Gravitational Reference Sensor Front-End Electronics Simulator for LISA
NASA Astrophysics Data System (ADS)
Meshksar, Neda; Ferraioli, Luigi; Mance, Davor; ten Pierick, Jan; Zweifel, Peter; Giardini, Domenico; ">LISA Pathfinder colaboration,
NASA Astrophysics Data System (ADS)
Sun, Ke-Xun; Buchman, S.; Byer, R. L.; DeBra, D.; Goebel, J.; Allen, G.; Conklin, J.; Gerardi, D.; Higuchi, S.; Leindecker, N.; Lu, P.; Swank, A.; Torres, E.; Trillter, M.; Zoellner, A.
2009-01-01
The study of space-time for gravitational wave detection and cosmology beyond Einstein will be an important theme for astrophysics and astronomy in decades to come. Laser Interferometric Space Antenna (LISA) is designed for detecting gravitational wave in space. The Modular Gravitational Reference Sensor (MGRS) is developed as the next generation core instrument for space-time research, including gravitational wave detection beyond LISA, and an array of precision experiments in space. The MGRS provide a stable gravitational cardinal point in space-time by using a test sphere, which eliminates the need for orientation control, minimizing disturbances. The MGRS measures the space-time variation via a two step process: measurement between test mass and housing, and between housings of two spacecraft. Our Stanford group is conducting systematic research and development on the MGRS. Our initial objectives are to gain a system perspective of the MGRS, to develop component technologies, and to establish test platforms. We will review our recent progress in system technologies, optical displacement and angle sensing, diffractive optics, proof mass characterization, UV LED charge management system and space qualification, thermal control and sensor development. Some highlights of our recent results are: Demonstration of the extreme radiation hardness of UV LED which sustained 2 trillion protons per square centimeter; measurement of mass center offset down to 300 nm, and measurement of small angle 0.2 nrad per root hertz using a compact grating angular sensor. The Stanford MGRS program has made exceptional contribution to education of next generation scientists and engineers. We have undergraduate and graduate students in aeronautical and astronautic engineering, applied physics, cybernetics, electrical engineering, mechanical engineering, and physics. We have also housed a number of high school students in our labs for education and public outreach.
gLISA: geosynchronous laser interferometer space antenna concepts with off-the-shelf satellites.
Tinto, M; DeBra, D; Buchman, S; Tilley, S
2015-01-01
We discuss two geosynchronous gravitational wave (GW) mission concepts, which we generically name gLISA. One relies on the science instrument hosting program onboard geostationary commercial satellites, while the other takes advantage of recent developments in the aerospace industry that result in dramatic satellite and launching vehicle cost reductions for a dedicated geosynchronous mission. To achieve the required level of disturbance free-fall onboard these large and heavy platforms, we propose a new drag-free system, which we have named "two-stage" drag-free. It incorporates the Modular Gravitational Reference Sensor (developed at Stanford University) and does not rely on the use of μN thrusters. Although both mission concepts are characterized by different technical and programmatic challenges, individually they could be flown and operated at a cost significantly lower than those of previously envisioned gravitational wave missions, and in the year 2015 we will perform at JPL a detailed selecting mission analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jafferis, Daniel L.; Lewkowycz, Aitor; Maldacena, Juan
We consider the gravity dual of the modular Hamiltonian associated to a general subregion of a boundary theory. We use it to argue that the relative entropy of nearby states is given by the relative entropy in the bulk, to leading order in the bulk gravitational coupling. We also argue that the boundary modular flow is dual to the bulk modular flow in the entanglement wedge, with implications for entanglement wedge reconstruction.
Relative entropy equals bulk relative entropy
Jafferis, Daniel L.; Lewkowycz, Aitor; Maldacena, Juan; ...
2016-06-01
We consider the gravity dual of the modular Hamiltonian associated to a general subregion of a boundary theory. We use it to argue that the relative entropy of nearby states is given by the relative entropy in the bulk, to leading order in the bulk gravitational coupling. We also argue that the boundary modular flow is dual to the bulk modular flow in the entanglement wedge, with implications for entanglement wedge reconstruction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobayashi, Tatsuo; Nitta, Daisuke; Urakawa, Yuko
2016-08-08
Modular invariance is a striking symmetry in string theory, which may keep stringy corrections under control. In this paper, we investigate a phenomenological consequence of the modular invariance, assuming that this symmetry is preserved as well as in a four dimensional (4D) low energy effective field theory. As a concrete setup, we consider a modulus field T whose contribution in the 4D effective field theory remains invariant under the modular transformation and study inflation drived by T. The modular invariance restricts a possible form of the scalar potenntial. As a result, large field models of inflation are hardly realized. Meanwhile,more » a small field model of inflation can be still accomodated in this restricted setup. The scalar potential traced during the slow-roll inflation mimics the hilltop potential V{sub ht}, but it also has a non-negligible deviation from V{sub ht}. Detecting the primordial gravitational waves predicted in this model is rather challenging. Yet, we argue that it may be still possible to falsify this model by combining the information in the reheating process which can be determined self-completely in this setup.« less
Higgins, Victoria; Chan, Man Khun; Nieuwesteeg, Michelle; Hoffman, Barry R; Bromberg, Irvin L; Gornall, Doug; Randell, Edward; Adeli, Khosrow
2016-01-01
The Canadian Laboratory Initiative on Pediatric Reference Intervals (CALIPER) has recently established pediatric age- and sex-specific reference intervals for over 85 biochemical markers on the Abbott Architect system. Previously, CALIPER reference intervals for several biochemical markers were successfully transferred from Abbott assays to Roche, Beckman, Ortho, and Siemens assays. This study further broadens the CALIPER database by performing transference and verification for 52 biochemical assays on the Roche cobas 6000 and the Roche Modular P. Using CLSI C28-A3 and EP9-A2 guidelines, transference of the CALIPER reference intervals was attempted for 16 assays on the Roche cobas 6000 and 36 on the Modular P. Calculated reference intervals were further verified using 100 healthy CALIPER samples. Most assays showed strong correlation between assay systems and were transferable from Abbott to the Roche cobas 6000 (81%) and the Modular P (86%). Bicarbonate and magnesium were not transferable on either system and calcium and prealbumin were not transferable to the Modular P. Of the transferable analytes, 62% and 61% were verified on the cobas 6000 and the Modular P, respectively. This study extends the utility of the CALIPER database to two additional analytical systems, which facilitates the broad application of CALIPER reference intervals at pediatric centers utilizing Roche biochemical assays. Transference studies across different analytical platforms can later be collectively analyzed in an attempt to develop common reference intervals across all clinical chemistry instruments to harmonize laboratory test interpretation in diagnosis and monitoring of pediatric disease. Copyright © 2015 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
LAGRANGE: LAser GRavitational-wave ANtenna in GEodetic Orbit
NASA Astrophysics Data System (ADS)
Buchman, S.; Conklin, J. W.; Balakrishnan, K.; Aguero, V.; Alfauwaz, A.; Aljadaan, A.; Almajed, M.; Altwaijry, H.; Saud, T. A.; Byer, R. L.; Bower, K.; Costello, B.; Cutler, G. D.; DeBra, D. B.; Faied, D. M.; Foster, C.; Genova, A. L.; Hanson, J.; Hooper, K.; Hultgren, E.; Klavins, A.; Lantz, B.; Lipa, J. A.; Palmer, A.; Plante, B.; Sanchez, H. S.; Saraf, S.; Schaechter, D.; Shu, K.; Smith, E.; Tenerelli, D.; Vanbezooijen, R.; Vasudevan, G.; Williams, S. D.; Worden, S. P.; Zhou, J.; Zoellner, A.
2013-01-01
We describe a new space gravitational wave observatory design called LAG-RANGE that maintains all important LISA science at about half the cost and with reduced technical risk. It consists of three drag-free spacecraft in a geocentric formation. Fixed antennas allow continuous contact with the Earth, solving the problem of communications bandwidth and latency. A 70 mm diameter sphere with a 35 mm gap to its enclosure serves as the single inertial reference per spacecraft, operating in “true” drag-free mode (no test mass forcing). Other advantages are: a simple caging design based on the DISCOS 1972 drag-free mission, an all optical read-out with pm fine and nm coarse sensors, and the extensive technology heritage from the Honeywell gyroscopes, and the DISCOS and Gravity Probe B drag-free sensors. An Interferometric Measurement System, designed with reflective optics and a highly stabilized frequency standard, performs the ranging between test masses and requires a single optical bench with one laser per spacecraft. Two 20 cm diameter telescopes per spacecraft, each with infield pointing, incorporate novel technology developed for advanced optical systems by Lockheed Martin, who also designed the spacecraft based on a multi-flight proven bus structure. Additional technological advancements include updated drag-free propulsion, thermal control, charge management systems, and materials. LAGRANGE subsystems are designed to be scalable and modular, making them interchangeable with those of LISA or other gravitational science missions. We plan to space qualify critical technologies on small and nano satellite flights, with the first launch (UV-LED Sat) in 2013.
46 CFR 181.450 - Independent modular smoke detecting units.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 7 2013-10-01 2013-10-01 false Independent modular smoke detecting units. 181.450... Independent modular smoke detecting units. (a) An independent modular smoke detecting unit must: (1) Meet UL 217 (incorporated by reference, see 46 CFR 175.600) and be listed as a “Single Station Smoke detector...
46 CFR 181.450 - Independent modular smoke detecting units.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 7 2012-10-01 2012-10-01 false Independent modular smoke detecting units. 181.450... Independent modular smoke detecting units. (a) An independent modular smoke detecting unit must: (1) Meet UL 217 (incorporated by reference, see 46 CFR 175.600) and be listed as a “Single Station Smoke detector...
46 CFR 181.450 - Independent modular smoke detecting units.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 7 2011-10-01 2011-10-01 false Independent modular smoke detecting units. 181.450... Independent modular smoke detecting units. (a) An independent modular smoke detecting unit must: (1) Meet UL 217 (incorporated by reference, see 46 CFR 175.600) and be listed as a “Single Station Smoke detector...
46 CFR 181.450 - Independent modular smoke detecting units.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Independent modular smoke detecting units. 181.450... Independent modular smoke detecting units. (a) An independent modular smoke detecting unit must: (1) Meet UL 217 (incorporated by reference, see 46 CFR 175.600) and be listed as a “Single Station Smoke detector...
46 CFR 181.450 - Independent modular smoke detecting units.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 7 2014-10-01 2014-10-01 false Independent modular smoke detecting units. 181.450... Independent modular smoke detecting units. (a) An independent modular smoke detecting unit must: (1) Meet UL 217 (incorporated by reference, see 46 CFR 175.600) and be listed as a “Single Station Smoke detector...
Modular plant culture systems for life support functions
NASA Technical Reports Server (NTRS)
1985-01-01
The current state of knowledge with regard to culture of higher plants in the zero-G environment is assessed; and concepts for the empirical development of small plant growth chambers for the production of salad type vegetables on space shuttle or space station are evaluated. American and Soviet space flight experiences in gravitational biology are summarized.
Modular Hamiltonians for deformed half-spaces and the averaged null energy condition
Faulkner, Thomas; Leigh, Robert G.; Parrikar, Onkar; ...
2016-09-08
We study modular Hamiltonians corresponding to the vacuum state for deformed half-spaces in relativistic quantum field theories on R 1,d-1. We show that in addition to the usual boost generator, there is a contribution to the modular Hamiltonian at first order in the shape deformation, proportional to the integral of the null components of the stress tensor along the Rindler horizon. We use this fact along with monotonicity of relative entropy to prove the averaged null energy condition in Minkowski space-time. This subsequently gives a new proof of the Hofman-Maldacena bounds on the parameters appearing in CFT three-point functions. Ourmore » main technical advance involves adapting newly developed perturbative methods for calculating entanglement entropy to the problem at hand. Our methods were recently used to prove certain results on the shape dependence of entanglement in CFTs and here we generalize these results to excited states and real time dynamics. Finally, we discuss the AdS/CFT counterpart of this result, making connection with the recently proposed gravitational dual for modular Hamiltonians in holographic theories.« less
Modular Hamiltonians for deformed half-spaces and the averaged null energy condition
NASA Astrophysics Data System (ADS)
Faulkner, Thomas; Leigh, Robert G.; Parrikar, Onkar; Wang, Huajia
2016-09-01
We study modular Hamiltonians corresponding to the vacuum state for deformed half-spaces in relativistic quantum field theories on {{R}}^{1,d-1} . We show that in addition to the usual boost generator, there is a contribution to the modular Hamiltonian at first order in the shape deformation, proportional to the integral of the null components of the stress tensor along the Rindler horizon. We use this fact along with monotonicity of relative entropy to prove the averaged null energy condition in Minkowski space-time. This subsequently gives a new proof of the Hofman-Maldacena bounds on the parameters appearing in CFT three-point functions. Our main technical advance involves adapting newly developed perturbative methods for calculating entanglement entropy to the problem at hand. These methods were recently used to prove certain results on the shape dependence of entanglement in CFTs and here we generalize these results to excited states and real time dynamics. We also discuss the AdS/CFT counterpart of this result, making connection with the recently proposed gravitational dual for modular Hamiltonians in holographic theories.
Modular Hamiltonians for deformed half-spaces and the averaged null energy condition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faulkner, Thomas; Leigh, Robert G.; Parrikar, Onkar
We study modular Hamiltonians corresponding to the vacuum state for deformed half-spaces in relativistic quantum field theories on R 1,d-1. We show that in addition to the usual boost generator, there is a contribution to the modular Hamiltonian at first order in the shape deformation, proportional to the integral of the null components of the stress tensor along the Rindler horizon. We use this fact along with monotonicity of relative entropy to prove the averaged null energy condition in Minkowski space-time. This subsequently gives a new proof of the Hofman-Maldacena bounds on the parameters appearing in CFT three-point functions. Ourmore » main technical advance involves adapting newly developed perturbative methods for calculating entanglement entropy to the problem at hand. Our methods were recently used to prove certain results on the shape dependence of entanglement in CFTs and here we generalize these results to excited states and real time dynamics. Finally, we discuss the AdS/CFT counterpart of this result, making connection with the recently proposed gravitational dual for modular Hamiltonians in holographic theories.« less
NASA Astrophysics Data System (ADS)
Griffiths, Mike; Fedun, Viktor; Mumford, Stuart; Gent, Frederick
2013-06-01
The Sheffield Advanced Code (SAC) is a fully non-linear MHD code designed for simulations of linear and non-linear wave propagation in gravitationally strongly stratified magnetized plasma. It was developed primarily for the forward modelling of helioseismological processes and for the coupling processes in the solar interior, photosphere, and corona; it is built on the well-known VAC platform that allows robust simulation of the macroscopic processes in gravitationally stratified (non-)magnetized plasmas. The code has no limitations of simulation length in time imposed by complications originating from the upper boundary, nor does it require implementation of special procedures to treat the upper boundaries. SAC inherited its modular structure from VAC, thereby allowing modification to easily add new physics.
Simulating Responses of Gravitational-Wave Instrumentation
NASA Technical Reports Server (NTRS)
Armstrong, John; Edlund, Jeffrey; Vallisneri. Michele
2006-01-01
Synthetic LISA is a computer program for simulating the responses of the instrumentation of the NASA/ESA Laser Interferometer Space Antenna (LISA) mission, the purpose of which is to detect and study gravitational waves. Synthetic LISA generates synthetic time series of the LISA fundamental noises, as filtered through all the time-delay-interferometry (TDI) observables. (TDI is a method of canceling phase noise in temporally varying unequal-arm interferometers.) Synthetic LISA provides a streamlined module to compute the TDI responses to gravitational waves, according to a full model of TDI (including the motion of the LISA array and the temporal and directional dependence of the arm lengths). Synthetic LISA is written in the C++ programming language as a modular package that accommodates the addition of code for specific gravitational wave sources or for new noise models. In addition, time series for waves and noises can be easily loaded from disk storage or electronic memory. The package includes a Python-language interface for easy, interactive steering and scripting. Through Python, Synthetic LISA can read and write data files in Flexible Image Transport System (FITS), which is a commonly used astronomical data format.
Highly-Efficient and Modular Medium-Voltage Converters
2015-09-28
HVDC modular multilevel converter in decoupled double synchronous reference frame for voltage oscillation reduction," IEEE Trans. Ind...Electron., vol. 29, pp. 77-88, Jan 2014. [10] M. Guan and Z. Xu, "Modeling and control of a modular multilevel converter -based HVDC system under...34 Modular multilevel converter design for VSC HVDC applications," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, pp.
Modular Apparatus and Method for Attaching Multiple Devices
NASA Technical Reports Server (NTRS)
Okojie, Robert S (Inventor)
2015-01-01
A modular apparatus for attaching sensors and electronics is disclosed. The modular apparatus includes a square recess including a plurality of cavities and a reference cavity such that a pressure sensor can be connected to the modular apparatus. The modular apparatus also includes at least one voltage input hole and at least one voltage output hole operably connected to each of the plurality of cavities such that voltage can be applied to the pressure sensor and received from the pressure sensor.
GRAVIDY, a GPU modular, parallel direct-summation N-body integrator: dynamics with softening
NASA Astrophysics Data System (ADS)
Maureira-Fredes, Cristián; Amaro-Seoane, Pau
2018-01-01
A wide variety of outstanding problems in astrophysics involve the motion of a large number of particles under the force of gravity. These include the global evolution of globular clusters, tidal disruptions of stars by a massive black hole, the formation of protoplanets and sources of gravitational radiation. The direct-summation of N gravitational forces is a complex problem with no analytical solution and can only be tackled with approximations and numerical methods. To this end, the Hermite scheme is a widely used integration method. With different numerical techniques and special-purpose hardware, it can be used to speed up the calculations. But these methods tend to be computationally slow and cumbersome to work with. We present a new graphics processing unit (GPU), direct-summation N-body integrator written from scratch and based on this scheme, which includes relativistic corrections for sources of gravitational radiation. GRAVIDY has high modularity, allowing users to readily introduce new physics, it exploits available computational resources and will be maintained by regular updates. GRAVIDY can be used in parallel on multiple CPUs and GPUs, with a considerable speed-up benefit. The single-GPU version is between one and two orders of magnitude faster than the single-CPU version. A test run using four GPUs in parallel shows a speed-up factor of about 3 as compared to the single-GPU version. The conception and design of this first release is aimed at users with access to traditional parallel CPU clusters or computational nodes with one or a few GPU cards.
Entropy, extremality, euclidean variations, and the equations of motion
NASA Astrophysics Data System (ADS)
Dong, Xi; Lewkowycz, Aitor
2018-01-01
We study the Euclidean gravitational path integral computing the Rényi entropy and analyze its behavior under small variations. We argue that, in Einstein gravity, the extremality condition can be understood from the variational principle at the level of the action, without having to solve explicitly the equations of motion. This set-up is then generalized to arbitrary theories of gravity, where we show that the respective entanglement entropy functional needs to be extremized. We also extend this result to all orders in Newton's constant G N , providing a derivation of quantum extremality. Understanding quantum extremality for mixtures of states provides a generalization of the dual of the boundary modular Hamiltonian which is given by the bulk modular Hamiltonian plus the area operator, evaluated on the so-called modular extremal surface. This gives a bulk prescription for computing the relative entropies to all orders in G N . We also comment on how these ideas can be used to derive an integrated version of the equations of motion, linearized around arbitrary states.
NASA Technical Reports Server (NTRS)
Lukash, James A.; Daley, Earl
2011-01-01
This work describes the design and development effort to adapt rapid-development space hardware by creating a ground system using solutions of low complexity, mass, & cost. The Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft is based on the modular common spacecraft bus architecture developed at NASA Ames Research Center. The challenge was building upon the existing modular common bus design and development work and improving the LADEE spacecraft design by adding an Equipotential Voltage Reference (EVeR) system, commonly referred to as a ground system. This would aid LADEE in meeting Electromagnetic Environmental Effects (E3) requirements, thereby making the spacecraft more compatible with itself and its space environment. The methods used to adapt existing hardware are presented, including provisions which may be used on future spacecraft.
18-Degree-of-Freedom Controller Design for the ST7 Disturbance Reduction System
NASA Technical Reports Server (NTRS)
Markley, F. L.; Maghami, P. G.; Houghton, M. B.; Hsu, O. C.
2003-01-01
The Space Technology 7 experiment will perform an on-orbit system-level validation of a Disturbance Reduction System employing gravitational reference sensors and micronewton colloidal thrusters to maintain a spacecraft s position with respect to free-floating test masses in the gravitational reference sensors to less than 10 nm/dHz over the frequency range 1 to 30 mHz. This paper presents the design and analysis of the control system that closes the loop between the gravitational reference sensors and the micronewton thrusters while incorporating star tracker data at low frequencies. The effects of disturbances and actuation and measurement noise are evaluated in a eighteen-degree-of-freedom model.
NASA Astrophysics Data System (ADS)
Conklin, John; Chilton, Andrew; Olatunde, Taiwo; Apple, Stephen; Aitken, Michael; Ciani, Giacomo; Mueller, Guido
2016-01-01
The Laser Interferometer Space Antenna (LISA) is the most mature concept for detecting gravitational waves from space. The LISA design has been studied for more than 20 years as a joint effort between NASA and the European Space Agency. LISA consists of three Sun-orbiting spacecraft that form an equilateral triangle, with each side measuring 1-5 million kilometers in length. Each spacecraft houses two free-floating test masses, which are protected from all disturbing forces so that they follow pure geodesics. A single test mass together with its protective housing and associated components is referred to as a gravitational reference sensor. A drag-free control system is supplied with measurements of the test mass position from these sensors and commands external micronewton thrusters to force the spacecraft to fly in formation with the test masses. Laser interferometry is used to measure the minute variations in the distance, or light travel time, between these purely free-falling TMs, caused by gravitational waves. We have constructed a new torsion pendulum facility with a force sensitivity in the range of pN/Hz1/2 around 1 mHz for testing new gravitational reference sensor technologies. This experimental facility consists of a vacuum enclosed torsion pendulum that suspends mock-ups of the LISA test masses, surrounded by their electrode housings. With the aid of this facility, we are (a) developing a novel test mass charge control scheme based on ultraviolet LEDs, (b) examining alternate test mass and electrode housing coatings, and (c) evaluating alternate operational modes of the LISA gravitational reference sensor. This presentation will describe this facility and the development status of these new technologies.
Modularization: An Attempt at Collegiate Level in India.
ERIC Educational Resources Information Center
Gabriel, J.; Pillai, J. K.
1981-01-01
The effectiveness of a modular approach to learning in a botany unit as compared to the traditional teaching approach in terms of learning efficiency, learning time, and mastery level is reported. Three references are cited. (Author/CHC)
Comprehensive benefits analysis of steel structure modular residence based on the entropy evaluation
NASA Astrophysics Data System (ADS)
Zhang, Xiaoxiao; Wang, Li; Jiang, Pengming
2017-04-01
Steel structure modular residence is the outstanding residential industrialization. It has many advantages, such as the low whole cost, high resource recovery, a high degree of industrialization. This paper compares the comprehensive benefits of steel structural in modular buildings with prefabricated reinforced concrete residential from economic benefits, environmental benefits, social benefits and technical benefits by the method of entropy evaluation. Finally, it is concluded that the comprehensive benefits of steel structural in modular buildings is better than that of prefabricated reinforced concrete residential. The conclusion of this study will provide certain reference significance to the development of steel structural in modular buildings in China.
Lorentz Invariance of Gravitational Lagrangians in the Space of Reference Frames
NASA Astrophysics Data System (ADS)
Cognola, G.
1980-06-01
The recently proposed theories of gravitation in the space of reference frames S are based on a Lagrangian invariant with respect to the homogeneous Lorentz group. However, in theories of this kind, the Lorentz invariance is not a necessary consequence of some physical principles, as in the theories formulated in space-time, but rather a purely esthetic request. In the present paper, we give a systematic method for the construction of gravitational theories in the space S, without assuming a priori the Lorentz invariance of the Lagrangian. The Einstein-Cartan equations of gravitation are obtained requiring only that the Lagrangian is invariant under proper rotations and has particular transformation properties under space reflections and space-time dilatations
Z-Score-Based Modularity for Community Detection in Networks
Miyauchi, Atsushi; Kawase, Yasushi
2016-01-01
Identifying community structure in networks is an issue of particular interest in network science. The modularity introduced by Newman and Girvan is the most popular quality function for community detection in networks. In this study, we identify a problem in the concept of modularity and suggest a solution to overcome this problem. Specifically, we obtain a new quality function for community detection. We refer to the function as Z-modularity because it measures the Z-score of a given partition with respect to the fraction of the number of edges within communities. Our theoretical analysis shows that Z-modularity mitigates the resolution limit of the original modularity in certain cases. Computational experiments using both artificial networks and well-known real-world networks demonstrate the validity and reliability of the proposed quality function. PMID:26808270
NASA Astrophysics Data System (ADS)
Dell'Agnello, S.; Boni, A.; Cantone, C.; Ciocci, E.; Martini, M.; Patrizi, G.; Tibuzzi, M.; Delle Monache, G.; Vittori, R.; Bianco, G.; Currie, D.; Intaglietta, N.; Salvatori, L.; Lops, C.; Contessa, S.; Porcelli, L.; Mondaini, C.; Tuscano, P.; Maiello, M.
2017-11-01
The SCF_Lab (Satellite/lunar/gnss laser ranging and altimetry Characterization Facility Laboratory) of INFNLNF is designed to cover virtually LRAs (Laser Retroreflector Arrays) of CCRs (Cube Corner Retroreflectors) for missions in the whole solar system, with a modular organization of its instrumentation, two redundant SCF (SCF_Lab Characterization Facilities), and an evolutionary measurement approach, including customization and potentially upgrade on-demand. See http://www.lnf.infn.it/esperimenti/etrusco/ for a general description.
Gravitational mass attraction measurement for drag-free references
NASA Astrophysics Data System (ADS)
Swank, Aaron J.
Exciting new experiments in gravitational physics are among the proposed future space science missions around the world. Such future space science experiments include gravitational wave observatories, which require extraordinarily precise instruments for gravitational wave detection. In fact, future space-based gravitational wave observatories require the use of a drag free reference sensor, which is several orders of magnitude more precise than any drag free satellite launched to date. With the analysis methods and measurement techniques described in this work, there is one less challenge associated with achieving the high-precision drag-free satellite performance levels required by gravitational wave observatories. One disturbance critical to the drag-free performance is an acceleration from the mass attraction between the spacecraft and drag-free reference mass. A direct measurement of the gravitational mass attraction force is not easily performed. Historically for drag-free satellite design, the gravitational attraction properties were estimated by using idealized equations between a point mass and objects of regular geometric shape with homogeneous density. Stringent requirements are then placed on the density distribution and fabrication tolerances for the drag-free reference mass and satellite components in order to ensure that the allocated gravitational mass attraction disturbance budget is not exceeded due to the associated uncertainty in geometry and mass properties. Yet, the uncertainty associated with mass properties and geometry generate an unacceptable uncertainty in the mass attraction calculation, which make it difficult to meet the demanding drag-free performance requirements of future gravitational wave observatories. The density homogeneity and geometrical tolerances required to meet the overall drag-free performance can easily force the use of special materials or manufacturing processes, which are impractical or not feasible. The focus of this research is therefore to develop the necessary equations for the gravitational mass attraction force and gradients between two general distributed bodies. Assuming the drag-free reference mass to be a single point mass object is no longer necessary for the gravitational attraction calculations. Furthermore, the developed equations are coupled with physical measurements in order to eliminate the mass attraction uncertainty associated with mass properties. The mass attraction formula through a second order expansion consists of the measurable quantifies of mass, mass center, and moment of inertia about the mass center. Thus, the gravitational self-attraction force on the drag free reference due to the satellite can be indirectly measured. By incorporating physical measurements into the mass attraction calculation, the uncertainty in the density distribution as well as geometrical variations due to the manufacturing process are included in the analysis. For indirect gravitational mass attraction measurements, the corresponding properties of mass, mass center, and moment of inertia must be precisely determined for the proof mass and satellite components. This work focuses on the precision measurement of the moment of inertia for the drag-free test mass. Presented here is the design of a new moment of inertia measurement apparatus utilizing a five-wire torsion pendulum design. The torsion pendulum is utilized to measure the moment of inertia tensor for a prospective drag-free test mass geometry. The measurement results presented indicate the prototype five-wire torsion has matched current state of the art precision. With only minimal work to reduce laboratory environmental disturbances, the apparatus has the prospect of exceeding state of the art precision by almost an order of magnitude. In addition, the apparatus is shown to be capable of measuring the mass center offset from the geometric center to a level better than typical measurement devices. Although the pendulum was not originally designed for mass center measurements, preliminary results indicate an apparatus with a similar design may have the potential of achieving state of the art precision.
The opportunities for space biology research on the Space Station
NASA Technical Reports Server (NTRS)
Ballard, Rodney W.; Souza, Kenneth A.
1987-01-01
The goals of space biology research to be conducted aboard the Space Station in 1990s include long-term studies of reproduction, development, growth, physiology, behavior, and aging in both animals and plants. They also include studies of the mechanisms by which gravitational stimuli are sensed, processed, and transmitted to a responsive site, and of the effect of microgravity on each component. The Space Station configuration will include a life sciences research facility, where experiment cyles will be on a 90-day basis (since the Space Station missions planned for the 1990s call for 90-day intervals). A modular approach is taken to accomodate animal habitats, plant growth chambers, and other specimen holding facilities; the modular habitats would be transportable between the launch systems, habitat racks, a workbench, and a variable-gravity centrifuge (included for providing artificial gravity and accurately controlled acceleration levels aboard Space Station).
Different micromanipulation applications based on common modular control architecture
NASA Astrophysics Data System (ADS)
Sipola, Risto; Vallius, Tero; Pudas, Marko; Röning, Juha
2010-01-01
This paper validates a previously introduced scalable modular control architecture and shows how it can be used to implement research equipment. The validation is conducted by presenting different kinds of micromanipulation applications that use the architecture. Conditions of the micro-world are very different from those of the macro-world. Adhesive forces are significant compared to gravitational forces when micro-scale objects are manipulated. Manipulation is mainly conducted by automatic control relying on haptic feedback provided by force sensors. The validated architecture is a hierarchical layered hybrid architecture, including a reactive layer and a planner layer. The implementation of the architecture is modular, and the architecture has a lot in common with open architectures. Further, the architecture is extensible, scalable, portable and it enables reuse of modules. These are the qualities that we validate in this paper. To demonstrate the claimed features, we present different applications that require special control in micrometer, millimeter and centimeter scales. These applications include a device that measures cell adhesion, a device that examines properties of thin films, a device that measures adhesion of micro fibers and a device that examines properties of submerged gel produced by bacteria. Finally, we analyze how the architecture is used in these applications.
NASA Astrophysics Data System (ADS)
Guo, J. Y.; Shang, K.; Jekeli, C.; Shum, C. K.
2015-04-01
Two approaches have been formulated to compute the gravitational potential difference using low-low satellite-to-satellite tracking data based on energy integral: one in the geocentric inertial reference system, and the other in the terrestrial reference system. The focus of this work is on the approach in the geocentric inertial reference system, where a potential rotation term appears in addition to the potential term. In former formulations, the contribution of the time-variable components of the gravitational potential to the potential term was included, but their contribution to the potential rotation term was neglected. In this work, an improvement to the former formulations is made by reformulating the potential rotation term to include the contribution of the time-variable components of the gravitational potential. A simulation shows that our more accurate formulation of the potential rotation term is necessary to achieve the accuracy for recovering the temporal variation of the Earth's gravity field, such as for use to the Gravity Recovery And Climate Experiment GRACE observation data based on this approach.
Positive gravitational subsystem energies from CFT cone relative entropies
NASA Astrophysics Data System (ADS)
Neuenfeld, Dominik; Saraswat, Krishan; Van Raamsdonk, Mark
2018-06-01
The positivity of relative entropy for spatial subsystems in a holographic CFT implies the positivity of certain quantities in the dual gravitational theory. In this note, we consider CFT subsystems whose boundaries lie on the lightcone of a point p. We show that the positive gravitational quantity which corresponds to the relative entropy for such a subsystem A is a novel notion of energy associated with a gravitational subsystem bounded by the minimal area extremal surface à associated with A and by the AdS boundary region  corresponding to the part of the lightcone from p bounded by ∂ A. This generalizes the results of arXiv:1605.01075 for ball-shaped regions by making use of the recent results in arXiv:1703.10656 for the vacuum modular Hamiltonian of regions bounded on lightcones. As part of our analysis, we give an analytic expression for the extremal surface in pure AdS associated with any such region A. We note that its form immediately implies the Markov property of the CFT vacuum (saturation of strong subadditivity) for regions bounded on the same lightcone. This gives a holographic proof of the result proven for general CFTs in arXiv:1703.10656. A similar holographic proof shows the Markov property for regions bounded on a lightsheet for non-conformal holographic theories defined by relevant perturbations of a CFT.
Coordinate transformations and gauges in the relativistic astronomical reference systems
NASA Astrophysics Data System (ADS)
Tao, J.-H.; Huang, T.-Y.; Han, C.-H.
2000-11-01
This paper applies a fully post-Newtonian theory (Damour et al. 1991, 1992, 1993, 1994) to the problem of gauge in relativistic reference systems. Gauge fixing is necessary when the precision of time measurement and application reaches 10-16 or better. We give a general procedure for fixing the gauges of gravitational potentials in both the global and local coordinate systems, and for determining the gauge functions in all the coordinate transformations. We demonstrate that gauge fixing in a gravitational N-body problem can be solved by fixing the gauge of the self-gravitational potential of each body and the gauge function in the coordinate transformation between the global and local coordinate systems. We also show that these gauge functions can be chosen to make all the coordinate systems harmonic or any as required, no matter what gauge is chosen for the self-gravitational potential of each body.
Gravitational waves in ghost free bimetric gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohseni, Morteza, E-mail: m-mohseni@pnu.ac.ir
2012-11-01
We obtain a set of exact gravitational wave solutions for the ghost free bimetric theory of gravity. With a flat reference metric, the theory admits the vacuum Brinkmann plane wave solution for suitable choices of the coefficients of different terms in the interaction potential. An exact gravitational wave solution corresponding to a massive scalar mode is also admitted for arbitrary choice of the coefficients with the reference metric being proportional to the spacetime metric. The proportionality factor and the speed of the wave are calculated in terms of the parameters of the theory. We also show that a F(R) extensionmore » of the theory admits similar solutions but in general is plagued with ghost instabilities.« less
Imbert-Bismut, F; Messous, D; Raoult, A; Poynard, T; Bertrand, J J; Marie, P A; Louis, V; Audy, C; Thouy, J M; Hainque, B; Piton, A
2005-01-01
The follow up of patients with chronic liver diseases and the data from multicentric clinical studies are affected by the variability of assay results for the same parameter between the different laboratories. Today, the main objective in clinical chemistry throughout the world is to harmonise the assay results between the laboratories after the confirmation of their traceability, in relation to defined reference systems. In this context, the purpose of our study was to verify the homogeneity of haptoglobin, apolipoprotein A1, total bilirubin, GGT activity, ALAT activity results, which are combined in Fibrotest and Actitest, between Dimension Analysers RXL, ARX and X-PAND (Dade Behring Society). Moreover, we verified the transferability of Fibrotest and Actitest results between the RXL, and either the BN2 (haptoglobin and apolipoprotein A1) or the Modular DP (total bilirubin, GGT and ALAT activity concentrations). The serum samples from 150 hospitalised patients were analysed on the different analysers. Specific protein assays were calibrated using solutions standardised against reference material on Dimension and BN2 analysers. Total bilirubin assays were performed by a diazoreaction on Dimension and Modular DP analysers. The GGT and ALAT activity measurements on the Dimension analysers were performed in accordance with the reference methods defined by the International Federation of Clinical Chemisty and Laboratory Medicine (IFCC). On the Modular, enzyme activity measurements were performed according to the Szasz method (L-gamma- glutamyl-4-nitroanilide as substrate) modified by Persijn and van der Slik (L-gamma- glutamyl-3-carboxy- 4-nitroanilide as substrat) for GGT and according to the IFCC specifications for ALAT. The methods of enzymatic activity measurement were calibrated on the Modular only. Liver fibrosis and necroinflammatory activity indices were determined using calculation algorithms, after having adjusted each component's result of Fibrotest and Actitest for gender and age. Our study has shown, for each parameter, harmonious results between the Dimension analysers and between RXL and BN2- Modular DP. Disregarding alpha-2 macroglobulin which cannot be assayed on RXL, the results of Fibrotest and Actitest were similar as performed on BN2- Modular DP and RXL.
LISA Framework for Enhancing Gravitational Wave Signal Extraction Techniques
NASA Technical Reports Server (NTRS)
Thompson, David E.; Thirumalainambi, Rajkumar
2006-01-01
This paper describes the development of a Framework for benchmarking and comparing signal-extraction and noise-interference-removal methods that are applicable to interferometric Gravitational Wave detector systems. The primary use is towards comparing signal and noise extraction techniques at LISA frequencies from multiple (possibly confused) ,gravitational wave sources. The Framework includes extensive hybrid learning/classification algorithms, as well as post-processing regularization methods, and is based on a unique plug-and-play (component) architecture. Published methods for signal extraction and interference removal at LISA Frequencies are being encoded, as well as multiple source noise models, so that the stiffness of GW Sensitivity Space can be explored under each combination of methods. Furthermore, synthetic datasets and source models can be created and imported into the Framework, and specific degraded numerical experiments can be run to test the flexibility of the analysis methods. The Framework also supports use of full current LISA Testbeds, Synthetic data systems, and Simulators already in existence through plug-ins and wrappers, thus preserving those legacy codes and systems in tact. Because of the component-based architecture, all selected procedures can be registered or de-registered at run-time, and are completely reusable, reconfigurable, and modular.
New ARCH: Future Generation Internet Architecture
2004-08-01
a vocabulary to talk about a system . This provides a framework ( a “reference model ...layered model Modularity and abstraction are central tenets of Computer Science thinking. Modularity breaks a system into parts, normally to permit...this complexity is hidden. Abstraction suggests a structure for the system . A popular and simple structure is a layered model : lower layer
NASA Astrophysics Data System (ADS)
Salcido, Jaime; Bower, Richard G.; Theuns, Tom; McAlpine, Stuart; Schaller, Matthieu; Crain, Robert A.; Schaye, Joop; Regan, John
2016-11-01
We estimate the expected event rate of gravitational wave signals from mergers of supermassive black holes that could be resolved by a space-based interferometer, such as the Evolved Laser Interferometer Space Antenna (eLISA), utilizing the reference cosmological hydrodynamical simulation from the EAGLE suite. These simulations assume a Lambda cold dark matter cosmogony with state-of-the-art subgrid models for radiative cooling, star formation, stellar mass loss, and feedback from stars and accreting black holes. They have been shown to reproduce the observed galaxy population with unprecedented fidelity. We combine the merger rates of supermassive black holes in EAGLE with the latest phenomenological waveform models to calculate the gravitational waves signals from the intrinsic parameters of the merging black holes. The EAGLE models predict ˜2 detections per year by a gravitational wave detector such as eLISA. We find that these signals are largely dominated by mergers between seed mass black holes merging at redshifts between z ˜ 2 and z ˜ 1. In order to investigate the dependence on the assumed black hole seed mass, we introduce an additional model with a black hole seed mass an order of magnitude smaller than in our reference model. We also consider a variation of the reference model where a prescription for the expected delays in the black hole merger time-scale has been included after their host galaxies merge. We find that the merger rate is similar in all models, but that the initial black hole seed mass could be distinguished through their detected gravitational waveforms. Hence, the characteristic gravitational wave signals detected by eLISA will provide profound insight into the origin of supermassive black holes and the initial mass distribution of black hole seeds.
REVIEWS OF TOPICAL PROBLEMS: Gravitational-wave astronomy
NASA Astrophysics Data System (ADS)
Grishchuk, Leonid P.
1988-10-01
CONTENTS 1. Introduction. Gravitational-wave astronomy in action 940 2. Astronomical manifestations of gravitational waves 941 2.1. The binary radio pulsar PSR 1913 + 16. 2.2. Cataclysmic variables. 2.3. Type I supernovas. 3. Theory and some new results 942 3.1. Mathematical description of gravitational waves. 3.2. Relativistic celestial mechanics. 4. Sources of gravitational waves and modern experimental limits 943 4.1. Pulsed sources. 4.2. Periodic sources. 5. Stochastic background of gravitational waves and the early universe 946 5.1. Quantum production of gravitons. 5.2. Observational bounds on the intensity of the stochastic background and physics of the early universe. 6. Detection of gravitational waves 950 6.1. Brief description of detectors. 6.2. Noise and sensitivity. 7. New ideas and prospects 951 7.1. Kinematic resonance and the memory effect. 7.2. Possibilities of detection of high-frequency relic gravitons. References 953
NASA Astrophysics Data System (ADS)
Jenie, R. P.; Iskandar, J.; Kurniawan, A.; Rustami, E.; Syafutra, H.; Nurdin, N. M.; Handoyo, T.; Prabowo, J.; Febryarto, R.; Rahayu, M. S. K.; Damayanthi, E.; Rimbawan; Sukandar, D.; Suryana, Y.; Irzaman; Alatas, H.
2017-03-01
Worldwide emergence of glycaemic status related health disorders, such as diabetes and metabolic syndrome, is growing in alarming rate. The objective was to propose new methods for non invasive blood glucose level measurement system, based on implementation of Fast Fourier Transform methods. This was an initial-lab-scale-research. Data on non invasive blood glucose measurement are referred from Scopus, Medline, and Google Scholar, from 2011 until 2016, and was used as design references, combined with in house verification. System was developed in modular fashion, based on aforementioned compiled references. Several preliminary tests to understand relationship between LED and photo-diode responses have been done. Several references were used as non invasive blood glucose measurement tools design basis. Solution is developed in modular fashion. we have proven different sensor responses to water and glucose. Human test for non invasive blood glucose level measurement system is needed.
Modular disposable can (MODCAN) crash cushion: A concept investigation
NASA Technical Reports Server (NTRS)
Knoell, A.; Wilson, A.
