Science.gov

Sample records for modular dna signal

  1. Construction of a modular dihydrofolate reductase cDNA gene: Analysis of signals utilized for efficient expression

    SciTech Connect

    Kaufman, J.; Sharp, P.A.

    1982-11-01

    Dihydrofolate reductase (DHFR) modular genes have been constructed with segments containing the adenovirus major late promoter, a 3' splice site from a variable region immunoglobulin gene, a DHFR cDNA, and portions of the simian virus 40 (SV40) genome, DNA-mediated transfer of these genes transformed Chinese hamster ovary DHFR/sup -/ cells to the DHFR/sup +/ phenotype. Transformants contained one to several copies of the transfected DNA integrated into the host genome. Clones subjected to growth in increasing concentrations of methotrexate eventually gave rise to lines containing several hundred copies of the transforming DNA. Analysis of the DHFr mRNA produced in amplified lines indicated the following: (i) All clones utilize the adenovirus major late promoter for transcription initiation. (ii) A hybrid intron formed by the 5' splice site of the adenovirus major late leader and a 3' splice site from a variable-region immunoglobulin gene is properly excised. (iii) The mRNA is not efficiently polyadenylated at sequences in the 3' end of the DHFR cDNA but rather uses polyadenylation signals downstream from the DHFR cDNA. Three independent clones produce a DHFR mRNA containing SV40 or pBR322 and SV40 sequences, and the RNA is polyadenylated at the SV40 late polyadenylation site. Another clone has recombined into cellular DNA and apparently uses a cellular sequence for polyadenylation. Introduction of a segment containing the SV40 early polyadenylation signal into the 3' end of the DHFR cDNA generated a recombinant capable of transforming cells to the DHFR/sup +/ phenotype with at least a 10-fold increase in efficiency, demonstrating the necessity for an efficient polyadenylation signal. Attachment of a DNA segment containing the transcription enhancer 72-base pair repeat) of SV40 further increased the biological activity of the modular DHFR gene 50- to 100-fold.

  2. A spatially localized architecture for fast and modular DNA computing

    NASA Astrophysics Data System (ADS)

    Chatterjee, Gourab; Dalchau, Neil; Muscat, Richard A.; Phillips, Andrew; Seelig, Georg

    2017-09-01

    Cells use spatial constraints to control and accelerate the flow of information in enzyme cascades and signalling networks. Synthetic silicon-based circuitry similarly relies on spatial constraints to process information. Here, we show that spatial organization can be a similarly powerful design principle for overcoming limitations of speed and modularity in engineered molecular circuits. We create logic gates and signal transmission lines by spatially arranging reactive DNA hairpins on a DNA origami. Signal propagation is demonstrated across transmission lines of different lengths and orientations and logic gates are modularly combined into circuits that establish the universality of our approach. Because reactions preferentially occur between neighbours, identical DNA hairpins can be reused across circuits. Co-localization of circuit elements decreases computation time from hours to minutes compared to circuits with diffusible components. Detailed computational models enable predictive circuit design. We anticipate our approach will motivate using spatial constraints for future molecular control circuit designs.

  3. Modularized TGFbeta-Smad Signaling Pathway

    NASA Technical Reports Server (NTRS)

    Li, Yongfeng; Wang, M.; Carra, C.; Cucinotta, F. A.

    2011-01-01

    The Transforming Growth Factor beta (TGFbeta) signaling pathway is a prominent regulatory signaling pathway controlling various important cellular processes. It can be induced by several factors, including ionizing radiation. It is regulated by Smads in a negative feedback loop through promoting increases in the regulatory Smads in the cell nucleus, and subsequent expression of inhibitory Smad, Smad7 to form a ubiquitin ligase with Smurf targeting active TGF receptors for degradation. In this work, we proposed a mathematical model to study the radiation-induced Smad-regulated TGF signaling pathway. By modularization, we are able to analyze each module (subsystem) and recover the nonlinear dynamics of the entire network system. Meanwhile the excitability, a common feature observed in the biological systems, along the TGF signaling pathway is discussed by mathematical analysis and numerical simulation.

  4. Modular multi-level circuits from immobilized DNA-based logic gates.

    PubMed

    Frezza, Brian M; Cockroft, Scott L; Ghadiri, M Reza

    2007-12-05

    One of the fundamental goals of molecular computing is to reproduce the tenets of digital logic, such as component modularity and hierarchical circuit design. An important step toward this goal is the creation of molecular logic gates that can be rationally wired into multi-level circuits. Here we report the design and functional characterization of a complete set of modular DNA-based Boolean logic gates (AND, OR, and AND-NOT) and further demonstrate their wiring into a three-level circuit that exhibits Boolean XOR (exclusive OR) function. The approach is based on solid-supported DNA logic gates that are designed to operate with single-stranded DNA inputs and outputs. Since the solution-phase serves as the communication medium between gates, circuit wiring can be achieved by designating the DNA output of one gate as the input to another. Solid-supported logic gates provide enhanced gate modularity versus solution-phase systems by significantly simplifying the task of choosing appropriate DNA input and output sequences used in the construction of multi-level circuits. The molecular logic gates and circuits reported here were characterized by coupling DNA outputs to a single-input REPORT gate and monitoring the resulting fluorescent output signals.

  5. Defining a Modular Signalling Network from the Fly Interactome

    PubMed Central

    Baudot, Anaïs; Angelelli, Jean-Baptiste; Guénoche, Alain; Jacq, Bernard; Brun, Christine

    2008-01-01

    Background Signalling pathways relay information by transmitting signals from cell surface receptors to intracellular effectors that eventually activate the transcription of target genes. Since signalling pathways involve several types of molecular interactions including protein-protein interactions, we postulated that investigating their organization in the context of the global protein-protein interaction network could provide a new integrated view of signalling mechanisms. Results Using a graph-theory based method to analyse the fly protein-protein interaction network, we found that each signalling pathway is organized in two to three different signalling modules. These modules contain canonical proteins of the signalling pathways, known regulators as well as other proteins thereby predicted to participate to the signalling mechanisms. Connections between the signalling modules are prominent as compared to the other network's modules and interactions within and between signalling modules are among the more central routes of the interaction network. Conclusion Altogether, these modules form an interactome sub-network devoted to signalling with particular topological properties: modularity, density and centrality. This finding reflects the integration of the signalling system into cell functioning and its important role connecting and coordinating different biological processes at the level of the interactome. PMID:18489752

  6. DNA sequencing technology, walking with modular primers. Final report

    SciTech Connect

    Ulanovsky, L.

    1996-12-31

    The success of the Human Genome Project depends on the development of adequate technology for rapid and inexpensive DNA sequencing, which will also benefit biomedical research in general. The authors are working on DNA technologies that eliminate primer synthesis, the main bottleneck in sequencing by primer walking. They have developed modular primers that are assembled from three 5-mer, 6-mer or 7-mer modules selected from a presynthesized library of as few as 1,000 oligonucleotides ({double_bond}4, {double_bond}5, {double_bond}7). The three modules anneal contiguously at the selected template site and prime there uniquely, even though each is not unique for the most part when used alone. This technique is expected to speed up primer walking 30 to 50 fold, and reduce the sequencing cost by a factor of 5 to 15. Time and expensive will be saved on primer synthesis itself and even more so due to closed-loop automation of primer walking, made possible by the instant availability of primers. Apart from saving time and cost, closed-loop automation would also minimize the errors and complications associated with human intervention between the walks. The author has also developed two additional approaches to primer-library based sequencing. One involves a branched structure of modular primers which has a distinctly different mechanism of achieving priming specificity. The other introduces the concept of ``Differential Extension with Nucleotide Subsets`` as an approach increasing priming specificity, priming strength and allowing cycle sequencing. These approaches are expected to be more robust than the original version of the modular primer technique.

  7. Phylogenetic evidence for the modular evolution of metazoan signalling pathways.

    PubMed

    Babonis, Leslie S; Martindale, Mark Q

    2017-02-05

    Communication among cells was paramount to the evolutionary increase in cell type diversity and, ultimately, the origin of large body size. Across the diversity of Metazoa, there are only few conserved cell signalling pathways known to orchestrate the complex cell and tissue interactions regulating development; thus, modification to these few pathways has been responsible for generating diversity during the evolution of animals. Here, we summarize evidence for the origin and putative function of the intracellular, membrane-bound and secreted components of seven metazoan cell signalling pathways with a special focus on early branching metazoans (ctenophores, poriferans, placozoans and cnidarians) and basal unikonts (amoebozoans, fungi, filastereans and choanoflagellates). We highlight the modular incorporation of intra- and extracellular components in each signalling pathway and suggest that increases in the complexity of the extracellular matrix may have further promoted the modulation of cell signalling during metazoan evolution. Most importantly, this updated view of metazoan signalling pathways highlights the need for explicit study of canonical signalling pathway components in taxa that do not operate a complete signalling pathway. Studies like these are critical for developing a deeper understanding of the evolution of cell signalling.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological diversity'.

  8. Design of Modular Protein Tags for Orthogonal Covalent Bond Formation at Specific DNA Sequences.

    PubMed

    Nguyen, Thang Minh; Nakata, Eiji; Saimura, Masayuki; Dinh, Huyen; Morii, Takashi

    2017-06-28

    Simultaneous formation of specific covalent linkages at nucleotides in given DNA sequences demand distinct orthogonal reactivity of DNA modification agents. Such highly specific reactions require well-balanced reactivity and affinity of the DNA modification agents. Conjugation of a sequence-specific DNA binding zinc finger protein and a self-ligating protein tag provides a modular adaptor that expedites formation of a covalent bond between the protein tag and a substrate-modified nucleotide at a specific DNA sequence. The modular adaptor stably locates a protein of interest fused to it at the target position on DNA scaffold in its functional form. Modular adaptors with orthogonal selectivity and fast reaction kinetics to specific DNA sequences enable site-specific location of different protein molecules simultaneously. Three different modular adaptors consisting of zinc finger proteins with distinct DNA sequence specificities and self-ligating protein tags with different substrate specificities achieved orthogonal covalent bond formation at respective sequences on the same DNA scaffold with an overall coassembly yield over 90%. Application of this unique set of orthogonal modular adaptors enabled construction of a cascade reaction of three enzymes from xylose metabolic pathway on DNA scaffold.

  9. The discovery of modular binding domains: building blocks of cell signalling.

    PubMed

    Mayer, Bruce J

    2015-11-01

    Cell signalling - the ability of a cell to process information from the environment and change its behaviour in response - is a central property of life. Signalling depends on proteins that are assembled from a toolkit of modular domains, each of which confers a specific activity or function. The discovery of modular protein- and lipid-binding domains was a crucial turning point in understanding the logic and evolution of signalling mechanisms.

  10. Modular architecture of protein structures and allosteric communications: potential implications for signaling proteins and regulatory linkages

    PubMed Central

    del Sol, Antonio; Araúzo-Bravo, Marcos J; Amoros, Dolors; Nussinov, Ruth

    2007-01-01

    Background Allosteric communications are vital for cellular signaling. Here we explore a relationship between protein architectural organization and shortcuts in signaling pathways. Results We show that protein domains consist of modules interconnected by residues that mediate signaling through the shortest pathways. These mediating residues tend to be located at the inter-modular boundaries, which are more rigid and display a larger number of long-range interactions than intra-modular regions. The inter-modular boundaries contain most of the residues centrally conserved in the protein fold, which may be crucial for information transfer between amino acids. Our approach to modular decomposition relies on a representation of protein structures as residue-interacting networks, and removal of the most central residue contacts, which are assumed to be crucial for allosteric communications. The modular decomposition of 100 multi-domain protein structures indicates that modules constitute the building blocks of domains. The analysis of 13 allosteric proteins revealed that modules characterize experimentally identified functional regions. Based on the study of an additional functionally annotated dataset of 115 proteins, we propose that high-modularity modules include functional sites and are the basic functional units. We provide examples (the Gαs subunit and P450 cytochromes) to illustrate that the modular architecture of active sites is linked to their functional specialization. Conclusion Our method decomposes protein structures into modules, allowing the study of signal transmission between functional sites. A modular configuration might be advantageous: it allows signaling proteins to expand their regulatory linkages and may elicit a broader range of control mechanisms either via modular combinations or through modulation of inter-modular linkages. PMID:17531094

  11. cDNA cloning and characterization of a novel squid rhodopsin kinase encoding multiple modular domains.

    PubMed

    Mayeenuddin, L H; Mitchell, J

    2001-01-01

    Rhodopsin phosphorylation is one of the key mechanisms of inactivation in vertebrate and invertebrate visual signal transduction. Here we report the cDNA cloning and protein characterization of a 70-kDa squid rhodopsin kinase, SQRK. The cDNA encoding the 70-kDa protein demonstrates high sequence identity with octopus rhodopsin kinase (92%) and mammalian beta-adrenergic receptor kinases (63-65%), but only 33% similarity with bovine rhodopsin kinase, suggesting that invertebrate rhodopsin kinases may be structurally similar to beta-adrenergic receptor kinases. This cDNA encodes three distinct modular domains: RGS, S/TKc, and PH domains. The native SQRK is an eye-specific protein that is only expressed in photoreceptor cells and the optic ganglion as determined by immunoblotting. Purified SQRK is able to phosphorylate both squid and bovine rhodopsin. Squid rhodopsin phosphorylation by purified SQRK was sensitive to both Mg2+ and GTPgammaS but was insensitive to Ca2+/CaM regulation. The ability of SQRK to phosphorylate rhodopsin was totally lost in the presence of SQRK-specific antibodies. Our results suggest that SQRK plays an important role in squid visual signal termination.

  12. DNA signals at isoform promoters

    PubMed Central

    Dai, Zhiming; Xiong, Yuanyan; Dai, Xianhua

    2016-01-01

    Transcriptional heterogeneity is extensive in the genome, and most genes express variable transcript isoforms. However, whether variable transcript isoforms of one gene are regulated by common promoter elements remain to be elucidated. Here, we investigated whether isoform promoters of one gene have separated DNA signals for transcription and translation initiation. We found that TATA box and nucleosome-disfavored DNA sequences are prevalent in distinct transcript isoform promoters of one gene. These DNA signals are conserved among species. Transcript isoform has a RNA-determined unstructured region around its start site. We found that these DNA/RNA features facilitate isoform transcription and translation. These results suggest a DNA-encoded mechanism by which transcript isoform is generated. PMID:27353836

  13. pH-programmable DNA logic arrays powered by modular DNAzyme libraries.

    PubMed

    Elbaz, Johann; Wang, Fuan; Remacle, Francoise; Willner, Itamar

    2012-12-12

    Nature performs complex information processing circuits, such the programmed transformations of versatile stem cells into targeted functional cells. Man-made molecular circuits are, however, unable to mimic such sophisticated biomachineries. To reach these goals, it is essential to construct programmable modular components that can be triggered by environmental stimuli to perform different logic circuits. We report on the unprecedented design of artificial pH-programmable DNA logic arrays, constructed by modular libraries of Mg(2+)- and UO(2)(2+)-dependent DNAzyme subunits and their substrates. By the appropriate modular design of the DNA computation units, pH-programmable logic arrays of various complexities are realized, and the arrays can be erased, reused, and/or reprogrammed. Such systems may be implemented in the near future for nanomedical applications by pH-controlled regulation of cellular functions or may be used to control biotransformations stimulated by bacteria.

  14. Tunable signal processing through modular control of transcription factor translocation.

    PubMed

    Hao, Nan; Budnik, Bogdan A; Gunawardena, Jeremy; O'Shea, Erin K

    2013-01-25

    Signaling pathways can induce different dynamics of transcription factor (TF) activation. We explored how TFs process signaling inputs to generate diverse dynamic responses. The budding yeast general stress-responsive TF Msn2 acted as a tunable signal processor that could track, filter, or integrate signals in an input-dependent manner. This tunable signal processing appears to originate from dual regulation of both nuclear import and export by phosphorylation, as mutants with one form of regulation sustained only one signal-processing function. Versatile signal processing by Msn2 is crucial for generating distinct dynamic responses to different natural stresses. Our findings reveal how complex signal-processing functions are integrated into a single molecule and provide a guide for the design of TFs with "programmable" signal-processing functions.

  15. Modular continuous wavelet processing of biosignals: extracting heart rate and oxygen saturation from a video signal.

    PubMed

    Addison, Paul S

    2016-06-01

    A novel method of extracting heart rate and oxygen saturation from a video-based biosignal is described. The method comprises a novel modular continuous wavelet transform approach which includes: performing the transform, undertaking running wavelet archetyping to enhance the pulse information, extraction of the pulse ridge time-frequency information [and thus a heart rate (HRvid) signal], creation of a wavelet ratio surface, projection of the pulse ridge onto the ratio surface to determine the ratio of ratios from which a saturation trending signal is derived, and calibrating this signal to provide an absolute saturation signal (SvidO2). The method is illustrated through its application to a video photoplethysmogram acquired during a porcine model of acute desaturation. The modular continuous wavelet transform-based approach is advocated by the author as a powerful methodology to deal with noisy, non-stationary biosignals in general.

  16. Modular continuous wavelet processing of biosignals: extracting heart rate and oxygen saturation from a video signal

    PubMed Central

    2016-01-01

    A novel method of extracting heart rate and oxygen saturation from a video-based biosignal is described. The method comprises a novel modular continuous wavelet transform approach which includes: performing the transform, undertaking running wavelet archetyping to enhance the pulse information, extraction of the pulse ridge time–frequency information [and thus a heart rate (HRvid) signal], creation of a wavelet ratio surface, projection of the pulse ridge onto the ratio surface to determine the ratio of ratios from which a saturation trending signal is derived, and calibrating this signal to provide an absolute saturation signal (SvidO2). The method is illustrated through its application to a video photoplethysmogram acquired during a porcine model of acute desaturation. The modular continuous wavelet transform-based approach is advocated by the author as a powerful methodology to deal with noisy, non-stationary biosignals in general. PMID:27382479

  17. BurrH: a new modular DNA binding protein for genome engineering

    PubMed Central

    Juillerat, Alexandre; Bertonati, Claudia; Dubois, Gwendoline; Guyot, Valérie; Thomas, Séverine; Valton, Julien; Beurdeley, Marine; Silva, George H.; Daboussi, Fayza; Duchateau, Philippe

    2014-01-01

    The last few years have seen the increasing development of new DNA targeting molecular tools and strategies for precise genome editing. However, opportunities subsist to either improve or expand the current toolbox and further broaden the scope of possible biotechnological applications. Here we report the discovery and the characterization of BurrH, a new modular DNA binding protein from Burkholderia rhizoxinica that is composed of highly polymorphic DNA targeting modules. We also engineered this scaffold to create a new class of designer nucleases that can be used to efficiently induce in vivo targeted mutagenesis and targeted gene insertion at a desired locus. PMID:24452192

  18. Modular Nuclease-Responsive DNA Three-Way Junction-Based Dynamic Assembly of a DNA Device and Its Sensing Application.

    PubMed

    Zhu, Jing; Wang, Lei; Xu, Xiaowen; Wei, Haiping; Jiang, Wei

    2016-04-05

    Here, we explored a modular strategy for rational design of nuclease-responsive three-way junctions (TWJs) and fabricated a dynamic DNA device in a "plug-and-play" fashion. First, inactivated TWJs were designed, which contained three functional domains: the inaccessible toehold and branch migration domains, the specific sites of nucleases, and the auxiliary complementary sequence. The actions of different nucleases on their specific sites in TWJs caused the close proximity of the same toehold and branch migration domains, resulting in the activation of the TWJs and the formation of a universal trigger for the subsequent dynamic assembly. Second, two hairpins (H1 and H2) were introduced, which could coexist in a metastable state, initially to act as the components for the dynamic assembly. Once the trigger initiated the opening of H1 via TWJs-driven strand displacement, the cascade hybridization of hairpins immediately switched on, resulting in the formation of the concatemers of H1/H2 complex appending numerous integrated G-quadruplexes, which were used to obtain label-free signal readout. The inherent modularity of this design allowed us to fabricate a flexible DNA dynamic device and detect multiple nucleases through altering the recognition pattern slightly. Taking uracil-DNA glycosylase and CpG methyltransferase M.SssI as models, we successfully realized the butt joint between the uracil-DNA glycosylase and M.SssI recognition events and the dynamic assembly process. Furthermore, we achieved ultrasensitive assay of nuclease activity and the inhibitor screening. The DNA device proposed here will offer an adaptive and flexible tool for clinical diagnosis and anticancer drug discovery.

  19. Modular assembly of chimeric phi29 packaging RNAs that support DNA packaging

    PubMed Central

    Fang, Yun; Shu, Dan; Xiao, Feng; Guo, Peixuan; Qin, Peter Z.

    2008-01-01

    The bacteriophage phi29 DNA packaging motor is a protein/RNA complex that can produce strong force to condense the linear-double stranded DNA genome into a pre-formed protein capsid. The RNA component, called the packaging RNA (pRNA), utilizes magnesium-dependent intermolecular base-pairing interactions to form ring-shaped complexes. The pRNA is a class of non-coding RNA, interacting with phi29 motor proteins to enable DNA packaging. Here, we report a 2-piece chimeric pRNA construct that is fully competent in interacting with partner pRNA to form ring-shaped complexes, in packaging DNA via the motor, and in assembling infectious phi29 virions in vitro. This is the first example of a fully functional pRNA assembled using two non-covalently interacting fragments. The results support the notion of modular pRNA architecture in the phi29 packaging motor. PMID:18514064

  20. DNA damage signalling prevents deleterious telomere addition at DNA breaks

    PubMed Central

    Makovets, Svetlana; Blackburn, Elizabeth H.

    2009-01-01

    The response to DNA damage involves regulation of multiple essential processes to maximize the accuracy of DNA damage repair and cell survival 1. Telomerase has the potential to interfere with repair by inappropriately adding telomeres to DNA breaks. It was unknown whether cells modulate telomerase in response to DNA damage, to increase the accuracy of repair. Here we report that telomerase action is regulated as a part of the cellular response to a DNA double-strand break (DSB). Using yeast, we show that the major ATR/Mec1 DNA damage signalling pathway regulates telomerase action at DSBs. Upon DNA damage, MEC1-RAD53-DUN1-dependent phosphorylation of the telomerase inhibitor Pif1 occurs. Utilizing a separation of function PIF1 mutation, we show that this phosphorylation is required for the Pif1-mediated telomerase inhibition that takes place specifically at DNA breaks, but not telomeres. Hence DNA damage signalling down-modulates telomerase action at a DNA break via Pif1 phosphorylation, thus preventing aberrant healing of broken DNA ends by telomerase. These findings uncover a novel regulatory mechanism that coordinates competing DNA end-processing activities and thereby promotes DNA repair accuracy and genome integrity. PMID:19838171

  1. Domains, motifs, and scaffolds: the role of modular interactions in the evolution and wiring of cell signaling circuits.

    PubMed

    Bhattacharyya, Roby P; Reményi, Attila; Yeh, Brian J; Lim, Wendell A

    2006-01-01

    Living cells display complex signal processing behaviors, many of which are mediated by networks of proteins specialized for signal transduction. Here we focus on the question of how the remarkably diverse array of eukaryotic signaling circuits may have evolved. Many of the mechanisms that connect signaling proteins into networks are highly modular: The core catalytic activity of a signaling protein is physically and functionally separable from molecular domains or motifs that determine its linkage to both inputs and outputs. This high degree of modularity may make these systems more evolvable-in principle, novel circuits, and therefore highly innovative regulatory behaviors, can arise from relatively simple genetic events such as recombination, deletion, or insertion. In support of this hypothesis, recent studies show that such modular systems can be exploited to engineer nonnatural signaling proteins and pathways with novel behavior.

  2. Regulated unfolding: a basic principle of intraprotein signaling in modular proteins.

    PubMed

    Schultz, Joachim E; Natarajan, Janani

    2013-11-01

    Modular proteins possess N-terminal sensor domains connected with different C-terminal output domains. Different output domains, for example, phosphodiesterases adenylyl cyclases, are regulated by identical N-terminal domains. Therefore, the mechanisms of intraprotein signaling share properties suitable to regulation of disparate output enzymes, which see the same signal but react differently. The common denominator is a reversible switch of folding/unfolding that connects sensor and output domains. In the inhibited state, output domains are restrained, whereas in the activated state domains are released to assemble according to intrinsic domain properties. We review recent work investigating the mechanism of intraprotein signaling and discuss how this signaling mechanism may have contributed to the evolutionary diversity of specific small molecule-binding domains without loss of regulatory properties.

  3. Modular fluorescence complementation sensors for live cell detection of epigenetic signals at endogenous genomic sites.

    PubMed

    Lungu, Cristiana; Pinter, Sabine; Broche, Julian; Rathert, Philipp; Jeltsch, Albert

    2017-09-21

    Investigation of the fundamental role of epigenetic processes requires methods for the locus-specific detection of epigenetic modifications in living cells. Here, we address this urgent demand by developing four modular fluorescence complementation-based epigenetic biosensors for live-cell microscopy applications. These tools combine engineered DNA-binding proteins with domains recognizing defined epigenetic marks, both fused to non-fluorescent fragments of a fluorescent protein. The presence of the epigenetic mark at the target DNA sequence leads to the reconstitution of a functional fluorophore. With this approach, we could for the first time directly detect DNA methylation and histone 3 lysine 9 trimethylation at endogenous genomic sites in live cells and follow dynamic changes in these marks upon drug treatment, induction of epigenetic enzymes and during the cell cycle. We anticipate that this versatile technology will improve our understanding of how specific epigenetic signatures are set, erased and maintained during embryonic development or disease onset.Tools for imaging epigenetic modifications can shed light on the regulation of epigenetic processes. Here, the authors present a fluorescence complementation approach for detection of DNA and histone methylation at endogenous genomic sites allowing following of dynamic changes of these marks by live-cell microscopy.

  4. A software controllable modular RF signal generator with multichannel transmission capabilities

    NASA Astrophysics Data System (ADS)

    Shaw, Z.; Feilner, W.; Esser, B.; Dickens, J. C.; Neuber, A. A.

    2017-09-01

    A software controllable system which generates and transmits user defined RF signals is discussed. The system is implemented with multiple, modular transmitting channels that allow the user to easily replace parts such as amplifiers or antennas. Each channel is comprised of a data pattern generator (DPG), a digital to analog converter (DAC), a power amplifier, and a transmitting antenna. All channels are controlled through a host PC and synchronized through a master clock signal provided to each DAC by an external clock source. Signals to be transmitted are generated through the DPG control software on the PC or can be created by the user in a numerical computing environment. Three experiments are discussed using a two- and four-channel antenna array incorporating Chebyshev tapered TEM horn antennas. Transmitting distinct sets of nonperiodic bipolar impulses through each of the antennas in the array enabled synthesizing a sinusoidal signal of specific frequency in free space. Opposite to the standard phased array approach, each antenna radiates a distinctly different signal rather than the same signal simply phase shifted. The presented approach may be employed as a physical layer of encryption dependent on the position of the receiving antenna.

  5. Physical signals for protein-DNA recognition

    NASA Astrophysics Data System (ADS)

    Cao, Xiao-Qin; Zeng, Jia; Yan, Hong

    2009-09-01

    This paper discovers consensus physical signals around eukaryotic splice sites, transcription start sites, and replication origin start and end sites on a genome-wide scale based on their DNA flexibility profiles calculated by three different flexibility models. These salient physical signals are localized highly rigid and flexible DNAs, which may play important roles in protein-DNA recognition by the sliding search mechanism. The found physical signals lead us to a detailed hypothetical view of the search process in which a DNA-binding protein first finds a genomic region close to the target site from an arbitrary starting location by three-dimensional (3D) hopping and intersegment transfer mechanisms for long distances, and subsequently uses the one-dimensional (1D) sliding mechanism facilitated by the localized highly rigid DNAs to accurately locate the target flexible binding site within 30 bp (base pair) short distances. Guided by these physical signals, DNA-binding proteins rapidly search the entire genome to recognize a specific target site from the 3D to 1D pathway. Our findings also show that current promoter prediction programs (PPPs) based on DNA physical properties may suffer from lots of false positives because other functional sites such as splice sites and replication origins have similar physical signals as promoters do.

  6. One-pot DNA construction for synthetic biology: the Modular Overlap-Directed Assembly with Linkers (MODAL) strategy

    PubMed Central

    Casini, Arturo; MacDonald, James T.; Jonghe, Joachim De; Christodoulou, Georgia; Freemont, Paul S.; Baldwin, Geoff S.; Ellis, Tom

    2014-01-01

    Overlap-directed DNA assembly methods allow multiple DNA parts to be assembled together in one reaction. These methods, which rely on sequence homology between the ends of DNA parts, have become widely adopted in synthetic biology, despite being incompatible with a key principle of engineering: modularity. To answer this, we present MODAL: a Modular Overlap-Directed Assembly with Linkers strategy that brings modularity to overlap-directed methods, allowing assembly of an initial set of DNA parts into a variety of arrangements in one-pot reactions. MODAL is accompanied by a custom software tool that designs overlap linkers to guide assembly, allowing parts to be assembled in any specified order and orientation. The in silico design of synthetic orthogonal overlapping junctions allows for much greater efficiency in DNA assembly for a variety of different methods compared with using non-designed sequence. In tests with three different assembly technologies, the MODAL strategy gives assembly of both yeast and bacterial plasmids, composed of up to five DNA parts in the kilobase range with efficiencies of between 75 and 100%. It also seamlessly allows mutagenesis to be performed on any specified DNA parts during the process, allowing the one-step creation of construct libraries valuable for synthetic biology applications. PMID:24153110

  7. A modular cell-based biosensor using engineered genetic logic circuits to detect and integrate multiple environmental signals.

    PubMed

    Wang, Baojun; Barahona, Mauricio; Buck, Martin

    2013-02-15

    Cells perceive a wide variety of cellular and environmental signals, which are often processed combinatorially to generate particular phenotypic responses. Here, we employ both single and mixed cell type populations, pre-programmed with engineered modular cell signalling and sensing circuits, as processing units to detect and integrate multiple environmental signals. Based on an engineered modular genetic AND logic gate, we report the construction of a set of scalable synthetic microbe-based biosensors comprising exchangeable sensory, signal processing and actuation modules. These cellular biosensors were engineered using distinct signalling sensory modules to precisely identify various chemical signals, and combinations thereof, with a quantitative fluorescent output. The genetic logic gate used can function as a biological filter and an amplifier to enhance the sensing selectivity and sensitivity of cell-based biosensors. In particular, an Escherichia coli consortium-based biosensor has been constructed that can detect and integrate three environmental signals (arsenic, mercury and copper ion levels) via either its native two-component signal transduction pathways or synthetic signalling sensors derived from other bacteria in combination with a cell-cell communication module. We demonstrate how a modular cell-based biosensor can be engineered predictably using exchangeable synthetic gene circuit modules to sense and integrate multiple-input signals. This study illustrates some of the key practical design principles required for the future application of these biosensors in broad environmental and healthcare areas. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. A modular cell-based biosensor using engineered genetic logic circuits to detect and integrate multiple environmental signals

    PubMed Central

    Wang, Baojun; Barahona, Mauricio; Buck, Martin

    2013-01-01

    Cells perceive a wide variety of cellular and environmental signals, which are often processed combinatorially to generate particular phenotypic responses. Here, we employ both single and mixed cell type populations, pre-programmed with engineered modular cell signalling and sensing circuits, as processing units to detect and integrate multiple environmental signals. Based on an engineered modular genetic AND logic gate, we report the construction of a set of scalable synthetic microbe-based biosensors comprising exchangeable sensory, signal processing and actuation modules. These cellular biosensors were engineered using distinct signalling sensory modules to precisely identify various chemical signals, and combinations thereof, with a quantitative fluorescent output. The genetic logic gate used can function as a biological filter and an amplifier to enhance the sensing selectivity and sensitivity of cell-based biosensors. In particular, an Escherichia coli consortium-based biosensor has been constructed that can detect and integrate three environmental signals (arsenic, mercury and copper ion levels) via either its native two-component signal transduction pathways or synthetic signalling sensors derived from other bacteria in combination with a cell-cell communication module. We demonstrate how a modular cell-based biosensor can be engineered predictably using exchangeable synthetic gene circuit modules to sense and integrate multiple-input signals. This study illustrates some of the key practical design principles required for the future application of these biosensors in broad environmental and healthcare areas. PMID:22981411

  9. Cladistic analysis of continuous modularized traits provides phylogenetic signals in Homo evolution.

    PubMed

    González-José, Rolando; Escapa, Ignacio; Neves, Walter A; Cúneo, Rubén; Pucciarelli, Héctor M

    2008-06-05

    Evolutionary novelties in the skeleton are usually expressed as changes in the timing of growth of features intrinsically integrated at different hierarchical levels of development. As a consequence, most of the shape-traits observed across species do vary quantitatively rather than qualitatively, in a multivariate space and in a modularized way. Because most phylogenetic analyses normally use discrete, hypothetically independent characters, previous attempts have disregarded the phylogenetic signals potentially enclosed in the shape of morphological structures. When analysing low taxonomic levels, where most variation is quantitative in nature, solving basic requirements like the choice of characters and the capacity of using continuous, integrated traits is of crucial importance in recovering wider phylogenetic information. This is particularly relevant when analysing extinct lineages, where available data are limited to fossilized structures. Here we show that when continuous, multivariant and modularized characters are treated as such, cladistic analysis successfully solves relationships among main Homo taxa. Our attempt is based on a combination of cladistics, evolutionary-development-derived selection of characters, and geometric morphometrics methods. In contrast with previous cladistic analyses of hominid phylogeny, our method accounts for the quantitative nature of the traits, and respects their morphological integration patterns. Because complex phenotypes are observable across different taxonomic groups and are potentially informative about phylogenetic relationships, future analyses should point strongly to the incorporation of these types of trait.

  10. Signal replication in a DNA nanostructure

    NASA Astrophysics Data System (ADS)

    Mendoza, Oscar; Houmadi, Said; Aimé, Jean-Pierre; Elezgaray, Juan

    2017-01-01

    Logic circuits based on DNA strand displacement reaction are the basic building blocks of future nanorobotic systems. The circuits tethered to DNA origami platforms present several advantages over solution-phase versions where couplings are always diffusion-limited. Here we consider a possible implementation of one of the basic operations needed in the design of these circuits, namely, signal replication. We show that with an appropriate preparation of the initial state, signal replication performs in a reproducible way. We also show the existence of side effects concomitant to the high effective concentrations in tethered circuits, such as slow leaky reactions and cross-activation.

  11. The Double-Stranded DNA Virosphere as a Modular Hierarchical Network of Gene Sharing

    PubMed Central

    Iranzo, Jaime

    2016-01-01

    ABSTRACT Virus genomes are prone to extensive gene loss, gain, and exchange and share no universal genes. Therefore, in a broad-scale study of virus evolution, gene and genome network analyses can complement traditional phylogenetics. We performed an exhaustive comparative analysis of the genomes of double-stranded DNA (dsDNA) viruses by using the bipartite network approach and found a robust hierarchical modularity in the dsDNA virosphere. Bipartite networks consist of two classes of nodes, with nodes in one class, in this case genomes, being connected via nodes of the second class, in this case genes. Such a network can be partitioned into modules that combine nodes from both classes. The bipartite network of dsDNA viruses includes 19 modules that form 5 major and 3 minor supermodules. Of these modules, 11 include tailed bacteriophages, reflecting the diversity of this largest group of viruses. The module analysis quantitatively validates and refines previously proposed nontrivial evolutionary relationships. An expansive supermodule combines the large and giant viruses of the putative order “Megavirales” with diverse moderate-sized viruses and related mobile elements. All viruses in this supermodule share a distinct morphogenetic tool kit with a double jelly roll major capsid protein. Herpesviruses and tailed bacteriophages comprise another supermodule, held together by a distinct set of morphogenetic proteins centered on the HK97-like major capsid protein. Together, these two supermodules cover the great majority of currently known dsDNA viruses. We formally identify a set of 14 viral hallmark genes that comprise the hubs of the network and account for most of the intermodule connections. PMID:27486193

  12. Engineering modular and tunable genetic amplifiers for scaling transcriptional signals in cascaded gene networks.

    PubMed

    Wang, Baojun; Barahona, Mauricio; Buck, Martin

    2014-08-01

    Synthetic biology aims to control and reprogram signal processing pathways within living cells so as to realize repurposed, beneficial applications. Here we report the design and construction of a set of modular and gain-tunable genetic amplifiers in Escherichia coli capable of amplifying a transcriptional signal with wide tunable-gain control in cascaded gene networks. The devices are engineered using orthogonal genetic components (hrpRS, hrpV and PhrpL) from the hrp (hypersensitive response and pathogenicity) gene regulatory network in Pseudomonas syringae. The amplifiers can linearly scale up to 21-fold the transcriptional input with a large output dynamic range, yet not introducing significant time delay or significant noise during signal amplification. The set of genetic amplifiers achieves different gains and input dynamic ranges by varying the expression levels of the underlying ligand-free activator proteins in the device. As their electronic counterparts, these engineered transcriptional amplifiers can act as fundamental building blocks in the design of biological systems by predictably and dynamically modulating transcriptional signal flows to implement advanced intra- and extra-cellular control functions.

  13. Design of a modular signal processing board (MSPB) for gamma-ray imaging applications

    NASA Astrophysics Data System (ADS)

    Bieberle, A.; Berger, R.; Yadav, R.; Schleicher, E.; Hampel, U.

    2012-01-01

    In this paper a new modular signal processing board (MSPB) for high-resolution gamma-ray computed tomography (GCT) is presented. The MSPB is optimised for parallel signal processing of eight detector channels operating in pulse counting mode. Signal processing stages comprise of variable gain amplifiers, pulse height discrimination stages, 13-bit counters with corresponding latches as well as logic circuitry for coordinated data transfer with a multitude of MSPBs. The digital signal processing units are realised in commercially available complex programmable logic devices (CPLD). Each MSPB is addressable by an 8-bit DIP-switch, which allows the use of up to 256 modules or 2048 detector pixels within one detector system. The geometry of the MSPB allows a multiple and seamless detector module arrangement, which eases the adaptation of a given gamma-ray detector system to specific industrial and laboratory applications. The choice of the electronic devices and the thermal design was optimised for low power consumption in order to minimise internal heat production, which would affect the characteristics of the detector's intrinsic gain strongly. Thermal measurements have been executed to prove the functionality of the thermal design.

  14. Engineering modular and tunable genetic amplifiers for scaling transcriptional signals in cascaded gene networks

    PubMed Central

    Wang, Baojun; Barahona, Mauricio; Buck, Martin

    2014-01-01

    Synthetic biology aims to control and reprogram signal processing pathways within living cells so as to realize repurposed, beneficial applications. Here we report the design and construction of a set of modular and gain-tunable genetic amplifiers in Escherichia coli capable of amplifying a transcriptional signal with wide tunable-gain control in cascaded gene networks. The devices are engineered using orthogonal genetic components (hrpRS, hrpV and PhrpL) from the hrp (hypersensitive response and pathogenicity) gene regulatory network in Pseudomonas syringae. The amplifiers can linearly scale up to 21-fold the transcriptional input with a large output dynamic range, yet not introducing significant time delay or significant noise during signal amplification. The set of genetic amplifiers achieves different gains and input dynamic ranges by varying the expression levels of the underlying ligand-free activator proteins in the device. As their electronic counterparts, these engineered transcriptional amplifiers can act as fundamental building blocks in the design of biological systems by predictably and dynamically modulating transcriptional signal flows to implement advanced intra- and extra-cellular control functions. PMID:25030903

  15. A modular library of small molecule signals regulates social behaviors in Caenorhabditis elegans.

    PubMed

    Srinivasan, Jagan; von Reuss, Stephan H; Bose, Neelanjan; Zaslaver, Alon; Mahanti, Parag; Ho, Margaret C; O'Doherty, Oran G; Edison, Arthur S; Sternberg, Paul W; Schroeder, Frank C

    2012-01-01

    The nematode C. elegans is an important model for the study of social behaviors. Recent investigations have shown that a family of small molecule signals, the ascarosides, controls population density sensing and mating behavior. However, despite extensive studies of C. elegans aggregation behaviors, no intraspecific signals promoting attraction or aggregation of wild-type hermaphrodites have been identified. Using comparative metabolomics, we show that the known ascarosides are accompanied by a series of derivatives featuring a tryptophan-derived indole moiety. Behavioral assays demonstrate that these indole ascarosides serve as potent intraspecific attraction and aggregation signals for hermaphrodites, in contrast to ascarosides lacking the indole group, which are repulsive. Hermaphrodite attraction to indole ascarosides depends on the ASK amphid sensory neurons. Downstream of the ASK sensory neuron, the interneuron AIA is required for mediating attraction to indole ascarosides instead of the RMG interneurons, which previous studies have shown to integrate attraction and aggregation signals from ASK and other sensory neurons. The role of the RMG interneuron in mediating aggregation and attraction is thought to depend on the neuropeptide Y-like receptor NPR-1, because solitary and social C. elegans strains are distinguished by different npr-1 variants. We show that indole ascarosides promote attraction and aggregation in both solitary and social C. elegans strains. The identification of indole ascarosides as aggregation signals reveals unexpected complexity of social signaling in C. elegans, which appears to be based on a modular library of ascarosides integrating building blocks derived from lipid β-oxidation and amino-acid metabolism. Variation of modules results in strongly altered signaling content, as addition of a tryptophan-derived indole unit to repellent ascarosides produces strongly attractive indole ascarosides. Our findings show that the library of

  16. Modular and Stochastic Approaches to Molecular Pathway Models of ATM, TGF beta, and WNT Signaling

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; O'Neill, Peter; Ponomarev, Artem; Carra, Claudio; Whalen, Mary; Pluth, Janice M.

    2009-01-01

    Deterministic pathway models that describe the biochemical interactions of a group of related proteins, their complexes, activation through kinase, etc. are often the basis for many systems biology models. Low dose radiation effects present a unique set of challenges to these models including the importance of stochastic effects due to the nature of radiation tracks and small number of molecules activated, and the search for infrequent events that contribute to cancer risks. We have been studying models of the ATM, TGF -Smad and WNT signaling pathways with the goal of applying pathway models to the investigation of low dose radiation cancer risks. Modeling challenges include introduction of stochastic models of radiation tracks, their relationships to more than one substrate species that perturb pathways, and the identification of a representative set of enzymes that act on the dominant substrates. Because several pathways are activated concurrently by radiation the development of modular pathway approach is of interest.

  17. Modular and Stochastic Approaches to Molecular Pathway Models of ATM, TGF beta, and WNT Signaling

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; O'Neill, Peter; Ponomarev, Artem; Carra, Claudio; Whalen, Mary; Pluth, Janice M.

    2009-01-01

    Deterministic pathway models that describe the biochemical interactions of a group of related proteins, their complexes, activation through kinase, etc. are often the basis for many systems biology models. Low dose radiation effects present a unique set of challenges to these models including the importance of stochastic effects due to the nature of radiation tracks and small number of molecules activated, and the search for infrequent events that contribute to cancer risks. We have been studying models of the ATM, TGF -Smad and WNT signaling pathways with the goal of applying pathway models to the investigation of low dose radiation cancer risks. Modeling challenges include introduction of stochastic models of radiation tracks, their relationships to more than one substrate species that perturb pathways, and the identification of a representative set of enzymes that act on the dominant substrates. Because several pathways are activated concurrently by radiation the development of modular pathway approach is of interest.

  18. Neuronal apoptotic signaling pathways probed and intervened by synthetically and modularly modified (SMM) chemokines.

    PubMed

    Choi, Won-Tak; Kaul, Marcus; Kumar, Santosh; Wang, Jun; Kumar, I M Krishna; Dong, Chang-Zhi; An, Jing; Lipton, Stuart A; Huang, Ziwei

    2007-03-09

    As the main coreceptors for human immunodeficiency virus type 1 (HIV-1) entry, CXCR4 and CCR5 play important roles in HIV-associated dementia (HAD). HIV-1 glycoprotein gp120 contributes to HAD by causing neuronal damage and death, either directly by triggering apoptotic pathways or indirectly by stimulating glial cells to release neurotoxins. Here, to understand the mechanism of CXCR4 or CCR5 signaling in neuronal apoptosis associated with HAD, we have applied synthetically and modularly modified (SMM)-chemokine analogs derived from natural stromal cell-derived factor-1alpha or viral macrophage inflammatory protein-II as chemical probes of the mechanism(s) whereby these SMM-chemokines prevent or promote neuronal apoptosis. We show that inherently neurotoxic natural ligands of CXCR4, such as stromal cell-derived factor-1alpha or viral macrophage inflammatory protein-II, can be modified to protect neurons from apoptosis induced by CXCR4-preferring gp120(IIIB), and that the inhibition of CCR5 by antagonist SMM-chemokines, unlike neuroprotective CCR5 natural ligands, leads to neurotoxicity by activating a p38 mitogen-activated protein kinase (MAPK)-dependent pathway. Furthermore, we discover distinct signaling pathways activated by different chemokine ligands that are either natural agonists or synthetic antagonists, thus demonstrating a chemical biology strategy of using chemically engineered inhibitors of chemokine receptors to study the signaling mechanism of neuronal apoptosis and survival.

  19. Modularity and functional plasticity of scaffold proteins as p(l)acemakers in cell signaling.

    PubMed

    Pan, Catherine Qiurong; Sudol, Marius; Sheetz, Michael; Low, Boon Chuan

    2012-11-01

    Cells coordinate and integrate various functional modules that control their dynamics, intracellular trafficking, metabolism and gene expression. Such capacity is mediated by specific scaffold proteins that tether multiple components of signaling pathways at plasma membrane, Golgi apparatus, mitochondria, endoplasmic reticulum, nucleus and in more specialized subcellular structures such as focal adhesions, cell-cell junctions, endosomes, vesicles and synapses. Scaffold proteins act as "pacemakers" as well as "placemakers" that regulate the temporal, spatial and kinetic aspects of protein complex assembly by modulating the local concentrations, proximity, subcellular dispositions and biochemical properties of the target proteins through the intricate use of their modular protein domains. These regulatory mechanisms allow them to gate the specificity, integration and crosstalk of different signaling modules. In addition to acting as physical platforms for protein assembly, many professional scaffold proteins can also directly modify the properties of their targets while they themselves can be regulated by post-translational modifications and/or mechanical forces. Furthermore, multiple scaffold proteins can form alliances of higher-order regulatory networks. Here, we highlight the emerging themes of scaffold proteins by analyzing their common and distinctive mechanisms of action and regulation, which underlie their functional plasticity in cell signaling. Understanding these mechanisms in the context of space, time and force should have ramifications for human physiology and for developing new therapeutic approaches to control pathological states and diseases.

  20. DNA Charge Transport for Sensing and Signaling

    PubMed Central

    Sontz, Pamela A.; Muren, Natalie B.; Barton, Jacqueline K.

    2012-01-01

    Conspectus The DNA duplex is an exquisite macromolecular array that stores genetic information to encode proteins and regulate pathways, but its unique structure imparts chemical function that allows it also to mediate charge transport (CT). We have utilized diverse platforms to probe DNA CT, using spectroscopic, electrochemical, and even genetic methods. These studies have established powerful features of DNA CT chemistry. DNA CT can occur over long molecular distances as long as the bases are well stacked; perturbations in base stacking as arise with single base mismatches, DNA lesions, and the binding of some proteins that kink the DNA, all serve to inhibit DNA CT. Significantly, single molecule studies of DNA CT show that ground state CT can occur over 34 nm as long as the duplex is well stacked; one single base mismatch inhibits CT. The DNA duplex is an effective sensor for the integrity of the base pair stack. Moreover the efficiency of DNA CT is what one would expect for a stack of graphite sheets, equivalent to the stack of DNA base pairs, and independent of the sugar-phosphate backbone. Since DNA CT offers a means to carry out redox chemistry from a distance, we have considered how this chemistry might be used for long range signaling in a biological context. We have taken advantage of our chemical probes and platforms to characterize DNA CT also in the context of the cell. CT can occur over long distances, perhaps funneling damage to particular sites and insulating others from oxidative stress. Significantly, transcription factors that activate the genome to respond to oxidative stress can also be activated from a distance through DNA CT. Numerous proteins work to maintain the integrity of the genome and increasingly they have been found to contain [4Fe-4S] clusters that do not appear to carry out either structural or enzymatic roles. Using electrochemical methods, we find that DNA binding shifts the redox potentials of the clusters, activating them

  1. HomeRun Vector Assembly System: a flexible and standardized cloning system for assembly of multi-modular DNA constructs.

    PubMed

    Li, Ming V; Shukla, Dip; Rhodes, Brian H; Lall, Anjali; Shu, Jingmin; Moriarity, Branden S; Largaespada, David A

    2014-01-01

    Advances in molecular and synthetic biology call for efficient assembly of multi-modular DNA constructs. We hereby present a novel modular cloning method that obviates the need for restriction endonucleases and significantly improves the efficiency in the design and construction of complex DNA molecules by standardizing all DNA elements and cloning reactions. Our system, named HomeRun Vector Assembly System (HVAS), employs a three-tiered vector series that utilizes both multisite gateway cloning and homing endonucleases, with the former building individual functional modules and the latter linking modules into the final construct. As a proof-of-principle, we first built a two-module construct that supported doxycycline-induced expression of green fluorescent protein (GFP). Further, with a three-module construct we showed quantitatively that there was minimal promoter leakage between neighbouring modules. Finally, we developed a method, in vitro Cre recombinase-mediated cassette exchange (RMCE) cloning, to regenerate a gateway destination vector from a previous multisite gateway cloning reaction, allowing access to existing DNA element libraries in conventional gateway entry clones, and simple creation of constructs ready for in vivo RMCE. We believe these methods constitute a useful addition to the standard molecular cloning techniques that could potentially support industrial scale synthesis of DNA constructs.

  2. Signal complexity and modular organization of the courtship behaviours of two sibling species of wolf spiders (Araneae: Lycosidae).

    PubMed

    Chiarle, Alberto; Isaia, Marco

    2013-07-01

    In this study, we compare the courtship behaviours of Pardosa proxima and P. vlijmi, two species of wolf spiders up to now regarded as "ethospecies", by means of motion analysis methodologies. In particular, we investigate the features of the signals, aiming at understanding the evolution of the courtship and its role in species delimitation and speciation processes. In our model, we highlight a modular structure of the behaviours and the presence of recurring units and phases. According to other similar cases concerning animal communication, we observed one highly variable and one stereotyped phase for both species. The stereotyped phase is here regarded as a signal related to species identity or an honest signal linked directly to the quality of the signaler. On the contrary, the variable phase aims to facilitate signal detection and assessment by the female reducing choice costs or errors. Variable phases include cues arisen from Fisherian runaway selection, female sensory exploitation and remaining of past selections.

  3. Atomically precise arrays of fluorescent silver clusters: a modular approach for metal cluster photonics on DNA nanostructures.

    PubMed

    Copp, Stacy M; Schultz, Danielle E; Swasey, Steven; Gwinn, Elisabeth G

    2015-03-24

    The remarkable precision that DNA scaffolds provide for arraying nanoscale optical elements enables optical phenomena that arise from interactions of metal nanoparticles, dye molecules, and quantum dots placed at nanoscale separations. However, control of ensemble optical properties has been limited by the difficulty of achieving uniform particle sizes and shapes. Ligand-stabilized metal clusters offer a route to atomically precise arrays that combine desirable attributes of both metals and molecules. Exploiting the unique advantages of the cluster regime requires techniques to realize controlled nanoscale placement of select cluster structures. Here we show that atomically monodisperse arrays of fluorescent, DNA-stabilized silver clusters can be realized on a prototypical scaffold, a DNA nanotube, with attachment sites separated by <10 nm. Cluster attachment is mediated by designed DNA linkers that enable isolation of specific clusters prior to assembly on nanotubes and preserve cluster structure and spectral purity after assembly. The modularity of this approach generalizes to silver clusters of diverse sizes and DNA scaffolds of many types. Thus, these silver cluster nano-optical elements, which themselves have colors selected by their particular DNA templating oligomer, bring unique dimensions of control and flexibility to the rapidly expanding field of nano-optics.

  4. Massively parallel classification of single-trial EEG signals using a min-max modular neural network.

    PubMed

    Lu, Bao-Liang; Shin, Jonghan; Ichikawa, Michinori

    2004-03-01

    This paper presents a method for classifying single-trial electroencephalogram (EEG) signals using min-max modular neural networks implemented in a massively parallel way. The method has three main steps. First, a large-scale, complex EEG classification problem is simply divided into a reasonable number of two-class subproblems, as small as needed. Second, the two-class subproblems are simply learned by individual smaller network modules in parallel. Finally, all the individual trained network modules are integrated into a hierarchical, parallel, and modular classifier according to two module combination laws. To demonstrate the effectiveness of the method, we perform simulations on fifteen different four-class EEG classification tasks, each of which consists of 1491 training and 636 test data. These EEG classification tasks were created using a set of non-averaged, single-trial hippocampal EEG signals recorded from rats; the features of the EEG signals are extracted using wavelet transform techniques. The experimental results indicate that the proposed method has several attractive features. 1) The method is appreciably faster than the existing approach that is based on conventional multilayer perceptrons. 2) Complete learning of complex EEG classification problems can be easily realized, and better generalization performance can be achieved. 3) The method scales up to large-scale, complex EEG classification problems.

  5. Re-using Mini-Sentinel data following rapid assessments of potential safety signals via modular analytic programs.

    PubMed

    Toh, Sengwee; Avorn, Jerry; D'Agostino, Ralph B; Gurwitz, Jerry H; Psaty, Bruce M; Rothman, Kenneth J; Saag, Kenneth G; Sturkenboom, Miriam C J M; Vandenbroucke, Jan P; Winterstein, Almut G; Strom, Brian L

    2013-10-01

    The U.S. Food and Drug Administration (FDA)'s Mini-Sentinel pilot has created a distributed data system with over 125 million lives and nearly 350 million person-years of observation time. The pilot allows the FDA to use modular analytic programs to assess suspected safety signals quickly. The FDA convened a committee to assess the implications of such rapid assessments on subsequent analyses of the same product-outcome pair using the same data. The committee offers several non-binding recommendations based on the strength of the knowledge of the suspected association before running the analysis: signal generation (an analysis with no prior), signal refinement (an analysis with a weak or moderate prior), and signal evaluation (an analysis with a strong prior). The committee believes that modular programs (MPs) are most useful for signal refinement. If MPs are used for analyses with no or weak/moderate priors, the committee members generally agree that the data may be re-used if certain conditions are met. When there is a strong prior, the committee recommends that a protocol-based assessment be used; Mini-Sentinel data may be analyzed by MPs and re-used only under very uncommon circumstances. The committee agrees that any subsequent assessment of the same product-outcome pair that follows an MP analysis should not be interpreted as independent confirmation of the association, such as would be established via replication of the same product-outcome association in two different populations. Instead, the follow-up assessment should be interpreted as an analysis that has reduced insofar as possible systematic errors that may have been present or residual in the original MP analysis. The committee also discussed how this general framework may apply to two completed rapid assessments of dabigatran and bleeding risk and of olmesartan and celiac disease risk. Copyright © 2013 John Wiley & Sons, Ltd.

  6. Ball with hair: modular functionalization of highly stable G-quadruplex DNA nano-scaffolds through N2-guanine modification.

    PubMed

    Lech, Christopher Jacques; Phan, Anh Tuân

    2017-06-20

    Functionalized nanoparticles have seen valuable applications, particularly in the delivery of therapeutic and diagnostic agents in biological systems. However, the manufacturing of such nano-scale systems with the consistency required for biological application can be challenging, as variation in size and shape have large influences in nanoparticle behavior in vivo. We report on the development of a versatile nano-scaffold based on the modular functionalization of a DNA G-quadruplex. DNA sequences are functionalized in a modular fashion using well-established phosphoramidite chemical synthesis with nucleotides containing modification of the amino (N2) position of the guanine base. In physiological conditions, these sequences fold into well-defined G-quadruplex structures. The resulting DNA nano-scaffolds are thermally stable, consistent in size, and functionalized in a manner that allows for control over the density and relative orientation of functional chemistries on the nano-scaffold surface. Various chemistries including small modifications (N2-methyl-guanine), bulky aromatic modifications (N2-benzyl-guanine), and long chain-like modifications (N2-6-amino-hexyl-guanine) are tested and are found to be generally compatible with G-quadruplex formation. Furthermore, these modifications stabilize the G-quadruplex scaffold by 2.0-13.3 °C per modification in the melting temperature, with concurrent modifications producing extremely stable nano-scaffolds. We demonstrate the potential of this approach by functionalizing nano-scaffolds for use within the biotin-avidin conjugation approach. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. A modular method for the extraction of DNA and RNA, and the separation of DNA pools from diverse environmental sample types.

    PubMed

    Lever, Mark A; Torti, Andrea; Eickenbusch, Philip; Michaud, Alexander B; Šantl-Temkiv, Tina; Jørgensen, Bo Barker

    2015-01-01

    A method for the extraction of nucleic acids from a wide range of environmental samples was developed. This method consists of several modules, which can be individually modified to maximize yields in extractions of DNA and RNA or separations of DNA pools. Modules were designed based on elaborate tests, in which permutations of all nucleic acid extraction steps were compared. The final modular protocol is suitable for extractions from igneous rock, air, water, and sediments. Sediments range from high-biomass, organic rich coastal samples to samples from the most oligotrophic region of the world's oceans and the deepest borehole ever studied by scientific ocean drilling. Extraction yields of DNA and RNA are higher than with widely used commercial kits, indicating an advantage to optimizing extraction procedures to match specific sample characteristics. The ability to separate soluble extracellular DNA pools without cell lysis from intracellular and particle-complexed DNA pools may enable new insights into the cycling and preservation of DNA in environmental samples in the future. A general protocol is outlined, along with recommendations for optimizing this general protocol for specific sample types and research goals.

  8. A modular method for the extraction of DNA and RNA, and the separation of DNA pools from diverse environmental sample types

    PubMed Central

    Lever, Mark A.; Torti, Andrea; Eickenbusch, Philip; Michaud, Alexander B.; Šantl-Temkiv, Tina; Jørgensen, Bo Barker

    2015-01-01

    A method for the extraction of nucleic acids from a wide range of environmental samples was developed. This method consists of several modules, which can be individually modified to maximize yields in extractions of DNA and RNA or separations of DNA pools. Modules were designed based on elaborate tests, in which permutations of all nucleic acid extraction steps were compared. The final modular protocol is suitable for extractions from igneous rock, air, water, and sediments. Sediments range from high-biomass, organic rich coastal samples to samples from the most oligotrophic region of the world's oceans and the deepest borehole ever studied by scientific ocean drilling. Extraction yields of DNA and RNA are higher than with widely used commercial kits, indicating an advantage to optimizing extraction procedures to match specific sample characteristics. The ability to separate soluble extracellular DNA pools without cell lysis from intracellular and particle-complexed DNA pools may enable new insights into the cycling and preservation of DNA in environmental samples in the future. A general protocol is outlined, along with recommendations for optimizing this general protocol for specific sample types and research goals. PMID:26042110

  9. The Evolution of the GPCR Signaling System in Eukaryotes: Modularity, Conservation, and the Transition to Metazoan Multicellularity

    PubMed Central

    de Mendoza, Alex; Sebé-Pedrós, Arnau; Ruiz-Trillo, Iñaki

    2014-01-01

    The G-protein-coupled receptor (GPCR) signaling system is one of the main signaling pathways in eukaryotes. Here, we analyze the evolutionary history of all its components, from receptors to regulators, to gain a broad picture of its system-level evolution. Using eukaryotic genomes covering most lineages sampled to date, we find that the various components of the GPCR signaling pathway evolved independently, highlighting the modular nature of this system. Our data show that some GPCR families, G proteins, and regulators of G proteins diversified through lineage-specific diversifications and recurrent domain shuffling. Moreover, most of the gene families involved in the GPCR signaling system were already present in the last common ancestor of eukaryotes. Furthermore, we show that the unicellular ancestor of Metazoa already had most of the cytoplasmic components of the GPCR signaling system, including, remarkably, all the G protein alpha subunits, which are typical of metazoans. Thus, we show how the transition to multicellularity involved conservation of the signaling transduction machinery, as well as a burst of receptor diversification to cope with the new multicellular necessities. PMID:24567306

  10. The evolution of the GPCR signaling system in eukaryotes: modularity, conservation, and the transition to metazoan multicellularity.

    PubMed

    de Mendoza, Alex; Sebé-Pedrós, Arnau; Ruiz-Trillo, Iñaki

    2014-03-01

    The G-protein-coupled receptor (GPCR) signaling system is one of the main signaling pathways in eukaryotes. Here, we analyze the evolutionary history of all its components, from receptors to regulators, to gain a broad picture of its system-level evolution. Using eukaryotic genomes covering most lineages sampled to date, we find that the various components of the GPCR signaling pathway evolved independently, highlighting the modular nature of this system. Our data show that some GPCR families, G proteins, and regulators of G proteins diversified through lineage-specific diversifications and recurrent domain shuffling. Moreover, most of the gene families involved in the GPCR signaling system were already present in the last common ancestor of eukaryotes. Furthermore, we show that the unicellular ancestor of Metazoa already had most of the cytoplasmic components of the GPCR signaling system, including, remarkably, all the G protein alpha subunits, which are typical of metazoans. Thus, we show how the transition to multicellularity involved conservation of the signaling transduction machinery, as well as a burst of receptor diversification to cope with the new multicellular necessities.

  11. A modular DNA carrier protein based on the structure of diphtheria toxin mediates target cell-specific gene delivery.

    PubMed

    Uherek, C; Fominaya, J; Wels, W

    1998-04-10

    Modular fusion proteins that combine distinct functions required for cell type-specific uptake and intracellular delivery of DNA present an attractive approach for the development of self-assembling vectors for targeted gene delivery. Here, we describe a novel DNA carrier protein termed GD5 that mimics the structure of the bacterial diphtheria toxin (DT) and facilitates target cell-specific gene transfer via receptor-mediated endocytosis. GD5 carries at the N terminus the DNA-binding domain of the yeast transcription factor Gal4, which is connected to a C-terminal antibody fragment specific for the tumor-associated ErbB2 antigen via an internal DT translocation domain as an endosome escape activity. Bacterially expressed GD5 protein specifically bound to ErbB2-expressing cells and formed protein-DNA complexes with a luciferase reporter gene construct. These complexes, after compensation of excess negative charge with poly-L-lysine, served as a specific transfection vector for ErbB2-expressing cells. Inhibitors of endosomal acidification drastically reduced GD5-mediated transfection, indicating that the DT translocation domain of GD5, similar to the parental toxin, is strictly dependent on the transit through an acidic environment. Our results suggest that fusion proteins that employ the natural endosome escape mechanism of bacterial toxins might aid in the development of efficient nonviral vectors for applications in gene therapy.

  12. Nuclear DNA damage signalling to mitochondria in ageing

    PubMed Central

    Fang, Evandro Fei; Scheibye-Knudsen, Morten; Chua, Katrin F.; Mattson, Mark P.; Croteau, Deborah L.; Bohr, Vilhelm A.

    2016-01-01

    Mitochondrial dysfunction is a hallmark of ageing, and mitochondrial maintenance may lead to increased healthspan. Emerging evidence suggests a crucial role for signalling from the nucleus to mitochondria (NM signalling) in regulating mitochondrial function and ageing. An important initiator of NM signalling is nuclear DNA damage, which accumulates with age and may contribute to the development of age-associated diseases. DNA damage-dependent NM signalling constitutes a network that includes nuclear sirtuins and controls genomic stability and mitochondrial integrity. Pharmacological modulation of NM signalling is a promising novel approach for the prevention and treatment of age-associated diseases. PMID:26956196

  13. Design of a Modular DNA Triangular-Prism Sensor Enabling Ratiometric and Multiplexed Biomolecule Detection on a Single Microbead.

    PubMed

    Liu, Yu; Chen, Qiaoshu; Liu, Jianbo; Yang, Xiaohai; Guo, Qiuping; Li, Li; Liu, Wei; Wang, Kemin

    2017-03-21

    DNA nanostructures have emerged as powerful and versatile building blocks for the construction of programmable nanoscale structures and functional sensors for biomarker detection, disease diagnostics, and therapy. Here we integrated multiple sensing modules into a single DNA three-dimensional (3D) nanoarchitecture with a triangular-prism (TP) structure for ratiometric and multiplexed biomolecule detection on a single microbead. In our design, the complementary hybridization of three clip sequences formed TP nanoassemblies in which the six single-strand regions in the top and bottom faces act as binding sites for different sensing modules, including an anchor module, reference sequence module, and capture sequence module. The multifunctional modular TP nanostructures were thus exploited for ratiometric and multiplexed biomolecule detection on microbeads. Microbead imaging demonstrated that, after ratiometric self-calibration analysis, the imaging deviations resulting from uneven fluorescence intensity distribution and differing probe concentrations were greatly reduced. The rigid nanostructure also conferred the TP as a framework for geometric positioning of different capture sequences. The inclusion of multiple targets led to the formation of sandwich hybridization structures that gave a readily detectable optical response at different fluorescence channels and distinct fingerprint-like pattern arrays. This approach allowed us to discriminate multiplexed biomolecule targets in a simple and efficient fashion. In this module-designed strategy, the diversity of the controlled DNA assembly coupled with the geometrically well-defined rigid nanostructures of the TP assembly provides a flexible and reliable biosensing approach that shows great promise for biomedical applications.

  14. Activation of DNA damage response signaling by condensed chromatin.

    PubMed

    Burgess, Rebecca C; Burman, Bharat; Kruhlak, Michael J; Misteli, Tom

    2014-12-11

    The DNA damage response (DDR) occurs in the context of chromatin, and architectural features of chromatin have been implicated in DNA damage signaling and repair. Whereas a role of chromatin decondensation in the DDR is well established, we show here that chromatin condensation is integral to DDR signaling. We find that, in response to DNA damage chromatin regions transiently expand before undergoing extensive compaction. Using a protein-chromatin-tethering system to create defined chromatin domains, we show that interference with chromatin condensation results in failure to fully activate DDR. Conversely, forced induction of local chromatin condensation promotes ataxia telangiectasia mutated (ATM)- and ATR-dependent activation of upstream DDR signaling in a break-independent manner. Whereas persistent chromatin compaction enhanced upstream DDR signaling from irradiation-induced breaks, it reduced recovery and survival after damage. Our results demonstrate that chromatin condensation is sufficient for activation of DDR signaling and is an integral part of physiological DDR signaling.

  15. Noise-enhanced nonlinear response and the role of modular structure for signal detection in neuronal networks.

    PubMed

    Lopes, M A; Lee, K-E; Goltsev, A V; Mendes, J F F

    2014-11-01

    We show that sensory noise can enhance the nonlinear response of neuronal networks, and when delivered together with a weak signal, it improves the signal detection by the network. We reveal this phenomenon in neuronal networks that are in a dynamical state preceding a saddle-node bifurcation corresponding to the appearance of sustained network oscillations. In this state, even a weak subthreshold pulse can evoke a large-amplitude oscillation of neuronal activity. The signal-to-noise ratio reaches a maximum at an optimum level of sensory noise, manifesting stochastic resonance (SR) at the population level. We demonstrate SR by use of simulations and numerical integration of rate equations in a cortical model. Using this model, we mimic the experiments of Gluckman et al. [Phys. Rev. Lett. 77, 4098 (1996)PRLTAO0031-900710.1103/PhysRevLett.77.4098] that have given evidence of SR in mammalian brain. We also study neuronal networks in which neurons are grouped in modules and every module works in the regime of SR. We find that even a few modules can strongly enhance the reliability of signal detection in comparison with the case when a modular organization is absent.

  16. DNA Damage Signals and Space Radiation Risk

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    2011-01-01

    Space radiation is comprised of high-energy and charge (HZE) nuclei and protons. The initial DNA damage from HZE nuclei is qualitatively different from X-rays or gamma rays due to the clustering of damage sites which increases their complexity. Clustering of DNA damage occurs on several scales. First there is clustering of single strand breaks (SSB), double strand breaks (DSB), and base damage within a few to several hundred base pairs (bp). A second form of damage clustering occurs on the scale of a few kbp where several DSB?s may be induced by single HZE nuclei. These forms of damage clusters do not occur at low to moderate doses of X-rays or gamma rays thus presenting new challenges to DNA repair systems. We review current knowledge of differences that occur in DNA repair pathways for different types of radiation and possible relationships to mutations, chromosomal aberrations and cancer risks.

  17. Theory of force-extension curves for modular proteins and DNA hairpins

    NASA Astrophysics Data System (ADS)

    Bonilla, L. L.; Carpio, A.; Prados, A.

    2015-05-01

    We study a model describing the force-extension curves of modular proteins, nucleic acids, and other biomolecules made out of several single units or modules. At a mesoscopic level of description, the configuration of the system is given by the elongations of each of the units. The system free energy includes a double-well potential for each unit and an elastic nearest-neighbor interaction between them. Minimizing the free energy yields the system equilibrium properties whereas its dynamics is given by (overdamped) Langevin equations for the elongations, in which friction and noise amplitude are related by the fluctuation-dissipation theorem. Our results, both for the equilibrium and the dynamical situations, include analytical and numerical descriptions of the system force-extension curves under force or length control and agree very well with actual experiments in biomolecules. Our conclusions also apply to other physical systems comprising a number of metastable units, such as storage systems or semiconductor superlattices.

  18. Robustness and modularity properties of a non-covalent DNA catalytic reaction

    PubMed Central

    Zhang, David Yu

    2010-01-01

    The biophysics of nucleic acid hybridization and strand displacement have been used for the rational design of a number of nanoscale structures and functions. Recently, molecular amplification methods have been developed in the form of non-covalent DNA catalytic reactions, in which single-stranded DNA (ssDNA) molecules catalyze the release of ssDNA product molecules from multi-stranded complexes. Here, we characterize the robustness and specificity of one such strand displacement-based catalytic reaction. We show that the designed reaction is simultaneously sensitive to sequence mutations in the catalyst and robust to a variety of impurities and molecular noise. These properties facilitate the incorporation of strand displacement-based DNA components in synthetic chemical and biological reaction networks. PMID:20194118

  19. Functional DNA switches: rational design and electrochemical signaling.

    PubMed

    Tang, Yiting; Ge, Bixia; Sen, Dipankar; Yu, Hua-Zhong

    2014-01-21

    Recent developments in nanoscience research have demonstrated that DNA switches (rationally designed DNA nanostructures) constitute a class of versatile building blocks for the fabrication and assembly of electronic devices and sensors at the nanoscale. Functional DNA sequences and structures such as aptamers, DNAzymes, G-quadruplexes, and i-motifs can be readily prepared in vitro, and subsequently adapted to an electrochemical platform by coupling with redox reporters. The conformational or conduction switching of such electrode-bound DNA modules in response to an external stimulus can then be monitored by conventional voltammetric measurements. In this review, we describe how we are able to design and examine functional DNA switches, particularly those systems that utilize electrochemical signaling. We also discuss different available options for labeling functional DNA with redox reporters, and comment on the function-oriented signaling pathways.

  20. Dynamic coordination of innate immune signaling and Insulin signaling regulates systemic responses to localized DNA damage

    PubMed Central

    Karpac, Jason; Younger, Andrew; Jasper, Heinrich

    2011-01-01

    Metazoans adapt to changing environmental conditions and to harmful challenges by attenuating growth and metabolic activities systemically. Recent studies in mice and flies indicate that endocrine signaling interactions between Insulin/IGF signaling (IIS) and innate immune signaling pathways are critical for this adaptation, yet the temporal and spatial hierarchy of these signaling events remains elusive. Here we identify and characterize a program of signaling interactions that regulates the systemic response of the Drosophila larva to localized DNA damage. We provide evidence that epidermal DNA damage induces an innate immune response that is kept in check by systemic repression of IIS activity. IIS repression induces NFkB/Relish signaling in the fatbody, which is required for recovery of IIS activity in a second phase of the systemic response to DNA damage. This systemic response to localized DNA damage thus coordinates growth and metabolic activities across tissues, ensuring growth homeostasis and survival of the animal. PMID:21664581

  1. Comparative metabolomics reveals biogenesis of ascarosides, a modular library of small-molecule signals in C. elegans.

    PubMed

    von Reuss, Stephan H; Bose, Neelanjan; Srinivasan, Jagan; Yim, Joshua J; Judkins, Joshua C; Sternberg, Paul W; Schroeder, Frank C

    2012-01-25

    In the model organism Caenorhabditis elegans, a family of endogenous small molecules, the ascarosides function as key regulators of developmental timing and behavior that act upstream of conserved signaling pathways. The ascarosides are based on the dideoxysugar ascarylose, which is linked to fatty-acid-like side chains of varying lengths derived from peroxisomal β-oxidation. Despite the importance of ascarosides for many aspects of C. elegans biology, knowledge of their structures, biosynthesis, and homeostasis remains incomplete. We used an MS/MS-based screen to profile ascarosides in C. elegans wild-type and mutant metabolomes, which revealed a much greater structural diversity of ascaroside derivatives than previously reported. Comparison of the metabolomes from wild-type and a series of peroxisomal β-oxidation mutants showed that the enoyl CoA-hydratase MAOC-1 serves an important role in ascaroside biosynthesis and clarified the functions of two other enzymes, ACOX-1 and DHS-28. We show that, following peroxisomal β-oxidation, the ascarosides are selectively derivatized with moieties of varied biogenetic origin and that such modifications can dramatically affect biological activity, producing signaling molecules active at low femtomolar concentrations. Based on these results, the ascarosides appear as a modular library of small-molecule signals, integrating building blocks from three major metabolic pathways: carbohydrate metabolism, peroxisomal β-oxidation of fatty acids, and amino acid catabolism. Our screen further demonstrates that ascaroside biosynthesis is directly affected by nutritional status and that excretion of the final products is highly selective.

  2. TOPOFOLD, the designed modular biomolecular folds: polypeptide-based molecular origami nanostructures following the footsteps of DNA.

    PubMed

    Kočar, Vid; Božič Abram, Sabina; Doles, Tibor; Bašić, Nino; Gradišar, Helena; Pisanski, Tomaž; Jerala, Roman

    2015-01-01

    Biopolymers, the essential components of life, are able to form many complex nanostructures, and proteins in particular are the material of choice for most cellular processes. Owing to numerous cooperative interactions, rational design of new protein folds remains extremely challenging. An alternative strategy is to design topofolds-nanostructures built from polypeptide arrays of interacting modules that define their topology. Over the course of the last several decades DNA has successfully been repurposed from its native role of information storage to a smart nanomaterial used for nanostructure self-assembly of almost any shape, which is largely because of its programmable nature. Unfortunately, polypeptides do not possess the straightforward complementarity as do nucleic acids. However, a modular approach can nevertheless be used to assemble polypeptide nanostructures, as was recently demonstrated on a single-chain polypeptide tetrahedron. This review focuses on the current state-of-the-art in the field of topological polypeptide folds. It starts with a brief overview of the field of structural DNA and RNA nanotechnology, from which it draws parallels and possible directions of development for the emerging field of polypeptide-based nanotechnology. The principles of topofold strategy and unique properties of such polypeptide nanostructures in comparison to native protein folds are discussed. Reasons for the apparent absence of such folds in nature are also examined. Physicochemical versatility of amino acid residues and cost-effective production makes polypeptides an attractive platform for designed functional bionanomaterials. © 2014 Wiley Periodicals, Inc.

  3. An inducible long noncoding RNA amplifies DNA damage signaling.

    PubMed

    Schmitt, Adam M; Garcia, Julia T; Hung, Tiffany; Flynn, Ryan A; Shen, Ying; Qu, Kun; Payumo, Alexander Y; Peres-da-Silva, Ashwin; Broz, Daniela Kenzelmann; Baum, Rachel; Guo, Shuling; Chen, James K; Attardi, Laura D; Chang, Howard Y

    2016-11-01

    Long noncoding RNAs (lncRNAs) are prevalent genes with frequently precise regulation but mostly unknown functions. Here we demonstrate that lncRNAs guide the organismal DNA damage response. DNA damage activated transcription of the DINO (Damage Induced Noncoding) lncRNA via p53. DINO was required for p53-dependent gene expression, cell cycle arrest and apoptosis in response to DNA damage, and DINO expression was sufficient to activate damage signaling and cell cycle arrest in the absence of DNA damage. DINO bound to p53 protein and promoted its stabilization, mediating a p53 auto-amplification loop. Dino knockout or promoter inactivation in mice dampened p53 signaling and ameliorated acute radiation syndrome in vivo. Thus, inducible lncRNA can create a feedback loop with its cognate transcription factor to amplify cellular signaling networks.

