific interest. The purpose of this paper is to discuss the techniques and the methodology used to model a forest region at a high resolution. The simulated scenes using this method for varying view angles show the expected variations in the reflectance due to the BRDF effects of the Harvard forest. The effectiveness of this technique to simulate real sensor data is evaluated by comparing the simulated data with the Landsat 8 Operational Land Image (OLI) data over the Harvard forest. Regions of interest were selected from the simulated and the real data for different targets and their Top-of-Atmospheric (TOA) radiance were compared. After adjusting for scaling correction due to the difference in atmospheric conditions between the simulated and the real data, the TOA radiance is found to agree within 5 % in the NIR band and 10 % in the visible bands for forest targets under similar illumination conditions. The technique presented in this paper can be extended for other biomes (e.g. desert regions and agricultural regions) by using the appropriate geographic regions. Since the entire scene is constructed in a simulated environment, parameters such as BRDF or its effects can be analyzed for general or target specific algorithm improvements. Also, the modeling and simulation techniques can be used as a baseline for the development and comparison of new sensor designs and to investigate the operational and environmental factors that affects the sensor constellations such as Sentinel and Landsat missions.
Super Typhoon Halong off Taiwan
NASA Technical Reports Server (NTRS)
2002-01-01
On July 14, 2002, Super Typhoon Halong was east of Taiwan (left edge) in the western Pacific Ocean. At the time this image was taken the storm was a Category 4 hurricane, with maximum sustained winds of 115 knots (132 miles per hour), but as recently as July 12, winds were at 135 knots (155 miles per hour). Halong has moved northwards and pounded Okinawa, Japan, with heavy rain and high winds, just days after tropical Storm Chataan hit the country, creating flooding and killing several people. The storm is expected to be a continuing threat on Monday and Tuesday. This image was acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra satellite on July 14, 2002. Please note that the high-resolution scene provided here is 500 meters per pixel. For a copy of the scene at the sensor's fullest resolution, visit the MODIS Rapid Response Image Gallery. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC
NASA Astrophysics Data System (ADS)
Robles-Gonzalez, Cristina; Fernandez-Renau, Alix; Lopez Gordillo, Noelia; Sevilla, Angel Garcia; Suarez, Juana Santana
2010-12-01
Since 1997, the INTA-CREPAD (Centre for REception, Processing, Archiving and Dissemination of Earth Observation Data) program distributes freely some of the most demanded low-resolution remote sensing products: SST, Ocean Chl-a, NDVI, AOD... The data input for such products are captured at the Canary Space Station (Centro Espacial de Canarias, CEC). The data sensors received at the station and used in the CREPAD program are AVHRR, SEAWIFS and MODIS. In this study SST and AOD retrieved by CREPAD algorithms from AVHRR and the SEADAS derived SST and AOD from MODIS have compared. SST values agree very well within 0.1±0.5oC and the coefficient of correlation of the images is 0.9. AOD validation gives good results taking into account the differences in the algorithms used. Mean AOD difference at 0.630 μm is 0.01±0.05 and the correlation coefficient is 0.6.
MSG SEVIRI Applications for Weather and Climate: Cloud Properties and Calibrations
NASA Technical Reports Server (NTRS)
Minnis, Patrick; Nguyen, Louis; Smith, William L.; Palikonda, Rabindra; Doelling, David R.; Ayers, J. Kirk; Trepte, Qing Z.; Chang, Fu-Lung
2006-01-01
SEVIRI data are cross-calibrated against the corresponding Aqua and Terra MODIS channels. Compared to Terra MODIS, no significant trends are evident in the 0.65, 0.86, and 1.6 micron channel gains between May 2004 and May 2006, indicating excellent stability in the solar-channel sensors. On average, the corresponding Terra reflectances are 12, 14, and 1% greater than the their SEVIRI counterparts. The Terra 3.8- micron channel brightness temperatures T are 7 and 4 K greater than their SEVIRI counterparts during day and night, respectively. The average differences between T for MODIS and SEVIRI 8.6, 10.8, 12.0, and 13.3- micron channels are between 0.5 and 2 K. The cloud properties are being derived hourly over Europe and, in initial comparisons, agree well with surface observations. Errors caused by residual calibration uncertainties, terminator conditions, and inaccurate temperature and humidity profiles are still problematic. Future versions will address those errors and the effects of multilayered clouds.