1976-01-01
A conceptual design investigation of an improved highway crash cushion system is presented. The system is referred to as a modular disposable can (MODCAN) crash system. It is composed of a modular arrangement of disposable metal beverage cans configured to serve as an effective highway impact attenuation system. Experimental data, design considerations, and engineering calculations supporting the design development are presented. Design performance is compared to that of a conventional steel drum system. It is shown that the MODCAN concepts offers the potential for smoother and safer occupant deceleration for a larger class of vehicle impact weights than the steel drum device.
Bock, Otmar L; Dalecki, Marc
2015-04-01
It is known that in mental-rotation tasks, subjects mentally transform the displayed material until it appears "upright" and then make a judgment. Here we evaluate, by using three typical mental rotation tasks with different degrees of embodiment, whether "upright" is coded to a gravitational or egocentric reference frame, or a combination of both. Observers stood erect or were whole-body tilted by 60°, with their left ear down. In either posture, they saw stimuli presented at different orientation angles in their frontal plane: in condition LETTER, they judged whether the stimuli were normal or mirror-reversed letters, in condition HAND whether they represented a left or a right hand, and in condition SCENE whether a weapon laid left or right in front of a displayed person. Data confirm that reaction times are modulated by stimulus orientation angle, and the modulation curve in LETTER and HAND differs from that in SCENE. More importantly, during 60° body tilt, the modulation curve shifted 12° away from the gravitational towards the egocentric vertical reference; this shift was comparable in all three conditions and independent of the degree of embodiment. We conclude that mental rotation in all conditions relied on a similar spatial reference, which seems to be a weighted average of the gravitational and the egocentric vertical, with a higher weight given to the former. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Pitoňák, Martin; Šprlák, Michal; Hamáčková, Eliška; Novák, Pavel
2016-04-01
Regional recovery of the disturbing gravitational potential in the area of Central Europe from satellite gravitational gradients data is discussed in this contribution. The disturbing gravitational potential is obtained by inverting surface integral formulas which transform the disturbing gravitational potential onto disturbing gravitational gradients in the spherical local north-oriented frame. Two numerical approaches that solve the inverse problem are considered. In the first approach, the integral formulas are rigorously decomposed into two parts, that is, the effects of the gradient data within near and distant zones. While the effect of the near zone data is sought as an inverse problem, the effect of the distant zone data is synthesized from the global gravitational model GGM05S using spectral weights given by truncation error coefficients up to the degree 150. In the second approach, a reference gravitational field up to the degree 180 is applied to reduce and smooth measured gravitational gradients. In both cases we recovered the disturbing gravitational potential from each of the four well-measured gravitational gradients of the GOCE satellite separately as well as from their combination. Obtained results are compared with the EGM2008, DIR-r2, TIM-r2 and SPW-r2 global gravitational models. The best fit was achieved for EGM2008 and the second approach combining all four well-measured gravitational gradients with rms of 1.231 m2 s-2.
Recent progress on monolithic fiber amplifiers for next generation of gravitational wave detectors
NASA Astrophysics Data System (ADS)
Wellmann, Felix; Booker, Phillip; Hochheim, Sven; Theeg, Thomas; de Varona, Omar; Fittkau, Willy; Overmeyer, Ludger; Steinke, Michael; Weßels, Peter; Neumann, Jörg; Kracht, Dietmar
2018-02-01
Single-frequency fiber amplifiers in MOPA configuration operating at 1064 nm (Yb3+) and around 1550 nm (Er3+ or Er3+:Yb3+) are promising candidates to fulfill the challenging requirements of laser sources of the next generation of interferometric gravitational wave detectors (GWDs). Most probably, the next generation of GWDs is going to operate not only at 1064 nm but also at 1550 nm to cover a broader range of frequencies in which gravitational waves are detectable. We developed an engineering fiber amplifier prototype at 1064 nm emitting 215 W of linearly-polarized light in the TEM00 mode. The system consists of three modules: the seed source, the pre-amplifier, and the main amplifier. The modular design ensures reliable long-term operation, decreases system complexity and simplifies repairing and maintenance procedures. It also allows for the future integration of upgraded fiber amplifier systems without excessive downtimes. We also developed and characterized a fiber amplifier prototype at around 1550 nm that emits 100 W of linearly-polarized light in the TEM00 mode. This prototype uses an Er3+:Yb3+ codoped fiber that is pumped off-resonant at 940 nm. The off-resonant pumping scheme improves the Yb3+-to-Er3+ energy transfer and prevents excessive generation of Yb3+-ASE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Witt, Adam M.; Hadjerioua, Boualem; Martinez, Rocio
The viability of modular pumped storage hydro (m-PSH) is examined in detail through the conceptual design, cost scoping, and economic analysis of three case studies. Modular PSH refers to both the compactness of the project design and the proposed nature of product fabrication and performance. A modular project is assumed to consist of pre-fabricated standardized components and equipment, tested and assembled into modules before arrival on site. This technology strategy could enable m-PSH projects to deploy with less substantial civil construction and equipment component costs. The concept of m-PSH is technically feasible using currently available conventional pumping and turbine equipment,more » and may offer a path to reducing the project development cycle from inception to commissioning.« less
ERIC Educational Resources Information Center
Petocz, Peter; Sowey, Eric
2008-01-01
When people speak of "the Law of Gravity" they are generally referring to what is more specifically known as "Newton's Law of Gravitation." This law states that the gravitational force (that is, the mutual attraction) between any two physical bodies is directly proportional to the product of their individual masses and inversely proportional to…
Publications of the NASA space biology program for 1980 - 1984. [bibliographies
NASA Technical Reports Server (NTRS)
Pleasant, L. G. (Compiler); Solberg, J. L. (Compiler)
1984-01-01
A listing of 562 publications supported by the NASA Space Biology Program for the years 1980 to 1984 is presented. References are arranged under the headings which are plant gravitational research, animal gravitational research, and general. Keyword title indexes and a principal investigator listing are also included.
ERIC Educational Resources Information Center
Kolko, David J.; Dorn, Lorah D.; Bukstein, Oscar G.; Pardini, Dustin; Holden, Elizabeth A.; Hart, Jonathan
2009-01-01
This study examines the treatment outcomes of 139, 6-11 year-old, clinically referred boys and girls diagnosed with Oppositional Defiant Disorder (ODD) or Conduct Disorder (CD) who were randomly assigned to a modular-based treatment protocol that was applied by research study clinicians either in the community (COMM) or a clinic office (CLINIC).…
Pulsar Timing and Its Application for Navigation and Gravitational Wave Detection
NASA Astrophysics Data System (ADS)
Becker, Werner; Kramer, Michael; Sesana, Alberto
2018-02-01
Pulsars are natural cosmic clocks. On long timescales they rival the precision of terrestrial atomic clocks. Using a technique called pulsar timing, the exact measurement of pulse arrival times allows a number of applications, ranging from testing theories of gravity to detecting gravitational waves. Also an external reference system suitable for autonomous space navigation can be defined by pulsars, using them as natural navigation beacons, not unlike the use of GPS satellites for navigation on Earth. By comparing pulse arrival times measured on-board a spacecraft with predicted pulse arrivals at a reference location (e.g. the solar system barycenter), the spacecraft position can be determined autonomously and with high accuracy everywhere in the solar system and beyond. We describe the unique properties of pulsars that suggest that such a navigation system will certainly have its application in future astronautics. We also describe the on-going experiments to use the clock-like nature of pulsars to "construct" a galactic-sized gravitational wave detector for low-frequency (f_{GW}˜ 10^{-9} - 10^{-7} Hz) gravitational waves. We present the current status and provide an outlook for the future.
A Reference Architecture for Space Information Management
NASA Technical Reports Server (NTRS)
Mattmann, Chris A.; Crichton, Daniel J.; Hughes, J. Steven; Ramirez, Paul M.; Berrios, Daniel C.
2006-01-01
We describe a reference architecture for space information management systems that elegantly overcomes the rigid design of common information systems in many domains. The reference architecture consists of a set of flexible, reusable, independent models and software components that function in unison, but remain separately managed entities. The main guiding principle of the reference architecture is to separate the various models of information (e.g., data, metadata, etc.) from implemented system code, allowing each to evolve independently. System modularity, systems interoperability, and dynamic evolution of information system components are the primary benefits of the design of the architecture. The architecture requires the use of information models that are substantially more advanced than those used by the vast majority of information systems. These models are more expressive and can be more easily modularized, distributed and maintained than simpler models e.g., configuration files and data dictionaries. Our current work focuses on formalizing the architecture within a CCSDS Green Book and evaluating the architecture within the context of the C3I initiative.
VLBI height corrections due to gravitational deformation of antenna structures
NASA Astrophysics Data System (ADS)
Sarti, P.; Negusini, M.; Abbondanza, C.; Petrov, L.
2009-12-01
From an analysis of regional European VLBI data we evaluate the impact of a VLBI signal path correction model developed to account for gravitational deformations of the antenna structures. The model was derived from a combination of terrestrial surveying methods applied to telescopes at Medicina and Noto in Italy. We find that the model corrections shift the derived height components of these VLBI telescopes' reference points downward by 14.5 and 12.2 mm, respectively. No other parameter estimates nor other station positions are affected. Such systematic height errors are much larger than the formal VLBI random errors and imply the possibility of significant VLBI frame scale distortions, of major concern for the International Terrestrial Reference Frame (ITRF) and its applications. This demonstrates the urgent need to investigate gravitational deformations in other VLBI telescopes and eventually correct them in routine data analysis.
Detecting communities using asymptotical surprise
NASA Astrophysics Data System (ADS)
Traag, V. A.; Aldecoa, R.; Delvenne, J.-C.
2015-08-01
Nodes in real-world networks are repeatedly observed to form dense clusters, often referred to as communities. Methods to detect these groups of nodes usually maximize an objective function, which implicitly contains the definition of a community. We here analyze a recently proposed measure called surprise, which assesses the quality of the partition of a network into communities. In its current form, the formulation of surprise is rather difficult to analyze. We here therefore develop an accurate asymptotic approximation. This allows for the development of an efficient algorithm for optimizing surprise. Incidentally, this leads to a straightforward extension of surprise to weighted graphs. Additionally, the approximation makes it possible to analyze surprise more closely and compare it to other methods, especially modularity. We show that surprise is (nearly) unaffected by the well-known resolution limit, a particular problem for modularity. However, surprise may tend to overestimate the number of communities, whereas they may be underestimated by modularity. In short, surprise works well in the limit of many small communities, whereas modularity works better in the limit of few large communities. In this sense, surprise is more discriminative than modularity and may find communities where modularity fails to discern any structure.
Research opportunities with the Centrifuge Facility
NASA Technical Reports Server (NTRS)
Funk, Glenn A.
1992-01-01
The Centrifuge Facility on Space Station Freedom will consist of a 2.5-meter diameter Centrifuge accommodating two concentric rings of habitats and providing variable g-forces between 0.01 g and 2.0 g; modular habitats providing housing and lifesupport for rats, mice, and plants; a habitat holding system providing power, water, airflow and other utilities to several modular habitats; and a life sciences glovebox, an isolated work volume accommodating simultaneous operations by at least two scientists and providing lighting, airflow, video and data access, and other experiment support functions. The centrifuge facility will enable long-duration animal and plant microgravity research not previously possible in the NASA flight research program. It will offer unprecedented opportunities for use of on-board 1-g control populations and statistically significant numbers of specimens. On orbit 1-g controls will allow separation of the effects of microgravity from other environmental factors. Its selectable-g and simultaneous multiple-g capabilities will enable studies of gravitational thresholds, the use of artificial gravity as a countermeasure to the effects of microgravity, and ready simulation of Lunar and Martian gravities.
Rome, J.A.; Harris, J.H.
1984-01-01
A fusion reactor device is provided in which the magnetic fields for plasma confinement in a toroidal configuration is produced by a plurality of symmetrical modular coils arranged to form a symmetric modular torsatron referred to as a symmotron. Each of the identical modular coils is helically deformed and comprise one field period of the torsatron. Helical segments of each coil are connected by means of toroidally directed windbacks which may also provide part of the vertical field required for positioning the plasma. The stray fields of the windback segments may be compensated by toroidal coils. A variety of magnetic confinement flux surface configurations may be produced by proper modulation of the winding pitch of the helical segments of the coils, as in a conventional torsatron, winding the helix on a noncircular cross section and varying the poloidal and radial location of the windbacks and the compensating toroidal ring coils.
Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background
NASA Astrophysics Data System (ADS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Diaz, J. Casanueva; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H.-P.; Chia, H.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, E.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Canton, T. Dal; Dálya, G.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; De Pietri, R.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; De Rossi, C.; DeSalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov, B.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall, E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J.-M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.; Kim, W. S.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera, E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller, J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O'Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins, G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.; Tao, D.; Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westerweck, J.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.-H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2018-05-01
The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy densities of tensor, vector, and scalar modes at 95% credibility to Ω0T<5.58 ×10-8 , Ω0V<6.35 ×10-8 , and Ω0S<1.08 ×10-7 at a reference frequency f0=25 Hz .
Long-range Perspectives in Environmental Education: Producing Practical Problem-solvers.
ERIC Educational Resources Information Center
Barratt, Rod
1997-01-01
Addresses postgraduate environmental education by supported distance learning as offered by the Open University in Great Britain. Refers to techniques for regularly updating material in rapidly developing areas as well as integrating teaching and research. Also refers to the modular course Integrated Safety, Health and Environmental Management.…
STS ancillary equipment study. [user reference book for multimission modular spacecraft missions
NASA Technical Reports Server (NTRS)
Plough, J. A.
1977-01-01
Spaceborne and ground ancillary equipment for multimission module spacecraft are listed to provide documentation for potential users interested in utilizing existing equipment rather than developing payload unique designs. The format of the data form contained in the Ancillary Equipment user reference book is discussed.
Technology development for the LISA using the UF Torsion Pendulu
NASA Astrophysics Data System (ADS)
Conklin, John W.; Chilton, Andrew; Olatunde, Taiwo; Apple, Stephen; Ciani, Giacomo; Mueller, Guido
2015-08-01
Space-based gravitational wave observatories like LISA measure picometer changes in the distances between free falling test masses separated by millions of kilometers caused by gravitational waves. A test mass and its associated sensing, actuation, charge control and caging subsystems are referred to as a gravitational reference sensor (GRS). LISA will observe gravitational wave sources ranging from super-massive black hole mergers to compact galactic binaries in the millihertz region, and LISA science has consistently been ranked in the top two for future large space missions in the last two NASA astrophysics decadal reviews. With the 2015 launch of LISA Pathfinder (LPF) and the expected detection of gravitational waves by aLIGO and/or Pulsar Timing Arrays within in the next several years, this can arguably be called the decade of gravitational waves. Following a successful demonstration of the baseline LISA GRS by LPF, the measurement principle will be carried forward, but improvements in several GRS components are possible over the next ten years that will lead to cost savings and potential noise reductions. The UF LISA group has constructed the UF Torsion Pendulum to increase U.S. competency in this critical area and to have a facility where new technologies can be developed and evaluated. This experimental facility is based on the design of a similar facility at the University of Trento, and consists of a vacuum enclosed torsion pendulum that suspends mock-ups of the LISA test masses, surrounded by electrode housings. This presentation will describe this facility, focusing on its mechanical design, capacitive sensing and electrostatic actuation systems, and overall acceleration noise performance
Ehrenfeld, Stephan; Butz, Martin V
2013-02-01
Humans show admirable capabilities in movement planning and execution. They can perform complex tasks in various contexts, using the available sensory information very effectively. Body models and continuous body state estimations appear necessary to realize such capabilities. We introduce the Modular Modality Frame (MMF) model, which maintains a highly distributed, modularized body model continuously updating, modularized probabilistic body state estimations over time. Modularization is realized with respect to modality frames, that is, sensory modalities in particular frames of reference and with respect to particular body parts. We evaluate MMF performance on a simulated, nine degree of freedom arm in 3D space. The results show that MMF is able to maintain accurate body state estimations despite high sensor and motor noise. Moreover, by comparing the sensory information available in different modality frames, MMF can identify faulty sensory measurements on the fly. In the near future, applications to lightweight robot control should be pursued. Moreover, MMF may be enhanced with neural encodings by introducing neural population codes and learning techniques. Finally, more dexterous goal-directed behavior should be realized by exploiting the available redundant state representations.
NASA Astrophysics Data System (ADS)
Poisson, Eric; Will, Clifford M.
2014-05-01
Preface; 1. Foundations of Newtonian gravity; 2. Structure of self-gravitating bodies; 3. Newtonian orbital dynamics; 4. Minkowski spacetime; 5. Curved spacetime; 6. Post-Minkowskian theory: formulation; 7. Post-Minkowskian theory: implementation; 8. Post-Newtonian theory: fundamentals; 9. Post-Newtonian theory: system of isolated bodies; 10. Post-Newtonian celestial mechanics, astrometry and navigation; 11. Gravitational waves; 12. Radiative losses and radiation reaction; 13. Alternative theories of gravity; References; Index.
Gravitational Effects on Brain and Behavior
NASA Technical Reports Server (NTRS)
Young, Laurence R.
1991-01-01
Visual, vestibular, tactile, proprioceptive, and perhaps auditory clues are combined with knowledge of commanded voluntary movement to produce a single, usually consistent, perception of spatial orientation. The recent Spacelab flights have provided especially valuable observations on the effects of weightlessness and space flight. The response of the otolith organs to weightlessness and readapting to Earth's gravitation is described. Reference frames for orientation are briefly discussed.
Decoupling the Role of Inertia and Gravity on Particle Dispersion
NASA Technical Reports Server (NTRS)
Rogers, Chris; Squires, Kyle
1996-01-01
Turbulent gas flows laden with small, dense particles are encountered in a wide number of important applications in both industrial settings and aerodynamics applications. Particle interactions with the underlying turbulent flow are exceedingly complex and, consequently, difficult to accurately model. The difficulty arises primarily due to the fact that response of a particle to the local environment is dictated by turbulence properties in the reference frame moving with the particle (particle-Lagrangian). The particle-Lagrangian reference frame is in turn dependent upon the particle relaxation time (time constant) as well as gravitational drift. The combination of inertial and gravitational effects in this frame complicates our ability to accurately predict particle-laden flows since measurements in the particle-Lagrangian reference frame are difficult to obtain. Therefore, in this work we will examine separately the effects of inertia and gravitational drift on particle dispersion through a combination of physical and numerical experiments. In this study, particle-Lagrangian measurements will be obtained in physical experiments using stereo image velocimetry. Gravitational drift will be varied in the variable-g environments of the NASA DC-9 and in the zero-g environment at the drop tower at NASA-Lewis. Direct numerical simulations will be used to corroborate the measurements from the variable-g experiments. We expect that this work will generate new insight into the underlying physics of particle dispersion and will, in turn, lead to more accurate models of particle transport in turbulent flows.
The Discovery of Gravitational Repulsion by Johannes Droste
NASA Astrophysics Data System (ADS)
McGruder, Charles Hosewell; VanDerMeer, B. Wieb
2018-01-01
In 1687 Newton published his universal law of gravitation, which states that the gravitational force is always attractive. This law is based on our terrestrial experience with slowly moving bodies (v << c). In 1915 Einstein completed his theory of general relativity (also referred to as Einstein’s Theory of Gravitation), which is valid not just for slowly moving bodies but also for those with relativistic velocities. In 1916 Johannes Droste submitted a PhD thesis on general relativity to his advisor, H.A. Lorentz. In it he calculated the motion of a particle in what he called a “single center” and today we call the Schwarzschild field and found that highly relativistic particles experience gravitational repulsion. Thus, his thesis written in Dutch and never before translated contains the discovery of gravitational repulsion. Because of its historical importance we translate the entire section of his thesis containing the discovery of gravitational repulsion. We also translate his thesis in the hope of clearing up a major historical misconception. Namely, that David Hilbert in 1917 discovered gravitational repulsion. In fact, Hilbert rediscovered it, apparently completely independent of Droste’s work. Finally we note that one of the biggest mysteries of astrophysics is the question of how highly energetic particles in relativistic jets and cosmic rays are accelerated. It has been suggested that gravitational repulsion is the mechanism responsible for these phenomena. An historical understanding of gravitational repulsion is therefore pertinent.
Life Sciences Division Spaceflight Hardware
NASA Technical Reports Server (NTRS)
Yost, B.
1999-01-01
The Ames Research Center (ARC) is responsible for the development, integration, and operation of non-human life sciences payloads in support of NASA's Gravitational Biology and Ecology (GB&E) program. To help stimulate discussion and interest in the development and application of novel technologies for incorporation within non-human life sciences experiment systems, three hardware system models will be displayed with associated graphics/text explanations. First, an Animal Enclosure Model (AEM) will be shown to communicate the nature and types of constraints physiological researchers must deal with during manned space flight experiments using rodent specimens. Second, a model of the Modular Cultivation System (MCS) under development by ESA will be presented to highlight technologies that may benefit cell-based research, including advanced imaging technologies. Finally, subsystems of the Cell Culture Unit (CCU) in development by ARC will also be shown. A discussion will be provided on candidate technology requirements in the areas of specimen environmental control, biotelemetry, telescience and telerobotics, and in situ analytical techniques and imaging. In addition, an overview of the Center for Gravitational Biology Research facilities will be provided.
The application of modular protein domains in proteomics
Jadwin, Joshua A.; Ogiue-Ikeda, Mari; Machida, Kazuya
2012-01-01
The ability of modular protein domains to independently fold and bind short peptide ligands both in vivo and in vitro has allowed a significant number of protein-protein interaction studies to take advantage of them as affinity and detection reagents. Here, we refer to modular domain based proteomics as “domainomics” to draw attention to the potential of using domains and their motifs as tools in proteomics. In this review we describe core concepts of domainomics, established and emerging technologies, and recent studies by functional category. Accumulation of domain-motif binding data should ultimately provide the foundation for domain-specific interactomes, which will likely reveal the underlying substructure of protein networks as well as the selectivity and plasticity of signal transduction. PMID:22710164
An elementary approach to the gravitational Doppler shift
NASA Astrophysics Data System (ADS)
Wörner, C. H.; Rojas, Roberto
2017-01-01
In college physics courses, treatment of the Doppler effect is usually done far from the first introduction to kinematics. This paper aims to apply a graphical treatment to describe the gravitational redshift, by considering the Doppler effect in two accelerated reference frames and exercising the equivalence principle. This approach seems appropriate to discuss with beginner students and could serve to enrich the didactic processes.
Regional gravity field modelling from GOCE observables
NASA Astrophysics Data System (ADS)
Pitoňák, Martin; Šprlák, Michal; Novák, Pavel; Tenzer, Robert
2017-01-01
In this article we discuss a regional recovery of gravity disturbances at the mean geocentric sphere approximating the Earth over the area of Central Europe from satellite gravitational gradients. For this purpose, we derive integral formulas which allow converting the gravity disturbances onto the disturbing gravitational gradients in the local north-oriented frame (LNOF). The derived formulas are free of singularities in case of r ≠ R . We then investigate three numerical approaches for solving their inverses. In the initial approach, the integral formulas are firstly modified for solving individually the near- and distant-zone contributions. While the effect of the near-zone gravitational gradients is solved as an inverse problem, the effect of the distant-zone gravitational gradients is computed by numerical integration from the global gravitational model (GGM) TIM-r4. In the second approach, we further elaborate the first scenario by reducing measured gravitational gradients for gravitational effects of topographic masses. In the third approach, we apply additional modification by reducing gravitational gradients for the reference GGM. In all approaches we determine the gravity disturbances from each of the four accurately measured gravitational gradients separately as well as from their combination. Our regional gravitational field solutions are based on the GOCE EGG_TRF_2 gravitational gradients collected within the period from November 1 2009 until January 11 2010. Obtained results are compared with EGM2008, DIR-r1, TIM-r1 and SPW-r1. The best fit, in terms of RMS (2.9 mGal), is achieved for EGM2008 while using the third approach which combine all four well-measured gravitational gradients. This is explained by the fact that a-priori information about the Earth's gravitational field up to the degree and order 180 was used.
MODULAR ANALYTICS: A New Approach to Automation in the Clinical Laboratory.
Horowitz, Gary L; Zaman, Zahur; Blanckaert, Norbert J C; Chan, Daniel W; Dubois, Jeffrey A; Golaz, Olivier; Mensi, Noury; Keller, Franz; Stolz, Herbert; Klingler, Karl; Marocchi, Alessandro; Prencipe, Lorenzo; McLawhon, Ronald W; Nilsen, Olaug L; Oellerich, Michael; Luthe, Hilmar; Orsonneau, Jean-Luc; Richeux, Gérard; Recio, Fernando; Roldan, Esther; Rymo, Lars; Wicktorsson, Anne-Charlotte; Welch, Shirley L; Wieland, Heinrich; Grawitz, Andrea Busse; Mitsumaki, Hiroshi; McGovern, Margaret; Ng, Katherine; Stockmann, Wolfgang
2005-01-01
MODULAR ANALYTICS (Roche Diagnostics) (MODULAR ANALYTICS, Elecsys and Cobas Integra are trademarks of a member of the Roche Group) represents a new approach to automation for the clinical chemistry laboratory. It consists of a control unit, a core unit with a bidirectional multitrack rack transportation system, and three distinct kinds of analytical modules: an ISE module, a P800 module (44 photometric tests, throughput of up to 800 tests/h), and a D2400 module (16 photometric tests, throughput up to 2400 tests/h). MODULAR ANALYTICS allows customised configurations for various laboratory workloads. The performance and practicability of MODULAR ANALYTICS were evaluated in an international multicentre study at 16 sites. Studies included precision, accuracy, analytical range, carry-over, and workflow assessment. More than 700 000 results were obtained during the course of the study. Median between-day CVs were typically less than 3% for clinical chemistries and less than 6% for homogeneous immunoassays. Median recoveries for nearly all standardised reference materials were within 5% of assigned values. Method comparisons versus current existing routine instrumentation were clinically acceptable in all cases. During the workflow studies, the work from three to four single workstations was transferred to MODULAR ANALYTICS, which offered over 100 possible methods, with reduction in sample splitting, handling errors, and turnaround time. Typical sample processing time on MODULAR ANALYTICS was less than 30 minutes, an improvement from the current laboratory systems. By combining multiple analytic units in flexible ways, MODULAR ANALYTICS met diverse laboratory needs and offered improvement in workflow over current laboratory situations. It increased overall efficiency while maintaining (or improving) quality.
MODULAR ANALYTICS: A New Approach to Automation in the Clinical Laboratory
Zaman, Zahur; Blanckaert, Norbert J. C.; Chan, Daniel W.; Dubois, Jeffrey A.; Golaz, Olivier; Mensi, Noury; Keller, Franz; Stolz, Herbert; Klingler, Karl; Marocchi, Alessandro; Prencipe, Lorenzo; McLawhon, Ronald W.; Nilsen, Olaug L.; Oellerich, Michael; Luthe, Hilmar; Orsonneau, Jean-Luc; Richeux, Gérard; Recio, Fernando; Roldan, Esther; Rymo, Lars; Wicktorsson, Anne-Charlotte; Welch, Shirley L.; Wieland, Heinrich; Grawitz, Andrea Busse; Mitsumaki, Hiroshi; McGovern, Margaret; Ng, Katherine; Stockmann, Wolfgang
2005-01-01
MODULAR ANALYTICS (Roche Diagnostics) (MODULAR ANALYTICS, Elecsys and Cobas Integra are trademarks of a member of the Roche Group) represents a new approach to automation for the clinical chemistry laboratory. It consists of a control unit, a core unit with a bidirectional multitrack rack transportation system, and three distinct kinds of analytical modules: an ISE module, a P800 module (44 photometric tests, throughput of up to 800 tests/h), and a D2400 module (16 photometric tests, throughput up to 2400 tests/h). MODULAR ANALYTICS allows customised configurations for various laboratory workloads. The performance and practicability of MODULAR ANALYTICS were evaluated in an international multicentre study at 16 sites. Studies included precision, accuracy, analytical range, carry-over, and workflow assessment. More than 700 000 results were obtained during the course of the study. Median between-day CVs were typically less than 3% for clinical chemistries and less than 6% for homogeneous immunoassays. Median recoveries for nearly all standardised reference materials were within 5% of assigned values. Method comparisons versus current existing routine instrumentation were clinically acceptable in all cases. During the workflow studies, the work from three to four single workstations was transferred to MODULAR ANALYTICS, which offered over 100 possible methods, with reduction in sample splitting, handling errors, and turnaround time. Typical sample processing time on MODULAR ANALYTICS was less than 30 minutes, an improvement from the current laboratory systems. By combining multiple analytic units in flexible ways, MODULAR ANALYTICS met diverse laboratory needs and offered improvement in workflow over current laboratory situations. It increased overall efficiency while maintaining (or improving) quality. PMID:18924721
Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background.
Abbott, B P; Abbott, R; Abbott, T D; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Afrough, M; Agarwal, B; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allen, G; Allocca, A; Altin, P A; Amato, A; Ananyeva, A; Anderson, S B; Anderson, W G; Angelova, S V; Antier, S; Appert, S; Arai, K; Araya, M C; Areeda, J S; Arnaud, N; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Atallah, D V; Aufmuth, P; Aulbert, C; AultONeal, K; Austin, C; Avila-Alvarez, A; Babak, S; Bacon, P; Bader, M K M; Bae, S; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Banagiri, S; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barkett, K; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Bawaj, M; Bayley, J C; Bazzan, M; Bécsy, B; Beer, C; Bejger, M; Belahcene, I; Bell, A S; Berger, B K; Bergmann, G; Bero, J J; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Billman, C R; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Biscoveanu, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blackman, J; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Bode, N; Boer, M; Bogaert, G; Bohe, A; Bondu, F; Bonilla, E; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bossie, K; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Broida, J E; Brooks, A F; Brown, D A; Brown, D D; Brunett, S; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T A; Calloni, E; Camp, J B; Canepa, M; Canizares, P; Cannon, K C; Cao, H; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Carney, M F; Diaz, J Casanueva; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerdá-Durán, P; Cerretani, G; Cesarini, E; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chase, E; Chassande-Mottin, E; Chatterjee, D; Cheeseboro, B D; Chen, H Y; Chen, X; Chen, Y; Cheng, H-P; Chia, H; Chincarini, A; Chiummo, A; Chmiel, T; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, A J K; Chua, S; Chung, A K W; Chung, S; Ciani, G; Ciolfi, R; Cirelli, C E; Cirone, A; Clara, F; Clark, J A; Clearwater, P; Cleva, F; Cocchieri, C; Coccia, E; Cohadon, P-F; Cohen, D; Colla, A; Collette, C G; Cominsky, L R; Constancio, M; Conti, L; Cooper, S J; Corban, P; Corbitt, T R; Cordero-Carrión, I; Corley, K R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, E; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Covas, P B; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Creighton, J D E; Creighton, T D; Cripe, J; Crowder, S G; Cullen, T J; Cumming, A; Cunningham, L; Cuoco, E; Canton, T Dal; Dálya, G; Danilishin, S L; D'Antonio, S; Danzmann, K; Dasgupta, A; Da Silva Costa, C F; Dattilo, V; Dave, I; Davier, M; Davis, D; Daw, E J; Day, B; De, S; DeBra, D; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Demos, N; Denker, T; Dent, T; De Pietri, R; Dergachev, V; De Rosa, R; DeRosa, R T; De Rossi, C; DeSalvo, R; de Varona, O; Devenson, J; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Girolamo, T; Di Lieto, A; Di Pace, S; Di Palma, I; Di Renzo, F; Doctor, Z; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Dorrington, I; Douglas, R; Dovale Álvarez, M; Downes, T P; Drago, M; Dreissigacker, C; Driggers, J C; Du, Z; Ducrot, M; Dupej, P; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Eisenstein, R A; Essick, R C; Estevez, D; Etienne, Z B; Etzel, T; Evans, M; Evans, T M; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Farinon, S; Farr, B; Farr, W M; Fauchon-Jones, E J; Favata, M; Fays, M; Fee, C; Fehrmann, H; Feicht, J; Fejer, M M; Fernandez-Galiana, A; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Finstad, D; Fiori, I; Fiorucci, D; Fishbach, M; Fisher, R P; Fitz-Axen, M; Flaminio, R; Fletcher, M; Fong, H; Font, J A; Forsyth, P W F; Forsyth, S S; Fournier, J-D; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fries, E M; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H; Gadre, B U; Gaebel, S M; Gair, J R; Gammaitoni, L; Ganija, M R; Gaonkar, S G; Garcia-Quiros, C; Garufi, F; Gateley, B; Gaudio, S; Gaur, G; Gayathri, V; Gehrels, N; Gemme, G; Genin, E; Gennai, A; George, D; George, J; Gergely, L; Germain, V; Ghonge, S; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glover, L; Goetz, E; Goetz, R; Gomes, S; Goncharov, B; González, G; Gonzalez Castro, J M; Gopakumar, A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Grado, A; Graef, C; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Gretarsson, E M; Groot, P; Grote, H; Grunewald, S; Gruning, P; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Halim, O; Hall, B R; Hall, E D; Hamilton, E Z; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hannuksela, O A; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Haster, C-J; Haughian, K; Healy, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hinderer, T; Hoak, D; Hofman, D; Holt, K; Holz, D E; Hopkins, P; Horst, C; Hough, J; Houston, E A; Howell, E J; Hreibi, A; Hu, Y M; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Indik, N; Inta, R; Intini, G; Isa, H N; Isac, J-M; Isi, M; Iyer, B R; Izumi, K; Jacqmin, T; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Junker, J; Kalaghatgi, C V; Kalogera, V; Kamai, B; Kandhasamy, S; Kang, G; Kanner, J B; Kapadia, S J; Karki, S; Karvinen, K S; Kasprzack, M; Katolik, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kawabe, K; Kéfélian, F; Keitel, D; Kemball, A J; Kennedy, R; Kent, C; Key, J S; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, Chunglee; Kim, J C; Kim, K; Kim, W; Kim, W S; Kim, Y-M; Kimbrell, S J; King, E J; King, P J; Kinley-Hanlon, M; Kirchhoff, R; Kissel, J S; Kleybolte, L; Klimenko, S; Knowles, T D; Koch, P; Koehlenbeck, S M; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Krämer, C; Kringel, V; Królak, A; Kuehn, G; Kumar, P; Kumar, R; Kumar, S; Kuo, L; Kutynia, A; Kwang, S; Lackey, B D; Lai, K H; Landry, M; Lang, R N; Lange, J; Lantz, B; Lanza, R K; Lartaux-Vollard, A; Lasky, P D; Laxen, M; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lee, C H; Lee, H K; Lee, H M; Lee, H W; Lee, K; Lehmann, J; Lenon, A; Leonardi, M; Leroy, N; Letendre, N; Levin, Y; Li, T G F; Linker, S D; Littenberg, T B; Liu, J; Lo, R K L; Lockerbie, N A; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lousto, C O; Lovelace, G; Lück, H; Lumaca, D; Lundgren, A P; Lynch, R; Ma, Y; Macas, R; Macfoy, S; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña Hernandez, I; Magaña-Sandoval, F; Magaña Zertuche, L; Magee, R M; Majorana, E; Maksimovic, I; Man, N; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markakis, C; Markosyan, A S; Markowitz, A; Maros, E; Marquina, A; Martelli, F; Martellini, L; Martin, I W; Martin, R M; Martynov, D V; Mason, K; Massera, E; Masserot, A; Massinger, T J; Masso-Reid, M; Mastrogiovanni, S; Matas, A; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; McCarthy, R; McClelland, D E; McCormick, S; McCuller, L; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McNeill, L; McRae, T; McWilliams, S T; Meacher, D; Meadors, G D; Mehmet, M; Meidam, J; Mejuto-Villa, E; Melatos, A; Mendell, G; Mercer, R A; Merilh, E L; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Metzdorff, R; Meyers, P M; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, A L; Miller, B B; Miller, J; Millhouse, M; Milovich-Goff, M C; Minazzoli, O; Minenkov, Y; Ming, J; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moffa, D; Moggi, A; Mogushi, K; Mohan, M; Mohapatra, S R P; Montani, M; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mours, B; Mow-Lowry, C M; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Muñiz, E A; Muratore, M; Murray, P G; Napier, K; Nardecchia, I; Naticchioni, L; Nayak, R K; Neilson, J; Nelemans, G; Nelson, T J N; Nery, M; Neunzert, A; Nevin, L; Newport, J M; Newton, G; Ng, K K Y; Nguyen, T T; Nichols, D; Nielsen, A B; Nissanke, S; Nitz, A; Noack, A; Nocera, F; Nolting, D; North, C; Nuttall, L K; Oberling, J; O'Dea, G D; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Okada, M A; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; Ormiston, R; Ortega, L F; O'Shaughnessy, R; Ossokine, S; Ottaway, D J; Overmier, H; Owen, B J; Pace, A E; Page, J; Page, M A; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, Howard; Pan, Huang-Wei; Pang, B; Pang, P T H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Parida, A; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patil, M; Patricelli, B; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perez, C J; Perreca, A; Perri, L M; Pfeiffer, H P; Phelps, M; Piccinni, O J; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pirello, M; Pitkin, M; Poe, M; Poggiani, R; Popolizio, P; Porter, E K; Post, A; Powell, J; Prasad, J; Pratt, J W W; Pratten, G; Predoi, V; Prestegard, T; Prijatelj, M; Principe, M; Privitera, S; Prodi, G A; Prokhorov, L G; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rajan, C; Rajbhandari, B; Rakhmanov, M; Ramirez, K E; Ramos-Buades, A; Rapagnani, P; Raymond, V; Razzano, M; Read, J; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Ren, W; Reyes, S D; Ricci, F; Ricker, P M; Rieger, S; Riles, K; Rizzo, M; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romel, C L; Romie, J H; Rosińska, D; Ross, M P; Rowan, S; Rüdiger, A; Ruggi, P; Rutins, G; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Sakellariadou, M; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sampson, L M; Sanchez, E J; Sanchez, L E; Sanchis-Gual, N; Sandberg, V; Sanders, J R; Sassolas, B; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Scheel, M; Scheuer, J; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schulte, B W; Schutz, B F; Schwalbe, S G; Scott, J; Scott, S M; Seidel, E; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Shaddock, D A; Shaffer, T J; Shah, A A; Shahriar, M S; Shaner, M B; Shao, L; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sieniawska, M; Sigg, D; Silva, A D; Singer, L P; Singh, A; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, B; Smith, J R; Smith, R J E; Somala, S; Son, E J; Sonnenberg, J A; Sorazu, B; Sorrentino, F; Souradeep, T; Spencer, A P; Srivastava, A K; Staats, K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stevenson, S P; Stone, R; Stops, D J; Strain, K A; Stratta, G; Strigin, S E; Strunk, A; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sunil, S; Suresh, J; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Tait, S C; Talbot, C; Talukder, D; Tanner, D B; Tao, D; Tápai, M; Taracchini, A; Tasson, J D; Taylor, J A; Taylor, R; Tewari, S V; Theeg, T; Thies, F; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Toland, K; Tonelli, M; Tornasi, Z; Torres-Forné, A; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trinastic, J; Tringali, M C; Trozzo, L; Tsang, K W; Tse, M; Tso, R; Tsukada, L; Tsuna, D; Tuyenbayev, D; Ueno, K; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Varma, V; Vass, S; Vasúth, M; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Venugopalan, G; Verkindt, D; Vetrano, F; Viceré, A; Viets, A D; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walet, R; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, J Z; Wang, W H; Wang, Y F; Ward, R L; Warner, J; Was, M; Watchi, J; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Wessel, E K; Weßels, P; Westerweck, J; Westphal, T; Wette, K; Whelan, J T; Whiting, B F; Whittle, C; Wilken, D; Williams, D; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Woehler, J; Wofford, J; Wong, K W K; Worden, J; Wright, J L; Wu, D S; Wysocki, D M; Xiao, S; Yamamoto, H; Yancey, C C; Yang, L; Yap, M J; Yazback, M; Yu, Hang; Yu, Haocun; Yvert, M; Zadrożny, A; Zanolin, M; Zelenova, T; Zendri, J-P; Zevin, M; Zhang, L; Zhang, M; Zhang, T; Zhang, Y-H; Zhao, C; Zhou, M; Zhou, Z; Zhu, S J; Zhu, X J; Zucker, M E; Zweizig, J
2018-05-18
The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy densities of tensor, vector, and scalar modes at 95% credibility to Ω_{0}^{T}<5.58×10^{-8}, Ω_{0}^{V}<6.35×10^{-8}, and Ω_{0}^{S}<1.08×10^{-7} at a reference frequency f_{0}=25 Hz.