  4. An inducible long noncoding RNA amplifies DNA damage signaling

    PubMed Central

    Schmitt, Adam M.; Garcia, Julia T.; Hung, Tiffany; Flynn, Ryan A.; Shen, Ying; Qu, Kun; Payumo, Alexander Y.; Peres-da-Silva, Ashwin; Broz, Daniela Kenzelmann; Baum, Rachel; Guo, Shuling; Chen, James K.; Attardi, Laura D.; Chang, Howard Y.

    2016-01-01

    Long noncoding RNAs (lncRNAs) are prevalent genes with frequently exquisite regulation but mostly unknown functions. Here we demonstrate a role of lncRNAs in guiding organismal DNA damage response. DNA damage activates transcription of DINO (Damage Induced NOncoding) via p53. DINO is required for p53-dependent gene expression, cell cycle arrest, and apoptosis in response to DNA damage, and DINO expression suffice to activate damage signaling and cell cycle arrest in the absence of DNA damage. DINO binds to and promotes p53 protein stabilization, mediating a p53 auto-amplification loop. Dino knockout or promoter inactivation in mice dampens p53 signaling and ameliorates acute radiation syndrome in vivo. Thus, inducible lncRNA can create a feedback loop with its cognate transcription factor to amplify cellular signaling networks. PMID:27668660

  5. A Nonenzymatic Hairpin DNA Cascade Reaction Provides High Signal Gain of mRNA Imaging inside Live Cells.

    PubMed

    Wu, Cuichen; Cansiz, Sena; Zhang, Liqin; Teng, I-Ting; Qiu, Liping; Li, Juan; Liu, Yuan; Zhou, Cuisong; Hu, Rong; Zhang, Tao; Cui, Cheng; Cui, Liang; Tan, Weihong

    2015-04-22

    Enzyme-free signal amplification has enabled sensitive in vitro detection of biomolecules such as proteins and nucleic acids. However, monitoring targets of interest in live cells via enzyme-free amplification is still challenging, especially for analytes with low concentrations. To the best of our knowledge, this paper reports the first attempt to perform mRNA imaging inside live cells, using a nonenzymatic hairpin DNA cascade reaction for high signal gain, termed a hairpin DNA cascade amplifier (HDCA). In conventional nucleic acid probes, such as linear hybridization probes, mRNA target signaling occurs in an equivalent reaction ratio (1:1), whereas, in HDCA, one mRNA target is able to yield multiple signal outputs (1:m), thus achieving the goal of signal amplification for low-expression mRNA targets. Moreover, the recycled mRNA target in the HDCA serves as a catalyst for the assembly of multiple DNA duplexes, generating the fluorescent signal of reduced MnSOD mRNA expression, thus indicating amplified intracellular imaging. This programmable cascade reaction presents a simple and modular amplification mechanism for intracellular biomarkers of interest, providing a significant boost to the search for clues leading to the accurate identification and effective treatment of cancers.

  6. Modular Ultrasound Array Doppler Velocimeter with FPGA-based Signal Processing for Real-time Flow Mapping in Liquid Metal

    NASA Astrophysics Data System (ADS)

    Nauber, R.; Thieme, N.; Beyer, H.; Büttner, L.; Räbiger, D.; Eckert, S.; Czarske, J.

    Investigating the complex interaction of conductive fluids and magnetic fields is relevant for a variety of applications from basic research in magnetohydrodynamics (MHD) to modeling industrial processes involving metal melts, such as the crystal growth process in the photovoltaic industry. This enables targeted optimizations of the melt flow and allows to significantly increase the yield and energy efficiency of industrial processes. However, experimental studies in this field are often limited by the performance of flow instrumentation for opaque liquids. We present an ultrasound array Doppler velocimeter (UADV) for flow mapping in opaque liquids at room temperature. It is modular and flexible regarding its measurement configuration, for instance it allows capturing two velocity components in two planes (2d - 2c). It uses up to 9 linear arrays with a total element count of 225, driven in a parallelized time division multiplex (TDM) scheme. A FPGA-based signal pre-processing allows to handle the massive data bandwidth of typ. 1.2 GB/s and enables a continuous and near-realtime operation of the measurement system. The capabilities of the UADV system are demonstrated in a basic MHD research experiment with a metal melt (GaInSn) in a cubic container of (67 mm)3. The flow induced by a rotating magnetic field is captured with a temporal resolution of 250 ms for the horizontal and vertical central cross-section of the cube.

  7. Computer vision profiling of neurite outgrowth dynamics reveals spatiotemporal modularity of Rho GTPase signaling

    PubMed Central

    Fusco, Ludovico; Lefort, Riwal; Smith, Kevin; Benmansour, Fethallah; Gonzalez, German; Barillari, Caterina; Rinn, Bernd; Fleuret, Francois; Fua, Pascal

    2016-01-01

    Rho guanosine triphosphatases (GTPases) control the cytoskeletal dynamics that power neurite outgrowth. This process consists of dynamic neurite initiation, elongation, retraction, and branching cycles that are likely to be regulated by specific spatiotemporal signaling networks, which cannot be resolved with static, steady-state assays. We present NeuriteTracker, a computer-vision approach to automatically segment and track neuronal morphodynamics in time-lapse datasets. Feature extraction then quantifies dynamic neurite outgrowth phenotypes. We identify a set of stereotypic neurite outgrowth morphodynamic behaviors in a cultured neuronal cell system. Systematic RNA interference perturbation of a Rho GTPase interactome consisting of 219 proteins reveals a limited set of morphodynamic phenotypes. As proof of concept, we show that loss of function of two distinct RhoA-specific GTPase-activating proteins (GAPs) leads to opposite neurite outgrowth phenotypes. Imaging of RhoA activation dynamics indicates that both GAPs regulate different spatiotemporal Rho GTPase pools, with distinct functions. Our results provide a starting point to dissect spatiotemporal Rho GTPase signaling networks that regulate neurite outgrowth. PMID:26728857

  8. AnyWave: a cross-platform and modular software for visualizing and processing electrophysiological signals.

    PubMed

    Colombet, B; Woodman, M; Badier, J M; Bénar, C G

    2015-03-15

    The importance of digital signal processing in clinical neurophysiology is growing steadily, involving clinical researchers and methodologists. There is a need for crossing the gap between these communities by providing efficient delivery of newly designed algorithms to end users. We have developed such a tool which both visualizes and processes data and, additionally, acts as a software development platform. AnyWave was designed to run on all common operating systems. It provides access to a variety of data formats and it employs high fidelity visualization techniques. It also allows using external tools as plug-ins, which can be developed in languages including C++, MATLAB and Python. In the current version, plug-ins allow computation of connectivity graphs (non-linear correlation h2) and time-frequency representation (Morlet wavelets). The software is freely available under the LGPL3 license. AnyWave is designed as an open, highly extensible solution, with an architecture that permits rapid delivery of new techniques to end users. We have developed AnyWave software as an efficient neurophysiological data visualizer able to integrate state of the art techniques. AnyWave offers an interface well suited to the needs of clinical research and an architecture designed for integrating new tools. We expect this software to strengthen the collaboration between clinical neurophysiologists and researchers in biomedical engineering and signal processing. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Effect of sample storage time on detection of hybridization signals in Checkerboard DNA-DNA hybridization.

    PubMed

    do Nascimento, Cássio; Muller, Katia; Sato, Sandra; Albuquerque Junior, Rubens Ferreira

    2012-04-01

    Long-term sample storage can affect the intensity of the hybridization signals provided by molecular diagnostic methods that use chemiluminescent detection. The aim of this study was to evaluate the effect of different storage times on the hybridization signals of 13 bacterial species detected by the Checkerboard DNA-DNA hybridization method using whole-genomic DNA probes. Ninety-six subgingival biofilm samples were collected from 36 healthy subjects, and the intensity of hybridization signals was evaluated at 4 different time periods: (1) immediately after collecting (n = 24) and (2) after storage at -20 °C for 6 months (n = 24), (3) for 12 months (n = 24), and (4) for 24 months (n = 24). The intensity of hybridization signals obtained from groups 1 and 2 were significantly higher than in the other groups (p < 0.001). No differences were found between groups 1 and 2 (p > 0.05). The Checkerboard DNA-DNA hybridization method was suitable to detect hybridization signals from all groups evaluated, and the intensity of signals decreased significantly after long periods of sample storage.

  10. Modular multiantigen T cell epitope-enriched DNA vaccine against human leishmaniasis.

    PubMed

    Das, Shantanabha; Freier, Anja; Boussoffara, Thouraya; Das, Sushmita; Oswald, Detlef; Losch, Florian O; Selka, Melanie; Sacerdoti-Sierra, Nina; Schönian, Gabriele; Wiesmüller, Karl-Heinz; Seifert, Karin; Schroff, Matthias; Juhls, Christiane; Jaffe, Charles L; Roy, Syamal; Das, Pradeep; Louzir, Hechmi; Croft, Simon L; Modabber, Farrokh; Walden, Peter

    2014-04-30

    The leishmaniases are protozoal diseases that severely affect large populations in tropical and subtropical regions. There are only limited treatment options and preventative measures. Vaccines will be important for prevention, control and elimination of leishmaniasis, and could reduce the transmission and burden of disease in endemic populations. We report the development of a DNA vaccine against leishmaniasis that induced T cell-based immunity and is a candidate for clinical trials. The vaccine antigens were selected as conserved in various Leishmania species, different endemic regions, and over time. They were tested with T cells from individuals cured of leishmaniasis, and shown to be immunogenic and to induce CD4(+) and CD8(+) T cell responses in genetically diverse human populations of different endemic regions. The vaccine proved protective in a rodent model of infection. Thus, the immunogenicity of candidate vaccine antigens in human populations of endemic regions, as well as proof of principle for induction of specific immune responses and protection against Leishmania infection in mice, provides a viable strategy for T cell vaccine development.

  11. Ease fabrication of PCR modular chip for portable DNA detection kit

    NASA Astrophysics Data System (ADS)

    Whulanza, Yudan; Aditya, Rifky; Arvialido, Reyhan; Utomo, Muhammad S.; Bachtiar, Boy M.

    2017-02-01

    Engineering a lab-on-a-chip (LoC) to perform the DNA polymerase chain reaction (PCR) for malaria detection is the ultimate goal of this study. This paper investigates the ability to fabricate an LoC kit using conventional method to achieve the lowest production cost by using existing fabrication process. It has been known that majority of LoC was made of polydimethylsiloxane (PDMS) which in this study was realized through a contact mold process. CNC milling process was utilized to create channel features in the range of 150-250 µm on the mold. Characterization on the milling process was done to understand the shrinkage/contraction between mold to product, roughness and also angle of contact of PDMS surface. Ultimately, this paper also includes analysis on flow measurement and heat distribution of an assembled LoC PCR kit. The results show that the achieved dimension of microchannel is 227 µm wide with a roughness of 0.01 µm. The flow measurement indicates a deviation with simulation in the range of 10%. A heat distribution through the kit is achieved following the three temperature zones as desired.

  12. Ten-atom silver cluster signaling and tempering DNA hybridization.

    PubMed

    Petty, Jeffrey T; Sergev, Orlin O; Kantor, Andrew G; Rankine, Ian J; Ganguly, Mainak; David, Frederic D; Wheeler, Sandra K; Wheeler, John F

    2015-05-19

    Silver clusters with ∼10 atoms are molecules, and specific species develop within DNA strands. These molecular metals have sparsely organized electronic states with distinctive visible and near-infrared spectra that vary with cluster size, oxidation, and shape. These small molecules also act as DNA adducts and coordinate with their DNA hosts. We investigated these characteristics using a specific cluster-DNA conjugate with the goal of developing a sensitive and selective biosensor. The silver cluster has a single violet absorption band (λ(max) = 400 nm), and its single-stranded DNA host has two domains that stabilize this cluster and hybridize with target oligonucleotides. These target analytes transform the weakly emissive violet cluster to a new chromophore with blue-green absorption (λ(max) = 490 nm) and strong green emission (λ(max) = 550 nm). Our studies consider the synthesis, cluster size, and DNA structure of the precursor violet cluster-DNA complex. This species preferentially forms with relatively low amounts of Ag(+), high concentrations of the oxidizing agent O2, and DNA strands with ≳20 nucleotides. The resulting aqueous and gaseous forms of this chromophore have 10 silvers that coalesce into a single cluster. This molecule is not only a chromophore but also an adduct that coordinates multiple nucleobases. Large-scale DNA conformational changes are manifested in a 20% smaller hydrodynamic radius and disrupted nucleobase stacking. Multidentate coordination also stabilizes the single-stranded DNA and thereby inhibits hybridization with target complements. These observations suggest that the silver cluster-DNA conjugate acts like a molecular beacon but is distinguished because the cluster chromophore not only sensitively signals target analytes but also stringently discriminates against analogous competing analytes.

  13. Enhanced photoacoustic signal from DNA assembled gold nanoparticle networks

    NASA Astrophysics Data System (ADS)

    Buchkremer, A.; Beckmann, M. F.; Linn, M.; Ruff, J.; Rosencrantz, R. R.; von Plessen, G.; Schmitz, G.; Simon, U.

    2014-12-01

    We report an experimental finding of photoacoustic signal enhancement from finite sized DNA-gold nanoparticle networks. We synthesized DNA-functionalized hollow and solid gold nanospheres (AuNS) to form finite sized networks, which were characterized by means of optical extinction spectroscopy, dynamic light scattering, and scanning electron microscopy in transmission mode. It is shown that the signal amplification scales with network size for networks comprising either hollow or solid AuNS as well as networks consisting of both types of nanoparticles. The laser intensities applied in our multispectral setup (λ = 650 nm, 850 nm, 905 nm) were low enough to maintain the structural integrity of the networks. This reflects that the binding and recognition properties of the temperature-sensitive cross-linking DNA-molecules are retained.

  14. Assembly of Slx4 signaling complexes behind DNA replication forks.

    PubMed

    Balint, Attila; Kim, TaeHyung; Gallo, David; Cussiol, Jose Renato; Bastos de Oliveira, Francisco M; Yimit, Askar; Ou, Jiongwen; Nakato, Ryuichiro; Gurevich, Alexey; Shirahige, Katsuhiko; Smolka, Marcus B; Zhang, Zhaolei; Brown, Grant W

    2015-08-13

    Obstructions to replication fork progression, referred to collectively as DNA replication stress, challenge genome stability. In Saccharomyces cerevisiae, cells lacking RTT107 or SLX4 show genome instability and sensitivity to DNA replication stress and are defective in the completion of DNA replication during recovery from replication stress. We demonstrate that Slx4 is recruited to chromatin behind stressed replication forks, in a region that is spatially distinct from that occupied by the replication machinery. Slx4 complex formation is nucleated by Mec1 phosphorylation of histone H2A, which is recognized by the constitutive Slx4 binding partner Rtt107. Slx4 is essential for recruiting the Mec1 activator Dpb11 behind stressed replication forks, and Slx4 complexes are important for full activity of Mec1. We propose that Slx4 complexes promote robust checkpoint signaling by Mec1 by stably recruiting Dpb11 within a discrete domain behind the replication fork, during DNA replication stress.

  15. Assembly of Slx4 signaling complexes behind DNA replication forks

    PubMed Central

    Balint, Attila; Kim, TaeHyung; Gallo, David; Cussiol, Jose Renato; Bastos de Oliveira, Francisco M; Yimit, Askar; Ou, Jiongwen; Nakato, Ryuichiro; Gurevich, Alexey; Shirahige, Katsuhiko; Smolka, Marcus B; Zhang, Zhaolei; Brown, Grant W

    2015-01-01

    Obstructions to replication fork progression, referred to collectively as DNA replication stress, challenge genome stability. In Saccharomyces cerevisiae, cells lacking RTT107 or SLX4 show genome instability and sensitivity to DNA replication stress and are defective in the completion of DNA replication during recovery from replication stress. We demonstrate that Slx4 is recruited to chromatin behind stressed replication forks, in a region that is spatially distinct from that occupied by the replication machinery. Slx4 complex formation is nucleated by Mec1 phosphorylation of histone H2A, which is recognized by the constitutive Slx4 binding partner Rtt107. Slx4 is essential for recruiting the Mec1 activator Dpb11 behind stressed replication forks, and Slx4 complexes are important for full activity of Mec1. We propose that Slx4 complexes promote robust checkpoint signaling by Mec1 by stably recruiting Dpb11 within a discrete domain behind the replication fork, during DNA replication stress. PMID:26113155

  16. Signal-exon trap: a novel method for the identification of signal sequences from genomic DNA

    PubMed Central

    Péterfy, Miklós; Gyuris, Tibor; Takács, László

    2000-01-01

    We describe a genomic DNA-based signal sequence trap method, signal-exon trap (SET), for the identification of genes encoding secreted and membrane-bound proteins. SET is based on the coupling of an exon trap to the translation of captured exons, which allows screening of the exon-encoded polypeptides for signal peptide function. Since most signal sequences are expected to be located in the 5′-terminal exons of genes, we first demonstrate that trapping of these exons is feasible. To test the applicability of SET for the screening of complex genomic DNA, we evaluated two critical features of the method. Specificity was assessed by the analysis of random genomic DNA and efficiency was demonstrated by screening a 425 kb YAC known to contain the genes of four secretory or membrane-bound proteins. All trapped clones contained a translation initiation signal followed by a hydrophobic stretch of amino acids representing either a known signal peptide, transmembrane domain or novel sequence. Our results suggest that SET is a potentially useful method for the isolation of signal sequence-containing genes and may find application in the discovery of novel members of known secretory gene clusters, as well as in other positional cloning approaches. PMID:10710443

  17. The nucleosome: orchestrating DNA damage signaling and repair within chromatin.

    PubMed

    Agarwal, Poonam; Miller, Kyle M

    2016-10-01

    DNA damage occurs within the chromatin environment, which ultimately participates in regulating DNA damage response (DDR) pathways and repair of the lesion. DNA damage activates a cascade of signaling events that extensively modulates chromatin structure and organization to coordinate DDR factor recruitment to the break and repair, whilst also promoting the maintenance of normal chromatin functions within the damaged region. For example, DDR pathways must avoid conflicts between other DNA-based processes that function within the context of chromatin, including transcription and replication. The molecular mechanisms governing the recognition, target specificity, and recruitment of DDR factors and enzymes to the fundamental repeating unit of chromatin, i.e., the nucleosome, are poorly understood. Here we present our current view of how chromatin recognition by DDR factors is achieved at the level of the nucleosome. Emerging evidence suggests that the nucleosome surface, including the nucleosome acidic patch, promotes the binding and activity of several DNA damage factors on chromatin. Thus, in addition to interactions with damaged DNA and histone modifications, nucleosome recognition by DDR factors plays a key role in orchestrating the requisite chromatin response to maintain both genome and epigenome integrity.

  18. Activation of cellular signaling by 8-oxoguanine DNA glycosylase-1-initiated DNA base excision repair.

    PubMed

    German, Peter; Szaniszlo, Peter; Hajas, Gyorgy; Radak, Zsolt; Bacsi, Attila; Hazra, Tapas K; Hegde, Muralidhar L; Ba, Xueqing; Boldogh, Istvan

    2013-10-01

    Accumulation of 8-oxo-7,8-dihydroguanine (8-oxoG) in the DNA results in genetic instability and mutagenesis, and is believed to contribute to carcinogenesis, aging processes and various aging-related diseases. 8-OxoG is removed from the DNA via DNA base excision repair (BER), initiated by 8-oxoguanine DNA glycosylase-1 (OGG1). Our recent studies have shown that OGG1 binds its repair product 8-oxoG base with high affinity at a site independent from its DNA lesion-recognizing catalytic site and the OGG1•8-oxoG complex physically interacts with canonical Ras family members. Furthermore, exogenously added 8-oxoG base enters the cells and activates Ras GTPases; however, a link has not yet been established between cell signaling and DNA BER, which is the endogenous source of the 8-oxoG base. In this study, we utilized KG-1 cells expressing a temperature-sensitive mutant OGG1, siRNA ablation of gene expression, and a variety of molecular biological assays to define a link between OGG1-BER and cellular signaling. The results show that due to activation of OGG1-BER, 8-oxoG base is released from the genome in sufficient quantities for activation of Ras GTPase and resulting in phosphorylation of the downstream Ras targets Raf1, MEK1,2 and ERK1,2. These results demonstrate a previously unrecognized mechanism for cellular responses to OGG1-initiated DNA BER.

  19. Smart Microfluidic Electrochemical DNA Sensors with Signal Processing Circuits

    NASA Astrophysics Data System (ADS)

    Sawada, Kazuaki; Oda, Chigusa; Takao, Hidekuni; Ishida, Makoto

    2007-05-01

    A smart microfluidic DNA sensor with an integrated signal-processing circuit for electrochemical analysis has been successfully fabricated. The sensor comprises an integrated electrochemical sensing electrode, a microfluidic channel-type reactor, and operational amplifiers for electrochemical measurement. The microfluidic reactor employs a laminar flow principle. Generally, a relatively large and expensive system is necessary for electrochemical measurement. In the fabricated smart chip, signal-processing circuits for measuring cyclic-voltammogram characteristics are integrated, permitting cyclic-voltammograms to be successively measured, using only two simple sources of electrical power.

  20. Parallel molecular computation of modular-multiplication with two same inputs over finite field GF(2(n)) using self-assembly of DNA tiles.

    PubMed

    Li, Yongnan; Xiao, Limin; Ruan, Li

    2014-06-01

    Two major advantages of DNA computing - huge memory capacity and high parallelism - are being explored for large-scale parallel computing, mass data storage and cryptography. Tile assembly model is a highly distributed parallel model of DNA computing. Finite field GF(2(n)) is one of the most commonly used mathematic sets for constructing public-key cryptosystem. It is still an open question that how to implement the basic operations over finite field GF(2(n)) using DNA tiles. This paper proposes how the parallel tile assembly process could be used for computing the modular-square, modular-multiplication with two same inputs, over finite field GF(2(n)). This system could obtain the final result within less steps than another molecular computing system designed in our previous study, because square and reduction are executed simultaneously and the previous system computes reduction after calculating square. Rigorous theoretical proofs are described and specific computing instance is given after defining the basic tiles and the assembly rules. Time complexity of this system is 3n-1 and space complexity is 2n(2). Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Modular analysis of biological networks.

    PubMed

    Kaltenbach, Hans-Michael; Stelling, Jörg

    2012-01-01

    The analysis of complex biological networks has traditionally relied on decomposition into smaller, semi-autonomous units such as individual signaling pathways. With the increased scope of systems biology (models), rational approaches to modularization have become an important topic. With increasing acceptance of de facto modularity in biology, widely different definitions of what constitutes a module have sparked controversies. Here, we therefore review prominent classes of modular approaches based on formal network representations. Despite some promising research directions, several important theoretical challenges remain open on the way to formal, function-centered modular decompositions for dynamic biological networks.

  2. Functionalization of DNA Nanostructures for Cell Signaling Applications

    NASA Astrophysics Data System (ADS)

    Pedersen, Ronnie O.

    Transforming growth factor beta (TGF-beta) is an important cytokine responsible for a wide range of different cellular functions including extracellular matrix formation, angiogenesis and epithelial-mesenchymal transition. We have sought to use self-assembling DNA nanostructures to influence TGF-beta signaling. The predictable Watson Crick base pairing allows for designing self-assembling nanoscale structures using oligonucleotides. We have used the method of DNA origami to assemble structures functionalized with multiple peptides that bind TGF-beta receptors outside the ligand binding domain. This allows the nanostructures to cluster TGF-beta receptors and lower the energy barrier of ligand binding thus sensitizing the cells to TGF-beta stimulation. To prove efficacy of our nanostructures we have utilized immunofluorescent staining of Smad2/4 in order to monitor TGF-beta mediated translocation of Smad2/4 to the cell nucleus. We have also utilized Smad2/4 responsive luminescence constructs that allows us to quantify TGF-beta stimulation with and without nanostructures. To functionalize our nanostructures we relied on biotin-streptavidin linkages. This introduces a multivalency that is not necessarily desirable in all designs. Therefore we have investigated alternative means of functionalization. The first approach is based on targeting DNA nanostructure by using zinc finger binding proteins. Efficacy of zinc finger binding proteins was assayed by the use of enzyme-linked immunosorbent (ELISA) assay and atomic force microscopy (AFM). While ELISA indicated a relative specificity of zinc finger proteins for target DNA sequences AFM showed a high degree of non-specific binding and insufficient affinity. The second approach is based on using peptide nucleic acid (PNA) incorporated in the nanostructure through base pairing. PNA is a synthetic DNA analog consisting of a backbone of repeating N-(2-aminoethyl)-glycine units to which purine and pyrimidine bases are linked by

  3. Role for DNA damage signaling in pulmonary arterial hypertension.

    PubMed

    Meloche, Jolyane; Pflieger, Aude; Vaillancourt, Mylène; Paulin, Roxane; Potus, François; Zervopoulos, Sotirios; Graydon, Colin; Courboulin, Audrey; Breuils-Bonnet, Sandra; Tremblay, Eve; Couture, Christian; Michelakis, Evangelos D; Provencher, Steeve; Bonnet, Sébastien

    2014-02-18

    Pulmonary arterial hypertension (PAH) is associated with sustained inflammation known to promote DNA damage. Despite these unfavorable environmental conditions, PAH pulmonary arterial smooth muscle cells (PASMCs) exhibit, in contrast to healthy PASMCs, a pro-proliferative and anti-apoptotic phenotype, sustained in time by the activation of miR-204, nuclear factor of activated T cells, and hypoxia-inducible factor 1-α. We hypothesized that PAH-PASMCs have increased the activation of poly(ADP-ribose) polymerase-1 (PARP-1), a critical enzyme implicated in DNA repair, allowing proliferation despite the presence of DNA-damaging insults, eventually leading to PAH. Human PAH distal pulmonary arteries and cultured PAH-PASMCs exhibit increased DNA damage markers (53BP1 and γ-H2AX) and an overexpression of PARP-1 (immunoblot and activity assay), in comparison with healthy tissues/cells. Healthy PASMCs treated with a clinically relevant dose of tumor necrosis factor-α harbored a similar phenotype, suggesting that inflammation induces DNA damage and PARP-1 activation in PAH. We also showed that PARP-1 activation accounts for miR-204 downregulation (quantitative reverse transcription polymerase chain reaction) and the subsequent activation of the transcription factors nuclear factor of activated T cells and hypoxia-inducible factor 1-α in PAH-PASMCs, previously shown to be critical for PAH in several models. These effects resulted in PASMC proliferation (Ki67, proliferating cell nuclear antigen, and WST1 assays) and resistance to apoptosis (terminal deoxynucleotidyl transferase dUTP nick end labeling and Annexin V assays). In vivo, the clinically available PARP inhibitor ABT-888 reversed PAH in 2 experimental rat models (Sugen/hypoxia and monocrotaline). These results show for the first time that the DNA damage/PARP-1 signaling pathway is important for PAH development and provide a new therapeutic target for this deadly disease with high translational potential.

  4. A modular assembly cloning technique (aided by the BIOF software tool) for seamless and error-free assembly of long DNA fragments.

    PubMed

    Orlova, Nadezhda A; Orlov, Alexandre V; Vorobiev, Ivan I

    2012-06-18

    Molecular cloning of DNA fragments >5 kbp is still a complex task. When no genomic DNA library is available for the species of interest, and direct PCR amplification of the desired DNA fragment is unsuccessful or results in an incorrect sequence, molecular cloning of a PCR-amplified region of the target sequence and assembly of the cloned parts by restriction and ligation is an option. Assembled components of such DNA fragments can be connected together by ligating the compatible overhangs produced by different restriction endonucleases. However, designing the corresponding cloning scheme can be a complex task that requires a software tool to generate a list of potential connection sites. The BIOF program presented here analyzes DNA fragments for all available restriction enzymes and provides a list of potential sites for ligation of DNA fragments with compatible overhangs. The cloning scheme, which is called modular assembly cloning (MAC), is aided by the BIOF program. MAC was tested on a practical dataset, namely, two non-coding fragments of the translation elongation factor 1 alpha gene from Chinese hamster ovary cells. The individual fragment lengths exceeded 5 kbp, and direct PCR amplification produced no amplicons. However, separation of the target fragments into smaller regions, with downstream assembly of the cloned modules, resulted in both target DNA fragments being obtained with few subsequent steps. Implementation of the MAC software tool and the experimental approach adopted here has great potential for simplifying the molecular cloning of long DNA fragments. This approach may be used to generate long artificial DNA fragments such as in vitro spliced cDNAs.

  5. Feature extraction and signal processing for nylon DNA microarrays

    PubMed Central

    Lopez, F; Rougemont, J; Loriod, B; Bourgeois, A; Loï, L; Bertucci, F; Hingamp, P; Houlgatte, R; Granjeaud, S

    2004-01-01

    Background High-density DNA microarrays require automatic feature extraction methodologies and softwares. These can be a potential source of non-reproducibility of gene expression measurements. Variation in feature location or in signal integration methodology may be a significant contribution to the observed variance in gene expression levels. Results We explore sources of variability in feature extraction from DNA microarrays on Nylon membrane with radioactive detection. We introduce a mathematical model of the signal emission and derive methods for correcting biases such as overshining, saturation or variation in probe amount. We also provide a quality metric which can be used qualitatively to flag weak or untrusted signals or quantitatively to modulate the weight of each experiment or gene in higher level analyses (clustering or discriminant analysis). Conclusions Our novel feature extraction methodology, based on a mathematical model of the radioactive emission, reduces variability due to saturation, neighbourhood effects and variable probe amount. Furthermore, we provide a fully automatic feature extraction software, BZScan, which implements the algorithms described in this paper. PMID:15222896

  6. DNA damage response and sphingolipid signaling in liver diseases

    PubMed Central

    Matsuda, Yasunobu; Moro, Kazuki; Tsuchida, Junko; Soma, Daiki; Hirose, Yuki; Kobayashi, Takashi; Kosugi, Shin-ichi; Takabe, Kazuaki; Komatsu, Masaaki; Wakai, Toshifumi

    2016-01-01

    Patients with unresectable hepatocellular carcinoma (HCC) cannot generally be cured by systemic chemotherapy or radiotherapy due to their poor response to conventional therapeutic agents. The development of novel and efficient targeted therapies to increase their treatment options depends on the elucidation of the molecular mechanisms that underlie the pathogenesis of HCC. The DNA damage response (DDR) is a network of cell-signaling events that are triggered by DNA damage. Its dysregulation is thought to be one of the key mechanisms underlying the generation of HCC. Sphingosine-1-phosphate (S1P), a lipid mediator, has emerged as an important signaling molecule that has been found to be involved in many cellular functions. In the liver, the alteration of S1P signaling potentially affects the DDR pathways. In this review, we explore the role of the DDR in hepatocarcinogenesis of various etiologies, including hepatitis B and C infection and non-alcoholic steatohepatitis. Furthermore, we discuss the metabolism and functions of S1P that may affect the hepatic DDR. The elucidation of the pathogenic role of S1P may create new avenues of research into therapeutic strategies for patients with HCC. PMID:26514817

  7. Modular entanglement.

    PubMed

    Gualdi, Giulia; Giampaolo, Salvatore M; Illuminati, Fabrizio

    2011-02-04

    We introduce and discuss the concept of modular entanglement. This is the entanglement that is established between the end points of modular systems composed by sets of interacting moduli of arbitrarily fixed size. We show that end-to-end modular entanglement scales in the thermodynamic limit and rapidly saturates with the number of constituent moduli. We clarify the mechanisms underlying the onset of entanglement between distant and noninteracting quantum systems and its optimization for applications to quantum repeaters and entanglement distribution and sharing.

  8. Entropy in DNA Double-Strand Break, Detection and Signaling

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Schindler, Christina; Heermann, Dieter

    2014-03-01

    In biology, the term entropy is often understood as a measure of disorder - a restrictive interpretation that can even be misleading. Recently it has become clearer and clearer that entropy, contrary to conventional wisdom, can help to order and guide biological processes in living cells. DNA double-strand breaks (DSBs) are among the most dangerous lesions and efficient damage detection and repair is essential for organism viability. However, what remains unknown is the precise mechanism of targeting the site of damage within billions of intact nucleotides and a crowded nuclear environment, a process which is often referred to as recruitment or signaling. Here we show that the change in entropy associated with inflicting a DSB facilitates the recruitment of damage sensor proteins. By means of computational modeling we found that higher mobility and local chromatin structure accelerate protein association at DSB ends. We compared the effect of different chromatin architectures on protein dynamics and concentrations in the vicinity of DSBs, and related these results to experiments on repair in heterochromatin. Our results demonstrate how entropy contributes to a more efficient damage detection. We identify entropy as the physical basis for DNA double-strand break signaling.

  9. Nanomaterial-Assisted Signal Enhancement of Hybridization for DNA Biosensors: A Review

    PubMed Central

    Liu, Jinhuai; Liu, Jinyun; Yang, Liangbao; Chen, Xing; Zhang, Meiyun; Meng, Fanli; Luo, Tao; Li, Minqiang

    2009-01-01

    Detection of DNA sequences has received broad attention due to its potential applications in a variety of fields. As sensitivity of DNA biosensors is determined by signal variation of hybridization events, the signal enhancement is of great significance for improving the sensitivity in DNA detection, which still remains a great challenge. Nanomaterials, which possess some unique chemical and physical properties caused by nanoscale effects, provide a new opportunity for developing novel nanomaterial-based signal-enhancers for DNA biosensors. In this review, recent progress concerning this field, including some newly-developed signal enhancement approaches using quantum-dots, carbon nanotubes and their composites reported by our group and other researchers are comprehensively summarized. Reports on signal enhancement of DNA biosensors by non-nanomaterials, such as enzymes and polymer reagents, are also reviewed for comparison. Furthermore, the prospects for developing DNA biosensors using nanomaterials as signal-enhancers in future are also indicated. PMID:22399999

  10. A modular system of DNA enhancer elements mediates tissue-specific activation of transcription by high dietary zinc in C. elegans

    PubMed Central

    Roh, Hyun Cheol; Dimitrov, Ivan; Deshmukh, Krupa; Zhao, Guoyan; Warnhoff, Kurt; Cabrera, Daniel; Tsai, Wendy; Kornfeld, Kerry

    2015-01-01

    Zinc is essential for biological systems, and aberrant zinc metabolism is implicated in a broad range of human diseases. To maintain homeostasis in response to fluctuating levels of dietary zinc, animals regulate gene expression; however, mechanisms that mediate the transcriptional response to fluctuating levels of zinc have not been fully defined. Here, we identified DNA enhancer elements that mediate intestine-specific transcriptional activation in response to high levels of dietary zinc in C. elegans. Using bioinformatics, we characterized an evolutionarily conserved enhancer element present in multiple zinc-inducible genes, the high zinc activation (HZA) element. The HZA was consistently adjacent to a GATA element that mediates expression in intestinal cells. Functional studies using transgenic animals demonstrated that this modular system of DNA enhancers mediates tissue-specific transcriptional activation in response to high levels of dietary zinc. We used this information to search the genome and successfully identified novel zinc-inducible genes. To characterize the mechanism of enhancer function, we demonstrated that the GATA transcription factor ELT-2 and the mediator subunit MDT-15 are necessary for zinc-responsive transcriptional activation. These findings define new mechanisms of zinc homeostasis and tissue-specific regulation of transcription. PMID:25552416

  11. A modular system of DNA enhancer elements mediates tissue-specific activation of transcription by high dietary zinc in C. elegans.

    PubMed

    Roh, Hyun Cheol; Dimitrov, Ivan; Deshmukh, Krupa; Zhao, Guoyan; Warnhoff, Kurt; Cabrera, Daniel; Tsai, Wendy; Kornfeld, Kerry

    2015-01-01

    Zinc is essential for biological systems, and aberrant zinc metabolism is implicated in a broad range of human diseases. To maintain homeostasis in response to fluctuating levels of dietary zinc, animals regulate gene expression; however, mechanisms that mediate the transcriptional response to fluctuating levels of zinc have not been fully defined. Here, we identified DNA enhancer elements that mediate intestine-specific transcriptional activation in response to high levels of dietary zinc in C. elegans. Using bioinformatics, we characterized an evolutionarily conserved enhancer element present in multiple zinc-inducible genes, the high zinc activation (HZA) element. The HZA was consistently adjacent to a GATA element that mediates expression in intestinal cells. Functional studies using transgenic animals demonstrated that this modular system of DNA enhancers mediates tissue-specific transcriptional activation in response to high levels of dietary zinc. We used this information to search the genome and successfully identified novel zinc-inducible genes. To characterize the mechanism of enhancer function, we demonstrated that the GATA transcription factor ELT-2 and the mediator subunit MDT-15 are necessary for zinc-responsive transcriptional activation. These findings define new mechanisms of zinc homeostasis and tissue-specific regulation of transcription. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. Ultrasensitive flow injection chemiluminescence detection of DNA hybridization using signal DNA probe modified with Au and CuS nanoparticles.

    PubMed

    Zhang, Shusheng; Zhong, Hua; Ding, Caifeng

    2008-10-01

    A novel and sensitive flow injection chemiluminescence assay for sequence-specific DNA detection based on signal amplification with nanoparticles (NPs) is reported in the present work. The "sandwich-type" DNA biosensor was fabricated with the thiol-functionalized capture DNA first immobilized on an Au electrode and hybridized with one end of target DNA, the other end of which was recognized with a signal DNA probe labeled with CuS NPs and Au NPs on the 3'- and 5'-terminus, respectively. The hybridization events were monitored by the CL intensity of luminol-H2O2-Cu(2+) after the cupric ions were dissolved from the hybrids. We demonstrated that the incorporation of Au NPs in this sensor design significantly enhanced the sensitivity and the selectivity because a single Au NP can be loaded with hundreds of signal DNA probe strands, which were modified with CuS NPs. The ratios of Au NPs, signal DNA probes, and CuS NPs modified on the gold electrode were approximately 1/101/103. A preconcentration process of cupric ions performed by anodic stripping voltammetry technology further increased the sensor performance. As a result of these two combined effects, this DNA sensor could detect as low as femtomolar target DNA and exhibited excellent selectivity against two-base mismatched DNA. Under the optimum conditions, the CL intensity was increased with the increase of the concentration of target DNA in the range of 2.0 x 10(-14)-2.0 x 10(-12) M. A detection limit of 4.8 x 10(-15) M target DNA was achieved.

  13. DNA-programmed modular assembly of cyclic and linear nanoarrays for the synthesis of two-dimensional conducting polymers.

    PubMed

    Chen, Wen; Schuster, Gary B

    2012-01-18

    Nanometer-scale arrays of conducting polymers were prepared on scaffolds of self-assembling DNA modules. A series of DNA oligomers was prepared, each containing six 2,5-bis(2-thienyl)pyrrole (SNS) monomer units linked covalently to N4 atoms of alternating cytosines placed between leading and trailing 12-nucleobase recognition sequences. These DNA modules were encoded so the recognition sequences would uniquely associate through Watson-Crick assembly to form closed-cycle or linear arrays of aligned SNS monomers. The melting behavior and electrophoretic migration of these assemblies showed cooperative formation of multicomponent arrays containing two to five DNA modules (i.e., 12-30 SNS monomers). The treatment of these arrays with horseradish peroxidase and H(2)O(2) resulted in oxidative polymerization of the SNS monomers with concomitant ligation of the DNA modules. The resulting cyclic and linear arrays exhibited chemical and optical properties typical of conducting thiophene-like polymers, with a red-end absorption beyond 1250 nm. AFM images of the cyclic array containing 18 SNS units revealed highly regular 10 nm diameter objects. © 2011 American Chemical Society

  14. A universal biosensor for multiplex DNA detection based on hairpin probe assisted cascade signal amplification.

    PubMed

    Liu, Jie; Chen, Lingbo; Lie, Puchang; Dun, Boying; Zeng, Lingwen

    2013-06-07

    A hairpin DNA probe mediated cascade signal amplification method was developed for visual and rapid DNA analysis with a detection limit of 100 aM. The implementation of tag/anti-tag DNA and gold nanoparticle reporters permits a universal platform for multiplex genotyping without instrumentation.

  15. DNA photonic nanowires with tunable FRET signals on the basis of toehold-mediated DNA strand displacement reactions.

    PubMed

    Wang, Bei; Wang, Xiaojing; Wei, Bing; Huang, Fujian; Yao, Dongbao; Liang, Haojun

    2017-03-02

    A DNA photonic nanowire with tunable FRET signals was fabricated on the basis of cascaded toehold-mediated DNA strand displacement reactions. Different DNA inputs were added to trigger the reaction network, and the corresponding FRET signals were obtained. Compared to the direct hybridization, this design is sensitive for 2 nM targets within 20 min and also causes color changes of the solution with blue-light excitation. It could also be applied in live cells to monitor MicroRNA with a simple modification which might become a low-cost method for further application in the future.

  16. Detection of DNA hybridization by field-effect DNA-based biosensors: mechanisms of signal generation and open questions.

    PubMed

    Cherstvy, A G

    2013-08-15

    We model theoretically the electrostatic effects taking place upon DNA hybridization in dense DNA arrays immobilized on a layer of Au nano-particles deposited on the surface of a field-effect-based DNA capacitive biosensor. We consider the influence of separation of a charged analyte from the sensor surface and the salinity of electrolyte solution, in the framework of both linear and nonlinear Poisson-Boltzmann theories. The latter predicts a substantially weaker sensor signals due to electrostatic saturation effects that is the main conclusion of this paper. We analyze how different physical parameters of dense DNA brushes affect the magnitude of hybridization signals. The list includes the fraction of DNA charge neutralization, the length and spatial conformations of adsorbed DNA molecules, as well as the discreteness of DNA charges. We also examine the effect of Donnan ionic equilibrium in DNA lattices on the sensor response. The validity of theoretical models is contrasted against recent experimental observations on detection of DNA hybridization via its intrinsic electric charge. The sensitivity of such biochemical sensing devices, their detection limit, and DNA hybridization efficiency are briefly discussed in the end.

  17. Restoration of ATM Expression in DNA-PKcs-Deficient Cells Inhibits Signal End Joining.

    PubMed

    Neal, Jessica A; Xu, Yao; Abe, Masumi; Hendrickson, Eric; Meek, Katheryn

    2016-04-01

    Unlike most DNA-dependent protein kinase, catalytic subunit (DNA-PKcs)-deficient mouse cell strains, we show in the present study that targeted deletion of DNA-PKcs in two different human cell lines abrogates VDJ signal end joining in episomal assays. Although the mechanism is not well defined, DNA-PKcs deficiency results in spontaneous reduction of ATM expression in many cultured cell lines (including those examined in this study) and in DNA-PKcs-deficient mice. We considered that varying loss of ATM expression might explain differences in signal end joining in different cell strains and animal models, and we investigated the impact of ATM and/or DNA-PKcs loss on VDJ recombination in cultured human and rodent cell strains. To our surprise, in DNA-PKcs-deficient mouse cell strains that are proficient in signal end joining, restoration of ATM expression markedly inhibits signal end joining. In contrast, in DNA-PKcs-deficient cells that are deficient in signal end joining, complete loss of ATM enhances signal (but not coding) joint formation. We propose that ATM facilitates restriction of signal ends to the classical nonhomologous end-joining pathway. Copyright © 2016 by The American Association of Immunologists, Inc.

  18. Hairpin DNA Switch for Ultrasensitive Spectrophotometric Detection of DNA Hybridization Based on Gold Nanoparticles and Enzyme Signal Amplification

    SciTech Connect

    Zhang, Youyu; Tang, Zhiwen; Wang, Jun; Wu, Hong; Maham, Aihui; Lin, Yuehe

    2010-08-01

    A novel DNA detection platform based on a hairpin-DNA switch, nanoparticles, and enzyme signal amplification for ultrasensitive detection of DNA hybridization has been developed in this work. In this DNA assay, a “stem-loop” DNA probe dually labeled with a thiol at its 5’ end and a biotin at its 3’ end, respectively, was used. This probe was immobilized on the gold nanoparticles (AuNPs) anchored by a protein, globulin, on a 96-well microplate. In the absence of target DNA, the immobilized probe with the stem-loop structure shields the biotin from being approached by a bulky horseradish peroxidase linked-avidin (avidin-HRP) conjugate due to the steric hindrance. However, in the presence of target DNA, the hybridization between the hairpin DNA probe and the target DNA causes significant conformational change of the probe, which forces biotin away from the surface of AuNPs. As a result, the biotin becomes accessible by the avidin-HRP, and the target hybridization event can be sensitively detected via the HRP catalyzed substrate 3, 3', 5, 5'-tetramethylbenzidine using spectrophometric method. Some experimental parameters governing the performance of the assay have been optimized. At optimal conditions, this DNA assay can detect DNA at the concentration of femtomolar level by means of a signal amplification strategy based on the combination of enzymes and nanoparticles. This approach also has shown excellent specificity to distinguish single-base mismatches of DNA targets because of the intrinsic high selectivity of the hairpin DNA probe.

  19. Electrochemical DNA probe for Hg(2+) detection based on a triple-helix DNA and Multistage Signal Amplification Strategy.

    PubMed

    Wang, Huan; Zhang, Yihe; Ma, Hongmin; Ren, Xiang; Wang, Yaoguang; Zhang, Yong; Wei, Qin

    2016-12-15

    In this work, an ultrasensitive electrochemical sensor was developed for detection of Hg(2+). Gold nanoparticles decorated bovine serum albumin reduction of graphene oxide (AuNP-BSA-rGO) were used as subsurface material for the immobilization of triple-helix DNA. The triple-helix DNA containing a thiol labelled single-stranded DNA (sDNA) and a thymine-rich DNA (T-rich DNA), which could be unwinded in the present of Hg(2+) to form more stable thymine-Hg(2+)-thymine (T-Hg(2+)-T) complex. T-Hg(2+)-T complex was then removed and the sDNA was left on the electrode. At this time, gold nanoparticle carrying thiol labelled cytosine-rich complementary DNA (cDNA-AuNP) could bind with the free sDNA. Meanwhile, the other free cDNA on AuNP could bind with each other in the present of Ag(+) to form the stable cytosine-Ag(+)-cytosine (C-Ag(+)-C) complex and circle amplification. Plenty of C-Ag(+)-C could form silver nanoclusters by electrochemical reduction and the striping signal of Ag could be measured for purpose of the final electrochemical detection of Hg(2+). This sensor could detect Hg(2+) over a wide concentration range from 0.1 to 130nM with a detection limit of 0.03nM.

  20. Transcription factor modularity in a gene-centered C. elegans core neuronal protein–DNA interaction network

    PubMed Central

    Vermeirssen, Vanessa; Barrasa, M. Inmaculada; Hidalgo, César A.; Babon, Jenny Aurielle B.; Sequerra, Reynaldo; Doucette-Stamm, Lynn; Barabási, Albert-László; Walhout, Albertha J.M.

    2007-01-01

    Transcription regulatory networks play a pivotal role in the development, function, and pathology of metazoan organisms. Such networks are comprised of protein–DNA interactions between transcription factors (TFs) and their target genes. An important question pertains to how the architecture of such networks relates to network functionality. Here, we show that a Caenorhabditis elegans core neuronal protein–DNA interaction network is organized into two TF modules. These modules contain TFs that bind to a relatively small number of target genes and are more systems specific than the TF hubs that connect the modules. Each module relates to different functional aspects of the network. One module contains TFs involved in reproduction and target genes that are expressed in neurons as well as in other tissues. The second module is enriched for paired homeodomain TFs and connects to target genes that are often exclusively neuronal. We find that paired homeodomain TFs are specifically expressed in C. elegans and mouse neurons, indicating that the neuronal function of paired homeodomains is evolutionarily conserved. Taken together, we show that a core neuronal C. elegans protein–DNA interaction network possesses TF modules that relate to different functional aspects of the complete network. PMID:17513831

  1. Modular shield

    DOEpatents

    Snyder, Keith W.

    2002-01-01

    A modular system for containing projectiles has a sheet of material including at least a polycarbonate layer held by a metal frame having a straight frame member corresponding to each straight edge of the sheet. Each frame member has a U-shaped shield channel covering and holding a straight edge of the sheet and an adjacent U-shaped clamp channel rigidly held against the shield channel. A flexible gasket separates each sheet edge from its respective shield channel; and each frame member is fastened to each adjacent frame member only by clamps extending between adjacent clamp channels.

  2. DNA supercoiling: A regulatory signal for the λ repressor

    PubMed Central

    Ding, Yue; Manzo, Carlo; Fulcrand, Geraldine; Leng, Fenfei; Dunlap, David; Finzi, Laura

    2014-01-01

    Topoisomerases, polymerases, and the chirality introduced by the binding of histones or nucleoid-associated proteins affect DNA supercoiling in vivo. However, supercoiling is not just a by-product of DNA metabolism. Supercoiling is an indicator of cell health, it modifies the accessibility of chromatin, and coordinates the transcription of genes. This suggests that regulatory, protein-mediated loops in DNA may sense supercoiling of the genome in which they are embedded. The λ repressor (CI) maintains the quiescent (lysogenic) transcriptome of bacteriophage λ in infected Escherichia coli. CI-mediated looping prevents overexpression of the repressor protein to preserve sensitivity to conditions that trigger virulence (lysis). Experiments were performed to assess how well the CI-mediated DNA loop traps superhelicity and determine whether supercoiling enhances CI-mediated DNA looping. CI oligomers partitioned plasmids into topological domains and prevented the passage of supercoiling between them. Furthermore, in single DNA molecules stretched and twisted with magnetic tweezers, levels of superhelical density confined in CI-mediated DNA loops ranged from −15% or +11%. Finally, in DNA under tensions that may occur in vivo, supercoiling lowered the free energy of loop formation and was essential for DNA looping. Supercoiling-enhanced looping can influence the maintenance of lysogeny in the λ repressor system; it can encode sensitivity to the energy level of the cell and creates independent topological domains of distinct superhelical density. PMID:25319264

  3. Genomic Signal Processing Methods for Computation of Alignment-Free Distances from DNA Sequences

    PubMed Central

    Borrayo, Ernesto; Mendizabal-Ruiz, E. Gerardo; Vélez-Pérez, Hugo; Romo-Vázquez, Rebeca; Mendizabal, Adriana P.; Morales, J. Alejandro

    2014-01-01

    Genomic signal processing (GSP) refers to the use of digital signal processing (DSP) tools for analyzing genomic data such as DNA sequences. A possible application of GSP that has not been fully explored is the computation of the distance between a pair of sequences. In this work we present GAFD, a novel GSP alignment-free distance computation method. We introduce a DNA sequence-to-signal mapping function based on the employment of doublet values, which increases the number of possible amplitude values for the generated signal. Additionally, we explore the use of three DSP distance metrics as descriptors for categorizing DNA signal fragments. Our results indicate the feasibility of employing GAFD for computing sequence distances and the use of descriptors for characterizing DNA fragments. PMID:25393409

  4. Genomic signal processing methods for computation of alignment-free distances from DNA sequences.

    PubMed

    Borrayo, Ernesto; Mendizabal-Ruiz, E Gerardo; Vélez-Pérez, Hugo; Romo-Vázquez, Rebeca; Mendizabal, Adriana P; Morales, J Alejandro

    2014-01-01

    Genomic signal processing (GSP) refers to the use of digital signal processing (DSP) tools for analyzing genomic data such as DNA sequences. A possible application of GSP that has not been fully explored is the computation of the distance between a pair of sequences. In this work we present GAFD, a novel GSP alignment-free distance computation method. We introduce a DNA sequence-to-signal mapping function based on the employment of doublet values, which increases the number of possible amplitude values for the generated signal. Additionally, we explore the use of three DSP distance metrics as descriptors for categorizing DNA signal fragments. Our results indicate the feasibility of employing GAFD for computing sequence distances and the use of descriptors for characterizing DNA fragments.

  5. Novel signal amplification approach for HRP-based colorimetric genosensors using DNA binding protein tags.

    PubMed

    Aktas, Gülsen Betül; Skouridou, Vasso; Masip, Lluis

    2015-12-15

    The need for sensitive detection of DNA is growing as more specific DNA sequences are being correlated to gene markers for disease diagnosis, food safety and other security related applications. Detection in hybridization-based assays is usually achieved with target-specific ssDNA probes conjugated directly to enzyme labels like HRP that provide signal amplification or with nanoparticles functionalized with DNA and multiple HRP molecules. In order to overcome some of the drawbacks presented by these approaches, we developed a unique DNA sensing platform based on an HRP-DNA binding protein tag conjugate and a hybrid ssDNA-dsDNA detection probe. Specifically, in this work we describe the preparation and characterization of an HRP conjugate with scCro DNA binding protein tag and its application for the detection of a model ssDNA target sequence. By using the HRP-scCro conjugate together with a hybrid detection probe containing three scCro-specific dsDNA binding sites, we demonstrate an improvement by over 3-fold in both sensitivity and limit of detection of high-risk human papillomavirus (HPV16), compared to the standard ssDNA-HRP conjugate. These results show that the HRP-DNA binding protein tag conjugate can be used as an alternative and universal tool for signal enhancement in enzyme-linked assays suitable for integration in point-of-care systems.

  6. Effect of structure on sensing performance of a target induced signaling probe shifting DNA-based (TISPS-DNA) sensor.

    PubMed

    Yu, Xiang; Yu, Zhigang; Li, Fengqin; Xu, Yanmei; He, Xunjun; Xu, Lan; Shi, Wenbing; Zhang, Guiling; Yan, Hong

    2017-05-15

    A type of "signal on" displacement-based sensors named target induced signaling probe shifting DNA-based (TISPS-DNA) sensor were developed for a designated DNA detection. The signaling mechanism of the signaling probe (SP) shifting different from the classical conformation/flexibility change mode endows the sensor with high sensitivity. Through using thiolated or no thiolated capturing probe (CP), two 3-probe sensing structures, sensor-1 and sensor-2, were designed and constructed. The systematical comparing research results show that both sensors exhibit some similarities or big differences in sensing performance. On the one hand, the similarity in structures determines the similarity in some aspects of signaling mechanism, background signal, signal changing form, anti-fouling ability and versatility; on the other hand, the slight difference in structures also results in two opposite hybridization modes of gradual increasing resistance and gradual decreasing resistance which can affect the hybridization efficiency between the assistant probe (AP) and the SP, further producing some big differences in sensing performance, for example, apparently different signal enhancement (SE) change, point mutation discrimination ability and response speed. Under the optimized fabrication and detection conditions, both sensors feature high sensitivity for target DNAs with the detection limits of ∼10 fM for sensor-1 and ∼7 fM for sensor-2, respectively. Among many acquired sensing virtues, the sensor-1 shows a peculiar specificity adjustability which is also a highlight in this work. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Modular Certification

    NASA Technical Reports Server (NTRS)

    Rushby, John; Miner, Paul S. (Technical Monitor)

    2002-01-01

    Airplanes are certified as a whole: there is no established basis for separately certifying some components, particularly software-intensive ones, independently of their specific application in a given airplane. The absence of separate certification inhibits the development of modular components that could be largely "precertified" and used in several different contexts within a single airplane, or across many different airplanes. In this report, we examine the issues in modular certification of software components and propose an approach based on assume-guarantee reasoning. We extend the method from verification to certification by considering behavior in the presence of failures. This exposes the need for partitioning, and separation of assumptions and guarantees into normal and abnormal cases. We then identify three classes of property that must be verified within this framework: safe function, true guarantees, and controlled failure. We identify a particular assume-guarantee proof rule (due to McMillan) that is appropriate to the applications considered, and formally verify its soundness in PVS.

  8. A biological inspired fuzzy adaptive window median filter (FAWMF) for enhancing DNA signal processing.

    PubMed

    Ahmad, Muneer; Jung, Low Tan; Bhuiyan, Al-Amin

    2017-10-01

    Digital signal processing techniques commonly employ fixed length window filters to process the signal contents. DNA signals differ in characteristics from common digital signals since they carry nucleotides as contents. The nucleotides own genetic code context and fuzzy behaviors due to their special structure and order in DNA strand. Employing conventional fixed length window filters for DNA signal processing produce spectral leakage and hence results in signal noise. A biological context aware adaptive window filter is required to process the DNA signals. This paper introduces a biological inspired fuzzy adaptive window median filter (FAWMF) which computes the fuzzy membership strength of nucleotides in each slide of window and filters nucleotides based on median filtering with a combination of s-shaped and z-shaped filters. Since coding regions cause 3-base periodicity by an unbalanced nucleotides' distribution producing a relatively high bias for nucleotides' usage, such fundamental characteristic of nucleotides has been exploited in FAWMF to suppress the signal noise. Along with adaptive response of FAWMF, a strong correlation between median nucleotides and the Π shaped filter was observed which produced enhanced discrimination between coding and non-coding regions contrary to fixed length conventional window filters. The proposed FAWMF attains a significant enhancement in coding regions identification i.e. 40% to 125% as compared to other conventional window filters tested over more than 250 benchmarked and randomly taken DNA datasets of different organisms. This study proves that conventional fixed length window filters applied to DNA signals do not achieve significant results since the nucleotides carry genetic code context. The proposed FAWMF algorithm is adaptive and outperforms significantly to process DNA signal contents. The algorithm applied to variety of DNA datasets produced noteworthy discrimination between coding and non-coding regions contrary

  9. Nuclease-free target recycling signal amplification for ultrasensitive multiplexing DNA biosensing.

    PubMed

    Zhao, Zhihan; Chen, Shixing; Wang, Jianbang; Su, Jing; Xu, Jiaqiang; Mathur, Sanjay; Fan, Chunhai; Song, Shiping

    2017-08-15

    Ultrasensitive biosensing technologies without gene amplification held great promise for direct detection of DNA. Herein we report a novel biosensing method, combining target recycling signal-amplification strategy and a homemade electrochemical device. Especially, the target recycling was achieved by a strand displacement process, no needing the help of any nucleases. In the presence of target DNA, the recycling system could be activated to generate a cascade of assembly steps with three hairpin DNA segments. Each recycling process were accompanied by a disassembly step that the last hairpin DNA segment displaces target DNA from the complex at the end of each circulation, freeing targets to activate the self-assembly of more trefoil DNA structures. This biosensing method could detect target DNA at aM level and can distinguish target DNA from interfering DNAs, demonstrating its high sensitivity and high selectivity. Importantly, the biosensing method could work well with serum samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Modular and coordinated expression of immune system regulatory and signaling components in the developing and adult nervous system.

    PubMed

    Monzón-Sandoval, Jimena; Castillo-Morales, Atahualpa; Crampton, Sean; McKelvey, Laura; Nolan, Aoife; O'Keeffe, Gerard; Gutierrez, Humberto

    2015-01-01

    During development, the nervous system (NS) is assembled and sculpted through a concerted series of neurodevelopmental events orchestrated by a complex genetic programme. While neural-specific gene expression plays a critical part in this process, in recent years, a number of immune-related signaling and regulatory components have also been shown to play key physiological roles in the developing and adult NS. While the involvement of individual immune-related signaling components in neural functions may reflect their ubiquitous character, it may also reflect a much wider, as yet undescribed, genetic network of immune-related molecules acting as an intrinsic component of the neural-specific regulatory machinery that ultimately shapes the NS. In order to gain insights into the scale and wider functional organization of immune-related genetic networks in the NS, we examined the large scale pattern of expression of these genes in the brain. Our results show a highly significant correlated expression and transcriptional clustering among immune-related genes in the developing and adult brain, and this correlation was the highest in the brain when compared to muscle, liver, kidney and endothelial cells. We experimentally tested the regulatory clustering of immune system (IS) genes by using microarray expression profiling in cultures of dissociated neurons stimulated with the pro-inflammatory cytokine TNF-alpha, and found a highly significant enrichment of immune system-related genes among the resulting differentially expressed genes. Our findings strongly suggest a coherent recruitment of entire immune-related genetic regulatory modules by the neural-specific genetic programme that shapes the NS.

  11. Multiplexed, particle-based detection of DNA using flow cytometry with 3DNA dendrimers for signal amplification.

    PubMed

    Lowe, Mary; Spiro, Alex; Zhang, Yu-Zhong; Getts, Robert

    2004-08-01

    Complex mixtures of DNA may be found in environmental and medical samples. There is a need for techniques that can measure low concentrations of target DNAs. For a multiplexed, flow cytometric assay, we show that the signal-to-noise ratio for fluorescence detection may be increased with the use of 3DNA dendrimers. A single fluorescent DNA molecule per bead could be detected with conventional flow cytometry instrumentation. The analyte consisted of single-stranded (ss) DNA amplicons that were hybridized to capture probes on the surface of fluorescent polystyrene microspheres (beads) and initially labeled with streptavidin-R-phycoerythrin (single-step labeling). These beads have a low reporter fluorescence background and high efficiency of DNA hybridization. The DNA/SA-RPE complex was then labeled with 3DNA dendrimers and SA-RPE. The bead complexes were detected with a Luminex 100 flow cytometer. Bead standards were developed to convert the intensity to the number of SA-RPE labels per bead and the number of dendrimers per bead. The dendrimer assay resulted in 10-fold fluorescence amplification compared with single-step SA-RPE labeling. Based on concentration curves of pure target ss-amplicons, the signal-to-noise ratio of the dendrimer assay was greater by a factor of 8.5 over single-step SA-RPE labeling. The dendrimer assay was tested on 16S ribosomal DNA amplified from filter retentates of contaminated groundwater. Multiplexed detection of a single dendrimer-labeled DNA molecule per bead was demonstrated. Multiplexed detection of DNA hybridization on a single molecule level per bead was achieved with conventional flow cytometry instrumentation. This assay is useful for detecting target DNAs at low concentrations.

  12. Distinct effects of DNA-PKcs and Artemis inactivation on signal joint formation in vivo.

    PubMed

    Touvrey, Cédric; Couedel, Chrystelle; Soulas, Pauline; Couderc, Rachel; Jasin, Maria; de Villartay, Jean-Pierre; Marche, Patrice N; Jouvin-Marche, Evelyne; Candéias, Serge M

    2008-07-01

    The assembly of functional immune receptor genes via V(D)J recombination in developing lymphocytes generates DNA double-stranded breaks intermediates that are repaired by non-homologous end joining (NHEJ). This repair pathway requires the sequential recruitment and activation onto coding and signal DNA ends of several proteins, including the DNA-dependent protein kinase and the nuclease Artemis. Artemis activity, triggered by the DNA-dependent protein kinase, is necessary to process the genes hairpin-sealed coding ends but appears dispensable for the ligation of the reciprocal phosphorylated, blunt-ended signal ends into a signal joint. The DNA-dependent protein kinase is however present on signal ends and could potentially recruit and activate Artemis during signal joint formation. To determine whether Artemis plays a role during the resolution of signal ends during V(D)J recombination, we analyzed the structure of signal joints generated in developing thymocytes during the rearrangement of T cell receptor genes in wild type mice and mice mutated for NHEJ factors. These joints exhibit junctional diversity resulting from N nucleotide polymerization by the terminal nucleotidyl transferase and nucleotide loss from one or both of the signal ends before they are ligated. Our results show that Artemis participates in the repair of signal ends in vivo. Furthermore, our results also show that while the DNA-dependent protein kinase complex protects signal ends from processing, including deletions, Artemis seems on the opposite to promote their accessibility to modifying enzymes. In addition, these data suggest that Artemis might be the nuclease responsible for nucleotide loss from signal ends during the repair process.

  13. A superstructure-based electrochemical assay for signal-amplified detection of DNA methyltransferase activity.

    PubMed

    Zhang, Hui; Yang, Yin; Dong, Huilei; Cai, Chenxin

    2016-12-15

    DNA methyltransferase (MTase) activity is highly correlated with the occurrence and development of cancer. This work reports a superstructure-based electrochemical assay for signal-amplified detection of DNA MTase activity using M.SssI as an example. First, low-density coverage of DNA duplexes on the surface of the gold electrode was achieved by immobilized mercaptohexanol, followed by immobilization of DNA duplexes. The duplex can be cleaved by BstUI endonuclease in the absence of DNA superstructures. However, the cleavage is blocked after the DNA is methylated by M.SssI. The DNA superstructures are formed with the addition of helper DNA. By using an electroactive complex, RuHex, which can bind to DNA double strands, the activity of M.SssI can be quantitatively detected by differential pulse voltammetry. Due to the high site-specific cleavage by BstUI and signal amplification by the DNA superstructure, the biosensor can achieve ultrasensitive detection of DNA MTase activity down to 0.025U/mL. The method can be used for evaluation and screening of the inhibitors of MTase, and thus has potential in the discovery of methylation-related anticancer drugs.

  14. Deficient DNA damage signaling leads to chemoresistance to cisplatin in oral cancer

    PubMed Central

    Wang, Ling; Mosel, Adam J.; Oakley, Gregory G.; Peng, Aimin

    2012-01-01

    Activation of the cellular DNA damage response (DDR) is an important determinant of cell sensitivity to cisplatin and other chemotherapeutic drugs that eliminate tumor cells through induction of DNA damage. It is therefore important to investigate whether alterations of the DNA damage signaling pathway confer chemoresistance in cancer cells, and whether pharmacological manipulation of the DDR pathway can re-sensitize these cells to cancer therapy. In a panel of oral/laryngeal squamous cell carcinoma (SCC) cell lines, we observed deficiencies in DNA damage signaling in correlation with cisplatin-resistance, but not with DNA repair. These deficiencies are consistent with reduced expression of components of the ATM-dependent signaling pathway and, in particular, strong up-regulation of Wip1, a negative regulator of the ATM pathway. Wip1 knockdown or inhibition enhanced DNA damage signaling and re-sensitized oral SCC cells to cisplatin. In contrast to the previously reported involvement of Wip1 in cancer, Wip1 up-regulation and function in these SCC cells is independent of p53. Finally, using xenograft tumor models, we demonstrated that Wip1 up-regulation promotes tumorigenesis and its inhibition improves the tumor response to cisplatin. Thus, this study reveals that chemoresistance in oral SCCs is partially attributed to deficiencies in DNA damage signaling, and Wip1 is an effective drug target for enhanced cancer therapy. PMID:22973056

  15. Electromagnetic signals are produced by aqueous nanostructures derived from bacterial DNA sequences.

    PubMed

    Montagnier, Luc; Aïssa, Jamal; Ferris, Stéphane; Montagnier, Jean-Luc; Lavallée, Claude

    2009-06-01

    A novel property of DNA is described: the capacity of some bacterial DNA sequences to induce electromagnetic waves at high aqueous dilutions. It appears to be a resonance phenomenon triggered by the ambient electromagnetic background of very low frequency waves. The genomic DNA of most pathogenic bacteria contains sequences which are able to generate such signals. This opens the way to the development of highly sensitive detection system for chronic bacterial infections in human and animal diseases.

  16. The Mre11 complex: at the crossroads of dna repair and checkpoint signalling.

    PubMed

    D'Amours, Damien; Jackson, Stephen P

    2002-05-01

    The Mre11 complex is a multisubunit nuclease that is composed of Mre11, Rad50 and Nbs1/Xrs2. Mutations in the genes that encode components of this complex result in DNA- damage sensitivity, genomic instability, telomere shortening and aberrant meiosis. The molecular defect that underlies these phenotypes has long been thought to be related to a DNA repair deficiency. However, recent studies have uncovered functions for the Mre11 complex in checkpoint signalling and DNA replication.

  17. Ultrasensitive fluorescence polarization DNA detection by target assisted exonuclease III-catalyzed signal amplification.

    PubMed

    Zhang, Min; Guan, Yi-Meng; Ye, Bang-Ce

    2011-03-28

    Single stranded DNA sequences can be detected by target assisted exonuclease III-catalyzed signal amplification fluorescence polarization (TAECA-FP). The method offers an impressive detection limit of 83 aM within one hour for DNA detection and exhibits high discrimination ability even against a single base mismatch.

  18. DNA sequence and structure requirements for cleavage of V(D)J recombination signal sequences.

    PubMed Central

    Cuomo, C A; Mundy, C L; Oettinger, M A

    1996-01-01

    Purified RAG1 and RAG2 proteins can cleave DNA at V(D)J recombination signals. In dissecting the DNA sequence and structural requirements for cleavage, we find that the heptamer and nonamer motifs of the recombination signal sequence can independently direct both steps of the cleavage reaction. Proper helical spacing between these two elements greatly enhances the efficiency of cleavage, whereas improper spacing can lead to interference between the two elements. The signal sequences are surprisingly tolerant of structural variation and function efficiently when nicks, gaps, and mismatched bases are introduced or even when the signal sequence is completely single stranded. Sequence alterations that facilitate unpairing of the bases at the signal/coding border activate the cleavage reaction, suggesting that DNA distortion is critical for V(D)J recombination. PMID:8816481

  19. Histone deacetylase regulation of ATM-mediated DNA damage signaling.

    PubMed

    Thurn, K Ted; Thomas, Scott; Raha, Paromita; Qureshi, Ian; Munster, Pamela N

    2013-10-01

    Ataxia-telangiectasia mutated (ATM) is a major regulator of the DNA damage response. ATM promotes the activation of BRCA1, CHK2, and p53 leading to the induction of response genes such as CDKN1A (p21), GADD45A, and RRM2B that promote cell-cycle arrest and DNA repair. The upregulation of these response genes may contribute to resistance of cancer cells to genotoxic therapies. Here, we show that histone deacetylases (HDAC) play a major role in mitigating the response of the ATM pathway to DNA damage. HDAC inhibition decreased ATM activation and expression, and attenuated the activation of p53 in vitro and in vivo. Select depletion of HDAC1 and HDAC2 was sufficient to modulate ATM activation, reduce GADD45A and RRM2B induction, and increase sensitivity to DNA strand breaks. The regulation of ATM by HDAC enzymes therefore suggests a vital role for HDAC1 and HDAC2 in the DNA damage response, and the potential use of the ATM pathway as a pharmacodynamic marker for combination therapies involving HDAC inhibitors. ©2013 AACR.

  20. The basic chemistry of exercise-induced DNA oxidation: oxidative damage, redox signaling, and their interplay.

    PubMed

    Cobley, James N; Margaritelis, Nikos V; Morton, James P; Close, Graeme L; Nikolaidis, Michalis G; Malone, John K

    2015-01-01

    Acute exercise increases reactive oxygen and nitrogen species generation. This phenomenon is associated with two major outcomes: (1) redox signaling and (2) macromolecule damage. Mechanistic knowledge of how exercise-induced redox signaling and macromolecule damage are interlinked is limited. This review focuses on the interplay between exercise-induced redox signaling and DNA damage, using hydroxyl radical ((·)OH) and hydrogen peroxide (H2O2) as exemplars. It is postulated that the biological fate of H2O2 links the two processes and thus represents a bifurcation point between redox signaling and damage. Indeed, H2O2 can participate in two electron signaling reactions but its diffusion and chemical properties permit DNA oxidation following reaction with transition metals and (·)OH generation. It is also considered that the sensing of DNA oxidation by repair proteins constitutes a non-canonical redox signaling mechanism. Further layers of interaction are provided by the redox regulation of DNA repair proteins and their capacity to modulate intracellular H2O2 levels. Overall, exercise-induced redox signaling and DNA damage may be interlinked to a greater extent than was previously thought but this requires further investigation.

  1. Incorporating Motif Analysis into Gene Co-expression Networks Reveals Novel Modular Expression Pattern and New Signaling Pathways

    PubMed Central

    Ma, Shisong; Shah, Smit; Bohnert, Hans J.; Snyder, Michael; Dinesh-Kumar, Savithramma P.

    2013-01-01

    Understanding of gene regulatory networks requires discovery of expression modules within gene co-expression networks and identification of promoter motifs and corresponding transcription factors that regulate their expression. A commonly used method for this purpose is a top-down approach based on clustering the network into a range of densely connected segments, treating these segments as expression modules, and extracting promoter motifs from these modules. Here, we describe a novel bottom-up approach to identify gene expression modules driven by known cis-regulatory motifs in the gene promoters. For a specific motif, genes in the co-expression network are ranked according to their probability of belonging to an expression module regulated by that motif. The ranking is conducted via motif enrichment or motif position bias analysis. Our results indicate that motif position bias analysis is an effective tool for genome-wide motif analysis. Sub-networks containing the top ranked genes are extracted and analyzed for inherent gene expression modules. This approach identified novel expression modules for the G-box, W-box, site II, and MYB motifs from an Arabidopsis thaliana gene co-expression network based on the graphical Gaussian model. The novel expression modules include those involved in house-keeping functions, primary and secondary metabolism, and abiotic and biotic stress responses. In addition to confirmation of previously described modules, we identified modules that include new signaling pathways. To associate transcription factors that regulate genes in these co-expression modules, we developed a novel reporter system. Using this approach, we evaluated MYB transcription factor-promoter interactions within MYB motif modules. PMID:24098147

  2. Cyclic-GMP-AMP Is An Endogenous Second Messenger in Innate Immune Signaling by Cytosolic DNA

    PubMed Central

    Chen, Xiang; Du, Fenghe; Shi, Heping; Chen, Chuo; Chen, Zhijian J.

    2013-01-01

    Cytosolic DNA induces type-I interferons and other cytokines that are important for antimicrobial defense but can also result in autoimmunity. This DNA signaling pathway requires the adaptor protein STING and the transcription factor IRF3, but the mechanism of DNA sensing is unclear. Here we showed that mammalian cytosolic extracts synthesized cyclic-GMP-AMP (cGAMP) in vitro from ATP and GTP in the presence of DNA but not RNA. DNA transfection or DNA virus infection of mammalian cells also triggered cGAMP production. cGAMP bound to STING, leading to the activation of IRF3 and induction of interferon-β. Thus, cGAMP represents the first cyclic di-nucleotide in metazoa and it functions as an endogenous second messenger that triggers interferon production in response to cytosolic DNA. PMID:23258412

  3. DNA Damage Signalling and Repair Inhibitors: The Long-Sought-After Achilles’ Heel of Cancer

    PubMed Central

    Velic, Denis; Couturier, Anthony M.; Ferreira, Maria Tedim; Rodrigue, Amélie; Poirier, Guy G.; Fleury, Fabrice; Masson, Jean-Yves

    2015-01-01

    For decades, radiotherapy and chemotherapy were the two only approaches exploiting DNA repair processes to fight against cancer. Nowadays, cancer therapeutics can be a major challenge when it comes to seeking personalized targeted medicine that is both effective and selective to the malignancy. Over the last decade, the discovery of new targeted therapies against DNA damage signalling and repair has offered the possibility of therapeutic improvements in oncology. In this review, we summarize the current knowledge of DNA damage signalling and repair inhibitors, their molecular and cellular effects, and future therapeutic use. PMID:26610585

  4. Deregulated Ras signaling compromises DNA damage checkpoint recovery in S. cerevisiae

    PubMed Central

    Wood, Matthew D

    2010-01-01

    The DNA damage checkpoint maintains genome stability by arresting the cell cycle and promoting DNA repair under genotoxic stress. Cells must downregulate the checkpoint signaling pathways in order to resume cell division after completing DNA repair. While the mechanisms of checkpoint activation have been well-characterized, the process of checkpoint recovery, and the signals regulating it, has only recently been investigated. We have identified a new role for the Ras signaling pathway as a regulator of DNA damage checkpoint recovery. Here we report that in budding yeast, deletion of the IRA1 and IRA2 genes encoding negative regulators of Ras prevents cellular recovery from a DNA damage induced arrest. the checkpoint kinase Rad53 is dephosphorylated in an IRA-deficient strain, indicating that recovery failure is not caused by constitutive checkpoint pathway activation. the ira1Δ ira2Δ recovery defect requires the checkpoint kinase Chk1 and the cAMP-dependent protein kinase (PKA) catalytic subunit Tpk2. Furthermore, PKA phosphorylation sites on the anaphase promoting complex specificity factor Cdc20 are required for the recovery defect, indicating a link between the recovery defect and PKA regulation of mitosis. This work identifies a new signaling pathway that can regulate DNA damage checkpoint recovery and implicates the Ras signaling pathway as an important regulator of mitotic events. PMID:20716966

  5. Modular robot

    DOEpatents

    Ferrante, Todd A.

