Investigating Approaches to Achieve Modularity Benefits in the Acquisition Ecosystem
2017-06-09
actions and that of others, and how the assessments are affected by their actions. • Case study approach based on best practices, tacit knowledge... case study -derived exemplars, and items requiring further research on identifying additional enablers and useful knowledge constructs. All of these... case studies that document the effective use of modularity in system design for some or all of innovation, competition, cost, technology and
ERIC Educational Resources Information Center
Wayte, Gillian; Wayte, Nick
1990-01-01
Examines why art and design educators resist the modularization of degree-level courses. Identifies key characteristics of art education in England through an ethnographic study. Discusses government policy and rationales for modular and integrated courses. Concludes that the holistic approach to education allows students to expound and develop…
Nasr, P. J.; Keene, G. S.
2015-01-01
We report a unique case of a fractured modular cobalt chromium connection taper Revitan (Zimmer, Warsaw, IN) revision prosthesis. Macroscopic examination revealed a fracture at the diaphyseal-metaphyseal junction of this modular component. This report highlights that fractures can still occur with modern modular prostheses. We are not aware of any published failures of the Revitan revision prosthesis. We also describe a unique method of retrieval for a broken well fixed uncemented femoral stem, using a custom designed extraction instrument via a through-knee approach. PMID:25793134
Soffers, Rutger; Meijboom, Bert; van Zaanen, Jos; van der Feltz-Cornelis, Christina
2014-05-09
The Dutch mental healthcare sector has to decrease costs by reducing intramural capacity with one third by 2020 and treating more patients in outpatient care. This transition necessitates enabling patients to become as self-supporting as possible, by customising the residential care they receive to their needs for self-development. Theoretically, modularity might help mental healthcare institutions with this. Modularity entails the decomposition of a healthcare service in parts that can be mixed-and-matched in a variety of ways, and combined form a functional whole. It brings about easier and better configuration, increased transparency and more variety without increasing costs. this study aims to explore the applicability of the modularity concept to the residential care provided in Assisted Living Facilities (ALFs) of Dutch mental healthcare institutions. A single case study is carried out at the centre for psychosis in Etten-Leur, part of the GGz Breburg IMPACT care group. The design enables in-depth analysis of a case in a specific context. This is considered appropriate since theory concerning healthcare modularity is in an early stage of development. The present study can be considered a pilot case. Data were gathered by means of interviews, observations and documentary analysis. At the centre for psychosis, the majority of the residential care can be decomposed in modules, which can be grouped in service bundles and sub-bundles; the service customisation process is sufficiently fit to apply modular thinking; and interfaces for most of the categories are present. Hence, the prerequisites for modular residential care offerings are already largely fulfilled. For not yet fulfilled aspects of these prerequisites, remedies are available. The modularity concept seems applicable to the residential care offered by the ALF of the mental healthcare institution under study. For a successful implementation of modularity however, some steps should be taken by the ALF, such as developing a catalogue of modules and a method for the personnel to work with this catalogue in application of the modules. Whether implementation of modular residential care might facilitate the transition from intramural residential care to outpatient care should be the subject of future research.
2014-01-01
Background The Dutch mental healthcare sector has to decrease costs by reducing intramural capacity with one third by 2020 and treating more patients in outpatient care. This transition necessitates enabling patients to become as self-supporting as possible, by customising the residential care they receive to their needs for self-development. Theoretically, modularity might help mental healthcare institutions with this. Modularity entails the decomposition of a healthcare service in parts that can be mixed-and-matched in a variety of ways, and combined form a functional whole. It brings about easier and better configuration, increased transparency and more variety without increasing costs. Aim: this study aims to explore the applicability of the modularity concept to the residential care provided in Assisted Living Facilities (ALFs) of Dutch mental healthcare institutions. Methods A single case study is carried out at the centre for psychosis in Etten-Leur, part of the GGz Breburg IMPACT care group. The design enables in-depth analysis of a case in a specific context. This is considered appropriate since theory concerning healthcare modularity is in an early stage of development. The present study can be considered a pilot case. Data were gathered by means of interviews, observations and documentary analysis. Results At the centre for psychosis, the majority of the residential care can be decomposed in modules, which can be grouped in service bundles and sub-bundles; the service customisation process is sufficiently fit to apply modular thinking; and interfaces for most of the categories are present. Hence, the prerequisites for modular residential care offerings are already largely fulfilled. For not yet fulfilled aspects of these prerequisites, remedies are available. Conclusion The modularity concept seems applicable to the residential care offered by the ALF of the mental healthcare institution under study. For a successful implementation of modularity however, some steps should be taken by the ALF, such as developing a catalogue of modules and a method for the personnel to work with this catalogue in application of the modules. Whether implementation of modular residential care might facilitate the transition from intramural residential care to outpatient care should be the subject of future research. PMID:24886367
Using VCL as an Aspect-Oriented Approach to Requirements Modelling
NASA Astrophysics Data System (ADS)
Amálio, Nuno; Kelsen, Pierre; Ma, Qin; Glodt, Christian
Software systems are becoming larger and more complex. By tackling the modularisation of crosscutting concerns, aspect orientation draws attention to modularity as a means to address the problems of scalability, complexity and evolution in software systems development. Aspect-oriented modelling (AOM) applies aspect-orientation to the construction of models. Most existing AOM approaches are designed without a formal semantics, and use multi-view partial descriptions of behaviour. This paper presents an AOM approach based on the Visual Contract Language (VCL): a visual language for abstract and precise modelling, designed with a formal semantics, and comprising a novel approach to visual behavioural modelling based on design by contract where behavioural descriptions are total. By applying VCL to a large case study of a car-crash crisis management system, the paper demonstrates how modularity of VCL's constructs, at different levels of granularity, help to tackle complexity. In particular, it shows how VCL's package construct and its associated composition mechanisms are key in supporting separation of concerns, coarse-grained problem decomposition and aspect-orientation. The case study's modelling solution has a clear and well-defined modular structure; the backbone of this structure is a collection of packages encapsulating local solutions to concerns.
A network function-based definition of communities in complex networks.
Chauhan, Sanjeev; Girvan, Michelle; Ott, Edward
2012-09-01
We consider an alternate definition of community structure that is functionally motivated. We define network community structure based on the function the network system is intended to perform. In particular, as a specific example of this approach, we consider communities whose function is enhanced by the ability to synchronize and/or by resilience to node failures. Previous work has shown that, in many cases, the largest eigenvalue of the network's adjacency matrix controls the onset of both synchronization and percolation processes. Thus, for networks whose functional performance is dependent on these processes, we propose a method that divides a given network into communities based on maximizing a function of the largest eigenvalues of the adjacency matrices of the resulting communities. We also explore the differences between the partitions obtained by our method and the modularity approach (which is based solely on consideration of network structure). We do this for several different classes of networks. We find that, in many cases, modularity-based partitions do almost as well as our function-based method in finding functional communities, even though modularity does not specifically incorporate consideration of function.
The Modular need for the Division Signal Battalion
2017-06-09
findings and analyzes them to expand on them. It is with these findings and subsequent analysis that the case studies shape the answer to the three...These case studies focus on the signal leadership development and how it occurred in the pre-modular force structure, during modularity, and the...the comparative case study research. The case studies focus on signal leader development in a pre-modular signal force, a modular signal force, and
Simulation and Modeling Capability for Standard Modular Hydropower Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, Kevin M.; Smith, Brennan T.; Witt, Adam M.
Grounded in the stakeholder-validated framework established in Oak Ridge National Laboratory’s SMH Exemplary Design Envelope Specification, this report on Simulation and Modeling Capability for Standard Modular Hydropower (SMH) Technology provides insight into the concepts, use cases, needs, gaps, and challenges associated with modeling and simulating SMH technologies. The SMH concept envisions a network of generation, passage, and foundation modules that achieve environmentally compatible, cost-optimized hydropower using standardization and modularity. The development of standardized modeling approaches and simulation techniques for SMH (as described in this report) will pave the way for reliable, cost-effective methods for technology evaluation, optimization, and verification.
MODULAR ANALYTICS: A New Approach to Automation in the Clinical Laboratory.
Horowitz, Gary L; Zaman, Zahur; Blanckaert, Norbert J C; Chan, Daniel W; Dubois, Jeffrey A; Golaz, Olivier; Mensi, Noury; Keller, Franz; Stolz, Herbert; Klingler, Karl; Marocchi, Alessandro; Prencipe, Lorenzo; McLawhon, Ronald W; Nilsen, Olaug L; Oellerich, Michael; Luthe, Hilmar; Orsonneau, Jean-Luc; Richeux, Gérard; Recio, Fernando; Roldan, Esther; Rymo, Lars; Wicktorsson, Anne-Charlotte; Welch, Shirley L; Wieland, Heinrich; Grawitz, Andrea Busse; Mitsumaki, Hiroshi; McGovern, Margaret; Ng, Katherine; Stockmann, Wolfgang
2005-01-01
MODULAR ANALYTICS (Roche Diagnostics) (MODULAR ANALYTICS, Elecsys and Cobas Integra are trademarks of a member of the Roche Group) represents a new approach to automation for the clinical chemistry laboratory. It consists of a control unit, a core unit with a bidirectional multitrack rack transportation system, and three distinct kinds of analytical modules: an ISE module, a P800 module (44 photometric tests, throughput of up to 800 tests/h), and a D2400 module (16 photometric tests, throughput up to 2400 tests/h). MODULAR ANALYTICS allows customised configurations for various laboratory workloads. The performance and practicability of MODULAR ANALYTICS were evaluated in an international multicentre study at 16 sites. Studies included precision, accuracy, analytical range, carry-over, and workflow assessment. More than 700 000 results were obtained during the course of the study. Median between-day CVs were typically less than 3% for clinical chemistries and less than 6% for homogeneous immunoassays. Median recoveries for nearly all standardised reference materials were within 5% of assigned values. Method comparisons versus current existing routine instrumentation were clinically acceptable in all cases. During the workflow studies, the work from three to four single workstations was transferred to MODULAR ANALYTICS, which offered over 100 possible methods, with reduction in sample splitting, handling errors, and turnaround time. Typical sample processing time on MODULAR ANALYTICS was less than 30 minutes, an improvement from the current laboratory systems. By combining multiple analytic units in flexible ways, MODULAR ANALYTICS met diverse laboratory needs and offered improvement in workflow over current laboratory situations. It increased overall efficiency while maintaining (or improving) quality.
MODULAR ANALYTICS: A New Approach to Automation in the Clinical Laboratory
Zaman, Zahur; Blanckaert, Norbert J. C.; Chan, Daniel W.; Dubois, Jeffrey A.; Golaz, Olivier; Mensi, Noury; Keller, Franz; Stolz, Herbert; Klingler, Karl; Marocchi, Alessandro; Prencipe, Lorenzo; McLawhon, Ronald W.; Nilsen, Olaug L.; Oellerich, Michael; Luthe, Hilmar; Orsonneau, Jean-Luc; Richeux, Gérard; Recio, Fernando; Roldan, Esther; Rymo, Lars; Wicktorsson, Anne-Charlotte; Welch, Shirley L.; Wieland, Heinrich; Grawitz, Andrea Busse; Mitsumaki, Hiroshi; McGovern, Margaret; Ng, Katherine; Stockmann, Wolfgang
2005-01-01
MODULAR ANALYTICS (Roche Diagnostics) (MODULAR ANALYTICS, Elecsys and Cobas Integra are trademarks of a member of the Roche Group) represents a new approach to automation for the clinical chemistry laboratory. It consists of a control unit, a core unit with a bidirectional multitrack rack transportation system, and three distinct kinds of analytical modules: an ISE module, a P800 module (44 photometric tests, throughput of up to 800 tests/h), and a D2400 module (16 photometric tests, throughput up to 2400 tests/h). MODULAR ANALYTICS allows customised configurations for various laboratory workloads. The performance and practicability of MODULAR ANALYTICS were evaluated in an international multicentre study at 16 sites. Studies included precision, accuracy, analytical range, carry-over, and workflow assessment. More than 700 000 results were obtained during the course of the study. Median between-day CVs were typically less than 3% for clinical chemistries and less than 6% for homogeneous immunoassays. Median recoveries for nearly all standardised reference materials were within 5% of assigned values. Method comparisons versus current existing routine instrumentation were clinically acceptable in all cases. During the workflow studies, the work from three to four single workstations was transferred to MODULAR ANALYTICS, which offered over 100 possible methods, with reduction in sample splitting, handling errors, and turnaround time. Typical sample processing time on MODULAR ANALYTICS was less than 30 minutes, an improvement from the current laboratory systems. By combining multiple analytic units in flexible ways, MODULAR ANALYTICS met diverse laboratory needs and offered improvement in workflow over current laboratory situations. It increased overall efficiency while maintaining (or improving) quality. PMID:18924721
ERIC Educational Resources Information Center
Unal, Hasan
2011-01-01
The purpose of this study was to investigate the preservice secondary mathematics teachers' development of pedagogical understanding in the teaching of modular arithmetic problems. Data sources included, written assignments, interview transcripts and filed notes. Using case study and action research approaches cases of three preservice teachers…
Self-organized modularization in evolutionary algorithms.
Dauscher, Peter; Uthmann, Thomas
2005-01-01
The principle of modularization has proven to be extremely successful in the field of technical applications and particularly for Software Engineering purposes. The question to be answered within the present article is whether mechanisms can also be identified within the framework of Evolutionary Computation that cause a modularization of solutions. We will concentrate on processes, where modularization results only from the typical evolutionary operators, i.e. selection and variation by recombination and mutation (and not, e.g., from special modularization operators). This is what we call Self-Organized Modularization. Based on a combination of two formalizations by Radcliffe and Altenberg, some quantitative measures of modularity are introduced. Particularly, we distinguish Built-in Modularity as an inherent property of a genotype and Effective Modularity, which depends on the rest of the population. These measures can easily be applied to a wide range of present Evolutionary Computation models. It will be shown, both theoretically and by simulation, that under certain conditions, Effective Modularity (as defined within this paper) can be a selection factor. This causes Self-Organized Modularization to take place. The experimental observations emphasize the importance of Effective Modularity in comparison with Built-in Modularity. Although the experimental results have been obtained using a minimalist toy model, they can lead to a number of consequences for existing models as well as for future approaches. Furthermore, the results suggest a complex self-amplification of highly modular equivalence classes in the case of respected relations. Since the well-known Holland schemata are just the equivalence classes of respected relations in most Simple Genetic Algorithms, this observation emphasizes the role of schemata as Building Blocks (in comparison with arbitrary subsets of the search space).
Analysis of Advanced Modular Power Systems (AMPS) for Deep Space Exploration
NASA Technical Reports Server (NTRS)
Oeftering, Richard; Soeder, James F.; Beach, Ray
2014-01-01
The Advanced Modular Power Systems (AMPS) project is developing a modular approach to spacecraft power systems for exploration beyond Earth orbit. AMPS is intended to meet the need of reducing the cost of design development, test and integration and also reducing the operational logistics cost of supporting exploration missions. AMPS seeks to establish modular power building blocks with standardized electrical, mechanical, thermal and data interfaces that can be applied across multiple exploration vehicles. The presentation discusses the results of a cost analysis that compares the cost of the modular approach against a traditional non-modular approach.
Modular femoral neck fracture after primary total hip arthroplasty.
Sotereanos, Nicholas G; Sauber, Timothy J; Tupis, Todd T
2013-01-01
The use of modular femoral stems in primary total hip arthroplasty has increased considerably in recent years. These modular components offer the surgeon the ability to independently alter version, offset, and length of the femoral component of a hip arthroplasty. This increases the surgeon's ability to accurately recreate the relevant anatomy but increases the possibilities of corrosion and fracture. Multiple case reports have highlighted fractures of these modular components. We present a case of a fracture of a modular design that has had no previously reported modular neck fractures. The patient was informed that data concerning the case would be submitted, and he consented. Copyright © 2013 Elsevier Inc. All rights reserved.
Design and Facilitation of Problem-Based Learning in Graduate Teacher Education: An MA TESOL Case
ERIC Educational Resources Information Center
Caswell, Cynthia Ann
2016-01-01
This exploratory, evaluative case study introduces a new context for problem-based learning (PBL) involving an iterative, modular approach to curriculum-wide delivery of PBL in an MA TESOL program. The introduction to the curriculum context provides an overview of the design and delivery features particular to the situation. The delivery approach…
Project-Based Management Development: "The Volvo Story."
ERIC Educational Resources Information Center
Branch, John; Smith, Bryan
1992-01-01
A modular group project-based approach to management development was implemented by Volvo Concessionaires (United Kingdom) in partnership with training consultants. Ingredients of its success included top-level commitment, investment in diagnosis and tailoring, and use of company-specific case studies. (SK)
Lardon, L; Puñal, A; Martinez, J A; Steyer, J P
2005-01-01
Anaerobic digestion (AD) plants are highly efficient wastewater treatment processes with possible energetic valorisation. Despite these advantages, many industries are still reluctant to use them because of their instability in the face of changes in operating conditions. To the face this drawback and to enhance the industrial use of anaerobic digestion, one solution is to develop and to implement knowledge base (KB) systems that are able to detect and to assess in real-time the quality of operating conditions of the processes. Case-based techniques and heuristic approaches have been already tested and validated on AD processes but two major properties were lacking: modularity of the system (the knowledge base system should be easily tuned on a new process and should still work if one or more sensors are added or removed) and uncertainty management (the assessment of the KB system should remain relevant even in the case of too poor or conflicting information sources). This paper addresses these two points and presents a modular KB system where an uncertain reasoning formalism is used to combine partial and complementary fuzzy diagnosis modules. Demonstration of the interest of the approach is provided from real-life experiments performed on an industrial 2,000 m3 CSTR anaerobic digester.
Towards a Formal Basis for Modular Safety Cases
NASA Technical Reports Server (NTRS)
Denney, Ewen; Pai, Ganesh
2015-01-01
Safety assurance using argument-based safety cases is an accepted best-practice in many safety-critical sectors. Goal Structuring Notation (GSN), which is widely used for presenting safety arguments graphically, provides a notion of modular arguments to support the goal of incremental certification. Despite the efforts at standardization, GSN remains an informal notation whereas the GSN standard contains appreciable ambiguity especially concerning modular extensions. This, in turn, presents challenges when developing tools and methods to intelligently manipulate modular GSN arguments. This paper develops the elements of a theory of modular safety cases, leveraging our previous work on formalizing GSN arguments. Using example argument structures we highlight some ambiguities arising through the existing guidance, present the intuition underlying the theory, clarify syntax, and address modular arguments, contracts, well-formedness and well-scopedness of modules. Based on this theory, we have a preliminary implementation of modular arguments in our toolset, AdvoCATE.
Modular Mayhem? A Case Study of the Development of the A-Level Science Curriculum in England
ERIC Educational Resources Information Center
Hayward, Geoff; McNicholl, Jane
2007-01-01
This article investigates the costs and benefits of the increased use of modular or unitized qualification designs through a case study of the GCE A-level science curriculum in England. Following a brief review of the development of modular A-levels, the various proposed advantages of modularity--short-term goals and regular feedback, flexibility…
Ramly, Edmond; Brennan, Patricia Flatley
2012-01-01
Development of health information systems innovations is necessary to create a better future for health and health care, but evaluating them is challenging. This paper examines the problem of evaluating health IT projects in which innovation is agile, adaptive, and emergent, and in which innovation diffusion and production are interlinked. We introduce a typology of mindsets for evaluation design that are typically used in health informatics: optimality, contingency, and usefulness, and make the case for a modularity mindset. We propose a model that shifts the unit of analysis from an evaluation as a whole, to specific modules of an evaluation, such as purpose, target, and methods. We then use retrospective participant observation to illustrate the approach using a case study: the ONC SHARP Harvard project developing the SMArt platform (smartplaforms.org). We find that the proposed modular approach to evaluation design provides a balanced alternative to standard archetypical designs on the one hand, and fully custom-made designs, on the other hand. PMID:23304417
Lievens, Filip; Sackett, Paul R
2017-01-01
Past reviews and meta-analyses typically conceptualized and examined selection procedures as holistic entities. We draw on the product design literature to propose a modular approach as a complementary perspective to conceptualizing selection procedures. A modular approach means that a product is broken down into its key underlying components. Therefore, we start by presenting a modular framework that identifies the important measurement components of selection procedures. Next, we adopt this modular lens for reviewing the available evidence regarding each of these components in terms of affecting validity, subgroup differences, and applicant perceptions, as well as for identifying new research directions. As a complement to the historical focus on holistic selection procedures, we posit that the theoretical contributions of a modular approach include improved insight into the isolated workings of the different components underlying selection procedures and greater theoretical connectivity among different selection procedures and their literatures. We also outline how organizations can put a modular approach into operation to increase the variety in selection procedures and to enhance the flexibility in designing them. Overall, we believe that a modular perspective on selection procedures will provide the impetus for programmatic and theory-driven research on the different measurement components of selection procedures. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
NASA Technical Reports Server (NTRS)
Watters, H.; Steadman, J.
1976-01-01
A modular training approach for Spacelab payload crews is described. Representative missions are defined for training requirements analysis, training hardware, and simulations. Training times are projected for each experiment of each representative flight. A parametric analysis of the various flights defines resource requirements for a modular training facility at different flight frequencies. The modular approach is believed to be more flexible, time saving, and economical than previous single high fidelity trainer concepts. Block diagrams of training programs are shown.
Fast estimation of space-robots inertia parameters: A modular mathematical formulation
NASA Astrophysics Data System (ADS)
Nabavi Chashmi, Seyed Yaser; Malaek, Seyed Mohammad-Bagher
2016-10-01
This work aims to propose a new technique that considerably helps enhance time and precision needed to identify ;Inertia Parameters (IPs); of a typical Autonomous Space-Robot (ASR). Operations might include, capturing an unknown Target Space-Object (TSO), ;active space-debris removal; or ;automated in-orbit assemblies;. In these operations generating precise successive commands are essential to the success of the mission. We show how a generalized, repeatable estimation-process could play an effective role to manage the operation. With the help of the well-known Force-Based approach, a new ;modular formulation; has been developed to simultaneously identify IPs of an ASR while it captures a TSO. The idea is to reorganize the equations with associated IPs with a ;Modular Set; of matrices instead of a single matrix representing the overall system dynamics. The devised Modular Matrix Set will then facilitate the estimation process. It provides a conjugate linear model in mass and inertia terms. The new formulation is, therefore, well-suited for ;simultaneous estimation processes; using recursive algorithms like RLS. Further enhancements would be needed for cases the effect of center of mass location becomes important. Extensive case studies reveal that estimation time is drastically reduced which in-turn paves the way to acquire better results.
Automatization of hardware configuration for plasma diagnostic system
NASA Astrophysics Data System (ADS)
Wojenski, A.; Pozniak, K. T.; Kasprowicz, G.; Kolasinski, P.; Krawczyk, R. D.; Zabolotny, W.; Linczuk, P.; Chernyshova, M.; Czarski, T.; Malinowski, K.
2016-09-01
Soft X-ray plasma measurement systems are mostly multi-channel, high performance systems. In case of the modular construction it is necessary to perform sophisticated system discovery in parallel with automatic system configuration. In the paper the structure of the modular system designed for tokamak plasma soft X-ray measurements is described. The concept of the system discovery and further automatic configuration is also presented. FCS application (FMC/ FPGA Configuration Software) is used for running sophisticated system setup with automatic verification of proper configuration. In order to provide flexibility of further system configurations (e.g. user setup), common communication interface is also described. The approach presented here is related to the automatic system firmware building presented in previous papers. Modular construction and multichannel measurements are key requirement in term of SXR diagnostics with use of GEM detectors.
Two- and three-dimensional natural and mixed convection simulation using modular zonal models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wurtz, E.; Nataf, J.M.; Winkelmann, F.
We demonstrate the use of the zonal model approach, which is a simplified method for calculating natural and mixed convection in rooms. Zonal models use a coarse grid and use balance equations, state equations, hydrostatic pressure drop equations and power law equations of the form {ital m} = {ital C}{Delta}{sup {ital n}}. The advantage of the zonal approach and its modular implementation are discussed. The zonal model resolution of nonlinear equation systems is demonstrated for three cases: a 2-D room, a 3-D room and a pair of 3-D rooms separated by a partition with an opening. A sensitivity analysis withmore » respect to physical parameters and grid coarseness is presented. Results are compared to computational fluid dynamics (CFD) calculations and experimental data.« less
Modular analysis of biological networks.
Kaltenbach, Hans-Michael; Stelling, Jörg
2012-01-01
The analysis of complex biological networks has traditionally relied on decomposition into smaller, semi-autonomous units such as individual signaling pathways. With the increased scope of systems biology (models), rational approaches to modularization have become an important topic. With increasing acceptance of de facto modularity in biology, widely different definitions of what constitutes a module have sparked controversies. Here, we therefore review prominent classes of modular approaches based on formal network representations. Despite some promising research directions, several important theoretical challenges remain open on the way to formal, function-centered modular decompositions for dynamic biological networks.
Adapt Design: A Methodology for Enabling Modular Design for Mission Specific SUAS
2016-08-24
ADAPT DESIGN: A METHODOLOGY FOR ENABLING MODULAR DESIGN FOR MISSION SPECIFIC SUAS Zachary C. Fisher David Locascio K. Daniel Cooksey...vehicle’s small scale. This paper considers a different approach to SUAS design aimed at addressing this issue. In this approach, a hybrid modular and...Two types of platforms have been identified: scalable platforms where variants are produced by varying scalable design variables, and modular
NASA Technical Reports Server (NTRS)
Dorsey, John T.; Collins, Timothy J.; Moe, Rud V.; Doggett,. William R.
2006-01-01
A comprehensive modular assembly system model has been proposed that extends the art from modular hardware, to include in-space assembly, servicing and repair and it s critical components of infrastructure, agents and assembly operations. Benefits of modular assembly have been identified and a set of metrics defined that extends the art beyond the traditional measures of performance, with emphasis on criteria that allow life-cycle mission costs to be used as a figure of merit (and include all substantive terms that have an impact on the evaluation). The modular assembly approach was used as a basis for developing a Solar Electric Transfer Vehicle (SETV) concept and three modular assembly scenarios were developed. The modular assembly approach also allows the SETV to be entered into service much earlier than competing conventional configurations and results in a great deal of versatility in accommodating different launch vehicle payload capabilities, allowing for modules to be pre-assembled before launch or assembled on orbit, without changing the space vehicle design.
Fractures above and below a modular nail for knee arthrodesis. A case report.
Hinarejos, Pedro; Ginés, Alberto; Monllau, Juan C; Puig, Lluis; Cáceres, Enric
2005-06-01
Several techniques have been advocated for knee arthrodesis, and there has been an increasing interest in modular intramedullary nails in the recent last years. We report a case of femoral and tibial fractures at each end of a modular nail in a solidly fused knee 8 months after an arthrodesis.
Leavesley, G.H.; Markstrom, S.L.; Restrepo, Pedro J.; Viger, R.J.
2002-01-01
A modular approach to model design and construction provides a flexible framework in which to focus the multidisciplinary research and operational efforts needed to facilitate the development, selection, and application of the most robust distributed modelling methods. A variety of modular approaches have been developed, but with little consideration for compatibility among systems and concepts. Several systems are proprietary, limiting any user interaction. The US Geological Survey modular modelling system (MMS) is a modular modelling framework that uses an open source software approach to enable all members of the scientific community to address collaboratively the many complex issues associated with the design, development, and application of distributed hydrological and environmental models. Implementation of a common modular concept is not a trivial task. However, it brings the resources of a larger community to bear on the problems of distributed modelling, provides a framework in which to compare alternative modelling approaches objectively, and provides a means of sharing the latest modelling advances. The concepts and components of the MMS are described and an example application of the MMS, in a decision-support system context, is presented to demonstrate current system capabilities. Copyright ?? 2002 John Wiley and Sons, Ltd.
NASA Technical Reports Server (NTRS)
Rushby, John; Miner, Paul S. (Technical Monitor)
2002-01-01
Airplanes are certified as a whole: there is no established basis for separately certifying some components, particularly software-intensive ones, independently of their specific application in a given airplane. The absence of separate certification inhibits the development of modular components that could be largely "precertified" and used in several different contexts within a single airplane, or across many different airplanes. In this report, we examine the issues in modular certification of software components and propose an approach based on assume-guarantee reasoning. We extend the method from verification to certification by considering behavior in the presence of failures. This exposes the need for partitioning, and separation of assumptions and guarantees into normal and abnormal cases. We then identify three classes of property that must be verified within this framework: safe function, true guarantees, and controlled failure. We identify a particular assume-guarantee proof rule (due to McMillan) that is appropriate to the applications considered, and formally verify its soundness in PVS.
Safety and licensing of a small modular gas-cooled reactor system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, N.W.; Kelley, A.P. Jr.
A modular side-by-side high-temperature gas-cooled reactor (SBS-HTGR) is being developed by Interatom/Kraftwerk Union (KWU). The General Electric Company and Interatom/KWU entered into a proprietary working agreement to continue develop jointly of the SBS-HTGR. A study on adapting the SBS-HTGR for application in the US has been completed. The study investigated the safety characteristics and the use of this type of design in an innovative approach to licensing. The safety objective guiding the design of the modular SBS-HTGR is to control radionuclide release by the retention of fission products within the fuel particles with minimal reliance on active design features. Themore » philosophy on which this objective is predicated is that by providing a simple safety case, the safety criteria can be demonstrated as being met with high confidence through conduct of a full-scale module safety test.« less
Image Intensifier Modules For Use With Commercially Available Solid State Cameras
NASA Astrophysics Data System (ADS)
Murphy, Howard; Tyler, Al; Lake, Donald W.
1989-04-01
A modular approach to design has contributed greatly to the success of the family of machine vision video equipment produced by EG&G Reticon during the past several years. Internal modularity allows high-performance area (matrix) and line scan cameras to be assembled with two or three electronic subassemblies with very low labor costs, and permits camera control and interface circuitry to be realized by assemblages of various modules suiting the needs of specific applications. Product modularity benefits equipment users in several ways. Modular matrix and line scan cameras are available in identical enclosures (Fig. 1), which allows enclosure components to be purchased in volume for economies of scale and allows field replacement or exchange of cameras within a customer-designed system to be easily accomplished. The cameras are optically aligned (boresighted) at final test; modularity permits optical adjustments to be made with the same precise test equipment for all camera varieties. The modular cameras contain two, or sometimes three, hybrid microelectronic packages (Fig. 2). These rugged and reliable "submodules" perform all of the electronic operations internal to the camera except for the job of image acquisition performed by the monolithic image sensor. Heat produced by electrical power dissipation in the electronic modules is conducted through low resistance paths to the camera case by the metal plates, which results in a thermally efficient and environmentally tolerant camera with low manufacturing costs. A modular approach has also been followed in design of the camera control, video processor, and computer interface accessory called the Formatter (Fig. 3). This unit can be attached directly onto either a line scan or matrix modular camera to form a self-contained units, or connected via a cable to retain the advantages inherent to a small, light weight, and rugged image sensing component. Available modules permit the bus-structured Formatter to be configured as required by a specific camera application. Modular line and matrix scan cameras incorporating sensors with fiber optic faceplates (Fig 4) are also available. These units retain the advantages of interchangeability, simple construction, ruggedness, and optical precision offered by the more common lens input units. Fiber optic faceplate cameras are used for a wide variety of applications. A common usage involves mating of the Reticon-supplied camera to a customer-supplied intensifier tube for low light level and/or short exposure time situations.
A Modular Approach for Training Employees in the Automotive Service Sector: A Case Study in Turkey
ERIC Educational Resources Information Center
Arslan, Ridvan; Kus, Abdil
2012-01-01
Certified education aimed at developing and documenting professional growth is an important issue for lifelong learning in developing countries. Some firms and educational institutions have applied different educational models to keep up with technological innovations. This study examines a Turkish programme for employees in the automotive sector…
Prefabricated solution to modular construction in Cape Verde
NASA Astrophysics Data System (ADS)
Vieira, Nuno; Amado, Miguel; Pinho, Fernando
2017-02-01
Nowadays, the lack of adequate housing in Cape Verde is a growing problem. The migration of the population living in the countryside to the major cities generates an increase of the diameter of the cities. With the lack of economic power, the migrating families tend to occupy the land with houses which don't present proper conditions to living. Praia is the capital of Cape Verde and so on the biggest city of the country. This fact leads Praia to being the city with major economic power and job offer in all country. Consequently, Praia has developed the biggest slum of the Cape Verde and it is urgent to approach this problem in order to create solutions that reveal capacity to start solving it. Cape Verde's unique dry subtropical climate turns indispensable a careful resolution of the housing, in order to ensure the comfort of the occupants. The modular construction is a solution with potential to approach this problem with a fast and economic response. In order to answer the situation, this article introduces a modular solution in order to reach the needing of thermal comfort to the specific case of Praia.
NASA Technical Reports Server (NTRS)
Simon, Matthew A.; Toups, Larry; Smitherman, David
2012-01-01
Evaluating preliminary concepts of a Deep Space Habitat (DSH) enabling long duration crewed exploration of asteroids, the Moon, and Mars is a technically challenging problem. Sufficient habitat volumes and equipment, necessary to ensure crew health and functionality, increase propellant requirements and decrease launch flexibility to deliver multiple elements on a single launch vehicle; both of which increase overall mission cost. Applying modularity in the design of the habitat structures and subsystems can alleviate these difficulties by spreading the build-up of the overall habitation capability across several smaller parts. This allows for a more flexible habitation approach that accommodates various crew mission durations and levels of functionality. This paper provides a technical analysis of how various modular habitation approaches can impact the parametric design of a DSH with potential benefits in mass, packaging volume, and architectural flexibility. This includes a description of the desired long duration habitation capability, the definition of a baseline model for comparison, a small trade study to investigate alternatives, and commentary on potentially advantageous configurations to enable different levels of habitability. The approaches investigated include modular pressure vessel strategies, modular subsystems, and modular manufacturing approaches to habitat structure. The paper also comments upon the possibility of an integrated habitation strategy using modular components to create all short and long duration habitation elements required in the current exploration architectures.
Lee, Yeonju; Hanif, Sadaf; Theato, Patrick; Zentel, Rudolf; Lim, Jeewoo; Char, Kookheon
2015-06-01
Emission wavelength control in fluorescent nanoparticles (NPs) is crucial for their applications. In the case of inorganic quantum dots or dye-impregnated silica NPs, such a control is readily achieved by changing the size of the particles or choosing appropriate fluorescent dyes, respectively. A similar modular approach for controlling the emission wavelength of fluo-rescent polymer NPs, however, is difficult. This article reports on fluorescent polymer NPs, the synthesis of which provides a platform for a modular approach towards the preparation of fluorescent NPs of desired emission wavelength. Atom-transfer radical polymerization (ATRP) is employed to synthesize reactive ester polymers, which are then easily modified with a commercially available dye and subsequently subjected to nanoprecipitation. The resulting NPs, with low size polydispersity, show an enhanced emission quantum yield when compared with the same dye molecules in solution. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Reduced modeling of signal transduction – a modular approach
Koschorreck, Markus; Conzelmann, Holger; Ebert, Sybille; Ederer, Michael; Gilles, Ernst Dieter
2007-01-01
Background Combinatorial complexity is a challenging problem in detailed and mechanistic mathematical modeling of signal transduction. This subject has been discussed intensively and a lot of progress has been made within the last few years. A software tool (BioNetGen) was developed which allows an automatic rule-based set-up of mechanistic model equations. In many cases these models can be reduced by an exact domain-oriented lumping technique. However, the resulting models can still consist of a very large number of differential equations. Results We introduce a new reduction technique, which allows building modularized and highly reduced models. Compared to existing approaches further reduction of signal transduction networks is possible. The method also provides a new modularization criterion, which allows to dissect the model into smaller modules that are called layers and can be modeled independently. Hallmarks of the approach are conservation relations within each layer and connection of layers by signal flows instead of mass flows. The reduced model can be formulated directly without previous generation of detailed model equations. It can be understood and interpreted intuitively, as model variables are macroscopic quantities that are converted by rates following simple kinetics. The proposed technique is applicable without using complex mathematical tools and even without detailed knowledge of the mathematical background. However, we provide a detailed mathematical analysis to show performance and limitations of the method. For physiologically relevant parameter domains the transient as well as the stationary errors caused by the reduction are negligible. Conclusion The new layer based reduced modeling method allows building modularized and strongly reduced models of signal transduction networks. Reduced model equations can be directly formulated and are intuitively interpretable. Additionally, the method provides very good approximations especially for macroscopic variables. It can be combined with existing reduction methods without any difficulties. PMID:17854494
Dissociation of modular total hip arthroplasty at the neck-stem interface without dislocation.
Kouzelis, A; Georgiou, C S; Megas, P
2012-12-01
Modular femoral and acetabular components are now widely used, but only a few complications related to the modularity itself have been reported. We describe a case of dissociation of the modular total hip arthroplasty (THA) at the femoral neck-stem interface during walking. The possible causes of this dissociation are discussed. Successful treatment was provided with surgical revision and replacement of the modular neck components. Surgeons who use modular components in hip arthroplasties should be aware of possible early complications in which the modularity of the prostheses is the major factor of failure.
Modular Knowledge Representation and Reasoning in the Semantic Web
NASA Astrophysics Data System (ADS)
Serafini, Luciano; Homola, Martin
Construction of modular ontologies by combining different modules is becoming a necessity in ontology engineering in order to cope with the increasing complexity of the ontologies and the domains they represent. The modular ontology approach takes inspiration from software engineering, where modularization is a widely acknowledged feature. Distributed reasoning is the other side of the coin of modular ontologies: given an ontology comprising of a set of modules, it is desired to perform reasoning by combination of multiple reasoning processes performed locally on each of the modules. In the last ten years, a number of approaches for combining logics has been developed in order to formalize modular ontologies. In this chapter, we survey and compare the main formalisms for modular ontologies and distributed reasoning in the Semantic Web. We select four formalisms build on formal logical grounds of Description Logics: Distributed Description Logics, ℰ-connections, Package-based Description Logics and Integrated Distributed Description Logics. We concentrate on expressivity and distinctive modeling features of each framework. We also discuss reasoning capabilities of each framework.
Modularization: An Attempt at Collegiate Level in India.
ERIC Educational Resources Information Center
Gabriel, J.; Pillai, J. K.
1981-01-01
The effectiveness of a modular approach to learning in a botany unit as compared to the traditional teaching approach in terms of learning efficiency, learning time, and mastery level is reported. Three references are cited. (Author/CHC)
Stratway: A Modular Approach to Strategic Conflict Resolution
NASA Technical Reports Server (NTRS)
Hagen, George E.; Butler, Ricky W.; Maddalon, Jeffrey M.
2011-01-01
In this paper we introduce Stratway, a modular approach to finding long-term strategic resolutions to conflicts between aircraft. The modular approach provides both advantages and disadvantages. Our primary concern is to investigate the implications on the verification of safety-critical properties of a strategic resolution algorithm. By partitioning the problem into verifiable modules much stronger verification claims can be established. Since strategic resolution involves searching for solutions over an enormous state space, Stratway, like most similar algorithms, searches these spaces by applying heuristics, which present especially difficult verification challenges. An advantage of a modular approach is that it makes a clear distinction between the resolution function and the trajectory generation function. This allows the resolution computation to be independent of any particular vehicle. The Stratway algorithm was developed in both Java and C++ and is available through a open source license. Additionally there is a visualization application that is helpful when analyzing and quickly creating conflict scenarios.
Modular Power Standard for Space Explorations Missions
NASA Technical Reports Server (NTRS)
Oeftering, Richard C.; Gardner, Brent G.
2016-01-01
Future human space exploration will most likely be composed of assemblies of multiple modular spacecraft elements with interconnected electrical power systems. An electrical system composed of a standardized set modular building blocks provides significant development, integration, and operational cost advantages. The modular approach can also provide the flexibility to configure power systems to meet the mission needs. A primary goal of the Advanced Exploration Systems (AES) Modular Power System (AMPS) project is to establish a Modular Power Standard that is needed to realize these benefits. This paper is intended to give the space exploration community a "first look" at the evolving Modular Power Standard and invite their comments and technical contributions.
ERIC Educational Resources Information Center
Feizollahi, Zhaleh
2010-01-01
The phonetics-phonology interface has long been debated; some linguists argue for a modular approach (Keating 1984, Pierrehumbert 1990, Zsiga 1997, Cohn 1998), while others argue that there is no interface, and that phonetics and phonology are one and the same (Browman & Goldstein 1989-1992, Ohala 1990). Recent proposals by Gafos (2002), and…
NASA Astrophysics Data System (ADS)
Fajingbesi, F. E.; Midi, N. S.; Khan, S.
2017-06-01
Green energy sources or renewable energy system generally utilize modular approach in their design. This sort of power sources are generally in DC form or in single cases AC. Due to high fluctuation in the natural origin of this energy (wind & solar) source they are stored as DC. DC power however are difficult to transfer over long distances hence DC to AC converters and storage system are very important in green energy system design. In this work we have designed a novel multilevel DC to AC converter that takes into account the modular design of green energy systems. A power conversion efficiency of 99% with reduced total harmonic distortion (THD) was recorded from our simulated system design.
Network community-detection enhancement by proper weighting
NASA Astrophysics Data System (ADS)
Khadivi, Alireza; Ajdari Rad, Ali; Hasler, Martin
2011-04-01
In this paper, we show how proper assignment of weights to the edges of a complex network can enhance the detection of communities and how it can circumvent the resolution limit and the extreme degeneracy problems associated with modularity. Our general weighting scheme takes advantage of graph theoretic measures and it introduces two heuristics for tuning its parameters. We use this weighting as a preprocessing step for the greedy modularity optimization algorithm of Newman to improve its performance. The result of the experiments of our approach on computer-generated and real-world data networks confirm that the proposed approach not only mitigates the problems of modularity but also improves the modularity optimization.
Toward modular biological models: defining analog modules based on referent physiological mechanisms
2014-01-01
Background Currently, most biomedical models exist in isolation. It is often difficult to reuse or integrate models or their components, in part because they are not modular. Modular components allow the modeler to think more deeply about the role of the model and to more completely address a modeling project’s requirements. In particular, modularity facilitates component reuse and model integration for models with different use cases, including the ability to exchange modules during or between simulations. The heterogeneous nature of biology and vast range of wet-lab experimental platforms call for modular models designed to satisfy a variety of use cases. We argue that software analogs of biological mechanisms are reasonable candidates for modularization. Biomimetic software mechanisms comprised of physiomimetic mechanism modules offer benefits that are unique or especially important to multi-scale, biomedical modeling and simulation. Results We present a general, scientific method of modularizing mechanisms into reusable software components that we call physiomimetic mechanism modules (PMMs). PMMs utilize parametric containers that partition and expose state information into physiologically meaningful groupings. To demonstrate, we modularize four pharmacodynamic response mechanisms adapted from an in silico liver (ISL). We verified the modularization process by showing that drug clearance results from in silico experiments are identical before and after modularization. The modularized ISL achieves validation targets drawn from propranolol outflow profile data. In addition, an in silico hepatocyte culture (ISHC) is created. The ISHC uses the same PMMs and required no refactoring. The ISHC achieves validation targets drawn from propranolol intrinsic clearance data exhibiting considerable between-lab variability. The data used as validation targets for PMMs originate from both in vitro to in vivo experiments exhibiting large fold differences in time scale. Conclusions This report demonstrates the feasibility of PMMs and their usefulness across multiple model use cases. The pharmacodynamic response module developed here is robust to changes in model context and flexible in its ability to achieve validation targets in the face of considerable experimental uncertainty. Adopting the modularization methods presented here is expected to facilitate model reuse and integration, thereby accelerating the pace of biomedical research. PMID:25123169
Petersen, Brenden K; Ropella, Glen E P; Hunt, C Anthony
2014-08-16
Currently, most biomedical models exist in isolation. It is often difficult to reuse or integrate models or their components, in part because they are not modular. Modular components allow the modeler to think more deeply about the role of the model and to more completely address a modeling project's requirements. In particular, modularity facilitates component reuse and model integration for models with different use cases, including the ability to exchange modules during or between simulations. The heterogeneous nature of biology and vast range of wet-lab experimental platforms call for modular models designed to satisfy a variety of use cases. We argue that software analogs of biological mechanisms are reasonable candidates for modularization. Biomimetic software mechanisms comprised of physiomimetic mechanism modules offer benefits that are unique or especially important to multi-scale, biomedical modeling and simulation. We present a general, scientific method of modularizing mechanisms into reusable software components that we call physiomimetic mechanism modules (PMMs). PMMs utilize parametric containers that partition and expose state information into physiologically meaningful groupings. To demonstrate, we modularize four pharmacodynamic response mechanisms adapted from an in silico liver (ISL). We verified the modularization process by showing that drug clearance results from in silico experiments are identical before and after modularization. The modularized ISL achieves validation targets drawn from propranolol outflow profile data. In addition, an in silico hepatocyte culture (ISHC) is created. The ISHC uses the same PMMs and required no refactoring. The ISHC achieves validation targets drawn from propranolol intrinsic clearance data exhibiting considerable between-lab variability. The data used as validation targets for PMMs originate from both in vitro to in vivo experiments exhibiting large fold differences in time scale. This report demonstrates the feasibility of PMMs and their usefulness across multiple model use cases. The pharmacodynamic response module developed here is robust to changes in model context and flexible in its ability to achieve validation targets in the face of considerable experimental uncertainty. Adopting the modularization methods presented here is expected to facilitate model reuse and integration, thereby accelerating the pace of biomedical research.
Modularity and the spread of perturbations in complex dynamical systems
NASA Astrophysics Data System (ADS)
Kolchinsky, Artemy; Gates, Alexander J.; Rocha, Luis M.
2015-12-01
We propose a method to decompose dynamical systems based on the idea that modules constrain the spread of perturbations. We find partitions of system variables that maximize "perturbation modularity," defined as the autocovariance of coarse-grained perturbed trajectories. The measure effectively separates the fast intramodular from the slow intermodular dynamics of perturbation spreading (in this respect, it is a generalization of the "Markov stability" method of network community detection). Our approach captures variation of modular organization across different system states, time scales, and in response to different kinds of perturbations: aspects of modularity which are all relevant to real-world dynamical systems. It offers a principled alternative to detecting communities in networks of statistical dependencies between system variables (e.g., "relevance networks" or "functional networks"). Using coupled logistic maps, we demonstrate that the method uncovers hierarchical modular organization planted in a system's coupling matrix. Additionally, in homogeneously coupled map lattices, it identifies the presence of self-organized modularity that depends on the initial state, dynamical parameters, and type of perturbations. Our approach offers a powerful tool for exploring the modular organization of complex dynamical systems.
Modularity and the spread of perturbations in complex dynamical systems.
Kolchinsky, Artemy; Gates, Alexander J; Rocha, Luis M
2015-12-01
We propose a method to decompose dynamical systems based on the idea that modules constrain the spread of perturbations. We find partitions of system variables that maximize "perturbation modularity," defined as the autocovariance of coarse-grained perturbed trajectories. The measure effectively separates the fast intramodular from the slow intermodular dynamics of perturbation spreading (in this respect, it is a generalization of the "Markov stability" method of network community detection). Our approach captures variation of modular organization across different system states, time scales, and in response to different kinds of perturbations: aspects of modularity which are all relevant to real-world dynamical systems. It offers a principled alternative to detecting communities in networks of statistical dependencies between system variables (e.g., "relevance networks" or "functional networks"). Using coupled logistic maps, we demonstrate that the method uncovers hierarchical modular organization planted in a system's coupling matrix. Additionally, in homogeneously coupled map lattices, it identifies the presence of self-organized modularity that depends on the initial state, dynamical parameters, and type of perturbations. Our approach offers a powerful tool for exploring the modular organization of complex dynamical systems.
Modular reservoir concept for MEMS-based transdermal drug delivery systems
NASA Astrophysics Data System (ADS)
Cantwell, Cara T.; Wei, Pinghung; Ziaie, Babak; Rao, Masaru P.
2014-11-01
While MEMS-based transdermal drug delivery device development efforts have typically focused on tightly-integrated solutions, we propose an alternate conception based upon a novel, modular drug reservoir approach. By decoupling the drug storage functionality from the rest of the delivery system, this approach seeks to minimize cold chain storage volume, enhance compatibility with conventional pharmaceutical practices, and allow independent optimization of reservoir device design, materials, and fabrication. Herein, we report the design, fabrication, and preliminary characterization of modular reservoirs that demonstrate the virtue of this approach within the application context of transdermal insulin administration for diabetes management.
Static Aeroelastic Analysis with an Inviscid Cartesian Method
NASA Technical Reports Server (NTRS)
Rodriguez, David L.; Aftosmis, Michael J.; Nemec, Marian; Smith, Stephen C.
2014-01-01
An embedded-boundary Cartesian-mesh flow solver is coupled with a three degree-offreedom structural model to perform static, aeroelastic analysis of complex aircraft geometries. The approach solves the complete system of aero-structural equations using a modular, loosely-coupled strategy which allows the lower-fidelity structural model to deform the highfidelity CFD model. The approach uses an open-source, 3-D discrete-geometry engine to deform a triangulated surface geometry according to the shape predicted by the structural model under the computed aerodynamic loads. The deformation scheme is capable of modeling large deflections and is applicable to the design of modern, very-flexible transport wings. The interface is modular so that aerodynamic or structural analysis methods can be easily swapped or enhanced. This extended abstract includes a brief description of the architecture, along with some preliminary validation of underlying assumptions and early results on a generic 3D transport model. The final paper will present more concrete cases and validation of the approach. Preliminary results demonstrate convergence of the complete aero-structural system and investigate the accuracy of the approximations used in the formulation of the structural model.
Esteve-Altava, Borja; Boughner, Julia C.; Diogo, Rui; Villmoare, Brian A.; Rasskin-Gutman, Diego
2015-01-01
Modularity and complexity go hand in hand in the evolution of the skull of primates. Because analyses of these two parameters often use different approaches, we do not know yet how modularity evolves within, or as a consequence of, an also-evolving complex organization. Here we use a novel network theory-based approach (Anatomical Network Analysis) to assess how the organization of skull bones constrains the co-evolution of modularity and complexity among primates. We used the pattern of bone contacts modeled as networks to identify connectivity modules and quantify morphological complexity. We analyzed whether modularity and complexity evolved coordinately in the skull of primates. Specifically, we tested Herbert Simon’s general theory of near-decomposability, which states that modularity promotes the evolution of complexity. We found that the skulls of extant primates divide into one conserved cranial module and up to three labile facial modules, whose composition varies among primates. Despite changes in modularity, statistical analyses reject a positive feedback between modularity and complexity. Our results suggest a decoupling of complexity and modularity that translates to varying levels of constraint on the morphological evolvability of the primate skull. This study has methodological and conceptual implications for grasping the constraints that underlie the developmental and functional integration of the skull of humans and other primates. PMID:25992690
Genes, language, and the nature of scientific explanations: the case of Williams syndrome.
Musolino, Julien; Landau, Barbara
2012-01-01
In this article, we discuss two experiments of nature and their implications for the sciences of the mind. The first, Williams syndrome, bears on one of cognitive science's holy grails: the possibility of unravelling the causal chain between genes and cognition. We sketch the outline of a general framework to study the relationship between genes and cognition, focusing as our case study on the development of language in individuals with Williams syndrome. Our approach emphasizes the role of three key ingredients: the need to specify a clear level of analysis, the need to provide a theoretical account of the relevant cognitive structure at that level, and the importance of the (typical) developmental process itself. The promise offered by the case of Williams syndrome has also given rise to two strongly conflicting theoretical approaches-modularity and neuroconstructivism-themselves offshoots of a perennial debate between nativism and empiricism. We apply our framework to explore the tension created by these two conflicting perspectives. To this end, we discuss a second experiment of nature, which allows us to compare the two competing perspectives in what comes close to a controlled experimental setting. From this comparison, we conclude that the "meaningful debate assumption", a widespread assumption suggesting that neuroconstructivism and modularity address the same questions and represent genuine theoretical alternatives, rests on a fallacy.
Full characterization of modular values for finite-dimensional systems
NASA Astrophysics Data System (ADS)
Ho, Le Bin; Imoto, Nobuyuki
2016-06-01
Kedem and Vaidman obtained a relationship between the spin-operator modular value and its weak value for specific coupling strengths [14]. Here we give a general expression for the modular value in the n-dimensional Hilbert space using the weak values up to (n - 1)th order of an arbitrary observable for any coupling strength, assuming non-degenerated eigenvalues. For two-dimensional case, it shows a linear relationship between the weak value and the modular value. We also relate the modular value of the sum of observables to the weak value of their product.
Modular invariant representations of infinite-dimensional Lie algebras and superalgebras
Kac, Victor G.; Wakimoto, Minoru
1988-01-01
In this paper, we launch a program to describe and classify modular invariant representations of infinite-dimensional Lie algebras and superalgebras. We prove a character formula for a large class of highest weight representations L(λ) of a Kac-Moody algebra [unk] with a symmetrizable Cartan matrix, generalizing the Weyl-Kac character formula [Kac, V. G. (1974) Funct. Anal. Appl. 8, 68-70]. In the case of an affine [unk], this class includes modular invariant representations of arbitrary rational level m = t/u, where t [unk] Z and u [unk] N are relatively prime and m + g ≥ g/u (g is the dual Coxeter number). We write the characters of these representations in terms of theta functions and calculate their asymptotics, generalizing the results of Kac and Peterson [Kac, V. G. & Peterson, D. H. (1984) Adv. Math. 53, 125-264] and of Kac and Wakimoto [Kac, V. G. & Wakimoto, M. (1988) Adv. Math. 70, 156-234] for the u = 1 (integrable) case. We work out in detail the case [unk] = A1(1), in particular classifying all its modular invariant representations. Furthermore, we show that the modular invariant representations of the Virasoro algebra Vir are precisely the “minimal series” of Belavin et al. [Belavin, A. A., Polyakov, A. M. & Zamolodchikov, A. B. (1984) Nucl. Phys. B 241, 333-380] using the character formulas of Feigin and Fuchs [Feigin, B. L. & Fuchs, D. B. (1984) Lect. Notes Math. 1060, 230-245]. We show that tensoring the basic representation and modular invariant representations of A1(1) produces all modular invariant representations of Vir generalizing the results of Goddard et al. [Goddard P., Kent, A. & Olive, D. (1986) Commun. Math. Phys. 103, 105-119] and of Kac and Wakimoto [Kac, V. G. & Wakimoto, M. (1986) Lect. Notes Phys. 261, 345-371] in the unitary case. We study the general branching functions as well. All these results are generalized to the Kac-Moody superalgebras introduced by Kac [Kac, V. G. (1978) Adv. Math. 30, 85-136] and to N = 1 super Virasoro algebras. We work out in detail the case of the superalgebra B(0, 1)(1), showing, in particular, that restricting to its even part produces again all modular invariant representations of Vir. These results lead to general conjectures about asymptotic behavior of positive energy representations and classification of modular invariant representations. PMID:16593954
An overview of the phase-modular fault tree approach to phased mission system analysis
NASA Technical Reports Server (NTRS)
Meshkat, L.; Xing, L.; Donohue, S. K.; Ou, Y.
2003-01-01
We look at how fault tree analysis (FTA), a primary means of performing reliability analysis of PMS, can meet this challenge in this paper by presenting an overview of the modular approach to solving fault trees that represent PMS.
NASA Astrophysics Data System (ADS)
Oztekin, Halit; Temurtas, Feyzullah; Gulbag, Ali
The Arithmetic and Logic Unit (ALU) design is one of the important topics in Computer Architecture and Organization course in Computer and Electrical Engineering departments. There are ALU designs that have non-modular nature to be used as an educational tool. As the programmable logic technology has developed rapidly, it is feasible that ALU design based on Field Programmable Gate Array (FPGA) is implemented in this course. In this paper, we have adopted the modular approach to ALU design based on FPGA. All the modules in the ALU design are realized using schematic structure on Altera's Cyclone II Development board. Under this model, the ALU content is divided into four distinct modules. These are arithmetic unit except for multiplication and division operations, logic unit, multiplication unit and division unit. User can easily design any size of ALU unit since this approach has the modular nature. Then, this approach was applied to microcomputer architecture design named BZK.SAU.FPGA10.0 instead of the current ALU unit.
Modular Access and Progression Routes: Support Issues and Student Directed Learning.
ERIC Educational Resources Information Center
Ward, Jill
1995-01-01
The effects of modularizing Access Courses provided by the University of Derby were examined for 299 adult students. No significant differences appeared in retention, but the modular approach had increased recruitment/retention of unskilled and lower achieving students. Students with lower entry qualifications had higher achievement than similar…
NASA Astrophysics Data System (ADS)
Li, L.; Xu, C.-Y.; Engeland, K.
2012-04-01
With respect to model calibration, parameter estimation and analysis of uncertainty sources, different approaches have been used in hydrological models. Bayesian method is one of the most widely used methods for uncertainty assessment of hydrological models, which incorporates different sources of information into a single analysis through Bayesian theorem. However, none of these applications can well treat the uncertainty in extreme flows of hydrological models' simulations. This study proposes a Bayesian modularization method approach in uncertainty assessment of conceptual hydrological models by considering the extreme flows. It includes a comprehensive comparison and evaluation of uncertainty assessments by a new Bayesian modularization method approach and traditional Bayesian models using the Metropolis Hasting (MH) algorithm with the daily hydrological model WASMOD. Three likelihood functions are used in combination with traditional Bayesian: the AR (1) plus Normal and time period independent model (Model 1), the AR (1) plus Normal and time period dependent model (Model 2) and the AR (1) plus multi-normal model (Model 3). The results reveal that (1) the simulations derived from Bayesian modularization method are more accurate with the highest Nash-Sutcliffe efficiency value, and (2) the Bayesian modularization method performs best in uncertainty estimates of entire flows and in terms of the application and computational efficiency. The study thus introduces a new approach for reducing the extreme flow's effect on the discharge uncertainty assessment of hydrological models via Bayesian. Keywords: extreme flow, uncertainty assessment, Bayesian modularization, hydrological model, WASMOD
ERIC Educational Resources Information Center
Moss, Lincoln
2000-01-01
Discusses a holistic approach to preventing moisture penetration of exterior walls in modular school buildings. The problem of roof leaks in modular structures is examined as are approaches to water management, roof waterproofing, the problem of condensation, and the design of heating, ventilation, and air conditioning systems as it affects water…
Joint Common Architecture Demonstration (JCA Demo) Final Report
2016-07-28
approach for implementing open systems [16], formerly known as the Modular Open Systems Approach (MOSA). OSA is a business and technical strategy to... TECHNICAL REPORT RDMR-AD-16-01 JOINT COMMON ARCHITECTURE DEMONSTRATION (JCA DEMO) FINAL REPORT Scott A. Wigginton... Modular Avionics .......................................................................... 5 E. Model-Based Engineering
Fast modular data acquisition system for GEM-2D detector
NASA Astrophysics Data System (ADS)
Kasprowicz, G.; Byszuk, Adrian; Wojeński, A.; Zienkiewicz, P.; Czarski, T.; Chernyshova, M.; Poźniak, K.; Rzadkiewicz, J.; Zabolotny, W.; Juszczyk, B.
2014-11-01
A novel approach to two dimensional Gas Electron Multiplier (GEM) detector readout is presented. Unlike commonly used methods, based on discriminators and analogue FIFOs, the method developed uses simulta- neously sampling high speed ADCs with fast hybrid integrator and advanced FPGA-based processing logic to estimate the energy of every single photon. Such a method is applied to every GEM strip / pixel signal. It is especially useful in case of crystal-based spectrometers for soft X-rays, 2D imaging for plasma tomography and all these applications where energy resolution of every single photon is required. For the purpose of the detector readout, a novel, highly modular and extendable conception of the measurement platform was developed. It is evolution of already deployed measurement system for JET Spectrometer.
A modular, closed-loop platform for intracranial stimulation in people with neurological disorders.
Sarma, Anish A; Crocker, Britni; Cash, Sydney S; Truccolo, Wilson
2016-08-01
Neuromodulation systems based on electrical stimulation can be used to investigate, probe, and potentially treat a range of neurological disorders. The effects of ongoing neural state and dynamics on stimulation response, and of stimulation parameters on neural state, have broad implications for the development of closed-loop neuro-modulation approaches. We describe the development of a modular, low-latency platform for pre-clinical, closed-loop neuromodulation studies with human participants. We illustrate the uses of the platform in a stimulation case study with a person with epilepsy undergoing neuro-monitoring prior to resective surgery. We demonstrate the efficacy of the system by tracking interictal epileptiform discharges in the local field potential to trigger intracranial electrical stimulation, and show that the response to stimulation depends on the neural state.
An approach for fixed coefficient RNS-based FIR filter
NASA Astrophysics Data System (ADS)
Srinivasa Reddy, Kotha; Sahoo, Subhendu Kumar
2017-08-01
In this work, an efficient new modular multiplication method for {2k-1, 2k, 2k+1-1} moduli set is proposed to implement a residue number system (RNS)-based fixed coefficient finite impulse response filter. The new multiplication approach reduces the number of partial products by using pre-loaded product block. The reduction in partial products with the proposed modular multiplication improves the clock frequency and reduces the area and power as compared with the conventional modular multiplication. Further, the present approach eliminates a binary number to residue number converter circuit, which is usually needed at the front end of RNS-based system. In this work, two fixed coefficient filter architectures with the new modular multiplication approach are proposed. The filters are implemented using Verilog hardware description language. The United Microelectronics Corporation 90 nm technology library has been used for synthesis and the results area, power and delay are obtained with the help of Cadence register transfer level compiler. The power delay product (PDP) is also considered for performance comparison among the proposed filters. One of the proposed architecture is found to improve PDP gain by 60.83% as compared with the filter implemented with conventional modular multiplier. The filters functionality is validated with the help of Altera DSP Builder.
Multiway spectral community detection in networks
NASA Astrophysics Data System (ADS)
Zhang, Xiao; Newman, M. E. J.
2015-11-01
One of the most widely used methods for community detection in networks is the maximization of the quality function known as modularity. Of the many maximization techniques that have been used in this context, some of the most conceptually attractive are the spectral methods, which are based on the eigenvectors of the modularity matrix. Spectral algorithms have, however, been limited, by and large, to the division of networks into only two or three communities, with divisions into more than three being achieved by repeated two-way division. Here we present a spectral algorithm that can directly divide a network into any number of communities. The algorithm makes use of a mapping from modularity maximization to a vector partitioning problem, combined with a fast heuristic for vector partitioning. We compare the performance of this spectral algorithm with previous approaches and find it to give superior results, particularly in cases where community sizes are unbalanced. We also give demonstrative applications of the algorithm to two real-world networks and find that it produces results in good agreement with expectations for the networks studied.