NASA Technical Reports Server (NTRS)
2002-01-01
This Moderate-resolution Imaging Spectroradiometer (MODIS) image over Argentina was acquired on April 24, 2000, and was produced using a combination of the sensor's 250-m and 500-m resolution 'true color' bands. This image was presented on June 13, 2000 as a GIFt to Argentinian President Fernando de la Rua by NASA Administrator Dan Goldin. Note the Parana River which runs due south from the top of the image before turning east to empty into the Atlantic Ocean. Note the yellowish sediment from the Parana River mixing with the redish sediment from the Uruguay River as it empties into the Rio de la Plata. The water level of the Parana seems high, which could explain the high sediment discharge. A variety of land surface features are visible in this image. To the north, the greenish pixels show forest regions, as well as characteristic clusters of rectangular patterns of agricultural fields. In the lower left of the image, the lighter green pixels show arable regions where there is grazing and farming. (Image courtesy Jacques Descloitres, MODIS Land Group, NASA GSFC)
NASA Astrophysics Data System (ADS)
Czapla-Myers, Jeffrey; McCorkel, Joel; Anderson, Nikolaus; Biggar, Stuart
2018-01-01
This paper describes the current ground-based calibration results of Landsat 7 Enhanced Thematic Mapper Plus (ETM+), Landsat 8 Operational Land Imager (OLI), Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS), Suomi National Polar orbiting Partnership Visible Infrared Imaging Radiometer Suite (VIIRS), and Sentinel-2A Multispectral Instrument (MSI), using an automated suite of instruments located at Railroad Valley, Nevada, USA. The period of this study is 2012 to 2016 for MODIS, VIIRS, and ETM+, 2013 to 2016 for OLI, and 2015 to 2016 for MSI. The current results show that all sensors agree with the Radiometric Calibration Test Site (RadCaTS) to within ±5% in the solar-reflective regime, except for one band on VIIRS that is within ±6%. In the case of ETM+ and OLI, the agreement is within ±3%, and, in the case of MODIS, the agreement is within ±3.5%. MSI agrees with RadCaTS to within ±4.5% in all applicable bands.
NASA Astrophysics Data System (ADS)
Libonati, R.; Dacamara, C. C.; Setzer, A. W.; Morelli, F.
2014-12-01
A procedure is presented that allows using information from the MODerate resolution Imaging Spectroradiometer (MODIS) sensor to improve the quality of monthly burned area estimates over Brazil. The method integrates MODIS derived information from two sources; the NASA MCD64A1 Direct Broadcast Monthly Burned Area Product and INPE's Monthly Burned Area MODIS product (AQM-MODIS). The latter product relies on an algorithm that was specifically designed for ecosystems in Brazil, taking advantage of the ability of MIR reflectances to discriminate burned areas. Information from both MODIS products is incorporated by means of a linear regression model where an optimal estimate of the burned area is obtained as a linear combination of burned area estimates from MCD64A1 and AQM-MODIS. The linear regression model is calibrated using as optimal estimates values of burned area derived from Landsat TM during 2005 and 2006 over Jalapão, a region of Cerrado covering an area of 187 x 187 km2. Obtained values of coefficients for MCD64A1 and AQM-MODIS were 0.51 and 0.35, respectively and the root mean square error was 7.6 km2. Robustness of the model was checked by calibrating the model separately for 2005 and 2006 and cross-validating with 2006 and 2005; coefficients for 2005 (2006) were 0.46 (0.54) for MCD64A1 and 0.35 (0.35) for AQM-MODIS and the corresponding root mean square errors for 2006 (2005) were 7.8 (7.4) km2. The linear model was then applied to Brazil as well as to the six Brazilian main biomes, namely Cerrado, Amazônia, Caatinga, Pantanal, Mata Atlântica and Pampa. As to be expected the interannual variability based on the proposed synergistic use of MCD64A1, AQM-MODIS and Landsat Tm data for the period 2005-2010 presents marked differences with the corresponding amounts derived from MCD64A1 alone. For instance during the considered period, values (in 103 km2) from the proposed approach (from MCD64A1) are 399 (142), 232 (62), 559 (259), 274 (73), 219 (31) and 415 (251). Values obtained with the proposed approach may be viewed as an improved alternative to the currently available products over Brazil.