    1997-01-01

    A modular robot may comprise a main body having a structure defined by a plurality of stackable modules. The stackable modules may comprise a manifold, a valve module, and a control module. The manifold may comprise a top surface and a bottom surface having a plurality of fluid passages contained therein, at least one of the plurality of fluid passages terminating in a valve port located on the bottom surface of the manifold. The valve module is removably connected to the manifold and selectively fluidically connects the plurality of fluid passages contained in the manifold to a supply of pressurized fluid and to a vent. The control module is removably connected to the valve module and actuates the valve module to selectively control a flow of pressurized fluid through different ones of the plurality of fluid passages in the manifold. The manifold, valve module, and control module are mounted together in a sandwich-like manner and comprise a main body. A plurality of leg assemblies are removably connected to the main body and are removably fluidically connected to the fluid passages in the manifold so that each of the leg assemblies can be selectively actuated by the flow of pressurized fluid in different ones of the plurality of fluid passages in the manifold.

  6. Modular robot

    DOEpatents

    Ferrante, T.A.

    1997-11-11

    A modular robot may comprise a main body having a structure defined by a plurality of stackable modules. The stackable modules may comprise a manifold, a valve module, and a control module. The manifold may comprise a top surface and a bottom surface having a plurality of fluid passages contained therein, at least one of the plurality of fluid passages terminating in a valve port located on the bottom surface of the manifold. The valve module is removably connected to the manifold and selectively fluidically connects the plurality of fluid passages contained in the manifold to a supply of pressurized fluid and to a vent. The control module is removably connected to the valve module and actuates the valve module to selectively control a flow of pressurized fluid through different ones of the plurality of fluid passages in the manifold. The manifold, valve module, and control module are mounted together in a sandwich-like manner and comprise a main body. A plurality of leg assemblies are removably connected to the main body and are removably fluidically connected to the fluid passages in the manifold so that each of the leg assemblies can be selectively actuated by the flow of pressurized fluid in different ones of the plurality of fluid passages in the manifold. 12 figs.

  7. Bidirectional coupling of splicing and ATM signaling in response to transcription-blocking DNA damage

    PubMed Central

    Tresini, Maria; Marteijn, Jurgen A.; Vermeulen, Wim

    2016-01-01

    ABSTRACT In response to DNA damage cells activate intricate protein networks to ensure genomic fidelity and tissue homeostasis. DNA damage response signaling pathways coordinate these networks and determine cellular fates, in part, by modulating RNA metabolism. Here we discuss a replication-independent pathway activated by transcription-blocking DNA lesions, which utilizes the ATM signaling kinase to regulate spliceosome function in a reciprocal manner. We present a model according to which, displacement of co-transcriptional spliceosomes from lesion-arrested RNA polymerases, culminates in R-loop formation and non-canonical ATM activation. ATM signals in a feed-forward fashion to further impede spliceosome organization and regulates UV-induced gene expression and alternative splicing genome-wide. This reciprocal coupling between ATM and the spliceosome highlights the importance of ATM signaling in the cellular response to transcription-blocking lesions and supports a key role of the splicing machinery in this process. PMID:26913497

  8. Modular assembly of optical nanocircuits.

    PubMed

    Shi, Jinwei; Monticone, Francesco; Elias, Sarah; Wu, Yanwen; Ratchford, Daniel; Li, Xiaoqin; Alù, Andrea

    2014-05-29

    A key element enabling the microelectronic technology advances of the past decades has been the conceptualization of complex circuits with versatile functionalities as being composed of the proper combination of basic 'lumped' circuit elements (for example, inductors and capacitors). In contrast, modern nanophotonic systems are still far from a similar level of sophistication, partially because of the lack of modularization of their response in terms of basic building blocks. Here we demonstrate the design, assembly and characterization of relatively complex photonic nanocircuits by accurately positioning a number of metallic and dielectric nanoparticles acting as modular lumped elements. The nanoparticle clusters produce the desired spectral response described by simple circuit rules and are shown to be dynamically reconfigurable by modifying the direction or polarization of impinging signals. Our work represents an important step towards extending the powerful modular design tools of electronic circuits into nanophotonic systems.

  9. Ultraspecific electrochemical DNA biosensor by coupling spontaneous cascade DNA branch migration and dual-signaling sensing strategy.

    PubMed

    Wang, Ting; Zhou, Lili; Bai, Shulian; Zhang, Zhang; Li, Junlong; Jing, Xiaoying; Xie, Guoming

    2016-04-15

    Using spontaneous cascade DNA branch migration and dual-signaling sensing strategy, we developed a novel universal electrochemical biosensor for the highly specific and sensitive detection of nucleic acids. A target strand (Ts) competitively hybridized with a ferrocene (Fc)-labeled signal probe (Fc-S1), which was blocked by a protector strand (Ps), after strand displacement to form the Ts/Fc-S1 duplex. A methylene blue (MB)-modified signal probe (MB-S2) was immobilized on the Au electrode surface by hybridizing with a thiolated capture probe (Cp). Then, the obtained reactants (Ts/Fc-S1 and MB-S2/Cp) suffered spontaneous DNA branch migration and produced two hybridization products (Fc-S1/Cp and MB-S2/Ts). These reactions led to the dissociation of MB molecules and the collection of Fc molecules. The detection mechanism of this DNA biosensor involved distance variation between the redox tags and the Au electrode, which was associated with target-induced cascade DNA branch migration. Moreover, we rationally designed the cascade DNA branch migration to occur spontaneously with ΔG° ≈ 0, at which slight thermodynamic changes caused by base mismatch exerted a disproportionately large effect on the hybridization yield. This "signal-on/off" sensing system exhibited a remarkable analytical performance and an ultrahigh discrimination capability even against a single-base mismatch. The maximum discrimination factor (DF) of base mutations or alterations can reach 17.9. Therefore, our electrochemical biosensor might hold a great potential for further applications in biomedical research and early clinical diagnosis. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. DNA damage signaling in response to double-strand breaks during mitosis

    PubMed Central

    Giunta, Simona

    2010-01-01

    The signaling cascade initiated in response to DNA double-strand breaks (DSBs) has been extensively investigated in interphase cells. Here, we show that mitotic cells treated with DSB-inducing agents activate a “primary” DNA damage response (DDR) comprised of early signaling events, including activation of the protein kinases ataxia telangiectasia mutated (ATM) and DNA-dependent protein kinase (DNA-PK), histone H2AX phosphorylation together with recruitment of mediator of DNA damage checkpoint 1 (MDC1), and the Mre11–Rad50–Nbs1 (MRN) complex to damage sites. However, mitotic cells display no detectable recruitment of the E3 ubiquitin ligases RNF8 and RNF168, or accumulation of 53BP1 and BRCA1, at DSB sites. Accordingly, we found that DNA-damage signaling is attenuated in mitotic cells, with full DDR activation only ensuing when a DSB-containing mitotic cell enters G1. Finally, we present data suggesting that induction of a primary DDR in mitosis is important because transient inactivation of ATM and DNA-PK renders mitotic cells hypersensitive to DSB-inducing agents. PMID:20660628

  11. AFM Imaging of Hybridization Chain Reaction-Mediated Signal Transmission Between two DNA Origami Structures.

    PubMed

    Helmig, Sarah; Gothelf, Kurt Vesterager

    2017-09-03

    Signal transfer is central to the controlled exchange of information in biology and advanced technologies. Therefore, the development of reliable, long-ranging signal transfer systems for artificial nanoscale assemblies is of great scientific interest. We have designed such a system for signal transfer between two connected DNA nanostructures, using the hybridization chain reaction (HCR). Two sets of metastable DNA hairpins - of which one is immobilized in specific points along tracks on DNA origami structures - are polymerized to form a continuous DNA duplex, which is visible using atomic force microscopy (AFM). Upon addition of a designed initiator, the initiation signal is efficiently transferred >200 nm from a specific location on one origami structure to an end point on another origami structure. The system shows no significant loss of signal when crossing from one nanostructure to another, and therefore has the potential to be applied to larger multi-component DNA assemblies. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. The role of poly(ADP-ribose) in the DNA damage signaling network.

    PubMed

    Malanga, Maria; Althaus, Felix R

    2005-06-01

    DNA damage signaling is crucial for the maintenance of genome integrity. In higher eukaryotes a NAD+-dependent signal transduction mechanism has evolved to protect cells against the genome destabilizing effects of DNA strand breaks. The mechanism involves 2 nuclear enzymes that sense DNA strand breaks, poly(ADP-ribose) polymerase-1 and -2 (PARP-1 and PARP-2). When activated by DNA breaks, these PARPs use NAD+ to catalyze their automodification with negatively charged, long and branched ADP-ribose polymers. Through recruitment of specific proteins at the site of damage and regulation of their activities, these polymers may either directly participate in the repair process or coordinate repair through chromatin unfolding, cell cycle progression, and cell survival-cell death pathways. A number of proteins, including histones, DNA topoisomerases, DNA methyltransferase-1 as well as DNA damage repair and checkpoint proteins (p23, p21, DNA-PK, NF-kB, XRCC1, and others) can be targeted in this manner; the interaction involves a specific poly(ADP-ribose)-binding sequence motif of 20-26 amino acids in the target domains.

  13. The multifaceted influence of histone deacetylases on DNA damage signalling and DNA repair

    PubMed Central

    Roos, Wynand Paul; Krumm, Andrea

    2016-01-01

    Histone/protein deacetylases play multiple roles in regulating gene expression and protein activation and stability. Their deregulation during cancer initiation and progression cause resistance to therapy. Here, we review the role of histone deacetylases (HDACs) and the NAD+ dependent sirtuins (SIRTs) in the DNA damage response (DDR). These lysine deacetylases contribute to DNA repair by base excision repair (BER), nucleotide excision repair (NER), mismatch repair (MMR), non-homologous end joining (NHEJ), homologous recombination (HR) and interstrand crosslink (ICL) repair. Furthermore, we discuss possible mechanisms whereby these histone/protein deacetylases facilitate the switch between DNA double-strand break (DSB) repair pathways, how SIRTs play a central role in the crosstalk between DNA repair and cell death pathways due to their dependence on NAD+, and the influence of small molecule HDAC inhibitors (HDACi) on cancer cell resistance to genotoxin based therapies. Throughout the review, we endeavor to identify the specific HDAC targeted by HDACi leading to therapy sensitization. PMID:27738139

  14. A coarse-grained DNA model for the prediction of current signals in DNA translocation experiments

    NASA Astrophysics Data System (ADS)

    Weik, Florian; Kesselheim, Stefan; Holm, Christian

    2016-11-01

    We present an implicit solvent coarse-grained double-stranded DNA (dsDNA) model confined to an infinite cylindrical pore that reproduces the experimentally observed current modulations of a KaCl solution at various concentrations. Our model extends previous coarse-grained and mean-field approaches by incorporating a position dependent friction term on the ions, which Kesselheim et al. [Phys. Rev. Lett. 112, 018101 (2014)] identified as an essential ingredient to correctly reproduce the experimental data of Smeets et al. [Nano Lett. 6, 89 (2006)]. Our approach reduces the computational effort by orders of magnitude compared with all-atom simulations and serves as a promising starting point for modeling the entire translocation process of dsDNA. We achieve a consistent description of the system's electrokinetics by using explicitly parameterized ions, a friction term between the DNA beads and the ions, and a lattice-Boltzmann model for the solvent.

  15. Methylated DNA causes a physical block to replication forks independently of damage signalling, O(6)-methylguanine or DNA single-strand breaks and results in DNA damage.

    PubMed

    Groth, Petra; Ausländer, Simon; Majumder, Muntasir Mamun; Schultz, Niklas; Johansson, Fredrik; Petermann, Eva; Helleday, Thomas

    2010-09-10

    Even though DNA alkylating agents have been used for many decades in the treatment of cancer, it remains unclear what happens when replication forks encounter alkylated DNA. Here, we used the DNA fibre assay to study the impact of alkylating agents on replication fork progression. We found that the alkylator methyl methanesulfonate (MMS) inhibits replication elongation in a manner that is dose dependent and related to the overall alkylation grade. Replication forks seem to be completely blocked as no nucleotide incorporation can be detected following 1 h of MMS treatment. A high dose of 5 mM caffeine, inhibiting most DNA damage signalling, decreases replication rates overall but does not reverse MMS-induced replication inhibition, showing that the replication block is independent of DNA damage signalling. Furthermore, the block of replication fork progression does not correlate with the level of DNA single-strand breaks. Overexpression of O(6)-methylguanine (O6meG)-DNA methyltransferase protein, responsible for removing the most toxic alkylation, O6meG, did not affect replication elongation following exposure to N-methyl-N'-nitro-N-nitrosoguanidine. This demonstrates that O6meG lesions are efficiently bypassed in mammalian cells. In addition, we find that MMS-induced gammaH2AX foci co-localise with 53BP1 foci and newly replicated areas, suggesting that DNA double-strand breaks are formed at MMS-blocked replication forks. Altogether, our data suggest that N-alkylations formed during exposure to alkylating agents physically block replication fork elongation in mammalian cells, causing formation of replication-associated DNA lesions, likely double-strand breaks. Copyright 2010 Elsevier Ltd. All rights reserved.

  16. Paths from DNA damage and signaling to genome rearrangements via homologous recombination.

    PubMed

    Nickoloff, Jac A

    2017-07-24

    DNA damage is a constant threat to genome integrity. DNA repair and damage signaling networks play a central role maintaining genome stability, suppressing tumorigenesis, and determining tumor response to common cancer chemotherapeutic agents and radiotherapy. DNA double-strand breaks (DSBs) are critical lesions induced by ionizing radiation and when replication forks encounter damage. DSBs can result in mutations and large-scale genome rearrangements reflecting mis-repair by non-homologous end joining or homologous recombination. Ionizing radiation induces genetic change immediately, and it also triggers delayed events weeks or even years after exposure, long after the initial damage has been repaired or diluted through cell division. This review covers DNA damage signaling and repair pathways and cell fate following genotoxic insult, including immediate and delayed genome instability and cell survival/cell death pathways. Copyright © 2017. Published by Elsevier B.V.

  17. Signals in the phi 29 DNA-terminal protein template for the initiation of phage phi 29 DNA replication.

    PubMed

    Gutiérrez, J; Vinós, J; Prieto, I; Méndez, E; Hermoso, J M; Salas, M

    1986-12-01

    The protein-free terminal fragments HindIII B and L, from the left and right ends of phi 29 DNA, respectively, but not internal fragments of similar size, were active as templates in the formation of the p3-dAMP initiation complex in an in vitro system containing purified phi 29 terminal protein p3 and DNA polymerase p2, although the activity was lower than that obtained with the phi 29 DNA-p3 complex. These results indicate the existence of specific sequences at the ends of phi 29 DNA that allow the initiation of phi 29 DNA replication. The template activity of the protein-free terminal fragments was size dependent. The protein-free single strands of the HindIII L fragment were much less active than the corresponding double-stranded fragment. Terminal protein-DNA complexes of phages PZA and phi 15, with a terminal protein closely related to the phi 29 protein p3, were more active as templates in the initiation reaction with the purified phi 29 proteins than the corresponding protein-free DNAs, as it happens in the case of phi 29. However, the terminal protein-DNA complexes of phages Nf, B103, and GA-1, with a terminal protein less related or unrelated to the phi 29 protein p3, were essentially inactive and became active after removal of the parental terminal protein. These results strongly suggest that the parental terminal protein is the major signal in the template for the initiation of phi 29 DNA replication.

  18. DNA damage signalling barrier, oxidative stress and treatment-relevant DNA repair factor alterations during progression of human prostate cancer.

    PubMed

    Kurfurstova, Daniela; Bartkova, Jirina; Vrtel, Radek; Mickova, Alena; Burdova, Alena; Majera, Dusana; Mistrik, Martin; Kral, Milan; Santer, Frederic R; Bouchal, Jan; Bartek, Jiri

    2016-06-01

    The DNA damage checkpoints provide an anti-cancer barrier in diverse tumour types, however this concept has remained unexplored in prostate cancer (CaP). Furthermore, targeting DNA repair defects by PARP1 inhibitors (PARPi) as a cancer treatment strategy is emerging yet requires suitable predictive biomarkers. To address these issues, we performed immunohistochemical analysis of multiple markers of DNA damage signalling, oxidative stress, DNA repair and cell cycle control pathways during progression of human prostate disease from benign hyperplasia, through intraepithelial neoplasia to CaP, complemented by genetic analyses of TMPRSS2-ERG rearrangement and NQO1, an anti-oxidant factor and p53 protector. The DNA damage checkpoint barrier (γH2AX, pATM, p53) mechanism was activated during CaP tumorigenesis, albeit less and with delayed culmination compared to other cancers, possibly reflecting lower replication stress (slow proliferation despite cases of Rb loss and cyclin D1 overexpression) and progressive loss of ATM activator NKX3.1. Oxidative stress (8-oxoguanine lesions) and NQO1 increased during disease progression. NQO1 genotypes of 390 men did not indicate predisposition to CaP, yet loss of NQO1 in CaP suggested potential progression-opposing tumour suppressor role. TMPRSS2-ERG rearrangement and PTEN loss, events sensitizing to PARPi, occurred frequently along with heterogeneous loss of DNA repair factors 53BP1, JMJD1C and Rev7 (all studied here for the first time in CaP) whose defects may cause resistance to PARPi. Overall, our results reveal an unorthodox DNA damage checkpoint barrier scenario in CaP tumorigenesis, and provide novel insights into oxidative stress and DNA repair, with implications for biomarker guidance of future targeted therapy of CaP.

  19. Evaluation of cytotoxicity and DNA damage response with analysis of intracellular ATM signaling pathways.

    PubMed

    Bandi, Sriram; Viswanathan, Preeti; Gupta, Sanjeev

    2014-06-01

    Maintenance of genome integrity by preventing and overcoming DNA damage is critical for cell survival. Deficiency or aberrancy in the DNA damage response, for example, through ataxia telangiectasia mutated (ATM) signaling, lead to pathophysiological perturbations in organs throughout the body. Therefore, control of DNA damage is of major interest for development of therapeutic agents. Such efforts will greatly benefit from convenient and simple diagnostic and/or drug development tools to demonstrate whether ATM and related genes have been activated and to then determine whether these have been returned to normal levels of activity because pathway members sense and also repair DNA damage. To overcome difficulties in analyzing differences in multitudinous ATM pathway members following DNA damage, we measured ATM promoter activity with a fluorescent td-Tomato reporter gene to interrogate the global effects of ATM signaling pathways. In cultured HuH-7 cell line derived from human hepatocellular carcinoma, cis-platinum, acetaminophen, or hydrogen peroxide caused DNA strand breaks and ATM pathway activation as shown by γH2AX expression, which in turn, led to rapid and sustained increases in ATM promoter activity. This assay of ATM promoter activity identified biological agents capable of controlling cellular DNA damage in toxin-treated HuH-7 cells and in mice after onset of drug-induced acute liver failure. Therefore, the proposed assay of ATM promoter activity in HuH-7 cells was appropriately informative for treating DNA damage. High-throughput screens using ATM promoter activation will be helpful for therapeutic development in DNA damage-associated abnormal ATM signaling in various cell types and organs.

  20. Wnt5a Signals through DVL1 to Repress Ribosomal DNA Transcription by RNA Polymerase I.

    PubMed

    Dass, Randall A; Sarshad, Aishe A; Carson, Brittany B; Feenstra, Jennifer M; Kaur, Amanpreet; Obrdlik, Ales; Parks, Matthew M; Prakash, Varsha; Love, Damon K; Pietras, Kristian; Serra, Rosa; Blanchard, Scott C; Percipalle, Piergiorgio; Brown, Anthony M C; Vincent, C Theresa

    2016-08-01

    Ribosome biogenesis is essential for cell growth and proliferation and is commonly elevated in cancer. Accordingly, numerous oncogene and tumor suppressor signaling pathways target rRNA synthesis. In breast cancer, non-canonical Wnt signaling by Wnt5a has been reported to antagonize tumor growth. Here, we show that Wnt5a rapidly represses rDNA gene transcription in breast cancer cells and generates a chromatin state with reduced transcription of rDNA by RNA polymerase I (Pol I). These effects were specifically dependent on Dishevelled1 (DVL1), which accumulates in nucleolar organizer regions (NORs) and binds to rDNA regions of the chromosome. Upon DVL1 binding, the Pol I transcription activator and deacetylase Sirtuin 7 (SIRT7) releases from rDNA loci, concomitant with disassembly of Pol I transcription machinery at the rDNA promoter. These findings reveal that Wnt5a signals through DVL1 to suppress rRNA transcription. This provides a novel mechanism for how Wnt5a exerts tumor suppressive effects and why disruption of Wnt5a signaling enhances mammary tumor growth in vivo.

  1. Insertion approach: bolstering the reproducibility of electrochemical signal amplification via DNA superstructures.

    PubMed

    Yang, Li; Zhang, Caihua; Jiang, Hong; Li, Guijuan; Wang, Jiahai; Wang, Erkang

    2014-05-20

    For more than a decade, the backfilling approach for the immobilization of DNA probes has been routinely adopted for the construction of functional interfaces; however, reliably reproducing electrochemical signal amplification by this method is a challenge. In this research, we demonstrate that the insertion approach significantly bolsters the reproducibility of electrochemical signal amplification via DNA superstructures. The combination of the backfilling approach and the DNA superstructure formation poses a big challenge to reliably reproducing electrochemical signal amplification. In order to use the detection of Hg(2+) as a prototype of this new strategy, a thymine-rich DNA probe that is specific to mercury ion was applied in this study. The presence of Hg(2+) induces the folding of the DNA probes and inhibits the formation of DNA superstructures. By using electroactive probes ([Ru(NH3)6](3+)) that are electrostatically adsorbed onto the double strands, differential pulse voltammetry (DPV) could quantitatively confirm the presence of Hg(2+). A limit of detection (LOD) and a limit of quantification (LOQ) (LOQ) as low as 0.3 and 9.5 pM, respectively, were achieved. Furthermore, excellent selectivity and real sample analysis demonstrated the promising potential of this approach in future applications.

  2. ATP-driven Rad50 conformations regulate DNA tethering, end resection, and ATM checkpoint signaling.

    PubMed

    Deshpande, Rajashree A; Williams, Gareth J; Limbo, Oliver; Williams, R Scott; Kuhnlein, Jeff; Lee, Ji-Hoon; Classen, Scott; Guenther, Grant; Russell, Paul; Tainer, John A; Paull, Tanya T

    2014-03-03

    The Mre11-Rad50 complex is highly conserved, yet the mechanisms by which Rad50 ATP-driven states regulate the sensing, processing and signaling of DNA double-strand breaks are largely unknown. Here we design structure-based mutations in Pyrococcus furiosus Rad50 to alter protein core plasticity and residues undergoing ATP-driven movements within the catalytic domains. With this strategy we identify Rad50 separation-of-function mutants that either promote or destabilize the ATP-bound state. Crystal structures, X-ray scattering, biochemical assays, and functional analyses of mutant PfRad50 complexes show that the ATP-induced 'closed' conformation promotes DNA end binding and end tethering, while hydrolysis-induced opening is essential for DNA resection. Reducing the stability of the ATP-bound state impairs DNA repair and Tel1 (ATM) checkpoint signaling in Schizosaccharomyces pombe, double-strand break resection in Saccharomyces cerevisiae, and ATM activation by human Mre11-Rad50-Nbs1 in vitro, supporting the generality of the P. furiosus Rad50 structure-based mutational analyses. These collective results suggest that ATP-dependent Rad50 conformations switch the Mre11-Rad50 complex between DNA tethering, ATM signaling, and 5' strand resection, revealing molecular mechanisms regulating responses to DNA double-strand breaks.

  3. Modular Fixturing System

    NASA Technical Reports Server (NTRS)

    Littell, Justin Anderson (Inventor); Street, Jon P. (Inventor)

    2017-01-01

    The modular fixturing system of the present invention is modular, reusable and capable of significant customization, both in terms of system radius and system height, allowing it to be arranged and rearranged in numerous unique configurations. The system includes multiple modular stanchions having stanchion shafts and stanchion feet that removably attach to apertures in a table. Angle brackets attached to the modular stanchions support shelves. These shelves in turn provide support to work pieces during fabrication processes such as welding.

  4. The glucocorticoid receptor dimer interface allosterically transmits sequence-specific DNA signals.

    PubMed

    Watson, Lisa C; Kuchenbecker, Kristopher M; Schiller, Benjamin J; Gross, John D; Pufall, Miles A; Yamamoto, Keith R

    2013-07-01

    Glucocorticoid receptor (GR) binds to genomic response elements and regulates gene transcription with cell and gene specificity. Within a response element, the precise sequence to which the receptor binds has been implicated in directing its structure and activity. Here, we use NMR chemical-shift difference mapping to show that nonspecific interactions with bases at particular positions in the binding sequence, such as those of the 'spacer', affect the conformation of distinct regions of the rat GR DNA-binding domain. These regions include the DNA-binding surface, the 'lever arm' and the dimerization interface, suggesting an allosteric pathway that signals between the DNA-binding sequence and the associated dimer partner. Disrupting this pathway by mutating the dimer interface alters sequence-specific conformations, DNA-binding kinetics and transcriptional activity. Our study demonstrates that GR dimer partners collaborate to read DNA shape and to direct sequence-specific gene activity.

  5. Portable modular detection system

    DOEpatents

    Brennan, James S.; Singh, Anup; Throckmorton, Daniel J.; Stamps, James F.

    2009-10-13

    Disclosed herein are portable and modular detection devices and systems for detecting electromagnetic radiation, such as fluorescence, from an analyte which comprises at least one optical element removably attached to at least one alignment rail. Also disclosed are modular detection devices and systems having an integrated lock-in amplifier and spatial filter and assay methods using the portable and modular detection devices.

  6. Distinct immune responses of recombinant plasmid DNA replicon vaccines expressing two types of antigens with or without signal sequences.

    PubMed

    Yu, Yun-Zhou; Li, Na; Wang, Wen-Bin; Wang, Shuang; Ma, Yao; Yu, Wei-Yuan; Sun, Zhi-Wei

    2010-11-03

    Here, DNA replicon vaccines encoding the Hc domain of botulinum neurotoxin serotype A (AHc) or the receptor binding domain of anthrax protective antigen (PA4) with or without signal sequences were evaluated in mice. Strong antibody and protective responses were elicited only from AHc DNA vaccines with an Ig κ signal sequence or tissue plasminogen activator signal sequence. Meanwhile, there were no differences in total antibody responses or isotypes, lymphocyte proliferative responses, cytokine profiles and protective immune responses with the PA4 DNA vaccines with or without a signal sequence. Therefore, use of targeting sequences in designing DNA replicon vaccines depends on the specific antigen.

  7. Modular error embedding

    DOEpatents

    Sandford, II, Maxwell T.; Handel, Theodore G.; Ettinger, J. Mark

    1999-01-01

    A method of embedding auxiliary information into the digital representation of host data containing noise in the low-order bits. The method applies to digital data representing analog signals, for example digital images. The method reduces the error introduced by other methods that replace the low-order bits with auxiliary information. By a substantially reverse process, the embedded auxiliary data can be retrieved easily by an authorized user through use of a digital key. The modular error embedding method includes a process to permute the order in which the host data values are processed. The method doubles the amount of auxiliary information that can be added to host data values, in comparison with bit-replacement methods for high bit-rate coding. The invention preserves human perception of the meaning and content of the host data, permitting the addition of auxiliary data in the amount of 50% or greater of the original host data.

  8. Subcellular trafficking signals of constitutive androstane receptor: evidence for a nuclear export signal in the DNA-binding domain.

    PubMed

    Xia, Jun; Kemper, Byron

    2007-09-01

    Translocation of constitutive androstane receptor (CAR) from the cytoplasm to the nucleus is induced by phenobarbital-like drugs. Nuclear localization signals (NLSs) and a sequence [xenochemical response signal (XRS)] required for xenobiotic-induced nuclear translocation have been defined in rat and human CAR, but a nuclear export signal (NES) has not been identified. To identify cellular localization signals of CAR, the localization of fragments and mutants of mouse CAR expressed in mouse hepatocytes in vivo was examined. Consistent with other studies, an NLS in the hinge region, a diffuse NLS in the ligand-binding domain, and a cytoplasmic retention sequence were identified, and mutation of the XRS blocked nuclear accumulation both in phenobarbital-treated mice in vivo and in untreated HepG2 cells. Fusing the simian virus 40 NLS to the mutant proteins reversed the localization defect resulting from mutation of the hinge NLS but not that from mutation of the XRS, indicating that the XRS is not simply a novel phenobarbital-responsive NLS. In the DNA-binding domain, a sequence in CAR is conserved with an NES identified in other nuclear receptors. Mutation of two conserved phenylalanines in this sequence resulted in increased nuclear localization of both full-length CAR and a CAR fragment containing the DNA-binding domain. The DNA-binding domain sequence, therefore, may contain an NES, which is consistent with nucleocytoplasmic shuttling of CAR. The results demonstrate that regulation of the cellular localization of CAR is complex, with multiple sequences mediating nuclear import and export and retention in the cytoplasm.

  9. Sequence specific recognition of HIV-1 dsDNA in the large amount of normal dsDNA based upon nicking enzyme signal amplification and triplex DNA.

    PubMed

    Zhu, Houya; Zhang, Manjun; Zou, Li; Li, Ruimin; Ling, Liansheng

    2017-10-01

    A sensitive fluorescent strategy for sequence specific recognition of HIV dsDNA was established based upon Nicking Enzyme Signal Amplification (NESA) and triplex formation. dsDNA sequence from the site 7960 to site 7991 of the HIV1 dsDNA gene was designed as target dsDNA, which was composed of two complementary strands Oligonucleotide 1 with the sequence of 3'-CTT CCT TAT CTT CTT CTT CCA CCT CTC TCT CT-5' (Oligo-1) and Oligonucleotide 2 with the sequence of 5'-GAA GGA ATA GAA GAA GAA GGT GGA GAG AGA GA-3' (Oligo-2). As a proof of concept, Oligonucleotide 5'-6-FAM-GAG GTG GAG CTG CGC GAC TCC TCC TCT CTC TCT CTC CAC CTC-BHQ-1-3'(Oligo-4) acted as molecular beacon(MB) probe, Oligonucleotide 5'-CTT CCT TAT CTT CTT CTT CCA AAA GGA GTC GCG-3' (Oligo-7) acted as assistant probe. In the presence of target dsDNA, Oligo-4 and Oligo-7 hybridized with target dsDNA through triplex formation and formed Y-shaped structure, NESA occurred with further addition of Nt.BbvCI, accompanied with the release of fluorescent DNA fragment circularly, resulted in the increase of fluorescence intensity. Under the optimum conditions, the fluorescence intensity was linear with the concentration of target dsDNA over the range from 100pM to 200nM, the linear regression equation was I = 1.266 C + 84.3 (C: nmol/L, R(2) = 0.991), with a detection limit of 65pM. Moreover, the effect of coexisted other dsDNA was investigated as well, and satisfactory results were obtained. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Sequence-Specific DNA Detection at 10 fM by Electromechanical Signal Transduction

    PubMed Central

    2015-01-01

    Target DNA fragments at 10 fM concentration (approximately 6 × 105 molecules) were detected against a DNA background simulating the noncomplementary genomic DNA present in real samples using a simple, PCR-free, optics-free approach based on electromechanical signal transduction. The development of a rapid, sensitive, and cost-effective nucleic acid detection platform is highly desired for a range of diverse applications. We previously described a potentially low-cost device for sequence-specific nucleic acid detection based on conductance change measurement of a pore blocked by electrophoretically mobilized bead-(peptide nucleic acid probe) conjugates upon hybridization with target nucleic acid. Here, we demonstrate the operation of our device with longer DNA targets, and we describe the resulting improvement in the limit of detection (LOD). We investigated the detection of DNA oligomers of 110, 235, 419, and 1613 nucleotides at 1 pM to 1 fM and found that the LOD decreased as DNA length increased, with 419 and 1613 nucleotide oligomers detectable down to 10 fM. In addition, no false positive responses were obtained with noncomplementary, control DNA fragments of similar length. The 1613-base DNA oligomer is similar in size to 16S rRNA, which suggests that our device may be useful for detection of pathogenic bacteria at clinically relevant concentrations based on recognition of species-specific 16S rRNA sequences. PMID:25203740

  11. Expression Profile of DNA Damage Signaling Genes in Proton Exposed Mouse Brain

    NASA Astrophysics Data System (ADS)

    Ramesh, Govindarajan; Wu, Honglu

    Exposure of living systems to radiation results in a wide assortment of lesions, the most signif-icant of is damage to genomic DNA which induce several cellular functions such as cell cycle arrest, repair, apoptosis etc. The radiation induced DNA damage investigation is one of the im-portant area in biology, but still the information available regarding the effects of proton is very limited. In this report, we investigated the differential gene expression pattern of DNA damage signaling genes particularly, damaged DNA binding, repair, cell cycle arrest, checkpoints and apoptosis using quantitative real-time RT-PCR array in proton exposed mouse brain tissues. The expression profiles showed significant changes in DNA damage related genes in 2Gy proton exposed mouse brain tissues as compared with control brain tissues. Furthermore, we also show that significantly increased levels of apoptotic related genes, caspase-3 and 8 activities in these cells, suggesting that in addition to differential expression of DNA damage genes, the alteration of apoptosis related genes may also contribute to the radiation induced DNA damage followed by programmed cell death. In summary, our findings suggest that proton exposed brain tissue undergo severe DNA damage which in turn destabilize the chromatin stability.

  12. Extracellular Self-DNA (esDNA), but Not Heterologous Plant or Insect DNA (etDNA), Induces Plasma Membrane Depolarization and Calcium Signaling in Lima Bean (Phaseolus lunatus) and Maize (Zea mays).

    PubMed

    Barbero, Francesca; Guglielmotto, Michela; Capuzzo, Andrea; Maffei, Massimo E

    2016-09-29

    Extracellular self-DNA (esDNA) is produced during cell and tissue damage or degradation and has been shown to induce significant responses in several organisms, including plants. While the inhibitory effects of esDNA have been shown in conspecific individuals, little is known on the early events involved upon plant esDNA perception. We used electrophysiology and confocal laser scanning microscopy calcium localization to evaluate the plasma membrane potential (Vm) variations and the intracellular calcium fluxes, respectively, in Lima bean (Phaseolus lunatus) and maize (Zea mays) plants exposed to esDNA and extracellular heterologous DNA (etDNA) and to etDNA from Spodoptera littoralis larvae and oral secretions. In both species, esDNA induced a significant Vm depolarization and an increased flux of calcium, whereas etDNA was unable to exert any of these early signaling events. These findings confirm the specificity of esDNA to induce plant cell responses and to trigger early signaling events that eventually lead to plant response to damage.

  13. Extracellular Self-DNA (esDNA), but Not Heterologous Plant or Insect DNA (etDNA), Induces Plasma Membrane Depolarization and Calcium Signaling in Lima Bean (Phaseolus lunatus) and Maize (Zea mays)

    PubMed Central

    Barbero, Francesca; Guglielmotto, Michela; Capuzzo, Andrea; Maffei, Massimo E.

    2016-01-01

    Extracellular self-DNA (esDNA) is produced during cell and tissue damage or degradation and has been shown to induce significant responses in several organisms, including plants. While the inhibitory effects of esDNA have been shown in conspecific individuals, little is known on the early events involved upon plant esDNA perception. We used electrophysiology and confocal laser scanning microscopy calcium localization to evaluate the plasma membrane potential (Vm) variations and the intracellular calcium fluxes, respectively, in Lima bean (Phaseolus lunatus) and maize (Zea mays) plants exposed to esDNA and extracellular heterologous DNA (etDNA) and to etDNA from Spodoptera littoralis larvae and oral secretions. In both species, esDNA induced a significant Vm depolarization and an increased flux of calcium, whereas etDNA was unable to exert any of these early signaling events. These findings confirm the specificity of esDNA to induce plant cell responses and to trigger early signaling events that eventually lead to plant response to damage. PMID:27690017

  14. Profiling DNA damage-induced phosphorylation in budding yeast reveals diverse signaling networks

    PubMed Central

    Zhou, Chunshui; Elia, Andrew E. H.; Naylor, Maria L.; Ballif, Bryan A.; Goel, Gautam; Xu, Qikai; Ng, Aylwin; Chou, Danny M.; Xavier, Ramnik J.; Gygi, Steven P.; Elledge, Stephen J.

    2016-01-01

    The DNA damage response (DDR) is regulated by a protein kinase signaling cascade that orchestrates DNA repair and other processes. Identifying the substrate effectors of these kinases is critical for understanding the underlying physiology and mechanism of the response. We have used quantitative mass spectrometry to profile DDR-dependent phosphorylation in budding yeast and genetically explored the dependency of these phosphorylation events on the DDR kinases MEC1, RAD53, CHK1, and DUN1. Based on these screens, a database containing many novel DDR-regulated phosphorylation events has been established. Phosphorylation of many of these proteins has been validated by quantitative peptide phospho-immunoprecipitation and examined for functional relevance to the DDR through large-scale analysis of sensitivity to DNA damage in yeast deletion strains. We reveal a link between DDR signaling and the metabolic pathways of inositol phosphate and phosphatidyl inositol synthesis, which are required for resistance to DNA damage. We also uncover links between the DDR and TOR signaling as well as translation regulation. Taken together, these data shed new light on the organization of DDR signaling in budding yeast. PMID:27298372

  15. Conservation of DNA curvature signals in regulatory regions of prokaryotic genes

    PubMed Central

    Jáuregui, Ruy; Abreu-Goodger, Cei; Moreno-Hagelsieb, Gabriel; Collado-Vides, Julio; Merino, Enrique

    2003-01-01

    DNA curvature plays a well-characterized role in many transcriptional regulation mechanisms. We present evidence for the conservation of curvature signals in putative regulatory regions of several archaeal and eubacterial genomes. Genes with highly curved upstream regions were identified in orthologous groups, based on the annotations of the Cluster of Orthologous Groups of proteins (COG) database. COGs possessing a significant number of genes with curvature signals were analyzed, and conserved properties were found in several cases. Curvature signals related to regulatory sites, previously described in single organisms, were located in a broad spectrum of bacterial genomes. Global regulatory proteins, such as HU, IHF and FIS, known to bind to curved DNA and to be autoregulated, were found to present conserved DNA curvature signals in their regulatory regions, emphasizing the fact that structural parameters of the DNA molecule are conserved elements in the process of transcriptional regulation of some systems. It is currently an open question whether these diverse systems are part of an integrated global regulatory response in different microorganisms. PMID:14627810

  16. Profiling DNA damage-induced phosphorylation in budding yeast reveals diverse signaling networks.

    PubMed

    Zhou, Chunshui; Elia, Andrew E H; Naylor, Maria L; Dephoure, Noah; Ballif, Bryan A; Goel, Gautam; Xu, Qikai; Ng, Aylwin; Chou, Danny M; Xavier, Ramnik J; Gygi, Steven P; Elledge, Stephen J

    2016-06-28

    The DNA damage response (DDR) is regulated by a protein kinase signaling cascade that orchestrates DNA repair and other processes. Identifying the substrate effectors of these kinases is critical for understanding the underlying physiology and mechanism of the response. We have used quantitative mass spectrometry to profile DDR-dependent phosphorylation in budding yeast and genetically explored the dependency of these phosphorylation events on the DDR kinases MEC1, RAD53, CHK1, and DUN1. Based on these screens, a database containing many novel DDR-regulated phosphorylation events has been established. Phosphorylation of many of these proteins has been validated by quantitative peptide phospho-immunoprecipitation and examined for functional relevance to the DDR through large-scale analysis of sensitivity to DNA damage in yeast deletion strains. We reveal a link between DDR signaling and the metabolic pathways of inositol phosphate and phosphatidyl inositol synthesis, which are required for resistance to DNA damage. We also uncover links between the DDR and TOR signaling as well as translation regulation. Taken together, these data shed new light on the organization of DDR signaling in budding yeast.

  17. The Impact of Hedgehog Signaling Pathway on DNA Repair Mechanisms in Human Cancer.

    PubMed

    Meng, Erhong; Hanna, Ann; Samant, Rajeev S; Shevde, Lalita A

    2015-07-21

    Defined cellular mechanisms have evolved that recognize and repair DNA to protect the integrity of its structure and sequence when encountering assaults from endogenous and exogenous sources. There are five major DNA repair pathways: mismatch repair, nucleotide excision repair, direct repair, base excision repair and DNA double strand break repair (including non-homologous end joining and homologous recombination repair). Aberrant activation of the Hedgehog (Hh) signaling pathway is a feature of many cancer types. The Hh pathway has been documented to be indispensable for epithelial-mesenchymal transition, invasion and metastasis, cancer stemness, and chemoresistance. The functional transcription activators of the Hh pathway include the GLI proteins. Inhibition of the activity of GLI can interfere with almost all DNA repair types in human cancer, indicating that Hh/GLI functions may play an important role in enabling tumor cells to survive lethal types of DNA damage induced by chemotherapy and radiotherapy. Thus, Hh signaling presents an important therapeutic target to overcome DNA repair-enabled multi-drug resistance and consequently increase chemotherapeutic response in the treatment of cancer.

  18. Regulation of the Mdm2-p53 signaling axis in the DNA damage response and tumorigenesis.

    PubMed

    Carr, Michael I; Jones, Stephen N

    2016-12-01

    The p53 tumor suppressor acts as a guardian of the genome in mammalian cells undergoing DNA double strand breaks induced by a various forms of cell stress, including inappropriate growth signals or ionizing radiation. Following damage, p53 protein levels become greatly elevated in cells and p53 functions primarily as a transcription factor to regulate the expression a wide variety of genes that coordinate this DNA damage response. In cells undergoing high amounts of DNA damage, p53 can promote apoptosis, whereas in cells undergoing less damage, p53 promotes senescence or transient cell growth arrest and the expression of genes involved in DNA repair, depending upon the cell type and level of damage. Failure of the damaged cell to undergo growth arrest or apoptosis, or to respond to the DNA damage by other p53-coordinated mechanisms, can lead to inappropriate cell growth and tumorigenesis. In cells that have successfully responded to genetic damage, the amount of p53 present in the cell must return to basal levels in order for the cell to resume normal growth and function. Although regulation of p53 levels and function is coordinated by many proteins, it is now widely accepted that the master regulator of p53 is Mdm2. In this review, we discuss the role(s) of p53 in the DNA damage response and in tumor suppression, and how post-translational modification of Mdm2 regulates the Mdm2-p53 signaling axis to govern p53 activities in the cell.

  19. Signal amplification for DNA detection based on the HRP-functionalized Fe3O4 nanoparticles.

    PubMed

    Dong, Xiao-Ya; Mi, Xiao-Na; Wang, Bo; Xu, Jing-Juan; Chen, Hong-Yuan

    2011-04-15

    An electrochemical approach for the sensitive detection of sequence-specific DNA has been developed. Horseradish peroxidase (HRP) assembled on the Fe(3)O(4) nanoparticles (NPs) were utilized as signal amplification sources. High-content HRP was adsorbed on the Fe(3)O(4) NPs via layer-by-layer (LbL) technique to prepare HRP-functionalized Fe(3)O(4) NPs. Signal probe and diluting probe were then immobilized on the HRP-functionalized Fe(3)O(4) NPs through the bridge of Au NPs. Thereafter, the resulting DNA-Au-HRP-Fe(3)O(4) (DAHF) bioconjugates were successfully anchored to the gold nanofilm (GNF) modified electrode surface for the construction of sandwich-type electrochemical DNA biosensor. The electrochemical behaviors of the prepared biosensor had been investigated by the cyclic voltammetry (CV), chronoamperometry (i-t), and electrochemical impedance spectroscopy (EIS). Under optimal conditions, the proposed strategy could detect the target DNA down to the level of 0.7 fmol with a dynamic range spanning 4 orders of magnitude and exhibited excellent discrimination to two-base mismatched DNA and non-complementary DNA sequences.

  20. The Impact of Hedgehog Signaling Pathway on DNA Repair Mechanisms in Human Cancer

    PubMed Central

    Meng, Erhong; Hanna, Ann; Samant, Rajeev S.; Shevde, Lalita A.

    2015-01-01

    Defined cellular mechanisms have evolved that recognize and repair DNA to protect the integrity of its structure and sequence when encountering assaults from endogenous and exogenous sources. There are five major DNA repair pathways: mismatch repair, nucleotide excision repair, direct repair, base excision repair and DNA double strand break repair (including non-homologous end joining and homologous recombination repair). Aberrant activation of the Hedgehog (Hh) signaling pathway is a feature of many cancer types. The Hh pathway has been documented to be indispensable for epithelial-mesenchymal transition, invasion and metastasis, cancer stemness, and chemoresistance. The functional transcription activators of the Hh pathway include the GLI proteins. Inhibition of the activity of GLI can interfere with almost all DNA repair types in human cancer, indicating that Hh/GLI functions may play an important role in enabling tumor cells to survive lethal types of DNA damage induced by chemotherapy and radiotherapy. Thus, Hh signaling presents an important therapeutic target to overcome DNA repair-enabled multi-drug resistance and consequently increase chemotherapeutic response in the treatment of cancer. PMID:26197339

  1. Signal search analysis: a new method to localize and characterize functionally important DNA sequences.

    PubMed Central

    Bucher, P; Bryan, B

    1984-01-01

    The generation of "signal search data" represents a general method of describing the common properties of a set of DNA sequences presumed to be functionally analogous. Besides the detailed description of this method we present two computer programs which use signal search data as input data: One that processes them to a "constraint profile" and another one which lists over-represented "signals" of potential functional relevance. To illustrate the possibilities of our method we have analysed a set of transcription initiation sites of sea urchin histone genes. PMID:6546421

  2. Opposing roles of RNF8/RNF168 and deubiquitinating enzymes in ubiquitination-dependent DNA double-strand break response signaling and DNA-repair pathway choice

    PubMed Central

    Nakada, Shinichiro

    2016-01-01

    The E3 ubiquitin ligases ring finger protein (RNF) 8 and RNF168 transduce the DNA double-strand break (DSB) response (DDR) signal by ubiquitinating DSB sites. The depletion of RNF8 or RNF168 suppresses the accumulation of DNA-repair regulating factors such as 53BP1 and RAP80 at DSB sites, suggesting roles for RNF8- and RNF168-mediated ubiquitination in DSB repair. This mini-review provides a brief overview of the RNF8- and RNF168-dependent DDR-signaling and DNA-repair pathways. The choice of DNA-repair pathway when RNF8- and RNF168-mediated ubiquitination-dependent DDR signaling is negatively regulated by deubiquitinating enzymes (DUBs) is reviewed to clarify how the opposing roles of RNF8/RNF168 and DUBs regulate ubiquitination-dependent DDR signaling and the choice of DNA-repair pathway. PMID:26983989

  3. Effects of DNA probe and target flexibility on the performance of a "signal-on" electrochemical DNA sensor.

    PubMed

    Wu, Yao; Lai, Rebecca Y

    2014-09-02

    We report the effect of the length and identity of a nontarget binding spacer in both the probe and target sequences on the overall performance of a folding-based electrochemical DNA sensor. Six near-identical DNA probes were used in this study; the main differences between these probes are the length (6, 10, or 14 bases) and identity (thymine (T) or adenine (A)) of the spacer connecting the two target binding domains. Despite the differences, the signaling mechanism of these sensors remains essentially the same. The methylene blue (MB)-modified probe assumes a linear unstructured conformation in the absence of the target; upon hybridization to the target, the probe adopts a "close" conformation, resulting in an increase in the MB current. Among the six sensors, the T14 and A14 sensors showed the largest signal increase upon target hybridization, highlighting the significance of probe flexibility on sensor performance. In addition to the target without a midsequence spacer, 12 other targets, each with a different oligo-T or oligo-A spacer, were used to elucidate the effect of target flexibility on the sensors' signaling capacity. For all six sensors, hybridization to targets with a 2- or 3-base spacer resulted in the largest signal increase. Higher signal enhancement was also observed with targets with an oligo-A spacer. For this sensor design, addition of a long nontarget binding spacer to the probe sequence is advantageous, as it provides flexibility for optimal target capture. The length of the spacer in the target sequence, however, should be adequately long to enable efficient hybridization yet does not introduce undesirable electrostatic and crowding effects.

  4. Hybridization chain reaction-based fluorescence immunoassay using DNA intercalating dye for signal readout.

    PubMed

    Deng, Yan; Nie, Ji; Zhang, Xiao-hui; Zhao, Ming-Zhe; Zhou, Ying-Lin; Zhang, Xin-Xiang

    2014-07-07

    A novel format of fluorescence immunosorbent assay based on the hybridization chain reaction (HCR) using a DNA intercalating dye for signal readout was constructed for the sensitive detection of targets, both in competitive and sandwich modes. In this platform, the capture and recognition processes are based on immunoreactions and the signal amplification depends on the enzyme-free, isothermal HCR-induced labelling event. After a competitive or a sandwich immunoreaction, a biotinylated capture DNA was bound to a biotinylated signal antibody through avidin, and triggered the HCR by two specific hairpins into a nicked double helix. Gene Finder (GF), a fluorescent probe for double-strand DNA, was intercalated in situ into the amplified chain to produce the fluorescence signal. The limit of detection (LOD) for rabbit IgG in competitive mode by HCR/GF immunoassay was improved at least 100-fold compared with the traditional fluorescence immunoassay using the fluorescein isothiocyanate-labelled-streptavidin or fluorescein isothiocyanate-labelled second antibody as the signal readout. The proposed fluorescence immunoassay was also demonstrated by using α-fetoprotein as the model target in sandwich mode, and showed a wide linear range from 28 ng mL(-1) to 20 μg mL(-1) with a LOD of 6.0 ng mL(-1). This method also showed satisfactory analysis in spiked human serum, which suggested that it might have great potential for versatile applications in life science and point-of-care diagnostics.

  5. Signalling of DNA damage and cytokines across cell barriers exposed to nanoparticles depends on barrier thickness

    NASA Astrophysics Data System (ADS)

    Sood, A.; Salih, S.; Roh, D.; Lacharme-Lora, L.; Parry, M.; Hardiman, B.; Keehan, R.; Grummer, R.; Winterhager, E.; Gokhale, P. J.; Andrews, P. W.; Abbott, C.; Forbes, K.; Westwood, M.; Aplin, J. D.; Ingham, E.; Papageorgiou, I.; Berry, M.; Liu, J.; Dick, A. D.; Garland, R. J.; Williams, N.; Singh, R.; Simon, A. K.; Lewis, M.; Ham, J.; Roger, L.; Baird, D. M.; Crompton, L. A.; Caldwell, M. A.; Swalwell, H.; Birch-Machin, M.; Lopez-Castejon, G.; Randall, A.; Lin, H.; Suleiman, M.-S.; Evans, W. H.; Newson, R.; Case, C. P.

    2011-12-01

    The use of nanoparticles in medicine is ever increasing, and it is important to understand their targeted and non-targeted effects. We have previously shown that nanoparticles can cause DNA damage to cells cultured below a cellular barrier without crossing this barrier. Here, we show that this indirect DNA damage depends on the thickness of the cellular barrier, and it is mediated by signalling through gap junction proteins following the generation of mitochondrial free radicals. Indirect damage was seen across both trophoblast and corneal barriers. Signalling, including cytokine release, occurred only across bilayer and multilayer barriers, but not across monolayer barriers. Indirect toxicity was also observed in mice and using ex vivo explants of the human placenta. If the importance of barrier thickness in signalling is a general feature for all types of barriers, our results may offer a principle with which to limit the adverse effects of nanoparticle exposure and offer new therapeutic approaches.

  6. Fibroblast Growth Factor Type 2 Signaling Is Critical for DNA Repair in Human Keratinocyte Stem Cells

    PubMed Central

    Harfouche, Ghida; Vaigot, Pierre; Rachidi, Walid; Rigaud, Odile; Moratille, Sandra; Marie, Mélanie; Lemaitre, Gilles; Fortunel, Nicolas O; Martin, Michèle T

    2010-01-01

    Tissue stem cells must be endowed with superior maintenance and repair systems to ensure genomic stability over multiple generations, which would be less necessary in more differentiated cells. We previously reported that human keratinocyte stem cells were more resistant to ionizing radiation toxicity than their direct progeny, the keratinocyte progenitor cells. In the present study we addressed the mechanisms underlying this difference. Investigations of DNA repair showed that both single and double DNA strand breaks were repaired more rapidly and more efficiently in stem cells than in progenitors. As cell signaling is a key regulatory step in the management of DNA damage, a gene profiling study was performed. Data revealed that several genes of the fibroblast growth factor type 2 (FGF2) signaling pathway were induced by DNA damage in stem cells and not in progenitors. Furthermore, an increased content of the FGF2 protein was found in irradiated stem cells, both for the secreted and the cellular forms of the protein. To examine the role of endogenous FGF2 in DNA repair, stem cells were exposed to FGF2 pathway inhibitors. Blocking the FGF2 receptor (FGF receptor 1) or the kinase (Ras-mitogen-activated protein kinase 1) resulted in a inhibition of single and double DNA strand-break repair in the keratinocyte stem cells. Moreover, supplementing the progenitor cells with exogenous FGF2 activated their DNA repair. We propose that, apart from its well-known role as a strong mitogen and prosurvival factor, FGF2 helps to maintain genomic integrity in stem cells by activating stress-induced DNA repair. Stem Cells 2010; 28:1639–1648. PMID:20681019

  7. Fibroblast growth factor type 2 signaling is critical for DNA repair in human keratinocyte stem cells.

    PubMed

    Harfouche, Ghida; Vaigot, Pierre; Rachidi, Walid; Rigaud, Odile; Moratille, Sandra; Marie, Mélanie; Lemaitre, Gilles; Fortunel, Nicolas O; Martin, Michèle T

    2010-09-01

    Tissue stem cells must be endowed with superior maintenance and repair systems to ensure genomic stability over multiple generations, which would be less necessary in more differentiated cells. We previously reported that human keratinocyte stem cells were more resistant to ionizing radiation toxicity than their direct progeny, the keratinocyte progenitor cells. In the present study we addressed the mechanisms underlying this difference. Investigations of DNA repair showed that both single and double DNA strand breaks were repaired more rapidly and more efficiently in stem cells than in progenitors. As cell signaling is a key regulatory step in the management of DNA damage, a gene profiling study was performed. Data revealed that several genes of the fibroblast growth factor type 2 (FGF2) signaling pathway were induced by DNA damage in stem cells and not in progenitors. Furthermore, an increased content of the FGF2 protein was found in irradiated stem cells, both for the secreted and the cellular forms of the protein. To examine the role of endogenous FGF2 in DNA repair, stem cells were exposed to FGF2 pathway inhibitors. Blocking the FGF2 receptor (FGF receptor 1) or the kinase (Ras-mitogen-activated protein kinase 1) resulted in a inhibition of single and double DNA strand-break repair in the keratinocyte stem cells. Moreover, supplementing the progenitor cells with exogenous FGF2 activated their DNA repair. We propose that, apart from its well-known role as a strong mitogen and prosurvival factor, FGF2 helps to maintain genomic integrity in stem cells by activating stress-induced DNA repair.

  8. Lyn tyrosine kinase promotes silencing of ATM-dependent checkpoint signaling during recovery from DNA double-strand breaks

    SciTech Connect

    Fukumoto, Yasunori Kuki, Kazumasa; Morii, Mariko; Miura, Takahito; Honda, Takuya; Ishibashi, Kenichi; Hasegawa, Hitomi; Kubota, Sho; Ide, Yudai; Yamaguchi, Noritaka; Nakayama, Yuji; Yamaguchi, Naoto

    2014-09-26

    Highlights: • Inhibition of Src family kinases decreased γ-H2AX signal. • Inhibition of Src family increased ATM-dependent phosphorylation of Chk2 and Kap1. • shRNA-mediated knockdown of Lyn increased phosphorylation of Kap1 by ATM. • Ectopic expression of Src family kinase suppressed ATM-mediated Kap1 phosphorylation. • Src is involved in upstream signaling for inactivation of ATM signaling. - Abstract: DNA damage activates the DNA damage checkpoint and the DNA repair machinery. After initial activation of DNA damage responses, cells recover to their original states through completion of DNA repair and termination of checkpoint signaling. Currently, little is known about the process by which cells recover from the DNA damage checkpoint, a process called checkpoint recovery. Here, we show that Src family kinases promote inactivation of ataxia telangiectasia mutated (ATM)-dependent checkpoint signaling during recovery from DNA double-strand breaks. Inhibition of Src activity increased ATM-dependent phosphorylation of Chk2 and Kap1. Src inhibition increased ATM signaling both in G2 phase and during asynchronous growth. shRNA knockdown of Lyn increased ATM signaling. Src-dependent nuclear tyrosine phosphorylation suppressed ATM-mediated Kap1 phosphorylation. These results suggest that Src family kinases are involved in upstream signaling that leads to inactivation of the ATM-dependent DNA damage checkpoint.

  9. DNA damage signaling, impairment of cell cycle progression, and apoptosis triggered by 5-ethynyl-2'-deoxyuridine incorporated into DNA.

    PubMed

    Zhao, Hong; Halicka, H Dorota; Li, Jiangwei; Biela, Ewa; Berniak, Krzysztof; Dobrucki, Jurek; Darzynkiewicz, Zbigniew

    2013-11-01

    The "click chemistry" approach utilizing 5-ethynyl-2'-deoxyuridine (EdU) as a DNA precursor was recently introduced to assess DNA replication and adapted to flow- and imaging-cytometry. In the present study, we observed that EdU, once incorporated into DNA, induces DNA damage signaling (DDS) such as phosphorylation of ATM on Ser1981, of histone H2AX on Ser139, of p53 on Ser15, and of Chk2 on Thr68. It also perturbs progression of cells through the cell cycle and subsequently induces apoptosis. These effects were observed in non-small cell lung adenocarcinoma A549 as well as in B-cell human lymphoblastoid TK6 and WTK1 cells, differing in the status of p53 (wt versus mutated). After 1 h EdU pulse-labeling, the most affected was cells progression through the S phase subsequent to that at which they had incorporated EdU. This indicates that DNA replication using the template containing incorporated EdU is protracted and triggers DDS. Furthermore, progression of cells having DNA pulse-labeled with EdU led to accumulation of cells in G2 , likely by activating G2 checkpoint. Consistent with the latter was activation of p53 and Chk2. Although a correlation was observed in A549 cells between the degree of EdU incorporation and the extent of γH2AX induction, such correlation was weak in TK6 and WTK1 cells. The degree of perturbation of the cell cycle kinetics by the incorporated EdU was different in the wt p53 TK6 cells as compared to their sister WTK1 cell line having mutated p53. The data are thus consistent with the role of p53 in modulating activation of cell cycle checkpoints in response to impaired DNA replication. The confocal microscopy analysis of the 3D images of cells exposed to EdU for 1 h pulse and then grown for 24 or 48 h revealed an increased number of colocalized γH2AX and p53BP1 foci considered to be markers of DNA double-strand breaks and enlarged nuclei.

  10. Chicken DNA virus sensor DDX41 activates IFN-β signaling pathway dependent on STING.

    PubMed

    Cheng, Yuqiang; Liu, Yunxia; Wang, Yingying; Niu, Qiaona; Gao, Quanxin; Fu, Qiang; Ma, Jingjiao; Wang, Hengan; Yan, Yaxian; Ding, Chan; Sun, Jianhe

    2017-11-01

    The recognition of pathogenic DNA is important to the initiation of antiviral responses. Here, we report the identification of the first avian DEAD (Asp-Glu-Ala-Asp) box polypeptide 41 (DDX41), an important DNA sensor, in chicken cells. In our study, we confirmed that chDDX41 is not an interferon-inducible gene. Knockdown of chDDX41 expression by shRNA blocked the ability of DF-1 cells to mount an IFN-β response to DNA and associated viruses. ChDDX41 mRNAs could be upregulated by double-stranded DNA (dsDNA) analogue poly(dA:dT), but not by double-stranded RNA (dsRNA) analogue poly(I:C). In poly(dA:dT) stimulation assays, the immune molecules involved in the DDX41-mediated IFN-β pathway in human cells were universally upregulated in chicken cells. Via coimmunoprecipitation (Co-IP) experiments, we found that chDDX41 could strongly interact with chicken stimulator of IFN genes (chSTING). Therefore, our results suggest that chDDX41 is involved in the dsDNA- and dsDNA virus-mediated chDDX41-chSTING-IFN-β signaling pathway in chicken cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. THE PROTEASOME REGULATES BACTERIAL CpG DNA-INDUCED SIGNALING PATHWAYS IN MURINE MACROPHAGES

    PubMed Central

    Gao, Jian Jun; Shen, Jing; Kolbert, Christopher; Raghavakaimal, Sreekumar; Papasian, Christopher J.; Qureshi, Asaf A.; Vogel, Stefanie N.; Morrison, David C.; Qureshi, Nilofer

    2010-01-01

    Our previous work has provided strong evidence that the proteasome is central to the vast majority of genes induced in mouse macrophages in response to lipopolysaccharide (LPS) stimulation. In the studies presented here, we evaluated the role of the macrophage proteasome in response to a second microbial product CpG DNA (unmethylated bacterial DNA). For these studies, we applied Affymetrix microarray analysis of RNA derived from murine macrophages stimulated with CpG DNA in the presence or absence of proteasome inhibitor, lactacystin. The results of these studies revealed that similar to LPS, a vast majority of those macrophage genes regulated by CpG DNA are also under the control of the proteasome at 4 h. In contrast to LPS stimulation, however, many of these genes were induced much later than 4 h, at 18 h, in response to CpG DNA. Lactacystin treatment of macrophages completely blocked the CpG DNA-induced gene expression of TNF-α and other genes involved in production of inflammatory mediators. These data strongly support the conclusion that, similar to LPS, the macrophage proteasome is a key regulator of CpG DNA-induced signaling pathways. PMID:20160661

  12. Visualization of mitochondrial DNA replication in individual cells by EdU signal amplification.

    PubMed

    Haines, Kristine M; Feldman, Eva L; Lentz, Stephen I

    2010-11-15

    Mitochondria are key regulators of cellular energy and mitochondrial biogenesis is an essential component of regulating mitochondria numbers in healthy cells. One approach for monitoring mitochondrial biogenesis is to measure the rate of mitochondrial DNA (mtDNA) replication. We developed a sensitive technique to label newly synthesized mtDNA in individual cells in order to study mtDNA biogenesis. The technique combines the incorporation of 5-ethynyl-2'-deoxyuridine (EdU) with a tyramide signal amplification (TSA) protocol to visualize mtDNA replication within subcellular compartments of neurons. EdU is superior to other thymidine analogs, such as 5-bromo-2-deoxyuridine (BrdU), because the initial click reaction to label EdU does not require the harsh acid treatments or enzyme digests that are required for exposing the BrdU epitope. The milder labeling of EdU allows for direct comparison of its incorporation with other cellular markers. The ability to visualize and quantify mtDNA biogenesis provides an essential tool for investigating the mechanisms used to regulate mitochondrial biogenesis and would provide insight into the pathogenesis associated with drug toxicity, aging, cancer and neurodegenerative diseases. Our technique is applicable to sensory neurons as well as other cell types. The use of this technique to measure mtDNA biogenesis has significant implications in furthering the understanding of both normal cellular physiology as well as impaired disease states.

  13. Herbivore-Induced DNA Demethylation Changes Floral Signalling and Attractiveness to Pollinators in Brassica rapa

    PubMed Central

    Schlüter, Philipp M.; Schiestl, Florian P.

    2016-01-01

    Plants have to fine-tune their signals to optimise the trade-off between herbivore deterrence and pollinator attraction. An important mechanism in mediating plant-insect interactions is the regulation of gene expression via DNA methylation. However, the effect of herbivore-induced DNA methylation changes on pollinator-relevant plant signalling has not been systematically investigated. Here, we assessed the impact of foliar herbivory on DNA methylation and floral traits in the model crop plant Brassica rapa. Methylation-sensitive amplified fragment length polymorphism (MSAP) analysis showed that leaf damage by the caterpillar Pieris brassicae was associated with genome-wide methylation changes in both leaves and flowers of B. rapa as well as a downturn in flower number, morphology and scent. A comparison to plants with jasmonic acid-induced defence showed similar demethylation patterns in leaves, but both the floral methylome and phenotype differed significantly from P. brassicae infested plants. Standardised genome-wide demethylation with 5-azacytidine in five different B. rapa full-sib groups further resulted in a genotype-specific downturn of floral morphology and scent, which significantly reduced the attractiveness of the plants to the pollinator bee Bombus terrestris. These results suggest that DNA methylation plays an important role in adjusting plant signalling in response to changing insect communities. PMID:27870873

  14. Herbivore-Induced DNA Demethylation Changes Floral Signalling and Attractiveness to Pollinators in Brassica rapa.

    PubMed

    Kellenberger, Roman T; Schlüter, Philipp M; Schiestl, Florian P

    2016-01-01

    Plants have to fine-tune their signals to optimise the trade-off between herbivore deterrence and pollinator attraction. An important mechanism in mediating plant-insect interactions is the regulation of gene expression via DNA methylation. However, the effect of herbivore-induced DNA methylation changes on pollinator-relevant plant signalling has not been systematically investigated. Here, we assessed the impact of foliar herbivory on DNA methylation and floral traits in the model crop plant Brassica rapa. Methylation-sensitive amplified fragment length polymorphism (MSAP) analysis showed that leaf damage by the caterpillar Pieris brassicae was associated with genome-wide methylation changes in both leaves and flowers of B. rapa as well as a downturn in flower number, morphology and scent. A comparison to plants with jasmonic acid-induced defence showed similar demethylation patterns in leaves, but both the floral methylome and phenotype differed significantly from P. brassicae infested plants. Standardised genome-wide demethylation with 5-azacytidine in five different B. rapa full-sib groups further resulted in a genotype-specific downturn of floral morphology and scent, which significantly reduced the attractiveness of the plants to the pollinator bee Bombus terrestris. These results suggest that DNA methylation plays an important role in adjusting plant signalling in response to changing insect communities.

  15. Src Family Kinases Promote Silencing of ATR-Chk1 Signaling in Termination of DNA Damage Checkpoint*

    PubMed Central

    Fukumoto, Yasunori; Morii, Mariko; Miura, Takahito; Kubota, Sho; Ishibashi, Kenichi; Honda, Takuya; Okamoto, Aya; Yamaguchi, Noritaka; Iwama, Atsushi; Nakayama, Yuji; Yamaguchi, Naoto

    2014-01-01

    The DNA damage checkpoint arrests cell cycle progression to allow time for repair. Once DNA repair is completed, checkpoint signaling is terminated. Currently little is known about the mechanism by which checkpoint signaling is terminated, and the disappearance of DNA lesions is considered to induce the end of checkpoint signaling; however, here we show that the termination of checkpoint signaling is an active process promoted by Src family tyrosine kinases. Inhibition of Src activity delays recovery from the G2 phase DNA damage checkpoint following DNA repair. Src activity is required for the termination of checkpoint signaling, and inhibition of Src activity induces persistent activation of ataxia telangiectasia mutated (ATM)- and Rad3-related (ATR) and Chk1 kinases. Src-dependent nuclear protein tyrosine phosphorylation and v-Src expression suppress the ATR-mediated Chk1 and Rad17 phosphorylation induced by DNA double strand breaks or DNA replication stress. Thus, Src family kinases promote checkpoint recovery through termination of ATR- and Chk1-dependent G2 DNA damage checkpoint. These results suggest a model according to which Src family kinases send a termination signal between the completion of DNA repair and the initiation of checkpoint termination. PMID:24634213

  16. DNA stabilization by the upregulation of estrogen signaling in BRCA gene mutation carriers.

    PubMed

    Suba, Zsuzsanna

    2015-01-01

    Currently available scientific evidence erroneously suggests that mutagenic weakness or loss of the BRCA1/2 genes may liberate the proliferative effects of estrogen signaling, which provokes DNA damage and genomic instability. Conversely, BRCA mutation seems to be an imbalanced defect, crudely inhibiting the upregulation of estrogen receptor expression and liganded transcriptional activity, whereas estrogen receptor-repressor functions become predominant. In BRCA-proficient cases, estrogen signaling orchestrates the activity of cell proliferation and differentiation with high safety, while upregulating the expression and DNA-stabilizing impact of BRCA genes. In turn, BRCA proteins promote estrogen signaling by proper estrogen synthesis via CYP19 gene regulation and by induction of the appropriate expression and transcriptional activity of estrogen receptors. In this exquisitely organized regulatory system, the dysfunction of each player may jeopardize genome stability and lead to severe chronic diseases, such as cancer development. Female organs, such as breast, endometrium, and ovary, exhibiting regular cyclic proliferative activity are particularly vulnerable in case of disturbances in either estrogen signaling or BRCA-mediated DNA repair. BRCA mutation carrier women may apparently be healthy or exhibit clinical signs of deficient estrogen signaling in spite of hyperestrogenism. Even women who enjoy sufficient compensatory DNA-defending activities are at risk of tumor development because many endogenous and environmental factors may jeopardize the mechanisms of extreme compensatory processes. Natural estrogens have numerous benefits in tumor prevention and therapy even in BRCA mutation carriers. There are no toxic effects even in sky-high doses and all physiologic cellular functions are strongly upregulated, while malignant tumor cells are recognized and killed in a Janus-faced manner.

  17. In pursuit of the first recognized epigenetic signal--DNA methylation: a 1976 to 2008 synopsis.

    PubMed

    Doerfler, Walter

    2008-01-01

    A synopsis will be presented of work on DNA methylation, the first epigenetic signal to be recognized. In the author's laboratory, the following problems dealing with DNA methylation have been addressed over the past 32 years: (1) The de novo methylation of foreign DNA integrated into mammalian genomes. (2) Inverse correlations between promoter methylation and activity. (3) The long-term inactivating effect of site-specific promoter methylation. (4) Adenovirus E1 functions in trans and a strong enhancer in cis cancel the silencing effect of promoter methylation. (5) Frog virus 3, an iridovirus with a completely CpG-methylated genome. (6) Mechanisms of de novo methylation. (7) Different segments of the genome possess topical methylation memories. (8) Consequences of foreign DNA insertion into mammalian genomes: alterations of DNA methylation in cis and trans. (9) The epigenetic status of an adenovirus transgenome in Ad12-transformed hamster cells. (10) Cell type-specific patterns of DNA methylation: interindividual concordance in the human genome.

  18. Entrapment of fluorescence signaling DNA enzymes in sol-gel-derived materials for metal ion sensing.

    PubMed

    Shen, Yutu; Mackey, Gillian; Rupcich, Nicholas; Gloster, Darin; Chiuman, William; Li, Yingfu; Brennan, John D

    2007-05-01

    Three fluorescence signaling DNA enzymes (deoxyribozymes or DNAzymes) were successfully immobilized within a series of sol-gel-derived matrixes and used for sensing of various metal ions. The DNAzymes are designed such that binding of appropriate metal ions induces the formation of a catalytic site that cleaves a ribonucleotide linkage within a DNA substrate. A fluorophore (fluorescein) and a quencher (DABCYL, [4-(4-dimethylaminophenylazo)benzoic acid]) were placed on the two deoxythymidines flanking the ribonucleotide to allow the generation of fluorescence upon the catalytic cleavage at the RNA linkage. In general, all DNAzymes retained at least partial catalytic function when entrapped in either hydrophilic or hydrophobic silica-based materials, but displayed slower response times and lower overall signal changes relative to solution. Interestingly, it was determined that maximum sensitivity toward metal ions was obtained when DNAzymes were entrapped into composite materials containing approximately 40% of methyltrimethoxysilane (MTMS) and approximately 60% tetramethoxysilane (TMOS). Highly polar materials derived from sodium silicate, diglycerylsilane, or TMOS had relatively low signal enhancements, while materials with very high levels of MTMS showed significant leaching and low signal enhancements. Entrapment into the hybrid silica material also reduced signal interferences that were related to metal-induced quenching; such interferences were a significant problem for solution-based assays and for polar materials. Extension of the solid-phase DNAzyme assay toward a multiplexed assay format for metal detection is demonstrated, and shows that sol-gel technology can provide new opportunities for the development of DNAzyme-based biosensors.

  19. ATR signaling can drive cells into senescence in the absence of DNA breaks

    PubMed Central

    Toledo, Luis I.; Murga, Matilde; Gutierrez-Martinez, Paula; Soria, Rebeca; Fernandez-Capetillo, Oscar

    2008-01-01

    The ATR kinase is a key transducer of “replicative stress,” the type of genomic damage that has been postulated to be induced by oncogenes. Here we describe a cellular system in which we can unleash ATR activity at will, in the absence of any actual damage or additional signaling pathways triggered by DNA breaks. We demonstrate that activating ATR is sufficient to promote cell cycle arrest and, if persistent, triggers p53-dependent but Ink4a/ARF-independent senescence. Moreover, we show that an ectopic activation of ATR leads to a G1/S arrest in ATM−/− cells, providing the first evidence of functional complementation of ATM deficiency by ATR. Our system provides a novel platform for the study of the specific functions of ATR signaling and adds evidence for the tumor-suppressive potential of the DNA damage response. PMID:18245444

  20. Expression of tak1 and tram induces synergistic pro-inflammatory signalling and adjuvants DNA vaccines.

    PubMed

    Larsen, Karen Colbjørn; Spencer, Alexandra J; Goodman, Anna L; Gilchrist, Ashley; Furze, Julie; Rollier, Christine S; Kiss-Toth, Endre; Gilbert, Sarah C; Bregu, Migena; Soilleux, Elizabeth J; Hill, Adrian V S; Wyllie, David H

    2009-09-18

    Improving vaccine immunogenicity remains a major challenge in the fight against developing country diseases like malaria and AIDS. We describe a novel strategy to identify new DNA vaccine adjuvants. We have screened components of the Toll-like receptor signalling pathways for their ability to activate pro-inflammatory target genes in transient transfection assays and assessed in vivo adjuvant activity by expressing the activators from the DNA backbone of vaccines. We find that a robust increase in the immune response necessitates co-expression of two activators. Accordingly, the combination of tak1 and tram elicits synergistic reporter activation in transient transfection assays. In a mouse model this combination, but not the individual molecules, induced approximately twofold increases in CD8+ T-cell immune responses. These results indicate that optimal immunogenicity may require activation of distinct innate immune signalling pathways. Thus this strategy offers a novel route to the discovery of a new generation of adjuvants.