An Atomic Clock with 10 (exp -18) Instability
2013-09-13
experimental tools to address exciting topics in cosmology and gravitational physics such as Hawking radiation (13) or Unruh effect (27). References...long baseline interferometry), secure communication, and interferometry and can possibly lead to a re definition of the SI second (9). References and
Toward modular biological models: defining analog modules based on referent physiological mechanisms
2014-01-01
Background Currently, most biomedical models exist in isolation. It is often difficult to reuse or integrate models or their components, in part because they are not modular. Modular components allow the modeler to think more deeply about the role of the model and to more completely address a modeling project’s requirements. In particular, modularity facilitates component reuse and model integration for models with different use cases, including the ability to exchange modules during or between simulations. The heterogeneous nature of biology and vast range of wet-lab experimental platforms call for modular models designed to satisfy a variety of use cases. We argue that software analogs of biological mechanisms are reasonable candidates for modularization. Biomimetic software mechanisms comprised of physiomimetic mechanism modules offer benefits that are unique or especially important to multi-scale, biomedical modeling and simulation. Results We present a general, scientific method of modularizing mechanisms into reusable software components that we call physiomimetic mechanism modules (PMMs). PMMs utilize parametric containers that partition and expose state information into physiologically meaningful groupings. To demonstrate, we modularize four pharmacodynamic response mechanisms adapted from an in silico liver (ISL). We verified the modularization process by showing that drug clearance results from in silico experiments are identical before and after modularization. The modularized ISL achieves validation targets drawn from propranolol outflow profile data. In addition, an in silico hepatocyte culture (ISHC) is created. The ISHC uses the same PMMs and required no refactoring. The ISHC achieves validation targets drawn from propranolol intrinsic clearance data exhibiting considerable between-lab variability. The data used as validation targets for PMMs originate from both in vitro to in vivo experiments exhibiting large fold differences in time scale. Conclusions This report demonstrates the feasibility of PMMs and their usefulness across multiple model use cases. The pharmacodynamic response module developed here is robust to changes in model context and flexible in its ability to achieve validation targets in the face of considerable experimental uncertainty. Adopting the modularization methods presented here is expected to facilitate model reuse and integration, thereby accelerating the pace of biomedical research. PMID:25123169
Petersen, Brenden K; Ropella, Glen E P; Hunt, C Anthony
2014-08-16
Currently, most biomedical models exist in isolation. It is often difficult to reuse or integrate models or their components, in part because they are not modular. Modular components allow the modeler to think more deeply about the role of the model and to more completely address a modeling project's requirements. In particular, modularity facilitates component reuse and model integration for models with different use cases, including the ability to exchange modules during or between simulations. The heterogeneous nature of biology and vast range of wet-lab experimental platforms call for modular models designed to satisfy a variety of use cases. We argue that software analogs of biological mechanisms are reasonable candidates for modularization. Biomimetic software mechanisms comprised of physiomimetic mechanism modules offer benefits that are unique or especially important to multi-scale, biomedical modeling and simulation. We present a general, scientific method of modularizing mechanisms into reusable software components that we call physiomimetic mechanism modules (PMMs). PMMs utilize parametric containers that partition and expose state information into physiologically meaningful groupings. To demonstrate, we modularize four pharmacodynamic response mechanisms adapted from an in silico liver (ISL). We verified the modularization process by showing that drug clearance results from in silico experiments are identical before and after modularization. The modularized ISL achieves validation targets drawn from propranolol outflow profile data. In addition, an in silico hepatocyte culture (ISHC) is created. The ISHC uses the same PMMs and required no refactoring. The ISHC achieves validation targets drawn from propranolol intrinsic clearance data exhibiting considerable between-lab variability. The data used as validation targets for PMMs originate from both in vitro to in vivo experiments exhibiting large fold differences in time scale. This report demonstrates the feasibility of PMMs and their usefulness across multiple model use cases. The pharmacodynamic response module developed here is robust to changes in model context and flexible in its ability to achieve validation targets in the face of considerable experimental uncertainty. Adopting the modularization methods presented here is expected to facilitate model reuse and integration, thereby accelerating the pace of biomedical research.
Gravitational Reference Sensor Technology Development at the University of Florida
NASA Astrophysics Data System (ADS)
Conklin, John; Chilton, Andrew; Chiani, Giacomo; Mueller, Guido; Shelley, Ryan
2013-04-01
The Laser Interferometer Space Antenna (LISA), the most mature concept for detecting gravitational waves from space, consists of three Sun-orbiting spacecraft that form a million kilometer-scale equilateral triangle. Each spacecraft houses two free-floating test masses (TM), which are protected from disturbing forces so that they follow pure geodesics. A single TM together with its protective housing and associated components is referred to as a gravitational reference sensor (GRS). Laser interferometry is used to measure the minute variations in the distance, or light travel time, between these purely free-falling TMs, caused by gravitational waves. The demanding acceleration noise requirement of 3 x 10-15 m/sec^2Hz^1/2 for the LISA GRS has motivated a rigorous testing campaign in Europe and a dedicated technology mission, LISA Pathfinder, scheduled for launch in 2014. In order to increase U.S. competency in GRS technologies, various research activities at the University of Florida (UF) have been initiated. The first is the development of a nearly thermally noise limited torsion pendulum for testing the GRS and for understanding the dozens of acceleration noise sources that affect the performance of the LISA GRS. The team at UF also collaborates with Stanford and NASA Ames on a small satellite mission that will test the performance of UV LEDs for ac charge control in space. This presentation will describe the design of the GRS testing facility at UF, the status of the UV LED small satellite mission, and plans for UF participation in the LISA Pathfinder mission.
A new torsion pendulum for testing enhancements to the LISA Gravitational Reference Sensor
NASA Astrophysics Data System (ADS)
Conklin, John; Chilton, A.; Ciani, G.; Mueller, G.; Olatunde, T.; Shelley, R.
2014-01-01
The Laser Interferometer Space Antenna (LISA), the most mature concept for observing gravitational waves from space, consists of three Sun-orbiting spacecraft that form a million km-scale equilateral triangle. Each spacecraft houses two free-floating test masses (TM), which are protected from disturbing forces so that they follow pure geodesics in spacetime. A single test mass together with its housing and associated components is referred to as a gravitational reference sensor (GRS). Laser interferometry is used to measure the minute variations in the distance between these free-falling TMs, caused by gravitational waves. The demanding acceleration noise requirement of 3E-15 m/sec^2Hz^1/2 for the LISA GRS has motivated a rigorous testing campaign in Europe and a dedicated technology mission, LISA Pathfinder, scheduled for launch in 2015. Recently, efforts have begun in the U.S. to design and assemble a new, nearly thermally noise limited torsion pendulum for testing GRS technology enhancements and for understanding the dozens of acceleration noise sources that affect the performance of the GRS. This experimental facility is based on the design of a similar facility at the University of Trento, and will consist of a vacuum enclosed torsion pendulum that suspends mock-ups of the LISA test masses, surrounded by electrode housings. The GRS technology enhancements under development include a novel TM charge control scheme based on ultraviolet LEDs, simplified capacitive readout electronics, and a six degree-of-freedom, all-optical TM sensor. This presentation will describe the design of the torsion pendulum facility, its expected performance, and the potential technology enhancements.
Modular co-culture engineering, a new approach for metabolic engineering.
Zhang, Haoran; Wang, Xiaonan
2016-09-01
With the development of metabolic engineering, employment of a selected microbial host for accommodation of a designed biosynthetic pathway to produce a target compound has achieved tremendous success in the past several decades. Yet, increasing requirements for sophisticated microbial biosynthesis call for establishment and application of more advanced metabolic engineering methodologies. Recently, important progress has been made towards employing more than one engineered microbial strains to constitute synthetic co-cultures and modularizing the biosynthetic labor between the co-culture members in order to improve bioproduction performance. This emerging approach, referred to as modular co-culture engineering in this review, presents a valuable opportunity for expanding the scope of the broad field of metabolic engineering. We highlight representative research accomplishments using this approach, especially those utilizing metabolic engineering tools for microbial co-culture manipulation. Key benefits and major challenges associated with modular co-culture engineering are also presented and discussed. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
A simplifying feature of the heterotic one loop four graviton amplitude
NASA Astrophysics Data System (ADS)
Basu, Anirban
2018-01-01
We show that the weight four modular graph functions that contribute to the integrand of the t8t8D4R4 term at one loop in heterotic string theory do not require regularization, and hence the integrand is simple. This is unlike the graphs that contribute to the integrands of the other gravitational terms at this order in the low momentum expansion, and these integrands require regularization. This property persists for an infinite number of terms in the effective action, and their integrands do not require regularization. We find non-trivial relations between weight four graphs of distinct topologies that do not require regularization by performing trivial manipulations using auxiliary diagrams.
A simple demonstration when studying the equivalence principle
NASA Astrophysics Data System (ADS)
Mayer, Valery; Varaksina, Ekaterina
2016-06-01
The paper proposes a lecture experiment that can be demonstrated when studying the equivalence principle formulated by Albert Einstein. The demonstration consists of creating stroboscopic photographs of a ball moving along a parabola in Earth's gravitational field. In the first experiment, a camera is stationary relative to Earth's surface. In the second, the camera falls freely downwards with the ball, allowing students to see that the ball moves uniformly and rectilinearly relative to the frame of reference of the freely falling camera. The equivalence principle explains this result, as it is always possible to propose an inertial frame of reference for a small region of a gravitational field, where space-time effects of curvature are negligible.
On the best mean-square approximations to a planet's gravitational potential
NASA Astrophysics Data System (ADS)
Lobkova, N. I.
1985-02-01
The continuous problem of approximating the gravitational potential of a planet in the form of polynomials of solid spherical functions is considered. The best mean-square polynomials, referred to different parts of space, are compared with each other. The harmonic coefficients corresponding to the surface of a planet are shown to be unstable with respect to the degree of the polynomial and to differ from the Stokes constants.
On the usefulness of relativistic space-times for the description of the Earth's gravitational field
NASA Astrophysics Data System (ADS)
Soffel, Michael; Frutos, Francisco
2016-12-01
The usefulness of relativistic space-times for the description of the Earth's gravitational field is investigated. A variety of exact vacuum solutions of Einstein's field equations (Schwarzschild, Erez and Rosen, Gutsunayev and Manko, Hernández-Pastora and Martín, Kerr, Quevedo, and Mashhoon) are investigated in that respect. It is argued that because of their multipole structure and influences from external bodies, all these exact solutions are not really useful for the central problem. Then, approximate space-times resulting from an MPM or post-Newtonian approximation are considered. Only in the DSX formalism that is of the first post-Newtonian order, all aspects of the problem can be tackled: a relativistic description (a) of the Earth's gravity field in a well-defined geocentric reference system (GCRS), (b) of the motion of solar system bodies in a barycentric reference system (BCRS), and (c) of inertial and tidal terms in the geocentric metric describing the external gravitational field. A relativistic SLR theory is also discussed with respect to our central problem. Orders of magnitude of many effects related to the Earth's gravitational field and SLR are given. It is argued that a formalism with accuracies better than of the first post-Newtonian order is not yet available.
Space-Based Gravitational-wave Mission Concept Studies
NASA Technical Reports Server (NTRS)
Livas, Jeffrey C.
2012-01-01
The LISA Mission Concept has been under study for over two decades as a spacebased gravitational-wave detector capable of observing astrophysical sources in the 0.0001 to 1 Hz band. The concept has consistently received strong recommendations from various review panels based on the expected science, most recently from the US Astr02010 Decadal Review. Budget constraints have led both the US and European Space agencies to search for lower cost options. We report results from the US effort to explore the tradeoffs between mission cost and science return, and in particular a family of mission concepts referred to as SGO (Space-based Gravitational-wave Observatory).
Clustering algorithm for determining community structure in large networks
NASA Astrophysics Data System (ADS)
Pujol, Josep M.; Béjar, Javier; Delgado, Jordi
2006-07-01
We propose an algorithm to find the community structure in complex networks based on the combination of spectral analysis and modularity optimization. The clustering produced by our algorithm is as accurate as the best algorithms on the literature of modularity optimization; however, the main asset of the algorithm is its efficiency. The best match for our algorithm is Newman’s fast algorithm, which is the reference algorithm for clustering in large networks due to its efficiency. When both algorithms are compared, our algorithm outperforms the fast algorithm both in efficiency and accuracy of the clustering, in terms of modularity. Thus, the results suggest that the proposed algorithm is a good choice to analyze the community structure of medium and large networks in the range of tens and hundreds of thousand vertices.
Vestibular nuclei and cerebellum put visual gravitational motion in context.
Miller, William L; Maffei, Vincenzo; Bosco, Gianfranco; Iosa, Marco; Zago, Myrka; Macaluso, Emiliano; Lacquaniti, Francesco
2008-04-01
Animal survival in the forest, and human success on the sports field, often depend on the ability to seize a target on the fly. All bodies fall at the same rate in the gravitational field, but the corresponding retinal motion varies with apparent viewing distance. How then does the brain predict time-to-collision under gravity? A perspective context from natural or pictorial settings might afford accurate predictions of gravity's effects via the recovery of an environmental reference from the scene structure. We report that embedding motion in a pictorial scene facilitates interception of gravitational acceleration over unnatural acceleration, whereas a blank scene eliminates such bias. Functional magnetic resonance imaging (fMRI) revealed blood-oxygen-level-dependent correlates of these visual context effects on gravitational motion processing in the vestibular nuclei and posterior cerebellar vermis. Our results suggest an early stage of integration of high-level visual analysis with gravity-related motion information, which may represent the substrate for perceptual constancy of ubiquitous gravitational motion.
NASA Astrophysics Data System (ADS)
Bassi, Angelo; Großardt, André; Ulbricht, Hendrik
2017-10-01
We discuss effects of loss of coherence in low energy quantum systems caused by or related to gravitation, referred to as gravitational decoherence. These effects, resulting from random metric fluctuations, for instance, promise to be accessible by relatively inexpensive table-top experiments, way before the scales where true quantum gravity effects become important. Therefore, they can provide a first experimental view on gravity in the quantum regime. We will survey models of decoherence induced both by classical and quantum gravitational fluctuations; it will be manifest that a clear understanding of gravitational decoherence is still lacking. Next we will review models where quantum theory is modified, under the assumption that gravity causes the collapse of the wave functions, when systems are large enough. These models challenge the quantum-gravity interplay, and can be tested experimentally. In the last part we have a look at the state of the art of experimental research. We will review efforts aiming at more and more accurate measurements of gravity (G and g) and ideas for measuring conventional and unconventional gravity effects on nonrelativistic quantum systems.
Dark matter versus Mach's principle.
NASA Astrophysics Data System (ADS)
von Borzeszkowski, H.-H.; Treder, H.-J.
1998-02-01
Empirical and theoretical evidence show that the astrophysical problem of dark matter might be solved by a theory of Einstein-Mayer type. In this theory up to global Lorentz rotations the reference system is determined by the motion of cosmic matter. Thus one is led to a "Riemannian space with teleparallelism" realizing a geometric version of the Mach-Einstein doctrine. The field equations of this gravitational theory contain hidden matter terms where the existence of hidden matter is inferred safely from its gravitational effects. It is argued that in the nonrelativistic mechanical approximation they provide an inertia-free mechanics where the inertial mass of a body is induced by the gravitational action of the comic masses. Interpreted form the Newtonian point of view this mechanics shows that the effective gravitational mass of astrophysical objects depends on r such that one expects the existence of dark matter.
NASA Astrophysics Data System (ADS)
Ardalan, A. A.; Safari, A.
2004-09-01
An operational algorithm for computation of terrain correction (or local gravity field modeling) based on application of closed-form solution of the Newton integral in terms of Cartesian coordinates in multi-cylindrical equal-area map projection of the reference ellipsoid is presented. Multi-cylindrical equal-area map projection of the reference ellipsoid has been derived and is described in detail for the first time. Ellipsoidal mass elements with various sizes on the surface of the reference ellipsoid are selected and the gravitational potential and vector of gravitational intensity (i.e. gravitational acceleration) of the mass elements are computed via numerical solution of the Newton integral in terms of geodetic coordinates {λ,ϕ,h}. Four base- edge points of the ellipsoidal mass elements are transformed into a multi-cylindrical equal-area map projection surface to build Cartesian mass elements by associating the height of the corresponding ellipsoidal mass elements to the transformed area elements. Using the closed-form solution of the Newton integral in terms of Cartesian coordinates, the gravitational potential and vector of gravitational intensity of the transformed Cartesian mass elements are computed and compared with those of the numerical solution of the Newton integral for the ellipsoidal mass elements in terms of geodetic coordinates. Numerical tests indicate that the difference between the two computations, i.e. numerical solution of the Newton integral for ellipsoidal mass elements in terms of geodetic coordinates and closed-form solution of the Newton integral in terms of Cartesian coordinates, in a multi-cylindrical equal-area map projection, is less than 1.6×10-8 m2/s2 for a mass element with a cross section area of 10×10 m and a height of 10,000 m. For a mass element with a cross section area of 1×1 km and a height of 10,000 m the difference is less than 1.5×10-4m2/s2. Since 1.5× 10-4 m2/s2 is equivalent to 1.5×10-5m in the vertical direction, it can be concluded that a method for terrain correction (or local gravity field modeling) based on closed-form solution of the Newton integral in terms of Cartesian coordinates of a multi-cylindrical equal-area map projection of the reference ellipsoid has been developed which has the accuracy of terrain correction (or local gravity field modeling) based on the Newton integral in terms of ellipsoidal coordinates.
NASA Astrophysics Data System (ADS)
Sarti, Pierguido; Abbondanza, Claudio; Petrov, Leonid; Negusini, Monia
2011-01-01
The impact of signal path variations (SPVs) caused by antenna gravitational deformations on geodetic very long baseline interferometry (VLBI) results is evaluated for the first time. Elevation-dependent models of SPV for Medicina and Noto (Italy) telescopes were derived from a combination of terrestrial surveying methods to account for gravitational deformations. After applying these models in geodetic VLBI data analysis, estimates of the antenna reference point positions are shifted upward by 8.9 and 6.7 mm, respectively. The impact on other parameters is negligible. To simulate the impact of antenna gravitational deformations on the entire VLBI network, lacking measurements for other telescopes, we rescaled the SPV models of Medicina and Noto for other antennas according to their size. The effects of the simulations are changes in VLBI heights in the range [-3, 73] mm and a net scale increase of 0.3-0.8 ppb. The height bias is larger than random errors of VLBI position estimates, implying the possibility of significant scale distortions related to antenna gravitational deformations. This demonstrates the need to precisely measure gravitational deformations of other VLBI telescopes, to derive their precise SPV models and to apply them in routine geodetic data analysis.
NASA Technical Reports Server (NTRS)
Baker, John; Thorpe, Ira
2012-01-01
Thoroughly studied classic space-based gravitational-wave missions concepts such as the Laser Interferometer Space Antenna (LISA) are based on laser-interferometry techniques. Ongoing developments in atom-interferometry techniques have spurred recently proposed alternative mission concepts. These different approaches can be understood on a common footing. We present an comparative analysis of how each type of instrument responds to some of the noise sources which may limiting gravitational-wave mission concepts. Sensitivity to laser frequency instability is essentially the same for either approach. Spacecraft acceleration reference stability sensitivities are different, allowing smaller spacecraft separations in the atom interferometry approach, but acceleration noise requirements are nonetheless similar. Each approach has distinct additional measurement noise issues.
Projective invariant biplanar registration of a compact modular orthopaedic robot.
Luan, Sheng; Sun, Lei; Hu, Lei; Hao, Aimin; Li, Changsheng; Tang, Peifu; Zhang, Lihai; Du, Hailong
2014-01-01
This paper presents a compact orthopedic robot designed with modular concept. The layout of the modular configuration is adaptive to various conditions such as surgical workspace and targeting path. A biplanar algorithm is adopted for the mapping from the fluoroscopic image to the robot, while the former affine based method is satisfactory only when the projection rays are basically perpendicular to the reference coordinate planes. This paper introduces the area cross-ratio as a projective invariant to improve the registration accuracy for non-orthogonal orientations, so that the robotic system could be applied to more orthopedic procedures under various C-Arm orientation conditions. The system configurations for femoral neck screw and sacroiliac screw fixation are presented. The accuracy of the robotic system and its efficacy for the two typical applications are validated by experiments.
A unifying model of concurrent spatial and temporal modularity in muscle activity.
Delis, Ioannis; Panzeri, Stefano; Pozzo, Thierry; Berret, Bastien
2014-02-01
Modularity in the central nervous system (CNS), i.e., the brain capability to generate a wide repertoire of movements by combining a small number of building blocks ("modules"), is thought to underlie the control of movement. Numerous studies reported evidence for such a modular organization by identifying invariant muscle activation patterns across various tasks. However, previous studies relied on decompositions differing in both the nature and dimensionality of the identified modules. Here, we derive a single framework that encompasses all influential models of muscle activation modularity. We introduce a new model (named space-by-time decomposition) that factorizes muscle activations into concurrent spatial and temporal modules. To infer these modules, we develop an algorithm, referred to as sample-based nonnegative matrix trifactorization (sNM3F). We test the space-by-time decomposition on a comprehensive electromyographic dataset recorded during execution of arm pointing movements and show that it provides a low-dimensional yet accurate, highly flexible and task-relevant representation of muscle patterns. The extracted modules have a well characterized functional meaning and implement an efficient trade-off between replication of the original muscle patterns and task discriminability. Furthermore, they are compatible with the modules extracted from existing models, such as synchronous synergies and temporal primitives, and generalize time-varying synergies. Our results indicate the effectiveness of a simultaneous but separate condensation of spatial and temporal dimensions of muscle patterns. The space-by-time decomposition accommodates a unified view of the hierarchical mapping from task parameters to coordinated muscle activations, which could be employed as a reference framework for studying compositional motor control.
Peripheral infrastructure vectors and an extended set of plant parts for the Modular Cloning system
Kretschmer, Carola; Gruetzner, Ramona; Löfke, Christian; Dagdas, Yasin; Bürstenbinder, Katharina; Marillonnet, Sylvestre
2018-01-01
Standardized DNA assembly strategies facilitate the generation of multigene constructs from collections of building blocks in plant synthetic biology. A common syntax for hierarchical DNA assembly following the Golden Gate principle employing Type IIs restriction endonucleases was recently developed, and underlies the Modular Cloning and GoldenBraid systems. In these systems, transcriptional units and/or multigene constructs are assembled from libraries of standardized building blocks, also referred to as phytobricks, in several hierarchical levels and by iterative Golden Gate reactions. Here, a toolkit containing further modules for the novel DNA assembly standards was developed. Intended for use with Modular Cloning, most modules are also compatible with GoldenBraid. Firstly, a collection of approximately 80 additional phytobricks is provided, comprising e.g. modules for inducible expression systems, promoters or epitope tags. Furthermore, DNA modules were developed for connecting Modular Cloning and Gateway cloning, either for toggling between systems or for standardized Gateway destination vector assembly. Finally, first instances of a “peripheral infrastructure” around Modular Cloning are presented: While available toolkits are designed for the assembly of plant transformation constructs, vectors were created to also use coding sequence-containing phytobricks directly in yeast two hybrid interaction or bacterial infection assays. The presented material will further enhance versatility of hierarchical DNA assembly strategies. PMID:29847550
Integrated phenotypes: understanding trait covariation in plants and animals
Armbruster, W. Scott; Pélabon, Christophe; Bolstad, Geir H.; Hansen, Thomas F.
2014-01-01
Integration and modularity refer to the patterns and processes of trait interaction and independence. Both terms have complex histories with respect to both conceptualization and quantification, resulting in a plethora of integration indices in use. We review briefly the divergent definitions, uses and measures of integration and modularity and make conceptual links to allometry. We also discuss how integration and modularity might evolve. Although integration is generally thought to be generated and maintained by correlational selection, theoretical considerations suggest the relationship is not straightforward. We caution here against uncontrolled comparisons of indices across studies. In the absence of controls for trait number, dimensionality, homology, development and function, it is difficult, or even impossible, to compare integration indices across organisms or traits. We suggest that care be invested in relating measurement to underlying theory or hypotheses, and that summative, theory-free descriptors of integration generally be avoided. The papers that follow in this Theme Issue illustrate the diversity of approaches to studying integration and modularity, highlighting strengths and pitfalls that await researchers investigating integration in plants and animals. PMID:25002693
Supervisory Control System Architecture for Advanced Small Modular Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cetiner, Sacit M; Cole, Daniel L; Fugate, David L
2013-08-01
This technical report was generated as a product of the Supervisory Control for Multi-Modular SMR Plants project within the Instrumentation, Control and Human-Machine Interface technology area under the Advanced Small Modular Reactor (SMR) Research and Development Program of the U.S. Department of Energy. The report documents the definition of strategies, functional elements, and the structural architecture of a supervisory control system for multi-modular advanced SMR (AdvSMR) plants. This research activity advances the state-of-the art by incorporating decision making into the supervisory control system architectural layers through the introduction of a tiered-plant system approach. The report provides a brief history ofmore » hierarchical functional architectures and the current state-of-the-art, describes a reference AdvSMR to show the dependencies between systems, presents a hierarchical structure for supervisory control, indicates the importance of understanding trip setpoints, applies a new theoretic approach for comparing architectures, identifies cyber security controls that should be addressed early in system design, and describes ongoing work to develop system requirements and hardware/software configurations.« less
INFLUENCE OF THE GALACTIC GRAVITATIONAL FIELD ON THE POSITIONAL ACCURACY OF EXTRAGALACTIC SOURCES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larchenkova, Tatiana I.; Lutovinov, Alexander A.; Lyskova, Natalya S.
We investigate the influence of random variations of the Galactic gravitational field on the apparent celestial positions of extragalactic sources. The basic statistical characteristics of a stochastic process (first-order moments, an autocorrelation function and a power spectral density) are used to describe a light ray deflection in a gravitational field of randomly moving point masses as a function of the source coordinates. We map a 2D distribution of the standard deviation of the angular shifts in positions of distant sources (including reference sources of the International Celestial Reference Frame) with respect to their true positions. For different Galactic matter distributionsmore » the standard deviation of the offset angle can reach several tens of μ as (microarcsecond) toward the Galactic center, decreasing down to 4–6 μ as at high galactic latitudes. The conditional standard deviation (“jitter”) of 2.5 μ as is reached within 10 years at high galactic latitudes and within a few months toward the inner part of the Galaxy. The photometric microlensing events are not expected to be disturbed by astrometric random variations anywhere except the inner part of the Galaxy as the Einstein–Chvolson times are typically much shorter than the jittering timescale. While a jitter of a single reference source can be up to dozens of μ as over some reasonable observational time, using a sample of reference sources would reduce the error in relative astrometry. The obtained results can be used for estimating the physical upper limits on the time-dependent accuracy of astrometric measurements.« less
Using collective variables to drive molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Fiorin, Giacomo; Klein, Michael L.; Hénin, Jérôme
2013-12-01
A software framework is introduced that facilitates the application of biasing algorithms to collective variables of the type commonly employed to drive massively parallel molecular dynamics (MD) simulations. The modular framework that is presented enables one to combine existing collective variables into new ones, and combine any chosen collective variable with available biasing methods. The latter include the classic time-dependent biases referred to as steered MD and targeted MD, the temperature-accelerated MD algorithm, as well as the adaptive free-energy biases called metadynamics and adaptive biasing force. The present modular software is extensible, and portable between commonly used MD simulation engines.
NASA Astrophysics Data System (ADS)
Heggie, D.; Hut, P.
2003-10-01
The gravitational N-body problem is to describe the evolution of an isolated system of N point masses interacting only through Newtonian gravitational forces. For N =2 the solution is due to Newton. For N =3 there is no general analytic solution, but the problem has occupied generations of illustrious physicists and mathematicians including Laplace, Lagrange, Gauss and Poincaré, and inspired the modern subjects of nonlinear dynamics and chaos theory. The general gravitational N-body problem remains one of the oldest unsolved problems in physics. Many-body problems can be simpler than few-body problems, and many physicists have attempted to apply the methods of classical equilibrium statistical mechanics to the gravitational N-body problem for N gg 1. These applications have had only limited success, partly because the gravitational force is too strong at both small scales (the interparticle potential energy diverges) and large scales (energy is not extensive). Nevertheless, we now understand a rich variety of behaviour in large-N gravitating systems. These include the negative heat capacity of isolated, gravitationally bound systems, which is the basic reason why nuclear burning in the Sun is stable; Antonov's discovery that an isothermal, self-gravitating gas in a container is located at a saddle point, rather than a maximum, of the entropy when the gas is sufficiently dense and hence is unstable (the 'gravothermal catastrophe'); the process of core collapse, in which relaxation induces a self-similar evolution of the central core of the system towards (formally) infinite density in a finite time; and the remarkable phenomenon of gravothermal oscillations, in which the central density undergoes periodic oscillations by factors of a thousand or more on the relaxation timescale - but only if N gtrsim 104. The Gravitational Million-Body Problem is a monograph that describes our current understanding of the gravitational N-body problem. The authors have chosen to focus on N = 106 for two main reasons: first, direct numerical integrations of N-body systems are beginning to approach this threshold, and second, globular star clusters provide remarkably accurate physical instantiations of the idealized N-body problem with N = 105 - 106. The authors are distinguished contributors to the study of star-cluster dynamics and the gravitational N-body problem. The book contains lucid and concise descriptions of most of the important tools in the subject, with only a modest bias towards the authors' own interests. These tools include the two-body relaxation approximation, the Vlasov and Fokker-Planck equations, regularization of close encounters, conducting fluid models, Hill's approximation, Heggie's law for binary star evolution, symplectic integration algorithms, Liapunov exponents, and so on. The book also provides an up-to-date description of the principal processes that drive the evolution of idealized N-body systems - two-body relaxation, mass segregation, escape, core collapse and core bounce, binary star hardening, gravothermal oscillations - as well as additional processes such as stellar collisions and tidal shocks that affect real star clusters but not idealized N-body systems. In a relatively short (300 pages plus appendices) book such as this, many topics have to be omitted. The reader who is hoping to learn about the phenomenology of star clusters will be disappointed, as the description of their properties is limited to only a page of text; there is also almost no discussion of other, equally interesting N-body systems such as galaxies(N approx 106 - 1012), open clusters (N simeq 102 - 104), planetary systems, or the star clusters surrounding black holes that are found in the centres of most galaxies. All of these omissions are defensible decisions. Less defensible is the uneven set of references in the text; for example, nowhere is the reader informed that the classic predecessor to this work was Spitzer's 1987 monograph, Dynamical Evolution of Globular Clusters, or that the standard reference on the observational properties of stellar systems is Binney and Merrifield's Galactic Astronomy. A minor irritation is that many concepts are discussed several times before they are defined, and the index provides no pointer to the primary discussion; thus, for example, there are ten index entries for 'phase mixing' and no indication that the fourth of these refers to the actual definition. The book is intended as a graduate textbook but more likely it will be used mainly in other contexts: by theoretical researchers, as an indispensable reference on the dynamics of gravitational N-body systems; by observational astronomers, as a readable summary of the theory of star cluster evolution; and by physicists seeking a well-written and accessible introduction to a simple problem that remains fascinating and incompletely understood after three centuries. Scott Tremaine
Gravitational leptogenesis, reheating, and models of neutrino mass
NASA Astrophysics Data System (ADS)
Adshead, Peter; Long, Andrew J.; Sfakianakis, Evangelos I.
2018-02-01
Gravitational leptogenesis refers to a class of baryogenesis models in which the matter-antimatter asymmetry of the Universe arises through the standard model lepton-number gravitational anomaly. In these models chiral gravitational waves source a lepton asymmetry in standard model neutrinos during the inflationary epoch. We point out that gravitational leptogenesis can be successful in either the Dirac or Majorana neutrino mass scenario. In the Dirac mass scenario, gravitational leptogenesis predicts a relic abundance of sterile neutrinos that remain out of equilibrium, and the lepton asymmetry carried by the standard model sector is unchanged. In the Majorana mass scenario, the neutrinos participate in lepton-number-violating interactions that threaten to wash out the lepton asymmetry during postinflationary reheating. However, we show that a complete (exponential) washout of the lepton asymmetry is prevented if the lepton-number-violating interactions go out of equilibrium before all of the standard model Yukawa interactions come into equilibrium. The baryon and lepton asymmetries carried by right-chiral quarks and leptons are sequestered from the lepton-number violation, and the washout processes only suppress the predicted baryon asymmetry by a factor of ɛw .o .=±O (0.1 ). The sign of ɛw .o . depends on the model parameters in such a way that a future measurement of the primordial gravitational wave chirality would constrain the scale of lepton-number violation (heavy Majorana neutrino mass).
Project Management Professional Development: An Industry Led Programme.
ERIC Educational Resources Information Center
Gale, Andrew; Brown, Mike
2003-01-01
Describes a modular master's program in project management. Explores relationships between return on investment, management competencies, and learning outcomes in the context of industry-academic partnerships. Discusses the managed learning environment using WebCT. (Contains 40 references.) (SK)
Theory of an experiment in an orbiting space laboratory to determine the gravitational constant.
NASA Technical Reports Server (NTRS)
Vinti, J. P.
1972-01-01
An experiment is discussed for determining the gravitational constant with the aid of an isolated system consisting of an artificial satellite moving around an artificial planet. The experiment is to be conducted in a spherical laboratory traveling in an orbit around the earth. Difficulties due to the gravity-gradient term are considered, and the three-tunnel method proposed by Wilk (1969) is examined. The rotation of the sphere is discussed together with aspects of the reference systems used, the equations of motion of the spacecraft and of the test objects, the field from the earth's gravity gradient at the test object, higher harmonic terms in the gravity gradient force, gravitational effects of the spacecraft itself, and a computer simulation.
Image Comparisons of Black Hole vs. Neutron Dark Star by Ray Tracing
NASA Astrophysics Data System (ADS)
Froedge, D. T.
2015-04-01
In previous papers we have discussed the concept of a theory of gravitation with local energy conservation, and the properties of a large neutron star resulting when the energy of gravitation resides locally with the particle mass and not in the gravitational field. A large neutron star's surface radius grows closer to the gravitational radius as the mass increases. Since the localization of energy applies to the photon, they do not decrease energy rising in a gravitational field, and can escape. Photon trajectories in a strong gravitational field can be investigated by the use of ray tracing procedures. Only a fraction of the blackbody radiation emitted from the surface escapes into space (about 0.00004% for Sag A*). Because of the low % of escaping radiation, the heavy neutron stars considered in this paper will be referred to as a Neutron Dark Star (NDS). In contrast to the Black Hole (BH) which should be totally dark inside the photon shadow, the NDS will appear as a fuzzy low luminosity ball. For Sag A* a full width half maximum diameter is about 3.85 Schwarzschild radii inside the shadow. (http://www.arxdtf.org/css/Image%20Comparisons.pdf). The Event Horizon Telescope should be able to distinguish the difference between the theories.
Siddoway, C.S.; Siddoway, M.F.
2007-01-01
The convergence of meridians toward the South Pole causes unique problems for geometrical comparison of structural geological and geophysical datasets from Antarctica. The true North reference direction ordinarily is used for measuring and reporting vector data (strike, trend) in Antarctica, as elsewhere. However, over a latitude distance of just 100 km at 85° South, the angular difference in the true North direction exceeds 10°. Consequently, when performing a regional tectonic analysis of vector data (strike, trend) for structures such as faults, dike arrays, or geophysical lineaments oriented with respect to North at different sites, it is necessary to rotate the data to a common reference direction. A modular arithmetic function, performed as a spreadsheet calculation, offers the means to unify data sets from sites having different longitude position, by rotation to a common reference direction. The function is SC ≡ SM + ∆L (mod 360), where SC = converted strike; SM = measured strike; ∆L = angle in degrees longitude between reference longitude and study site; and 360, the divisor, is the number of degrees in Earth’s circumference. The method is used to evaluate 1) paleomagnetic rotation of the Ellsworth-Whitmore Mountains with respect to the Transantarctic Mountains, and 2) orogenic curvature of the Ross Orogen
Testing new technologies for the LISA Gravitational Reference Senso
NASA Astrophysics Data System (ADS)
Conklin, John; Chilton, Andrew; Olatunde, Taiwo; Apple, Stephen; Ciani, Giacomo; Mueller, Guido
2015-01-01
LISA will directly observe low-frequency gravitational waves emitted by sources ranging from super-massive black hole mergers to compact galactic binaries. A laser interferometer will measure picometer changes in the distances between free falling test masses separated by millions of kilometers. A test mass and its associated sensing, actuation, charge control and caging subsystems are referred to as a gravitational reference sensor (GRS). The demanding acceleration noise requirement of < 3×10-15 m/sec2Hz1/2 for the LISA GRS has motivated a rigorous testing campaign in Europe and a dedicated technology mission, LISA Pathfinder, scheduled for launch in the summer of 2015. At the University of Florida we are developing a nearly thermally noise limited torsion pendulum for testing GRS technology enhancements and for understanding the dozens of acceleration noise sources that affect the performance of the GRS. This experimental facility is based on the design of a similar facility at the University of Trento, and consists of a vacuum enclosed torsion pendulum that suspends mock-ups of the LISA test masses, surrounded by electrode housings. Some of the technologies that will be demonstrated by this facility include a novel TM charge control scheme based on ultraviolet LEDs, an all-optical TM position and attitude sensor, and drift mode operation. This presentation will describe the design of the torsion pendulum facility, its current acceleration noise performance, and the status of the GRS technologies under development.
NASA Astrophysics Data System (ADS)
Li, Jun-Wei; Cao, Jun-Wei
2010-04-01
One challenge in large-scale scientific data analysis is to monitor data in real-time in a distributed environment. For the LIGO (Laser Interferometer Gravitational-wave Observatory) project, a dedicated suit of data monitoring tools (DMT) has been developed, yielding good extensibility to new data type and high flexibility to a distributed environment. Several services are provided, including visualization of data information in various forms and file output of monitoring results. In this work, a DMT monitor, OmegaMon, is developed for tracking statistics of gravitational-wave (OW) burst triggers that are generated from a specific OW burst data analysis pipeline, the Omega Pipeline. Such results can provide diagnostic information as reference of trigger post-processing and interferometer maintenance.
Expanding Earth and declining gravity: a chapter in the recent history of geophysics
NASA Astrophysics Data System (ADS)
Kragh, H.
2015-05-01
Although speculative ideas of an expanding Earth can be found before World War II, it was only in the 1950s and 1960s that the theory attracted serious attention among a minority of earth scientists. While some of the proponents of the expanding Earth adopted an empiricist attitude by disregarding the physical cause of the assumed expansion, others argued that the cause, either fully or in part, was of cosmological origin. They referred to the possibility that the gravitational constant was slowly decreasing in time, as first suggested by P. Dirac in 1937. As a result of a stronger gravitation in the past, the ancient Earth would have been smaller than today. The gravitational argument for an expanding Earth was proposed by P. Jordan and L. Egyed in the 1950s and during the next 2 decades it was discussed by several physicists, astronomers and earth scientists. Among those who for a period felt attracted by "gravitational expansionism" were A. Holmes, J. Tuzo Wilson and F. Hoyle. The paper examines the idea of a varying gravitational constant and its impact on geophysics in the period from about 1955 to the mid-1970s.
Domain decomposition for aerodynamic and aeroacoustic analyses, and optimization
NASA Technical Reports Server (NTRS)
Baysal, Oktay
1995-01-01
The overarching theme was the domain decomposition, which intended to improve the numerical solution technique for the partial differential equations at hand; in the present study, those that governed either the fluid flow, or the aeroacoustic wave propagation, or the sensitivity analysis for a gradient-based optimization. The role of the domain decomposition extended beyond the original impetus of discretizing geometrical complex regions or writing modular software for distributed-hardware computers. It induced function-space decompositions and operator decompositions that offered the valuable property of near independence of operator evaluation tasks. The objectives have gravitated about the extensions and implementations of either the previously developed or concurrently being developed methodologies: (1) aerodynamic sensitivity analysis with domain decomposition (SADD); (2) computational aeroacoustics of cavities; and (3) dynamic, multibody computational fluid dynamics using unstructured meshes.
BurstCube: A CubeSat for Gravitational Wave Counterparts
NASA Astrophysics Data System (ADS)
Perkins, Jeremy S.; Racusin, Judith; Briggs, Michael; de Nolfo, Georgia; Caputo, Regina; Krizmanic, John; McEnery, Julie E.; Shawhan, Peter; Morris, David; Connaughton, Valerie; Kocevski, Dan; Wilson-Hodge, Colleen A.; Hui, Michelle; Mitchell, Lee; McBreen, Sheila
2018-01-01
We present BurstCube, a novel CubeSat that will detect and localize Gamma-ray Bursts (GRBs). BurstCube is a selected mission that will detect long GRBs, attributed to the collapse of massive stars, short GRBs (sGRBs), resulting from binary neutron star mergers, as well as other gamma-ray transients in the energy range 10-1000 keV. sGRBs are of particular interest because they are predicted to be the counterparts of gravitational wave (GW) sources soon to be detectable by LIGO/Virgo. BurstCube contains 4 CsI scintillators coupled with arrays of compact low-power Silicon photomultipliers (SiPMs) on a 6U Dellingr bus, a flagship modular platform that is easily modifiable for a variety of 6U CubeSat architectures. BurstCube will complement existing facilities such as Swift and Fermi in the short term, and provide a means for GRB detection, localization, and characterization in the interim time before the next generation future gamma-ray mission flies, as well as space-qualify SiPMs and test technologies for future use on larger gamma-ray missions. The ultimate configuration of BurstCube is to have a set of ~10 BurstCubes to provide all-sky coverage to GRBs for substantially lower cost than a full-scale mission.
The Space Technology-7 Disturbance Reduction Systems
NASA Technical Reports Server (NTRS)
ODonnell, James R., Jr.; Hsu, Oscar C.; Hanson, John; Hruby, Vlad
2004-01-01
The Space Technology 7 Disturbance Reduction System (DRS) is an in-space technology demonstration designed to validate technologies that are required for future missions such as the Laser Interferometer Space Antenna (LISA) and the Micro-Arcsecond X-ray Imaging Mission (MAXIM). The primary sensors that will be used by DRS are two Gravitational Reference Sensors (GRSs) being developed by Stanford University. DRS will control the spacecraft so that it flies about one of the freely-floating Gravitational Reference Sensor test masses, keeping it centered within its housing. The other GRS serves as a cross-reference for the first as well as being used as a reference for .the spacecraft s attitude control. Colloidal MicroNewton Thrusters being developed by the Busek Co. will be used to control the spacecraft's position and attitude using a six degree-of-freedom Dynamic Control System being developed by Goddard Space Flight Center. A laser interferometer being built by the Jet Propulsion Laboratory will be used to help validate the results of the experiment. The DRS will be launched in 2008 on the European Space Agency (ESA) LISA Pathfinder spacecraft along with a similar ESA experiment, the LISA Test Package.
Minicourses in Astrophysics, Modular Approach, Vol. II.
ERIC Educational Resources Information Center
Illinois Univ., Chicago.