Corzo, Gerald; Solomatine, Dimitri
2007-05-01
Natural phenomena are multistationary and are composed of a number of interacting processes, so one single model handling all processes often suffers from inaccuracies. A solution is to partition data in relation to such processes using the available domain knowledge or expert judgment, to train separate models for each of the processes, and to merge them in a modular model (committee). In this paper a problem of water flow forecast in watershed hydrology is considered where the flow process can be presented as consisting of two subprocesses -- base flow and excess flow, so that these two processes can be separated. Several approaches to data separation techniques are studied. Two case studies with different forecast horizons are considered. Parameters of the algorithms responsible for data partitioning are optimized using genetic algorithms and global pattern search. It was found that modularization of ANN models using domain knowledge makes models more accurate, if compared with a global model trained on the whole data set, especially when forecast horizon (and hence the complexity of the modelled processes) is increased.
Patton, Evan W.; Seyed, Patrice; Wang, Ping; Fu, Linyun; Dein, F. Joshua; Bristol, R. Sky; McGuinness, Deborah L.
2014-01-01
We aim to inform the development of decision support tools for resource managers who need to examine large complex ecosystems and make recommendations in the face of many tradeoffs and conflicting drivers. We take a semantic technology approach, leveraging background ontologies and the growing body of linked open data. In previous work, we designed and implemented a semantically enabled environmental monitoring framework called SemantEco and used it to build a water quality portal named SemantAqua. Our previous system included foundational ontologies to support environmental regulation violations and relevant human health effects. In this work, we discuss SemantEco’s new architecture that supports modular extensions and makes it easier to support additional domains. Our enhanced framework includes foundational ontologies to support modeling of wildlife observation and wildlife health impacts, thereby enabling deeper and broader support for more holistically examining the effects of environmental pollution on ecosystems. We conclude with a discussion of how, through the application of semantic technologies, modular designs will make it easier for resource managers to bring in new sources of data to support more complex use cases.
Improved multilayer insulation applications. [spacecraft thermal control
NASA Technical Reports Server (NTRS)
Mikk, G.
1982-01-01
Multilayer insulation blankets used for the attenuation of radiant heat transfer in spacecraft are addressed. Typically, blanket effectiveness is degraded by heat leaks in the joints between adjacent blankets and by heat leaks caused by the blanket fastener system. An approach to blanket design based upon modular sub-blankets with distributed seams and upon an associated fastener system that practically eliminates the through-the-blanket conductive path is described. Test results are discussed providing confirmation of the approach. The specific case of the thermal control system for the optical assembly of the Space Telescope is examined.
Integrating Streaming Media to Web-based Learning: A Modular Approach.
ERIC Educational Resources Information Center
Miltenoff, Plamen
2000-01-01
Explains streaming technology and discusses how to integrate it into Web-based instruction based on experiences at St. Cloud State University (Minnesota). Topics include a modular approach, including editing, copyright concerns, digitizing, maintenance, and continuing education needs; the role of the library; and how streaming can enhance…
ERIC Educational Resources Information Center
American Society for Training and Development, Alexandria, VA.
This publication contains materials from a conference to discuss modular approaches to curriculum design. The materials from the United States and five other countries address both national skills standards and modular systems of training delivery. An introduction provides brief summaries of the conference materials and the agenda. "National…
A seismic-network mission proposal as an example for modular robotic lunar exploration missions
NASA Astrophysics Data System (ADS)
Lange, C.; Witte, L.; Rosta, R.; Sohl, F.; Heffels, A.; Knapmeyer, M.
2017-05-01
In this paper it is intended to discuss an approach to reduce design costs for subsequent missions by introducing modularity, commonality and multi-mission capability and thereby reuse of mission individual investments into the design of lunar exploration infrastructural systems. The presented approach has been developed within the German Helmholtz-Alliance on Robotic Exploration of Extreme Environments (ROBEX), a research alliance bringing together deep-sea and space research to jointly develop technologies and investigate problems for the exploration of highly inaccessible terrain - be it in the deep sea and polar regions or on the Moon and other planets. Although overall costs are much smaller for deep sea missions as compared to lunar missions, a lot can be learned from modularity approaches in deep sea research infrastructure design, which allows a high operational flexibility in the planning phase of a mission as well as during its implementation. The research presented here is based on a review of existing modular solutions in Earth orbiting satellites as well as science and exploration systems. This is followed by an investigation of lunar exploration scenarios from which we derive requirements for a multi-mission modular architecture. After analyzing possible options, an approach using a bus modular architecture for dedicated subsystems is presented. The approach is based on exchangeable modules e.g. incorporating instruments, which are added to the baseline system platform according to the demands of the specific scenario. It will be described in more detail, including arising problems e.g. in the power or thermal domain. Finally, technological building blocks to put the architecture into practical use will be described more in detail.
Jenett, Benjamin; Calisch, Sam; Cellucci, Daniel; Cramer, Nick; Gershenfeld, Neil; Swei, Sean; Cheung, Kenneth C
2017-03-01
We describe an approach for the discrete and reversible assembly of tunable and actively deformable structures using modular building block parts for robotic applications. The primary technical challenge addressed by this work is the use of this method to design and fabricate low density, highly compliant robotic structures with spatially tuned stiffness. This approach offers a number of potential advantages over more conventional methods for constructing compliant robots. The discrete assembly reduces manufacturing complexity, as relatively simple parts can be batch-produced and joined to make complex structures. Global mechanical properties can be tuned based on sub-part ordering and geometry, because local stiffness and density can be independently set to a wide range of values and varied spatially. The structure's intrinsic modularity can significantly simplify analysis and simulation. Simple analytical models for the behavior of each building block type can be calibrated with empirical testing and synthesized into a highly accurate and computationally efficient model of the full compliant system. As a case study, we describe a modular and reversibly assembled wing that performs continuous span-wise twist deformation. It exhibits high performance aerodynamic characteristics, is lightweight and simple to fabricate and repair. The wing is constructed from discrete lattice elements, wherein the geometric and mechanical attributes of the building blocks determine the global mechanical properties of the wing. We describe the mechanical design and structural performance of the digital morphing wing, including their relationship to wind tunnel tests that suggest the ability to increase roll efficiency compared to a conventional rigid aileron system. We focus here on describing the approach to design, modeling, and construction as a generalizable approach for robotics that require very lightweight, tunable, and actively deformable structures.
Digital Morphing Wing: Active Wing Shaping Concept Using Composite Lattice-Based Cellular Structures
Jenett, Benjamin; Calisch, Sam; Cellucci, Daniel; Cramer, Nick; Gershenfeld, Neil; Swei, Sean
2017-01-01
Abstract We describe an approach for the discrete and reversible assembly of tunable and actively deformable structures using modular building block parts for robotic applications. The primary technical challenge addressed by this work is the use of this method to design and fabricate low density, highly compliant robotic structures with spatially tuned stiffness. This approach offers a number of potential advantages over more conventional methods for constructing compliant robots. The discrete assembly reduces manufacturing complexity, as relatively simple parts can be batch-produced and joined to make complex structures. Global mechanical properties can be tuned based on sub-part ordering and geometry, because local stiffness and density can be independently set to a wide range of values and varied spatially. The structure's intrinsic modularity can significantly simplify analysis and simulation. Simple analytical models for the behavior of each building block type can be calibrated with empirical testing and synthesized into a highly accurate and computationally efficient model of the full compliant system. As a case study, we describe a modular and reversibly assembled wing that performs continuous span-wise twist deformation. It exhibits high performance aerodynamic characteristics, is lightweight and simple to fabricate and repair. The wing is constructed from discrete lattice elements, wherein the geometric and mechanical attributes of the building blocks determine the global mechanical properties of the wing. We describe the mechanical design and structural performance of the digital morphing wing, including their relationship to wind tunnel tests that suggest the ability to increase roll efficiency compared to a conventional rigid aileron system. We focus here on describing the approach to design, modeling, and construction as a generalizable approach for robotics that require very lightweight, tunable, and actively deformable structures. PMID:28289574
Topological strings on singular elliptic Calabi-Yau 3-folds and minimal 6d SCFTs
NASA Astrophysics Data System (ADS)
Del Zotto, Michele; Gu, Jie; Huang, Min-xin; Kashani-Poor, Amir-Kian; Klemm, Albrecht; Lockhart, Guglielmo
2018-03-01
We apply the modular approach to computing the topological string partition function on non-compact elliptically fibered Calabi-Yau 3-folds with higher Kodaira singularities in the fiber. The approach consists in making an ansatz for the partition function at given base degree, exact in all fiber classes to arbitrary order and to all genus, in terms of a rational function of weak Jacobi forms. Our results yield, at given base degree, the elliptic genus of the corresponding non-critical 6d string, and thus the associated BPS invariants of the 6d theory. The required elliptic indices are determined from the chiral anomaly 4-form of the 2d worldsheet theories, or the 8-form of the corresponding 6d theories, and completely fix the holomorphic anomaly equation constraining the partition function. We introduce subrings of the known rings of Weyl invariant Jacobi forms which are adapted to the additional symmetries of the partition function, making its computation feasible to low base wrapping number. In contradistinction to the case of simpler singularities, generic vanishing conditions on BPS numbers are no longer sufficient to fix the modular ansatz at arbitrary base wrapping degree. We show that to low degree, imposing exact vanishing conditions does suffice, and conjecture this to be the case generally.
Modular, Hierarchical Learning By Artificial Neural Networks
NASA Technical Reports Server (NTRS)
Baldi, Pierre F.; Toomarian, Nikzad
1996-01-01
Modular and hierarchical approach to supervised learning by artificial neural networks leads to neural networks more structured than neural networks in which all neurons fully interconnected. These networks utilize general feedforward flow of information and sparse recurrent connections to achieve dynamical effects. The modular organization, sparsity of modular units and connections, and fact that learning is much more circumscribed are all attractive features for designing neural-network hardware. Learning streamlined by imitating some aspects of biological neural networks.
Saez-Rodriguez, Julio; Gayer, Stefan; Ginkel, Martin; Gilles, Ernst Dieter
2008-08-15
The modularity of biochemical networks in general, and signaling networks in particular, has been extensively studied over the past few years. It has been proposed to be a useful property to analyze signaling networks: by decomposing the network into subsystems, more manageable units are obtained that are easier to analyze. While many powerful algorithms are available to identify modules in protein interaction networks, less attention has been paid to signaling networks de.ned as chemical systems. Such a decomposition would be very useful as most quantitative models are de.ned using the latter, more detailed formalism. Here, we introduce a novel method to decompose biochemical networks into modules so that the bidirectional (retroactive) couplings among the modules are minimized. Our approach adapts a method to detect community structures, and applies it to the so-called retroactivity matrix that characterizes the couplings of the network. Only the structure of the network, e.g. in SBML format, is required. Furthermore, the modularized models can be loaded into ProMoT, a modeling tool which supports modular modeling. This allows visualization of the models, exploiting their modularity and easy generation of models of one or several modules for further analysis. The method is applied to several relevant cases, including an entangled model of the EGF-induced MAPK cascade and a comprehensive model of EGF signaling, demonstrating its ability to uncover meaningful modules. Our approach can thus help to analyze large networks, especially when little a priori knowledge on the structure of the network is available. The decomposition algorithms implemented in MATLAB (Mathworks, Inc.) are freely available upon request. ProMoT is freely available at http://www.mpi-magdeburg.mpg.de/projects/promot. Supplementary data are available at Bioinformatics online.
A Modular Approach To Developing A Large Deployable Reflector
NASA Astrophysics Data System (ADS)
Pittman, R.; Leidich, C.; Mascy, F.; Swenson, B.
1984-01-01
NASA is currently studying the feasibility of developing a Large Deployable Reflector (LDR) astronomical facility to perform astrophysical studies of the infrared and submillimeter portion of the spectrum in the mid 1990's. The LDR concept was recommended by the Astronomy Survey Committee of the National Academy of Sciences as one of two space based projects to be started this decade. The current baseline calls for a 20 m (65.6 ft) aperture telescope diffraction limited at 30 μm and automatically deployed from a single Shuttle launch. The volume, performance, and single launch constraints place great demands on the technology and place LDR beyond the state-of-the-art in certain areas such as lightweight reflector segments. The advent of the Shuttle is opening up many new options and capabilities for producing large space systems. Until now, LDR has always been conceived as an integrated system, deployed autonomously in a single launch. This paper will look at a combination of automatic deployment and on-orbit assembly that may reduce the technological complexity and cost of the LDR system. Many technological tools are now in use or under study that will greatly enhance our capabilities to do assembly in space. Two Shuttle volume budget scenarios will be examined to assess the potential of these tools to reduce the LDR system complexity. Further study will be required to reach the full optimal combination of deployment and assembly, since in most cases the capabilities of these new tools have not been demonstrated. In order to take maximum advantage of these concepts, the design of LDR must be flexible and allow one subsystem to be modified without adversely affecting the entire system. One method of achieving this flexibility is to use a modular design approach in which the major subsystems are physically separated during launch and assembled on orbit. A modular design approach facilitates this flexibility but requires that the subsystems be interfaced in a simple, straightforward, and controlled manner. NASA is currently defining a technology development plan for LDR which will identify the technology advances that are required. The modular approach offers the flexibility to easily incorporate these new advances into the design.
A Grey Wolf Optimizer for Modular Granular Neural Networks for Human Recognition
Sánchez, Daniela; Melin, Patricia
2017-01-01
A grey wolf optimizer for modular neural network (MNN) with a granular approach is proposed. The proposed method performs optimal granulation of data and design of modular neural networks architectures to perform human recognition, and to prove its effectiveness benchmark databases of ear, iris, and face biometric measures are used to perform tests and comparisons against other works. The design of a modular granular neural network (MGNN) consists in finding optimal parameters of its architecture; these parameters are the number of subgranules, percentage of data for the training phase, learning algorithm, goal error, number of hidden layers, and their number of neurons. Nowadays, there is a great variety of approaches and new techniques within the evolutionary computing area, and these approaches and techniques have emerged to help find optimal solutions to problems or models and bioinspired algorithms are part of this area. In this work a grey wolf optimizer is proposed for the design of modular granular neural networks, and the results are compared against a genetic algorithm and a firefly algorithm in order to know which of these techniques provides better results when applied to human recognition. PMID:28894461
A Grey Wolf Optimizer for Modular Granular Neural Networks for Human Recognition.
Sánchez, Daniela; Melin, Patricia; Castillo, Oscar
2017-01-01
A grey wolf optimizer for modular neural network (MNN) with a granular approach is proposed. The proposed method performs optimal granulation of data and design of modular neural networks architectures to perform human recognition, and to prove its effectiveness benchmark databases of ear, iris, and face biometric measures are used to perform tests and comparisons against other works. The design of a modular granular neural network (MGNN) consists in finding optimal parameters of its architecture; these parameters are the number of subgranules, percentage of data for the training phase, learning algorithm, goal error, number of hidden layers, and their number of neurons. Nowadays, there is a great variety of approaches and new techniques within the evolutionary computing area, and these approaches and techniques have emerged to help find optimal solutions to problems or models and bioinspired algorithms are part of this area. In this work a grey wolf optimizer is proposed for the design of modular granular neural networks, and the results are compared against a genetic algorithm and a firefly algorithm in order to know which of these techniques provides better results when applied to human recognition.
Boisseau, Christina L.; Farchione, Todd J.; Fairholme, Christopher P.; Ellard, Kristen K.; Barlow, David H.
2013-01-01
A detailed description of treatment utilizing the Unified Protocol (UP), a transdiagnostic emotion-focused cognitive-behavioral treatment, is presented using a clinical case example treated during the most current phase of an ongoing randomized controlled trial of the UP. The implementation of the UP in its current, modular version is illustrated. A working case conceptualization is presented from the perspective of the UP drawing from theory and research that underlies current transdiagnostic approaches to treatment and consistent with recent dimensional classification proposals (Brown & Barlow, in press). Treatment is illustrated module-by-module describing how the principles of the UP were applied in the presented case. PMID:23997572
Post-Translational Modification of Bionanoparticles as a Modular Platform for Biosensor Assembly.
Sun, Qing; Chen, Qi; Blackstock, Daniel; Chen, Wilfred
2015-08-25
Context driven biosensor assembly with modular targeting and detection moieties is gaining significant attentions. Although protein-based nanoparticles have emerged as an excellent platform for biosensor assembly, current strategies of decorating bionanoparticles with targeting and detection moieties often suffer from unfavorable spacing and orientation as well as bionanoparticle aggregation. Herein, we report a highly modular post-translational modification approach for biosensor assembly based on sortase A-mediated ligation. This approach enables the simultaneous modifications of the Bacillus stearothermophilus E2 nanoparticles with different functional moieties for antibody, enzyme, DNA aptamer, and dye decoration. The resulting easy-purification platform offers a high degree of targeting and detection modularity with signal amplification. This flexibility is demonstrated for the detection of both immobilized antigens and cancer cells.
ERIC Educational Resources Information Center
Wedawatta, Gayan
2018-01-01
Undergraduate programmes on construction management and other closely related built environment disciplines are currently taught and assessed on a modular basis. This is the case in the UK and in many other countries globally. However, it can be argued that professionally oriented programmes like these are better assessed on a non-modular basis,…
Modular co-culture engineering, a new approach for metabolic engineering.
Zhang, Haoran; Wang, Xiaonan
2016-09-01
With the development of metabolic engineering, employment of a selected microbial host for accommodation of a designed biosynthetic pathway to produce a target compound has achieved tremendous success in the past several decades. Yet, increasing requirements for sophisticated microbial biosynthesis call for establishment and application of more advanced metabolic engineering methodologies. Recently, important progress has been made towards employing more than one engineered microbial strains to constitute synthetic co-cultures and modularizing the biosynthetic labor between the co-culture members in order to improve bioproduction performance. This emerging approach, referred to as modular co-culture engineering in this review, presents a valuable opportunity for expanding the scope of the broad field of metabolic engineering. We highlight representative research accomplishments using this approach, especially those utilizing metabolic engineering tools for microbial co-culture manipulation. Key benefits and major challenges associated with modular co-culture engineering are also presented and discussed. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
An out-of-core thermionic-converter system for nuclear space power
NASA Technical Reports Server (NTRS)
Breitwieser, R.
1972-01-01
Design of the nuclear thermionic space power system, 40 50 70 Kw(e) power range, are given. The design configuration (1) meets the constraints of readily available launch vehicles; (2) allows for off-design operation including startup, shutdown, and possible emergency conditions; (3) provides tolerance of failure by extensive use of modular, redundant elements; (4) incorporates and uses heat pipes in a fashion that reduces the need for extensive in-pile testing of system components; and (5) uses thermionic converters, nuclear fuel elements, and heat transfer devices in a geometrical form adapted from existing incore thermionic system designs. Designs and in some cases performance data for elements and groups of the elements of the system are included. Benefits of the highly modular system approach to reliability, safety, economy of development, and flexibility are discussed.
Molecular solid-state inverter-converter system
NASA Technical Reports Server (NTRS)
Birchenough, A. G.
1973-01-01
A modular approach for aerospace electrical systems has been developed, using lightweight high efficiency pulse width modulation techniques. With the modular approach, a required system is obtained by paralleling modules. The modular system includes the inverters and converters, a paralleling system, and an automatic control and fault-sensing protection system with a visual annunciator. The output is 150 V dc, or a low distortion three phase sine wave at 120 V, 400 Hz. Input power is unregulated 56 V dc. Each module is rated 2.5 kW or 3.6 kVA at 0.7 power factor.
Contract Monitoring in Agent-Based Systems: Case Study
NASA Astrophysics Data System (ADS)
Hodík, Jiří; Vokřínek, Jiří; Jakob, Michal
Monitoring of fulfilment of obligations defined by electronic contracts in distributed domains is presented in this paper. A two-level model of contract-based systems and the types of observations needed for contract monitoring are introduced. The observations (inter-agent communication and agents’ actions) are collected and processed by the contract observation and analysis pipeline. The presented approach has been utilized in a multi-agent system for electronic contracting in a modular certification testing domain.
A modular approach to detection and identification of defects in rough lumber
Sang Mook Lee; A. Lynn Abbott; Daniel L. Schmoldt
2001-01-01
This paper describes a prototype scanning system that can automatically identify several important defects on rough hardwood lumber. The scanning system utilizes 3 laser sources and an embedded-processor camera to capture and analyze profile and gray-scale images. The modular approach combines the detection of wane (the curved sides of a board, possibly containing...
Modular thrust subsystem approaches to solar electric propulsion module design
NASA Technical Reports Server (NTRS)
Cake, J. E.; Sharp, G. R.; Oglebay, J. C.; Shaker, F. J.; Zavesky, R. J.
1976-01-01
Three approaches are presented for packaging the elements of a 30 cm ion thruster subsystem into a modular thrust subsystem. The individual modules, when integrated into a conceptual solar electric propulsion module are applicable to a multimission set of interplanetary flights with the space shuttle interim upper stage as the launch vehicle. The emphasis is on the structural and thermal integration of the components into the modular thrust subsystems. Thermal control for the power processing units is either by direct radiation through louvers in combination with heat pipes or an all heat pipe system. The propellant storage and feed system and thruster gimbal system concepts are presented. The three approaches are compared on the basis of mass, cost, testing, interfaces, simplicity, reliability, and maintainability.
Modular thrust subsystem approaches to solar electric propulsion module design
NASA Technical Reports Server (NTRS)
Cake, J. E.; Sharp, G. R.; Oglebay, J. C.; Shaker, F. J.; Zevesky, R. J.
1976-01-01
Three approaches are presented for packaging the elements of a 30 cm ion thrustor subsystem into a modular thrust subsystem. The individual modules, when integrated into a conceptual solar electric propulsion module are applicable to a multimission set of interplanetary flights with the Space Shuttle/Interim Upper Stage as the launch vehicle. The emphasis is on the structural and thermal integration of the components into the modular thrust subsystems. Thermal control for the power processing units is either by direct radiation through louvers in combination with heat pipes of an all heat pipe system. The propellant storage and feed system and thrustor gimbal system concepts are presented. The three approaches are compared on the basis of mass, cost, testing, interfaces, simplicity, reliability, and maintainability.
Z-Score-Based Modularity for Community Detection in Networks
Miyauchi, Atsushi; Kawase, Yasushi
2016-01-01
Identifying community structure in networks is an issue of particular interest in network science. The modularity introduced by Newman and Girvan is the most popular quality function for community detection in networks. In this study, we identify a problem in the concept of modularity and suggest a solution to overcome this problem. Specifically, we obtain a new quality function for community detection. We refer to the function as Z-modularity because it measures the Z-score of a given partition with respect to the fraction of the number of edges within communities. Our theoretical analysis shows that Z-modularity mitigates the resolution limit of the original modularity in certain cases. Computational experiments using both artificial networks and well-known real-world networks demonstrate the validity and reliability of the proposed quality function. PMID:26808270
World Perspective Case Descriptions on Educational Programs for Adults: Ghana.
ERIC Educational Resources Information Center
Ansere, Joe K.; Mensah, Eric A.
This document contains two case studies, one by J. K. Ansere, concerning the modular program of distance education to prepare teachers in Ghana and the other, by E.A. Mensah, reporting on a research experiment that compared teaching methods used to teach the course of study at a Ghanian worker's college. The modular program described by Ansere is…
Mitton, Kay; Kulkarni, Jai; Dunn, Kenneth William; Ung, Anthony Hoang
2017-10-01
This novel case report describes the problems of prescribing a prosthetic socket in a left transfemoral amputee secondary to chronic patellofemoral instability compounded by complex regional pain syndrome. Case Description and Methods: Following the amputation, complex regional pain syndrome symptoms recurred in the residual limb, presenting mainly with oedema. Due to extreme daily volume fluctuations of the residual limb, a conventional, laminated thermoplastic socket fitting was not feasible. Findings and Outcomes: An adjustable, modular socket design was trialled. The residual limb volume fluctuations were accommodated within the socket. Amputee rehabilitation could be continued, and the rehabilitation goals were achieved. The patient was able to wear the prosthesis for 8 h daily and to walk unaided indoors and outdoors. An adjustable, modular socket design accommodated the daily residual limb volume fluctuations and provided a successful outcome in this case. It demonstrates the complexities of socket fitting and design with volume fluctuations. Clinical relevance Ongoing complex regional pain syndrome symptoms within the residual limb can lead to fitting difficulties in a conventional, laminated thermoplastic socket due to volume fluctuations. An adjustable, modular socket design can accommodate this and provide a successful outcome.
Kovács, István A.; Palotai, Robin; Szalay, Máté S.; Csermely, Peter
2010-01-01
Background Network communities help the functional organization and evolution of complex networks. However, the development of a method, which is both fast and accurate, provides modular overlaps and partitions of a heterogeneous network, has proven to be rather difficult. Methodology/Principal Findings Here we introduce the novel concept of ModuLand, an integrative method family determining overlapping network modules as hills of an influence function-based, centrality-type community landscape, and including several widely used modularization methods as special cases. As various adaptations of the method family, we developed several algorithms, which provide an efficient analysis of weighted and directed networks, and (1) determine pervasively overlapping modules with high resolution; (2) uncover a detailed hierarchical network structure allowing an efficient, zoom-in analysis of large networks; (3) allow the determination of key network nodes and (4) help to predict network dynamics. Conclusions/Significance The concept opens a wide range of possibilities to develop new approaches and applications including network routing, classification, comparison and prediction. PMID:20824084
Modular standards for emerging avionics technologies
NASA Astrophysics Data System (ADS)
Radcliffe, B.; Boaz, J.
The present investigation is concerned with modular standards for the integration of new avionics technologies into production aircraft, taking into account also major retrofit programs. It is pointed out that avionics systems are about to undergo drastic changes in the partitioning of functions and judicious sharing of resources. These changes have the potential to significantly improve reliability and maintainability, and to reduce costs. Attention is given to a definition of the modular avionics concept, the existing module program, the development approach, development progress on the modular avionics standard, and the future of avionics installation standards.
Plug-and-play design approach to smart harness for modular small satellites
NASA Astrophysics Data System (ADS)
Mughal, M. Rizwan; Ali, Anwar; Reyneri, Leonardo M.
2014-02-01
A typical satellite involves many different components that vary in bandwidth demand. Sensors that require a very low data rate may reside on a simple two- or three-wire interface such as I2C, SPI, etc. Complex sensors that require high data rate and bandwidth may reside on an optical interface. The AraMiS architecture is an enhanced capability architecture with different satellite configurations. Although keeping the low-cost and COTS approach of CubeSats, it extends the modularity concept as it also targets different satellite shapes and sizes. But modularity moves beyond the mechanical structure: the tiles also have thermo-mechanical, harness and signal-processing functionalities. Further modularizing the system, every tile can also host a variable number of small sensors, actuators or payloads, connected using a plug-and-play approach. Every subsystem is housed in a small daughter board and is supplied, by the main tile, with power and data distribution functions, power and data harness, mechanical support and is attached and interconnected with space-grade spring-loaded connectors. The tile software is also modular and allows a quick adaptation to specific subsystems. The basic software for the CPU is properly hardened to guarantee high level of radiation tolerance at very low cost.
Fediai, Artem; Ryndyk, Dmitry A; Cuniberti, Gianaurelio
2016-10-05
Up to now, the electrical properties of the contacts between 3D metals and 2D materials have never been computed at a fully ab initio level due to the huge number of atomic orbitals involved in a current path from an electrode to a pristine 2D material. As a result, there are still numerous open questions and controversial theories on the electrical properties of systems with 3D/2D interfaces-for example, the current path and the contact length scalability. Our work provides a first-principles solution to this long-standing problem with the use of the modular approach, a method which rigorously combines a Green function formalism with the density functional theory (DFT) for this particular contact type. The modular approach is a general approach valid for any 3D/2D contact. As an example, we apply it to the most investigated among 3D/2D contacts-metal/graphene contacts-and show its abilities and consistency by comparison with existing experimental data. As it is applicable to any 3D/2D interface, the modular approach allows the engineering of 3D/2D contacts with the pre-defined electrical properties.
ERIC Educational Resources Information Center
Allan, Blaine W., Comp.
The procedures, forms, and philosophy of the computerized modular scheduling program developed at Virgin Valley High School are outlined. The modular concept is eveloped as a new approach to course structure with explanations, examples, and worksheets included. Examples of courses of study, input information for the data processing center, output…
Modular Infrastructure for Rapid Flight Software Development
NASA Technical Reports Server (NTRS)
Pires, Craig
2010-01-01
This slide presentation reviews the use of modular infrastructure to assist in the development of flight software. A feature of this program is the use of model based approach for application unique software. A review of two programs that this approach was use on are: the development of software for Hover Test Vehicle (HTV), and Lunar Atmosphere and Dust Environment Experiment (LADEE).
ERIC Educational Resources Information Center
Klotz, Dorothy E.; Wright, Thomas A.
2017-01-01
This article highlights a best practice approach that showcases the highly successful deployment of a hybrid course delivery structure for an Operations core course in an Executive MBA Program. A key design element of the approach was the modular design of both the course itself and the learning materials. While other hybrid deployments may stress…
Modular Approach to Structural Simulation for Vehicle Crashworthiness Prediction
DOT National Transportation Integrated Search
1975-03-01
A modular formulation for simulation of the structural deformation and deceleration of a vehicle for crashworthiness and collision compatibility is presented. This formulation includes three dimensional beam elements, various spring elements, rigid b...
Modular thought in the circuit analysis
NASA Astrophysics Data System (ADS)
Wang, Feng
2018-04-01
Applied to solve the problem of modular thought, provides a whole for simplification's method, the complex problems have become of, and the study of circuit is similar to the above problems: the complex connection between components, make the whole circuit topic solution seems to be more complex, and actually components the connection between the have rules to follow, this article mainly tells the story of study on the application of the circuit modular thought. First of all, this paper introduces the definition of two-terminal network and the concept of two-terminal network equivalent conversion, then summarizes the common source resistance hybrid network modular approach, containing controlled source network modular processing method, lists the common module, typical examples analysis.
Wodecki, P; Sabbah, D; Kermarrec, G; Semaan, I
2013-10-01
Total hip replacements (THR) with modular femoral components (stem-neck interface) make it possible to adapt to extramedullary femoral parameters (anteversion, offset, and length) theoretically improving muscle function and stability. Nevertheless, adding a new interface has its disadvantages: reduced mechanical resistance, fretting corrosion and material fatigue fracture. We report the case of a femoral stem fracture of the female part of the component where the modular morse taper of the neck is inserted. An extended trochanteric osteotomy was necessary during revision surgery because the femoral stump could not be grasped for extraction, so that a long stem had to be used. In this case, the patient had the usual risk factors for modular neck failure: he was an active overweight male patient with a long varus neck. This report shows that the female part of the stem of a small femoral component may also be at increased failure risk and should be added to the list of risk factors. To our knowledge, this is the first reported case of this type of failure. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Design and Analysis of Mirror Modules for IXO and Beyond
NASA Technical Reports Server (NTRS)
McClelland, Ryan S.; Powell, Cory; Saha, Timo T.; Zhang, William W.
2011-01-01
Advancements in X-ray astronomy demand thin, light, and closely packed thin optics which lend themselves to segmentation of the annular mirrors and, in turn, a modular approach to the mirror design. The functionality requirements of such a mirror module are well understood. A baseline modular concept for the proposed International X-Ray Observatory (IXO) Flight Mirror Assembly (FMA) consisting of 14,000 glass mirror segments divided into 60 modules was developed and extensively analyzed. Through this development, our understanding of module loads, mirror stress, thermal performance, and gravity distortion have greatly progressed. The latest progress in each of these areas is discussed herein. Gravity distortion during horizontal X-ray testing and on-orbit thermal performance have proved especially difficult design challenges. In light of these challenges, fundamental trades in modular X-ray mirror design have been performed. Future directions in module X-ray mirror design are explored including the development of a 1.8 m diameter FMA utilizing smaller mirror modules. The effect of module size on mirror stress, module self-weight distortion, thermal control, and range of segment sizes required is explored with advantages demonstrated from smaller module size in most cases.
Solving Multiple Isolated, Interleaved, and Blended Tasks through Modular Neuroevolution.
Schrum, Jacob; Miikkulainen, Risto
2016-01-01
Many challenging sequential decision-making problems require agents to master multiple tasks. For instance, game agents may need to gather resources, attack opponents, and defend against attacks. Learning algorithms can thus benefit from having separate policies for these tasks, and from knowing when each one is appropriate. How well this approach works depends on how tightly coupled the tasks are. Three cases are identified: Isolated tasks have distinct semantics and do not interact, interleaved tasks have distinct semantics but do interact, and blended tasks have regions where semantics from multiple tasks overlap. Learning across multiple tasks is studied in this article with Modular Multiobjective NEAT, a neuroevolution framework applied to three variants of the challenging Ms. Pac-Man video game. In the standard blended version of the game, a surprising, highly effective machine-discovered task division surpasses human-specified divisions, achieving the best scores to date in this game. In isolated and interleaved versions of the game, human-specified task divisions are also successful, though the best scores are surprisingly still achieved by machine discovery. Modular neuroevolution is thus shown to be capable of finding useful, unexpected task divisions better than those apparent to a human designer.
Metabolomic Modularity Analysis (MMA) to Quantify Human Liver Perfusion Dynamics.
Sridharan, Gautham Vivek; Bruinsma, Bote Gosse; Bale, Shyam Sundhar; Swaminathan, Anandh; Saeidi, Nima; Yarmush, Martin L; Uygun, Korkut
2017-11-13
Large-scale -omics data are now ubiquitously utilized to capture and interpret global responses to perturbations in biological systems, such as the impact of disease states on cells, tissues, and whole organs. Metabolomics data, in particular, are difficult to interpret for providing physiological insight because predefined biochemical pathways used for analysis are inherently biased and fail to capture more complex network interactions that span multiple canonical pathways. In this study, we introduce a nov-el approach coined Metabolomic Modularity Analysis (MMA) as a graph-based algorithm to systematically identify metabolic modules of reactions enriched with metabolites flagged to be statistically significant. A defining feature of the algorithm is its ability to determine modularity that highlights interactions between reactions mediated by the production and consumption of cofactors and other hub metabolites. As a case study, we evaluated the metabolic dynamics of discarded human livers using time-course metabolomics data and MMA to identify modules that explain the observed physiological changes leading to liver recovery during subnormothermic machine perfusion (SNMP). MMA was performed on a large scale liver-specific human metabolic network that was weighted based on metabolomics data and identified cofactor-mediated modules that would not have been discovered by traditional metabolic pathway analyses.
Can SNOMED CT be squeezed without losing its shape?
López-García, Pablo; Schulz, Stefan
2016-09-21
In biomedical applications where the size and complexity of SNOMED CT become problematic, using a smaller subset that can act as a reasonable substitute is usually preferred. In a special class of use cases-like ontology-based quality assurance, or when performing scaling experiments for real-time performance-it is essential that modules show a similar shape than SNOMED CT in terms of concept distribution per sub-hierarchy. Exactly how to extract such balanced modules remains unclear, as most previous work on ontology modularization has focused on other problems. In this study, we investigate to what extent extracting balanced modules that preserve the original shape of SNOMED CT is possible, by presenting and evaluating an iterative algorithm. We used a graph-traversal modularization approach based on an input signature. To conform to our definition of a balanced module, we implemented an iterative algorithm that carefully bootstraped and dynamically adjusted the signature at each step. We measured the error for each sub-hierarchy and defined convergence as a residual sum of squares <1. Using 2000 concepts as an initial signature, our algorithm converged after seven iterations and extracted a module 4.7 % the size of SNOMED CT. Seven sub-hierarhies were either over or under-represented within a range of 1-8 %. Our study shows that balanced modules from large terminologies can be extracted using ontology graph-traversal modularization techniques under certain conditions: that the process is repeated a number of times, the input signature is dynamically adjusted in each iteration, and a moderate under/over-representation of some hierarchies is tolerated. In the case of SNOMED CT, our results conclusively show that it can be squeezed to less than 5 % of its size without any sub-hierarchy losing its shape more than 8 %, which is likely sufficient in most use cases.
On the definition and K-theory realization of a modular functor
NASA Astrophysics Data System (ADS)
Kriz, Igor; Lai, Luhang
We present a definition of a (super)-modular functor which includes certain interesting cases that previous definitions do not allow. We also introduce a notion of topological twisting of a modular functor, and construct formally a realization by a 2-dimensional topological field theory valued in twisted K-modules. We discuss, among other things, the N = 1-supersymmetric minimal models from the point of view of this formalism.
Contour interpolation: A case study in Modularity of Mind.
Keane, Brian P
2018-05-01
In his monograph Modularity of Mind (1983), philosopher Jerry Fodor argued that mental architecture can be partly decomposed into computational organs termed modules, which were characterized as having nine co-occurring features such as automaticity, domain specificity, and informational encapsulation. Do modules exist? Debates thus far have been framed very generally with few, if any, detailed case studies. The topic is important because it has direct implications on current debates in cognitive science and because it potentially provides a viable framework from which to further understand and make hypotheses about the mind's structure and function. Here, the case is made for the modularity of contour interpolation, which is a perceptual process that represents non-visible edges on the basis of how surrounding visible edges are spatiotemporally configured. There is substantial evidence that interpolation is domain specific, mandatory, fast, and developmentally well-sequenced; that it produces representationally impoverished outputs; that it relies upon a relatively fixed neural architecture that can be selectively impaired; that it is encapsulated from belief and expectation; and that its inner workings cannot be fathomed through conscious introspection. Upon differentiating contour interpolation from a higher-order contour representational ability ("contour abstraction") and upon accommodating seemingly inconsistent experimental results, it is argued that interpolation is modular to the extent that the initiating conditions for interpolation are strong. As interpolated contours become more salient, the modularity features emerge. The empirical data, taken as a whole, show that at least certain parts of the mind are modularly organized. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jöckel, P.; Sander, R.; Kerkweg, A.; Tost, H.; Lelieveld, J.
2005-02-01
The development of a comprehensive Earth System Model (ESM) to study the interactions between chemical, physical, and biological processes, requires coupling of the different domains (land, ocean, atmosphere, ...). One strategy is to link existing domain-specific models with a universal coupler, i.e. an independent standalone program organizing the communication between other programs. In many cases, however, a much simpler approach is more feasible. We have developed the Modular Earth Submodel System (MESSy). It comprises (1) a modular interface structure to connect to a , (2) an extendable set of such for miscellaneous processes, and (3) a coding standard. MESSy is therefore not a coupler in the classical sense, but exchanges data between a and several within one comprehensive executable. The internal complexity of the is controllable in a transparent and user friendly way. This provides remarkable new possibilities to study feedback mechanisms (by two-way coupling). Note that the MESSy and the coupler approach can be combined. For instance, an atmospheric model implemented according to the MESSy standard could easily be coupled to an ocean model by means of an external coupler. The vision is to ultimately form a comprehensive ESM which includes a large set of submodels, and a base model which contains only a central clock and runtime control. This can be reached stepwise, since each process can be included independently. Starting from an existing model, process submodels can be reimplemented according to the MESSy standard. This procedure guarantees the availability of a state-of-the-art model for scientific applications at any time of the development. In principle, MESSy can be implemented into any kind of model, either global or regional. So far, the MESSy concept has been applied to the general circulation model ECHAM5 and a number of process boxmodels.
Evolving BioAssay Ontology (BAO): modularization, integration and applications
2014-01-01
The lack of established standards to describe and annotate biological assays and screening outcomes in the domain of drug and chemical probe discovery is a severe limitation to utilize public and proprietary drug screening data to their maximum potential. We have created the BioAssay Ontology (BAO) project (http://bioassayontology.org) to develop common reference metadata terms and definitions required for describing relevant information of low-and high-throughput drug and probe screening assays and results. The main objectives of BAO are to enable effective integration, aggregation, retrieval, and analyses of drug screening data. Since we first released BAO on the BioPortal in 2010 we have considerably expanded and enhanced BAO and we have applied the ontology in several internal and external collaborative projects, for example the BioAssay Research Database (BARD). We describe the evolution of BAO with a design that enables modeling complex assays including profile and panel assays such as those in the Library of Integrated Network-based Cellular Signatures (LINCS). One of the critical questions in evolving BAO is the following: how can we provide a way to efficiently reuse and share among various research projects specific parts of our ontologies without violating the integrity of the ontology and without creating redundancies. This paper provides a comprehensive answer to this question with a description of a methodology for ontology modularization using a layered architecture. Our modularization approach defines several distinct BAO components and separates internal from external modules and domain-level from structural components. This approach facilitates the generation/extraction of derived ontologies (or perspectives) that can suit particular use cases or software applications. We describe the evolution of BAO related to its formal structures, engineering approaches, and content to enable modeling of complex assays and integration with other ontologies and datasets. PMID:25093074
Evolving BioAssay Ontology (BAO): modularization, integration and applications.
Abeyruwan, Saminda; Vempati, Uma D; Küçük-McGinty, Hande; Visser, Ubbo; Koleti, Amar; Mir, Ahsan; Sakurai, Kunie; Chung, Caty; Bittker, Joshua A; Clemons, Paul A; Brudz, Steve; Siripala, Anosha; Morales, Arturo J; Romacker, Martin; Twomey, David; Bureeva, Svetlana; Lemmon, Vance; Schürer, Stephan C
2014-01-01
The lack of established standards to describe and annotate biological assays and screening outcomes in the domain of drug and chemical probe discovery is a severe limitation to utilize public and proprietary drug screening data to their maximum potential. We have created the BioAssay Ontology (BAO) project (http://bioassayontology.org) to develop common reference metadata terms and definitions required for describing relevant information of low-and high-throughput drug and probe screening assays and results. The main objectives of BAO are to enable effective integration, aggregation, retrieval, and analyses of drug screening data. Since we first released BAO on the BioPortal in 2010 we have considerably expanded and enhanced BAO and we have applied the ontology in several internal and external collaborative projects, for example the BioAssay Research Database (BARD). We describe the evolution of BAO with a design that enables modeling complex assays including profile and panel assays such as those in the Library of Integrated Network-based Cellular Signatures (LINCS). One of the critical questions in evolving BAO is the following: how can we provide a way to efficiently reuse and share among various research projects specific parts of our ontologies without violating the integrity of the ontology and without creating redundancies. This paper provides a comprehensive answer to this question with a description of a methodology for ontology modularization using a layered architecture. Our modularization approach defines several distinct BAO components and separates internal from external modules and domain-level from structural components. This approach facilitates the generation/extraction of derived ontologies (or perspectives) that can suit particular use cases or software applications. We describe the evolution of BAO related to its formal structures, engineering approaches, and content to enable modeling of complex assays and integration with other ontologies and datasets.
NASA Astrophysics Data System (ADS)
Mohammadi Nasrabadi, Ali; Hosseinpour, Mohammad Hossein; Ebrahimnejad, Sadoullah
2013-05-01
In competitive markets, market segmentation is a critical point of business, and it can be used as a generic strategy. In each segment, strategies lead companies to their targets; thus, segment selection and the application of the appropriate strategies over time are very important to achieve successful business. This paper aims to model a strategy-aligned fuzzy approach to market segment evaluation and selection. A modular decision support system (DSS) is developed to select an optimum segment with its appropriate strategies. The suggested DSS has two main modules. The first one is SPACE matrix which indicates the risk of each segment. Also, it determines the long-term strategies. The second module finds the most preferred segment-strategies over time. Dynamic network process is applied to prioritize segment-strategies according to five competitive force factors. There is vagueness in pairwise comparisons, and this vagueness has been modeled using fuzzy concepts. To clarify, an example is illustrated by a case study in Iran's coffee market. The results show that success possibility of segments could be different, and choosing the best ones could help companies to be sure in developing their business. Moreover, changing the priority of strategies over time indicates the importance of long-term planning. This fact has been supported by a case study on strategic priority difference in short- and long-term consideration.
NASA Technical Reports Server (NTRS)
Tesar, Delbert; Butler, Michael S.
1989-01-01
Most robotic systems today are designed one at a time, at a high cost of time and money. This wasteful approach has been necessary because the industry has not established a foundation for the continued evolution of intelligent machines. The next generation of robots will have to be generic, versatile machines capable of absorbing new technology rapidly and economically. This approach is demonstrated in the success of the personal computer, which can be upgraded or expanded with new software and hardware at virtually every level. Modularity is perceived as a major opportunity to reduce the 6 to 7 year design cycle time now required for new robotic manipulators, greatly increasing the breadth and speed of diffusion of robotic systems in manufacturing. Modularity and its crucial role in the next generation of intelligent machines are the focus of interest. The main advantages that modularity provides are examined; types of modules needed to create a generic robot are discussed. Structural modules designed by the robotics group at the University of Texas at Austin are examined to demonstrate the advantages of modular design.
An Adaptive Unstructured Grid Method by Grid Subdivision, Local Remeshing, and Grid Movement
NASA Technical Reports Server (NTRS)
Pirzadeh, Shahyar Z.
1999-01-01
An unstructured grid adaptation technique has been developed and successfully applied to several three dimensional inviscid flow test cases. The approach is based on a combination of grid subdivision, local remeshing, and grid movement. For solution adaptive grids, the surface triangulation is locally refined by grid subdivision, and the tetrahedral grid in the field is partially remeshed at locations of dominant flow features. A grid redistribution strategy is employed for geometric adaptation of volume grids to moving or deforming surfaces. The method is automatic and fast and is designed for modular coupling with different solvers. Several steady state test cases with different inviscid flow features were tested for grid/solution adaptation. In all cases, the dominant flow features, such as shocks and vortices, were accurately and efficiently predicted with the present approach. A new and robust method of moving tetrahedral "viscous" grids is also presented and demonstrated on a three-dimensional example.
A Modular Approach to Year 11 Science Courses
ERIC Educational Resources Information Center
Woolley, Terry G.
1976-01-01
Described is a secondary school science program which includes modularized courses in the earth science unified science, biology, chemistry, and physics. Students may continue in one science course or switch between courses upon completing modules. (SL)
NASA Technical Reports Server (NTRS)
By, Andre Bernard; Caron, Ken; Rothenberg, Michael; Sales, Vic
1994-01-01
This paper presents the first phase results of a collaborative effort between university researchers and a flexible assembly systems integrator to implement a comprehensive modular approach to flexible assembly automation. This approach, named MARAS (Modular Automated Reconfigurable Assembly System), has been structured to support multiple levels of modularity in terms of both physical components and system control functions. The initial focus of the MARAS development has been on parts gauging and feeding operations for cylinder lock assembly. This phase is nearing completion and has resulted in the development of a highly configurable system for vision gauging functions on a wide range of small components (2 mm to 100 mm in size). The reconfigurable concepts implemented in this adaptive Vision Gauging Module (VGM) are now being extended to applicable aspects of the singulating, selecting, and orienting functions required for the flexible feeding of similar mechanical components and assemblies.
Lott, Steffen C; Wolfien, Markus; Riege, Konstantin; Bagnacani, Andrea; Wolkenhauer, Olaf; Hoffmann, Steve; Hess, Wolfgang R
2017-11-10
RNA-Sequencing (RNA-Seq) has become a widely used approach to study quantitative and qualitative aspects of transcriptome data. The variety of RNA-Seq protocols, experimental study designs and the characteristic properties of the organisms under investigation greatly affect downstream and comparative analyses. In this review, we aim to explain the impact of structured pre-selection, classification and integration of best-performing tools within modularized data analysis workflows and ready-to-use computing infrastructures towards experimental data analyses. We highlight examples for workflows and use cases that are presented for pro-, eukaryotic and mixed dual RNA-Seq (meta-transcriptomics) experiments. In addition, we are summarizing the expertise of the laboratories participating in the project consortium "Structured Analysis and Integration of RNA-Seq experiments" (de.STAIR) and its integration with the Galaxy-workbench of the RNA Bioinformatics Center (RBC). Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Optimal Network Modularity for Information Diffusion
NASA Astrophysics Data System (ADS)
Nematzadeh, Azadeh; Ferrara, Emilio; Flammini, Alessandro; Ahn, Yong-Yeol
2014-08-01
We investigate the impact of community structure on information diffusion with the linear threshold model. Our results demonstrate that modular structure may have counterintuitive effects on information diffusion when social reinforcement is present. We show that strong communities can facilitate global diffusion by enhancing local, intracommunity spreading. Using both analytic approaches and numerical simulations, we demonstrate the existence of an optimal network modularity, where global diffusion requires the minimal number of early adopters.
A new approach for modular robot system behavioral modeling: Base on Petri net and category theory
NASA Astrophysics Data System (ADS)
Zhang, Yun; Wei, Hongxing; Yang, Bo
2018-04-01
To design modular robot system, Petri nets and category theory are combined and the ability of simulation of Petri net is discussed. According to category theory, the method of describing the category of components in the dynamic characteristics of the system is deduced. Moreover, a modular robot system is analyzed, which provides a verifiable description of the dynamic characteristics of the system.
New Approach to Road Construction in Oil-Producing Regions of Western Siberia
NASA Astrophysics Data System (ADS)
Piirainen, V. Y.; Estrin, Y.
2017-10-01
This article presents, as a polemic exercise, a new approach to road construction in marshland areas of oil and gas producing regions of Western Siberia. The approach is based on the use of novel modular elements that can be assembled into an integral structure by means of topological interlocking. The use of modern superlight concrete in conjunction with the new design systems based on the modular principle opens up new avenues to solving problems of road construction in regions with unstable, boggy soils.
Generalized epidemic process on modular networks.
Chung, Kihong; Baek, Yongjoo; Kim, Daniel; Ha, Meesoon; Jeong, Hawoong
2014-05-01
Social reinforcement and modular structure are two salient features observed in the spreading of behavior through social contacts. In order to investigate the interplay between these two features, we study the generalized epidemic process on modular networks with equal-sized finite communities and adjustable modularity. Using the analytical approach originally applied to clique-based random networks, we show that the system exhibits a bond-percolation type continuous phase transition for weak social reinforcement, whereas a discontinuous phase transition occurs for sufficiently strong social reinforcement. Our findings are numerically verified using the finite-size scaling analysis and the crossings of the bimodality coefficient.
NASA Astrophysics Data System (ADS)
Tandon, K.; Egbert, G.; Siripunvaraporn, W.
2003-12-01
We are developing a modular system for three-dimensional inversion of electromagnetic (EM) induction data, using an object oriented programming approach. This approach allows us to modify the individual components of the inversion scheme proposed, and also reuse the components for variety of problems in earth science computing howsoever diverse they might be. In particular, the modularity allows us to (a) change modeling codes independently of inversion algorithm details; (b) experiment with new inversion algorithms; and (c) modify the way prior information is imposed in the inversion to test competing hypothesis and techniques required to solve an earth science problem. Our initial code development is for EM induction equations on a staggered grid, using iterative solution techniques in 3D. An example illustrated here is an experiment with the sensitivity of 3D magnetotelluric inversion to uncertainties in the boundary conditions required for regional induction problems. These boundary conditions should reflect the large-scale geoelectric structure of the study area, which is usually poorly constrained. In general for inversion of MT data, one fixes boundary conditions at the edge of the model domain, and adjusts the earth?s conductivity structure within the modeling domain. Allowing for errors in specification of the open boundary values is simple in principle, but no existing inversion codes that we are aware of have this feature. Adding a feature such as this is straightforward within the context of the modular approach. More generally, a modular approach provides an efficient methodology for setting up earth science computing problems to test various ideas. As a concrete illustration relevant to EM induction problems, we investigate the sensitivity of MT data near San Andreas Fault at Parkfield (California) to uncertainties in the regional geoelectric structure.
Tekewe, Alemu; Connors, Natalie K.; Middelberg, Anton P. J.
2016-01-01
Abstract Virus‐like particles (VLPs) and capsomere subunits have shown promising potential as safe and effective vaccine candidates. They can serve as platforms for the display of foreign epitopes on their surfaces in a modular architecture. Depending on the physicochemical properties of the antigenic modules, modularization may affect the expression, solubility and stability of capsomeres, and VLP assembly. In this study, three module designs of a rotavirus hydrophobic peptide (RV10) were synthesized using synthetic biology. Among the three synthetic modules, modularization of the murine polyomavirus VP1 with a single copy of RV10 flanked by long linkers and charged residues resulted in the expression of stable modular capsomeres. Further employing the approach of module titration of RV10 modules on each capsomere via Escherichia coli co‐expression of unmodified VP1 and modular VP1‐RV10 successfully translated purified modular capomeres into modular VLPs when assembled in vitro. Our results demonstrate that tailoring the physicochemical properties of modules to enhance modular capsomeres stability is achievable through synthetic biology designs. Combined with module titration strategy to avoid steric hindrance to intercapsomere interactions, this allows bioprocessing of bacterially produced in vitro assembled modular VLPs. PMID:27222486
Tekewe, Alemu; Connors, Natalie K; Middelberg, Anton P J; Lua, Linda H L
2016-08-01
Virus-like particles (VLPs) and capsomere subunits have shown promising potential as safe and effective vaccine candidates. They can serve as platforms for the display of foreign epitopes on their surfaces in a modular architecture. Depending on the physicochemical properties of the antigenic modules, modularization may affect the expression, solubility and stability of capsomeres, and VLP assembly. In this study, three module designs of a rotavirus hydrophobic peptide (RV10) were synthesized using synthetic biology. Among the three synthetic modules, modularization of the murine polyomavirus VP1 with a single copy of RV10 flanked by long linkers and charged residues resulted in the expression of stable modular capsomeres. Further employing the approach of module titration of RV10 modules on each capsomere via Escherichia coli co-expression of unmodified VP1 and modular VP1-RV10 successfully translated purified modular capomeres into modular VLPs when assembled in vitro. Our results demonstrate that tailoring the physicochemical properties of modules to enhance modular capsomeres stability is achievable through synthetic biology designs. Combined with module titration strategy to avoid steric hindrance to intercapsomere interactions, this allows bioprocessing of bacterially produced in vitro assembled modular VLPs. © 2016 The Protein Society.
Intelligent Reconfigurable System with Self-Dammage Assessmentand Control Stress Capabilities
NASA Astrophysics Data System (ADS)
Trivailo, P.; Plotnikova, L.; Kao, T. W.
2002-01-01
Modern space structures are constructed using a modular approach that facilitates their transportation and assembly in space. Modular architecture of space structures also enables reconfiguration of large structures such that they can adapt to possible changes in environment, and also allows use of the limited structural resources available in space for completion of a much larger variety of tasks. An increase in size and complexity demands development of materials with a "smart" or active structural modulus and also of effective control algorithms to control the motion of large flexible structures. This challenging task has generated a lot of interest amongst scientists and engineers during the last two decades, however, research into the development of control schemes which can adapt to structural configuration changes has received less attention. This is possibly due to the increased complexity caused by alterations in geometry, which inevitably lead to changes in the dynamic properties of the system. This paper presents results of the application of a decentralized control approach for active control of large flexible structures undergoing significant reconfigurations. The Control Component Synthesis methodology was used to build controlled components and to assemble them into a controlled flexible structure that meets required performance specifications. To illustrate the efficiency of the method, numerical simulations were conducted for 2D and 3D modular truss structures and a multi-link beam system. In each case the performance of the decentralized control system has been evaluated using pole location maps, step and impulse response simulations and frequency response analysis. The performance of the decentralized control system has been measured against the optimal centralised control system for various excitation scenarios. A special case where one of the local component controllers fails was also examined. For better interpretation of the efficiency of the designed controllers, results of the simulations are illustrated using a Virtual Reality computer environment, offering advanced visual effects. Plotnikova@rmit.edu.au # Tsunwah@hotmail.com
Modular Training for Robot-Assisted Radical Prostatectomy: Where to Begin?
Lovegrove, Catherine; Ahmed, Kamran; Novara, Giacomo; Guru, Khurshid; Mottrie, Alex; Challacombe, Ben; der Poel, Henk Van; Peabody, James; Dasgupta, Prokar
Effective training is paramount for patient safety. Modular training entails advancing through surgical steps of increasing difficulty. This study aimed to construct a modular training pathway for use in robot-assisted radical prostatectomy (RARP). It aims to identify the sequence of procedural steps that are learnt before surgeons are able to perform a full procedure without an intervention from mentor. This is a multi-institutional, prospective, observational, longitudinal study. We used a validated training tool (RARP Score). Data regarding surgeons' stage of training and progress were collected for analysis. A modular training pathway was constructed with consensus on the level of difficulty and evaluation of individual steps. We identified and recorded the sequence of steps performed by fellows during their learning curves. We included 15 urology fellows from UK, Europe, and Australia. A total of 15 surgeons were assessed by mentors in 425 RARP cases over 8 months (range: 7-79) across 15 international centers. There were substantial differences in the sequence of RARP steps according to the chronology of the procedure, difficulty level, and the order in which surgeons actually learned steps. Steps were not attempted in chronological order. The greater the difficulty, the later the cohort first undertook the step (p = 0.021). The cohort undertook steps of difficulty level I at median case number 1. Steps of difficulty levels II, III, and IV showed more variation in median case number of the first attempt. We recommend that, in the operating theater, steps be learned in order of increasing difficulty. A new modular training route has been designed. This incorporates the steps of RARP with the following order of priority: difficulty level > median case number of first attempt > most frequently undertaken in surgical training. An evidence-based modular training pathway has been developed that facilitates a safe introduction to RARP for novice surgeons. Copyright © 2017 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
Decentralized Modular Systems Versus Centralized Systems.
ERIC Educational Resources Information Center
Crossey, R. E.
Building design, planning, and construction programing for modular decentralized mechanical building systems are outlined in terms of costs, performance, expansion and flexibility. Design strategy, approach, and guidelines for implementing such systems for buildings are suggested, with emphasis on mechanical equipment and building element…
Advantages of a Modular Mars Surface Habitat Approach
NASA Technical Reports Server (NTRS)
Rucker, Michelle A.; Hoffman, Stephan J.; Andrews, Alida; Watts, Kevin
2018-01-01
Early crewed Mars mission concepts developed by the National Aeronautics and Space Administration (NASA) assumed a single, large habitat would house six crew members for a 500-day Mars surface stay. At the end of the first mission, all surface equipment, including the habitat, -would be abandoned and the process would be repeated at a different Martian landing site. This work was documented in a series of NASA publications culminating with the Mars Design Reference Mission 5.0 (NASA-SP-2009-566). The Evolvable Mars Campaign (EMC) explored whether re-using surface equipment at a single landing site could be more affordable than the Apollo-style explore-abandon-repeat mission cadence. Initial EMC assumptions preserved the single, monolithic habitat, the only difference being a new requirement to reuse the surface habitat for multiple expedition crews. A trade study comparing a single large habitat versus smaller, modular habitats leaned towards the monolithic approach as more mass-efficient. More recent work has focused on the operational aspects of building up Mars surface infrastructure over multiple missions, and has identified compelling advantages of the modular approach that should be considered before making a final decision. This paper explores Mars surface mission operational concepts and integrated system analysis, and presents an argument for the modular habitat approach.
Zeolite-like metal–organic frameworks (ZMOFs): Design, synthesis, and properties
Eddaoudi, Mohamed; Sava, Dorina F.; Eubank, Jarrod F.; ...
2015-10-24
This study highlights various design and synthesis approaches toward the construction of ZMOFs, which are metal–organic frameworks (MOFs) with topologies and, in some cases, features akin to traditional inorganic zeolites. The interest in this unique subset of MOFs is correlated with their exceptional characteristics arising from the periodic pore systems and distinctive cage-like cavities, in conjunction with modular intra- and/or extra-framework components, which ultimately allow for tailoring of the pore size, pore shape, and properties towards specific applications.
NASA Astrophysics Data System (ADS)
Lan, Tian; Kong, Liang; Wen, Xiao-Gang
2017-04-01
A finite bosonic or fermionic symmetry can be described uniquely by a symmetric fusion category E. In this work, we propose that 2+1D topological/SPT orders with a fixed finite symmetry E are classified, up to {E_8} quantum Hall states, by the unitary modular tensor categories C over E and the modular extensions of each C. In the case C=E, we prove that the set M_{ext}(E) of all modular extensions of E has a natural structure of a finite abelian group. We also prove that the set M_{ext}(C) of all modular extensions of E, if not empty, is equipped with a natural M_{ext}(C)-action that is free and transitive. Namely, the set M_{ext}(C) is an M_{ext}(E)-torsor. As special cases, we explain in detail how the group M_{ext}(E) recovers the well-known group-cohomology classification of the 2+1D bosonic SPT orders and Kitaev's 16 fold ways. We also discuss briefly the behavior of the group M_{ext}(E) under the symmetry-breaking processes and its relation to Witt groups.
Fretting-corrosion at the modular tapers interface: Inspection of standard ASTM F1875-98.
Bingley, Rachel; Martin, Alan; Manfredi, Olivia; Nejadhamzeeigilani, Mahdiyar; Oladokun, Abimbola; Beadling, Andrew Robert; Siddiqui, Sohail; Anderson, James; Thompson, Jonathan; Neville, Anne; Bryant, Michael
2018-05-01
Interest in the degradation mechanisms at the modular tapers interfaces has been renewed due to increased reported cases of adverse reactions to metal debris and the appearance of wear and corrosion at the modular tapers interfaces at revision. Over the past two decades, a lot of research has been expended to understand the degradation mechanisms, with two primary implant loading procedures and orientations used consistently across the literature. ASTM F1875-98 is often used as a guide to understand and benchmark the tribocorrosion processes occurring within the modular tapers interface. This article presents a comparison of the two methods outlined in ASTM F1875-98 as well as a critique of the standard considering the current paradigm in pre-clinical assessment of modular tapers.
Development of a space universal modular architecture (SUMO)
NASA Astrophysics Data System (ADS)
Collins, Bernie F.
This concept paper proposes that the space community should develop and implement a universal standard for spacecraft modularity - to improve interoperability of spacecraft components. Pursuing a global industry consensus standard for open and modular spacecraft architecture will encourage trade, remove standards-related market barriers, and in the long run increase both value provided to customers and profitability of the space industrial sector. This concept paper sets out: (1) the goals for a SUMO standard and how it will benefit the space community; (2) background on spacecraft modularity and existing related standards; (3) the proposed technical scope of the current standardization effort; and (4) an approach for creating a SUMO standard.
NASA Astrophysics Data System (ADS)
Chowdhury, Md Mukul
With the increased practice of modularization and prefabrication, the construction industry gained the benefits of quality management, improved completion time, reduced site disruption and vehicular traffic, and improved overall safety and security. Whereas industrialized construction methods, such as modular and manufactured buildings, have evolved over decades, core techniques used in prefabrication plants vary only slightly from those employed in traditional site-built construction. With a focus on energy and cost efficient modular construction, this research presents the development of a simulation, measurement and optimization system for energy consumption in the manufacturing process of modular construction. The system is based on Lean Six Sigma principles and loosely coupled system operation to identify the non-value adding tasks and possible causes of low energy efficiency. The proposed system will also include visualization functions for demonstration of energy consumption in modular construction. The benefits of implementing this system include a reduction in the energy consumption in production cost, decrease of energy cost in the production of lean-modular construction, and increase profit. In addition, the visualization functions will provide detailed information about energy efficiency and operation flexibility in modular construction. A case study is presented to validate the reliability of the system.
Refining search terms for nanotechnology
NASA Astrophysics Data System (ADS)
Porter, Alan L.; Youtie, Jan; Shapira, Philip; Schoeneck, David J.