  1. The Caenorhabditis elegans Homolog of Gen1/Yen1 Resolvases Links DNA Damage Signaling to DNA Double-Strand Break Repair

    PubMed Central

    Bailly, Aymeric P.; Alpi, Arno; Lilley, David M. J.; Ahmed, Shawn; Gartner, Anton

    2010-01-01

    DNA double-strand breaks (DSBs) can be repaired by homologous recombination (HR), which can involve Holliday junction (HJ) intermediates that are ultimately resolved by nucleolytic enzymes. An N-terminal fragment of human GEN1 has recently been shown to act as a Holliday junction resolvase, but little is known about the role of GEN-1 in vivo. Holliday junction resolution signifies the completion of DNA repair, a step that may be coupled to signaling proteins that regulate cell cycle progression in response to DNA damage. Using forward genetic approaches, we identified a Caenorhabditis elegans dual function DNA double-strand break repair and DNA damage signaling protein orthologous to the human GEN1 Holliday junction resolving enzyme. GEN-1 has biochemical activities related to the human enzyme and facilitates repair of DNA double-strand breaks, but is not essential for DNA double-strand break repair during meiotic recombination. Mutational analysis reveals that the DNA damage-signaling function of GEN-1 is separable from its role in DNA repair. GEN-1 promotes germ cell cycle arrest and apoptosis via a pathway that acts in parallel to the canonical DNA damage response pathway mediated by RPA loading, CHK1 activation, and CEP-1/p53–mediated apoptosis induction. Furthermore, GEN-1 acts redundantly with the 9-1-1 complex to ensure genome stability. Our study suggests that GEN-1 might act as a dual function Holliday junction resolvase that may coordinate DNA damage signaling with a late step in DNA double-strand break repair. PMID:20661466

  2. Spatial Representativeness of Environmental DNA Metabarcoding Signal for Fish Biodiversity Assessment in a Natural Freshwater System

    PubMed Central

    Civade, Raphaël; Dejean, Tony; Valentini, Alice; Roset, Nicolas; Raymond, Jean-Claude; Bonin, Aurélie; Taberlet, Pierre; Pont, Didier

    2016-01-01

    In the last few years, the study of environmental DNA (eDNA) has drawn attention for many reasons, including its advantages for monitoring and conservation purposes. So far, in aquatic environments, most of eDNA research has focused on the detection of single species using species-specific markers. Recently, species inventories based on the analysis of a single generalist marker targeting a larger taxonomic group (eDNA metabarcoding) have proven useful for bony fish and amphibian biodiversity surveys. This approach involves in situ filtering of large volumes of water followed by amplification and sequencing of a short discriminative fragment from the 12S rDNA mitochondrial gene. In this study, we went one step further by investigating the spatial representativeness (i.e. ecological reliability and signal variability in space) of eDNA metabarcoding for large-scale fish biodiversity assessment in a freshwater system including lentic and lotic environments. We tested the ability of this approach to characterize large-scale organization of fish communities along a longitudinal gradient, from a lake to the outflowing river. First, our results confirm that eDNA metabarcoding is more efficient than a single traditional sampling campaign to detect species presence, especially in rivers. Second, the species list obtained using this approach is comparable to the one obtained when cumulating all traditional sampling sessions since 1995 and 1988 for the lake and the river, respectively. In conclusion, eDNA metabarcoding gives a faithful description of local fish biodiversity in the study system, more specifically within a range of a few kilometers along the river in our study conditions, i.e. longer than a traditional fish sampling site. PMID:27359116

  3. Spatial Representativeness of Environmental DNA Metabarcoding Signal for Fish Biodiversity Assessment in a Natural Freshwater System.

    PubMed

    Civade, Raphaël; Dejean, Tony; Valentini, Alice; Roset, Nicolas; Raymond, Jean-Claude; Bonin, Aurélie; Taberlet, Pierre; Pont, Didier

    2016-01-01

    In the last few years, the study of environmental DNA (eDNA) has drawn attention for many reasons, including its advantages for monitoring and conservation purposes. So far, in aquatic environments, most of eDNA research has focused on the detection of single species using species-specific markers. Recently, species inventories based on the analysis of a single generalist marker targeting a larger taxonomic group (eDNA metabarcoding) have proven useful for bony fish and amphibian biodiversity surveys. This approach involves in situ filtering of large volumes of water followed by amplification and sequencing of a short discriminative fragment from the 12S rDNA mitochondrial gene. In this study, we went one step further by investigating the spatial representativeness (i.e. ecological reliability and signal variability in space) of eDNA metabarcoding for large-scale fish biodiversity assessment in a freshwater system including lentic and lotic environments. We tested the ability of this approach to characterize large-scale organization of fish communities along a longitudinal gradient, from a lake to the outflowing river. First, our results confirm that eDNA metabarcoding is more efficient than a single traditional sampling campaign to detect species presence, especially in rivers. Second, the species list obtained using this approach is comparable to the one obtained when cumulating all traditional sampling sessions since 1995 and 1988 for the lake and the river, respectively. In conclusion, eDNA metabarcoding gives a faithful description of local fish biodiversity in the study system, more specifically within a range of a few kilometers along the river in our study conditions, i.e. longer than a traditional fish sampling site.

  4. On nanopore DNA sequencing by signal and noise analysis of ionic current.

    PubMed

    Wen, Chenyu; Zeng, Shuangshuang; Zhang, Zhen; Hjort, Klas; Scheicher, Ralph; Zhang, Shi-Li

    2016-05-27

    DNA sequencing, i.e., the process of determining the succession of nucleotides on a DNA strand, has become a standard aid in biomedical research and is expected to revolutionize medicine. With the capability of handling single DNA molecules, nanopore technology holds high promises to become speedier in sequencing at lower cost than what are achievable with the commercially available optics- or semiconductor-based massively parallelized technologies. Despite tremendous progress made with biological and solid-state nanopores, high error rates and large uncertainties persist with the sequencing results. Here, we employ a nano-disk model to quantitatively analyze the sequencing process by examining the variations of ionic current when a DNA strand translocates a nanopore. Our focus is placed on signal-boosting and noise-suppressing strategies in order to attain the single-nucleotide resolution. Apart from decreasing pore diameter and thickness, it is crucial to also reduce the translocation speed and facilitate a stepwise translocation. Our best-case scenario analysis points to severe challenges with employing plain nanopore technology, i.e., without recourse to any signal amplification strategy, in achieving sequencing with the desired single-nucleotide resolution. A conceptual approach based on strand synthesis in the nanopore of the translocating DNA from single-stranded to double-stranded is shown to yield a 10-fold signal amplification. Although it involves no advanced physics and is very simple in mathematics, this simple model captures the essence of nanopore sequencing and is useful in guiding the design and operation of nanopore sequencing.

  5. On nanopore DNA sequencing by signal and noise analysis of ionic current

    NASA Astrophysics Data System (ADS)

    Wen, Chenyu; Zeng, Shuangshuang; Zhang, Zhen; Hjort, Klas; Scheicher, Ralph; Zhang, Shi-Li

    2016-05-01

    DNA sequencing, i.e., the process of determining the succession of nucleotides on a DNA strand, has become a standard aid in biomedical research and is expected to revolutionize medicine. With the capability of handling single DNA molecules, nanopore technology holds high promises to become speedier in sequencing at lower cost than what are achievable with the commercially available optics- or semiconductor-based massively parallelized technologies. Despite tremendous progress made with biological and solid-state nanopores, high error rates and large uncertainties persist with the sequencing results. Here, we employ a nano-disk model to quantitatively analyze the sequencing process by examining the variations of ionic current when a DNA strand translocates a nanopore. Our focus is placed on signal-boosting and noise-suppressing strategies in order to attain the single-nucleotide resolution. Apart from decreasing pore diameter and thickness, it is crucial to also reduce the translocation speed and facilitate a stepwise translocation. Our best-case scenario analysis points to severe challenges with employing plain nanopore technology, i.e., without recourse to any signal amplification strategy, in achieving sequencing with the desired single-nucleotide resolution. A conceptual approach based on strand synthesis in the nanopore of the translocating DNA from single-stranded to double-stranded is shown to yield a 10-fold signal amplification. Although it involves no advanced physics and is very simple in mathematics, this simple model captures the essence of nanopore sequencing and is useful in guiding the design and operation of nanopore sequencing.

  6. Whole transcriptome analysis reveals a role for OGG1-initiated DNA repair signaling in airway remodeling

    PubMed Central

    Aguilera-Aguirre, Leopoldo; Hosoki, Koa; Bacsi, Attila; Radák, Zsolt; Sur, Sanjiv; Hegde, Muralidhar L.; Tian, Bing; Saavedra-Molina, Alfredo; Brasier, Allan R.; Ba, Xueqing; Boldogh, Istvan

    2016-01-01

    Reactive oxygen species (ROS) generated by environmental exposures, and endogenously as by-products of respiration, oxidatively modify biomolecules including DNA. Accumulation of ROS-induced DNA damage has been implicated in various diseases that involve inflammatory processes, and efficient DNA repair is considered critical in preventing such diseases. One of the most abundant DNA base lesions is 7,8-dihydro-8-oxoguanine (8-oxoG), which is repaired by the 8-oxoguanine DNA glycosylase 1 (OGG1)-initiated base-excision repair (OGG1-BER) pathway. Recent studies have shown that the OGG1-BER byproduct 8-oxoG base forms a complex with cytosolic OGG1, activating small GTPases and downstream cell signaling in cultured cells and lungs. This implies that persistent OGG1-BER could result in signaling leading to histological changes in airways. To test this, we mimicked OGG1-BER by repeatedly challenging airways with its repair product 8-oxoG base. Gene expression was analyzed by RNA sequencing (RNA-Seq) and qRT-PCR, and datasets were evaluated by gene ontology and statistical tools. RNA-Seq analysis identified 3252 differentially expressed transcripts (2435 up- and 817 downregulated, Z3-fold change). Among the upregulated transcripts, 2080 mRNAs were identified whose encoded protein products were involved in modulation of the actin family cytoskeleton, extracellular matrix, cell adhesion, cadherin, and cell junctions, affecting biological processes such as tissue development, cell-to-cell adhesion, cell communication, and the immune system. These data are supported by histological observations showing epithelial alterations, subepithelial fibrosis, and collagen deposits in the lungs. These data imply that continuous challenge by the environment and consequent OGG1-BER-driven signaling trigger gene expression consistent with airway remodeling. PMID:26187872

  7. The STING pathway and regulation of innate immune signaling in response to DNA pathogens.

    PubMed

    Ishikawa, Hiroki; Barber, Glen N

    2011-04-01

    The innate immune system has evolved a variety of sensing mechanisms to detect and counter microbial invasion. These include the Toll-like receptor (TLR), cytoplasmic, nucleotide binding oligomerization domain (NOD)-like receptor and RIG-I-like helicase (RLH) pathways. However, how the cell detects pathogen-associated DNA to trigger host defense, including the production of interferon, remains to be fully clarified. Understanding these processes could have profound implications into how we understand and treat a variety of microbial-related disease, including viral-associated cancers, as well as autoimmune disorders. Recently, an endoplasmic reticulum-associated molecule referred to as STING (for stimulator of interferon genes) was isolated and shown to be critical for regulating the production of IFN in response to cytoplasmic DNA. Here, we review recent discoveries relating to the detection of foreign DNA, including the importance of the STING and inflammasome pathways and the triggering of innate signaling processes.

  8. Latent ClpX-recognition signals ensure LexA destruction after DNA damage

    PubMed Central

    Neher, Saskia B.; Flynn, Julia M.; Sauer, Robert T.; Baker, Tania A.

    2003-01-01

    The DNA-damage response genes in bacteria are up-regulated when LexA repressor undergoes autocatalytic cleavage stimulated by activated RecA protein. Intact LexA is stable to intracellular degradation but its auto-cleavage fragments are degraded rapidly. Here, both fragments of LexA are shown to be substrates for the ClpXP protease. ClpXP recognizes these fragments using sequence motifs that flank the auto-cleavage site but are dormant in intact LexA. Furthermore, ClpXP degradation of the LexA-DNA-binding fragment is important to cell survival after DNA damage. These results demonstrate how one protein-processing event can activate latent protease recognition signals, triggering a cascade of protein turnover in response to environmental stress. PMID:12730132

  9. Nonhomologous end-joining promotes resistance to DNA damage in the absence of an ADP-ribosyltransferase that signals DNA single strand breaks.

    PubMed

    Couto, C Anne-Marie; Hsu, Duen-Wei; Teo, Regina; Rakhimova, Alina; Lempidaki, Styliana; Pears, Catherine J; Lakin, Nicholas D

    2013-08-01

    ADP-ribosylation of proteins at DNA lesions by ADP-ribosyltransferases (ARTs) is an early response to DNA damage. The best defined role of ADP-ribosylation in the DNA damage response is in repair of single strand breaks (SSBs). Recently, we initiated a study of how ADP-ribosylation regulates DNA repair in Dictyostelium and found that two ARTs (Adprt1b and Adprt2) are required for tolerance of cells to SSBs, and a third ART (Adprt1a) promotes nonhomologous end-joining (NHEJ). Here we report that disruption of adprt2 results in accumulation of DNA damage throughout the cell cycle following exposure to agents that induce base damage and DNA SSBs. Although ADP-ribosylation is evident in adprt2(-) cells exposed to methylmethanesulfonate (MMS), disruption of adprt1a and adprt2 in combination abolishes this response and further sensitises cells to this agent, indicating that in the absence of Adprt2, Adprt1a signals MMS-induced DNA lesions to promote resistance of cells to DNA damage. As a consequence of defective signalling of SSBs by Adprt2, Adprt1a is required to assemble NHEJ factors in chromatin, and disruption of the NHEJ pathway in combination with adprt2 increases sensitivity of cells to MMS. Taken together, these data indicate overlapping functions of different ARTs in signalling DNA damage, and illustrate a critical requirement for NHEJ in maintaining cell viability in the absence of an effective SSB response.

  10. Preanalytic removal of human DNA eliminates false signals in general 16S rDNA PCR monitoring of bacterial pathogens in blood.

    PubMed

    Handschur, Michael; Karlic, Heidrun; Hertel, Christian; Pfeilstöcker, Michael; Haslberger, Alexander G

    2009-05-01

    PCR detection of microbial pathogens in blood from patients is a promising issue for rapid diagnosis of sepsis and early targeted therapy. However, for PCR assays detecting all bacterial groups, broad range primers, in particular the 16S rDNA targeting primers have to be used. Upcoming false signals and reduced sensitivity are a common problem as a consequence of unspecific amplification reactions with the human DNA background. Here we show that, using total DNA extracts from blood, unspecific signals occurred in general 16S rDNA PCRs as a result of the amplification of human sequences. To address this problem, we developed a protocol by which the human background DNA is removed and bacterial DNA is enriched during sample preparation, a method we termed background-free enrichment method (BFEM). In general, we aimed to exclude false signals due to the human background DNA yielded from 16S rDNA PCR, Real-Time-PCR and IGS-PCR analyses. We applied the BFEM to the analysis of blood samples from 22 patients and obtained results similar to standard blood culture methods. The BFEM allows specific and sensitive detection of pathogens in downstream PCR assays and is easy to handle due to the quick sample preparation procedure. Thus, the BFEM contributes to the generation of replicable and more reliable data in general 16S rDNA PCR assays.

  11. TGF-β1 accelerates the DNA damage response in epithelial cells via Smad signaling

    SciTech Connect

    Lee, Jeeyong; Kim, Mi-Ra; Kim, Hyun-Ji; An, You Sun; Yi, Jae Youn

    2016-08-05

    The evidence suggests that transforming growth factor-beta (TGF-β) regulates the DNA-damage response (DDR) upon irradiation, and we previously reported that TGF-β1 induced DNA ligase IV (Lig4) expression and enhanced the nonhomologous end-joining repair pathway in irradiated cells. In the present study, we investigated the effects of TGF-β1 on the irradiation-induced DDRs of A431 and HaCaT cells. Cells were pretreated with or without TGF-β1 and irradiated. At 30 min post-irradiation, DDRs were detected by immunoblotting of phospho-ATM, phospho-Chk2, and the presence of histone foci (γH2AX). The levels of all three factors were similar right after irradiation regardless of TGF-β1 pretreatment. However, they soon thereafter exhibited downregulation in TGF-β1-pretreated cells, indicating the acceleration of the DDR. Treatment with a TGF-β type I receptor inhibitor (SB431542) or transfections with siRNAs against Smad2/3 or DNA ligase IV (Lig4) reversed this acceleration of the DDR. Furthermore, the frequency of irradiation-induced apoptosis was decreased by TGF-β1 pretreatment in vivo, but this effect was abrogated by SB431542. These results collectively suggest that TGF-β1 could enhance cell survival by accelerating the DDR via Smad signaling and Lig4 expression. -- Highlights: •TGF-β1 pretreatment accelerates γ-radiation-induced DNA damage response. •TGF-β1-accelerated DNA damage response is dependent on Smad signaling and DNA Ligase IV. •TGF-β1 pretreatment protects epithelial cells from γ-radiation in vivo.

  12. Distinct Roles of FANCO/RAD51C Protein in DNA Damage Signaling and Repair

    PubMed Central

    Somyajit, Kumar; Subramanya, Shreelakshmi; Nagaraju, Ganesh

    2012-01-01

    RAD51C, a RAD51 paralog, has been implicated in homologous recombination (HR), and germ line mutations in RAD51C are known to cause Fanconi anemia (FA)-like disorder and breast and ovarian cancers. The role of RAD51C in the FA pathway of DNA interstrand cross-link (ICL) repair and as a tumor suppressor is obscure. Here, we report that RAD51C deficiency leads to ICL sensitivity, chromatid-type errors, and G2/M accumulation, which are hallmarks of the FA phenotype. We find that RAD51C is dispensable for ICL unhooking and FANCD2 monoubiquitination but is essential for HR, confirming the downstream role of RAD51C in ICL repair. Furthermore, we demonstrate that RAD51C plays a vital role in the HR-mediated repair of DNA lesions associated with replication. Finally, we show that RAD51C participates in ICL and double strand break-induced DNA damage signaling and controls intra-S-phase checkpoint through CHK2 activation. Our analyses with pathological mutants of RAD51C that were identified in FA and breast and ovarian cancers reveal that RAD51C regulates HR and DNA damage signaling distinctly. Together, these results unravel the critical role of RAD51C in the FA pathway of ICL repair and as a tumor suppressor. PMID:22167183

  13. DNA barcodes reveal microevolutionary signals in fire response trait in two legume genera

    PubMed Central

    Bello, Abubakar; Daru, Barnabas H.; Stirton, Charles H.; Chimphango, Samson B. M.; van der Bank, Michelle; Maurin, Olivier; Muasya, A. Muthama

    2015-01-01

    Large-scale DNA barcoding provides a new technique for species identification and evaluation of relationships across various levels (populations and species) and may reveal fundamental processes in recently diverged species. Here, we analysed DNA sequence variation in the recently diverged legumes from the Psoraleeae (Fabaceae) occurring in the Cape Floristic Region (CFR) of southern Africa to test the utility of DNA barcodes in species identification and discrimination. We further explored the phylogenetic signal on fire response trait (reseeding and resprouting) at species and generic levels. We showed that Psoraleoid legumes of the CFR exhibit a barcoding gap yielding the combination of matK and rbcLa (matK + rbcLa) data set as a better barcode than single regions. We found a high score (100 %) of correct identification of individuals to their respective genera but a very low score (<50 %) in identifying them to species. We found a considerable match (54 %) between genetic species and morphologically delimited species. We also found that different lineages showed a weak but significant phylogenetic conservatism in their response to fire as reseeders or resprouters, with more clustering of resprouters than would be expected by chance. These novel microevolutionary patterns might be acting continuously over time to produce multi-scale regularities of biodiversity. This study provides the first insight into the DNA barcoding campaign of land plants in species identification and detection of the phylogenetic signal in recently diverged lineages of the CFR. PMID:26507570

  14. RNF8 Transduces the DNA-Damage Signal Via Histone Ubiquitylation And Checkpoint Protein Assembly

    SciTech Connect

    Huen, M.S.Y.; Grant, R.; Manke, I.; Minn, K.; Yu, X.; Yaffe, M.B.; Chen, J.

    2009-06-01

    DNA-damage signaling utilizes a multitude of posttranslational modifiers as molecular switches to regulate cell-cycle checkpoints, DNA repair, cellular senescence, and apoptosis. Here we show that RNF8, a FHA/RING domain-containing protein, plays a critical role in the early DNA-damage response. We have solved the X-ray crystal structure of the FHA domain structure at 1.35 {angstrom}. We have shown that RNF8 facilitates the accumulation of checkpoint mediator proteins BRCA1 and 53BP1 to the damaged chromatin, on one hand through the phospho-dependent FHA domain-mediated binding of RNF8 to MDC1, on the other hand via its role in ubiquitylating H2AX and possibly other substrates at damage sites. Moreover, RNF8-depleted cells displayed a defective G2/M checkpoint and increased IR sensitivity. Together, our study implicates RNF8 as a novel DNA-damage-responsive protein that integrates protein phosphorylation and ubiquitylation signaling and plays a critical role in the cellular response to genotoxic stress.

  15. The Caenorhabditis elegans gene unc-89, required fpr muscle M-line assembly, encodes a giant modular protein composed of Ig and signal transduction domains

    PubMed Central

    1996-01-01

    Mutations in the Caenorhabditis elegans gene unc-89 result in nematodes having disorganized muscle structure in which thick filaments are not organized into A-bands, and there are no M-lines. Beginning with a partial cDNA from the C. elegans sequencing project, we have cloned and sequenced the unc-89 gene. An unc-89 allele, st515, was found to contain an 84-bp deletion and a 10-bp duplication, resulting in an in- frame stop codon within predicted unc-89 coding sequence. Analysis of the complete coding sequence for unc-89 predicts a novel 6,632 amino acid polypeptide consisting of sequence motifs which have been implicated in protein-protein interactions. UNC-89 begins with 67 residues of unique sequences, SH3, dbl/CDC24, and PH domains, 7 immunoglobulins (Ig) domains, a putative KSP-containing multiphosphorylation domain, and ends with 46 Ig domains. A polyclonal antiserum raised to a portion of unc-89 encoded sequence reacts to a twitchin-sized polypeptide from wild type, but truncated polypeptides from st515 and from the amber allele e2338. By immunofluorescent microscopy, this antiserum localizes to the middle of A-bands, consistent with UNC-89 being a structural component of the M-line. Previous studies indicate that myofilament lattice assembly begins with positional cues laid down in the basement membrane and muscle cell membrane. We propose that the intracellular protein UNC-89 responds to these signals, localizes, and then participates in assembling an M-line. PMID:8603916

  16. Correlation dynamics and enhanced signals for the identification of serial biomolecules and DNA bases

    NASA Astrophysics Data System (ADS)

    Ahmed, Towfiq; Haraldsen, Jason T.; Rehr, John J.; Di Ventra, Massimiliano; Schuller, Ivan; Balatsky, Alexander V.

    2014-03-01

    Nanopore-based sequencing has demonstrated a significant potential for the development of fast, accurate, and cost-efficient fingerprinting techniques for next generation molecular detection and sequencing. We propose a specific multilayered graphene-based nanopore device architecture for the recognition of single biomolecules. Molecular detection and analysis can be accomplished through the detection of transverse currents as the molecule or DNA base translocates through the nanopore. To increase the overall signal-to-noise ratio and the accuracy, we implement a new ‘multi-point cross-correlation’ technique for identification of DNA bases or other molecules on the single molecular level. We demonstrate that the cross-correlations between each nanopore will greatly enhance the transverse current signal for each molecule. We implement first-principles transport calculations for DNA bases surveyed across a multilayered graphene nanopore system to illustrate the advantages of the proposed geometry. A time-series analysis of the cross-correlation functions illustrates the potential of this method for enhancing the signal-to-noise ratio. This work constitutes a significant step forward in facilitating fingerprinting of single biomolecules using solid state technology.

  17. Manufacturing DNA microarrays of high spot homogeneity and reduced background signal

    PubMed Central

    Diehl, Frank; Grahlmann, Susanne; Beier, Markus; Hoheisel, Jörg D.

    2001-01-01

    Analyses on DNA microarrays depend considerably on spot quality and a low background signal of the glass support. By using betaine as an additive to a spotting solution made of saline sodium citrate, both the binding efficiency of spotted PCR products and the homogeneity of the DNA spots is improved significantly on aminated surfaces such as glass slides coated with the widely used poly-l-lysine or aminosilane. In addition, non-specific background signal is markedly diminished. Concomitantly, during the arraying procedure, the betaine reduces evaporation from the microtitre dish wells, which hold the PCR products. Subsequent blocking of the chip surface with succinic anhydride was improved considerably in the presence of the non-polar, non-aqueous solvent 1,2-dichloroethane and the acylating catalyst N-methylimidazole. This procedure prevents the overall background signal that occurs with the frequently applied aqueous solvent 1-methyl-2-pyrrolidone in borate buffer because of DNA that re-dissolves from spots during the blocking process, only to bind again across the entire glass surface. PMID:11266573

  18. Implementing Modular A Levels.

    ERIC Educational Resources Information Center

    Holding, Gordon

    This document, which is designed for curriculum managers at British further education (FE) colleges, presents basic information on the implementation and perceived benefits of the General Certificate of Education (GCE) modular A (Advanced) levels. The information was synthesized from a survey of 12 FE colleges that introduced the modular A levels…

  19. Modular tokamak configuration

    SciTech Connect

    Thomson, S.L.

    1985-01-01

    This report is concerned with the modular tokamak configuration, and presents information on the following topics: modularity; external vacuum boundary; vertical maintenance; combined reactor building/biological shield with totally remote maintenance; independent TF coils; minimum TF coil bore; saddle PF coils; and heat transport system in bore.

  20. Modular Buildings Buying Guide.

    ERIC Educational Resources Information Center

    Morris, Susan

    1991-01-01

    Suggests that child care program directors who are expanding their programs or opening new child care centers investigate the possibility of renting, leasing, or purchasing a modular building. Discusses the advantages of modular buildings over conventional building construction or rented space in an occupied building. Provides information about…

  1. Plasmonic Enhancement of Raman Signal using Complex Metallic Nanostructures based on DNA Origami

    NASA Astrophysics Data System (ADS)

    Finkelstein, Gleb

    2015-03-01

    DNA-based nanostructures, such as ``DNA origami,'' have recently emerged as one of the leading techniques for precise positioning of nanoscale materials in fields ranging from computer science to biomedical engineering. The origami is composed of a single scaffold DNA strand to which smaller ``staple`` strands are attached through DNA complementarity. The staples help to fold the scaffold strand into the designed structure of a predetermined shape. The resulting templates are highly addressable and have proven to be versatile tools for site-specific placement of various nanocomponents, such as metallic nanoparticles, quantum dots, fluorophores, etc. Building upon massively paralleled assembly mechanism of the origami and its ability to position nanocomponents, one may hope to utilize it for biosensing purposes. One attractive goal is the Raman spectroscopy, which provides a highly specific chemical fingerprint. Unfortunately, the Raman scattering cross section is small; Surface Enhanced Raman Spectroscopy (SERS) enhances the otherwise weak Raman signal by trapping the analyte molecules in the regions of intense electric field produced near rough metallic surfaces. These ``hot spots`` can be understood as resulting from localized surface plasmon modes resonantly exited by the incident laser excitation. We have earlier shown that metallic nanoparticles controllably attached to DNA origami can be further enlarged via an in-solution metallization; this technique allowed us to build metallic structures of complex topology. Recently, we have performed Raman spectroscopy of molecules attached to these metallic assemblies. Specifically, DNA origami is first used to organize the metallic structures, followed by a covalent attachment of Raman-active molecules to the metal. We found that the substrates with four nanoparticles per origami produce a strongly enhanced Raman signal compared to the control samples with only one nanoparticle per origami for the same particle

  2. Ultrasensitive Multiplexed Immunoassay for Tumor Biomarkers Based on DNA Hybridization Chain Reaction Amplifying Signal.

    PubMed

    Guo, Jinjin; Wang, Junchun; Zhao, Junqing; Guo, Zilin; Zhang, Yuzhong

    2016-03-23

    In this work, a novel electrochemical immunoassay protocol has been reported for simultaneous determination of multiple tumor biomarkers based on DNA hybridization chain reaction (HCR) for signal amplification. Alpha-fetoprotein (AFP) and prostate specific antigen (PSA) were selected as model biomarkers. The immunoassay protocol contained primary antibodies immobilized on gold nanoparticles (Au NPs), secondary antibodies conjugated with DNA concatemer from HCR of primer, auxiliary probe, and signal probe labeled with signal molecules (methyleneblue (MB) and ferrocene (Fc)). In the presence of target biomarkers, the sandwich immunocomplex was formed between the primary antibodies and secondary antibodies bioconjugates carrying numerous signal molecules. As a result, two well-resolved reduction peaks, one was at -0.35 V (corresponding to MB) and other was at 0.33 V (corresponding to Fc; both vs SCE), were obtained in differential pulse voltammetry, and peak currents changed were related to the level of biomarkers. Under optimal conditions, the electrochemical immunoassay exhibited a wide linear response range (0.5 pg mL(-1) to 50 ng mL(-1)) and low detection limits (PSA, 0.17 pg mL(-1); AFP, 0.25 pg mL(-1)) (at S/N = 3). In addition, the immunoassay was evaluated by analyzing simulate human serum sample, and the recoveries obtained were within 99.4-107.6% for PSA and 97.9-108.2% for AFP, indicating the immnuoassay could be applied to the simultaneous detection of AFP and PSA in human serum samples.

  3. Rac1 protein signaling is required for DNA damage response stimulated by topoisomerase II poisons.

    PubMed

    Huelsenbeck, Stefanie C; Schorr, Anne; Roos, Wynand P; Huelsenbeck, Johannes; Henninger, Christian; Kaina, Bernd; Fritz, Gerhard

    2012-11-09

    To investigate the potency of the topoisomerase II (topo II) poisons doxorubicin and etoposide to stimulate the DNA damage response (DDR), S139 phosphorylation of histone H2AX (γH2AX) was analyzed using rat cardiomyoblast cells (H9c2). Etoposide caused a dose-dependent increase in the γH2AX level as shown by Western blotting. By contrast, the doxorubicin response was bell-shaped with high doses failing to increase H2AX phosphorylation. Identical results were obtained by immunohistochemical analysis of γH2AX focus formation, comet assay-based DNA strand break analysis, and measuring the formation of the topo II-DNA cleavable complex. At low dose, doxorubicin activated ataxia telangiectasia mutated (ATM) but not ATM and Rad3-related (ATR). Both the lipid-lowering drug lovastatin and the Rac1-specific inhibitor NSC23766 attenuated doxorubicin- and etoposide-stimulated H2AX phosphorylation, induction of DNA strand breaks, and topo II-DNA complex formation. Lovastatin and NSC23766 acted in an additive manner. They did not attenuate doxorubicin-induced increase in p-ATM and p-Chk2 levels. DDR stimulated by topo II poisons was partially blocked by inhibition of type I p21-associated kinases. DDR evoked by the topoisomerase I poison topotecan remained unaffected by lovastatin. The data show that the mechanisms involved in DDR stimulated by topo II poisons are agent-specific with anthracyclines lacking DDR-stimulating activity at high doses. Pharmacological inhibition of Rac1 signaling counteracts doxorubicin- and etoposide-stimulated DDR by disabling the formation of the topo II-DNA cleavable complex. Based on the data we suggest that Rac1-regulated mechanisms are required for DNA damage induction and subsequent activation of the DDR following treatment with topo II but not topo I poisons.

  4. Rac1 Protein Signaling Is Required for DNA Damage Response Stimulated by Topoisomerase II Poisons*

    PubMed Central

    Huelsenbeck, Stefanie C.; Schorr, Anne; Roos, Wynand P.; Huelsenbeck, Johannes; Henninger, Christian; Kaina, Bernd; Fritz, Gerhard

    2012-01-01

    To investigate the potency of the topoisomerase II (topo II) poisons doxorubicin and etoposide to stimulate the DNA damage response (DDR), S139 phosphorylation of histone H2AX (γH2AX) was analyzed using rat cardiomyoblast cells (H9c2). Etoposide caused a dose-dependent increase in the γH2AX level as shown by Western blotting. By contrast, the doxorubicin response was bell-shaped with high doses failing to increase H2AX phosphorylation. Identical results were obtained by immunohistochemical analysis of γH2AX focus formation, comet assay-based DNA strand break analysis, and measuring the formation of the topo II-DNA cleavable complex. At low dose, doxorubicin activated ataxia telangiectasia mutated (ATM) but not ATM and Rad3-related (ATR). Both the lipid-lowering drug lovastatin and the Rac1-specific inhibitor NSC23766 attenuated doxorubicin- and etoposide-stimulated H2AX phosphorylation, induction of DNA strand breaks, and topo II-DNA complex formation. Lovastatin and NSC23766 acted in an additive manner. They did not attenuate doxorubicin-induced increase in p-ATM and p-Chk2 levels. DDR stimulated by topo II poisons was partially blocked by inhibition of type I p21-associated kinases. DDR evoked by the topoisomerase I poison topotecan remained unaffected by lovastatin. The data show that the mechanisms involved in DDR stimulated by topo II poisons are agent-specific with anthracyclines lacking DDR-stimulating activity at high doses. Pharmacological inhibition of Rac1 signaling counteracts doxorubicin- and etoposide-stimulated DDR by disabling the formation of the topo II-DNA cleavable complex. Based on the data we suggest that Rac1-regulated mechanisms are required for DNA damage induction and subsequent activation of the DDR following treatment with topo II but not topo I poisons. PMID:23012366

  5. FXR silencing in human colon cancer by DNA methylation and KRAS signaling.

    PubMed

    Bailey, Ann M; Zhan, Le; Maru, Dipen; Shureiqi, Imad; Pickering, Curtis R; Kiriakova, Galina; Izzo, Julie; He, Nan; Wei, Caimiao; Baladandayuthapani, Veerabhadran; Liang, Han; Kopetz, Scott; Powis, Garth; Guo, Grace L

    2014-01-01

    Farnesoid X receptor (FXR) is a bile acid nuclear receptor described through mouse knockout studies as a tumor suppressor for the development of colon adenocarcinomas. This study investigates the regulation of FXR in the development of human colon cancer. We used immunohistochemistry of FXR in normal tissue (n = 238), polyps (n = 32), and adenocarcinomas, staged I-IV (n = 43, 39, 68, and 9), of the colon; RT-quantitative PCR, reverse-phase protein array, and Western blot analysis in 15 colon cancer cell lines; NR1H4 promoter methylation and mRNA expression in colon cancer samples from The Cancer Genome Atlas; DNA methyltransferase inhibition; methyl-DNA immunoprecipitation (MeDIP); bisulfite sequencing; and V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) knockdown assessment to investigate FXR regulation in colon cancer development. Immunohistochemistry and quantitative RT-PCR revealed that expression and function of FXR was reduced in precancerous lesions and silenced in a majority of stage I-IV tumors. FXR expression negatively correlated with phosphatidylinositol-4, 5-bisphosphate 3 kinase signaling and the epithelial-to-mesenchymal transition. The NR1H4 promoter is methylated in ~12% colon cancer The Cancer Genome Atlas samples, and methylation patterns segregate with tumor subtypes. Inhibition of DNA methylation and KRAS silencing both increased FXR expression. FXR expression is decreased early in human colon cancer progression, and both DNA methylation and KRAS signaling may be contributing factors to FXR silencing. FXR potentially suppresses epithelial-to-mesenchymal transition and other oncogenic signaling cascades, and restoration of FXR activity, by blocking silencing mechanisms or increasing residual FXR activity, represents promising therapeutic options for the treatment of colon cancer.

  6. CHK1 and RAD51 activation after DNA damage is regulated via urokinase receptor/TLR4 signaling

    PubMed Central

    Narayanaswamy, Pavan B; Tkachuk, Sergey; Haller, Hermann; Dumler, Inna; Kiyan, Yulia

    2016-01-01

    Mechanisms of DNA damage and repair signaling are not completely understood that hinder the efficiency of cancer therapy. Urokinase-type plasminogen activator receptor (PLAUR) is highly expressed in most solid cancers and serves as a marker of poor prognosis. We show that PLAUR actively promotes DNA repair in cancer cells. On the contrary, downregulation of PLAUR expression results in delayed DNA repair. We found PLAUR to be essential for activation of Checkpoint kinase 1 (CHK1); maintenance of cell cycle arrest after DNA damage in a TP53-dependent manner; expression, nuclear import and recruitment to DNA-damage foci of RAD51 recombinase, the principal protein involved in the homologous recombination repair pathway. Underlying mechanism implies auto-/paracrine signaling of PLAUR/TLR4 receptor complex leading to activation of CHK1 and DNA repair. The signaling is induced by a danger molecule released by DNA-damaged cells and mediates, at least partially, activation of DNA-damage response. This study describes a new mechanism of DNA repair activation initiated by auto-/paracrine signaling of membrane receptors PLAUR/TLR4. It adds to the understanding of role of PLAUR in cancer and provides a rationale for therapeutic targeting of PLAUR/TLR4 interaction in TP53-positive cancers. PMID:27685627

  7. Hh signaling inhibitors from Vitex negundo; naturally occurring inhibitors of the GLI1-DNA complex.

    PubMed

    Arai, Midori A; Fujimatsu, Teruhisa; Uchida, Kyoko; Sadhu, Samir K; Ahmed, Firoj; Ishibashi, Masami

    2013-05-01

    The hedgehog (Hh) signaling pathway has crucial roles in embryonic development, cell maintenance and proliferation, and is also known to contribute to cancer cell growth. New naturally occurring Hh inhibitors (1, 7 and 9) were isolated from Vitex negundo using our previously constructed cell-based assay. Bioactivity guided isolation provided 9 natural compounds including a new diterpene, nishindanol (9). Compounds 7 and 9 showed cytotoxicity against cancer cell lines in which Hh signaling was aberrantly activated. Vitetrifolin D (7; GLI1 transcriptional inhibition IC50 = 20.2 μM) showed inhibition of Hh related protein (PTCH and BCL2) production. Interestingly, the constructed electrophoresis mobility shift assay revealed that vitetrifolin D (7) disrupted GLI1 binding on its DNA binding domain. epi-Sclareol (8; inactive), possessing a similar structure to 7, did not show inhibition of GLI1–DNA complex formation. This is the first example of naturally occurring inhibitors of GLI1–DNA complex formation.

  8. SUMOylation of ATRIP potentiates DNA damage signaling by boosting multiple protein interactions in the ATR pathway.

    PubMed

    Wu, Ching-Shyi; Ouyang, Jian; Mori, Eiichiro; Nguyen, Hai Dang; Maréchal, Alexandre; Hallet, Alexander; Chen, David J; Zou, Lee

    2014-07-01

    The ATR (ATM [ataxia telangiectasia-mutated]- and Rad3-related) checkpoint is a crucial DNA damage signaling pathway. While the ATR pathway is known to transmit DNA damage signals through the ATR-Chk1 kinase cascade, whether post-translational modifications other than phosphorylation are important for this pathway remains largely unknown. Here, we show that protein SUMOylation plays a key role in the ATR pathway. ATRIP, the regulatory partner of ATR, is modified by SUMO2/3 at K234 and K289. An ATRIP mutant lacking the SUMOylation sites fails to localize to DNA damage and support ATR activation efficiently. Surprisingly, the ATRIP SUMOylation mutant is compromised in the interaction with a protein group, rather than a single protein, in the ATR pathway. Multiple ATRIP-interacting proteins, including ATR, RPA70, TopBP1, and the MRE11-RAD50-NBS1 complex, exhibit reduced binding to the ATRIP SUMOylation mutant in cells and display affinity for SUMO2 chains in vitro, suggesting that they bind not only ATRIP but also SUMO. Fusion of a SUMO2 chain to the ATRIP SUMOylation mutant enhances its interaction with the protein group and partially suppresses its localization and functional defects, revealing that ATRIP SUMOylation promotes ATR activation by providing a unique type of protein glue that boosts multiple protein interactions along the ATR pathway. © 2014 Wu et al.; Published by Cold Spring Harbor Laboratory Press.

  9. Manipulation of DNA damage checkpoint signaling in cancer cells by antioxidant biofactor (AOB).

    PubMed

    Tatewaki, Naoto; Bhilwade, Hari Narayan; Nishida, Hiroshi; Nakajima, Yuki; Konishi, Tetsuya

    2013-01-01

    Antioxidant biofactor (AOB) is one of the fermented grain food supplements commercially available in Japan and other countries. Herein, we investigated the effect of AOB on the UVC (254 nm) induced DNA damage in A549 cells. Both distilled water and MeOH extracts of AOB did not show any significant cell toxicity. However, the UV (25-75 J m(-2)) induced cell death was amplified in the presence of these extracts, especially the MeOH extract. When the DNA damage was evaluated by comet assay, the AOB water extract prevented the UV induced DNA damage at the initial stage but significantly inhibited the repair process, especially in the cells exposed to a high dose of UV. The retardation of DNA repair was significantly higher in the presence of the MeOH extract, concentrating such components as caffeine and polyphenols, and thus the damage was enhanced both in the cells irradiated by low and high doses of UV. The DNA damage profile was consistent with the inhibitory profile of ATR, a key kinase of DNA damage checkpoint signaling. The AOB MeOH extract markedly reduced the phosphorylation level of the checkpoint proteins activated by UV, such as p53, SMC1 and Chk1, together with ATR. The inhibitory effect of the AOB water extract was less effective as compared to the MeOH extract, but was dose-dependent both in the cells irradiated with high and low doses of UV. The dual role of AOB as an antioxidant and a checkpoint modulator suggests its beneficial use in complementary medicine as a potential sensitizer of anticancer treatment.

  10. Kynurenine signaling increases DNA polymerase kappa expression and promotes genomic instability in glioblastoma cells

    PubMed Central

    Bostian, April C.L.; Maddukuri, Leena; Reed, Megan R.; Savenka, Tatsiana; Hartman, Jessica H.; Davis, Lauren; Pouncey, Dakota L.; Miller, Grover P.; Eoff, Robert L.

    2015-01-01

    Over-expression of the translesion synthesis polymerase (TLS pol) hpol κ in glioblastomas has been linked to a poor patient prognosis; however, the mechanism promoting higher expression in these tumors remains unknown. We determined that activation of the aryl hydrocarbon receptor (AhR) pathway in glioblastoma cells leads to increased hpol κ mRNA and protein levels. We blocked nuclear translocation and DNA binding by the AhR in glioblastoma cells using a small-molecule and observed decreased hpol κ expression. Pharmacological inhibition of tryptophan-2,3-dioxygenase (TDO), the enzyme largely responsible for activating the AhR in glioblastomas, led to a decrease in the endogenous AhR agonist kynurenine (Kyn) and a corresponding decrease in hpol κ protein levels. Importantly, we discovered that inhibiting TDO activity, AhR signaling, or suppressing hpol κ expression with RNA interference led to decreased chromosomal damage in glioblastoma cells. Epistasis assays further supported the idea that TDO activity, activation of AhR signaling and the resulting over-expression of hpol κ function primarily in the same pathway to increase endogenous DNA damage. These findings indicate that up-regulation of hpol κ through glioblastoma-specific TDO activity and activation of AhR signaling likely contributes to the high levels of replication stress and genomic instability observed in these tumors. PMID:26651356

  11. Mitochondrial DNA variants can mediate methylation status of inflammation, angiogenesis and signaling genes

    PubMed Central

    Atilano, Shari R.; Malik, Deepika; Chwa, Marilyn; Cáceres-Del-Carpio, Javier; Nesburn, Anthony B.; Boyer, David S.; Kuppermann, Baruch D.; Jazwinski, S. Michal; Miceli, Michael V.; Wallace, Douglas C.; Udar, Nitin; Kenney, M. Cristina

    2015-01-01

    Mitochondrial (mt) DNA can be classified into haplogroups representing different geographic and/or racial origins of populations. The H haplogroup is protective against age-related macular degeneration (AMD), while the J haplogroup is high risk for AMD. In the present study, we performed comparison analyses of human retinal cell cybrids, which possess identical nuclei, but mtDNA from subjects with either the H or J haplogroups, and demonstrate differences in total global methylation, and expression patterns for two genes related to acetylation and five genes related to methylation. Analyses revealed that untreated-H and -J cybrids have different expression levels for nuclear genes (CFH, EFEMP1, VEGFA and NFkB2). However, expression levels for these genes become equivalent after treatment with a methylation inhibitor, 5-aza-2′-deoxycytidine. Moreover, sequencing of the entire mtDNA suggests that differences in epigenetic status found in cybrids are likely due to single nucleotide polymorphisms (SNPs) within the haplogroup profiles rather than rare variants or private SNPs. In conclusion, our findings indicate that mtDNA variants can mediate methylation profiles and transcription for inflammation, angiogenesis and various signaling pathways, which are important in several common diseases. PMID:25964427

  12. Persistent DNA damage signaling triggers senescence-associated inflammatory cytokine secretion

    PubMed Central

    Rodier, Francis; Coppé, Jean-Philippe; Patil, Christopher K.; Hoeijmakers, Wieteke A. M.; Muñoz, Denise P.; Raza, Saba R.; Freund, Adam; Campeau, Eric; Davalos, Albert R.; Campisi, Judith

    2009-01-01

    Cellular senescence suppresses cancer by stably arresting the proliferation of damaged cells1. Paradoxically, senescent cells also secrete factors that alter tissue microenvironments2. The pathways regulating this secretion are unknown. We show that damaged human cells develop persistent chromatin lesions bearing hallmarks of DNA double-strand breaks (DSBs), which initiate increased secretion of inflammatory cytokines such as interleukin-6 (IL-6). Cytokine secretion occurred only after establishment of persistent DNA damage signaling, usually associated with senescence, not after transient DNA damage responses (DDR). Initiation and maintenance of this cytokine response required the DDR proteins ATM, NBS1 and CHK2, but not the cell cycle arrest enforcers p53 and pRb. ATM was also essential for IL-6 secretion during oncogene-induced senescence and by damaged cells that bypass senescence. Further, DDR activity and IL-6 were elevated in human cancers, and ATM-depletion suppressed the ability of senescent cells to stimulate IL-6-dependent cancer cell invasiveness. Thus, in addition to orchestrating cell cycle checkpoints and DNA repair, a novel and important role of the DDR is to allow damaged cells to communicate their compromised state to the surrounding tissue. PMID:19597488

  13. Phosphoproteomics Reveals Distinct Modes of Mec1/ATR Signaling During DNA Replication

    PubMed Central

    de Oliveira, Francisco Meirelles Bastos; Kim, Dongsung; Cussiol, Jose Renato; Das, Jishnu; Jeong, Min Cheol; Doerfler, Lillian; Schmidt, Kristina Hildegard; Yu, Haiyuan; Smolka, Marcus Bustamante

    2015-01-01

    SUMMARY The Mec1/Tel1 kinases (human ATR/ATM) play numerous roles in the DNA replication stress response. Despite the multi-functionality of these kinases, studies of their in vivo action have mostly relied on a few well-established substrates. Here we employed a combined genetic-phosphoproteomic approach to monitor Mec1/Tel1 signaling in a systematic, unbiased and quantitative manner. Unexpectedly, we find that Mec1 is highly active during normal DNA replication, at levels comparable or higher than Mec1’s activation state induced by replication stress. This “replication-correlated” mode of Mec1 action requires the 9-1-1 clamp and the Dna2 lagging-strand factor, and is distinguishable from Mec1’s action in activating the downstream kinase Rad53. We propose that Mec1/ATR performs key functions during ongoing DNA synthesis that are distinct from their canonical checkpoint role during replication stress. PMID:25752575

  14. Using DNA mechanics to predict intrinsic and extrinsic nucleosome positioning signals

    NASA Astrophysics Data System (ADS)

    Morozov, Alexandre

    2008-03-01

    In eukaryotic genomes, nucleosomes function to compact DNA and to regulate access to it both by simple physical occlusion and by providing the substrate for numerous covalent epigenetic tags. While nucleosome positions in vitro are determined by sequence alone, in vivo competition with other DNA-binding factors and action of chromatin remodeling enzymes play a role that needs to be quantified. We developed a biophysical, DNA mechanics-based model for the sequence dependence of DNA bending energies, and validated it against a collection of in vitro free energies of nucleosome formation and a nucleosome crystal structure; we also successfully designed both strong and poor histone binding sequences ab initio. For in vivo data from S.cerevisiae, the strongest positioning signal came from the competition with other factors rather than intrinsic nucleosome sequence preferences. Based on sequence alone, our model predicts that functional transcription factor binding sites tend to be covered by nucleosomes, yet are uncovered in vivo because functional sites cluster within a single nucleosome footprint and thus make transcription factors bind cooperatively. Similarly a weak enhancement of nucleosome binding in the TATA region becomes a strong depletion when the TATA-binding protein is included, in quantitative agreement with experiment. Our model distinguishes multiple ways in which genomic sequence influences nucleosome positions, and thus provides alternative explanations for several genome-wide experimental findings. In the future our approach will be used to rationally alter gene expression levels in model systems through redesign of nucleosome occupancy profiles.

  15. A electrogenerated chemiluminescence biosensor for Ramos cancer cell using DNA encapsulated Ru(bpy)₃Cl₂ as signal probe.

    PubMed

    Hun, Xu; Chen, Huaicheng; Wang, Wei

    2011-05-15

    A label-free sensing technology for detection of Ramos cell was developed based on a signal probe Ru(bpy)3Cl2 (Ru) encapsulated by DNA. Gold electrode or magnetic bead as the sensing surface was firstly modified with long-strand DNA with five repeating units. Then two kinds of short-strand DNA are grafted onto the long-strand DNA to form DNA strands A and B (L-A and L-B) through the hybridization, respectively. The addition of aptamer initiates hybridization of L-A and L-B with the aptamer sequence. As the hybridization proceeds, the four kinds of DNA would finally transform into a three-dimensional network structure and the signal probe Ru was encapsulated by DNA simultaneously. When Ramos cells are introduced to interact with the aptamer, the signal probe is released. In order to confirm the generality of this method the ferrocenecarboxylic acid and luminol selected as a signal probe mode were also tested. The Ru used as a signal probe for electrogenerated chemiluminescence (ECL) detection was detailedly studied. With this ECL biosensor, detection limit as low as 58 cells/mL was achieved for Ramos cell. The biosensor also exhibited excellent sensitivity and selectivity.

  16. Modular kinetic analysis.

    PubMed

    Krab, Klaas

    2011-01-01

    Modularization is an important strategy to tackle the study of complex biological systems. Modular kinetic analysis (MKA) is a quantitative method to extract kinetic information from such a modularized system that can be used to determine the control and regulatory structure of the system, and to pinpoint and quantify the interaction of effectors with the system. The principles of the method are described, and the relation with metabolic control analysis is discussed. Examples of application of MKA are given. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Electrochemical DNA sensor for specific detection of picomolar Hg(II) based on exonuclease III-assisted recycling signal amplification.

    PubMed

    Gan, Xiaorong; Zhao, Huimin; Chen, Shuo; Quan, Xie

    2015-03-21

    An ultrasensitive methodology was successfully developed for the quantitative detection of picomolar Hg(2+) based on the combination of thymine-Hg(2+)-thymine (T-Hg(2+)-T) coordination chemistry and exonuclease III-aided recycling signal amplification. Single-strand probe DNA was immobilized on an Au electrode via an Au-S bond. In the presence of Hg(2+), the probe DNA hybridized with the target DNA containing four thymine-thymine (T-T) mismatches via the Hg(2+)-mediated coordination of T-Hg(2+)-T base pairs. Then the probe DNA in the DNA duplex was specifically recognized and selectively digested by exonuclease III; in contrast the target DNA was safely dissociated from the DNA duplexes to subsequently hybridize with a new signal probe, leading to target recycling and signal amplification. As a result, the peak current caused by the electrostatic interactions of [Ru(NH3)6](3+) cations with the backbone of the probe DNA decreased by different degrees, corresponding to the Hg(2+) concentrations. Under the optimum conditions, the proposed electrochemical DNA biosensor showed a robust detection limit as low as 1 pM (S/N = 3), with a wide linear range from 0.01 to 500 nM and good selectivity. In addition, the proposed method was successfully applied to assay Hg(2+) in real environmental samples.

  18. Written Reformulation in a Modular Approach.

    ERIC Educational Resources Information Center

    Flottum, Kjersti

    1996-01-01

    Examines the relationship between form and use of the reformulation sequence signalled by "c'est-a-dire" in written French and describes this sequence's various functions. The article attempts to show how a modular approach consisting of structural, semantic, pragmatic, and textual components contributes to a new and accurate description of…

  19. Unusual sequence length-dependent gold nanoparticles aggregation of the ssDNA sticky end and its application for enzyme-free and signal amplified colorimetric DNA detection

    NASA Astrophysics Data System (ADS)

    He, Hongfei; Dai, Jianyuan; Duan, Zhijuan; Zheng, Baozhan; Meng, Yan; Guo, Yong; Dan Xiao, A1"/>

    2016-08-01

    It is known that the adsorption of short single-stranded DNA (ssDNA) on unmodified gold nanoparticles (AuNPs) is much faster than that for long ssDNA, and thus leads to length-dependent AuNPs aggregation after addition of salt, the color of the solutions sequentially changed from red to blue in accordance with the increase of ssDNA length. However, we found herein that the ssDNA sticky end of hairpin DNA exhibited a completely different adsorption behavior compared to ssDNA, an inverse blue-to-red color variation was observed in the colloid solution with the increase of sticky end length when the length is within a certain range. This unusual sequence length-dependent AuNPs aggregation might be ascribed to the effect of the stem of hairpin DNA. On the basis of this unique phenomenon and catalytic hairpin assembly (CHA) based signal amplification, a novel AuNPs-based colorimetric DNA assay with picomolar sensitivity and specificity was developed. This unusual sequence length-dependent AuNPs aggregation of the ssDNA sticky end introduces a new direction for the AuNPs-based colorimetric assays.

  20. Modular tokamak magnetic system

    DOEpatents

    Yang, Tien-Fang

    1988-01-01

    A modular tokamak system comprised of a plurality of interlocking moldules. Each module is comprised of a vacuum vessel section, a toroidal field coil, moldular saddle coils which generate a poloidal magnetic field and ohmic heating coils.

  1. Successful modular cosmology

    NASA Astrophysics Data System (ADS)

    Kadota, Kenji; Stewart, Ewan D.

    2003-07-01

    We present a modular cosmology scenario where the difficulties encountered in conventional modular cosmology are solved in a self-consistent manner, with definite predictions to be tested by observation. Notably, the difficulty of the dilaton finding its way to a precarious weak coupling minimum is made irrelevant by having eternal modular inflation at the vacuum supersymmetry breaking scale after the dilaton is stabilised. Neither this eternal inflation nor the subsequent non-slow-roll modular inflation destabilise the dilaton from its precarious minimum due to the low energy scale of the inflation and consequent small back reaction on the dilaton potential. The observed flat CMB spectrum is obtained from fluctuations in the angular component of a modulus near a symmetric point, which are hugely magnified by the roll down of the modulus to Planckian values, allowing them to dominate the final curvature perturbation. We also give precise calculations of the spectral index and its running.

  2. A Modular Robotic Architecture

    DTIC Science & Technology

    1990-11-01

    DATES COVERED AD-A232 007 Januar 1991 professional paper5 FUNOING NUMBERS A MODULAR ROBOTIC ARCHITECTURE PR: ZE92 WU: DN300029 PE: 0602936N - S. AUTHOR...mobile robots will help alleviate these problems, and, if made widely available, will promote standardization and compatibility among systems throughout...the industry. The Modular Robotic Architecture (MRA) is a generic control system that meets the above needs by providing developers with a standard set

  3. Modularity and mental architecture.

    PubMed

    Robbins, Philip

    2013-11-01

    Debates about the modularity of cognitive architecture have been ongoing for at least the past three decades, since the publication of Fodor's landmark book The Modularity of Mind. According to Fodor, modularity is essentially tied to informational encapsulation, and as such is only found in the relatively low-level cognitive systems responsible for perception and language. According to Fodor's critics in the evolutionary psychology camp, modularity simply reflects the fine-grained functional specialization dictated by natural selection, and it characterizes virtually all aspects of cognitive architecture, including high-level systems for judgment, decision making, and reasoning. Though both of these perspectives on modularity have garnered support, the current state of evidence and argument suggests that a broader skepticism about modularity may be warranted. WIREs Cogn Sci 2013, 4:641-649. doi: 10.1002/wcs.1255 CONFLICT OF INTEREST: The author has declared no conflicts of interest for this article. For further resources related to this article, please visit the WIREs website.

  4. Engineering self-contained DNA circuit for proximity recognition and localized signal amplification of target biomolecules.

    PubMed

    Ang, Yan Shan; Yung, Lin-Yue Lanry

    2014-08-01

    Biomolecular interactions have important cellular implications, however, a simple method for the sensing of such proximal events is lacking in the current molecular toolbox. We designed a dynamic DNA circuit capable of recognizing targets in close proximity to initiate a pre-programmed signal transduction process resulting in localized signal amplification. The entire circuit was engineered to be self-contained, i.e. it can self-assemble onto individual target molecules autonomously and form localized signal with minimal cross-talk. α-thrombin was used as a model protein to evaluate the performance of the individual modules and the overall circuit for proximity interaction under physiologically relevant buffer condition. The circuit achieved good selectivity in presence of non-specific protein and interfering serum matrix and successfully detected for physiologically relevant α-thrombin concentration (50 nM-5 μM) in a single mixing step without any further washing. The formation of localized signal at the interaction site can be enhanced kinetically through the control of temperature and probe concentration. This work provides a basic general framework from which other circuit modules can be adapted for the sensing of other biomolecular or cellular interaction of interest.

  5. Cell cycle-dependent DNA damage signaling induced by ICRF-193 involves ATM, ATR, CHK2, and BRCA1

    SciTech Connect

    Park, Iha; Avraham, Hava Karsenty . E-mail: havraham@bidmc.harvard.edu

    2006-07-01

    Topoisomerase II is essential for cell proliferation and survival and has been a target of various anticancer drugs. ICRF-193 has long been used as a catalytic inhibitor to study the function of topoisomerase II. Here, we show that ICRF-193 treatment induces DNA damage signaling. Treatment with ICRF-193 induced G2 arrest and DNA damage signaling involving {gamma}-H2AX foci formation and CHK2 phosphorylation. DNA damage by ICRF-193 was further demonstrated by formation of the nuclear foci of 53BP1, NBS1, BRCA1, MDC1, and FANCD2 and increased comet tail moment. The DNA damage signaling induced by ICRF-193 was mediated by ATM and ATR and was restricted to cells in specific cell cycle stages such as S, G2, and mitosis including late and early G1 phases. Downstream signaling of ATM and ATR involved the phosphorylation of CHK2 and BRCA1. Altogether, our results demonstrate that ICRF-193 induces DNA damage signaling in a cell cycle-dependent manner and suggest that topoisomerase II might be essential for the progression of the cell cycle at several stages including DNA decondensation.

  6. Control of electrochemical signals from quantum dots conjugated to organic materials by using DNA structure in an analog logic gate.

    PubMed

    Chen, Qi; Yoo, Si-Youl; Chung, Yong-Ho; Lee, Ji-Young; Min, Junhong; Choi, Jeong-Woo

    2016-10-01

    Various bio-logic gates have been studied intensively to overcome the rigidity of single-function silicon-based logic devices arising from combinations of various gates. Here, a simple control tool using electrochemical signals from quantum dots (QDs) was constructed using DNA and organic materials for multiple logic functions. The electrochemical redox current generated from QDs was controlled by the DNA structure. DNA structure, in turn, was dependent on the components (organic materials) and the input signal (pH). Independent electrochemical signals from two different logic units containing QDs were merged into a single analog-type logic gate, which was controlled by two inputs. We applied this electrochemical biodevice to a simple logic system and achieved various logic functions from the controlled pH input sets. This could be further improved by choosing QDs, ionic conditions, or DNA sequences. This research provides a feasible method for fabricating an artificial intelligence system.

  7. Structural basis of detection and signaling of DNA single-strand breaks by human PARP-1

    DOE PAGES

    Eustermann, Sebastian; Wu, Wing -Fung; Langelier, Marie -France; ...

    2015-11-25

    Poly(ADP-ribose)polymerase 1 (PARP-1) is a key eukaryotic stress sensor that responds in seconds to DNA single-strand breaks (SSBs), the most frequent genomic damage. A burst of poly(ADP-ribose) synthesis initiates DNA damage response, whereas PARP-1 inhibition kills BRCA-deficient tumor cells selectively, providing the first anti-cancer therapy based on synthetic lethality. However, the mechanism underlying PARP-1’s function remained obscure; inherent dynamics of SSBs and PARP-1’s multi-domain architecture hindered structural studies. Here we reveal the structural basis of SSB detection and how multi-domain folding underlies the allosteric switch that determines PARP-1’s signaling response. Two flexibly linked N-terminal zinc fingers recognize the extreme deformabilitymore » of SSBs and drive co-operative, stepwise self-assembly of remaining PARP-1 domains to control the activity of the C-terminal catalytic domain. Automodifcation in cis explains the subsequent release of monomeric PARP-1 from DNA, allowing repair and replication to proceed. Finally, our results provide a molecular framework for understanding PARP inhibitor action and, more generally, allosteric control of dynamic, multi-domain proteins.« less

  8. Structural Basis of Detection and Signaling of DNA Single-Strand Breaks by Human PARP-1

    PubMed Central

    Eustermann, Sebastian; Wu, Wing-Fung; Langelier, Marie-France; Yang, Ji-Chun; Easton, Laura E.; Riccio, Amanda A.; Pascal, John M.; Neuhaus, David

    2015-01-01

    Summary Poly(ADP-ribose)polymerase 1 (PARP-1) is a key eukaryotic stress sensor that responds in seconds to DNA single-strand breaks (SSBs), the most frequent genomic damage. A burst of poly(ADP-ribose) synthesis initiates DNA damage response, whereas PARP-1 inhibition kills BRCA-deficient tumor cells selectively, providing the first anti-cancer therapy based on synthetic lethality. However, the mechanism underlying PARP-1’s function remained obscure; inherent dynamics of SSBs and PARP-1’s multi-domain architecture hindered structural studies. Here we reveal the structural basis of SSB detection and how multi-domain folding underlies the allosteric switch that determines PARP-1’s signaling response. Two flexibly linked N-terminal zinc fingers recognize the extreme deformability of SSBs and drive co-operative, stepwise self-assembly of remaining PARP-1 domains to control the activity of the C-terminal catalytic domain. Automodifcation in cis explains the subsequent release of monomeric PARP-1 from DNA, allowing repair and replication to proceed. Our results provide a molecular framework for understanding PARP inhibitor action and, more generally, allosteric control of dynamic, multi-domain proteins. PMID:26626479

  9. Structural Basis of Detection and Signaling of DNA Single-Strand Breaks by Human PARP-1.

    PubMed

    Eustermann, Sebastian; Wu, Wing-Fung; Langelier, Marie-France; Yang, Ji-Chun; Easton, Laura E; Riccio, Amanda A; Pascal, John M; Neuhaus, David

    2015-12-03

    Poly(ADP-ribose)polymerase 1 (PARP-1) is a key eukaryotic stress sensor that responds in seconds to DNA single-strand breaks (SSBs), the most frequent genomic damage. A burst of poly(ADP-ribose) synthesis initiates DNA damage response, whereas PARP-1 inhibition kills BRCA-deficient tumor cells selectively, providing the first anti-cancer therapy based on synthetic lethality. However, the mechanism underlying PARP-1's function remained obscure; inherent dynamics of SSBs and PARP-1's multi-domain architecture hindered structural studies. Here we reveal the structural basis of SSB detection and how multi-domain folding underlies the allosteric switch that determines PARP-1's signaling response. Two flexibly linked N-terminal zinc fingers recognize the extreme deformability of SSBs and drive co-operative, stepwise self-assembly of remaining PARP-1 domains to control the activity of the C-terminal catalytic domain. Automodification in cis explains the subsequent release of monomeric PARP-1 from DNA, allowing repair and replication to proceed. Our results provide a molecular framework for understanding PARP inhibitor action and, more generally, allosteric control of dynamic, multi-domain proteins.

  10. Structural basis of detection and signaling of DNA single-strand breaks by human PARP-1

    SciTech Connect

    Eustermann, Sebastian; Wu, Wing -Fung; Langelier, Marie -France; Yang, Ji -Chun; Easton, Laura E.; Riccio, Amanda A.; Pascal, John M.; Neuhaus, David

    2015-11-25

    Poly(ADP-ribose)polymerase 1 (PARP-1) is a key eukaryotic stress sensor that responds in seconds to DNA single-strand breaks (SSBs), the most frequent genomic damage. A burst of poly(ADP-ribose) synthesis initiates DNA damage response, whereas PARP-1 inhibition kills BRCA-deficient tumor cells selectively, providing the first anti-cancer therapy based on synthetic lethality. However, the mechanism underlying PARP-1’s function remained obscure; inherent dynamics of SSBs and PARP-1’s multi-domain architecture hindered structural studies. Here we reveal the structural basis of SSB detection and how multi-domain folding underlies the allosteric switch that determines PARP-1’s signaling response. Two flexibly linked N-terminal zinc fingers recognize the extreme deformability of SSBs and drive co-operative, stepwise self-assembly of remaining PARP-1 domains to control the activity of the C-terminal catalytic domain. Automodifcation in cis explains the subsequent release of monomeric PARP-1 from DNA, allowing repair and replication to proceed. Finally, our results provide a molecular framework for understanding PARP inhibitor action and, more generally, allosteric control of dynamic, multi-domain proteins.

  11. TGF-β1 accelerates the DNA damage response in epithelial cells via Smad signaling.

    PubMed

    Lee, Jeeyong; Kim, Mi-Ra; Kim, Hyun-Ji; An, You Sun; Yi, Jae Youn

    2016-08-05

    The evidence suggests that transforming growth factor-beta (TGF-β) regulates the DNA-damage response (DDR) upon irradiation, and we previously reported that TGF-β1 induced DNA ligase IV (Lig4) expression and enhanced the nonhomologous end-joining repair pathway in irradiated cells. In the present study, we investigated the effects of TGF-β1 on the irradiation-induced DDRs of A431 and HaCaT cells. Cells were pretreated with or without TGF-β1 and irradiated. At 30 min post-irradiation, DDRs were detected by immunoblotting of phospho-ATM, phospho-Chk2, and the presence of histone foci (γH2AX). The levels of all three factors were similar right after irradiation regardless of TGF-β1 pretreatment. However, they soon thereafter exhibited downregulation in TGF-β1-pretreated cells, indicating the acceleration of the DDR. Treatment with a TGF-β type I receptor inhibitor (SB431542) or transfections with siRNAs against Smad2/3 or DNA ligase IV (Lig4) reversed this acceleration of the DDR. Furthermore, the frequency of irradiation-induced apoptosis was decreased by TGF-β1 pretreatment in vivo, but this effect was abrogated by SB431542. These results collectively suggest that TGF-β1 could enhance cell survival by accelerating the DDR via Smad signaling and Lig4 expression.

  12. The danger signal plus DNA damage two-hit hypothesis for chronic inflammation in COPD.

    PubMed

    Aoshiba, Kazutetsu; Tsuji, Takao; Yamaguchi, Kazuhiro; Itoh, Masayuki; Nakamura, Hiroyuki

    2013-12-01

    Inflammation in chronic obstructive pulmonary disease (COPD) is thought to originate from the activation of innate immunity by a danger signal (first hit), although this mechanism does not readily explain why the inflammation becomes chronic. Here, we propose a two-hit hypothesis explaining why inflammation becomes chronic in patients with COPD. A more severe degree of inflammation exists in the lungs of patients who develop COPD than in the lungs of healthy smokers, and the large amounts of reactive oxygen species and reactive nitrogen species released from inflammatory cells are likely to induce DNA double-strand breaks (second hit) in the airways and pulmonary alveolar cells, causing apoptosis and cell senescence. The DNA damage response and senescence-associated secretory phenotype (SASP) are also likely to be activated, resulting in the production of pro-inflammatory cytokines. These pro-inflammatory cytokines further stimulate inflammatory cell infiltration, intensifying cell senescence and SASP through a positive-feedback mechanism. This vicious cycle, characterised by mutually reinforcing inflammation and DNA damage, may cause the inflammation in COPD patients to become chronic. Our hypothesis helps explain why COPD tends to occur in the elderly, why the inflammation worsens progressively, why inflammation continues even after smoking cessation, and why COPD is associated with lung cancer.

  13. Analytical Spectroscopy Using Modular Systems

    NASA Astrophysics Data System (ADS)

    Patterson, Brian M.; Danielson, Neil D.; Lorigan, Gary A.; Sommer, André J.

    2003-12-01

    This article describes the development of three analytical spectroscopy experiments that compare the determination of salicylic acid (SA) content in aspirin tablets. The experiments are based on UV vis, fluorescence, and Raman spectroscopies and utilize modular spectroscopic components. Students assemble their own instruments, optimize them with respect to signal-to-noise, generate calibration curves, determine the SA content in retail aspirin tablets, and assign features in the respective spectra to functional groups within the active material. Using this approach in the discovery-based setting, the students gain invaluable insight into method-specific parameters, such as instrumental components, sample preparation, and analytical capability. In addition, the students learn the fundamentals of fiber optics and signal processing using the low-cost CCD based spectroscopic components.

  14. Monitoring the Escape of DNA from a Nanopore Using an Alternating Current Signal

    PubMed Central

    Lathrop, Daniel K.; Ervin, Eric N.; Barrall, Geoffrey A.; Keehan, Michael G.; Kawano, Ryuji; Krupka, Michael A.; White, Henry S.; Hibbs, Andrew H.

    2010-01-01

    We present the use of an alternating current (AC) signal as a means to monitor the conductance of an α-hemolysin (αHL) pore as a DNA hairpin with a polydeoxyadenosine tail is driven into and released from the pore. Specifically, a 12 base pair DNA hairpin attached to a 50-nucleotide poly-A tail (HP-A50) is threaded into an αHL channel using a DC driving voltage. Once the HP-A50 molecule is trapped within the αHL channel, the DC driving voltage is turned off and the conductance of the channel is monitored using an AC voltage. The escape time, defined as the time it takes the HP-A50 molecule to transport out of the αHL channel, is then measured. This escape time has been monitored as a function of AC amplitude (20 to 250 mVac), AC frequency (60–200 kHz), DC drive voltage (0 to 100 mVdc), and temperature (−10 to 20 °C), in order to determine their effect on the predominantly diffusive motion of the DNA through the nanopore. The applied AC voltage used to monitor the conductance of the nanopore has been found to play a significant role in the DNA/nanopore interaction. The experimental results are described by a one-dimensional asymmetric periodic potential model that includes the influence of the AC voltage. An activation enthalpy barrier of 1.74 × 10−19 J and a periodic potential asymmetry parameter of 0.575 are obtained for the diffusion at zero electrical bias of a single nucleotide through αHL. PMID:20099878

  15. Monitoring of noble, signal and narrow-clawed crayfish using environmental DNA from freshwater samples

    PubMed Central

    Knudsen, Steen Wilhelm; Strand, David; Thomsen, Philip Francis; Hesselsøe, Martin; Mortensen, Peter Bondgaard; Vrålstad, Trude; Møller, Peter Rask

    2017-01-01

    For several hundred years freshwater crayfish (Crustacea—Decapoda—Astacidea) have played an important ecological, cultural and culinary role in Scandinavia. However, many native populations of noble crayfish Astacus astacus have faced major declines during the last century, largely resulting from human assisted expansion of non-indigenous signal crayfish Pacifastacus leniusculus that carry and transmit the crayfish plague pathogen. In Denmark, also the non-indigenous narrow-clawed crayfish Astacus leptodactylus has expanded due to anthropogenic activities. Knowledge about crayfish distribution and early detection of non-indigenous and invasive species are crucial elements in successful conservation of indigenous crayfish. The use of environmental DNA (eDNA) extracted from water samples is a promising new tool for early and non-invasive detection of species in aquatic environments. In the present study, we have developed and tested quantitative PCR (qPCR) assays for species-specific detection and quantification of the three above mentioned crayfish species on the basis of mitochondrial cytochrome oxidase 1 (mtDNA-CO1), including separate assays for two clades of A. leptodactylus. The limit of detection (LOD) was experimentally established as 5 copies/PCR with two different approaches, and the limit of quantification (LOQ) were determined to 5 and 10 copies/PCR, respectively, depending on chosen approach. The assays detected crayfish in natural freshwater ecosystems with known populations of all three species, and show promising potentials for future monitoring of A. astacus, P. leniusculus and A. leptodactylus. However, the assays need further validation with data 1) comparing traditional and eDNA based estimates of abundance, and 2) representing a broader geographical range for the involved crayfish species. PMID:28654642

  16. [Oligonucleotide derivatives in the nucleic acid hybridization analysis. II. Isothermal signal amplification in process of DNA analysis by minisequencing].

    PubMed

    Dmitrienko, E V; Khomiakova, E A; Pyshnaia; Bragin, A G; Vedernikov, V E; Pyshnyĭ, D V

    2010-01-01

    The isothermal amplification of reporter signal via limited probe extension (minisequencing) upon hybridization of nucleic acids has been studied. The intensity of reporter signal has been shown to increase due to enzymatic labeling of multiple probes upon consecutive hybridization with one DNA template both in homophase and heterophase assays using various kinds of detection signal: radioisotope label, fluorescent label, and enzyme-linked assay. The kinetic scheme of the process has been proposed and kinetic parameters for each step have been determined. The signal intensity has been shown to correlate with physicochemical characteristics of both complexes: probe/DNA and product/DNA. The maximum intensity has been observed at minimal difference between the thermodynamic stability of these complexes, provided the reaction temperature has been adjusted near their melting temperature values; rising or lowering the reaction temperature reduces the amount of reporting product. The signal intensity has been shown to decrease significantly upon hybridization with the DNA template containing single-nucleotide mismatches. Limited probe extension assay is useful not only for detection of DNA template but also for its quantitative characterization.

  17. Role of autophagy in chemoresistance: regulation of the ATM-mediated DNA-damage signaling pathway through activation of DNA-PKcs and PARP-1.

    PubMed

    Yoon, Jung-Hoon; Ahn, Sang-Gun; Lee, Byung-Hoon; Jung, Sung-Hoo; Oh, Seon-Hee

    2012-03-15

    Capsaicin treatment was previously reported to reduce the sensitivity of breast cancer cells, but not normal MCF10A cells, to apoptosis. The present study shows that autophagy is involved in cellular resistance to genotoxic stress, through DNA repair. Capsaicin treatment of MCF-7 cells induced S-phase arrest and autophagy through the AMPKα-mTOR signaling pathway and the accumulation of p53 in the nucleus and cytosol, including a change in mitochondrial membrane potential. Capsaicin treatment also activated δ-H2AX, ataxia telangiectasia mutated (ATM), DNA-dependent protein kinase catalytic subunit (DNA-PKcs), and poly(ADP-ribose) polymerase (PARP)-1. Genetic or pharmacological disruption of autophagy attenuated capsaicin-induced phospho-ATM and phospho-DNA-PKcs and enhanced apoptotic cell death. ATM inhibitors, including Ku55933 and caffeine, and the genetic or pharmacological inhibition of p53 prevented capsaicin-induced DNA-PKcs phosphorylation and stimulated PARP-1 cleavage, but had no effect on microtubule-associated protein light chain 3 (LC3)-II levels. Ly294002, a DNA-PKcs inhibitor, boosted the capsaicin-induced cleavage of PARP-1. In M059K cells, but not M059J cells, capsaicin induced ATM and DNA-PKcs phosphorylation, p53 accumulation, and the stimulation of LC3II production, all of which were attenuated by knockdown of the autophagy-related gene atg5. Ku55933 attenuated capsaicin-induced phospho-DNA-PKcs, but not LC3II, in M059K cells. In human breast tumors, but not in normal tissues, AMPKα, ATM, DNA-PKcs, and PARP-1 were activated and LC3II was induced. The induction of autophagy by genotoxic stress likely contributes to the sustained survival of breast cancer cells through DNA repair regulated by ATM-mediated activation of DNA-PKcs and PARP-1.

  18. Slow conformational changes in MutS and DNA direct ordered transitions between mismatch search, recognition and signaling of DNA repair.

    PubMed

    Sharma, Anushi; Doucette, Christopher; Biro, F Noah; Hingorani, Manju M

    2013-11-15

    MutS functions in mismatch repair (MMR) to scan DNA for errors, identify a target site and trigger subsequent events in the pathway leading to error removal and DNA re-synthesis. These actions, enabled by the ATPase activity of MutS, are now beginning to be analyzed from the perspective of the protein itself. This study provides the first ensemble transient kinetic data on MutS conformational dynamics as it works with DNA and ATP in MMR. Using a combination of fluorescence probes (on Thermus aquaticus MutS and DNA) and signals (intensity, anisotropy and resonance energy transfer), we have monitored the timing of key conformational changes in MutS that are coupled to mismatch binding and recognition, ATP binding and hydrolysis, as well as sliding clamp formation and signaling of repair. Significant findings include (a) a slow step that follows weak initial interaction between MutS and DNA, in which concerted conformational changes in both macromolecules control mismatch recognition, and (b) rapid, binary switching of MutS conformations that is concerted with ATP binding and hydrolysis and (c) is stalled after mismatch recognition to control formation of the ATP-bound MutS sliding clamp. These rate-limiting pre- and post-mismatch recognition events outline the mechanism of action of MutS on DNA during initiation of MMR.