This is the second of a two-volume minicourse in astrophysics. It contains chapters on the following topics: stellar nuclear energy sources and nucleosynthesis; stellar evolution; stellar structure and its determination; and pulsars. Each chapter gives much technical discussion, mathematical treatment, diagrams, and examples. References are…
NASA Astrophysics Data System (ADS)
Šprlák, Michal; Novák, Pavel
2017-02-01
New spherical integral formulas between components of the second- and third-order gravitational tensors are formulated in this article. First, we review the nomenclature and basic properties of the second- and third-order gravitational tensors. Initial points of mathematical derivations, i.e., the second- and third-order differential operators defined in the spherical local North-oriented reference frame and the analytical solutions of the gradiometric boundary-value problem, are also summarized. Secondly, we apply the third-order differential operators to the analytical solutions of the gradiometric boundary-value problem which gives 30 new integral formulas transforming (1) vertical-vertical, (2) vertical-horizontal and (3) horizontal-horizontal second-order gravitational tensor components onto their third-order counterparts. Using spherical polar coordinates related sub-integral kernels can efficiently be decomposed into azimuthal and isotropic parts. Both spectral and closed forms of the isotropic kernels are provided and their limits are investigated. Thirdly, numerical experiments are performed to test the consistency of the new integral transforms and to investigate properties of the sub-integral kernels. The new mathematical apparatus is valid for any harmonic potential field and may be exploited, e.g., when gravitational/magnetic second- and third-order tensor components become available in the future. The new integral formulas also extend the well-known Meissl diagram and enrich the theoretical apparatus of geodesy.
Multi-Axis Heterodyne Interferometry (MAHI)
NASA Astrophysics Data System (ADS)
Thorpe, James
The detection and measurement of gravitational waves represents humanity’s next, and final, opportunity to open an entirely new spectrum with which to view the universe. The first steps of this process will likely take place later this decade when the second-generation ground-based instruments such as Advanced LIGO approach design sensitivity. While these events will be historic, it will take a space-based detector to access the milliHertz gravitational wave frequency band, a band that is rich in both number and variety of sources. The Laser Interferometer Space Antenna (LISA) concept has been developed over the past two decades in the US and Europe to provide access to this band. The European Space Agency recently selected The Gravitational Universe as the science theme for the 3rd Large-class mission in the Cosmic Visions Programme, with the assumption that a LISA-like instrument would be implemented for launch in 2034. NASA has expressed interest in partnering on this effort and the US community has made its own judgment on the scientific potential of a space-based gravitational wave observatory through the selection of LISA as the 3rd flagship mission in the 2010 Decadal Survey. Much of the effort has been in retiring risk for the unique technologies that comprise a gravitational wave detector. A prime focus of this effort is LISA Pathfinder (LPF), a dedicated technology demonstrator mission led by ESA with contributions from NASA and several member states. LPF’s primary objective is to validate drag-free flight as an approach to realizing an inertial reference mass. Along the way, several important technologies will be demonstrated, including picometer-level heterodyne interferometry. However, there are several important differences between the interferometry design for LISA and that for LPF. These mostly result from the fact that LISA interferometry involves multiple lasers on separate spacecraft whereas LPF can use a single laser on a single spacecraft. We propose to develop a laboratory prototype of a LISA-like interferometric metrology system capable of simultaneously making picometer-level position and nanoradian-level attitude measurements of a free-flying target. In the LISA application, this prototype would represent the short-arm interferometer, measuring the displacement and relative attitude between the gravitational test mass and the spacecraft. This measurement is used both to drive the drag-free attitude and control system as well as to extract the gravitational wave science signal. In addition to the LISA application, such a system would have broader applications in future geodesy and formation-flying missions. The prototype free-flying metrology system will consist of the following subcomponents: an optical bench providing stable pathlengths, an optical target mounted on a precision actuator, a low-noise quadrant photoreceiver for generating differential wavefront signals, and a phase measurement system to measure the individual heterodyne signals and convert them into quantities such as position and angle. In addition to the moving target, the optical bench will include a pair of fixed targets to be used as references. Comparing the two reference interferometers will provide an estimate of the noise performance of the measurement system, while comparing a reference interferometer with the free-flying target will allow us to demonstrate measurement over a large dynamic range. In addition to making performance measurements, we will use this prototype system to explore a number of system-level issues related to free-flying interferometry including initial acquisition, beam-walk effects, and jitter couplings.
Superenergy flux of Einstein-Rosen waves
NASA Astrophysics Data System (ADS)
Domínguez, P. J.; Gallegos, A.; Macías-Díaz, J. E.; Vargas-Rodríguez, H.
In this work, we consider the propagation speed of the superenergy flux associated to the Einstein-Rosen cylindrical waves propagating in vacuum and over the background of the gravitational field of an infinitely long mass line distribution. The velocity of the flux is determined considering the reference frame in which the super-Poynting vector vanishes. This reference frame is then considered as comoving with the flux. The explicit expressions for the velocities are given with respect to a reference frame at rest with the symmetry axis.
Minicourses in Astrophysics, Modular Approach, Vol. I.
ERIC Educational Resources Information Center
Illinois Univ., Chicago.
This is the first volume of a two-volume minicourse in astrophysics. It contains chapters on the following topics: planetary atmospheres; X-ray astronomy; radio astrophysics; molecular astrophysics; and gamma-ray astrophysics. Each chapter gives much technical discussion, mathematical treatment, diagrams, and examples. References are included with…
Disturbance Reduction Control Design for the ST7 Flight Validation Experiment
NASA Technical Reports Server (NTRS)
Maghami, P. G.; Hsu, O. C.; Markley, F. L.; Houghton, M. B.
2003-01-01
The Space Technology 7 experiment will perform an on-orbit system-level validation of two specific Disturbance Reduction System technologies: a gravitational reference sensor employing a free-floating test mass, and a set of micro-Newton colloidal thrusters. The ST7 Disturbance Reduction System is designed to maintain the spacecraft's position with respect to a free-floating test mass to less than 10 nm/Hz, over the frequency range of 1 to 30 mHz. This paper presents the design and analysis of the coupled, drag-free and attitude control systems that close the loop between the gravitational reference sensor and the micro-Newton thrusters, while incorporating star tracker data at low frequencies. A full 18 degree-of-freedom model, which incorporates rigid-body models of the spacecraft and two test masses, is used to evaluate the effects of actuation and measurement noise and disturbances on the performance of the drag-free system.
NASA Astrophysics Data System (ADS)
Esposito, C.; Bianchi-Fasani, G.; Martino, S.; Scarascia-Mugnozza, G.
2013-10-01
This paper focuses on a study aimed at defining the role of geological-structural setting and Quaternary morpho-structural evolution on the onset and development of a deep-seated gravitational slope deformation which affects the western slope of Mt. Genzana ridge (Central Apennines, Italy). This case history is particularly significant as it comprises several aspects of such gravitational processes both in general terms and with particular reference to the Apennines. In fact: i) the morpho-structural setting is representative of widespread conditions in Central Apennines; ii) the deforming slope partially evolved in a large rockslide-avalanche; iii) the deformational process provides evidence of an ongoing state of activity; iv) the rockslide-avalanche debris formed a stable natural dam, thus implying significant variations in the morphologic, hydraulic and hydrogeological setting; v) the gravitational deformation as well as the rockslide-avalanche reveal a strong structural control. The main study activities were addressed to define a detailed geological model of the gravity-driven process, by means of geological, structural, geomorphological and geomechanical surveys. As a result, a robust hypothesis about the kinematics of the process was possible, with particular reference to the identification of geological-structural constraints. The process, in fact, involves a specific section of the slope exactly where a dextral transtensional structure is present, thus implying local structural conditions that favor sliding processes: the rock mass is intensively jointed by high angle discontinuity sets and the bedding attitude is quite parallel to the slope angle. Within this frame the gravitational process can be classified as a structurally constrained translational slide, locally evolved into a rockslide-avalanche. The activation of such a deformation can be in its turn related to the Quaternary morphological evolution of the area, which was affected by a significant topographic stress increase, testified by stratigraphic and morphologic evidence.
NASA Astrophysics Data System (ADS)
Perera, B. B. P.; Stappers, B. W.; Babak, S.; Keith, M. J.; Antoniadis, J.; Bassa, C. G.; Caballero, R. N.; Champion, D. J.; Cognard, I.; Desvignes, G.; Graikou, E.; Guillemot, L.; Janssen, G. H.; Karuppusamy, R.; Kramer, M.; Lazarus, P.; Lentati, L.; Liu, K.; Lyne, A. G.; McKee, J. W.; Osłowski, S.; Perrodin, D.; Sanidas, S. A.; Sesana, A.; Shaifullah, G.; Theureau, G.; Verbiest, J. P. W.; Taylor, S. R.
2018-07-01
We search for continuous gravitational waves (CGWs) produced by individual supermassive black hole binaries in circular orbits using high-cadence timing observations of PSR J1713+0747. We observe this millisecond pulsar using the telescopes in the European Pulsar Timing Array with an average cadence of approximately 1.6 d over the period between 2011 April and 2015 July, including an approximately daily average between 2013 February and 2014 April. The high-cadence observations are used to improve the pulsar timing sensitivity across the gravitational wave frequency range of 0.008-5μHz. We use two algorithms in the analysis, including a spectral fitting method and a Bayesian approach. For an independent comparison, we also use a previously published Bayesian algorithm. We find that the Bayesian approaches provide optimal results and the timing observations of the pulsar place a 95 per cent upper limit on the sky-averaged strain amplitude of CGWs to be ≲3.5 × 10-13 at a reference frequency of 1 μHz. We also find a 95 per cent upper limit on the sky-averaged strain amplitude of low-frequency CGWs to be ≲1.4 × 10-14 at a reference frequency of 20 nHz.
What Is AV Doing in a Humanities Degree?
ERIC Educational Resources Information Center
Thorn, Richard L.
1981-01-01
Describes the Communication module of the B.A. (Honors) Humanities modular degree at Bristol Polytechnic which involves non-Art and Design students in practical audiovisual media work as they undertake "live" projects for clients in the community, e.g., teachers, social workers, or charities. Five references are appended. (Author/LLS)
Modular Radioisotope Thermoelectric Generator (RTG) Program. Final technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-12-31
Section 2.0 of this report summarizes the MOD-RTG reference flight design, and Section 3.0 discusses the Ground Demonstration System design. Multicouple technology development is discussed in Section 4.0, and Section 5.0 lists all published technical papers prepared during the course of the contract.
Advantages of a Modular Mars Surface Habitat Approach
NASA Technical Reports Server (NTRS)
Rucker, Michelle A.; Hoffman, Stephan J.; Andrews, Alida; Watts, Kevin
2018-01-01
Early crewed Mars mission concepts developed by the National Aeronautics and Space Administration (NASA) assumed a single, large habitat would house six crew members for a 500-day Mars surface stay. At the end of the first mission, all surface equipment, including the habitat, -would be abandoned and the process would be repeated at a different Martian landing site. This work was documented in a series of NASA publications culminating with the Mars Design Reference Mission 5.0 (NASA-SP-2009-566). The Evolvable Mars Campaign (EMC) explored whether re-using surface equipment at a single landing site could be more affordable than the Apollo-style explore-abandon-repeat mission cadence. Initial EMC assumptions preserved the single, monolithic habitat, the only difference being a new requirement to reuse the surface habitat for multiple expedition crews. A trade study comparing a single large habitat versus smaller, modular habitats leaned towards the monolithic approach as more mass-efficient. More recent work has focused on the operational aspects of building up Mars surface infrastructure over multiple missions, and has identified compelling advantages of the modular approach that should be considered before making a final decision. This paper explores Mars surface mission operational concepts and integrated system analysis, and presents an argument for the modular habitat approach.
Assessing the techno-economics of modular hybrid solar thermal systems
NASA Astrophysics Data System (ADS)
Lim, Jin Han; Chinnici, Alfonso; Dally, Bassam; Nathan, Graham
2017-06-01
A techno-economic assessment was performed on modular hybrid solar thermal (in particular, solar power tower) systems with combustion from natural gas as backup to provide a continuous supply of electricity. Two different configurations were compared, i.e. a Hybrid Solar Receiver Combustor (HSRC), in which the functions of a solar cavity receiver and a combustor are integrated into a single device, and a Solar Gas Hybrid (SGH), which is a reference hybrid solar thermal system with a standalone solar-only cavity receiver and a backup boiler. The techno-economic benefits were assessed by varying the size of the modular components, i.e. the heliostat field and the solar receivers. It was found that for modularization to be cost effective requires more than the increased learning from higher production of a larger number of smaller units, such as access to alternative, lower-cost manufacturing methods and/or the use of a low melting point Heat Transfer Fluid (HTF) such as sodium to reduce parasitic losses. In particular, for a plant with 30 units of 1MWth modules, the Levelized Cost of Electricity is competitive compared with a single unit of 30MWth after ˜100 plants are installed for both the HSRC and SGH if the systems employ the use of sodium as the heat transfer fluid.
Raherison, Elie S M; Giguère, Isabelle; Caron, Sébastien; Lamara, Mebarek; MacKay, John J
2015-07-01
Transcript profiling has shown the molecular bases of several biological processes in plants but few studies have developed an understanding of overall transcriptome variation. We investigated transcriptome structure in white spruce (Picea glauca), aiming to delineate its modular organization and associated functional and evolutionary attributes. Microarray analyses were used to: identify and functionally characterize groups of co-expressed genes; investigate expressional and functional diversity of vascular tissue preferential genes which were conserved among Picea species, and identify expression networks underlying wood formation. We classified 22 857 genes as variable (79%; 22 coexpression groups) or invariant (21%) by profiling across several vegetative tissues. Modular organization and complex transcriptome restructuring among vascular tissue preferential genes was revealed by their assignment to coexpression groups with partially overlapping profiles and partially distinct functions. Integrated analyses of tissue-based and temporally variable profiles identified secondary xylem gene networks, showed their remodelling over a growing season and identified PgNAC-7 (no apical meristerm (NAM), Arabidopsis transcription activation factor (ATAF) and cup-shaped cotyledon (CUC) transcription factor 007 in Picea glauca) as a major hub gene specific to earlywood formation. Reference profiling identified comprehensive, statistically robust coexpressed groups, revealing that modular organization underpins the evolutionary conservation of the transcriptome structure. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Possible Space-Based Gravitational-Wave Observatory Mission Concept
NASA Technical Reports Server (NTRS)
Livas, Jeffrey C.
2015-01-01
The existence of gravitational waves was established by the discovery of the Binary Pulsar PSR 1913+16 by Hulse and Taylor in 1974, for which they were awarded the 1983 Nobel Prize. However, it is the exploitation of these gravitational waves for the extraction of the astrophysical parameters of the sources that will open the first new astronomical window since the development of gamma ray telescopes in the 1970's and enable a new era of discovery and understanding of the Universe. Direct detection is expected in at least two frequency bands from the ground before the end of the decade with Advanced LIGO and Pulsar Timing Arrays. However, many of the most exciting sources will be continuously observable in the band from 0.1-100 mHz, accessible only from space due to seismic noise and gravity gradients in that band that disturb ground-based observatories. This poster will discuss a possible mission concept, Space-based Gravitational-wave Observatory (SGO-Mid) developed from the original Laser Interferometer Space Antenna (LISA) reference mission but updated to reduce risk and cost.
Measuring Gravitation Using Polarization Spectroscopy
NASA Technical Reports Server (NTRS)
Matsko, Andrey; Yu, Nan; Maleki, Lute
2004-01-01
A proposed method of measuring gravitational acceleration would involve the application of polarization spectroscopy to an ultracold, vertically moving cloud of atoms (an atomic fountain). A related proposed method involving measurements of absorption of light pulses like those used in conventional atomic interferometry would yield an estimate of the number of atoms participating in the interferometric interaction. The basis of the first-mentioned proposed method is that the rotation of polarization of light is affected by the acceleration of atoms along the path of propagation of the light. The rotation of polarization is associated with a phase shift: When an atom moving in a laboratory reference interacts with an electromagnetic wave, the energy levels of the atom are Doppler-shifted, relative to where they would be if the atom were stationary. The Doppler shift gives rise to changes in the detuning of the light from the corresponding atomic transitions. This detuning, in turn, causes the electromagnetic wave to undergo a phase shift that can be measured by conventional means. One would infer the gravitational acceleration and/or the gradient of the gravitational acceleration from the phase measurements.
NASA Astrophysics Data System (ADS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Ackley, K.; Adams, C.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Allen, B.; Altin, P. A.; Amariutei, D. V.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arun, K. G.; Ashton, G.; Ast, M.; Aston, S. M.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P. T.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barr, B.; Barsotti, L.; Bartlett, J.; Bartos, I.; Bassiri, R.; Batch, J. C.; Baune, C.; Behnke, B.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Biwer, C.; Blackburn, J. K.; Blair, C. D.; Blair, D.; Blair, R. M.; Bock, O.; Bodiya, T. P.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bork, R.; Bose, S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Brinkmann, M.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Buonanno, A.; Byer, R. L.; Cadonati, L.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Caride, S.; Caudill, S.; Cavaglià, M.; Cepeda, C.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chen, H. Y.; Chen, Y.; Cheng, C.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Countryman, S. T.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Dal Canton, T.; Danilishin, S. L.; Danzmann, K.; Darman, N. S.; Dave, I.; Daveloza, H. P.; Davies, G. S.; Daw, E. J.; DeBra, D.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; DeRosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Palma, I.; Dojcinoski, G.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferreira, E. C.; Fisher, R. P.; Fletcher, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gaonkar, S. G.; Gaur, G.; Gehrels, N.; George, J.; Gergely, L.; Ghosh, A.; Giaime, J. A.; Giardina, K. D.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Graef, C.; Graff, P. B.; Grant, A.; Gras, S.; Gray, C.; Green, A. C.; Grote, H.; Grunewald, S.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heintze, M. C.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jang, H.; Jani, K.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, N.; Kim, N.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kozak, D. B.; Kringel, V.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leong, J. R.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lormand, M.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meadors, G. D.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Miao, H.; Middleton, H.; Mikhailov, E. E.; Mukund, K. N.; Miller, J.; Millhouse, M.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Mohapatra, S. R. P.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nayak, R. K.; Necula, V.; Nedkova, K.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nitz, A.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pekowsky, L.; Pele, A.; Penn, S.; Pereira, R.; Perreca, A.; Phelps, M.; Pierro, V.; Pinto, I. M.; Pitkin, M.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Principe, M.; Privitera, S.; Prokhorov, L.; Puncken, O.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Raymond, V.; Read, J.; Reed, C. M.; Reid, S.; Reitze, D. H.; Rew, H.; Riles, K.; Robertson, N. A.; Robie, R.; Rollins, J. G.; Roma, V. J.; Romanov, G.; Romie, J. H.; Rowan, S.; Rüdiger, A.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sergeev, A.; Serna, G.; Sevigny, A.; Shaddock, D. A.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Szczepańczyk, M. J.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Traylor, G.; Trifirò, D.; Tse, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vander-Hyde, D. C.; van Veggel, A. A.; Vass, S.; Vaulin, R.; Vecchio, A.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Vinciguerra, S.; Vine, D. J.; Vitale, S.; Vo, T.; Vorvick, C.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Weaver, B.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Zanolin, M.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration
2017-03-01
In Advanced LIGO, detection and astrophysical source parameter estimation of the binary black hole merger GW150914 requires a calibrated estimate of the gravitational-wave strain sensed by the detectors. Producing an estimate from each detector's differential arm length control loop readout signals requires applying time domain filters, which are designed from a frequency domain model of the detector's gravitational-wave response. The gravitational-wave response model is determined by the detector's opto-mechanical response and the properties of its feedback control system. The measurements used to validate the model and characterize its uncertainty are derived primarily from a dedicated photon radiation pressure actuator, with cross-checks provided by optical and radio frequency references. We describe how the gravitational-wave readout signal is calibrated into equivalent gravitational-wave-induced strain and how the statistical uncertainties and systematic errors are assessed. Detector data collected over 38 calendar days, from September 12 to October 20, 2015, contain the event GW150914 and approximately 16 days of coincident data used to estimate the event false alarm probability. The calibration uncertainty is less than 10% in magnitude and 10° in phase across the relevant frequency band, 20 Hz to 1 kHz.
Vertical exploration and dimensional modularity in mice
Benjamini, Yoav; Golani, Ilan
2018-01-01
Exploration is a central component of animal behaviour studied extensively in rodents. Previous tests of free exploration limited vertical movement to rearing and jumping. Here, we attach a wire mesh to the arena wall, allowing vertical exploration. This provides an opportunity to study the morphogenesis of behaviour along the vertical dimension, and examine the context in which it is performed. In the current set-up, the mice first use the doorway as a point reference for establishing a borderline linear path along the circumference of the arena floor, and then use this path as a linear reference for performing horizontal forays towards the centre (incursions) and vertical forays on the wire mesh (ascents). Vertical movement starts with rearing on the wall, and commences with straight vertical ascents that increase in extent and complexity. The mice first reach the top of the wall, then mill about within circumscribed horizontal sections, and then progress horizontally for increasingly longer distances on the upper edge of the wire mesh. Examination of the sequence of borderline segments, incursions and ascents reveals dimensional modularity: an initial series (bout) of borderline segments precedes alternating bouts of incursions and bouts of ascents, thus exhibiting sustained attention to each dimension separately. The exhibited separate growth in extent and in complexity of movement and the sustained attention to each of the three dimensions disclose the mice's modular perception of this environment and validate all three as natural kinds. PMID:29657827
Seismic isolation of small modular reactors using metamaterials
NASA Astrophysics Data System (ADS)
Witarto, Witarto; Wang, S. J.; Yang, C. Y.; Nie, Xin; Mo, Y. L.; Chang, K. C.; Tang, Yu; Kassawara, Robert
2018-04-01
Adaptation of metamaterials at micro- to nanometer scales to metastructures at much larger scales offers a new alternative for seismic isolation systems. These new isolation systems, known as periodic foundations, function both as a structural foundation to support gravitational weight of the superstructure and also as a seismic isolator to isolate the superstructure from incoming seismic waves. Here we describe the application of periodic foundations for the seismic protection of nuclear power plants, in particular small modular reactors (SMR). For this purpose, a large-scale shake table test on a one-dimensional (1D) periodic foundation supporting an SMR building model was conducted. The 1D periodic foundation was designed and fabricated using reinforced concrete and synthetic rubber (polyurethane) materials. The 1D periodic foundation structural system was tested under various input waves, which include white noise, stepped sine and seismic waves in the horizontal and vertical directions as well as in the torsional mode. The shake table test results show that the 1D periodic foundation can reduce the acceleration response (transmissibility) of the SMR building up to 90%. In addition, the periodic foundation-isolated structure also exhibited smaller displacement than the non-isolated SMR building. This study indicates that the challenge faced in developing metastructures can be overcome and the periodic foundations can be applied to isolating vibration response of engineering structures.
NASA Astrophysics Data System (ADS)
Sandalski, Stou
Smooth particle hydrodynamics is an efficient method for modeling the dynamics of fluids. It is commonly used to simulate astrophysical processes such as binary mergers. We present a newly developed GPU accelerated smooth particle hydrodynamics code for astrophysical simulations. The code is named
Facilities for microgravity combustion research
NASA Technical Reports Server (NTRS)
Sacksteder, Kurt R.
1988-01-01
Combustion science and applications have benefited in unforeseen ways from experimental research performed in the low-gravity environment. The capability to control for the first time the influence of gravitational buoyancy has provided some insight into soot formation in droplet combustion, the nature of flammability limits in premixed gases, and the relationship between normal-gravity and low-gravity material flammability that may influence how materials are best selected for routine use in habitable spacecraft. The opportunity to learn about these complex phenomena is derived from the control of the ambient body-force field and, perhaps as importantly, the simplified boundary conditions that can be established in well designed low-gravity combustion experiments. A description of the test facilities and typical experimental apparatus are provided; and conceptual plans for a Space Station Freedom capability, the Modular Combustion Facility, are described.
Normal gravity field in relativistic geodesy
NASA Astrophysics Data System (ADS)
Kopeikin, Sergei; Vlasov, Igor; Han, Wen-Biao
2018-02-01
Modern geodesy is subject to a dramatic change from the Newtonian paradigm to Einstein's theory of general relativity. This is motivated by the ongoing advance in development of quantum sensors for applications in geodesy including quantum gravimeters and gradientometers, atomic clocks and fiber optics for making ultra-precise measurements of the geoid and multipolar structure of the Earth's gravitational field. At the same time, very long baseline interferometry, satellite laser ranging, and global navigation satellite systems have achieved an unprecedented level of accuracy in measuring 3-d coordinates of the reference points of the International Terrestrial Reference Frame and the world height system. The main geodetic reference standard to which gravimetric measurements of the of Earth's gravitational field are referred is a normal gravity field represented in the Newtonian gravity by the field of a uniformly rotating, homogeneous Maclaurin ellipsoid of which mass and quadrupole momentum are equal to the total mass and (tide-free) quadrupole moment of Earth's gravitational field. The present paper extends the concept of the normal gravity field from the Newtonian theory to the realm of general relativity. We focus our attention on the calculation of the post-Newtonian approximation of the normal field that is sufficient for current and near-future practical applications. We show that in general relativity the level surface of homogeneous and uniformly rotating fluid is no longer described by the Maclaurin ellipsoid in the most general case but represents an axisymmetric spheroid of the fourth order with respect to the geodetic Cartesian coordinates. At the same time, admitting a post-Newtonian inhomogeneity of the mass density in the form of concentric elliptical shells allows one to preserve the level surface of the fluid as an exact ellipsoid of rotation. We parametrize the mass density distribution and the level surface with two parameters which are intrinsically connected to the existence of the residual gauge freedom, and derive the post-Newtonian normal gravity field of the rotating spheroid both inside and outside of the rotating fluid body. The normal gravity field is given, similarly to the Newtonian gravity, in a closed form by a finite number of the ellipsoidal harmonics. We employ transformation from the ellipsoidal to spherical coordinates to deduce a more conventional post-Newtonian multipolar expansion of scalar and vector gravitational potentials of the rotating spheroid. We compare these expansions with that of the normal gravity field generated by the Kerr metric and demonstrate that the Kerr metric has a fairly limited application in relativistic geodesy as it does not match the normal gravity field of the Maclaurin ellipsoid already in the Newtonian limit. We derive the post-Newtonian generalization of the Somigliana formula for the normal gravity field measured on the surface of the rotating spheroid and employed in practical work for measuring Earth's gravitational field anomalies. Finally, we discuss the possible choice of the gauge-dependent parameters of the normal gravity field model for practical applications and compare it with the existing EGM2008 model of a gravitational field.
Accurate computation of gravitational field of a tesseroid
NASA Astrophysics Data System (ADS)
Fukushima, Toshio
2018-02-01
We developed an accurate method to compute the gravitational field of a tesseroid. The method numerically integrates a surface integral representation of the gravitational potential of the tesseroid by conditionally splitting its line integration intervals and by using the double exponential quadrature rule. Then, it evaluates the gravitational acceleration vector and the gravity gradient tensor by numerically differentiating the numerically integrated potential. The numerical differentiation is conducted by appropriately switching the central and the single-sided second-order difference formulas with a suitable choice of the test argument displacement. If necessary, the new method is extended to the case of a general tesseroid with the variable density profile, the variable surface height functions, and/or the variable intervals in longitude or in latitude. The new method is capable of computing the gravitational field of the tesseroid independently on the location of the evaluation point, namely whether outside, near the surface of, on the surface of, or inside the tesseroid. The achievable precision is 14-15 digits for the potential, 9-11 digits for the acceleration vector, and 6-8 digits for the gradient tensor in the double precision environment. The correct digits are roughly doubled if employing the quadruple precision computation. The new method provides a reliable procedure to compute the topographic gravitational field, especially that near, on, and below the surface. Also, it could potentially serve as a sure reference to complement and elaborate the existing approaches using the Gauss-Legendre quadrature or other standard methods of numerical integration.
NASA Astrophysics Data System (ADS)
Bulyzhenkov, I. E.
2018-02-01
Translational ordering of the internal kinematic chaos provides the Special Relativity referents for the geodesic motion of warm thermodynamical bodies. Taking identical mathematics, relativistic physics of the low speed transport of time-varying heat-energies differs from Newton's physics of steady masses without internal degrees of freedom. General Relativity predicts geodesic changes of the internal heat-energy variable under the free gravitational fall and the geodesic turn in the radial field center. Internal heat variations enable cyclic dynamics of decelerated falls and accelerated takeoffs of inertial matter and its structural self-organization. The coordinate speed of the ordered spatial motion takes maximum under the equipartition of relativistic internal and translational kinetic energies. Observable predictions are discussed for verification/falsification of the principle of equipartition as a new basic for the ordered motion and self-organization in external fields, including gravitational, electromagnetic, and thermal ones.
Spatial and physical frames of reference in positioning a limb.
Garrett, S R; Pagano, C; Austin, G; Turvey, M T
1998-10-01
Splints attached to the right forearm were used to rotate the forearm's physical reference frame, as defined by the eigenvectors of its inertia tensor, relative to its spatial reference frame. In two experiments, when subjects were required to orient the forearm parallel to, or at 45 degrees to, the environmental horizontal, they produced limb orientations that were systematically deflected from the forearm's longitudinal spatial axis in the direction of the forearm's physical axes. The position sense seems to be based on inertial eigenvectors rather than on joint angles or gravitational torques.
SIRU development. Volume 1: System development
NASA Technical Reports Server (NTRS)
Gilmore, J. P.; Cooper, R. J.
1973-01-01
A complete description of the development and initial evaluation of the Strapdown Inertial Reference Unit (SIRU) system is reported. System development documents the system mechanization with the analytic formulation for fault detection and isolation processing structure; the hardware redundancy design and the individual modularity features; the computational structure and facilities; and the initial subsystem evaluation results.
Stress Analysis of Pallet Lever Shaft
1976-03-01
ductile, plastic failure. 34 ^Ki’ ■^ ’- l^f. REFERENCES 1. L. Farace , "Runaway Escapement Redesign M125A1 Modular Booster", Tech... Farace 1 Attn: MDC 1 Attn: MDC-A, Mr. F. Shinaly 1 Attn: MDM 1 Attn: MDS 1 Attn: MDS-S 1 Attn: FI 1 Attn: MT Frankford Arsenal (Cont) 1
Technology survey of computer software as applicable to the MIUS project
NASA Technical Reports Server (NTRS)
Fulbright, B. E.
1975-01-01
Existing computer software, available from either governmental or private sources, applicable to modular integrated utility system program simulation is surveyed. Several programs and subprograms are described to provide a consolidated reference, and a bibliography is included. The report covers the two broad areas of design simulation and system simulation.
ERIC Educational Resources Information Center
Wyne, Mudasser F.
2010-01-01
It is hard to define a single set of ethics that will cover an entire computer users community. In this paper, the issue is addressed in reference to code of ethics implemented by various professionals, institutes and organizations. The paper presents a higher level model using hierarchical approach. The code developed using this approach could be…
Distributed utility technology cost, performance, and environmental characteristics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan, Y; Adelman, S
1995-06-01
Distributed Utility (DU) is an emerging concept in which modular generation and storage technologies sited near customer loads in distribution systems and specifically targeted demand-side management programs are used to supplement conventional central station generation plants to meet customer energy service needs. Research has shown that implementation of the DU concept could provide substantial benefits to utilities. This report summarizes the cost, performance, and environmental and siting characteristics of existing and emerging modular generation and storage technologies that are applicable under the DU concept. It is intended to be a practical reference guide for utility planners and engineers seeking informationmore » on DU technology options. This work was funded by the Office of Utility Technologies of the US Department of Energy.« less
Topics in the Detection of Gravitational Waves from Compact Binary Inspirals
NASA Astrophysics Data System (ADS)
Kapadia, Shasvath Jagat
Orbiting compact binaries - such as binary black holes, binary neutron stars and neutron star-black hole binaries - are among the most promising sources of gravitational waves observable by ground-based interferometric detectors. Despite numerous sophisticated engineering techniques, the gravitational wave signals will be buried deep within noise generated by various instrumental and environmental processes, and need to be extracted via a signal processing technique referred to as matched filtering. Matched filtering requires large banks of signal templates that are faithful representations of the true gravitational waveforms produced by astrophysical binaries. The accurate and efficient production of templates is thus crucial to the success of signal processing and data analysis. To that end, the dissertation presents a numerical technique that calibrates existing analytical (Post-Newtonian) waveforms, which are relatively inexpensive, to more accurate fiducial waveforms that are computationally expensive to generate. The resulting waveform family is significantly more accurate than the analytical waveforms, without incurring additional computational costs of production. Certain kinds of transient background noise artefacts, called "glitches'', can masquerade as gravitational wave signals for short durations and throw-off the matched-filter algorithm. Identifying glitches from true gravitational wave signals is a highly non-trivial exercise in data analysis which has been attempted with varying degrees of success. We present here a machine-learning based approach that exploits the various attributes of glitches and signals within detector data to provide a classification scheme that is a significant improvement over previous methods. The dissertation concludes by investigating the possibility of detecting a non-linear DC imprint, called the Christodoulou memory, produced in the arms of ground-based interferometers by the recently detected gravitational waves. The memory, which is even smaller in amplitude than the primary (detected) gravitational waves, will almost certainly not be seen in the current detection event. Nevertheless, future space-based detectors will likely be sensitive enough to observe the memory.
NASA Astrophysics Data System (ADS)
Vershkov, A. N.; Petrovskaya, M. S.
2016-11-01
The series in ellipsoidal harmonics for derivatives of the Earth's gravity potential are used only on the reference ellipsoid enveloping the Earth due to their very complex mathematical structure. In the current study, the series in ellipsoidal harmonics are constructed for first- and second-order derivatives of the potential at satellite altitudes; their structure is similar to the series on the reference ellipsoid. The point P is chosen at a random satellite altitude; then, the ellipsoid of revolution is described, which passes through this point and is confocal to the reference ellipsoid. An object-centered coordinate system with the origin at the point P is considered. Using a sequence of transformations, the nonsingular series in ellipsoidal harmonics is constructed for first and second derivatives of the potential in the object-centered coordinate system. These series can be applied to develop a model of the Earth's potential, based on combined use of surface gravitational force measurements, data on the satellite orbital position, its acceleration, or measurements of the gravitational force gradients of the first and second order. The technique is applicable to any other planet of the Solar System.
Optimizing signal recycling for detecting a stochastic gravitational-wave background
NASA Astrophysics Data System (ADS)
Tao, Duo; Christensen, Nelson
2018-06-01
Signal recycling is applied in laser interferometers such as the Advanced Laser Interferometer Gravitational-Wave Observatory (aLIGO) to increase their sensitivity to gravitational waves. In this study, signal recycling configurations for detecting a stochastic gravitational wave background are optimized based on aLIGO parameters. Optimal transmission of the signal recycling mirror (SRM) and detuning phase of the signal recycling cavity under a fixed laser power and low-frequency cutoff are calculated. Based on the optimal configurations, the compatibility with a binary neutron star (BNS) search is discussed. Then, different laser powers and low-frequency cutoffs are considered. Two models for the dimensionless energy density of gravitational waves , the flat model and the model, are studied. For a stochastic background search, it is found that an interferometer using signal recycling has a better sensitivity than an interferometer not using it. The optimal stochastic search configurations are typically found when both the SRM transmission and the signal recycling detuning phase are low. In this region, the BNS range mostly lies between 160 and 180 Mpc. When a lower laser power is used the optimal signal recycling detuning phase increases, the optimal SRM transmission increases and the optimal sensitivity improves. A reduced low-frequency cutoff gives a better sensitivity limit. For both models of , a typical optimal sensitivity limit on the order of 10‑10 is achieved at a reference frequency of Hz.
NASA Astrophysics Data System (ADS)
Romero, Pilar; Barderas, Gonzalo; Mejuto, Javier
2018-05-01
We present a qualitative analysis in a phase space to determine the longitudinal equilibrium positions on the planetary stationary orbits by applying an analytical model that considers linear gravitational perturbations. We discuss how these longitudes are related with the orientation of the planetary principal inertia axes with respect to their Prime Meridians, and then we use this determination to derive their positions with respect to the International Celestial Reference Frame. Finally, a numerical analysis of the non-linear effects of the gravitational fields on the equilibrium point locations is developed and their correlation with gravity field anomalies shown.
NASA Astrophysics Data System (ADS)
Herrera, L.
2018-02-01
We put forward a new definition of complexity, for static and spherically symmetric self-gravitating systems, based on a quantity, hereafter referred to as complexity factor, that appears in the orthogonal splitting of the Riemann tensor, in the context of general relativity. We start by assuming that the homogeneous (in the energy density) fluid, with isotropic pressure is endowed with minimal complexity. For this kind of fluid distribution, the value of complexity factor is zero. So, the rationale behind our proposal for the definition of complexity factor stems from the fact that it measures the departure, in the value of the active gravitational mass (Tolman mass), with respect to its value for a zero complexity system. Such departure is produced by a specific combination of energy density inhomogeneity and pressure anisotropy. Thus, zero complexity factor may also be found in self-gravitating systems with inhomogeneous energy density and anisotropic pressure, provided the effects of these two factors, on the complexity factor, cancel each other. Some exact interior solutions to the Einstein equations satisfying the zero complexity criterium are found, and prospective applications of this newly defined concept, to the study of the structure and evolution of compact objects, are discussed.
Controller Design for the ST7 Disturbance Reduction System
NASA Technical Reports Server (NTRS)
Maghami, Peiman; Markley, F. Landis; Dennehey, Neil; Houghton, Martin B.; Folkner, William M.; Bauer, Frank (Technical Monitor)
2002-01-01
The Space Technology 7 experiment will perform an on-orbit system-level validation of two specific Disturbance Reduction System technologies: a gravitational reference sensor employing a free-floating test mass and a set of micro-Newton colloidal thrusters. The Disturbance Reduction System is designed to maintain a spacecraft's position with respect to the free-floating test mass to less than 10 nm/ square root of Hz, over the frequency range 10(exp -3) Hz to 10(exp -2) Hz. This paper presents the design and analysis of the coupled drag-free and attitude control system that closes the loop between the gravitational reference sensor and the micro-Newton thrusters while incorporating star tracker data at low frequencies. The effects of actuation and measurement noise and disturbances on the spacecraft and test masses are evaluated in a seven-degree-of-freedom planar model incorporating two translational and one rotational degrees of freedom for the spacecraft and two translational degrees of freedom for each test mass.
Design and Analysis of the ST7 Disturbance Reduction System (DRS) Spacecraft Controller
NASA Technical Reports Server (NTRS)
Maghami, P. G.; Markley, F. L.; Houghton, M. B.; Dennehy, C. J.
2003-01-01
The Space Technology 7 experiment will perform an on-orbit system-level validation of two specific Disturbance Reduction System technologies: a gravitational reference sensor employing a free-floating test mass and a set of micronewton colloidal thrusters. The Disturbance Reduction System is designed to maintain a spacecraft's position with respect to the free-floating test mass to less than 10 nm/square root of Hz, over the frequency range 10(exp -3) Hz to 10(exp -2) Hz. This paper presents the design and analysis of the coupled drag-free and attitude control system that closes the loop between the gravitational reference sensor and the micronewton thrusters while incorporating star tracker data at low frequencies. The effects of actuation and measurement noise and disturbances on the spacecraft and test masses are evaluated in a seven-degree-of-freedom planar model incorporating two translational and one rotational degrees of freedom for the spacecraft and two translational degrees of freedom for each test mass.
Cerebellar re-encoding of self-generated head movements
Dugué, Guillaume P; Tihy, Matthieu; Gourévitch, Boris; Léna, Clément
2017-01-01
Head movements are primarily sensed in a reference frame tied to the head, yet they are used to calculate self-orientation relative to the world. This requires to re-encode head kinematic signals into a reference frame anchored to earth-centered landmarks such as gravity, through computations whose neuronal substrate remains to be determined. Here, we studied the encoding of self-generated head movements in the rat caudal cerebellar vermis, an area essential for graviceptive functions. We found that, contrarily to peripheral vestibular inputs, most Purkinje cells exhibited a mixed sensitivity to head rotational and gravitational information and were differentially modulated by active and passive movements. In a subpopulation of cells, this mixed sensitivity underlay a tuning to rotations about an axis defined relative to gravity. Therefore, we show that the caudal vermis hosts a re-encoded, gravitationally polarized representation of self-generated head kinematics in freely moving rats. DOI: http://dx.doi.org/10.7554/eLife.26179.001 PMID:28608779
NASA's plans for life sciences research facilities on a Space Station
NASA Technical Reports Server (NTRS)
Arno, R.; Heinrich, M.; Mascy, A.
1984-01-01
A Life Sciences Research Facility on a Space Station will contribute to the health and well-being of humans in space, as well as address many fundamental questions in gravitational and developmental biology. Scientific interests include bone and muscle attrition, fluid and electrolyte shifts, cardiovascular deconditioning, metabolism, neurophysiology, reproduction, behavior, drugs and immunology, radiation biology, and closed life-support system development. The life sciences module will include a laboratory and a vivarium. Trade-offs currently being evaluated include (1) the need for and size of a 1-g control centrifuge; (2) specimen quantities and species for research; (3) degree of on-board analysis versus sample return and ground analysis; (4) type and extent of equipment automation; (5) facility return versus on-orbit refurbishment; (6) facility modularity, isolation, and system independence; and (7) selection of experiments, design, autonomy, sharing, compatibility, and integration.
Inside out: meet the operators inside the horizon. On bulk reconstruction behind causal horizons
NASA Astrophysics Data System (ADS)
Almheiri, Ahmed; Anous, Tarek; Lewkowycz, Aitor
2018-01-01
Based on the work of Heemskerk, Marolf, Polchinski and Sully (HMPS), we study the reconstruction of operators behind causal horizons in time dependent geometries obtained by acting with shockwaves on pure states or thermal states. These geometries admit a natural basis of gauge invariant operators, namely those geodesically dressed to the boundary along geodesics which emanate from the bifurcate horizon at constant Rindler time. We outline a procedure for obtaining operators behind the causal horizon but inside the entanglement wedge by exploiting the equality between bulk and boundary time evolution, as well as the freedom to consider the operators evolved by distinct Hamiltonians. This requires we carefully keep track of how the operators are gravitationally dressed and that we address issues regarding background dependence. We compare this procedure to reconstruction using modular flow, and illustrate some formal points in simple cases such as AdS2 and AdS3.