2008-05-01
The ability to delineate the boundaries of an emerging technology is central to obtaining an understanding of the technology's research paths and commercialization prospects. Nowhere is this more relevant than in the case of nanotechnology (hereafter identified as "nano") given its current rapid growth and multidisciplinary nature. (Under the rubric of nanotechnology, we also include nanoscience and nanoengineering.) Past efforts have utilized several strategies, including simple term search for the prefix nano, complex lexical and citation-based approaches, and bootstrapping techniques. This research introduces a modularized Boolean approach to defining nanotechnology which has been applied to several research and patenting databases. We explain our approach to downloading and cleaning data, and report initial results. Comparisons of this approach with other nanotechnology search formulations are presented. Implications for search strategy development and profiling of the nanotechnology field are discussed.
A modular approach to adaptive structures.
Pagitz, Markus; Pagitz, Manuel; Hühne, Christian
2014-10-07
A remarkable property of nastic, shape changing plants is their complete fusion between actuators and structure. This is achieved by combining a large number of cells whose geometry, internal pressures and material properties are optimized for a given set of target shapes and stiffness requirements. An advantage of such a fusion is that cell walls are prestressed by cell pressures which increases, decreases the overall structural stiffness, weight. Inspired by the nastic movement of plants, Pagitz et al (2012 Bioinspir. Biomim. 7) published a novel concept for pressure actuated cellular structures. This article extends previous work by introducing a modular approach to adaptive structures. An algorithm that breaks down any continuous target shapes into a small number of standardized modules is presented. Furthermore it is shown how cytoskeletons within each cell enhance the properties of adaptive modules. An adaptive passenger seat and an aircrafts leading, trailing edge is used to demonstrate the potential of a modular approach.
TES: A modular systems approach to expert system development for real-time space applications
NASA Technical Reports Server (NTRS)
Cacace, Ralph; England, Brenda
1988-01-01
A major goal of the Space Station era is to reduce reliance on support from ground based experts. The development of software programs using expert systems technology is one means of reaching this goal without requiring crew members to become intimately familiar with the many complex spacecraft subsystems. Development of an expert systems program requires a validation of the software with actual flight hardware. By combining accurate hardware and software modelling techniques with a modular systems approach to expert systems development, the validation of these software programs can be successfully completed with minimum risk and effort. The TIMES Expert System (TES) is an application that monitors and evaluates real time data to perform fault detection and fault isolation tasks as they would otherwise be carried out by a knowledgeable designer. The development process and primary features of TES, a modular systems approach, and the lessons learned are discussed.
An interactive modular design for computerized photometry in spectrochemical analysis
NASA Technical Reports Server (NTRS)
Bair, V. L.
1980-01-01
A general functional description of totally automatic photometry of emission spectra is not available for an operating environment in which the sample compositions and analysis procedures are low-volume and non-routine. The advantages of using an interactive approach to computer control in such an operating environment are demonstrated. This approach includes modular subroutines selected at multiple-option, menu-style decision points. This style of programming is used to trace elemental determinations, including the automated reading of spectrographic plates produced by a 3.4 m Ebert mount spectrograph using a dc-arc in an argon atmosphere. The simplified control logic and modular subroutine approach facilitates innovative research and program development, yet is easily adapted to routine tasks. Operator confidence and control are increased by the built-in options including degree of automation, amount of intermediate data printed out, amount of user prompting, and multidirectional decision points.
Anggraeni, Melisa R; Connors, Natalie K; Wu, Yang; Chuan, Yap P; Lua, Linda H L; Middelberg, Anton P J
2013-09-13
Biomolecular engineering enables synthesis of improved proteins through synergistic fusion of modules from unrelated biomolecules. Modularization of peptide antigen from an unrelated pathogen for presentation on a modular virus-like particle (VLP) represents a new and promising approach to synthesize safe and efficacious vaccines. Addressing a key knowledge gap in modular VLP engineering, this study investigates the underlying fundamentals affecting the ability of induced antibodies to recognize the native pathogen. Specifically, this quality of immune response is correlated to the peptide antigen module structure. We modularized a helical peptide antigen element, helix 190 (H190) from the influenza hemagglutinin (HA) receptor binding region, for presentation on murine polyomavirus VLP, using two strategies aimed to promote H190 helicity on the VLP. In the first strategy, H190 was flanked by GCN4 structure-promoting elements within the antigen module; in the second, dual H190 copies were arrayed as tandem repeats in the module. Molecular dynamics simulation predicted that tandem repeat arraying would minimize secondary structural deviation of modularized H190 from its native conformation. In vivo testing supported this finding, showing that although both modularization strategies conferred high H190-specific immunogenicity, tandem repeat arraying of H190 led to a strikingly higher immune response quality, as measured by ability to generate antibodies recognizing a recombinant HA domain and split influenza virion. These findings provide new insights into the rational engineering of VLP vaccines, and could ultimately enable safe and efficacious vaccine design as an alternative to conventional approaches necessitating pathogen cultivation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Modular and Spatially Explicit: A Novel Approach to System Dynamics
The Open Modeling Environment (OME) is an open-source System Dynamics (SD) simulation engine which has been created as a joint project between Oregon State University and the US Environmental Protection Agency. It is designed around a modular implementation, and provides a standa...
Correlative light and electron microscopic detection of GFP-labeled proteins using modular APEX.
Ariotti, Nicholas; Hall, Thomas E; Parton, Robert G
2017-01-01
The use of green fluorescent protein (GFP) and related proteins has revolutionized light microscopy. Here we describe a rapid and simple method to localize GFP-tagged proteins in cells and in tissues by electron microscopy (EM) using a modular approach involving a small GFP-binding peptide (GBP) fused to the ascorbate peroxidase-derived APEX2 tag. We provide a method for visualizing GFP-tagged proteins by light and EM in cultured cells and in the zebrafish using modular APEX-GBP. Furthermore, we describe in detail the benefits of this technique over many of the currently available correlative light and electron microscopy approaches and demonstrate APEX-GBP is readily applicable to modern three-dimensional techniques. Copyright © 2017 Elsevier Inc. All rights reserved.
Hierarchical organization of functional connectivity in the mouse brain: a complex network approach.
Bardella, Giampiero; Bifone, Angelo; Gabrielli, Andrea; Gozzi, Alessandro; Squartini, Tiziano
2016-08-18
This paper represents a contribution to the study of the brain functional connectivity from the perspective of complex networks theory. More specifically, we apply graph theoretical analyses to provide evidence of the modular structure of the mouse brain and to shed light on its hierarchical organization. We propose a novel percolation analysis and we apply our approach to the analysis of a resting-state functional MRI data set from 41 mice. This approach reveals a robust hierarchical structure of modules persistent across different subjects. Importantly, we test this approach against a statistical benchmark (or null model) which constrains only the distributions of empirical correlations. Our results unambiguously show that the hierarchical character of the mouse brain modular structure is not trivially encoded into this lower-order constraint. Finally, we investigate the modular structure of the mouse brain by computing the Minimal Spanning Forest, a technique that identifies subnetworks characterized by the strongest internal correlations. This approach represents a faster alternative to other community detection methods and provides a means to rank modules on the basis of the strength of their internal edges.
Hierarchical organization of functional connectivity in the mouse brain: a complex network approach
NASA Astrophysics Data System (ADS)
Bardella, Giampiero; Bifone, Angelo; Gabrielli, Andrea; Gozzi, Alessandro; Squartini, Tiziano
2016-08-01
This paper represents a contribution to the study of the brain functional connectivity from the perspective of complex networks theory. More specifically, we apply graph theoretical analyses to provide evidence of the modular structure of the mouse brain and to shed light on its hierarchical organization. We propose a novel percolation analysis and we apply our approach to the analysis of a resting-state functional MRI data set from 41 mice. This approach reveals a robust hierarchical structure of modules persistent across different subjects. Importantly, we test this approach against a statistical benchmark (or null model) which constrains only the distributions of empirical correlations. Our results unambiguously show that the hierarchical character of the mouse brain modular structure is not trivially encoded into this lower-order constraint. Finally, we investigate the modular structure of the mouse brain by computing the Minimal Spanning Forest, a technique that identifies subnetworks characterized by the strongest internal correlations. This approach represents a faster alternative to other community detection methods and provides a means to rank modules on the basis of the strength of their internal edges.
Brain Modularity Mediates the Relation between Task Complexity and Performance
NASA Astrophysics Data System (ADS)
Ye, Fengdan; Yue, Qiuhai; Martin, Randi; Fischer-Baum, Simon; Ramos-Nuã+/-Ez, Aurora; Deem, Michael
Recent work in cognitive neuroscience has focused on analyzing the brain as a network, rather than a collection of independent regions. Prior studies taking this approach have found that individual differences in the degree of modularity of the brain network relate to performance on cognitive tasks. However, inconsistent results concerning the direction of this relationship have been obtained, with some tasks showing better performance as modularity increases, and other tasks showing worse performance. A recent theoretical model suggests that these inconsistencies may be explained on the grounds that high-modularity networks favor performance on simple tasks whereas low-modularity networks favor performance on complex tasks. The current study tests these predictions by relating modularity from resting-state fMRI to performance on a set of behavioral tasks. Complex and simple tasks were defined on the basis of whether they drew on executive attention. Consistent with predictions, we found a negative correlation between individuals' modularity and their performance on the complex tasks but a positive correlation with performance on the simple tasks. The results presented here provide a framework for linking measures of whole brain organization to cognitive processing.
Modularity, Working Memory and Language Acquisition
ERIC Educational Resources Information Center
Baddeley, Alan D.
2017-01-01
The concept of modularity is used to contrast the approach to working memory proposed by Truscott with the Baddeley and Hitch multicomponent model. This proposes four sub components comprising the "central executive," an executive control system of limited attentional capacity that utilises storage based on separate but interlinked…
The Modular Market. Studies in Further Education.
ERIC Educational Resources Information Center
Theodossin, Ernest
Origins of modular courses and the module in British postcompulsory education are considered, along with characteristics of modules, credit transfer, five case studies, and marketing in further and higher education. A module is a measured part (or course) of an extended learning experience that leads to specified qualifications. A designated…
Kawamoto, Kensaku; Martin, Cary J; Williams, Kip; Tu, Ming-Chieh; Park, Charlton G; Hunter, Cheri; Staes, Catherine J; Bray, Bruce E; Deshmukh, Vikrant G; Holbrook, Reid A; Morris, Scott J; Fedderson, Matthew B; Sletta, Amy; Turnbull, James; Mulvihill, Sean J; Crabtree, Gordon L; Entwistle, David E; McKenna, Quinn L; Strong, Michael B; Pendleton, Robert C; Lee, Vivian S
2015-01-01
Objective To develop expeditiously a pragmatic, modular, and extensible software framework for understanding and improving healthcare value (costs relative to outcomes). Materials and methods In 2012, a multidisciplinary team was assembled by the leadership of the University of Utah Health Sciences Center and charged with rapidly developing a pragmatic and actionable analytics framework for understanding and enhancing healthcare value. Based on an analysis of relevant prior work, a value analytics framework known as Value Driven Outcomes (VDO) was developed using an agile methodology. Evaluation consisted of measurement against project objectives, including implementation timeliness, system performance, completeness, accuracy, extensibility, adoption, satisfaction, and the ability to support value improvement. Results A modular, extensible framework was developed to allocate clinical care costs to individual patient encounters. For example, labor costs in a hospital unit are allocated to patients based on the hours they spent in the unit; actual medication acquisition costs are allocated to patients based on utilization; and radiology costs are allocated based on the minutes required for study performance. Relevant process and outcome measures are also available. A visualization layer facilitates the identification of value improvement opportunities, such as high-volume, high-cost case types with high variability in costs across providers. Initial implementation was completed within 6 months, and all project objectives were fulfilled. The framework has been improved iteratively and is now a foundational tool for delivering high-value care. Conclusions The framework described can be expeditiously implemented to provide a pragmatic, modular, and extensible approach to understanding and improving healthcare value. PMID:25324556
Project-Based Module Development.
ERIC Educational Resources Information Center
Meel, R. M. van
A project management design for modularizing higher education at open universities was developed and tested. Literature in the fields of project management and development of modular curriculum materials was reviewed and used as a basis for developing a project-based approach to the process of developing modules for self-instruction. According to…
Individual differences and time-varying features of modular brain architecture.
Liao, Xuhong; Cao, Miao; Xia, Mingrui; He, Yong
2017-05-15
Recent studies have suggested that human brain functional networks are topologically organized into functionally specialized but inter-connected modules to facilitate efficient information processing and highly flexible cognitive function. However, these studies have mainly focused on group-level network modularity analyses using "static" functional connectivity approaches. How these extraordinary modular brain structures vary across individuals and spontaneously reconfigure over time remain largely unknown. Here, we employed multiband resting-state functional MRI data (N=105) from the Human Connectome Project and a graph-based modularity analysis to systematically investigate individual variability and dynamic properties in modular brain networks. We showed that the modular structures of brain networks dramatically vary across individuals, with higher modular variability primarily in the association cortex (e.g., fronto-parietal and attention systems) and lower variability in the primary systems. Moreover, brain regions spontaneously changed their module affiliations on a temporal scale of seconds, which cannot be simply attributable to head motion and sampling error. Interestingly, the spatial pattern of intra-subject dynamic modular variability largely overlapped with that of inter-subject modular variability, both of which were highly reproducible across repeated scanning sessions. Finally, the regions with remarkable individual/temporal modular variability were closely associated with network connectors and the number of cognitive components, suggesting a potential contribution to information integration and flexible cognitive function. Collectively, our findings highlight individual modular variability and the notable dynamic characteristics in large-scale brain networks, which enhance our understanding of the neural substrates underlying individual differences in a variety of cognition and behaviors. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beyer, Brian David; Beddingfield, David H; Durst, Philip
2010-01-01
The design of the Pebble Bed Modular Reactor (PBMR) does not fit or seem appropriate to the IAEA safeguards approach under the categories of light water reactor (LWR), on-load refueled reactor (OLR, i.e. CANDU), or Other (prismatic HTGR) because the fuel is in a bulk form, rather than discrete items. Because the nuclear fuel is a collection of nuclear material inserted in tennis-ball sized spheres containing structural and moderating material and a PBMR core will contain a bulk load on the order of 500,000 spheres, it could be classified as a 'Bulk-Fuel Reactor.' Hence, the IAEA should develop unique safeguardsmore » criteria. In a multi-lab DOE study, it was found that an optimized blend of: (i) developing techniques to verify the plutonium content in spent fuel pebbles, (ii) improving burn-up computer codes for PBMR spent fuel to provide better understanding of the core and spent fuel makeup, and (iii) utilizing bulk verification techniques for PBMR spent fuel storage bins should be combined with the historic IAEA and South African approaches of containment and surveillance to verify and maintain continuity of knowledge of PBMR fuel. For all of these techniques to work the design of the reactor will need to accommodate safeguards and material accountancy measures to a far greater extent than has thus far been the case. The implementation of Safeguards-by-Design as the PBMR design progresses provides an approach to meets these safeguards and accountancy needs.« less
A reconfigurable, wearable, wireless ECG system.
Borromeo, S; Rodriguez-Sanchez, C; Machado, F; Hernandez-Tamames, J A; de la Prieta, R
2007-01-01
New emerging concepts as "wireless hospital", "mobile healthcare" or "wearable telemonitoring" require the development of bio-signal acquisition devices to be easily integrated into the clinical routine. In this work, we present a new system for Electrocardiogram (ECG) acquisition and its processing, with wireless transmission on demand (either the complete ECG or only one alarm message, just in case a pathological heart rate detected). Size and power consumption are optimized in order to provide mobility and comfort to the patient. We have designed a modular hardware system and an autonomous platform based on a Field-Programmable Gate Array (FPGA) for developing and debugging. The modular approach allows to redesign the system in an easy way. Its adaptation to a new biomedical signal would only need small changes on it. The hardware system is composed of three layers that can be plugged/unplugged: communication layer, processing layer and sensor layer. In addition, we also present a general purpose end-user application developed for mobile phones or Personal Digital Assistant devices (PDAs).
When modularization fails to occur: a developmental perspective.
D'Souza, Dean; Karmiloff-Smith, Annette
2011-05-01
We argue that models of adult cognition defined in terms of independently functioning modules cannot be applied to development, whether typical or atypical. The infant brain starts out highly interconnected, and it is only over developmental time that neural networks become increasingly specialized-that is, relatively modularized. In the case of atypical development, even when behavioural scores fall within the normal range, they are frequently underpinned by different cognitive and neural processes. In other words, in neurodevelopmental disorders the gradual process of relative modularization may fail to occur.
Development and Applications of a Modular Parallel Process for Large Scale Fluid/Structures Problems
NASA Technical Reports Server (NTRS)
Guruswamy, Guru P.; Kwak, Dochan (Technical Monitor)
2002-01-01
A modular process that can efficiently solve large scale multidisciplinary problems using massively parallel supercomputers is presented. The process integrates disciplines with diverse physical characteristics by retaining the efficiency of individual disciplines. Computational domain independence of individual disciplines is maintained using a meta programming approach. The process integrates disciplines without affecting the combined performance. Results are demonstrated for large scale aerospace problems on several supercomputers. The super scalability and portability of the approach is demonstrated on several parallel computers.
Development and Applications of a Modular Parallel Process for Large Scale Fluid/Structures Problems
NASA Technical Reports Server (NTRS)
Guruswamy, Guru P.; Byun, Chansup; Kwak, Dochan (Technical Monitor)
2001-01-01
A modular process that can efficiently solve large scale multidisciplinary problems using massively parallel super computers is presented. The process integrates disciplines with diverse physical characteristics by retaining the efficiency of individual disciplines. Computational domain independence of individual disciplines is maintained using a meta programming approach. The process integrates disciplines without affecting the combined performance. Results are demonstrated for large scale aerospace problems on several supercomputers. The super scalability and portability of the approach is demonstrated on several parallel computers.
NASA Technical Reports Server (NTRS)
Esper, Jaime; Andary, Jim; Oberright, John; So, Maria; Wegner, Peter; Hauser, Joe
2004-01-01
Modular, Reconfigurable, and Rapid-response (MR(sup 2)) space systems represent a paradigm shift in the way space assets of all sizes are designed, manufactured, integrated, tested, and flown. This paper will describe the MR(sup 2) paradigm in detail, and will include guidelines for its implementation. The Remote Sensing Advanced Technology microsatellite (RSAT) is a proposed flight system test-bed used for developing and implementing principles and best practices for MR(sup 2) spacecraft, and their supporting infrastructure. The initial goal of this test-bed application is to produce a lightweight (approx. 100 kg), production-minded, cost-effective, and scalable remote sensing micro-satellite capable of high performance and broad applicability. Such applications range from future distributed space systems, to sensor-webs, and rapid-response satellite systems. Architectures will be explored that strike a balance between modularity and integration while preserving the MR(sup 2) paradigm. Modularity versus integration has always been a point of contention when approaching a design: whereas one-of-a-kind missions may require close integration resulting in performance optimization, multiple and flexible application spacecraft benefit &om modularity, resulting in maximum flexibility. The process of building spacecraft rapidly (< 7 days), requires a concerted and methodical look at system integration and test processes and pitfalls. Although the concept of modularity is not new and was first developed in the 1970s by NASA's Goddard Space Flight Center (Multi-Mission Modular Spacecraft), it was never modernized and was eventually abandoned. Such concepts as the Rapid Spacecraft Development Office (RSDO) became the preferred method for acquiring satellites. Notwithstanding, over the past 30 years technology has advanced considerably, and the time is ripe to reconsider modularity in its own right, as enabler of R(sup 2), and as a key element of transformational systems. The MR2 architecture provides a competitive advantage over the old modular approach in its rapid response to market needs that are difficult to predict both from the perspectives of evolving technology, as well as mission and application requirements.
Characterizing the role benthos plays in large coastal seas and estuaries: A modular approach
Tenore, K.R.; Zajac, R.N.; Terwin, J.; Andrade, F.; Blanton, J.; Boynton, W.; Carey, D.; Diaz, R.; Holland, Austin F.; Lopez-Jamar, E.; Montagna, P.; Nichols, F.; Rosenberg, R.; Queiroga, H.; Sprung, M.; Whitlatch, R.B.
2006-01-01
Ecologists studying coastal and estuarine benthic communities have long taken a macroecological view, by relating benthic community patterns to environmental factors across several spatial scales. Although many general ecological patterns have been established, often a significant amount of the spatial and temporal variation in soft-sediment communities within and among systems remains unexplained. Here we propose a framework that may aid in unraveling the complex influence of environmental factors associated with the different components of coastal systems (i.e. the terrestrial and benthic landscapes, and the hydrological seascape) on benthic communities, and use this information to assess the role played by benthos in coastal ecosystems. A primary component of the approach is the recognition of system modules (e.g. marshes, dendritic systems, tidal rivers, enclosed basins, open bays, lagoons). The modules may differentially interact with key forcing functions (e.g. temperature, salinity, currents) that influence system processes and in turn benthic responses and functions. Modules may also constrain benthic characteristics and related processes within certain ecological boundaries and help explain their overall spatio-temporal variation. We present an example of how benthic community characteristics are related to the modular structure of 14 coastal seas and estuaries, and show that benthic functional group composition is significantly related to the modular structure of these systems. We also propose a framework for exploring the role of benthic communities in coastal systems using this modular approach and offer predictions of how benthic communities may vary depending on the modular composition and characteristics of a coastal system. ?? 2006 Elsevier B.V. All rights reserved.
Modular life cycle assessment of municipal solid waste management.
Haupt, M; Kägi, T; Hellweg, S
2018-05-31
Life cycle assessment (LCA) is commonly applied to examine the environmental performance of waste management systems. The system boundaries are, however, often limited to either one tonne of material or to specific waste treatments and are, therefore, lacking a systems perspective. Here, a framework is proposed to assess complete waste management systems based on actual waste flows, assessed with a detailed material flow analysis (MFA) in a modular MFA/LCA approach. The transformation of the MFA into a product-process-matrix facilitates a direct link between MFA and LCA, therefore allowing for the assessment of variations in flows. To allow for an up-to-date and geographically specific assessment, 190 LCA modules were set up based on primary industrial data and the ecoinvent database. The LCA modules show where there have been improvements in different recycling processes over the past years (e.g. for paper recycling) and highlight that, from an environmental perspective, closed-loop recycling is not always preferable to open-loop recycling. In a case study, the Swiss municipal solid waste management system, of which there is already a detailed MFA, was modeled using the new LCA modules and applying the modular MFA/LCA approach. Five different mass flow distribution scenarios for the Swiss municipal solid waste management system were assessed to show the environmental impact of political measures and to test the sensitivity of the results to key parameters. The results of the case study highlight the importance of the dominant fractions in the overall environmental impacts assessment; while the metal fraction has the highest impact on a per kilogram basis, paper, cardboard, glass and mixed municipal solid waste were found to dominate the environmental impacts of the Swiss waste management system due to their mass. The scenarios also highlight the importance of the energy efficiency of municipal solid waste incineration plants and the credits from material substitution as key variables. In countries with advanced waste management systems such as Switzerland, there is limited improvement potential with further increases in recycling rates. In these cases, the focus of political measures should be laid on (i) the utilization of secondary materials in applications where they replace high-impact primary production, and (ii) an increased recovery of energy in waste-to-energy plants. Copyright © 2018. Published by Elsevier Ltd.
The pandemonium system of reflective agents.
Smieja, F
1996-01-01
The Pandemonium system of reflective MINOS agents solves problems by automatic dynamic modularization of the input space. The agents contain feedforward neural networks which adapt using the backpropagation algorithm. We demonstrate the performance of Pandemonium on various categories of problems. These include learning continuous functions with discontinuities, separating two spirals, learning the parity function, and optical character recognition. It is shown how strongly the advantages gained from using a modularization technique depend on the nature of the problem. The superiority of the Pandemonium method over a single net on the first two test categories is contrasted with its limited advantages for the second two categories. In the first case the system converges quicker with modularization and is seen to lead to simpler solutions. For the second case the problem is not significantly simplified through flat decomposition of the input space, although convergence is still quicker.
ERIC Educational Resources Information Center
Abate, Marie A.; And Others
1982-01-01
A project to develop, implement, and evaluate a slide/text modular oncology course teaching disease state and pharmacist-oriented information to pharmacy students, with potential adaptation for pharmacist continuing education, is described. Module effectiveness was evaluated using a pretest, posttest design, with group mean comparisons across both…
Modular space station phase B extension program master plan
NASA Technical Reports Server (NTRS)
Munsey, E. H.
1971-01-01
The project is defined for design, development, fabrication, test, and pre-mission and mission operations of a shuttle-launched modular space station. The project management approach is described in terms of organization, management requirements, work breakdown structure, schedule, time-phased logic, implementation plans, manpower, and funding. The programmatic and technical problems are identified.
A Modular Approach for Teaching Partial Discharge Phenomenon through Experiment
ERIC Educational Resources Information Center
Chatterjee, B.; Dey, D.; Chakravorti, S.
2011-01-01
Partial discharge (PD) monitoring is an effective predictive maintenance tool for electrical power equipment. As a result, an understanding of the theory related to PD and the associated measurement techniques is now necessary knowledge for power engineers in their professional life. This paper presents a modular course on PD phenomenon in which…
The Design of a Power System for the PETSAT Modular Small Spacecraft Bus
NASA Astrophysics Data System (ADS)
Clark, C. S.; Lopez Mazarias, A.; Kobayashi, C.; Nakasuka, S.
2008-08-01
There is considerable interest in the benefits of having a modular spacecraft where it is possible to construct a satellite using a number of modules with identical mechanical and electrical interfaces, but with each performing a specific function to achieve the required platform specification. In recent years, steps have been made towards modular spacecraft becoming a reality and the concept is due to be demonstrated in-orbit later this year with the first flight of the PETSAT spacecraft concept on the mission, SOHLA-2. This paper describes the approach to the design of the SOHLA-2 power system. The approach is significant; PETSAT is an excellent example of a modular approach to spacecraft design. The PETSAT concept consists of a number of 'Panel Modules', roughly the same size as a pizza box. The panels stack together in stowed configuration for launch, and unfold once in orbit. Apart from being a very novel approach to spacecraft design and construction, this concept offers advantages in power generation as, once unfolded, there is significant surface area on which to mount solar cells for power generation. The power system for PETSAT has been designed such that each Panel Module contains a power system that can either operate in isolation for the purpose of unit testing, or as part of a larger spacecraft power system once connected to other Panel Modules. When connected together, the power systems on each module share the energy from the solar arrays and the batteries. The approach to the design of the system has provided a simple solution to difficult problem.
On the role of sparseness in the evolution of modularity in gene regulatory networks
2018-01-01
Modularity is a widespread property in biological systems. It implies that interactions occur mainly within groups of system elements. A modular arrangement facilitates adjustment of one module without perturbing the rest of the system. Therefore, modularity of developmental mechanisms is a major factor for evolvability, the potential to produce beneficial variation from random genetic change. Understanding how modularity evolves in gene regulatory networks, that create the distinct gene activity patterns that characterize different parts of an organism, is key to developmental and evolutionary biology. One hypothesis for the evolution of modules suggests that interactions between some sets of genes become maladaptive when selection favours additional gene activity patterns. The removal of such interactions by selection would result in the formation of modules. A second hypothesis suggests that modularity evolves in response to sparseness, the scarcity of interactions within a system. Here I simulate the evolution of gene regulatory networks and analyse diverse experimentally sustained networks to study the relationship between sparseness and modularity. My results suggest that sparseness alone is neither sufficient nor necessary to explain modularity in gene regulatory networks. However, sparseness amplifies the effects of forms of selection that, like selection for additional gene activity patterns, already produce an increase in modularity. That evolution of new gene activity patterns is frequent across evolution also supports that it is a major factor in the evolution of modularity. That sparseness is widespread across gene regulatory networks indicates that it may have facilitated the evolution of modules in a wide variety of cases. PMID:29775459
On the role of sparseness in the evolution of modularity in gene regulatory networks.
Espinosa-Soto, Carlos
2018-05-01
Modularity is a widespread property in biological systems. It implies that interactions occur mainly within groups of system elements. A modular arrangement facilitates adjustment of one module without perturbing the rest of the system. Therefore, modularity of developmental mechanisms is a major factor for evolvability, the potential to produce beneficial variation from random genetic change. Understanding how modularity evolves in gene regulatory networks, that create the distinct gene activity patterns that characterize different parts of an organism, is key to developmental and evolutionary biology. One hypothesis for the evolution of modules suggests that interactions between some sets of genes become maladaptive when selection favours additional gene activity patterns. The removal of such interactions by selection would result in the formation of modules. A second hypothesis suggests that modularity evolves in response to sparseness, the scarcity of interactions within a system. Here I simulate the evolution of gene regulatory networks and analyse diverse experimentally sustained networks to study the relationship between sparseness and modularity. My results suggest that sparseness alone is neither sufficient nor necessary to explain modularity in gene regulatory networks. However, sparseness amplifies the effects of forms of selection that, like selection for additional gene activity patterns, already produce an increase in modularity. That evolution of new gene activity patterns is frequent across evolution also supports that it is a major factor in the evolution of modularity. That sparseness is widespread across gene regulatory networks indicates that it may have facilitated the evolution of modules in a wide variety of cases.
MIDEX Advanced Modular and Distributed Spacecraft Avionics Architecture
NASA Technical Reports Server (NTRS)
Ruffa, John A.; Castell, Karen; Flatley, Thomas; Lin, Michael
1998-01-01
MIDEX (Medium Class Explorer) is the newest line in NASA's Explorer spacecraft development program. As part of the MIDEX charter, the MIDEX spacecraft development team has developed a new modular, distributed, and scaleable spacecraft architecture that pioneers new spaceflight technologies and implementation approaches, all designed to reduce overall spacecraft cost while increasing overall functional capability. This resultant "plug and play" system dramatically decreases the complexity and duration of spacecraft integration and test, providing a basic framework that supports spacecraft modularity and scalability for missions of varying size and complexity. Together, these subsystems form a modular, flexible avionics suite that can be modified and expanded to support low-end and very high-end mission requirements with a minimum of redesign, as well as allowing a smooth, continuous infusion of new technologies as they are developed without redesigning the system. This overall approach has the net benefit of allowing a greater portion of the overall mission budget to be allocated to mission science instead of a spacecraft bus. The MIDEX scaleable architecture is currently being manufactured and tested for use on the Microwave Anisotropy Probe (MAP), an inhouse program at GSFC.
Supervisory Control System Architecture for Advanced Small Modular Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cetiner, Sacit M; Cole, Daniel L; Fugate, David L
2013-08-01
This technical report was generated as a product of the Supervisory Control for Multi-Modular SMR Plants project within the Instrumentation, Control and Human-Machine Interface technology area under the Advanced Small Modular Reactor (SMR) Research and Development Program of the U.S. Department of Energy. The report documents the definition of strategies, functional elements, and the structural architecture of a supervisory control system for multi-modular advanced SMR (AdvSMR) plants. This research activity advances the state-of-the art by incorporating decision making into the supervisory control system architectural layers through the introduction of a tiered-plant system approach. The report provides a brief history ofmore » hierarchical functional architectures and the current state-of-the-art, describes a reference AdvSMR to show the dependencies between systems, presents a hierarchical structure for supervisory control, indicates the importance of understanding trip setpoints, applies a new theoretic approach for comparing architectures, identifies cyber security controls that should be addressed early in system design, and describes ongoing work to develop system requirements and hardware/software configurations.« less
Transformational System Concepts and Technologies for Our Future in Space
NASA Technical Reports Server (NTRS)
Howell, Joe T.; Mankins, John C.
2004-01-01
Continued constrained budgets and growing national and international interests in the commercialization and development of space requires NASA to be constantly vigilant, to be creative, and to seize every opportunity for assuring the maximum return on space infrastructure investments. Accordingly, efforts are underway to forge new and innovative approaches to transform our space systems in the future to ultimately achieve two or three or five times as much with the same resources. This bold undertaking can be achieved only through extensive cooperative efforts throughout the aerospace community and truly effective planning to pursue advanced space system design concepts and high-risk/high-leverage research and technology. Definitive implementation strategies and roadmaps containing new methodologies and revolutionary approaches must be developed to economically accommodate the continued exploration and development of space. Transformation can be realized through modular design and stepping stone development. This approach involves sustainable budget levels and multi-purpose systems development of supporting capabilities that lead to a diverse amy of sustainable future space activities. Transformational design and development requires revolutionary advances by using modular designs and a planned, stepping stone development process. A modular approach to space systems potentially offers many improvements over traditional one-of-a-kind space systems comprised of different subsystem element with little standardization in interfaces or functionality. Modular systems must be more flexible, scaleable, reconfigurable, and evolvable. Costs can be reduced through learning curve effects and economies of scale, and by enabling servicing and repair that would not otherwise be feasible. This paper briefly discusses achieving a promising approach to transforming space systems planning and evolution into a meaningful stepping stone design, development, and implementation process. The success of this well planned and orchestrated approach holds great promise for achieving innovation and revolutionary technology development for supporting future exploration and development of space.
del Sol, Antonio; Araúzo-Bravo, Marcos J; Amoros, Dolors; Nussinov, Ruth
2007-01-01
Background Allosteric communications are vital for cellular signaling. Here we explore a relationship between protein architectural organization and shortcuts in signaling pathways. Results We show that protein domains consist of modules interconnected by residues that mediate signaling through the shortest pathways. These mediating residues tend to be located at the inter-modular boundaries, which are more rigid and display a larger number of long-range interactions than intra-modular regions. The inter-modular boundaries contain most of the residues centrally conserved in the protein fold, which may be crucial for information transfer between amino acids. Our approach to modular decomposition relies on a representation of protein structures as residue-interacting networks, and removal of the most central residue contacts, which are assumed to be crucial for allosteric communications. The modular decomposition of 100 multi-domain protein structures indicates that modules constitute the building blocks of domains. The analysis of 13 allosteric proteins revealed that modules characterize experimentally identified functional regions. Based on the study of an additional functionally annotated dataset of 115 proteins, we propose that high-modularity modules include functional sites and are the basic functional units. We provide examples (the Gαs subunit and P450 cytochromes) to illustrate that the modular architecture of active sites is linked to their functional specialization. Conclusion Our method decomposes protein structures into modules, allowing the study of signal transmission between functional sites. A modular configuration might be advantageous: it allows signaling proteins to expand their regulatory linkages and may elicit a broader range of control mechanisms either via modular combinations or through modulation of inter-modular linkages. PMID:17531094
NASA Astrophysics Data System (ADS)
Li, Lu; Xu, Chong-Yu; Engeland, Kolbjørn
2013-04-01
SummaryWith respect to model calibration, parameter estimation and analysis of uncertainty sources, various regression and probabilistic approaches are used in hydrological modeling. A family of Bayesian methods, which incorporates different sources of information into a single analysis through Bayes' theorem, is widely used for uncertainty assessment. However, none of these approaches can well treat the impact of high flows in hydrological modeling. This study proposes a Bayesian modularization uncertainty assessment approach in which the highest streamflow observations are treated as suspect information that should not influence the inference of the main bulk of the model parameters. This study includes a comprehensive comparison and evaluation of uncertainty assessments by our new Bayesian modularization method and standard Bayesian methods using the Metropolis-Hastings (MH) algorithm with the daily hydrological model WASMOD. Three likelihood functions were used in combination with standard Bayesian method: the AR(1) plus Normal model independent of time (Model 1), the AR(1) plus Normal model dependent on time (Model 2) and the AR(1) plus Multi-normal model (Model 3). The results reveal that the Bayesian modularization method provides the most accurate streamflow estimates measured by the Nash-Sutcliffe efficiency and provide the best in uncertainty estimates for low, medium and entire flows compared to standard Bayesian methods. The study thus provides a new approach for reducing the impact of high flows on the discharge uncertainty assessment of hydrological models via Bayesian method.
Directional selection can drive the evolution of modularity in complex traits
Melo, Diogo; Marroig, Gabriel
2015-01-01
Modularity is a central concept in modern biology, providing a powerful framework for the study of living organisms on many organizational levels. Two central and related questions can be posed in regard to modularity: How does modularity appear in the first place, and what forces are responsible for keeping and/or changing modular patterns? We approached these questions using a quantitative genetics simulation framework, building on previous results obtained with bivariate systems and extending them to multivariate systems. We developed an individual-based model capable of simulating many traits controlled by many loci with variable pleiotropic relations between them, expressed in populations subject to mutation, recombination, drift, and selection. We used this model to study the problem of the emergence of modularity, and hereby show that drift and stabilizing selection are inefficient at creating modular variational structures. We also demonstrate that directional selection can have marked effects on the modular structure between traits, actively promoting a restructuring of genetic variation in the selected population and potentially facilitating the response to selection. Furthermore, we give examples of complex covariation created by simple regimes of combined directional and stabilizing selection and show that stabilizing selection is important in the maintenance of established covariation patterns. Our results are in full agreement with previous results for two-trait systems and further extend them to include scenarios of greater complexity. Finally, we discuss the evolutionary consequences of modular patterns being molded by directional selection. PMID:25548154
Directional selection can drive the evolution of modularity in complex traits.
Melo, Diogo; Marroig, Gabriel
2015-01-13
Modularity is a central concept in modern biology, providing a powerful framework for the study of living organisms on many organizational levels. Two central and related questions can be posed in regard to modularity: How does modularity appear in the first place, and what forces are responsible for keeping and/or changing modular patterns? We approached these questions using a quantitative genetics simulation framework, building on previous results obtained with bivariate systems and extending them to multivariate systems. We developed an individual-based model capable of simulating many traits controlled by many loci with variable pleiotropic relations between them, expressed in populations subject to mutation, recombination, drift, and selection. We used this model to study the problem of the emergence of modularity, and hereby show that drift and stabilizing selection are inefficient at creating modular variational structures. We also demonstrate that directional selection can have marked effects on the modular structure between traits, actively promoting a restructuring of genetic variation in the selected population and potentially facilitating the response to selection. Furthermore, we give examples of complex covariation created by simple regimes of combined directional and stabilizing selection and show that stabilizing selection is important in the maintenance of established covariation patterns. Our results are in full agreement with previous results for two-trait systems and further extend them to include scenarios of greater complexity. Finally, we discuss the evolutionary consequences of modular patterns being molded by directional selection.
Takemoto, Kazuhiro; Kajihara, Kosuke
2016-01-01
Theoretical studies have indicated that nestedness and modularity-non-random structural patterns of ecological networks-influence the stability of ecosystems against perturbations; as such, climate change and human activity, as well as other sources of environmental perturbations, affect the nestedness and modularity of ecological networks. However, the effects of climate change and human activities on ecological networks are poorly understood. Here, we used a spatial analysis approach to examine the effects of climate change and human activities on the structural patterns of food webs and mutualistic networks, and found that ecological network structure is globally affected by climate change and human impacts, in addition to current climate. In pollination networks, for instance, nestedness increased and modularity decreased in response to increased human impacts. Modularity in seed-dispersal networks decreased with temperature change (i.e., warming), whereas food web nestedness increased and modularity declined in response to global warming. Although our findings are preliminary owing to data-analysis limitations, they enhance our understanding of the effects of environmental change on ecological communities.
NASA Astrophysics Data System (ADS)
Katiyar, N.; Hossain, F.
2006-05-01
Floods have always been disastrous for human life. It accounts for about 15 % of the total death related to natural disasters. There are around 263 transboundary river basins listed by UNESCO, wherein at least 30 countries have more than 95% of their territory locked in one or more such transboundary basins. For flood forecasting in the lower riparian nations of these International River Basins (IRBs), real-time rainfall data from upstream nations is naturally the most critical factor governing the forecasting effectiveness. However, many upstream nations fail to provide data to the lower riparian nations due to a lack of in-situ rainfall measurement infrastructure or a lack of a treaty for real-time sharing of rainfall data. A potential solution is therefore to use satellites that inherently measure rainfall across political boundaries. NASA's proposed Global Precipitation Measurement (GPM) mission appears very promising in providing this vital rainfall information under the data- limited scenario that will continue to prevail in most IRBs. However, satellite rainfall is associated with uncertainty and hence, proper characterization of the satellite rainfall error propagation in hydrologic models for flood forecasting is a critical priority that should be resolved in the coming years in anticipation of GPM. In this study, we assess an open book modular watershed modeling approach for estimating the expected error in flood forecasting related to GPM rainfall data. Our motivation stems from the critical challenge in identifying the specific IRBs that would benefit from a pre-programmed satellite-based forecasting system in anticipation of GPM. As the number of flood-prone IRBs is large, conventional data-intensive implementation of existing physically-based distributed hydrologic models on case-by-case IRBs is considered time-consuming for completing such a global assessment. A more parsimonious approach is justified at the expense of a tolerable loss of detail and accuracy. Through assessment of our proposed modular modeling framework, we present our initial understanding in resolving the fundamental question - Can a parsimonious open-book watershed modeling framework be a physically consistent proxy for rapid and global identification of IRBs in greater need of a GPM-based flood forecasting system?
Kawamoto, Kensaku; Martin, Cary J; Williams, Kip; Tu, Ming-Chieh; Park, Charlton G; Hunter, Cheri; Staes, Catherine J; Bray, Bruce E; Deshmukh, Vikrant G; Holbrook, Reid A; Morris, Scott J; Fedderson, Matthew B; Sletta, Amy; Turnbull, James; Mulvihill, Sean J; Crabtree, Gordon L; Entwistle, David E; McKenna, Quinn L; Strong, Michael B; Pendleton, Robert C; Lee, Vivian S
2015-01-01
To develop expeditiously a pragmatic, modular, and extensible software framework for understanding and improving healthcare value (costs relative to outcomes). In 2012, a multidisciplinary team was assembled by the leadership of the University of Utah Health Sciences Center and charged with rapidly developing a pragmatic and actionable analytics framework for understanding and enhancing healthcare value. Based on an analysis of relevant prior work, a value analytics framework known as Value Driven Outcomes (VDO) was developed using an agile methodology. Evaluation consisted of measurement against project objectives, including implementation timeliness, system performance, completeness, accuracy, extensibility, adoption, satisfaction, and the ability to support value improvement. A modular, extensible framework was developed to allocate clinical care costs to individual patient encounters. For example, labor costs in a hospital unit are allocated to patients based on the hours they spent in the unit; actual medication acquisition costs are allocated to patients based on utilization; and radiology costs are allocated based on the minutes required for study performance. Relevant process and outcome measures are also available. A visualization layer facilitates the identification of value improvement opportunities, such as high-volume, high-cost case types with high variability in costs across providers. Initial implementation was completed within 6 months, and all project objectives were fulfilled. The framework has been improved iteratively and is now a foundational tool for delivering high-value care. The framework described can be expeditiously implemented to provide a pragmatic, modular, and extensible approach to understanding and improving healthcare value. © The Author 2014. Published by Oxford University Press on behalf of the American Medical Informatics Association.
Huang, Camillan
2003-01-01
Technology has created a new dimension for visual teaching and learning with web-delivered interactive media. The Virtual Labs Project has embraced this technology with instructional design and evaluation methodologies behind the simPHYSIO suite of simulation-based, online interactive teaching modules in physiology for the Stanford students. In addition, simPHYSIO provides the convenience of anytime web-access and a modular structure that allows for personalization and customization of the learning material. This innovative tool provides a solid delivery and pedagogical backbone that can be applied to developing an interactive simulation-based training tool for the use and management of the Picture Archiving and Communication System (PACS) image information system. The disparity in the knowledge between health and IT professionals can be bridged by providing convenient modular teaching tools to fill the gaps in knowledge. An innovative teaching method in the whole PACS is deemed necessary for its successful implementation and operation since it has become widely distributed with many interfaces, components, and customizations. This paper will discuss the techniques for developing an interactive-based teaching tool, a case study of its implementation, and a perspective for applying this approach to an online PACS training tool. Copyright 2002 Elsevier Science Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Witt, Adam M.; Hadjerioua, Boualem; Martinez, Rocio
The viability of modular pumped storage hydro (m-PSH) is examined in detail through the conceptual design, cost scoping, and economic analysis of three case studies. Modular PSH refers to both the compactness of the project design and the proposed nature of product fabrication and performance. A modular project is assumed to consist of pre-fabricated standardized components and equipment, tested and assembled into modules before arrival on site. This technology strategy could enable m-PSH projects to deploy with less substantial civil construction and equipment component costs. The concept of m-PSH is technically feasible using currently available conventional pumping and turbine equipment,more » and may offer a path to reducing the project development cycle from inception to commissioning.« less
Nakasone, Cass K; Abdeen, Ayesha; Khachatourians, Armond G; Sugimori, Tanzo; Vince, Kelly G
2008-12-01
We performed a retrospective study of the radiographic position of femoral and tibial components in a series of revision total knee arthroplasties using diaphyseal-engaging, press fit, modular stems. Fifty-two consecutive revision cases were performed. Femoral and tibial component alignment was measured preoperatively and postoperatively. The canal-filling ratio was measured and correlated with anatomic alignment. There was a trend toward improved alignment with increasing canal fill, suggesting that uncemented diaphyseal engaging press-fit modular stems facilitate accurate alignment for both femoral and tibial components in revision surgery.
ERIC Educational Resources Information Center
Gardenhire, Alissa; Diamond, John; Headlam, Camielle; Weiss, Michael J.
2016-01-01
Community colleges nationwide are looking for solutions to help students complete developmental (remedial) math--a known barrier to graduation. Some are offering computer-assisted, modular developmental math courses that allow students to earn credits incrementally and move through the curriculum at their own pace. One of these modularized…
NASA Technical Reports Server (NTRS)
1970-01-01
Results of preliminary studies to define the space tug astrionic system, subsystems, and components to meet requirements for a variety of missions are reported. Emphasis is placed on demonstration of the modular astrionics approach in the design of the space tug astrionic system.
Modular space station, phase B extension. Program operations plan
NASA Technical Reports Server (NTRS)
1971-01-01
An organized approach is defined for establishing the most significant requirements pertaining to mission operations, information management, and computer program design and development for the modular space station program. The operations plan pertains to the space station and experiment module program elements and to the ground elements required for mission management and mission support operations.
ERIC Educational Resources Information Center
Randall, David W.; Hayes, Ryan T.; Wong, Peter A.
2013-01-01
A LIBS (laser induced breakdown spectroscopy) spectrometer constructed by the instructor is reported for use in undergraduate analytical chemistry experiments. The modular spectrometer described here is based on commonly available components including a commercial Nd:YAG laser and a compact UV-vis spectrometer. The modular approach provides a…
ERIC Educational Resources Information Center
Chorpita, Bruce F.
2006-01-01
This clinically wise and pragmatic book presents a systematic approach for treating any form of childhood anxiety using proven exposure-based techniques. What makes this rigorously tested modular treatment unique is that it is explicitly designed with flexibility and individualization in mind. Developed in a real-world, highly diverse community…
Supporting research and technology
NASA Technical Reports Server (NTRS)
1971-01-01
The development of definition of the modular space station is discussed. The modular approach was evaluated, the requirements were defined, and program definition and design were accomplished. The features of the program which significantly affect the initial development and early operating costs were identified and their impacts on the program were assessed. Specifications of various systems and components are included.
SMEX-Lite Modular Solar Array Architecture
NASA Technical Reports Server (NTRS)
Lyons, John
2002-01-01
For the most part, Goddard solar arrays have been custom designs that are unique to each mission. The solar panel design has been frozen prior to issuing an RFP for their procurement. There has typically been 6-9 months between RFP release and contract award, followed by an additional 24 months for performance of the contract. For Small Explorer (SMEX) missions, with three years between mission definition and launch, this has been a significant problem. The SMEX solar panels have been sufficiently small that the contract performance period has been reduced to 12-15 months. The bulk of this time is used up in the final design definition and fabrication of flight solar cell assemblies. Even so, it has been virtually impossible to have the spacecraft design at a level of maturity sufficient to freeze the solar panel geometry and release the RFP in time to avoid schedule problems with integrating the solar panels to the spacecraft. With that in mind, the SMEX-Lite project team developed a modular architecture for the assembly of solar arrays to greatly reduce the cost and schedule associated with the development of a mission- specific solar array. In the modular architecture, solar cells are fabricated onto small substrate panels. This modular panel (approximately 8.5" x 17" in this case) becomes the building block for constructing solar arrays for multiple missions with varying power requirements and geometrical arrangements. The mechanical framework that holds these modules together as a solar array is the only mission-unique design, changing in size and shape as required for each mission. There are several advantages to this approach. First, the typical solar array development cycle requires a mission unique design, procurement, and qualification including a custom qualification panel. With the modular architecture, a single qualification of the SMEX-Lite modules and the associated mechanical framework in a typical configuration provided a qualification by similarity to multiple missions. It then becomes possible to procure solar array modules in advance of mission definition and respond quickly and inexpensively to a selected mission's unique requirements. The solar array modular architecture allows the procurement of solar array modules before the array geometry has been frozen. This reduces the effect of procurement lead-time on the mission integration and test flow by as much as 50%. Second, by spreading the non-recurring costs over multiple missions, the cost per unit area is also reduced. In the case of the SMEX-Lite procurement, this reduction was by about one third of the cost per unit area compared to previous SMEX mission-unique procurements. Third, the modular architecture greatly facilitates the infusion of new solar cell technologies into flight programs as these technologies become available. New solar cell technologies need only be fabricated onto a standard-sized module to be incorporated into the next available mission. The modular solar array can be flown in a mixed configuration with some new and some standard cell technologies. Since each module has its own wiring terminals, the array can be arranged as desired electrically with little impact to cost and schedule. The solar array modular architecture does impose some additional constraints on systems and subsystem engineers. First, they must work with discrete solar array modules rather than size the array to fit exactly within an available envelope. The array area is constrained to an integer multiple of the module area. Second, the modular design is optimized for space radiation and thermal environments not greatly different from a typical SMEX LEO environment. For example, a mission with a highly elliptical orbit (e.g., Polar, SMEX/FAST) would require thicker coverglasses to protect the solar cells from the more intense radiation environment.
Modular approach to achieving the next-generation X-ray light source
NASA Astrophysics Data System (ADS)
Biedron, S. G.; Milton, S. V.; Freund, H. P.
2001-12-01
A modular approach to the next-generation light source is described. The "modules" include photocathode, radio-frequency, electron guns and their associated drive-laser systems, linear accelerators, bunch-compression systems, seed laser systems, planar undulators, two-undulator harmonic generation schemes, high-gain harmonic generation systems, nonlinear higher harmonics, and wavelength shifting. These modules will be helpful in distributing the next-generation light source to many more laboratories than the current single-pass, high-gain free-electron laser designs permit, due to both monetary and/or physical space constraints.
A Modular Habitation System for Human Planetary and Space Exploration
NASA Technical Reports Server (NTRS)
Howe, A. Scott
2015-01-01
A small-diameter modular pressure vessel system is devised that can be applied to planetary surface and deep space human exploration missions. As one of the recommendations prepared for the NASA Human Spaceflight Architecture Team (HAT) Evolvable Mars Campaign (EMC), a compact modular system can provide a Mars-forward approach to a variety of missions and environments. Small cabins derived from the system can fit into the Space Launch System (SLS) Orion "trunk", or can be mounted with mobility systems to function as pressurized rovers, in-space taxis, ascent stage cabins, or propellant tanks. Larger volumes can be created using inflatable elements for long-duration deep space missions and planetary surface outposts. This paper discusses how a small-diameter modular system can address functional requirements, mass and volume constraints, and operational scenarios.
Phase C/D program development plan. Volume 1: Program plan
NASA Technical Reports Server (NTRS)
1971-01-01
The Phase C/D definition of the Modular Space Station has been developed. The modular approach selected during the option period was evaluated, requirements were defined, and program definition and preliminary design were accomplished. The Space Station Project is covered in depth, the research applications module is limited to a project-level definition, and the shuttle operations are included for interface requirements identification, scheduling, and costing. Discussed in detail are: (1) baseline program and project descriptions; (2) phase project planning; (3) modular space station program schedule; (4) program management plan; (5) operations; (6) facilities; (7) logistics; and (8) manpower.
Computer aided fixture design - A case based approach
NASA Astrophysics Data System (ADS)
Tanji, Shekhar; Raiker, Saiesh; Mathew, Arun Tom
2017-11-01
Automated fixture design plays important role in process planning and integration of CAD and CAM. An automated fixture setup design system is developed where when fixturing surfaces and points are described allowing modular fixture components to get automatically select for generating fixture units and placed into position with satisfying assembled conditions. In past, various knowledge based system have been developed to implement CAFD in practice. In this paper, to obtain an acceptable automated machining fixture design, a case-based reasoning method with developed retrieval system is proposed. Visual Basic (VB) programming language is used in integrating with SolidWorks API (Application programming interface) module for better retrieval procedure reducing computational time. These properties are incorporated in numerical simulation to determine the best fit for practical use.
A Study on the Evaluation of the Applicability of an Environmental Education Modular Curriculum
ERIC Educational Resources Information Center
Artun, Hüseyin; Özsevgeç, Tuncay
2016-01-01
The purpose of this study was, in line with the views of the students & teacher, to examine Environmental Education Modular Curriculum (EEMC) developed to give environmental education with a specific content. In the study, the case study method was used. The research sample was determined with the purposeful sampling method & made up of 23…
Modular detector for deep underwater registration of muons and muon groups
NASA Technical Reports Server (NTRS)
Demianov, A. I.; Sarycheva, L. I.; Sinyov, N. B.; Varadanyan, I. N.; Yershov, A. A.
1985-01-01
Registration and identification of muons and muon groups penetrating into the ocean depth, can be performed using a modular multilayer detector with high resolution bidimensional readout - deep underwater calorimeter (project NADIR). Laboratory testing of a prototype sensor cell with liquid scintillator in light-tight casing, testifies to the practicability of the full-scale experiment within reasonable expences.
ERIC Educational Resources Information Center
Artun, Huyseyin; Özsevgec, Tuncay
2018-01-01
The purpose of this study was to examine the influence of the environmental education modular curriculum on secondary school students' academic achievements and on their conceptual understanding. In the study, the case study method was used. The research sample included a total of 23 7th grade students (12 male and 11 female) who were determined…
A Case Study of Coordination in Distributed Agile Software Development
NASA Astrophysics Data System (ADS)
Hole, Steinar; Moe, Nils Brede
Global Software Development (GSD) has gained significant popularity as an emerging paradigm. Companies also show interest in applying agile approaches in distributed development to combine the advantages of both approaches. However, in their most radical forms, agile and GSD can be placed in each end of a plan-based/agile spectrum because of how work is coordinated. We describe how three GSD projects applying agile methods coordinate their work. We found that trust is needed to reduce the need of standardization and direct supervision when coordinating work in a GSD project, and that electronic chatting supports mutual adjustment. Further, co-location and modularization mitigates communication problems, enables agility in at least part of a GSD project, and renders the implementation of Scrum of Scrums possible.
NASA Astrophysics Data System (ADS)
Baroroh, D. K.; Alfiah, D.
2018-05-01
The electric vehicle is one of the innovations to reduce the pollution of the vehicle. Nevertheless, it still has a problem, especially for disposal stage. In supporting product design and development strategy, which is the idea of sustainable design or problem solving of disposal stage, assessment of modularity architecture from electric vehicle in recovery process needs to be done. This research used Design Structure Matrix (DSM) approach to deciding interaction of components and assessment of modularity architecture using the calculation of value from 3 variables, namely Module Independence (MI), Module Similarity (MS), and Modularity for End of Life Stage (MEOL). The result of this research shows that existing design of electric vehicles has the architectural design which has a high value of modularity for recovery process on disposal stage. Accordingly, so it can be reused and recycled in component level or module without disassembly process to support the product that is environmentally friendly (sustainable design) and able reduce disassembly cost.
Quantum information processing in phase space: A modular variables approach
NASA Astrophysics Data System (ADS)
Ketterer, A.; Keller, A.; Walborn, S. P.; Coudreau, T.; Milman, P.
2016-08-01
Binary quantum information can be fault-tolerantly encoded in states defined in infinite-dimensional Hilbert spaces. Such states define a computational basis, and permit a perfect equivalence between continuous and discrete universal operations. The drawback of this encoding is that the corresponding logical states are unphysical, meaning infinitely localized in phase space. We use the modular variables formalism to show that, in a number of protocols relevant for quantum information and for the realization of fundamental tests of quantum mechanics, it is possible to loosen the requirements on the logical subspace without jeopardizing their usefulness or their successful implementation. Such protocols involve measurements of appropriately chosen modular variables that permit the readout of the encoded discrete quantum information from the corresponding logical states. Finally, we demonstrate the experimental feasibility of our approach by applying it to the transverse degrees of freedom of single photons.
Modular microfluidics for point-of-care protein purifications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Millet, L. J.; Lucheon, J. D.; Standaert, R. F.
Biochemical separations are the heart of diagnostic assays and purification methods for biologics. On-chip miniaturization and modularization of separation procedures will enable the development of customized, portable devices for personalized health-care diagnostics and point-of-use production of treatments. In this report, we describe the design and fabrication of miniature ion exchange, size exclusion and affinity chromatography modules for on-chip clean-up of recombinantly-produced proteins. Our results demonstrate that these common separations techniques can be implemented in microfluidic modules with performance comparable to conventional approaches. We introduce embedded 3-D microfluidic interconnects for integrating micro-scale separation modules that can be arranged and reconfigured tomore » suit a variety of fluidic operations or biochemical processes. In conclusion, we demonstrate the utility of the modular approach with a platform for the enrichment of enhanced green fluorescent protein (eGFP) from Escherichia coli lysate through integrated affinity and size-exclusion chromatography modules.« less
SMEX-Lite Modular Solar Array Architecture
NASA Technical Reports Server (NTRS)
Lyons, John W.; Day, John (Technical Monitor)
2002-01-01
The NASA Small Explorer (SMEX) missions have typically had three years between mission definition and launch. This short schedule has posed significant challenges with respect to solar array design and procurement. Typically, the solar panel geometry is frozen prior to going out with a procurement. However, with the SMEX schedule, it has been virtually impossible to freeze the geometry in time to avoid scheduling problems with integrating the solar panels to the spacecraft. A modular solar array architecture was developed to alleviate this problem. This approach involves procuring sufficient modules for multiple missions and assembling the modules onto a solar array framework that is unique to each mission. The modular approach removes the solar array from the critical path of the SMEX integration and testing schedule. It also reduces the cost per unit area of the solar arrays and facilitates the inclusion of experiments involving new solar cell or panel technologies in the SMEX missions.
2016-01-01
A novel method of extracting heart rate and oxygen saturation from a video-based biosignal is described. The method comprises a novel modular continuous wavelet transform approach which includes: performing the transform, undertaking running wavelet archetyping to enhance the pulse information, extraction of the pulse ridge time–frequency information [and thus a heart rate (HRvid) signal], creation of a wavelet ratio surface, projection of the pulse ridge onto the ratio surface to determine the ratio of ratios from which a saturation trending signal is derived, and calibrating this signal to provide an absolute saturation signal (SvidO2). The method is illustrated through its application to a video photoplethysmogram acquired during a porcine model of acute desaturation. The modular continuous wavelet transform-based approach is advocated by the author as a powerful methodology to deal with noisy, non-stationary biosignals in general. PMID:27382479
Modular microfluidics for point-of-care protein purifications.
Millet, L J; Lucheon, J D; Standaert, R F; Retterer, S T; Doktycz, M J
2015-04-21
Biochemical separations are the heart of diagnostic assays and purification methods for biologics. On-chip miniaturization and modularization of separation procedures will enable the development of customized, portable devices for personalized health-care diagnostics and point-of-use production of treatments. In this report, we describe the design and fabrication of miniature ion exchange, size exclusion and affinity chromatography modules for on-chip clean-up of recombinantly-produced proteins. Our results demonstrate that these common separations techniques can be implemented in microfluidic modules with performance comparable to conventional approaches. We introduce embedded 3-D microfluidic interconnects for integrating micro-scale separation modules that can be arranged and reconfigured to suit a variety of fluidic operations or biochemical processes. We demonstrate the utility of the modular approach with a platform for the enrichment of enhanced green fluorescent protein (eGFP) from Escherichia coli lysate through integrated affinity and size-exclusion chromatography modules.
A spatially localized architecture for fast and modular DNA computing
NASA Astrophysics Data System (ADS)
Chatterjee, Gourab; Dalchau, Neil; Muscat, Richard A.; Phillips, Andrew; Seelig, Georg
2017-09-01
Cells use spatial constraints to control and accelerate the flow of information in enzyme cascades and signalling networks. Synthetic silicon-based circuitry similarly relies on spatial constraints to process information. Here, we show that spatial organization can be a similarly powerful design principle for overcoming limitations of speed and modularity in engineered molecular circuits. We create logic gates and signal transmission lines by spatially arranging reactive DNA hairpins on a DNA origami. Signal propagation is demonstrated across transmission lines of different lengths and orientations and logic gates are modularly combined into circuits that establish the universality of our approach. Because reactions preferentially occur between neighbours, identical DNA hairpins can be reused across circuits. Co-localization of circuit elements decreases computation time from hours to minutes compared to circuits with diffusible components. Detailed computational models enable predictive circuit design. We anticipate our approach will motivate using spatial constraints for future molecular control circuit designs.
Modular microfluidics for point-of-care protein purifications
Millet, L. J.; Lucheon, J. D.; Standaert, R. F.; ...
2015-01-01
Biochemical separations are the heart of diagnostic assays and purification methods for biologics. On-chip miniaturization and modularization of separation procedures will enable the development of customized, portable devices for personalized health-care diagnostics and point-of-use production of treatments. In this report, we describe the design and fabrication of miniature ion exchange, size exclusion and affinity chromatography modules for on-chip clean-up of recombinantly-produced proteins. Our results demonstrate that these common separations techniques can be implemented in microfluidic modules with performance comparable to conventional approaches. We introduce embedded 3-D microfluidic interconnects for integrating micro-scale separation modules that can be arranged and reconfigured tomore » suit a variety of fluidic operations or biochemical processes. In conclusion, we demonstrate the utility of the modular approach with a platform for the enrichment of enhanced green fluorescent protein (eGFP) from Escherichia coli lysate through integrated affinity and size-exclusion chromatography modules.« less
Gauvin, Robert; Khademhosseini, Ali
2011-01-01
Micro- and nanoscale technologies have emerged as powerful tools in the fabrication of engineered tissues and organs. Here we focus on the application of these techniques to improve engineered tissue architecture and function using modular and directed self-assembly and highlight the emergence of this new class of materials for biomedical applications. PMID:21627163
Modular microfluidic systems using reversibly attached PDMS fluid control modules
NASA Astrophysics Data System (ADS)
Skafte-Pedersen, Peder; Sip, Christopher G.; Folch, Albert; Dufva, Martin
2013-05-01
The use of soft lithography-based poly(dimethylsiloxane) (PDMS) valve systems is the dominating approach for high-density microscale fluidic control. Integrated systems enable complex flow control and large-scale integration, but lack modularity. In contrast, modular systems are attractive alternatives to integration because they can be tailored for different applications piecewise and without redesigning every element of the system. We present a method for reversibly coupling hard materials to soft lithography defined systems through self-aligning O-ring features thereby enabling easy interfacing of complex-valve-based systems with simpler detachable units. Using this scheme, we demonstrate the seamless interfacing of a PDMS-based fluid control module with hard polymer chips. In our system, 32 self-aligning O-ring features protruding from the PDMS fluid control module form chip-to-control module interconnections which are sealed by tightening four screws. The interconnection method is robust and supports complex fluidic operations in the reversibly attached passive chip. In addition, we developed a double-sided molding method for fabricating PDMS devices with integrated through-holes. The versatile system facilitates a wide range of applications due to the modular approach, where application specific passive chips can be readily attached to the flow control module.