On-orbit characterization of hyperspectral imagers
NASA Astrophysics Data System (ADS)
McCorkel, Joel
Remote Sensing Group (RSG) at the University of Arizona has a long history of using ground-based test sites for the calibration of airborne- and satellite-based sensors. Often, ground-truth measurements at these tests sites are not always successful due to weather and funding availability. Therefore, RSG has also employed automated ground instrument approaches and cross-calibration methods to verify the radiometric calibration of a sensor. The goal in the cross-calibration method is to transfer the calibration of a well-known sensor to that of a different sensor. This dissertation presents a method for determining the radiometric calibration of a hyperspectral imager using multispectral imagery. The work relies on a multispectral sensor, Moderate-resolution Imaging Spectroradiometer (MODIS), as a reference for the hyperspectral sensor Hyperion. Test sites used for comparisons are Railroad Valley in Nevada and a portion of the Libyan Desert in North Africa. A method to predict hyperspectral surface reflectance using a combination of MODIS data and spectral shape information is developed and applied for the characterization of Hyperion. Spectral shape information is based on RSG's historical in situ data for the Railroad Valley test site and spectral library data for the Libyan test site. Average atmospheric parameters, also based on historical measurements, are used in reflectance prediction and transfer to space. Results of several cross-calibration scenarios that differ in image acquisition coincidence, test site, and reference sensor are found for the characterization of Hyperion. These are compared with results from the reflectance-based approach of vicarious calibration, a well-documented method developed by the RSG that serves as a baseline for calibration performance for the cross-calibration method developed here. Cross-calibration provides results that are within 2% of those of reflectance-based results in most spectral regions. Larger disagreements exist for shorter wavelengths studied in this work as well as in spectral areas that experience absorption by the atmosphere.
Generating Vegetation Leaf Area Index Earth System Data Record from Multiple Sensors. Part 1; Theory
NASA Technical Reports Server (NTRS)
Ganguly, Sangram; Schull, Mitchell A.; Samanta, Arindam; Shabanov, Nikolay V.; Milesi, Cristina; Nemani, Ramakrishna R.; Knyazikhin, Yuri; Myneni, Ranga B.
2008-01-01
The generation of multi-decade long Earth System Data Records (ESDRs) of Leaf Area Index (LAI) and Fraction of Photosynthetically Active Radiation absorbed by vegetation (FPAR) from remote sensing measurements of multiple sensors is key to monitoring long-term changes in vegetation due to natural and anthropogenic influences. Challenges in developing such ESDRs include problems in remote sensing science (modeling of variability in global vegetation, scaling, atmospheric correction) and sensor hardware (differences in spatial resolution, spectral bands, calibration, and information content). In this paper, we develop a physically based approach for deriving LAI and FPAR products from the Advanced Very High Resolution Radiometer (AVHRR) data that are of comparable quality to the Moderate resolution Imaging Spectroradiometer (MODIS) LAI and FPAR products, thus realizing the objective of producing a long (multi-decadal) time series of these products. The approach is based on the radiative transfer theory of canopy spectral invariants which facilitates parameterization of the canopy spectral bidirectional reflectance factor (BRF). The methodology permits decoupling of the structural and radiometric components and obeys the energy conservation law. The approach is applicable to any optical sensor, however, it requires selection of sensor-specific values of configurable parameters, namely, the single scattering albedo and data uncertainty. According to the theory of spectral invariants, the single scattering albedo is a function of the spatial scale, and thus, accounts for the variation in BRF with sensor spatial resolution. Likewise, the single scattering albedo accounts for the variation in spectral BRF with sensor bandwidths. The second adjustable parameter is data uncertainty, which accounts for varying information content of the remote sensing measurements, i.e., Normalized Difference Vegetation Index (NDVI, low information content), vs. spectral BRF (higher information content). Implementation of this approach indicates good consistency in LAI values retrieved from NDVI (AVHRRmode) and spectral BRF (MODIS-mode). Specific details of the implementation and evaluation of the derived products are detailed in the second part of this two-paper series.
Coherent Uncertainty Analysis of Aerosol Measurements from Multiple Satellite Sensors
NASA Technical Reports Server (NTRS)
Petrenko, M.; Ichoku, C.