The Value Estimation of an HFGW Frequency Time Standard for Telecommunications Network Optimization
NASA Astrophysics Data System (ADS)
Harper, Colby; Stephenson, Gary
2007-01-01
The emerging technology of gravitational wave control is used to augment a communication system using a development roadmap suggested in Stephenson (2003) for applications emphasized in Baker (2005). In the present paper consideration is given to the value of a High Frequency Gravitational Wave (HFGW) channel purely as providing a method of frequency and time reference distribution for use within conventional Radio Frequency (RF) telecommunications networks. Specifically, the native value of conventional telecommunications networks may be optimized by using an unperturbed frequency time standard (FTS) to (1) improve terminal navigation and Doppler estimation performance via improved time difference of arrival (TDOA) from a universal time reference, and (2) improve acquisition speed, coding efficiency, and dynamic bandwidth efficiency through the use of a universal frequency reference. A model utilizing a discounted cash flow technique provides an estimation of the additional value using HFGW FTS technology could bring to a mixed technology HFGW/RF network. By applying a simple net present value analysis with supporting reference valuations to such a network, it is demonstrated that an HFGW FTS could create a sizable improvement within an otherwise conventional RF telecommunications network. Our conservative model establishes a low-side value estimate of approximately 50B USD Net Present Value for an HFGW FTS service, with reasonable potential high-side values to significant multiples of this low-side value floor.
A Celestial Reference Frame at X/ka-Band (8.4/32 Ghz) for Deep Space Navigation
NASA Technical Reports Server (NTRS)
Jacobs, C. S.; Clark, J. E.; Garcia-Miro, C.; Horiuchi, S.; Romero-Wolf, A.; Snedeker, L.; Sotuela, I.
2012-01-01
Deep space tracking and navigation are done in a quasi-inertial reference frame based upon the angular positions of distant active galactic nuclei (AGN). These objects, which are found at extreme distances characterized by median redshifts of z = 1, are ideal for reference frame definition because they exhibit no measurable parallax or proper motion. They are thought to be powered by super massive black holes whose gravitational energy drives galactic sized relativistic jets. These jets produce synchrotron emissions which are detectable by modern radio techniques such as Very Long baseline Interferometry (VLBI).
Reference Frames in Relativistic Space-Time
NASA Astrophysics Data System (ADS)
Soffel, M.; Herold, H.; Ruder, H.; Schneider, M.
Three fundamental concepts of reference frames in relativistic space-time are confronted: 1. the gravitation compass, 2. the stellar compass and 3. the inertial compass. It is argued that under certain conditions asymptotically fixed (stellar) reference frames can be introduced with the same rigour as local Fermi frames, thereby eliminating one possible psychological reason why the importance of Fermi frames frequently has been overestimated in the past. As applications of these three concepts the authors discuss: 1. a relativistic definition of the geoid, 2. a relativistic astrometric problem and 3. the post-Newtonian theory of a laser gyroscope fixed to the Earth's surface.
Twin Paradox: A Complete Treatment from the Point of View of Each Twin.
ERIC Educational Resources Information Center
Perrin, Robert
1979-01-01
Modifies and expands on the treatment of the twin paradox by solving the gravitational field equations and geodesic equations of motion in the traveling twin's reference frame, thus determining the time elapsed on the Earth during the periods of acceleration. (Author/GA)
A modular case-mix classification system for medical rehabilitation illustrated.
Stineman, M G; Granger, C V
1997-01-01
The authors present a modular set of patient classification systems designed for medical rehabilitation that predict resource use and outcomes for clinically similar groups of individuals. The systems, based on the Functional Independence Measure, are referred to as Function-Related Groups (FIM-FRGs). Using data from 23,637 lower extremity fracture patients from 458 inpatient medical rehabilitation facilities, 1995 benchmarks are provided and illustrated for length of stay, functional outcome, and discharge to home and skilled nursing facilities (SNFs). The FIM-FRG modules may be used in parallel to study interactions between resource use and quality and could ultimately yield an integrated strategy for payment and outcomes measurement. This could position the rehabilitation community to take a pioneering role in the application of outcomes-based clinical indicators.
NASA Technical Reports Server (NTRS)
1992-01-01
The Space Station Furnace Facility (SSFF) is a modular facility for materials research in the microgravity environment of the Space Station Freedom (SSF). The SSFF is designed for crystal growth and solidification research in the fields of electronic and photonic materials, metals and alloys, and glasses and ceramics and will allow for experimental determination of the role of gravitational forces in the solidification process. The facility will provide a capability for basic scientific research and will evaluate the commercial viability of low-gravity processing of selected technologically important materials. The facility is designed to support a complement of furnace modules as outlined in the Science Capabilities Requirements Document (SCRD). The SSFF is a three rack facility that provides the functions, interfaces, and equipment necessary for the processing of the furnaces and consists of two main parts: the SSFF Core Rack and the two Experiment Racks. The facility is designed to accommodate two experimenter-provided furnace modules housed within the two experiment racks, and is designed to operate these two furnace modules simultaneously. The SCRD specifies a wide range of furnace requirements and serves as the basis for the SSFF conceptual design. SSFF will support automated processing during the man-tended operations and is also designed for crew interface during the permanently manned configuration. The facility is modular in design and facilitates changes as required, so the SSFF is adept to modifications, maintenance, reconfiguration, and technology evolution.
Frequency References for Gravitational Wave Missions
NASA Technical Reports Server (NTRS)
Preston, Alix; Thrope, J. I.; Donelan, D.; Miner, L.
2012-01-01
The mitigation of laser frequency noise is an important aspect of interferometry for LISA-like missions. One portion of the baseline mitigation strategy in LISA is active stabilization utilizing opto-mechanical frequency references. The LISA optical bench is an attractive place to implement such frequency references due to its environmental stability and its access to primary and redundant laser systems. We have made an initial investigation of frequency references constructed using the techniques developed for the LISA and LISA Pathfinder optical benches. Both a Mach-Zehnder interferometer and triangular Fabry-Perot cavity have been successfully bonded to a Zerodur baseplate using the hydroxide bonding method. We will describe the construction of the bench along with preliminary stability results.
Four dimensional studies in earth space
NASA Technical Reports Server (NTRS)
Mather, R. S.
1972-01-01
A system of reference which is directly related to observations, is proposed for four-dimensional studies in earth space. Global control network and polar wandering are defined. The determination of variations in the earth's gravitational field with time also forms part of such a system. Techniques are outlined for the unique definition of the motion of the geocenter, and the changes in the location of the axis of rotation of an instantaneous earth model, in relation to values at some epoch of reference. The instantaneous system referred to is directly related to a fundamental equation in geodynamics. The reference system defined would provide an unambiguous frame for long period studies in earth space, provided the scale of the space were specified.
Development of an unmanned maritime system reference architecture
NASA Astrophysics Data System (ADS)
Duarte, Christiane N.; Cramer, Megan A.; Stack, Jason R.
2014-06-01
The concept of operations (CONOPS) for unmanned maritime systems (UMS) continues to envision systems that are multi-mission, re-configurable and capable of acceptable performance over a wide range of environmental and contextual variability. Key enablers for these concepts of operation are an autonomy module which can execute different mission directives and a mission payload consisting of re-configurable sensor or effector suites. This level of modularity in mission payloads enables affordability, flexibility (i.e., more capability with future platforms) and scalability (i.e., force multiplication). The modularity in autonomy facilitates rapid technology integration, prototyping, testing and leveraging of state-of-the-art advances in autonomy research. Capability drivers imply a requirement to maintain an open architecture design for both research and acquisition programs. As the maritime platforms become more stable in their design (e.g. unmanned surface vehicles, unmanned underwater vehicles) future developments are able to focus on more capable sensors and more robust autonomy algorithms. To respond to Fleet needs, given an evolving threat, programs will want to interchange the latest sensor or a new and improved algorithm in a cost effective and efficient manner. In order to make this possible, the programs need a reference architecture that will define for technology providers where their piece fits and how to successfully integrate. With these concerns in mind, the US Navy established the Unmanned Maritime Systems Reference Architecture (UMS-RA) Working Group in August 2011. This group consists of Department of Defense and industry participants working the problem of defining reference architecture for autonomous operations of maritime systems. This paper summarizes its efforts to date.
Possible Space-Based Gravitational-Wave Observatory Mission Concept
NASA Technical Reports Server (NTRS)
Livas, Jeffrey C.
2015-01-01
The existence of gravitational waves was established by the discovery of the Binary Pulsar PSR 1913+16 by Hulse and Taylor in 1974, for which they were awarded the 1983 Nobel Prize. However, it is the exploitation of these gravitational waves for the extraction of the astrophysical parameters of the sources that will open the first new astronomical window since the development of gamma ray telescopes in the 1970's and enable a new era of discovery and understanding of the Universe. Direct detection is expected in at least two frequency bands from the ground before the end of the decade with Advanced LIGO and Pulsar Timing Arrays. However, many of the most exciting sources will be continuously observable in the band from 0.1-100 mHz, accessible only from space due to seismic noise and gravity gradients in that band that disturb groundbased observatories. This talk will discuss a possible mission concept developed from the original Laser Interferometer Space Antenna (LISA) reference mission but updated to reduce risk and cost.
All-sky search for periodic gravitational waves in the O1 LIGO data
NASA Astrophysics Data System (ADS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bawaj, M.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, H.-P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciecielag, P.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, E.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Canton, T. Dal; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Deelman, E.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorosh, O.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Duncan, J.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gabel, M.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garufi, F.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J.-M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, W.; Kim, W. S.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Liu, W.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mayani, R.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pisarski, A.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Ramirez, K. E.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Rynge, M.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tao, D.; Tápai, M.; Taracchini, A.; Taylor, J. A.; Taylor, R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trembath-Reichert, S.; Trifirò, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahi, K.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, M.; Wang, Y.-F.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.-H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2017-09-01
We report on an all-sky search for periodic gravitational waves in the frequency band 20-475 Hz and with a frequency time derivative in the range of [-1.0 ,+0.1 ] ×10-8 Hz /s . Such a signal could be produced by a nearby spinning and slightly nonaxisymmetric isolated neutron star in our galaxy. This search uses the data from Advanced LIGO's first observational run, O1. No periodic gravitational wave signals were observed, and upper limits were placed on their strengths. The lowest upper limits on worst-case (linearly polarized) strain amplitude h0 are ˜4 ×10-25 near 170 Hz. For a circularly polarized source (most favorable orientation), the smallest upper limits obtained are ˜1.5 ×10-25. These upper limits refer to all sky locations and the entire range of frequency derivative values. For a population-averaged ensemble of sky locations and stellar orientations, the lowest upper limits obtained for the strain amplitude are ˜2.5 ×10-25.
Gravitational Neurobiology of Fish
NASA Astrophysics Data System (ADS)
Rahmann, H.; Anken, R. H.
In vertebrates (including man), altered gravitational environments such as weightlessness can induce malfunctions of the inner ears, based on irregular movements of the semicircular cristae or on dislocations of the inner ear otoliths from the corresponding sensory epithelia. This will lead to illusionary tilts, since the vestibular inputs are not confirmed by the other sensory organs, which results in an intersensory conflict. Vertebrates in orbit therefore face severe orientation problems. In humans, the intersensory conflict may additionally lead to a malaise, commonly referred to as space motion sickness (SMS), a kinetosis. During the first days at weightlessness, the orientation problems (and SMS) disappear, since the brain develops a new compensatory interpretation of the available sensory data. The present review reports on the neurobiological responses - particularly of fish - observed at altered gravitational states, concerning behaviour and neuroplastic reactivities. Recent investigations employing microgravity (spaceflight, parabolic aircraft flights, clinostat) and hyper-gravity (laboratory centrifuges as ground based research tools) yielded clues and insights into the understanding of the respective basic phenomena
Buchdahl compactness limit for a pure Lovelock static fluid star
NASA Astrophysics Data System (ADS)
Dadhich, Naresh; Chakraborty, Sumanta
2017-03-01
We obtain the Buchdahl compactness limit for a pure Lovelock static fluid star and verify that the limit following from the uniform-density Schwarzschild's interior solution, which is universal irrespective of the gravitational theory (Einstein or Lovelock), is true in general. In terms of surface potential Φ (r ) , it means at the surface of the star r =r0, Φ (r0)<2 N (d -N -1 )/(d -1 )2, where d and N indicate spacetime dimensions and Lovelock order, respectively. For a given N , Φ (r0) is maximum for d =2 N +2 , while it is always 4 /9 , Buchdahl's limit, for d =3 N +1 . It is also remarkable that for N =1 Einstein gravity, or for pure Lovelock in d =3 N +1 , Buchdahl's limit is equivalent to the criterion that gravitational field energy exterior to the star must be less than half its gravitational mass, having no reference to the interior at all.
Direction of balance and perception of the upright are perceptually dissociable
Panic, Alexander Sacha; DiZio, Paul; Lackner, James R.
2015-01-01
We examined whether the direction of balance rather than an otolith reference determines the perceived upright. Participants seated in a device that rotated around the roll axis used a joystick to control its motion. The direction of balance of the device, the location where it would not be accelerated to either side, could be offset from the gravitational vertical, a technique introduced by Riccio, Martin, and Stoffregen (J Exp Psychol Hum Percept Perform 18: 624–644, 1992). Participants used the joystick to align themselves in different trials with the gravitational vertical, the direction of balance, the upright, or the direction that minimized oscillations. They pressed the joystick trigger whenever they thought they were at the instructed orientation. Achieved angles for the “align with gravity” and “align with the upright” conditions were not different from each other and were significantly displaced past the gravitational vertical opposite from the direction of balance. Mean indicated angles for align with gravity and align with the upright coincided with the gravitational vertical. Both mean achieved and indicated angles for the “minimize oscillations” and “align with the direction of balance” conditions were significantly deviated toward the gravitational vertical. Three control experiments requiring self-settings to instructed orientations only, perceptual judgments only, and perceptual judgments during passive exposure to dynamic roll profiles confirmed that perception of the upright is determined by gravity, not by the direction of balance. PMID:25761954
Laser Interferometry for Gravitational Wave Observation: LISA and LISA Pathfinder
NASA Technical Reports Server (NTRS)
Guzman, Felipe
2010-01-01
The Laser Interferometer Space Antenna (LISA) is a planned NASA-ESA gravitational wave observatory in the frequency range of 0.1mHz-100mHz. This observation band is inaccessible to ground-based detectors due to the large ground motions of the Earth. Gravitational wave sources for LISA include galactic binaries, mergers of supermasive black-hole binaries, extreme-mass-ratio inspirals, and possibly from as yet unimagined sources. LISA is a constellation of three spacecraft separated by 5 million km in an equilateral triangle, whose center follows the Earth in a heliocentric orbit with an orbital phase offset oF 20 degrees. Challenging technology is required to ensure pure geodetic trajectories of the six onboard test masses, whose distance fluctuations will be measured by interspacecraft laser interferometers with picometer accuracy. LISA Pathfinder is an ESA-launched technology demonstration mission of key LISA subsystems such us spacecraft control with micro-newton thrusters, test mass drag-free control, and precision laser interferometry between free-flying test masses. Ground testing of flight hardware of the Gravitational Reference Sensor and Optical Metrology subsystems of LISA Pathfinder is currently ongoing. An introduction to laser interferometric gravitational wave detection, ground-based observatories, and a detailed description of the two missions together with an overview of current investigations conducted by the community will bc discussed. The current status in development and implementation of LISA Pathfinder pre-flight systems and latest results of the ongoing ground testing efforts will also be presented
Gravitational lensing in quasar samples
NASA Astrophysics Data System (ADS)
Claeskens, Jean-François; Surdej, Jean
The first cosmic mirage was discovered approximately 20 years ago as the double optical counterpart of a radio source. This phenomenon had been predicted some 70 years earlier as a consequence of General Relativity. We present here a summary of what we have learnt since. The applications are so numerous that we had to concentrate on a few selected aspects of this new field of research. This review is focused on strong gravitational lensing, i.e. the formation of multiple images, in QSO samples. It is intended to give the reader an up-to-date status of the observations and to present an overview of its most interesting potential applications in cosmology and astrophysics, as well as numerous important results achieved so far. The first section follows an intuitive approach to the basics of gravitational lensing and is developed in view of our interest in multiply imaged quasars. The astrophysical and cosmological applications of gravitational lensing are outlined in Sect. 2 and the most important results are presented in Sect. 5. Sections 3 and 4 are devoted to the observations. Finally, conclusions are summarized in the last section. We have tried to avoid duplication with existing (and excellent) introductions to the field of gravitational lensing. For this reason, we did not concentrate on the individual properties of specific lens models, as these are already well presented in Narayan and Bartelmann (1996) and on a more intuitive ground in Refsdal and Surdej (1994). Wambsganss (1998) proposes a broad view on gravitational lensing in astronomy; the reviews by Fort and Mellier (1994) and Hattori et al. (1999) deal with lensing by galaxy clusters; microlensing in the Galaxy and the local group is reviewed by Paczynski (1996) and a general panorama on weak lensing is given by Bartelmann and Schneider (1999) and Mellier (1999). The monograph on the theory of gravitational lensing by Schneider, Ehlers and Falco (1992) also remains a reference in the field.
Fast Solvers for Moving Material Interfaces
2008-01-01
interface method—with the semi-Lagrangian contouring method developed in References [16–20]. We are now finalizing portable C / C ++ codes for fast adaptive ...stepping scheme couples a CIR predictor with a trapezoidal corrector using the velocity evaluated from the CIR approximation. It combines the...formula with efficient geometric algorithms and fast accurate contouring techniques. A modular adaptive implementation with fast new geometry modules
Gregory Elmes; Thomas Millette; Charles B. Yuill
1991-01-01
GypsES, a decision-support and expert system for the management of Gypsy Moth addresses five related research problems in a modular, computer-based project. The modules are hazard rating, monitoring, prediction, treatment decision and treatment implementation. One common component is a geographic information system designed to function intelligently. We refer to this...
Best, Raymond; Böhle, Caroline; Schiffer, Thorsten; Petersen, Wolf; Ellermann, Andree; Brueggemann, Gert Peter; Liebau, Christian
2015-07-01
Purpose of the study was the evaluation of the early functional outcome of patients with an acute ankle sprain treated either with a semirigid, variable, phase-adapted modular ankle orthosis or an invariable orthotic reference device. Forty-seven patients with acute ankle sprain grade II or more were included. In addition, 77 healthy controls as a reference were investigated. The injured subjects were treated with one of the two devices by random for 6 weeks. Ankle scores (FAOS, AOFAS) were taken at baseline after injury, 1 and 3 months after injury. Functional performance tests (balance platform, zig zag run, shuttle run, vertical drop jump) were performed at 1 and 3 months after injury. No significant score differences could be found between the two intervention groups except for achieving a preinjury activity level after 3 months only in the modular orthosis group. Postural functional performances (balance test) also showed no significant differences whereas the results of the agility tests revealed small but significant better results in the modular orthosis group in comparison to the invariable orthosis group. Cohen's effect sizes were high. Differences between the two intervention groups were marginal and very small but significant and--regarding Cohen's effect sizes--effective. Especially relating to functional performance, this might be a careful indication that a more effective strategy for promoting a protected, rapid recovery to physical activity after ankle sprains might be achieved by applying a phase-adapted ankle orthosis. Especially in athletic patients, phase-adapted orthosis should be further investigated and considered to ensure fully protected ligament healing as well as to regain early functional recovery.
Detecting network communities beyond assortativity-related attributes
NASA Astrophysics Data System (ADS)
Liu, Xin; Murata, Tsuyoshi; Wakita, Ken
2014-07-01
In network science, assortativity refers to the tendency of links to exist between nodes with similar attributes. In social networks, for example, links tend to exist between individuals of similar age, nationality, location, race, income, educational level, religious belief, and language. Thus, various attributes jointly affect the network topology. An interesting problem is to detect community structure beyond some specific assortativity-related attributes ρ, i.e., to take out the effect of ρ on network topology and reveal the hidden community structures which are due to other attributes. An approach to this problem is to redefine the null model of the modularity measure, so as to simulate the effect of ρ on network topology. However, a challenge is that we do not know to what extent the network topology is affected by ρ and by other attributes. In this paper, we propose a distance modularity, which allows us to freely choose any suitable function to simulate the effect of ρ. Such freedom can help us probe the effect of ρ and detect the hidden communities which are due to other attributes. We test the effectiveness of distance modularity on synthetic benchmarks and two real-world networks.
Engineering modular ‘ON’ RNA switches using biological components
Ceres, Pablo; Trausch, Jeremiah J.; Batey, Robert T.
2013-01-01
Riboswitches are cis-acting regulatory elements broadly distributed in bacterial mRNAs that control a wide range of critical metabolic activities. Expression is governed by two distinct domains within the mRNA leader: a sensory ‘aptamer domain’ and a regulatory ‘expression platform’. Riboswitches have also received considerable attention as important tools in synthetic biology because of their conceptually simple structure and the ability to obtain aptamers that bind almost any conceivable small molecule using in vitro selection (referred to as SELEX). In the design of artificial riboswitches, a significant hurdle has been to couple the two domains enabling their efficient communication. We previously demonstrated that biological transcriptional ‘OFF’ expression platforms are easily coupled to diverse aptamers, both biological and SELEX-derived, using simple design rules. Here, we present two modular transcriptional ‘ON’ riboswitch expression platforms that are also capable of hosting foreign aptamers. We demonstrate that these biological parts can be used to facilely generate artificial chimeric riboswitches capable of robustly regulating transcription both in vitro and in vivo. We expect that these modular expression platforms will be of great utility for various synthetic biological applications that use RNA-based biosensors. PMID:23999097
NASA Astrophysics Data System (ADS)
Kiuchi, Kenta; Kawaguchi, Kyohei; Kyutoku, Koutarou; Sekiguchi, Yuichiro; Shibata, Masaru; Taniguchi, Keisuke
2017-10-01
Extending our previous studies, we perform high-resolution simulations of inspiraling binary neutron stars in numerical relativity. We thoroughly carry through a convergence study in our currently available computational resources with the smallest grid spacing of ≈63 - 86 meter for the neutron-star radius 10.9-13.7 km. The estimated total error in the gravitational-wave phase is of order 0.1 rad for the total phase of ≳210 rad in the last ˜15 - 16 inspiral orbits. We then compare the waveforms (without resolution extrapolation) with those calculated by the latest effective-one-body formalism (tidal SEOBv2 model referred to as TEOB model). We find that for any of our models of binary neutron stars, the waveforms calculated by the TEOB formalism agree with the numerical-relativity waveforms up to ≈3 ms before the peak of the gravitational-wave amplitude is reached: For this late inspiral stage, the total phase error is ≲0.1 rad . Although the gravitational waveforms have an inspiral-type feature for the last ˜3 ms , this stage cannot be well reproduced by the current TEOB formalism, in particular, for neutron stars with large tidal deformability (i.e., lager radius). The reason for this is described.
Problems of Construction of Black Holes and Traversed Wormholes in Various Theories of Gravity
NASA Astrophysics Data System (ADS)
Karbanovski, Valeri; Kairov, Taimuraz.; Melehina, Olga
In the framework of general relativity found new vacuum solutions [1,2] for the spherically symmetric non-static metrics as a constant source ("dynamic analog" gravitational radius), and a source in the form of time-dependent functions. In the latter case, the conditions for a smooth cross-linking with the original static metric. Within Post-Einstein theory of gravitation (PETG, [3]), is consider the variant with zero scalar curvature of space-time is considered. Found external solutions for spherically symmetric objects that allow a smooth stitching at distances slightly exceeding the gravitational radius of the source. We also show that in the studied approach the traversable vacuum wormholes can not be realized. In the theory of gravity with vacuum polarization (TGVP, [4]) built vacuum static spherically symmetric nonsingular solutions. At this the "polarization effects" appear only under the gravitational radius of the source. Also obtained metric describing the vacuum traversable wormhole. References begin{enumerate} Karbanovski V.V. et. al. - JETP, 2012, Vol. 115, No. 2, pp. 208-211. Karbanovski V.V. et. al. - JETP, 2012, Vol. 115, No. 4, pp. 733. Karbanovski V.V. et. al. - Class. Quantum Grav., 2012, Vol. 29, No. 6, 065007. Karbanovski V.V. et. al. - Acta Phys. Pol. B, 2011, Vol. 42, No.1, p. 171.
Inertia and Double Bending of Light from Equivalence
NASA Technical Reports Server (NTRS)
Shuler, Robert L., Jr.
2010-01-01
Careful examination of light paths in an accelerated reference frame, with use of Special Relativity, can account fully for the observed bending of light in a gravitational field, not just half of it as reported in 1911. This analysis also leads to a Machian formulation of inertia similar to the one proposed by Einstein in 1912 and later derived from gravitational field equations in Minkowsky Space by Sciama in 1953. There is a clear inference from equivalence that there is some type of inertial mass increase in a gravitational field. It is the purpose of the current paper to suggest that equivalence provides a more complete picture of gravitational effects than previously thought, correctly predicting full light bending, and that since the theory of inertia is derivable from equivalence, any theory based on equivalence must take account of it. Einstein himself clearly was not satisfied with the status of inertia in GRT, as our quotes have shown. Many have tried to account for inertia and met with less than success, for example Davidson s integration of Sciama s inertia into GRT but only for a steady state cosmology [10], and the Machian gravity theory of Brans and Dicke [11]. Yet Mach s idea hasn t gone away, and now it seems that it cannot go away without also disposing of equivalence.
NASA Astrophysics Data System (ADS)
Ardalan, A.; Safari, A.; Grafarend, E.
2003-04-01
An operational algorithm for computing the ellipsoidal terrain correction based on application of closed form solution of the Newton integral in terms of Cartesian coordinates in the cylindrical equal area map projected surface of a reference ellipsoid has been developed. As the first step the mapping of the points on the surface of a reference ellipsoid onto the cylindrical equal area map projection of a cylinder tangent to a point on the surface of reference ellipsoid closely studied and the map projection formulas are computed. Ellipsoidal mass elements with various sizes on the surface of the reference ellipsoid is considered and the gravitational potential and the vector of gravitational intensity of these mass elements has been computed via the solution of Newton integral in terms of ellipsoidal coordinates. The geographical cross section areas of the selected ellipsoidal mass elements are transferred into cylindrical equal area map projection and based on the transformed area elements Cartesian mass elements with the same height as that of the ellipsoidal mass elements are constructed. Using the close form solution of the Newton integral in terms of Cartesian coordinates the potential of the Cartesian mass elements are computed and compared with the same results based on the application of the ellipsoidal Newton integral over the ellipsoidal mass elements. The results of the numerical computations show that difference between computed gravitational potential of the ellipsoidal mass elements and Cartesian mass element in the cylindrical equal area map projection is of the order of 1.6 × 10-8m^2/s^2 for a mass element with the cross section size of 10 km × 10 km and the height of 1000 m. For a 1 km × 1 km mass element with the same height, this difference is less than 1.5 × 10-4 m^2}/s^2. The results of the numerical computations indicate that a new method for computing the terrain correction based on the closed form solution of the Newton integral in terms of Cartesian coordinates and with accuracy of ellipsoidal terrain correction has been achieved! In this way one can enjoy the simplicity of the solution of the Newton integral in terms of Cartesian coordinates and at the same time the accuracy of the ellipsoidal terrain correction, which is needed for the modern theory of geoid computations.
Reference Frames and the Physical Gravito-Electromagnetic Analogy
NASA Astrophysics Data System (ADS)
Costa, Luis Filipe P. O.; Herdeiro, C. A. R.
2009-05-01
The interest on the physical analogies between General Relativity and Electromagnetism has been revived by the recent Gravity Probe-B and the upcoming Lares missions, aiming to measure the so-called gravito-magnetic effects. These effects are presently believed to be at the origin of observed jets in quasars, galactic nuclei, neutron stars and black holes, as well as the precession of black holes' accretion disks. Gravitomagnetism has been studied mainly in a first order approximation ( e.g. [arXiv:gr-qc/0207065]) which, making use of certain similarities between linearized gravity and electromagnetism, applies intuition and well known results from electromagnetic phenomena to the description of the less familiar gravitational ones. However, there is no consensus at present on the limit of validity of such approach. Using a new exact approach based on tidal tensors [Phys. Rev. D 78, 024021 (2008)], we show that the existence of the aforementioned similarities depends crucially on the reference frame. Whereas a stationary observer will find remarkable similarities between the gravitational and electromagnetic interactions, if the fields are not stationary in the observer's rest frame, however, the two interactions differ significantly, so that the gravito-electromagnetic equations commonly found in literature are no longer valid. The tidal tensor formalism allows for a comparison between gravity and electromagnetism in terms of quantities common to both theories (tidal forces), making transparent both the similarities and key differences between the two interactions. It also unveils a new analogy based on exact, covariant, and fully general equations, which allows to extend the intuition from electromagnetism to the understanding of non-linear gravitational phenomena, such as the spin interaction between two celestial bodies, and Hawking's [Phys Rev. Lett. 26, 1344 (1971)] spin-dependent upper bound for the energy released by gravitational radiation when two black holes collide. Funded by Fundação para a Ciència e a Tecnologia, Grant SFRH/BD/41370/2007
Prototype color field sequential television lens assembly
NASA Technical Reports Server (NTRS)
1974-01-01
The design, development, and evaluation of a prototype modular lens assembly with a self-contained field sequential color wheel is presented. The design of a color wheel of maximum efficiency, the selection of spectral filters, and the design of a quiet, efficient wheel drive system are included. Design tradeoffs considered for each aspect of the modular assembly are discussed. Emphasis is placed on achieving a design which can be attached directly to an unmodified camera, thus permitting use of the assembly in evaluating various candidate camera and sensor designs. A technique is described which permits maintaining high optical efficiency with an unmodified camera. A motor synchronization system is developed which requires only the vertical synchronization signal as a reference frequency input. Equations and tradeoff curves are developed to permit optimizing the filter wheel aperture shapes for a variety of different design conditions.
Relativistic Transverse Gravitational Redshift
NASA Astrophysics Data System (ADS)
Mayer, A. F.
2012-12-01
The parametrized post-Newtonian (PPN) formalism is a tool for quantitative analysis of the weak gravitational field based on the field equations of general relativity. This formalism and its ten parameters provide the practical theoretical foundation for the evaluation of empirical data produced by space-based missions designed to map and better understand the gravitational field (e.g., GRAIL, GRACE, GOCE). Accordingly, mission data is interpreted in the context of the canonical PPN formalism; unexpected, anomalous data are explained as similarly unexpected but apparently real physical phenomena, which may be characterized as ``gravitational anomalies," or by various sources contributing to the total error budget. Another possibility, which is typically not considered, is a small modeling error in canonical general relativity. The concept of the idealized point-mass spherical equipotential surface, which originates with Newton's law of gravity, is preserved in Einstein's synthesis of special relativity with accelerated reference frames in the form of the field equations. It was not previously realized that the fundamental principles of relativity invalidate this concept and with it the idea that the gravitational field is conservative (i.e., zero net work is done on any closed path). The ideal radial free fall of a material body from arbitrarily-large range to a point on such an equipotential surface (S) determines a unique escape-velocity vector of magnitude v collinear to the acceleration vector of magnitude g at this point. For two such points on S separated by angle dφ , the Equivalence Principle implies distinct reference frames experiencing inertial acceleration of identical magnitude g in different directions in space. The complete equivalence of these inertially-accelerated frames to their analogous frames at rest on S requires evaluation at instantaneous velocity v relative to a local inertial observer. Because these velocity vectors are not parallel, a symmetric energy potential exists between the frames that is quantified by the instantaneous Δ {v} = v\\cdot{d}φ between them; in order for either frame to become indistinguishable from the other, such that their respective velocity and acceleration vectors are parallel, a change in velocity is required. While the qualitative features of general relativity imply this phenomenon (i.e., a symmetric potential difference between two points on a Newtonian `equipotential surface' that is similar to a friction effect), it is not predicted by the field equations due to a modeling error concerning time. This is an error of omission; time has fundamental geometric properties implied by the principles of relativity that are not reflected in the field equations. Where b is the radius and g is the gravitational acceleration characterizing a spherical geoid S of an ideal point-source gravitational field, an elegant derivation that rests on first principles shows that for two points at rest on S separated by a distance d << b, a symmetric relativistic redshift exists between these points of magnitude z = gd2/bc^2, which over 1 km at Earth sea level yields z ˜{10-17}. It can be tested with a variety of methods, in particular laser interferometry. A more sophisticated derivation yields a considerably more complex predictive formula for any two points in a gravitational field.
Preserving the Peach: Exploring Creativity in the Corporate Realm.
ERIC Educational Resources Information Center
Carrick, Moe
2000-01-01
Adventure consultation for businesses has the power and the tools to foster creative genius and grow corporate soul, to counteract the gravitational pull of corporate normalcy, referred to as the "corporate hairball." As the adventure consultant industry grows, it must beware of choking on its own hairballs. Five warning signs of…
Apollo-Soyuz Pamphlet No. 4: Gravitational Field. Apollo-Soyuz Experiments in Space.
ERIC Educational Resources Information Center
Page, Lou Williams; Page, Thornton
This booklet is the fourth in a series of nine that describe the Apollo-Soyuz mission and experiments. This set is designed as a curriculum supplement for teachers, supervisors, curriculum specialists, textbook writers, and the general public. These booklets provide sources of ideas, examples of the scientific method, references to standard…
Gravitational and Magnetic Anomaly Inversion Using a Tree-Based Geometry Representation
2009-06-01
find successive mini- ized vectors. Throughout this paper, the term iteration refers to a ingle loop through a stage of the global scheme, not...BOX 12211 RESEARCH TRIANGLE PARK NC 27709-2211 5 NAVAL RESEARCH LAB E R FRANCHI CODE 7100 M H ORR CODE 7120 J A BUCARO CODE 7130
NASA Astrophysics Data System (ADS)
Shelley, Ryan; Chilton, Andrew; Olatunde, Tawio; Ciani, Giacomo; Mueller, Guido; Conklin, John
2014-03-01
The Laser Interferometer Space Antenna (LISA) requires free falling test masses, whose acceleration must be below 3 fm/s2/rtHz in the lower part of LISA's frequency band ranging from 0.1 to 100 mHz. Gravitational reference sensors (GRS) house the test masses, shield them from external disturbances, control their orientation, and sense their position at the nm/rtHz level. The GRS torsion pendulum is a laboratory test bed for GRS technology. By decoupling the system of test masses from the gravity of the Earth, it is possible to identify and quantify many sources of noise in the sensor. The mechanical design of the pendulum is critical to the study of the noise sources and the development of new technologies that can improve performance and reduce cost. The suspended test mass is a hollow, gold-coated, aluminum cube which rests inside a gold-coated, aluminum housing with electrodes for sensing and actuating all six degrees of freedom. This poster describes the design, analysis, and assembly of the mechanical subsystems of the UF Torsion Pendulum.
NASA Astrophysics Data System (ADS)
Bassan, M.; Cavalleri, A.; De Laurentis, M.; De Marchi, F.; De Rosa, R.; Di Fiore, L.; Dolesi, R.; Finetti, N.; Garufi, F.; Grado, A.; Hueller, M.; Marconi, L.; Milano, L.; Minenkov, Y.; Pucacco, G.; Stanga, R.; Vetrugno, D.; Visco, M.; Vitale, S.; Weber, W. J.
2018-01-01
In this paper we report on measurements on actuation crosstalk, relevant to the gravitational reference sensors for LISA Pathfinder and LISA. In these sensors, a Test Mass (TM) falls freely within a system of electrodes used for readout and control. These measurements were carried out on ground with a double torsion pendulum that allowed us to estimate both the torque injected into the sensor when a control force is applied and, conversely, the force leaking into the translational degree of freedom due to the applied torque.The values measured on our apparatus (the engineering model of the LISA Pathfinder sensor) agree to within 0.2% (over a maximum measured crosstalk of 1%) with predictions of a mathematical model when measuring force to torque crosstalk, while it is somewhat larger than expected (up to 3.5%) when measuring torque to force crosstalk. However, the values in the relevant range, i.e. when the TM is well centered ( ± 10 μm) in the sensor, remain smaller than 0.2%, satisfying the LISA Pathfinder requirements.
Proofs for the Wave Theory of Plants
NASA Astrophysics Data System (ADS)
Wagner, Orvin E.
1997-03-01
Oscillatory behavior in plants. (2)Standing waves observed coming from probes equally spaced up tree trunks and freshly cut live wood samples. (3)Beat frequencies observed while applying AC voltages to plants. (4)Plant length quantization. (5)Plant growth angle and voltage quantization with respect to the gravitational field. (6)The measurement of plant frequences with a low frequency spectrum analyzer which correlate with the frequencies observed by other means such as by measuring plant lengths, considered as half wavelengths, and beat frequencies. (7)Voltages obtained from insulated, isolated from light, diode dies placed in slits in tree trunks. Diodes become relatively low impedance sources for voltages as high as eight volts. Diodes indicate charge separating longitudinal standing waves sweeping up and down a tree trunk. Longitudinal waves also indicated by plant structure. (8)The measured discrete wave velocities appear to be dependent on their direction of travel with respect to the gravitational field. These provide growth references for the plant and a wave guide affect. For references see Wagner Research Laboratory Web Page.
The kinetic equations for rotating and gravitating spheroidal body
NASA Astrophysics Data System (ADS)
Krot, A.
2003-04-01
In papers [1],[2] it has been proposed a statistical model of the gravitational interaction of particles.In the framework of this model bodies have fuzzy outlines and are represented by means of spheroidal forms. A con- sistency of the proposed statistical model the Einstein general relativity [3], [4], [5] has been shown. In work [6], which is a continuation of the paper[2], it has been investigated a slowly evolving in time process of a gravitational compression of a spheroidal body close to an unstable equilibrium state. In the paper [7] the equation of motion of particles inside the weakly gravitating spheroidal body modeled by means of an ideal liquid has been obtained. It has been derived the equations of hyperbolic type for the gravitational field of a weakly gravitating spheroidal body under observable values of velocities of particles composing it [7],[8]. This paper considers the case of gravitational compres- sion of spheroidal body with observable values of parti- cles.This means that distribution function of particles inside weakly rotating spheroidal body is a sum of an isotropic space-homogeneous stationary distribution function and its change (disturbance) under influence of dymanical gravitational field. The change of initial space-homogeneous stationary distribution function satisfyes the Boltzmann kinetic equation. This paper shows that if gravitating spheroidal body is rotating uniformly or is being at rest then distribution function of its particles satisfyes the Liouville theorem. Thus, being in unstable statistical quasiequilibrium the gravi- tating spheroidal body is rotating with constant angular velocity (or, in particular case, is being at rest). The joint distribution function of spheroidal body's particles in to coordinate space and angular velocity space is introduced. References [1] A.M.Krot, Achievements in Modern Radioelectronics, special issue "Cosmic Radiophysics",no. 8, pp.66-81, 1996 (Moscow, Russia). [2] A.M.Krot, Proc. SPIE 13th Symp."AeroSense", Orlando, Florida,USA, 5-9 April,vol. 3710, pp.1242-1259,1999. [3] L.D.Landau and E.M.Lifshitz, Classical Theory of Fields, Addison-Wesley, 1951. [4] S.Weinberg, Gravitation and Cosmology, John Wiley and Sons: New York, 1972. [5] C.W.Misner, K.S.Thorne,and J.A.Wheeler, Gravitation, W.H.Freeman and Co., San Francisco, 1973. [6] A.M.Krot, Proc. SPIE 14th Symp. "AeroSense",Orlando, Florida, USA, 24-29 April,vol.4038,pp.1318-1329,2000. [7] A.M.Krot, Proc. SPIE 15th Symp. "AeroSense",Orlando, Florida, USA, 16-20 April,vol.4394,pp.1217-1282,2001. [8] A.M.Krot, Proc. 53rd Intern. Astronautical Congress, The World Space Congress-2002, Houston, Texas, USA, 10-19 October,Preprint IAC-02-J.p.1,pp.1-11,2002.
2004-11-01
military effectiveness, history provides us the answer: In “ Megatrends ”, John Naisbitt, writes about technology itself without knowing that a...Control Simulations; viii. Urban Planning; ix. Urban Combat; x. Chemical Biological Radiological, and Nuclear (CBRN) Evaluations; xi. Military...Capability Management. DRDC Ottawa TM 2004-221 83 References 1. Naisbitt, J. Megatrends . Warner Books, 290 pages, 1982. 2
Magnetic refrigeration in space - Practical considerations
NASA Technical Reports Server (NTRS)
Kittel, P.
1980-01-01
Various schemes of using adiabatic demagnetization to provide refrigeration in the 10-1000 mK range are discussed with particular reference to the requirements for use in space. The methods considered are complete demagnetization, isothermal demagnetization, moving magnet demagnetization, and continuous refrigeration. The requirements that are important for use in space are low mass, low power dissipation, high mechanical rigidity, modular design, and ease of use.