Integrated modular teaching in dermatology for undergraduate students: A novel approach
Karthikeyan, Kaliaperumal; Kumar, Annapurna
2014-01-01
Context: Undergraduate teaching in dermatology comprises didactic lectures and clinical classes. Integrated modular teaching is a novel approach, which integrates basic sciences with dermatology in the form of a module. Further the module also incorporates various teaching modalities, which facilitate active participation from students and promotes learning. The pre- and post-test values showed the effectiveness of the integrated module. The students feedback was encouraging. Aims: The aim of this study was to determine the acceptance and opinion of undergraduate students regarding integrated modular teaching as a new teaching aid in dermatology. Settings and Design: This was a descriptive study. Varied teaching methodologies involving multiple disciplines were undertaken in six major undergraduate topics in dermatology for seventh and eighth semester students. Materials and Methods: A total of six modules were conducted over a period of 12 months for students of seventh and eighth semesters. The topics for the various modules were sexually transmitted diseases, acquired immunodeficiency syndrome, oral ulcers, leprosy, connective tissue disorders and psoriasis. Faculty members from different disciplines participated. Pre- and post-test were conducted before and after the modules respectively to gauge the effectiveness of the modules. Results: It was found that almost every student had a better score on the posttest as compared to the pretest. General feedback obtained from the students showed that all of them felt that modular teaching was a more interesting and useful teaching learning experience than conventional teaching. Conclusions: Integrated modular teaching can be an effective adjunct in imparting theoretical and practical knowledge to the students. Further, various teaching methodologies can be used in integrated modules effectively with active student participation. Thus integrated modular teaching addresses two important issues in medical education, namely integration and active student participation. PMID:25165641
Integrated modular teaching in dermatology for undergraduate students: A novel approach.
Karthikeyan, Kaliaperumal; Kumar, Annapurna
2014-07-01
Undergraduate teaching in dermatology comprises didactic lectures and clinical classes. Integrated modular teaching is a novel approach, which integrates basic sciences with dermatology in the form of a module. Further the module also incorporates various teaching modalities, which facilitate active participation from students and promotes learning. The pre- and post-test values showed the effectiveness of the integrated module. The students feedback was encouraging. The aim of this study was to determine the acceptance and opinion of undergraduate students regarding integrated modular teaching as a new teaching aid in dermatology. This was a descriptive study. Varied teaching methodologies involving multiple disciplines were undertaken in six major undergraduate topics in dermatology for seventh and eighth semester students. A total of six modules were conducted over a period of 12 months for students of seventh and eighth semesters. The topics for the various modules were sexually transmitted diseases, acquired immunodeficiency syndrome, oral ulcers, leprosy, connective tissue disorders and psoriasis. Faculty members from different disciplines participated. Pre- and post-test were conducted before and after the modules respectively to gauge the effectiveness of the modules. It was found that almost every student had a better score on the posttest as compared to the pretest. General feedback obtained from the students showed that all of them felt that modular teaching was a more interesting and useful teaching learning experience than conventional teaching. Integrated modular teaching can be an effective adjunct in imparting theoretical and practical knowledge to the students. Further, various teaching methodologies can be used in integrated modules effectively with active student participation. Thus integrated modular teaching addresses two important issues in medical education, namely integration and active student participation.
Mass study for modular approaches to a solar electric propulsion module
NASA Technical Reports Server (NTRS)
Sharp, G. R.; Cake, J. E.; Oglebay, J. C.; Shaker, F. J.
1977-01-01
The propulsion module comprises six to eight 30-cm thruster and power processing units, a mercury propellant storage and distribution system, a solar array ranging in power from 18 to 25 kW, and the thermal and structure systems required to support the thrust and power subsystems. Launch and on-orbit configurations are presented for both modular approaches. The propulsion module satisfies the thermal design requirements of a multimission set including: Mercury, Saturn, and Jupiter orbiters, a 1-AU solar observatory, and comet and asteroid rendezvous. A detailed mass breakdown and a mass equation relating the total mass to the number of thrusters and solar array power requirement is given for both approaches.
Towards a sustainable modular robot system for planetary exploration
NASA Astrophysics Data System (ADS)
Hossain, S. G. M.
This thesis investigates multiple perspectives of developing an unmanned robotic system suited for planetary terrains. In this case, the unmanned system consists of unit-modular robots. This type of robot has potential to be developed and maintained as a sustainable multi-robot system while located far from direct human intervention. Some characteristics that make this possible are: the cooperation, communication and connectivity among the robot modules, flexibility of individual robot modules, capability of self-healing in the case of a failed module and the ability to generate multiple gaits by means of reconfiguration. To demonstrate the effects of high flexibility of an individual robot module, multiple modules of a four-degree-of-freedom unit-modular robot were developed. The robot was equipped with a novel connector mechanism that made self-healing possible. Also, design strategies included the use of series elastic actuators for better robot-terrain interaction. In addition, various locomotion gaits were generated and explored using the robot modules, which is essential for a modular robot system to achieve robustness and thus successfully navigate and function in a planetary environment. To investigate multi-robot task completion, a biomimetic cooperative load transportation algorithm was developed and simulated. Also, a liquid motion-inspired theory was developed consisting of a large number of robot modules. This can be used to traverse obstacles that inevitably occur in maneuvering over rough terrains such as in a planetary exploration. Keywords: Modular robot, cooperative robots, biomimetics, planetary exploration, sustainability.
Advanced Modular Power Approach to Affordable, Supportable Space Systems
NASA Technical Reports Server (NTRS)
Oeftering, Richard C.; Kimnach, Greg L.; Fincannon, James; Mckissock,, Barbara I.; Loyselle, Patricia L.; Wong, Edmond
2013-01-01
Recent studies of missions to the Moon, Mars and Near Earth Asteroids (NEA) indicate that these missions often involve several distinct separately launched vehicles that must ultimately be integrated together in-flight and operate as one unit. Therefore, it is important to see these vehicles as elements of a larger segmented spacecraft rather than separate spacecraft flying in formation. The evolution of large multi-vehicle exploration architecture creates the need (and opportunity) to establish a global power architecture that is common across all vehicles. The Advanced Exploration Systems (AES) Modular Power System (AMPS) project managed by NASA Glenn Research Center (GRC) is aimed at establishing the modular power system architecture that will enable power systems to be built from a common set of modular building blocks. The project is developing, demonstrating and evaluating key modular power technologies that are expected to minimize non-recurring development costs, reduce recurring integration costs, as well as, mission operational and support costs. Further, modular power is expected to enhance mission flexibility, vehicle reliability, scalability and overall mission supportability. The AMPS project not only supports multi-vehicle architectures but should enable multi-mission capability as well. The AMPS technology development involves near term demonstrations involving developmental prototype vehicles and field demonstrations. These operational demonstrations not only serve as a means of evaluating modular technology but also provide feedback to developers that assure that they progress toward truly flexible and operationally supportable modular power architecture.
Subcommunities and Their Mutual Relationships in a Transaction Network
NASA Astrophysics Data System (ADS)
Iino, T.; Iyetomi, H.
We investigate a Japanese transaction network consisting ofabout 800 thousand firms (nodes) and four million business relations (links) with focus on its modular structure. Communities detected by maximizing modularity often are dominated by firms with common features or behaviors in the network, such as characterized by regions or industry sectors. However, it is well known that the modularity optimization approach has a resolution limit problem, that is, it fails in identifying fine communities buried in large communities. To unfold such hidden structures, we apply the community detection to each of subnetworks formed by isolating those communities from the whole body. Subcommunities thus identified are composed of firms with finer regions, more specified sectors or business affiliations. Also we introduce a new idea of reduced modularity matrix to measure the strength of relations between (sub)communities.
Characteristics of detectors for prevention of nuclear radiation terrorism
NASA Astrophysics Data System (ADS)
Kolesnikov, S. V.; Ryabeva, E. V.; Samosadny, V. T.
2017-01-01
There is description of one type of detectors in use for the task of nuclear terrorism cases prevention to determine the direction to the radioactive source and geometrical structure of radiation field. This type is a modular detector with anisotropic sensitivity. The principle of work of a modular detecting device is the simultaneous operation of several detecting modules with anisotropic sensitivity to gamma radiation.
Multiple D3-Instantons and Mock Modular Forms I
NASA Astrophysics Data System (ADS)
Alexandrov, Sergei; Banerjee, Sibasish; Manschot, Jan; Pioline, Boris
2017-07-01
We study D3-instanton corrections to the hypermultiplet moduli space in type IIB string theory compactified on a Calabi-Yau threefold. In a previous work, consistency of D3-instantons with S-duality was established at first order in the instanton expansion, using the modular properties of the M5-brane elliptic genus. We extend this analysis to the two-instanton level, where wall-crossing phenomena start playing a role. We focus on the contact potential, an analogue of the Kähler potential which must transform as a modular form under S-duality. We show that it can be expressed in terms of a suitable modification of the partition function of D4-D2-D0 BPS black holes, constructed out of the generating function of MSW invariants (the latter coincide with Donaldson-Thomas invariants in a particular chamber). Modular invariance of the contact potential then requires that, in the case where the D3-brane wraps a reducible divisor, the generating function of MSW invariants must transform as a vector-valued mock modular form, with a specific modular completion built from the MSW invariants of the constituents. Physically, this gives a powerful constraint on the degeneracies of BPS black holes. Mathematically, our result gives a universal prediction for the modular properties of Donaldson-Thomas invariants of pure two-dimensional sheaves.
Safe and Secure Partitioning with Pikeos: Towards Integrated Modular Avionics in Space
NASA Astrophysics Data System (ADS)
Almeida, J.; Prochazka, M.
2009-05-01
This paper presents our approach to logical partitioning of spacecraft onboard software. We present PikeOS, a separation micro-kernel which applies the state-of-the- art techniques and widely recognised standards such as ARINC 653 and MILS in order to guarantee safety and security properties of partitions executing software with different criticality and confidentiality. We provide an overview of our approach, also used in the Securely Partitioning Spacecraft Computing Resources project, an ESA TRP contract, which shifts spacecraft onboard software development towards the Integrated Modular Avionics concept with relevance for dual-use military and civil missions.
Modularization of gradient-index optical design using wavefront matching enabled optimization.
Nagar, Jogender; Brocker, Donovan E; Campbell, Sawyer D; Easum, John A; Werner, Douglas H
2016-05-02
This paper proposes a new design paradigm which allows for a modular approach to replacing a homogeneous optical lens system with a higher-performance GRadient-INdex (GRIN) lens system using a WaveFront Matching (WFM) method. In multi-lens GRIN systems, a full-system-optimization approach can be challenging due to the large number of design variables. The proposed WFM design paradigm enables optimization of each component independently by explicitly matching the WaveFront Error (WFE) of the original homogeneous component at the exit pupil, resulting in an efficient design procedure for complex multi-lens systems.
Scheduling Independent Partitions in Integrated Modular Avionics Systems
Du, Chenglie; Han, Pengcheng
2016-01-01
Recently the integrated modular avionics (IMA) architecture has been widely adopted by the avionics industry due to its strong partition mechanism. Although the IMA architecture can achieve effective cost reduction and reliability enhancement in the development of avionics systems, it results in a complex allocation and scheduling problem. All partitions in an IMA system should be integrated together according to a proper schedule such that their deadlines will be met even under the worst case situations. In order to help provide a proper scheduling table for all partitions in IMA systems, we study the schedulability of independent partitions on a multiprocessor platform in this paper. We firstly present an exact formulation to calculate the maximum scaling factor and determine whether all partitions are schedulable on a limited number of processors. Then with a Game Theory analogy, we design an approximation algorithm to solve the scheduling problem of partitions, by allowing each partition to optimize its own schedule according to the allocations of the others. Finally, simulation experiments are conducted to show the efficiency and reliability of the approach proposed in terms of time consumption and acceptance ratio. PMID:27942013
Solar Power Satellite Development: Advances in Modularity and Mechanical Systems
NASA Technical Reports Server (NTRS)
Belvin, W. Keith; Dorsey, John T.; Watson, Judith J.
2010-01-01
Space solar power satellites require innovative concepts in order to achieve economically and technically feasible designs. The mass and volume constraints of current and planned launch vehicles necessitate highly efficient structural systems be developed. In addition, modularity and in-space deployment will be enabling design attributes. This paper reviews the current challenges of launching and building very large space systems. A building block approach is proposed in order to achieve near-term solar power satellite risk reduction while promoting the necessary long-term technology advances. Promising mechanical systems technologies anticipated in the coming decades including modularity, material systems, structural concepts, and in-space operations are described
Technology-based design and scaling for RTGs for space exploration in the 100 W range
NASA Astrophysics Data System (ADS)
Summerer, Leopold; Pierre Roux, Jean; Pustovalov, Alexey; Gusev, Viacheslav; Rybkin, Nikolai
2011-04-01
This paper presents the results of a study on design considerations for a 100 W radioisotope thermo-electric generator (RTG). Special emphasis has been put on designing a modular, multi-purpose system with high overall TRL levels and making full use of the extensive Russian heritage in the design of radioisotope power systems. The modular approach allowed insight into the scaling of such RTGs covering the electric power range from 50 to 200 W e (EoL). The retained concept is based on a modular thermal block structure, a radiative inner-RTG heat transfer and using a two-stage thermo-electric conversion system.
ERIC Educational Resources Information Center
Bexar County School Board, San Antonio, TX.
The goal of the POR FIN research design was to develop a language-based curriculum emphasizing the audiolingual approach and integrating academic and social-functioning subject matter. The modular curriculum is designed so that each lesson is independent and complete in itself, and provides a high degree of motivation, retention, and achievement…
A modular approach to creating large engineered cartilage surfaces.
Ford, Audrey C; Chui, Wan Fung; Zeng, Anne Y; Nandy, Aditya; Liebenberg, Ellen; Carraro, Carlo; Kazakia, Galateia; Alliston, Tamara; O'Connell, Grace D
2018-01-23
Native articular cartilage has limited capacity to repair itself from focal defects or osteoarthritis. Tissue engineering has provided a promising biological treatment strategy that is currently being evaluated in clinical trials. However, current approaches in translating these techniques to developing large engineered tissues remains a significant challenge. In this study, we present a method for developing large-scale engineered cartilage surfaces through modular fabrication. Modular Engineered Tissue Surfaces (METS) uses the well-known, but largely under-utilized self-adhesion properties of de novo tissue to create large scaffolds with nutrient channels. Compressive mechanical properties were evaluated throughout METS specimens, and the tensile mechanical strength of the bonds between attached constructs was evaluated over time. Raman spectroscopy, biochemical assays, and histology were performed to investigate matrix distribution. Results showed that by Day 14, stable connections had formed between the constructs in the METS samples. By Day 21, bonds were robust enough to form a rigid sheet and continued to increase in size and strength over time. Compressive mechanical properties and glycosaminoglycan (GAG) content of METS and individual constructs increased significantly over time. The METS technique builds on established tissue engineering accomplishments of developing constructs with GAG composition and compressive properties approaching native cartilage. This study demonstrated that modular fabrication is a viable technique for creating large-scale engineered cartilage, which can be broadly applied to many tissue engineering applications and construct geometries. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lyon, Aaron R.; Ludwig, Kristy; Romano, Evalynn; Koltracht, Jane; Stoep, Ann Vander; McCauley, Elizabeth
2013-01-01
Objective The “fit” or appropriateness of well-researched interventions within usual care contexts is among the most commonly-cited, but infrequently researched, factors in the successful implementation of new practices. The current study was initiated to address two exploratory research questions: (1) How do clinicians describe their current school mental health service delivery context? and (2) How do clinicians describe the fit between modular psychotherapy and multiple levels of the school mental health service delivery context? Method Following a year-long training and consultation program in an evidence-based, modular approach to psychotherapy, semi-structured qualitative interviews were conducted with seventeen school-based mental health providers to evaluate their perspectives on the appropriateness of implementing the approach within a system of school-based health centers. Interviews were transcribed and coded for themes using conventional and directed content analysis. Results Findings identified key elements of the school mental health context including characteristics of the clinicians, their practices, the school context, and the service recipients. Specific evaluation of intervention-setting appropriateness elicited many comments about both practical and value-based (e.g., cultural considerations) aspects at the clinician and client levels, but fewer comments at the school or organizational levels. Conclusions Results suggest that a modular approach may fit well with the school mental health service context, especially along practical aspects of appropriateness. Future research focused on the development of methods for routinely assessing appropriateness at different stages of the implementation process is recommended. PMID:24134063
The Case for Modular Redundancy in Large-Scale High Performance Computing Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engelmann, Christian; Ong, Hong Hoe; Scott, Stephen L
2009-01-01
Recent investigations into resilience of large-scale high-performance computing (HPC) systems showed a continuous trend of decreasing reliability and availability. Newly installed systems have a lower mean-time to failure (MTTF) and a higher mean-time to recover (MTTR) than their predecessors. Modular redundancy is being used in many mission critical systems today to provide for resilience, such as for aerospace and command \\& control systems. The primary argument against modular redundancy for resilience in HPC has always been that the capability of a HPC system, and respective return on investment, would be significantly reduced. We argue that modular redundancy can significantly increasemore » compute node availability as it removes the impact of scale from single compute node MTTR. We further argue that single compute nodes can be much less reliable, and therefore less expensive, and still be highly available, if their MTTR/MTTF ratio is maintained.« less
Anastasiadis, K; Antonitsis, P; Argiriadou, H; Deliopoulos, A; Grosomanidis, V; Tossios, P
2015-04-01
Minimally invasive extracorporeal circulation (MiECC) has been developed in an attempt to integrate all advances in cardiopulmonary bypass technology in one closed circuit that shows improved biocompatibility and minimizes the systemic detrimental effects of CPB. Despite well-evidenced clinical advantages, penetration of MiECC technology into clinical practice is hampered by concerns raised by perfusionists and surgeons regarding air handling together with blood and volume management during CPB. We designed a modular MiECC circuit, bearing an accessory circuit for immediate transition to an open system that can be used in every adult cardiac surgical procedure, offering enhanced safety features. We challenged this modular circuit in a series of 50 consecutive patients. Our results showed that the modular AHEPA circuit design offers 100% technical success rate in a cohort of random, high-risk patients who underwent complex procedures, including reoperation and valve and aortic surgery, together with emergency cases. This pilot study applies to the real world and prompts for further evaluation of modular MiECC systems through multicentre trials. © The Author(s) 2015.
Skull base tumors: a kaleidoscope of challenge.
Khanna, J N; Natrajan, Srivalli; Galinde, Jyotsna
2014-08-01
Resection of skull base lesions has always been riddled with problems like inadequate access, proximity to major vessels, dural tears, cranial nerve damage, and infection. Understanding the modular concept of the facial skeleton has led to the development of transfacial swing osteotomies that facilitates resection in a difficult area with minimal morbidity and excellent cosmetic results. In spite of the current trend toward endonasal endoscopic management of skull base tumors, our series presents nine cases of diverse extensive skull base lesions, 33% of which were recurrent. These cases were approached through different transfacial swing osteotomies through the mandible, a midfacial swing, or a zygomaticotemporal osteotomy as dictated by the three-dimensional spatial location of the lesion, and its extent and proximity to vital structures. Access osteotomies ensured complete removal and good results through the most direct and safe route and good vascular control. This reiterated the fact that transfacial approaches still hold a special place in the management of extensive skull base lesions.
Skull Base Tumors: A Kaleidoscope of Challenge
Khanna, J.N.; Natrajan, Srivalli; Galinde, Jyotsna
2014-01-01
Resection of skull base lesions has always been riddled with problems like inadequate access, proximity to major vessels, dural tears, cranial nerve damage, and infection. Understanding the modular concept of the facial skeleton has led to the development of transfacial swing osteotomies that facilitates resection in a difficult area with minimal morbidity and excellent cosmetic results. In spite of the current trend toward endonasal endoscopic management of skull base tumors, our series presents nine cases of diverse extensive skull base lesions, 33% of which were recurrent. These cases were approached through different transfacial swing osteotomies through the mandible, a midfacial swing, or a zygomaticotemporal osteotomy as dictated by the three-dimensional spatial location of the lesion, and its extent and proximity to vital structures. Access osteotomies ensured complete removal and good results through the most direct and safe route and good vascular control. This reiterated the fact that transfacial approaches still hold a special place in the management of extensive skull base lesions. PMID:25083368
Modular decomposition of metabolic reaction networks based on flux analysis and pathway projection.
Yoon, Jeongah; Si, Yaguang; Nolan, Ryan; Lee, Kyongbum
2007-09-15
The rational decomposition of biochemical networks into sub-structures has emerged as a useful approach to study the design of these complex systems. A biochemical network is characterized by an inhomogeneous connectivity distribution, which gives rise to several organizational features, including modularity. To what extent the connectivity-based modules reflect the functional organization of the network remains to be further explored. In this work, we examine the influence of physiological perturbations on the modular organization of cellular metabolism. Modules were characterized for two model systems, liver and adipocyte primary metabolism, by applying an algorithm for top-down partition of directed graphs with non-uniform edge weights. The weights were set by the engagement of the corresponding reactions as expressed by the flux distribution. For the base case of the fasted rat liver, three modules were found, carrying out the following biochemical transformations: ketone body production, glucose synthesis and transamination. This basic organization was further modified when different flux distributions were applied that describe the liver's metabolic response to whole body inflammation. For the fully mature adipocyte, only a single module was observed, integrating all of the major pathways needed for lipid storage. Weaker levels of integration between the pathways were found for the early stages of adipocyte differentiation. Our results underscore the inhomogeneous distribution of both connectivity and connection strengths, and suggest that global activity data such as the flux distribution can be used to study the organizational flexibility of cellular metabolism. Supplementary data are available at Bioinformatics online.
Simonaho, Simo-Pekka; Ketolainen, Jarkko; Ervasti, Tuomas; Toiviainen, Maunu; Korhonen, Ossi
2016-07-30
Drug manufacturing technology is in the midst of modernization and continuous manufacturing of drug products is especially the focus of great interest. The adoption of new manufacturing approaches requires extensive cooperation between industry, regulatory bodies, academics and equipment manufacturers. In this paper we introduce PROMIS-line which is a continuous tableting line built at the University of Eastern Finland, School of Pharmacy, PROMIS-centre. PROMIS-line is modular and tablets can be produced via dry granulation or direct compression. In three case studies, continuous feeding, blending and tablet performance is studied to illustrate some basic features of PROMIS-line. In conclusion, the PROMIS-line is an excellent tool for studying the fundamentals of continuous manufacturing of tablets. Copyright © 2016 Elsevier B.V. All rights reserved.
A Modular PMAD System for Small Spacecraft
NASA Technical Reports Server (NTRS)
Button, Robert M.
1998-01-01
Current trends in satellite design are focused on developing small, reliable, and inexpensive spacecraft. To that end, a modular power management and distribution system (PMAD) is proposed which will help transition the aerospace industry towards an assembly line approach to building spacecraft. The modular system is based on an innovative DC voltage boost converter called the Series Connected Boost Regulator (SCBR). The SCBR uses existing DC-DC converters and adds a unique series connection. This simple modification provides the SCBR topology with many advantages over existing boost converters. Efficiencies of 94-98%, power densities above 1,000 We/kg, and inherent fault tolerance are just a few of the characteristics presented. Limitations of the SCBR technology are presented, and it is shown that the SCBR makes an ideal photovoltaic array regulator. A modular design based on the series connected boost unit is outlined and functional descriptions of the components are given.
Facile "modular assembly" for fast construction of a highly oriented crystalline MOF nanofilm.
Xu, Gang; Yamada, Teppei; Otsubo, Kazuya; Sakaida, Shun; Kitagawa, Hiroshi
2012-10-10
The preparation of crystalline, ordered thin films of metal-organic frameworks (MOFs) will be a critical process for MOF-based nanodevices in the future. MOF thin films with perfect orientation and excellent crystallinity were formed with novel nanosheet-structured components, Cu-TCPP [TCPP = 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin], by a new "modular assembly" strategy. The modular assembly process involves two steps: a "modularization" step is used to synthesize highly crystalline "modules" with a nanosized structure that can be conveniently assembled into a thin film in the following "assembly" step. With this method, MOF thin films can easily be set up on different substrates at very high speed with controllable thickness. This new approach also enabled us to prepare highly oriented crystalline thin films of MOFs that cannot be prepared in thin-film form by traditional techniques.
Conceptual Design of a 100 MWe Modular Molten Salt Power Tower Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
James E. Pacheco; Carter Moursund, Dale Rogers, David Wasyluk
2011-09-20
A conceptual design of a 100 MWe modular molten salt solar power tower plant has been developed which can provide capacity factors in the range of 35 to 75%. Compared to single tower plants, the modular design provides a higher degree of flexibility in achieving the desired customer's capacity factor and is obtained simply by adjusting the number of standard modules. Each module consists of a standard size heliostat field and receiver system, hence reengineering and associated unacceptable performance uncertainties due to scaling are eliminated. The modular approach with multiple towers also improves plant availability. Heliostat field components, receivers andmore » towers are shop assembled allowing for high quality and minimal field assembly. A centralized thermal-storage system stores hot salt from the receivers, allowing nearly continuous power production, independent of solar energy collection, and improved parity with the grid. A molten salt steam generator converts the stored thermal energy into steam, which powers a steam turbine generator to produce electricity. This paper describes the conceptual design of the plant, the advantages of modularity, expected performance, pathways to cost reductions, and environmental impact.« less
Systems and methods for improved telepresence
Anderson, Matthew O.; Willis, W. David; Kinoshita, Robert A.
2005-10-25
The present invention provides a modular, flexible system for deploying multiple video perception technologies. The telepresence system of the present invention is capable of allowing an operator to control multiple mono and stereo video inputs in a hands-free manner. The raw data generated by the input devices is processed into a common zone structure that corresponds to the commands of the user, and the commands represented by the zone structure are transmitted to the appropriate device. This modularized approach permits input devices to be easily interfaced with various telepresence devices. Additionally, new input devices and telepresence devices are easily added to the system and are frequently interchangeable. The present invention also provides a modular configuration component that allows an operator to define a plurality of views each of which defines the telepresence devices to be controlled by a particular input device. The present invention provides a modular flexible system for providing telepresence for a wide range of applications. The modularization of the software components combined with the generalized zone concept allows the systems and methods of the present invention to be easily expanded to encompass new devices and new uses.
To cut or not to cut? Assessing the modular structure of brain networks.
Chang, Yu-Teng; Pantazis, Dimitrios; Leahy, Richard M
2014-05-01
A wealth of methods has been developed to identify natural divisions of brain networks into groups or modules, with one of the most prominent being modularity. Compared with the popularity of methods to detect community structure, only a few methods exist to statistically control for spurious modules, relying almost exclusively on resampling techniques. It is well known that even random networks can exhibit high modularity because of incidental concentration of edges, even though they have no underlying organizational structure. Consequently, interpretation of community structure is confounded by the lack of principled and computationally tractable approaches to statistically control for spurious modules. In this paper we show that the modularity of random networks follows a transformed version of the Tracy-Widom distribution, providing for the first time a link between module detection and random matrix theory. We compute parametric formulas for the distribution of modularity for random networks as a function of network size and edge variance, and show that we can efficiently control for false positives in brain and other real-world networks. Copyright © 2014 Elsevier Inc. All rights reserved.
Joelsson, Daniel; Gates, Irina V; Pacchione, Diana; Wang, Christopher J; Bennett, Philip S; Zhang, Yuhua; McMackin, Jennifer; Frey, Tina; Brodbeck, Kristin C; Baxter, Heather; Barmat, Scott L; Benetti, Luca; Bodmer, Jean-Luc
2010-06-01
Vaccine manufacturing requires constant analytical monitoring to ensure reliable quality and a consistent safety profile of the final product. Concentration and bioactivity of active components of the vaccine are key attributes routinely evaluated throughout the manufacturing cycle and for product release and dosage. In the case of live attenuated virus vaccines, bioactivity is traditionally measured in vitro by infection of susceptible cells with the vaccine followed by quantification of virus replication, cytopathology or expression of viral markers. These assays are typically multi-day procedures that require trained technicians and constant attention. Considering the need for high volumes of testing, automation and streamlining of these assays is highly desirable. In this study, the automation and streamlining of a complex infectivity assay for Varicella Zoster Virus (VZV) containing test articles is presented. The automation procedure was completed using existing liquid handling infrastructure in a modular fashion, limiting custom-designed elements to a minimum to facilitate transposition. In addition, cellular senescence data provided an optimal population doubling range for long term, reliable assay operation at high throughput. The results presented in this study demonstrate a successful automation paradigm resulting in an eightfold increase in throughput while maintaining assay performance characteristics comparable to the original assay. Copyright 2010 Elsevier B.V. All rights reserved.
Calixto-Botía, Iván; Sánchez, Juan A
2017-02-17
Phenotypic plasticity, as a phenotypic response induced by the environment, has been proposed as a key factor in the evolutionary history of corals. A significant number of octocoral species show high phenotypic variation, exhibiting a strong overlap in intra- and inter-specific morphologic variation. This is the case of the gorgonian octocoral Antillogorgia bipinnata (Verrill 1864), which shows three polyphyletic morphotypes along a bathymetric gradient. This research tested the phenotypic plasticity of modular traits in A. bipinnata with a reciprocal transplant experiment involving 256 explants from two morphotypes in two locations and at two depths. Vertical and horizontal length and number of new branches were compared 13 weeks following transplant. The data were analysed with a linear mixed-effects model and a graphic approach by reaction norms. At the end of the experiment, 91.8% of explants survived. Lower vertical and horizontal growth rates and lower branch promotion were found for deep environments compared to shallow environments. The overall variation behaved similarly to the performance of native transplants. In particular, promotion of new branches showed variance mainly due to a phenotypic plastic effect. Globally, environmental and genotypic effects explain the variation of the assessed traits. Survival rates besides plastic responses suggest an intermediate scenario between adaptive plasticity and local adaptation that may drive a potential process of adaptive divergence along depth cline in A. bipinnata.
Zajonz, Dirk; Zieme, Almut; Prietzel, Torsten; Moche, Michael; Tiepoldt, Solveig; Roth, Andreas; Josten, Christoph; von Salis-Soglio, Georg Freiherr; Heyde, Christoph-E; Ghanem, Mohamed
2016-01-01
Modular mega-endoprosthesis systems are used to bridge very large bone defects and have become a widespread method in orthopaedic surgery for the treatment of tumours and revision arthroplasty. However, the indications for the use of modular mega-endoprostheses must be carefully considered. Implanting modular endoprostheses requires major, complication-prone surgery in which the limited salvage procedures should always be borne in mind. The management of periprosthetic infection is particularly difficult and beset with problems. Given this, the present study was designed to gauge the significance of periprosthetic infections in connection with modular mega-implants in the lower extremities among our own patients. Patients who had been fitted with modular endoprosthesis on a lower extremity at our department between September 1994 and December 2011 were examined retrospectively. A total of 101 patients with 114 modular prostheses were identified. Comprising 30 men (29.7 %) and 71 women (70.3 %), their average age at the time of surgery was 67 years (18-92 years). The average follow-up period was 27 months (5 months and 2 weeks to 14 years and 11 months) and the drop-out rate was about 8.8 %. Altogether, there were 19 (17.7 %) endoprosthesis infections: 3 early infections and 16 late or delayed infections. The pathogen spectrum was dominated by coagulase-negative staphylococci (36 %) and Staphylococcus aureus (16 %), including 26 % multi-resistant pathogens. Reinfection occurred in 37 % of cases of infection. Tumours were followed by significantly fewer infections than the other indications. Infections were twice as likely to occur after previous surgery. In our findings modular endoprostheses (18 %) are much more susceptible to infection than primary endoprostheses (0.5-2,5 %). Infection is the most common complication alongside the dislocation of proximal femur endoprostheses. Consistent, radical surgery is essential - although even with an adequate treatment strategy, the recurrence rate is very high. Unfortunately, the functional results are frequently unsatisfactory, with amputation often being the last resort. Therefore, the indication for implantation must be carefully considered and discussed in great detail, especially in the case of multimorbid patients with previous joint infections.
NASA Technical Reports Server (NTRS)
Esper, Jaime
2004-01-01
In order to execute the Vision for Space Exploration, we must find ways to reduce cost, system complexity, design, build, and test times, and at the same time increase flexibility to satisfy multiple functions. Modular, Adaptive, Reconfigurable System (MARS) technologies promise to set the stage for the delivery of system elements that form the building blocks of increasingly ambitious missions involving humans and robots. Today, space systems are largely specialized and built on a case-by-case basis. The notion of modularity however, is nothing new to NASA. The 1970's saw the development of the Multi-Mission Modular spacecraft (MMS). From 1980 to 1992 at least six satellites were built under this paradigm, and included such Goddard Space Flight Center missions as SSM, EUVE, UARS, and Landsat 4 and 5. Earlier versions consisted of standard subsystem "module" or "box" components that could be replaced within a structure based on predefined form factors. Although the primary motivation for MMS was faster/cheaper integration and test, standardization of interfaces, and ease of incorporating new subsystem technology, it lacked the technology maturity and programmatic "upgrade infrastructure" needed to satisfy varied mission requirements, and ultimately it lacked user buy-in. Consequently, it never evolved and was phased out. Such concepts as the Rapid Spacecraft Development Office (RSDO) with its regularly updated catalogue of prequalified busses became the preferred method for acquiring satellites. Notwithstanding, over the past 30 years since MMS inception, technology has advanced considerably and now modularity can be extended beyond the traditional MMS module or box to cover levels of integration, from the chip, card, box, subsystem, to the space system and to the system-of-systems. This paper will present the MARS architecture, cast within the historical context of MMS. Its application will be highlighted by comparing a state-of-the-art point design vs. a MARS-enabled lunar mission, as a representative robotic case design.
Kibria, Muhammad Golam; Ali, Sajjad; Jarwar, Muhammad Aslam; Kumar, Sunil; Chong, Ilyoung
2017-09-22
Due to a very large number of connected virtual objects in the surrounding environment, intelligent service features in the Internet of Things requires the reuse of existing virtual objects and composite virtual objects. If a new virtual object is created for each new service request, then the number of virtual object would increase exponentially. The Web of Objects applies the principle of service modularity in terms of virtual objects and composite virtual objects. Service modularity is a key concept in the Web Objects-Enabled Internet of Things (IoT) environment which allows for the reuse of existing virtual objects and composite virtual objects in heterogeneous ontologies. In the case of similar service requests occurring at the same, or different locations, the already-instantiated virtual objects and their composites that exist in the same, or different ontologies can be reused. In this case, similar types of virtual objects and composite virtual objects are searched and matched. Their reuse avoids duplication under similar circumstances, and reduces the time it takes to search and instantiate them from their repositories, where similar functionalities are provided by similar types of virtual objects and their composites. Controlling and maintaining a virtual object means controlling and maintaining a real-world object in the real world. Even though the functional costs of virtual objects are just a fraction of those for deploying and maintaining real-world objects, this article focuses on reusing virtual objects and composite virtual objects, as well as discusses similarity matching of virtual objects and composite virtual objects. This article proposes a logistic model that supports service modularity for the promotion of reusability in the Web Objects-enabled IoT environment. Necessary functional components and a flowchart of an algorithm for reusing composite virtual objects are discussed. Also, to realize the service modularity, a use case scenario is studied and implemented.
NASA Astrophysics Data System (ADS)
Esper, Jaime
2005-02-01
In order to execute the Vision for Space Exploration, we must find ways to reduce cost, system complexity, design, build, and test times, and at the same time increase flexibility to satisfy multiple functions. Modular, Adaptive, Reconfigurable System (MARS) technologies promise to set the stage for the delivery of system elements that form the building blocks of increasingly ambitious missions involving humans and robots. Today, space systems are largely specialized and built on a case-by-case basis. The notion of modularity however, is nothing new to NASA. The 1970's saw the development of the Multi-Mission Modular spacecraft (MMS). From 1980 to 1992 at least six satellites were built under this paradigm, and included such Goddard Space Flight Center missions as SSM, EUVE, UARS, and Landsat 4 and 5. Earlier versions consisted of standard subsystem ``module'' or ``box'' components that could be replaced within a structure based on predefined form factors. Although the primary motivation for MMS was faster/cheaper integration and test, standardization of interfaces, and ease of incorporating new subsystem technology, it lacked the technology maturity and programmatic ``upgrade infrastructure'' needed to satisfy varied mission requirements, and ultimately it lacked user buy-in. Consequently, it never evolved and was phased out. Such concepts as the Rapid Spacecraft Development Office (RSDO) with its regularly updated catalogue of pre-qualified busses became the preferred method for acquiring satellites. Notwithstanding, over the past 30 years since MMS inception, technology has advanced considerably and now modularity can be extended beyond the traditional MMS module or box to cover levels of integration, from the chip, card, box, subsystem, to the space system and to the system-of-systems. This paper will present the MARS architecture, cast within the historical context of MMS. Its application will be highlighted by comparing a state-of-the-art point design vs. a MARS-enabled lunar mission, as a representative robotic case design.
Chong, Ilyoung
2017-01-01
Due to a very large number of connected virtual objects in the surrounding environment, intelligent service features in the Internet of Things requires the reuse of existing virtual objects and composite virtual objects. If a new virtual object is created for each new service request, then the number of virtual object would increase exponentially. The Web of Objects applies the principle of service modularity in terms of virtual objects and composite virtual objects. Service modularity is a key concept in the Web Objects-Enabled Internet of Things (IoT) environment which allows for the reuse of existing virtual objects and composite virtual objects in heterogeneous ontologies. In the case of similar service requests occurring at the same, or different locations, the already-instantiated virtual objects and their composites that exist in the same, or different ontologies can be reused. In this case, similar types of virtual objects and composite virtual objects are searched and matched. Their reuse avoids duplication under similar circumstances, and reduces the time it takes to search and instantiate them from their repositories, where similar functionalities are provided by similar types of virtual objects and their composites. Controlling and maintaining a virtual object means controlling and maintaining a real-world object in the real world. Even though the functional costs of virtual objects are just a fraction of those for deploying and maintaining real-world objects, this article focuses on reusing virtual objects and composite virtual objects, as well as discusses similarity matching of virtual objects and composite virtual objects. This article proposes a logistic model that supports service modularity for the promotion of reusability in the Web Objects-enabled IoT environment. Necessary functional components and a flowchart of an algorithm for reusing composite virtual objects are discussed. Also, to realize the service modularity, a use case scenario is studied and implemented. PMID:28937590
Development of modular control software for construction 3D-printer
NASA Astrophysics Data System (ADS)
Bazhanov, A.; Yudin, D.; Porkhalo, V.
2018-03-01
This article discusses the approach to developing modular software for real-time control of an industrial construction 3D printer. The proposed structure of a two-level software solution is implemented for a robotic system that moves in a Cartesian coordinate system with multi-axis interpolation. An algorithm for the formation and analysis of a path is considered to enable the most effective control of printing through dynamic programming.
Electronic Repair Concepts for Long-Duration Spaceflight
NASA Technical Reports Server (NTRS)
Easton, John; Pettegrew, Richard D.; Struk, Peter M.
2007-01-01
Constraints on the mass and volume that can be allocated for electronics spares and repair equipment on long-duration space missions mean that NASA must look at repair strategies beyond the traditional approach, which has been to replace faulty subsystems in a modular form, termed Orbital Replacement Units or Line Replacement Units. Other possible strategies include component and board-level replacement, modular designs that allow reprogramming of less-critical systems to take the place of more critical failed systems, and a blended approach which uses elements of each of these approaches, along with a limited number of Line Replacement Units. This paper presents some of the constraints and considerations that affect the decision on how to approach electronics repair for long duration space missions, and discusses the benefits and limitations of each of the previously mentioned strategies.
NASA Technical Reports Server (NTRS)
Pendley, R. D.; Scheidker, E. J.; Levitt, D. S.; Myers, C. R.; Werking, R. D.
1994-01-01
This analysis defines a complete set of ground support functions based on those practiced in real space flight operations during the on-orbit phase of a mission. These functions are mapped against ground support functions currently in use by NASA and DOD. Software components to provide these functions can be hosted on RISC-based work stations and integrated to provide a modular, integrated ground support system. Such modular systems can be configured to provide as much ground support functionality as desired. This approach to ground systems has been widely proposed and prototyped both by government institutions and commercial vendors. The combined set of ground support functions we describe can be used as a standard to evaluate candidate ground systems. This approach has also been used to develop a prototype of a modular, loosely-integrated ground support system, which is discussed briefly. A crucial benefit to a potential user is that all the components are flight-qualified, thus giving high confidence in their accuracy and reliability.
NASA Astrophysics Data System (ADS)
Pendley, R. D.; Scheidker, E. J.; Levitt, D. S.; Myers, C. R.; Werking, R. D.
1994-11-01
This analysis defines a complete set of ground support functions based on those practiced in real space flight operations during the on-orbit phase of a mission. These functions are mapped against ground support functions currently in use by NASA and DOD. Software components to provide these functions can be hosted on RISC-based work stations and integrated to provide a modular, integrated ground support system. Such modular systems can be configured to provide as much ground support functionality as desired. This approach to ground systems has been widely proposed and prototyped both by government institutions and commercial vendors. The combined set of ground support functions we describe can be used as a standard to evaluate candidate ground systems. This approach has also been used to develop a prototype of a modular, loosely-integrated ground support system, which is discussed briefly. A crucial benefit to a potential user is that all the components are flight-qualified, thus giving high confidence in their accuracy and reliability.
De novo design of protein homo-oligomers with modular hydrogen bond network-mediated specificity
Boyken, Scott E.; Chen, Zibo; Groves, Benjamin; Langan, Robert A.; Oberdorfer, Gustav; Ford, Alex; Gilmore, Jason; Xu, Chunfu; DiMaio, Frank; Pereira, Jose Henrique; Sankaran, Banumathi; Seelig, Georg; Zwart, Peter H.; Baker, David
2017-01-01
In nature, structural specificity in DNA and proteins is encoded quite differently: in DNA, specificity arises from modular hydrogen bonds in the core of the double helix, whereas in proteins, specificity arises largely from buried hydrophobic packing complemented by irregular peripheral polar interactions. Here we describe a general approach for designing a wide range of protein homo-oligomers with specificity determined by modular arrays of central hydrogen bond networks. We use the approach to design dimers, trimers, and tetramers consisting of two concentric rings of helices, including previously not seen triangular, square, and supercoiled topologies. X-ray crystallography confirms that the structures overall, and the hydrogen bond networks in particular, are nearly identical to the design models, and the networks confer interaction specificity in vivo. The ability to design extensive hydrogen bond networks with atomic accuracy is a milestone for protein design and enables the programming of protein interaction specificity for a broad range of synthetic biology applications. PMID:27151862
Introduction to COFFE: The Next-Generation HPCMP CREATE-AV CFD Solver
NASA Technical Reports Server (NTRS)
Glasby, Ryan S.; Erwin, J. Taylor; Stefanski, Douglas L.; Allmaras, Steven R.; Galbraith, Marshall C.; Anderson, W. Kyle; Nichols, Robert H.
2016-01-01
HPCMP CREATE-AV Conservative Field Finite Element (COFFE) is a modular, extensible, robust numerical solver for the Navier-Stokes equations that invokes modularity and extensibility from its first principles. COFFE implores a flexible, class-based hierarchy that provides a modular approach consisting of discretization, physics, parallelization, and linear algebra components. These components are developed with modern software engineering principles to ensure ease of uptake from a user's or developer's perspective. The Streamwise Upwind/Petrov-Galerkin (SU/PG) method is utilized to discretize the compressible Reynolds-Averaged Navier-Stokes (RANS) equations tightly coupled with a variety of turbulence models. The mathematics and the philosophy of the methodology that makes up COFFE are presented.
Nelson, Carl A; Miller, David J; Oleynikov, Dmitry
2008-01-01
As modular systems come into the forefront of robotic telesurgery, streamlining the process of selecting surgical tools becomes an important consideration. This paper presents a method for optimal queuing of tools in modular surgical tool systems, based on patterns in tool-use sequences, in order to minimize time spent changing tools. The solution approach is to model the set of tools as a graph, with tool-change frequency expressed as edge weights in the graph, and to solve the Traveling Salesman Problem for the graph. In a set of simulations, this method has shown superior performance at optimizing tool arrangements for streamlining surgical procedures.
Using Hydrazine to Link Ferrocene with Re(CO)3: A Modular Approach.
Chanawanno, Kullapa; Rhoda, Hannah M; Hasheminasab, Abed; Crandall, Laura A; King, Alexander J; Herrick, Richard S; Nemykin, Victor N; Ziegler, Christopher J
2016-09-01
Acetyl ferrocene and diacetyl ferrocene both readily react with an excess of hydrazine to afford the corresponding hydrazone compounds. These compounds can then be linked to Re(CO) 3 via a metal-mediated Schiff base reaction, resulting in a series of ferrocene-Re(CO) 3 conjugates with different stoichiometries. Conjugates with 1:1, 1:2, and 2:1 ferrocene: Re(CO) 3 ratios can be produced via this "modular" type synthesis approach. Several examples of these conjugates were structurally characterized, and their spectroscopic, electrochemical, and spectroelectrochemical behaviors were investigated. The electronic structures of these compounds were also probed using DFT and TDDFT calculations.
Control, responses and modularity of cellular regulatory networks: a control analysis perspective.
Bruggeman, F J; Snoep, J L; Westerhoff, H V
2008-11-01
Cells adapt to changes in environmental conditions through the concerted action of signalling, gene expression and metabolic subsystems. The authors will discuss a theoretical framework addressing such integrated systems. This 'hierarchical analysis' was first developed as an extension to a metabolic control analysis. It builds on the phenomenon that often the communication between signalling, gene expression and metabolic subsystems is almost exclusively via regulatory interactions and not via mass flow interactions. This allows for the treatment of the said subsystems as 'levels' in a hierarchical view of the organisation of the molecular reaction network of cells. Such a hierarchical approach has as a major advantage that levels can be analysed conceptually in isolation of each other (from a local intra-level perspective) and at a later stage integrated via their interactions (from a global inter-level perspective). Hereby, it allows for a modular approach with variable scope. A number of different approaches have been developed for the analysis of hierarchical systems, for example hierarchical control analysis and modular response analysis. The authors, here, review these methods and illustrate the strength of these types of analyses using a core model of a system with gene expression, metabolic and signal transduction levels.
Cutting the Wires: Modularization of Cellular Networks for Experimental Design
Lang, Moritz; Summers, Sean; Stelling, Jörg
2014-01-01
Understanding naturally evolved cellular networks requires the consecutive identification and revision of the interactions between relevant molecular species. In this process, initially often simplified and incomplete networks are extended by integrating new reactions or whole subnetworks to increase consistency between model predictions and new measurement data. However, increased consistency with experimental data alone is not sufficient to show the existence of biomolecular interactions, because the interplay of different potential extensions might lead to overall similar dynamics. Here, we present a graph-based modularization approach to facilitate the design of experiments targeted at independently validating the existence of several potential network extensions. Our method is based on selecting the outputs to measure during an experiment, such that each potential network extension becomes virtually insulated from all others during data analysis. Each output defines a module that only depends on one hypothetical network extension, and all other outputs act as virtual inputs to achieve insulation. Given appropriate experimental time-series measurements of the outputs, our modules can be analyzed, simulated, and compared to the experimental data separately. Our approach exemplifies the close relationship between structural systems identification and modularization, an interplay that promises development of related approaches in the future. PMID:24411264
Xiao, Fei; Song, Jibin; Gao, Hongcai; Zan, Xiaoli; Xu, Rong; Duan, Hongwei
2012-01-24
The development of flexible electrodes is of considerable current interest because of the increasing demand for modern electronics, portable medical products, and compact energy devices. We report a modular approach to fabricating high-performance flexible electrodes by structurally integrating 2D-assemblies of nanoparticles with freestanding graphene paper. We have shown that the 2D array of gold nanoparticles at oil-water interfaces can be transferred on freestanding graphene oxide paper, leading to a monolayer of densely packed gold nanoparticles of uniform sizes loaded on graphene oxide paper. One major finding is that the postassembly electrochemical reduction of graphene oxide paper restores the ordered structure and electron-transport properties of graphene, and gives rise to robust and biocompatible freestanding electrodes with outstanding electrocatalytic activities, which have been manifested by the sensitive and selective detection of two model analytes: glucose and hydrogen peroxide (H(2)O(2)) secreted by live cells. The modular nature of this approach coupled with recent progress in nanocrystal synthesis and surface engineering opens new possibilities to systematically study the dependence of catalytic performance on the structural parameters and chemical compositions of the nanocrystals. © 2011 American Chemical Society
Higher specialty training in genitourinary medicine: A curriculum competencies-based approach.
Desai, Mitesh; Davies, Olubanke; Menon-Johansson, Anatole; Sethi, Gulshan Cindy
2018-01-01
Specialty trainees in genitourinary medicine (GUM) are required to attain competencies described in the GUM higher specialty training curriculum by the end of their training, but learning opportunities available may conflict with service delivery needs. In response to poor feedback on trainee satisfaction surveys, a four-year modular training programme was developed to achieve a curriculum competencies-based approach to training. We evaluated the clinical opportunities of the new programme to determine: (1) Whether opportunity cost of training to service delivery is justifiable; (2) Which competencies are inadequately addressed by direct clinical opportunities alone and (3) Trainee satisfaction. Local faculty and trainees assessed the 'usefulness' of the new modular programme to meet each curriculum competence. The annual General Medical Council (GMC) national training survey assessed trainee satisfaction. The clinical opportunities provided by the modular training programme were sufficiently useful for attaining many competencies. Trainee satisfaction as captured by the GMC survey improved from two reds pre- to nine greens post-intervention on a background of rising clinical activity in the department. The curriculum competencies-based approach to training offers an objective way to balance training with service provision and led to an improvement in GMC survey satisfaction.
Resilience of networks formed of interdependent modular networks
NASA Astrophysics Data System (ADS)
Shekhtman, Louis M.; Shai, Saray; Havlin, Shlomo
2015-12-01
Many infrastructure networks have a modular structure and are also interdependent with other infrastructures. While significant research has explored the resilience of interdependent networks, there has been no analysis of the effects of modularity. Here we develop a theoretical framework for attacks on interdependent modular networks and support our results through simulations. We focus, for simplicity, on the case where each network has the same number of communities and the dependency links are restricted to be between pairs of communities of different networks. This is particularly realistic for modeling infrastructure across cities. Each city has its own infrastructures and different infrastructures are dependent only within the city. However, each infrastructure is connected within and between cities. For example, a power grid will connect many cities as will a communication network, yet a power station and communication tower that are interdependent will likely be in the same city. It has previously been shown that single networks are very susceptible to the failure of the interconnected nodes (between communities) (Shai et al 2014 arXiv:1404.4748) and that attacks on these nodes are even more crippling than attacks based on betweenness (da Cunha et al 2015 arXiv:1502.00353). In our example of cities these nodes have long range links which are more likely to fail. For both treelike and looplike interdependent modular networks we find distinct regimes depending on the number of modules, m. (i) In the case where there are fewer modules with strong intraconnections, the system first separates into modules in an abrupt first-order transition and then each module undergoes a second percolation transition. (ii) When there are more modules with many interconnections between them, the system undergoes a single transition. Overall, we find that modular structure can significantly influence the type of transitions observed in interdependent networks and should be considered in attempts to make interdependent networks more resilient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Os, Herman W.A. van, E-mail: h.w.a.van.os@rug.nl; Herber, Rien, E-mail: rien.herber@rug.nl; Scholtens, Bert, E-mail: l.j.r.scholtens@rug.nl
We investigate how the decision support system ‘Modular Evaluation Method Subsurface Activities’ (MEMSA) can help facilitate an informed decision-making process for permit applications of subsurface activities. To this end, we analyze the extent the MEMSA approach allows for a dialogue between stakeholders in a transparent manner. We use the exploration permit for the underground gas storage facility at the Pieterburen salt dome (Netherlands) as a case study. The results suggest that the MEMSA approach is flexible enough to adjust to changing conditions. Furthermore, MEMSA provides a novel way for identifying structural problems and possible solutions in permit decision-making processes formore » subsurface activities, on the basis of the sensitivity analysis of intermediate rankings. We suggest that the planned size of an activity should already be specified in the exploration phase, because this would allow for a more efficient use of the subsurface as a whole. We conclude that the host community should be involved to a greater extent and in an early phase of the permit decision-making process, for example, already during the initial analysis of the project area of a subsurface activity. We suggest that strategic national policy goals are to be re-evaluated on a regular basis, in the form of a strategic vision for the subsurface, to account for timing discrepancies between the realization of activities and policy deadlines, because this discrepancy can have a large impact on the necessity and therefore acceptance of a subsurface activity.« less
Bifilar analysis users manual, volume 2
NASA Technical Reports Server (NTRS)
Cassarino, S. J.
1980-01-01
The digital computer program developed to study the vibration response of a coupled rotor/bifilar/airframe coupled system is described. The theoretical development of the rotor/airframe system equations of motion is provided. The fuselage and bifilar absorber equations of motion are discussed. The modular block approach used in the make-up of this computer program is described. The input data needed to run the rotor and bifilar absorber analyses is described. Sample output formats are presented and discussed. The results for four test cases, which use the major logic paths of the computer program, are presented. The overall program structure is discussed in detail. The FORTRAN subroutines are described in detail.
Modular, multi-level groundwater sampler
Nichols, Ralph L.; Widdowson, Mark A.; Mullinex, Harry; Orne, William H.; Looney, Brian B.
1994-01-01
Apparatus for taking a multiple of samples of groundwater or pressure measurements from a well simultaneously. The apparatus comprises a series of chambers arranged in an axial array, each of which is dimensioned to fit into a perforated well casing and leave a small gap between the well casing and the exterior of the chamber. Seals at each end of the container define the limits to the axial portion of the well to be sampled. A submersible pump in each chamber pumps the groundwater that passes through the well casing perforations into the gap from the gap to the surface for analysis. The power lines and hoses for the chambers farther down the array pass through each chamber above them in the array. The seals are solid, water-proof, non-reactive, resilient disks supported to engage the inside surface of the well casing. Because of the modular design, the apparatus provides flexibility for use in a variety of well configurations.
Modular Heat Dissipation Technique for a CubeSat
2015-07-28
Model TVAC Thermal Vacuum Chamber System xv U.S. United States UV Ultraviolet VUV Vacuum Ultraviolet xvi 1 MODULAR HEAT...failure percentage approaches to 50% in university- led missions [Swartwout, 2013]. It can also be deduced from the analysis that on-orbit failures of...simulator is designed to achieve one sun equivalent illumination with three-degree collimation over a 12 in x 12 in area. A 1.6 kW lamp is used for the
TES: A modular systems approach to expert system development for real time space applications
NASA Technical Reports Server (NTRS)
England, Brenda; Cacace, Ralph
1987-01-01
A major goal of the space station era is to reduce reliance on support from ground based experts. The TIMES Expert System (TES) is an application that monitors and evaluates real time data to perform fault detection and fault isolation as it would otherwise be carried out by a knowledgeable designer. The development process and primary features of the TES, the modular system and the lessons learned are discussed.
Kagkli, Dafni-Maria; Weber, Thomas P.; Van den Bulcke, Marc; Folloni, Silvia; Tozzoli, Rosangela; Morabito, Stefano; Ermolli, Monica; Gribaldo, Laura; Van den Eede, Guy
2011-01-01
European Commission regulation 2073/2005 on the microbiological criteria for food requires that Escherichia coli is monitored as an indicator of hygienic conditions. Since verocytotoxigenic E. coli (VTEC) strains often cause food-borne infections by the consumption of raw food, the Biological Hazards (BIOHAZ) panel of the European Food Safety Authority (EFSA) recommended their monitoring in food as well. In particular, VTEC strains belonging to serogroups such as O26, O103, O111, O145, and O157 are known causative agents of several human outbreaks. Eight real-time PCR methods for the detection of E. coli toxin genes and their variants (stx1, stx2), the intimin gene (eae), and five serogroup-specific genes have been proposed by the European Reference Laboratory for VTEC (EURL-VTEC) as a technical specification to the European Normalization Committee (CEN TC275/WG6). Here we applied a “modular approach” to the in-house validation of these PCR methods. The modular approach subdivides an analytical process into separate parts called “modules,” which are independently validated based on method performance criteria for a limited set of critical parameters. For the VTEC real-time PCR module, the following parameters are being assessed: specificity, dynamic range, PCR efficiency, and limit of detection (LOD). This study describes the modular approach for the validation of PCR methods to be used in food microbiology, using single-target plasmids as positive controls and showing their applicability with food matrices. PMID:21856838
NASA Astrophysics Data System (ADS)
Kim, Sang-Yoon; Lim, Woochang
2015-11-01
We consider a clustered network with small-world subnetworks of inhibitory fast spiking interneurons and investigate the effect of intermodular connection on the emergence of fast sparsely synchronized rhythms by varying both the intermodular coupling strength Jinter and the average number of intermodular links per interneuron Msyn(inter ). In contrast to the case of nonclustered networks, two kinds of sparsely synchronized states such as modular and global synchronization are found. For the case of modular sparse synchronization, the population behavior reveals the modular structure, because the intramodular dynamics of subnetworks make some mismatching. On the other hand, in the case of global sparse synchronization, the population behavior is globally identical, independently of the cluster structure, because the intramodular dynamics of subnetworks make perfect matching. We introduce a realistic cross-correlation modularity measure, representing the matching degree between the instantaneous subpopulation spike rates of the subnetworks, and examine whether the sparse synchronization is global or modular. Depending on its magnitude, the intermodular coupling strength Jinter seems to play "dual" roles for the pacing between spikes in each subnetwork. For large Jinter, due to strong inhibition it plays a destructive role to "spoil" the pacing between spikes, while for small Jinter it plays a constructive role to "favor" the pacing between spikes. Through competition between the constructive and the destructive roles of Jinter, there exists an intermediate optimal Jinter at which the pacing degree between spikes becomes maximal. In contrast, the average number of intermodular links per interneuron Msyn(inter ) seems to play a role just to favor the pacing between spikes. With increasing Msyn(inter ), the pacing degree between spikes increases monotonically thanks to the increase in the degree of effectiveness of global communication between spikes. Furthermore, we employ the realistic sub- and whole-population order parameters, based on the instantaneous sub- and whole-population spike rates, to determine the threshold values for the synchronization-unsynchronization transition in the sub- and whole populations, and the degrees of global and modular sparse synchronization are also measured in terms of the realistic sub- and whole-population statistical-mechanical spiking measures defined by considering both the occupation and the pacing degrees of spikes. It is expected that our results could have implications for the role of the brain plasticity in some functional behaviors associated with population synchronization.
Modular evolution of the Cetacean vertebral column.
Buchholtz, Emily A
2007-01-01
Modular theory predicts that hierarchical developmental processes generate hierarchical phenotypic units that are capable of independent modification. The vertebral column is an overtly modular structure, and its rapid phenotypic transformation in cetacean evolution provides a case study for modularity. Terrestrial mammals have five morphologically discrete vertebral series that are now known to be coincident with Hox gene expression patterns. Here, I present the hypothesis that in living Carnivora and Artiodactyla, and by inference in the terrestrial ancestors of whales, the series are themselves components of larger precaudal and caudal modular units. Column morphology in a series of fossil and living whales is used to predict the type and sequence of developmental changes responsible for modification of that ancestral pattern. Developmental innovations inferred include independent meristic additions to the precaudal column in basal archaeocetes and basilosaurids, stepwise homeotic reduction of the sacral series in protocetids, and dissociation of the caudal series into anterior tail and fluke subunits in basilosaurids. The most dramatic change was the novel association of lumbar and anterior caudal vertebrae in a module that crosses the precaudal/caudal boundary. This large unit is defined by shared patterns of vertebral morphology, count, and size in all living whales (Neoceti).
Georgiou, CS; Evangelou, KG; Theodorou, EG; Provatidis, CG; Megas, PD
2012-01-01
Due to their theoretical advantages, hip systems combining modular necks and large diameter femoral heads have gradually gained popularity. However, among others, concerns regarding changes in the load transfer patterns were raised. Recent stress analyses have indeed shown that the use of modular necks and big femoral heads causes significant changes in the strain distribution along the femur. Our original hypothesis was that these changes may affect early distal migration of a modular stem. We examined the effect of head diameter and neck geometry on migration at two years of follow-up in a case series of 116 patients (125 hips), who have undergone primary Metal-on-Metal total hip arthroplasty with the modular grit-blasted Profemur®E stem combined with large-diameter heads (>36 mm). We found that choice of neck geometry and head diameter has no effect on stem migration. A multivariate regression analysis including the potential confounding variables of the body mass index, bone quality, canal fill and stem positioning revealed only a negative correlation between subsidence and canal fill in midstem area. Statistical analysis, despite its limitations, did not confirm our hypothesis that choice of neck geometry and/or head diameter affects early distal migration of a modular stem. However, the importance of correct stem sizing was revealed. PMID:23284597
Georgiou, Cs; Evangelou, Kg; Theodorou, Eg; Provatidis, Cg; Megas, Pd
2012-01-01
Due to their theoretical advantages, hip systems combining modular necks and large diameter femoral heads have gradually gained popularity. However, among others, concerns regarding changes in the load transfer patterns were raised. Recent stress analyses have indeed shown that the use of modular necks and big femoral heads causes significant changes in the strain distribution along the femur. Our original hypothesis was that these changes may affect early distal migration of a modular stem. We examined the effect of head diameter and neck geometry on migration at two years of follow-up in a case series of 116 patients (125 hips), who have undergone primary Metal-on-Metal total hip arthroplasty with the modular grit-blasted Profemur®E stem combined with large-diameter heads (>36 mm). We found that choice of neck geometry and head diameter has no effect on stem migration. A multivariate regression analysis including the potential confounding variables of the body mass index, bone quality, canal fill and stem positioning revealed only a negative correlation between subsidence and canal fill in midstem area. Statistical analysis, despite its limitations, did not confirm our hypothesis that choice of neck geometry and/or head diameter affects early distal migration of a modular stem. However, the importance of correct stem sizing was revealed.
ERIC Educational Resources Information Center
City Univ. of New York, NY. Center for Advanced Study in Education.
The City University of New York Competency Based Teacher Education Project (CUNY-CBTEP) in Special Education studied Modularization, focusing on the variables in the instructional setting that facilitate learning from modular materials for a wide range of students. Four of the five modules for the training of special education teachers developed…
Value at 2 of the L-function of an elliptic curve
NASA Astrophysics Data System (ADS)
Brunault, Francois
2006-02-01
We study the special value at 2 of L-functions of modular forms of weight 2 on congruence subgroups of the modular group. We prove an explicit version of Beilinson's theorem for the modular curve X_1(N). When N is prime, we deduce that the target space of Beilinson's regulator map is generated by the images of Milnor symbols associated to modular units of X_1(N). We also suggest a reformulation of Zagier's conjecture on L(E,2) for the jacobian J_1(N) of X_1(N), where E is an elliptic curve of conductor N. In this direction we define an analogue of the elliptic dilogarithm for any jacobian J : it is a function R_J from the complex points of J to a finite-dimensional vector space. In the case J=J_1(N), we establish a link between the aforementioned L-values and the function R_J evaluated at Q-rational points of the cuspidal subgroup of J.