  19. DNA Damage Signaling Assessed in Individual Cells in Relation to the Cell Cycle Phase and Induction of Apoptosis

    PubMed Central

    Darzynkiewicz, Zbigniew; Zhao, Hong; Halicka, H. Dorota; Rybak, Paulina; Dobrucki, Jurek; Wlodkowic, Donald

    2012-01-01

    Reviewed are the phosphorylation events reporting activation of protein kinases and the key substrates critical for the DNA damage signaling (DDS). These DDS events are detected immunocytochemically using phospho-specific Abs; flow cytometry or image-assisted cytometry provide the means to quantitatively assess them on a cell by cell basis. The multiparameter analysis of the data is used to correlate these events with each other and relate to the cell cycle phase, DNA replication and induction of apoptosis. Expression of γH2AX as a possible marker of induction of DNA double strand breaks is the most widely studied event of DDS. Reviewed are applications of this multiparameter approach to investigate constitutive DDS reporting DNA damage by endogenous oxidants byproducts of oxidative phosphorylation. Also reviewed are its applications to detect and explore mechanisms of DDS induced by variety of exogenous agents targeting DNA such as exogenous oxidants, ionizing radiation, radiomimetic drugs, UV light, DNA topoisomerase I and II inhibitors, DNA crosslinking drugs and variety of environmental genotoxins. Analysis of DDS induced by these agents provides often a wealth of information about mechanism of induction and the type of DNA damage (lesion) and is reviewed in the context of cell cycle phase specificity, DNA replication, and induction of apoptosis or cell senescence. Critically assessed is interpretation of the data as to whether the observed DDS events report induction of a particular type of DNA lesion. PMID:23137030

  20. Signalign: An Ontology of DNA as Signal for Comparative Gene Structure Prediction Using Information-Coding-and-Processing Techniques.

    PubMed

    Yu, Ning; Guo, Xuan; Gu, Feng; Pan, Yi

    2016-03-01

    Conventional character-analysis-based techniques in genome analysis manifest three main shortcomings-inefficiency, inflexibility, and incompatibility. In our previous research, a general framework, called DNA As X was proposed for character-analysis-free techniques to overcome these shortcomings, where X is the intermediates, such as digit, code, signal, vector, tree, graph network, and so on. In this paper, we further implement an ontology of DNA As Signal, by designing a tool named Signalign for comparative gene structure analysis, in which DNA sequences are converted into signal series, processed by modified method of dynamic time warping and measured by signal-to-noise ratio (SNR). The ontology of DNA As Signal integrates the principles and concepts of other disciplines including information coding theory and signal processing into sequence analysis and processing. Comparing with conventional character-analysis-based methods, Signalign can not only have the equivalent or superior performance, but also enrich the tools and the knowledge library of computational biology by extending the domain from character/string to diverse areas. The evaluation results validate the success of the character-analysis-free technique for improved performances in comparative gene structure prediction.

  1. Targeting hyperactivated DNA-PKcs by KU0060648 inhibits glioma progression and enhances temozolomide therapy via suppression of AKT signaling

    PubMed Central

    Qu, Yanming; Zhang, Mingshan; Wang, Haoran; Zhang, Zhihua; Zhou, Wei; Fan, Xinyi; Yu, Chunjiang; Zhan, Qimin; Song, Yongmei

    2016-01-01

    The overall survival remains undesirable in clinical glioma treatment. Inhibition of DNA-PKcs activity by its inhibitors suppresses tumor growth and enhances chemosensitivity of several tumors to chemotherapy. However, whether DNA-PKcs could be a potential target in glioma therapy remains unknown. In this study, we reported that the hyperactivated DNA-PKcs was profoundly correlated with glioma malignancy and observe a significant association between DNA-PKcs activation and survival of the glioma patients. Our data also found that inhibition of DNA-PKcs by its inhibitor KU0060648 sensitized glioma cells to TMZ in vitro. Specifically, we demonstrated that KU0060648 interrupted the formation of DNA-PKcs/AKT complex, leading to suppression of AKT signaling and resultantly enhanced TMZ efficacy. Combination of KU0060648 and TMZ substantially inhibited downstream effectors of AKT. The in vivo results were similar to those obtained in vitro. In conclusion, this study indicated that inhibition of DNA-PKcs activity could suppress glioma malignancies and increase TMZ efficacy, which was mainly through regulation of the of AKT signaling. Therefore, DNA-PKcs/AKT axis may be a promising target for improving current glioma therapy. PMID:27487130

  2. Symmetric modular torsatron

    DOEpatents

    Rome, J.A.; Harris, J.H.

    1984-01-01

    A fusion reactor device is provided in which the magnetic fields for plasma confinement in a toroidal configuration is produced by a plurality of symmetrical modular coils arranged to form a symmetric modular torsatron referred to as a symmotron. Each of the identical modular coils is helically deformed and comprise one field period of the torsatron. Helical segments of each coil are connected by means of toroidally directed windbacks which may also provide part of the vertical field required for positioning the plasma. The stray fields of the windback segments may be compensated by toroidal coils. A variety of magnetic confinement flux surface configurations may be produced by proper modulation of the winding pitch of the helical segments of the coils, as in a conventional torsatron, winding the helix on a noncircular cross section and varying the poloidal and radial location of the windbacks and the compensating toroidal ring coils.

  3. Self Evolving Modular Network

    NASA Astrophysics Data System (ADS)

    Tokunaga, Kazuhiro; Kawabata, Nobuyuki; Furukawa, Tetsuo

    We propose a novel modular network called the Self-Evolving Modular Network (SEEM). The SEEM has a modular network architecture with a graph structure and these following advantages: (1) new modules are added incrementally to allow the network to adapt in a self-organizing manner, and (2) graph's paths are formed based on the relationships between the models represented by modules. The SEEM is expected to be applicable to evolving functions of an autonomous robot in a self-organizing manner through interaction with the robot's environment and categorizing large-scale information. This paper presents the architecture and an algorithm for the SEEM. Moreover, performance characteristic and effectiveness of the network are shown by simulations using cubic functions and a set of 3D-objects.

  4. Modular optical detector system

    DOEpatents

    Horn, Brent A.; Renzi, Ronald F.

    2006-02-14

    A modular optical detector system. The detector system is designed to detect the presence of molecules or molecular species by inducing fluorescence with exciting radiation and detecting the emitted fluorescence. Because the system is capable of accurately detecting and measuring picomolar concentrations it is ideally suited for use with microchemical analysis systems generally and capillary chromatographic systems in particular. By employing a modular design, the detector system provides both the ability to replace various elements of the detector system without requiring extensive realignment or recalibration of the components as well as minimal user interaction with the system. In addition, the modular concept provides for the use and addition of a wide variety of components, including optical elements (lenses and filters), light sources, and detection means, to fit particular needs.

  5. Capicua DNA-binding sites are general response elements for RTK signaling in Drosophila.

    PubMed

    Ajuria, Leiore; Nieva, Claudia; Winkler, Clint; Kuo, Dennis; Samper, Núria; Andreu, María José; Helman, Aharon; González-Crespo, Sergio; Paroush, Ze'ev; Courey, Albert J; Jiménez, Gerardo

    2011-03-01

    RTK/Ras/MAPK signaling pathways play key functions in metazoan development, but how they control expression of downstream genes is not well understood. In Drosophila, it is generally assumed that most transcriptional responses to RTK signal activation depend on binding of Ets-family proteins to specific cis-acting sites in target enhancers. Here, we show that several Drosophila RTK pathways control expression of downstream genes through common octameric elements that are binding sites for the HMG-box factor Capicua, a transcriptional repressor that is downregulated by RTK signaling in different contexts. We show that Torso RTK-dependent regulation of terminal gap gene expression in the early embryo critically depends on Capicua octameric sites, and that binding of Capicua to these sites is essential for recruitment of the Groucho co-repressor to the huckebein enhancer in vivo. We then show that subsequent activation of the EGFR RTK pathway in the neuroectodermal region of the embryo controls dorsal-ventral gene expression by downregulating the Capicua protein, and that this control also depends on Capicua octameric motifs. Thus, a similar mechanism of RTK regulation operates during subdivision of the anterior-posterior and dorsal-ventral embryonic axes. We also find that identical DNA octamers mediate Capicua-dependent regulation of another EGFR target in the developing wing. Remarkably, a simple combination of activator-binding sites and Capicua motifs is sufficient to establish complex patterns of gene expression in response to both Torso and EGFR activation in different tissues. We conclude that Capicua octamers are general response elements for RTK signaling in Drosophila.

  6. Modular processes in mind and brain.

    PubMed

    Sternberg, Saul

    2011-05-01

    One approach to understanding a complex process starts with an attempt to divide it into modules·, sub-processes that are independent in some sense, and have distinct functions. In this paper, I discuss an approach to the modular decomposition of neural and mental processes. Several examples of process decomposition are presented, together with discussion of inferential requirements. Two examples are of well-established and purely behavioural realizations of the approach (signal detection theory applied to discrimination data; the method of additive factors applied to reaction-time data), and lead to the identification of mental modules. Other examples, leading to the identification of modular neural processes, use brain measures, including the fMRI signal, the latencies of electrophysiological events, and their amplitudes. Some measures are pure (reflecting just one process), while others are composite. Two of the examples reveal mental and neural modules that correspond. Attempts to associate brain regions with behaviourally defined processing modules that use a brain manipulation (transcranial magnetic stimulation, TMS) are promising but incomplete. I show why the process-decomposition approach discussed here, in which the criterion for modularity is separate modifiability, is superior for modular decomposition to the more frequently used task comparison procedure (often used in cognitive neuropsychology) and to its associated subtraction method. To demonstrate the limitations of task comparison, I describe the erroneous conclusion to which it has led about sleep deprivation, and the interpretive difficulties in a TMS study.

  7. The first successful observation of in-cell NMR signals of DNA and RNA in living human cells.

    PubMed

    Yamaoki, Yudai; Kiyoishi, Ayaka; Miyake, Masayuki; Kano, Fumi; Murata, Masayuki; Nagata, Takashi; Katahira, Masato

    2017-10-12

    In order to understand intracellular biological events, information on the structure, dynamics and interaction of proteins and nucleic acids in living cells is of crucial importance. In-cell NMR is a promising method to obtain this information. Although NMR signals of proteins in human cells have been reported, those of nucleic acids were reported only in Xenopus laevis oocytes, i.e., not in human cells. Here, DNA and RNA were introduced into human cells by means of pore formation by bacterial toxin streptolysin O and subsequent resealing. Then, NMR signals of DNA and RNA were successfully observed for the first time in living human cells. The observed signals directly suggested the formation of DNA and RNA hairpin structures in living human cells.

  8. Investigation into the effect that probe immobilisation method type has on the analytical signal of an EIS DNA biosensor.

    PubMed

    Lillis, Brian; Manning, Mary; Hurley, Eileen; Berney, Helen; Duane, Russell; Mathewson, Alan; Sheehan, Michelle M

    2007-02-15

    The analytical performance of an enhanced surface area electrolyte insulator semiconductor (EIS) device was investigated for DNA sensor development. The work endeavored to advance EIS performance by monitoring the effect of DNA probe layers have on the impedimetric signal during target hybridisation detection. Two universally employed covalent chemistries, direct and spacer-mediated attachment of amino modified probe molecules to amino-functionalised surfaces were investigated. Relative areal densities of immobilised probe were measured on planar and enhanced surface area substrates using epi-fluorescence microscopy. The reproducibility of the each immobilisation method was seen to have a direct effect on the reproducibility of the impedimetric signal. The sensitivity and selectivity was seen to be dependent on the type of immobilisation method. Real time, impedimetric detection of target DNA hybridisation concentrations as low as 25 and 1 nM were possible. The impact that probe concentration had on the impedimetric signal for selective and non-selective interactions was also investigated.

  9. Modular biowaste monitoring system

    NASA Technical Reports Server (NTRS)

    Fogal, G. L.

    1975-01-01

    The objective of the Modular Biowaste Monitoring System Program was to generate and evaluate hardware for supporting shuttle life science experimental and diagnostic programs. An initial conceptual design effort established requirements and defined an overall modular system for the collection, measurement, sampling and storage of urine and feces biowastes. This conceptual design effort was followed by the design, fabrication and performance evaluation of a flight prototype model urine collection, volume measurement and sampling capability. No operational or performance deficiencies were uncovered as a result of the performance evaluation tests.

  10. Modular Optofluidic Systems (MOPS)

    NASA Astrophysics Data System (ADS)

    Ackermann, Tobias N.; Dietvorst, Jiri; Sanchis, Ana; Salvador, Juan P.; Munoz-Berbel, Xavier; Alvarez-Conde, Erica; Kopp, Daniel; Zappe, Hans; Marco, M.-Pilar; Llobera, Andreu

    2016-12-01

    Elementary PDMS-based building blocks of fluidic, optical and optofluidic components for Lab on a chip (LOC) platforms has here been developed. All individual modules are compatible and can be anchored and released with the help of puzzle-type connectors This approach is a powerful toolbox to create modular optofluidic systems (MOPS), which can be modified/upgraded to user needs and in-situ reconfigurable. In addition, the PDMS can locally be functionalized, defining a modular biosensor. Measurements in absorbance and fluorescence have been pursued as demonstrator.

  11. Modular total absorption spectrometer

    NASA Astrophysics Data System (ADS)

    Karny, M.; Rykaczewski, K. P.; Fijałkowska, A.; Rasco, B. C.; Wolińska-Cichocka, M.; Grzywacz, R. K.; Goetz, K. C.; Miller, D.; Zganjar, E. F.

    2016-11-01

    The design and performance of the Modular Total Absorption Spectrometer built and commissioned at the Oak Ridge National Laboratory is presented. The active volume of the detector is approximately one ton of NaI(Tl), which results in very high full γ energy peak efficiency of 71% at 6 MeV and nearly flat efficiency of around 81.5% for low energy γ-rays between 300 keV and 1 MeV. In addition to the high peak efficiency, the modular construction of the detector permits the use of a γ-coincidence technique in data analysis as well as β-delayed neutron observation.

  12. A sensitive signal-off electrogenerated chemiluminescence biosensing method for the discrimination of DNA hydroxymethylation based on glycosylation modification and signal quenching from ferroceneboronic acid.

    PubMed

    Zhang, Yuling; Li, Yan; Wei, Yingying; Sun, Huiping; Wang, Huan

    2017-08-01

    In this study, a new and sensitive signal-off electrogenerated chemiluminescence (ECL) biosensing method for the quantification of 5-hydroxymethylcytosine in DNA (5-hmC-DNA) was developed. The method achieved simple and sensitive detection of 5-hmC-DNA based on the glycosylation of 5-hmC, combining both the amplification function of gold nanoparticles (AuNPs) and the high quenching efficiency of the tris(2, 2'-ripyridine) dichlororuthenium(II) (Ru(bpy)3(2+))-ferrocene (Fc) system. First, the electrode modified with a mixture of Nafion and AuNPs was utilized as the platform for electrostatically adsorbing Ru(bpy)3(2+)(an ECL-emitting species) and assembling 5-hmC-DNA. The 5-hmC-DNA was glycosylated by T4 β-glucosyltransferase, yielding β-glucosyl-5-hydroxymethyl-cytosine in DNA (5-ghmC-DNA). Finally, quencher-FcBA was further covalently bound to 5-ghmC-DNA through formation of boronate ester covalent bonds between boronic acid and cis-diols of 5-ghmC, resulting in a decrease in ECL intensity. The results indicated that the decreased ECL intensity was directly linear to the concentration of 5-hmC-DNA in the range from 1.0×10(-8) to 5.0×10(-11)M with a low detection limit of 1.63×10(-11)M. In addition, this ECL method was demonstrated to be useful for the quantification of 5-hmC in clinical serum samples. Moreover, the method allowed good discrimination among cytosine (5-C), 5-methylcytosine (5-mC), and 5-hmC in DNA. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Population expansion in the North African Late Pleistocene signalled by mitochondrial DNA haplogroup U6

    PubMed Central

    2010-01-01

    Background The archaeology of North Africa remains enigmatic, with questions of population continuity versus discontinuity taking centre-stage. Debates have focused on population transitions between the bearers of the Middle Palaeolithic Aterian industry and the later Upper Palaeolithic populations of the Maghreb, as well as between the late Pleistocene and Holocene. Results Improved resolution of the mitochondrial DNA (mtDNA) haplogroup U6 phylogeny, by the screening of 39 new complete sequences, has enabled us to infer a signal of moderate population expansion using Bayesian coalescent methods. To ascertain the time for this expansion, we applied both a mutation rate accounting for purifying selection and one with an internal calibration based on four approximate archaeological dates: the settlement of the Canary Islands, the settlement of Sardinia and its internal population re-expansion, and the split between haplogroups U5 and U6 around the time of the first modern human settlement of the Near East. Conclusions A Bayesian skyline plot placed the main expansion in the time frame of the Late Pleistocene, around 20 ka, and spatial smoothing techniques suggested that the most probable geographic region for this demographic event was to the west of North Africa. A comparison with U6's European sister clade, U5, revealed a stronger population expansion at around this time in Europe. Also in contrast with U5, a weak signal of a recent population expansion in the last 5,000 years was observed in North Africa, pointing to a moderate impact of the late Neolithic on the local population size of the southern Mediterranean coast. PMID:21176127

  14. Population expansion in the North African late Pleistocene signalled by mitochondrial DNA haplogroup U6.

    PubMed

    Pereira, Luísa; Silva, Nuno M; Franco-Duarte, Ricardo; Fernandes, Verónica; Pereira, Joana B; Costa, Marta D; Martins, Haidé; Soares, Pedro; Behar, Doron M; Richards, Martin B; Macaulay, Vincent

    2010-12-21

    The archaeology of North Africa remains enigmatic, with questions of population continuity versus discontinuity taking centre-stage. Debates have focused on population transitions between the bearers of the Middle Palaeolithic Aterian industry and the later Upper Palaeolithic populations of the Maghreb, as well as between the late Pleistocene and Holocene. Improved resolution of the mitochondrial DNA (mtDNA) haplogroup U6 phylogeny, by the screening of 39 new complete sequences, has enabled us to infer a signal of moderate population expansion using Bayesian coalescent methods. To ascertain the time for this expansion, we applied both a mutation rate accounting for purifying selection and one with an internal calibration based on four approximate archaeological dates: the settlement of the Canary Islands, the settlement of Sardinia and its internal population re-expansion, and the split between haplogroups U5 and U6 around the time of the first modern human settlement of the Near East. A Bayesian skyline plot placed the main expansion in the time frame of the Late Pleistocene, around 20 ka, and spatial smoothing techniques suggested that the most probable geographic region for this demographic event was to the west of North Africa. A comparison with U6's European sister clade, U5, revealed a stronger population expansion at around this time in Europe. Also in contrast with U5, a weak signal of a recent population expansion in the last 5,000 years was observed in North Africa, pointing to a moderate impact of the late Neolithic on the local population size of the southern Mediterranean coast.

  15. Modularity, noise, and natural selection.

    PubMed

    Marroig, Gabriel; Melo, Diogo A R; Garcia, Guilherme

    2012-05-01

    Most biological systems are formed by component parts that are to some degree interrelated. Groups of parts that are more associated among themselves and are relatively autonomous from others are called modules. One of the consequences of modularity is that biological systems usually present an unequal distribution of the genetic variation among traits. Estimating the covariance matrix that describes these systems is a difficult problem due to a number of factors such as poor sample sizes and measurement errors. We show that this problem will be exacerbated whenever matrix inversion is required, as in directional selection reconstruction analysis. We explore the consequences of varying degrees of modularity and signal-to-noise ratio on selection reconstruction. We then present and test the efficiency of available methods for controlling noise in matrix estimates. In our simulations, controlling matrices for noise vastly improves the reconstruction of selection gradients. We also perform an analysis of selection gradients reconstruction over a New World Monkeys skull database to illustrate the impact of noise on such analyses. Noise-controlled estimates render far more plausible interpretations that are in full agreement with previous results. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  16. [Intracellular signal transduction of endocrine organs and expanded DNA fragment size in myotonic dystrophy].

    PubMed

    Kinoshita, M; Hasegawa, T; Komori, T; Hirose, K; Tanabe, H

    1995-06-01

    The Ellsworth-Howard (EH) test was performed in 16 patients with myotonic dystrophy (DM), who were divided into two groups according to serum calcium level; Group I showing normal serum calcium (8 patients) and Group II with hypocalcemia (8 patients). Patients in Group II were recognized as having pseudohypoparathyroidism (PHP) type II and those in Group I as normal. Therefore, it was suggested that an abnormality of A kinase might be present in Group II patients. We additionally performed the thyrotropin releasing hormone (TRH) tolerance test in the same patients and 7 normal controls to examine an abnormality of C kinase. delta TSH (delta TSH: peak minus pre TSH) values in DM patients were significantly lower than those in normal controls. Moreover, delta TSH values in Group II were significantly lower than those in Group I. It was suggested that the abnormality of C kinase might be present in Group II patients. Taken together, our results indicated that some patients with DM might possess abnormalities of signal transduction of both A and C kinases. We compared the degree of endocrine involvement determined by both the EH test and the TRH tolerance test with expanded DNA fragment (EF) size determined by standard Southern blot analysis using an appropriate cDNA probe (cDNA25 probe). There was significant negative correlation between EF size and the results of the EH test and negative correlation between the EF size and the results of the TRH tolerance test. These findings suggested that EF size might be correlated with disease severity in affected endocrine organs.

  17. Renal-Retinal Ciliopathy Gene Sdccag8 Regulates DNA Damage Response Signaling

    PubMed Central

    Airik, Rannar; Slaats, Gisela G.; Guo, Zhi; Weiss, Anna-Carina; Khan, Naheed; Ghosh, Amiya; Hurd, Toby W.; Bekker-Jensen, Simon; Schrøder, Jacob M.; Elledge, Steve J.; Andersen, Jens S.; Kispert, Andreas; Castelli, Maddalena; Boletta, Alessandra; Giles, Rachel H.

    2014-01-01

    Nephronophthisis-related ciliopathies (NPHP-RCs) are developmental and degenerative kidney diseases that are frequently associated with extrarenal pathologies such as retinal degeneration, obesity, and intellectual disability. We recently identified mutations in a gene encoding the centrosomal protein SDCCAG8 as causing NPHP type 10 in humans. To study the role of Sdccag8 in disease pathogenesis, we generated a Sdccag8 gene-trap mouse line. Homozygous Sdccag8gt/gt mice lacked the wild-type Sdccag8 transcript and protein, and recapitulated the human phenotypes of NPHP and retinal degeneration. These mice exhibited early onset retinal degeneration that was associated with rhodopsin mislocalization in the photoreceptors and reduced cone cell numbers, and led to progressive loss of vision. By contrast, renal histologic changes occurred later, and no global ciliary defects were observed in the kidneys. Instead, renal pathology was associated with elevated levels of DNA damage response signaling activity. Cell culture studies confirmed the aberrant activation of DNA damage response in Sdccag8gt/gt-derived cells, characterized by elevated levels of γH2AX and phosphorylated ATM and cell cycle profile abnormalities. Our analysis of Sdccag8gt/gt mice indicates that the pleiotropic phenotypes in these mice may arise through multiple tissue-specific disease mechanisms. PMID:24722439

  18. STING Specifies IRF3 phosphorylation by TBK1 in the Cytosolic DNA Signaling Pathway

    PubMed Central

    Tanaka, Yasuo; Chen, Zhijian J.

    2013-01-01

    Cytosolic double-stranded DNA (dsDNA) triggers type-I interferon production through the endoplasmic reticulum adaptor protein STING (also known as MITA, MPYS and ERIS), which activates the transcription factor IRF3. However, how STING activates IRF3 remains largely unknown. Here we show that STING stimulates IRF3 phosphorylation by the kinase TBK1 in an in vitro reconstitution system. Using this system, we identified a carboxyl terminal region of STING that is both necessary and sufficient to activate TBK1 and stimulate IRF3 phosphorylation. Interestingly, we found that STING interacts with both TBK1 and IRF3, and that mutations in STING that selectively disrupt its binding to IRF3 abrogate IRF3 phosphorylation without impairing TBK1 activation. These results suggest that STING functions as a scaffold to specify and promote IRF3 phosphorylation by TBK1. The scaffolding function of STING and other adaptors may explain why IRF3 is activated only in a subset of signaling pathways that activate TBK1. PMID:22394562

  19. A DNA damage signal is required for p53 to activate gadd45.

    PubMed

    Xiao, G; Chicas, A; Olivier, M; Taya, Y; Tyagi, S; Kramer, F R; Bargonetti, J

    2000-03-15

    We provide direct evidence that overexpression of p53 is not sufficient for robust p53-dependent activation of the endogenous gadd45 gene. When p53 was induced in TR9-7 cells in the absence of DNA damage, waf1/p21 and mdm2 mRNA levels were increased, but a change in gadd45 mRNA was barely detectable. Activation of the gadd45 gene was observed when camptothecin was added to cells containing p53 in the absence of a further increase in the p53 level. Phosphorylation of p53 at serine 15 and acetylation at lysine 382 were detected after drug treatment. It has been suggested that p53 posttranslational modification is critical during activation. However, inhibition of these modifications by wortmannin was not sufficient to block the transactivation of gadd45. Interestingly, after camptothecin treatment, increased DNase I sensitivity was detected at the gadd45 promoter, suggesting that an undetermined DNA damage signal is involved in inducing chromatin remodeling at the gadd45 promoter while cooperating with p53 to activate gadd45 transcription.

  20. A cytometric bead assay for sensitive DNA detection based on enzyme-free signal amplification of hybridization chain reaction.

    PubMed

    Ren, Wei; Liu, Hongmei; Yang, Wenxia; Fan, Yunlong; Yang, Lang; Wang, Yucong; Liu, Chenghui; Li, Zhengping

    2013-11-15

    A versatile flow cytometric bead assay (CBA) is developed for sensitive DNA detection by integrating the advantages of hybridization chain reaction (HCR) for enzyme-free signal amplification, flow cytometry for robust and rapid signal readout as well as magnetic beads (MBs) for facile separation. In this HCR-CBA, a biotinylated hairpin DNA (Bio-H1) is firstly immobilized on streptavidin-functionalized MBs. Upon the addition of target DNA, each target would hybridize with one Bio-H1 to open its hairpin structure and subsequently initiate a cascade of hybridization events between two species of fluorescent DNA hairpin probes (H1*/H2*) to form a nicked double helical DNA structure, resulting in amplified accumulation of numerous fluorophores on the MBs. Finally, the fluorescent MBs are directly analyzed by flow cytometry. This technique enables quantitative analysis of the HCR products anchored on the MBs as a function of target DNA concentration, and analysis of each sample can be completed within few minutes. Therefore, the HCR-CBA approach provides a practical DNA assay with greatly improved sensitivity. The detection limit of a model DNA target is 0.5 pM (3σ), which is about 3 orders of magnitude lower compared with traditional hybridization methods without HCR. Furthermore, the signal of complementary target can be clearly distinguished from that of single-base mismatched sequences, indicating the high specificity of the HCR-CBA. Moreover, this strategy is also successfully applied to the DNA analysis in complex biological samples, showing great potential in gene analysis and disease diagnosis in clinical samples.

  1. GC-Rich DNA Fragments and Oxidized Cell-Free DNA Have Different Effects on NF-kB and NRF2 Signaling in MSC.

    PubMed

    Sergeeva, Vasilina A; Kostyuk, Svetlana V; Ershova, Elizaveta S; Malinovskaya, Elena M; Smirnova, Tatiana D; Kameneva, Larisa V; Veiko, Natalia N

    2016-01-01

    It has been established that cell-free DNA circulating in the bloodstream affects cells. The characteristics of cfDNA depend on the physiological state of the organism. As we showed previously, diseases can cause either GC-enrichment of the cell-free DNA pool or its oxidation. Thus, in cases of cerebral atherosclerosis, heart attack and rheumatic arthritis the cell-free DNA pool is GC-enriched and, in the case of cancer, both GC-enriched and oxidized. Herein we investigated the time-dependent effect of oxidized and GC-rich cell-free DNA on NF-kB and NRF2 signaling pathways in human mesenchymal stem cells and showed that they affect cells in different ways. Oxidized DNA drastically increases expression of NRF2 in a short period of time, but the effect does not last long. GC-rich DNA causes a prolonged increase in mRNA levels of NF-kB and NRF2 which lasts 48 and 24 h, respectively.

  2. DNA and protein co-administration induces tolerogenic dendritic cells through DC-SIGN mediated negative signals.

    PubMed

    Li, Jinyao; Geng, Shuang; Liu, Xiuping; Liu, Hu; Jin, Huali; Liu, Chang-Gong; Wang, Bin

    2013-10-01

    We previously demonstrated that DNA and protein co-administration induced differentiation of immature dendritic cells (iDCs) into CD11c(+)CD40(low)IL-10(+) regulatory DCs (DCregs) via the caveolin-1 (Cav-1) -mediated signal pathway. Here, we demonstrate that production of IL-10 and the low expression of CD40 play a critical role in the subsequent induction of regulatory T cells (Tregs) by the DCregs. We observed that DNA and protein were co-localized with DC-SIGN in caveolae and early lysosomes in the treated DCs, as indicated by co-localization with Cav-1 and EEA-1 compartment markers. DNA and protein also co-localized with LAMP-2. Gene-array analysis of gene expression showed that more than a thousand genes were significantly changed by the DC co-treatment with DNA + protein compared with controls. Notably, the level of DC-SIGN expression was dramatically upregulated in pOVA + OVA co-treated DCs. The expression levels of Rho and Rho GNEF, the down-stream molecules of DC-SIGN mediated signal pathway, were also greatly upregulated. Further, the level of TLR9, the traditional DNA receptor, was significantly downregulated. These results suggest that DC-SIGN as the potential receptor for DNA and protein might trigger the negative pathway to contribute the induction of DCreg combining with Cav-1 mediated negative signal pathway.

  3. Algorithmic-Reducibility = Renormalization-Group Fixed-Points; ``Noise''-Induced Phase-Transitions (NITs) to Accelerate Algorithmics (``NIT-Picking'') Replacing CRUTCHES!!!: Gauss Modular/Clock-Arithmetic Congruences = Signal X Noise PRODUCTS..

    NASA Astrophysics Data System (ADS)

    Siegel, J.; Siegel, Edward Carl-Ludwig

    2011-03-01

    Cook-Levin computational-"complexity"(C-C) algorithmic-equivalence reduction-theorem reducibility equivalence to renormalization-(semi)-group phase-transitions critical-phenomena statistical-physics universality-classes fixed-points, is exploited with Gauss modular/clock-arithmetic/model congruences = signal X noise PRODUCT reinterpretation. Siegel-Baez FUZZYICS=CATEGORYICS(SON of ``TRIZ''): Category-Semantics(C-S) tabular list-format truth-table matrix analytics predicts and implements "noise"-induced phase-transitions (NITs) to accelerate versus to decelerate Harel [Algorithmics(1987)]-Sipser[Intro. Theory Computation(1997) algorithmic C-C: "NIT-picking" to optimize optimization-problems optimally(OOPO). Versus iso-"noise" power-spectrum quantitative-only amplitude/magnitude-only variation stochastic-resonance, this "NIT-picking" is "noise" power-spectrum QUALitative-type variation via quantitative critical-exponents variation. Computer-"science" algorithmic C-C models: Turing-machine, finite-state-models/automata, are identified as early-days once-workable but NOW ONLY LIMITING CRUTCHES IMPEDING latter-days new-insights!!!

  4. Network-Physics (NP) BEC DIGITAL(#)-VULNERABILITY; ``Q-Computing"=Simple-Arithmetic;Modular-Congruences=SignalXNoise PRODUCTS=Clock-model;BEC-Factorization;RANDOM-# Definition;P=/=NP TRIVIAL Proof!!!

    NASA Astrophysics Data System (ADS)

    Pi, E. I.; Siegel, E.

    2010-03-01

    Siegel[AMS Natl.Mtg.(2002)-Abs.973-60-124] digits logarithmic- law inversion to ONLY BEQS BEC:Quanta/Bosons=#: EMP-like SEVERE VULNERABILITY of ONLY #-networks(VS.ANALOG INvulnerability) via Barabasi NP(VS.dynamics[Not.AMS(5/2009)] critique);(so called)``quantum-computing''(QC) = simple-arithmetic (sansdivision);algorithmiccomplexities:INtractibility/UNdecidabi lity/INefficiency/NONcomputability/HARDNESS(so MIScalled) ``noise''-induced-phase-transition(NIT)ACCELERATION:Cook-Levin theorem Reducibility = RG fixed-points; #-Randomness DEFINITION via WHAT? Query(VS. Goldreich[Not.AMS(2002)] How? mea culpa)= ONLY MBCS hot-plasma v #-clumping NON-random BEC; Modular-Arithmetic Congruences = Signal x Noise PRODUCTS = clock-model; NON-Shor[Physica A,341,586(04)]BEC logarithmic-law inversion factorization: Watkins #-theory U statistical- physics); P=/=NP C-S TRIVIAL Proof: Euclid!!! [(So Miscalled) computational-complexity J-O obviation(3 millennia AGO geometry: NO:CC,``CS'';``Feet of Clay!!!'']; Query WHAT?:Definition: (so MIScalled)``complexity''=UTTER-SIMPLICITY!! v COMPLICATEDNESS MEASURE(S).

  5. Mitochondrial DNA copy numbers in pyramidal neurons are decreased and mitochondrial biogenesis transcriptome signaling is disrupted in Alzheimer's disease hippocampi.

    PubMed

    Rice, Ann C; Keeney, Paula M; Algarzae, Norah K; Ladd, Amy C; Thomas, Ravindar R; Bennett, James P

    2014-01-01

    Alzheimer's disease (AD) is the major cause of adult-onset dementia and is characterized in its pre-diagnostic stage by reduced cerebral cortical glucose metabolism and in later stages by reduced cortical oxygen uptake, implying reduced mitochondrial respiration. Using quantitative PCR we determined the mitochondrial DNA (mtDNA) gene copy numbers from multiple groups of 15 or 20 pyramidal neurons, GFAP(+) astrocytes and dentate granule neurons isolated using laser capture microdissection, and the relative expression of mitochondrial biogenesis (mitobiogenesis) genes in hippocampi from 10 AD and 9 control (CTL) cases. AD pyramidal but not dentate granule neurons had significantly reduced mtDNA copy numbers compared to CTL neurons. Pyramidal neuron mtDNA copy numbers in CTL, but not AD, positively correlated with cDNA levels of multiple mitobiogenesis genes. In CTL, but not in AD, hippocampal cDNA levels of PGC1α were positively correlated with multiple downstream mitobiogenesis factors. Mitochondrial DNA copy numbers in pyramidal neurons did not correlate with hippocampal Aβ1-42 levels. After 48 h exposure of H9 human neural stem cells to the neurotoxic fragment Aβ25-35, mtDNA copy numbers were not significantly altered. In summary, AD postmortem hippocampal pyramidal neurons have reduced mtDNA copy numbers. Mitochondrial biogenesis pathway signaling relationships are disrupted in AD, but are mostly preserved in CTL. Our findings implicate complex alterations of mitochondria-host cell relationships in AD.

  6. IL-1α is a DNA damage sensor linking genotoxic stress signaling to sterile inflammation and innate immunity

    PubMed Central

    Idan, Cohen; Peleg, Rider; Elena, Voronov; Martin, Tomas; Cicerone, Tudor; Mareike, Wegner; Lydia, Brondani; Marina, Freudenberg; Gerhard, Mittler; Elisa, Ferrando-May; Dinarello, Charles A.; Ron, Apte N.; Robert, Schneider

    2015-01-01

    Environmental signals can be translated into chromatin changes, which alter gene expression. Here we report a novel concept that cells can signal chromatin damage from the nucleus back to the surrounding tissue through the cytokine interleukin-1alpha (IL-1α). Thus, in addition to its role as a danger signal, which occurs when the cytokine is passively released by cell necrosis, IL-1α could directly sense DNA damage and act as signal for genotoxic stress without loss of cell integrity. Here we demonstrate localization of the cytokine to DNA-damage sites and its subsequent secretion. Interestingly, its nucleo-cytosolic shuttling after DNA damage sensing is regulated by histone deacetylases (HDAC) and IL-1α acetylation. To demonstrate the physiological significance of this newly discovered mechanism, we used IL-1α knockout mice and show that IL-1α signaling after UV skin irradiation and DNA damage is important for triggering a sterile inflammatory cascade in vivo that contributes to efficient tissue repair and wound healing. PMID:26439902

  7. IL-1α is a DNA damage sensor linking genotoxic stress signaling to sterile inflammation and innate immunity.

    PubMed

    Cohen, Idan; Idan, Cohen; Rider, Peleg; Peleg, Rider; Vornov, Elena; Elena, Voronov; Tomas, Martin; Martin, Tomas; Tudor, Cicerone; Cicerone, Tudor; Wegner, Mareike; Mareike, Wegner; Brondani, Lydia; Lydia, Brondani; Freudenberg, Marina; Marina, Freudenberg; Mittler, Gerhard; Gerhard, Mittler; Ferrando-May, Elisa; Elisa, Ferrando-May; Dinarello, Charles A; Apte, Ron N; Ron, Apte N; Schneider, Robert; Robert, Schneider

    2015-10-06

    Environmental signals can be translated into chromatin changes, which alter gene expression. Here we report a novel concept that cells can signal chromatin damage from the nucleus back to the surrounding tissue through the cytokine interleukin-1alpha (IL-1α). Thus, in addition to its role as a danger signal, which occurs when the cytokine is passively released by cell necrosis, IL-1α could directly sense DNA damage and act as signal for genotoxic stress without loss of cell integrity. Here we demonstrate localization of the cytokine to DNA-damage sites and its subsequent secretion. Interestingly, its nucleo-cytosolic shuttling after DNA damage sensing is regulated by histone deacetylases (HDAC) and IL-1α acetylation. To demonstrate the physiological significance of this newly discovered mechanism, we used IL-1α knockout mice and show that IL-1α signaling after UV skin irradiation and DNA damage is important for triggering a sterile inflammatory cascade in vivo that contributes to efficient tissue repair and wound healing.

  8. Cleavable DNA-protein hybrid molecular beacon: A novel efficient signal translator for sensitive fluorescence anisotropy bioassay.

    PubMed

    Hu, Pan; Yang, Bin

    2016-01-15

    Due to its unique features such as high sensitivity, homogeneous format, and independence on fluorescent intensity, fluorescence anisotropy (FA) assay has become a hotspot of study in oligonucleotide-based bioassays. However, until now most FA probes require carefully customized structure designs, and thus are neither generalizable for different sensing systems nor effective to obtain sufficient signal response. To address this issue, a cleavable DNA-protein hybrid molecular beacon was successfully engineered for signal amplified FA bioassay, via combining the unique stable structure of molecular beacon and the large molecular mass of streptavidin. Compared with single DNA strand probe or conventional molecular beacon, the DNA-protein hybrid molecular beacon exhibited a much higher FA value, which was potential to obtain high signal-background ratio in sensing process. As proof-of-principle, this novel DNA-protein hybrid molecular beacon was further applied for FA bioassay using DNAzyme-Pb(2+) as a model sensing system. This FA assay approach could selectively detect as low as 0.5nM Pb(2+) in buffer solution, and also be successful for real samples analysis with good recovery values. Compatible with most of oligonucleotide probes' designs and enzyme-based signal amplification strategies, the molecular beacon can serve as a novel signal translator to expand the application prospect of FA technology in various bioassays. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Catalytic inhibitors of DNA topoisomerase II suppress the androgen receptor signaling and prostate cancer progression

    PubMed Central

    Li, Haolong; Xie, Ning; Gleave, Martin E.; Dong, Xuesen

    2015-01-01

    Although the new generation of androgen receptor (AR) antagonists like enzalutamide (ENZ) prolong survival of metastatic castration-resistant prostate cancer (CRPC), AR-driven tumors eventually recur indicating that additional therapies are required to fully block AR function. Since DNA topoisomerase II (Topo II) was demonstrated to be essential for AR to initiate gene transcription, this study tested whether catalytic inhibitors of Topo II can block AR signaling and suppress ENZ-resistant CRPC growth. Using multiple prostate cancer cell lines, we showed that catalytic Topo II inhibitors, ICRF187 and ICRF193 inhibited transcription activities of the wild-type AR, mutant ARs (F876L and W741C) and the AR-V7 splice variant. ICRF187 and ICRF193 decreased AR recruitment to target promoters and reduced AR nuclear localization. Both ICRF187 and ICRF193 also inhibited cell proliferation and delayed cell cycling at the G2/M phase. ICRF187 inhibited tumor growth of castration-resistant LNCaP and 22RV1 xenografts as well as ENZ-resistant MR49F xenografts. We conclude that catalytic Topo II inhibitors can block AR signaling and inhibit tumor growth of CRPC xenografts, identifying a potential co-targeting approach using these inhibitors in combination with AR pathway inhibitors in CRPC. PMID:26009876

  10. Effect of inserted spacer in hepatic cell-penetrating multifunctional peptide component on the DNA intracellular delivery of quaternary complexes based on modular design

    PubMed Central

    Zhang, Luchen; Li, Zhenbo; Sun, Fangli; Xu, Yuhong; Du, Zixiu

    2016-01-01

    A safe and efficient quaternary gene delivery system (named Q-complexes) was constructed based on self-assembly of molecules through noncovalent bonds. This system was formulated through the cooperation and competing interactions of cationic liposomes, multifunctional peptides, and DNA, followed by coating hyaluronic acid on the surface of the ternary complexes. The multifunctional peptide was composed of two functional domains: penetrating hepatic tumor-targeted cell moiety (KRPTMRFRYTWNPMK) and a wrapping gene sequence (polyarginine 16). The effect of spacer insertion between the two domains of multifunctional peptide on the intracellular transfection of Q-complexes was further studied. Experimental results showed that the formulations assembled with various peptides in the spacer elements possessed different intercellular pathways and transfection efficiencies. The Q-complexes containing peptide in the absence of spacer element (Pa) showed the highest gene expression among all samples. The Q-complexes containing peptides with a noncleavable spacer GA (Pc) had no ability of intracellular nucleic acid delivery, whereas those with a cleavable spacer RVRR (Pd) showed moderate transfection activity. These results demonstrated that the different spacers inserted in the multifunctional peptide played an important role in in vitro DNA transfection efficiency. Atomic force microscopy images showed that the morphologies of ternary complexes (LPcD) and Q-complexes (HLcPD) were crystal lamellas, whereas those of other nanocomplexes were spheres. Circular dichroism showed the changed configuration of peptide with spacer GA in nanocomplexes compared with that of its free state, whereas the Pa configuration without spacer in nanocomplexes was consistent with that of its free state. The present study contributed to the structural understanding of Q-complexes, and further effective modification is in progress. PMID:27920533

  11. Modular invariant inflation

    SciTech Connect

    Kobayashi, Tatsuo; Nitta, Daisuke; Urakawa, Yuko

    2016-08-08

    Modular invariance is a striking symmetry in string theory, which may keep stringy corrections under control. In this paper, we investigate a phenomenological consequence of the modular invariance, assuming that this symmetry is preserved as well as in a four dimensional (4D) low energy effective field theory. As a concrete setup, we consider a modulus field T whose contribution in the 4D effective field theory remains invariant under the modular transformation and study inflation drived by T. The modular invariance restricts a possible form of the scalar potenntial. As a result, large field models of inflation are hardly realized. Meanwhile, a small field model of inflation can be still accomodated in this restricted setup. The scalar potential traced during the slow-roll inflation mimics the hilltop potential V{sub ht}, but it also has a non-negligible deviation from V{sub ht}. Detecting the primordial gravitational waves predicted in this model is rather challenging. Yet, we argue that it may be still possible to falsify this model by combining the information in the reheating process which can be determined self-completely in this setup.

  12. Modular invariant gaugino condensation

    SciTech Connect

    Gaillard, M.K.

    1991-05-09

    The construction of effective supergravity lagrangians for gaugino condensation is reviewed and recent results are presented that are consistent with modular invariance and yield a positive definite potential of the noscale type. Possible implications for phenomenology are briefly discussed. 29 refs.

  13. Modular invariant inflation

    NASA Astrophysics Data System (ADS)

    Kobayashi, Tatsuo; Nitta, Daisuke; Urakawa, Yuko

    2016-08-01

    Modular invariance is a striking symmetry in string theory, which may keep stringy corrections under control. In this paper, we investigate a phenomenological consequence of the modular invariance, assuming that this symmetry is preserved as well as in a four dimensional (4D) low energy effective field theory. As a concrete setup, we consider a modulus field T whose contribution in the 4D effective field theory remains invariant under the modular transformation and study inflation drived by T. The modular invariance restricts a possible form of the scalar potenntial. As a result, large field models of inflation are hardly realized. Meanwhile, a small field model of inflation can be still accomodated in this restricted setup. The scalar potential traced during the slow-roll inflation mimics the hilltop potential Vht, but it also has a non-negligible deviation from Vht. Detecting the primordial gravitational waves predicted in this model is rather challenging. Yet, we argue that it may be still possible to falsify this model by combining the information in the reheating process which can be determined self-completely in this setup.

  14. A Modular CAI System.

    ERIC Educational Resources Information Center

    Van Der Mast, Charles

    The experimental CAI system which is being tested at Delft University of Technology is structured in a modular manner to account for high changeability. The concept formulated for this project was the outcome of research into technological, organizational, and educational developments in CAI, and the enumeration of the common aspects of the…

  15. Modular core holder

    SciTech Connect

    Mueller, J.; Cole, C.W.; Hamid, S.; Lucas, J.K.

    1991-03-05

    This patent describes a modular core holder. It comprises: a sleeve, forming an internal cavity for receiving a core. The sleeve including segments; support means, overlying the sleeve, for supporting the sleeve; and access means, positioned between at least two of the segments of the sleeve, for allowing measurement of conditions within the internal cavity.

  16. MRV - Modular Robotic Vehicle

    NASA Technical Reports Server (NTRS)

    Ridley, Justin; Bluethmann, Bill

    2015-01-01

    The Modular Robotic Vehicle, or MRV, completed in 2013, was developed at the Johnson Space Center in order to advance technologies which have applications for future vehicles both in space and on Earth. With seating for two people, MRV is a fully electric vehicle modeled as a "city car", suited for busy urban environments.

  17. Modular Perspectives on Bilingualism.

    ERIC Educational Resources Information Center

    Francis, Norbert

    2002-01-01

    This research review traces the current discussion on models of bilingualism to the contributions of Vygotsky and Luria. Proposes that a modular approach to studying the different aspects of bilingual development promises to chart a course toward finding a broader common ground around research findings and interpretations that appear to be…

  18. Modularity in robotic systems

    NASA Technical Reports Server (NTRS)

    Tesar, Delbert; Butler, Michael S.

    1989-01-01

    Most robotic systems today are designed one at a time, at a high cost of time and money. This wasteful approach has been necessary because the industry has not established a foundation for the continued evolution of intelligent machines. The next generation of robots will have to be generic, versatile machines capable of absorbing new technology rapidly and economically. This approach is demonstrated in the success of the personal computer, which can be upgraded or expanded with new software and hardware at virtually every level. Modularity is perceived as a major opportunity to reduce the 6 to 7 year design cycle time now required for new robotic manipulators, greatly increasing the breadth and speed of diffusion of robotic systems in manufacturing. Modularity and its crucial role in the next generation of intelligent machines are the focus of interest. The main advantages that modularity provides are examined; types of modules needed to create a generic robot are discussed. Structural modules designed by the robotics group at the University of Texas at Austin are examined to demonstrate the advantages of modular design.

  19. Modular, Multilayer Perceptron

    NASA Technical Reports Server (NTRS)

    Cheng, Li-Jen; Liu, Tsuen-Hsi

    1991-01-01

    Combination of proposed modular, multilayer perceptron and algorithm for its operation recognizes new objects after relatively brief retraining sessions. (Perceptron is multilayer, feedforward artificial neural network fully connected and trained via back-propagation learning algorithm.) Knowledge pertaining to each object to be recognized resides in subnetwork of full network, therefore not necessary to retrain full network to recognize each new object.

  20. DNA-PK triggers histone ubiquitination and signaling in response to DNA double-strand breaks produced during the repair of transcription-blocking topoisomerase I lesions.

    PubMed

    Cristini, Agnese; Park, Joon-Hyung; Capranico, Giovanni; Legube, Gaëlle; Favre, Gilles; Sordet, Olivier

    2016-02-18

    Although defective repair of DNA double-strand breaks (DSBs) leads to neurodegenerative diseases, the processes underlying their production and signaling in non-replicating cells are largely unknown. Stabilized topoisomerase I cleavage complexes (Top1cc) by natural compounds or common DNA alterations are transcription-blocking lesions whose repair depends primarily on Top1 proteolysis and excision by tyrosyl-DNA phosphodiesterase-1 (TDP1). We previously reported that stabilized Top1cc produce transcription-dependent DSBs that activate ATM in neurons. Here, we use camptothecin (CPT)-treated serum-starved quiescent cells to induce transcription-blocking Top1cc and show that those DSBs are generated during Top1cc repair from Top1 peptide-linked DNA single-strand breaks generated after Top1 proteolysis and before excision by TDP1. Following DSB induction, ATM activates DNA-PK whose inhibition suppresses H2AX and H2A ubiquitination and the later assembly of activated ATM into nuclear foci. Inhibition of DNA-PK also reduces Top1 ubiquitination and proteolysis as well as resumption of RNA synthesis suggesting that DSB signaling further enhances Top1cc repair. Finally, we show that co-transcriptional DSBs kill quiescent cells. Together, these new findings reveal that DSB production and signaling by transcription-blocking Top1 lesions impact on non-replicating cell fate and provide insights on the molecular pathogenesis of neurodegenerative diseases such as SCAN1 and AT syndromes, which are caused by TDP1 and ATM deficiency, respectively.

  1. Focal plane array with modular pixel array components for scalability

    SciTech Connect

    Kay, Randolph R; Campbell, David V; Shinde, Subhash L; Rienstra, Jeffrey L; Serkland, Darwin K; Holmes, Michael L

    2014-12-09

    A modular, scalable focal plane array is provided as an array of integrated circuit dice, wherein each die includes a given amount of modular pixel array circuitry. The array of dice effectively multiplies the amount of modular pixel array circuitry to produce a larger pixel array without increasing die size. Desired pixel pitch across the enlarged pixel array is preserved by forming die stacks with each pixel array circuitry die stacked on a separate die that contains the corresponding signal processing circuitry. Techniques for die stack interconnections and die stack placement are implemented to ensure that the desired pixel pitch is preserved across the enlarged pixel array.

  2. DNA Damage Signaling Is Required for Replication of Human Bocavirus 1 DNA in Dividing HEK293 Cells.

    PubMed

    Deng, Xuefeng; Xu, Peng; Zou, Wei; Shen, Weiran; Peng, Jianxin; Liu, Kaiyu; Engelhardt, John F; Yan, Ziying; Qiu, Jianming

    2017-01-01

    Human bocavirus 1 (HBoV1), an emerging human-pathogenic respiratory virus, is a member of the genus Bocaparvovirus of the Parvoviridae family. In human airway epithelium air-liquid interface (HAE-ALI) cultures, HBoV1 infection initiates a DNA damage response (DDR), activating all three phosphatidylinositol 3-kinase-related kinases (PI3KKs): ATM, ATR, and DNA-PKcs. In this context, activation of PI3KKs is a requirement for amplification of the HBoV1 genome (X. Deng, Z. Yan, F. Cheng, J. F. Engelhardt, and J. Qiu, PLoS Pathog, 12:e1005399, 2016, https://doi.org/10.1371/journal.ppat.1005399), and HBoV1 replicates only in terminally differentiated, nondividing cells. This report builds on the previous discovery that the replication of HBoV1 DNA can also occur in dividing HEK293 cells, demonstrating that such replication is likewise dependent on a DDR. Transfection of HEK293 cells with the duplex DNA genome of HBoV1 induces hallmarks of DDR, including phosphorylation of H2AX and RPA32, as well as activation of all three PI3KKs. The large viral nonstructural protein NS1 is sufficient to induce the DDR and the activation of the three PI3KKs. Pharmacological inhibition or knockdown of any one of the PI3KKs significantly decreases both the replication of HBoV1 DNA and the downstream production of progeny virions. The DDR induced by the HBoV1 NS1 protein does not cause obvious damage to cellular DNA or arrest of the cell cycle. Notably, key DNA replication factors and major DNA repair DNA polymerases (polymerase η [Pol η] and polymerase κ [Pol κ]) are recruited to the viral DNA replication centers and facilitate HBoV1 DNA replication. Our study provides the first evidence of the DDR-dependent parvovirus DNA replication that occurs in dividing cells and is independent of cell cycle arrest.

  3. Modular, bluetooth enabled, wireless electroencephalograph (EEG) platform.

    PubMed

    Lovelace, Joseph A; Witt, Tyler S; Beyette, Fred R

    2013-01-01

    A design for a modular, compact, and accurate wireless electroencephalograph (EEG) system is proposed. EEG is the only non-invasive measure for neuronal function of the brain. Using a number of digital signal processing (DSP) techniques, this neuronal function can be acquired and processed into meaningful representations of brain activity. The system described here utilizes Bluetooth to wirelessly transmit the digitized brain signal for an end application use. In this way, the system is portable, and modular in terms of the device to which it can interface. Brain Computer Interface (BCI) has become a popular extension of EEG systems in modern research. This design serves as a platform for applications using BCI capability.

  4. Triple targeting of Auger emitters using octreotate conjugated to a DNA-binding ligand and a nuclear localizing signal.

    PubMed

    Violet, John A; Farrugia, Gabriella; Skene, Colin; White, Jonathan; Lobachevsky, Pavel; Martin, Roger

    2016-11-01

    We investigated the effect of incorporation of a nuclear localization signal (NLS) into a conjugate comprising the DNA binding ligand para-iodoHoechst (PIH) and octreotate on its DNA binding and affinity to the somatostatin receptor (SSTR). Confirmation of these properties would support development of similar conjugates labelled with Auger emitters for their potential in Auger endoradiotherapy. We synthesized conjugates of PIH and octreotate (PO) or PIH and NLS (PN) and a conjugate comprising PIH, NLS and octreotate (PNO). DNA-binding characteristics of PIH and conjugates were assessed using synthetic DNA oligonucleotides employing spectrophotometric titration of ligand solutions with DNA. We used membranes from the type 2 SSTR (SSTR2) overexpressing human non-small cell lung cancer cell line A427-7 to investigate the binding affinity of PNO. We demonstrated PN and PNO retain specific high affinity DNA-binding properties observed for PIH, and acquire an additional non-specific binding capacity. No DNA binding was observed for PO. PNO retains its binding affinity for SSTR. The DNA-binding properties of PNO and its affinity for SSTR suggests that it could potentially be used for tumour-specific delivery of PIH labelled with an Auger emitter in SSTR expressing tumours.

  5. Post-translational modifications of proliferating cell nuclear antigen: A key signal integrator for DNA damage response (Review).

    PubMed

    Zhu, Qiong; Chang, Yuxiao; Yang, Jin; Wei, Quanfang

    2014-05-01

    Previous studies have shown that the post-translational modifications of proliferating cell nuclear antigen (PCNA) may be crucial in influencing the cellular choice between different pathways, such as the cell cycle checkpoint, DNA repair or apoptosis pathways, in order to maintain genomic stability. DNA damage leads to replication stress and the subsequent induction of PCNA modification by small ubiquitin (Ub)-related modifiers and Ub, which has been identified to affect multiple biological processes of genomic DNA. Thus far, much has been learned concerning the behavior of modified PCNA as a key signal integrator in response to DNA damage. In humans and yeast, modified PCNA activates DNA damage bypass via an error-prone or error-free pathway to prevent the breakage of DNA replication forks, which may potentially induce double-strand breaks and subsequent chromosomal rearrangements. However, the exact mechanisms by which these pathways work and by what means the modified PCNA is involved in these processes remain elusive. Thus, the improved understanding of PCNA modification and its implications for DNA damage response may provide us with more insight into the mechanisms by which human cells regulate aberrant recombination events, and cancer initiation and development. The present review focuses on the post-translational modifications of PCNA and its important functions in mediating mammalian cellular response to different types of DNA damage.

  6. Direct visualization of the reaction transformation and signal amplification in a DNA molecular machine with total internal reflection fluorescence microscopy

    PubMed Central

    Ren, Rui; Wang, Haiyan; Liu, Rui; Zhang, Shusheng

    2013-01-01

    In this study, as a proof of concept, the signal amplification in an artificial DNA molecular machine was directly visualized via total internal reflection fluorescence microscopy (TIRFM). The molecular machine brought about obvious morphology change in DNA nanostructures as well as signal amplifications. On one hand, through a triggered and autonomically repeated RCA, a DNA nano-complex featuring a “locked” circular DNA template (serving as raw feed) was converted into a long periodically repeated strand, i.e., the RCA products. On the other hand, this RCA was repeated in three controllable reaction phases, bring about progressive signal amplification. It was testified that the RCA products (presented as long thread-like fluorescent objects) can be easily distinguished from the inputted DNA probes (presented as fluorescent dots), thus the transformation in reaction can be visualized. Also, by quantitive counting of the aforementioned fluorescence objects, the progress of the reaction through the phases, along with time, and over the lysozyme concentration can be demonstrated through TIRFM visualization. Overall, it was demonstrated that TIRFM is an efficient approach to quantitatively visualize the biochemical processes at single-molecule level. PMID:24790951

  7. An integrative model links multiple inputs and signaling pathways to the onset of DNA synthesis in hepatocytes

    PubMed Central

    Huard, Jérémy; Mueller, Stephanie; Gilles, Ernst D; Klingmüller, Ursula; Klamt, Steffen

    2012-01-01

    During liver regeneration, quiescent hepatocytes re-enter the cell cycle to proliferate and compensate for lost tissue. Multiple signals including hepatocyte growth factor, epidermal growth factor, tumor necrosis factor α, interleukin-6, insulin and transforming growth factor β orchestrate these responses and are integrated during the G1 phase of the cell cycle. To investigate how these inputs influence DNA synthesis as a measure for proliferation, we established a large-scale integrated logical model connecting multiple signaling pathways and the cell cycle. We constructed our model based upon established literature knowledge, and successively improved and validated its structure using hepatocyte-specific literature as well as experimental DNA synthesis data. Model analyses showed that activation of the mitogen-activated protein kinase and phosphatidylinositol 3-kinase pathways was sufficient and necessary for triggering DNA synthesis. In addition, we identified key species in these pathways that mediate DNA replication. Our model predicted oncogenic mutations that were compared with the COSMIC database, and proposed intervention targets to block hepatocyte growth factor-induced DNA synthesis, which we validated experimentally. Our integrative approach demonstrates that, despite the complexity and size of the underlying interlaced network, logical modeling enables an integrative understanding of signaling-controlled proliferation at the cellular level, and thus can provide intervention strategies for distinct perturbation scenarios at various regulatory levels. PMID:22443451

  8. NF-kappaB activation by camptothecin. A linkage between nuclear DNA damage and cytoplasmic signaling events.

    PubMed

    Huang, T T; Wuerzberger-Davis, S M; Seufzer, B J; Shumway, S D; Kurama, T; Boothman, D A; Miyamoto, S

    2000-03-31

    Activation of the transcription factor NF-kappaB by extracellular signals involves its release from the inhibitor protein IkappaBalpha in the cytoplasm and subsequent nuclear translocation. NF-kappaB can also be activated by the anticancer agent camptothecin (CPT), which inhibits DNA topoisomerase (Topo) I activity and causes DNA double-strand breaks during DNA replication to induce S phase-dependent cytotoxicity. Here we show that CPT activates NF-kappaB by a mechanism that is dependent on initial nuclear DNA damage followed by cytoplasmic signaling events. NF-kappaB activation by CPT is dramatically diminished in cytoplasts and in CEM/C2 cells expressing a mutant Topo I protein that fails to bind CPT. This response is intensified in S phase cell populations and is prevented by the DNA polymerase inhibitor aphidicolin. In addition, CPT activation of NF-kappaB involves degradation of cytoplasmic IkappaBalpha by the ubiquitin-proteasome pathway in a manner that depends on the IkappaB kinase complex. Finally, inhibition of NF-kappaB activation augments CPT-induced apoptosis. These findings elucidate the progression of signaling events that initiates in the nucleus with CPT-Topo I interaction and continues in the cytoplasm resulting in degradation of IkappaBalpha and nuclear translocation of NF-kappaB to attenuate the apoptotic response.

  9. Direct visualization of the reaction transformation and signal amplification in a DNA molecular machine with total internal reflection fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Ren, Rui; Wang, Haiyan; Liu, Rui; Zhang, Shusheng

    2013-10-01

    In this study, as a proof of concept, the signal amplification in an artificial DNA molecular machine was directly visualized via total internal reflection fluorescence microscopy (TIRFM). The molecular machine brought about obvious morphology change in DNA nanostructures as well as signal amplifications. On one hand, through a triggered and autonomically repeated RCA, a DNA nano-complex featuring a “locked” circular DNA template (serving as raw feed) was converted into a long periodically repeated strand, i.e. the RCA products. Furthermore, this RCA was repeated in three controllable reaction phases, bring about progressive signal amplification. It was testified that the RCA products (presented as long thread-like fluorescent objects) can be easily distinguished from the inputted DNA probes (presented as fluorescent dots), thus the transformation in reaction can be visualized. Also, by quantitive counting of the aforementioned fluorescence objects, the progress of the reaction through the phases, along with time, and over the lysozyme concentration can be demonstrated through TIRFM visualization. Overall, it was demonstrated that TIRFM is an efficient approach to quantitively visualize the biochemical processes at single-molecule level.

  10. Porcine bocavirus NP1 negatively regulates interferon signaling pathway by targeting the DNA-binding domain of IRF9

    SciTech Connect

    Zhang, Ruoxi; Fang, Liurong; Wang, Dang; Cai, Kaimei; Zhang, Huan; Xie, Lilan; Li, Yi; Chen, Huanchun; Xiao, Shaobo

    2015-11-15

    To subvert host antiviral immune responses, many viruses have evolved countermeasures to inhibit IFN signaling pathway. Porcine bocavirus (PBoV), a newly identified porcine parvovirus, has received attention because it shows clinically high co-infection prevalence with other pathogens in post-weaning multisystemic wasting syndrome (PWMS) and diarrheic piglets. In this study, we screened the structural and non-structural proteins encoded by PBoV and found that the non-structural protein NP1 significantly suppressed IFN-stimulated response element (ISRE) activity and subsequent IFN-stimulated gene (ISG) expression. However, NP1 affected neither the activation and translocation of STAT1/STAT2, nor the formation of the heterotrimeric transcription factor complex ISGF3 (STAT1/STAT2/IRF9). Detailed analysis demonstrated that PBoV NP1 blocked the ISGF3 DNA-binding activity by combining with the DNA-binding domain (DBD) of IRF9. In summary, these results indicate that PBoV NP1 interferes with type I IFN signaling pathway by blocking DNA binding of ISGF3 to attenuate innate immune responses. - Highlights: • Porcine bocavirus (PBoV) NP1 interferes with the IFN α/β signaling pathway. • PBoV NP1 does not prevent STAT1/STAT2 phosphorylation and nuclear translocation. • PBoV NP1 inhibits the DNA-binding activity of ISGF3. • PBoV NP1 interacts with the DNA-binding domain of IRF9.

  11. Radiocontrast media affect radiation-induced DNA damage repair in vitro and in vivo by affecting Akt signalling.

    PubMed

    Toulany, Mahmoud; Kehlbach, Rainer; Rodemann, H Peter; Mozdarani, Hossein

    2010-01-01

    The study was performed to investigate cytogenetic effects of ionic and non-ionic radiocontrast media (RCM) meglumine, iohexol alone and in combination with irradiation in mouse bone marrow cells in vivo and in vitro. Micronuclei assay was performed in bone marrow cells (BMC) of Balb/C mice intraperitoneally injected with RCM in the presence or absence of whole-body irradiation of 50 mGy. DNA repair (NHEJ) signalling and efficiency were analyzed by Western blot and gammaH2AX-foci assay in normal fibroblast HSF-7 and HUVEC cells. Both compounds reduced proliferation of BMC significantly. Concentrations of 0.5, 1 and 2 ml/kg meglumine or iohexol significantly enhanced the frequency of micronucleated polychromatic erythrocytes (MnPCEs) at all doses of meglumine (p<0.01) and 2 ml/kg of iohexol (p<0.05). Combined with irradiation meglumine at 0.5 and 1 ml/kg led to a higher frequency of MnPCEs than iohexol/IR (p<0.05). Meglumine induced DNA-double strand breaks (DNA-DSB) in non-irradiated HSF and strongly increased residual DNA-DSB within 10 min to 24h after irradiation with 200 or 400 mGy (p<0.001). Iohexol did not induce DNA-DSB but blocked repair of radiation-induced DNA-DSB significantly (p<0.05). Meglumine blocked IR-induced Akt phosphorylation, phosphorylation of DNA-PKcs (S2056, T2609) and ATM (S1981). Iohexol only blocked phosphorylation of Akt and DNA-PKcs at S2056. RCM result in clastogenic effects through interference intracellular signalling cascades involved in the regulation of non-homologous end-joining repair of DNA-DSB. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  12. DNA Damage Signaling Is Induced in the Absence of Epstein-Barr Virus (EBV) Lytic DNA Replication and in Response to Expression of ZEBRA.

    PubMed

    Wang'ondu, Ruth; Teal, Stuart; Park, Richard; Heston, Lee; Delecluse, Henri; Miller, George

    2015-01-01

    Epstein Barr virus (EBV), like other oncogenic viruses, modulates the activity of cellular DNA damage responses (DDR) during its life cycle. Our aim was to characterize the role of early lytic proteins and viral lytic DNA replication in activation of DNA damage signaling during the EBV lytic cycle. Our data challenge the prevalent hypothesis that activation of DDR pathways during the EBV lytic cycle occurs solely in response to large amounts of exogenous double stranded DNA products generated during lytic viral DNA replication. In immunofluorescence or immunoblot assays, DDR activation markers, specifically phosphorylated ATM (pATM), H2AX (γH2AX), or 53BP1 (p53BP1), were induced in the presence or absence of viral DNA amplification or replication compartments during the EBV lytic cycle. In assays with an ATM inhibitor and DNA damaging reagents in Burkitt lymphoma cell lines, γH2AX induction was necessary for optimal expression of early EBV genes, but not sufficient for lytic reactivation. Studies in lytically reactivated EBV-positive cells in which early EBV proteins, BGLF4, BGLF5, or BALF2, were not expressed showed that these proteins were not necessary for DDR activation during the EBV lytic cycle. Expression of ZEBRA, a viral protein that is necessary for EBV entry into the lytic phase, induced pATM foci and γH2AX independent of other EBV gene products. ZEBRA mutants deficient in DNA binding, Z(R183E) and Z(S186E), did not induce foci of pATM. ZEBRA co-localized with HP1β, a heterochromatin associated protein involved in DNA damage signaling. We propose a model of DDR activation during the EBV lytic cycle in which ZEBRA induces ATM kinase phosphorylation, in a DNA binding dependent manner, to modulate gene expression. ATM and H2AX phosphorylation induced prior to EBV replication may be critical for creating a microenvironment of viral and cellular gene expression that enables lytic cycle progression.

  13. A calmodulin-binding/CGCG box DNA-binding protein family involved in multiple signaling pathways in plants

    NASA Technical Reports Server (NTRS)

    Yang, Tianbao; Poovaiah, B. W.

    2002-01-01

    We reported earlier that the tobacco early ethylene-responsive gene NtER1 encodes a calmodulin-binding protein (Yang, T., and Poovaiah, B. W. (2000) J. Biol. Chem. 275, 38467-38473). Here we demonstrate that there is one NtER1 homolog as well as five related genes in Arabidopsis. These six genes are rapidly and differentially induced by environmental signals such as temperature extremes, UVB, salt, and wounding; hormones such as ethylene and abscisic acid; and signal molecules such as methyl jasmonate, H(2)O(2), and salicylic acid. Hence, they were designated as AtSR1-6 (Arabidopsis thaliana signal-responsive genes). Ca(2+)/calmodulin binds to all AtSRs, and their calmodulin-binding regions are located on a conserved basic amphiphilic alpha-helical motif in the C terminus. AtSR1 targets the nucleus and specifically recognizes a novel 6-bp CGCG box (A/C/G)CGCG(G/T/C). The multiple CGCG cis-elements are found in promoters of genes such as those involved in ethylene signaling, abscisic acid signaling, and light signal perception. The DNA-binding domain in AtSR1 is located on the N-terminal 146 bp where all AtSR1-related proteins share high similarity but have no similarity to other known DNA-binding proteins. The calmodulin-binding nuclear proteins isolated from wounded leaves exhibit specific CGCG box DNA binding activities. These results suggest that the AtSR gene family encodes a family of calmodulin-binding/DNA-binding proteins involved in multiple signal transduction pathways in plants.

  14. A calmodulin-binding/CGCG box DNA-binding protein family involved in multiple signaling pathways in plants

    NASA Technical Reports Server (NTRS)

    Yang, Tianbao; Poovaiah, B. W.

    2002-01-01

    We reported earlier that the tobacco early ethylene-responsive gene NtER1 encodes a calmodulin-binding protein (Yang, T., and Poovaiah, B. W. (2000) J. Biol. Chem. 275, 38467-38473). Here we demonstrate that there is one NtER1 homolog as well as five related genes in Arabidopsis. These six genes are rapidly and differentially induced by environmental signals such as temperature extremes, UVB, salt, and wounding; hormones such as ethylene and abscisic acid; and signal molecules such as methyl jasmonate, H(2)O(2), and salicylic acid. Hence, they were designated as AtSR1-6 (Arabidopsis thaliana signal-responsive genes). Ca(2+)/calmodulin binds to all AtSRs, and their calmodulin-binding regions are located on a conserved basic amphiphilic alpha-helical motif in the C terminus. AtSR1 targets the nucleus and specifically recognizes a novel 6-bp CGCG box (A/C/G)CGCG(G/T/C). The multiple CGCG cis-elements are found in promoters of genes such as those involved in ethylene signaling, abscisic acid signaling, and light signal perception. The DNA-binding domain in AtSR1 is located on the N-terminal 146 bp where all AtSR1-related proteins share high similarity but have no similarity to other known DNA-binding proteins. The calmodulin-binding nuclear proteins isolated from wounded leaves exhibit specific CGCG box DNA binding activities. These results suggest that the AtSR gene family encodes a family of calmodulin-binding/DNA-binding proteins involved in multiple signal transduction pathways in plants.

  15. A Low-Noise, Modular, and Versatile Analog Front-End Intended for Processing In Vitro Neuronal Signals Detected by Microelectrode Arrays

    PubMed Central

    Regalia, Giulia; Biffi, Emilia; Ferrigno, Giancarlo; Pedrocchi, Alessandra

    2015-01-01

    The collection of good quality extracellular neuronal spikes from neuronal cultures coupled to Microelectrode Arrays (MEAs) is a binding requirement to gather reliable data. Due to physical constraints, low power requirement, or the need of customizability, commercial recording platforms are not fully adequate for the development of experimental setups integrating MEA technology with other equipment needed to perform experiments under climate controlled conditions, like environmental chambers or cell culture incubators. To address this issue, we developed a custom MEA interfacing system featuring low noise, low power, and the capability to be readily integrated inside an incubator-like environment. Two stages, a preamplifier and a filter amplifier, were designed, implemented on printed circuit boards, and tested. The system is characterized by a low input-referred noise (<1 μV RMS), a high channel separation (>70 dB), and signal-to-noise ratio values of neuronal recordings comparable to those obtained with the benchmark commercial MEA system. In addition, the system was successfully integrated with an environmental MEA chamber, without harming cell cultures during experiments and without being damaged by the high humidity level. The devised system is of practical value in the development of in vitro platforms to study temporally extended neuronal network dynamics by means of MEAs. PMID:25977683

  16. Design and characterization of a mixed-signal PCB for digital-to-analog conversion in a modular and scalable infrared scene projector

    NASA Astrophysics Data System (ADS)

    Benedict, Jacob

    Infra-red (IR) sensors have proven instrumental in a wide variety of fields from military to industrial applications. The proliferation of IR sensors has spawned an intense push for technologies that can test and calibrate the multitudes of IR sensors. One such technology, IR scene projection (IRSP), provides an inexpensive and safe method for the testing of IR sensor devices. Previous efforts have been conducted to develop IRSPs based on super-lattice light emitting diodes (SLEDS). A single-color 512x512 SLEDs system has been developed, produced, and tested as documented in Corey Lange's Master's thesis, and a GOMAC paper by Rodney McGee [1][2]. Current efforts are being undergone to develop a two-color 512x512 SLEDs system designated (TCSA). The following thesis discusses the design and implementation of a custom printed circuit board (PCB), known as the FMC 4DAC, that contains both analog and digital signals. Utilizing two 16-bit digital-to-analog converters (DAC) the purpose of the board is to provide four analog current output channels for driving the TCSA system to a maximum frame rate of 1 kHz. In addition, the board supports a scalable TCSA system architecture. Several copies of the board can be run in parallel to achieve a range of analog channels between 4 and 32.

  17. Sensitive detection for coralyne and mercury ions based on homo-A/T DNA by exonuclease signal amplification.

    PubMed

    Huang, Hailiang; Shi, Shuo; Zheng, Xuyue; Yao, Tianming

    2015-09-15

    Based on specific homo-A/T DNA binding properties, a strategy for coralyne and mercury ions detection was realised by exonuclease-aided signal amplification. Coralyne could specifically bind homo-A DNA and protect it from the hydrolysis of exonuclease I. The coralyne-protected DNA was subsequently used as a trigger strand to hydrolyze DNA2 in exonuclease-aided signal amplification process. Thiazole orange was used to quantify the remainder DNA2. Under the optimal condition, the fluorescence intensity was linearly proportional to the concentration of coralyne in the range of 0.2-100 nM with a limit of detection (LOD) of 0.31 nM, which presented the lowest LOD for coralyne among all reported. With homo-T and Hg(2+) taking the place of homo-A DNA and coralyne, respectively, the system could also be used for Hg(2+) detection. The experiments in real samples also showed good results. This method was label-free, low-cost, easy-operating and highly repeatable for the detection of coralyne and mercury ions. It could also be extended to detect various analytes, such as other metal ions, proteins and small molecules by using appropriate aptamers. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Role of Akt signaling in resistance to DNA-targeted therapy

    PubMed Central

    Avan, Abolfazl; Narayan, Ravi; Giovannetti, Elisa; Peters, Godefridus J

    2016-01-01

    The Akt signal transduction pathway controls most hallmarks of cancer. Activation of the Akt cascade promotes a malignant phenotype and is also widely implicated in drug resistance. Therefore, the modulation of Akt activity is regarded as an attractive strategy to enhance the efficacy of cancer therapy and irradiation. This pathway consists of phosphatidylinositol 3 kinase (PI3K), mammalian target of rapamycin, and the transforming serine-threonine kinase Akt protein isoforms, also known as protein kinase B. DNA-targeted agents, such as platinum agents, taxanes, and antimetabolites, as well as radiation have had a significant impact on cancer treatment by affecting DNA replication, which is aberrantly activated in malignancies. However, the caveat is that they may also trigger the activation of repairing mechanisms, such as upstream and downstream cascade of Akt survival pathway. Thus, each target can theoretically be inhibited in view of improving the potency of conventional treatment. Akt inhibitors, e.g., MK-2206 and perifosine, or PI3K modulators, e.g., LY294002 and Wortmannin, have shown some promising results in favor of sensitizing the cancer cells to the therapy in vitro and in vivo, which have provided the rationale for incorporation of these novel agents into multimodality treatment of different malignancies. Nevertheless, despite the acceptable safety profile of some of these agents in the clinical studies, with regard to the efficacy, the results are still too preliminary. Hence, we need to wait for the upcoming data from the ongoing trials before utilizing them into the standard care of cancer patients. PMID:27777878

  19. Biosynthetic Modularity Rules in the Bisintercalator Family of Antitumor Compounds

    PubMed Central

    Fernández, Javier; Marín, Laura; Álvarez-Alonso, Raquel; Redondo, Saúl; Carvajal, Juan; Villamizar, Germán; Villar, Claudio J.; Lombó, Felipe

    2014-01-01

    Diverse actinomycetes produce a family of structurally and biosynthetically related non-ribosomal peptide compounds which belong to the chromodepsipeptide family. These compounds act as bisintercalators into the DNA helix. They give rise to antitumor, antiparasitic, antibacterial and antiviral bioactivities. These compounds show a high degree of conserved modularity (chromophores, number and type of amino acids). This modularity and their high sequence similarities at the genetic level imply a common biosynthetic origin for these pathways. Here, we describe insights about rules governing this modular biosynthesis, taking advantage of the fact that nowadays five of these gene clusters have been made public (thiocoraline, triostin, SW-163 and echinomycin/quinomycin). This modularity has potential application for designing and producing novel genetic engineered derivatives, as well as for developing new chemical synthesis strategies. These would facilitate their clinical development. PMID:24821625

  20. Expression, purification, crystallization and preliminary X-ray diffraction analysis of the novel modular DNA-binding protein BurrH in its apo form and in complex with its target DNA.