2013-01-01
Aerosol retrievals from multiple spaceborne sensors, including MODIS (on Terra and Aqua), MISR, OMI, POLDER, CALIOP, and SeaWiFS altogether, a total of 11 different aerosol products were comparatively analyzed using data collocated with ground-based aerosol observations from the Aerosol Robotic Network (AERONET) stations within the Multi-sensor Aerosol Products Sampling System (MAPSS, http://giovanni.gsfc.nasa.gov/mapss/ and http://giovanni.gsfc.nasa.gov/aerostat/). The analysis was performed by comparing quality-screened satellite aerosol optical depth or thickness (AOD or AOT) retrievals during 2006-2010 to available collocated AERONET measurements globally, regionally, and seasonally, and deriving a number of statistical measures of accuracy. We used a robust statistical approach to detect and remove possible outliers in the collocated data that can bias the results of the analysis. Overall, the proportion of outliers in each of the quality-screened AOD products was within 12%. Squared correlation coefficient (R2) values of the satellite AOD retrievals relative to AERONET exceeded 0.6, with R2 for most of the products exceeding 0.7 over land and 0.8 over ocean. Root mean square error (RMSE) values for most of the AOD products were within 0.15 over land and 0.09 over ocean. We have been able to generate global maps showing regions where the different products present advantages over the others, as well as the relative performance of each product over different landcover types. It was observed that while MODIS, MISR, and SeaWiFS provide accurate retrievals over most of the landcover types, multi-angle capabilities make MISR the only sensor to retrieve reliable AOD over barren and snow / ice surfaces. Likewise, active sensing enables CALIOP to retrieve aerosol properties over bright-surface shrublands more accurately than the other sensors, while POLDER, which is the only one of the sensors capable of measuring polarized aerosols, outperforms other sensors in certain smoke-dominated regions, including broadleaf evergreens in Brazil and South-East Asia.
NASA Technical Reports Server (NTRS)
1987-01-01
The high-resolution imaging spectrometer (HIRIS) is an Earth Observing System (EOS) sensor developed for high spatial and spectral resolution. It can acquire more information in the 0.4 to 2.5 micrometer spectral region than any other sensor yet envisioned. Its capability for critical sampling at high spatial resolution makes it an ideal complement to the MODIS (moderate-resolution imaging spectrometer) and HMMR (high-resolution multifrequency microwave radiometer), lower resolution sensors designed for repetitive coverage. With HIRIS it is possible to observe transient processes in a multistage remote sensing strategy for Earth observations on a global scale. The objectives, science requirements, and current sensor design of the HIRIS are discussed along with the synergism of the sensor with other EOS instruments and data handling and processing requirements.
NASA's Aqua Satellite Sees Partial Solar Eclipse Effect in Western Canada
2017-12-08
This image shows how a partial solar eclipse darkened clouds over the Yukon and British Columbia in western Canada. It was taken on Oct. 23 at 21:20 UTC (5:20 p.m. EDT) by the Moderate Resolution Imaging Spectroradiometer instrument that flies aboard NASA's Aqua satellite. Credit: NASA Goddard MODIS Rapid Response Team Unlabeled image NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Technical Reports Server (NTRS)
1979-01-01
Satellites provide an excellent platform from which to observe crops on the scale and frequency required to provide accurate crop production estimates on a worldwide basis. Multispectral imaging sensors aboard these platforms are capable of providing data from which to derive acreage and production estimates. The issue of sensor swath width was examined. The quantitative trade trade necessary to resolve the combined issue of sensor swath width, number of platforms, and their orbits was generated and are included. Problems with different swath width sensors were analyzed and an assessment of system trade-offs of swath width versus number of satellites was made for achieving Global Crop Production Forecasting.
Sebastián, Eduardo; Armiens, Carlos; Gómez-Elvira, Javier; Zorzano, María P; Martinez-Frias, Jesus; Esteban, Blanca; Ramos, Miguel
2010-01-01
We describe the parameters that drive the design and modeling of the Rover Environmental Monitoring Station (REMS) Ground Temperature Sensor (GTS), an instrument aboard NASA's Mars Science Laboratory, and report preliminary test results. REMS GTS is a lightweight, low-power, and low cost pyrometer for measuring the Martian surface kinematic temperature. The sensor's main feature is its innovative design, based on a simple mechanical structure with no moving parts. It includes an in-flight calibration system that permits sensor recalibration when sensor sensitivity has been degraded by deposition of dust over the optics. This paper provides the first results of a GTS engineering model working in a Martian-like, extreme environment.