NASA Astrophysics Data System (ADS)
Gutwill-Wise, Joshua P.
2001-05-01
This study evaluates new materials, "modules", for teaching introductory chemistry courses. The modules, under development by faculty from two NSF-funded consortia, employ real-world contexts and an interactive class format to foster conceptual understanding, scientific thinking, and improved attitudes toward science. The evaluation studies were conducted at two institutions, a small college and a large university. The experimental design at each school compared students in a course section taught with modules to those in a section that used a textbook and lecture format. At both schools, students in the modular section outperformed the control group on conceptual problems in chemistry and on scientific thinking problems. Modular section students at the large university also outperformed their peers on the first midterm exam in the subsequent organic chemistry course. Regarding attitudes, the modular section students were more positive about chemistry and the course than their peers in the control section at the small college. However, at the large school, the opposite attitudinal pattern was found. An analysis of informal focus group data provides insight into the negative attitudes in the modular section of the large course. Possible remedies for the issues raised are discussed.
Analysis of the structure of complex networks at different resolution levels
NASA Astrophysics Data System (ADS)
Arenas, A.; Fernández, A.; Gómez, S.
2008-05-01
Modular structure is ubiquitous in real-world complex networks, and its detection is important because it gives insights into the structure-functionality relationship. The standard approach is based on the optimization of a quality function, modularity, which is a relative quality measure for the partition of a network into modules. Recently, some authors (Fortunato and Barthélemy 2007 Proc. Natl Acad. Sci. USA 104 36 and Kumpula et al 2007 Eur. Phys. J. B 56 41) have pointed out that the optimization of modularity has a fundamental drawback: the existence of a resolution limit beyond which no modular structure can be detected even though these modules might have their own entity. The reason is that several topological descriptions of the network coexist at different scales, which is, in general, a fingerprint of complex systems. Here, we propose a method that allows for multiple resolution screening of the modular structure. The method has been validated using synthetic networks, discovering the predefined structures at all scales. Its application to two real social networks allows us to find the exact splits reported in the literature, as well as the substructure beyond the actual split.
Barlow, Brian T; Ortiz, Philippe A; Fields, Kara G; Burge, Alissa J; Potter, Hollis G; Westrich, Geoffrey H
2016-10-01
The association between advanced imaging, serum metal ion levels, and histologic adverse local tissue reaction (ALTR) severity has not been previously reported for Rejuvenate modular neck femoral stems. A cohort of 90 patients with 98 Rejuvenate modular neck femoral stems was revised by a single surgeon from July 2011 to December 2014. Before revision, patients underwent multiacquisition variable resonance image combination sequence magnetic resonance imaging (MRI), and serum cobalt and chromium ion levels were measured. Histologic samples from the revision surgery were scored for synovial lining, inflammatory infiltrate, and tissue organization as proposed by Campbell. Regression based on the generalized estimating equations approach was used to assess the univariate association between each MRI, demographic, and metal ion measure and ALTR severity while accounting for the correlation between bilateral hips. Random forest analysis was then used to determine the relative importance of MRI characteristics, demographics, and metal ion levels in predicting ALTR severity. Synovial thickness as measured on MRI was found to be the strongest predictor of ALTR histologic severity in a recalled modular neck femoral stem. MRI can accurately describe ALTR in modular femoral neck total hip arthroplasty. MRI characteristics, particularly maximal synovial thickness and synovitis volume, predicted histologic severity. Serum metal ion levels do not correlate with histologic severity in Rejuvenate modular neck total hip arthroplasty. Copyright © 2016 Elsevier Inc. All rights reserved.
Standard Modular Hydropower Technology Acceleration Workshop: Summary Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Brennan T.; DeNeale, Scott T.; Witt, Adam M.
In support of the Department of Energy (DOE) funded Standard Modular Hydropower (SMH) Technology Acceleration project, Oak Ridge National Laboratory (ORNL) staff convened with five small hydropower technology entrepreneurs on June 14 and 15, 2017 to discuss gaps, challenges, and opportunities for small modular hydropower development. The workshop was designed to walk through SMH concepts, discuss the SMH research vision, assess how each participant’s technology aligns with SMH concepts and research, and identify future pathways for mutually beneficial collaboration that leverages ORNL expertise and entrepreneurial industry experience. The goal coming out of the workshop is to advance standardized, scalable, modularmore » hydropower technologies and development approaches with sustained and open dialogue among diverse stakeholder groups.« less
Aspect-Oriented Model-Driven Software Product Line Engineering
NASA Astrophysics Data System (ADS)
Groher, Iris; Voelter, Markus
Software product line engineering aims to reduce development time, effort, cost, and complexity by taking advantage of the commonality within a portfolio of similar products. The effectiveness of a software product line approach directly depends on how well feature variability within the portfolio is implemented and managed throughout the development lifecycle, from early analysis through maintenance and evolution. This article presents an approach that facilitates variability implementation, management, and tracing by integrating model-driven and aspect-oriented software development. Features are separated in models and composed of aspect-oriented composition techniques on model level. Model transformations support the transition from problem to solution space models. Aspect-oriented techniques enable the explicit expression and modularization of variability on model, template, and code level. The presented concepts are illustrated with a case study of a home automation system.
1988-12-01
members of our committee for their contributions to our work : Major Lanson Hudson, Lieutenant Colonel Paul King, and Dr. Curtis Spenny provided many... Effectiveness MSL Mean Sea Level MURV Modular Unmanned Research Vehicle n.p. neutral point NASA National Aeronautics and Space Administration PAM Pulse Amplitude...subsystem objectives and measures of effectiveness , see Volume One, Figure 2.2 The systems approach was then applied to generate and select the best
Advances in X-Ray Simulator Technology
1995-07-01
d’Etudes de Gramat ; I. Vitkovitsky, Logicon RDA INTRODUCTION DNA’s future x-ray simulators are based upon inductive energy storage, a technology which...switch. SYRINX, a proposed design to be built by the Centre d’Etudes de Gramat (CEG) in France would employ a modular approach, possibly with a...called SYRINX, would be built at the Centred’ Etudes de Gramat (CEG). It would employ a modular.long conduction time current source to drive a PRS
Quantitative tests of a reconstitution model for RNA folding thermodynamics and kinetics.
Bisaria, Namita; Greenfeld, Max; Limouse, Charles; Mabuchi, Hideo; Herschlag, Daniel
2017-09-12
Decades of study of the architecture and function of structured RNAs have led to the perspective that RNA tertiary structure is modular, made of locally stable domains that retain their structure across RNAs. We formalize a hypothesis inspired by this modularity-that RNA folding thermodynamics and kinetics can be quantitatively predicted from separable energetic contributions of the individual components of a complex RNA. This reconstitution hypothesis considers RNA tertiary folding in terms of ΔG align , the probability of aligning tertiary contact partners, and ΔG tert , the favorable energetic contribution from the formation of tertiary contacts in an aligned state. This hypothesis predicts that changes in the alignment of tertiary contacts from different connecting helices and junctions (ΔG HJH ) or from changes in the electrostatic environment (ΔG +/- ) will not affect the energetic perturbation from a mutation in a tertiary contact (ΔΔG tert ). Consistent with these predictions, single-molecule FRET measurements of folding of model RNAs revealed constant ΔΔG tert values for mutations in a tertiary contact embedded in different structural contexts and under different electrostatic conditions. The kinetic effects of these mutations provide further support for modular behavior of RNA elements and suggest that tertiary mutations may be used to identify rate-limiting steps and dissect folding and assembly pathways for complex RNAs. Overall, our model and results are foundational for a predictive understanding of RNA folding that will allow manipulation of RNA folding thermodynamics and kinetics. Conversely, the approaches herein can identify cases where an independent, additive model cannot be applied and so require additional investigation.
NASA Technical Reports Server (NTRS)
Ewing, D. E.
1972-01-01
A modular approach for assessing the affects of radiation environments on man in operational systems has been developed. The feasibility of the model has been proved and the practicality has been assessed. It has been applied to one operational system to date and information obtained has been submitted to systems analysts and mission planners for the assessment of man's vulnerability and impact on systems survivability. In addition, the model has been developed so that the radiobiological data can be input to a sophisticated man-machine interface model to properly relate the radiobiological stress with other mission stresses including the effects of a degraded system.
A modular approach for item response theory modeling with the R package flirt.
Jeon, Minjeong; Rijmen, Frank
2016-06-01
The new R package flirt is introduced for flexible item response theory (IRT) modeling of psychological, educational, and behavior assessment data. flirt integrates a generalized linear and nonlinear mixed modeling framework with graphical model theory. The graphical model framework allows for efficient maximum likelihood estimation. The key feature of flirt is its modular approach to facilitate convenient and flexible model specifications. Researchers can construct customized IRT models by simply selecting various modeling modules, such as parametric forms, number of dimensions, item and person covariates, person groups, link functions, etc. In this paper, we describe major features of flirt and provide examples to illustrate how flirt works in practice.
Cutting the wires: modularization of cellular networks for experimental design.
Lang, Moritz; Summers, Sean; Stelling, Jörg
2014-01-07
Understanding naturally evolved cellular networks requires the consecutive identification and revision of the interactions between relevant molecular species. In this process, initially often simplified and incomplete networks are extended by integrating new reactions or whole subnetworks to increase consistency between model predictions and new measurement data. However, increased consistency with experimental data alone is not sufficient to show the existence of biomolecular interactions, because the interplay of different potential extensions might lead to overall similar dynamics. Here, we present a graph-based modularization approach to facilitate the design of experiments targeted at independently validating the existence of several potential network extensions. Our method is based on selecting the outputs to measure during an experiment, such that each potential network extension becomes virtually insulated from all others during data analysis. Each output defines a module that only depends on one hypothetical network extension, and all other outputs act as virtual inputs to achieve insulation. Given appropriate experimental time-series measurements of the outputs, our modules can be analyzed, simulated, and compared to the experimental data separately. Our approach exemplifies the close relationship between structural systems identification and modularization, an interplay that promises development of related approaches in the future. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Modular assembly of thick multifunctional cardiac patches
Fleischer, Sharon; Shapira, Assaf; Feiner, Ron; Dvir, Tal
2017-01-01
In cardiac tissue engineering cells are seeded within porous biomaterial scaffolds to create functional cardiac patches. Here, we report on a bottom-up approach to assemble a modular tissue consisting of multiple layers with distinct structures and functions. Albumin electrospun fiber scaffolds were laser-patterned to create microgrooves for engineering aligned cardiac tissues exhibiting anisotropic electrical signal propagation. Microchannels were patterned within the scaffolds and seeded with endothelial cells to form closed lumens. Moreover, cage-like structures were patterned within the scaffolds and accommodated poly(lactic-co-glycolic acid) (PLGA) microparticulate systems that controlled the release of VEGF, which promotes vascularization, or dexamethasone, an anti-inflammatory agent. The structure, morphology, and function of each layer were characterized, and the tissue layers were grown separately in their optimal conditions. Before transplantation the tissue and microparticulate layers were integrated by an ECM-based biological glue to form thick 3D cardiac patches. Finally, the patches were transplanted in rats, and their vascularization was assessed. Because of the simple modularity of this approach, we believe that it could be used in the future to assemble other multicellular, thick, 3D, functional tissues. PMID:28167795
Method for hierarchical modeling of the command of flexible manufacturing systems
NASA Astrophysics Data System (ADS)
Ausfelder, Christian; Castelain, Emmanuel; Gentina, Jean-Claude
1994-04-01
The present paper focuses on the modeling of the command and proposes a hierarchical and modular approach which is oriented on the physical structure of FMS. The requirements issuing from monitoring of FMS are discussed and integrated in the proposed model. Its modularity makes the approach open for extensions concerning as well the production resources as the products. As a modeling tool, we have chosen Object Petri nets. The first part of the paper describes desirable features of an FMS command such as safety, robustness, and adaptability. As it is shown, these features result from the flexibility of the installation. The modeling method presented in the second part of the paper begins with a structural analysis of FMS and defines a natural command hierarchy, where the coordination of the production process, the synchronization of production resources on products, and the internal coordination are treated separately. The method is rigorous and leads to a structured and modular Petri net model which can be used for FMS simulation or translated into the final command code.
MoniQA: a general approach to monitor quality assurance
NASA Astrophysics Data System (ADS)
Jacobs, J.; Deprez, T.; Marchal, G.; Bosmans, H.
2006-03-01
MoniQA ("Monitor Quality Assurance") is a new, non-commercial, independent quality assurance software application developed in our medical physics team. It is a complete Java TM - based modular environment for the evaluation of radiological viewing devices and it thus fits in the global quality assurance network of our (film less) radiology department. The purpose of the software tool is to guide the medical physicist through an acceptance protocol and the radiologist through a constancy check protocol by presentation of the necessary test patterns and by automated data collection. Data are then sent to a central management system for further analysis. At the moment more than 55 patterns have been implemented, which can be grouped in schemes to implement protocols (i.e. AAPMtg18, DIN and EUREF). Some test patterns are dynamically created and 'drawn' on the viewing device with random parameters as is the case in a recently proposed new pattern for constancy testing. The software is installed on 35 diagnostic stations (70 monitors) in a film less radiology department. Learning time was very limited. A constancy check -with the new pattern that assesses luminance decrease, resolution problems and geometric distortion- takes only 2 minutes and 28 seconds per monitor. The modular approach of the software allows the evaluation of new or emerging test patterns. We will report on the software and its usability: practicality of the constancy check tests in our hospital and on the results from acceptance tests of viewing stations for digital mammography.
Task Oriented Evaluation of Module Extraction Techniques
NASA Astrophysics Data System (ADS)
Palmisano, Ignazio; Tamma, Valentina; Payne, Terry; Doran, Paul
Ontology Modularization techniques identify coherent and often reusable regions within an ontology. The ability to identify such modules, thus potentially reducing the size or complexity of an ontology for a given task or set of concepts is increasingly important in the Semantic Web as domain ontologies increase in terms of size, complexity and expressivity. To date, many techniques have been developed, but evaluation of the results of these techniques is sketchy and somewhat ad hoc. Theoretical properties of modularization algorithms have only been studied in a small number of cases. This paper presents an empirical analysis of a number of modularization techniques, and the modules they identify over a number of diverse ontologies, by utilizing objective, task-oriented measures to evaluate the fitness of the modules for a number of statistical classification problems.
Next Generation Sequence Assembly with AMOS
Treangen, Todd J; Sommer, Dan D; Angly, Florent E; Koren, Sergey; Pop, Mihai
2011-01-01
A Modular Open-Source Assembler (AMOS) was designed to offer a modular approach to genome assembly. AMOS includes a wide range of tools for assembly, including lightweight de novo assemblers Minimus and Minimo, and Bambus 2, a robust scaffolder able to handle metagenomic and polymorphic data. This protocol describes how to configure and use AMOS for the assembly of Next Generation sequence data. Additionally, we provide three tutorial examples that include bacterial, viral, and metagenomic datasets with specific tips for improving assembly quality. PMID:21400694
1991-06-06
This is our final report on the Audit of the Acquisition of the Tactical Air Operations Center/Modular Control Equipment (TAOC/MCE) for your...matters of concern that could affect the acquisition of the TAOC/MCE. We performed the audit from March through December 1990. The audit objective was...controls related to the audit objectives. The audit was made in accordance with the Inspector General’s critical program management element approach
A multilevel control approach for a modular structured space platform
NASA Technical Reports Server (NTRS)
Chichester, F. D.; Borelli, M. T.
1981-01-01
A three axis mathematical representation of a modular assembled space platform consisting of interconnected discrete masses, including a deployable truss module, was derived for digital computer simulation. The platform attitude control system as developed to provide multilevel control utilizing the Gauss-Seidel second level formulation along with an extended form of linear quadratic regulator techniques. The objectives of the multilevel control are to decouple the space platform's spatial axes and to accommodate the modification of the platform's configuration for each of the decoupled axes.
Hagen, R. W.; Ambos, H. D.; Browder, M. W.; Roloff, W. R.; Thomas, L. J.
1979-01-01
The Clinical Physiologic Research System (CPRS) developed from our experience in applying computers to medical instrumentation problems. This experience revealed a set of applications with a commonality in data acquisition, analysis, input/output, and control needs that could be met by a portable system. The CPRS demonstrates a practical methodology for integrating commercial instruments with distributed modular elements of local design in order to make facile responses to changing instrumentation needs in clinical environments. ImagesFigure 3
Lemmens, Karen; De Bie, Tijl; Dhollander, Thomas; De Keersmaecker, Sigrid C; Thijs, Inge M; Schoofs, Geert; De Weerdt, Ami; De Moor, Bart; Vanderleyden, Jos; Collado-Vides, Julio; Engelen, Kristof; Marchal, Kathleen
2009-01-01
We present DISTILLER, a data integration framework for the inference of transcriptional module networks. Experimental validation of predicted targets for the well-studied fumarate nitrate reductase regulator showed the effectiveness of our approach in Escherichia coli. In addition, the condition dependency and modularity of the inferred transcriptional network was studied. Surprisingly, the level of regulatory complexity seemed lower than that which would be expected from RegulonDB, indicating that complex regulatory programs tend to decrease the degree of modularity.
Fatigue fracture of a proximally modular, distally tapered fluted implant with diaphyseal fixation.
Buttaro, Martín A; Mayor, Michael B; Van Citters, Douglas; Piccaluga, Francisco
2007-08-01
We report and analyze the causes of a fracture in a proximally modular, distally tapered fluted MP stem in a 48-year-old woman (168 cm, 67 kg) with severe proximal bone deficiency. Evidence of fatigue failure with striations initiated laterally was observed in the laser etching of the tensile aspect of the prosthesis. However, metallurgical analysis suggested that laser engraving did not alter the microstructure of the stem. Stress due to the absence of proximal femoral bone support may have been sufficiently high to put this particular stem at risk for fatigue fracture. This important complication should be addressed when choosing this therapeutic option in cases with substantial proximal femoral bone loss. Strut allograft support should be recommended in such cases.
Fournier, Bertrand; Mouly, Arnaud; Gillet, François
2016-01-01
Understanding the factors underlying the co-occurrence of multiple species remains a challenge in ecology. Biotic interactions, environmental filtering and neutral processes are among the main mechanisms evoked to explain species co-occurrence. However, they are most often studied separately or even considered as mutually exclusive. This likely hampers a more global understanding of species assembly. Here, we investigate the general hypothesis that the structure of co-occurrence networks results from multiple assembly rules and its potential implications for grassland ecosystems. We surveyed orthopteran and plant communities in 48 permanent grasslands of the French Jura Mountains and gathered functional and phylogenetic data for all species. We constructed a network of plant and orthopteran species co-occurrences and verified whether its structure was modular or nested. We investigated the role of all species in the structure of the network (modularity and nestedness). We also investigated the assembly rules driving the structure of the plant-orthopteran co-occurrence network by using null models on species functional traits, phylogenetic relatedness and environmental conditions. We finally compared our results to abundance-based approaches. We found that the plant-orthopteran co-occurrence network had a modular organization. Community assembly rules differed among modules for plants while interactions with plants best explained the distribution of orthopterans into modules. Few species had a disproportionately high positive contribution to this modular organization and are likely to have a key importance to modulate future changes. The impact of agricultural practices was restricted to some modules (3 out of 5) suggesting that shifts in agricultural practices might not impact the entire plant-orthopteran co-occurrence network. These findings support our hypothesis that multiple assembly rules drive the modular structure of the plant-orthopteran network. This modular structure is likely to play a key role in the response of grassland ecosystems to future changes by limiting the impact of changes in agricultural practices such as intensification to some modules leaving species from other modules poorly impacted. The next step is to understand the importance of this modular structure for the long-term maintenance of grassland ecosystem structure and functions as well as to develop tools to integrate network structure into models to improve their capacity to predict future changes. PMID:27582754
Loss of functional diversity and network modularity in introduced plant–fungal symbioses
Cooper, Jerry A.; Bufford, Jennifer L.; Hulme, Philip E.; Bates, Scott T.
2017-01-01
The introduction of alien plants into a new range can result in the loss of co-evolved symbiotic organisms, such as mycorrhizal fungi, that are essential for normal plant physiological functions. Prior studies of mycorrhizal associations in alien plants have tended to focus on individual plant species on a case-by-case basis. This approach limits broad scale understanding of functional shifts and changes in interaction network structure that may occur following introduction. Here we use two extensive datasets of plant–fungal interactions derived from fungal sporocarp observations and recorded plant hosts in two island archipelago nations: New Zealand (NZ) and the United Kingdom (UK). We found that the NZ dataset shows a lower functional diversity of fungal hyphal foraging strategies in mycorrhiza of alien when compared with native trees. Across species this resulted in fungal foraging strategies associated with alien trees being much more variable in functional composition compared with native trees, which had a strikingly similar functional composition. The UK data showed no functional difference in fungal associates of alien and native plant genera. Notwithstanding this, both the NZ and UK data showed a substantial difference in interaction network structure of alien trees compared with native trees. In both cases, fungal associates of native trees showed strong modularity, while fungal associates of alien trees generally integrated into a single large module. The results suggest a lower functional diversity (in one dataset) and a simplification of network structure (in both) as a result of introduction, potentially driven by either limited symbiont co-introductions or disruption of habitat as a driver of specificity due to nursery conditions, planting, or plant edaphic-niche expansion. Recognizing these shifts in function and network structure has important implications for plant invasions and facilitation of secondary invasions via shared mutualist populations. PMID:28039116
Modular cryogenic interconnects for multi-qubit devices.
Colless, J I; Reilly, D J
2014-11-01
We have developed a modular interconnect platform for the control and readout of multiple solid-state qubits at cryogenic temperatures. The setup provides 74 filtered dc-bias connections, 32 control and readout connections with -3 dB frequency above 5 GHz, and 4 microwave feed lines that allow low loss (less than 3 dB) transmission 10 GHz. The incorporation of a radio-frequency interposer enables the platform to be separated into two printed circuit boards, decoupling the simple board that is bonded to the qubit chip from the multilayer board that incorporates expensive connectors and components. This modular approach lifts the burden of duplicating complex interconnect circuits for every prototype device. We report the performance of this platform at milli-Kelvin temperatures, including signal transmission and crosstalk measurements.
A modular approach for automated sample preparation and chemical analysis
NASA Technical Reports Server (NTRS)
Clark, Michael L.; Turner, Terry D.; Klingler, Kerry M.; Pacetti, Randolph
1994-01-01
Changes in international relations, especially within the past several years, have dramatically affected the programmatic thrusts of the U.S. Department of Energy (DOE). The DOE now is addressing the environmental cleanup required as a result of 50 years of nuclear arms research and production. One major obstacle in the remediation of these areas is the chemical determination of potentially contaminated material using currently acceptable practices. Process bottlenecks and exposure to hazardous conditions pose problems for the DOE. One proposed solution is the application of modular automated chemistry using Standard Laboratory Modules (SLM) to perform Standard Analysis Methods (SAM). The Contaminant Analysis Automation (CAA) Program has developed standards and prototype equipment that will accelerate the development of modular chemistry technology and is transferring this technology to private industry.
Modularity of music: evidence from a case of pure amusia.
Piccirilli, M; Sciarma, T; Luzzi, S
2000-10-01
A case of pure amusia in a 20 year old left handed non-professional musician is reported. The patient showed an impairment of music abilities in the presence of normal processing of speech and environmental sounds. Furthermore, whereas recognition and production of melodic sequences were grossly disturbed, both the recognition and production of rhythm patterns were preserved. This selective breakdown pattern was produced by a focal lesion in the left superior temporal gyrus. This case thus suggests that not only linguistic and musical skills, but also melodic and rhythmic processing are independent of each other. This functional dissociation in the musical domain supports the hypothesis that music components have a modular organisation. Furthermore, there is the suggestion that amusia may be produced by a lesion located strictly in one hemisphere and that the superior temporal gyrus plays a crucial part in melodic processing.
Improving long-term care provision: towards demand-based care by means of modularity
2010-01-01
Background As in most fields of health care, societal and political changes encourage suppliers of long-term care to put their clients at the center of care and service provision and become more responsive towards client needs and requirements. However, the diverse, multiple and dynamic nature of demand for long-term care complicates the movement towards demand-based care provision. This paper aims to advance long-term care practice and, to that end, examines the application of modularity. This concept is recognized in a wide range of product and service settings for its ability to design demand-based products and processes. Methods Starting from the basic dimensions of modularity, we use qualitative research to explore the use and application of modularity principles in the current working practices and processes of four organizations in the field of long-term care for the elderly. In-depth semi-structured interviews were conducted with 38 key informants and triangulated with document research and observation. Data was analyzed thematically by means of coding and subsequent exploration of patterns. Data analysis was facilitated by qualitative analysis software. Results Our data suggest that a modular setup of supply is employed in the arrangement of care and service supply and assists providers of long-term care in providing their clients with choice options and variation. In addition, modularization of the needs assessment and package specification process allows the case organizations to manage client involvement but still provide customized packages of care and services. Conclusion The adequate setup of an organization's supply and its specification phase activities are indispensible for long-term care providers who aim to do better in terms of quality and efficiency. Moreover, long-term care providers could benefit from joint provision of care and services by means of modular working teams. Based upon our findings, we are able to elaborate on how to further enable demand-based provision of long-term care by means of modularity. PMID:20858256
Improving long-term care provision: towards demand-based care by means of modularity.
de Blok, Carolien; Luijkx, Katrien; Meijboom, Bert; Schols, Jos
2010-09-21
As in most fields of health care, societal and political changes encourage suppliers of long-term care to put their clients at the center of care and service provision and become more responsive towards client needs and requirements. However, the diverse, multiple and dynamic nature of demand for long-term care complicates the movement towards demand-based care provision. This paper aims to advance long-term care practice and, to that end, examines the application of modularity. This concept is recognized in a wide range of product and service settings for its ability to design demand-based products and processes. Starting from the basic dimensions of modularity, we use qualitative research to explore the use and application of modularity principles in the current working practices and processes of four organizations in the field of long-term care for the elderly. In-depth semi-structured interviews were conducted with 38 key informants and triangulated with document research and observation. Data was analyzed thematically by means of coding and subsequent exploration of patterns. Data analysis was facilitated by qualitative analysis software. Our data suggest that a modular setup of supply is employed in the arrangement of care and service supply and assists providers of long-term care in providing their clients with choice options and variation. In addition, modularization of the needs assessment and package specification process allows the case organizations to manage client involvement but still provide customized packages of care and services. The adequate setup of an organization's supply and its specification phase activities are indispensible for long-term care providers who aim to do better in terms of quality and efficiency. Moreover, long-term care providers could benefit from joint provision of care and services by means of modular working teams. Based upon our findings, we are able to elaborate on how to further enable demand-based provision of long-term care by means of modularity.
Modular, multi-level groundwater sampler
Nichols, R.L.; Widdowson, M.A.; Mullinex, H.; Orne, W.H.; Looney, B.B.
1994-03-15
An apparatus is described for taking a multiple of samples of groundwater or pressure measurements from a well simultaneously. The apparatus comprises a series of chambers arranged in an axial array, each of which is dimensioned to fit into a perforated well casing and leave a small gap between the well casing and the exterior of the chamber. Seals at each end of the container define the limits to the axial portion of the well to be sampled. A submersible pump in each chamber pumps the groundwater that passes through the well casing perforations into the gap from the gap to the surface for analysis. The power lines and hoses for the chambers farther down the array pass through each chamber above them in the array. The seals are solid, water-proof, non-reactive, resilient disks supported to engage the inside surface of the well casing. Because of the modular design, the apparatus provides flexibility for use in a variety of well configurations. 3 figures.
ERIC Educational Resources Information Center
Wyne, Mudasser F.
2010-01-01
It is hard to define a single set of ethics that will cover an entire computer users community. In this paper, the issue is addressed in reference to code of ethics implemented by various professionals, institutes and organizations. The paper presents a higher level model using hierarchical approach. The code developed using this approach could be…
Chuan, Yap P; Rivera-Hernandez, Tania; Wibowo, Nani; Connors, Natalie K; Wu, Yang; Hughes, Fiona K; Lua, Linda H L; Middelberg, Anton P J
2013-09-01
Modularization of a peptide antigen for presentation on a microbially synthesized murine polyomavirus (MuPyV) virus-like particle (VLP) offers a new alternative for rapid and low-cost vaccine delivery at a global scale. In this approach, heterologous modules containing peptide antigenic elements are fused to and displayed on the VLP carrier, allowing enhancement of peptide immunogenicity via ordered and densely repeated presentation of the modules. This study addresses two key engineering questions pertaining to this platform, exploring the effects of (i) pre-existing carrier-specific immunity on modular VLP vaccine effectiveness and (ii) increase in the antigenic element number per VLP on peptide-specific immune response. These effects were studied in a mouse model and with modular MuPyV VLPs presenting a group A streptococcus (GAS) peptide antigen, J8i. The data presented here demonstrate that immunization with a modular VLP could induce high levels of J8i-specific antibodies despite a strong pre-existing anti-carrier immune response. Doubling of the J8i antigenic element number per VLP did not enhance J8i immunogenicity at a constant peptide dose. However, the strategy, when used in conjunction with increased VLP dose, could effectively increase the peptide dose up to 10-fold, leading to a significantly higher J8i-specific antibody titer. This study further supports feasibility of the MuPyV modular VLP vaccine platform by showing that, in the absence of adjuvant, modularized GAS antigenic peptide at a dose as low as 150 ng was sufficient to raise a high level of peptide-specific IgGs indicative of bactericidal activity. Copyright © 2013 Wiley Periodicals, Inc.
Design and Analysis of Modules for Segmented X-Ray Optics
NASA Technical Reports Server (NTRS)
McClelland, Ryan S.; BIskach, Michael P.; Chan, Kai-Wing; Saha, Timo T; Zhang, William W.
2012-01-01
Future X-ray astronomy missions demand thin, light, and closely packed optics which lend themselves to segmentation of the annular mirrors and, in turn, a modular approach to the mirror design. The modular approach to X-ray Flight Mirror Assembly (FMA) design allows excellent scalability of the mirror technology to support a variety of mission sizes and science objectives. This paper describes FMA designs using slumped glass mirror segments for several X-ray astrophysics missions studied by NASA and explores the driving requirements and subsequent verification tests necessary to qualify a slumped glass mirror module for space-flight. A rigorous testing program is outlined allowing Technical Development Modules to reach technical readiness for mission implementation while reducing mission cost and schedule risk.
Fratto, Brian E; Katz, Evgeny
2015-05-18
Reversible logic gates, such as the double Feynman gate, Toffoli gate and Peres gate, with 3-input/3-output channels are realized using reactions biocatalyzed with enzymes and performed in flow systems. The flow devices are constructed using a modular approach, where each flow cell is modified with one enzyme that biocatalyzes one chemical reaction. The multi-step processes mimicking the reversible logic gates are organized by combining the biocatalytic cells in different networks. This work emphasizes logical but not physical reversibility of the constructed systems. Their advantages and disadvantages are discussed and potential use in biosensing systems, rather than in computing devices, is suggested. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
González-José, Rolando; Charlin, Judith
2012-01-01
The specific using of different prehistoric weapons is mainly determined by its physical properties, which provide a relative advantage or disadvantage to perform a given, particular function. Since these physical properties are integrated to accomplish that function, examining design variables and their pattern of integration or modularity is of interest to estimate the past function of a point. Here we analyze a composite sample of lithic points from southern Patagonia likely formed by arrows, thrown spears and hand-held points to test if they can be viewed as a two-module system formed by the blade and the stem, and to evaluate the degree in which shape, size, asymmetry, blade: stem length ratio, and tip angle explain the observed variance and differentiation among points supposedly aimed to accomplish different functions. To do so we performed a geometric morphometric analysis on 118 lithic points, departing from 24 two-dimensional landmark and semi landmarks placed on the point's contour. Klingenberg's covariational modularity tests were used to evaluate different modularity hypotheses, and a composite PCA including shape, size, asymmetry, blade: stem length ratio, and tip angle was used to estimate the importance of each attribute to explaining variation patterns. Results show that the blade and the stem can be seen as "near decomposable units" in the points integrating the studied sample. However, this modular pattern changes after removing the effects of reduction. Indeed, a resharpened point tends to show a tip/rest of the point modular pattern. The composite PCA analyses evidenced three different patterns of morphometric attributes compatible with arrows, thrown spears, and hand-held tools. Interestingly, when analyzed independently, these groups show differences in their modular organization. Our results indicate that stone tools can be approached as flexible designs, characterized by a composite set of interacting morphometric attributes, and evolving on a modular way.
González-José, Rolando; Charlin, Judith
2012-01-01
The specific using of different prehistoric weapons is mainly determined by its physical properties, which provide a relative advantage or disadvantage to perform a given, particular function. Since these physical properties are integrated to accomplish that function, examining design variables and their pattern of integration or modularity is of interest to estimate the past function of a point. Here we analyze a composite sample of lithic points from southern Patagonia likely formed by arrows, thrown spears and hand-held points to test if they can be viewed as a two-module system formed by the blade and the stem, and to evaluate the degree in which shape, size, asymmetry, blade: stem length ratio, and tip angle explain the observed variance and differentiation among points supposedly aimed to accomplish different functions. To do so we performed a geometric morphometric analysis on 118 lithic points, departing from 24 two-dimensional landmark and semi landmarks placed on the point's contour. Klingenberg's covariational modularity tests were used to evaluate different modularity hypotheses, and a composite PCA including shape, size, asymmetry, blade: stem length ratio, and tip angle was used to estimate the importance of each attribute to explaining variation patterns. Results show that the blade and the stem can be seen as “near decomposable units” in the points integrating the studied sample. However, this modular pattern changes after removing the effects of reduction. Indeed, a resharpened point tends to show a tip/rest of the point modular pattern. The composite PCA analyses evidenced three different patterns of morphometric attributes compatible with arrows, thrown spears, and hand-held tools. Interestingly, when analyzed independently, these groups show differences in their modular organization. Our results indicate that stone tools can be approached as flexible designs, characterized by a composite set of interacting morphometric attributes, and evolving on a modular way. PMID:23094104
NASA Astrophysics Data System (ADS)
Manganaro, L.; Russo, G.; Bourhaleb, F.; Fausti, F.; Giordanengo, S.; Monaco, V.; Sacchi, R.; Vignati, A.; Cirio, R.; Attili, A.
2018-04-01
One major rationale for the application of heavy ion beams in tumour therapy is their increased relative biological effectiveness (RBE). The complex dependencies of the RBE on dose, biological endpoint, position in the field etc require the use of biophysical models in treatment planning and clinical analysis. This study aims to introduce a new software, named ‘Survival’, to facilitate the radiobiological computations needed in ion therapy. The simulation toolkit was written in C++ and it was developed with a modular architecture in order to easily incorporate different radiobiological models. The following models were successfully implemented: the local effect model (LEM, version I, II and III) and variants of the microdosimetric-kinetic model (MKM). Different numerical evaluation approaches were also implemented: Monte Carlo (MC) numerical methods and a set of faster analytical approximations. Among the possible applications, the toolkit was used to reproduce the RBE versus LET for different ions (proton, He, C, O, Ne) and different cell lines (CHO, HSG). Intercomparison between different models (LEM and MKM) and computational approaches (MC and fast approximations) were performed. The developed software could represent an important tool for the evaluation of the biological effectiveness of charged particles in ion beam therapy, in particular when coupled with treatment simulations. Its modular architecture facilitates benchmarking and inter-comparison between different models and evaluation approaches. The code is open source (GPL2 license) and available at https://github.com/batuff/Survival.
NASA Astrophysics Data System (ADS)
Hsu, Charles; Viazanko, Michael; O'Looney, Jimmy; Szu, Harold
2009-04-01
Modularity Biometric System (MBS) is an approach to support AiTR of the cooperated and/or non-cooperated standoff biometric in an area persistent surveillance. Advanced active and passive EOIR and RF sensor suite is not considered here. Neither will we consider the ROC, PD vs. FAR, versus the standoff POT in this paper. Our goal is to catch the "most wanted (MW)" two dozens, separately furthermore ad hoc woman MW class from man MW class, given their archrivals sparse front face data basis, by means of various new instantaneous input called probing faces. We present an advanced algorithm: mini-Max classifier, a sparse sample realization of Cramer-Rao Fisher bound of the Maximum Likelihood classifier that minimize the dispersions among the same woman classes and maximize the separation among different man-woman classes, based on the simple feature space of MIT Petland eigen-faces. The original aspect consists of a modular structured design approach at the system-level with multi-level architectures, multiple computing paradigms, and adaptable/evolvable techniques to allow for achieving a scalable structure in terms of biometric algorithms, identification quality, sensors, database complexity, database integration, and component heterogenity. MBS consist of a number of biometric technologies including fingerprints, vein maps, voice and face recognitions with innovative DSP algorithm, and their hardware implementations such as using Field Programmable Gate arrays (FPGAs). Biometric technologies and the composed modularity biometric system are significant for governmental agencies, enterprises, banks and all other organizations to protect people or control access to critical resources.
A General Architecture for Intelligent Tutoring of Diagnostic Classification Problem Solving
Crowley, Rebecca S.; Medvedeva, Olga
2003-01-01
We report on a general architecture for creating knowledge-based medical training systems to teach diagnostic classification problem solving. The approach is informed by our previous work describing the development of expertise in classification problem solving in Pathology. The architecture envelops the traditional Intelligent Tutoring System design within the Unified Problem-solving Method description Language (UPML) architecture, supporting component modularity and reuse. Based on the domain ontology, domain task ontology and case data, the abstract problem-solving methods of the expert model create a dynamic solution graph. Student interaction with the solution graph is filtered through an instructional layer, which is created by a second set of abstract problem-solving methods and pedagogic ontologies, in response to the current state of the student model. We outline the advantages and limitations of this general approach, and describe it’s implementation in SlideTutor–a developing Intelligent Tutoring System in Dermatopathology. PMID:14728159
Semantic Web Service Delivery in Healthcare Based on Functional and Non-Functional Properties.
Schweitzer, Marco; Gorfer, Thilo; Hörbst, Alexander
2017-01-01
In the past decades, a lot of endeavor has been made on the trans-institutional exchange of healthcare data through electronic health records (EHR) in order to obtain a lifelong, shared accessible health record of a patient. Besides basic information exchange, there is a growing need for Information and Communication Technology (ICT) to support the use of the collected health data in an individual, case-specific workflow-based manner. This paper presents the results on how workflows can be used to process data from electronic health records, following a semantic web service approach that enables automatic discovery, composition and invocation of suitable web services. Based on this solution, the user (physician) can define its needs from a domain-specific perspective, whereas the ICT-system fulfills those needs with modular web services. By involving also non-functional properties for the service selection, this approach is even more suitable for the dynamic medical domain.
Modular uncooled video engines based on a DSP processor
NASA Astrophysics Data System (ADS)
Schapiro, F.; Milstain, Y.; Aharon, A.; Neboshchik, A.; Ben-Simon, Y.; Kogan, I.; Lerman, I.; Mizrahi, U.; Maayani, S.; Amsterdam, A.; Vaserman, I.; Duman, O.; Gazit, R.
2011-06-01
The market demand for low SWaP (Size, Weight and Power) uncooled engines keeps growing. Low SWaP is especially critical in battery-operated applications such as goggles and Thermal Weapon Sights. A new approach for the design of the engines was implemented by SCD to optimize size and power consumption at system level. The new approach described in the paper, consists of: 1. A modular hardware design that allows the user to define the exact level of integration needed for his system 2. An "open architecture" based on the OMAPTM530 DSP that allows the integrator to take advantage of unused hardware (FPGA) and software (DSP) resources, for implementation of additional algorithms or functionality. The approach was successfully implemented on the first generation of 25μm pitch BIRD detectors, and more recently on the new, 640 x480, 17 μm pitch detector.
A modular approach for multifunctional polymersomes with controlled adhesive properties.
Petit, Julien; Thomi, Laura; Schultze, Jennifer; Makowski, Marcin; Negwer, Inka; Koynov, Kaloian; Herminghaus, Stephan; Wurm, Frederik R; Bäumchen, Oliver; Landfester, Katharina
2018-02-14
The bottom-up approach in synthetic biology involves the engineering of synthetic cells by designing biological and chemical building blocks, which can be combined in order to mimic cellular functions. The first step for mimicking a living cell is the design of an appropriate compartment featuring a multifunctional membrane. This is of particular interest since it allows for the selective attachment of different groups or molecules to the membrane. In this context, we report on a modular approach for polymeric vesicles, so-called polymersomes, with a multifunctional surface, namely hydroxyl, alkyne and acrylate groups. We demonstrate that the surface of the polymersome can be functionalized to facilitate imaging, via fluorescent dyes, or to improve the specific adhesion to surfaces by using a biotin functionalization. This generally applicable multifunctionality allows for the covalent integration of various molecules in the membrane of a synthetic cell.
NASA Astrophysics Data System (ADS)
Collier, Charles Patrick
2017-04-01
The Next Generation Space Interconnect Standard (NGSIS) effort is a Government-Industry collaboration effort to define a set of standards for interconnects between space system components with the goal of cost effectively removing bandwidth as a constraint for future space systems. The NGSIS team has selected the ANSI/VITA 65 OpenVPXTM standard family for the physical baseline. The RapidIO protocol has been selected as the basis for the digital data transport. The NGSIS standards are developed to provide sufficient flexibility to enable users to implement a variety of system configurations, while meeting goals for interoperability and robustness for space. The NGSIS approach and effort represents a radical departure from past approaches to achieve a Modular Open System Architecture (MOSA) for space systems and serves as an exemplar for the civil, commercial, and military Space communities as well as a broader high reliability terrestrial market.
A modular wireless in vivo surgical robot with multiple surgical applications.
Hawks, Jeff A; Rentschler, Mark E; Farritor, Shane; Oleynikov, Dmitry; Platt, Stephen R
2009-01-01
The use of miniature in vivo robots that fit entirely inside the peritoneal cavity represents a novel approach to laparoscopic surgery. Previous work demonstrates that both mobile and fixed-based robots can successfully operate inside the abdominal cavity. A modular wireless mobile platform has also been developed to provide surgical vision and task assistance. This paper presents an overview of recent test results of several possible surgical applications that can be accommodated by this modular platform. Applications such as a biopsy grasper, stapler and clamp, video camera, and physiological sensors have been integrated into the wireless platform and tested in vivo in a porcine model. The modular platform facilitates rapid development and conversion from one type of surgical task assistance to another. These self-contained surgical devices are much more transportable and much lower in cost than current robotic surgical assistants. These devices could ultimately be carried and deployed by non-medical personnel at the site of an injury. A remotely located surgeon could use these robots to provide critical first response medical intervention.
Integrated phenotypes: understanding trait covariation in plants and animals
Armbruster, W. Scott; Pélabon, Christophe; Bolstad, Geir H.; Hansen, Thomas F.
2014-01-01
Integration and modularity refer to the patterns and processes of trait interaction and independence. Both terms have complex histories with respect to both conceptualization and quantification, resulting in a plethora of integration indices in use. We review briefly the divergent definitions, uses and measures of integration and modularity and make conceptual links to allometry. We also discuss how integration and modularity might evolve. Although integration is generally thought to be generated and maintained by correlational selection, theoretical considerations suggest the relationship is not straightforward. We caution here against uncontrolled comparisons of indices across studies. In the absence of controls for trait number, dimensionality, homology, development and function, it is difficult, or even impossible, to compare integration indices across organisms or traits. We suggest that care be invested in relating measurement to underlying theory or hypotheses, and that summative, theory-free descriptors of integration generally be avoided. The papers that follow in this Theme Issue illustrate the diversity of approaches to studying integration and modularity, highlighting strengths and pitfalls that await researchers investigating integration in plants and animals. PMID:25002693
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bialasiewicz, J.T.; Muljadi, E.; Nix, G.R.
This version of the RPM-SIM User's Guide supersedes the October 1999 edition. Using the VisSimTM visual environment, researchers developed a modular simulation system to facilitate an application-specific, low-cost study of the system dynamics for wind-diesel hybrid power systems. This manual presents the principal modules of the simulator and, using case studies of a hybrid system, demonstrates some of the benefits that can be gained from understanding the effects of the designer's modifications to these complex dynamic systems.
Cooper, H. John; Urban, Robert M.; Wixson, Richard L.; Meneghini, R. Michael; Jacobs, Joshua J.
2013-01-01
Background: Femoral stems with dual-taper modularity were introduced to allow additional options for hip-center restoration independent of femoral fixation in total hip arthroplasty. Despite the increasing availability and use of these femoral stems, concerns exist about potential complications arising from the modular neck-body junction. Methods: This was a multicenter retrospective case series of twelve hips (eleven patients) with adverse local tissue reactions secondary to corrosion at the modular neck-body junction. The cohort included eight women and three men who together had an average age of 60.1 years (range, forty-three to seventy-seven years); all hips were implanted with a titanium-alloy stem and cobalt-chromium-alloy neck. Patients presented with new-onset and increasing pain at a mean of 7.9 months (range, five to thirteen months) following total hip arthroplasty. After serum metal-ion studies and metal artifact reduction sequence (MARS) magnetic resonance imaging (MRI) revealed abnormal results, the patients underwent hip revision at a mean of 15.2 months (range, ten to twenty-three months). Tissue specimens were examined by a single histopathologist, and the retrieved implants were studied with use of light and scanning electron microscopy. Results: Serum metal levels demonstrated greater elevation of cobalt (mean, 6.0 ng/mL) than chromium (mean, 0.6 ng/mL) or titanium (mean, 3.4 ng/mL). MRI with use of MARS demonstrated adverse tissue reactions in eight of nine patients in which it was performed. All hips showed large soft-tissue masses and surrounding tissue damage with visible corrosion at the modular femoral neck-body junction. Available histology demonstrated large areas of tissue necrosis in seven of ten cases, while remaining viable capsular tissue showed a dense lymphocytic infiltrate. Microscopic analysis was consistent with fretting and crevice corrosion at the modular neck-body interface. Conclusions: Corrosion at the modular neck-body junction in dual-tapered stems with a modular cobalt-chromium-alloy femoral neck can lead to release of metal ions and debris resulting in local soft-tissue destruction. Adverse local tissue reaction should be considered as a potential cause for new-onset pain in patients with these components, and early revision should be considered given the potentially destructive nature of these reactions. A workup including serologic studies (erythrocyte sedimentation rate and C-reactive protein), serum metal levels, and MARS MRI can be helpful in establishing this diagnosis. Level of Evidence: Therapeutic Level IV. See Instructions for Authors for a complete description of levels of evidence. PMID:23677352
A modular approach to intensity-modulated arc therapy optimization with noncoplanar trajectories
NASA Astrophysics Data System (ADS)
Papp, Dávid; Bortfeld, Thomas; Unkelbach, Jan
2015-07-01
Utilizing noncoplanar beam angles in volumetric modulated arc therapy (VMAT) has the potential to combine the benefits of arc therapy, such as short treatment times, with the benefits of noncoplanar intensity modulated radiotherapy (IMRT) plans, such as improved organ sparing. Recently, vendors introduced treatment machines that allow for simultaneous couch and gantry motion during beam delivery to make noncoplanar VMAT treatments possible. Our aim is to provide a reliable optimization method for noncoplanar isocentric arc therapy plan optimization. The proposed solution is modular in the sense that it can incorporate different existing beam angle selection and coplanar arc therapy optimization methods. Treatment planning is performed in three steps. First, a number of promising noncoplanar beam directions are selected using an iterative beam selection heuristic; these beams serve as anchor points of the arc therapy trajectory. In the second step, continuous gantry/couch angle trajectories are optimized using a simple combinatorial optimization model to define a beam trajectory that efficiently visits each of the anchor points. Treatment time is controlled by limiting the time the beam needs to trace the prescribed trajectory. In the third and final step, an optimal arc therapy plan is found along the prescribed beam trajectory. In principle any existing arc therapy optimization method could be incorporated into this step; for this work we use a sliding window VMAT algorithm. The approach is demonstrated using two particularly challenging cases. The first one is a lung SBRT patient whose planning goals could not be satisfied with fewer than nine noncoplanar IMRT fields when the patient was treated in the clinic. The second one is a brain tumor patient, where the target volume overlaps with the optic nerves and the chiasm and it is directly adjacent to the brainstem. Both cases illustrate that the large number of angles utilized by isocentric noncoplanar VMAT plans can help improve dose conformity, homogeneity, and organ sparing simultaneously using the same beam trajectory length and delivery time as a coplanar VMAT plan.
Inda, Márcia A; van Batenburg, Marinus F; Roos, Marco; Belloum, Adam S Z; Vasunin, Dmitry; Wibisono, Adianto; van Kampen, Antoine H C; Breit, Timo M
2008-08-08
Chromosome location is often used as a scaffold to organize genomic information in both the living cell and molecular biological research. Thus, ever-increasing amounts of data about genomic features are stored in public databases and can be readily visualized by genome browsers. To perform in silico experimentation conveniently with this genomics data, biologists need tools to process and compare datasets routinely and explore the obtained results interactively. The complexity of such experimentation requires these tools to be based on an e-Science approach, hence generic, modular, and reusable. A virtual laboratory environment with workflows, workflow management systems, and Grid computation are therefore essential. Here we apply an e-Science approach to develop SigWin-detector, a workflow-based tool that can detect significantly enriched windows of (genomic) features in a (DNA) sequence in a fast and reproducible way. For proof-of-principle, we utilize a biological use case to detect regions of increased and decreased gene expression (RIDGEs and anti-RIDGEs) in human transcriptome maps. We improved the original method for RIDGE detection by replacing the costly step of estimation by random sampling with a faster analytical formula for computing the distribution of the null hypothesis being tested and by developing a new algorithm for computing moving medians. SigWin-detector was developed using the WS-VLAM workflow management system and consists of several reusable modules that are linked together in a basic workflow. The configuration of this basic workflow can be adapted to satisfy the requirements of the specific in silico experiment. As we show with the results from analyses in the biological use case on RIDGEs, SigWin-detector is an efficient and reusable Grid-based tool for discovering windows enriched for features of a particular type in any sequence of values. Thus, SigWin-detector provides the proof-of-principle for the modular e-Science based concept of integrative bioinformatics experimentation.
Antoneli, Fernando; Ferreira, Renata C; Briones, Marcelo R S
2016-06-01
Here we propose a new approach to modeling gene expression based on the theory of random dynamical systems (RDS) that provides a general coupling prescription between the nodes of any given regulatory network given the dynamics of each node is modeled by a RDS. The main virtues of this approach are the following: (i) it provides a natural way to obtain arbitrarily large networks by coupling together simple basic pieces, thus revealing the modularity of regulatory networks; (ii) the assumptions about the stochastic processes used in the modeling are fairly general, in the sense that the only requirement is stationarity; (iii) there is a well developed mathematical theory, which is a blend of smooth dynamical systems theory, ergodic theory and stochastic analysis that allows one to extract relevant dynamical and statistical information without solving the system; (iv) one may obtain the classical rate equations form the corresponding stochastic version by averaging the dynamic random variables (small noise limit). It is important to emphasize that unlike the deterministic case, where coupling two equations is a trivial matter, coupling two RDS is non-trivial, specially in our case, where the coupling is performed between a state variable of one gene and the switching stochastic process of another gene and, hence, it is not a priori true that the resulting coupled system will satisfy the definition of a random dynamical system. We shall provide the necessary arguments that ensure that our coupling prescription does indeed furnish a coupled regulatory network of random dynamical systems. Finally, the fact that classical rate equations are the small noise limit of our stochastic model ensures that any validation or prediction made on the basis of the classical theory is also a validation or prediction of our model. We illustrate our framework with some simple examples of single-gene system and network motifs. Copyright © 2016 Elsevier Inc. All rights reserved.
Toward the Modularization of Decision Support Systems
NASA Astrophysics Data System (ADS)
Raskin, R. G.
2009-12-01
Decision support systems are typically developed entirely from scratch without the use of modular components. This “stovepiped” approach is inefficient and costly because it prevents a developer from leveraging the data, models, tools, and services of other developers. Even when a decision support component is made available, it is difficult to know what problem it solves, how it relates to other components, or even that the component exists, The Spatial Decision Support (SDS) Consortium was formed in 2008 to organize the body of knowledge in SDS within a common portal. The portal identifies the canonical steps in the decision process and enables decision support components to be registered, categorized, and searched. This presentation describes how a decision support system can be assembled from modular models, data, tools and services, based on the needs of the Earth science application.
Semi-Infinite Geology Modeling Algorithm (SIGMA): a Modular Approach to 3D Gravity
NASA Astrophysics Data System (ADS)
Chang, J. C.; Crain, K.
2015-12-01
Conventional 3D gravity computations can take up to days, weeks, and even months, depending on the size and resolution of the data being modeled. Additional modeling runs, due to technical malfunctions or additional data modifications, only compound computation times even further. We propose a new modeling algorithm that utilizes vertical line elements to approximate mass, and non-gridded (point) gravity observations. This algorithm is (1) magnitudes faster than conventional methods, (2) accurate to less than 0.1% error, and (3) modular. The modularity of this methodology means that researchers can modify their geology/terrain or gravity data, and only the modified component needs to be re-run. Additionally, land-, sea-, and air-based platforms can be modeled at their observation point, without having to filter data into a synthesized grid.
Higher Spin Fields in Three-Dimensional Gravity
NASA Astrophysics Data System (ADS)
Lepage-Jutier, Arnaud
In this thesis, we study the effects of massless higher spin fields in three-dimensional gravity with a negative cosmological constant. First, we introduce gravity in Anti-de Sitter (AdS) space without the higher spin gauge symmetry. We recapitulate the semi-classical analysis that outlines the duality between quantum gravity in three dimensions with a negative cosmological constant and a conformal field theory on the asymptotic boundary of AdS 3. We review the statistical interpretation of the black hole entropy via the AdS/CFT correspondence and the modular invariance of the partition function of a CFT on a torus. For the case of higher spin theories in AdS 3 we use those modular properties to bound the amount of gauge symmetry present. We then discuss briefly cases that can evade this bound.
Fibrous Hydrogels for Cell Encapsulation: A Modular and Supramolecular Approach.
Włodarczyk-Biegun, Małgorzata K; Farbod, Kambiz; Werten, Marc W T; Slingerland, Cornelis J; de Wolf, Frits A; van den Beucken, Jeroen J J P; Leeuwenburgh, Sander C G; Cohen Stuart, Martien A; Kamperman, Marleen
2016-01-01
Artificial 3-dimensional (3D) cell culture systems, which mimic the extracellular matrix (ECM), hold great potential as models to study cellular processes under controlled conditions. The natural ECM is a 3D structure composed of a fibrous hydrogel that provides both mechanical and biochemical cues to instruct cell behavior. Here we present an ECM-mimicking genetically engineered protein-based hydrogel as a 3D cell culture system that combines several key features: (1) Mild and straightforward encapsulation meters (1) ease of ut I am not so sure.encapsulation of the cells, without the need of an external crosslinker. (2) Supramolecular assembly resulting in a fibrous architecture that recapitulates some of the unique mechanical characteristics of the ECM, i.e. strain-stiffening and self-healing behavior. (3) A modular approach allowing controlled incorporation of the biochemical cue density (integrin binding RGD domains). We tested the gels by encapsulating MG-63 osteoblastic cells and found that encapsulated cells not only respond to higher RGD density, but also to overall gel concentration. Cells in 1% and 2% (weight fraction) protein gels showed spreading and proliferation, provided a relative RGD density of at least 50%. In contrast, in 4% gels very little spreading and proliferation occurred, even for a relative RGD density of 100%. The independent control over both mechanical and biochemical cues obtained in this modular approach renders our hydrogels suitable to study cellular responses under highly defined conditions.
Acceptance and Commitment Therapy modules: Differential impact on treatment processes and outcomes.
Villatte, Jennifer L; Vilardaga, Roger; Villatte, Matthieu; Plumb Vilardaga, Jennifer C; Atkins, David C; Hayes, Steven C
2016-02-01
A modular, transdiagnostic approach to treatment design and implementation may increase the public health impact of evidence-based psychosocial interventions. Such an approach relies on algorithms for selecting and implementing treatment components intended to have a specific therapeutic effect, yet there is little evidence for how components function independent of their treatment packages when employed in clinical service settings. This study aimed to demonstrate the specificity of treatment effects for two components of Acceptance and Commitment Therapy (ACT), a promising candidate for modularization. A randomized, nonconcurrent, multiple-baseline across participants design was used to examine component effects on treatment processes and outcomes in 15 adults seeking mental health treatment. The ACT OPEN module targeted acceptance and cognitive defusion; the ACT ENGAGED module targeted values-based activation and persistence. According to Tau-U analyses, both modules produced significant improvements in psychiatric symptoms, quality of life, and targeted therapeutic processes. ACT ENGAGED demonstrated greater improvements in quality of life and values-based activation. ACT OPEN showed greater improvements in symptom severity, acceptance, and defusion. Both modules improved awareness and non-reactivity, which were mutually targeted, though using distinct intervention procedures. Both interventions demonstrated high treatment acceptability, completion, and patient satisfaction. Treatment effects were maintained at 3-month follow up. ACT components should be considered for inclusion in a modular approach to implementing evidence-based psychosocial interventions for adults. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mining the modular structure of protein interaction networks.
Berenstein, Ariel José; Piñero, Janet; Furlong, Laura Inés; Chernomoretz, Ariel
2015-01-01
Cluster-based descriptions of biological networks have received much attention in recent years fostered by accumulated evidence of the existence of meaningful correlations between topological network clusters and biological functional modules. Several well-performing clustering algorithms exist to infer topological network partitions. However, due to respective technical idiosyncrasies they might produce dissimilar modular decompositions of a given network. In this contribution, we aimed to analyze how alternative modular descriptions could condition the outcome of follow-up network biology analysis. We considered a human protein interaction network and two paradigmatic cluster recognition algorithms, namely: the Clauset-Newman-Moore and the infomap procedures. We analyzed to what extent both methodologies yielded different results in terms of granularity and biological congruency. In addition, taking into account Guimera's cartographic role characterization of network nodes, we explored how the adoption of a given clustering methodology impinged on the ability to highlight relevant network meso-scale connectivity patterns. As a case study we considered a set of aging related proteins and showed that only the high-resolution modular description provided by infomap, could unveil statistically significant associations between them and inter/intra modular cartographic features. Besides reporting novel biological insights that could be gained from the discovered associations, our contribution warns against possible technical concerns that might affect the tools used to mine for interaction patterns in network biology studies. In particular our results suggested that sub-optimal partitions from the strict point of view of their modularity levels might still be worth being analyzed when meso-scale features were to be explored in connection with external source of biological knowledge.
Next generation sequence assembly with AMOS.
Treangen, Todd J; Sommer, Dan D; Angly, Florent E; Koren, Sergey; Pop, Mihai
2011-03-01
A Modular Open-Source Assembler (AMOS) was designed to offer a modular approach to genome assembly. AMOS includes a wide range of tools for assembly, including the lightweight de novo assemblers Minimus and Minimo, and Bambus 2, a robust scaffolder able to handle metagenomic and polymorphic data. This protocol describes how to configure and use AMOS for the assembly of Next Generation sequence data. Additionally, we provide three tutorial examples that include bacterial, viral, and metagenomic datasets with specific tips for improving assembly quality. © 2011 by John Wiley & Sons, Inc.
A modular (almost) automatic set-up for elastic multi-tenants cloud (micro)infrastructures
NASA Astrophysics Data System (ADS)
Amoroso, A.; Astorino, F.; Bagnasco, S.; Balashov, N. A.; Bianchi, F.; Destefanis, M.; Lusso, S.; Maggiora, M.; Pellegrino, J.; Yan, L.; Yan, T.; Zhang, X.; Zhao, X.
2017-10-01
An auto-installing tool on an usb drive can allow for a quick and easy automatic deployment of OpenNebula-based cloud infrastructures remotely managed by a central VMDIRAC instance. A single team, in the main site of an HEP Collaboration or elsewhere, can manage and run a relatively large network of federated (micro-)cloud infrastructures, making an highly dynamic and elastic use of computing resources. Exploiting such an approach can lead to modular systems of cloud-bursting infrastructures addressing complex real-life scenarios.
o-Naphthoquinone-Catalyzed Aerobic Oxidation of Amines to (Ket)imines: A Modular Catalyst Approach.
Goriya, Yogesh; Kim, Hun Young; Oh, Kyungsoo
2016-10-07
A modular aerobic oxidation of amines to imines has been achieved using an ortho-naphthoquinone (o-NQ) catalyst. The cooperative catalyst system of o-NQ and Cu(OAc) 2 enabled the formation of homocoupled imines from benzylamines, while the presence of TFA helped the formation of cross-coupled imines in excellent yields. The current mild aerobic oxidation protocol could also be applied to the oxidation of secondary amines to imines or ketimines with the help of cocatalyst, Ag 2 CO 3 , with excellent yields.
Spectral statistics of the uni-modular ensemble
NASA Astrophysics Data System (ADS)
Joyner, Christopher H.; Smilansky, Uzy; Weidenmüller, Hans A.
2017-09-01
We investigate the spectral statistics of Hermitian matrices in which the elements are chosen uniformly from U(1) , called the uni-modular ensemble (UME), in the limit of large matrix size. Using three complimentary methods; a supersymmetric integration method, a combinatorial graph-theoretical analysis and a Brownian motion approach, we are able to derive expressions for 1 / N corrections to the mean spectral moments and also analyse the fluctuations about this mean. By addressing the same ensemble from three different point of view, we can critically compare their relative advantages and derive some new results.
Lemmens, Karen; De Bie, Tijl; Dhollander, Thomas; De Keersmaecker, Sigrid C; Thijs, Inge M; Schoofs, Geert; De Weerdt, Ami; De Moor, Bart; Vanderleyden, Jos; Collado-Vides, Julio; Engelen, Kristof; Marchal, Kathleen
2009-01-01
We present DISTILLER, a data integration framework for the inference of transcriptional module networks. Experimental validation of predicted targets for the well-studied fumarate nitrate reductase regulator showed the effectiveness of our approach in Escherichia coli. In addition, the condition dependency and modularity of the inferred transcriptional network was studied. Surprisingly, the level of regulatory complexity seemed lower than that which would be expected from RegulonDB, indicating that complex regulatory programs tend to decrease the degree of modularity. PMID:19265557
Zagrijchuk, Elizaveta A.; Sabirov, Marat A.; Holloway, David M.; Spirov, Alexander V.