    PubMed

    Stella, Stefano; Molina, Rafael; Bertonatti, Claudia; Juillerrat, Alexandre; Montoya, Guillermo

    2014-01-01

    Different genome-editing strategies have fuelled the development of new DNA-targeting molecular tools allowing precise gene modifications. Here, the expression, purification, crystallization and preliminary X-ray diffraction of BurrH, a novel DNA-binding protein from Burkholderia rhizoxinica, are reported. Crystallization experiments of BurrH in its apo form and in complex with its target DNA yielded crystals suitable for X-ray diffraction analysis. The crystals of the apo form belonged to the primitive hexagonal space group P3(1) or its enantiomorph P3(2), with unit-cell parameters a = b = 73.28, c = 268.02 Å, α = β = 90, γ = 120°. The BurrH-DNA complex crystallized in the monoclinic space group P2(1), with unit-cell parameters a = 70.15, b = 95.83, c = 76.41 Å, α = γ = 90, β = 109.51°. The self-rotation function and the Matthews coefficient suggested the presence of two protein molecules per asymmetric unit in the apo crystals and one protein-DNA complex in the monoclinic crystals. The crystals diffracted to resolution limits of 2.21 and 2.65 Å, respectively, using synchrotron radiation.

  1. Regulation of DNA-end resection by hnRNPU-like proteins promotes DNA double-strand break signaling and repair

    PubMed Central

    Polo, Sophie E.; Blackford, Andrew N.; Chapman, J. Ross; Baskcomb, Linda; Gravel, Serge; Rusch, Andre; Thomas, Anoushka; Blundred, Rachel; Smith, Philippa; Kzhyshkowska, Julia; Dobner, Thomas; Taylor, A. Malcolm R.; Turnell, Andrew S.; Stewart, Grant S.; Grand, Roger J.; Jackson, Stephen P.

    2013-01-01

    Summary DNA double-strand break (DSB) signaling and repair are critical for cell viability, and rely on highly coordinated pathways whose molecular organization is still incompletely understood. Here, we show that heterogeneous nuclear ribonucleoprotein U-like (hnRNPUL) proteins 1 and 2 play key roles in cellular responses to DSBs. We identify human hnRNPUL1 and 2 as binding partners for the DSB sensor complex MRE11-RAD50-NBS1 (MRN) and demonstrate that hnRNPUL1 and 2 are recruited to DNA damage in an interdependent manner that requires MRN. Moreover, we show that hnRNPUL1 and 2 stimulate DNA-end resection and promote ATR-dependent signaling and DSB repair by homologous recombination, thereby contributing to cell survival upon exposure to DSB-inducing agents. Finally, we establish that hnRNPUL1 and 2 function downstream of MRN and CtBP-interacting protein (CtIP) to promote recruitment of the BLM helicase to DNA breaks. Collectively, these results provide insights into how mammalian cells respond to DSBs. PMID:22365830

  2. Regulation of DNA-end resection by hnRNPU-like proteins promotes DNA double-strand break signaling and repair.

    PubMed

    Polo, Sophie E; Blackford, Andrew N; Chapman, J Ross; Baskcomb, Linda; Gravel, Serge; Rusch, Andre; Thomas, Anoushka; Blundred, Rachel; Smith, Philippa; Kzhyshkowska, Julia; Dobner, Thomas; Taylor, A Malcolm R; Turnell, Andrew S; Stewart, Grant S; Grand, Roger J; Jackson, Stephen P

    2012-02-24

    DNA double-strand break (DSB) signaling and repair are critical for cell viability, and rely on highly coordinated pathways whose molecular organization is still incompletely understood. Here, we show that heterogeneous nuclear ribonucleoprotein U-like (hnRNPUL) proteins 1 and 2 play key roles in cellular responses to DSBs. We identify human hnRNPUL1 and -2 as binding partners for the DSB sensor complex MRE11-RAD50-NBS1 (MRN) and demonstrate that hnRNPUL1 and -2 are recruited to DNA damage in an interdependent manner that requires MRN. Moreover, we show that hnRNPUL1 and -2 stimulate DNA-end resection and promote ATR-dependent signaling and DSB repair by homologous recombination, thereby contributing to cell survival upon exposure to DSB-inducing agents. Finally, we establish that hnRNPUL1 and -2 function downstream of MRN and CtBP-interacting protein (CtIP) to promote recruitment of the BLM helicase to DNA breaks. Collectively, these results provide insights into how mammalian cells respond to DSBs.

  3. Physalin H from Solanum nigrum as an Hh signaling inhibitor blocks GLI1-DNA-complex formation.

    PubMed

    Arai, Midori A; Uchida, Kyoko; Sadhu, Samir K; Ahmed, Firoj; Ishibashi, Masami

    2014-01-13

    Hedgehog (Hh) signaling plays an important role in embryonic development, cell maintenance and cell proliferation. Moreover, Hh signaling contributes to the growth of cancer cells. Physalins are highly oxidized natural products with a complex structure. Physalins (1-7) were isolated from Solanum nigrum (Solanaceae) collected in Bangladesh by using our cell-based assay. The isolated physalins included the previously reported Hh inhibitors 5 and 6. Compounds 1 and 4 showed strong inhibition of GLI1 transcriptional activity, and exhibited cytotoxicity against cancer cell lines with an aberrant activation of Hh signaling. Compound 1 inhibited the production of the Hh-related proteins patched (PTCH) and BCL2. Analysis of the structures of different physalins showed that the left part of the physalins was important for Hh inhibitory activity. Interestingly, physalin H (1) disrupted GLI1 binding to its DNA binding domain, while the weak inhibitor physalin G (2) did not show inhibition of GLI1-DNA complex formation.

  4. Modular reflector concept study

    NASA Astrophysics Data System (ADS)

    Vaughan, D. H.

    1981-02-01

    The feasibility was studied of constructing large space structures, specifically a 100 meter paraboloidal R.F. reflector, by individually deploying a number of relatively small structural modules, and then joining them to form a single large structure in orbit. The advantage of this approach is that feasibility of a large antenna may be demonstrated by ground and flight tests of several smaller and less costly subelements. Thus, initial development costs are substantially reduced and a high degree of reliability can be obtained without commitment to construction of a very large system. The three candidate structural concepts investigated are: (1) the deployable cell module; (2) the paraboloidal extendable truss antenna adapted to modular assembly; and (3) the modular extendable truss antenna (META).

  5. Modular space station

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The modular space station comprising small, shuttle-launched modules, and characterized by low initial cost and incremental manning, is described. The initial space station is designed to be delivered into orbit by three space shuttles and assembled in space. The three sections are the power/subsystems module, the crew/operations module, and the general purpose laboratory module. It provides for a crew of six. Subsequently duplicate/crew/operations and power/subsystems modules will be mated to the original modules, and provide for an additional six crewmen. A total of 17 research and applications modules is planned, three of which will be free-flying modules. Details are given on the program plan, modular characteristics, logistics, experiment support capability and requirements, operations analysis, design support analyses, and shuttle interfaces.

  6. ATIS - A modular approach

    NASA Astrophysics Data System (ADS)

    Kirson, Allan

    The author describes a modular approach to the design of an in-vehicle navigation and route guidance system that supports a phased implementation of the technology, and anticipates expected differences in implementation in different parts of the world and for different makes and models of vehicle. A series of sensors in the vehicle are used to determine the vehicle's position by dead reckoning and map-matching. The system then calculates the best route to the selected destination, taking into account the real-time traffic information received from a traffic management center, and presents route guidance instructions to the user as the route is traversed. Attention is given to modularity considerations, vehicle positioning, driver support, vehicle-to-infrastructure communications, and the role of standards.

  7. Modular reflector concept study

    NASA Technical Reports Server (NTRS)

    Vaughan, D. H.

    1981-01-01

    The feasibility was studied of constructing large space structures, specifically a 100 meter paraboloidal R.F. reflector, by individually deploying a number of relatively small structural modules, and then joining them to form a single large structure in orbit. The advantage of this approach is that feasibility of a large antenna may be demonstrated by ground and flight tests of several smaller and less costly subelements. Thus, initial development costs are substantially reduced and a high degree of reliability can be obtained without commitment to construction of a very large system. The three candidate structural concepts investigated are: (1) the deployable cell module; (2) the paraboloidal extendable truss antenna adapted to modular assembly; and (3) the modular extendable truss antenna (META).

  8. Potential anti-aging agents suppress the level of constitutive mTOR- and DNA damage- signaling.

    PubMed

    Halicka, H Dorota; Zhao, Hong; Li, Jiangwei; Lee, Yong-Syu; Hsieh, Tze-Chen; Wu, Joseph M; Darzynkiewicz, Zbigniew

    2012-12-01

    Two different mechanisms are considered to be the primary cause of aging. Cumulative DNA damage caused by reactive oxygen species (ROS), the by-products of oxidative phosphorylation, is one of these mechanisms (ROS concept). Constitutive stimulation of mitogen- and nutrient-sensing mTOR/S6 signaling is the second mechanism (TOR concept). The flow- and laser scanning- cytometric methods were developed to measure the level of the constitutive DNA damage/ROS- as well as of mTOR/S6- signaling in individual cells. Specifically, persistent activation of ATM and expression of γH2AX in untreated cells appears to report constitutive DNA damage induced by endogenous ROS. The level of phosphorylation of Ser235/236-ribosomal protein (RP), of Ser2448-mTOR and of Ser65-4EBP1, informs on constitutive signaling along the mTOR/S6 pathway. Potential gero-suppressive agents rapamycin, metformin, 2-deoxyglucose, berberine, resveratrol, vitamin D3 and aspirin, all decreased the level of constitutive DNA damage signaling as seen by the reduced expression of γH2AX in proliferating A549, TK6, WI-38 cells and in mitogenically stimulated human lymphocytes. They all also decreased the level of intracellular ROS and mitochondrial trans-membrane potential ΔΨm, the marker of mitochondrial energizing as well as reduced phosphorylation of mTOR, RP-S6 and 4EBP1. The most effective was rapamycin. Although the primary target of each on these agents may be different the data are consistent with the downstream mechanism in which the decline in mTOR/S6K signaling and translation rate is coupled with a decrease in oxidative phosphorylation, (revealed by ΔΨm) that leads to reduction of ROS and oxidative DNA damage. The decreased rate of translation induced by these agents may slow down cells hypertrophy and alleviate other features of cell aging/senescence. Reduction of oxidative DNA damage may lower predisposition to neoplastic transformation which otherwise may result from errors in repair of DNA

  9. Quantum spaces are modular

    NASA Astrophysics Data System (ADS)

    Freidel, Laurent; Leigh, Robert G.; Minic, Djordje

    2016-11-01

    At present, our notion of space is a classical concept. Taking the point of view that quantum theory is more fundamental than classical physics, and that space should be given a purely quantum definition, we revisit the notion of Euclidean space from the point of view of quantum mechanics. Since space appears in physics in the form of labels on relativistic fields or Schrödinger wave functionals, we propose to define Euclidean quantum space as a choice of polarization for the Heisenberg algebra of quantum theory. We show, following Mackey, that generically, such polarizations contain a fundamental length scale and that contrary to what is implied by the Schrödinger polarization, they possess topologically distinct spectra. These are the modular spaces. We show that they naturally come equipped with additional geometrical structures usually encountered in the context of string theory or generalized geometry. Moreover, we show how modular space reconciles the presence of a fundamental scale with translation and rotation invariance. We also discuss how the usual classical notion of space comes out as a form of thermodynamical limit of modular space while the Schrödinger space is a singular limit.

  10. DNA damage response and inflammatory signaling limit the MLL-ENL-induced leukemogenesis in vivo.

    PubMed

    Takacova, Sylvia; Slany, Robert; Bartkova, Jirina; Stranecky, Viktor; Dolezel, Petr; Luzna, Pavla; Bartek, Jiri; Divoky, Vladimir

    2012-04-17

    Activation of the MLL-ENL-ERtm oncogene initiates aberrant proliferation of myeloid progenitors. Here, we show induction of a fail-safe mechanism mediated by the DNA damage response (DDR) machinery that results in activation of the ATR/ATM-Chk1/Chk2-p53/p21(CIP1) checkpoint and cellular senescence at early stages of cellular transformation caused by a regulatable MLL-ENL-ERtm in mice. Furthermore, we identified the transcription program underlying this intrinsic anticancer barrier, and DDR-induced inflammatory regulators that fine-tune the signaling toward senescence, thereby modulating the fate of MLL-ENL-immortalized cells in a tissue-environment-dependent manner. Our results indicate that DDR is a rate-limiting event for acquisition of stem cell-like properties in MLL-ENL-ERtm-mediated transformation, as experimental inhibition of the barrier accelerated the transition to immature cell states and acute leukemia development. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Mitochondrial DNA Signals of Late Glacial Recolonization of Europe from Near Eastern Refugia

    PubMed Central

    Pala, Maria; Olivieri, Anna; Achilli, Alessandro; Accetturo, Matteo; Metspalu, Ene; Reidla, Maere; Tamm, Erika; Karmin, Monika; Reisberg, Tuuli; Kashani, Baharak Hooshiar; Perego, Ugo A.; Carossa, Valeria; Gandini, Francesca; Pereira, Joana B.; Soares, Pedro; Angerhofer, Norman; Rychkov, Sergei; Al-Zahery, Nadia; Carelli, Valerio; Sanati, Mohammad Hossein; Houshmand, Massoud; Hatina, Jiři; Macaulay, Vincent; Pereira, Luísa; Woodward, Scott R.; Davies, William; Gamble, Clive; Baird, Douglas; Semino, Ornella; Villems, Richard; Torroni, Antonio; Richards, Martin B.

    2012-01-01

    Human populations, along with those of many other species, are thought to have contracted into a number of refuge areas at the height of the last Ice Age. European populations are believed to be, to a large extent, the descendants of the inhabitants of these refugia, and some extant mtDNA lineages can be traced to refugia in Franco-Cantabria (haplogroups H1, H3, V, and U5b1), the Italian Peninsula (U5b3), and the East European Plain (U4 and U5a). Parts of the Near East, such as the Levant, were also continuously inhabited throughout the Last Glacial Maximum, but unlike western and eastern Europe, no archaeological or genetic evidence for Late Glacial expansions into Europe from the Near East has hitherto been discovered. Here we report, on the basis of an enlarged whole-genome mitochondrial database, that a substantial, perhaps predominant, signal from mitochondrial haplogroups J and T, previously thought to have spread primarily from the Near East into Europe with the Neolithic population, may in fact reflect dispersals during the Late Glacial period, ∼19–12 thousand years (ka) ago. PMID:22560092

  12. Induction of the progesterone receptor gene in estrogen target cells monitored by branched DNA signal amplification.

    PubMed

    Allan, G F; Hutchins, A; Liu, X; Clancy, J

    2001-09-01

    Estrogens have multiple effects on the growth and development of cells in their target tissues, including the uterus, ovary, breast, bone marrow and brain. The hormone regulates the transcription of diverse genes in these tissues via the estrogen receptor, a nuclear transcription factor. Naturally occurring estrogens and estrogen analogs including selective estrogen receptor modulators (SERMs), constitute important therapies for breast cancer and osteoporosis, and are major components of oral contraceptives. The in vitro biologic activities of pharmaceutical estrogen agonists and antagonists have frequently been monitored by cotransfection assay, where exogenous estrogen receptor and reporter genes are transiently inserted into a heterologous, non receptor-containing cell line, such as those derived from kidney cells. Here we describe an alternative to this method, where induction of an endogenous estrogen-responsive gene, the progesterone receptor gene, is monitored by branched DNA signal amplification. Assays are performed with cultured cells derived from estrogen-responsive tissues; namely, breast, uterine endothelium and bone. Hormonal induction occurs via the endogenous estrogen receptor of these cells. Our data show that SERMs, which are estrogen agonists on bone in vivo, antagonize estrogen-dependent target gene induction in conditionally immortalized osteoblast-like cells.

  13. Transduction of RNA-directed DNA methylation signals to repressive histone marks in Arabidopsis thaliana.

    PubMed

    Numa, Hisataka; Kim, Jong-Myong; Matsui, Akihiro; Kurihara, Yukio; Morosawa, Taeko; Ishida, Junko; Mochizuki, Yoshiki; Kimura, Hiroshi; Shinozaki, Kazuo; Toyoda, Tetsuro; Seki, Motoaki; Yoshikawa, Manabu; Habu, Yoshiki

    2010-01-20

    RNA-directed modification of histones is essential for the maintenance of heterochromatin in higher eukaryotes. In plants, cytosine methylation is an additional factor regulating inactive chromatin, but the mechanisms regulating the coexistence of cytosine methylation and repressive histone modification remain obscure. In this study, we analysed the mechanism of gene silencing mediated by MORPHEUS' MOLECULE1 (MOM1) of Arabidopsis thaliana. Transcript profiling revealed that the majority of up-regulated loci in mom1 carry sequences related to transposons and homologous to the 24-nt siRNAs accumulated in wild-type plants that are the hallmarks of RNA-directed DNA methylation (RdDM). Analysis of a single-copy gene, SUPPRESSOR OF drm1 drm2 cmt3 (SDC), revealed that mom1 activates SDC with concomitant reduction of di-methylated histone H3 lysine 9 (H3K9me2) at the tandem repeats in the promoter region without changes in siRNA accumulation and cytosine methylation. The reduction of H3K9me2 is not observed in regions flanking the tandem repeats. The results suggest that MOM1 transduces RdDM signals to repressive histone modification in the core region of RdDM.

  14. [Modular enteral nutrition in pediatrics].

    PubMed

    Murillo Sanchís, S; Prenafeta Ferré, M T; Sempere Luque, M D

    1991-01-01

    Modular Enteral Nutrition may be a substitute for Parenteral Nutrition in children with different pathologies. Study of 4 children with different pathologies selected from a group of 40 admitted to the Maternal-Childrens Hospital "Valle de Hebrón" in Barcelona, who received modular enteral nutrition. They were monitored on a daily basis by the Dietician Service. Modular enteral nutrition consists of modules of proteins, peptides, lipids, glucids and mineral salts-vitamins. 1.--Craneo-encephalic traumatisms with loss of consciousness, Feeding with a combination of parenteral nutrition and modular enteral nutrition for 7 days. In view of the tolerance and good results of the modular enteral nutrition, the parenteral nutrition was suspended and modular enteral nutrition alone used up to a total of 43 days. 2.--55% burns with 36 days of hyperproteic modular enteral nutrition together with normal feeding. A more rapid recovery was achieved with an increase in total proteins and albumin. 3.--Persistent diarrhoea with 31 days of modular enteral nutrition, 5 days on parenteral nutrition alone and 8 days on combined parenteral nutrition and modular enteral nutrition. In view of the tolerance and good results of the modular enteral nutrition, the parenteral nutrition was suspended. 4.--Mucoviscidosis with a total of 19 days on modular enteral nutrition, 12 of which were exclusively on modular enteral nutrition and 7 as a night supplement to normal feeding. We administered proteic intakes of up to 20% of the total calorific intake and in concentrations of up to 1.2 calories/ml of the final preparation, always with a good tolerance. Modular enteral nutrition can and should be used as a substitute for parenteral nutrition in children with different pathologies, thus preventing the complications inherent in parenteral nutrition.

  15. Squalene Inhibits ATM-Dependent Signaling in γIR-Induced DNA Damage Response through Induction of Wip1 Phosphatase.

    PubMed

    Tatewaki, Naoto; Konishi, Tetsuya; Nakajima, Yuki; Nishida, Miyako; Saito, Masafumi; Eitsuka, Takahiro; Sakamaki, Toshiyuki; Ikekawa, Nobuo; Nishida, Hiroshi

    2016-01-01

    Ataxia telangiectasia mutated (ATM) kinase plays a crucial role as a master controller in the cellular DNA damage response. Inhibition of ATM leads to inhibition of the checkpoint signaling pathway. Hence, addition of checkpoint inhibitors to anticancer therapies may be an effective targeting strategy. A recent study reported that Wip1, a protein phosphatase, de-phosphorylates serine 1981 of ATM during the DNA damage response. Squalene has been proposed to complement anticancer therapies such as chemotherapy and radiotherapy; however, there is little mechanistic information supporting this idea. Here, we report the inhibitory effect of squalene on ATM-dependent DNA damage signals. Squalene itself did not affect cell viability and the cell cycle of A549 cells, but it enhanced the cytotoxicity of gamma-irradiation (γIR). The in vitro kinase activity of ATM was not altered by squalene. However, squalene increased Wip1 expression in cells and suppressed ATM activation in γIR-treated cells. Consistent with the potential inhibition of ATM by squalene, IR-induced phosphorylation of ATM effectors such as p53 (Ser15) and Chk1 (Ser317) was inhibited by cell treatment with squalene. Thus, squalene inhibits the ATM-dependent signaling pathway following DNA damage through intracellular induction of Wip1 expression.

  16. Squalene Inhibits ATM-Dependent Signaling in γIR-Induced DNA Damage Response through Induction of Wip1 Phosphatase

    PubMed Central

    Tatewaki, Naoto; Konishi, Tetsuya; Nakajima, Yuki; Nishida, Miyako; Saito, Masafumi; Eitsuka, Takahiro; Sakamaki, Toshiyuki; Ikekawa, Nobuo; Nishida, Hiroshi

    2016-01-01

    Ataxia telangiectasia mutated (ATM) kinase plays a crucial role as a master controller in the cellular DNA damage response. Inhibition of ATM leads to inhibition of the checkpoint signaling pathway. Hence, addition of checkpoint inhibitors to anticancer therapies may be an effective targeting strategy. A recent study reported that Wip1, a protein phosphatase, de-phosphorylates serine 1981 of ATM during the DNA damage response. Squalene has been proposed to complement anticancer therapies such as chemotherapy and radiotherapy; however, there is little mechanistic information supporting this idea. Here, we report the inhibitory effect of squalene on ATM-dependent DNA damage signals. Squalene itself did not affect cell viability and the cell cycle of A549 cells, but it enhanced the cytotoxicity of gamma-irradiation (γIR). The in vitro kinase activity of ATM was not altered by squalene. However, squalene increased Wip1 expression in cells and suppressed ATM activation in γIR-treated cells. Consistent with the potential inhibition of ATM by squalene, IR-induced phosphorylation of ATM effectors such as p53 (Ser15) and Chk1 (Ser317) was inhibited by cell treatment with squalene. Thus, squalene inhibits the ATM-dependent signaling pathway following DNA damage through intracellular induction of Wip1 expression. PMID:26824362

  17. Nimotuzumab abrogates acquired radioresistance of KYSE-150R esophageal cancer cells by inhibiting EGFR signaling and cellular DNA repair

    PubMed Central

    Liu, Hai; Yang, Weifang; Gao, Huaping; Jiang, Tingting; Gu, Bengxin; Dong, Qinghua; Xu, Wenhong; Wu, Shixiu; Sun, Xiaonan

    2015-01-01

    Background Acquired radioresistance of cancer is common after repeated irradiation and often leads to treatment failure. This study aimed to examine the effects of nimotuzumab on acquired radioresistance in human esophageal carcinoma cells and to investigate its underlying mechanisms. Methods The radioresistant human esophageal carcinoma cell line KYSE-150R was generated by using fractionated irradiation. KYSE-150R cells were pretreated with or without nimotuzumab before ionizing radiation. Cell growth and colony formation were measured to quantitate the effects of radiation. The γ-H2AX foci assay was employed to determine cellular DNA-repairing capacity. The phosphorylation of key molecules involved in the epidermal growth factor receptor (EGFR) signaling pathway and cellular DNA repair was measured by Western blot analysis. Results Nimotuzumab enhanced radiation-induced inhibition on cell growth and clonogenic survival in KYSE-150R cells. The average number of γ-H2AX foci increased in the irradiated cells treated with nimotuzumab. Nimotuzumab inhibited phosphorylation of the EGFR and its downstream molecules AKT and ERK. Phosphorylation of the DNA repair-related proteins DNA-PKcs, ATM, and RAD51 was also inhibited by nimotuzumab. Conclusions These results indicate that nimotuzumab can inhibit key cancer survival mechanisms, the EGFR signaling pathway, and DNA repair and thereby reverse acquired radioresistance in KYSE-150R cell line. PMID:25750543

  18. Nimotuzumab abrogates acquired radioresistance of KYSE-150R esophageal cancer cells by inhibiting EGFR signaling and cellular DNA repair.

    PubMed

    Liu, Hai; Yang, Weifang; Gao, Huaping; Jiang, Tingting; Gu, Bengxin; Dong, Qinghua; Xu, Wenhong; Wu, Shixiu; Sun, Xiaonan

    2015-01-01

    Acquired radioresistance of cancer is common after repeated irradiation and often leads to treatment failure. This study aimed to examine the effects of nimotuzumab on acquired radioresistance in human esophageal carcinoma cells and to investigate its underlying mechanisms. The radioresistant human esophageal carcinoma cell line KYSE-150R was generated by using fractionated irradiation. KYSE-150R cells were pretreated with or without nimotuzumab before ionizing radiation. Cell growth and colony formation were measured to quantitate the effects of radiation. The γ-H2AX foci assay was employed to determine cellular DNA-repairing capacity. The phosphorylation of key molecules involved in the epidermal growth factor receptor (EGFR) signaling pathway and cellular DNA repair was measured by Western blot analysis. Nimotuzumab enhanced radiation-induced inhibition on cell growth and clonogenic survival in KYSE-150R cells. The average number of γ-H2AX foci increased in the irradiated cells treated with nimotuzumab. Nimotuzumab inhibited phosphorylation of the EGFR and its downstream molecules AKT and ERK. Phosphorylation of the DNA repair-related proteins DNA-PKcs, ATM, and RAD51 was also inhibited by nimotuzumab. These results indicate that nimotuzumab can inhibit key cancer survival mechanisms, the EGFR signaling pathway, and DNA repair and thereby reverse acquired radioresistance in KYSE-150R cell line.

  19. Characterization of cDNA clones encoding rabbit and human serum paraoxonase: The mature protein retains its signal sequence

    SciTech Connect

    Hassett, C.; Richter, R.J.; Humbert, R.; Omiecinski, C.J.; Furlong, C.E. ); Chapline, C.; Crabb, J.W. )

    1991-10-22

    Serum paraoxonase hydrolyzes the toxic metabolites of a variety of organophosphorus insecticides. High serum paraoxonase levels appear to protect against the neurotoxic effects of organophosphorus substrates of this enzyme. The amino acid sequence accounting for 42% of rabbit paraoxonase was determined. From these data, two oligonucleotide probes were synthesized and used to screen a rabbit liver cDNA library. Human paraoxonase clones were isolated from a liver cDNA library by using the rabbit cDNA as a hybridization probe. Inserts from three of the longest clones were sequenced, and one full-length clone contained an open reading frame encoding 355 amino acids, four less than the rabbit paraoxonase protein. Amino-terminal sequences derived from purified rabbit and human paraoxonase proteins suggested that the signal sequence is retained, with the exception of the initiator methionine residue. Characterization of the rabbit and human paraoxonase cDNA clones confirms that the signal sequences are not processed, except for the N-terminal methionine residue. The rabbit and human cDNA clones demonstrate striking nucleotide and deduced amino acid similarities (greater than 85%), suggesting an important metabolic role and constraints on the evolution of this protein.

  20. Persistent activation of DNA damage signaling in response to complex mixtures of PAHs in air particulate matter

    SciTech Connect

    Jarvis, Ian W.H.; Bergvall, Christoffer; Bottai, Matteo; Westerholm, Roger; Stenius, Ulla; Dreij, Kristian

    2013-02-01

    Complex mixtures of polycyclic aromatic hydrocarbons (PAHs) are present in air particulate matter (PM) and have been associated with many adverse human health effects including cancer and respiratory disease. However, due to their complexity, the risk of exposure to mixtures is difficult to estimate. In the present study the effects of binary mixtures of benzo[a]pyrene (BP) and dibenzo[a,l]pyrene (DBP) and complex mixtures of PAHs in urban air PM extracts on DNA damage signaling was investigated. Applying a statistical model to the data we observed a more than additive response for binary mixtures of BP and DBP on activation of DNA damage signaling. Persistent activation of checkpoint kinase 1 (Chk1) was observed at significantly lower BP equivalent concentrations in air PM extracts than BP alone. Activation of DNA damage signaling was also more persistent in air PM fractions containing PAHs with more than four aromatic rings suggesting larger PAHs contribute a greater risk to human health. Altogether our data suggests that human health risk assessment based on additivity such as toxicity equivalency factor scales may significantly underestimate the risk of exposure to complex mixtures of PAHs. The data confirms our previous findings with PAH-contaminated soil (Niziolek-Kierecka et al., 2012) and suggests a possible role for Chk1 Ser317 phosphorylation as a biological marker for future analyses of complex mixtures of PAHs. -- Highlights: ► Benzo[a]pyrene (BP), dibenzo[a,l]pyrene (DBP) and air PM PAH extracts were compared. ► Binary mixture of BP and DBP induced a more than additive DNA damage response. ► Air PM PAH extracts were more potent than toxicity equivalency factor estimates. ► Larger PAHs (> 4 rings) contribute more to the genotoxicity of PAHs in air PM. ► Chk1 is a sensitive marker for persistent activation of DNA damage signaling from PAH mixtures.

  1. A cytoplasmic activator of DNA replication is involved in signal transduction in antigen-specific T cell lines.

    PubMed

    Wong, R L; Clark, R B; Gutowski, J K; Katz, M E; Fresa, K L; Cohen, S

    1990-05-01

    Cytoplasmic extracts prepared from T cell lines undergoing antigen-specific, interleukin-2 (IL-2)-dependent proliferation were tested for their ability to induce DNA synthesis in isolated, quiescent nuclei. A tetanus toxoid (TET)-specific T cell line, established from peripheral blood of a normal human volunteer, was stimulated in the presence of relevant antigen and 1 unit/ml IL-2. Cytoplasmic extracts prepared from these cells were capable of inducing DNA synthesis in isolated, quiescent nuclei. The ability of cytoplasmic extracts to induce DNA synthesis in isolated, quiescent nuclei. The ability of cytoplasmic extracts to induce DNA synthesis in isolated nuclei correlated positively with the degree of proliferation induced in these cells. In contrast, incubation of this T cell line in the absence of antigen failed to induce proliferation and cytoplasmic extracts prepared from these cells induced little to no DNA synthesis in isolated, quiescent nuclei. The factor present in the cytoplasm of T cells stimulated with relevant antigen in the presence of IL-2 is similar, if not identical, to a factor which we have previously demonstrated in cytoplasmic extracts prepared from transformed lymphoblastoid cell lines and from mitogenically stimulated normal human peripheral blood mononuclear cells. This factor, which we have called activator of DNA replication (ADR) is a heat-labile protein, and is inactivated by treatment with protease inhibitors, including aprotinin. The ability of cytoplasmic extracts from T cells undergoing antigen-specific, IL-2-dependent proliferation to induce DNA synthesis in isolated, quiescent nuclei was markedly inhibited in the presence of aprotinin, providing strong evidence that a cytoplasmic activator of DNA replication, ADR, is involved in the signal transduction process for antigen-specific, IL-2-dependent T cell proliferation. ADR may represent a common intracellular mediator of DNA synthesis in activated and transformed lymphocytes.

  2. Target-catalyzed autonomous assembly of dendrimer-like DNA nanostructures for enzyme-free and signal amplified colorimetric nucleic acids detection.

    PubMed

    He, Hongfei; Dai, Jianyuan; Duan, Zhijuan; Meng, Yan; Zhou, Cuisong; Long, Yuyin; Zheng, Baozhan; Du, Juan; Guo, Yong; Xiao, Dan

    2016-12-15

    Self-assembly of DNA nanostructures is of great importance in nanomedicine, nanotechnology and biosensing. Herein, a novel target-catalyzed autonomous assembly pathway for the formation of dendrimer-like DNA nanostructures that only employing target DNA and three hairpin DNA probes was proposed. We use the sticky-ended Y shape DNA (Y-DNA) as the assembly monomer and it was synthesized by the catalyzed hairpin assembly (CHA) instead of the DNA strand annealing method. The formed Y-DNA was equipped with three ssDNA sticky ends and two of them were predesigned to be complementary to the third one, then the dendrimer-like DNA nanostructures can be obtained via an autonomous assembly among these sticky-ended Y-DNAs. The resulting nanostructure has been successfully applied to develop an enzyme-free and signal amplified gold nanoparticle (AuNP)-based colorimetric nucleic acids assay.

  3. MAP kinase-signaling controls nuclear translocation of tripeptidyl-peptidase II in response to DNA damage and oxidative stress

    SciTech Connect

    Preta, Giulio; Klark, Rainier de; Chakraborti, Shankhamala; Glas, Rickard

    2010-08-27

    Research highlights: {yields} Nuclear translocation of TPPII occurs in response to different DNA damage inducers. {yields} Nuclear accumulation of TPPII is linked to ROS and anti-oxidant enzyme levels. {yields} MAPKs control nuclear accumulation of TPPII. {yields} Inhibited nuclear accumulation of TPPII decreases DNA damage-induced {gamma}-H2AX expression. -- Abstract: Reactive oxygen species (ROS) are a continuous hazard in eukaroytic cells by their ability to cause damage to biomolecules, in particular to DNA. Previous data indicated that the cytosolic serine peptidase tripeptidyl-peptidase II (TPPII) translocates into the nucleus of most tumor cell lines in response to {gamma}-irradiation and ROS production; an event that promoted p53 expression as well as caspase-activation. We here observed that nuclear translocation of TPPII was dependent on signaling by MAP kinases, including p38MAPK. Further, this was caused by several types of DNA-damaging drugs, a DNA cross-linker (cisplatinum), an inhibitor of topoisomerase II (etoposide), and to some extent also by nucleoside-analogues (5-fluorouracil, hydroxyurea). In the minority of tumor cell lines where TPPII was not translocated into the nucleus in response to DNA damage we observed reduced intracellular ROS levels, and the expression levels of redox defense systems were increased. Further, treatment with the ROS-inducer {gamma}-hexa-chloro-cyclohexane ({gamma}-HCH, lindane), an inhibitor of GAP junctions, restored nuclear translocation of TPPII in these cell lines upon {gamma}-irradiation. Moreover, blocking nuclear translocation of TPPII in etoposide-treated cells, by using a peptide-derived inhibitor (Z-Gly-Leu-Ala-OH), attenuated expression of {gamma}-H2AX in {gamma}-irradiated melanoma cells. Our results indicated a role for TPPII in MAPK-dependent DNA damage signaling.

  4. 3-Nitrobenzanthrone and 3-aminobenzanthrone induce DNA damage and cell signalling in Hepa1c1c7 cells.

    PubMed

    Landvik, N E; Arlt, V M; Nagy, E; Solhaug, A; Tekpli, X; Schmeiser, H H; Refsnes, M; Phillips, D H; Lagadic-Gossmann, D; Holme, J A

    2010-02-03

    3-Nitrobenzanthrone (3-NBA) is a mutagenic and carcinogenic environmental pollutant found in diesel exhaust and urban air pollution. In the present work we have characterised the effects of 3-NBA and its metabolite 3-aminobenzanthrone (3-ABA) on cell death and cytokine release in mouse hepatoma Hepa1c1c7 cells. These effects were related to induced DNA damage and changes in cell signalling pathways. 3-NBA resulted in cell death and caused most DNA damage as judged by the amount of DNA adducts ((32)P-postlabelling assay), single strand (ss)DNA breaks and oxidative DNA lesions (comet assay) detected. An increased phosphorylation of H2AX, chk1, chk2 and partly ATM was observed using flow cytometry and/or Western blotting. Both compounds increased phosphorylation of p53 and MAPKs (ERK, p38 and JNK). However, only 3-NBA caused an accumulation of p53 in the nucleus and a translocation of Bax to the mitochondria. The p53 inhibitor pifithrin-alpha inhibited 3-NBA-induced apoptosis, indicating that cell death was a result of the triggering of DNA signalling pathways. The highest phosphorylation of Akt and degradation of IkappaB-alpha (suggesting activation of NF-kappaB) were also seen after treatment with 3-NBA. In contrast 3-ABA increased IL-6 release, but caused little or no toxicity. Cytokine release was inhibited by PD98059 and curcumin, suggesting that ERK and NF-kappaB play a role in this process. In conclusion, 3-NBA seems to have a higher potency to induce DNA damage compatible with its cytotoxic effects, while 3-ABA seems to have a greater effect on the immune system. Copyright 2009 Elsevier B.V. All rights reserved.

  5. LMDS Lightweight Modular Display System.

    DTIC Science & Technology

    1982-02-16

    LIGHTWEIGHT MODULAR DISPLAY SYSTEM %C AD Gomez SW Wolfe EW Davenport BD Calder 16 February 1982 * / DTrSJUL 22 3829 Approved for public release...375 4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED Oct 77 to Jan 82 LMDS LIGHTWEIGHT MODULAR DISPLAY SYSTEM S. PERFORMING ORG. REPORT...Processing Power Distribution Modular Display Low Cost Tactical Display Tactical Tablet Lightweight Display General Purpose Dispiay Functional Modules Touch

  6. Efficient algorithm and systolic architecture for modular division

    NASA Astrophysics Data System (ADS)

    Chen, Chuanpeng; Qin, Zhongping

    2011-06-01

    A new efficient modular division algorithm suitable for systolic implementation and its systolic architecture is proposed in this article. With a new exit condition of while loop and a new updating method of a control variable, the new algorithm reduces the average of iteration numbers by more than 14.3% compared to the algorithm proposed by Chen, Bai and Chen. Based on the new algorithm, we design a fast systolic architecture with an optimised core computing cell. Compared to the architecture proposed by Chen, Bai and Chen, our systolic architecture has reduced the critical path delay by about 18% and the total computational time for one modular division by almost 30%, with the cost of about 1% more cells. Moreover, by the addition of a flag signal and three logic gates, the proposed systolic architecture can also perform Montgomery modular multiplication and a fast unified modular divider/multiplier is realised.

  7. The TOTEM modular trigger system

    NASA Astrophysics Data System (ADS)

    Bagliesi, M. G.; Berretti, M.; Cecchi, R.; Greco, V.; Lami, S.; Latino, G.; Oliveri, E.; Pedreschi, E.; Scribano, A.; Spinella, F.; Turini, N.

    2010-05-01

    The TOTEM experiment will measure the total cross-section with the luminosity independent method and study elastic and diffractive scattering at the LHC. We are developing a modular trigger system, based on programmable logic, that will select meaningful events within 2.5 μs. The trigger algorithm is based on a tree structure in order to obtain information compression. The trigger primitive is generated directly on the readout chip, VFAT, that has a specific fast output that gives low resolution hits information. In two of the TOTEM detectors, Roman Pots and T2, a coincidence chip will perform track recognition directly on the detector readout boards, while for T1 the hits are transferred from the VFATs to the trigger hardware. Starting from more than 2000 bits delivered by the detector electronics, we extract, in a first step, six trigger patterns of 32 LVDS signals each; we build, then, on a dedicated board, a 1-bit (L1) trigger signal for the TOTEM experiment and 16 trigger bits to the CMS experiment global trigger system for future common data taking.

  8. Robotic hand with modular extensions

    DOEpatents

    Salisbury, Curt Michael; Quigley, Morgan

    2015-01-20

    A robotic device is described herein. The robotic device includes a frame that comprises a plurality of receiving regions that are configured to receive a respective plurality of modular robotic extensions. The modular robotic extensions are removably attachable to the frame at the respective receiving regions by way of respective mechanical fuses. Each mechanical fuse is configured to trip when a respective modular robotic extension experiences a predefined load condition, such that the respective modular robotic extension detaches from the frame when the load condition is met.

  9. HER2 Signaling Drives DNA Anabolism and Proliferation through SRC-3 Phosphorylation and E2F1-Regulated Genes.

    PubMed

    Nikolai, Bryan C; Lanz, Rainer B; York, Brian; Dasgupta, Subhamoy; Mitsiades, Nicholas; Creighton, Chad J; Tsimelzon, Anna; Hilsenbeck, Susan G; Lonard, David M; Smith, Carolyn L; O'Malley, Bert W

    2016-03-15

    Approximately 20% of early-stage breast cancers display amplification or overexpression of the ErbB2/HER2 oncogene, conferring poor prognosis and resistance to endocrine therapy. Targeting HER2(+) tumors with trastuzumab or the receptor tyrosine kinase (RTK) inhibitor lapatinib significantly improves survival, yet tumor resistance and progression of metastatic disease still develop over time. Although the mechanisms of cytosolic HER2 signaling are well studied, nuclear signaling components and gene regulatory networks that bestow therapeutic resistance and limitless proliferative potential are incompletely understood. Here, we use biochemical and bioinformatic approaches to identify effectors and targets of HER2 transcriptional signaling in human breast cancer. Phosphorylation and activity of the Steroid Receptor Coactivator-3 (SRC-3) is reduced upon HER2 inhibition, and recruitment of SRC-3 to regulatory elements of endogenous genes is impaired. Transcripts regulated by HER2 signaling are highly enriched with E2F1 binding sites and define a gene signature associated with proliferative breast tumor subtypes, cell-cycle progression, and DNA replication. We show that HER2 signaling promotes breast cancer cell proliferation through regulation of E2F1-driven DNA metabolism and replication genes together with phosphorylation and activity of the transcriptional coactivator SRC-3. Furthermore, our analyses identified a cyclin-dependent kinase (CDK) signaling node that, when targeted using the CDK4/6 inhibitor palbociclib, defines overlap and divergence of adjuvant pharmacologic targeting. Importantly, lapatinib and palbociclib strictly block de novo synthesis of DNA, mostly through disruption of E2F1 and its target genes. These results have implications for rational discovery of pharmacologic combinations in preclinical models of adjuvant treatment and therapeutic resistance.

  10. HER2 signaling drives DNA anabolism and proliferation through SRC-3 phosphorylation and E2F1-regulated genes

    PubMed Central

    Nikolai, Bryan C.; Lanz, Rainer B.; York, Brian; Dasgupta, Subhamoy; Mitsiades, Nicholas; Creighton, Chad J.; Tsimelzon, Anna; Hilsenbeck, Susan G.; Lonard, David M.; Smith, Carolyn L.; O’Malley, Bert W.

    2016-01-01

    Approximately 20% of early-stage breast cancers display amplification or overexpression of the ErbB2/HER2 oncogene, conferring poor prognosis and resistance to endocrine therapy. Targeting HER2+ tumors with trastuzumab or the receptor tyrosine kinase (RTK) inhibitor lapatinib significantly improves survival, yet tumor resistance and progression of metastatic disease still develop over time. While the mechanisms of cytosolic HER2 signaling are well studied, nuclear signaling components and gene regulatory networks that bestow therapeutic resistance and limitless proliferative potential are incompletely understood. Here, we use biochemical and bioinformatic approaches to identify effectors and targets of HER2 transcriptional signaling in human breast cancer. Phosphorylation and activity of the Steroid Receptor Coactivator-3 (SRC-3) is reduced upon HER2 inhibition, and recruitment of SRC-3 to regulatory elements of endogenous genes is impaired. Transcripts regulated by HER2 signaling are highly enriched with E2F1 binding sites and define a gene signature associated with proliferative breast tumor subtypes, cell cycle progression, and DNA replication. We show that HER2 signaling promotes breast cancer cell proliferation through regulation of E2F1-driven DNA metabolism and replication genes together with phosphorylation and activity of the transcriptional coactivator SRC-3. Furthermore, our analyses identified a cyclin dependent kinase (CDK) signaling node that, when targeted using the CDK4/6 inhibitor Palbociclib, defines overlap and divergence of adjuvant pharmacological targeting. Importantly, lapatinib and palbociclib strictly block de novo synthesis of DNA, mostly through disruption of E2F1 and its target genes. These results have implications for rational discovery of pharmacological combinations in pre-clinical models of adjuvant treatment and therapeutic resistance. PMID:26833126

  11. USP7 deubiquitinase promotes ubiquitin-dependent DNA damage signaling by stabilizing RNF168*

    PubMed Central

    Zhu, Qianzheng; Sharma, Nidhi; He, Jinshan; Wani, Gulzar; Wani, Altaf A

    2015-01-01

    During DNA damage response (DDR), histone ubiquitination by RNF168 is a critical event, which orchestrates the recruitment of downstream DDR factors, e.g. BRCA1 and 53BP1. Here, we report USP7 deubiquitinase regulates the stability of RNF168. We showed that USP7 disruption impairs H2A and ultraviolet radiation (UVR)-induced γH2AX monoubiquitination, and decreases the levels of pBmi1, Bmi1, RNF168 and BRCA1. The effect of USP7 disruption was recapitulated by siRNA-mediated USP7 depletion. The USP7 disruption also compromises the formation of UVR-induced foci (UVRIF) and ionizing radiation-induced foci (IRIF) of monoubiquitinated H2A (uH2A) and polyubiquitinated H2AX/A, and subsequently affects UVRIF and IRIF of BRCA1 as well as the IRIF of 53BP1. USP7 was shown to physically bind RNF168 in vitro and in vivo. Overexpression of wild-type USP7, but not its interaction-defective mutant, prevents UVR-induced RNF168 degradation. The USP7 mutant is unable to cleave Ub-conjugates of RNF168 in vivo. Importantly, ectopic expression of RNF168, or both RNF8 and RNF168 together in USP7-disrupted cells, significantly rescue the formation of UVRIF and IRIF of polyubiquitinated H2A and BRCA1. Taken together, these findings reveal an important role of USP7 in regulating ubiquitin-dependent signaling via stabilization of RNF168. PMID:25894431

  12. USP7 deubiquitinase promotes ubiquitin-dependent DNA damage signaling by stabilizing RNF168.

    PubMed

    Zhu, Qianzheng; Sharma, Nidhi; He, Jinshan; Wani, Gulzar; Wani, Altaf A

    2015-01-01

    During DNA damage response (DDR), histone ubiquitination by RNF168 is a critical event, which orchestrates the recruitment of downstream DDR factors, e.g. BRCA1 and 53BP1. Here, we report USP7 deubiquitinase regulates the stability of RNF168. We showed that USP7 disruption impairs H2A and ultraviolet radiation (UVR)-induced γH2AX monoubiquitination, and decreases the levels of pBmi1, Bmi1, RNF168 and BRCA1. The effect of USP7 disruption was recapitulated by siRNA-mediated USP7 depletion. The USP7 disruption also compromises the formation of UVR-induced foci (UVRIF) and ionizing radiation-induced foci (IRIF) of monoubiquitinated H2A (uH2A) and polyubiquitinated H2AX/A, and subsequently affects UVRIF and IRIF of BRCA1 as well as the IRIF of 53BP1. USP7 was shown to physically bind RNF168 in vitro and in vivo. Overexpression of wild-type USP7, but not its interaction-defective mutant, prevents UVR-induced RNF168 degradation. The USP7 mutant is unable to cleave Ub-conjugates of RNF168 in vivo. Importantly, ectopic expression of RNF168, or both RNF8 and RNF168 together in USP7-disrupted cells, significantly rescue the formation of UVRIF and IRIF of polyubiquitinated H2A and BRCA1. Taken together, these findings reveal an important role of USP7 in regulating ubiquitin-dependent signaling via stabilization of RNF168.

  13. Modular biometric system

    NASA Astrophysics Data System (ADS)

    Hsu, Charles; Viazanko, Michael; O'Looney, Jimmy; Szu, Harold

    2009-04-01

    Modularity Biometric System (MBS) is an approach to support AiTR of the cooperated and/or non-cooperated standoff biometric in an area persistent surveillance. Advanced active and passive EOIR and RF sensor suite is not considered here. Neither will we consider the ROC, PD vs. FAR, versus the standoff POT in this paper. Our goal is to catch the "most wanted (MW)" two dozens, separately furthermore ad hoc woman MW class from man MW class, given their archrivals sparse front face data basis, by means of various new instantaneous input called probing faces. We present an advanced algorithm: mini-Max classifier, a sparse sample realization of Cramer-Rao Fisher bound of the Maximum Likelihood classifier that minimize the dispersions among the same woman classes and maximize the separation among different man-woman classes, based on the simple feature space of MIT Petland eigen-faces. The original aspect consists of a modular structured design approach at the system-level with multi-level architectures, multiple computing paradigms, and adaptable/evolvable techniques to allow for achieving a scalable structure in terms of biometric algorithms, identification quality, sensors, database complexity, database integration, and component heterogenity. MBS consist of a number of biometric technologies including fingerprints, vein maps, voice and face recognitions with innovative DSP algorithm, and their hardware implementations such as using Field Programmable Gate arrays (FPGAs). Biometric technologies and the composed modularity biometric system are significant for governmental agencies, enterprises, banks and all other organizations to protect people or control access to critical resources.

  14. Modular Biometric Monitoring System

    NASA Technical Reports Server (NTRS)

    Chmiel, Alan J. (Inventor); Humphreys, Bradley T. (Inventor)

    2017-01-01

    A modular system for acquiring biometric data includes a plurality of data acquisition modules configured to sample biometric data from at least one respective input channel at a data acquisition rate. A representation of the sampled biometric data is stored in memory of each of the plurality of data acquisition modules. A central control system is in communication with each of the plurality of data acquisition modules through a bus. The central control system is configured to control communication of data, via the bus, with each of the plurality of data acquisition modules.

  15. Geometric Kac Moody modularity

    NASA Astrophysics Data System (ADS)

    Lynker, Monika; Schimmrigk, Rolf

    2006-05-01

    It is shown how the arithmetic structure of algebraic curves encoded in the Hasse-Weil L-function can be related to affine Kac-Moody algebras. This result is useful in relating the arithmetic geometry of Calabi-Yau varieties to the underlying exactly solvable theory. In the case of the genus three Fermat curve we identify the Hasse-Weil L-function with the Mellin transform of the twist of a number theoretic modular form derived from the string function of a non-twisted affine Lie algebra. The twist character is associated to the number field of quantum dimensions of the conformal field theory.

  16. Modular space station facilities.

    NASA Technical Reports Server (NTRS)

    Parker, P. J.

    1973-01-01

    The modular space station will operate as a general purpose laboratory (GPL). In addition, the space station will be able to support many attached or free-flying research and application modules that would be dedicated to specific projects like astronomy or earth observations. The GPL primary functions have been organized into functional laboratories including an electrical/electronics laboratory, a mechanical sciences laboratory, an experiment and test isolation laboratory, a hard data process facility, a data evaluation facility, an optical sciences laboratory, a biomedical and biosciences laboratory, and an experiment/secondary command and control center.

  17. Modular gear bearings

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    2009-01-01

    A gearing system using modular gear bearing components. Each component is composed of a core, one or more modules attached to the core and two or more fastening modules rigidly attaching the modules to the core. The modules, which are attached to the core, may consist of gears, rollers or gear bearing components. The core orientation affects the orientation of the modules attached to the core. This is achieved via the keying arrangement of the core and the component modules that attach to the core. Such an arrangement will also facilitate the phase tuning of gear modules with respect to the core and other gear modules attached to the core.

  18. Modularity of music processing.

    PubMed

    Peretz, Isabelle; Coltheart, Max

    2003-07-01

    The music faculty is not a monolithic entity that a person either has or does not. Rather, it comprises a set of neurally isolable processing components, each having the potential to be specialized for music. Here we propose a functional architecture for music processing that captures the typical properties of modular organization. The model rests essentially on the analysis of music-related deficits in neurologically impaired individuals, but provides useful guidelines for exploring the music faculty in normal people, using methods such as neuroimaging.

  19. Modular and Hierarchically Modular Organization of Brain Networks

    PubMed Central

    Meunier, David; Lambiotte, Renaud; Bullmore, Edward T.

    2010-01-01

    Brain networks are increasingly understood as one of a large class of information processing systems that share important organizational principles in common, including the property of a modular community structure. A module is topologically defined as a subset of highly inter-connected nodes which are relatively sparsely connected to nodes in other modules. In brain networks, topological modules are often made up of anatomically neighboring and/or functionally related cortical regions, and inter-modular connections tend to be relatively long distance. Moreover, brain networks and many other complex systems demonstrate the property of hierarchical modularity, or modularity on several topological scales: within each module there will be a set of sub-modules, and within each sub-module a set of sub-sub-modules, etc. There are several general advantages to modular and hierarchically modular network organization, including greater robustness, adaptivity, and evolvability of network function. In this context, we review some of the mathematical concepts available for quantitative analysis of (hierarchical) modularity in brain networks and we summarize some of the recent work investigating modularity of structural and functional brain networks derived from analysis of human neuroimaging data. PMID:21151783

  20. The p66Shc protein controls redox signaling and oxidation-dependent DNA damage in human liver cells.

    PubMed

    Perrini, Sebastio; Tortosa, Federica; Natalicchio, Annalisa; Pacelli, Consiglia; Cignarelli, Angelo; Palmieri, Vincenzo O; Caccioppoli, Cristina; De Stefano, Francesca; Porro, Stefania; Leonardini, Anna; Ficarella, Romina; De Fazio, Michele; Cocco, Tiziana; Puglisi, Francesco; Laviola, Luigi; Palasciano, Giuseppe; Giorgino, Francesco

    2015-11-15

    The p66Shc protein mediates oxidative stress-related injury in multiple tissues. Steatohepatitis is characterized by enhanced oxidative stress-mediated cell damage. The role of p66Shc in redox signaling was investigated in human liver cells and alcoholic steatohepatitis. HepG2 cells with overexpression of wild-type or mutant p66Shc, with Ser36 replacement by Ala, were obtained through infection with recombinant adenoviruses. Reactive oxygen species and oxidation-dependent DNA damage were assessed by measuring dihydroethidium oxidation and 8-hydroxy-2'-deoxyguanosine accumulation into DNA, respectively. mRNA and protein levels of signaling intermediates were evaluated in HepG2 cells and liver biopsies from control and alcoholic steatohepatitis subjects. Exposure to H2O2 increased reactive oxygen species and phosphorylation of p66Shc on Ser36 in HepG2 cells. Overexpression of p66Shc promoted reactive oxygen species synthesis and oxidation-dependent DNA damage, which were further enhanced by H2O2. p66Shc activation also resulted in increased Erk-1/2, Akt, and FoxO3a phosphorylation. Blocking of Erk-1/2 activation inhibited p66Shc phosphorylation on Ser36. Increased p66Shc expression was associated with reduced mRNA levels of antioxidant molecules, such as NF-E2-related factor 2 and its target genes. In contrast, overexpression of the phosphorylation defective p66Shc Ala36 mutant inhibited p66Shc signaling, enhanced antioxidant genes, and suppressed reactive oxygen species and oxidation-dependent DNA damage. Increased p66Shc protein levels and Akt phosphorylation were observed in liver biopsies from alcoholic steatohepatitis compared with control subjects. In human alcoholic steatohepatitis, increased hepatocyte p66Shc protein levels may enhance susceptibility to DNA damage by oxidative stress by promoting reactive oxygen species synthesis and repressing antioxidant pathways. Copyright © 2015 the American Physiological Society.

  1. Doped Graphene for DNA Analysis: the Electrochemical Signal is Strongly Influenced by the Kind of Dopant and the Nucleobase Structure

    PubMed Central

    Tian, Huidi; Wang, Lu; Sofer, Zdenek; Pumera, Martin; Bonanni, Alessandra

    2016-01-01

    Doping graphene with heteroatoms can alter the electronic and electrochemical properties of the starting material. Contrasting properties should be expected when the doping is carried out with electron donating species (n-type dopants) or with electron withdrawing species (p-type dopants). This in turn can have a profound influence on the electroanalytical performance of the doped material being used for the detection of specific probes. Here we investigate the electrochemical oxidation of DNA bases adenine, guanine, thymine and cytosine on two heteroatom-doped graphene platforms namely boron-doped graphene (p-type dopant) and nitrogen-doped graphene (n-type dopant). We found that overall, boron–doped graphene provided the best response in terms of electrochemical signal sensitivity for all bases. This is due to the electron deficiency of boron-doped graphene, which can promote the oxidation of DNA bases, as opposed to nitrogen-doped graphene which possesses an excess of electrons. Moreover, also the structure of the nucleobase was found to have significant influence on the obtained signal. Our study may open new frontiers in the electrochemical detection of DNA bases which is the first step for label-free DNA analysis. PMID:27623951

  2. Phosphatidylinositol 3-Kinase (PI3K) Signaling via Glycogen Synthase Kinase-3 (Gsk-3) Regulates DNA Methylation of Imprinted Loci*

    PubMed Central

    Popkie, Anthony P.; Zeidner, Leigh C.; Albrecht, Ashley M.; D'Ippolito, Anthony; Eckardt, Sigrid; Newsom, David E.; Groden, Joanna; Doble, Bradley W.; Aronow, Bruce; McLaughlin, K. John; White, Peter; Phiel, Christopher J.

    2010-01-01

    Glycogen synthase kinase-3 (Gsk-3) isoforms, Gsk-3α and Gsk-3β, are constitutively active, largely inhibitory kinases involved in signal transduction. Underscoring their biological significance, altered Gsk-3 activity has been implicated in diabetes, Alzheimer disease, schizophrenia, and bipolar disorder. Here, we demonstrate that deletion of both Gsk-3α and Gsk-3β in mouse embryonic stem cells results in reduced expression of the de novo DNA methyltransferase Dnmt3a2, causing misexpression of the imprinted genes Igf2, H19, and Igf2r and hypomethylation of their corresponding imprinted control regions. Treatment of wild-type embryonic stem cells and neural stem cells with the Gsk-3 inhibitor, lithium, phenocopies the DNA hypomethylation at these imprinted loci. We show that inhibition of Gsk-3 by phosphatidylinositol 3-kinase (PI3K)-mediated activation of Akt also results in reduced DNA methylation at these imprinted loci. Finally, we find that N-Myc is a potent Gsk-3-dependent regulator of Dnmt3a2 expression. In summary, we have identified a signal transduction pathway that is capable of altering the DNA methylation of imprinted loci. PMID:21047779

  3. Signaling through the interleukin 2 receptor beta chain activates a STAT-5-like DNA-binding activity.

    PubMed Central

    Gaffen, S L; Lai, S Y; Xu, W; Gouilleux, F; Groner, B; Goldsmith, M A; Greene, W C

    1995-01-01

    To explore the possible involvement of STAT factors ("signal transducers and activators of transcription") in the interleukin 2 receptor (IL-2R) signaling cascade, murine HT-2 cells expressing chimeric receptors composed of the extracellular domain of the erythropoietin receptor fused to the cytoplasmic domains of the IL-2R beta or -gamma c chains were prepared. Erythropoietin or IL-2 activation of these cells resulted in rapid nuclear expression of a DNA-binding activity that reacted with select STAT response elements. Based on reactivity with specific anti-STAT antibodies, this DNA-binding activity was identified as a murine homologue of STAT-5. Induction of nuclear expression of this STAT-5-like factor was blocked by the addition of herbimycin A, a tyrosine kinase inhibitor, but not by rapamycin, an immunophilin-binding antagonist of IL-2-induced proliferation. The IL-2R beta chain appeared critical for IL-2-induced activation of STAT-5, since a mutant beta chain lacking all cytoplasmic tyrosine residues was incapable of inducing this DNA binding. In contrast, a gamma c mutant lacking all of its cytoplasmic tyrosine residues proved fully competent for the induction of STAT-5. Physical binding of STAT-5 to functionally important tyrosine residues within IL-2R beta was supported by the finding that phosphorylated, but not nonphosphorylated, peptides corresponding to sequences spanning Y392 and Y510 of the IL-2R beta tail specifically inhibited STAT-5 DNA binding. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7543676

  4. Doped Graphene for DNA Analysis: the Electrochemical Signal is Strongly Influenced by the Kind of Dopant and the Nucleobase Structure

    NASA Astrophysics Data System (ADS)

    Tian, Huidi; Wang, Lu; Sofer, Zdenek; Pumera, Martin; Bonanni, Alessandra

    2016-09-01

    Doping graphene with heteroatoms can alter the electronic and electrochemical properties of the starting material. Contrasting properties should be expected when the doping is carried out with electron donating species (n-type dopants) or with electron withdrawing species (p-type dopants). This in turn can have a profound influence on the electroanalytical performance of the doped material being used for the detection of specific probes. Here we investigate the electrochemical oxidation of DNA bases adenine, guanine, thymine and cytosine on two heteroatom-doped graphene platforms namely boron-doped graphene (p-type dopant) and nitrogen-doped graphene (n-type dopant). We found that overall, boron–doped graphene provided the best response in terms of electrochemical signal sensitivity for all bases. This is due to the electron deficiency of boron-doped graphene, which can promote the oxidation of DNA bases, as opposed to nitrogen-doped graphene which possesses an excess of electrons. Moreover, also the structure of the nucleobase was found to have significant influence on the obtained signal. Our study may open new frontiers in the electrochemical detection of DNA bases which is the first step for label-free DNA analysis.

  5. Doped Graphene for DNA Analysis: the Electrochemical Signal is Strongly Influenced by the Kind of Dopant and the Nucleobase Structure.

    PubMed

    Tian, Huidi; Wang, Lu; Sofer, Zdenek; Pumera, Martin; Bonanni, Alessandra

    2016-09-14

    Doping graphene with heteroatoms can alter the electronic and electrochemical properties of the starting material. Contrasting properties should be expected when the doping is carried out with electron donating species (n-type dopants) or with electron withdrawing species (p-type dopants). This in turn can have a profound influence on the electroanalytical performance of the doped material being used for the detection of specific probes. Here we investigate the electrochemical oxidation of DNA bases adenine, guanine, thymine and cytosine on two heteroatom-doped graphene platforms namely boron-doped graphene (p-type dopant) and nitrogen-doped graphene (n-type dopant). We found that overall, boron-doped graphene provided the best response in terms of electrochemical signal sensitivity for all bases. This is due to the electron deficiency of boron-doped graphene, which can promote the oxidation of DNA bases, as opposed to nitrogen-doped graphene which possesses an excess of electrons. Moreover, also the structure of the nucleobase was found to have significant influence on the obtained signal. Our study may open new frontiers in the electrochemical detection of DNA bases which is the first step for label-free DNA analysis.

  6. Persistent activation of DNA damage signaling in response to complex mixtures of PAHs in air particulate matter.

    PubMed

    Jarvis, Ian W H; Bergvall, Christoffer; Bottai, Matteo; Westerholm, Roger; Stenius, Ulla; Dreij, Kristian

    2013-02-01

    Complex mixtures of polycyclic aromatic hydrocarbons (PAHs) are present in air particulate matter (PM) and have been associated with many adverse human health effects including cancer and respiratory disease. However, due to their complexity, the risk of exposure to mixtures is difficult to estimate. In the present study the effects of binary mixtures of benzo[a]pyrene (BP) and dibenzo[a,l]pyrene (DBP) and complex mixtures of PAHs in urban air PM extracts on DNA damage signaling was investigated. Applying a statistical model to the data we observed a more than additive response for binary mixtures of BP and DBP on activation of DNA damage signaling. Persistent activation of checkpoint kinase 1 (Chk1) was observed at significantly lower BP equivalent concentrations in air PM extracts than BP alone. Activation of DNA damage signaling was also more persistent in air PM fractions containing PAHs with more than four aromatic rings suggesting larger PAHs contribute a greater risk to human health. Altogether our data suggests that human health risk assessment based on additivity such as toxicity equivalency factor scales may significantly underestimate the risk of exposure to complex mixtures of PAHs. The data confirms our previous findings with PAH-contaminated soil (Niziolek-Kierecka et al., 2012) and suggests a possible role for Chk1 Ser317 phosphorylation as a biological marker for future analyses of complex mixtures of PAHs. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Endothelin-1 protects human melanocytes from UV-induced DNA damage by activating JNK and p38 signalling pathways.

    PubMed

    von Koschembahr, Anne M; Swope, Viki B; Starner, Renny J; Abdel-Malek, Zalfa A

    2015-04-01

    Endothelin-1 is a paracrine factor with mitogenic, melanogenic and survival effects on cultured human melanocytes. We report that endothelin-1 signalling reduced the generation and enhanced the repair of ultraviolet radiation (UV)-induced DNA photoproducts, and inhibited apoptosis of human melanocytes, without increasing cAMP levels, melanin content or proliferation. Treatment with endothelin-1 activated the MAP kinases JNK and p38, as evidenced by phosphorylation of their target, activating transcription factor-2 (ATF-2). Endothelin-1 also enhanced the phosphorylation of JNK, p38 and ATF-2 by UV. The effects of endothelin-1 were dependent on increasing intracellular calcium mobilization by endothelin B receptor signalling. Activation of both JNK and p38 was required for reducing DNA photoproducts, but only JNK partially contributed to the survival effect of endothelin-1. ATF-2 activation depended mainly on JNK, yet was not sufficient for the effect of endothelin-1 on UV-induced DNA damage, suggesting the requirement for other JNK and p38 targets for this effect. Our results underscore the significance of endothelin-1 and endothelin B receptor signalling in reducing the genotoxic effects of UV via activating JNK and p38, hence restoring genomic stability of melanocytes.

  8. Modular modelling with Physiome standards.

    PubMed

    Cooling, Michael T; Nickerson, David P; Nielsen, Poul M F; Hunter, Peter J

    2016-12-01

    The complexity of computational models is increasing, supported by research in modelling tools and frameworks. But relatively little thought has gone into design principles for complex models. We propose a set of design principles for complex model construction with the Physiome standard modelling protocol CellML. By following the principles, models are generated that are extensible and are themselves suitable for reuse in larger models of increasing complexity. We illustrate these principles with examples including an architectural prototype linking, for the first time, electrophysiology, thermodynamically compliant metabolism, signal transduction, gene regulation and synthetic biology. The design principles complement other Physiome research projects, facilitating the application of virtual experiment protocols and model analysis techniques to assist the modelling community in creating libraries of composable, characterised and simulatable quantitative descriptions of physiology. The ability to produce and customise complex computational models has great potential to have a positive impact on human health. As the field develops towards whole-cell models and linking such models in multi-scale frameworks to encompass tissue, organ, or organism levels, reuse of previous modelling efforts will become increasingly necessary. Any modelling group wishing to reuse existing computational models as modules for their own work faces many challenges in the context of construction, storage, retrieval, documentation and analysis of such modules. Physiome standards, frameworks and tools seek to address several of these challenges, especially for models expressed in the modular protocol CellML. Aside from providing a general ability to produce modules, there has been relatively little research work on architectural principles of CellML models that will enable reuse at larger scales. To complement and support the existing tools and frameworks, we develop a set of principles to

  9. DnaK plays a pivotal role in Tat targeting of CueO and functions beside SlyD as a general Tat signal binding chaperone.

    PubMed

    Graubner, Wenke; Schierhorn, Angelika; Brüser, Thomas

    2007-03-09

    The Tat (twin-arginine translocation) system from Escherichia coli transports folded proteins with N-terminal twin-arginine signal peptides across the cytoplasmic membrane. The influence of general chaperones on Tat substrate targeting has not been clarified so far. Here we show that the chaperones SlyD and DnaK bind to a broad range of different Tat signal sequences in vitro and in vivo. Initially, SlyD and GroEL were purified from DnaK-deficient extracts by their affinity to various Tat signal sequences. Of these, only SlyD bound Tat signal sequences also in the presence of DnaK. SlyD and DnaK also co-purified with Tat substrate precursors, demonstrating the binding to Tat signal sequences in vivo. Deletion of dnaK completely abolished Tat-dependent translocation of CueO, but not of DmsA, YcdB, or HiPIP, indicating that DnaK has an essential role specifically for CueO. DnaK was not required for stability of the CueO precursor and thus served in some essential step after folding. A CueO signal sequence fusion to HiPIP was Tat-dependently transported without the need of DnaK, indicating that the mature domain of CueO is responsible for the DnaK dependence. The overall results suggest that SlyD and DnaK are in the set of chaperones that can serve as general Tat signal-binding proteins. DnaK has additional functions that are indispensable for the targeting of CueO.

  10. Gefitinib Radiosensitizes Stem-Like Glioma Cells: Inhibition of Epidermal Growth Factor Receptor-Akt-DNA-PK Signaling, Accompanied by Inhibition of DNA Double-Strand Break Repair

    SciTech Connect

    Kang, Khong Bee; Zhu Congju; Wong Yinling; Gao Qiuhan; Ty, Albert; Wong, Meng Cheong

    2012-05-01

    Purpose: We compared radiosensitivity of brain tumor stem cells (BTSCs) with matched nonstem glioma cells, and determined whether gefitinib enhanced BTSC radiosensitivity by inhibiting epidermal growth factor receptor (EGFR)-Akt-DNA-dependent protein kinase (DNA-PK) signaling, followed by enhanced DNA double-stand breaks (DSBs) and inhibition of DSB repair. Methods and Materials: Radiosensitivity of stem-like gliomaspheres and nonstem glioma cells (obtained at patient neurosurgical resection) were evaluated by clonogenic assays, {gamma}-H{sub 2}AX immunostaining and cell cycle distribution. Survival of irradiated and nonirradiated NOD-SCID mice intracranially implanted with stem-like gliomaspheres were monitored. Glioma cells treated with gefitinib, irradiation, or both were assayed for clonogenic survival, {gamma}-H{sub 2}AX immunostaining, DNA-PKcs expression, and phosphorylation of EGFR and Akt. Results: Stem-like gliomaspheres displayed BTSC characteristics of self-renewal; differentiation into lineages of neurons, oligodendrocytes, and astrocytes; and initiation of glioma growth in NOD-SCID mice. Irradiation dose-dependently reduced clonogenic survival, induced G{sub 2}/M arrest and increased {gamma}-H{sub 2}AX immunostaining of nonstem glioma cells, but not stem-like gliomaspheres. There was no difference in survival of irradiated and nonirradiated mice implanted with stem-like gliomaspheres. The addition of gefitinib significantly inhibited clonogenic survival, increased {gamma}-H{sub 2}AX immunostaining, and reduced DNA-PKcs expression of irradiated stem-like gliomaspheres, without affecting irradiated-nonstem glioma cells. Gefitinib alone, and when combined with irradiation, inhibited phosphorylation of EGFR (Y1068 and Y1045) and Akt (S473) in stem-like gliomaspheres. In nonstem glioma cells, gefitinib alone inhibited EGFR Y1068 phosphorylation, with further inhibition by combined gefitinib and irradiation. Conclusions: Stem-like gliomaspheres are

  11. Gestational Diabetes Alters Offspring DNA Methylation Profiles in Human and Rat: Identification of Key Pathways Involved in Endocrine System Disorders, Insulin Signaling, Diabetes Signaling, and ILK Signaling.

    PubMed

    Petropoulos, Sophie; Guillemin, Claire; Ergaz, Zivanit; Dimov, Sergiy; Suderman, Matthew; Weinstein-Fudim, Liza; Ornoy, Asher; Szyf, Moshe

    2015-06-01

    Gestational diabetes is associated with risk for metabolic disease later in life. Using a cross-species approach in rat and humans, we examined the hypothesis that gestational diabetes during pregnancy triggers changes in the methylome of the offspring that might be mediating these risks. We show in a gestation diabetes rat model, the Cohen diabetic rat, that gestational diabetes triggers wide alterations in DNA methylation in the placenta in both candidate diabetes genes and genome-wide promoters, thus providing evidence for a causal relationship between diabetes during pregnancy and DNA methylation alterations. There is a significant overlap between differentially methylated genes in the placenta and the liver of the rat offspring. Several genes differentially methylated in rat placenta exposed to maternal diabetes are also differentially methylated in the human placenta of offspring exposed to gestational diabetes in utero. DNA methylation changes inversely correlate with changes in expression. The changes in DNA methylation affect known functional gene pathways involved in endocrine function, metabolism, and insulin responses. These data provide support to the hypothesis that early-life exposures and their effects on metabolic disease are mediated by DNA methylation changes. This has important diagnostic and therapeutic implications.

  12. Modular antenna design study

    NASA Technical Reports Server (NTRS)

    Ribble, J. W.

    1981-01-01

    The mechanical design of a modular antenna concept was developed sufficiently to allow manufacture of a working demonstration model of a module, to predict mass properties, and to make performance estimates for antenna reflectors composed of these modules. The primary features of this concept are: (1) each module is an autonomous structural element which can be attached to adjacent modules through a three point connection; (2) the upper surface is a folding hexagonal truss plate mechanism which serves as the supporting structure for a reflective surface; and (3) the entire truss and surface can be folded into a cylindrical envelope in which all truss elements are essentially parallel. The kinematic studies and engineering demonstration model fully verified the deployment kinematics, stowing philosophy, and deployment sequencing for large antenna modules. It was established that such modules can be stowed in packages as small as 25 cm in diameter, using 1.27 cm diameter structural tubes. The development activity indicates that this deployable modular approach towards building large structures in space will support erection of 450 m apertures for operation up to 3 GHz with a single space shuttle flight.

  13. Modular reflector concept study

    NASA Technical Reports Server (NTRS)

    Vaughan, D. H.

    1981-01-01

    A study was conducted to evaluate the feasibility of space erecting a 100 meter paraboloidal radio frequency reflector by joining a number of individually deployed structural modules. Three module design concepts were considered: (1) the deployable cell module (DCM); (2) the modular paraboloidal erectable truss antenna (Mod-PETA); and (3) the modular erectable truss antenna (META). With the space shuttle (STS) as the launch system, the methodology of packaging and stowing in the orbiter, and of dispensing, deploying and joining, in orbit, were studied and the necessary support equipment identified. The structural performance of the completed reflectors was evaluated and their overall operational capability and feasibility were evaluated and compared. The potential of the three concepts to maintain stable shape in the space environment was determined. Their ability to operate at radio frequencies of 1 GHz and higher was assessed assuming the reflector surface to consist of a number of flat, hexagonal facets. A parametric study was performed to determine figure degradation as a function of reflector size, flat facet size, and f/D ratio.

  14. Modular radiochemistry synthesis system

    SciTech Connect

    Satyamurthy, Nagichettiar; Barrio, Jorge R.; Amarasekera, Bernard; Van Dam, R. Michael; Olma, Sebastian; Williams, Dirk; Eddings, Mark; Shen, Clifton Kwang-Fu

    2015-12-15

    A modular chemical production system includes multiple modules for performing a chemical reaction, particularly of radiochemical compounds, from a remote location. One embodiment comprises a reaction vessel including a moveable heat source with the position thereof relative to the reaction vessel being controllable from a remote position. Alternatively the heat source may be fixed in location and the reaction vial is moveable into and out of the heat source. The reaction vessel has one or more sealing plugs, the positioning of which in relationship to the reaction vessel is controllable from a remote position. Also the one or more reaction vessel sealing plugs can include one or more conduits there through for delivery of reactants, gases at atmospheric or an elevated pressure, inert gases, drawing a vacuum and removal of reaction end products to and from the reaction vial, the reaction vial with sealing plug in position being operable at elevated pressures. The modular chemical production system is assembled from modules which can each include operating condition sensors and controllers configured for monitoring and controlling the individual modules and the assembled system from a remote position. Other modules include, but are not limited to a Reagent Storage and Delivery Module, a Cartridge Purification Module, a Microwave Reaction Module, an External QC/Analysis/Purification Interface Module, an Aliquotting Module, an F-18 Drying Module, a Concentration Module, a Radiation Counting Module, and a Capillary Reactor Module.