NASA Astrophysics Data System (ADS)
Pearlstein, S.; Nagler, P. L.; Glenn, E. P.; Hultine, K. R.
2012-12-01
The Dolores River in Southern Utah and the Virgin River in Southern Nevada are ecosystems under pressure from increased groundwater withdrawal due to growing populations and introduced riparian species. We studied the impact of the biocontrol Tamarix leaf beetles (Dirohabda carinulata and D. elongata) on the introduced riparian species, Tamarix spp., phenology and water use over multiple cycles of annual defoliation. Heat balance sap flow measurements, leaf area index (LAI), well data, allometry and satellite imagery from Landsat Thematic Mapper 5 and EOS-1 Moderate Resolution Imaging Spectrometer (MODIS) sensors were used to assess the distribution of beetle defoliation and its effect on evapotranspiration (ET). Study objectives for the Virgin River were to measure pre-beetle arrival ET, while the Dolores River site has had defoliation since 2004 and is a site of long-term beetle effect monitoring. This study focuses on measurements conducted over two seasons, 2010 and 2011. At the Dolores River site, results from 2010 were inconclusive due to sensor malfunctions but plant ET by sap flow in 2011 averaged 1.02 mm/m^2 leaf area/day before beetle arrival, dropping to an average of 0.75 mm/m^2 leaf area/day after beetle arrival. Stand level estimations from May - December, 2010 by MODIS were about 0.63 mm/ day, results from Landsat were 0.51 mm/day in June and 0.78 in August. For January -September, 2011, MODIS values were about 0.6 mm/day, and Landsat was 0.57 mm/day in June and 0.62 mm/day in August. These values are lower than previously reported ET values for this site meaning that repeated defoliation does diminish stand level water use. The Virgin River site showed plant ET from sap flow averaged about 3.9-4 mm/m^2 leaf area/day from mid-May - September, 2010. In 2011, ET from sap flow averaged 3.83 mm/m^2 leaf area/day during June - July, but dropped to 3.73 mm/ m^2 leaf area/day after beetle arrival in August. The slight drop in plant ET is not significant, meaning that the first year of beetle arrival at this site did not result in significant water savings. Stand level ET by MODIS was about 2.2 mm/day in 2010, beetle arrival was captured in 2011 and about 1.5 mm/day in 2011. Landsat results in 2010 were 1.9 mm/day in June and 2.2 mm/day in August, in 2011 ET was 1.4 mm/day in June and 0.9 mm/day in August.
2016-01-26
ISS046e024411 (01/26/2016) --- European Space Agency (ESA) astronaut Timothy Peake prepares to install a space acceleration measurement system sensor inside the European Columbus module aboard the International Space Station. The device is used in an ongoing study of the small forces (vibrations and accelerations) on the International Space Station resulting from the operation of hardware, crew activities, dockings and maneuvering. Results generalize the types of vibrations affecting vibration-sensitive experiments.
USDA-ARS?s Scientific Manuscript database
Fifteen years of enhanced vegetation index data from the MODIS sensor are examined in conjunction with precipitation and the Palmer drought severity index to assess how well growing season conditions for vegetation within grazing allotments of Nevada can be predicted at different times of the year. ...
USDA-ARS?s Scientific Manuscript database
Observations of land surface temperature (LST) are crucial for the monitoring of surface energy fluxes from satellite. Methods that require high temporal resolution LST observations (e.g., from geostationary orbit) can be difficult to apply globally because several geostationary sensors are required...
Aerosol Remote Sensing from Space - Where We Stand, Where We're Heading
NASA Technical Reports Server (NTRS)
Kahn, Ralph
2012-01-01
The MISR and MODIS instruments aboard the NASA Earth Observing System's Terra Satellite have been collecting data containing information about the state of Earth's atmosphere and surface for over twelve years. Among the retrieved quantities are the amount and type of wildfire smoke, desert dust, volcanic effluent, urban and industrial pollution particles, and other aerosols. Data from these instruments have been used to develop a global, monthly climatology of aerosol amount that is widely used as a constraint on climate models, including those used for the 2007 IPCC assessment report. However, the broad scientific challenges of understanding aerosol impacts on climate and health place different, and very exacting demands on our measurement capabilities. And these data sets, though much more advanced in many respects than previous aerosol data records, are imperfect. The next frontier in assessing aerosol radiative forcing of climate is aerosol type, and in particular, the absorption properties of major aerosol air masses. In this presentation, I will summarize current understanding of MISR and MODIS aerosol product strengths and limitations, discuss how they relate to the bigger aerosol science questions we must address, and give my view of the way forward.