2014-01-01
Biological development depends on the coordinated expression of genes in time and space. Developmental genes have extensive cis-regulatory regions which control their expression. These regions are organized in a modular manner, with different modules controlling expression at different times and locations. Both how modularity evolved and what function it serves are open questions. We present a computational model for the cis-regulation of the hunchback (hb) gene in the fruit fly (Drosophila). We simulate evolution (using an evolutionary computation approach from computer science) to find the optimal cis-regulatory arrangements for fitting experimental hb expression patterns. We find that the cis-regulatory region tends to readily evolve modularity. These cis-regulatory modules (CRMs) do not tend to control single spatial domains, but show a multi-CRM/multi-domain correspondence. We find that the CRM-domain correspondence seen in Drosophila evolves with a high probability in our model, supporting the biological relevance of the approach. The partial redundancy resulting from multi-CRM control may confer some biological robustness against corruption of regulatory sequences. The technique developed on hb could readily be applied to other multi-CRM developmental genes. PMID:24712536
LIPID11: A Modular Framework for Lipid Simulations using Amber
Skjevik, Åge A.; Madej, Benjamin D.; Walker, Ross C.; eigen, Knut T
2013-01-01
Accurate simulation of complex lipid bilayers has long been a goal in condensed phase molecular dynamics (MD). Structure and function of membrane-bound proteins are highly dependent on the lipid bilayer environment and are challenging to study through experimental methods. Within Amber, there has been limited focus on lipid simulations, although some success has been seen with the use of the General Amber Force Field (GAFF). However, to date there are no dedicated Amber lipid force fields. In this paper we describe a new charge derivation strategy for lipids consistent with the Amber RESP approach, and a new atom and residue naming and type convention. In the first instance, we have combined this approach with GAFF parameters. The result is LIPID11, a flexible, modular framework for the simulation of lipids that is fully compatible with the existing Amber force fields. The charge derivation procedure, capping strategy and nomenclature for LIPID11, along with preliminary simulation results and a discussion of the planned long-term parameter development are presented here. Our findings suggest that Lipid11 is a modular framework feasible for phospholipids and a flexible starting point for the development of a comprehensive, Amber-compatible lipid force field. PMID:22916730
Building Interdisciplinary Research Models Through Interactive Education.
Hessels, Amanda J; Robinson, Brian; O'Rourke, Michael; Begg, Melissa D; Larson, Elaine L
2015-12-01
Critical interdisciplinary research skills include effective communication with diverse disciplines and cultivating collaborative relationships. Acquiring these skills during graduate education may foster future interdisciplinary research quality and productivity. The project aim was to develop and evaluate an interactive Toolbox workshop approach within an interprofessional graduate level course to enhance student learning and skill in interdisciplinary research. We sought to examine the student experience of integrating the Toolbox workshop in modular format over the duration of a 14-week course. The Toolbox Health Sciences Instrument includes six modules that were introduced in a 110-minute dialogue session during the first class and then integrated into the course in a series of six individual workshops in three phases over the course of the semester. Seventeen students participated; the majority were nursing students. Three measures were used to assess project outcomes: pre-post intervention Toolbox survey, competency self-assessment, and a postcourse survey. All measures indicated the objectives were met by a change in survey responses, improved competencies, and favorable experience of the Toolbox modular intervention. Our experience indicates that incorporating this Toolbox modular approach into research curricula can enhance individual level scientific capacity, future interdisciplinary research project success, and ultimately impact on practice and policy. © 2015 Wiley Periodicals, Inc.
Wu, Junjun; Zhang, Xia; Zhu, Yingjie; Tan, Qinyu; He, Jiacheng; Dong, Mingsheng
2017-05-03
Efficient biosynthesis of the plant polyphenol pinosylvin, which has numerous applications in nutraceuticals and pharmaceuticals, is necessary to make biological production economically viable. To this end, an efficient Escherichia coli platform for pinosylvin production was developed via a rational modular design approach. Initially, different candidate pathway enzymes were screened to construct de novo pinosylvin pathway directly from D-glucose. A comparative analysis of pathway intermediate pools identified that this initial construct led to the intermediate cinnamic acid accumulation. The pinosylvin synthetic pathway was then divided into two new modules separated at cinnamic acid. Combinatorial optimization of transcriptional and translational levels of these two modules resulted in a 16-fold increase in pinosylvin titer. To further improve the concentration of the limiting precursor malonyl-CoA, the malonyl-CoA synthesis module based on clustered regularly interspaced short palindromic repeats interference was assembled and optimized with other two modules. The final pinosylvin titer was improved to 281 mg/L, which was the highest pinosylvin titer even directly from D-glucose without any additional precursor supplementation. The rational modular design approach described here could bolster our capabilities in synthetic biology for value-added chemical production.
Skruibis, Paulius; Eimontas, Jonas; Dovydaitiene, Migle; Mazulyte, Egle; Zelviene, Paulina; Kazlauskas, Evaldas
2016-07-26
Adjustment disorder is one of the most common mental health diagnoses. Still it receives relatively little attention from researchers trying to establish best interventions to treat it. With high prevalence of stressful life events, which might be leading to adjustment disorder, and limited resources of mental health service providers, online interventions could be a very practical way of helping people who have these disorders or are in the risk to develop them. The proposed study protocol is aimed to describe a randomized controlled trial of an internet-based modular intervention for adjustment disorder as it is defined in a proposal for the ICD-11. This study is a two-armed Randomized Controlled Trial (RCT) to examine the effectiveness of a web-based intervention BADI (Brief Adjustment Disorder Intervention) for adjustment disorder symptoms. BADI has four modules: Relaxation, Time management, Mindfulness and Strengthening relationships. It is based on stress and coping research and integrates evidence-based treatment approaches such as Cognitive Behavioural therapy (CBT), mindfulness and body-mind practices, as well as exercises for enhancing social support. Primary outcome of the study are symptoms of adjustment disorder and well-being. Engagement into the program and motivation for change is a secondary outcome. All participants after completing the baseline assessment are randomly assigned to one of the two groups: either to the one in which participant will instantly gain access to the BADI intervention or a group in which participants will be given access to the BADI program after waiting one month. Participants of BADI can choose exercises of the program flexibly. There is no particular order in which the exercises should be completed. Study will provide new insights of modular internet-based interventions efficacy for adjustment disorders. The study will also provide information about the role of motivation and expectancies on engagement in modular internet-based interventions. In case this RCT supports effectiveness of fully automated version of BADI, it could be used very broadly. It could become a cost-effective and accessible intervention for adjustment disorder. The study was retrospectively registered with the Australian and New Zealand Clinical Trials Registry with the registration number ACTRN12616000883415 . Registered 5 July, 2016.
Modular design of electrical power subsystem for a remote sensing satellite
NASA Astrophysics Data System (ADS)
Kosari, Ehsan; Ghazanfarinia, Sajjad; Hosseingholi, Mahboobeh; Haghshenas, Javad
2017-09-01
Power Supply is one of the most important subjects in Remote Sensing satellite. Having an appropriate and adequate power resources, A Remote Sensing satellite may utilize more complex Payloads and also make them more operable in orbit and mission timeline. This paper is deals with a design of electrical power supply subsystem (EPS) of a hypothetical satellite with remote sensing mission in Low Earth Orbits, without any restriction on the type and number of Payloads and only assuming a constraint on the total power consumption of them. EPS design is in a way that can supply the platform consumption to support Mission and Payload(s) requirements beside the power consumption of the payload(s). The design is also modular, as it can be used not only for the hypothetical system, but also for the other systems with similar architecture and even more needs on power and differences in some specifications. Therefore, a modularity scope is assumed in design of this subsystem, in order to support the satellite in the circular orbits with altitude of 500 to 700 km and inclination of 98 degrees, a sun-synchronous orbit, where one can say the design is applicable to a large range of remote sensing satellites. Design process will be started by high level and system requirements analysis, continued by choosing the best approach for design and implementation based on system specification and mission. After EPS sizing, the specifications of elements are defined to get the performance needed during operation phases; the blocks and sub-blocks are introduced and details of their design and performance analysis are presented; and the modularity is verified using calculations for the confined area based on design parameters and evaluated by STK software analysis results. All of the process is coded in MATLAB software and comprehensive graphs are generated to demonstrate the capabilities and performance. The code and graphs are developed in such a way to completely review the design procedure and system efficiency in worst case of power consumption scenario at the beginning and end of satellite life
OpenWorm: an open-science approach to modeling Caenorhabditis elegans.
Szigeti, Balázs; Gleeson, Padraig; Vella, Michael; Khayrulin, Sergey; Palyanov, Andrey; Hokanson, Jim; Currie, Michael; Cantarelli, Matteo; Idili, Giovanni; Larson, Stephen
2014-01-01
OpenWorm is an international collaboration with the aim of understanding how the behavior of Caenorhabditis elegans (C. elegans) emerges from its underlying physiological processes. The project has developed a modular simulation engine to create computational models of the worm. The modularity of the engine makes it possible to easily modify the model, incorporate new experimental data and test hypotheses. The modeling framework incorporates both biophysical neuronal simulations and a novel fluid-dynamics-based soft-tissue simulation for physical environment-body interactions. The project's open-science approach is aimed at overcoming the difficulties of integrative modeling within a traditional academic environment. In this article the rationale is presented for creating the OpenWorm collaboration, the tools and resources developed thus far are outlined and the unique challenges associated with the project are discussed.
Designing for the ISD Life Cycle.
ERIC Educational Resources Information Center
Wallace, Guy W.; Hybert, Peter R.; Smith, Kelly R.; Blecke, Brian D.
2002-01-01
Outlines the recent criticisms of traditional ISD (Instructional Systems Design) and discusses the implications that impact the life cycle costs of T&D (Training and Development) projects and their ROI (Return On Investment) potential. Describes a modified approach to ISD which mimics the modular approach of systems engineering design.…
Innovative Approaches to Assessment of Results of Higher School Students Training
ERIC Educational Resources Information Center
Vaganova, Olga I.; Medvedeva, Tatiana Yu.; Kirdyanova, Elena R.; Kazantseva, Galina A.; Karpukova, Albina A.
2016-01-01
The basis of assessment tools selection for performance of control and evaluation of training results subject to requirements of modular-competence approach has been disclosed. The experience in implementation of assessment tools during "General and professional pedagogy" course has been observed. The objective of the study is rationale…
Autapse-induced multiple stochastic resonances in a modular neuronal network
NASA Astrophysics Data System (ADS)
Yang, XiaoLi; Yu, YanHu; Sun, ZhongKui
2017-08-01
This study investigates the nontrivial effects of autapse on stochastic resonance in a modular neuronal network subjected to bounded noise. The resonance effect of autapse is detected by imposing a self-feedback loop with autaptic strength and autaptic time delay to each constituent neuron. Numerical simulations have demonstrated that bounded noise with the proper level of amplitude can induce stochastic resonance; moreover, the noise induced resonance dynamics can be significantly shaped by the autapse. In detail, for a specific range of autaptic strength, multiple stochastic resonances can be induced when the autaptic time delays are appropriately adjusted. These appropriately adjusted delays are detected to nearly approach integer multiples of the period of the external weak signal when the autaptic strength is very near zero; otherwise, they do not match the period of the external weak signal when the autaptic strength is slightly greater than zero. Surprisingly, in both cases, the differences between arbitrary two adjacent adjusted autaptic delays are always approximately equal to the period of the weak signal. The phenomenon of autaptic delay induced multiple stochastic resonances is further confirmed to be robust against the period of the external weak signal and the intramodule probability of subnetwork. These findings could have important implications for weak signal detection and information propagation in realistic neural systems.
Alcalde Cuesta, Fernando; González Sequeiros, Pablo; Lozano Rojo, Álvaro
2016-02-10
For a network, the accomplishment of its functions despite perturbations is called robustness. Although this property has been extensively studied, in most cases, the network is modified by removing nodes. In our approach, it is no longer perturbed by site percolation, but evolves after site invasion. The process transforming resident/healthy nodes into invader/mutant/diseased nodes is described by the Moran model. We explore the sources of robustness (or its counterpart, the propensity to spread favourable innovations) of the US high-voltage power grid network, the Internet2 academic network, and the C. elegans connectome. We compare them to three modular and non-modular benchmark networks, and samples of one thousand random networks with the same degree distribution. It is found that, contrary to what happens with networks of small order, fixation probability and robustness are poorly correlated with most of standard statistics, but they depend strongly on the degree distribution. While community detection techniques are able to detect the existence of a central core in Internet2, they are not effective in detecting hierarchical structures whose topological complexity arises from the repetition of a few rules. Box counting dimension and Rent's rule are applied to show a subtle trade-off between topological and wiring complexity.
Alcalde Cuesta, Fernando; González Sequeiros, Pablo; Lozano Rojo, Álvaro
2016-01-01
For a network, the accomplishment of its functions despite perturbations is called robustness. Although this property has been extensively studied, in most cases, the network is modified by removing nodes. In our approach, it is no longer perturbed by site percolation, but evolves after site invasion. The process transforming resident/healthy nodes into invader/mutant/diseased nodes is described by the Moran model. We explore the sources of robustness (or its counterpart, the propensity to spread favourable innovations) of the US high-voltage power grid network, the Internet2 academic network, and the C. elegans connectome. We compare them to three modular and non-modular benchmark networks, and samples of one thousand random networks with the same degree distribution. It is found that, contrary to what happens with networks of small order, fixation probability and robustness are poorly correlated with most of standard statistics, but they depend strongly on the degree distribution. While community detection techniques are able to detect the existence of a central core in Internet2, they are not effective in detecting hierarchical structures whose topological complexity arises from the repetition of a few rules. Box counting dimension and Rent’s rule are applied to show a subtle trade-off between topological and wiring complexity. PMID:26861189
FACETS: multi-faceted functional decomposition of protein interaction networks.
Seah, Boon-Siew; Bhowmick, Sourav S; Dewey, C Forbes
2012-10-15
The availability of large-scale curated protein interaction datasets has given rise to the opportunity to investigate higher level organization and modularity within the protein-protein interaction (PPI) network using graph theoretic analysis. Despite the recent progress, systems level analysis of high-throughput PPIs remains a daunting task because of the amount of data they present. In this article, we propose a novel PPI network decomposition algorithm called FACETS in order to make sense of the deluge of interaction data using Gene Ontology (GO) annotations. FACETS finds not just a single functional decomposition of the PPI network, but a multi-faceted atlas of functional decompositions that portray alternative perspectives of the functional landscape of the underlying PPI network. Each facet in the atlas represents a distinct interpretation of how the network can be functionally decomposed and organized. Our algorithm maximizes interpretative value of the atlas by optimizing inter-facet orthogonality and intra-facet cluster modularity. We tested our algorithm on the global networks from IntAct, and compared it with gold standard datasets from MIPS and KEGG. We demonstrated the performance of FACETS. We also performed a case study that illustrates the utility of our approach. Supplementary data are available at the Bioinformatics online. Our software is available freely for non-commercial purposes from: http://www.cais.ntu.edu.sg/~assourav/Facets/
The Double-Stranded DNA Virosphere as a Modular Hierarchical Network of Gene Sharing
Iranzo, Jaime
2016-01-01
ABSTRACT Virus genomes are prone to extensive gene loss, gain, and exchange and share no universal genes. Therefore, in a broad-scale study of virus evolution, gene and genome network analyses can complement traditional phylogenetics. We performed an exhaustive comparative analysis of the genomes of double-stranded DNA (dsDNA) viruses by using the bipartite network approach and found a robust hierarchical modularity in the dsDNA virosphere. Bipartite networks consist of two classes of nodes, with nodes in one class, in this case genomes, being connected via nodes of the second class, in this case genes. Such a network can be partitioned into modules that combine nodes from both classes. The bipartite network of dsDNA viruses includes 19 modules that form 5 major and 3 minor supermodules. Of these modules, 11 include tailed bacteriophages, reflecting the diversity of this largest group of viruses. The module analysis quantitatively validates and refines previously proposed nontrivial evolutionary relationships. An expansive supermodule combines the large and giant viruses of the putative order “Megavirales” with diverse moderate-sized viruses and related mobile elements. All viruses in this supermodule share a distinct morphogenetic tool kit with a double jelly roll major capsid protein. Herpesviruses and tailed bacteriophages comprise another supermodule, held together by a distinct set of morphogenetic proteins centered on the HK97-like major capsid protein. Together, these two supermodules cover the great majority of currently known dsDNA viruses. We formally identify a set of 14 viral hallmark genes that comprise the hubs of the network and account for most of the intermodule connections. PMID:27486193
de Blok, Carolien; Meijboom, Bert; Luijkx, Katrien; Schols, Jos
2008-01-01
Purpose In all Western countries, ageing populations cause the demand for elderly care services to increase dramatically. In addition, elderly clients are getting more demanding about the services they require to fulfil their widely varying and multiple needs. Besides, cost reductions have been the focus of governmental policies and organisational practices for many years. Health care providers increasingly see operations management as a promising approach to align both client-orientation and cost-efficiency in their day-to-day practices. Theory The paper starts from operations management literature on front office—back office design and modular production. Organisations have several options for deciding which activities need to be performed by FO, BO, or the client himself, and in deciding which employees need to perform these activities. By applying modular production, organisations can differentiate care and related services to a high degree without major cost increases. Method A literature review will be presented leading to a theoretical framework. This formed the basis for explorative case studies in the elderly care sector. Results and conclusions It will be argued how insights provided with the framework may enhance a client-orientation in integrated care delivery without major cost increases. Although case studies need to be interpreted with caution, interesting implications for organisational structures and inter-organisational cooperation can be seen. We will discuss how combined supply of care services can be made transparent to enhance choice options in service products, and what is required at the level of professionals for providing care and service packages based on client demand.
A modular microfluidic architecture for integrated biochemical analysis.
Shaikh, Kashan A; Ryu, Kee Suk; Goluch, Edgar D; Nam, Jwa-Min; Liu, Juewen; Thaxton, C Shad; Chiesl, Thomas N; Barron, Annelise E; Lu, Yi; Mirkin, Chad A; Liu, Chang
2005-07-12
Microfluidic laboratory-on-a-chip (LOC) systems based on a modular architecture are presented. The architecture is conceptualized on two levels: a single-chip level and a multiple-chip module (MCM) system level. At the individual chip level, a multilayer approach segregates components belonging to two fundamental categories: passive fluidic components (channels and reaction chambers) and active electromechanical control structures (sensors and actuators). This distinction is explicitly made to simplify the development process and minimize cost. Components belonging to these two categories are built separately on different physical layers and can communicate fluidically via cross-layer interconnects. The chip that hosts the electromechanical control structures is called the microfluidic breadboard (FBB). A single LOC module is constructed by attaching a chip comprised of a custom arrangement of fluid routing channels and reactors (passive chip) to the FBB. Many different LOC functions can be achieved by using different passive chips on an FBB with a standard resource configuration. Multiple modules can be interconnected to form a larger LOC system (MCM level). We demonstrated the utility of this architecture by developing systems for two separate biochemical applications: one for detection of protein markers of cancer and another for detection of metal ions. In the first case, free prostate-specific antigen was detected at 500 aM concentration by using a nanoparticle-based bio-bar-code protocol on a parallel MCM system. In the second case, we used a DNAzyme-based biosensor to identify the presence of Pb(2+) (lead) at a sensitivity of 500 nM in <1 nl of solution.
Modular reweighting software for statistical mechanical analysis of biased equilibrium data
NASA Astrophysics Data System (ADS)
Sindhikara, Daniel J.
2012-07-01
Here a simple, useful, modular approach and software suite designed for statistical reweighting and analysis of equilibrium ensembles is presented. Statistical reweighting is useful and sometimes necessary for analysis of equilibrium enhanced sampling methods, such as umbrella sampling or replica exchange, and also in experimental cases where biasing factors are explicitly known. Essentially, statistical reweighting allows extrapolation of data from one or more equilibrium ensembles to another. Here, the fundamental separable steps of statistical reweighting are broken up into modules - allowing for application to the general case and avoiding the black-box nature of some “all-inclusive” reweighting programs. Additionally, the programs included are, by-design, written with little dependencies. The compilers required are either pre-installed on most systems, or freely available for download with minimal trouble. Examples of the use of this suite applied to umbrella sampling and replica exchange molecular dynamics simulations will be shown along with advice on how to apply it in the general case. New version program summaryProgram title: Modular reweighting version 2 Catalogue identifier: AEJH_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJH_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 No. of lines in distributed program, including test data, etc.: 179 118 No. of bytes in distributed program, including test data, etc.: 8 518 178 Distribution format: tar.gz Programming language: C++, Python 2.6+, Perl 5+ Computer: Any Operating system: Any RAM: 50-500 MB Supplementary material: An updated version of the original manuscript (Comput. Phys. Commun. 182 (2011) 2227) is available Classification: 4.13 Catalogue identifier of previous version: AEJH_v1_0 Journal reference of previous version: Comput. Phys. Commun. 182 (2011) 2227 Does the new version supersede the previous version?: Yes Nature of problem: While equilibrium reweighting is ubiquitous, there are no public programs available to perform the reweighting in the general case. Further, specific programs often suffer from many library dependencies and numerical instability. Solution method: This package is written in a modular format that allows for easy applicability of reweighting in the general case. Modules are small, numerically stable, and require minimal libraries. Reasons for new version: Some minor bugs, some upgrades needed, error analysis added. analyzeweight.py/analyzeweight.py2 has been replaced by “multihist.py”. This new program performs all the functions of its predecessor while being versatile enough to handle other types of histograms and probability analysis. “bootstrap.py” was added. This script performs basic bootstrap resampling allowing for error analysis of data. “avg_dev_distribution.py” was added. This program computes the averages and standard deviations of multiple distributions, making error analysis (e.g. from bootstrap resampling) easier to visualize. WRE.cpp was slightly modified purely for cosmetic reasons. The manual was updated for clarity and to reflect version updates. Examples were removed from the manual in favor of online tutorials (packaged examples remain). Examples were updated to reflect the new format. An additional example is included to demonstrate error analysis. Running time: Preprocessing scripts 1-5 minutes, WHAM engine <1 minute, postprocess script ∼1-5 minutes.
NASA Astrophysics Data System (ADS)
Jung-Woon Yoo, John
2016-06-01
Since customer preferences change rapidly, there is a need for design processes with shorter product development cycles. Modularization plays a key role in achieving mass customization, which is crucial in today's competitive global market environments. Standardized interfaces among modularized parts have facilitated computational product design. To incorporate product size and weight constraints during computational design procedures, a mixed integer programming formulation is presented in this article. Product size and weight are two of the most important design parameters, as evidenced by recent smart-phone products. This article focuses on the integration of geometric, weight and interface constraints into the proposed mathematical formulation. The formulation generates the optimal selection of components for a target product, which satisfies geometric, weight and interface constraints. The formulation is verified through a case study and experiments are performed to demonstrate the performance of the formulation.
Nonparametric Bayesian inference of the microcanonical stochastic block model
NASA Astrophysics Data System (ADS)
Peixoto, Tiago P.
2017-01-01
A principled approach to characterize the hidden modular structure of networks is to formulate generative models and then infer their parameters from data. When the desired structure is composed of modules or "communities," a suitable choice for this task is the stochastic block model (SBM), where nodes are divided into groups, and the placement of edges is conditioned on the group memberships. Here, we present a nonparametric Bayesian method to infer the modular structure of empirical networks, including the number of modules and their hierarchical organization. We focus on a microcanonical variant of the SBM, where the structure is imposed via hard constraints, i.e., the generated networks are not allowed to violate the patterns imposed by the model. We show how this simple model variation allows simultaneously for two important improvements over more traditional inference approaches: (1) deeper Bayesian hierarchies, with noninformative priors replaced by sequences of priors and hyperpriors, which not only remove limitations that seriously degrade the inference on large networks but also reveal structures at multiple scales; (2) a very efficient inference algorithm that scales well not only for networks with a large number of nodes and edges but also with an unlimited number of modules. We show also how this approach can be used to sample modular hierarchies from the posterior distribution, as well as to perform model selection. We discuss and analyze the differences between sampling from the posterior and simply finding the single parameter estimate that maximizes it. Furthermore, we expose a direct equivalence between our microcanonical approach and alternative derivations based on the canonical SBM.
Prasuhn, Duane E.; Blanco-Canosa, Juan B.; Vora, Gary J.; Delehanty, James B.; Susumu, Kimihiro; Mei, Bing C.; Dawson, Philip E.; Medintz, Igor L.
2015-01-01
One of the principle hurdles to wider incorporation of semiconductor quantum dots (QDs) in biology is the lack of facile linkage chemistries to create different types of functional QD-bioconjugates. A two-step modular strategy for the presentation of biomolecules on CdSe/ZnS core/shell QDs is described here which utilizes a chemoselective, aniline-catalyzed hydrazone coupling chemistry to append hexahistidine sequences onto peptides and DNA. This specifically provides them the ability to ratiometrically self-assemble to hydrophilic QDs. The versatility of this labeling approach was highlighted by ligating proteolytic substrate peptides, an oligoarginine cell-penetrating peptide, or a DNA-probe to cognate hexahistidine peptidyl sequences. The modularity allowed subsequently self-assembled QD constructs to engage in different types of targeted bioassays. The self-assembly and photophysical properties of individual QD conjugates were first confirmed by gel electrophoresis and Förster resonance energy transfer analysis. QD-dye-labeled peptide conjugates were then used as biosensors to quantitatively monitor the proteolytic activity of caspase-3 or elastase enzymes from different species. These sensors allowed the determination of the corresponding kinetic parameters, including the Michaelis constant (KM) and the maximum proteolytic activity (Vmax). QDs decorated with cell-penetrating peptides were shown to be successfully internalized by HEK 293T/17 cells, while nanocrystals displaying peptide-DNA conjugates were utilized as fluorescent probes in hybridization microarray assays. This modular approach for displaying peptides or DNA on QDs may be extended to other more complex biomolecules such as proteins or utilized with different types of nanoparticle materials. PMID:20099912
MOSAIC--A Modular Approach to Data Management in Epidemiological Studies.
Bialke, M; Bahls, T; Havemann, C; Piegsa, J; Weitmann, K; Wegner, T; Hoffmann, W
2015-01-01
In the context of an increasing number of multi-centric studies providing data from different sites and sources the necessity for central data management (CDM) becomes undeniable. This is exacerbated by a multiplicity of featured data types, formats and interfaces. In relation to methodological medical research the definition of central data management needs to be broadened beyond the simple storage and archiving of research data. This paper highlights typical requirements of CDM for cohort studies and registries and illustrates how orientation for CDM can be provided by addressing selected data management challenges. Therefore in the first part of this paper a short review summarises technical, organisational and legal challenges for CDM in cohort studies and registries. A deduced set of typical requirements of CDM in epidemiological research follows. In the second part the MOSAIC project is introduced (a modular systematic approach to implement CDM). The modular nature of MOSAIC contributes to manage both technical and organisational challenges efficiently by providing practical tools. A short presentation of a first set of tools, aiming for selected CDM requirements in cohort studies and registries, comprises a template for comprehensive documentation of data protection measures, an interactive reference portal for gaining insights and sharing experiences, supplemented by modular software tools for generation and management of generic pseudonyms, for participant management and for sophisticated consent management. Altogether, work within MOSAIC addresses existing challenges in epidemiological research in the context of CDM and facilitates the standardized collection of data with pre-programmed modules and provided document templates. The necessary effort for in-house programming is reduced, which accelerates the start of data collection.
Zens, Martin; Grotejohann, Birgit; Tassoni, Adrian; Duttenhoefer, Fabian; Südkamp, Norbert P; Niemeyer, Philipp
2017-05-23
Observational studies have proven to be a valuable resource in medical research, especially when performed on a large scale. Recently, mobile device-based observational studies have been discovered by an increasing number of researchers as a promising new source of information. However, the development and deployment of app-based studies is not trivial and requires profound programming skills. The aim of this project was to develop a modular online research platform that allows researchers to create medical studies for mobile devices without extensive programming skills. The platform approach for a modular research platform consists of three major components. A Web-based platform forms the researchers' main workplace. This platform communicates via a shared database with a platform independent mobile app. Furthermore, a separate Web-based login platform for physicians and other health care professionals is outlined and completes the concept. A prototype of the research platform has been developed and is currently in beta testing. Simple questionnaire studies can be created within minutes and published for testing purposes. Screenshots of an example study are provided, and the general working principle is displayed. In this project, we have created a basis for a novel research platform. The necessity and implications of a modular approach were displayed and an outline for future development given. International researchers are invited and encouraged to participate in this ongoing project. ©Martin Zens, Birgit Grotejohann, Adrian Tassoni, Fabian Duttenhoefer, Norbert P Südkamp, Philipp Niemeyer. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 23.05.2017.
College Course File: Studies in Genre--Horror.
ERIC Educational Resources Information Center
Olson, Scott R.
1996-01-01
States that a Studies in Genre course essentially explores genre theory with the "hook" of a particular popular genre (in this case, horror) that serves as case study and exemplar for more general theories of genre. Describes the course's modular design so it can be expanded into other genres as time passes. Discusses each unit's…
A Scalable and Robust Multi-Agent Approach to Distributed Optimization
NASA Technical Reports Server (NTRS)
Tumer, Kagan
2005-01-01
Modularizing a large optimization problem so that the solutions to the subproblems provide a good overall solution is a challenging problem. In this paper we present a multi-agent approach to this problem based on aligning the agent objectives with the system objectives, obviating the need to impose external mechanisms to achieve collaboration among the agents. This approach naturally addresses scaling and robustness issues by ensuring that the agents do not rely on the reliable operation of other agents We test this approach in the difficult distributed optimization problem of imperfect device subset selection [Challet and Johnson, 2002]. In this problem, there are n devices, each of which has a "distortion", and the task is to find the subset of those n devices that minimizes the average distortion. Our results show that in large systems (1000 agents) the proposed approach provides improvements of over an order of magnitude over both traditional optimization methods and traditional multi-agent methods. Furthermore, the results show that even in extreme cases of agent failures (i.e., half the agents fail midway through the simulation) the system remains coordinated and still outperforms a failure-free and centralized optimization algorithm.
IntellWheels: modular development platform for intelligent wheelchairs.
Braga, Rodrigo Antonio Marques; Petry, Marcelo; Reis, Luis Paulo; Moreira, António Paulo
2011-01-01
Intelligent wheelchairs (IWs) can become an important solution to the challenge of assisting individuals who have disabilities and are thus unable to perform their daily activities using classic powered wheelchairs. This article describes the concept and design of IntellWheels, a modular platform to facilitate the development of IWs through a multiagent system paradigm. In fact, modularity is achieved not only in the software perspective, but also through a generic hardware framework that was designed to fit, in a straightforward manner, almost any commercial powered wheelchair. Experimental results demonstrate the successful integration of all modules in the platform, providing safe motion to the IW. Furthermore, the results achieved with a prototype running in autonomous mode in simulated and mixed-reality environments also demonstrate the potential of our approach. Although some future research is still necessary to fully accomplish our objectives, preliminary tests have shown that IntellWheels will effectively reduce users' limitations, offering them a much more independent life.
The economics of data acquisition computers for ST and MST radars
NASA Technical Reports Server (NTRS)
Watkins, B. J.
1983-01-01
Some low cost options for data acquisition computers for ST (stratosphere, troposphere) and MST (mesosphere, stratosphere, troposphere) are presented. The particular equipment discussed reflects choices made by the University of Alaska group but of course many other options exist. The low cost microprocessor and array processor approach presented here has several advantages because of its modularity. An inexpensive system may be configured for a minimum performance ST radar, whereas a multiprocessor and/or a multiarray processor system may be used for a higher performance MST radar. This modularity is important for a network of radars because the initial cost is minimized while future upgrades will still be possible at minimal expense. This modularity also aids in lowering the cost of software development because system expansions should rquire little software changes. The functions of the radar computer will be to obtain Doppler spectra in near real time with some minor analysis such as vector wind determination.
NASA Astrophysics Data System (ADS)
Wu, Z.; Zheng, Y.; Wang, K. W.
2018-02-01
We present an approach to achieve adaptable band structures and nonreciprocal wave propagation by exploring and exploiting the concept of metastable modular metastructures. Through studying the dynamics of wave propagation in a chain composed of finite metastable modules, we provide experimental and analytical results on nonreciprocal wave propagation and unveil the underlying mechanisms that facilitate such unidirectional energy transmission. In addition, we demonstrate that via transitioning among the numerous metastable states, the proposed metastructure is endowed with a large number of bandgap reconfiguration possibilities. As a result, we illustrate that unprecedented adaptable nonreciprocal wave propagation can be realized using the metastable modular metastructure. Overall, this research elucidates the rich dynamics attainable through the combinations of periodicity, nonlinearity, spatial asymmetry, and metastability and creates a class of adaptive structural and material systems capable of realizing tunable bandgaps and nonreciprocal wave transmissions.
NASA Technical Reports Server (NTRS)
Farral, Joseph F.; Seshan, P. K.; Rohatgi, Naresh K.
1991-01-01
This paper describes the Generic Modular Flow Schematic (GMFS) architecture capable of encompassing all functional elements of a physical/chemical life support system (LSS). The GMFS can be implemented to synthesize, model, analyze, and quantitatively compare many configurations of LSSs, from a simple, completely open-loop to a very complex closed-loop. The GMFS model is coded in ASPEN, a state-of-the-art chemical process simulation program, to accurately compute the material, heat, and power flow quantities for every stream in each of the subsystem functional elements (SFEs) in the chosen configuration of a life support system. The GMFS approach integrates the various SFEs and subsystems in a hierarchical and modular fashion facilitating rapid substitutions and reconfiguration of a life support system. The comprehensive ASPEN material and energy balance output is transferred to a systems and technology assessment spreadsheet for rigorous system analysis and trade studies.
Research on Self-Reconfigurable Modular Robot System
NASA Astrophysics Data System (ADS)
Kamimura, Akiya; Murata, Satoshi; Yoshida, Eiichi; Kurokawa, Haruhisa; Tomita, Kohji; Kokaji, Shigeru
Growing complexity of artificial systems arises reliability and flexibility issues of large system design. Robots are not exception of this, and many attempts have been made to realize reliable and flexible robot systems. Distributed modular composition of robot is one of the most effective approaches to attain such abilities and has a potential to adapt to its surroundings by changing its configuration autonomously according to information of surroundings. In this paper, we propose a novel three-dimensional self-reconfigurable robotic module. Each module has a very simple structure that consists of two semi-cylindrical parts connected by a link. The modular system is capable of not only building static structure but also generating dynamic robotic motion. We present details of the mechanical/electrical design of the developed module and its control system architecture. Experiments using ten modules with centralized control demonstrate robotic configuration change, crawling locomotion and three types of quadruped locomotion.
Cost-Effective Live Cell Density Determination of Liquid Cultured Microorganisms.
Kutschera, Alexander; Lamb, Jacob J
2018-02-01
Live monitoring of microorganisms growth in liquid medium is a desired parameter for many research fields. A wildly used approach for determining microbial liquid growth quantification is based on light scattering as the result of the physical interaction of light with microbial cells. These measurements are generally achieved using costly table-top instruments; however, a live, reliable, and straight forward instrument constructed using parts that are inexpensive may provide opportunities for many researchers. Here, such an instrument has been constructed and tested. It consists of modular test tube holding chambers, each with a low power monochromatic light-emitting diode, and a monolithic photodiode. A microcontroller connects to all modular chambers to control the diodes, and send the live data to either an LCD screen, or a computer. This work demonstrate that this modular instrument can determine precise cell concentrations for the bacteria Escherichia coli and Pseudomonas syringae pv. tomato DC3000, as well as Saccharomyces cerevisiae yeast.
The development of a lightweight modular compliant surface bio-inspired robot
NASA Astrophysics Data System (ADS)
Stone, David L.; Cranney, John
2004-09-01
The DARPA Sponsored Compliant Surface Robotics (CSR) program pursues development of a high mobility, lightweight, modular, morphable robot for military forces in the field and for other industrial uses. The USTLAB effort builds on proof of concept feasibility studies and demonstration of a 4, 6, or 8 wheeled modular vehicle with articulated leg-wheel assemblies. In Phase I, basic open plant stability was proven for climbing over obstacles of ~18 inches high and traversing ~75 degree inclines (up, down, or sideways) in a platform of approximately 15 kilograms. At the completion of Phase II, we have completed mechanical and electronics engineering design and achieved changes which currently enable future work in active articulation, enabling autonomous reconfiguration for a wide variety of terrains, including upside down operations (in case of flip over), and we have reduced platform weight by one third. Currently the vehicle weighs 10 kilograms and will grow marginally as additional actuation, MEMS based organic sensing, payload, and autonomous processing is added. The CSR vehicle"s modular spider-like configuration facilitates adaptation to many uses and compliance over rugged terrain. The developmental process and the vehicle characteristics will be discussed.
The application of SMA spring actuators to a lightweight modular compliant surface bioinspired robot
NASA Astrophysics Data System (ADS)
Stone, David L.; Cranney, John; Liang, Robert; Taya, Minoru
2004-07-01
The DARPA Sponsored Compliant Surface Robotics (CSR) program pursues development of a high mobility, lightweight, modular, morph-able robot for military forces in the field and for other industrial uses. The USTLAB and University of Washington Center for Intelligent Materials and Systems (CIMS) effort builds on USTLAB proof of concept feasibility studies and demonstration of a 4, 6, or 8 wheeled modular vehicle with articulated leg-wheel assemblies. A collaborative effort between USTLAB and UW-CIMS explored the application of Shape Memory Alloy Nickel Titanium Alloy springs to a leg extension actuator capable of actuating with 4.5 Newton force over a 50 mm stroke. At the completion of Phase II, we have completed mechanical and electronics engineering design and achieved conventional actuation which currently enable active articulation, enabling autonomous reconfiguration for a wide variety of terrains, including upside down operations (in case of flip over), have developed a leg extension actuator demonstration model, and we have positioned our team to pursue a small vehicle with leg extension actuators in follow on work. The CSR vehicle's modular spider-like configuration facilitates adaptation to many uses and compliance over rugged terrain. The developmental process, actuator and vehicle characteristics will be discussed.
Modular Approach to Instrumental Analysis.
ERIC Educational Resources Information Center
Deming, Richard L.; And Others
1982-01-01
To remedy certain deficiencies, an instrument analysis course was reorganized into six one-unit modules: optical spectroscopy, magnetic resonance, separations, electrochemistry, radiochemistry, and computers and interfacing. Selected aspects of the course are discussed. (SK)
[The VB system: a new modular osteosynthesis material involving both screws and wires].
Dubert, T; Valenti, P; Dinh, A; Osman, N
2002-01-01
VB is an osteosynthesis system for the stabilisation of small fragments, which combines the benefits of both wires and screws. It is a modular system comprising a threaded pin and a ring. The threaded pin is first positioned. Then a ring is grasped and opened by the progressive angulation of a screwdriver. Still anchored on the screwdriver, the ring slides easily on the pin. It is clamped on the pin by simply removing the screwdriver and the pin is then cut. This modular system includes 1.8 and 1.1 mm pins and different types of rings (threaded or non threaded, with or without collars). The system is easy to handle and can be introduced using an open or percutaneous technique, allowing compression or distraction. Our preliminary series, performed in accordance with National clinical trial protocol (Huriet) consisted of 50 cases in 24 patients (five women and 19 men) with an average age of 48 years, and a follow-up of more than six months. Fourteen cases of fractures (28 implants) were treated as emergencies (two radial heads, one capitellum, one trochlea of the humerus, seven distal radius fractures, one trapezium, two metacarpals) and 12 cases (22 implants) were elective cases: arthrodesis (one trapezo-metacarpal, one intermetacarpal, two interphalangeal, two carpal), non-union (six scaphoids, one phalangeal) and one phalangeal malunion. Hardware removal was performed in 16 cases. No implant failure has been detected. One case, a DIP arthrodesis, had a suspicion of sepsis which led to the removal of the implants at six weeks. The results of this study have convinced us of the merits of the system, which combines the advantages of both wires and screws. The system allows the user to perform either distraction or compression, and to adjust the force by hand. Compared to the fixed amount of compression produced by lag screws, this feature seems to be a real step forward.
Concept recognition for extracting protein interaction relations from biomedical text
Baumgartner, William A; Lu, Zhiyong; Johnson, Helen L; Caporaso, J Gregory; Paquette, Jesse; Lindemann, Anna; White, Elizabeth K; Medvedeva, Olga; Cohen, K Bretonnel; Hunter, Lawrence
2008-01-01
Background: Reliable information extraction applications have been a long sought goal of the biomedical text mining community, a goal that if reached would provide valuable tools to benchside biologists in their increasingly difficult task of assimilating the knowledge contained in the biomedical literature. We present an integrated approach to concept recognition in biomedical text. Concept recognition provides key information that has been largely missing from previous biomedical information extraction efforts, namely direct links to well defined knowledge resources that explicitly cement the concept's semantics. The BioCreative II tasks discussed in this special issue have provided a unique opportunity to demonstrate the effectiveness of concept recognition in the field of biomedical language processing. Results: Through the modular construction of a protein interaction relation extraction system, we present several use cases of concept recognition in biomedical text, and relate these use cases to potential uses by the benchside biologist. Conclusion: Current information extraction technologies are approaching performance standards at which concept recognition can begin to deliver high quality data to the benchside biologist. Our system is available as part of the BioCreative Meta-Server project and on the internet . PMID:18834500
Chuan, Yap P; Wibowo, Nani; Connors, Natalie K; Wu, Yang; Hughes, Fiona K; Batzloff, Michael R; Lua, Linda H L; Middelberg, Anton P J
2014-06-01
Effective and low-cost vaccines are essential to control severe group A streptococcus (GAS) infections prevalent in low-income nations and the Australian aboriginal communities. Highly diverse and endemic circulating GAS strains mandate broad-coverage and customized vaccines. This study describes an approach to deliver cross-reactive antigens from endemic GAS strains using modular virus-like particle (VLP) and capsomere systems. The antigens studied were three heterologous N-terminal peptides (GAS1, GAS2, and GAS3) from the GAS surface M-protein that are specific to endemic strains in Australia Northern Territory Aboriginal communities. In vivo data presented here demonstrated salient characteristics of the modular delivery systems in the context of GAS vaccine design. First, the antigenic peptides, when delivered by unadjuvanted modular VLPs or adjuvanted capsomeres, induced high titers of peptide-specific IgG antibodies (over 1 × 10(4) ). Second, delivery by capsomere was superior to VLP for one of the peptides investigated (GAS3), demonstrating that the delivery system relative effectiveness was antigen-dependant. Third, significant cross-reactivity of GAS2-induced IgG with GAS1 was observed using either VLP or capsomere, showing the possibility of broad-coverage vaccine design using these delivery systems and cross-reactive antigens. Fourth, a formulation containing three pre-mixed modular VLPs, each at a low dose of 5 μg (corresponding to <600 ng of each GAS peptide), induced significant titers of IgGs specific to each peptide, demonstrating that a multivalent, broad-coverage VLP vaccine formulation was possible. In summary, the modular VLPs and capsomeres reported here demonstrate, with promising preliminary data, innovative ways to design GAS vaccines using VLP and capsomere delivery systems amenable to microbial synthesis, potentially adoptable by developing countries. © 2013 Wiley Periodicals, Inc.
A new multi-scale method to reveal hierarchical modular structures in biological networks.
Jiao, Qing-Ju; Huang, Yan; Shen, Hong-Bin
2016-11-15
Biological networks are effective tools for studying molecular interactions. Modular structure, in which genes or proteins may tend to be associated with functional modules or protein complexes, is a remarkable feature of biological networks. Mining modular structure from biological networks enables us to focus on a set of potentially important nodes, which provides a reliable guide to future biological experiments. The first fundamental challenge in mining modular structure from biological networks is that the quality of the observed network data is usually low owing to noise and incompleteness in the obtained networks. The second problem that poses a challenge to existing approaches to the mining of modular structure is that the organization of both functional modules and protein complexes in networks is far more complicated than was ever thought. For instance, the sizes of different modules vary considerably from each other and they often form multi-scale hierarchical structures. To solve these problems, we propose a new multi-scale protocol for mining modular structure (named ISIMB) driven by a node similarity metric, which works in an iteratively converged space to reduce the effects of the low data quality of the observed network data. The multi-scale node similarity metric couples both the local and the global topology of the network with a resolution regulator. By varying this resolution regulator to give different weightings to the local and global terms in the metric, the ISIMB method is able to fit the shape of modules and to detect them on different scales. Experiments on protein-protein interaction and genetic interaction networks show that our method can not only mine functional modules and protein complexes successfully, but can also predict functional modules from specific to general and reveal the hierarchical organization of protein complexes.
Minitheories: A Modular Approach to Learning Applied to Science.
ERIC Educational Resources Information Center
Claxton, Guy
Perspectives on a psychological approach to learning are offered in this paper. Specific emphasis is directed to the assumption that children possess "minitheories." Minitheories are defined as attempts to make sense of particular kinds of experiences and are explained and delimited by the domain of experience to which they currently apply. This…
Economic Systems: A Modular Approach. Cultural Anthropology.
ERIC Educational Resources Information Center
Kassebaum, Peter
Designed for use as supplementary instructional material in a cultural anthropology course, this learning module uses a systems approach to allow students to see the connections and similarities which most cultural groups share on the basis of the type of economic organization that they exhibit. The module begins with a general discussion of…
ERIC Educational Resources Information Center
Furge, Laura Lowe; Stevens-Truss, Regina; Moore, D. Blaine; Langeland, James A.
2009-01-01
Bioinformatics education for undergraduates has been approached primarily in two ways: introduction of new courses with largely bioinformatics focus or introduction of bioinformatics experiences into existing courses. For small colleges such as Kalamazoo, creation of new courses within an already resource-stretched setting has not been an option.…
Lepage, Mathieu L; Schneider, Jérémy P; Bodlenner, Anne; Compain, Philippe
2015-11-06
A modular strategy has been developed to access a diversity of cyclic and acyclic oligosaccharide analogues designed as prefunctionalized scaffolds for the synthesis of multivalent ligands. This convergent approach is based on bifunctional sugar building blocks with two temporarily masked functionalities that can be orthogonally activated to perform Cu(I)-catalyzed azide-alkyne cycloaddition reactions (CuAAC). The reducing end is activated as a glycosyl azide and masked as a 1,6-anhydro sugar, while the nonreducing end is activated as a free alkyne and masked as a triethylsilyl-alkyne. Following a cyclooligomerization approach, the first examples of close analogues of cyclodextrins composed of d-glucose residues and triazole units bound together through α-(1,4) linkages were obtained. The cycloglucopyranoside analogue containing four sugar units was used as a template to prepare multivalent systems displaying a protected d-mannose derivative or an iminosugar by way of CuAAC. On the other hand, the modular approach led to acyclic alkyne-functionalized scaffolds of a controlled size that were used to synthesize multivalent iminosugars.
Müllner, Markus; Cui, Jiwei; Noi, Ka Fung; Gunawan, Sylvia T; Caruso, Frank
2014-06-03
We report a templating approach for the preparation of functional polymer replica particles via surface-initiated polymerization in mesoporous silica templates. Subsequent removal of the template resulted in discrete polymer particles. Furthermore, redox-responsive replica particles could be engineered to disassemble in a reducing environment. Particles, made of poly(methacryloyloxyethyl phosphorylcholine) (PMPC) or poly[oligo(ethylene glycol) methyl ether methacrylate] (POEGMA), exhibited very low association to human cancer cells (below 5%), which renders the reported charge-neutral polymer particles a modular and versatile class of highly functional carriers with potential applications in drug delivery.
Rosier, Bas J. H. M.; Cremers, Glenn A. O.; Engelen, Wouter; Merkx, Maarten; Brunsveld, Luc
2017-01-01
A photocrosslinkable protein G variant was used as an adapter protein to covalently and site-specifically conjugate an antibody and an Fc-fusion protein to an oligonucleotide. This modular approach enables straightforward decoration of DNA nanostructures with complex native proteins while retaining their innate binding affinity, allowing precise control over the nanoscale spatial organization of such proteins for in vitro and in vivo biomedical applications. PMID:28617516
Reconfigurable Computing Concepts for Space Missions: Universal Modular Spares
NASA Technical Reports Server (NTRS)
Patrick, M. Clinton
2007-01-01
Computing hardware for control, data collection, and other purposes will prove many times over crucial resources in NASA's upcoming space missions. Ability to provide these resources within mission payload requirements, with the hardiness to operate for extended periods under potentially harsh conditions in off-World environments, is daunting enough without considering the possibility of doing so with conventional electronics. This paper examines some ideas and options, and proposes some initial approaches, for logical design of reconfigurable computing resources offering true modularity, universal compatibility, and unprecedented flexibility to service all forms and needs of mission infrastructure.
Static inverter with synchronous output waveform synthesized by time-optimal-response feedback
NASA Technical Reports Server (NTRS)
Kernick, A.; Stechschulte, D. L.; Shireman, D. W.
1976-01-01
Time-optimal-response 'bang-bang' or 'bang-hang' technique, using four feedback control loops, synthesizes static-inverter sinusoidal output waveform by self-oscillatory but yet synchronous pulse-frequency-modulation (SPFM). A single modular power stage per phase of ac output entails the minimum of circuit complexity while providing by feedback synthesis individual phase voltage regulation, phase position control and inherent compensation simultaneously for line and load disturbances. Clipped sinewave performance is described under off-limit load or input voltage conditions. Also, approaches to high power levels, 3-phase arraying and parallel modular connection are given.
Overview of the Westinghouse Small Modular Reactor building layout
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cronje, J. M.; Van Wyk, J. J.; Memmott, M. J.
The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (>225 MWe) integral pressurized water reactor (iPWR), in which all of the components typically associated with the nuclear steam supply system (NSSS) of a nuclear power plant are incorporated within a single reactor pressure vessel. This paper is the third in a series of four papers, which describe the design and functionality of the Westinghouse SMR. It focuses in particular upon the plant building layout and modular design of the Westinghouse SMR. In the development of small modular reactors, the building layout is an area where the safety of themore » plant can be improved by applying new design approaches. This paper will present an overview of the Westinghouse SMR building layout and indicate how the design features improve the safety and robustness of the plant. The Westinghouse SMR is designed with no shared systems between individual reactor units. The main buildings inside the security fence are the nuclear island, the rad-waste building, the annex building, and the turbine building. All safety related equipment is located in the nuclear island, which is a seismic class 1 building. To further enhance the safety and robustness of the design, the reactor, containment, and most of the safety related equipment are located below grade on the nuclear island. This reduces the possibility of severe damage from external threats or natural disasters. Two safety related ultimate heat sink (UHS) water tanks that are used for decay heat removal are located above grade, but are redundant and physically separated as far as possible for improved safety. The reactor and containment vessel are located below grade in the center of the nuclear island. The rad-waste and other radioactive systems are located on the bottom floors to limit the radiation exposure to personnel. The Westinghouse SMR safety trains are completely separated into four unconnected quadrants of the building, with access between quadrants only allowed above grade. This is an improvement to conventional reactor design since it prevents failures of multiple trains during floods or fires and other external events. The main control room is located below grade, with a remote shutdown room in a different quadrant. All defense in depth systems are placed on the nuclear island, primarily above grade, while the safety systems are located on lower floors. The economics of the Westinghouse SMR challenges the established approach of large Light Water Reactors (LWR) that utilized the economies of scale to reach economic competitiveness. To serve the market expectation of smaller capital investment and cost competitive energy, a modular design approach is implemented within the Westinghouse SMR. The Westinghouse SMR building layout integrates the three basic design constraints of modularization; transportation, handling and module-joining technology. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Witt, Adam M; Smith, Brennan T
Small hydropower plants supply reliable renewable energy to the grid, though few new plants have been developed in the Unites States over the past few decades due to complex environmental challenges and poor project economics. This paper describes the current landscape of small hydropower development, and introduces a new approach to facility design that co-optimizes the extraction of hydroelectric power from a stream with other important environmental functions such as fish, sediment, and recreational passage. The approach considers hydropower facilities as an integrated system of standardized interlocking modules, designed to sustain stream functions, generate power, and interface with the streambed.more » It is hypothesized that this modular eco-design approach, when guided by input from the broader small hydropower stakeholder community, can lead to cost savings across the facility, reduced licensing and approval timelines, and ultimately, to enhanced resiliency through improved environmental performance over the lifetime of the project.« less
Development of Integrated Modular Avionics Application Based on Simulink and XtratuM
NASA Astrophysics Data System (ADS)
Fons-Albert, Borja; Usach-Molina, Hector; Vila-Carbo, Joan; Crespo-Lorente, Alfons
2013-08-01
This paper presents an integral approach for designing avionics applications that meets the requirements for software development and execution of this application domain. Software design follows the Model-Based design process and is performed in Simulink. This approach allows easy and quick testbench development and helps satisfying DO-178B requirements through the use of proper tools. The software execution platform is based on XtratuM, a minimal bare-metal hypervisor designed in our research group. XtratuM provides support for IMA-SP (Integrated Modular Avionics for Space) architectures. This approach allows the code generation of a Simulink model to be executed on top of Lithos as XtratuM partition. Lithos is a ARINC-653 compliant RTOS for XtratuM. The paper concentrates in how to smoothly port Simulink designs to XtratuM solving problems like application partitioning, automatic code generation, real-time tasking, interfacing, and others. This process is illustrated with an autopilot design test using a flight simulator.
Belotti, Francesco; Doglietto, Francesco; Schreiber, Alberto; Ravanelli, Marco; Ferrari, Marco; Lancini, Davide; Rampinelli, Vittorio; Hirtler, Lena; Buffoli, Barbara; Bolzoni Villaret, Andrea; Maroldi, Roberto; Rodella, Luigi Fabrizio; Nicolai, Piero; Fontanella, Marco Maria
2018-01-01
Endoscopic visualization does not necessarily correspond to an adequate working space. The need for balancing invasiveness and adequacy of sellar tumor exposure has recently led to the description of multiple endoscopic endonasal transsphenoidal approaches. Comparative anatomic data on these variants are lacking. We sought to quantitatively compare endoscopic endonasal transsphenoidal approaches to the sella and parasellar region, using the concept of "surgical pyramid." Four endoscopic transsphenoidal approaches were performed in 10 injected specimens: 1) hemisphenoidotomy; 2) transrostral; 3) extended transrostral (with superior turbinectomy); and 4) extended transrostral with posterior ethmoidectomy. ApproachViewer software (part of GTx-Eyes II, University Health Network, Toronto, Canada) with a dedicated navigation system was used to quantify the surgical pyramid volume, as well as exposure of sellar and parasellar areas. Statistical analyses were performed with Friedman's tests and Nemenyi's procedure. Hemisphenoidotomy provided limited exposure of the sellar area and a small working volume. A transrostral approach was necessary to expose the entire sella. Exposure of lateral parasellar areas required superior turbinectomy or posterior ethmoidectomy. The differences between each of the modules was statistically significant. The present study validates, from an anatomic point of view, a modular classification of endoscopic endonasal transsphenoidal approaches to the sellar region. Copyright © 2017 Elsevier Inc. All rights reserved.
Perspective of Micro Process Engineering for Thermal Food Treatment
Mathys, Alexander
2018-01-01
Micro process engineering as a process synthesis and intensification tool enables an ultra-short thermal treatment of foods within milliseconds (ms) using very high surface-area-to-volume ratios. The innovative application of ultra-short pasteurization and sterilization at high temperatures, but with holding times within the range of ms would allow the preservation of liquid foods with higher qualities, thereby avoiding many unwanted reactions with different temperature–time characteristics. Process challenges, such as fouling, clogging, and potential temperature gradients during such conditions need to be assessed on a case by case basis and optimized accordingly. Owing to the modularity, flexibility, and continuous operation of micro process engineering, thermal processes from the lab to the pilot and industrial scales can be more effectively upscaled. A case study on thermal inactivation demonstrated the feasibility of transferring lab results to the pilot scale. It was shown that micro process engineering applications in thermal food treatment may be relevant to both research and industrial operations. Scaling of micro structured devices is made possible through the use of numbering-up approaches; however, reduced investment costs and a hygienic design must be assured. PMID:29686990
Dumoulin, Q; Sabau, S; Goetzmann, T; Jacquot, A; Sirveaux, F; Mole, D; Roche, O
2018-05-01
The PFMR ® proximal femoral modular reconstruction implant (Protek, Sulzer Orthopedics, Switzerland) is a straight modular stem in sanded titanium with press-fit anchorage, intended to achieve spontaneous bone reconstruction following Wagner's principle. The aim of the present study was to analyze long-term clinical and radiological outcome. A single-center retrospective study included 48 PFMR stems implanted in 47 patients between 1998 and 2002. Results in this series were previously reported at 7 years' follow-up. Clinical assessment used PMA and Harris scores. Radiologic assessment focused on stem stability and osseointegration, and bone stock following Le Béguec. Twenty-three patients were seen at a mean 14.5 years' follow-up (13 deceased, 11 lost to follow-up), including 1 with bilateral implants, i.e., 24 stems. PMA and Harris scores, stem stability and osseointegration and bone stock were stable with respect to the 7-year findings. Radiology found 7 stem fractures in the Morse taper, i.e., in 29% of implants. Two of these cases required femoral implant replacement; 5 were asymptomatic. Long-term outcome for PFMR stems was clinically and radiologically satisfactory for the 16 patients free of mechanical complications. The Morse taper fracture rate was high, and higher than reported elsewhere. The usual risk factors for implant fracture were not found in the present series. The modular design of the press-fit revision implant is its weak point; monoblock implants should be used in patients with good life-expectancy. IV (retrospective study). Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Knee arthodesis using a modular customized intramedullary nail.
Letartre, R; Combes, A; Autissier, G; Bonnevialle, N; Gougeon, F
2009-11-01
Arthrodesis of the knee, particularly in infectious situations, can be achieved using either an external fixator or an intramedullary device. The objective of this study is to report the clinical, functional, and radiographic outcomes of a continuous series of 19 cases of knee arthrodesis using a customized modular intramedullary nailing system. The modular intramedullary nail offers a satisfactory functional result while maintaining limb length, in spite of a nonunion risk, since acting like a true endoprosthesis. In our retrospective series of 19 patients, the main source of patients were infected total knee replacements. The nail was customized from assembling a dual surface-sanded titanium component (femoral and tibial). The Lequesne Algofunctional score and the WOMAC score were recorded, as well as the length discrepancy between the lower extremities. Arthrodesis consolidation and the nail's fit in the shaft were verified on anterior-posterior (AP) and lateral radiographs. Five complications were observed: one anterior cortical break, one excessive tibial rotation, two cases of delayed union, and one nail revision due to residual nail instability. The postoperative Lequesne Algofunctional score was 13/24 and the WOMAC score 57/100. The nonunion rate was 32%. From a functional point of view, the patients who did not achieve complete union and those who did had similar scores. The subjective results were not as good in patients who did not achieve final consolidation. Modular intramedullary nailing simplifies the technique, shortens the procedure, and reduces the amount of blood loss at surgery. Our nonunion rate was high, although the functional result did not seem compromised by such nonunion. The risk of long-term implant failure was not studied and requires longer follow-up studies. Level IV therapeutic study. 2009 Published by Elsevier Masson SAS.
VOC and air toxics control using biofiltration: 2 full-scale system case studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fucich, W.J.; Togna, A.P.; Loudon, R.E.
1997-12-31
Industry continuous to search for innovative air treatment technologies to cost effectively meet the stringent requirements of the CAAA. High volume process exhaust streams contaminated with dilute concentrations of VOCs and HAPs are an especially challenging problem. Biological treatment is an option that must be evaluated with the traditional control technologies (chemical scrubbing, condensation, adsorption, thermal oxidation, etc.) because of the low operating costs and the system is environmentally friendly. In the United States, biofiltration is considered an emerging technology, however, full-scale biofiltration systems are now successfully operating in two rigorous services. At Nylonge Corporation, a biofilter is safely andmore » efficiently degrading CS{sub 2} and H{sub 2}S vapor emissions. The ABTco system is successfully treating the target compounds, methanol and formaldehyde, in a press exhaust containing inert particulate and semi-volatiles. These systems are both based on a unique, patented modular design. The modular concept allows the system to be easily installed resulting in construction cost minimization and maintaining critical project schedules. The modular system offers flexibility because the biofilter is easily expanded to accommodate future plant growth. The modular design benefits the end user because individual modules or biofilter sections can be isolated for service and inspection while the biofilter system stays on-line. An up-flow configuration and the patented irrigation system allow biofilters to be used on the most difficult services. In the case of Nylonge, the biofilter is handling the sulfuric acid generated during the degradation of CS{sub 2} and H{sub 2}S vapors. At ABTco, stable operation is achieved in a stream containing particulates and semi-volatiles.« less
Public Health Education for Emergency Medicine Residents
Betz, Marian E.; Bernstein, Steven L.; Gutman, Deborah; Tibbles, Carrie D.; Joyce, Nina; Lipton, Robert; Schweigler, Lisa; Fisher, Jonathan
2015-01-01
Emergency medicine (EM) has an important role in public health, but the ideal approach for teaching public health to EM residents is unclear. As part of the national regional public health–medicine education centers-graduate medical education (RPHMEC-GM) initiative from the CDC and the American Association of Medical Colleges, three EM programs received funding to create public health curricula for EM residents. Curricula approaches varied by residency. One program used a modular, integrative approach to combine public health and EM clinical topics during usual residency didactics, one partnered with local public health organizations to provide real-world experiences for residents, and one drew on existing national as well as departmental resources to seamlessly integrate more public health–oriented educational activities within the existing residency curriculum. The modular and integrative approaches appeared to have a positive impact on resident attitudes toward public health, and a majority of EM residents at that program believed public health training is important. Reliance on pre-existing community partnerships facilitated development of public health rotations for residents. External funding for these efforts was critical to their success, given the time and financial restraints on residency programs. The optimal approach for public health education for EM residents has not been defined. PMID:21961671
Treating Selective Mutism Using Modular CBT for Child Anxiety: A Case Study
ERIC Educational Resources Information Center
Reuther, Erin T.; Davis, Thompson E., III; Moree, Brittany N.; Matson, Johnny L.
2011-01-01
Selective mutism is a rare, debilitating condition usually seen in children. Unfortunately, there is little research examining effective treatments for this disorder, and designing an evidence-based treatment plan can be difficult. This case study presents the evidence-based treatment of an 8-year-old Caucasian boy with selective mutism using an…
Rational Modular RNA Engineering Based on In Vivo Profiling of Structural Accessibility.
Leistra, Abigail N; Amador, Paul; Buvanendiran, Aishwarya; Moon-Walker, Alex; Contreras, Lydia M
2017-12-15
Bacterial small RNAs (sRNAs) have been established as powerful parts for controlling gene expression. However, development and application of engineered sRNAs has primarily focused on regulating novel synthetic targets. In this work, we demonstrate a rational modular RNA engineering approach that uses in vivo structural accessibility measurements to tune the regulatory activity of a multisubstrate sRNA for differential control of its native target network. Employing the CsrB global sRNA regulator as a model system, we use published in vivo structural accessibility data to infer the contribution of its local structures (substructures) to function and select a subset for engineering. We then modularly recombine the selected substructures, differentially representing those of presumed high or low functional contribution, to build a library of 21 CsrB variants. Using fluorescent translational reporter assays, we demonstrate that the CsrB variants achieve a 5-fold gradient of control of well-characterized Csr network targets. Interestingly, results suggest that less conserved local structures within long, multisubstrate sRNAs may represent better targets for rational engineering than their well-conserved counterparts. Lastly, mapping the impact of sRNA variants on a signature Csr network phenotype indicates the potential of this approach for tuning the activity of global sRNA regulators in the context of metabolic engineering applications.