  15. Modular radiochemistry synthesis system

    DOEpatents

    Satyamurthy, Nagichettiar; Barrio, Jorge R; Amarasekera, Bernard; Van Dam, R. Michael; Olma, Sebastian; Williams, Dirk; Eddings, Mark A; Shen, Clifton Kwang-Fu

    2015-02-10

    A modular chemical production system includes multiple modules for performing a chemical reaction, particularly of radiochemical compounds, from a remote location. One embodiment comprises a reaction vessel including a moveable heat source with the position thereof relative to the reaction vessel being controllable from a remote position. Alternatively the heat source may be fixed in location and the reaction vial is moveable into and out of the heat source. The reaction vessel has one or more sealing plugs, the positioning of which in relationship to the reaction vessel is controllable from a remote position. Also the one or more reaction vessel sealing plugs can include one or more conduits there through for delivery of reactants, gases at atmospheric or an elevated pressure, inert gases, drawing a vacuum and removal of reaction end products to and from the reaction vial, the reaction vial with sealing plug in position being operable at elevated pressures. The modular chemical production system is assembled from modules which can each include operating condition sensors and controllers configured for monitoring and controlling the individual modules and the assembled system from a remote position. Other modules include, but are not limited to a Reagent Storage and Delivery Module, a Cartridge Purification Module, a Microwave Reaction Module, an External QC/Analysis/Purification Interface Module, an Aliquotting Module, an F-18 Drying Module, a Concentration Module, a Radiation Counting Module, and a Capillary Reactor Module.

  16. Preheating after modular inflation

    NASA Astrophysics Data System (ADS)

    Barnaby, Neil; Bond, J. Richard; Huang, Zhiqi; Kofman, Lev

    2009-12-01

    We study (p)reheating in modular (closed string) inflationary scenarios, with a special emphasis on Kähler moduli/Roulette models. It is usually assumed that reheating in such models occurs through perturbative decays. However, we find that there are very strong non-perturbative preheating decay channels related to the particular shape of the inflaton potential (which is highly nonlinear and has a very steep minimum). Preheating after modular inflation, proceeding through a combination of tachyonic instability and broad-band parametric resonance, is perhaps the most violent example of preheating after inflation known in the literature. Further, we consider the subsequent transfer of energy to the standard model sector in scenarios where the standard model particles are confined to a D7-brane wrapping the inflationary blow-up cycle of the compactification manifold or, more interestingly, a non-inflationary blow-up cycle. We explicitly identify the decay channels of the inflaton in these two scenarios. We also consider the case where the inflationary cycle shrinks to the string scale at the end of inflation; here a field theoretical treatment of reheating is insufficient and one must turn instead to a stringy description. We estimate the decay rate of the inflaton and the reheat temperature for various scenarios.

  17. Modular Robotic Vehicle

    NASA Technical Reports Server (NTRS)

    Borroni-Bird, Christopher E. (Inventor); Vitale, Robert L. (Inventor); Lee, Chunhao J. (Inventor); Ambrose, Robert O. (Inventor); Bluethmann, William J. (Inventor); Junkin, Lucien Q. (Inventor); Lutz, Jonathan J. (Inventor); Guo, Raymond (Inventor); Lapp, Anthony Joseph (Inventor); Ridley, Justin S. (Inventor)

    2015-01-01

    A modular robotic vehicle includes a chassis, driver input devices, an energy storage system (ESS), a power electronics module (PEM), modular electronic assemblies (eModules) connected to the ESS via the PEM, one or more master controllers, and various embedded controllers. Each eModule includes a drive wheel containing a propulsion-braking module, and a housing containing propulsion and braking control assemblies with respective embedded propulsion and brake controllers, and a mounting bracket covering a steering control assembly with embedded steering controllers. The master controller, which is in communication with each eModule and with the driver input devices, communicates with and independently controls each eModule, by-wire, via the embedded controllers to establish a desired operating mode. Modes may include a two-wheel, four-wheel, diamond, and omni-directional steering modes as well as a park mode. A bumper may enable docking with another vehicle, with shared control over the eModules of the vehicles.

  18. Modular radiochemistry synthesis system

    SciTech Connect

    Satyamurthy, Nagichettiar; Barrio, Jorge R.; Amarasekera, Bernard; Van Dam, Michael R.; Olma, Sebastian; Williams, Dirk; Eddings, Mark; Shen, Clifton Kwang-Fu

    2016-11-01

    A modular chemical production system includes multiple modules for performing a chemical reaction, particularly of radiochemical compounds, from a remote location. One embodiment comprises a reaction vessel including a moveable heat source with the position thereof relative to the reaction vessel being controllable from a remote position. Alternatively the heat source may be fixed in location and the reaction vial is moveable into and out of the heat source. The reaction vessel has one or more sealing plugs, the positioning of which in relationship to the reaction vessel is controllable from a remote position. Also the one or more reaction vessel sealing plugs can include one or more conduits there through for delivery of reactants, gases at atmospheric or an elevated pressure, inert gases, drawing a vacuum and removal of reaction end products to and from the reaction vial, the reaction vial with sealing plug in position being operable at elevated pressures. The modular chemical production system is assembled from modules which can each include operating condition sensors and controllers configured for monitoring and controlling the individual modules and the assembled system from a remote position. Other modules include, but are not limited to a Reagent Storage and Delivery Module, a Cartridge Purification Module, a Microwave Reaction Module, an External QC/Analysis/Purification Interface Module, an Aliquotting Module, an F-18 Drying Module, a Concentration Module, a Radiation Counting Module, and a Capillary Reactor Module.

  19. Genotoxicity of radiofrequency signals. I. Investigation of DNA damage and micronuclei induction in cultured human blood cells.

    PubMed

    Tice, Raymond R; Hook, Graham G; Donner, Maria; McRee, Donald I; Guy, Arthur W

    2002-02-01

    As part of a comprehensive investigation of the potential genotoxicity of radiofrequency (RF) signals emitted by cellular telephones, in vitro studies evaluated the induction of DNA and chromosomal damage in human blood leukocytes and lymphocytes, respectively. The signals were voice modulated 837 MHz produced by an analog signal generator or by a time division multiple access (TDMA) cellular telephone, 837 MHz generated by a code division multiple access (CDMA) cellular telephone (not voice modulated), and voice modulated 1909.8 MHz generated by a global system of mobile communication (GSM)-type personal communication systems (PCS) cellular telephone. DNA damage (strand breaks/alkali labile sites) was assessed in leukocytes using the alkaline (pH>13) single cell gel electrophoresis (SCG) assay. Chromosomal damage was evaluated in lymphocytes mitogenically stimulated to divide postexposure using the cytochalasin B-binucleate cell micronucleus assay. Cells were exposed at 37+/-1 degrees C, for 3 or 24 h at average specific absorption rates (SARs) of 1.0-10.0 W/kg. Exposure for either 3 or 24 h did not induce a significant increase in DNA damage in leukocytes, nor did exposure for 3 h induce a significant increase in micronucleated cells among lymphocytes. However, exposure to each of the four RF signal technologies for 24 h at an average SAR of 5.0 or 10.0 W/kg resulted in a significant and reproducible increase in the frequency of micronucleated lymphocytes. The magnitude of the response (approximately four fold) was independent of the technology, the presence or absence of voice modulation, and the frequency (837 vs. 1909.8 MHz). This research demonstrates that, under extended exposure conditions, RF signals at an average SAR of at least 5.0 W/kg are capable of inducing chromosomal damage in human lymphocytes.

  20. Decreased T cell ERK pathway signaling may contribute to the development of lupus through effects on DNA methylation and gene expression.

    PubMed

    Oelke, Kurt; Richardson, Bruce

    2004-01-01

    T cells from patients with active lupus have multiple biochemical abnormalities. One of these is DNA hypomethylation, which in model systems alters gene expression and induces lupus-like autoimmunity. Recent reports indicate that DNA methylation is regulated in part by the ERK pathway, and that ERK pathway signaling is diminished in lupus T cells. This suggests a model in which defective T cell ERK pathway signaling contributes to the development of autoimmunity by decreasing DNA methyltransferase expression, modifying DNA methylation patterns and altering gene expression. This mechanism could contribute to idiopathic and drug-induced lupus.

  1. Identifying the North American plum species phylogenetic signal using nuclear, mitochondrial, and chloroplast DNA markers

    USDA-ARS?s Scientific Manuscript database

    Premise of the study: Prunus L. phylogeny has extensively studied using cpDNA sequences. CpDNA has a slow rate of evolution which is beneficial to determine species relationships at a deeper level. However, a limitation of the chloroplast based phylogenies is its transfer by interspecific hybridizat...

  2. Quantifying environmental DNA signals for aquatic invasive species across multiple detection platforms.

    PubMed

    Nathan, Lucas M; Simmons, Megan; Wegleitner, Benjamin J; Jerde, Christopher L; Mahon, Andrew R

    2014-11-04

    The use of molecular surveillance techniques has become popular among aquatic researchers and managers due to the improved sensitivity and efficiency compared to traditional sampling methods. Rapid expansion in the use of environmental DNA (eDNA), paired with the advancement of molecular technologies, has resulted in new detection platforms and techniques. In this study we present a comparison of three eDNA surveillance platforms: traditional polymerase chain reaction (PCR), quantitative PCR (qPCR), and digital droplet PCR (ddPCR) in which water samples were collected over a 24 h time period from mesocosm experiments containing a population gradient of invasive species densities. All platforms reliably detected the presence of DNA, even at low target organism densities within the first hour. The two quantitative platforms (qPCR and ddPCR) produced similar estimates of DNA concentrations. The analyses completed with ddPCR was faster from sample collection through analyses and cost approximately half the expenditure of qPCR. Although a new platform for eDNA surveillance of aquatic species, ddPCR was consistent with more commonly used qPCR and a cost-effective means of estimating DNA concentrations. Use of ddPCR by researchers and managers should be considered in future eDNA surveillance applications.

  3. Quantum modular forms, mock modular forms, and partial theta functions

    NASA Astrophysics Data System (ADS)

    Kimport, Susanna

    Defined by Zagier in 2010, quantum modular forms have been the subject of an explosion of recent research. Many of these results are aimed at discovering examples of these functions, which are defined on the rational numbers and have "nice" modularity properties. Though the subject is in its early stages, numerous results (including Zagier's original examples) show these objects naturally arising from many areas of mathematics as limits of other modular-like functions. One such family of examples is due to Folsom, Ono, and Rhoades, who connected these new objects to partial theta functions (introduced by Rogers in 1917) and mock modular forms (about which there is a rich theory, whose origins date back to Ramanujan in 1920). In this thesis, we build off of the work of Folsom, Ono, and Rhoades by providing an infinite family of quantum modular forms of arbitrary positive half-integral weight. Further, this family of quantum modular forms "glues" mock modular forms to partial theta functions and is constructed from a so-called "universal" mock theta function by extending a method of Eichler and Zagier (originally defined for holomorphic Jacobi forms) into a non-holomorphic setting. In addition to the infinite family, we explore the weight 1/2 and 3/2 functions in more depth. For both of these weights, we are able to explicitly write down the quantum modular form, as well as the corresponding "errors to modularity," which can be shown to be Mordell integrals of specific theta functions and, as a consequence, are real-analytic functions. Finally, we turn our attention to the partial theta functions associated with these low weight examples. Berndt and Kim provide asymptotic expansions for a certain class of partial theta functions as q approaches 1 radially within the unit disk. Here, we extend this work to not only obtain asymptotic expansions for this class of functions as q approaches any root of unity, but also for a certain class of derivatives of these functions

  4. Exposure to welding fumes activates DNA damage response and redox-sensitive transcription factor signalling in Sprague-Dawley rats.

    PubMed

    Krishnaraj, Jayaraman; Kowshik, Jaganathan; Sebastian, Robin; Raghavan, Sathees C; Nagini, Siddavaram

    2017-05-15

    Occupational exposure to welding fumes containing a complex mixture of genotoxic heavy metals, radiation, gases and nanoparticles poses a serious health hazard to welders. Since their categorization as possible carcinogens, welding fumes have gained increasing attention as high priority agents for risk assessment. The present study was undertaken to investigate the effects of welding fume inhalation on oxidative stress, DNA damage response (DDR), and nuclear factor erythroid 2-related factor-2 (Nrf2) and nuclear factor kappa B (NFκB) signalling in the lung tissues of male Sprague-Dawley rats. METHODS: Animals were divided into five groups. Group 1 animals served as control. Rats in groups 2-5 were exposed to 50mg/m(3) stainless steel (SS) welding fumes for 1h for 1day, 1 week, 2 weeks, and 4 weeks respectively. Reactive oxygen species (ROS) generation, 8-oxo-2'-deoxyguanosine (8-oxodG), xenobiotic-metabolizing enzymes (XMEs) and antioxidants were analysed. DNA damage sensors, DNA repair enzymes, inflammatory mediators, cell cycle progression, apoptosis and key players in Nrf2 and NFκB signalling were assessed by flow cytometry, quantitative real-time reverse transcriptase PCR, immunoblotting, immunohistochemistry and immunofluorescence. Rats exposed to welding fumes showed increased levels of chromium and ROS in lung tissues associated with accumulation of 8-oxodG and enhanced expression of XMEs and antioxidants. This was accompanied by upregulation of DNA damage sensors, cell cycle arrest in G1/S phase, overexpression of a multitude of DNA repair enzymes and caspase-mediated apoptosis. In addition, exposure to welding fumes induced activation of Nrf2 and NFκB signalling with enhanced expression of inflammatory mediators. The results of the present study unequivocally demonstrate that exposure of rats to SS welding fumes alters the expression of 37 genes involved in oxidative stress, detoxification, inflammation, DNA repair, cell cycle progression, and apoptosis

  5. Spacecraft Modularity for Serviceable Satellites

    NASA Technical Reports Server (NTRS)

    Rossetti, Dino; Keer, Beth; Panek, John; Ritter, Bob; Reed, Benjamin; Cepollina, Frank

    2015-01-01

    Spacecraft modularity has been a topic of interest at NASA since the 1970s, when the Multi-­-Mission Modular Spacecraft (MMS) was developed at the Goddard Space Flight Center. Since then, modular concepts have been employed for a variety of spacecraft and, as in the case of the Hubble Space Telescope (HST) and the International Space Station (ISS), have been critical to the success of on-­- orbit servicing. Modularity is even more important for future robotic servicing. Robotic satellite servicing technologies under development by NASA can extend mission life and reduce lifecycle cost and risk. These are optimized when the target spacecraft is designed for servicing, including advanced modularity. This paper will explore how spacecraft design, as demonstrated by the Reconfigurable Operational spacecraft for Science and Exploration (ROSE) spacecraft architecture, and servicing technologies can be developed in parallel to fully take advantage of the promise of both.

  6. Spacecraft Modularity for Serviceable Satellites

    NASA Technical Reports Server (NTRS)

    Reed, Benjamin B.; Rossetti, Dino; Keer, Beth; Panek, John; Cepollina, Frank; Ritter, Robert

    2015-01-01

    Spacecraft modularity has been a topic of interest at NASA since the 1970s, when the Multi-Mission Modular Spacecraft (MMS) was developed at the Goddard Space Flight Center. Since then, modular concepts have been employed for a variety of spacecraft and, as in the case of the Hubble Space Telescope (HST) and the International Space Station (ISS), have been critical to the success of on-orbit servicing. Modularity is even more important for future robotic servicing. Robotic satellite servicing technologies under development by NASA can extend mission life and reduce life-cycle cost and risk. These are optimized when the target spacecraft is designed for servicing, including advanced modularity. This paper will explore how spacecraft design, as demonstrated by the Reconfigurable Operational spacecraft for Science and Exploration (ROSE) spacecraft architecture, and servicing technologies can be developed in parallel to fully take advantage of the promise of both.

  7. Synapsis of Recombination Signal Sequences Located in cis and DNA Underwinding in V(D)J Recombination

    PubMed Central

    Ciubotaru, Mihai; Schatz, David G.

    2004-01-01

    V(D)J recombination requires binding and synapsis of a complementary (12/23) pair of recombination signal sequences (RSSs) by the RAG1 and RAG2 proteins, aided by a high-mobility group protein, HMG1 or HMG2. Double-strand DNA cleavage within this synaptic, or paired, complex is thought to involve DNA distortion or melting near the site of cleavage. Although V(D)J recombination normally occurs between RSSs located on the same DNA molecule (in cis), all previous studies that directly assessed RSS synapsis were performed with the two DNA substrates in trans. To overcome this limitation, we have developed a facilitated circularization assay using DNA substrates of reduced length to assess synapsis of RSSs in cis. We show that a 12/23 pair of RSSs is the preferred substrate for synapsis of cis RSSs and that the efficiency of pairing is dependent upon RAG1-RAG2 stoichiometry. Synapsis in cis occurs rapidly and is kinetically favored over synapsis of RSSs located in trans. This experimental system also allowed the generation of underwound DNA substrates containing pairs of RSSs in cis. Importantly, we found that the RAG proteins cleave such substrates substantially more efficiently than relaxed substrates and that underwinding may enhance RSS synapsis as well as RAG1/2-mediated catalysis. The energy stored in such underwound substrates may be used in the generation of DNA distortion and/or protein conformational changes needed for synapsis and cleavage. We propose that this unwinding is uniquely sensed during synapsis of an appropriate 12/23 pair of RSSs. PMID:15367690

  8. Synapsis of recombination signal sequences located in cis and DNA underwinding in V(D)J recombination.

    PubMed

    Ciubotaru, Mihai; Schatz, David G

    2004-10-01

    V(D)J recombination requires binding and synapsis of a complementary (12/23) pair of recombination signal sequences (RSSs) by the RAG1 and RAG2 proteins, aided by a high-mobility group protein, HMG1 or HMG2. Double-strand DNA cleavage within this synaptic, or paired, complex is thought to involve DNA distortion or melting near the site of cleavage. Although V(D)J recombination normally occurs between RSSs located on the same DNA molecule (in cis), all previous studies that directly assessed RSS synapsis were performed with the two DNA substrates in trans. To overcome this limitation, we have developed a facilitated circularization assay using DNA substrates of reduced length to assess synapsis of RSSs in cis. We show that a 12/23 pair of RSSs is the preferred substrate for synapsis of cis RSSs and that the efficiency of pairing is dependent upon RAG1-RAG2 stoichiometry. Synapsis in cis occurs rapidly and is kinetically favored over synapsis of RSSs located in trans. This experimental system also allowed the generation of underwound DNA substrates containing pairs of RSSs in cis. Importantly, we found that the RAG proteins cleave such substrates substantially more efficiently than relaxed substrates and that underwinding may enhance RSS synapsis as well as RAG1/2-mediated catalysis. The energy stored in such underwound substrates may be used in the generation of DNA distortion and/or protein conformational changes needed for synapsis and cleavage. We propose that this unwinding is uniquely sensed during synapsis of an appropriate 12/23 pair of RSSs.

  9. DNA.

    ERIC Educational Resources Information Center

    Felsenfeld, Gary

    1985-01-01

    Structural form, bonding scheme, and chromatin structure of and gene-modification experiments with deoxyribonucleic acid (DNA) are described. Indicates that DNA's double helix is variable and also flexible as it interacts with regulatory and other molecules to transfer hereditary messages. (DH)

  10. DNA.

    ERIC Educational Resources Information Center

    Felsenfeld, Gary

    1985-01-01

    Structural form, bonding scheme, and chromatin structure of and gene-modification experiments with deoxyribonucleic acid (DNA) are described. Indicates that DNA's double helix is variable and also flexible as it interacts with regulatory and other molecules to transfer hereditary messages. (DH)

  11. Chromatin and DNA Replication

    PubMed Central

    MacAlpine, David M.; Almouzni, Geneviève

    2013-01-01

    The size of a eukaryotic genome presents a unique challenge to the cell: package and organize the DNA to fit within the confines of the nucleus while at the same time ensuring sufficient dynamics to allow access to specific sequences and features such as genes and regulatory elements. This is achieved via the dynamic nucleoprotein organization of eukaryotic DNA into chromatin. The basic unit of chromatin, the nucleosome, comprises a core particle with 147 bp of DNA wrapped 1.7 times around an octamer of histones. The nucleosome is a highly versatile and modular structure, both in its composition, with the existence of various histone variants, and through the addition of a series of posttranslational modifications on the histones. This versatility allows for both short-term regulatory responses to external signaling, as well as the long-term and multigenerational definition of large functional chromosomal domains within the nucleus, such as the centromere. Chromatin organization and its dynamics participate in essentially all DNA-templated processes, including transcription, replication, recombination, and repair. Here we will focus mainly on nucleosomal organization and describe the pathways and mechanisms that contribute to assembly of this organization and the role of chromatin in regulating the DNA replication program. PMID:23751185

  12. Chromatin and DNA replication.

    PubMed

    MacAlpine, David M; Almouzni, Geneviève

    2013-08-01

    The size of a eukaryotic genome presents a unique challenge to the cell: package and organize the DNA to fit within the confines of the nucleus while at the same time ensuring sufficient dynamics to allow access to specific sequences and features such as genes and regulatory elements. This is achieved via the dynamic nucleoprotein organization of eukaryotic DNA into chromatin. The basic unit of chromatin, the nucleosome, comprises a core particle with 147 bp of DNA wrapped 1.7 times around an octamer of histones. The nucleosome is a highly versatile and modular structure, both in its composition, with the existence of various histone variants, and through the addition of a series of posttranslational modifications on the histones. This versatility allows for both short-term regulatory responses to external signaling, as well as the long-term and multigenerational definition of large functional chromosomal domains within the nucleus, such as the centromere. Chromatin organization and its dynamics participate in essentially all DNA-templated processes, including transcription, replication, recombination, and repair. Here we will focus mainly on nucleosomal organization and describe the pathways and mechanisms that contribute to assembly of this organization and the role of chromatin in regulating the DNA replication program.

  13. Extracellular signal-related kinase positively regulates ataxia telangiectasia mutated, homologous recombination repair, and the DNA damage response.

    PubMed

    Golding, Sarah E; Rosenberg, Elizabeth; Neill, Steven; Dent, Paul; Povirk, Lawrence F; Valerie, Kristoffer

    2007-02-01

    The accurate joining of DNA double-strand breaks by homologous recombination repair (HRR) is critical to the long-term survival of the cell. The three major mitogen-activated protein (MAP) kinase (MAPK) signaling pathways, extracellular signal-regulated kinase (ERK), p38, and c-Jun-NH(2)-kinase (JNK), regulate cell growth, survival, and apoptosis. To determine the role of MAPK signaling in HRR, we used a human in vivo I-SceI-based repair system. First, we verified that this repair platform is amenable to pharmacologic manipulation and show that the ataxia telangiectasia mutated (ATM) kinase is critical for HRR. The ATM-specific inhibitor KU-55933 compromised HRR up to 90% in growth-arrested cells, whereas this effect was less pronounced in cycling cells. Then, using well-characterized MAPK small-molecule inhibitors, we show that ERK1/2 and JNK signaling are important positive regulators of HRR in growth-arrested cells. On the other hand, inhibition of the p38 MAPK pathway generated an almost 2-fold stimulation of HRR. When ERK1/2 signaling was stimulated by oncogenic RAF-1, an approximately 2-fold increase in HRR was observed. KU-55933 partly blocked radiation-induced ERK1/2 phosphorylation, suggesting that ATM regulates ERK1/2 signaling. Furthermore, inhibition of MAP/ERK kinase (MEK)/ERK signaling resulted in severely reduced levels of phosphorylated (S1981) ATM foci but not gamma-H2AX foci, and suppressed ATM phosphorylation levels >85% throughout the cell cycle. Collectively, these results show that MAPK signaling positively and negatively regulates HRR in human cells. More specifically, ATM-dependent signaling through the RAF/MEK/ERK pathway is critical for efficient HRR and for radiation-induced ATM activation, suggestive of a regulatory feedback loop between ERK and ATM.

  14. Signal amplification strategies for DNA and protein detection based on polymeric nanocomposites and polymerization: A review.

    PubMed

    Zhou, Shaohong; Yuan, Liang; Hua, Xin; Xu, Lingling; Liu, Songqin

    2015-06-02

    Demand is increasing for ultrasensitive bioassays for disease diagnosis, environmental monitoring and other research areas. This requires novel signal amplification strategies to maximize the signal output. In this review, we focus on a series of significant signal amplification strategies based on polymeric nanocomposites and polymerization. Some common polymers are used as carriers to increase the local concentration of signal probes and/or biomolecules on their surfaces or in their interiors. Some polymers with special fluorescence and optical properties can efficiently transfer the excitation energy from a single site to the whole polymer backbone. This results in superior fluorescence signal amplification due to the resulting collective effort (integration of signal). Recent polymerization-based signal amplification strategies that employ atom transfer radical polymerization (ATRP) and photo-initiated polymerization are also summarized. Several distinctive applications of polymers in ultrasensitive bioanalysis are highlighted.

  15. DNA supercoiling, a critical signal regulating the basal expression of the lac operon in Escherichia coli

    PubMed Central

    Fulcrand, Geraldine; Dages, Samantha; Zhi, Xiaoduo; Chapagain, Prem; Gerstman, Bernard S.; Dunlap, David; Leng, Fenfei

    2016-01-01

    Escherichia coli lac repressor (LacI) is a paradigmatic transcriptional factor that controls the expression of lacZYA in the lac operon. This tetrameric protein specifically binds to the O1, O2 and O3 operators of the lac operon and forms a DNA loop to repress transcription from the adjacent lac promoter. In this article, we demonstrate that upon binding to the O1 and O2 operators at their native positions LacI constrains three (−) supercoils within the 401-bp DNA loop of the lac promoter and forms a topological barrier. The stability of LacI-mediated DNA topological barriers is directly proportional to its DNA binding affinity. However, we find that DNA supercoiling modulates the basal expression from the lac operon in E. coli. Our results are consistent with the hypothesis that LacI functions as a topological barrier to constrain free, unconstrained (−) supercoils within the 401-bp DNA loop of the lac promoter. These constrained (−) supercoils enhance LacI’s DNA-binding affinity and thereby the repression of the promoter. Thus, LacI binding is superhelically modulated to control the expression of lacZYA in the lac operon under varying growth conditions. PMID:26763930

  16. Elevated Adenosine Induces Placental DNA Hypomethylation Independent of A2B Receptor Signaling in Preeclampsia.

    PubMed

    Huang, Aji; Wu, Hongyu; Iriyama, Takayuki; Zhang, Yujin; Sun, Kaiqi; Song, Anren; Liu, Hong; Peng, Zhangzhe; Tang, Lili; Lee, Minjung; Huang, Yun; Ni, Xin; Kellems, Rodney E; Xia, Yang

    2017-07-01

    Preeclampsia is a prevalent pregnancy hypertensive disease with both maternal and fetal morbidity and mortality. Emerging evidence indicates that global placental DNA hypomethylation is observed in patients with preeclampsia and is linked to altered gene expression and disease development. However, the molecular basis underlying placental epigenetic changes in preeclampsia remains unclear. Using 2 independent experimental models of preeclampsia, adenosine deaminase-deficient mice and a pathogenic autoantibody-induced mouse model of preeclampsia, we demonstrate that elevated placental adenosine not only induces hallmark features of preeclampsia but also causes placental DNA hypomethylation. The use of genetic approaches to express an adenosine deaminase minigene specifically in placentas, or adenosine deaminase enzyme replacement therapy, restored placental adenosine to normal levels, attenuated preeclampsia features, and abolished placental DNA hypomethylation in adenosine deaminase-deficient mice. Genetic deletion of CD73 (an ectonucleotidase that converts AMP to adenosine) prevented the elevation of placental adenosine in the autoantibody-induced preeclampsia mouse model and ameliorated preeclampsia features and placental DNA hypomethylation. Immunohistochemical studies revealed that elevated placental adenosine-mediated DNA hypomethylation predominantly occurs in spongiotrophoblasts and labyrinthine trophoblasts and that this effect is independent of A2B adenosine receptor activation in both preeclampsia models. Extending our mouse findings to humans, we used cultured human trophoblasts to demonstrate that adenosine functions intracellularly and induces DNA hypomethylation without A2B adenosine receptor activation. Altogether, both mouse and human studies reveal novel mechanisms underlying placental DNA hypomethylation and potential therapeutic approaches for preeclampsia. © 2017 American Heart Association, Inc.

  17. DNA supercoiling, a critical signal regulating the basal expression of the lac operon in Escherichia coli.

    PubMed

    Fulcrand, Geraldine; Dages, Samantha; Zhi, Xiaoduo; Chapagain, Prem; Gerstman, Bernard S; Dunlap, David; Leng, Fenfei

    2016-01-14

    Escherichia coli lac repressor (LacI) is a paradigmatic transcriptional factor that controls the expression of lacZYA in the lac operon. This tetrameric protein specifically binds to the O1, O2 and O3 operators of the lac operon and forms a DNA loop to repress transcription from the adjacent lac promoter. In this article, we demonstrate that upon binding to the O1 and O2 operators at their native positions LacI constrains three (-) supercoils within the 401-bp DNA loop of the lac promoter and forms a topological barrier. The stability of LacI-mediated DNA topological barriers is directly proportional to its DNA binding affinity. However, we find that DNA supercoiling modulates the basal expression from the lac operon in E. coli. Our results are consistent with the hypothesis that LacI functions as a topological barrier to constrain free, unconstrained (-) supercoils within the 401-bp DNA loop of the lac promoter. These constrained (-) supercoils enhance LacI's DNA-binding affinity and thereby the repression of the promoter. Thus, LacI binding is superhelically modulated to control the expression of lacZYA in the lac operon under varying growth conditions.

  18. Modular robotics overview of the `state of the art`

    SciTech Connect

    Kress, R.L.; Jansen, J.F.; Hamel, W.R.

    1996-08-01

    The design of a robotic arm processing modular components and reconfigurable links is the general goal of a modular robotics development program. The impetus behind the pursuit of modular design is the remote engineering paradigm of improved reliability and availability provided by the ability to remotely maintain and repair a manipulator operating in a hazardous environment by removing and replacing worn or failed modules. Failed components can service off- line and away from hazardous conditions. The desire to reconfigure an arm to perform different tasks is also an important driver for the development of a modular robotic manipulator. In order to bring to fruition a truly modular manipulator, an array of technical challenges must be overcome. These range from basic mechanical and electrical design considerations such as desired kinematics, actuator types, and signal and transmission types and routings, through controls issues such as the need for control algorithms capable of stable free space and contact control, to computer and sensor design issues like consideration of the use of embedded processors and redundant sensors. This report presents a brief overview of the state of the art of technical issues relevant of modular robotic arm design. The focus is on breadth of coverage, rather than depth, in order to provide a reference frame for future development.

  19. Modular Flooring System

    NASA Technical Reports Server (NTRS)

    Thate, Robert

    2012-01-01

    The modular flooring system (MFS) was developed to provide a portable, modular, durable carpeting solution for NASA fs Robotics Alliance Project fs (RAP) outreach efforts. It was also designed to improve and replace a modular flooring system that was too heavy for safe use and transportation. The MFS was developed for use as the flooring for various robotics competitions that RAP utilizes to meet its mission goals. One of these competitions, the FIRST Robotics Competition (FRC), currently uses two massive rolls of broadloom carpet for the foundation of the arena in which the robots are contained during the competition. The area of the arena is approximately 30 by 72 ft (approximately 9 by 22 m). This carpet is very cumbersome and requires large-capacity vehicles, and handling equipment and personnel to transport and deploy. The broadloom carpet sustains severe abuse from the robots during a regular three-day competition, and as a result, the carpet is not used again for competition. Similarly, broadloom carpets used for trade shows at convention centers around the world are typically discarded after only one use. This innovation provides a green solution to this wasteful practice. Each of the flooring modules in the previous system weighed 44 lb (.20 kg). The improvements in the overall design of the system reduce the weight of each module by approximately 22 lb (.10 kg) (50 %), and utilize an improved "module-to-module" connection method that is superior to the previous system. The MFS comprises 4-by-4-ft (.1.2-by- 1.2-m) carpet module assemblies that utilize commercially available carpet tiles that are bonded to a lightweight substrate. The substrate surface opposite from the carpeted surface has a module-to-module connecting interface that allows for the modules to be connected, one to the other, as the modules are constructed. This connection is hidden underneath the modules, creating a smooth, co-planar flooring surface. The modules are stacked and strapped

  20. Near-infrared silver cluster optically signaling oligonucleotide hybridization and assembling two DNA hosts.

    PubMed

    Petty, Jeffrey T; Nicholson, David A; Sergev, Orlin O; Graham, Stuart K

    2014-09-16

    Silver clusters with ~10 atoms form within DNA strands, and the conjugates are chemical sensors. The DNA host hybridizes with short oligonucleotides, and the cluster moieties optically respond to these analytes. Our studies focus on how the cluster adducts perturb the structure of their DNA hosts. Our sensor is comprised of an oligonucleotide with two components: a 5'-cluster domain that complexes silver clusters and a 3'-recognition site that hybridizes with a target oligonucleotide. The single-stranded sensor encapsulates an ~11 silver atom cluster with violet absorption at 400 nm and with minimal emission. The recognition site hybridizes with complementary oligonucleotides, and the violet cluster converts to an emissive near-infrared cluster with absorption at 730 nm. Our key finding is that the near-infrared cluster coordinates two of its hybridized hosts. The resulting tertiary structure was investigated using intermolecular and intramolecular variants of the same dimer. The intermolecular dimer assembles in concentrated (~5 μM) DNA solutions. Strand stoichiometries and orientations were chromatographically determined using thymine-modified complements that increase the overall conjugate size. The intramolecular dimer develops within a DNA scaffold that is founded on three linked duplexes. The high local cluster concentrations and relative strand arrangements again favor the antiparallel dimer for the near-infrared cluster. When the two monomeric DNA/violet cluster conjugates transform to one dimeric DNA/near-infrared conjugate, the DNA strands accumulate silver. We propose that these correlated changes in DNA structure and silver stoichiometry underlie the violet to near-infrared cluster transformation.

  1. mTOR signaling regulates myotube hypertrophy by modulating protein synthesis, rDNA transcription, and chromatin remodeling.

    PubMed

    von Walden, Ferdinand; Liu, Chang; Aurigemma, Nicole; Nader, Gustavo A

    2016-10-01

    Ribosome production is an early event during skeletal muscle hypertrophy and precedes muscle protein accretion. Signaling via mTOR is crucial for ribosome production and hypertrophy; however, the mechanisms by which it regulates these processes remain to be identified. Herein, we investigated the activation of mTOR signaling in hypertrophying myotubes and determined that mTOR coordinates various aspects of gene expression important for ribosome production. First, inhibition of translation with cycloheximide had a more potent effect on protein synthesis than rapamycin indicating that mTOR function during hypertrophy is not on general, but rather on specific protein synthesis. Second, blocking Pol II transcription had a similar effect as Rapamycin and, unexpectedly, revealed the necessity of Pol II transcription for Pol I transcription, suggesting that mTOR may regulate ribosome production also by controlling Class II genes at the transcriptional level. Third, Pol I activity is essential for rDNA transcription and, surprisingly, for protein synthesis as selective Pol I inhibition blunted rDNA transcription, protein synthesis, and the hypertrophic response of myotubes. Finally, mTOR has nuclear localization in muscle, which is not sensitive to rapamycin. Inhibition of mTOR signaling by rapamycin disrupted mTOR-rDNA promoter interaction and resulted in altered histone marks indicative of repressed transcription and formation of higher-order chromatin structure. Thus mTOR signaling appears to regulate muscle hypertrophy by affecting protein synthesis, Class I and II gene expression, and chromatin remodeling. Copyright © 2016 the American Physiological Society.

  2. Modular arctic structures system

    SciTech Connect

    Reusswig, G. H.

    1984-12-04

    A modular and floatable offshore exploration and production platform system for use in shallow arctic waters is disclosed. A concrete base member is floated to the exploration or production site, and ballated into a predredged cavity. The cavity and base are sized to provide a stable horizontal base 30 feet below the mean water/ice plane. An exploration or production platform having a massive steel base is floated to the site and ballasted into position on the base. Together, the platform, base and ballast provide a massive gravity structure that is capable of resisting large ice and wave forces that impinge on the structure. The steel platform has a sloping hourglass profile to deflect horizontal ice loads vertically, and convert the horizontal load to a vertical tensile stress, which assists in breaking the ice as it advances toward the structure.

  3. Modular small hydro configuration

    NASA Astrophysics Data System (ADS)

    1981-09-01

    Smaller sites (those under 750 kilowatts) which previously were not attractive to develop using equipment intended for application at larger scale sites, were the focal point in the conception of a system which utilizes standard industrial components which are generally available within short procurement times. Such components were integrated into a development scheme for sites having 20 feet to 150 feet of head. The modular small hydro configuration maximizes the use of available components and minimizes modification of existing civil works. A key aspect of the development concept is the use of a vertical turbine multistage pump, used in the reverse mode as a hydraulic turbine. The configuration allows for automated operation and control of the hydroelectric facilities with sufficient flexibility for inclusion of potential hydroelectric sites into dispersed storage and generation (DSG) utility grid systems.

  4. Modular Optical PDV System

    SciTech Connect

    Araceli Rutkowski, David Esquibel

    2008-12-11

    A modular optical photon Doppler velocimetry (PDV) detector system has been developed by using readily available optical components with a 20-GHz Miteq optical detector into eight channels of single-wide modules integrated into a 3U rack unit (1U = 1.75 inches) with a common power supply. Optical fibers were precisely trimmed, welded, and timed within each unit. This system has been used to collect dynamic velocity data on various physics experiments. An optical power meter displays the laser input power to the module and optical power at the detector. An adjustable micro-electromechanical system (MEMS) optical attenuator is used to adjust the amount of unshifted light entering the detector. Front panel LEDs show the presence of power to the module. A fully loaded chassis with eight channels consumes 45 watts of power. Each chassis requires 1U spacing above and below for heat management. Modules can be easily replaced.

  5. Modular weapon control unit

    SciTech Connect

    Boccabella, M.F.; McGovney, G.N.

    1997-01-01

    The goal of the Modular Weapon Control Unit (MWCU) program was to design and develop a reconfigurable weapon controller (programmer/sequencer) that can be adapted to different weapon systems based on the particular requirements for that system. Programmers from previous systems are conceptually the same and perform similar tasks. Because of this commonality and the amount of re-engineering necessary with the advent of every new design, the idea of a modular, adaptable system has emerged. Also, the controller can be used in more than one application for a specific weapon system. Functionality has been divided into a Processor Module (PM) and an Input/Output Module (IOM). The PM will handle all operations that require calculations, memory, and timing. The IOM will handle interfaces to the rest of the system, input level shifting, output drive capability, and detection of interrupt conditions. Configuration flexibility is achieved in two ways. First, the operation of the PM is determined by a surface mount Read-Only Memory (ROM). Other surface-mount components can be added or neglected as necessary for functionality. Second, IOMs consist of configurable input buffers, configurable output drivers, and configurable interrupt generation. Further, these modules can be added singly or in groups to a Processor Module to achieve the required I/O configuration. The culmination of this LDRD was the building of both Processor Module and Input/Output Module. The MWCU was chosen as a test system to evaluate Low-Temperature Co-fired Ceramic (LTCC) technology, desirable for high component density and good thermal characteristics.

  6. Improving chromatin immunoprecipitation (ChIP) by suppression of method-induced DNA-damage signaling.

    PubMed

    Beneke, Sascha

    2015-01-01

    Genomic DNA is always associated with proteins that modulate the accessibility of the genetic information. This chromatin is the essential structure in which all nuclear activity from regulation to replication, transcription, and repair takes place. This dynamic structure can be most efficiently analyzed by using the method of chromatin immunoprecipitation (ChIP), where application of cell-permeable cross-linkers to living cells induces covalent bridging between proteins and adjacent DNA in the nucleus. After fragmentation of the DNA, the complexed proteins are isolated by binding to specific antibodies. The attached DNA is isolated and can be analyzed. This method has been improved multiple times and adjusted to different experimental needs. This chapter describes a further advance based on the observation that the current standard method itself induces alterations in the chromatin.

  7. Ultrasound-induced DNA damage and signal transductions indicated by gammaH2AX

    NASA Astrophysics Data System (ADS)

    Furusawa, Yukihiro; Fujiwara, Yoshisada; Zhao, Qing-Li; Hassan, Mariame Ali; Ogawa, Ryohei; Tabuchi, Yoshiaki; Takasaki, Ichiro; Takahashi, Akihisa; Ohnishi, Takeo; Kondo, Takashi

    2011-09-01

    Ultrasound (US) has been shown to induce cancer cell death via different forms including apoptosis. Here, we report the potential of low-intensity pulsed US (LIPUS) to induce genomic DNA damage and subsequent DNA damage response. Using the ionizing radiation-induced DNA double-strand breaks (DSBs) as the positive control, we were able to observe the induction of DSBs (as neutral comet tails) and the subsequent formation of gammaH2AX-positive foci (by immunofluorescence detection) in human leukemia cells following exposure to LIPUS. The LIPUS-induced DNA damage arose most likely from the mechanical, but not sonochemical, effect of cavitation, based on our observation that the suppression of inertial cavitation abrogated the gammH2AX foci formation, whereas scavenging of free radical formation (e.g., hydroxyl radical) had no protective effect on it. Treatment with the specific kinase inhibitor of ATM or DNA-PKcs, which can phosphorylate H2AX Ser139, revealed that US-induced gammaH2AX was inhibited more effectively by the DNA-PK inhibitor than ATM kinase inhibitor. Notably, these inhibitor effects were opposite to those with radiation-induced gammH2AX. In conclusion, we report, for the first time that US can induce DNA damage and the DNA damage response as indicated by gammaH2AX was triggered by the cavitational mechanical effects. Thus, it is expected that the data shown here may provide a better understanding of the cellular responses to US.

  8. Numerical analysis of intensity signals resulting from genotyping pooled DNA samples in beef cattle and broiler chicken.

    PubMed

    Reverter, A; Henshall, J M; McCulloch, R; Sasazaki, S; Hawken, R; Lehnert, S A

    2014-05-01

    Pooled genomic DNA has been proposed as a cost-effective approach in genomewide association studies (GWAS). However, algorithms for genotype calling of biallelic SNP are not adequate with pooled DNA samples because they assume the presence of 2 fluorescent signals, 1 for each allele, and operate under the expectation that at most 2 copies of the variant allele can be found for any given SNP and DNA sample. We adapt analytical methodology from 2-channel gene expression microarray technology to SNP genotyping of pooled DNA samples. Using 5 datasets from beef cattle and broiler chicken of varying degrees of complexity in terms of design and phenotype, continuous and dichotomous, we show that both differential hybridization (M = green minus red intensity signal) and abundance (A = average of red and green intensities) provide useful information in the prediction of SNP allele frequencies. This is predominantly true when making inference about extreme SNP that are either nearly fixed or highly polymorphic. We propose the use of model-based clustering via mixtures of bivariate normal distributions as an optimal framework to capture the relationship between hybridization intensity and allele frequency from pooled DNA samples. The range of M and A values observed here are in agreement with those reported within the context of gene expression microarray and also with those from SNP array data within the context of analytical methodology for the identification of copy number variants. In particular, we confirm that highly polymorphic SNP yield a strong signal from both channels (red and green) while lowly or nonpolymorphic SNP yield a strong signal from 1 channel only. We further confirm that when the SNP allele frequencies are known, either because the individuals in the pools or from a closely related population are themselves genotyped, a multiple regression model with linear and quadratic components can be developed with high prediction accuracy. We conclude that when

  9. Modular platform for low-light microscopy

    PubMed Central

    Kim, Tae Jin; Tuerkcan, Silvan; Ceballos, Andrew; Pratx, Guillem

    2015-01-01

    Cell imaging using low-light techniques such as bioluminescence, radioluminescence, and low-excitation fluorescence has received increased attention, particularly due to broad commercialization of highly sensitive detectors. However, the dim signals are still regarded as difficult to image using conventional microscopes, where the only low-light microscope in the market is primarily optimized for bioluminescence imaging. Here, we developed a novel modular microscope that is cost-effective and suitable for imaging different low-light luminescence modes. Results show that this microscope system features excellent aberration correction capabilities and enhanced image resolution, where bioluminescence, radioluminescence and epifluorescence images were captured and compared with the commercial bioluminescence microscope. PMID:26601020

  10. Intelligent subsystem interface for modular hardware system

    NASA Technical Reports Server (NTRS)

    Krening, Douglas N. (Inventor); Lannan, Gregory B. (Inventor); Schneiderwind, Michael J. (Inventor); Schneiderwind, Robert A. (Inventor); Caffrey, Robert T. (Inventor)

    2000-01-01

    A single chip application specific integrated circuit (ASIC) which provides a flexible, modular interface between a subsystem and a standard system bus. The ASIC includes a microcontroller/microprocessor, a serial interface for connection to the bus, and a variety of communications interface devices available for coupling to the subsystem. A three-bus architecture, utilizing arbitration, provides connectivity within the ASIC and between the ASIC and the subsystem. The communication interface devices include UART (serial), parallel, analog, and external device interface utilizing bus connections paired with device select signals. A low power (sleep) mode is provided as is a processor disable option.

  11. Modular inverter system

    DOEpatents

    Ma, Mingyao; Hu, Haibing; Kutkut, Nasser; Batarseh, Issa; Shen, John; , Bkayrat, Raed

    2017-08-01

    A system connected to an AC power grid having an AC phase signal includes an inverter module including a first inverter coupled to a DC voltage, actuated based on the AC phase signal. The first inverter provides a first voltage signal having predetermined harmonic components. A second inverter includes second switch elements coupled to the DC voltage and actuated by a second set of control signals phase delayed with respect to the first control signals. A transformer module has first and second primary windings coupled to the first and second inverters. The transformer module further includes a secondary winding coupled to first primary winding, the second primary winding, and the AC power grid. The secondary winding is configured to provide a secondary output voltage to the AC power grid by combining the first voltage signal and the second voltage signal such that the predetermined harmonic components are substantially cancelled.

  12. Autophagy Promotes the Repair of Radiation-Induced DNA Damage in Bone Marrow Hematopoietic Cells via Enhanced STAT3 Signaling.

    PubMed

    Xu, Fei; Li, Xin; Yan, Lili; Yuan, Na; Fang, Yixuan; Cao, Yan; Xu, Li; Zhang, Xiaoying; Xu, Lan; Ge, Chaorong; An, Ni; Jiang, Gaoyue; Xie, Jialing; Zhang, Han; Jiang, Jiayi; Li, Xiaotian; Yao, Lei; Zhang, Suping; Zhou, Daohong; Wang, Jianrong

    2017-03-01

    Autophagy protects hematopoietic cells from radiation damage in part by promoting DNA damage repair. However, the molecular mechanisms by which autophagy regulates DNA damage repair remain largely elusive. Here, we report that this radioprotective effect of autophagy depends on STAT3 signaling in murine bone marrow mononuclear cells (BM-MNCs). Specifically, we found that STAT3 activation and nuclear translocation in BM-MNCs were increased by activation of autophagy with an mTOR inhibitor and decreased by knockout of the autophagy gene Atg7. The autophagic regulation of STAT3 activation is likely mediated by induction of KAP1 degradation, because we showed that KAP1 directly interacted with STAT3 in the cytoplasm and knockdown of KAP1 increased the phosphorylation and nuclear translocation of STAT3. Subsequently, activated STAT3 transcriptionally upregulated the expression of BRCA1, which increased the ability of BM-MNCs to repair radiation-induced DNA damage. This novel finding that activation of autophagy can promote DNA damage repair in BM-MNCs via the ATG-KAP1-STAT3-BRCA1 pathway suggests that autophagy plays an important role in maintaining genomic integrity of BM-MNCs and its activation may confer protection of BM-MNCs against radiation-induced genotoxic stress.

  13. DNA Damage-Induced HSPC Malfunction Depends on ROS Accumulation Downstream of IFN-1 Signaling and Bid Mobilization.

    PubMed

    Tasdogan, Alpaslan; Kumar, Suresh; Allies, Gabriele; Bausinger, Julia; Beckel, Franziska; Hofemeister, Helmut; Mulaw, Medhanie; Madan, Vikas; Scharfetter-Kochanek, Karin; Feuring-Buske, Michaela; Doehner, Konstanze; Speit, Günter; Stewart, A Francis; Fehling, Hans Joerg

    2016-12-01

    Mouse mutants with an impaired DNA damage response frequently exhibit a set of remarkably similar defects in the HSPC compartment that are of largely unknown molecular basis. Using Mixed-Lineage-Leukemia-5 (Mll5)-deficient mice as prototypical examples, we have identified a mechanistic pathway linking DNA damage and HSPC malfunction. We show that Mll5 deficiency results in accumulation of DNA damage and reactive oxygen species (ROS) in HSPCs. Reduction of ROS efficiently reverses hematopoietic defects, establishing ROS as a major cause of impaired HSPC function. The Ink4a/Arf locus also contributes to HSPC phenotypes, at least in part via promotion of ROS. Strikingly, toxic ROS levels in Mll5(-/-) mice are critically dependent on type 1 interferon (IFN-1) signaling, which triggers mitochondrial accumulation of full-length Bid. Genetic inactivation of Bid diminishes ROS levels and reverses HSPC defects in Mll5(-/-) mice. Overall, therefore, our findings highlight an unexpected IFN-1 > Bid > ROS pathway underlying DNA damage-associated HSPC malfunction.

  14. DNA-mediated gold nanoparticle signal transducers for combinatorial logic operations and heavy metal ions sensing.

    PubMed

    Zhang, Yuhuan; Liu, Wei; Zhang, Wentao; Yu, Shaoxuan; Yue, Xiaoyue; Zhu, Wenxin; Zhang, Daohong; Wang, Yanru; Wang, Jianlong

    2015-10-15

    Herein, the structure of two DNA strands which are complementary except fourteen T-T and C-C mismatches was programmed for the design of the combinatorial logic operation by utilizing the different protective capacities of single chain DNA, part-hybridized DNA and completed-hybridized DNA on unmodified gold nanoparticles. In the presence of either Hg(2+) or Ag(+), the T-Hg(2+)-T or C-Ag(+)-C coordination chemistry could lead to the formation of part-hybridized DNA which keeps gold nanoparticles from clumping after the addition of 40 μL 0.2M NaClO4 solution, but the protection would be screened by 120 μL 0.2M NaClO4 solution. While the coexistence of Hg(2+), Ag(+) caused the formation of completed-hybridized DNA and the protection for gold nanoparticles lost in either 40 μL or 120 μL NaClO4 solutions. Benefiting from sharing of the same inputs of Hg(2+) and Ag(+), OR and AND logic gates were easily integrated into a simple colorimetric combinatorial logic operation in one system, which make it possible to execute logic gates in parallel to mimic arithmetic calculations on a binary digit. Furthermore, two other logic gates including INHIBIT1 and INHIBIT2 were realized to integrated with OR logic gate both for simultaneous qualitative discrimination and quantitative determination of Hg(2+) and Ag(+). Results indicate that the developed logic system based on the different protective capacities of DNA structure on gold nanoparticles provides a new pathway for the design of the combinatorial logic operation in one system and presents a useful strategy for development of advanced sensors, which may have potential applications in multiplex chemical analysis and molecular-scale computer design. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Sensitive Electrochemical Detection of Human Methyltransferase Based on a Dual Signal Amplification Strategy Coupling Gold Nanoparticle-DNA Complexes with Ru(III) Redox Recycling.

    PubMed

    Zhang, Hui; Dong, Huilei; Yang, Guoqing; Chen, Hongfei; Cai, Chenxin

    2016-11-15

    Effective detection of DNA methyltransferase (DNMT) activity is significant for cancer research. Herein, we developed a sensitive electroanalytical method to detect human DNA (cytosine-5)-methyltransferase 1 (DNMT1) from crude lysates of cancer cells. In this assay, capture DNA having a preferred DNMT1 methylation site was immobilized on a gold electrode and then hybridized with gold nanoparticle (Au NP)-DNA complexes. The modified electrodes were equilibrated with the lysate and then incubated with methylation-sensitive restriction enzyme. If the lysate was negative for DNMT1 activity, the Au NP-DNA complexes would be cut by the restriction enzyme and released from the electrode. Conversely, restriction enzyme cleavage would be blocked by the fully methylated duplexes, and the Au NP-DNA complexes would remain on the electrode. Electroactive Ru(NH3)6(3+) was used as the signal reporter, because of its electrostatic attraction to DNA, resulting in an electrochemical signal. Since the electrochemical signal reflects the amount of Ru(III) redox and the amount of Ru(III) redox is correlated with the activity of DNMT1, the activity of DNMT1 is proportional to the electrochemical signal. The signal could be amplified by the numerous DNAs on the Au NPs and further amplified by Ru(III) redox recycling. With this method, a detection limit down to 0.3 U/mL for pure DNMT1 and 8 MCF-7 cells was achieved. DNMT1 activities of different cell lines were also successfully evaluated.

  16. Activation of transforming growth factor-β/Smad signaling reduces aggregate formation of mislocalized TAR DNA-binding protein-43.

    PubMed

    Nakamura, Masataka; Kaneko, Satoshi; Ito, Hidefumi; Jiang, Shiwen; Fujita, Kengo; Wate, Reika; Nakano, Satoshi; Fujisawa, Jun-ichi; Kusaka, Hirofumi

    2013-01-01

    TAR DNA-binding protein of 43 kDa (TDP-43) is naturally located in the nucleus and has been identified as the major component of cytoplasmic ubiquitinated inclusions in patients with amyotrophic lateral sclerosis (ALS). We have reported that TDP-43 and phosphorylated Smad2 (pSmad2), an intracellular mediator protein of transforming growth factor-β (TGFβ) signaling, are co-localized within cytoplasmic inclusions in the anterior horn cells of sporadic ALS patients. To investigate the possible pathophysiological linkage between pathologic cytoplasmic inclusions containing TDP-43 and TGFβ/Smad signaling. We replicated cytoplasmic aggregates of TDP-43 in HEK293T cells by transfecting the cells with a nuclear localization signal deletion mutant of TDP-43 and inhibiting proteasome activity, and assessed the effect of TGFβ/Smad signaling on the cytoplasmic aggregate formation. The aggregates contained ubiquitinated, phosphorylated, and fragmented TDP-43, consistent with the essential features of the human pathology. Moreover, the aggregates were co-localized with pSmad2 under continuous TGFβ stimulation. Overexpression of Smad2 reduced the amount of cytoplasmic aggregates in HEK293T cells, and TGFβ stimulation augmented this reduction effect in a dose-dependent manner. Activation of the TGFβ/Smad signaling system is protective against aggregate formation of cytoplasmically mislocalized TDP-43 and may be a potential therapeutic approach to delay progression of ALS. Copyright © 2012 S. Karger AG, Basel.

  17. Signal-on fluorescence biosensor for microRNA-21 detection based on DNA strand displacement reaction and Mg(2+)-dependent DNAzyme cleavage.

    PubMed

    Yin, Huan-Shun; Li, Bing-Chen; Zhou, Yun-Lei; Wang, Hai-Yan; Wang, Ming-Hui; Ai, Shi-Yun

    2017-10-15

    MicroRNAs have been involved into many biological processes and are regarded as disease biomarkers. Simple, rapid, sensitive and selective method for microRNA detection is crucial for early diagnosis and therapy of diseases. In this work, sensitive fluorescence assay was developed for microRNA-21 detection based on DNA polymerase induced strand displacement amplification reaction, Mg(2+)-dependent DNAzyme catalysis reaction, and magnetic separation. In the presence of target microRNA-21, amounts of trigger DNA could be produced with DNA polymerase induced strand displacement amplification reaction, and the trigger DNA could be further hybridized with signal DNA, which was labeled with biotin and AMCA dye. After introduction of Mg(2+), trigger DNA could form DNAzyme to cleave signal DNA. After magnetic separation, the DNA fragment with AMCA dye could give fluorescence signal, which was related to microRNA-21 concentration. Based on the two efficient signal amplifications, the developed method showed high detection sensitivity with low detection limit of 0.27fM (3σ). In addition, this fluorescence strategy also possessed excellent detection specificity, and could be applied to analyze microRNA-21 expression level in serum of cancer patient. According to the obtained results, the developed fluorescence method might be a promising detection platform for microRNA-21 quantitative analysis in biomedical research and clinical diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Differential Processing of Low and High LET Radiation Induced DNA Damage: Investigation of Switch from ATM to ATR Signaling

    NASA Technical Reports Server (NTRS)

    Saha, Janapriya; Wang, Minli; Hada, Megumi; Cucinotta, Francis A.

    2011-01-01

    The members of the phosphatidylinositol kinase-like kinase family of proteins namely ataxia-telangiectasia mutated (ATM) and ATM- and Rad3-related (ATR) are directly responsible for the maintenance of genomic integrity by mounting DDR through signaling and facilitating the recruitment of repair factors at the sites of DNA damage along with coordinating the deployment of cell cycle checkpoints to permit repair by phosphorylating Checkpoint kinase Chk1, Chk2 and p53. High LET radiation from GCR (Galactic Cosmic Rays) consisting mainly of protons and high energy and charged (HZE) particles from SPE (Solar Particle Event) pose a major health risk for astronauts on their space flight missions. The determination of these risks and the design of potential safeguards require sound knowledge of the biological consequences of lesion induction and the capability of the cells to counter them. We here strive to determine the coordination of ATM and ATR kinases at the break sites directly affecting checkpoint signaling and DNA repair and whether differential processing of breaks induced by low and high LET radiation leads to possible augmentation of swap of these damage sensors at the sites of DNA damage. Exposure of cells to IR triggers rapid autophosphorylation of serine-1981 that causes dimer dissociation and initiates monomer formation of ATM. ATM kinase activity depends on the disruption of the dimer, which allows access and phosphorylation of downstream ATM substrates like Chk2. Evidence suggests that ATM is activated by the alterations in higher-order chromatin structure although direct binding of ATM to DSB ends may be a crucial step in its activation. On the other hand, in case of ATR, RPA (replication protein A)-coated ssDNA (single-stranded DNA) generated as a result of stalled DNA replication or during processing of chromosomal lesions is crucial for the localization of ATR to sites of DNA damage in association with ATR-interacting protein (ATRIP). Although the

  19. In search of antiaging modalities: evaluation of mTOR- and ROS/DNA damage-signaling by cytometry.

    PubMed

    Darzynkiewicz, Zbigniew; Zhao, Hong; Halicka, H Dorota; Li, Jiangwei; Lee, Yong-Syu; Hsieh, Tze-Chen; Wu, Joseph M

    2014-05-01

    This review presents the evidence in support of the IGF-1/mTOR/S6K1 signaling as the primary factor contributing to aging and cellular senescence. Reviewed are also specific interactions between mTOR/S6K1 and ROS-DNA damage signaling pathways. Outlined are critical sites along these pathways, including autophagy, as targets for potential antiaging (gero-suppressive) and/or chemopreventive agents. Presented are applications of flow- and laser scanning- cytometry utilizing phospho-specific Abs, to monitor activation along these pathways in response to the reported antiaging drugs rapamycin, metformin, berberine, resveratrol, vitamin D3, 2-deoxyglucose, and acetylsalicylic acid. Specifically, effectiveness of these agents to attenuate the level of constitutive mTOR signaling was tested by cytometry and confirmed by Western blotting through measuring phosphorylation of the mTOR-downstream targets including ribosomal protein S6. The ratiometric analysis of phosphorylated to total protein along the mTOR pathway offers a useful parameter reporting the effects of gero-suppressive agents. In parallel, their ability to suppress the level of constitutive DNA damage signaling induced by endogenous ROS was measured. While the primary target of each of these agents may be different the data obtained on several human cancer cell lines, WI-38 fibroblasts and normal lymphocytes suggest common downstream mechanism in which the decline in mTOR/S6K1 signaling and translation rate is coupled with a reduction of oxidative phosphorylation and ROS that leads to decreased oxidative DNA damage. The combined assessment of constitutive γH2AX expression, mitochondrial activity (ROS, ΔΨm), and mTOR signaling provides an adequate gamut of cell responses to test effectiveness of gero-suppressive agents. Described is also an in vitro model of induction of cellular senescence by persistent replication stress, its quantitative analysis by laser scanning cytometry, and application to detect the

  20. DNA damage in mammalian neural stem cells leads to astrocytic differentiation mediated by BMP2 signaling through JAK-STAT.

    PubMed

    Schneider, Leonid; Pellegatta, Serena; Favaro, Rebecca; Pisati, Federica; Roncaglia, Paola; Testa, Giuseppe; Nicolis, Silvia K; Finocchiaro, Gaetano; d'Adda di Fagagna, Fabrizio

    2013-01-01

    The consequences of DNA damage generation in mammalian somatic stem cells, including neural stem cells (NSCs), are poorly understood despite their potential relevance for tissue homeostasis. Here, we show that, following ionizing radiation-induced DNA damage, NSCs enter irreversible proliferative arrest with features of cellular senescence. This is characterized by increased cytokine secretion, loss of stem cell markers, and astrocytic differentiation. We demonstrate that BMP2 is necessary to induce expression of the astrocyte marker GFAP in irradiated NSCs via a noncanonical signaling pathway engaging JAK-STAT. This is promoted by ATM and antagonized by p53. Using a SOX2-Cre reporter mouse model for cell-lineage tracing, we demonstrate irradiation-induced NSC differentiation in vivo. Furthermore, glioblastoma assays reveal that irradiation therapy affects the tumorigenic potential of cancer stem cells by ablating self-renewal and inducing astroglial differentiation.

  1. Dub3 controls DNA damage signalling by direct deubiquitination of H2AX.

    PubMed

    Delgado-Díaz, M Rocío; Martín, Yusé; Berg, Anna; Freire, Raimundo; Smits, Veronique A J

    2014-07-01

    A crucial event in the DNA damage response is the phosphorylation and subsequent ubiquitination of H2AX, required for the recruitment of proteins involved in DNA repair. Here we identify a novel regulator of this process, the ubiquitin hydrolase Dub3. Overexpression of wild type, but not catalytic inactive, Dub3 decreases the DNA damage-induced mono-ubiquitination of H2A(X) whereas downregulation of Dub3 has the opposite effect. Dub3 overexpression abrogates focus formation of 53BP1 and BRCA1 in response to genotoxic stress. However, focus formation of MDC1 and γH2AX, earlier events in this response, are unaffected by Dub3 overexpression. We show that Dub3 counteracts H2AX E3 ligases RNF8 and RNF168. Moreover, Dub3 and H2AX interact and Dub3 deubiquitinates H2AX in vitro. Importantly, overexpression of Dub3 delays H2AX dephosphorylation and recovery of MDC1 focus formation at later time points after DNA damage, whereas H2AX dephosphorylation at later time points is faster after Dub3 depletion. Altogether these results show that Dub3 regulates a correct DNA damage response by controlling H2AX ubiquitination.

  2. Quantum dot monolayer for surface plasmon resonance signal enhancement and DNA hybridization detection.

    PubMed

    Ghrera, Aditya Sharma; Pandey, Manoj Kumar; Malhotra, Bansi Dhar

    2016-06-15

    We report results of studies relating to the fabrication of a surface plasmon resonance (SPR)-based nucleic acid sensor for quantification of DNA sequence specific to chronic myelogeneous leukemia (CML). The SPR disk surface has been modified with octadecanethiol self-assembled monolayer followed by deposition of the tri-n-octylphosphine oxide capped cadmium selenide quantum dots (QD) Langmuir monolayer. The deposition is performed via Langmuir-Blodgett (LB) technique. For the sensor chip preparation, covalent immobilization of the thiol-terminated DNA probe sequence (pDNA) using displacement reaction is accomplished. This integrated SPR chip has been used to detect target complementary DNA concentration by monitoring the change in coupling angle via hybridization. It is revealed that this biosensor exhibits high sensitivity (0.7859 m(0)pM(-1)) towards complementary DNA and can be used to detect it in the concentration range, 180 pM to 5 pM with detection limit as 4.21 pM. The results of kinetic studies yield the values of hybridization and dissociation rate constants as 9.6 × 10(4) M(-1) s(-1) and 2.3 × 10(-2) s(-1), respectively, with the equilibrium constant for hybridization as 4.2 × 10(6) M(-1).

  3. Highly specific electronic signal transduction mediated by DNA/metal self-assembly.

    SciTech Connect

    Dentinger, Paul M.; Pathak, Srikant

    2003-11-01

    Highly specific interactions between DNA could potentially be amplified if the DNA interactions were utilized to assemble large scale parts. Fluidic assembly of microsystem parts has the potential for rapid and accurate placement of otherwise difficult to handle pieces. Ideally, each part would have a different chemical interaction that allowed it to interact with the substrate only in specific areas. One easy way to obtain a multiple chemical permutations is to use synthetic DNA oligomers. Si parts were prepared using silicon-on-insulator technology microfabrication techniques. Several surface chemistry protocols were developed to react commercial oligonucleotides to the parts. However, no obvious assembly was achieved. It was thought that small defects on the surface did not allow the microparts to be in close enough proximity for DNA hybridization, and this was. in part, confirmed by interferometry. To assist in the hybridization, plastic, pliable parts were manufactured and a new chemistry was developed. However, assembly was still absent even with the application of force. It is presently thought that one of three mechanisms is preventing the assembly. The surfaces of the two solid substrates can not get in close enough proximity, the surface chemistry lacks sufficient density to keep the parts from separating, or DNA interactions in close proximity on solid substrates are forbidden. These possibilities are discussed in detail.

  4. Cis-acting signals modulate the efficiency of programmed DNA elimination in Paramecium tetraurelia

    PubMed Central

    Ferro, Diana; Lepennetier, Gildas; Catania, Francesco

    2015-01-01

    In Paramecium, the regeneration of a functional somatic genome at each sexual event relies on the elimination of thousands of germline DNA sequences, known as Internal Eliminated Sequences (IESs), from the zygotic nuclear DNA. Here, we provide evidence that IESs’ length and sub-terminal bases jointly modulate IES excision by affecting DNA conformation in P. tetraurelia. Our study reveals an excess of complementary base pairing between IESs’ sub-terminal and contiguous sites, suggesting that IESs may form DNA loops prior to cleavage. The degree of complementary base pairing between IESs’ sub-terminal sites (termed Cin-score) is positively associated with IES length and is shaped by natural selection. Moreover, it escalates abruptly when IES length exceeds 45 nucleotides (nt), indicating that only sufficiently large IESs may form loops. Finally, we find that IESs smaller than 46 nt are favored targets of the cellular surveillance systems, presumably because of their relatively inefficient excision. Our findings extend the repertoire of cis-acting determinants for IES recognition/excision and provide unprecedented insights into the distinct selective pressures that operate on IESs and somatic DNA regions. This information potentially moves current models of IES evolution and of mechanisms of IES recognition/excision forward. PMID:26304543

  5. A protein interaction between β-catenin and Dnmt1 regulates Wnt Signaling and DNA methylation in colorectal cancer cells

    PubMed Central

    Song, Jing; Du, Zhanwen; Ravasz, Mate; Dong, Bohan; Wang, Zhenghe; Ewing, Rob M.

    2015-01-01

    Aberrant activation of the Wnt signaling pathway is an important step in the initiation and progression of tumor development in diverse cancers. The central effector of canonical Wnt signaling, β-catenin (CTNNB1), is a multifunctional protein, and has been extensively studied with respect to its roles in cell-cell adhesion and in regulation of Wnt-driven transcription. Here, a novel mass spectrometry-based proteomics technique in colorectal cancer cells expressing stabilized β-catenin, was used to identify a protein-protein interaction between β-catenin and DNA methyltransferase I (Dnmt1) protein, the primary regulator of DNA methylation patterns in mammalian cells. Dnmt1 and β-catenin strongly co-localized in the nuclei of colorectal cancer cells, and the interaction is mediated by the central domain of the Dnmt1 protein. Dnmt1 protein abundance is dependent upon the levels of β-catenin, and is increased in cells expressing stabilized mutant β-catenin. Conversely, the Dnmt1 regulates the levels of nuclear β-catenin and β-catenin/TCF driven transcription. In addition, lysine-specific demethylase 1 (LSD1/KDM1A), a regulator of DNMT1 stability, was identified as a component of the Dnmt1/β-catenin protein complex and perturbation of the Dnmt1/β-catenin interaction altered DNA methylation. In summary, a functional protein-protein interaction was identified between two critically important oncoproteins, in turn revealing a link between Wnt signaling and downstream nuclear functions mediated by Dnmt1. PMID:25753001

  6. The Actin Depolymerizing Factor (ADF)/Cofilin Signaling Pathway and DNA Damage Responses in Cancer

    PubMed Central

    Chang, Chun-Yuan; Leu, Jyh-Der; Lee, Yi-Jang

    2015-01-01

    The actin depolymerizing factor (ADF)/cofilin protein family is essential for actin dynamics, cell division, chemotaxis and tumor metastasis. Cofilin-1 (CFL-1) is a primary non-muscle isoform of the ADF/cofilin protein family accelerating the actin filamental turnover in vitro and in vivo. In response to environmental stimulation, CFL-1 enters the nucleus to regulate the actin dynamics. Although the purpose of this cytoplasm-nucleus transition remains unclear, it is speculated that the interaction between CFL-1 and DNA may influence various biological responses, including DNA damage repair. In this review, we will discuss the possible involvement of CFL-1 in DNA damage responses (DDR) induced by ionizing radiation (IR), and the implications for cancer radiotherapy. PMID:25689427

  7. The actin depolymerizing factor (ADF)/cofilin signaling pathway and DNA damage responses in cancer.

    PubMed

    Chang, Chun-Yuan; Leu, Jyh-Der; Lee, Yi-Jang

    2015-02-13

    The actin depolymerizing factor (ADF)/cofilin protein family is essential for actin dynamics, cell division, chemotaxis and tumor metastasis. Cofilin-1 (CFL-1) is a primary non-muscle isoform of the ADF/cofilin protein family accelerating the actin filamental turnover in vitro and in vivo. In response to environmental stimulation, CFL-1 enters the nucleus to regulate the actin dynamics. Although the purpose of this cytoplasm-nucleus transition remains unclear, it is speculated that the interaction between CFL-1 and DNA may influence various biological responses, including DNA damage repair. In this review, we will discuss the possible involvement of CFL-1 in DNA damage responses (DDR) induced by ionizing radiation (IR), and the implications for cancer radiotherapy.

  8. Self-DNA, STING-dependent signaling and the origins of autoinflammatory disease.

    PubMed

    Ahn, Jeonghyun; Barber, Glen N

    2014-12-01

    Self-DNA has long been considered a key cause of inflammatory and autoimmune disease, although the exact origin and general mechanisms of action have remained to be elucidated. Recently, new insight has been gained into our understanding of those innate immune pathways and sensors that are responsible for instigating self-DNA triggered autoinflammatory events in the cell. One such sensor referred to as STING (for stimulator of interferon genes) has been found to be seminal for controlling cytosolic-DNA induced cytokine production, and may be responsible for a wide variety of inflammatory diseases including systemic lupus erythematosus (SLE), Aicardi-Goutieres syndrome (AGS) and STING-associated vasculopathy with onset of infancy (SAVI). STING may also be involved with augmenting certain types of carcinogen induced cancer. Aside from generating valuable information into mechanisms underlining innate immune gene regulation, these findings offer new opportunities to generate innovative therapeutics which may help treat such diseases.

  9. Activation of STING-Dependent Innate Immune Signaling By S-Phase-Specific DNA Damage in Breast Cancer.

    PubMed

    Parkes, Eileen E; Walker, Steven M; Taggart, Laura E; McCabe, Nuala; Knight, Laura A; Wilkinson, Richard; McCloskey, Karen D; Buckley, Niamh E; Savage, Kienan I; Salto-Tellez, Manuel; McQuaid, Stephen; Harte, Mary T; Mullan, Paul B; Harkin, D Paul; Kennedy, Richard D

    2017-01-01

    Previously we identified a DNA damage response-deficient (DDRD) molecular subtype within breast cancer. A 44-gene assay identifying this subtype was validated as predicting benefit from DNA-damaging chemotherapy. This subtype was defined by interferon signaling. In this study, we address the mechanism of this immune response and its possible clinical significance. We used immunohistochemistry (IHC) to characterize immune infiltration in 184 breast cancer samples, of which 65 were within the DDRD subtype. Isogenic cell lines, which represent DDRD-positive and -negative, were used to study the effects of chemokine release on peripheral blood mononuclear cell (PBMC) migration and the mechanism of immune signaling activation. Finally, we studied the association between the DDRD subtype and expression of the immune-checkpoint protein PD-L1 as detected by IHC. All statistical tests were two-sided. We found that DDRD breast tumors were associated with CD4+ and CD8+ lymphocytic infiltration (Fisher's exact test P < .001) and that DDRD cells expressed the chemokines CXCL10 and CCL5 3.5- to 11.9-fold more than DNA damage response-proficient cells (P < .01). Conditioned medium from DDRD cells statistically significantly attracted PBMCs when compared with medium from DNA damage response-proficient cells (P < .05), and this was dependent on CXCL10 and CCL5. DDRD cells demonstrated increased cytosolic DNA and constitutive activation of the viral response cGAS/STING/TBK1/IRF3 pathway. Importantly, this pathway was activated in a cell cycle-specific manner. Finally, we demonstrated that S-phase DNA damage activated expression of PD-L1 in a STING-dependent manner. We propose a novel mechanism of immune infiltration in DDRD tumors, independent of neoantigen production. Activation of this pathway and associated PD-L1 expression may explain the paradoxical lack of T-cell-mediated cytotoxicity observed in DDRD tumors. We provide a rationale for exploration of DDRD in the stratification

  10. Real-time colorimetric detection of target DNA using isothermal target and signaling probe amplification and gold nanoparticle cross-linking assay.

    PubMed

    Jung, Cheulhee; Chung, Ji Won; Kim, Un Ok; Kim, Min Hwan; Park, Hyun Gyu

    2011-01-15

    We describe a facile gold nanoparticle (AuNP)-mediated colorimetric method for real-time detection of target DNA in conjugation with our unique isothermal target and signaling probe amplification (iTPA) method, comprising novel ICA (isothermal chain amplification) and CPT (cycling probe technology). Under isothermal conditions, the iTPA simultaneously amplifies the target and signaling probe through two displacement events induced by a combination of four specially designed primers, the strand displacement activity of DNA polymerase, and the RNA degrading activity of RNase H. The resulting target amplicons are hybridized with gold nanoparticle cross-linking assay (GCA) probes having a DNA-RNA-DNA chimeric form followed by RNA cleavage by RNase H in the CPT step. The intact GCA probes were designed to cross-link two sets of DNA-AuNPs conjugates in the absence of target DNA, inducing aggregation (blue color) of AuNPs. On the contrary, the presence of target DNA leads to cleavage of the GCA probes in proportion to the amount of amplified target DNA and the solution remains red in color without aggregation of AuNPs. Relying on this strategy, 10(2) copies of target Chlamydia trachomatis plasmid were successfully detected in a colorimetric manner. Importantly, all the procedures employed up to the final detection of the target DNA were performed under isothermal conditions without requiring any detection instruments. Therefore, this strategy would greatly benefit convenient, real-time monitoring technology of target DNA under restricted environments.

  11. Two-color, 30 second microwave-accelerated Metal-Enhanced Fluorescence DNA assays: a new Rapid Catch and Signal (RCS) technology.