ERIC Educational Resources Information Center
Busch, Hans Jorg
1994-01-01
Presents as an alternative to the traditional Spanish textbook a modular approach that consists of activities based on essay reading and grammar exercises. Students liked this form of instruction, and most indicated that they had learned material previously unknown to them. (seven references) (Author/CK)
A new formula of the Gravitational Curvature for the prism
NASA Astrophysics Data System (ADS)
Grazia D'Urso, Maria
2017-04-01
Gravitational Curvatures (GC) are the components of the third-order gravitational tensor and physically represent the rate of change of the gravity gradient. While scalar, vector and second-order tensor quantities of the Earth's gravitational field have extensively been studied and their properties have been well understood [1], the first successful terrestrial measurements of the third-order vertical gravitational gradients have been recently performed in [2] by atom interferometry sensors in laboratory environment. Possible benefits of the airborne third-order gravitational gradients for exploration geophysics are discussed in [3] while Brieden et al. (2010) [4] have proposed a new satellite mission called OPTical Interferometry for global Mass change detection from space (OPTIMA) sensing the third-order gravitational gradients in space. Moreover, exploitation of GC for modelling the Earth's gravitational field has been object of recent studies [5-7]. We extend the approach presented by the author in previous papers [8-10] by evaluating the algebraic expression of the third-order gravitational tensor for a prism. Comparisons with previous results [11-12] are also included. [1] Freeden W, Schreiner M (2009) Spherical functions of mathematical geosciences. A scalar, vectorial, and tensorial setup. In: Advances in geophysical and environmental mechanics and mathematics. Springer, Berlin [2] Rosi G, Cacciapuoti L, Sorrentino F, Menchetti M, Prevedelli M, Tino GM (2015) Measurements of the gravity-field curvature by atom interferometry. Phys Rev Lett 114:013001 [3] Di Francesco D, Meyer T, Christensen A, FitzGerald D (2009) Gravity gradiometry - today and tomorrow. In: 11th SAGA Biennial technical meeting and exhibition, 13-18 September 2009, Switzerland, pp 80-83 [4] Brieden P, Müller J, Flury J, Heinzel G (2010) The mission OPTIMA - novelties and benefit. In: Geotechnologien science report No. 17, Potsdam, pp 134-139 [5] Šprlák M, Novák P (2015) Integral formulas for computing a third-order gravitational tensor from volumetric mass density, disturbing gravitational potential, gravity anomaly and gravity disturbance. J Geod 89:141-157 [6] Šprlák M, Novák P (2016) Spherical gravitational curvature boundary-value problem. J Geod 90:727-739 [7] Hamáčková E, Šprlák M , Pitoňák M, Novák P (2016) Non-singular expressions for the spherical harmonic synthesis of gravitational curvatures in a local north-oriented reference frame. Comp & Geosc 88: 152-162 [8] D'Urso MG (2012) New expressions of the gravitational potential and its derivates for the prism. In Hotine-Marussi International Symposium on Mathematical Geodesy, 7rd. Sneeuw N, Novak P, Crespi M, Sansò F. Springer-Verlag, Berlin Heidelberg pp. 251-256 [9] D'Urso MG (2013) On the evaluation of the gravity effects of polyhedral bodies and a consistent treatment of related singularities. J Geod 87:239-252 [10] D'Urso MG (2014)Analytical computation of gravity effects for polyhedral bodies. J Geod 88:13-29 [11] Nagy D, Papp G, Benedek J (2000) The gravitational potential and its derivatives for the prism. J Geod 74:552-560 [12] Holstein H, Fitzgerald DJ, H. Stefanov H (2013) Gravimagnetic similarity for homogeneous rectangular prisms. 75th EAGE Conference & Exhibition, London
Erlandsen, Erland J; Randers, Else
2010-07-01
To evaluate the performance of the Roche Diagnostics Tina-quant Cystatin C particle enhanced immuno turbidimetric assay for the measurement of plasma and serum cystatin C, and to establish reference intervals for cystatin C in healthy blood donors. The cystatin C measurements were performed on the Roche Modular Analytics P automated clinical chemistry analyzer. The cystatin C assay was linear in the measuring range 0.40-7.00 mg/L. Within-run CVs < or = 2.0%, between-run CVs < or = 4.2%, and total CVs < or = 5.5% in plasma pools and in commercial cystatin C control materials (range 1.0-4.7 mg/L). Recovery was 99.4-109.3%. No interference was detected from haemoglobin < 0.9 mmol/L, bilirubin < 330 micromol/L and Intralipid < 20 g/L. Measurement of cystatin C in Li-heparin plasma did not differ significantly from cystatin C measured in serum. Forty patient samples run on the Modular Analytics P (y) were compared to the Siemens Cystatin C assay on the BN II (x): y = 0.817x + 0.270, Sy.x = 0.168 (Deming regression). The non-parametric reference interval for cystatin C was calculated to be 0.41-0.91 mg/L in females (n = 86), and 0.43-0.94 mg/L in males (n = 76). The Mann-Whitney U test showed a significant difference between the two genders (p = 0.015), but the difference was without clinical relevance. A common reference interval for both genders (n = 162) was calculated to be 0.41-0.92 mg/L. The performance of the Tina-quant Cystatin C assay was acceptable for clinical use.
The significance of the quadratic Doppler effect for space travel and astrophysics
NASA Astrophysics Data System (ADS)
Boehm, M.
1985-09-01
It is shown that a distinct frame of reference exists for light for which the Kennedy-Thorndike experiment provides unequivocal evidence. This leads to the postulate of a rotating instead of an expanding universe. It is shown that the cosmic red shift can be understood as the result of a Coriolis acceleration of the light propagating between two arbitrary points of different gravitational potential. Methods for determining the angular velocity of the rotating universe are given, and it is discussed whether the speed of light and the gravitational constant are universal constants or whether they are functions of distance from the center of the universe. Suggestions are made for further experimental studies and for practical application of the quadratic Doppler effect.
Comprehensive all-sky search for periodic gravitational waves in the sixth science run LIGO data
NASA Astrophysics Data System (ADS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton, T.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jian, L.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Perri, L. M.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2016-08-01
We report on a comprehensive all-sky search for periodic gravitational waves in the frequency band 100-1500 Hz and with a frequency time derivative in the range of [-1.18 ,+1.00 ] ×1 0-8 Hz /s . Such a signal could be produced by a nearby spinning and slightly nonaxisymmetric isolated neutron star in our galaxy. This search uses the data from the initial LIGO sixth science run and covers a larger parameter space with respect to any past search. A Loosely Coherent detection pipeline was applied to follow up weak outliers in both Gaussian (95% recovery rate) and non-Gaussian (75% recovery rate) bands. No gravitational wave signals were observed, and upper limits were placed on their strength. Our smallest upper limit on worst-case (linearly polarized) strain amplitude h0 is 9.7 ×1 0-25 near 169 Hz, while at the high end of our frequency range we achieve a worst-case upper limit of 5.5 ×1 0-24 . Both cases refer to all sky locations and entire range of frequency derivative values.
Particle sedimentation and impaction in the respiratory airways
NASA Astrophysics Data System (ADS)
Nicolaou, Laura; Zaki, Tamer
2017-11-01
Impaction is the dominant deposition mechanism for micron-sized particles in the upper airways. However, sedimentation becomes significant as the flowrate decreases and particle size increases. In order to assess the relative importance of impaction and sedimentation, we examine particle transport and deposition under different inhalation conditions, and for different particle sizes. Two important dimensionless parameters are (i) the Stokes number, Stk , and (ii) the ratio of the gravitational settling velocity to the fluid velocity, Vg. Their ratio is the Froude number, which measures the relative importance of inertial to gravitational forces. Instantaneous definitions of the Stokes and Froude numbers are derived, based on the local flow properties, in order to obtain a more accurate representation of the particle trajectories. The instantaneous Froude number can be 3-4 orders of magnitude smaller than the reference value in regions of the flow. Therefore, gravitational effects should not be neglected. In addition, deposition is shown to correlate with high values of StkVg . Particles with high Vg deposit primarily in the mouth, via sedimentation, while particles with high Stk deposit mainly in the larynx and trachea, via impaction.
MOSAIC--A Modular Approach to Data Management in Epidemiological Studies.
Bialke, M; Bahls, T; Havemann, C; Piegsa, J; Weitmann, K; Wegner, T; Hoffmann, W
2015-01-01
In the context of an increasing number of multi-centric studies providing data from different sites and sources the necessity for central data management (CDM) becomes undeniable. This is exacerbated by a multiplicity of featured data types, formats and interfaces. In relation to methodological medical research the definition of central data management needs to be broadened beyond the simple storage and archiving of research data. This paper highlights typical requirements of CDM for cohort studies and registries and illustrates how orientation for CDM can be provided by addressing selected data management challenges. Therefore in the first part of this paper a short review summarises technical, organisational and legal challenges for CDM in cohort studies and registries. A deduced set of typical requirements of CDM in epidemiological research follows. In the second part the MOSAIC project is introduced (a modular systematic approach to implement CDM). The modular nature of MOSAIC contributes to manage both technical and organisational challenges efficiently by providing practical tools. A short presentation of a first set of tools, aiming for selected CDM requirements in cohort studies and registries, comprises a template for comprehensive documentation of data protection measures, an interactive reference portal for gaining insights and sharing experiences, supplemented by modular software tools for generation and management of generic pseudonyms, for participant management and for sophisticated consent management. Altogether, work within MOSAIC addresses existing challenges in epidemiological research in the context of CDM and facilitates the standardized collection of data with pre-programmed modules and provided document templates. The necessary effort for in-house programming is reduced, which accelerates the start of data collection.
Kagkli, Dafni-Maria; Weber, Thomas P.; Van den Bulcke, Marc; Folloni, Silvia; Tozzoli, Rosangela; Morabito, Stefano; Ermolli, Monica; Gribaldo, Laura; Van den Eede, Guy
2011-01-01
European Commission regulation 2073/2005 on the microbiological criteria for food requires that Escherichia coli is monitored as an indicator of hygienic conditions. Since verocytotoxigenic E. coli (VTEC) strains often cause food-borne infections by the consumption of raw food, the Biological Hazards (BIOHAZ) panel of the European Food Safety Authority (EFSA) recommended their monitoring in food as well. In particular, VTEC strains belonging to serogroups such as O26, O103, O111, O145, and O157 are known causative agents of several human outbreaks. Eight real-time PCR methods for the detection of E. coli toxin genes and their variants (stx1, stx2), the intimin gene (eae), and five serogroup-specific genes have been proposed by the European Reference Laboratory for VTEC (EURL-VTEC) as a technical specification to the European Normalization Committee (CEN TC275/WG6). Here we applied a “modular approach” to the in-house validation of these PCR methods. The modular approach subdivides an analytical process into separate parts called “modules,” which are independently validated based on method performance criteria for a limited set of critical parameters. For the VTEC real-time PCR module, the following parameters are being assessed: specificity, dynamic range, PCR efficiency, and limit of detection (LOD). This study describes the modular approach for the validation of PCR methods to be used in food microbiology, using single-target plasmids as positive controls and showing their applicability with food matrices. PMID:21856838
NASA Astrophysics Data System (ADS)
Rudnick, Z.
Contents: 1. Introduction 2. Divisibility 2.1. Basics on Divisibility 2.2. The Greatest Common Divisor 2.3. The Euclidean Algorithm 2.4. The Diophantine Equation ax+by=c 3. Prime Numbers 3.1. The Fundamental Theorem of Arithmetic 3.2. There Are Infinitely Many Primes 3.3. The Density of Primes 3.4. Primes in Arithmetic Progressions 4. Continued Fractions 5. Modular Arithmetic 5.1. Congruences 5.2. Modular Inverses 5.3. The Chinese Remainder Theorem 5.4. The Structure of the Multiplicative Group (Z/NZ)^* 5.5. Primitive Roots 6. Quadratic Congruences 6.1. Euler's Criterion 6.2. The Legendre Symbol and Quadratic Reciprocity 7. Pell's Equation 7.1. The Group Law 7.2. Integer Solutions 7.3. Finding the Fundamental Solution 8. The Riemann Zeta Function 8.1 Analytic Continuation and Functinal Equation of ζ(s) 8.2 Connecting the Primes and the Zeros of ζ(s) 8.3 The Riemann Hypothesis References
Experimental research on a modular miniaturization nanoindentation device
NASA Astrophysics Data System (ADS)
Huang, Hu; Zhao, Hongwei; Mi, Jie; Yang, Jie; Wan, Shunguang; Yang, Zhaojun; Yan, Jiwang; Ma, Zhichao; Geng, Chunyang
2011-09-01
Nanoindentation technology is developing toward the in situ test which requires miniaturization of indentation instruments. This paper presents a miniaturization nanoindentation device based on the modular idea. It mainly consists of macro-adjusting mechanism, x-y precise positioning platform, z axis precise driving unit, and the load-depth measuring unit. The device can be assembled with different forms and has minimum dimensions of 200 mm × 135 mm × 200 mm. The load resolution is about 0.1 mN and the displacement resolution is about 10 nm. A new calibration method named the reference-mapping method is proposed to calibrate the developed device. Output performance tests and indentation experiments indicate the feasibility of the developed device and calibration method. This paper gives an example that combining piezoelectric actuators with flexure hinge to realize nanoindentation tests. Integrating a smaller displacement sensor, a more compact nanoindentation device can be designed in the future.
An Analytical Time–Domain Expression for the Net Ripple Produced by Parallel Interleaved Converters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Brian B.; Krein, Philip T.
We apply modular arithmetic and Fourier series to analyze the superposition of N interleaved triangular waveforms with identical amplitudes and duty-ratios. Here, interleaving refers to the condition when a collection of periodic waveforms with identical periods are each uniformly phase-shifted across one period. The main result is a time-domain expression which provides an exact representation of the summed and interleaved triangular waveforms, where the peak amplitude and parameters of the time-periodic component are all specified in closed-form. Analysis is general and can be used to study various applications in multi-converter systems. This model is unique not only in that itmore » reveals a simple and intuitive expression for the net ripple, but its derivation via modular arithmetic and Fourier series is distinct from prior approaches. The analytical framework is experimentally validated with a system of three parallel converters under time-varying operating conditions.« less
Modular bioreactor for the remediation of liquid streams and methods for using the same
Noah, Karl S.; Sayer, Raymond L.; Thompson, David N.
1998-01-01
The present invention is directed to a bioreactor system for the remediation of contaminated liquid streams. The bioreactor system is composed of at least one and often a series of sub-units referred to as bioreactor modules. The modular nature of the system allows bioreactor systems be subdivided into smaller units and transported to waste sites where they are combined to form bioreactor systems of any size. The bioreactor modules further comprises reactor fill materials in the bioreactor module that remove the contaminants from the contaminated stream. To ensure that the stream thoroughly contacts the reactor fill materials, each bioreactor module comprises means for directing the flow of the stream in a vertical direction and means for directing the flow of the stream in a horizontal direction. In a preferred embodiment, the reactor fill comprises a sulfate reducing bacteria which is particularly useful for precipitating metals from acid mine streams.
Modular bioreactor for the remediation of liquid streams and methods for using the same
Noah, K.S.; Sayer, R.L.; Thompson, D.N.
1998-06-30
The present invention is directed to a bioreactor system for the remediation of contaminated liquid streams. The bioreactor system is composed of at least one and often a series of sub-units referred to as bioreactor modules. The modular nature of the system allows bioreactor systems be subdivided into smaller units and transported to waste sites where they are combined to form bioreactor systems of any size. The bioreactor modules further comprises reactor fill materials in the bioreactor module that remove the contaminants from the contaminated stream. To ensure that the stream thoroughly contacts the reactor fill materials, each bioreactor module comprises means for directing the flow of the stream in a vertical direction and means for directing the flow of the stream in a horizontal direction. In a preferred embodiment, the reactor fill comprises a sulfate reducing bacteria which is particularly useful for precipitating metals from acid mine streams. 6 figs.
The lunar libration: comparisons between various models - a model fitted to LLR observations
NASA Astrophysics Data System (ADS)
Chapront, J.; Francou, G.
2005-09-01
We consider 4 libration models: 3 numerical models built by JPL (ephemerides for the libration in DE245, DE403 and DE405) and an analytical model improved with numerical complements fitted to recent LLR observations. The analytical solution uses 3 angular variables (ρ1, ρ2, τ) which represent the deviations with respect to Cassini's laws. After having referred the models to a unique reference frame, we study the differences between the models which depend on gravitational and tidal parameters of the Moon, as well as amplitudes and frequencies of the free librations. It appears that the differences vary widely depending of the above quantities. They correspond to a few meters displacement on the lunar surface, reminding that LLR distances are precise to the centimeter level. Taking advantage of the lunar libration theory built by Moons (1984) and improved by Chapront et al. (1999) we are able to establish 4 solutions and to represent their differences by Fourier series after a numerical substitution of the gravitational constants and free libration parameters. The results are confirmed by frequency analyses performed separately. Using DE245 as a basic reference ephemeris, we approximate the differences between the analytical and numerical models with Poisson series. The analytical solution - improved with numerical complements under the form of Poisson series - is valid over several centuries with an internal precision better than 5 centimeters.
NASA Technical Reports Server (NTRS)
Wolf, David A.; Schwarz, Ray P.
1992-01-01
Measurements were taken of the path of a simulated typical tissue segment or 'particle' within a rotating fluid as a function of gravitational strength, fluid rotation rate, particle sedimentation rate, and particle initial position. Parameters were examined within the useful range for tissue culture in the NASA rotating wall culture vessels. The particle moves along a nearly circular path through the fluid (as observed from the rotating reference frame of the fluid) at the same speed as its linear terminal sedimentation speed for the external gravitational field. This gravitationally induced motion causes an increasing deviation of the particle from its original position within the fluid for a decreased rotational rate, for a more rapidly sedimenting particle, and for an increased gravitational strength. Under low gravity conditions (less than 0.1 G), the particle's motion through the fluid and its deviation from its original position become negligible. Under unit gravity conditions, large distortions (greater than 0.25 inch) occur even for particles of slow sedimentation rate (less than 1.0 cm/sec). The particle's motion is nearly independent of the particle's initial position. Comparison with mathematically predicted particle paths show that a significant error in the mathematically predicted path occurs for large particle deviations. This results from a geometric approximation and numerically accumulating error in the mathematical technique.
On the Cause of Geodetic Satellite Accelerations and Other Correlated Unmodeled Phenomena
NASA Astrophysics Data System (ADS)
Mayer, A. F.
2005-12-01
An oversight in the development of the Einstein field equations requires a well-defined amendment to general relativity that very slightly modifies the weak-field Schwarzschild geometry yielding unambiguous new predictions of gravitational relativistic phenomena. The secular accelerations of LAGEOS, Etalon and other geodetic satellites are definitively explained as a previously unmodeled relativistic effect of the gravitational field. Observed dynamic variations may be correlated to the complex dynamic relationship between the satellite angular momentum vector and the solar gravitational gradient associated with the orbital motion of the Earth and the natural precession of the satellite orbit. The Pioneer Anomaly, semidiurnal saw-toothed pseudo-range residuals of GPS satellites, peculiar results of radio occultation experiments, secular accelerations of Solar System moons, the conspicuous excess redshift of white dwarf stars and other documented empirical observations are all correlated to the same newly modeled subtle relativistic energy effect. Modern challenges in the determination and maintenance of an accurate and reliable terrestrial reference frame, difficulties with global time synchronization at nanosecond resolution and the purported existence of unlikely excessive undulations of the Geoid relative to the Ellipsoid are all related to this previously unknown phenomenon inherent to the gravitational field. Doppler satellite measurements made by the TRANSIT system (the precursor to GPS) were significantly affected; WGS 84 coordinates and other geodetic data now assumed to be correct to high accuracy require correction based on the new theoretical developments.
A modular success story the Saudi petrochemical project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirven, J.B.; Swenson, C.R.
1986-01-01
The Saudi Petrochemical Company is referred to within this paper as ''Sadaf''. Sadaf is the phonetic spelling of the Arabic word for seashell and is a joint venture of Saudi Basic Industries Corporation (SABIC) and Pecten Arabian Ltd., an affiliate of Shell Oil Comapny, U.S.A. SABIC is a joint stock corporation responsible for the development of basic industries in the Kingdom in the petrochemicals, metals and fertilizers field.
MIUS wastewater technology evaluation
NASA Technical Reports Server (NTRS)
Poradek, J. C.
1976-01-01
A modular integrated utility system wastewater-treatment process is described. Research in the field of wastewater treatment is reviewed, treatment processes are specified and evaluated, and recommendations for system use are made. The treatment processes evaluated are in the broad categories of preparatory, primary, secondary, and tertiary treatment, physical-chemical processing, dissolved-solids removal, disinfection, sludge processing, and separate systems. Capital, operating, and maintenance costs are estimated, and extensive references are given.
Multidisciplinary Thermal Analysis of Hot Aerospace Structures
2010-05-02
Seidel iteration. Such a strategy simplifies explicit/implicit treatment , subcycling, load balancing, software modularity, and replacements as better... Stefan -Boltzmann constant , E is the emissivity of the surface, f is the form factor from the surface to the reference surface, Br is the temperature of...Stokes equations using Gauss- Seidel line Relaxation, Computers and Fluids, 17, pp.l35-150, 1989. [22] Hung C.M. and MacCormack R.W., Numerical
Integrated Surface Power Strategy for Mars
NASA Technical Reports Server (NTRS)
Rucker, Michelle
2015-01-01
A National Aeronautics and Space Administration (NASA) study team evaluated surface power needs for a conceptual crewed 500-day Mars mission. This study had four goals: 1. Determine estimated surface power needed to support the reference mission; 2. Explore alternatives to minimize landed power system mass; 3. Explore alternatives to minimize Mars Lander power self-sufficiency burden; and 4. Explore alternatives to minimize power system handling and surface transportation mass. The study team concluded that Mars Ascent Vehicle (MAV) oxygen propellant production drives the overall surface power needed for the reference mission. Switching to multiple, small Kilopower fission systems can potentially save four to eight metric tons of landed mass, as compared to a single, large Fission Surface Power (FSP) concept. Breaking the power system up into modular packages creates new operational opportunities, with benefits ranging from reduced lander self-sufficiency for power, to extending the exploration distance from a single landing site. Although a large FSP trades well for operational complexity, a modular approach potentially allows Program Managers more flexibility to absorb late mission changes with less schedule or mass risk, better supports small precursor missions, and allows a program to slowly build up mission capability over time. A number of Kilopower disadvantages-and mitigation strategies-were also explored.
Relativistic Navigation: A Theoretical Foundation
NASA Technical Reports Server (NTRS)
Turyshev, Slava G.
1996-01-01
We present a theoretical foundation for relativistic astronomical measurements in curved space-time. In particular, we discuss a new iterative approach for describing the dynamics of an isolated astronomical N-body system in metric theories of gravity. To do this, we generalize the Fock-Chandrasekhar method of the weak-field and slow-motion approximation (WFSMA) and develop a theory of relativistic reference frames (RF's) for a gravitationally bounded many-extended-body problem. In any proper RF constructed in the immediate vicinity of an arbitrary body, the N-body solutions of the gravitational field equations are formally presented as a sum of the Riemann-flat inertial space-time, the gravitational field generated by the body itself, the unperturbed solutions for each body in the system transformed to the coordinates of this proper RF, and the gravitational interaction term. We develop the basic concept of a general WFSMA theory of the celestial RF's applicable to a wide class of metric theories of gravity and an arbitrary model of matter distribution. We apply the proposed method to general relativity. Celestial bodies are described using a perfect fluid model; as such, they possess any number of internal mass and current multipole moments that explicitly characterize their internal structures. The obtained relativistic corrections to the geodetic equations of motion arise because of a coupling of the bodies' multiple moments to the surrounding gravitational field. The resulting relativistic transformations between the different RF's extend the Poincare group to the motion of deformable self-gravitating bodies. Within the present accuracy of astronomical measurements we discuss the properties of the Fermi-normal-like proper RF that is defined in the immediate vicinity of the extended compact bodies. We further generalize the proposed approximation method and include two Eddington parameters (gamma, Beta). This generalized approach was used to derive the relativistic equations of satellite motion in the vicinity of the extended bodies. Anticipating improvements in radio and laser tracking technologies over the next few decades, we apply this method to spacecraft orbit determination. We emphasize the number of feasible relativistic gravity tests that may be performed within the context of the parameterized WFSMA. Based on the planeto-centric equations of motion of a spacecraft around the planet, we suggested a new null test of the Strong Equivalence Principle (SEP). The experiment to measure the corresponding SEP violation effect could be performed with the future Mercury Orbiter mission. We discuss other relativistic effects, including the perihelion advance and the redshift and geodetic precession of the orbiter's orbital plane about Mercury, as well as the possible future implementation of the proposed formalism in software codes developed for solar-system orbit determination. All the important calculations are completely documented, and the references contain an extensive list of cited literature.
Asymptotic structure of space-time with a positive cosmological constant
NASA Astrophysics Data System (ADS)
Kesavan, Aruna
In general relativity a satisfactory framework for describing isolated systems exists when the cosmological constant Lambda is zero. The detailed analysis of the asymptotic structure of the gravitational field, which constitutes the framework of asymptotic flatness, lays the foundation for research in diverse areas in gravitational science. However, the framework is incomplete in two respects. First, asymptotic flatness provides well-defined expressions for physical observables such as energy and momentum as 'charges' of asymptotic symmetries at null infinity, [special character omitted] +. But the asymptotic symmetry group, called the Bondi-Metzner-Sachs group is infinite-dimensional and a tensorial expression for the 'charge' integral of an arbitrary BMS element is missing. We address this issue by providing a charge formula which is a 2-sphere integral over fields local to the 2-sphere and refers to no extraneous structure. The second, and more significant shortcoming is that observations have established that Lambda is not zero but positive in our universe. Can the framework describing isolated systems and their gravitational radiation be extended to incorporate this fact? In this dissertation we show that, unfortunately, the standard framework does not extend from the Lambda = 0 case to the Lambda > 0 case in a physically useful manner. In particular, we do not have an invariant notion of gravitational waves in the non-linear regime, nor an analog of the Bondi 'news tensor', nor positive energy theorems. In addition, we argue that the stronger boundary condition of conformal flatness of intrinsic metric on [special character omitted]+, which reduces the asymptotic symmetry group from Diff([special character omitted]) to the de Sitter group, is insufficient to characterize gravitational fluxes and is physically unreasonable. To obtain guidance for the full non-linear theory with Lambda > 0, linearized gravitational waves in de Sitter space-time are analyzed in detail. i) We show explicitly that conformal flatness of the boundary removes half the degrees of freedom of the gravitational field by hand and is not justified by physical considerations; ii) We obtain gauge invariant expressions of energy-momentum and angular momentum fluxes carried by gravitational waves in terms of fields defined at [special character omitted]+; iii) We demonstrate that the flux formulas reduce to the familiar ones in Minkowski spacetime in spite of the fact that the limit Lambda → 0 is discontinuous (since, in particular, [special character omitted]+ changes its space-like character to null in the limit); iv) We obtain a generalization of Einstein's 1918 quadrupole formula for power emission by a linearized source to include a positive Lambda; and, finally v) We show that, although energy of linearized gravitational waves can be arbitrarily negative in general, gravitational waves emitted by physically reasonable sources carry positive energy.
Theory for the Emergence of Modularity in Complex Systems
NASA Astrophysics Data System (ADS)
Deem, Michael; Park, Jeong-Man
2013-03-01
Biological systems are modular, and this modularity evolves over time and in different environments. A number of observations have been made of increased modularity in biological systems under increased environmental pressure. We here develop a theory for the dynamics of modularity in these systems. We find a principle of least action for the evolved modularity at long times. In addition, we find a fluctuation dissipation relation for the rate of change of modularity at short times. We discuss a number of biological and social systems that can be understood with this framework. The modularity of the protein-protein interaction network increases when yeast are exposed to heat shock, and the modularity of the protein-protein networks in both yeast and E. coli appears to have increased over evolutionary time. Food webs in low-energy, stressful environments are more modular than those in plentiful environments, arid ecologies are more modular during droughts, and foraging of sea otters is more modular when food is limiting. The modularity of social networks changes over time: stock brokers instant messaging networks are more modular under stressful market conditions, criminal networks are more modular under increased police pressure, and world trade network modularity has decreased
The Peoples Republic of China High-Frequency Gravitational Wave Research Program
NASA Astrophysics Data System (ADS)
Baker, Robert M. L.
2009-03-01
For the past decade the Peoples Republic of China has been increasingly active in the pursuit of High-Frequency Gravitational Wave (HFGW) research. Much of their progress has been during 2008. An epochal achievement was the publication of the theoretical analysis of the Li-Baker HFGW detector in the European Physical Journal C (Li, et al., 2008), "Perturbative Photon Fluxes Generated by High-Frequency Gravitational Waves and Their Physical Effects"). Many Chinese scientists and graduate students have participated in these HFGW studies and their contributions are briefly discussed. Some of the key scientists and their institutions are as follows: first from Chongqing University: Zhenyun Fang, Director of the Institute of Theoretical Physics, Xing gang Wu, The Institute of Theoretical Physics, Nan Yang, The Institute of Gravitational Physics; Jun Luo, Huazhong University of Science and Technology (HUST), Wuhan, China, the Head of Gravitational Laboratory, Yang Zhang, University of Science and Technology of China, Associate Dean of the College of Sciences, Biao Li, Institute of Electronic Engineering of China Academy of Engineering Physics (CAEP), Chief of Microwave Antenna Division, Chuan-Ming Zhou, Technology Committee of Institute of Electronic Engineering of the CAEP, Jie Zhou, Institute of Electronic Engineering of the CAEP, Chief of the Signal Processing Division; Weijia Wen, Department of Physics, The Hong Kong University of Science and Technology. This Chinese HFGW team includes two parts: (1) Theoretical study and (2) Experimental investigation. These two parts have closed relations, and many cross projects, including cooperation between the American GravWave and Chinese HFGW teams. Referring to financial support, The Institute of Electronic Engineering (i.e., Microwave Laboratory) has already (June 2008) provided support more than three million Yuan for the HFGW detection project and this activity is discussed.
NASA Astrophysics Data System (ADS)
Batmunkh, N.; Sannikova, T. N.; Kholshevnikov, K. V.
2018-04-01
The motion of a zero-mass point under the action of gravitation toward a central body and a perturbing acceleration P is considered. The magnitude of P is taken to be small compared to the main acceleration due to the gravitation of the central body, and the components of the vector P are taken to be constant in a reference frame with its origin at the central body and its axes directed along the velocity vector, normal to the velocity vector in the plane of the osculating orbit, and along the binormal. The equations in the mean elements were obtained in an earlier study. The algorithm used to solve these equations is given in this study. This algorithm is analogous to one constructed earlier for the case when P is constant in a reference frame tied to the radius vector. The properties of the solutions are similar. The main difference is that, in the most important cases, the quadratures to which the solution reduces lead to non-elementary functions. However, they can be expressed as series in powers of the eccentricity e that converge for e < 1, and often also for e = 1.
NASA Astrophysics Data System (ADS)
Krot, Alexander M.
2002-01-01
the framework of this model bodies have fuzzy outlines and are represented by means of spheroidal forms. The consistency of the statistical model with the Einstein general relativity3,4,5 has been shown. In the work6, which is a continuation of the paper2, it was investigated a slowly evolving in time process of a gravitational compression (contraction) of a spheroidal body close to an unstable meñhanical equilibrium state (a low mass flow), therefore the process of the gravitational contraction appears slowly developing in time (the case of unobservable velocities of particles composing a spheroidal body). For this case in the work7 it has been shown that the strength and potential of the gravitational field of a slowly contracting spheroidal body satisfy a differential equation of the second order of the parabolic type for the case of unobservable velocities of particles. Therefore gravitational waves of a soliton type are propagated in a weakly gravitating spheroidal body if values of velocities are unobservable. body. In the connection with the above-given statements, in the present paper the following assumptions are used: 1.The spheroidal body under consideration is homogeneous in its chemical structure, i.e. it consists of identical particles with the mass m0. 2.The spheroidal body is not subjected to influence of external fields and bodies. 3.The spheroidal body is isothermal and has temperature close to the absolute zero. 4.The concentration gradient is not too large in the sense that interphase boundaries are absent inside the spheroidal body. 5. In view of low values of the temperature the heat conduction and viscosity processes are not important, which allows to describe the rotation of the spheroidal body as a whole, while movement of flows of particles inside the weakly gravitating spheroidal body is modeled by means of a motion of an ideal medium (the case of observable velocities of particles). 6.Since the process of the gravitational compression (contraction) of the spheroidal body is weak and viscosity is absent, we regard the motion of the continuous medium to be non-turbulent. modeled by means of an ideal liquid. It is determined the connection of this equation with an equation of motion of a particle in a noninertial frame of reference. A gravimagnetic field is introduced in this paper. It is obtained the scalar and vector potentials as well as the Lagrange function of a particle moving in a gravitational and gravimagnetic fields. It is derived the equations of hyperbolic type for the gravitational field of a weakly gravitating spheroidal body under observable values of velocities of particles composing it. 1. A.M.Krot, Achievements in Modern Radioelectronics, special issue "Cosmic Radiophysics", no.8, pp.66- 2. A.M.Krot, Proc. SPIE 13th Symp."AeroSense", Orlando, Florida, April 5-9,1999, vol.3710,pp.1248-1259. 3. L.D.Landau and E.M.Lifshitz, Classical Theory of Fields, Addison-Wesley, 1951. 4. S.Weinberg, Gravitation and Cosmology, John Wiley and Sons, New York, 1972. 5. C.W.Misner, K.S.Thorne, and J.A.Wheeler, Gravitation, W.H.Freeman and Co., San Francisco, 1973. 6. A.M.Krot, Proc. SPIE 14th Symp."AeroSense",Orlando,Florida,April 24-28,2000,vol.4038,pp.1318-1329. 7. A.M.Krot, Proc. SPIE 15th Symp."AeroSense",Orlando,Florida,April 16-20,2001,vol.4394,pp.1271-1282.
Jauch, S Y; Huber, G; Hoenig, E; Baxmann, M; Grupp, T M; Morlock, M M
2011-06-03
Hip prostheses with a modular neck exhibit, compared to monobloc prostheses, an additional interface which bears the risk of fretting as well as corrosion. Failures at the neck adapter of modular prostheses have been observed for a number of different designs. It has been speculated that micromotions at the stem-neck interface were responsible for these implant failures. The purpose of this study was to investigate the influence of material combinations and assembly conditions on the magnitude of micromotions at the stem-neck interface during cyclic loading. Modular (n = 24) and monobloc (n = 3) hip prostheses of a similar design (Metha, Aesculap AG, Tuttlingen, Germany) were subjected to mechanical testing according to ISO 7206-4 (F(min) = 230N, F(max) = 2300N, f = 1Hz, n = 10,000 cycles). The neck adapters (Ti-6Al-4V or Co-Cr29-Mo alloy) were assembled with a clean or contaminated interface. The micromotion between stem and neck adapter was calculated at five reference points based on the measurements of the three eddy current sensors. The largest micromotions were observed at the lateral edge of the stem-neck taper connection, which is in accordance with the crack location of clinically failed prostheses. Titanium neck adapters showed significantly larger micromotions than cobalt-chromium neck adapters (p = 0.005). Contaminated interfaces also exhibited significantly larger micromotions (p < 0.001). Since excessive micromotions at the stem-neck interface might be involved in the process of implant failure, special care should be taken to clean the interface prior to assembly and titanium neck adapters with titanium stems should generally be used with caution. Copyright © 2011 Elsevier Ltd. All rights reserved.
A 400 KHz line rate 2048 pixel modular SWIR linear array for earth observation applications
NASA Astrophysics Data System (ADS)
Anchlia, Ankur; Vinella, Rosa M.; Wouters, Kristof; Gielen, Daphne; Hooylaerts, Peter; Deroo, Pieter; Ruythooren, Wouter; van der Zanden, Koen; Vermeiren, Jan; Merken, Patrick
2015-10-01
In this paper, we report about a family of linear imaging FPAs sensitive in the [0.9 - 1.7um] band, developed for high speed applications such as LIDAR, wavelength references and OCT analyzers and also for earth observation applications. Fast linear FPAs can also be used in a wide variety of terrestrial applications, including high speed sorting, electro- and photo-luminesce and medical applications. The arrays are based on a modular ROIC design concept: modules of 512 pixels are stitched during fabrication to achieve 512, 1024 and 2048 pixel arrays. In principle, this concept can be extended to any multiple of 512 pixels, the limiting factor being the pixel yield of long InGaAs arrays and the CTE differences in the hybrid setup. Each 512-pixel module has its own on-chip digital sequencer, analog readout chain and 4 output buffers. This modular concept enables a long-linear array to run at a high line rate of 400 KHz irrespective of the array length, which limits the line rate in a traditional linear array. The pixel has a pitch of 12.5um. The detector frontend is based on CTIA (Capacitor Trans-impedance Amplifier), having 5 selectable integration capacitors giving full well from 62x103e- (gain0) to 40x106e- (gain4). An auto-zero circuit limits the detector bias non-uniformity to 5-10mV across broad intensity levels, limiting the input referred dark signal noise to 20e-rms for Tint=3ms at room temperature. An on-chip CDS that follows the CTIA facilitates removal of Reset/KTC noise, CTIA offsets and most of the 1/f noise. The measured noise of the ROIC is 35e-rms in gain0. At a master clock rate of 60MHz and a minimum integration time of 1.4us, the FPAs reach the highest line rate of 400 KHz.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Badwan, Faris M.; Demuth, Scott Francis; Miller, Michael Conrad
Small Modular Reactors (SMR) with power levels significantly less than the currently standard 1000 to 1600-MWe reactors have been proposed as a potential game changer for future nuclear power. SMRs may offer a simpler, more standardized, and safer modular design by using factory built and easily transportable components. Additionally, SMRs may be more easily built and operated in isolated locations, and may require smaller initial capital investment and shorter construction times. Because many SMRs designs are still conceptual and consequently not yet fixed, designers have a unique opportunity to incorporate updated design basis threats, emergency preparedness requirements, and then fullymore » integrate safety, physical security, and safeguards/material control and accounting (MC&A) designs. Integrating safety, physical security, and safeguards is often referred to as integrating the 3Ss, and early consideration of safeguards and security in the design is often referred to as safeguards and security by design (SSBD). This paper describes U.S./Russian collaborative efforts toward developing an internationally accepted common approach for implementing SSBD/3Ss for SMRs based upon domestic requirements, and international guidance and requirements. These collaborative efforts originated with the Nuclear Energy and Nuclear Security working group established under the U.S.-Russia Bilateral Presidential Commission during the 2009 Presidential Summit. Initial efforts have focused on review of U.S. and Russian domestic requirements for Security and MC&A, IAEA guidance for security and MC&A, and IAEA requirements for international safeguards. Additionally, example SMR design features that can enhance proliferation resistance and physical security have been collected from past work and reported here. The development of a U.S./Russian common approach for SSBD/3Ss should aid the designer of SMRs located anywhere in the world. More specifically, the application of this approach may lead to more proliferation resistant and physically secure design features for SMRs.« less
Terminological reference of a knowledge-based system: the data dictionary.
Stausberg, J; Wormek, A; Kraut, U
1995-01-01
The development of open and integrated knowledge bases makes new demands on the definition of the used terminology. The definition should be realized in a data dictionary separated from the knowledge base. Within the works done at a reference model of medical knowledge, a data dictionary has been developed and used in different applications: a term definition shell, a documentation tool and a knowledge base. The data dictionary includes that part of terminology, which is largely independent of a certain knowledge model. For that reason, the data dictionary can be used as a basis for integrating knowledge bases into information systems, for knowledge sharing and reuse and for modular development of knowledge-based systems.
Survey of Modular Military Vehicles: Benefits and Burdens
2016-01-01
Survey of Modular Military Vehicles: BENEFITS and BURDENS Jean M. Dasch and David J. Gorsich Modularity in military vehicle design is generally...considered a positive attribute that promotes adaptability, resilience, and cost savings. The benefits and burdens of modularity are considered by...Engineering Center, vehicles were considered based on horizontal modularity , vertical modularity , and distributed modularity . Examples were given for each
NASA Astrophysics Data System (ADS)
Hong-bo, Wang; Chang-yin, Zhao; Wei, Zhang; Jin-wei, Zhan; Sheng-xian, Yu
2016-07-01
The Earth gravitational field model is one of the most important dynamic models in satellite orbit computation. Several space gravity missions made great successes in recent years, prompting the publishing of several gravitational filed models. In this paper, two classical (JGM3, EGM96) and four latest (EIGEN-CHAMP05S, GGM03S, GOCE02S, EGM2008) models are evaluated by employing them in the precision orbit determination (POD) and prediction. These calculations are performed based on the laser ranging observation of four Low Earth Orbit (LEO) satellites, including CHAMP, GFZ-1, GRACE-A, and SWARM-A. The residual error of observation in POD is adopted to describe the accuracy of six gravitational field models. The main results we obtained are as follows. (1) For the POD of LEOs, the accuracies of 4 latest models are at the same level, and better than those of 2 classical models; (2) Taking JGM3 as reference, EGM96 model's accuracy is better in most situations, and the accuracies of the 4 latest models are improved by 12%-47% in POD and 63% in prediction, respectively. We also confirm that the model's accuracy in POD is enhanced with the increasing degree and order if they are smaller than 70, and when they exceed 70, the accuracy keeps constant, implying that the model's degree and order truncated to 70 are sufficient to meet the requirement of LEO computation of centimeter precision.
NASA Astrophysics Data System (ADS)
Kapotis, Efstratios; Kalkanis, George
2016-10-01
According to the principle of equivalence, it is impossible to distinguish between gravity and inertial forces that a noninertial observer experiences in his own frame of reference. For example, let's consider an elevator in space that is being accelerated in one direction. An observer inside it would feel as if there was gravity force pulling him toward the opposite direction. The same holds for a person in a stationary elevator located in Earth's gravitational field. No experiment enables us to distinguish between the accelerating elevator in space and the motionless elevator near Earth's surface. Strictly speaking, when the gravitational field is non-uniform (like Earth's), the equivalence principle holds only for experiments in elevators that are small enough and that take place over a short enough period of time (Fig. 1). However, performing an experiment in an elevator in space is impractical. On the other hand, it is easy to combine both forces on the same observer, i.e., gravity and a fictitious inertial force due to acceleration. Imagine an observer in an elevator that falls freely within Earth's gravitational field. The observer experiences gravity pulling him down while it might be said that the inertial force due to gravity acceleration g pulls him up. Gravity and inertial force cancel each other, (mis)leading the observer to believe there is no gravitational field. This study outlines our implementation of a self-construction idea that we have found useful in teaching introductory physics students (undergraduate, non-majors).
Fundamentals of the orbit and response for TianQin
NASA Astrophysics Data System (ADS)
Hu, Xin-Chun; Li, Xiao-Hong; Wang, Yan; Feng, Wen-Fan; Zhou, Ming-Yue; Hu, Yi-Ming; Hu, Shou-Cun; Mei, Jian-Wei; Shao, Cheng-Gang
2018-05-01
TianQin is a space-based laser interferometric gravitational wave detector aimed at detecting gravitational waves at low frequencies (0.1 mHz–1 Hz). It is formed by three identical drag-free spacecrafts in an equilateral triangular constellation orbiting around the Earth. The distance between each pair of spacecrafts is approximately 1.7 × 105 ~km . The spacecrafts are interconnected by infrared laser beams forming up to three Michelson-type interferometers. The detailed mission design and the study of science objectives for the TianQin project depend crucially on the orbit and the response of the detector. In this paper, we provide the analytic expressions for the coordinates of the orbit for each spacecraft in the heliocentric-ecliptic coordinate system to the leading orders. This enables a sufficiently accurate study of science objectives and data analysis, and serves as a first step to further orbit design and optimization. We calculate the response of a single Michelson detector to plane gravitational waves in arbitrary waveform which is valid in the full range of the sensitive frequencies. It is then used to generate the more realistic sensitivity curve of TianQin. We apply this model on a reference white-dwarf binary as a proof of principle.