ALC: automated reduction of rule-based models
Koschorreck, Markus; Gilles, Ernst Dieter
2008-01-01
Background Combinatorial complexity is a challenging problem for the modeling of cellular signal transduction since the association of a few proteins can give rise to an enormous amount of feasible protein complexes. The layer-based approach is an approximative, but accurate method for the mathematical modeling of signaling systems with inherent combinatorial complexity. The number of variables in the simulation equations is highly reduced and the resulting dynamic models show a pronounced modularity. Layer-based modeling allows for the modeling of systems not accessible previously. Results ALC (Automated Layer Construction) is a computer program that highly simplifies the building of reduced modular models, according to the layer-based approach. The model is defined using a simple but powerful rule-based syntax that supports the concepts of modularity and macrostates. ALC performs consistency checks on the model definition and provides the model output in different formats (C MEX, MATLAB, Mathematica and SBML) as ready-to-run simulation files. ALC also provides additional documentation files that simplify the publication or presentation of the models. The tool can be used offline or via a form on the ALC website. Conclusion ALC allows for a simple rule-based generation of layer-based reduced models. The model files are given in different formats as ready-to-run simulation files. PMID:18973705
ERIC Educational Resources Information Center
Shatz, Marilyn
1994-01-01
Jeni Yamada's "Laura" and Michael Tomasello's "First Verbs" continue a tradition of providing useful information on the language ability of individuals in a depth rarely found in multisubject studies; however, these efforts are unusual for case studies in that both take strong theoretical positions on the essence of language and language learning.…
Approximation of Engine Casing Temperature Constraints for Casing Mounted Electronics
NASA Technical Reports Server (NTRS)
Kratz, Jonathan L.; Culley, Dennis E.; Chapman, Jeffryes W.
2017-01-01
The performance of propulsion engine systems is sensitive to weight and volume considerations. This can severely constrain the configuration and complexity of the control system hardware. Distributed Engine Control technology is a response to these concerns by providing more flexibility in designing the control system, and by extension, more functionality leading to higher performing engine systems. Consequently, there can be a weight benefit to mounting modular electronic hardware on the engine core casing in a high temperature environment. This paper attempts to quantify the in-flight temperature constraints for engine casing mounted electronics. In addition, an attempt is made at studying heat soak back effects. The Commercial Modular Aero Propulsion System Simulation 40k (C-MAPSS40k) software is leveraged with real flight data as the inputs to the simulation. A two-dimensional (2-D) heat transfer model is integrated with the engine simulation to approximate the temperature along the length of the engine casing. This modification to the existing C-MAPSS40k software will provide tools and methodologies to develop a better understanding of the requirements for the embedded electronics hardware in future engine systems. Results of the simulations are presented and their implications on temperature constraints for engine casing mounted electronics is discussed.
Approximation of Engine Casing Temperature Constraints for Casing Mounted Electronics
NASA Technical Reports Server (NTRS)
Kratz, Jonathan; Culley, Dennis; Chapman, Jeffryes
2016-01-01
The performance of propulsion engine systems is sensitive to weight and volume considerations. This can severely constrain the configuration and complexity of the control system hardware. Distributed Engine Control technology is a response to these concerns by providing more flexibility in designing the control system, and by extension, more functionality leading to higher performing engine systems. Consequently, there can be a weight benefit to mounting modular electronic hardware on the engine core casing in a high temperature environment. This paper attempts to quantify the in-flight temperature constraints for engine casing mounted electronics. In addition, an attempt is made at studying heat soak back effects. The Commercial Modular Aero Propulsion System Simulation 40k (C-MAPSS40k) software is leveraged with real flight data as the inputs to the simulation. A two-dimensional (2-D) heat transfer model is integrated with the engine simulation to approximate the temperature along the length of the engine casing. This modification to the existing C-MAPSS40k software will provide tools and methodologies to develop a better understanding of the requirements for the embedded electronics hardware in future engine systems. Results of the simulations are presented and their implications on temperature constraints for engine casing mounted electronics is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abhyankar, Vinay V.; Wu, Meiye; Koh, Chung -Yan
Microfluidic barrier tissue models have emerged as advanced in vitro tools to explore interactions with external stimuli such as drug candidates, pathogens, or toxins. However, the procedures required to establish and maintain these systems can be challenging to implement for end users, particularly those without significant in-house engineering expertise. Here we present a module-based approach that provides an easy-to-use workflow to establish, maintain, and analyze microscale tissue constructs. Our approach begins with a removable culture insert that is magnetically coupled, decoupled, and transferred between standalone, prefabricated microfluidic modules for simplified cell seeding, culture, and downstream analysis. The modular approach allowsmore » several options for perfusion including standard syringe pumps or integration with a self-contained gravity-fed module for simple cell maintenance. As proof of concept, we establish a culture of primary human microvascular endothelial cells (HMVEC) and report combined surface protein imaging and gene expression after controlled apical stimulation with the bacterial endotoxin lipopolysaccharide (LPS). We also demonstrate the feasibility of incorporating hydrated biomaterial interfaces into the microfluidic architecture by integrating an ultra-thin (< 1 μm), self-assembled hyaluronic acid/peptide amphiphile culture membrane with brain-specific Young’s modulus (~ 1kPa). To highlight the importance of including biomimetic interfaces into microscale models we report multi-tiered readouts from primary rat cortical cells cultured on the self-assembled membrane and compare a panel of mRNA targets with primary brain tissue signatures. As a result, we anticipate that the modular approach and simplified operational workflows presented here will enable a wide range of research groups to incorporate microfluidic barrier tissue models into their work.« less
Abhyankar, Vinay V.; Wu, Meiye; Koh, Chung -Yan; ...
2016-05-26
Microfluidic barrier tissue models have emerged as advanced in vitro tools to explore interactions with external stimuli such as drug candidates, pathogens, or toxins. However, the procedures required to establish and maintain these systems can be challenging to implement for end users, particularly those without significant in-house engineering expertise. Here we present a module-based approach that provides an easy-to-use workflow to establish, maintain, and analyze microscale tissue constructs. Our approach begins with a removable culture insert that is magnetically coupled, decoupled, and transferred between standalone, prefabricated microfluidic modules for simplified cell seeding, culture, and downstream analysis. The modular approach allowsmore » several options for perfusion including standard syringe pumps or integration with a self-contained gravity-fed module for simple cell maintenance. As proof of concept, we establish a culture of primary human microvascular endothelial cells (HMVEC) and report combined surface protein imaging and gene expression after controlled apical stimulation with the bacterial endotoxin lipopolysaccharide (LPS). We also demonstrate the feasibility of incorporating hydrated biomaterial interfaces into the microfluidic architecture by integrating an ultra-thin (< 1 μm), self-assembled hyaluronic acid/peptide amphiphile culture membrane with brain-specific Young’s modulus (~ 1kPa). To highlight the importance of including biomimetic interfaces into microscale models we report multi-tiered readouts from primary rat cortical cells cultured on the self-assembled membrane and compare a panel of mRNA targets with primary brain tissue signatures. As a result, we anticipate that the modular approach and simplified operational workflows presented here will enable a wide range of research groups to incorporate microfluidic barrier tissue models into their work.« less
Ertosun, Mehmet Günhan; Rubin, Daniel L
2015-01-01
Brain glioma is the most common primary malignant brain tumors in adults with different pathologic subtypes: Lower Grade Glioma (LGG) Grade II, Lower Grade Glioma (LGG) Grade III, and Glioblastoma Multiforme (GBM) Grade IV. The survival and treatment options are highly dependent of this glioma grade. We propose a deep learning-based, modular classification pipeline for automated grading of gliomas using digital pathology images. Whole tissue digitized images of pathology slides obtained from The Cancer Genome Atlas (TCGA) were used to train our deep learning modules. Our modular pipeline provides diagnostic quality statistics, such as precision, sensitivity and specificity, of the individual deep learning modules, and (1) facilitates training given the limited data in this domain, (2) enables exploration of different deep learning structures for each module, (3) leads to developing less complex modules that are simpler to analyze, and (4) provides flexibility, permitting use of single modules within the framework or use of other modeling or machine learning applications, such as probabilistic graphical models or support vector machines. Our modular approach helps us meet the requirements of minimum accuracy levels that are demanded by the context of different decision points within a multi-class classification scheme. Convolutional Neural Networks are trained for each module for each sub-task with more than 90% classification accuracies on validation data set, and achieved classification accuracy of 96% for the task of GBM vs LGG classification, 71% for further identifying the grade of LGG into Grade II or Grade III on independent data set coming from new patients from the multi-institutional repository.
Modular programming for tuberculosis control, the "AuTuMN" platform.
Trauer, James McCracken; Ragonnet, Romain; Doan, Tan Nhut; McBryde, Emma Sue
2017-08-07
Tuberculosis (TB) is now the world's leading infectious killer and major programmatic advances will be needed if we are to meet the ambitious new End TB Targets. Although mathematical models are powerful tools for TB control, such models must be flexible enough to capture the complexity and heterogeneity of the global TB epidemic. This includes simulating a disease that affects age groups and other risk groups differently, has varying levels of infectiousness depending upon the organ involved and varying outcomes from treatment depending on the drug resistance pattern of the infecting strain. We adopted sound basic principles of software engineering to develop a modular software platform for simulation of TB control interventions ("AuTuMN"). These included object-oriented programming, logical linkage between modules and consistency of code syntax and variable naming. The underlying transmission dynamic model incorporates optional stratification by age, risk group, strain and organ involvement, while our approach to simulating time-variant programmatic parameters better captures the historical progression of the epidemic. An economic model is overlaid upon this epidemiological model which facilitates comparison between new and existing technologies. A "Model runner" module allows for predictions of future disease burden trajectories under alternative scenario situations, as well as uncertainty, automatic calibration, cost-effectiveness and optimisation. The model has now been used to guide TB control strategies across a range of settings and countries, with our modular approach enabling repeated application of the tool without the need for extensive modification for each application. The modular construction of the platform minimises errors, enhances readability and collaboration between multiple programmers and enables rapid adaptation to answer questions in a broad range of contexts without the need for extensive re-programming. Such features are particularly important in simulating an epidemic as complex and diverse as TB.
Imaging Total Stations - Modular and Integrated Concepts
NASA Astrophysics Data System (ADS)
Hauth, Stefan; Schlüter, Martin
2010-05-01
Keywords: 3D-Metrology, Engineering Geodesy, Digital Image Processing Initialized in 2009, the Institute for Spatial Information and Surveying Technology i3mainz, Mainz University of Applied Sciences, forces research towards modular concepts for imaging total stations. On the one hand, this research is driven by the successful setup of high precision imaging motor theodolites in the near past, on the other hand it is pushed by the actual introduction of integrated imaging total stations to the positioning market by the manufacturers Topcon and Trimble. Modular concepts for imaging total stations are manufacturer independent to a large extent and consist of a particular combination of accessory hardware, software and algorithmic procedures. The hardware part consists mainly of an interchangeable eyepiece adapter offering opportunities for digital imaging and motorized focus control. An easy assembly and disassembly in the field is possible allowing the user to switch between the classical and the imaging use of a robotic total station. The software part primarily has to ensure hardware control, but several level of algorithmic support might be added and have to be distinguished. Algorithmic procedures allow to reach several levels of calibration concerning the geometry of the external digital camera and the total station. We deliver insight in our recent developments and quality characteristics. Both the modular and the integrated approach seem to have its individual strengths and weaknesses. Therefore we expect that both approaches might point at different target applications. Our aim is a better understanding of appropriate applications for robotic imaging total stations. First results are presented. Stefan Hauth, Martin Schlüter i3mainz - Institut für Raumbezogene Informations- und Messtechnik FH Mainz University of Applied Sciences Lucy-Hillebrand-Straße 2, 55128 Mainz, Germany
Ertosun, Mehmet Günhan; Rubin, Daniel L.
2015-01-01
Brain glioma is the most common primary malignant brain tumors in adults with different pathologic subtypes: Lower Grade Glioma (LGG) Grade II, Lower Grade Glioma (LGG) Grade III, and Glioblastoma Multiforme (GBM) Grade IV. The survival and treatment options are highly dependent of this glioma grade. We propose a deep learning-based, modular classification pipeline for automated grading of gliomas using digital pathology images. Whole tissue digitized images of pathology slides obtained from The Cancer Genome Atlas (TCGA) were used to train our deep learning modules. Our modular pipeline provides diagnostic quality statistics, such as precision, sensitivity and specificity, of the individual deep learning modules, and (1) facilitates training given the limited data in this domain, (2) enables exploration of different deep learning structures for each module, (3) leads to developing less complex modules that are simpler to analyze, and (4) provides flexibility, permitting use of single modules within the framework or use of other modeling or machine learning applications, such as probabilistic graphical models or support vector machines. Our modular approach helps us meet the requirements of minimum accuracy levels that are demanded by the context of different decision points within a multi-class classification scheme. Convolutional Neural Networks are trained for each module for each sub-task with more than 90% classification accuracies on validation data set, and achieved classification accuracy of 96% for the task of GBM vs LGG classification, 71% for further identifying the grade of LGG into Grade II or Grade III on independent data set coming from new patients from the multi-institutional repository. PMID:26958289
Zamarreno-Ramos, C; Linares-Barranco, A; Serrano-Gotarredona, T; Linares-Barranco, B
2013-02-01
This paper presents a modular, scalable approach to assembling hierarchically structured neuromorphic Address Event Representation (AER) systems. The method consists of arranging modules in a 2D mesh, each communicating bidirectionally with all four neighbors. Address events include a module label. Each module includes an AER router which decides how to route address events. Two routing approaches have been proposed, analyzed and tested, using either destination or source module labels. Our analyses reveal that depending on traffic conditions and network topologies either one or the other approach may result in better performance. Experimental results are given after testing the approach using high-end Virtex-6 FPGAs. The approach is proposed for both single and multiple FPGAs, in which case a special bidirectional parallel-serial AER link with flow control is exploited, using the FPGA Rocket-I/O interfaces. Extensive test results are provided exploiting convolution modules of 64 × 64 pixels with kernels with sizes up to 11 × 11, which process real sensory data from a Dynamic Vision Sensor (DVS) retina. One single Virtex-6 FPGA can hold up to 64 of these convolution modules, which is equivalent to a neural network with 262 × 10(3) neurons and almost 32 million synapses.
Treating selective mutism using modular CBT for child anxiety: a case study.
Reuther, Erin T; Davis, Thompson E; Moree, Brittany N; Matson, Johnny L
2011-01-01
Selective mutism is a rare, debilitating condition usually seen in children. Unfortunately, there is little research examining effective treatments for this disorder, and designing an evidence-based treatment plan can be difficult. This case study presents the evidence-based treatment of an 8-year-old Caucasian boy with selective mutism using an established treatment for anxiety--Modular Cognitive-Behavioral Therapy for Childhood Anxiety Disorders (Chorpita, 2007). The treatment consisted of 21 sessions and included modules on psychoeducation, exposure, cognitive restructuring, social skills, and maintenance and relapse prevention. The client's symptoms were greatly improved by the end of treatment based on fear hierarchy ratings, self-report and parent-report questionnaires, and child and parent clinical interviews. In addition, at discharge the client no longer met criteria for selective mutism. Improvements were maintained when the client was reassessed at 1-month and 6-month follow-up appointments.
An object-oriented forest landscape model and its representation of tree species
Hong S. He; David J. Mladenoff; Joel Boeder
1999-01-01
LANDIS is a forest landscape model that simulates the interaction of large landscape processes and forest successional dynamics at tree species level. We discuss how object-oriented design (OOD) approaches such as modularity, abstraction and encapsulation are integrated into the design of LANDIS. We show that using OOD approaches, model decisions (olden as model...
Hollunder, Jens; Friedel, Maik; Kuiper, Martin; Wilhelm, Thomas
2010-04-01
Many large 'omics' datasets have been published and many more are expected in the near future. New analysis methods are needed for best exploitation. We have developed a graphical user interface (GUI) for easy data analysis. Our discovery of all significant substructures (DASS) approach elucidates the underlying modularity, a typical feature of complex biological data. It is related to biclustering and other data mining approaches. Importantly, DASS-GUI also allows handling of multi-sets and calculation of statistical significances. DASS-GUI contains tools for further analysis of the identified patterns: analysis of the pattern hierarchy, enrichment analysis, module validation, analysis of additional numerical data, easy handling of synonymous names, clustering, filtering and merging. Different export options allow easy usage of additional tools such as Cytoscape. Source code, pre-compiled binaries for different systems, a comprehensive tutorial, case studies and many additional datasets are freely available at http://www.ifr.ac.uk/dass/gui/. DASS-GUI is implemented in Qt.
Role models for complex networks
NASA Astrophysics Data System (ADS)
Reichardt, J.; White, D. R.
2007-11-01
We present a framework for automatically decomposing (“block-modeling”) the functional classes of agents within a complex network. These classes are represented by the nodes of an image graph (“block model”) depicting the main patterns of connectivity and thus functional roles in the network. Using a first principles approach, we derive a measure for the fit of a network to any given image graph allowing objective hypothesis testing. From the properties of an optimal fit, we derive how to find the best fitting image graph directly from the network and present a criterion to avoid overfitting. The method can handle both two-mode and one-mode data, directed and undirected as well as weighted networks and allows for different types of links to be dealt with simultaneously. It is non-parametric and computationally efficient. The concepts of structural equivalence and modularity are found as special cases of our approach. We apply our method to the world trade network and analyze the roles individual countries play in the global economy.
The COLA Collision Avoidance Method
NASA Astrophysics Data System (ADS)
Assmann, K.; Berger, J.; Grothkopp, S.
2009-03-01
In the following we present a collision avoidance method named COLA. The method has been designed to predict collisions for Earth orbiting spacecraft on any orbits, including orbit changes, with other space-born objects. The point in time of a collision and the collision probability are determined. To guarantee effective processing the COLA method uses a modular design and is composed of several components which are either developed within this work or deduced from existing algorithms: A filtering module, the close approach determination, the collision detection and the collision probability calculation. A software tool which implements the COLA method has been verified using various test cases built from sample missions. This software has been implemented in the C++ programming language and serves as a universal collision detection tool at LSE Space Engineering & Operations AG.
Neural network identification of aircraft nonlinear aerodynamic characteristics
NASA Astrophysics Data System (ADS)
Egorchev, M. V.; Tiumentsev, Yu V.
2018-02-01
The simulation problem for the controlled aircraft motion is considered in the case of imperfect knowledge of the modeling object and its operating conditions. The work aims to develop a class of modular semi-empirical dynamic models that combine the capabilities of theoretical and neural network modeling. We consider the use of semi-empirical neural network models for solving the problem of identifying aerodynamic characteristics of an aircraft. We also discuss the formation problem for a representative set of data characterizing the behavior of a simulated dynamic system, which is one of the critical tasks in the synthesis of ANN-models. The effectiveness of the proposed approach is demonstrated using a simulation example of the aircraft angular motion and identifying the corresponding coefficients of aerodynamic forces and moments.
Detecting Network Communities: An Application to Phylogenetic Analysis
Andrade, Roberto F. S.; Rocha-Neto, Ivan C.; Santos, Leonardo B. L.; de Santana, Charles N.; Diniz, Marcelo V. C.; Lobão, Thierry Petit; Goés-Neto, Aristóteles; Pinho, Suani T. R.; El-Hani, Charbel N.
2011-01-01
This paper proposes a new method to identify communities in generally weighted complex networks and apply it to phylogenetic analysis. In this case, weights correspond to the similarity indexes among protein sequences, which can be used for network construction so that the network structure can be analyzed to recover phylogenetically useful information from its properties. The analyses discussed here are mainly based on the modular character of protein similarity networks, explored through the Newman-Girvan algorithm, with the help of the neighborhood matrix . The most relevant networks are found when the network topology changes abruptly revealing distinct modules related to the sets of organisms to which the proteins belong. Sound biological information can be retrieved by the computational routines used in the network approach, without using biological assumptions other than those incorporated by BLAST. Usually, all the main bacterial phyla and, in some cases, also some bacterial classes corresponded totally (100%) or to a great extent (>70%) to the modules. We checked for internal consistency in the obtained results, and we scored close to 84% of matches for community pertinence when comparisons between the results were performed. To illustrate how to use the network-based method, we employed data for enzymes involved in the chitin metabolic pathway that are present in more than 100 organisms from an original data set containing 1,695 organisms, downloaded from GenBank on May 19, 2007. A preliminary comparison between the outcomes of the network-based method and the results of methods based on Bayesian, distance, likelihood, and parsimony criteria suggests that the former is as reliable as these commonly used methods. We conclude that the network-based method can be used as a powerful tool for retrieving modularity information from weighted networks, which is useful for phylogenetic analysis. PMID:21573202
Theory for the Emergence of Modularity in Complex Systems
NASA Astrophysics Data System (ADS)
Deem, Michael; Park, Jeong-Man
2013-03-01
Biological systems are modular, and this modularity evolves over time and in different environments. A number of observations have been made of increased modularity in biological systems under increased environmental pressure. We here develop a theory for the dynamics of modularity in these systems. We find a principle of least action for the evolved modularity at long times. In addition, we find a fluctuation dissipation relation for the rate of change of modularity at short times. We discuss a number of biological and social systems that can be understood with this framework. The modularity of the protein-protein interaction network increases when yeast are exposed to heat shock, and the modularity of the protein-protein networks in both yeast and E. coli appears to have increased over evolutionary time. Food webs in low-energy, stressful environments are more modular than those in plentiful environments, arid ecologies are more modular during droughts, and foraging of sea otters is more modular when food is limiting. The modularity of social networks changes over time: stock brokers instant messaging networks are more modular under stressful market conditions, criminal networks are more modular under increased police pressure, and world trade network modularity has decreased
Log corrections to entropy of three dimensional black holes with soft hair
NASA Astrophysics Data System (ADS)
Grumiller, Daniel; Perez, Alfredo; Tempo, David; Troncoso, Ricardo
2017-08-01
We calculate log corrections to the entropy of three-dimensional black holes with "soft hairy" boundary conditions. Their thermodynamics possesses some special features that preclude a naive direct evaluation of these corrections, so we follow two different approaches. The first one exploits that the BTZ black hole belongs to the spectrum of Brown-Henneaux as well as soft hairy boundary conditions, so that the respective log corrections are related through a suitable change of the thermodynamic ensemble. In the second approach the analogue of modular invariance is considered for dual theories with anisotropic scaling of Lifshitz type with dynamical exponent z at the boundary. On the gravity side such scalings arise for KdV-type boundary conditions, which provide a specific 1-parameter family of multi-trace deformations of the usual AdS3/CFT2 setup, with Brown-Henneaux corresponding to z = 1 and soft hairy boundary conditions to the limiting case z → 0+. Both approaches agree in the case of BTZ black holes for any non-negative z. Finally, for soft hairy boundary conditions we show that not only the leading term, but also the log corrections to the entropy of black flowers endowed with affine û (1) soft hair charges exclusively depend on the zero modes and hence coincide with the ones for BTZ black holes.
Microprocessor Simulation: A Training Technique.
ERIC Educational Resources Information Center
Oscarson, David J.
1982-01-01
Describes the design and application of a microprocessor simulation using BASIC for formal training of technicians and managers and as a management tool. Illustrates the utility of the modular approach for the instruction and practice of decision-making techniques. (SK)
Too far ahead of the IT curve?
Glaser, John P
2007-01-01
Peachtree Healthcare has major IT infrastructure problems, and CEO Max Berndt is struggling to find the right fix. He can go with a single set of systems and applications that will provide consistency across Peachtree's facilities but may not give doctors enough flexibility. Or he can choose service-oriented architecture (SOA), a modular design that will allow Peachtree to standardize incrementally and selectively but poses certain risks as a newer technology. What should he do? Four experts comment on this fictional case study, authored by John P. Glaser, CIO for Partners HealthCare System. George C. Halvorson, the chairman and CEO of Kaiser Permanente, warns against using untested methodologies such as SOA in a health care environment, where lives are at stake. He says Peachtree's management must clarify its overall IT vision before devising a plan to achieve each of its objectives. Monte Ford, the chief information officer at American Airlines, says Peachtree can gradually replace its old systems with SOA. An incremental approach, he points out, would not only minimize risk but also enhance flexibility and control, and would allow IT to shift priorities along the way. Randy Heffner, a vice president at Forrester Research who focuses on technology architectures for computer-based business systems, thinks SOA's modular approach to business design would best meet Peachtree's need for flexibility. He says that Peachtree's CIO sees SOA as a new product category but should instead view it as a methodology. John A. Kastor, a professor at the University of Maryland School of Medicine, questions the goal of standardized care. He argues that it would be difficult to persuade doctors, many of whom are fiercely independent, to follow rigid patterns in their work.
An Approach to Automated Fusion System Design and Adaptation
Fritze, Alexander; Mönks, Uwe; Holst, Christoph-Alexander; Lohweg, Volker
2017-01-01
Industrial applications are in transition towards modular and flexible architectures that are capable of self-configuration and -optimisation. This is due to the demand of mass customisation and the increasing complexity of industrial systems. The conversion to modular systems is related to challenges in all disciplines. Consequently, diverse tasks such as information processing, extensive networking, or system monitoring using sensor and information fusion systems need to be reconsidered. The focus of this contribution is on distributed sensor and information fusion systems for system monitoring, which must reflect the increasing flexibility of fusion systems. This contribution thus proposes an approach, which relies on a network of self-descriptive intelligent sensor nodes, for the automatic design and update of sensor and information fusion systems. This article encompasses the fusion system configuration and adaptation as well as communication aspects. Manual interaction with the flexibly changing system is reduced to a minimum. PMID:28300762
An Approach to Automated Fusion System Design and Adaptation.
Fritze, Alexander; Mönks, Uwe; Holst, Christoph-Alexander; Lohweg, Volker
2017-03-16
Industrial applications are in transition towards modular and flexible architectures that are capable of self-configuration and -optimisation. This is due to the demand of mass customisation and the increasing complexity of industrial systems. The conversion to modular systems is related to challenges in all disciplines. Consequently, diverse tasks such as information processing, extensive networking, or system monitoring using sensor and information fusion systems need to be reconsidered. The focus of this contribution is on distributed sensor and information fusion systems for system monitoring, which must reflect the increasing flexibility of fusion systems. This contribution thus proposes an approach, which relies on a network of self-descriptive intelligent sensor nodes, for the automatic design and update of sensor and information fusion systems. This article encompasses the fusion system configuration and adaptation as well as communication aspects. Manual interaction with the flexibly changing system is reduced to a minimum.
Supramolecular gating of ion transport in nanochannels.
Kumar, B V V S Pavan; Rao, K Venkata; Sampath, S; George, Subi J; Eswaramoorthy, Muthusamy
2014-11-24
Several covalent strategies towards surface charge-reversal in nanochannels have been reported with the purpose of manipulating ion transport. However, covalent routes lack dynamism, modularity and post-synthetic flexibility, and hence restrict their applicability in different environments. Here, we introduce a facile non-covalent approach towards charge-reversal in nanochannels (<10 nm) using strong charge-transfer interactions between dicationic viologen (acceptor) and trianionic pyranine (donor). The polarity of ion transport was switched from anion selective to ambipolar to cation selective by controlling the extent of viologen bound to the pyranine. We could also regulate the ion transport with respect to pH by selecting a donor with pH-responsive functional groups. The modularity of this approach further allows facile integration of various functional groups capable of responding to stimuli such as light and temperature to modulate the transport of ions as well as molecules. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bischoff, Guido; Böröcz, Zoltan; Proll, Christian; Kleinheinz, Johannes; von Bally, Gert; Dirksen, Dieter
2007-08-01
Optical topometric 3D sensors such as laser scanners and fringe projection systems allow detailed digital acquisition of human body surfaces. For many medical applications, however, not only the current shape is important, but also its changes, e.g., in the course of surgical treatment. In such cases, time delays of several months between subsequent measurements frequently occur. A modular 3D coordinate measuring system based on the fringe projection technique is presented that allows 3D coordinate acquisition including calibrated color information, as well as the detection and visualization of deviations between subsequent measurements. In addition, parameters describing the symmetry of body structures are determined. The quantitative results of the analysis may be used as a basis for objective documentation of surgical therapy. The system is designed in a modular way, and thus, depending on the object of investigation, two or three cameras with different capabilities in terms of resolution and color reproduction can be utilized to optimize the set-up.
What is the role of curvature on the properties of nanomaterials for biomedical applications?
Solveyra, Estefania Gonzalez
2015-01-01
The use of nanomaterials for drug delivery and theranostics applications is a promising paradigm in nanomedicine, as it brings together the best features of nanotechnolgy, molecular biology and medicine. To fully exploit the synergistic potential of such interdisciplinary strategy, a comprehensive description of the interactions at the interface between nanomaterials and biological systems is not only crucial, but also mandatory. Routine strategies to engineer nanomaterial-based drugs comprise modifying their surface with biocompatible and targeting ligands, in many cases resorting to modular approaches that assume additive behavior. However, emergent behavior can be observed when combining confinement and curvature. The final properties of functionalized nanomaterials become dependent not only on the properties of their constituents but also on the geometry of the nano-bio interface, and on the local molecular environment. Modularity no longer holds, and the coupling between interactions, chemical equilibrium and molecular organization has to be directly addressed in order to design smart nanomaterials with controlled spatial functionalization envisioning optimized biomedical applications. Nanoparticle’s curvature becomes an integral part of the design strategy, enabling to control and engineer the chemical and surface properties with molecular precision. Understanding how NP size, morphology, and surface chemistry are interrelated will put us one step closer to engineering nanobiomaterials capable of mimicking biological structures and their behaviors, paving the way into applications and the possibility to elucidate the use of curvature by biological systems. PMID:26310432
2010-01-01
Background The modular approach to analysis of genetically modified organisms (GMOs) relies on the independence of the modules combined (i.e. DNA extraction and GM quantification). The validity of this assumption has to be proved on the basis of specific performance criteria. Results An experiment was conducted using, as a reference, the validated quantitative real-time polymerase chain reaction (PCR) module for detection of glyphosate-tolerant Roundup Ready® GM soybean (RRS). Different DNA extraction modules (CTAB, Wizard and Dellaporta), were used to extract DNA from different food/feed matrices (feed, biscuit and certified reference material [CRM 1%]) containing the target of the real-time PCR module used for validation. Purity and structural integrity (absence of inhibition) were used as basic criteria that a DNA extraction module must satisfy in order to provide suitable template DNA for quantitative real-time (RT) PCR-based GMO analysis. When performance criteria were applied (removal of non-compliant DNA extracts), the independence of GMO quantification from the extraction method and matrix was statistically proved, except in the case of Wizard applied to biscuit. A fuzzy logic-based procedure also confirmed the relatively poor performance of the Wizard/biscuit combination. Conclusions For RRS, this study recognises that modularity can be generally accepted, with the limitation of avoiding combining highly processed material (i.e. biscuit) with a magnetic-beads system (i.e. Wizard). PMID:20687918
NASA Astrophysics Data System (ADS)
Schumacher, F.; Friederich, W.; Lamara, S.
2016-02-01
We present a new conceptual approach to scattering-integral-based seismic full waveform inversion (FWI) that allows a flexible, extendable, modular and both computationally and storage-efficient numerical implementation. To achieve maximum modularity and extendability, interactions between the three fundamental steps carried out sequentially in each iteration of the inversion procedure, namely, solving the forward problem, computing waveform sensitivity kernels and deriving a model update, are kept at an absolute minimum and are implemented by dedicated interfaces. To realize storage efficiency and maximum flexibility, the spatial discretization of the inverted earth model is allowed to be completely independent of the spatial discretization employed by the forward solver. For computational efficiency reasons, the inversion is done in the frequency domain. The benefits of our approach are as follows: (1) Each of the three stages of an iteration is realized by a stand-alone software program. In this way, we avoid the monolithic, unflexible and hard-to-modify codes that have often been written for solving inverse problems. (2) The solution of the forward problem, required for kernel computation, can be obtained by any wave propagation modelling code giving users maximum flexibility in choosing the forward modelling method. Both time-domain and frequency-domain approaches can be used. (3) Forward solvers typically demand spatial discretizations that are significantly denser than actually desired for the inverted model. Exploiting this fact by pre-integrating the kernels allows a dramatic reduction of disk space and makes kernel storage feasible. No assumptions are made on the spatial discretization scheme employed by the forward solver. (4) In addition, working in the frequency domain effectively reduces the amount of data, the number of kernels to be computed and the number of equations to be solved. (5) Updating the model by solving a large equation system can be done using different mathematical approaches. Since kernels are stored on disk, it can be repeated many times for different regularization parameters without need to solve the forward problem, making the approach accessible to Occam's method. Changes of choice of misfit functional, weighting of data and selection of data subsets are still possible at this stage. We have coded our approach to FWI into a program package called ASKI (Analysis of Sensitivity and Kernel Inversion) which can be applied to inverse problems at various spatial scales in both Cartesian and spherical geometries. It is written in modern FORTRAN language using object-oriented concepts that reflect the modular structure of the inversion procedure. We validate our FWI method by a small-scale synthetic study and present first results of its application to high-quality seismological data acquired in the southern Aegean.
Discovering Multimodal Behavior in Ms. Pac-Man through Evolution of Modular Neural Networks.
Schrum, Jacob; Miikkulainen, Risto
2016-03-12
Ms. Pac-Man is a challenging video game in which multiple modes of behavior are required: Ms. Pac-Man must escape ghosts when they are threats and catch them when they are edible, in addition to eating all pills in each level. Past approaches to learning behavior in Ms. Pac-Man have treated the game as a single task to be learned using monolithic policy representations. In contrast, this paper uses a framework called Modular Multi-objective NEAT (MM-NEAT) to evolve modular neural networks. Each module defines a separate behavior. The modules are used at different times according to a policy that can be human-designed (i.e. Multitask) or discovered automatically by evolution. The appropriate number of modules can be fixed or discovered using a genetic operator called Module Mutation. Several versions of Module Mutation are evaluated in this paper. Both fixed modular networks and Module Mutation networks outperform monolithic networks and Multitask networks. Interestingly, the best networks dedicate modules to critical behaviors (such as escaping when surrounded after luring ghosts near a power pill) that do not follow the customary division of the game into chasing edible and escaping threat ghosts. The results demonstrate that MM-NEAT can discover interesting and effective behavior for agents in challenging games.
Khroyan, Taline V; Zhang, Jingxi; Yang, Liya; Zou, Bende; Xie, James; Pascual, Conrado; Malik, Adam; Xie, Julian; Zaveri, Nurulain T; Vazquez, Jacqueline; Polgar, Willma; Toll, Lawrence; Fang, Jidong; Xie, Xinmin
2017-01-01
SUMMARY To facilitate investigation of diverse rodent behaviours in rodents’ home cages, we have developed an integrated modular platform, the SmartCage™ system (AfaSci, Inc. Burlingame, CA, USA), which enables automated neurobehavioural phenotypic analysis and in vivo drug screening in a relatively higher-throughput and more objective manner.The individual platform consists of an infrared array, a vibration floor sensor and a variety of modular devices. One computer can simultaneously operate up to 16 platforms via USB cables.The SmartCage™ detects drug-induced increases and decreases in activity levels, as well as changes in movement patterns. Wake and sleep states of mice can be detected using the vibration floor sensor. The arousal state classification achieved up to 98% accuracy compared with results obtained by electroencephalography and electromyography. More complex behaviours, including motor coordination, anxiety-related behaviours and social approach behaviour, can be assessed using appropriate modular devices and the results obtained are comparable with results obtained using conventional methods.In conclusion, the SmartCage™ system provides an automated and accurate tool to quantify various rodent behaviours in a ‘stress-free’ environment. This system, combined with the validated testing protocols, offers powerful a tool kit for transgenic phenotyping and in vivo drug screening. PMID:22540540
Discovering Multimodal Behavior in Ms. Pac-Man through Evolution of Modular Neural Networks
Schrum, Jacob; Miikkulainen, Risto
2015-01-01
Ms. Pac-Man is a challenging video game in which multiple modes of behavior are required: Ms. Pac-Man must escape ghosts when they are threats and catch them when they are edible, in addition to eating all pills in each level. Past approaches to learning behavior in Ms. Pac-Man have treated the game as a single task to be learned using monolithic policy representations. In contrast, this paper uses a framework called Modular Multi-objective NEAT (MM-NEAT) to evolve modular neural networks. Each module defines a separate behavior. The modules are used at different times according to a policy that can be human-designed (i.e. Multitask) or discovered automatically by evolution. The appropriate number of modules can be fixed or discovered using a genetic operator called Module Mutation. Several versions of Module Mutation are evaluated in this paper. Both fixed modular networks and Module Mutation networks outperform monolithic networks and Multitask networks. Interestingly, the best networks dedicate modules to critical behaviors (such as escaping when surrounded after luring ghosts near a power pill) that do not follow the customary division of the game into chasing edible and escaping threat ghosts. The results demonstrate that MM-NEAT can discover interesting and effective behavior for agents in challenging games. PMID:27030803
Evolution of synthetic signaling scaffolds by recombination of modular protein domains.
Lai, Andicus; Sato, Paloma M; Peisajovich, Sergio G
2015-06-19
Signaling scaffolds are proteins that interact via modular domains with multiple partners, regulating signaling networks in space and time and providing an ideal platform from which to alter signaling functions. However, to better exploit scaffolds for signaling engineering, it is necessary to understand the full extent of their modularity. We used a directed evolution approach to identify, from a large library of randomly shuffled protein interaction domains, variants capable of rescuing the signaling defect of a yeast strain in which Ste5, the scaffold in the mating pathway, had been deleted. After a single round of selection, we identified multiple synthetic scaffold variants with diverse domain architectures, able to mediate mating pathway activation in a pheromone-dependent manner. The facility with which this signaling network accommodates changes in scaffold architecture suggests that the mating signaling complex does not possess a single, precisely defined geometry into which the scaffold has to fit. These relaxed geometric constraints may facilitate the evolution of signaling networks, as well as their engineering for applications in synthetic biology.
Xiao, Bailu; Hang, Lijun; Mei, Jun; ...
2014-09-04
This paper presents a modular cascaded H-bridge multilevel photovoltaic (PV) inverter for single- or three-phase grid-connected applications. The modular cascaded multilevel topology helps to improve the efficiency and flexibility of PV systems. To realize better utilization of PV modules and maximize the solar energy extraction, a distributed maximum power point tracking (MPPT) control scheme is applied to both single-phase and three-phase multilevel inverters, which allows the independent control of each dc-link voltage. For three-phase grid-connected applications, PV mismatches may introduce unbalanced supplied power, leading to unbalanced grid current. To solve this issue, a control scheme with modulation compensation is alsomore » proposed. An experimental three-phase 7-level cascaded H-bridge inverter has been built utilizing 9 H-bridge modules (3 modules per phase). Each H-bridge module is connected to a 185 W solar panel. Simulation and experimental results are presented to verify the feasibility of the proposed approach.« less
An Advanced Photovoltaic Array Regulator Module
NASA Technical Reports Server (NTRS)
Button, Robert M.
1996-01-01
Current trends in satellite design are focused on developing small, reliable, and inexpensive spacecraft. To that end, a modular power management and distribution system is proposed which will help transition the aerospace industry towards an assembly line approach to building spacecraft. The modular system is based on an innovative DC voltage boost converter called the Series Connected Boost Unit (SCBU). The SCBU uses any isolating DC-DC converter and adds a unique series connection. This simple modification provides the SCBU topology with many advantages over existing boost converters. Efficiencies of 94-98%, power densities above 1,000 W/kg, and inherent fault tolerance are just a few of the characteristics presented. Limitations of the SCBU technology are presented, and it is shown that the SCBU makes an ideal photovoltaic an-ay regulator. A set of photovoltaic power system requirements are presented that can be applied to almost any low Earth orbit satellite. Finally, a modular design based on the series connected boost unit is outlined and functional descriptions of the components are given.
Hardware Design and Testing of SUPERball, A Modular Tensegrity Robot
NASA Technical Reports Server (NTRS)
Sabelhaus, Andrew P.; Bruce, Jonathan; Caluwaerts, Ken; Chen, Yangxin; Lu, Dizhou; Liu, Yuejia; Agogino, Adrian K.; SunSpiral, Vytas; Agogino, Alice M.
2014-01-01
We are developing a system of modular, autonomous "tensegrity end-caps" to enable the rapid exploration of untethered tensegrity robot morphologies and functions. By adopting a self-contained modular approach, different end-caps with various capabilities (such as peak torques, or motor speeds), can be easily combined into new tensegrity robots composed of rods, cables, and actuators of different scale (such as in length, mass, peak loads, etc). As a first step in developing this concept, we are in the process of designing and testing the end-caps for SUPERball (Spherical Underactuated Planetary Exploration Robot), a project at the Dynamic Tensegrity Robotics Lab (DTRL) within NASA Ames's Intelligent Robotics Group. This work discusses the evolving design concepts and test results that have gone into the structural, mechanical, and sensing aspects of SUPERball. This representative tensegrity end-cap design supports robust and repeatable untethered mobility tests of the SUPERball, while providing high force, high displacement actuation, with a low-friction, compliant cabling system.
Evolutionary and Developmental Modules
Lacquaniti, Francesco; Ivanenko, Yuri P.; d’Avella, Andrea; Zelik, Karl E.; Zago, Myrka
2013-01-01
The identification of biological modules at the systems level often follows top-down decomposition of a task goal, or bottom-up decomposition of multidimensional data arrays into basic elements or patterns representing shared features. These approaches traditionally have been applied to mature, fully developed systems. Here we review some results from two other perspectives on modularity, namely the developmental and evolutionary perspective. There is growing evidence that modular units of development were highly preserved and recombined during evolution. We first consider a few examples of modules well identifiable from morphology. Next we consider the more difficult issue of identifying functional developmental modules. We dwell especially on modular control of locomotion to argue that the building blocks used to construct different locomotor behaviors are similar across several animal species, presumably related to ancestral neural networks of command. A recurrent theme from comparative studies is that the developmental addition of new premotor modules underlies the postnatal acquisition and refinement of several different motor behaviors in vertebrates. PMID:23730285
Evolutionary and developmental modules.
Lacquaniti, Francesco; Ivanenko, Yuri P; d'Avella, Andrea; Zelik, Karl E; Zago, Myrka
2013-01-01
The identification of biological modules at the systems level often follows top-down decomposition of a task goal, or bottom-up decomposition of multidimensional data arrays into basic elements or patterns representing shared features. These approaches traditionally have been applied to mature, fully developed systems. Here we review some results from two other perspectives on modularity, namely the developmental and evolutionary perspective. There is growing evidence that modular units of development were highly preserved and recombined during evolution. We first consider a few examples of modules well identifiable from morphology. Next we consider the more difficult issue of identifying functional developmental modules. We dwell especially on modular control of locomotion to argue that the building blocks used to construct different locomotor behaviors are similar across several animal species, presumably related to ancestral neural networks of command. A recurrent theme from comparative studies is that the developmental addition of new premotor modules underlies the postnatal acquisition and refinement of several different motor behaviors in vertebrates.
A neural network with modular hierarchical learning
NASA Technical Reports Server (NTRS)
Baldi, Pierre F. (Inventor); Toomarian, Nikzad (Inventor)
1994-01-01
This invention provides a new hierarchical approach for supervised neural learning of time dependent trajectories. The modular hierarchical methodology leads to architectures which are more structured than fully interconnected networks. The networks utilize a general feedforward flow of information and sparse recurrent connections to achieve dynamic effects. The advantages include the sparsity of units and connections, the modular organization. A further advantage is that the learning is much more circumscribed learning than in fully interconnected systems. The present invention is embodied by a neural network including a plurality of neural modules each having a pre-established performance capability wherein each neural module has an output outputting present results of the performance capability and an input for changing the present results of the performance capabilitiy. For pattern recognition applications, the performance capability may be an oscillation capability producing a repeating wave pattern as the present results. In the preferred embodiment, each of the plurality of neural modules includes a pre-established capability portion and a performance adjustment portion connected to control the pre-established capability portion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Yong-Hoon, E-mail: chaotics@snu.ac.kr; Park, Sangrok; Kim, Byong Sup
Since the first nuclear power was engaged in Korean electricity grid in 1978, intensive research and development has been focused on localization and standardization of large pressurized water reactors (PWRs) aiming at providing Korean peninsula and beyond with economical and safe power source. With increased priority placed on the safety since Chernobyl accident, Korean nuclear power R and D activity has been diversified into advanced PWR, small modular PWR and generation IV reactors. After the outbreak of Fukushima accident, inherently safe small modular reactor (SMR) receives growing interest in Korea and Europe. In this paper, we will describe recent statusmore » of evolving designs of SMR, their advantages and challenges. In particular, the conceptual design of lead-bismuth cooled SMR in Korea, URANUS with 40∼70 MWe is examined in detail. This paper will cover a framework of the program and a strategy for the successful deployment of small modular reactor how the goals would entail and the approach to collaboration with other entities.« less
Fujita, Yuki; Ishikawa, Junya; Furuta, Hiroyuki; Ikawa, Yoshiya
2010-08-26
In vitro selection with long random RNA libraries has been used as a powerful method to generate novel functional RNAs, although it often requires laborious structural analysis of isolated RNA molecules. Rational RNA design is an attractive alternative to avoid this laborious step, but rational design of catalytic modules is still a challenging task. A hybrid strategy of in vitro selection and rational design has been proposed. With this strategy termed "design and selection," new ribozymes can be generated through installation of catalytic modules onto RNA scaffolds with defined 3D structures. This approach, the concept of which was inspired by the modular architecture of naturally occurring ribozymes, allows prediction of the overall architectures of the resulting ribozymes, and the structural modularity of the resulting ribozymes allows modification of their structures and functions. In this review, we summarize the design, generation, properties, and engineering of four classes of ligase ribozyme generated by design and selection.
Engineering modular and orthogonal genetic logic gates for robust digital-like synthetic biology.
Wang, Baojun; Kitney, Richard I; Joly, Nicolas; Buck, Martin
2011-10-18
Modular and orthogonal genetic logic gates are essential for building robust biologically based digital devices to customize cell signalling in synthetic biology. Here we constructed an orthogonal AND gate in Escherichia coli using a novel hetero-regulation module from Pseudomonas syringae. The device comprises two co-activating genes hrpR and hrpS controlled by separate promoter inputs, and a σ(54)-dependent hrpL promoter driving the output. The hrpL promoter is activated only when both genes are expressed, generating digital-like AND integration behaviour. The AND gate is demonstrated to be modular by applying new regulated promoters to the inputs, and connecting the output to a NOT gate module to produce a combinatorial NAND gate. The circuits were assembled using a parts-based engineering approach of quantitative characterization, modelling, followed by construction and testing. The results show that new genetic logic devices can be engineered predictably from novel native orthogonal biological control elements using quantitatively in-context characterized parts. © 2011 Macmillan Publishers Limited. All rights reserved.
Hierarchy Software Development Framework (h-dp-fwk) project
NASA Astrophysics Data System (ADS)
Zaytsev, A.
2010-04-01
Hierarchy Software Development Framework provides a lightweight tool for building portable modular applications for performing automated data analysis tasks in a batch mode. The history of design and development activities devoted to the project has begun in March 2005 and from the very beginning it was targeting the case of building experimental data processing applications for the CMD-3 experiment which is being commissioned at Budker Institute of Nuclear Physics (BINP, Novosibirsk, Russia). Its design addresses the generic case of modular data processing application operating within the well defined distributed computing environment. The main features of the framework are modularity, built-in message and data exchange mechanisms, XInclude and XML schema enabled XML configuration management tools, dedicated log management tools, internal debugging tools, both dynamic and static module chains support, internal DSO version and consistency checking, well defined API for developing specialized frameworks. It is supported on Scientific Linux 4 and 5 and planned to be ported to other platforms as well. The project is provided with the comprehensive set of technical documentation and users' guides. The licensing schema for the source code, binaries and documentation implies that the product is free for non-commercial use. Although the development phase is not over and many features are to be implemented yet the project is considered ready for public use and creating applications in various fields including development of events reconstruction software for small and moderate scale HEP experiments.
Arthrodesis in septic knees using a long intramedullary nail: 17 consecutive cases.
Leroux, B; Aparicio, G; Fontanin, N; Ohl, X; Madi, K; Dehoux, E; Diallo, S
2013-06-01
Intramedullary nailing using long or modular nails is the most reliable mean of achieving femorotibial fusion. Here, we report the operative, clinical, functional, and radiological outcomes of 17 long intramedullary nail arthodeses in patients with infection. Clinical and functional outcomes after long intramedullary nailing are at least as good as those obtained using other implants. We retrospectively reevaluated 17 patients after unilateral two-stage knee arthrodesis with a long titanium intramedullary nail and autologous bone grafting. We evaluated satisfaction, leg length discrepancy, and function (Lequesne and WOMAC indices). Radiographs were obtained to assess fusion, time to fusion, and femorotibial angles. No cases of material failure were recorded. One or more complications occurred in seven patients. Mean limb shortening was 27.6mm. Of the 17 patients, 15 were satisfied with the procedure. The mean Lequesne index was 10.5/24 and the mean overall WOMAC score was 26/88. Fusion was achieved in 16 patients, with a mean time to fusion of 5 months. Mean femorotibial angles were 178.6° of varus and 1.9° of flexion. This simple and rapid surgical technique provides functional outcomes similar to those obtained using modular nails. The fusion rate is high. Nail extraction is simple and causes minimal damage, in contrast to modular nails. Increased attention to misalignment is needed. Level IV, retrospective study. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Improvements in SMR Modular Construction through Supply Chain Optimization and Lessons Learned
DOE Office of Scientific and Technical Information (OSTI.GOV)
White III, Chelsea C.; Petrovic, Bojan
Affordable energy is a critical societal need. Capital construction cost is a significant portion of nuclear energy cost. By controlling and reducing cost, companies can build more competitive nuclear power plants and hence provide access to more affordable energy. Modular construction provides an opportunity to reduce the cost of construction, and as projects scale up in number, the cost of each unit can be further reduced. The objective of this project was to advance design and construction methods for manufacturing Small Modular Reactors (SMRs), and in particular to improve modular construction techniques and develop best practices for designing and operatingmore » supply chains that take advantage of these techniques. The overarching objectives were to accelerate the construction schedule and reduce its variability, reduce the cost of construction, reduce interest costs accrued during construction (IDC), and thus enhance the economic attractiveness of SMRs. Our fundamental measure of merit was total capital investment cost (TCIC). To achieve these objectives, this project developed a decision support system, EVAL, to support identifying, addressing, and resolving or ameliorating challenges and deficiencies in the current modular construction approach. The results of this effort were consistent with the facts that the cost of a construction activity is often smallest when accomplished in the factory, greatest when accomplished at the construction site, and at an intermediate level when accomplished at an assembly area close to the construction site. Further, EVAL can aid in providing insight into ways to reduce waste, improve quality, efficiency, and throughput and reflects the fact that the more done early in the construction process, i.e., in the factory, the more upfront funding is required and hence the more IDC will be accrued. The analysis has lead to a better understanding of circumstances under which modular construction performed mainly in the factory will result in lower expected total cost, relative to more traditional, on-site construction procedures. Further, we anticipate that EVAL can be used to gain insight regarding what role standardization can play in order for modularization to be most effectively defined. Such results would ultimately benefit all (small and large) new nuclear construction.« less
Analysis of In-Space Assembly of Modular Systems
NASA Technical Reports Server (NTRS)
Moses, Robert W.; VanLaak, James; Johnson, Spencer L.; Chytka, Trina M.; Reeves, John D.; Todd, B. Keith; Moe, Rud V.; Stambolian, Damon B.
2005-01-01
Early system-level life cycle assessments facilitate cost effective optimization of system architectures to enable implementation of both modularity and in-space assembly, two key Exploration Systems Research & Technology (ESR&T) Strategic Challenges. Experiences with the International Space Station (ISS) demonstrate that the absence of this rigorous analysis can result in increased cost and operational risk. An effort is underway, called Analysis of In-Space Assembly of Modular Systems, to produce an innovative analytical methodology, including an evolved analysis toolset and proven processes in a collaborative engineering environment, to support the design and evaluation of proposed concepts. The unique aspect of this work is that it will produce the toolset, techniques and initial products to analyze and compare the detailed, life cycle costs and performance of different implementations of modularity for in-space assembly. A multi-Center team consisting of experienced personnel from the Langley Research Center, Johnson Space Center, Kennedy Space Center, and the Goddard Space Flight Center has been formed to bring their resources and experience to this development. At the end of this 30-month effort, the toolset will be ready to support the Exploration Program with an integrated assessment strategy that embodies all life-cycle aspects of the mission from design and manufacturing through operations to enable early and timely selection of an optimum solution among many competing alternatives. Already there are many different designs for crewed missions to the Moon that present competing views of modularity requiring some in-space assembly. The purpose of this paper is to highlight the approach for scoring competing designs.
ERIC Educational Resources Information Center
Singer, J. David
Offering a new approach to college publishing, the sample module presented here serves as an example of a basic unit from University Programs. Typical modules (each 16 to 64 pages), directed toward graduate and undergraduate students, provide original statements on central concepts, principles, theories, or problems in a particular discipline and…
Wang, Minghui; Londo, Jason P.; Acharya, Charlotte B.; Mitchell, Sharon E.; Sun, Qi; Reisch, Bruce; Cadle-Davidson, Lance
2015-01-01
Genotyping by sequencing (GBS) provides opportunities to generate high-resolution genetic maps at a low genotyping cost, but for highly heterozygous species, missing data and heterozygote undercalling complicate the creation of GBS genetic maps. To overcome these issues, we developed a publicly available, modular approach called HetMappS, which functions independently of parental genotypes and corrects for genotyping errors associated with heterozygosity. For linkage group formation, HetMappS includes both a reference-guided synteny pipeline and a reference-independent de novo pipeline. The de novo pipeline can be utilized for under-characterized or high diversity families that lack an appropriate reference. We applied both HetMappS pipelines in five half-sib F1 families involving genetically diverse Vitis spp. Starting with at least 116,466 putative SNPs per family, the HetMappS pipelines identified 10,440 to 17,267 phased pseudo-testcross (Pt) markers and generated high-confidence maps. Pt marker density exceeded crossover resolution in all cases; up to 5,560 non-redundant markers were used to generate parental maps ranging from 1,047 cM to 1,696 cM. The number of markers used was strongly correlated with family size in both de novo and synteny maps (r = 0.92 and 0.91, respectively). Comparisons between allele and tag frequencies suggested that many markers were in tandem repeats and mapped as single loci, while markers in regions of more than two repeats were removed during map curation. Both pipelines generated similar genetic maps, and genetic order was strongly correlated with the reference genome physical order in all cases. Independently created genetic maps from shared parents exhibited nearly identical results. Flower sex was mapped in three families and correctly localized to the known sex locus in all cases. The HetMappS pipeline could have wide application for genetic mapping in highly heterozygous species, and its modularity provides opportunities to adapt portions of the pipeline to other family types, genotyping technologies or applications. PMID:26244767
Automation of Flight Software Regression Testing
NASA Technical Reports Server (NTRS)
Tashakkor, Scott B.
2016-01-01
NASA is developing the Space Launch System (SLS) to be a heavy lift launch vehicle supporting human and scientific exploration beyond earth orbit. SLS will have a common core stage, an upper stage, and different permutations of boosters and fairings to perform various crewed or cargo missions. Marshall Space Flight Center (MSFC) is writing the Flight Software (FSW) that will operate the SLS launch vehicle. The FSW is developed in an incremental manner based on "Agile" software techniques. As the FSW is incrementally developed, testing the functionality of the code needs to be performed continually to ensure that the integrity of the software is maintained. Manually testing the functionality on an ever-growing set of requirements and features is not an efficient solution and therefore needs to be done automatically to ensure testing is comprehensive. To support test automation, a framework for a regression test harness has been developed and used on SLS FSW. The test harness provides a modular design approach that can compile or read in the required information specified by the developer of the test. The modularity provides independence between groups of tests and the ability to add and remove tests without disturbing others. This provides the SLS FSW team a time saving feature that is essential to meeting SLS Program technical and programmatic requirements. During development of SLS FSW, this technique has proved to be a useful tool to ensure all requirements have been tested, and that desired functionality is maintained, as changes occur. It also provides a mechanism for developers to check functionality of the code that they have developed. With this system, automation of regression testing is accomplished through a scheduling tool and/or commit hooks. Key advantages of this test harness capability includes execution support for multiple independent test cases, the ability for developers to specify precisely what they are testing and how, the ability to add automation, and the ability of the harness and cases to be executed continually. This test concept is an approach that can be adapted to support other projects.
Survey of Modular Military Vehicles: Benefits and Burdens
2016-01-01
Survey of Modular Military Vehicles: BENEFITS and BURDENS Jean M. Dasch and David J. Gorsich Modularity in military vehicle design is generally...considered a positive attribute that promotes adaptability, resilience, and cost savings. The benefits and burdens of modularity are considered by...Engineering Center, vehicles were considered based on horizontal modularity , vertical modularity , and distributed modularity . Examples were given for each
Exploration Space Suit Architecture and Destination Environmental-Based Technology Development
NASA Technical Reports Server (NTRS)
Hill, Terry R.; Korona, F. Adam; McFarland, Shane
2012-01-01
This paper continues forward where EVA Space Suit Architecture: Low Earth Orbit Vs. Moon Vs. Mars [1] left off in the development of a space suit architecture that is modular in design and could be reconfigured prior to launch or during any given mission depending on the tasks or destination. This paper will address the space suit system architecture and technologies required based upon human exploration extravehicular activity (EVA) destinations, and describe how they should evolve to meet the future exploration EVA needs of the US human space flight program.1, 2, 3 In looking forward to future US space exploration to a space suit architecture with maximum reuse of technology and functionality across a range of mission profiles and destinations, a series of exercises and analyses have provided a strong indication that the Constellation Program (CxP) space suit architecture is postured to provide a viable solution for future exploration missions4. The destination environmental analysis presented in this paper demonstrates that the modular architecture approach could provide the lowest mass and mission cost for the protection of the crew given any human mission outside of low-Earth orbit (LEO). Additionally, some of the high-level trades presented here provide a review of the environmental and non-environmental design drivers that will become increasingly important the farther away from Earth humans venture. This paper demonstrates a logical clustering of destination design environments that allows a focused approach to technology prioritization, development, and design that will maximize the return on investment, independent of any particular program, and provide architecture and design solutions for space suit systems in time or ahead of need dates for any particular crewed flight program in the future. The approach to space suit design and interface definition discussion will show how the architecture is very adaptable to programmatic and funding changes with minimal redesign effort such that the modular architecture can be quickly and efficiently honed into a specific mission point solution if required. Additionally, the modular system will allow for specific technology incorporation and upgrade as required with minimal redesign of the system.
Proving Correctness for Pointer Programs in a Verifying Compiler
NASA Technical Reports Server (NTRS)
Kulczycki, Gregory; Singh, Amrinder
2008-01-01
This research describes a component-based approach to proving the correctness of programs involving pointer behavior. The approach supports modular reasoning and is designed to be used within the larger context of a verifying compiler. The approach consists of two parts. When a system component requires the direct manipulation of pointer operations in its implementation, we implement it using a built-in component specifically designed to capture the functional and performance behavior of pointers. When a system component requires pointer behavior via a linked data structure, we ensure that the complexities of the pointer operations are encapsulated within the data structure and are hidden to the client component. In this way, programs that rely on pointers can be verified modularly, without requiring special rules for pointers. The ultimate objective of a verifying compiler is to prove-with as little human intervention as possible-that proposed program code is correct with respect to a full behavioral specification. Full verification for software is especially important for an agency like NASA that is routinely involved in the development of mission critical systems.
Krylov, Victor; Shaburova, Olga; Pleteneva, Elena; Bourkaltseva, Maria; Krylov, Sergey; Kaplan, Alla; Chesnokova, Elena; Kulakov, Leonid; Magill, Damian; Polygach, Olga
2016-01-01
This review discusses the potential application of bacterial viruses (phage therapy) toward the eradication of antibiotic resistant Pseudomonas aeruginosa in children with cystic fibrosis (CF). In this regard, several potential relationships between bacteria and their bacteriophages are considered. The most important aspect that must be addressed with respect to phage therapy of bacterial infections in the lungs of CF patients is in ensuring the continuity of treatment in light of the continual occurrence of resistant bacteria. This depends on the ability to rapidly select phages exhibiting an enhanced spectrum of lytic activity among several well-studied phage groups of proven safety. We propose a modular based approach, utilizing both mono-species and hetero-species phage mixtures. With an approach involving the visual recognition of characteristics exhibited by phages of well-studied phage groups on lawns of the standard P. aeruginosa PAO1 strain, the simple and rapid enhancement of the lytic spectrum of cocktails is permitted, allowing the development of tailored preparations for patients capable of circumventing problems associated with phage resistant bacterial mutants. PMID:27790211
Phasor Domain Steady-State Modeling and Design of the DC–DC Modular Multilevel Converter
Yang, Heng; Qin, Jiangchao; Debnath, Suman; ...
2016-01-06
The DC-DC Modular Multilevel Converter (MMC), which originated from the AC-DC MMC, is an attractive converter topology for interconnection of medium-/high-voltage DC grids. This paper presents design considerations for the DC-DC MMC to achieve high efficiency and reduced component sizes. A steady-state mathematical model of the DC-DC MMC in the phasor-domain is developed. Based on the developed model, a design approach is proposed to size the components and to select the operating frequency of the converter to satisfy a set of design constraints while achieving high efficiency. The design approach includes sizing of the arm inductor, Sub-Module (SM) capacitor, andmore » phase filtering inductor along with the selection of AC operating frequency of the converter. The accuracy of the developed model and the effectiveness of the design approach are validated based on the simulation studies in the PSCAD/EMTDC software environment. The analysis and developments of this paper can be used as a guideline for design of the DC-DC MMC.« less
Modular Approach to Launch Vehicle Design Based on a Common Core Element
NASA Technical Reports Server (NTRS)
Creech, Dennis M.; Threet, Grady E., Jr.; Philips, Alan D.; Waters, Eric D.; Baysinger, Mike
2010-01-01
With a heavy lift launch vehicle as the centerpiece of our nation's next exploration architecture's infrastructure, the Advanced Concepts Office at NASA's Marshall Space Flight Center initiated a study to examine the utilization of elements derived from a heavy lift launch vehicle for other potential launch vehicle applications. The premise of this study is to take a vehicle concept, which has been optimized for Lunar Exploration, and utilize the core stage with other existing or near existing stages and boosters to determine lift capabilities for alternative missions. This approach not only yields a vehicle matrix with a wide array of capabilities, but also produces an evolutionary pathway to a vehicle family based on a minimum development and production cost approach to a launch vehicle system architecture, instead of a purely performance driven approach. The upper stages and solid rocket booster selected for this study were chosen to reflect a cross-section of: modified existing assets in the form of a modified Delta IV upper stage and Castor-type boosters; potential near term launch vehicle component designs including an Ares I upper stage and 5-segment boosters; and longer lead vehicle components such as a Shuttle External Tank diameter upper stage. The results of this approach to a modular launch system are given in this paper.