    PubMed

    Dragan, Anatoliy I; Golberg, Karina; Elbaz, Amit; Marks, Robert; Zhang, Yongxia; Geddes, Chris D

    2011-03-07

    For analyses of DNA fragment sequences in solution we introduce a 2-color DNA assay, utilizing a combination of the Metal-Enhanced Fluorescence (MEF) effect and microwave-accelerated DNA hybridization. The assay is based on a new "Catch and Signal" technology, i.e. the simultaneous specific recognition of two target DNA sequences in one well by complementary anchor-ssDNAs, attached to silver island films (SiFs). It is shown that fluorescent labels (Alexa 488 and Alexa 594), covalently attached to ssDNA fragments, play the role of biosensor recognition probes, demonstrating strong response upon DNA hybridization, locating fluorophores in close proximity to silver NPs, which is ideal for MEF. Subsequently the emission dramatically increases, while the excited state lifetime decreases. It is also shown that 30s microwave irradiation of wells, containing DNA molecules, considerably (~1000-fold) speeds up the highly selective hybridization of DNA fragments at ambient temperature. The 2-color "Catch and Signal" DNA assay platform can radically expedite quantitative analysis of genome DNA sequences, creating a simple and fast bio-medical platform for nucleic acid analysis.

  12. Spacecraft Modularity for Serviceable Satellites

    NASA Technical Reports Server (NTRS)

    Rossetti, Dino; Keer, Beth; Panek, John; Reed, Benjamin; Cepollina, Frank; Ritter, Robert

    2015-01-01

    Satellite servicing has been a proven capability of NASA since the first servicing missions in the 1980s with astronauts on the space shuttle. This capability enabled the on-orbit assembly of the International Space Station (ISS) and saved the Hubble Space Telescope (HST) mission following the discovery of the flawed primary mirror. The effectiveness and scope of servicing opportunities, especially using robotic servicers, is a function of how cooperative a spacecraft is. In this paper, modularity will be presented as a critical design aspect for a spacecraft that is cooperative from a servicing perspective. Different features of modularity are discussed using examples from HST and the Multimission Modular Spacecraft (MMS) program from the 1980s and 1990s. The benefits of modularity will be presented including those directly related to servicing and those outside of servicing including reduced costs and increased flexibility. The new Reconfigurable Operational spacecraft for Science and Exploration (ROSE) concept is introduced as an affordable implementation of modularity that provides cost savings and flexibility. Key aspects of the ROSE architecture are discussed such as the module design and the distributed avionics architecture. The ROSE concept builds on the experience from MMS and due to its modularity, would be highly suitable as a future client for on-orbit servicing.

  13. The Modular Adaptive Ribosome.

    PubMed

    Yadav, Anupama; Radhakrishnan, Aparna; Panda, Anshuman; Singh, Amartya; Sinha, Himanshu; Bhanot, Gyan

    2016-01-01

    The ribosome is an ancient machine, performing the same function across organisms. Although functionally unitary, recent experiments suggest specialized roles for some ribosomal proteins. Our central thesis is that ribosomal proteins function in a modular fashion to decode genetic information in a context dependent manner. We show through large data analyses that although many ribosomal proteins are essential with consistent effect on growth in different conditions in yeast and similar expression across cell and tissue types in mice and humans, some ribosomal proteins are used in an environment specific manner. The latter set of variable ribosomal proteins further function in a coordinated manner forming modules, which are adapted to different environmental cues in different organisms. We show that these environment specific modules of ribosomal proteins in yeast have differential genetic interactions with other pathways and their 5'UTRs show differential signatures of selection in yeast strains, presumably to facilitate adaptation. Similarly, we show that in higher metazoans such as mice and humans, different modules of ribosomal proteins are expressed in different cell types and tissues. A clear example is nervous tissue that uses a ribosomal protein module distinct from the rest of the tissues in both mice and humans. Our results suggest a novel stratification of ribosomal proteins that could have played a role in adaptation, presumably to optimize translation for adaptation to diverse ecological niches and tissue microenvironments.

  14. The Modular Adaptive Ribosome

    PubMed Central

    Yadav, Anupama; Radhakrishnan, Aparna; Panda, Anshuman; Singh, Amartya; Sinha, Himanshu; Bhanot, Gyan

    2016-01-01

    The ribosome is an ancient machine, performing the same function across organisms. Although functionally unitary, recent experiments suggest specialized roles for some ribosomal proteins. Our central thesis is that ribosomal proteins function in a modular fashion to decode genetic information in a context dependent manner. We show through large data analyses that although many ribosomal proteins are essential with consistent effect on growth in different conditions in yeast and similar expression across cell and tissue types in mice and humans, some ribosomal proteins are used in an environment specific manner. The latter set of variable ribosomal proteins further function in a coordinated manner forming modules, which are adapted to different environmental cues in different organisms. We show that these environment specific modules of ribosomal proteins in yeast have differential genetic interactions with other pathways and their 5’UTRs show differential signatures of selection in yeast strains, presumably to facilitate adaptation. Similarly, we show that in higher metazoans such as mice and humans, different modules of ribosomal proteins are expressed in different cell types and tissues. A clear example is nervous tissue that uses a ribosomal protein module distinct from the rest of the tissues in both mice and humans. Our results suggest a novel stratification of ribosomal proteins that could have played a role in adaptation, presumably to optimize translation for adaptation to diverse ecological niches and tissue microenvironments. PMID:27812193

  15. Modular Approach to Spintronics.

    PubMed

    Camsari, Kerem Yunus; Ganguly, Samiran; Datta, Supriyo

    2015-06-11

    There has been enormous progress in the last two decades, effectively combining spintronics and magnetics into a powerful force that is shaping the field of memory devices. New materials and phenomena continue to be discovered at an impressive rate, providing an ever-increasing set of building blocks that could be exploited in designing transistor-like functional devices of the future. The objective of this paper is to provide a quantitative foundation for this building block approach, so that new discoveries can be integrated into functional device concepts, quickly analyzed and critically evaluated. Through careful benchmarking against available theory and experiment we establish a set of elemental modules representing diverse materials and phenomena. These elemental modules can be integrated seamlessly to model composite devices involving both spintronic and nanomagnetic phenomena. We envision the library of modules to evolve both by incorporating new modules and by improving existing modules as the field progresses. The primary contribution of this paper is to establish the ground rules or protocols for a modular approach that can build a lasting bridge between materials scientists and circuit designers in the field of spintronics and nanomagnetics.

  16. Modular Isotopic Thermoelectric Generator

    SciTech Connect

    Schock, Alfred

    1981-04-03

    Advanced RTG concepts utilizing improved thermoelectric materials and converter concepts are under study at Fairchild for DOE. The design described here is based on DOE's newly developed radioisotope heat source, and on an improved silicon-germanium material and a multicouple converter module under development at Syncal. Fairchild's assignment was to combine the above into an attractive power system for use in space, and to assess the specific power and other attributes of that design. The resultant design is highly modular, consisting of standard RTG slices, each producing ~24 watts at the desired output voltage of 28 volt. Thus, the design could be adapted to various space missions over a wide range of power levels, with little or no redesign. Each RTG slice consists of a 250-watt heat source module, eight multicouple thermoelectric modules, and standard sections of insulator, housing, radiator fins, and electrical circuit. The design makes it possible to check each thermoelectric module for electrical performance, thermal contact, leaktightness, and performance stability, after the generator is fully assembled; and to replace any deficient modules without disassembling the generator or perturbing the others. The RTG end sections provide the spring-loaded supports required to hold the free-standing heat source stack together during launch vibration. Details analysis indicates that the design offers a substantial improvement in specific power over the present generator of RTGs, using the same heat source modules. There are three copies in the file.

  17. Modular Approach to Spintronics

    PubMed Central

    Camsari, Kerem Yunus; Ganguly, Samiran; Datta, Supriyo

    2015-01-01

    There has been enormous progress in the last two decades, effectively combining spintronics and magnetics into a powerful force that is shaping the field of memory devices. New materials and phenomena continue to be discovered at an impressive rate, providing an ever-increasing set of building blocks that could be exploited in designing transistor-like functional devices of the future. The objective of this paper is to provide a quantitative foundation for this building block approach, so that new discoveries can be integrated into functional device concepts, quickly analyzed and critically evaluated. Through careful benchmarking against available theory and experiment we establish a set of elemental modules representing diverse materials and phenomena. These elemental modules can be integrated seamlessly to model composite devices involving both spintronic and nanomagnetic phenomena. We envision the library of modules to evolve both by incorporating new modules and by improving existing modules as the field progresses. The primary contribution of this paper is to establish the ground rules or protocols for a modular approach that can build a lasting bridge between materials scientists and circuit designers in the field of spintronics and nanomagnetics. PMID:26066079

  18. Instrument-free visual detection of tetracycline on an autocatalytic DNA machine using a caged G-quadruplex as the signal reporter.

    PubMed

    Chen, Junhua; Chen, Shu; Li, Fengling

    2017-08-11

    An instrument-free visual biosensor for the amplified detection of tetracycline has been successfully constructed using an autocatalytic DNA machine as the signal amplifier and a caged G-quadruplex as the signal reporter. The assay is ultrasensitive, enabling the visual detection of trace levels of tetracycline as low as 1 pM without instrumentation.

  19. A new way to detect the interaction of DNA and anticancer drugs based on the decreased resonance light scattering signal and its potential application.

    PubMed

    Chen, Zhanguang; Song, Tianhe; Peng, Yurui; Chen, Xi; Chen, Junhui; Zhang, Guomin; Qian, Sihua

    2011-10-07

    A novel assay has been developed to detect the interaction of DNA and anticancer drugs based on the decreased resonance light scattering (RLS) technique. The proposed method can be used to study those drugs which do not produce a RLS-signal after binding to DNA. RLS was used to monitor the interaction of five anticancer drugs with DNA. The reaction between anticancer drugs and DNA took place in BR buffer solution. From the RLS assay, the sequence of five anticancer drugs activities was as follows: CTX < MTX < Pt < MMC < 5-Fu. Mammary cancer cell DNA (mcDNA) was involved to validate the RLS assay. The results showed that the sensitivities of the five anticancer drugs targeting both mcDNA and ctDNA increased in the same order. However the sensitivity of each drug to mcDNA was higher than that to ctDNA It is a significant innovation of the RLS method to detect the interaction of DNA and anticancer drugs and to obtain drug sensitivity, which provides new strategies to screen DNA targeted anticancer drugs.

  20. Downregulation of Wip1 phosphatase modulates the cellular threshold of DNA damage signaling in mitosis

    PubMed Central

    Macurek, Libor; Benada, Jan; Müllers, Erik; Halim, Vincentius A.; Krejčíková, Kateřina; Burdová, Kamila; Pecháčková, Sona; Hodný, Zdeněk; Lindqvist, Arne; Medema, René H.; Bartek, Jiri

    2013-01-01

    Cells are constantly challenged by DNA damage and protect their genome integrity by activation of an evolutionary conserved DNA damage response pathway (DDR). A central core of DDR is composed of a spatiotemporally ordered net of post-translational modifications, among which protein phosphorylation plays a major role. Activation of checkpoint kinases ATM/ATR and Chk1/2 leads to a temporal arrest in cell cycle progression (checkpoint) and allows time for DNA repair. Following DNA repair, cells re-enter the cell cycle by checkpoint recovery. Wip1 phosphatase (also called PPM1D) dephosphorylates multiple proteins involved in DDR and is essential for timely termination of the DDR. Here we have investigated how Wip1 is regulated in the context of the cell cycle. We found that Wip1 activity is downregulated by several mechanisms during mitosis. Wip1 protein abundance increases from G1 phase to G2 and declines in mitosis. Decreased abundance of Wip1 during mitosis is caused by proteasomal degradation. In addition, Wip1 is phosphorylated at multiple residues during mitosis, and this leads to inhibition of its enzymatic activity. Importantly, ectopic expression of Wip1 reduced γH2AX staining in mitotic cells and decreased the number of 53BP1 nuclear bodies in G1 cells. We propose that the combined decrease and inhibition of Wip1 in mitosis decreases the threshold necessary for DDR activation and enables cells to react adequately even to modest levels of DNA damage encountered during unperturbed mitotic progression. PMID:23255129

  1. STING Negatively Regulates Double-Stranded DNA-Activated JAK1-STAT1 Signaling via SHP-1/2 in B Cells.

    PubMed

    Dong, Guanjun; You, Ming; Ding, Liang; Fan, Hongye; Liu, Fei; Ren, Deshan; Hou, Yayi

    2015-05-01

    Recognition of cytosolic DNA initiates a series of innate immune responses by inducing IFN-I production and subsequent triggering JAK1-STAT1 signaling which plays critical roles in the pathogenesis of infection, inflammation and autoimmune diseases through promoting B cell activation and antibody responses. The stimulator of interferon genes protein (STING) has been demonstrated to be a critical hub of type I IFN induction in cytosolic DNA-sensing pathways. However, it still remains unknown whether cytosolic DNA can directly activate the JAK1-STAT1 signaling or not. And the role of STING is also unclear in this response. In the present study, we found that dsDNA directly triggered the JAK1-STAT1 signaling by inducing phosphorylation of the Lyn kinase. Moreover, this response is not dependent on type I IFN receptors. Interestingly, STING could inhibit dsDNA-triggered activation of JAK1-STAT1 signaling by inducing SHP-1 and SHP-2 phosphorylation. In addition, compared with normal B cells, the expression of STING was significantly lower and the phosphorylation level of JAK1 was significantly higher in B cells from MRL/lpr lupus-prone mice, highlighting the close association between STING low-expression and JAK1-STAT1 signaling activation in B cells in autoimmune diseases. Our data provide a molecular insight into the novel role of STING in dsDNA-mediated inflammatory disorders.

  2. ExpressYourself: a modular platform for processing and visualizing microarray data

    PubMed Central

    Luscombe, Nicholas M.; Royce, Thomas E.; Bertone, Paul; Echols, Nathaniel; Horak, Christine E.; Chang, Joseph T.; Snyder, Michael; Gerstein, Mark

    2003-01-01

    DNA microarrays are widely used in biological research; by analyzing differential hybridization on a single microarray slide, one can detect changes in mRNA expression levels, increases in DNA copy numbers and the location of transcription factor binding sites on a genomic scale. Having performed the experiments, the major challenge is to process large, noisy datasets in order to identify the specific array elements that are significantly differentially hybridized. This normally requires aggregating different, often incompatible programs into a multi-step pipeline. Here we present ExpressYourself, a fully integrated platform for processing microarray data. In completely automated fashion, it will correct the background array signal, normalize the Cy5 and Cy3 signals, score levels of differential hybridization, combine the results of replicate experiments, filter problematic regions of the array and assess the quality of individual and replicate experiments. ExpressYourself is designed with a highly modular architecture so various types of microarray analysis algorithms can readily be incorporated as they are developed; for example, the system currently implements several normalization methods, including those that simultaneously consider signal intensity and slide location. The processed data are presented using a web-based graphical interface to facilitate comparison with the original images of the array slides. In particular, Express Yourself is able to regenerate images of the original microarray after applying various steps of processing, which greatly facilities identification of position-specific artifacts. The program is freely available for use at http://bioinfo.mbb.yale.edu/expressyourself. PMID:12824348

  3. DNA

    ERIC Educational Resources Information Center

    Stent, Gunther S.

    1970-01-01

    This history for molecular genetics and its explanation of DNA begins with an analysis of the Golden Jubilee essay papers, 1955. The paper ends stating that the higher nervous system is the one major frontier of biological inquiry which still offers some romance of research. (Author/VW)

  4. DNA

    ERIC Educational Resources Information Center

    Stent, Gunther S.

    1970-01-01

    This history for molecular genetics and its explanation of DNA begins with an analysis of the Golden Jubilee essay papers, 1955. The paper ends stating that the higher nervous system is the one major frontier of biological inquiry which still offers some romance of research. (Author/VW)

  5. Human Longevity and Variation in GH/IGF-1/Insulin Signaling, DNA Damage Signaling and Repair and Pro/antioxidant Pathway Genes: Cross Sectional and Longitudinal Studies

    PubMed Central

    Soerensen, Mette; Dato, Serena; Tan, Qihua; Thinggaard, Mikael; Kleindorp, Rabea; Beekman, Marian; Jacobsen, Rune; Suchiman, H. Eka D.; de Craen, Anton J.M.; Westendorp, Rudi G.J.; Schreiber, Stefan; Stevnsner, Tinna; Bohr, Vilhelm A.; Slagboom, P. Eline; Nebel, Almut; Vaupel, James W.; Christensen, Kaare; McGue, Matt; Christiansen, Lene

    2012-01-01

    Here we explore association with human longevity of common genetic variation in three major candidate pathways: GH/IGF-1/insulin signaling, DNA damage signaling and repair and pro/antioxidants by investigating 1273 tagging SNPs in 148 genes composing these pathways. In a case-control study of 1089 oldest-old (age 92–93) and 736 middle-aged Danes we found 1 pro/antioxidant SNP (rs1002149 (GSR)), 5 GH/IGF-1/INS SNPs (rs1207362 (KL), rs2267723 (GHRHR), rs3842755 (INS), rs572169 (GHSR), rs9456497 (IGF2R)) and 5 DNA repair SNPs (rs11571461 (RAD52), rs13251813 (WRN), rs1805329 (RAD23B), rs2953983 (POLB), rs3211994 (NTLH1)) to be associated with longevity after correction for multiple testing. In a longitudinal study with 11 years of follow-up on survival in the oldest-old Danes we found 2 pro/antioxidant SNPs (rs10047589 (TNXRD1), rs207444 (XDH)), 1 GH/IGF-1/INS SNP (rs26802 (GHRL)) and 3 DNA repair SNPs (rs13320360 (MLH1), rs2509049 (H2AFX) and rs705649 (XRCC5)) to be associated with mortality in late life after correction for multiple testing. When examining the 11 SNPs from the case-control study in the longitudinal data, rs3842755 (INS), rs13251813 (WRN) and rs3211994 (NTHL1) demonstrated the same directions of effect (p<0.05), while rs9456497 (IGF2R) and rs1157146 (RAD52) showed non-significant tendencies, indicative of effects also in late life survival. In addition, rs207444 (XDH) presented the same direction of effect when inspecting the 6 SNPs from the longitudinal study in the case-control data, hence, suggesting an effect also in survival from middle age to old age. No formal replications were observed when investigating the 11 SNPs from the case-control study in 1613 oldest-old (age 95–110) and 1104 middle-aged Germans, although rs11571461 (RAD52) did show a supportive non-significant tendency (OR = 1.162, 95% CI = 0.927–1.457). The same was true for rs10047589 (TNXRD1) (HR = 0.758, 95%CI = 0.543–1.058) when examining the 6 SNPs from the longitudinal

  6. Robust modular product family design

    NASA Astrophysics Data System (ADS)

    Jiang, Lan; Allada, Venkat

    2001-10-01

    This paper presents a modified Taguchi methodology to improve the robustness of modular product families against changes in customer requirements. The general research questions posed in this paper are: (1) How to effectively design a product family (PF) that is robust enough to accommodate future customer requirements. (2) How far into the future should designers look to design a robust product family? An example of a simplified vacuum product family is used to illustrate our methodology. In the example, customer requirements are selected as signal factors; future changes of customer requirements are selected as noise factors; an index called quality characteristic (QC) is set to evaluate the product vacuum family; and the module instance matrix (M) is selected as control factor. Initially a relation between the objective function (QC) and the control factor (M) is established, and then the feasible M space is systemically explored using a simplex method to determine the optimum M and the corresponding QC values. Next, various noise levels at different time points are introduced into the system. For each noise level, the optimal values of M and QC are computed and plotted on a QC-chart. The tunable time period of the control factor (the module matrix, M) is computed using the QC-chart. The tunable time period represents the maximum time for which a given control factor can be used to satisfy current and future customer needs. Finally, a robustness index is used to break up the tunable time period into suitable time periods that designers should consider while designing product families.

  7. Association of the circadian factor Period 2 to p53 influences p53's function in DNA-damage signaling

    PubMed Central

    Gotoh, Tetsuya; Vila-Caballer, Marian; Liu, Jingjing; Schiffhauer, Samuel; Finkielstein, Carla V.

    2015-01-01

    Circadian period proteins influence cell division and death by associating with checkpoint components, although their mode of regulation has not been firmly established. hPer2 forms a trimeric complex with hp53 and its negative regulator Mdm2. In unstressed cells, this association leads to increased hp53 stability by blocking Mdm2-dependent ubiquitination and transcription of hp53 target genes. Because of the relevance of hp53 in checkpoint signaling, we hypothesize that hPer2 association with hp53 acts as a regulatory module that influences hp53's downstream response to genotoxic stress. Unlike the trimeric complex, whose distribution was confined to the nuclear compartment, hPer2/hp53 was identified in both cytosol and nucleus. At the transcriptional level, a reporter containing the hp21WAF1/CIP1 promoter, a target of hp53, remained inactive in cells expressing a stable form of the hPer2/hp53 complex even when treated with γ-radiation. Finally, we established that hPer2 directly acts on the hp53 node, as checkpoint components upstream of hp53 remained active in response to DNA damage. Quantitative transcriptional analyses of hp53 target genes demonstrated that unbound hp53 was absolutely required for activation of the DNA-damage response. Our results provide evidence of the mode by which the circadian tumor suppressor hPer2 modulates hp53 signaling in response to genotoxic stress. PMID:25411341

  8. The DNA damage response and immune signaling alliance: Is it good or bad? Nature decides when and where.

    PubMed

    Pateras, Ioannis S; Havaki, Sophia; Nikitopoulou, Xenia; Vougas, Konstantinos; Townsend, Paul A; Panayiotidis, Michalis I; Georgakilas, Alexandros G; Gorgoulis, Vassilis G

    2015-10-01

    The characteristic feature of healthy living organisms is the preservation of homeostasis. Compelling evidence highlight that the DNA damage response and repair (DDR/R) and immune response (ImmR) signaling networks work together favoring the harmonized function of (multi)cellular organisms. DNA and RNA viruses activate the DDR/R machinery in the host cells both directly and indirectly. Activation of DDR/R in turn favors the immunogenicity of the incipient cell. Hence, stimulation of DDR/R by exogenous or endogenous insults triggers innate and adaptive ImmR. The immunogenic properties of ionizing radiation, a prototypic DDR/R inducer, serve as suitable examples of how DDR/R stimulation alerts host immunity. Thus, critical cellular danger signals stimulate defense at the systemic level and vice versa. Disruption of DDR/R-ImmR cross talk compromises (multi)cellular integrity, leading to cell-cycle-related and immune defects. The emerging DDR/R-ImmR concept opens up a new avenue of therapeutic options, recalling the Hippocrates quote "everything in excess is opposed by nature."

  9. Structural basis for IL-1α recognition by a modified DNA aptamer that specifically inhibits IL-1α signaling.

    PubMed

    Ren, Xiaoming; Gelinas, Amy D; von Carlowitz, Ira; Janjic, Nebojsa; Pyle, Anna Marie

    2017-10-09

    IL-1α is an essential cytokine that contributes to inflammatory responses and is implicated in various forms of pathogenesis and cancer. Here we report a naphthyl modified DNA aptamer that specifically binds IL-1α and inhibits its signaling pathway. By solving the crystal structure of the IL-1α/aptamer, we provide a high-resolution structure of this critical cytokine and we reveal its functional interaction interface with high-affinity ligands. The non-helical aptamer, which represents a highly compact nucleic acid structure, contains a wealth of new conformational features, including an unknown form of G-quadruplex. The IL-1α/aptamer interface is composed of unusual polar and hydrophobic elements, along with an elaborate hydrogen bonding network that is mediated by sodium ion. IL-1α uses the same interface to interact with both the aptamer and its cognate receptor IL-1RI, thereby suggesting a novel route to immunomodulatory therapeutics.The cytokine interleukin 1α (IL-1α) plays an important role in inflammatory processes. Here the authors use SELEX to generate a modified DNA aptamer which specifically binds IL-1α, present the structure of the IL-1α/aptamer complex and show that this aptamer inhibits the IL-1α signaling pathway.

  10. Phosphates in the Z-DNA dodecamer are flexible, but their P-SAD signal is sufficient for structure solution.

    PubMed

    Luo, Zhipu; Dauter, Miroslawa; Dauter, Zbigniew

    2014-07-01

    A large number of Z-DNA hexamer duplex structures and a few oligomers of different lengths are available, but here the first crystal structure of the d(CGCGCGCGCGCG)2 dodecameric duplex is presented. Two synchrotron data sets were collected; one was used to solve the structure by the single-wavelength anomalous dispersion (SAD) approach based on the anomalous signal of P atoms, the other set, extending to an ultrahigh resolution of 0.75 Å, served to refine the atomic model to an R factor of 12.2% and an R(free) of 13.4%. The structure consists of parallel duplexes arranged into practically infinitely long helices packed in a hexagonal fashion, analogous to all other known structures of Z-DNA oligomers. However, the dodecamer molecule shows a high level of flexibility, especially of the backbone phosphate groups, with six out of 11 phosphates modeled in double orientations corresponding to the two previously observed Z-DNA conformations: Z(I), with the phosphate groups inclined towards the inside of the helix, and Z(II), with the phosphate groups rotated towards the outside of the helix.

  11. Homocysteine Triggers Inflammatory Responses in Macrophages through Inhibiting CSE-H2S Signaling via DNA Hypermethylation of CSE Promoter

    PubMed Central

    Li, Jiao-Jiao; Li, Qian; Du, Hua-Ping; Wang, Ya-Li; You, Shou-Jiang; Wang, Fen; Xu, Xing-Shun; Cheng, Jian; Cao, Yong-Jun; Liu, Chun-Feng; Hu, Li-Fang

    2015-01-01

    Hyperhomocysteinemia (HHcy) is an independent risk factor of atherosclerosis and other cardiovascular diseases. Unfortunately, Hcy-lowering strategies were found to have limited effects in reducing cardiovascular events. The underlying mechanisms remain unclear. Increasing evidence reveals a role of inflammation in the pathogenesis of HHcy. Homocysteine (Hcy) is a precursor of hydrogen sulfide (H2S), which is formed via the transsulfuration pathway catalyzed by cystathionine β-synthase and cystathionine γ-lyase (CSE) and serves as a novel modulator of inflammation. In the present study, we showed that methionine supplementation induced mild HHcy in mice, associated with the elevations of TNF-α and IL-1β in the plasma and reductions of plasma H2S level and CSE expression in the peritoneal macrophages. H2S-releasing compound GYY4137 attenuated the increases of TNF-α and IL-1β in the plasma of HHcy mice and Hcy-treated raw264.7 cells while CSE inhibitor PAG exacerbated it. Moreover, the in vitro study showed that Hcy inhibited CSE expression and H2S production in macrophages, accompanied by the increases of DNA methyltransferase (DNMT) expression and DNA hypermethylation in cse promoter region. DNMT inhibition or knockdown reversed the decrease of CSE transcription induced by Hcy in macrophages. In sum, our findings demonstrate that Hcy may trigger inflammation through inhibiting CSE-H2S signaling, associated with increased promoter DNA methylation and transcriptional repression of cse in macrophages. PMID:26047341

  12. Detection of single-nucleotide polymorphisms with novel leaky surface acoustic wave biosensors, DNA ligation and enzymatic signal amplification.

    PubMed

    Xu, Qinghua; Chang, Kai; Lu, Weiping; Chen, Wei; Ding, Yi; Jia, Shuangrong; Zhang, Kejun; Li, Fake; Shi, Jianfeng; Cao, Liang; Deng, Shaoli; Chen, Ming

    2012-03-15

    This manuscript describes a new technique for detecting single-nucleotide polymorphisms (SNPs) by integrating a leaky surface acoustic wave (LSAW) biosensor, enzymatic DNA ligation and enzymatic signal amplification. In this technique, the DNA target is hybridized with a capture probe immobilized on the surface of a LSAW biosensor. Then, the hybridized sequence is ligated to biotinylated allele-specific detection probe using Taq DNA ligase. The ligation does not take place if there is a single-nucleotide mismatch between the target and the capture probe. The ligated detection probe is transformed into a streptavidin-horseradish peroxidase (SA-HRP) terminal group via a biotin-streptavidin complex. Then, the SA-HRP group catalyzes the polymerization of 3,3-diaminobenzidine (DAB) to form a surface precipitate, thus effectively increasing the sensitivity of detecting surface mass changes and allowing detection of SNPs. Optimal detection conditions were found to be: 0.3 mol/L sodium ion concentration in PBS, pH 7.6, capture probe concentration 0.5 μmol/L and target sequence concentration 1.0 μmol/L. The detection limit was found to be 1 × 10(-12)mol/L. Using this technique, we were able to detect a single-point mutation at nucleotide A2293G in Japanese encephalitis virus.

  13. Processivity factor of KSHV contains a nuclear localization signal and binding domains for transporting viral DNA polymerase into the nucleus

    SciTech Connect

    Chen Yali; Ciustea, Mihai; Ricciardi, Robert P. . E-mail: ricciardi@biochem.dental.upenn.edu

    2005-09-30

    Kaposi's sarcoma-associated human herpesvirus (KSHV) encodes a processivity factor (PF-8, ORF59) that forms homodimers and binds to viral DNA polymerase (Pol-8, ORF9). PF-8 is essential for stabilizing Pol-8 on template DNA so that Pol-8 can incorporate nucleotides continuously. Here, the intracellular interaction of these two viral proteins was examined by confocal immunofluorescence microscopy. When individually expressed, PF-8 was observed exclusively in the nucleus, whereas Pol-8 was found only in the cytoplasm. However, when co-expressed, Pol-8 was co-translocated with PF-8 into the nucleus. Mutational analysis revealed that PF-8 contains a nuclear localization signal (NLS) as well as domains located at the N-terminus and the C-proximal regions that are required for Pol-8 binding. This study suggests that the mechanism that enables PF-8 to transport Pol-8 into the nucleus is the first critical step required for Pol-8 and PF-8 to function processively in KSHV DNA synthesis.

  14. Wavelet analysis of frequency chaos game signal: a time-frequency signature of the C. elegans DNA.

    PubMed

    Messaoudi, Imen; Oueslati, Afef Elloumi; Lachiri, Zied

    2014-12-01

    Challenging tasks are encountered in the field of bioinformatics. The choice of the genomic sequence's mapping technique is one the most fastidious tasks. It shows that a judicious choice would serve in examining periodic patterns distribution that concord with the underlying structure of genomes. Despite that, searching for a coding technique that can highlight all the information contained in the DNA has not yet attracted the attention it deserves. In this paper, we propose a new mapping technique based on the chaos game theory that we call the frequency chaos game signal (FCGS). The particularity of the FCGS coding resides in exploiting the statistical properties of the genomic sequence itself. This may reflect important structural and organizational features of DNA. To prove the usefulness of the FCGS approach in the detection of different local periodic patterns, we use the wavelet analysis because it provides access to information that can be obscured by other time-frequency methods such as the Fourier analysis. Thus, we apply the continuous wavelet transform (CWT) with the complex Morlet wavelet as a mother wavelet function. Scalograms that relate to the organism Caenorhabditis elegans (C. elegans) exhibit a multitude of periodic organization of specific DNA sequences.

  15. Inter-module credit assignment in modular reinforcement learning.

    PubMed

    Samejima, Kazuyuki; Doya, Kenji; Kawato, Mitsuo

    2003-09-01

    Critical issues in modular or hierarchical reinforcement learning (RL) are (i) how to decompose a task into sub-tasks, (ii) how to achieve independence of learning of sub-tasks, and (iii) how to assure optimality of the composite policy for the entire task. The second and last requirements are often under trade-off. We propose a method for propagating the reward for the entire task achievement between modules. This is done in the form of a 'modular reward', which is calculated from the temporal difference of the module gating signal and the value of the succeeding module. We implement modular reward for a multiple model-based reinforcement learning (MMRL) architecture and show its effectiveness in simulations of a pursuit task with hidden states and a continuous-time non-linear control task.

  16. Development of DNA Damage Response Signaling Biomarkers using Automated, Quantitative Image Analysis

    PubMed Central

    Nikolaishvilli-Feinberg, Nana; Cohen, Stephanie M.; Midkiff, Bentley; Zhou, Yingchun; Olorvida, Mark; Ibrahim, Joseph G.; Omolo, Bernard; Shields, Janiel M.; Thomas, Nancy E.; Groben, Pamela A.; Kaufmann, William K.

    2014-01-01

    The DNA damage response (DDR) coordinates DNA repair with cell cycle checkpoints to ameliorate or mitigate the pathological effects of DNA damage. Automated quantitative analysis (AQUA) and Tissue Studio are commercial technologies that use digitized immunofluorescence microscopy images to quantify antigen expression in defined tissue compartments. Because DDR is commonly activated in cancer and may reflect genetic instability within the lesion, a method to quantify DDR in cancer offers potential diagnostic and/or prognostic value. In this study, both AQUA and Tissue Studio algorithms were used to quantify the DDR in radiation-damaged skin fibroblasts, melanoma cell lines, moles, and primary and metastatic melanomas. Digital image analysis results for three markers of DDR (γH2AX, P-ATM, P-Chk2) correlated with immunoblot data for irradiated fibroblasts, whereas only γH2AX and P-Chk2 correlated with immunoblot data in melanoma cell lines. Melanoma cell lines displayed substantial variation in γH2AX and P-Chk2 expression, and P-Chk2 expression was significantly correlated with radioresistance. Moles, primary melanomas, and melanoma metastases in brain, lung and liver displayed substantial variation in γH2AX expression, similar to that observed in melanoma cell lines. Automated digital analysis of immunofluorescent images stained for DDR biomarkers may be useful for predicting tumor response to radiation and chemotherapy. PMID:24309508

  17. Parts & pools: a framework for modular design of synthetic gene circuits.

    PubMed

    Marchisio, Mario Andrea

    2014-01-01

    Published in 2008, Parts & Pools represents one of the first attempts to conceptualize the modular design of bacterial synthetic gene circuits with Standard Biological Parts (DNA segments) and Pools of molecules referred to as common signal carriers (e.g., RNA polymerases and ribosomes). The original framework for modeling bacterial components and designing prokaryotic circuits evolved over the last years and brought, first, to the development of an algorithm for the automatic design of Boolean gene circuits. This is a remarkable achievement since gene digital circuits have a broad range of applications that goes from biosensors for health and environment care to computational devices. More recently, Parts & Pools was enabled to give a proper formal description of eukaryotic biological circuit components. This was possible by employing a rule-based modeling approach, a technique that permits a faithful calculation of all the species and reactions involved in complex systems such as eukaryotic cells and compartments. In this way, Parts & Pools is currently suitable for the visual and modular design of synthetic gene circuits in yeast and mammalian cells too.

  18. Parts & Pools: A Framework for Modular Design of Synthetic Gene Circuits

    PubMed Central

    Marchisio, Mario Andrea

    2014-01-01

    Published in 2008, Parts & Pools represents one of the first attempts to conceptualize the modular design of bacterial synthetic gene circuits with Standard Biological Parts (DNA segments) and Pools of molecules referred to as common signal carriers (e.g., RNA polymerases and ribosomes). The original framework for modeling bacterial components and designing prokaryotic circuits evolved over the last years and brought, first, to the development of an algorithm for the automatic design of Boolean gene circuits. This is a remarkable achievement since gene digital circuits have a broad range of applications that goes from biosensors for health and environment care to computational devices. More recently, Parts & Pools was enabled to give a proper formal description of eukaryotic biological circuit components. This was possible by employing a rule-based modeling approach, a technique that permits a faithful calculation of all the species and reactions involved in complex systems such as eukaryotic cells and compartments. In this way, Parts & Pools is currently suitable for the visual and modular design of synthetic gene circuits in yeast and mammalian cells too. PMID:25340051

  19. Modular Stirling Radioisotope Generator

    NASA Technical Reports Server (NTRS)

    Schmitz, Paul C.; Mason, Lee S.; Schifer, Nicholas A.

    2015-01-01

    High efficiency radioisotope power generators will play an important role in future NASA space exploration missions. Stirling Radioisotope Generators (SRG) have been identified as a candidate generator technology capable of providing mission designers with an efficient, high specific power electrical generator. SRGs high conversion efficiency has the potential to extend the limited Pu-238 supply when compared with current Radioisotope Thermoelectric Generators (RTG). Due to budgetary constraints, the Advanced Stirling Radioisotope Generator (ASRG) was canceled in the fall of 2013. Over the past year a joint study by NASA and DOE called the Nuclear Power Assessment Study (NPAS) recommended that Stirling technologies continue to be explored. During the mission studies of the NPAS, spare SRGs were sometimes required to meet mission power system reliability requirements. This led to an additional mass penalty and increased isotope consumption levied on certain SRG-based missions. In an attempt to remove the spare power system, a new generator architecture is considered which could increase the reliability of a Stirling generator and provide a more fault-tolerant power system. This new generator called the Modular Stirling Radioisotope Generator (MSRG) employs multiple parallel Stirling convertor/controller strings, all of which share the heat from the General Purpose Heat Source (GPHS) modules. For this design, generators utilizing one to eight GPHS modules were analyzed, which provide about 50 to 450 watts DC to the spacecraft, respectively. Four Stirling convertors are arranged around each GPHS module resulting in from 4 to 32 Stirling/controller strings. The convertors are balanced either individually or in pairs, and are radiatively coupled to the GPHS modules. Heat is rejected through the housing/radiator which is similar in construction to the ASRG. Mass and power analysis for these systems indicate that specific power may be slightly lower than the ASRG and

  20. Modular Stirling Radioisotope Generator

    NASA Technical Reports Server (NTRS)

    Schmitz, Paul C.; Mason, Lee S.; Schifer, Nicholas A.

    2016-01-01

    High-efficiency radioisotope power generators will play an important role in future NASA space exploration missions. Stirling Radioisotope Generators (SRGs) have been identified as a candidate generator technology capable of providing mission designers with an efficient, high-specific-power electrical generator. SRGs high conversion efficiency has the potential to extend the limited Pu-238 supply when compared with current Radioisotope Thermoelectric Generators (RTGs). Due to budgetary constraints, the Advanced Stirling Radioisotope Generator (ASRG) was canceled in the fall of 2013. Over the past year a joint study by NASA and the Department of Energy (DOE) called the Nuclear Power Assessment Study (NPAS) recommended that Stirling technologies continue to be explored. During the mission studies of the NPAS, spare SRGs were sometimes required to meet mission power system reliability requirements. This led to an additional mass penalty and increased isotope consumption levied on certain SRG-based missions. In an attempt to remove the spare power system, a new generator architecture is considered, which could increase the reliability of a Stirling generator and provide a more fault-tolerant power system. This new generator called the Modular Stirling Radioisotope Generator (MSRG) employs multiple parallel Stirling convertor/controller strings, all of which share the heat from the General Purpose Heat Source (GPHS) modules. For this design, generators utilizing one to eight GPHS modules were analyzed, which provided about 50 to 450 W of direct current (DC) to the spacecraft, respectively. Four Stirling convertors are arranged around each GPHS module resulting in from 4 to 32 Stirling/controller strings. The convertors are balanced either individually or in pairs, and are radiatively coupled to the GPHS modules. Heat is rejected through the housing/radiator, which is similar in construction to the ASRG. Mass and power analysis for these systems indicate that specific

  1. Regulation of DNA damage following termination of Hedgehog (HH) survival signaling at the level of the GLI genes in human colon cancer.

    PubMed

    Agyeman, Akwasi; Mazumdar, Tapati; Houghton, Janet A

    2012-08-01

    Transcriptional regulation of the Hedgehog (HH) signaling response is mediated by GLI genes (GLI1, GLI2) downstream of SMO, that are also activated by oncogenic signaling pathways. We have demonstrated the importance of targeting GLI downstream of SMO in the induction of cell death in human colon carcinoma cells. In HT29 cells inhibition of GLI1/GLI2 by the small molecule inhibitor GANT61 induced DNA double strand breaks (DSBs) and activation of ATM, MDC1 and NBS1; γH2AX and MDC1, NBS1 and MDC1 co-localized in nuclear foci. Early activation of ATM was decreased by 24 hr, when p-NBS1(Ser343), activated by ATM, was significantly reduced in cell extracts. Bound γH2AX was detected in isolated chromatin fractions or nuclei during DNA damage but not during DNA repair. MDC1 was tightly bound to chromatin at 32 hr as cells accumulated in early S-phase prior to becoming subG1, and during DNA repair. Limited binding of NBS1 was detected at all times during DNA damage but was strongly bound during DNA repair. Transient overexpression of NBS1 protected HT29 cells from GANT61-induced cell death, while knockdown of H2AX by H2AXshRNA delayed DNA damage signaling. Data demonstrate following GLI1/GLI2 inhibition: 1) induction of DNA damage in cells that are also resistant to SMO inhibitors, 2) dynamic interactions between γH2AX, MDC1 and NBS1 in single cell nuclei and in isolated chromatin fractions, 3) expression and chromatin binding properties of key mediator proteins that mark DNA damage or DNA repair, and 4) the importance of NBS1 in the DNA damage response mechanism.

  2. Expansion Mechanisms and Evolutionary History on Genes Encoding DNA Glycosylases and Their Involvement in Stress and Hormone Signaling.

    PubMed

    Jiang, Shu-Ye; Ramachandran, Srinivasan

    2016-04-25

    DNA glycosylases catalyze the release of methylated bases. They play vital roles in the base excision repair pathway and might also function in DNA demethylation. At least three families of DNA glycosylases have been identified, which included 3'-methyladenine DNA glycosylase (MDG) I, MDG II, and HhH-GPD (Helix-hairpin-Helix and Glycine/Proline/aspartate (D)). However, little is known on their genome-wide identification, expansion, and evolutionary history as well as their expression profiling and biological functions. In this study, we have genome-widely identified and evolutionarily characterized these family members. Generally, a genome encodes only one MDG II gene in most of organisms. No MDG I or MDG II gene was detected in green algae. However, HhH-GPD genes were detectable in all available organisms. The ancestor species contain small size of MDG I and HhH-GPD families. These two families were mainly expanded through the whole-genome duplication and segmental duplication. They were evolutionarily conserved and were generally under purifying selection. However, we have detected recent positive selection among the Oryza genus, which might play roles in species divergence. Further investigation showed that expression divergence played important roles in gene survival after expansion. All of these family genes were expressed in most of developmental stages and tissues in rice plants. High ratios of family genes were downregulated by drought and fungus pathogen as well as abscisic acid (ABA) and jasmonic acid (JA) treatments, suggesting a negative regulation in response to drought stress and pathogen infection through ABA- and/or JA-dependent hormone signaling pathway.

  3. Ataxia telangiectasia-mutated-Rad3-related DNA damage checkpoint signaling pathway triggered by hepatitis B virus infection

    PubMed Central

    Zhao, Fan; Hou, Ning-Bo; Yang, Xiao-Li; He, Xiang; Liu, Yu; Zhang, Yan-Hong; Wei, Cong-Wen; Song, Ting; Li, Li; Ma, Qing-Jun; Zhong, Hui

    2008-01-01

    AIM: To explore whether acute cellular DNA damage response is induced upon hepatitis B virus (HBV) infection and the effects of the HBV infection. METHODS: We incubated HL7702 hepatocytes with HBV-positive serum, mimicking a natural HBV infection process. We used immunoblotting to evaluate protein expression levels in HBV-infected cells or in non-infected cells; immunofluorescence to show ATR foci ands Chk1 phosphorylation foci formation; flow cytometry to analyze the cell cycle and apoptosis; ultraviolet (UV) radiation and ionizing radiation (IR)-treated cells to mimic DNA damage; and Trypan blue staining to count the viable cells. RESULTS: We found that HBV infection induced an increased steady state of ATR protein and increased phosphorylation of multiple downstream targets including Chk1, p53 and H2AX. In contrast to ATR and its target, the phosphorylated form of ATM at Ser-1981 and its downstream substrate Chk2 phosphorylation at Thr-68 did not visibly increase upon infection. However, the level of Mre11 and p21 were reduced beginning at 0.5 h after HBV-positive serum addition. Also, HBV infection led to transient cell cycle arrest in the S and the G2 phases without accompanying increased apoptosis. Research on cell survival changes upon radiation following HBV infection showed that survival of UV-treated host cells was greatly increased by HBV infection, owing to the reduced apoptosis. Meanwhile, survival of IR-treated host cells was reduced by HBV infection. CONCLUSION: HBV infection activates ATR DNA damage response to replication stress and abrogates the checkpoint signaling controlled by DNA damage response. PMID:18985806

  4. Expansion Mechanisms and Evolutionary History on Genes Encoding DNA Glycosylases and Their Involvement in Stress and Hormone Signaling

    PubMed Central

    Jiang, Shu-Ye; Ramachandran, Srinivasan

    2016-01-01

    DNA glycosylases catalyze the release of methylated bases. They play vital roles in the base excision repair pathway and might also function in DNA demethylation. At least three families of DNA glycosylases have been identified, which included 3′-methyladenine DNA glycosylase (MDG) I, MDG II, and HhH-GPD (Helix–hairpin–Helix and Glycine/Proline/aspartate (D)). However, little is known on their genome-wide identification, expansion, and evolutionary history as well as their expression profiling and biological functions. In this study, we have genome-widely identified and evolutionarily characterized these family members. Generally, a genome encodes only one MDG II gene in most of organisms. No MDG I or MDG II gene was detected in green algae. However, HhH-GPD genes were detectable in all available organisms. The ancestor species contain small size of MDG I and HhH-GPD families. These two families were mainly expanded through the whole-genome duplication and segmental duplication. They were evolutionarily conserved and were generally under purifying selection. However, we have detected recent positive selection among the Oryza genus, which might play roles in species divergence. Further investigation showed that expression divergence played important roles in gene survival after expansion. All of these family genes were expressed in most of developmental stages and tissues in rice plants. High ratios of family genes were downregulated by drought and fungus pathogen as well as abscisic acid (ABA) and jasmonic acid (JA) treatments, suggesting a negative regulation in response to drought stress and pathogen infection through ABA- and/or JA-dependent hormone signaling pathway. PMID:27026054

  5. Signal enhancement of silicon nanowire-based biosensor for detection of matrix metalloproteinase-2 using DNA-Au nanoparticle complexes.

    PubMed

    Choi, Jin-Ha; Kim, Han; Choi, Jae-Hak; Choi, Jeong-Woo; Oh, Byung-Keun

    2013-11-27

    Silicon nanowires have been used in the development of ultrasensitive biosensors or chemical sensors, which is originated in its high surface-to-volume ratio and function as field-effect transistor (FET). In this study, we developed an ultrasensitive DNA-gold (Au) nanoparticle complex-modified silicon nanowire field effect transistor (SiNW-FET) biosensor to detect matrix metalloproteinase-2 (MMP-2), which has been of particular interest as protein biomarker because of its relation to several important human diseases, through an enzymatic cleavage reaction of a specific peptide sequence (IPVSLRSG). SiNW patterns with a width of 100 nm and height of 100 nm were fabricated on a p-type silicon-on-insulator (SOI) wafer by electron-beam lithography. Next, negatively charged DNA-Au nanoparticle complexes coupled with the specific peptide (KKGGGGGG-IPVSLRSG-EEEEEE) were applied on the SiNWs to create a more sensitive system, which was then bound to aldehyde-functionalized SiNW. The enhanced negatively charged nanoparticle complexes by attached DNA were used to enhance the conductance change of the p-SiNW by MMP-2 cleavage reaction of the specific peptide. MMP-2 was successfully measured within a range of 100 fM to 10 nM, and the conductance signal of the p-type SiNW by the MMP-2 cleavage reaction was enhanced over 10-fold by using the DNA-Au nanoparticle complexes compared with using SiNW-attached negative single peptide sequences.

  6. Modular Power Standard for Space Explorations Missions

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.; Gardner, Brent G.

    2016-01-01

    Future human space exploration will most likely be composed of assemblies of multiple modular spacecraft elements with interconnected electrical power systems. An electrical system composed of a standardized set modular building blocks provides significant development, integration, and operational cost advantages. The modular approach can also provide the flexibility to configure power systems to meet the mission needs. A primary goal of the Advanced Exploration Systems (AES) Modular Power System (AMPS) project is to establish a Modular Power Standard that is needed to realize these benefits. This paper is intended to give the space exploration community a "first look" at the evolving Modular Power Standard and invite their comments and technical contributions.

  7. Polychlorinated biphenyl quinone induces oxidative DNA damage and repair responses: The activations of NHEJ, BER and NER via ATM-p53 signaling axis

    SciTech Connect

    Dong, Hui; Shi, Qiong; Song, Xiufang; Fu, Juanli; Hu, Lihua; Xu, Demei; Su, Chuanyang; Xia, Xiaomin; Song, Erqun; Song, Yang

    2015-07-01

    Our previous studies demonstrated that polychlorinated biphenyl (PCB) quinone induced oxidative DNA damage in HepG2 cells. To promote genomic integrity, DNA damage response (DDR) coordinates cell-cycle transitions, DNA repair and apoptosis. PCB quinone-induced cell cycle arrest and apoptosis have been documented, however, whether PCB quinone insult induce DNA repair signaling is still unknown. In this study, we identified the activation of DDR and corresponding signaling events in HepG2 cells upon the exposure to a synthetic PCB quinone, PCB29-pQ. Our data illustrated that PCB29-pQ induces the phosphorylation of p53, which was mediated by ataxia telangiectasia mutated (ATM) protein kinase. The observed phosphorylated histone H2AX (γ-H2AX) foci and the elevation of 8-hydroxy-2′-deoxyguanosine (8-OHdG) indicated that DDR was stimulated by PCB29-pQ treatment. Additionally, we found PCB29-pQ activates non-homologous end joining (NHEJ), base excision repair (BER) and nucleotide excision repair (NER) signalings. However, these repair pathways are not error-free processes and aberrant repair of DNA damage may cause the potential risk of carcinogenesis and mutagenesis. - Highlights: • Polychlorinated biphenyl quinone induces oxidative DNA damage in HepG2 cells. • The elevation of γ-H2AX and 8-OHdG indicates the activation of DNA damage response. • ATM-p53 signaling acts as the DNA damage sensor and effector. • Polychlorinated biphenyl quinone activates NHEJ, BER and NER signalings.

  8. Eigenvalue Spectra of Modular Networks

    NASA Astrophysics Data System (ADS)

    Peixoto, Tiago P.

    2013-08-01

    A large variety of dynamical processes that take place on networks can be expressed in terms of the spectral properties of some linear operator which reflects how the dynamical rules depend on the network topology. Often, such spectral features are theoretically obtained by considering only local node properties, such as degree distributions. Many networks, however, possess large-scale modular structures that can drastically influence their spectral characteristics and which are neglected in such simplified descriptions. Here, we obtain in a unified fashion the spectrum of a large family of operators, including the adjacency, Laplacian, and normalized Laplacian matrices, for networks with generic modular structure, in the limit of large degrees. We focus on the conditions necessary for the merging of the isolated eigenvalues with the continuous band of the spectrum, after which the planted modular structure can no longer be easily detected by spectral methods. This is a crucial transition point which determines when a modular structure is strong enough to affect a given dynamical process. We show that this transition happens in general at different points for the different matrices, and hence the detectability threshold can vary significantly, depending on the operator chosen. Equivalently, the sensitivity to the modular structure of the different dynamical processes associated with each matrix will be different, given the same large-scale structure present in the network. Furthermore, we show that, with the exception of the Laplacian matrix, the different transitions coalesce into the same point for the special case where the modules are homogeneous but separate otherwise.

  9. A label-free signal amplification assay for DNA detection based on exonuclease III and nucleic acid dye SYBR Green I.

    PubMed

    Zheng, Aihua; Luo, Ming; Xiang, Dongshan; Xiang, Xia; Ji, Xinghu; He, Zhike

    2013-09-30

    We have developed a new fluorescence method for specific single-stranded DNA sequences with exonuclease III (Exo III) and nucleic acid dye SYBR Green I. It is demonstrated by a reverse transcription oligonucleotide sequence (target DNA, 27 bases) of RNA fragment of human immunodeficiency virus (HIV) as a model system. In the absence of the target DNA, the hairpin-probe is in the stem-closed structure, the fluorescence of SYBR Green I is very strong. In the presence of the target DNA, the hairpin-probe hybridizes with the target DNA to form double-stranded structure with a blunt 3'-terminus. Thus, in the presence of Exo III, only the 3'-terminus of probe is subjected to digestion. Exo III catalyzes the stepwise removal of mononucleotides from this terminus, releasing the target DNA. The released target DNA then hybridizes with another probe, whence the cycle starts anew. The signal of SYBR Green I decreases greatly. This system provides a detection limit of 160 pM, which is comparable to the existing signal amplification methods that utilized Exo III as a signal amplification nuclease. Due to the unique property of Exo III, this method shows excellent detection selectivity for single-base discrimination. More importantly, superiors to other methods based on Exo III, these probes have the advantages of easier to design, synthesize, purify and thus are much cheaper and more applicable. This new approach could be widely applied to sensitive and selective nucleic acids detection.

  10. Receptor to nucleus signaling by prolactin and interleukin 2 via activation of latent DNA-binding factors.

    PubMed Central

    Gilmour, K C; Reich, N C

    1994-01-01

    The mechanism of action of prolactin (PRL), a lactogenic and immunoregulatory hormone, has remained undetermined despite its critical role in development. This study identifies a DNA-binding factor induced by PRL that appears to mediate a signal from the cell surface receptor to specific gene expression in the nucleus. PRL stimulates the proliferation of Nb2 T-lymphoma cells and activates transcription of the interferon-regulatory factor 1 (IRF-1) gene. Within minutes of PRL stimulation, a PRL-induced factor (PRLIF) is activated and binds to a target site in the promoter of the IRF-1 gene. The PRLIF-binding site contains an inverted GAAA repeat that is also functional in the hormone-responsive beta-casein gene. The PRL-receptor complex signals tyrosine phosphorylation of JAK2, a nonreceptor tyrosine kinase, which may lead to activation of PRLIF. T-cell proliferation and transcriptional activation of the IRF-1 gene is also induced by the cytokine interleukin 2 (IL-2). This report demonstrates the rapid activation of an IL-2 nuclear-activated factor that recognizes the same GAAA inverted repeat in the IRF-1 promoter. PRLIF and IL-2 nuclear-activated factor are newly identified factors that appear to serve fundamental roles in the signal transduction pathways of PRL and IL-2, respectively, leading to the transcriptional regulation of responsive genes. Images PMID:8041708

  11. Chromosome territory relocation during DNA repair requires nuclear myosin 1 recruitment to chromatin mediated by ϒ-H2AX signaling

    PubMed Central

    Kulashreshtha, Mugdha; Mehta, Ishita S.; Kumar, Pradeep; Rao, Basuthkar J.

    2016-01-01

    During DNA damage response (DDR), certain gene rich chromosome territories (CTs) relocate to newer positions within interphase nuclei and revert to their native locations following repair. Such dynamic relocation of CTs has been observed under various cellular conditions, however, the underlying mechanistic basis of the same has remained largely elusive. In this study, we aim to understand the temporal and molecular details of such crosstalk between DDR signaling and CT relocation dynamics. We demonstrate that signaling at DNA double strand breaks (DSBs) by the phosphorylated histone variant (ϒ-H2AX) is a pre-requisite for damage induced CT relocation, as cells deficient in ϒ-H2AX signaling fail to exhibit such a response. Inhibition of Rad51 or DNA Ligase IV mediated late steps of double strand break repair does not seem to abrogate CT relocation completely. Upon DNA damage, an increase in the levels of chromatin bound motor protein nuclear myosin 1 (NM1) ensues, which appears to be functionally linked to ϒ-H2AX signaling. Importantly, the motor function of NM1 is essential for its recruitment to chromatin and CT relocation following damage. Taking these observations together, we propose that early DDR sensing and signaling result in NM1 recruitment to chromosomes which in turn guides DNA damage induced CT relocation. PMID:27365048

  12. Diabetes-Induced Oxidative DNA Damage Alters p53-p21CIP1/Waf1 Signaling in the Rat Testis

    PubMed Central

    Al-Bader, Maie M.

    2015-01-01

    Diabetes is increasingly becoming a major cause of large-scale morbidity and mortality. Diabetes-induced oxidative stress alters numerous intracellular signaling pathways. Although testicular dysfunction is a major concern in diabetic men, the mechanistic alterations in the testes that lead to hypogonadism are not yet clear. Oxidative mitochondrial DNA damage, as indicated by 7,8-dihydro-8-oxo-2′-deoxyguanosine, and phosphorylation of p53 at ser315 residue (p-p53ser315) increased in a stage- and cell-specific manner in the testes of rats that were diabetic for 1 month (DM1). Prolongation of diabetes for 3 months (DM3) led to an increase in nuclear oxidative DNA damage in conjunction with a decrease in the expression of p-p53ser315. The nuclei of pachytene and preleptotene spermatocytes, steps 1, 11, and 12 spermatids, secondary spermatocytes and the Sertoli cells, and the meiotic figures showed an increase in the expression of p-p53ser315. An increase in the expression of a downstream target of p53 and protein 21cyclin-dependent kinase interacting protein 1/wild-type p53-activated factor 1 (p21CIP1/Waf1) in both diabetic groups did not show any time-dependent effects but occurred concurrent with an upregulation of p-p53ser315 in DM1 and a downregulation of the protein in DM3. In diabetic groups, the expression of p21CIP1/Waf1 was mainly cytoplasmic but also perinuclear in pachytene spermatocytes and round spermatids. The cytoplasmic localization of p21CIP1/Waf1 may be suggestive of an antiapoptotic role for the protein. The perinuclear localization is probably related to the cell cycle arrest meant for DNA damage repair. Diabetes upregulates p21CIP1/Waf1 signaling in testicular germ cells in association with alteration in p-p53ser315 expression, probably to counteract DNA damage-induced cell death. PMID:24828139

  13. Dendrimer-Based Signal Amplification of Click-Labelled DNA in Situ.

    PubMed

    Raddaoui, Nada; Stazzoni, Samuele; Möckl, Leonhard; Viverge, Bastien; Geiger, Florian; Engelke, Hanna; Bräuchle, Christoph; Carell, Thomas

    2017-09-05

    The in vivo incorporation of alkyne-modified bases into the genome of cells is today the basis for the efficient detection of cell proliferation. Cells are grown in the presence of ethinyl-dU (EdU), fixed and permeabilised. The incorporated alkynes are then efficiently detected by using azide-containing fluorophores and the Cu(I) -catalysed alkyne-azide click reaction. For a world in which constant improvement in the sensitivity of a given method is driving diagnostic advancement, we developed azide- and alkyne-modified dendrimers that allow the establishment of sandwich-type detection assays that show significantly improved signal intensities and signal-to-noise ratios far beyond that which is currently possible. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. The mtDNA NARP mutation activates the actin-Nrf2 signaling of antioxidant defenses

    SciTech Connect

    Dassa, Emmanuel Philippe; Paupe, Vincent; Goncalves, Sergio; Rustin, Pierre

    2008-04-11

    An efficient handling of superoxides by antioxidant defenses is a crucial issue for cells with respiratory chain deficient mitochondria. We used human cultured skin fibroblasts to delineate the mechanism controlling the expression of antioxidant defenses in the case of a severe ATPase deficiency resulting from an 8993T>G mutation in the mitochondrial ATPase6 gene. We observed the nuclear translocation of the transcription factor Nrf2 associated with thinning of the actin stress fibers. The mobilization of the Nrf2 signaling pathway could be mimicked by a chemical blockade of the ATPase with a specific inhibitor, oligomycin. Interestingly enough, Nrf2 nuclear translocation was not observed in the case of a severe cytochrome oxidase deficiency, indicating that studying the status of this signaling pathway could throw some light on the importance of the oxidative insult associated with different respiratory chain defects.

  15. Differential DNA methylation analysis of breast cancer reveals the impact of immune signaling in radiation therapy.

    PubMed

    Halvorsen, Ann Rita; Helland, Aslaug; Fleischer, Thomas; Haug, Karen Marie; Grenaker Alnaes, Grethe Irene; Nebdal, Daniel; Syljuåsen, Randi G; Touleimat, Nizar; Busato, Florence; Tost, Jörg; Saetersdal, Anna B; Børresen-Dale, Anne-Lise; Kristensen, Vessela; Edvardsen, Hege

    2014-11-01

    Radiotherapy (RT) is a central treatment modality for breast cancer patients. The purpose of our study was to investigate the DNA methylation changes in tumors following RT, and to identify epigenetic markers predicting treatment outcome. Paired biopsies from patients with inoperable breast cancer were collected both before irradiation (n = 20) and after receiving 10-24 Gray (Gy) (n = 19). DNA methylation analysis was performed by using Illumina Infinium 27K arrays. Fourteen genes were selected for technical validation by pyrosequencing. Eighty-two differentially methylated genes were identified in irradiated (n = 11) versus nonirradiated (n = 19) samples (false discovery rate, FDR = 1.1%). Methylation levels in pathways belonging to the immune system were most altered after RT. Based on methylation levels before irradiation, a panel of five genes (H2AFY, CTSA, LTC4S, IL5RA and RB1) were significantly associated with clinical response (p = 0.041). Furthermore, the degree of methylation changes for 2,516 probes correlated with the given radiation dose. Within the 2,516 probes, an enrichment for pathways involved in cellular immune response, proliferation and apoptosis was identified (FDR < 5%). Here, we observed clear differences in methylation levels induced by radiation, some associated with response to treatment. Our study adds knowledge on the molecular mechanisms behind radiation response. © 2014 The Authors. Published by Wiley Periodicals, Inc. on behalf of UICC.

  16. RNF168 promotes noncanonical K27 ubiquitination to signal DNA damage.

    PubMed

    Gatti, Marco; Pinato, Sabrina; Maiolica, Alessio; Rocchio, Francesca; Prato, Maria Giulia; Aebersold, Ruedi; Penengo, Lorenza

    2015-01-13

    Ubiquitination regulates numerous cellular processes by generating a versatile communication system based on eight structurally and functionally different chains linked through distinct residues. Except for K48 and K63, the biological relevance of different linkages is largely unclear. Here, we show that RNF168 ubiquitin ligase promotes noncanonical K27-linked ubiquitination both in vivo and in vitro. We demonstrate that residue K27 of ubiquitin (UbK27) is required for RNF168-dependent chromatin ubiquitination, by targeting histones H2A/H2A.X, and that it is the major ubiquitin-based modification marking chromatin upon DNA damage. Indeed, UbK27 is strictly required for the proper activation of the DNA damage response (DDR) and is directly recognized by crucial DDR mediators, namely 53BP1, Rap80, RNF168, and RNF169. Mutation of UbK27 has dramatic consequences on DDR activation, preventing the recruitment of 53BP1 and BRCA1 to DDR foci. Similarly to the DDR, atypical ubiquitin chains could play unanticipated roles in other crucial ubiquitin-mediated biological processes. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  17. PARP-1 modulation of mTOR signaling in response to a DNA alkylating agent.

    PubMed

    Ethier, Chantal; Tardif, Maxime; Arul, Laura; Poirier, Guy G

    2012-01-01

    Poly(ADP-ribose) polymerase-1 (PARP-1) is widely involved in cell death responses. Depending on the degree of injury and on cell type, PARP activation may lead to autophagy, apoptosis or necrosis. In HEK293 cells exposed to the alkylating agent N-methyl-N'-nitro-N'-nitrosoguanine (MNNG), we show that PARP-1 activation triggers a necrotic cell death response. The massive poly(ADP-ribose) (PAR) synthesis following PARP-1 activation leads to the modulation of mTORC1 pathway. Shortly after MNNG exposure, NAD⁺ and ATP levels decrease, while AMP levels drastically increase. We characterized at the molecular level the consequences of these altered nucleotide levels. First, AMP-activated protein kinase (AMPK) is activated and the mTORC1 pathway is inhibited by the phosphorylation of Raptor, in an attempt to preserve cellular energy. Phosphorylation of the mTORC1 target S6 is decreased as well as the phosphorylation of the mTORC2 component Rictor on Thr1135. Finally, Akt phosphorylation on Ser473 is lost and then, cell death by necrosis occurs. Inhibition of PARP-1 with the potent PARP inhibitor AG14361 prevents all of these events. Moreover, the antioxidant N-acetyl-L-cysteine (NAC) can also abrogate all the signaling events caused by MNNG exposure suggesting that reactive oxygen species (ROS) production is involved in PARP-1 activation and modulation of mTOR signaling. In this study, we show that PARP-1 activation and PAR synthesis affect the energetic status of cells, inhibit the mTORC1 signaling pathway and possibly modulate the mTORC2 complex affecting cell fate. These results provide new evidence that cell death by necrosis is orchestrated by the balance between several signaling pathways, and that PARP-1 and PAR take part in these events.

  18. Probing plant-pathogen interactions and downstream defense signaling using DNA microarrays.

    PubMed

    Wan, Jinrong; Dunning, F Mark; Bent, Andrew F

    2002-11-01

    The interaction between a plant and a pathogen activates a wide variety of defense responses. The recent development of microarray-based expression profiling methods, together with the availability of genomic and/or EST (expressed sequence tag) sequence data for some plant species, has allowed significant progress in the characterization of plant pathogenesis-related responses. The small number of expression profiling studies completed to date have already identified an amazing number of genes that had not previously been implicated in plant defense. Some of these genes can be associated with defense signal transduction or antimicrobial action, but the functional contribution of many others remains uncertain. Initial expression profiling work has also revealed similarities and distinctions between different defense signaling pathways, and cross-talk (both overlap and interference) between pathogenesis-related responses and plant responses to other stresses. Potential transcriptional cis-regulatory elements upstream of co-regulated genes can also be identified. Whole-genome arrays are only now becoming available, and many interactions remain to be studied (e.g. different pathogen species, plant genotypes, mutants, time-points after infection). Expression profiling technologies, in combination with other genomic tools, will have a substantial impact on our understanding of plant-pathogen interactions and defense signaling pathways.

  19. Product modular design incorporating preventive maintenance issues

    NASA Astrophysics Data System (ADS)

    Gao, Yicong; Feng, Yixiong; Tan, Jianrong

    2016-03-01

    Traditional modular design methods lead to product maintenance problems, because the module form of a system is created according to either the function requirements or the manufacturing considerations. For solving these problems, a new modular design method is proposed with the considerations of not only the traditional function related attributes, but also the maintenance related ones. First, modularity parameters and modularity scenarios for product modularity are defined. Then the reliability and economic assessment models of product modularity strategies are formulated with the introduction of the effective working age of modules. A mathematical model used to evaluate the difference among the modules of the product so that the optimal module of the product can be established. After that, a multi-objective optimization problem based on metrics for preventive maintenance interval different degrees and preventive maintenance economics is formulated for modular optimization. Multi-objective GA is utilized to rapidly approximate the Pareto set of optimal modularity strategy trade-offs between preventive maintenance cost and preventive maintenance interval difference degree. Finally, a coordinate CNC boring machine is adopted to depict the process of product modularity. In addition, two factorial design experiments based on the modularity parameters are constructed and analyzed. These experiments investigate the impacts of these parameters on the optimal modularity strategies and the structure of module. The research proposes a new modular design method, which may help to improve the maintainability of product in modular design.

  20. Molecular Buffers Permit Sensitivity Tuning and Inversion of Riboswitch Signals.

    PubMed

    Rugbjerg, Peter; Genee, Hans Jasper; Jensen, Kristian; Sarup-Lytzen, Kira; Sommer, Morten Otto Alexander

    2016-07-15

    Predictable integration of foreign biological signals and parts remains a key challenge in the systematic engineering of synthetic cellular actuations, and general methods to improve signal transduction and sensitivity are needed. To address this problem we modeled and built a molecular signal buffer network in Saccharomyces cerevisiae inspired by chemical pH buffer systems. The molecular buffer system context-insulates a riboswitch enabling synthetic control of colony formation and modular signal manipulations. The riboswitch signal is relayed to a transcriptional activation domain of a split transcription factor, while interacting DNA-binding domains mediate the transduction of signal and form an interacting molecular buffer. The molecular buffer system enables modular signal inversion through integration with repressor modules. Further, tuning of input sensitivity was achieved through perturbation of the buffer pair ratio guided by a mathematical model. Such buffered signal tuning networks will be useful for domestication of RNA-based sensors enabling tunable outputs and library-wide selections for drug discovery and metabolic engineering.

  1. Electrochemiluminescence Biosensor Based on 3-D DNA Nanomachine Signal Probe Powered by Protein-Aptamer Binding Complex for Ultrasensitive Mucin 1 Detection.

    PubMed

    Jiang, Xinya; Wang, Haijun; Wang, Huijun; Zhuo, Ying; Yuan, Ruo; Chai, Yaqin

    2017-04-04

    Herein, we fabricated a novel electrochemiluminescence (ECL) biosensor for ultrasensitive detection of mucin 1 (MUC1) based on a three-dimensional (3-D) DNA nanomachine signal probe powered by protein-aptamer binding complex. The assembly of 3-D DNA nanomachine signal probe achieved the cyclic reuse of target protein based on the protein-aptamer binding complex induced catalyzed hairpin assembly (CHA), which overcame the shortcoming of protein conversion with enzyme cleavage or polymerization in the traditional examination of protein. In addition, CoFe2O4, a mimic peroxidase, was used as the nanocarrier of the 3-D DNA nanomachine signal probe to catalyze the decomposition of coreactant H2O2 to generate numerous reactive hydroxyl radical OH(•) as the efficient accelerator of N-(aminobutyl)-N-(ethylisoluminol) (ABEI) ECL reaction to amplify the luminescence signal. Simultaneously, the assembly of 3-D DNA nanomachine signal probe was executed in solution, which led to abundant luminophore ABEI be immobilized around the CoFe2O4 surface with amplified ECL signal output since the CHA reaction was occurred unencumberedly in all directions under homogeneous environment. The prepared ECL biosensor showed a favorable linear response for MUC1 detection with a relatively low detection limit of 0.62 fg mL(-1). With excellent sensitivity, the strategy may provide an efficient method for clinical application, especially in trace protein determination.

  2. Integrated Stochastic Model of DNA Damage Repair by Non-homologous End Joining and p53/p21- Mediated Early Senescence Signalling

    PubMed Central

    Nelson, Glyn; Hall, Philip; Miwa, Satomi; Kirkwood, Thomas B. L.; Shanley, Daryl P.

    2015-01-01

    Unrepaired or inaccurately repaired DNA damage can lead to a range of cell fates, such as apoptosis, cellular senescence or cancer, depending on the efficiency and accuracy of DNA damage repair and on the downstream DNA damage signalling. DNA damage repair and signalling have been studied and modelled in detail separately, but it is not yet clear how they integrate with one another to control cell fate. In this study, we have created an integrated stochastic model of DNA damage repair by non-homologous end joining and of gamma irradiation-induced cellular senescence in human cells that are not apoptosis-prone. The integrated model successfully explains the changes that occur in the dynamics of DNA damage repair after irradiation. Simulations of p53/p21 dynamics after irradiation agree well with previously published experimental studies, further validating the model. Additionally, the model predicts, and we offer some experimental support, that low-dose fractionated irradiation of cells leads to temporal patterns in p53/p21 that lead to significant cellular senescence. The integrated model is valuable for studying the processes of DNA damage induced cell fate and predicting the effectiveness of DNA damage related medical interventions at the cellular level. PMID:26020242

  3. Integrated Stochastic Model of DNA Damage Repair by Non-homologous End Joining and p53/p21-Mediated Early Senescence Signalling.

    PubMed

    Dolan, David W P; Zupanic, Anze; Nelson, Glyn; Hall, Philip; Miwa, Satomi; Kirkwood, Thomas B L; Shanley, Daryl P

    2015-05-01

    Unrepaired or inaccurately repaired DNA damage can lead to a range of cell fates, such as apoptosis, cellular senescence or cancer, depending on the efficiency and accuracy of DNA damage repair and on the downstream DNA damage signalling. DNA damage repair and signalling have been studied and modelled in detail separately, but it is not yet clear how they integrate with one another to control cell fate. In this study, we have created an integrated stochastic model of DNA damage repair by non-homologous end joining and of gamma irradiation-induced cellular senescence in human cells that are not apoptosis-prone. The integrated model successfully explains the changes that occur in the dynamics of DNA damage repair after irradiation. Simulations of p53/p21 dynamics after irradiation agree well with previously published experimental studies, further validating the model. Additionally, the model predicts, and we offer some experimental support, that low-dose fractionated irradiation of cells leads to temporal patterns in p53/p21 that lead to significant cellular senescence. The integrated model is valuable for studying the processes of DNA damage induced cell fate and predicting the effectiveness of DNA damage related medical interventions at the cellular level.

  4. Modular process modeling for OPC

    NASA Astrophysics Data System (ADS)

    Keck, M. C.; Bodendorf, C.; Schmidtling, T.; Schlief, R.; Wildfeuer, R.; Zumpe, S.; Niehoff, M.

    2007-03-01

    Modular OPC modeling, describing mask, optics, resist and etch processes separately is an approach to keep efforts for OPC manageable. By exchanging single modules of a modular OPC model, a fast response to process changes during process development is possible. At the same time efforts can be reduced, since only single modular process steps have to be re-characterized as input for OPC modeling as the process is adjusted and optimized. Commercially available OPC tools for full chip processing typically make use of semi-empirical models. The goal of our work is to investigate to what extent these OPC tools can be applied for modeling of single process steps as separate modules. For an advanced gate level process we analyze the modeling accuracy over different process conditions (focus and dose) when combining models for each process step - optics, resist and etch - for differing single processes to a model describing the total process.

  5. Homogeneous electrochemical immunoassay of aflatoxin B1 in foodstuff using proximity-hybridization-induced omega-like DNA junctions and exonuclease III-triggered isothermal cycling signal amplification.

    PubMed

    Tang, Juan; Huang, Yapei; Liu, Huiqiong; Zhang, Cengceng; Tang, Dianping

    2016-12-01

    A new homogeneous electrochemical immunosensing platform was designed for sensitive detection of aflatoxin B1 (AFB1) in foodstuff. The system consisted of anti-AFB1 antibody labeled DNA1 (Ab-DNA1), AFB1-bovine serum albumin (BSA)-conjugated DNA2 (AFB1-DNA2), and methylene blue functionalized hairpin DNA. Owing to a specific antigen-antibody reaction between anti-AFB1 and AFB1-BSA, the immunocomplex formed assisted the proximity hybridization of DNA1 with DNA2, thus resulting in the formation of an omega-like DNA junction. Thereafter, the junction opened the hairpin DNA to construct a new double-stranded DNA, which could be readily cleaved by exonuclease III to release the omega-like DNA junction and methylene blue. The dissociated DNA junction could repeatedly hybridize with residual hairpin DNA molecules with exonuclease III-based isothermal cycling amplification, thereby releasing numerous free methylene blue molecules into the detection solution. The as-produced free methylene blue molecules could be captured by a negatively charged indium tin oxide electrode, each of which could produce an electronic signal within the applied potentials. On introduction of target AFB1, the analyte competed with AFB1-DNA2 for the conjugated anti-AFB1 on the Ab-DNA1, subsequently decreasing the amount of omega-like DNA junctions formed, hence causing methylene blue labeled hairpin DNA to move far away from the electrode surface. Under optimal conditions the detectable electrochemical signal decreased with increasing amount of target AFB1 in a dynamic working range of 0.01-30 ng mL(-1) with a detection limit of 4.8 pg mL(-1). In addition, the precision and reproducibility of this system were acceptable. Finally, the method was further evaluated for analysis of naturally contaminated or AFB1-spiked peanut samples, giving results that matched well with those obtained with a commercial AFB1 ELISA kit.

  6. Modular multichannel surface plasmon spectrometer

    NASA Astrophysics Data System (ADS)

    Neuert, G.; Kufer, S.; Benoit, M.; Gaub, H. E.

    2005-05-01

    We have developed a modular multichannel surface plasmon resonance (SPR) spectrometer on the basis of a commercially available hybrid sensor chip. Due to its modularity this inexpensive and easy to use setup can readily be adapted to different experimental environments. High temperature stability is achieved through efficient thermal coupling of individual SPR units. With standard systems the performance of the multichannel instrument was evaluated. The absorption kinetics of a cysteamine monolayer, as well as the concentration dependence of the specific receptor-ligand interaction between biotin and streptavidin was measured.

  7. Modular multivariable control improves hydrocracking

    SciTech Connect

    Chia, T.L.; Lefkowitz, I.; Tamas, P.D.

    1996-10-01

    Modular multivariable c