NASA Astrophysics Data System (ADS)
Boero, Ezequiel F.; Moreschi, Osvaldo M.
2018-04-01
We present new results on gravitational lensing over cosmological Robertson-Walker backgrounds which extend and generalize previous works. Our expressions show the presence of new terms and factors which have been neglected in the literature on the subject. The new equations derived here for the optical scalars allow to deal with more general matter content including sources with non-Newtonian components of the energy-momentum tensor and arbitrary motion. Our treatment is within the framework of weak gravitational lenses in which first-order effects of the curvature are considered. We have been able to make all calculations without referring to the concept of deviation angle. This in turn, makes the presentation shorter but also allows for the consideration of global effects on the Robertson-Walker background that have been neglected in the literature. We also discuss two intensity magnifications that we define in this article; one coming from a natural geometrical construction in terms of the affine distance, that we here call \\tilde{μ }, and the other adapted to cosmological discussions in terms of the redshift, that we call μ΄. We show that the natural intensity magnification \\tilde{μ } coincides with the standard angular magnification (μ).
Resource Letter GrW-1: Gravitational Waves
NASA Technical Reports Server (NTRS)
White, Nicholas E. (Technical Monitor); Centrella, Joan M.
2003-01-01
The phenomenon of gravitational radiation was one of the first predictions of Einstein's general theory of relativity. Progress in understanding this radiation theoretically was slow at first, owing to the difficulty of the nonlinear field equations and the subtleties of their physical effects. The experimental side of this subject also has taken a long time to develop, with efforts at detection severely challenged by the extreme weakness of the waves impinging on the Earth. However, as the 21st century begins, observations of the gravitational waves from astrophysical sources such as black holes, neutron stars, and stellar collapse are expected to open a new window on the universe. Vigorous experimental programs centered on ground-based detectors are being carried out worldwide, and a space-based detector is in the planning stages. On the theoretical side, much effort is being expended to produce robust models of the astrophysical sources and accurate calculations of the waveforms they produce. In this Resource Letter, a set of basic references will be presented first, to provide a general introduction to and overview of the literature in this field. The focus then will shift to highlighting key resources in more specialized areas at the forefront of current research.
Effects of visual motion consistent or inconsistent with gravity on postural sway.
Balestrucci, Priscilla; Daprati, Elena; Lacquaniti, Francesco; Maffei, Vincenzo
2017-07-01
Vision plays an important role in postural control, and visual perception of the gravity-defined vertical helps maintaining upright stance. In addition, the influence of the gravity field on objects' motion is known to provide a reference for motor and non-motor behavior. However, the role of dynamic visual cues related to gravity in the control of postural balance has been little investigated. In order to understand whether visual cues about gravitational acceleration are relevant for postural control, we assessed the relation between postural sway and visual motion congruent or incongruent with gravity acceleration. Postural sway of 44 healthy volunteers was recorded by means of force platforms while they watched virtual targets moving in different directions and with different accelerations. Small but significant differences emerged in sway parameters with respect to the characteristics of target motion. Namely, for vertically accelerated targets, gravitational motion (GM) was associated with smaller oscillations of the center of pressure than anti-GM. The present findings support the hypothesis that not only static, but also dynamic visual cues about direction and magnitude of the gravitational field are relevant for balance control during upright stance.
NASA Astrophysics Data System (ADS)
Viero, Alessia; Teza, Giordano; Massironi, Matteo; Jaboyedoff, Michel; Galgaro, Antonio
2010-10-01
The Cinque Torri group (Cortina d'Ampezzo, Italy) is an articulated system of unstable carbonatic rock monoliths located in a very important tourism area and therefore characterized by a significant risk. The instability phenomena involved represent an example of lateral spreading developed over a larger deep seated gravitational slope deformation (DSGSD) area. After the recent fall of a monolith of more than 10 000 m 3, a scientific study was initiated to monitor the more unstable sectors and to characterize the past movements as a fundamental tool for predicting future movements and hazard assessment. To achieve greater insight on the ongoing lateral spreading process, a method for a quantitative analysis of rotational movements associated with the lateral spreading has been developed, applied and validated. The method is based on: i) detailed geometrical characterization of the area by means of laser scanner techniques; ii) recognition of the discontinuity sets and definition of a reference frame for each set, iii) correlation between the obtained reference frames related to a specific sector and a stable external reference frame, and iv) determination of the 3D rotations in terms of Euler angles to describe the present settlement of the Cinque Torri system with respect to the surrounding stable areas. In this way, significant information on the processes involved in the fragmentation and spreading of a former dolomitic plateau into different rock cliffs has been gained. The method is suitable to be applied to similar case studies.
Gravity in the Brain as a Reference for Space and Time Perception.
Lacquaniti, Francesco; Bosco, Gianfranco; Gravano, Silvio; Indovina, Iole; La Scaleia, Barbara; Maffei, Vincenzo; Zago, Myrka
2015-01-01
Moving and interacting with the environment require a reference for orientation and a scale for calibration in space and time. There is a wide variety of environmental clues and calibrated frames at different locales, but the reference of gravity is ubiquitous on Earth. The pull of gravity on static objects provides a plummet which, together with the horizontal plane, defines a three-dimensional Cartesian frame for visual images. On the other hand, the gravitational acceleration of falling objects can provide a time-stamp on events, because the motion duration of an object accelerated by gravity over a given path is fixed. Indeed, since ancient times, man has been using plumb bobs for spatial surveying, and water clocks or pendulum clocks for time keeping. Here we review behavioral evidence in favor of the hypothesis that the brain is endowed with mechanisms that exploit the presence of gravity to estimate the spatial orientation and the passage of time. Several visual and non-visual (vestibular, haptic, visceral) cues are merged to estimate the orientation of the visual vertical. However, the relative weight of each cue is not fixed, but depends on the specific task. Next, we show that an internal model of the effects of gravity is combined with multisensory signals to time the interception of falling objects, to time the passage through spatial landmarks during virtual navigation, to assess the duration of a gravitational motion, and to judge the naturalness of periodic motion under gravity.
Cost effective modular unit for cleaning oil and gas field waste water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zinberg, M.B.; Nenasheva, M.N.; Gafarov, N.A.
1996-12-31
Problems of environmental control involving conservation of water resources are vital for the development of giant oil and gas condensate fields near Caspian Sea (Russia) characterized by water shortages. One of the urgent tasks of oil production industry is to use all field waste water consisting of underground, processing and rain water. It was necessary to construct a new highly effective equipment which could be used in local waste water treatment. Now we have at our disposal a technology and equipment to meet the requirements to the treated water quality. Thus we have installed a modular unit of 100 m{supmore » 3}/a day capacity to clean waste water from oil products, suspended matter and other organic pollutants at Orenburg oil and gas condensate field, Russia. The unit provides with a full treatment of produced water and comprises a settling tank with adhesive facility, the number of sorption filters, Trofactor bioreactors and a disinfecting facility. The equipment is fitted into three boxes measuring 9 x 3.2 x 2.7 in each. The equipment is simple in design that enables to save money, time and space. Sorption filters, bioreactors as well as the Trofactor process are a part of know-how. While working on the unit construction we applied well known methods of settling and sorption. The process of mechanic cleaning is undergoing in the following succession: (1) the gravitational separation in a settling tank where the floated film oil products are constantly gathered and the sediment is periodically taken away, (2) the settled water treatment in sorption Filters of a special kind.« less
NASA Technical Reports Server (NTRS)
Chapman, R. D.
1978-01-01
An overview of basic astronomical knowledge is presented with attention to the structure and dynamics of the stars and planets. Also dealt with are techniques of astronomical measurement, e.g., stellar spectrometry, radio astronomy, star catalogs, etc. Basic physical principles as they pertain to astronomy are reviewed, including the nature of light, gravitation, and electromagnetism. Finally, stellar evolution and cosmology are discussed with reference to the possibility of life elsewhere in the universe.
Quantum locking of mirrors in interferometers.
Courty, Jean-Michel; Heidmann, Antoine; Pinard, Michel
2003-02-28
We show that quantum noise in very sensitive interferometric measurements such as gravitational-wave detectors can be drastically modified by quantum feedback. We present a new scheme based on active control to lock the motion of a mirror to a reference mirror at the quantum level. This simple technique allows one to reduce quantum effects of radiation pressure and to greatly enhance the sensitivity of the detection.
NASA Astrophysics Data System (ADS)
Krot, A. M.
2009-04-01
A statistical theory for a cosmological body forming based on the spheroidal body model has been proposed in the works [1]-[4]. This work studies a slowly evolving process of gravitational condensation of a spheroidal body from an infinitely distributed gas-dust substance in space. The equation for an initial evolution of mass density function of a gas-dust cloud is considered here. It is found this equation coincides completely with the analogous equation for a slowly gravitational compressed spheroidal body [5]. A conductive flow in dissipative systems was investigated by I. Prigogine in his works (see, for example, [6], [7]). As it has been found in [2], [5], there exists a conductive antidiffusion flow in a slowly compressible gravitating spheroidal body. Applying the equation of continuity to this conductive flow density we obtain a linear antidiffusion equation [5]. However, if an intensity of conductive flow density increases sharply then the linear antidiffusion equation becomes a nonlinear one. Really, it was pointed to [6] analogous linear equations of diffusion or thermal conductivity transform in nonlinear equations respectively. In this case, the equation of continuity describes a nonlinear mass flow being a source of instabilities into a gravitating spheroidal body because the gravitational compression factor G is a function of not only time but a mass density. Using integral substitution we can reduce a nonlinear antidiffusion equation to the linear antidiffusion equation relative to a new function. If the factor G can be considered as a specific angular momentum then the new function is an angular momentum density. Thus, a nonlinear momentum density flow induces a flow of angular momentum density because streamlines of moving continuous substance come close into a gravitating spheroidal body. Really, the streamline approach leads to more tight interactions of "liquid particles" that implies a superposition of their specific angular momentums. This superposition forms an antidiffusion flow of an angular momentum density into a gravitating spheroidal body. References: [1] Krot, A.M. The statistical model of gravitational interaction of particles. Achievement in Modern Radioelectronics (spec.issue"Cosmic Radiophysics", Moscow), 1996, no.8, pp. 66-81 (in Russian). [2] Krot, A.M. Statistical description of gravitational field: a new approach. Proc. SPIE's 14th Annual Intern.Symp. "AeroSense", Orlando, Florida, USA, 2000, vol.4038, pp.1318-1329. [3] Krot, A.M. The statistical model of rotating and gravitating spheroidal body with the point of view of general relativity. Proc.35th COSPAR Scientific Assembly, Paris, France, 2004, Abstract A-00162. [4] Krot, A. The statistical approach to exploring formation of Solar system. Proc.EGU General Assembly, Vienna, Austria, 2006, Geophys.Res.Abstracts, vol.8, A-00216; SRef-ID: 1607-7962/gra/. [5] Krot, A.M. A statistical approach to investigate the formation of the solar system. Chaos, Solitons and Fractals, 2008, doi:10.1016/j.chaos.2008.06.014. [6] Glansdorff, P. and Prigogine, I. Thermodynamic Theory of Structure, Stability and Fluctuations. London, 1971. [7] Nicolis, G. and Prigogine, I. Self-organization in Nonequilibrium Systems:From Dissipative Structures to Order through Fluctuation. John Willey and Sons, New York etc., 1977.
Navy Littoral Combat Ship (LCS) Program: Oversight Issues and Options for Congress
2007-07-18
including unmanned vehicles (UVs). The basic version of the LCS, without any mission packages, is referred to as the LCS sea frame. The first LCS was...Littoral Combat Ship (LCS). The LCS is a small, fast ship that uses modular “plug-and- fight” mission packages, including unmanned vehicles (UVs). The...fight” mission packages, including unmanned vehicles (UVs). Rather than being a multimission ship like the Navy’s current large surface combatants
NASA Astrophysics Data System (ADS)
Jöckel, Patrick; Tost, Holger; Pozzer, Andrea; Kunze, Markus; Kirner, Oliver; Brenninkmeijer, Carl A. M.; Brinkop, Sabine; Cai, Duy S.; Dyroff, Christoph; Eckstein, Johannes; Frank, Franziska; Garny, Hella; Gottschaldt, Klaus-Dirk; Graf, Phoebe; Grewe, Volker; Kerkweg, Astrid; Kern, Bastian; Matthes, Sigrun; Mertens, Mariano; Meul, Stefanie; Neumaier, Marco; Nützel, Matthias; Oberländer-Hayn, Sophie; Ruhnke, Roland; Runde, Theresa; Sander, Rolf; Scharffe, Dieter; Zahn, Andreas
2016-03-01
Three types of reference simulations, as recommended by the Chemistry-Climate Model Initiative (CCMI), have been performed with version 2.51 of the European Centre for Medium-Range Weather Forecasts - Hamburg (ECHAM)/Modular Earth Submodel System (MESSy) Atmospheric Chemistry (EMAC) model: hindcast simulations (1950-2011), hindcast simulations with specified dynamics (1979-2013), i.e. nudged towards ERA-Interim reanalysis data, and combined hindcast and projection simulations (1950-2100). The manuscript summarizes the updates of the model system and details the different model set-ups used, including the on-line calculated diagnostics. Simulations have been performed with two different nudging set-ups, with and without interactive tropospheric aerosol, and with and without a coupled ocean model. Two different vertical resolutions have been applied. The on-line calculated sources and sinks of reactive species are quantified and a first evaluation of the simulation results from a global perspective is provided as a quality check of the data. The focus is on the intercomparison of the different model set-ups. The simulation data will become publicly available via CCMI and the Climate and Environmental Retrieval and Archive (CERA) database of the German Climate Computing Centre (DKRZ). This manuscript is intended to serve as an extensive reference for further analyses of the Earth System Chemistry integrated Modelling (ESCiMo) simulations.
2010-01-01
Background The modular approach to analysis of genetically modified organisms (GMOs) relies on the independence of the modules combined (i.e. DNA extraction and GM quantification). The validity of this assumption has to be proved on the basis of specific performance criteria. Results An experiment was conducted using, as a reference, the validated quantitative real-time polymerase chain reaction (PCR) module for detection of glyphosate-tolerant Roundup Ready® GM soybean (RRS). Different DNA extraction modules (CTAB, Wizard and Dellaporta), were used to extract DNA from different food/feed matrices (feed, biscuit and certified reference material [CRM 1%]) containing the target of the real-time PCR module used for validation. Purity and structural integrity (absence of inhibition) were used as basic criteria that a DNA extraction module must satisfy in order to provide suitable template DNA for quantitative real-time (RT) PCR-based GMO analysis. When performance criteria were applied (removal of non-compliant DNA extracts), the independence of GMO quantification from the extraction method and matrix was statistically proved, except in the case of Wizard applied to biscuit. A fuzzy logic-based procedure also confirmed the relatively poor performance of the Wizard/biscuit combination. Conclusions For RRS, this study recognises that modularity can be generally accepted, with the limitation of avoiding combining highly processed material (i.e. biscuit) with a magnetic-beads system (i.e. Wizard). PMID:20687918
The relative efficiency of modular and non-modular networks of different size
Tosh, Colin R.; McNally, Luke
2015-01-01
Most biological networks are modular but previous work with small model networks has indicated that modularity does not necessarily lead to increased functional efficiency. Most biological networks are large, however, and here we examine the relative functional efficiency of modular and non-modular neural networks at a range of sizes. We conduct a detailed analysis of efficiency in networks of two size classes: ‘small’ and ‘large’, and a less detailed analysis across a range of network sizes. The former analysis reveals that while the modular network is less efficient than one of the two non-modular networks considered when networks are small, it is usually equally or more efficient than both non-modular networks when networks are large. The latter analysis shows that in networks of small to intermediate size, modular networks are much more efficient that non-modular networks of the same (low) connective density. If connective density must be kept low to reduce energy needs for example, this could promote modularity. We have shown how relative functionality/performance scales with network size, but the precise nature of evolutionary relationship between network size and prevalence of modularity will depend on the costs of connectivity. PMID:25631996
Torak, L.J.
1993-01-01
A MODular Finite-Element, digital-computer program (MODFE) was developed to simulate steady or unsteady-state, two-dimensional or axisymmetric ground-water-flow. The modular structure of MODFE places the computationally independent tasks that are performed routinely by digital-computer programs simulating ground-water flow into separate subroutines, which are executed from the main program by control statements. Each subroutine consists of complete sets of computations, or modules, which are identified by comment statements, and can be modified by the user without affecting unrelated computations elsewhere in the program. Simulation capabilities can be added or modified by either adding or modifying subroutines that perform specific computational tasks, and the modular-program structure allows the user to create versions of MODFE that contain only the simulation capabilities that pertain to the ground-water problem of interest. MODFE is written in a Fortran programming language that makes it virtually device independent and compatible with desk-top personal computers and large mainframes. MODFE uses computer storage and execution time efficiently by taking advantage of symmetry and sparseness within the coefficient matrices of the finite-element equations. Parts of the matrix coefficients are computed and stored as single-subscripted variables, which are assembled into a complete coefficient just prior to solution. Computer storage is reused during simulation to decrease storage requirements. Descriptions of subroutines that execute the computational steps of the modular-program structure are given in tables that cross reference the subroutines with particular versions of MODFE. Programming details of linear and nonlinear hydrologic terms are provided. Structure diagrams for the main programs show the order in which subroutines are executed for each version and illustrate some of the linear and nonlinear versions of MODFE that are possible. Computational aspects of changing stresses and boundary conditions with time and of mass-balance and error terms are given for each hydrologic feature. Program variables are listed and defined according to their occurrence in the main programs and in subroutines. Listings of the main programs and subroutines are given.
Maudry, Arnaud; Chene, Gautier; Chatelain, Rémi; Patural, Hugues; Bellete, Bahrie; Tisseur, Bernard; Hafid, Jamal; Raberin, Hélène; Beretta, Sophie; Sung, Roger Tran Manh; Belot, Georges; Flori, Pierre
2009-09-01
A comparative study of the Toxoplasma IgG(I) and IgG(II) Access (Access I and II, respectively; Beckman Coulter Inc.), AxSYM Toxo IgG (AxSYM; Abbott Diagnostics), Vidas Toxo IgG (Vidas; bioMerieux, Marcy l'Etoile, France), Immulite Toxo IgG (Immulite; Siemens Healthcare Diagnostics Inc.), and Modular Toxo IgG (Modular; Roche Diagnostics, Basel, Switzerland) tests was done with 406 consecutive serum samples. The Toxo II IgG Western blot (LDBio, Lyon, France) was used as a reference technique in the case of intertechnique discordance. Of the 406 serum samples tested, the results for 35 were discordant by the different techniques. Using the 175 serum samples with positive results, we evaluated the standardization of the titrations obtained (in IU/ml); the medians (second quartiles) obtained were 9.1 IU/ml for the AxSYM test, 21 IU/ml for the Access I test, 25.7 IU/ml for the Access II test, 32 IU/ml for the Vidas test, 34.6 IU/ml for the Immulite test, and 248 IU/ml for the Modular test. For all the immunoassays tested, the following relative sensitivity and specificity values were found: 89.7 to 100% for the Access II test, 89.7 to 99.6% for the Immulite test, 90.2 to 99.6% for the AxSYM test, 91.4 to 99.6% for the Vidas test, 94.8 to 99.6% for the Access I test, and 98.3 to 98.7% for the Modular test. Among the 406 serum samples, we did not find any false-positive values by two different tests for the same serum sample. Except for the Modular test, which prioritized sensitivity, it appears that the positive cutoff values suggested by the pharmaceutical companies are very high (either for economical or for safety reasons). This led to imperfect sensitivity, a large number of unnecessary serological follow-ups of pregnant women, and difficulty in determining the serological status of immunosuppressed individuals.
Adaptive multi-resolution Modularity for detecting communities in networks
NASA Astrophysics Data System (ADS)
Chen, Shi; Wang, Zhi-Zhong; Bao, Mei-Hua; Tang, Liang; Zhou, Ji; Xiang, Ju; Li, Jian-Ming; Yi, Chen-He
2018-02-01
Community structure is a common topological property of complex networks, which attracted much attention from various fields. Optimizing quality functions for community structures is a kind of popular strategy for community detection, such as Modularity optimization. Here, we introduce a general definition of Modularity, by which several classical (multi-resolution) Modularity can be derived, and then propose a kind of adaptive (multi-resolution) Modularity that can combine the advantages of different Modularity. By applying the Modularity to various synthetic and real-world networks, we study the behaviors of the methods, showing the validity and advantages of the multi-resolution Modularity in community detection. The adaptive Modularity, as a kind of multi-resolution method, can naturally solve the first-type limit of Modularity and detect communities at different scales; it can quicken the disconnecting of communities and delay the breakup of communities in heterogeneous networks; and thus it is expected to generate the stable community structures in networks more effectively and have stronger tolerance against the second-type limit of Modularity.
Reference Ellipsoid and Geoid in Chronometric Geodesy
NASA Astrophysics Data System (ADS)
Kopeikin, Sergei M.
2016-02-01
Chronometric geodesy applies general relativity to study the problem of the shape of celestial bodies including the earth, and their gravitational field. The present paper discusses the relativistic problem of construction of a background geometric manifold that is used for describing a reference ellipsoid, geoid, the normal gravity field of the earth and for calculating geoid's undulation (height). We choose the perfect fluid with an ellipsoidal mass distribution uniformly rotating around a fixed axis as a source of matter generating the geometry of the background manifold through the Einstein equations. We formulate the post-Newtonian hydrodynamic equations of the rotating fluid to find out the set of algebraic equations defining the equipotential surface of the gravity field. In order to solve these equations we explicitly perform all integrals characterizing the interior gravitational potentials in terms of elementary functions depending on the parameters defining the shape of the body and the mass distribution. We employ the coordinate freedom of the equations to choose these parameters to make the shape of the rotating fluid configuration to be an ellipsoid of rotation. We derive expressions of the post-Newtonian mass and angular momentum of the rotating fluid as functions of the rotational velocity and the parameters of the ellipsoid including its bare density, eccentricity and semi-major axes. We formulate the post-Newtonian Pizzetti and Clairaut theorems that are used in geodesy to connect the parameters of the reference ellipsoid to the polar and equatorial values of force of gravity. We expand the post-Newtonian geodetic equations characterizing the reference ellipsoid into the Taylor series with respect to the eccentricity of the ellipsoid, and discuss the small-eccentricity approximation. Finally, we introduce the concept of relativistic geoid and its undulation with respect to the reference ellipsoid, and discuss how to calculate it in chronometric geodesy by making use of the anomalous gravity potential.
MOCAT: A Metagenomics Assembly and Gene Prediction Toolkit
Li, Junhua; Chen, Weineng; Chen, Hua; Mende, Daniel R.; Arumugam, Manimozhiyan; Pan, Qi; Liu, Binghang; Qin, Junjie; Wang, Jun; Bork, Peer
2012-01-01
MOCAT is a highly configurable, modular pipeline for fast, standardized processing of single or paired-end sequencing data generated by the Illumina platform. The pipeline uses state-of-the-art programs to quality control, map, and assemble reads from metagenomic samples sequenced at a depth of several billion base pairs, and predict protein-coding genes on assembled metagenomes. Mapping against reference databases allows for read extraction or removal, as well as abundance calculations. Relevant statistics for each processing step can be summarized into multi-sheet Excel documents and queryable SQL databases. MOCAT runs on UNIX machines and integrates seamlessly with the SGE and PBS queuing systems, commonly used to process large datasets. The open source code and modular architecture allow users to modify or exchange the programs that are utilized in the various processing steps. Individual processing steps and parameters were benchmarked and tested on artificial, real, and simulated metagenomes resulting in an improvement of selected quality metrics. MOCAT can be freely downloaded at http://www.bork.embl.de/mocat/. PMID:23082188
How does cognitive load influence speech perception? An encoding hypothesis.
Mitterer, Holger; Mattys, Sven L
2017-01-01
Two experiments investigated the conditions under which cognitive load exerts an effect on the acuity of speech perception. These experiments extend earlier research by using a different speech perception task (four-interval oddity task) and by implementing cognitive load through a task often thought to be modular, namely, face processing. In the cognitive-load conditions, participants were required to remember two faces presented before the speech stimuli. In Experiment 1, performance in the speech-perception task under cognitive load was not impaired in comparison to a no-load baseline condition. In Experiment 2, we modified the load condition minimally such that it required encoding of the two faces simultaneously with the speech stimuli. As a reference condition, we also used a visual search task that in earlier experiments had led to poorer speech perception. Both concurrent tasks led to decrements in the speech task. The results suggest that speech perception is affected even by loads thought to be processed modularly, and that, critically, encoding in working memory might be the locus of interference.
Image Geometric Corrections for a New EMCCD-based Dual Modular X-ray Imager
Qu, Bin; Huang, Ying; Wang, Weiyuan; Cartwright, Alexander N.; Titus, Albert H.; Bednarek, Daniel R.; Rudin, Stephen
2012-01-01
An EMCCD-based dual modular x-ray imager was recently designed and developed from the component level, providing a high dynamic range of 53 dB and an effective pixel size of 26 μm for angiography and fluoroscopy. The unique 2×1 array design efficiently increased the clinical field of view, and also can be readily expanded to an M×N array implementation. Due to the alignment mismatches between the EMCCD sensors and the fiber optic tapers in each module, the output images or video sequences result in a misaligned 2048×1024 digital display if uncorrected. In this paper, we present a method for correcting display registration using a custom-designed two layer printed circuit board. This board was designed with grid lines to serve as the calibration pattern, and provides an accurate reference and sufficient contrast to enable proper display registration. Results show an accurate and fine stitching of the two outputs from the two modules. PMID:22254882
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Richard A.; Brown, Joseph M.; Colby, Sean M.
ATLAS (Automatic Tool for Local Assembly Structures) is a comprehensive multiomics data analysis pipeline that is massively parallel and scalable. ATLAS contains a modular analysis pipeline for assembly, annotation, quantification and genome binning of metagenomics and metatranscriptomics data and a framework for reference metaproteomic database construction. ATLAS transforms raw sequence data into functional and taxonomic data at the microbial population level and provides genome-centric resolution through genome binning. ATLAS provides robust taxonomy based on majority voting of protein coding open reading frames rolled-up at the contig level using modified lowest common ancestor (LCA) analysis. ATLAS provides robust taxonomy based onmore » majority voting of protein coding open reading frames rolled-up at the contig level using modified lowest common ancestor (LCA) analysis. ATLAS is user-friendly, easy install through bioconda maintained as open-source on GitHub, and is implemented in Snakemake for modular customizable workflows.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hecht, Ethan S.; Pratt, Joseph William
To meet the needs of public and private stakeholders involved in the development, construction, and operation of hydrogen fueling stations needed to support the widespread roll-out of hydrogen fuel cell electric vehicles, this work presents publicly available station templates and analyses. These ‘Reference Stations’ help reduce the cost and speed the deployment of hydrogen stations by providing a common baseline with which to start a design, enable quick assessment of potential sites for a hydrogen station, identify contributors to poor economics, and suggest areas of research. This work presents layouts, bills of materials, piping and instrumentation diagrams, and detailed analysesmore » of five new station designs. In the near term, delivered hydrogen results in a lower cost of hydrogen compared to on-site production via steam methane reforming or electrolysis, although the on-site production methods have other advantages. Modular station concepts including on-site production can reduce lot sizes from conventional assemble-on-site stations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marchisio, Mario Andrea, E-mail: marchisio@hit.edu.cn
Published in 2008, Parts & Pools represents one of the first attempts to conceptualize the modular design of bacterial synthetic gene circuits with Standard Biological Parts (DNA segments) and Pools of molecules referred to as common signal carriers (e.g., RNA polymerases and ribosomes). The original framework for modeling bacterial components and designing prokaryotic circuits evolved over the last years and brought, first, to the development of an algorithm for the automatic design of Boolean gene circuits. This is a remarkable achievement since gene digital circuits have a broad range of applications that goes from biosensors for health and environment caremore » to computational devices. More recently, Parts & Pools was enabled to give a proper formal description of eukaryotic biological circuit components. This was possible by employing a rule-based modeling approach, a technique that permits a faithful calculation of all the species and reactions involved in complex systems such as eukaryotic cells and compartments. In this way, Parts & Pools is currently suitable for the visual and modular design of synthetic gene circuits in yeast and mammalian cells too.« less
MOCAT: a metagenomics assembly and gene prediction toolkit.
Kultima, Jens Roat; Sunagawa, Shinichi; Li, Junhua; Chen, Weineng; Chen, Hua; Mende, Daniel R; Arumugam, Manimozhiyan; Pan, Qi; Liu, Binghang; Qin, Junjie; Wang, Jun; Bork, Peer
2012-01-01
MOCAT is a highly configurable, modular pipeline for fast, standardized processing of single or paired-end sequencing data generated by the Illumina platform. The pipeline uses state-of-the-art programs to quality control, map, and assemble reads from metagenomic samples sequenced at a depth of several billion base pairs, and predict protein-coding genes on assembled metagenomes. Mapping against reference databases allows for read extraction or removal, as well as abundance calculations. Relevant statistics for each processing step can be summarized into multi-sheet Excel documents and queryable SQL databases. MOCAT runs on UNIX machines and integrates seamlessly with the SGE and PBS queuing systems, commonly used to process large datasets. The open source code and modular architecture allow users to modify or exchange the programs that are utilized in the various processing steps. Individual processing steps and parameters were benchmarked and tested on artificial, real, and simulated metagenomes resulting in an improvement of selected quality metrics. MOCAT can be freely downloaded at http://www.bork.embl.de/mocat/.
Product modular design incorporating preventive maintenance issues
NASA Astrophysics Data System (ADS)
Gao, Yicong; Feng, Yixiong; Tan, Jianrong
2016-03-01
Traditional modular design methods lead to product maintenance problems, because the module form of a system is created according to either the function requirements or the manufacturing considerations. For solving these problems, a new modular design method is proposed with the considerations of not only the traditional function related attributes, but also the maintenance related ones. First, modularity parameters and modularity scenarios for product modularity are defined. Then the reliability and economic assessment models of product modularity strategies are formulated with the introduction of the effective working age of modules. A mathematical model used to evaluate the difference among the modules of the product so that the optimal module of the product can be established. After that, a multi-objective optimization problem based on metrics for preventive maintenance interval different degrees and preventive maintenance economics is formulated for modular optimization. Multi-objective GA is utilized to rapidly approximate the Pareto set of optimal modularity strategy trade-offs between preventive maintenance cost and preventive maintenance interval difference degree. Finally, a coordinate CNC boring machine is adopted to depict the process of product modularity. In addition, two factorial design experiments based on the modularity parameters are constructed and analyzed. These experiments investigate the impacts of these parameters on the optimal modularity strategies and the structure of module. The research proposes a new modular design method, which may help to improve the maintainability of product in modular design.
Spatial Reorientation of Sensorimotor Balance Control in Altered Gravity
NASA Technical Reports Server (NTRS)
Paloski, W. H.; Black, F. L.; Kaufman, G. D.; Reschke, M. F.; Wood, S. J.
2007-01-01
Sensorimotor coordination of body segments following space flight are more pronounced after landing when the head is actively tilted with respect to the trunk. This suggests that central vestibular processing shifts from a gravitational frame of reference to a head frame of reference in microgravity. A major effect of such changes is a significant postural instability documented by standard head-erect Sensory Organization Tests. Decrements in functional performance may still be underestimated when head and gravity reference frames remained aligned. The purpose of this study was to examine adaptive changes in spatial processing for balance control following space flight by incorporating static and dynamic tilts that dissociate head and gravity reference frames. A second aim of this study was to examine the feasibility of altering the re-adaptation process following space flight by providing discordant visual-vestibular-somatosensory stimuli using short-radius pitch centrifugation.
NASA Astrophysics Data System (ADS)
Krot, Alexander M.
2008-09-01
The statistical theory for a cosmological body forming (so-called the spheroidal body model) has been proposed in [1]-[9]. Within the framework of this theory, bodies have fuzzy outlines and are represented by means of spheroidal forms [1],[2]. In the work [3], it has been investigated a slowly evolving in time process of a gravitational compression of a spheroidal body close to an unstable equilibrium state. In the papers [4],[5], the equation of motion of particles inside the weakly gravitating spheroidal body modeled by means of an ideal liquid has been obtained. Using Schwarzschild's and Kerr's metrics a consistency of the proposed statistical model with the general relativity has been shown in [6]. The proposed theory follows from the conception for forming a spheroidal body from protoplanetary nebula [7],[8]; it permits to derive the form of distribution functions for an immovable [1]-[5] and rotating spheroidal body [6]-[8] as well as their density masses and also the distribution function of specific angular momentum of the rotating uniformly spheroidal body [7],[8]. It is well-known there is not a statistical equilibrium in a gas-dust proto-planetary cloud because of long relaxation time for proto-planets formation in own gravitational field. This proto-planetary system behavior can be described by Jeans' equation in partial derivations relative to a distribution function [9]. The problem for finding a general solution of Jeans' equation is connected directly with an analytical expression for potential of gravitational field. Thus, the determination of gravitational potential is the main problem of statistical dynamics for proto-planetary system [9]. This work shows this task of proto-planetary dynamics can be solved on the basis of spheroidal bodies theory. The proposed theory permits to derive the form of gravitational potential for a rotating spheroidal body at a long distance from its center. Using the obtained analytical expression for potential of gravitational field, the gravitational strength (as well as angular momentum space function) in a remote zone of a slowly gravitational compressed rotating spheroidal body is obtained. As a result, a distribution function describing mechanical state of proto-planetary system can be found from the Jeans' equation. References: [1] Krot AM. The statistical model of gravitational interaction of particles. Uspekhi Sovremennoï Radioelektroniki (special issue "Cosmic Radiophysics", Moscow) 1996; 8: 66-81 (in Russian). [2] Krot AM. Use of the statistical model of gravity for analysis of nonhomogeneity in earth surface. Proc. SPIE's 13th Annual Intern. Symposium "AeroSense", Orlando, Florida, USA, April 5-9, 1999; 3710: 1248-1259. [3] Krot AM. Statistical description of gravitational field: a new approach. Proc. SPIE's 14th Annual Intern.Symposium "AeroSense", Orlando, Florida, USA, April 24-28, 2000; 4038: 1318-1329. [4] Krot AM. Gravidynamical equations for a weakly gravitating spheroidal body. Proc. SPIE's 15th Annual Intern. Symposium "AeroSense", Orlando, Florida, USA, April 16-20, 2001; 4394: 1271-1282. [5] Krot AM. Development of gravidynamical equations for a weakly gravitating body in the vicinity of absolute zero temperature. Proc. 53rd Intern. Astronautical Congress (IAC) - The 2nd World Space Congress-2002, Houston, Texas, USA, October 10-19, 2002; Preprint IAC-02-J.P.01: 1-11. [6] Krot AM. The statistical model of rotating and gravitating spheroidal body with the point of view of general relativity. Proc. 35th COSPAR Scientific Assembly, Paris, France, July 18-25, 2004; Abstract-Nr. COSPAR 04-A- 00162. [7] Krot A. The statistical approach to exploring formation of Solar system. Proc. European Geoscinces Union (EGU) General Assembly, Vienna, Austria, April 02-07, 2006; Geophysical Research Abstracts, vol. 8: EGU06-A- 00216, SRef-ID: 1607-7962/gra/. [8] Krot AM. The statistical model of original and evolution planets of Solar system and planetary satellities. Proc. European Planetary Science Congress, Berlin, Germany, September 18-22, 2006; Planetary Research Abstracts, ESPC2006-A-00014. [9] Krot A. On the principal difficulties and ways to their solution in the theory of gravitational condensation of infinitely distributed dust substance. Proc. XXIV IUGG General Assembly, Perugia, Italy, July 2-13, 2007; GS002 Symposium "Gravity Field", Abstract GS002-3598: 143-144.
Development of modularity in the neural activity of childrenʼs brains
NASA Astrophysics Data System (ADS)
Chen, Man; Deem, Michael W.
2015-02-01
We study how modularity of the human brain changes as children develop into adults. Theory suggests that modularity can enhance the response function of a networked system subject to changing external stimuli. Thus, greater cognitive performance might be achieved for more modular neural activity, and modularity might likely increase as children develop. The value of modularity calculated from functional magnetic resonance imaging (fMRI) data is observed to increase during childhood development and peak in young adulthood. Head motion is deconvolved from the fMRI data, and it is shown that the dependence of modularity on age is independent of the magnitude of head motion. A model is presented to illustrate how modularity can provide greater cognitive performance at short times, i.e. task switching. A fitness function is extracted from the model. Quasispecies theory is used to predict how the average modularity evolves with age, illustrating the increase of modularity during development from children to adults that arises from selection for rapid cognitive function in young adults. Experiments exploring the effect of modularity on cognitive performance are suggested. Modularity may be a potential biomarker for injury, rehabilitation, or disease.
The influence of visual and vestibular orientation cues in a clock reading task.
Davidenko, Nicolas; Cheong, Yeram; Waterman, Amanda; Smith, Jacob; Anderson, Barrett; Harmon, Sarah
2018-05-23
We investigated how performance in the real-life perceptual task of analog clock reading is influenced by the clock's orientation with respect to egocentric, gravitational, and visual-environmental reference frames. In Experiment 1, we designed a simple clock-reading task and found that observers' reaction time to correctly tell the time depends systematically on the clock's orientation. In Experiment 2, we dissociated egocentric from environmental reference frames by having participants sit upright or lie sideways while performing the task. We found that both reference frames substantially contribute to response times in this task. In Experiment 3, we placed upright or rotated participants in an upright or rotated immersive virtual environment, which allowed us to further dissociate vestibular from visual cues to the environmental reference frame. We found evidence of environmental reference frame effects only when visual and vestibular cues were aligned. We discuss the implications for the design of remote and head-mounted displays. Copyright © 2018 Elsevier Inc. All rights reserved.
Newtonian Gravity Reformulated
NASA Astrophysics Data System (ADS)
Dehnen, H.
2018-01-01
With reference to MOND we propose a reformulation of Newton's theory of gravity in the sense of the static electrodynamics introducing a "material" quantity in analogy to the dielectric "constant". We propose that this quantity is induced by vacuum polarizations generated by the gravitational field itself. Herewith the flat rotation curves of the spiral galaxies can be explained as well as the observed high velocities near the center of the galaxy should be reconsidered.
Gravitational Study of the Central Nervous System
NASA Technical Reports Server (NTRS)
Horowitz, J. M.
1983-01-01
A series of experiments conducted at 1G are discussed with reference to the role of calcium ions in information processing by the central nervous system. A technique is described which allows thin sections of a mammalian hippocampus to be isolated while maintaining neural activity. Two experiments carried out in hypergravic fields are also addressed; one investigating altered stimulation in the auditory system, the other determining temperature regulation responses in hypergravic fields.
Geopotential Research Mission (GRM)
NASA Technical Reports Server (NTRS)
1985-01-01
The Geopotential Research Mission (GRM) is a satellite system proposed to determine variations in the gravitational and magnetic fields to a resolution of about 100 kilometers. Knowledge and interpretations of the potential fields on scales of 100 kilometers and greater, to clarify the needs for better data in this range of wavelengths were reviewed. The potential contribution of these data to the determination, by satellite altimetry, of a more accurate geoidal reference was discussed.
Optimal Control of a Circular Satellite Formation Subject to Gravitational Perturbations
2007-03-01
fundamental reference in the study of the dynamics of close-proximity spacecraft is the paper by Clohessy and Wiltshire (5). In this work, the linear...dynamics for a satellite rendezvous problem are derived, which are now commonly known as either the Clohessy - Wiltshire (CW) equations or Hill’s...themselves to closed-form solutions, as did the Clohessy - Wiltshire development. When the nonlinear approach is undertaken, the numeric integration
Dynamics of modularity of neural activity in the brain during development
NASA Astrophysics Data System (ADS)
Deem, Michael; Chen, Man
2014-03-01
Theory suggests that more modular systems can have better response functions at short times. This theory suggests that greater cognitive performance may be achieved for more modular neural activity, and that modularity of neural activity may, therefore, likely increase with development in children. We study the relationship between age and modularity of brain neural activity in developing children. The value of modularity calculated from fMRI data is observed to increase during childhood development and peak in young adulthood. We interpret these results as evidence of selection for plasticity in the cognitive function of the human brain. We present a model to illustrate how modularity can provide greater cognitive performance at short times and enhance fast, low-level, automatic cognitive processes. Conversely, high-level, effortful, conscious cognitive processes may not benefit from modularity. We use quasispecies theory to predict how the average modularity evolves with age, given a fitness function extracted from the model. We suggest further experiments exploring the effect of modularity on cognitive performance and suggest that modularity may be a potential biomarker for injury, rehabilitation, or disease.
NASA Astrophysics Data System (ADS)
Gohlke, Martin; Schuldt, Thilo; Weise, Dennis; Cordero, Jorge; Peters, Achim; Johann, Ulrich; Braxmaier, Claus
2017-11-01
The gravitational wave detector LISA utilizes as current baseline a high sensitivity Optical Readout (ORO) for measuring the relative position and tilt of a free flying proof mass with respect to the satellite housing. The required sensitivities in the frequency band from 30 μHz to 1Hz are ˜ pm/ √ Hz for the translation√ and nrad/√ Hz for the tilt measurement. EADS Astrium, in collaboration with the Humboldt University Berlin and the University of Applied Sciences Konstanz, has realized a prototype ORO over the past years. The interferometer is based on a highly symmetric design where both, measurement and reference beam have a similar optical pathlength, and the same frequency and polarization. The technique of differential wavefront sensing (DWS) for tilt measurement is implemented. With our setup noise levels below 5pm/ √Hz for translation and below 10nrad/ √Hz for tilt measurements - both for frequencies above 10mHz - were demonstrated. We give an overview over the experimental setup, its current performance and the planned improvements. We also discuss the application to first verification of critical LISA aspects. As example we present measurements of the coefficient of thermal expansion (CTE) of various carbon fiber reinforced plastic (CFRP) including a "near-zero-CTE" tube.