Skinnider, Michael A; Dejong, Chris A; Franczak, Brian C; McNicholas, Paul D; Magarvey, Nathan A
2017-08-16
Natural products represent a prominent source of pharmaceutically and industrially important agents. Calculating the chemical similarity of two molecules is a central task in cheminformatics, with applications at multiple stages of the drug discovery pipeline. Quantifying the similarity of natural products is a particularly important problem, as the biological activities of these molecules have been extensively optimized by natural selection. The large and structurally complex scaffolds of natural products distinguish their physical and chemical properties from those of synthetic compounds. However, no analysis of the performance of existing methods for molecular similarity calculation specific to natural products has been reported to date. Here, we present LEMONS, an algorithm for the enumeration of hypothetical modular natural product structures. We leverage this algorithm to conduct a comparative analysis of molecular similarity methods within the unique chemical space occupied by modular natural products using controlled synthetic data, and comprehensively investigate the impact of diverse biosynthetic parameters on similarity search. We additionally investigate a recently described algorithm for natural product retrobiosynthesis and alignment, and find that when rule-based retrobiosynthesis can be applied, this approach outperforms conventional two-dimensional fingerprints, suggesting it may represent a valuable approach for the targeted exploration of natural product chemical space and microbial genome mining. Our open-source algorithm is an extensible method of enumerating hypothetical natural product structures with diverse potential applications in bioinformatics.
A novel approach to achieving modular retrovirus clearance for a parvovirus filter.
Stuckey, Juliana; Strauss, Daniel; Venkiteshwaran, Adith; Gao, Jinxin; Luo, Wen; Quertinmont, Michelle; O'Donnell, Sean; Chen, Dayue
2014-01-01
Viral filtration is routinely incorporated into the downstream purification processes for the production of biologics produced in mammalian cell cultures (MCC) to remove potential viral contaminants. In recent years, the use of retentive filters designed for retaining parvovirus (~20 nm) has become an industry standard in a conscious effort to further improve product safety. Since retentive filters remove viruses primarily by the size exclusion mechanism, it is expected that filters designed for parvovirus removal can effectively clear larger viruses such as retroviruses (~100 nm). In an attempt to reduce the number of viral clearance studies, we have taken a novel approach to demonstrate the feasibility of claiming modular retrovirus clearance for Asahi Planova 20N filters. Porcine parvovirus (PPV) and xenotropic murine leukemia virus (XMuLV) were co-spiked into six different feedstreams and then subjected to laboratory scale Planova 20N filtration. Our results indicate that Planova 20N filters consistently retain retroviruses and no retrovirus has ever been detected in the filtrates even when significant PPV breakthrough is observed. Based on the data from multiple in-house viral validation studies and the results from the co-spiking experiments, we have successfully claimed a modular retrovirus clearance of greater than 6 log10 reduction factors (LRF) to support clinical trial applications in both USA and Europe. © 2013 American Institute of Chemical Engineers.
An industrialized construction approach to concrete superstructures for bridges.
DOT National Transportation Integrated Search
1974-01-01
The objective of this study was to develop drawings for a specific site or sites that incorporated the best concepts of industrialized bridge superstructure construction, that is, great emphasis was placed upon the use of modular design and assembly ...
Experimenting Maintenance of Flight Software in an Integrated Modular Avionics for Space
NASA Astrophysics Data System (ADS)
Hardy, Johan; Laroche, Thomas; Creten, Philippe; Parisis, Paul; Hiller, Martin
2014-08-01
This paper presents an experiment of Flight Software partitioning in an Integrated Modular Avionics for Space (IMA-SP) system. This experiment also tackles the maintenance aspects of IMA-SP systems. The presented case study is PROBA-2 Flight Software. The paper addresses and discusses the following subjects: On-Board Software Maintenance in IMA- SP, boot strategy for Time and Space Partitioning, considerations about the ground segment related to On-Board Software Maintenance in IMA-SP, and architectural impacts of Time and Space Partitioning for PROBA software's. Finally, this paper presents the results and the achievements of the study and it appeals at further perspectives for IMA-SP and Time and Space Partitioning.
The relative efficiency of modular and non-modular networks of different size
Tosh, Colin R.; McNally, Luke
2015-01-01
Most biological networks are modular but previous work with small model networks has indicated that modularity does not necessarily lead to increased functional efficiency. Most biological networks are large, however, and here we examine the relative functional efficiency of modular and non-modular neural networks at a range of sizes. We conduct a detailed analysis of efficiency in networks of two size classes: ‘small’ and ‘large’, and a less detailed analysis across a range of network sizes. The former analysis reveals that while the modular network is less efficient than one of the two non-modular networks considered when networks are small, it is usually equally or more efficient than both non-modular networks when networks are large. The latter analysis shows that in networks of small to intermediate size, modular networks are much more efficient that non-modular networks of the same (low) connective density. If connective density must be kept low to reduce energy needs for example, this could promote modularity. We have shown how relative functionality/performance scales with network size, but the precise nature of evolutionary relationship between network size and prevalence of modularity will depend on the costs of connectivity. PMID:25631996
Modular Software Interfaces for Revolutionary Flexibility in Space Operations
NASA Technical Reports Server (NTRS)
Glass, Brian; Braham, Stephen; Pollack, Jay
2005-01-01
To make revolutionary improvements in exploration, space systems need to be flexible, realtime reconfigurable, and able to trade data transparently among themselves and mission operations. Onboard operations systems, space assembly coordination and EVA systems in exploration and construction all require real-time modular reconfigurability and data sharing. But NASA's current exploration systems are still largely legacies from hastily-developed, one-off Apollo-era practices. Today's rovers, vehicles, spacesuits, space stations, and instruments are not able to plug-and-play, Lego-like: into different combinations. Point-to-point dominates - individual suit to individual vehicle, individual instrument to rover. All are locally optimized, all unique, each of the data interfaces has been recoded for each possible combination. This will be an operations and maintenance nightmare in the much larger Project Constellation system of systems. This legacy approach does not scale to the hundreds of networked space components needed for space construction and for new, space-based approaches to Earth-Moon operations. By comparison, battlefield information management systems, which are considered critical to military force projection, have long since abandoned a point-to-point approach to systems integration. From a system-of-systems viewpoint, a clean-sheet redesign of the interfaces of all exploration systems is a necessary prerequisite before designing the interfaces of the individual exploration systems. Existing communications and Global Information Grid and middleware technologies are probably sufficient for command and control and information interfaces, with some hardware and time-delay modifications for space environments. NASA's future advanced space operations must also be information and data compatible with aerospace operations and surveillance systems being developed by other US Government agencies such as the Department of Homeland Security, Federal Aviation Administration and Department of Defense. This paper discusses fundamental system-of-systems infrastructure: approaches and architectures for modular plug-and-play software interfaces for revolutionary improvements in flexibility, modularity, robustness, ease of maintenance, reconfigurability, safety and productivity. Starting with middleware, databases, and mobile communications technologies, our technical challenges will be to apply these ideas to the requirements of constellations of space systems and to implement them initially on prototype space hardware. This is necessary to demonstrate an integrated information sharing architecture and services. It is a bottom-up approach, one that solves the problem of space operations data integration. Exploration demands uniform software mechanisms for application information interchange, and the corresponding uniformly available software services to enhance these mechanisms. We will examine the issues in plug-and-play, real-time-configurable systems, including common definition and management and tracking of data and information among many different space systems. Different field test approaches are discussed, including the use of the International Space Station and terrestrial analog mission operations at field sites.
Modular, Cost-Effective, Extensible Avionics Architecture for Secure, Mobile Communications
NASA Technical Reports Server (NTRS)
Ivancic, William D.
2006-01-01
Current onboard communication architectures are based upon an all-in-one communications management unit. This unit and associated radio systems has regularly been designed as a one-off, proprietary system. As such, it lacks flexibility and cannot adapt easily to new technology, new communication protocols, and new communication links. This paper describes the current avionics communication architecture and provides a historical perspective of the evolution of this system. A new onboard architecture is proposed that allows full use of commercial-off-the-shelf technologies to be integrated in a modular approach thereby enabling a flexible, cost-effective and fully deployable design that can take advantage of ongoing advances in the computer, cryptography, and telecommunications industries.
Modular, Cost-Effective, Extensible Avionics Architecture for Secure, Mobile Communications
NASA Technical Reports Server (NTRS)
Ivancic, William D.
2007-01-01
Current onboard communication architectures are based upon an all-in-one communications management unit. This unit and associated radio systems has regularly been designed as a one-off, proprietary system. As such, it lacks flexibility and cannot adapt easily to new technology, new communication protocols, and new communication links. This paper describes the current avionics communication architecture and provides a historical perspective of the evolution of this system. A new onboard architecture is proposed that allows full use of commercial-off-the-shelf technologies to be integrated in a modular approach thereby enabling a flexible, cost-effective and fully deployable design that can take advantage of ongoing advances in the computer, cryptography, and telecommunications industries.
Modular Architecture for Integrated Model-Based Decision Support.
Gaebel, Jan; Schreiber, Erik; Oeser, Alexander; Oeltze-Jafra, Steffen
2018-01-01
Model-based decision support systems promise to be a valuable addition to oncological treatments and the implementation of personalized therapies. For the integration and sharing of decision models, the involved systems must be able to communicate with each other. In this paper, we propose a modularized architecture of dedicated systems for the integration of probabilistic decision models into existing hospital environments. These systems interconnect via web services and provide model sharing and processing capabilities for clinical information systems. Along the lines of IHE integration profiles from other disciplines and the meaningful reuse of routinely recorded patient data, our approach aims for the seamless integration of decision models into hospital infrastructure and the physicians' daily work.
Synthetic biology of antimicrobial discovery
Zakeri, Bijan; Lu, Timothy K.
2012-01-01
Antibiotic discovery has a storied history. From the discovery of penicillin by Sir Alexander Fleming to the relentless quest for antibiotics by Selman Waksman, the stories have become like folklore, used to inspire future generations of scientists. However, recent discovery pipelines have run dry at a time when multidrug resistant pathogens are on the rise. Nature has proven to be a valuable reservoir of antimicrobial agents, which are primarily produced by modularized biochemical pathways. Such modularization is well suited to remodeling by an interdisciplinary approach that spans science and engineering. Herein, we discuss the biological engineering of small molecules, peptides, and non-traditional antimicrobials and provide an overview of the growing applicability of synthetic biology to antimicrobials discovery. PMID:23654251
Multimission image processing and science data visualization
NASA Technical Reports Server (NTRS)
Green, William B.
1993-01-01
The Operational Science Analysis (OSA) Functional area supports science instrument data display, analysis, visualization and photo processing in support of flight operations of planetary spacecraft managed by the Jet Propulsion Laboratory (JPL). This paper describes the data products generated by the OSA functional area, and the current computer system used to generate these data products. The objectives on a system upgrade now in process are described. The design approach to development of the new system are reviewed, including use of the Unix operating system and X-Window display standards to provide platform independence, portability, and modularity within the new system, is reviewed. The new system should provide a modular and scaleable capability supporting a variety of future missions at JPL.
Modular Bioconjugates to Study Herceptin Resistance: A Structural and Functional Approach
2016-10-01
REPORT DATE : October 2016 TYPE OF REPORT: Annual PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick...ABOVE ADDRESS. 1. REPORT DATE October 2016 2. REPORT TYPE Annual 3. DATES COVERED 9/15/2015-9/14/2016 4. TITLE AND SUBTITLE Modular...cells. Despite many efforts to chemically stabilize the capsid to prevent disassembly, I was unable to identify a method that
Synthetic biology of antimicrobial discovery.
Zakeri, Bijan; Lu, Timothy K
2013-07-19
Antibiotic discovery has a storied history. From the discovery of penicillin by Sir Alexander Fleming to the relentless quest for antibiotics by Selman Waksman, the stories have become like folklore used to inspire future generations of scientists. However, recent discovery pipelines have run dry at a time when multidrug-resistant pathogens are on the rise. Nature has proven to be a valuable reservoir of antimicrobial agents, which are primarily produced by modularized biochemical pathways. Such modularization is well suited to remodeling by an interdisciplinary approach that spans science and engineering. Herein, we discuss the biological engineering of small molecules, peptides, and non-traditional antimicrobials and provide an overview of the growing applicability of synthetic biology to antimicrobials discovery.
NASA Astrophysics Data System (ADS)
Cortés–Vega, Luis A.
2017-12-01
In this paper, we consider modular multiplicative inverse operators (MMIO)’s of the form: J(m+n):(ℤ/(m+n)ℤ)*→ℤ/(m+n)ℤ, J(m+n)(a)=a-1. A general method to decompose {{\\mathscr{J}}}(m+n)(.) over group of units {({{Z}}/(m+n){{Z}})}* is derived. As result, an interesting decomposition law for these operators over {({{Z}}/(m+n){{Z}})}* is established. Numerical examples illustring the new results are given. This, complement some recent results obtained by the author for (MMIO)’s defined over group of units of the form {({{Z}}/\\varrho {{Z}})}* with ϱ = m × n > 2.
Attitude control of the space construction base: A modular approach
NASA Technical Reports Server (NTRS)
Oconnor, D. A.
1982-01-01
A planar model of a space base and one module is considered. For this simplified system, a feedback controller which is compatible with the modular construction method is described. The systems dynamics are decomposed into two parts corresponding to base and module. The information structure of the problem is non-classical in that not all system information is supplied to each controller. The base controller is designed to accommodate structural changes that occur as the module is added and the module controller is designed to regulate its own states and follow commands from the base. Overall stability of the system is checked by Liapunov analysis and controller effectiveness is verified by computer simulation.
Earth Observatory Satellite system definition study. Report 7: EOS system definition report
NASA Technical Reports Server (NTRS)
1974-01-01
The Earth Observatory Satellite (EOS) study is summarized to show the modular design of a general purpose spacecraft, a mission peculiar segment which performs the EOS-A mission, an Operations Control Center, a Data Processing Facility, and a design for Low Cost Readout Stations. The study verified the practicality and feasibility of the modularized spacecraft with the capability of supporting many missions in the Earth Observation spectrum. The various subjects considered in the summary are: (1) orbit/launch vehicle tradeoff studies and recommendations, (2) instrument constraints and interfaces, (3) design/cost tradeoff and recommendations, (4) low cost management approach and recommendations, (5) baseline system description and specifications, and (6) space shuttle utilization and interfaces.
Rieffel, John A.; Valero-Cuevas, Francisco J.; Lipson, Hod
2010-01-01
Traditional engineering approaches strive to avoid, or actively suppress, nonlinear dynamic coupling among components. Biological systems, in contrast, are often rife with these dynamics. Could there be, in some cases, a benefit to high degrees of dynamical coupling? Here we present a distributed robotic control scheme inspired by the biological phenomenon of tensegrity-based mechanotransduction. This emergence of morphology-as-information-conduit or ‘morphological communication’, enabled by time-sensitive spiking neural networks, presents a new paradigm for the decentralized control of large, coupled, modular systems. These results significantly bolster, both in magnitude and in form, the idea of morphological computation in robotic control. Furthermore, they lend further credence to ideas of embodied anatomical computation in biological systems, on scales ranging from cellular structures up to the tendinous networks of the human hand. PMID:19776146
A Collaborative Support Approach on UML Sequence Diagrams for Aspect-Oriented Software
NASA Astrophysics Data System (ADS)
de Almeida Naufal, Rafael; Silveira, Fábio F.; Guerra, Eduardo M.
AOP and its broader application on software projects brings the importance to provide the separation between aspects and OO components at design time, to leverage the understanding of AO systems, promote aspects' reuse and obtain the benefits of AO modularization. Since the UML is a standard for modeling OO systems, it can be applied to model the decoupling between aspects and OO components. The application of UML to this area is the subject of constant study and is the focus of this paper. In this paper it is presented an extension based on the default UML meta-model, named MIMECORA-DS, to show object-object, object-aspect and aspect-aspect interactions applying the UML's sequence diagram. This research also presents the application of MIMECORA-DS in a case example, to assess its applicability.
Experimental Applications of Automatic Test Markup Language (ATML)
NASA Technical Reports Server (NTRS)
Lansdowne, Chatwin A.; McCartney, Patrick; Gorringe, Chris
2012-01-01
The authors describe challenging use-cases for Automatic Test Markup Language (ATML), and evaluate solutions. The first case uses ATML Test Results to deliver active features to support test procedure development and test flow, and bridging mixed software development environments. The second case examines adding attributes to Systems Modelling Language (SysML) to create a linkage for deriving information from a model to fill in an ATML document set. Both cases are outside the original concept of operations for ATML but are typical when integrating large heterogeneous systems with modular contributions from multiple disciplines.
Integrating Professional Development across the Curriculum: An Effectiveness Study
ERIC Educational Resources Information Center
Ciarocco, Natalie J.; Dinella, Lisa M.; Hatchard, Christine J.; Valosin, Jayde
2016-01-01
The current study empirically tested the effectiveness of a modular approach to integrating professional development across an undergraduate psychology curriculum. Researchers conducted a two-group, between-subjects experiment on 269 undergraduate psychology students assessing perceptions of professional preparedness and learning. Analysis…
ERIC Educational Resources Information Center
Alexander, Steve
2002-01-01
Discusses the drop-out rate from online courses in corporate training programs. Topics include better measures of electronic learning success and return on investment (ROI); a modular approach; course completion needed for certification requirements; and focusing on job performance improvement that results from electronic courses. (LRW)
Robotics in the Laboratory: A Generic Approach.
ERIC Educational Resources Information Center
Sharp, Robert L.; And Others
1988-01-01
Discusses the use of robotics in the analytical chemistry laboratory. Suggests using a modular setup to best use robots and laboratory space. Proposes a sample preparation system which can perform aliquot measurement, dilution, mixing, separation, and sample transfer. Recognizes attributes and shortcomings. (ML)
Approaching Academic Digital Content Management.
ERIC Educational Resources Information Center
Acker, Stephen R.
2002-01-01
Discusses digital content management in higher education. Highlights include learning objects that make content more modular so it can be used in other courses or by other institutions; and a system at Ohio State University for content management that includes the creation of learner profiles. (LRW)
Adaptive multi-resolution Modularity for detecting communities in networks
NASA Astrophysics Data System (ADS)
Chen, Shi; Wang, Zhi-Zhong; Bao, Mei-Hua; Tang, Liang; Zhou, Ji; Xiang, Ju; Li, Jian-Ming; Yi, Chen-He
2018-02-01
Community structure is a common topological property of complex networks, which attracted much attention from various fields. Optimizing quality functions for community structures is a kind of popular strategy for community detection, such as Modularity optimization. Here, we introduce a general definition of Modularity, by which several classical (multi-resolution) Modularity can be derived, and then propose a kind of adaptive (multi-resolution) Modularity that can combine the advantages of different Modularity. By applying the Modularity to various synthetic and real-world networks, we study the behaviors of the methods, showing the validity and advantages of the multi-resolution Modularity in community detection. The adaptive Modularity, as a kind of multi-resolution method, can naturally solve the first-type limit of Modularity and detect communities at different scales; it can quicken the disconnecting of communities and delay the breakup of communities in heterogeneous networks; and thus it is expected to generate the stable community structures in networks more effectively and have stronger tolerance against the second-type limit of Modularity.
Product modular design incorporating preventive maintenance issues
NASA Astrophysics Data System (ADS)
Gao, Yicong; Feng, Yixiong; Tan, Jianrong
2016-03-01
Traditional modular design methods lead to product maintenance problems, because the module form of a system is created according to either the function requirements or the manufacturing considerations. For solving these problems, a new modular design method is proposed with the considerations of not only the traditional function related attributes, but also the maintenance related ones. First, modularity parameters and modularity scenarios for product modularity are defined. Then the reliability and economic assessment models of product modularity strategies are formulated with the introduction of the effective working age of modules. A mathematical model used to evaluate the difference among the modules of the product so that the optimal module of the product can be established. After that, a multi-objective optimization problem based on metrics for preventive maintenance interval different degrees and preventive maintenance economics is formulated for modular optimization. Multi-objective GA is utilized to rapidly approximate the Pareto set of optimal modularity strategy trade-offs between preventive maintenance cost and preventive maintenance interval difference degree. Finally, a coordinate CNC boring machine is adopted to depict the process of product modularity. In addition, two factorial design experiments based on the modularity parameters are constructed and analyzed. These experiments investigate the impacts of these parameters on the optimal modularity strategies and the structure of module. The research proposes a new modular design method, which may help to improve the maintainability of product in modular design.
Closed Environment Module - Modularization and extension of the Virtual Habitat
NASA Astrophysics Data System (ADS)
Plötner, Peter; Czupalla, Markus; Zhukov, Anton
2013-12-01
The Virtual Habitat (V-HAB), is a Life Support System (LSS) simulation, created to perform dynamic simulation of LSS's for future human spaceflight missions. It allows the testing of LSS robustness by means of computer simulations, e.g. of worst case scenarios.
The Case for and against Modularisation.
ERIC Educational Resources Information Center
Jonathan, Ruth
1987-01-01
Presents arguments for and against modularization as a form of curriculum organization. Looks at implications for the content of the curriculum, for the learning experience of students, for the professional experience of teachers, for the development of the educational institution, and for the society at large. (JHZ)
Squashed Toric Sigma Models and Mock Modular Forms
NASA Astrophysics Data System (ADS)
Gupta, Rajesh Kumar; Murthy, Sameer
2018-05-01
We study a class of two-dimensional N}=(2,2)} sigma models called squashed toric sigma models, using their Gauged Linear Sigma Models (GLSM) description. These models are obtained by gauging the global {U(1)} symmetries of toric GLSMs and introducing a set of corresponding compensator superfields. The geometry of the resulting vacuum manifold is a deformation of the corresponding toric manifold in which the torus fibration maintains a constant size in the interior of the manifold, thus producing a neck-like region. We compute the elliptic genus of these models, using localization, in the case when the unsquashed vacuum manifolds obey the Calabi-Yau condition. The elliptic genera have a non-holomorphic dependence on the modular parameter {τ} coming from the continuum produced by the neck. In the simplest case corresponding to squashed {C / Z_{2 the elliptic genus is a mixed mock Jacobi form which coincides with the elliptic genus of the {N=(2,2)} {SL(2,R) / U(1)} cigar coset.
Integrating yoga therapy in the management of urinary incontinence: a case report.
Vinchurkar, Suhas Ashok; Arankalle, Dhananjay Vijay
2015-04-01
A 63-year-old overweight female prediagnosed of stress urinary incontinence presented with exacerbated events of urine leakage. She was advised a residential lifestyle and behavioral program, primarily consisting of a monitored yoga therapy module, apart from her ongoing anticholinergic medicine, for 21 days. Assessments were based on a frequency volume chart, a bladder diary for the entire duration of treatment, and the International Consultation on Incontinence Modular Questionnaire-Urinary Incontinence Short Form questionnaire on the days of admission and discharge. A total of 1.9 kg of weight loss was observed during her stay. Usage of pad, as reported in her diary, reduced from 3 to 1 per day. Her International Consultation on Incontinence Modular Questionnaire-Urinary Incontinence Short Form score reduced from 16 to 9, indicating better continence. She expressed subjective well-being and confidence in her social interactions. This is probably the first case report demonstrating feasibility of integration of yoga therapy in the management of urinary incontinence. © The Author(s) 2014.
Proving Stabilization of Biological Systems
NASA Astrophysics Data System (ADS)
Cook, Byron; Fisher, Jasmin; Krepska, Elzbieta; Piterman, Nir
We describe an efficient procedure for proving stabilization of biological systems modeled as qualitative networks or genetic regulatory networks. For scalability, our procedure uses modular proof techniques, where state-space exploration is applied only locally to small pieces of the system rather than the entire system as a whole. Our procedure exploits the observation that, in practice, the form of modular proofs can be restricted to a very limited set. For completeness, our technique falls back on a non-compositional counterexample search. Using our new procedure, we have solved a number of challenging published examples, including: a 3-D model of the mammalian epidermis; a model of metabolic networks operating in type-2 diabetes; a model of fate determination of vulval precursor cells in the C. elegans worm; and a model of pair-rule regulation during segmentation in the Drosophila embryo. Our results show many orders of magnitude speedup in cases where previous stabilization proving techniques were known to succeed, and new results in cases where tools had previously failed.
Quantization of Poisson Manifolds from the Integrability of the Modular Function
NASA Astrophysics Data System (ADS)
Bonechi, F.; Ciccoli, N.; Qiu, J.; Tarlini, M.
2014-10-01
We discuss a framework for quantizing a Poisson manifold via the quantization of its symplectic groupoid, combining the tools of geometric quantization with the results of Renault's theory of groupoid C*-algebras. This setting allows very singular polarizations. In particular, we consider the case when the modular function is multiplicatively integrable, i.e., when the space of leaves of the polarization inherits a groupoid structure. If suitable regularity conditions are satisfied, then one can define the quantum algebra as the convolution algebra of the subgroupoid of leaves satisfying the Bohr-Sommerfeld conditions. We apply this procedure to the case of a family of Poisson structures on , seen as Poisson homogeneous spaces of the standard Poisson-Lie group SU( n + 1). We show that a bihamiltonian system on defines a multiplicative integrable model on the symplectic groupoid; we compute the Bohr-Sommerfeld groupoid and show that it satisfies the needed properties for applying Renault theory. We recover and extend Sheu's description of quantum homogeneous spaces as groupoid C*-algebras.
NASA Technical Reports Server (NTRS)
Chetty, P. R. K.; Roufberg, Lew; Costogue, Ernest
1991-01-01
The TOPEX mission requirements which impact the power requirements and analyses are presented. A description of the electrical power system (EPS), including energy management and battery charging methods that were conceived and developed to meet the identified satellite requirements, is included. Analysis of the TOPEX EPS confirms that all of its electrical performance and reliability requirements have been met. The TOPEX EPS employs the flight-proven modular power system (MPS) which is part of the Multimission Modular Spacecraft and provides high reliability, abbreviated development effort and schedule, and low cost. An energy balance equation, unique to TOPEX, has been derived to confirm that the batteries will be completely recharged following each eclipse, under worst-case conditions. TOPEX uses three NASA Standard 50AH Ni-Cd batteries, each with 22 cells in series. The MPS contains battery charge control and protection based on measurements of battery currents, voltages, temperatures, and computed depth-of-discharge. In case of impending battery depletion, the MPS automatically implements load shedding.
Modularity in protein structures: study on all-alpha proteins.
Khan, Taushif; Ghosh, Indira
2015-01-01
Modularity is known as one of the most important features of protein's robust and efficient design. The architecture and topology of proteins play a vital role by providing necessary robust scaffolds to support organism's growth and survival in constant evolutionary pressure. These complex biomolecules can be represented by several layers of modular architecture, but it is pivotal to understand and explore the smallest biologically relevant structural component. In the present study, we have developed a component-based method, using protein's secondary structures and their arrangements (i.e. patterns) in order to investigate its structural space. Our result on all-alpha protein shows that the known structural space is highly populated with limited set of structural patterns. We have also noticed that these frequently observed structural patterns are present as modules or "building blocks" in large proteins (i.e. higher secondary structure content). From structural descriptor analysis, observed patterns are found to be within similar deviation; however, frequent patterns are found to be distinctly occurring in diverse functions e.g. in enzymatic classes and reactions. In this study, we are introducing a simple approach to explore protein structural space using combinatorial- and graph-based geometry methods, which can be used to describe modularity in protein structures. Moreover, analysis indicates that protein function seems to be the driving force that shapes the known structure space.
Khroyan, Taline V; Zhang, Jingxi; Yang, Liya; Zou, Bende; Xie, James; Pascual, Conrado; Malik, Adam; Xie, Julian; Zaveri, Nurulain T; Vazquez, Jacqueline; Polgar, Willma; Toll, Lawrence; Fang, Jidong; Xie, Xinmin
2012-07-01
1. To facilitate investigation of diverse rodent behaviours in rodents' home cages, we have developed an integrated modular platform, the SmartCage(™) system (AfaSci, Inc. Burlingame, CA, USA), which enables automated neurobehavioural phenotypic analysis and in vivo drug screening in a relatively higher-throughput and more objective manner. 2, The individual platform consists of an infrared array, a vibration floor sensor and a variety of modular devices. One computer can simultaneously operate up to 16 platforms via USB cables. 3. The SmartCage(™) detects drug-induced increases and decreases in activity levels, as well as changes in movement patterns. Wake and sleep states of mice can be detected using the vibration floor sensor. The arousal state classification achieved up to 98% accuracy compared with results obtained by electroencephalography and electromyography. More complex behaviours, including motor coordination, anxiety-related behaviours and social approach behaviour, can be assessed using appropriate modular devices and the results obtained are comparable with results obtained using conventional methods. 4. In conclusion, the SmartCage(™) system provides an automated and accurate tool to quantify various rodent behaviours in a 'stress-free' environment. This system, combined with the validated testing protocols, offers powerful a tool kit for transgenic phenotyping and in vivo drug screening. © 2012 The Authors. Clinical and Experimental Pharmacology and Physiology © 2012 Blackwell Publishing Asia Pty Ltd.
Wei, Zhao; Lewis, Daniel M; Xu, Yu; Gerecht, Sharon
2017-08-01
Gradient hydrogels have been developed to mimic the spatiotemporal differences of multiple gradient cues in tissues. Current approaches used to generate such hydrogels are restricted to a single gradient shape and distribution. Here, a hydrogel is designed that includes two chemical cross-linking networks, biofunctional, and self-healing networks, enabling the customizable formation of modular gradient hydrogel construct with various gradient distributions and flexible shapes. The biofunctional networks are formed via Michael addition between the acrylates of oxidized acrylated hyaluronic acid (OAHA) and the dithiol of matrix metalloproteinase (MMP)-sensitive cross-linker and RGD peptides. The self-healing networks are formed via dynamic Schiff base reaction between N-carboxyethyl chitosan (CEC) and OAHA, which drives the modular gradient units to self-heal into an integral modular gradient hydrogel. The CEC-OAHA-MMP hydrogel exhibits excellent flowability at 37 °C under shear stress, enabling its injection to generate gradient distributions and shapes. Furthermore, encapsulated sarcoma cells respond to the gradient cues of RGD peptides and MMP-sensitive cross-linkers in the hydrogel. With these superior properties, the dual cross-linked CEC-OAHA-MMP hydrogel holds significant potential for generating customizable gradient hydrogel constructs, to study and guide cellular responses to their microenvironment such as in tumor mimicking, tissue engineering, and stem cell differentiation and morphogenesis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mobile/Modular BSL-4 Facilities for Meeting Restricted Earth Return Containment Requirements
NASA Technical Reports Server (NTRS)
Calaway, M. J.; McCubbin, F. M.; Allton, J. H.; Zeigler, R. A.; Pace, L. F.
2017-01-01
NASA robotic sample return missions designated Category V Restricted Earth Return by the NASA Planetary Protection Office require sample containment and biohazard testing in a receiving laboratory as directed by NASA Procedural Requirement (NPR) 8020.12D - ensuring the preservation and protection of Earth and the sample. Currently, NPR 8020.12D classifies Restricted Earth Return for robotic sample return missions from Mars, Europa, and Enceladus with the caveat that future proposed mission locations could be added or restrictions lifted on a case by case basis as scientific knowledge and understanding of biohazards progresses. Since the 1960s, sample containment from an unknown extraterrestrial biohazard have been related to the highest containment standards and protocols known to modern science. Today, Biosafety Level (BSL) 4 standards and protocols are used to study the most dangerous high-risk diseases and unknown biological agents on Earth. Over 30 BSL-4 facilities have been constructed worldwide with 12 residing in the United States; of theses, 8 are operational. In the last two decades, these brick and mortar facilities have cost in the hundreds of millions of dollars dependent on the facility requirements and size. Previous mission concept studies for constructing a NASA sample receiving facility with an integrated BSL-4 quarantine and biohazard testing facility have also been estimated in the hundreds of millions of dollars. As an alternative option, we have recently conducted an initial trade study for constructing a mobile and/or modular sample containment laboratory that would meet all BSL-4 and planetary protection standards and protocols at a faction of the cost. Mobile and modular BSL-2 and 3 facilities have been successfully constructed and deployed world-wide for government testing of pathogens and pharmaceutical production. Our study showed that a modular BSL-4 construction could result in approximately 90% cost reduction when compared to traditional construction methods without compromising the preservation of the sample or Earth.
Evaluating a Modular Design Approach to Collecting Survey Data Using Text Messages
West, Brady T.; Ghimire, Dirgha; Axinn, William G.
2015-01-01
This article presents analyses of data from a pilot study in Nepal that was designed to provide an initial examination of the errors and costs associated with an innovative methodology for survey data collection. We embedded a randomized experiment within a long-standing panel survey, collecting data on a small number of items with varying sensitivity from a probability sample of 450 young Nepalese adults. Survey items ranged from simple demographics to indicators of substance abuse and mental health problems. Sampled adults were randomly assigned to one of three different modes of data collection: 1) a standard one-time telephone interview, 2) a “single sitting” back-and-forth interview with an interviewer using text messaging, and 3) an interview using text messages within a modular design framework (which generally involves breaking the survey response task into distinct parts over a short period of time). Respondents in the modular group were asked to respond (via text message exchanges with an interviewer) to only one question on a given day, rather than complete the entire survey. Both bivariate and multivariate analyses demonstrate that the two text messaging modes increased the probability of disclosing sensitive information relative to the telephone mode, and that respondents in the modular design group, while responding less frequently, found the survey to be significantly easier. Further, those who responded in the modular group were not unique in terms of available covariates, suggesting that the reduced item response rates only introduced limited nonresponse bias. Future research should consider enhancing this methodology, applying it with other modes of data collection (e. g., web surveys), and continuously evaluating its effectiveness from a total survey error perspective. PMID:26322137
Kim, Kyung Hyuk; Sauro, Herbert M
2015-01-01
This chapter introduces a computational analysis method for analyzing gene circuit dynamics in terms of modules while taking into account stochasticity, system nonlinearity, and retroactivity. (1) ANALOG ELECTRICAL CIRCUIT REPRESENTATION FOR GENE CIRCUITS: A connection between two gene circuit components is often mediated by a transcription factor (TF) and the connection signal is described by the TF concentration. The TF is sequestered to its specific binding site (promoter region) and regulates downstream transcription. This sequestration has been known to affect the dynamics of the TF by increasing its response time. The downstream effect-retroactivity-has been shown to be explicitly described in an electrical circuit representation, as an input capacitance increase. We provide a brief review on this topic. (2) MODULAR DESCRIPTION OF NOISE PROPAGATION: Gene circuit signals are noisy due to the random nature of biological reactions. The noisy fluctuations in TF concentrations affect downstream regulation. Thus, noise can propagate throughout the connected system components. This can cause different circuit components to behave in a statistically dependent manner, hampering a modular analysis. Here, we show that the modular analysis is still possible at the linear noise approximation level. (3) NOISE EFFECT ON MODULE INPUT-OUTPUT RESPONSE: We investigate how to deal with a module input-output response and its noise dependency. Noise-induced phenotypes are described as an interplay between system nonlinearity and signal noise. Lastly, we provide the comprehensive approach incorporating the above three analysis methods, which we call "stochastic modular analysis." This method can provide an analysis framework for gene circuit dynamics when the nontrivial effects of retroactivity, stochasticity, and nonlinearity need to be taken into account.
Toyonaga, Shinya; Kominami, Daichi; Murata, Masayuki
2016-01-01
Many researchers are devoting attention to the so-called “Internet of Things” (IoT), and wireless sensor networks (WSNs) are regarded as a critical technology for realizing the communication infrastructure of the future, including the IoT. Against this background, virtualization is a crucial technique for the integration of multiple WSNs. Designing virtualized WSNs for actual environments will require further detailed studies. Within the IoT environment, physical networks can undergo dynamic change, and so, many problems exist that could prevent applications from running without interruption when using the existing approaches. In this paper, we show an overall architecture that is suitable for constructing and running virtual wireless sensor network (VWSN) services within a VWSN topology. Our approach provides users with a reliable VWSN network by assigning redundant resources according to each user’s demand and providing a recovery method to incorporate environmental changes. We tested this approach by simulation experiment, with the results showing that the VWSN network is reliable in many cases, although physical deployment of sensor nodes and the modular structure of the VWSN will be quite important to the stability of services within the VWSN topology. PMID:27548177
Toyonaga, Shinya; Kominami, Daichi; Murata, Masayuki
2016-08-19
Many researchers are devoting attention to the so-called "Internet of Things" (IoT), and wireless sensor networks (WSNs) are regarded as a critical technology for realizing the communication infrastructure of the future, including the IoT. Against this background, virtualization is a crucial technique for the integration of multiple WSNs. Designing virtualized WSNs for actual environments will require further detailed studies. Within the IoT environment, physical networks can undergo dynamic change, and so, many problems exist that could prevent applications from running without interruption when using the existing approaches. In this paper, we show an overall architecture that is suitable for constructing and running virtual wireless sensor network (VWSN) services within a VWSN topology. Our approach provides users with a reliable VWSN network by assigning redundant resources according to each user's demand and providing a recovery method to incorporate environmental changes. We tested this approach by simulation experiment, with the results showing that the VWSN network is reliable in many cases, although physical deployment of sensor nodes and the modular structure of the VWSN will be quite important to the stability of services within the VWSN topology.
Rao, M C; Richards, O; Meyer, C; Jones, R Spencer
2009-12-01
Infected Total Knee Replacement with significant bone loss and loss of extensor mechanism poses a difficult management problem. Arthrodesis relying on bony union can be difficult to achieve and can result in significant limb shortening. We retrospectively looked at the outcome of seven patients with significant bone loss and extensor mechanism insufficiency following infected TKR who underwent knee stabilisation using a modular cemented nail. The nail relied on the strong coupling mechanism between the modular femoral and tibial components. Pain score improved from a mean of 7.9 pre-operatively to 1.5 post-operatively at a mean follow up of 39.6 months (range 7-68) months. Two patients underwent technically easy revision nailing for recurrent infection and aseptic loosening. The Endo-Model(R) Knee Fusion Nail (Newsplint, UK/Waldemar Link, GmbH & Co. KG, Hamburg, Germany) has good early results in terms of pain relief and provides a stable knee in cases with significant bone loss and extensor mechanism insufficiency following an infected TKR thus avoiding an above knee amputation.
The Modular Organization of Protein Interactions in Escherichia coli
Peregrín-Alvarez, José M.; Xiong, Xuejian; Su, Chong; Parkinson, John
2009-01-01
Escherichia coli serves as an excellent model for the study of fundamental cellular processes such as metabolism, signalling and gene expression. Understanding the function and organization of proteins within these processes is an important step towards a ‘systems’ view of E. coli. Integrating experimental and computational interaction data, we present a reliable network of 3,989 functional interactions between 1,941 E. coli proteins (∼45% of its proteome). These were combined with a recently generated set of 3,888 high-quality physical interactions between 918 proteins and clustered to reveal 316 discrete modules. In addition to known protein complexes (e.g., RNA and DNA polymerases), we identified modules that represent biochemical pathways (e.g., nitrate regulation and cell wall biosynthesis) as well as batteries of functionally and evolutionarily related processes. To aid the interpretation of modular relationships, several case examples are presented, including both well characterized and novel biochemical systems. Together these data provide a global view of the modular organization of the E. coli proteome and yield unique insights into structural and evolutionary relationships in bacterial networks. PMID:19798435
Universality of modular symmetries in two-dimensional magnetotransport
NASA Astrophysics Data System (ADS)
Olsen, K. S.; Limseth, H. S.; Lütken, C. A.
2018-01-01
We analyze experimental quantum Hall data from a wide range of different materials, including semiconducting heterojunctions, thin films, surface layers, graphene, mercury telluride, bismuth antimonide, and black phosphorus. The fact that these materials have little in common, except that charge transport is effectively two-dimensional, shows how robust and universal the quantum Hall phenomenon is. The scaling and fixed point data we analyzed appear to show that magnetotransport in two dimensions is governed by a small number of universality classes that are classified by modular symmetries, which are infinite discrete symmetries not previously seen in nature. The Hall plateaux are (infrared) stable fixed points of the scaling-flow, and quantum critical points (where the wave function is delocalized) are unstable fixed points of scaling. Modular symmetries are so rigid that they in some cases fix the global geometry of the scaling flow, and therefore predict the exact location of quantum critical points, as well as the shape of flow lines anywhere in the phase diagram. We show that most available experimental quantum Hall scaling data are in good agreement with these predictions.
Development of modularity in the neural activity of childrenʼs brains
NASA Astrophysics Data System (ADS)
Chen, Man; Deem, Michael W.
2015-02-01
We study how modularity of the human brain changes as children develop into adults. Theory suggests that modularity can enhance the response function of a networked system subject to changing external stimuli. Thus, greater cognitive performance might be achieved for more modular neural activity, and modularity might likely increase as children develop. The value of modularity calculated from functional magnetic resonance imaging (fMRI) data is observed to increase during childhood development and peak in young adulthood. Head motion is deconvolved from the fMRI data, and it is shown that the dependence of modularity on age is independent of the magnitude of head motion. A model is presented to illustrate how modularity can provide greater cognitive performance at short times, i.e. task switching. A fitness function is extracted from the model. Quasispecies theory is used to predict how the average modularity evolves with age, illustrating the increase of modularity during development from children to adults that arises from selection for rapid cognitive function in young adults. Experiments exploring the effect of modularity on cognitive performance are suggested. Modularity may be a potential biomarker for injury, rehabilitation, or disease.
InSb arrays with CCD readout for 1.0- to 5.5-microns infrared applications
NASA Technical Reports Server (NTRS)
Phillips, J. D.; Scorso, J. B.; Thom, R. D.
1976-01-01
There were two approaches for fabricating indium antimonide (InSb) arrays with CCD readout discussed. The hybrid approach integrated InSb detectors and silicon CCDs in a modular assembly via an advanced interconnection technology. In the monolithic approach, the InSb infrared detectors and the CCD readout were integrated on the same InSb chip. Both approaches utilized intrinsic (band-to-band) photodetection with the attendant advantages over extrinsic detectors. The status of each of these detector readout concepts, with pertinent performance characteristics, was presented.
Akkermans, Simen; Noriega Fernandez, Estefanía; Logist, Filip; Van Impe, Jan F
2017-01-02
Efficient modelling of the microbial growth rate can be performed by combining the effects of individual conditions in a multiplicative way, known as the gamma concept. However, several studies have illustrated that interactions between different effects should be taken into account at stressing environmental conditions to achieve a more accurate description of the growth rate. In this research, a novel approach for modeling the interactions between the effects of environmental conditions on the microbial growth rate is introduced. As a case study, the effect of temperature and pH on the growth rate of Escherichia coli K12 is modeled, based on a set of computer controlled bioreactor experiments performed under static environmental conditions. The models compared in this case study are the gamma model, the model of Augustin and Carlier (2000), the model of Le Marc et al. (2002) and the novel multiplicative interaction model, developed in this paper. This novel model enables the separate identification of interactions between the effects of two (or more) environmental conditions. The comparison of these models focuses on the accuracy, interpretability and compatibility with efficient modeling approaches. Moreover, for the separate effects of temperature and pH, new cardinal parameter model structures are proposed. The novel interaction model contributes to a generic modeling approach, resulting in predictive models that are (i) accurate, (ii) easily identifiable with a limited work load, (iii) modular, and (iv) biologically interpretable. Copyright © 2016. Published by Elsevier B.V.
A systems approach to animal communication
Barron, Andrew B.; Balakrishnan, Christopher N.; Hauber, Mark E.; Hoke, Kim L.
2016-01-01
Why animal communication displays are so complex and how they have evolved are active foci of research with a long and rich history. Progress towards an evolutionary analysis of signal complexity, however, has been constrained by a lack of hypotheses to explain similarities and/or differences in signalling systems across taxa. To address this, we advocate incorporating a systems approach into studies of animal communication—an approach that includes comprehensive experimental designs and data collection in combination with the implementation of systems concepts and tools. A systems approach evaluates overall display architecture, including how components interact to alter function, and how function varies in different states of the system. We provide a brief overview of the current state of the field, including a focus on select studies that highlight the dynamic nature of animal signalling. We then introduce core concepts from systems biology (redundancy, degeneracy, pluripotentiality, and modularity) and discuss their relationships with system properties (e.g. robustness, flexibility, evolvability). We translate systems concepts into an animal communication framework and accentuate their utility through a case study. Finally, we demonstrate how consideration of the system-level organization of animal communication poses new practical research questions that will aid our understanding of how and why animal displays are so complex. PMID:26936240
A systems approach to animal communication.
Hebets, Eileen A; Barron, Andrew B; Balakrishnan, Christopher N; Hauber, Mark E; Mason, Paul H; Hoke, Kim L
2016-03-16
Why animal communication displays are so complex and how they have evolved are active foci of research with a long and rich history. Progress towards an evolutionary analysis of signal complexity, however, has been constrained by a lack of hypotheses to explain similarities and/or differences in signalling systems across taxa. To address this, we advocate incorporating a systems approach into studies of animal communication--an approach that includes comprehensive experimental designs and data collection in combination with the implementation of systems concepts and tools. A systems approach evaluates overall display architecture, including how components interact to alter function, and how function varies in different states of the system. We provide a brief overview of the current state of the field, including a focus on select studies that highlight the dynamic nature of animal signalling. We then introduce core concepts from systems biology (redundancy, degeneracy, pluripotentiality, and modularity) and discuss their relationships with system properties (e.g. robustness, flexibility, evolvability). We translate systems concepts into an animal communication framework and accentuate their utility through a case study. Finally, we demonstrate how consideration of the system-level organization of animal communication poses new practical research questions that will aid our understanding of how and why animal displays are so complex. © 2016 The Author(s).
Amp: A modular approach to machine learning in atomistic simulations
NASA Astrophysics Data System (ADS)
Khorshidi, Alireza; Peterson, Andrew A.
2016-10-01
Electronic structure calculations, such as those employing Kohn-Sham density functional theory or ab initio wavefunction theories, have allowed for atomistic-level understandings of a wide variety of phenomena and properties of matter at small scales. However, the computational cost of electronic structure methods drastically increases with length and time scales, which makes these methods difficult for long time-scale molecular dynamics simulations or large-sized systems. Machine-learning techniques can provide accurate potentials that can match the quality of electronic structure calculations, provided sufficient training data. These potentials can then be used to rapidly simulate large and long time-scale phenomena at similar quality to the parent electronic structure approach. Machine-learning potentials usually take a bias-free mathematical form and can be readily developed for a wide variety of systems. Electronic structure calculations have favorable properties-namely that they are noiseless and targeted training data can be produced on-demand-that make them particularly well-suited for machine learning. This paper discusses our modular approach to atomistic machine learning through the development of the open-source Atomistic Machine-learning Package (Amp), which allows for representations of both the total and atom-centered potential energy surface, in both periodic and non-periodic systems. Potentials developed through the atom-centered approach are simultaneously applicable for systems with various sizes. Interpolation can be enhanced by introducing custom descriptors of the local environment. We demonstrate this in the current work for Gaussian-type, bispectrum, and Zernike-type descriptors. Amp has an intuitive and modular structure with an interface through the python scripting language yet has parallelizable fortran components for demanding tasks; it is designed to integrate closely with the widely used Atomic Simulation Environment (ASE), which makes it compatible with a wide variety of commercial and open-source electronic structure codes. We finally demonstrate that the neural network model inside Amp can accurately interpolate electronic structure energies as well as forces of thousands of multi-species atomic systems.
Concept and set-up of an IR-gas sensor construction kit
NASA Astrophysics Data System (ADS)
Sieber, Ingo; Perner, Gernot; Gengenbach, Ulrich
2015-10-01
The paper presents an approach to a cost-efficient modularly built non-dispersive optical IR-gas sensor (NDIR) based on a construction kit. The modularity of the approach offers several advantages: First of all it allows for an adaptation of the performance of the gas sensor to individual specifications by choosing the suitable modular components. The sensitivity of the sensor e.g. can be altered by selecting a source which emits a favorable wavelength spectrum with respect to the absorption spectrum of the gas to be measured or by tuning the measuring distance (ray path inside the medium to be measured). Furthermore the developed approach is very well suited to be used in teaching. Together with students a construction kit on basis of an optical free space system was developed and partly implemented to be further used as a teaching and training aid for bachelor and master students at our institute. The components of the construction kit are interchangeable and freely fixable on a base plate. The components are classified into five groups: sources, reflectors, detectors, gas feed, and analysis cell. Source, detector, and the positions of the components are fundamental to experiment and test different configurations and beam paths. The reflectors are implemented by an aluminum coated adhesive foil, mounted onto a support structure fabricated by additive manufacturing. This approach allows derivation of the reflecting surface geometry from the optical design tool and generating the 3D-printing files by applying related design rules. The rapid fabrication process and the adjustment of the modules on the base plate allow rapid, almost LEGO®-like, experimental assessment of design ideas. Subject of this paper is modeling, design, and optimization of the reflective optical components, as well as of the optical subsystem. The realization of a sample set-up used as a teaching aid and the optical measurement of the beam path in comparison to the simulation results are shown as well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Badwan, Faris M.; Demuth, Scott Francis; Miller, Michael Conrad
Small Modular Reactors (SMR) with power levels significantly less than the currently standard 1000 to 1600-MWe reactors have been proposed as a potential game changer for future nuclear power. SMRs may offer a simpler, more standardized, and safer modular design by using factory built and easily transportable components. Additionally, SMRs may be more easily built and operated in isolated locations, and may require smaller initial capital investment and shorter construction times. Because many SMRs designs are still conceptual and consequently not yet fixed, designers have a unique opportunity to incorporate updated design basis threats, emergency preparedness requirements, and then fullymore » integrate safety, physical security, and safeguards/material control and accounting (MC&A) designs. Integrating safety, physical security, and safeguards is often referred to as integrating the 3Ss, and early consideration of safeguards and security in the design is often referred to as safeguards and security by design (SSBD). This paper describes U.S./Russian collaborative efforts toward developing an internationally accepted common approach for implementing SSBD/3Ss for SMRs based upon domestic requirements, and international guidance and requirements. These collaborative efforts originated with the Nuclear Energy and Nuclear Security working group established under the U.S.-Russia Bilateral Presidential Commission during the 2009 Presidential Summit. Initial efforts have focused on review of U.S. and Russian domestic requirements for Security and MC&A, IAEA guidance for security and MC&A, and IAEA requirements for international safeguards. Additionally, example SMR design features that can enhance proliferation resistance and physical security have been collected from past work and reported here. The development of a U.S./Russian common approach for SSBD/3Ss should aid the designer of SMRs located anywhere in the world. More specifically, the application of this approach may lead to more proliferation resistant and physically secure design features for SMRs.« less
Elmetwaly, Shereef; Schlick, Tamar
2014-01-01
Graph representations have been widely used to analyze and design various economic, social, military, political, and biological networks. In systems biology, networks of cells and organs are useful for understanding disease and medical treatments and, in structural biology, structures of molecules can be described, including RNA structures. In our RNA-As-Graphs (RAG) framework, we represent RNA structures as tree graphs by translating unpaired regions into vertices and helices into edges. Here we explore the modularity of RNA structures by applying graph partitioning known in graph theory to divide an RNA graph into subgraphs. To our knowledge, this is the first application of graph partitioning to biology, and the results suggest a systematic approach for modular design in general. The graph partitioning algorithms utilize mathematical properties of the Laplacian eigenvector (µ2) corresponding to the second eigenvalues (λ2) associated with the topology matrix defining the graph: λ2 describes the overall topology, and the sum of µ2′s components is zero. The three types of algorithms, termed median, sign, and gap cuts, divide a graph by determining nodes of cut by median, zero, and largest gap of µ2′s components, respectively. We apply these algorithms to 45 graphs corresponding to all solved RNA structures up through 11 vertices (∼220 nucleotides). While we observe that the median cut divides a graph into two similar-sized subgraphs, the sign and gap cuts partition a graph into two topologically-distinct subgraphs. We find that the gap cut produces the best biologically-relevant partitioning for RNA because it divides RNAs at less stable connections while maintaining junctions intact. The iterative gap cuts suggest basic modules and assembly protocols to design large RNA structures. Our graph substructuring thus suggests a systematic approach to explore the modularity of biological networks. In our applications to RNA structures, subgraphs also suggest design strategies for novel RNA motifs. PMID:25188578
Psychological Anthropology: A Modular Approach. Cultural Anthropology.
ERIC Educational Resources Information Center
Kassebaum, Peter
Designed for use as supplementary instructional material in a cultural anthropology course, this learning module traces the history of psychological anthropology, introducing various schools and perspectives within the field of psychology. First, a discussion is provided of biological determinism, examining its historical development and the…
Mississippi Curriculum Framework for Computer Discovery (8th Grade). CIP: 00.0252.
ERIC Educational Resources Information Center
Mississippi Research and Curriculum Unit for Vocational and Technical Education, State College.
This document, which is intended for technology educators in Mississippi, outlines a modular instruction approach that allows eighth graders to experience various workplace technologies within four career cluster areas: agriculture/natural resources technology, business/marketing technology, health/human services technology, and…
Minicourses in Astrophysics, Modular Approach, Vol. II.
ERIC Educational Resources Information Center
Illinois Univ., Chicago.
This is the second of a two-volume minicourse in astrophysics. It contains chapters on the following topics: stellar nuclear energy sources and nucleosynthesis; stellar evolution; stellar structure and its determination; and pulsars. Each chapter gives much technical discussion, mathematical treatment, diagrams, and examples. References are…
Tailoring Software Inspections for Aspect-Oriented Programming
ERIC Educational Resources Information Center
Watkins, Charlette Ward
2009-01-01
Aspect-Oriented Software Development (AOSD) is a new approach that addresses limitations inherent in conventional programming, especially the principle of separation of concerns by emphasizing the encapsulation and modularization of crosscutting concerns through a new abstraction, the "aspect." Aspect-oriented programming is an emerging AOSD…
Teaching Anthropology at the College Level
ERIC Educational Resources Information Center
Moore, Dward A., Jr.; And Others
1976-01-01
Presents two articles: "Modular Flexibility in an Individualized Introductory Cultural Anthropology Course," by Daniel D. Whitney and Patrick J. Dubbs, and, "Physical Anthropology as a Laboratory Science Course in a Community College," by Yechiel M. Lehavy. The former describes an individualized approach to anthropology, whereas the latter…
Anthropological Theory: A Modular Approach. Cultural Anthropology.
ERIC Educational Resources Information Center
Kassebaum, Peter
Designed for use as supplementary instructional material in a cultural anthropology course, this learning module introduces the student to various theoretical perspectives, terms, and influential figures within the field of anthropology. The following historical and conceptual influences on anthropological theory are discussed: (1) the Greek…
MR CAT scan: a modular approach for hybrid imaging.
Hillenbrand, C; Hahn, D; Haase, A; Jakob, P M
2000-07-01
In this study, a modular concept for NMR hybrid imaging is presented. This concept essentially integrates different imaging modules in a sequential fashion and is therefore called CAT (combined acquisition technique). CAT is not a single specific measurement sequence, but rather a sequence design concept whereby distinct acquisition techniques with varying imaging parameters are employed in rapid succession in order to cover k-space. The power of the CAT approach is that it provides a high flexibility toward the acquisition optimization with respect to the available imaging time and the desired image quality. Important CAT sequence optimization steps include the appropriate choice of the k-space coverage ratio and the application of mixed bandwidth technology. Details of both the CAT methodology and possible CAT acquisition strategies, such as FLASH/EPI-, RARE/EPI- and FLASH/BURST-CAT are provided. Examples from imaging experiments in phantoms and healthy volunteers including mixed bandwidth acquisitions are provided to demonstrate the feasibility of the proposed CAT concept.
Modular and Stochastic Approaches to Molecular Pathway Models of ATM, TGF beta, and WNT Signaling
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; O'Neill, Peter; Ponomarev, Artem; Carra, Claudio; Whalen, Mary; Pluth, Janice M.
2009-01-01
Deterministic pathway models that describe the biochemical interactions of a group of related proteins, their complexes, activation through kinase, etc. are often the basis for many systems biology models. Low dose radiation effects present a unique set of challenges to these models including the importance of stochastic effects due to the nature of radiation tracks and small number of molecules activated, and the search for infrequent events that contribute to cancer risks. We have been studying models of the ATM, TGF -Smad and WNT signaling pathways with the goal of applying pathway models to the investigation of low dose radiation cancer risks. Modeling challenges include introduction of stochastic models of radiation tracks, their relationships to more than one substrate species that perturb pathways, and the identification of a representative set of enzymes that act on the dominant substrates. Because several pathways are activated concurrently by radiation the development of modular pathway approach is of interest.
NASA Astrophysics Data System (ADS)
Giacalone, Philip L.
1993-06-01
The design of the Intelsat VII surface tension propellant management device (PMD) (an all-welded assembly consisting of about 100 individual components) was developed using a modular design approach that allowed the complex PMD assembly to be divided into smaller modules. The modular approach reduces manufacturing-related technical and schedule risks and allows many components and assemblies to be processed in parallel, while also facilitating the incorporation of quality assurance tests at all critical PMD subassembly levels. The baseline PMD assembly is made from titanium and stainless steel materials. In order to obtain a 100 percent titanium PMD, a new, state-of-the-art fine mesh titanium screen material was developed, tested, and qualified for use as an alternaltive to the stainless steel screen material. The Ti based screen material demonstrated a high level of bubble point performance. It was integrated into a PMD assembly and was successfully qualification tested at the tank assembly level.
Synthetic biology: programming cells for biomedical applications.
Hörner, Maximilian; Reischmann, Nadine; Weber, Wilfried
2012-01-01
The emerging field of synthetic biology is a novel biological discipline at the interface between traditional biology, chemistry, and engineering sciences. Synthetic biology aims at the rational design of complex synthetic biological devices and systems with desired properties by combining compatible, modular biological parts in a systematic manner. While the first engineered systems were mainly proof-of-principle studies to demonstrate the power of the modular engineering approach of synthetic biology, subsequent systems focus on applications in the health, environmental, and energy sectors. This review describes recent approaches for biomedical applications that were developed along the synthetic biology design hierarchy, at the level of individual parts, of devices, and of complex multicellular systems. It describes how synthetic biological parts can be used for the synthesis of drug-delivery tools, how synthetic biological devices can facilitate the discovery of novel drugs, and how multicellular synthetic ecosystems can give insight into population dynamics of parasites and hosts. These examples demonstrate how this new discipline could contribute to novel solutions in the biopharmaceutical industry.
Hulvershorn, Leslie A; Quinn, Patrick D; Scott, Eric L
2015-01-01
The past several decades have seen dramatic growth in empirically supported treatments for adolescent substance use disorders (SUDs), yet even the most well-established approaches struggle to produce large or long-lasting improvements. These difficulties may stem, in part, from the high rates of comorbidity between SUDs and other psychiatric disorders. We critically reviewed the treatment outcome literature for adolescents with co-occurring SUDs and internalizing disorders. Our review identified components of existing treatments that might be included in an integrated, evidence-based approach to the treatment of SUDs and internalizing disorders. An effective program may involve careful assessment, inclusion of parents or guardians, and tailoring of interventions via a modular strategy. The existing literature guides the development of a conceptual evidence-based, modular treatment model targeting adolescents with co-occurring internalizing and SUDs. With empirical study, such a model may better address treatment outcomes for both disorder types in adolescents.
Hulvershorn, Leslie A.; Quinn, Patrick D.; Scott, Eric L.
2016-01-01
Background The past several decades have seen dramatic growth in empirically supported treatments for adolescent substance use disorders (SUDs), yet even the most well-established approaches struggle to produce large or long-lasting improvements. These difficulties may stem, in part, from the high rates of comorbidity between SUDs and other psychiatric disorders. Method We critically reviewed the treatment outcome literature for adolescents with co-occurring SUDs and internalizing disorders. Results Our review identified components of existing treatments that might be included in an integrated, evidence-based approach to the treatment of SUDs and internalizing disorders. An effective program may involve careful assessment, inclusion of parents or guardians, and tailoring of interventions via a modular strategy. Conclusions The existing literature guides the development of a conceptual evidence-based, modular treatment model targeting adolescents with co-occurring internalizing and SUDs. With empirical study, such a model may better address treatment outcomes for both disorder types in adolescents. PMID:25973718
Dynamics of modularity of neural activity in the brain during development
NASA Astrophysics Data System (ADS)
Deem, Michael; Chen, Man
2014-03-01
Theory suggests that more modular systems can have better response functions at short times. This theory suggests that greater cognitive performance may be achieved for more modular neural activity, and that modularity of neural activity may, therefore, likely increase with development in children. We study the relationship between age and modularity of brain neural activity in developing children. The value of modularity calculated from fMRI data is observed to increase during childhood development and peak in young adulthood. We interpret these results as evidence of selection for plasticity in the cognitive function of the human brain. We present a model to illustrate how modularity can provide greater cognitive performance at short times and enhance fast, low-level, automatic cognitive processes. Conversely, high-level, effortful, conscious cognitive processes may not benefit from modularity. We use quasispecies theory to predict how the average modularity evolves with age, given a fitness function extracted from the model. We suggest further experiments exploring the effect of modularity on cognitive performance and suggest that modularity may be a potential biomarker for injury, rehabilitation, or disease.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mauro, N.A.; Kelton, K.F.
2011-10-27
High-energy x-ray diffraction studies of metallic liquids provide valuable information about structural evolution on the atomic length scale, leading to insights into the origin of the nucleation barrier and the processes of supercooling and glass formation. The containerless processing of the beamline electrostatic levitation (BESL) facility allows coordinated thermophysical and structural studies of equilibrium and supercooled liquids to be made in a contamination-free, high-vacuum ({approx}10{sup -8} Torr) environment. To date, the incorporation of electrostatic levitation facilities into synchrotron beamlines has been difficult due to the large footprint of the apparatus and the difficulties associated with its transportation and implementation. Here,more » we describe a modular levitation facility that is optimized for diffraction studies of high-temperature liquids at high-energy synchrotron beamlines. The modular approach used in the apparatus design allows it to be easily transported and quickly setup. Unlike most previous electrostatic levitation facilities, BESL can be operated by a single user instead of a user team.« less
User's guide to the Reliability Estimation System Testbed (REST)
NASA Technical Reports Server (NTRS)
Nicol, David M.; Palumbo, Daniel L.; Rifkin, Adam
1992-01-01
The Reliability Estimation System Testbed is an X-window based reliability modeling tool that was created to explore the use of the Reliability Modeling Language (RML). RML was defined to support several reliability analysis techniques including modularization, graphical representation, Failure Mode Effects Simulation (FMES), and parallel processing. These techniques are most useful in modeling large systems. Using modularization, an analyst can create reliability models for individual system components. The modules can be tested separately and then combined to compute the total system reliability. Because a one-to-one relationship can be established between system components and the reliability modules, a graphical user interface may be used to describe the system model. RML was designed to permit message passing between modules. This feature enables reliability modeling based on a run time simulation of the system wide effects of a component's failure modes. The use of failure modes effects simulation enhances the analyst's ability to correctly express system behavior when using the modularization approach to reliability modeling. To alleviate the computation bottleneck often found in large reliability models, REST was designed to take advantage of parallel processing on hypercube processors.