Evaluation of AIRS cloud properties using MPACE data
NASA Astrophysics Data System (ADS)
Wu, Xuebao; Li, Jun; Menzel, W. Paul; Huang, Allen; Baggett, Kevin; Revercomb, Henry
2005-12-01
Retrieval of cloud properties from the Atmospheric Infrared Sounder (AIRS) aboard the NASA Aqua satellite has been investigated. The cloud products from the collocated MODerate resolution Imaging Spectroradiometer (MODIS) data are used to characterize the AIRS sub-pixel cloud information such as cloud phase, cloud coverage, and cloud layer information. A Minimum Residual (MR) approach is used to retrieve cloud microphysical properties once the cloud top pressure (CTP) and effective cloud amount (ECA) are determined from AIRS CO2 absorption channels between 720 and 790 cm-1. The cloud microphysical properties can be retrieved by minimizing the differences between the observations and the calculations using AIRS longwave window channels between 790 and 1130 cm-1. AIRS is used to derive cloud properties during the Mixed Phase Arctic Cloud Experiment (MPACE) field campaign. Comparison with measurements obtained from lidar data is made for a test day, showing that AIRS cloud property retrievals agree with in situ lidar observations. Due to the large solar zenith angle, the MODIS operational retrieval approach is not able to provide cloud microphysics north of Barrow, Alaska; however, AIRS provides cloud microphysical properties with its high spectral resolution IR measurements.
NASA Technical Reports Server (NTRS)
2002-01-01
Heavy rains in Central Europe over the past few weeks have led to some of the worst flooding the region has witnessed in more than a century. The floods have killed more than 100 people in Germany, Russia, Austria, Hungary, and the Czech Republic and have led to as much as $20 billion in damage. This false-color image of the Elbe River and its tributaries was taken on August 20, 2002, by the Moderate Resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra satellite. The floodwaters that inundated Dresden, Germany, earlier this week have moved north. As can be seen, the river resembles a fairly large lake in the center of the image just south of the town of Wittenberg. Flooding was also bad further downriver in the towns of Maqgdeburge and Hitzacker. Roughly 20,000 people were evacuated from their homes in northern Germany. Fifty thousand troops, border police, and technical assistance workers were called in to combat the floods along with 100,000 volunteers. The floodwaters are not expected to badly affect Hamburg, which sits on the mouth of the river on the North Sea. Credit:Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC
Imaging spectrometry of the Earth and other solar system bodies
NASA Technical Reports Server (NTRS)
Vane, Gregg
1993-01-01
Imaging spectrometry is a relatively new tool for remote sensing of the Earth and other bodies of the solar system. The technique dates back to the late 1970's and early 1980's. It is a natural extension of the earlier multi-spectral imagers developed for remote sensing that acquire images in a few, usually broad spectral bands. Imaging spectrometers combine aspects of classical spectrometers and imaging systems, making it possible to acquire literally hundreds of images of an object, each image in a separate, narrow spectral band. It is thus possible to perform spectroscopy on a pixel-by-pixel basis with the data acquired with an imaging spectrometer. Two imaging spectrometers have flown in space and several others are planned for future Earth and planetary missions. The French-built Phobos Infrared Spectrometer (ISM) was part of the payload of the Soviet Mars mission in 1988, and the JPL-built Near Infrared Mapping Spectrometer (NIMS) is currently en route to Jupiter aboard the Galileo spacecraft. Several airborne imaging spectrometers have been built in the past decade including the JPL-built Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) which is the only such sensor that covers the full solar reflected portion of the spectrum in narrow, contiguous spectral bands. NASA plans two imaging spectrometers for its Earth Observing System, the Moderate and the High Resolution Imaging Spectrometers (MODIS and HIRIS). A brief overview of the applications of imaging spectrometry to Earth science will be presented to illustrate the value of the tool to remote sensing and indicate the types of measurements that are required. The system design for AVIRS and a planetary imaging spectrometer will be presented to illustrate the engineering considerations and challenges that must be met in building such instruments. Several key sensor technology areas will be discussed in which miniaturization and/or enhanced performance through micromachining and nanofabrication may allow smaller, more robust, and more capable imaging spectrometers to be built in the future.