Relativistic theory for syntonization of clocks in the vicinity of the Earth
NASA Technical Reports Server (NTRS)
Wolf, Peter; Petit, G.
1995-01-01
A well known prediction of Einstein's general theory of relativity states that two ideal clocks that move with a relative velocity, and are submitted to different gravitational fields will, in general, be observed to run at different rates. Similarly the rate of a clock with respect to the coordinate time of some spacetime reference system is dependent on the velocity of the clock in that reference system and on the gravitational fields it is submitted to. For the syntonization of clocks and the realization of coordinate times (like TAI) this rate shift has to be taken into account at an accuracy level which should be below the frequency stability of the clocks in question, i.e. all terms that are larger than the instability of the clocks should be corrected for. We present a theory for the calculation of the relativistic rate shift for clocks in the vicinity of the Earth, including all terms larger than one part in 10(exp 18). This, together with previous work on clock synchronization (Petit & Wolf 1993, 1994), amounts to a complete relativistic theory for the realization of coordinate time scales at picosecond synchronization and 10(exp -18) syntonization accuracy, which should be sufficient to accommodate future developments in time transfer and clock technology.
NASA Astrophysics Data System (ADS)
Perera, B. B. P.; Stappers, B. W.; Babak, S.; Keith, M. J.; Antoniadis, J.; Bassa, C. G.; Caballero, R. N.; Champion, D. J.; Cognard, I.; Desvignes, G.; Graikou, E.; Guillemot, L.; Janssen, G. H.; Karuppusamy, R.; Kramer, M.; Lazarus, P.; Lentati, L.; Liu, K.; Lyne, A. G.; McKee, J. W.; Osłowski, S.; Perrodin, D.; Sanidas, S. A.; Sesana, A.; Shaifullah, G.; Theureau, G.; Verbiest, J. P. W.; Taylor, S. R.
2018-05-01
We search for continuous gravitational waves (CGWs) produced by individual super-massive black-hole binaries (SMBHBs) in circular orbits using high-cadence timing observations of PSR J1713+0747. We observe this millisecond pulsar using the telescopes in the European Pulsar Timing Array (EPTA) with an average cadence of approximately 1.6 days over the period between April 2011 and July 2015, including an approximately daily average between February 2013 and April 2014. The high-cadence observations are used to improve the pulsar timing sensitivity across the GW frequency range of 0.008 - 5 μHz. We use two algorithms in the analysis, including a spectral fitting method and a Bayesian approach. For an independent comparison, we also use a previously published Bayesian algorithm. We find that the Bayesian approaches provide optimal results and the timing observations of the pulsar place a 95 per cent upper limit on the sky-averaged strain amplitude of CGWs to be ≲ 3.5 × 10-13 at a reference frequency of 1 μHz. We also find a 95 per cent upper limit on the sky-averaged strain amplitude of low-frequency CGWs to be ≲ 1.4 × 10-14 at a reference frequency of 20 nHz.
Mars Global Reference Atmospheric Model (Mars-GRAM): Release No. 2 - Overview and applications
NASA Technical Reports Server (NTRS)
James, B.; Johnson, D.; Tyree, L.
1993-01-01
The Mars Global Reference Atmospheric Model (Mars-GRAM), a science and engineering model for empirically parameterizing the temperature, pressure, density, and wind structure of the Martian atmosphere, is described with particular attention to the model's newest version, Mars-GRAM, Release No. 2 and to the improvements incorporated into the Release No. 2 model as compared with the Release No. 1 version. These improvements include (1) an addition of a new capability to simulate local-scale Martian dust storms and the growth and decay of these storms; (2) an addition of the Zurek and Haberle (1988) wave perturbation model, for simulating tidal perturbation effects; and (3) a new modular version of Mars-GRAM, for incorporation as a subroutine into other codes.
Device for modular input high-speed multi-channel digitizing of electrical data
VanDeusen, Alan L.; Crist, Charles E.
1995-09-26
A multi-channel high-speed digitizer module converts a plurality of analog signals to digital signals (digitizing) and stores the signals in a memory device. The analog input channels are digitized simultaneously at high speed with a relatively large number of on-board memory data points per channel. The module provides an automated calibration based upon a single voltage reference source. Low signal noise at such a high density and sample rate is accomplished by ensuring the A/D converters are clocked at the same point in the noise cycle each time so that synchronous noise sampling occurs. This sampling process, in conjunction with an automated calibration, yields signal noise levels well below the noise level present on the analog reference voltages.
1988-08-20
34 William A. Link, Patuxent Wildlife Research Center "Increasing reliability of multiversion fault-tolerant software design by modulation," Junryo 3... Multiversion lault-Tolerant Software Design by Modularization Junryo Miyashita Department of Computer Science California state University at san Bernardino Fault...They shall beE refered to as " multiversion fault-tolerant software design". Onel problem of developing multi-versions of a program is the high cost
NASA Astrophysics Data System (ADS)
Wang, Jinnian; Zheng, Lanfen; Tong, Qingxi
1998-08-01
In this paper, we reported some research result in applying hyperspectral remote sensing data in identification and classification of wetland plant species and associations. Hyperspectral data were acquired by Modular Airborne Imaging Spectrometer (MAIS) over Poyang Lake wetland, China. A derivative spectral matching algorithm was used in hyperspectral vegetation analysis. The field measurement spectra were as reference for derivative spectral matching. In the study area, seven wetland plant associations were identified and classified with overall average accuracy is 84.03%.
Design and Application of Integrated Assembly Technology of FRG in Residential Ceiling
NASA Astrophysics Data System (ADS)
Li, Xiuyun; Yu, Changyong
2018-06-01
FRG material is a new environmentally friendly indoor decoration materials and popular in prefabricated construction, the paper introduces the performance and design of materials, and takes FRG in the residential ceiling integrated assembly process into a demonstration project, which showed that FRG in the prefabricated modules integrated ceiling of the whole template scheme has a great artistry and application effect. Meanwhile it provides reference for the integrated ceiling assembly modular process design of similar indoor decoration.
Reference earth orbital research and applications investigations (blue book). Volume 1: Summary
NASA Technical Reports Server (NTRS)
1971-01-01
The criteria, guidelines, and an organized approach for use in the space station and space shuttle program definition phase are presented. Subjects discussed are: (1) background information and evolution of the studies, (2) definition of terms used, (3) concepts of the space shuttle, space station, experiment modules, shuttle-sortie operations and modular space station, and (4) summary of functional program element (FPE) requirements. Diagrams of the various configurations and the experimental equipment to be installed in the structures are included.
On the determination of certain astronomical, selenodesic, and gravitational parameters of the moon
NASA Technical Reports Server (NTRS)
Aleksashin, Y. P.; Ziman, Y. L.; Isavnina, I. V.; Krasikov, V. A.; Nepoklonov, B. V.; Rodionov, B. N.; Tischenko, A. P.
1974-01-01
A method was examined for joint construction of a selenocentric fundamental system which can be realized by a coordinate catalog of reference contour points uniformly positioned over the entire lunar surface, and determination of the parameters characterizing the gravitational field, rotation, and orbital motion of the moon. Characteristic of the problem formulation is the introduction of a new complex of inconometric measurements which can be made using pictures obtained from an artificial lunar satellite. The proposed method can be used to solve similar problems on any other planet for which surface images can be obtained from a spacecraft. Characteristic of the proposed technique for solving the problem is the joint statistical analysis of all forms of measurements: orbital iconometric, earth-based trajectory, and also a priori information on the parameters in question which is known from earth-based astronomical studies.
Gravitropic responses of plants in the absence of a complicating G-force (6-IML-1)
NASA Technical Reports Server (NTRS)
Brown, Allan H.
1992-01-01
On the Earth it is patently impossible to measure any tropistic, physiologic, or morphogenic reactions to environmental stimuli without taking into account our planet's gravitational influence on the time course of the test subject's response. It follows that all published reports of quantitative measurements of such responses must have been contaminated by an additional gravity dependent component which probably was not trivial. Our research effort has as its principal scientific objective, the acquisition of experimental data from tests in a microgravity environment that will address a number of basic questions about plants' gravitropic responses to the perception of transversely applied g forces in the hypogravity range, from essentially zero to unit g. Comparable tests on Earth but in the same flight hardware, referred to as the Gravitational Plant Physiology Facility (GPPF), will provide 1 g data for various useful comparisons. Four specific scientific questions are addressed.
An improved model of the Earth's gravitational field: GEM-T1
NASA Technical Reports Server (NTRS)
Marsh, J. G.; Lerch, F. J.; Christodoulidis, D. C.; Putney, B. H.; Felsentreger, T. L.; Sanchez, B. V.; Smith, D. E.; Klosko, S. M.; Martin, T. V.; Pavlis, E. C.
1987-01-01
Goddard Earth Model T1 (GEM-T1), which was developed from an analysis of direct satellite tracking observations, is the first in a new series of such models. GEM-T1 is complete to degree and order 36. It was developed using consistent reference parameters and extensive earth and ocean tidal models. It was simultaneously solved for gravitational and tidal terms, earth orientation parameters, and the orbital parameters of 580 individual satellite arcs. The solution used only satellite tracking data acquired on 17 different satellites and is predominantly based upon the precise laser data taken by third generation systems. In all, 800,000 observations were used. A major improvement in field accuracy was obtained. For marine geodetic applications, long wavelength geoidal modeling is twice as good as in earlier satellite-only GEM models. Orbit determination accuracy has also been substantially advanced over a wide range of satellites that have been tested.
NASA Astrophysics Data System (ADS)
Zakharov, Alexander
It is well-known that one can evaluate black hole (BH) parameters (including spin) analyz-ing trajectories of stars around BH. A bulk distribution of matter (dark matter (DM)+stellar cluster) inside stellar orbits modifies trajectories of stars, namely, generally there is a apoas-tron shift in direction which opposite to GR one, even now one could put constraints on DM distribution and BH parameters and constraints will more stringent in the future. Therefore, an analyze of bright star trajectories provides a relativistic test in a weak gravitational field approximation, but in the future one can test a strong gravitational field near the BH at the Galactic Center with the same technique due to a rapid progress in observational facilities. References A. Zakharov et al., Phys. Rev. D76, 062001 (2007). A.F. Zakharov et al., Space Sci. Rev. 148, 301313(2009).
Effect of Altered Gravity on the Neurobiology of Fish
NASA Astrophysics Data System (ADS)
Anken, R. H.; Rahmann, H.
In vertebrates (including humans) altered gravitational environments such as weightlessness can induce malfunction of the inner ears due to a mismatch between canal and statolith afferents. This leads to an illusionary tilt because the inputs from the inner ear are not confirmed by the other sensory organs, which then results in intersensory conflict. Vertebrates in orbit therefore face severe orientation problems. In humans the intersensory conflict may additionally lead to a malaise commonly referred to as space motion sickness (SMS). After the initial days of weightlessness the orientation problems (and SMS) disappear as the brain develops a new interpretation of the available sensory data. The present contribution reviews the neurobiological responses, particularly those of fish, observed under altered gravitational states concerning behavior and neuroplastic reactivities. Investigations employing microgravity (spaceflight, parabolic aircraft flights, clinostat) and hypergravity (laboratory centrifuges as ground-based research tools) provide insights for understanding the basic phenomena, many of which remain only incompletely explained
Towards Gravitating Discs around Stationary Black Holes
NASA Astrophysics Data System (ADS)
Semerák, Oldřich
This article outlines the search for an exact general relativistic description of the exterior(vacuum) gravitational field of a rotating spheroidal black hole surrounded by a realistic axially symmetric disc of matter. The problem of multi-body stationary spacetimes is first exposed from the perspective of the relativity theory (section 1) and astrophysics (section 2), listing the basic methods employed and results obtained. Then (in section 3) basic formulas for stationary axisymmetric solutions are summarized. Sections 4 and 5 review what we have learnt with Miroslav Žáček and Tomáš Zellerin about certain static and stationary situations recently. Concluding remarks are given in section 6. Although the survey part is quite general, the list of references cannot be complete.Our main desideratum was the informative value rather than originality — novelties have been preferred, mainly reviews and those with detailed introductions.
Flat-space quantum gravity in the AdS / CFT correspondence
Nomura, Yasunori; Sanches, Fabio; Weinberg, Sean J.
2016-03-22
Motivated by the task of understanding microscopic dynamics of an evolving black hole, we present a scheme describing gauge-fixed continuous time evolution of quantum gravitational processes in asymptotically flat spacetime using the algebra of conformal field theory operators. This allows us to study the microscopic dynamics of the Hawking emission process, although obtaining a full S-matrix may require a modification of the minimal scheme. The role of the operator product expansion is to physically interpret the resulting time evolution by decomposing the Hilbert space of the states for the entire system into those for smaller subsystems. We translate the picturemore » of an evaporating black hole previously proposed by the authors into predictions for nonperturbative properties of the conformal field theories that have weakly coupled dual gravitational descriptions. Finally, we also discuss a possible relationship between the present scheme and a reference frame change in the bulk.« less
Height biases and scale variations in VLBI networks due to antenna gravitational deformations
NASA Astrophysics Data System (ADS)
Abbondanza, Claudio; Sarti, Pierguido; Petrov, Leonid; Negusini, Monia
2010-05-01
The impact of signal path variations (SPVs) caused by antenna gravity deformations on geodetic VLBI results is evaluated for the first time. Elevation-dependent models of SPV for Medicina and Noto (Italy) telescopes were derived from a combination of terrestrial surveying methods to account for gravitational deformations. After applying these models, estimates of the antenna reference point (ARP) positions are shifted upward by 8.9 mm and 6.7 mm, respectively. The impact on other parameters is negligible. To infer the impact of antenna gravity deformations on the entire VLBI network, lacking measurements for other telescopes, we rescaled the SPV models of Medicina and Noto for other antennas according to their size. The effects are changes in VLBI heights in the range [-3,73] mm and a significant net scale increase of 0.3 - 0.8 ppb. This demonstrates the need to include SPV models in routine VLBI data analysis.
Optical Telescope System-Level Design Considerations for a Space-Based Gravitational Wave Mission
NASA Technical Reports Server (NTRS)
Livas, Jeffrey C.; Sankar, Shannon R.
2016-01-01
The study of the Universe through gravitational waves will yield a revolutionary new perspective on the Universe, which has been intensely studied using electromagnetic signals in many wavelength bands. A space-based gravitational wave observatory will enable access to a rich array of astrophysical sources in the measurement band from 0.1 to 100 mHz, and nicely complement observations from ground-based detectors as well as pulsar timing arrays by sampling a different range of compact object masses and astrophysical processes. The observatory measures gravitational radiation by precisely monitoring the tiny change in the proper distance between pairs of freely falling proof masses. These masses are separated by millions of kilometers and, using a laser heterodyne interferometric technique, the change in their proper separation is detected to approx. 10 pm over timescales of 1000 seconds, a fractional precision of better than one part in 10(exp 19). Optical telescopes are essential for the implementation of this precision displacement measurement. In this paper we describe some of the key system level design considerations for the telescope subsystem in a mission context. The reference mission for this purpose is taken to be the enhanced Laser Interferometry Space Antenna mission (eLISA), a strong candidate for the European Space Agency's Cosmic Visions L3 launch opportunity in 2034. We will review the flow-down of observatory level requirements to the telescope subsystem, particularly pertaining to the effects of telescope dimensional stability and scattered light suppression, two performance specifications which are somewhat different from the usual requirements for an image forming telescope.
NASA Astrophysics Data System (ADS)
Forgan, Duncan; Rice, Ken
2013-07-01
Recently, the gravitational instability (GI) model of giant planet and brown dwarf formation has been revisited and recast into what is often referred to as the "tidal downsizing" hypothesis. The fragmentation of self-gravitating protostellar discs into gravitationally bound embryos - with masses of a few to tens of Jupiter masses, at semi major axes above 30 - 40 AU - is followed by a combination of grain sedimentation inside the embryo, radial migration towards the central star and tidal disruption of the embryo's upper layers. The properties of the resultant object depends sensitively on the timescales upon which each process occurs. Therefore, GI followed by tidal downsizing can theoretically produce objects spanning a large mass range, from terrestrial planets to giant planets and brown dwarfs. Whether such objects can be formed in practice, and what proportions of the observed population they would represent, requires a more involved statistical analysis. We present a simple population synthesis model of star and planet formation via GI and tidal downsizing. We couple a semi-analytic model of protostellar disc evolution to analytic calculations of fragmentation, initial embryo mass, grain growth and sedimentation, embryo migration and tidal disruption. While there are key pieces of physics yet to be incorporated, it represents a first step towards a mature statistical model of GI and tidal downsizing as a mode of star and planet formation. We show results from four runs of the population synthesis model, varying the opacity law and the strength of migration, as well as investigating the effect of disc truncation during the fragmentation process.
The development of spheroidal bodies theory for proto-planetary dynamics problem solving
NASA Astrophysics Data System (ADS)
Krot, A. M.
2007-08-01
There is not a full statistical equilibrium in a gas-dust proto-planetary cloud because of long relaxation time for proto-planet formation in own gravitational field. This protoplanetary system behavior can be described by Jeans equation in partial derivations relatively a distribution function. The problem for finding a general solution of Jeans equation is connected directly with an analytical expression for potential of gravitational field. Thus, the determination of gravitational potential is the main problem of statistical dynamics for proto-planetary system. The work shows this task of protoplanetary dynamics can be solved on the basis of spheroidal bodies theory [1]-[4]. Within the framework of this theory, cosmological bodies have fuzzy outlines and are represented by means of spheroidal forms. The proposed theory follows from the conception for forming a spheroidal body as a proto-planet from dust-like nebula; it permits to derive the form of distribution functions for an immovable spheroidal body [1],[2] and rotating one [3],[4] as well as their density masses (gravitational potentials and strengths) and also to find the distribution function of specific angular momentum for the rotating spheroidal body [4]. References: [1] A.M.Krot, Achievement in Modern Radioelectronics, 1996, no.8, pp.66-81 (in Russian). [2] A.M.Krot, Proc. SPIE's 13thAnnual Intern.Symp. "AeroSense", Orlando, Florida, USA, 1999, vol.3710, pp.1248-1259. [3] A.M.Krot, Proc. 35th COSPAR Scientific Assembly, Paris, France, 2004, Abstract A-00162. [4] A.Krot, Proc. EGU General Assembly, Vienna, Austria, 2006, Geophys. Res. Abstracts, vol.8, A-00216; SRef-ID: 1607-7962/gra/.
Modular Courses in British Higher Education: A Critical Assessment
ERIC Educational Resources Information Center
Church, Clive
1975-01-01
The trends towards modular course structures is examined. British conceptions of modularization are compared with American interpretations of modular instruction, the former shown to be concerned almost exclusively with content, the latter attempting more radical changes in students' learning behavior. Rationales for British modular schemes are…
Prieur, J-M; Bourdin, C; Sarès, F; Vercher, J-L
2006-01-01
A major issue in motor control studies is to determine whether and how we use spatial frames of reference to organize our spatially oriented behaviors. In previous experiments we showed that simulated body tilt during off-axis rotation affected the performance in verbal localization and manual pointing tasks. It was hypothesized that the observed alterations were at least partly due to a change in the orientation of the egocentric frame of reference, which was indeed centered on the body but aligned with the gravitational vector. The present experiments were designed to test this hypothesis in a situation where no inertial constraints (except the usual gravitational one) exist and where the orientation of the body longitudinal z-axis was not aligned with the direction of the gravity. Eleven subjects were exposed to real static body tilt and were required to verbally localize (experiment 1) and to point as accurately as possible towards (experiment 2) memorized visual targets, in two conditions, Head-Free and Head-Fixed conditions. Results show that the performance was only affected by real body tilt in the localization task performed when the subject's head was tilted relative to the body. Thus, dissociation between gravity and body longitudinal z-axis alone is not responsible for localization nor for pointing errors. Therefore, the egocentric frame of reference seems independent from the orientation of the gravity with regard to body z-axis as expected from our previous studies. Moreover, the use of spatial referentials appears to be less mandatory than expected for pointing movements (motor task) than for localization task (cognitive task).
Dissociation of modular total hip arthroplasty at the neck-stem interface without dislocation.
Kouzelis, A; Georgiou, C S; Megas, P
2012-12-01
Modular femoral and acetabular components are now widely used, but only a few complications related to the modularity itself have been reported. We describe a case of dissociation of the modular total hip arthroplasty (THA) at the femoral neck-stem interface during walking. The possible causes of this dissociation are discussed. Successful treatment was provided with surgical revision and replacement of the modular neck components. Surgeons who use modular components in hip arthroplasties should be aware of possible early complications in which the modularity of the prostheses is the major factor of failure.
Quasispecies theory for evolution of modularity.
Park, Jeong-Man; Niestemski, Liang Ren; Deem, Michael W
2015-01-01
Biological systems are modular, and this modularity evolves over time and in different environments. A number of observations have been made of increased modularity in biological systems under increased environmental pressure. We here develop a quasispecies theory for the dynamics of modularity in populations of these systems. We show how the steady-state fitness in a randomly changing environment can be computed. We derive a fluctuation dissipation relation for the rate of change of modularity and use it to derive a relationship between rate of environmental changes and rate of growth of modularity. We also find a principle of least action for the evolved modularity at steady state. Finally, we compare our predictions to simulations of protein evolution and find them to be consistent.
Carson, Richard G; Oytam, Yalchin; Riek, Stephan
2009-01-01
When we move along in time with a piece of music, we synchronise the downward phase of our gesture with the beat. While it is easy to demonstrate this tendency, there is considerable debate as to its neural origins. It may have a structural basis, whereby the gravitational field acts as an orientation reference that biases the formulation of motor commands. Alternatively, it may be functional, and related to the economy with which motion assisted by gravity can be generated by the motor system. We used a robotic system to generate a mathematical model of the gravitational forces acting upon the hand, and then to reverse the effect of gravity, and invert the weight of the limb. In these circumstances, patterns of coordination in which the upward phase of rhythmic hand movements coincided with the beat of a metronome were more stable than those in which downward movements were made on the beat. When a normal gravitational force was present, movements made down-on-the-beat were more stable than those made up-on-the-beat. The ubiquitous tendency to make a downward movement on a musical beat arises not from the perception of gravity, but as a result of the economy of action that derives from its exploitation.
Sensing and actuation system for the University of Florida Torsion Pendulum for LISA
NASA Astrophysics Data System (ADS)
Chilton, Andrew; Shelley, Ryan; Olatunde, Taiwo; Ciani, Giacomo; Conklin, John; Mueller, Guido
2014-03-01
Space-based gravitational wave detectors like LISA are a necessity for understanding the low-frequency portion of the gravitational universe. They use test masses (TMs) which are separated by Gm and are in free fall inside their respective spacecraft. Their relative distance is monitored with laser interferometry at the pm/rtHz level in the LISA band, ranging from 0.1 to 100 mHz. Each TM is enclosed in a housing that provides isolation, capacitive sensing, and electrostatic actuation capabilities. The electronics must both be sensitive at the 1 nm/rtHz level and not induce residual acceleration noise above the requirement for LISA Pathfinder (3*10-15 m/sec2Hz1/2at 3 mHz). Testing and developing this technology is one of the roles of the University of Florida Torsion Pendulum, the only US testbed for LISA-like gravitational reference sensor technology. Our implementation of the sensing system functions by biasing our hollow LISA-like TMs with a 100 kHz sine wave and coupling a pair surrounding electrodes as capacitors to a pair of preamps and a differential amplifier; all other processing is done digitally. Here we report on the design of, implementation of, and preliminary results from the UF Torsion Pendulum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carbone, L.; Ciani, G.; Dolesi, R.
The low frequency sensitivity of space-borne gravitational wave observatories will depend critically on the geodesic purity of the trajectories of orbiting test masses. Fluctuations in the temperature difference across the enclosure surrounding the free-falling test mass can produce noisy forces through several processes, including the radiometric effect, radiation pressure, and outgassing. We present here a detailed experimental investigation of thermal gradient-induced forces for the Laser Interferometer Space Antenna (LISA) gravitational wave mission and the LISA Pathfinder, employing high resolution torsion pendulum measurements of the torque on a LISA-like test mass suspended inside a prototype of the LISA gravitational reference sensormore » that will surround the test mass in orbit. The measurement campaign, accompanied by numerical simulations of the radiometric and radiation pressure effects, allows a more accurate and representative characterization of thermal-gradient forces in the specific geometry and environment relevant to LISA free-fall. The pressure dependence of the measured torques allows clear identification of the radiometric effect, in quantitative agreement with the model developed. In the limit of zero gas pressure, the measurements are most likely dominated by outgassing, but at a low level that does not threaten the current LISA noise estimate, which assumes a maximum net force per degree of temperature difference of 100(pN/K) for the overall thermal gradient-induced effects.« less
Gravitational force modulates G2/M phase exit in mechanically unloaded myoblasts
Benavides Damm, Tatiana; Franco-Obregón, Alfredo; Egli, Marcel
2013-01-01
Prolonged spaceflight gives rise to muscle loss and reduced strength, a condition commonly referred to as space atrophy. During exposure to microgravity, skeletal muscle myoblasts are mechanically unloaded and respond with attenuated cell proliferation, slowed cell cycle progression, and modified protein expression. To elucidate the underlying mechanisms by which muscle mass declines in response to prolonged microgravity exposure, we grew C2C12 mouse muscle cells under conditions of simulated microgravity (SM) and analyzed their proliferative capacity, cell cycle progression, and cyclin B and D expression. We demonstrated that the retarded cell growth observed in SM was correlated with an approximate 16 h delay in G2/M phase progression, where cells accumulated specifically between the G2 checkpoint and the onset of anaphase, concomitantly with a positive expression for cyclin B. The effect was specific for gravitational mechanical unloading as cells grown under conditions of hypergravity (HG, 4 g) for similar durations of time exhibited normal proliferation and normal cell cycle progression. Our results show that SM and HG exert phenomenological distinct responses over cell cycle progression. The deficits of SM can be restored by terrestrial gravitational force, whereas the effects of HG are indistinguishable from the 1 g control. This suggests that the mechanotransduction apparatus of cells responds differently to mechanical unloading and loading. PMID:23974110
Self-organized modularization in evolutionary algorithms.
Dauscher, Peter; Uthmann, Thomas
2005-01-01
The principle of modularization has proven to be extremely successful in the field of technical applications and particularly for Software Engineering purposes. The question to be answered within the present article is whether mechanisms can also be identified within the framework of Evolutionary Computation that cause a modularization of solutions. We will concentrate on processes, where modularization results only from the typical evolutionary operators, i.e. selection and variation by recombination and mutation (and not, e.g., from special modularization operators). This is what we call Self-Organized Modularization. Based on a combination of two formalizations by Radcliffe and Altenberg, some quantitative measures of modularity are introduced. Particularly, we distinguish Built-in Modularity as an inherent property of a genotype and Effective Modularity, which depends on the rest of the population. These measures can easily be applied to a wide range of present Evolutionary Computation models. It will be shown, both theoretically and by simulation, that under certain conditions, Effective Modularity (as defined within this paper) can be a selection factor. This causes Self-Organized Modularization to take place. The experimental observations emphasize the importance of Effective Modularity in comparison with Built-in Modularity. Although the experimental results have been obtained using a minimalist toy model, they can lead to a number of consequences for existing models as well as for future approaches. Furthermore, the results suggest a complex self-amplification of highly modular equivalence classes in the case of respected relations. Since the well-known Holland schemata are just the equivalence classes of respected relations in most Simple Genetic Algorithms, this observation emphasizes the role of schemata as Building Blocks (in comparison with arbitrary subsets of the search space).
[Modular enteral nutrition in pediatrics].
Murillo Sanchís, S; Prenafeta Ferré, M T; Sempere Luque, M D
1991-01-01
Modular Enteral Nutrition may be a substitute for Parenteral Nutrition in children with different pathologies. Study of 4 children with different pathologies selected from a group of 40 admitted to the Maternal-Childrens Hospital "Valle de Hebrón" in Barcelona, who received modular enteral nutrition. They were monitored on a daily basis by the Dietician Service. Modular enteral nutrition consists of modules of proteins, peptides, lipids, glucids and mineral salts-vitamins. 1.--Craneo-encephalic traumatisms with loss of consciousness, Feeding with a combination of parenteral nutrition and modular enteral nutrition for 7 days. In view of the tolerance and good results of the modular enteral nutrition, the parenteral nutrition was suspended and modular enteral nutrition alone used up to a total of 43 days. 2.--55% burns with 36 days of hyperproteic modular enteral nutrition together with normal feeding. A more rapid recovery was achieved with an increase in total proteins and albumin. 3.--Persistent diarrhoea with 31 days of modular enteral nutrition, 5 days on parenteral nutrition alone and 8 days on combined parenteral nutrition and modular enteral nutrition. In view of the tolerance and good results of the modular enteral nutrition, the parenteral nutrition was suspended. 4.--Mucoviscidosis with a total of 19 days on modular enteral nutrition, 12 of which were exclusively on modular enteral nutrition and 7 as a night supplement to normal feeding. We administered proteic intakes of up to 20% of the total calorific intake and in concentrations of up to 1.2 calories/ml of the final preparation, always with a good tolerance. Modular enteral nutrition can and should be used as a substitute for parenteral nutrition in children with different pathologies, thus preventing the complications inherent in parenteral nutrition.
Convergent evolution of modularity in metabolic networks through different community structures.
Zhou, Wanding; Nakhleh, Luay
2012-09-14
It has been reported that the modularity of metabolic networks of bacteria is closely related to the variability of their living habitats. However, given the dependency of the modularity score on the community structure, it remains unknown whether organisms achieve certain modularity via similar or different community structures. In this work, we studied the relationship between similarities in modularity scores and similarities in community structures of the metabolic networks of 1021 species. Both similarities are then compared against the genetic distances. We revisited the association between modularity and variability of the microbial living environments and extended the analysis to other aspects of their life style such as temperature and oxygen requirements. We also tested both topological and biological intuition of the community structures identified and investigated the extent of their conservation with respect to the taxonomy. We find that similar modularities are realized by different community structures. We find that such convergent evolution of modularity is closely associated with the number of (distinct) enzymes in the organism's metabolome, a consequence of different life styles of the species. We find that the order of modularity is the same as the order of the number of the enzymes under the classification based on the temperature preference but not on the oxygen requirement. Besides, inspection of modularity-based communities reveals that these communities are graph-theoretically meaningful yet not reflective of specific biological functions. From an evolutionary perspective, we find that the community structures are conserved only at the level of kingdoms. Our results call for more investigation into the interplay between evolution and modularity: how evolution shapes modularity, and how modularity affects evolution (mainly in terms of fitness and evolvability). Further, our results call for exploring new measures of modularity and network communities that better correspond to functional categorizations.
NASA Astrophysics Data System (ADS)
Allen, Bruce
2004-10-01
It is now almost two decades since Bernard Schutz organized a landmark meeting on data analysis for gravitational wave detectors at the University of Cardiff, UK [1]. The proceedings of that meeting make interesting reading. Among the issues discussed were optimal ways to carry out searches for binary inspiral signals, and ways in which the projected growth in computer speed, memory and networking bandwidth would influence searches for gravitational wave signals. The Gravitational Wave Data Analysis Workshop traces its history to the mid-1990s. With the construction of the US LIGO detectors and the European GEO and VIRGO detectors already underway, Kip Thorne and Sam Finn realized that it was important for the world-wide data analysis community to start discussing some of the big unsettled issues in analysis. What was the optimal way to perform a pulsar search? To ensure confident detection, how accurately did binary inspiral waveforms have to be calculated? It was largely Kip and Sam's initiative that got the GWDAW started. The first (official) GWDAW was hosted by Rai Weiss at Massachusetts Institute of Technology, USA in 1996, as a follow-on to an informal meeting organized in the previous year by Sam Finn. I have pleasant memories of this first MIT GWDAW. I was new to the field and remember my excitement at learning that I had many colleagues interested in (and working on) the important issues. I also remember how refreshing it was to hear a pair of talks by Pia Astone and Marialessandra Papa who were not only studying methods but had actually carried out serious pulsar and burst searches using data from the Rome resonant bar detectors. A lot has changed since then. This issue is the Proceedings of the 8th Annual Gravitational Wave Data Analysis Workshop, held on 17-20 December 2003 at the University of Wisconsin-Milwaukee, USA. Many of the contributions concern technical details of the analysis of real data from resonant mass and interferometric detectors, setting upper limits on known pulsars, the gravitational wave stochastic background, and rates of burst and inspiral signals. Barring something unforeseen, the next decade of the GWDAW may see the launch of the LISA space-based detector, and should see the definitive detection of gravitational waves with terrestrial detectors. The scientific significance of this discovery is great enough that it probably will not be announced at a future GWDAW, but I am sure that the technical details of the analysis will get a great deal of attention there! References [1] Schutz B F (ed) 1989 Gravitational Wave Data Analysis, Proc. NATO Advanced Research Workshop (Cardiff, UK) (Amsterdam: Kluwer)
Implicit Contractive Mappings in Modular Metric and Fuzzy Metric Spaces
Hussain, N.; Salimi, P.
2014-01-01
The notion of modular metric spaces being a natural generalization of classical modulars over linear spaces like Lebesgue, Orlicz, Musielak-Orlicz, Lorentz, Orlicz-Lorentz, and Calderon-Lozanovskii spaces was recently introduced. In this paper we investigate the existence of fixed points of generalized α-admissible modular contractive mappings in modular metric spaces. As applications, we derive some new fixed point theorems in partially ordered modular metric spaces, Suzuki type fixed point theorems in modular metric spaces and new fixed point theorems for integral contractions. In last section, we develop an important relation between fuzzy metric and modular metric and deduce certain new fixed point results in triangular fuzzy metric spaces. Moreover, some examples are provided here to illustrate the usability of the obtained results. PMID:25003157
Modular Power Standard for Space Explorations Missions
NASA Technical Reports Server (NTRS)
Oeftering, Richard C.; Gardner, Brent G.
2016-01-01
Future human space exploration will most likely be composed of assemblies of multiple modular spacecraft elements with interconnected electrical power systems. An electrical system composed of a standardized set modular building blocks provides significant development, integration, and operational cost advantages. The modular approach can also provide the flexibility to configure power systems to meet the mission needs. A primary goal of the Advanced Exploration Systems (AES) Modular Power System (AMPS) project is to establish a Modular Power Standard that is needed to realize these benefits. This paper is intended to give the space exploration community a "first look" at the evolving Modular Power Standard and invite their comments and technical contributions.
Ehrenfeld, Stephan; Herbort, Oliver; Butz, Martin V.
2013-01-01
This paper addresses the question of how the brain maintains a probabilistic body state estimate over time from a modeling perspective. The neural Modular Modality Frame (nMMF) model simulates such a body state estimation process by continuously integrating redundant, multimodal body state information sources. The body state estimate itself is distributed over separate, but bidirectionally interacting modules. nMMF compares the incoming sensory and present body state information across the interacting modules and fuses the information sources accordingly. At the same time, nMMF enforces body state estimation consistency across the modules. nMMF is able to detect conflicting sensory information and to consequently decrease the influence of implausible sensor sources on the fly. In contrast to the previously published Modular Modality Frame (MMF) model, nMMF offers a biologically plausible neural implementation based on distributed, probabilistic population codes. Besides its neural plausibility, the neural encoding has the advantage of enabling (a) additional probabilistic information flow across the separate body state estimation modules and (b) the representation of arbitrary probability distributions of a body state. The results show that the neural estimates can detect and decrease the impact of false sensory information, can propagate conflicting information across modules, and can improve overall estimation accuracy due to additional module interactions. Even bodily illusions, such as the rubber hand illusion, can be simulated with nMMF. We conclude with an outlook on the potential of modeling human data and of invoking goal-directed behavioral control. PMID:24191151
2017-05-24
iss051e049152 (5/24/2017) --- ESA astronaut Thomas Pesquet performs the commissioning of the Gravitational References for Sensimotor Performance (GRASP) experiment, to better understand how the central nervous system (CNS) integrates information from different sensations. The data collected could help researchers better understand the workings of the human vestibular system and how it connects to the other sensory organs. This research hopes to shed light on how to best treat the loss of vestibular function on Earth.
2017-05-24
iss051e049147 (5/24/2017) --- ESA astronaut Thomas Pesquet performs the commissioning of the Gravitational References for Sensimotor Performance (GRASP) experiment, to better understand how the central nervous system (CNS) integrates information from different sensations. The data collected could help researchers better understand the workings of the human vestibular system and how it connects to the other sensory organs. This research hopes to shed light on how to best treat the loss of vestibular function on Earth.
Chance Discovery with Data Crystallization: A Basic Research for Discovering Unobservable Events
2006-05-10
matter in cosmology. The dark matter refers to hypothetical particles which do not emit or reflect radiation to be detected directly. But its presence...can be inferred from gravitational effects on visible matter such as stars and galaxies. The dark matter hypothesis aims to explain several anomalous...astronomical observations in the stellar dynamics. Estimates of the amount of the dark matter suggest that there is far more matter than is directly
Equivalence principle and quantum mechanics: quantum simulation with entangled photons.
Longhi, S
2018-01-15
Einstein's equivalence principle (EP) states the complete physical equivalence of a gravitational field and corresponding inertial field in an accelerated reference frame. However, to what extent the EP remains valid in non-relativistic quantum mechanics is a controversial issue. To avoid violation of the EP, Bargmann's superselection rule forbids a coherent superposition of states with different masses. Here we suggest a quantum simulation of non-relativistic Schrödinger particle dynamics in non-inertial reference frames, which is based on the propagation of polarization-entangled photon pairs in curved and birefringent optical waveguides and Hong-Ou-Mandel quantum interference measurement. The photonic simulator can emulate superposition of mass states, which would lead to violation of the EP.
Searching for gravitational waves from pulsars
NASA Astrophysics Data System (ADS)
Gill, Colin D.
The work presented here looks at several aspects of searching for continuous gravitational waves from pulsars, often referred to simply as continuous waves or CWs. This begins with an examination of noise in the current generation of laser interferometer gravitational wave detectors in the region below ~100 Hz. This frequency region is of particular interest with regards to CW detection as two prime sources for a first CW detection, the Crab and Vela pulsars, are expected to emit CWs in this frequency range. The Crab pulsar's frequency lies very close to a strong noise line due to the 60 Hz mains electricity in the LIGO detectors. The types of noise generally present in this region are discussed. Also presented are investigations into the noise features present in the LIGO S6 data and the Virgo VSR2 data using a program called Fscan. A particular noise feature present during VSR2 was discovered with the use of Fscan, which I report on and show how it degrades the sensitivity of searches for CWs from the Vela pulsar using this data. I next present search results for CWs from the Vela pulsar using VSR2 and VSR4 data. Whilst these searches did not find any evidence for gravitational waves being present in the data, they were able to place upper limits on the strength of gravitational wave emission from Vela lower than the upper limit set by the pulsars spin-down, making it only the second pulsar for which this milestone has been achieved. The lowest upper limit derived from these searches confines the spin-down energy lost from Vela due to gravitational waves as just 9% of Vela's total spin-down energy. The data from VSR2 and VSR4 are also examined, analysis of hardware injections in these datasets verify the calibration of the data and the search method. Similar results are also presented for a search for CWs from the Crab pulsar, where data from VSR2, VSR3, VSR4, S5 and S6 are combined to produce an upper limit on the gravitational wave (GW) amplitude lower than has been previously possible, representing 0.5% of the energy lost by the pulsar as seen through its spin-down. The same search method is also applied to analyse data for another 110 known pulsars, with five of these being gamma-ray pulsars that have been timed by the Fermi satellite.
Modelling Biogeochemistry Across Domains with The Modular System for Shelves and Coasts (MOSSCO)
NASA Astrophysics Data System (ADS)
Burchard, H.; Lemmen, C.; Hofmeister, R.; Knut, K.; Nasermoaddeli, M. H.; Kerimoglu, O.; Koesters, F.; Wirtz, K.
2016-02-01
Coastal biogeochemical processes extend from the atmosphere through the water column and the epibenthos into the ocean floor, laterally they are determined by freshwater inflows and open water exchange, and in situ they are mediated by physical, chemical and biological interactions. We use the new Modular System for Shelves and Coasts (MOSSCO, http://www.mossco.de) to obtain an integrated view of coastal biogeochemistry. MOSSCO is a coupling framework that builds on existing coupling technologies like the Earth System Modeling Framework (ESMF, for domain-coupling) and the Framework for Aquatic Biogeochemistry (FABM, for process coupling). MOSSCO facilitates the communication about and the integration of existing and of new process models into a threedimensional regional coastal modelling context. In the MOSSCO concept, the integrating framework imposes very few restrictions on contributed data or models; in fact, there is no distinction made between data and models. The few requirements are: (1) principle coupleability, i.e. access to I/O and timing information in submodels, which has recently been referred to as the Basic Model Interface (BMI) (2) open source/open data access and licencing and (3) communication of metadata, such as spatiotemporal information, naming conventions, and physical units. These requirements suffice to integrate different models and data sets into the MOSSCO infrastructure and subsequently built a modular integrated modeling tool that can span a diversity of processes and domains. Here, we demonstrate a MOSSCO application for the southern North Sea, where atmospheric deposition, biochemical processing in the water column and the ocean floor, lateral nutrient replenishment, and wave- and current-dependent remobilization from sediments are accounted for by modular components. A multi-annual simulation yields realistic succession of the spatial gradients of dissolved nutrients, of chlorophyll variability and gross primary production rates and of benthic denitrification rates for this intriguing coastal system.
Pennell, William E.; Rowan, William J.
1977-01-01
A nuclear reactor in which the core components, including fuel-rod assemblies, control-rod assemblies, fertile rod-assemblies, and removable shielding assemblies, are supported by a plurality of separate inlet modular units. These units are referred to as inlet module units to distinguish them from the modules of the upper internals of the reactor. The modular units are supported, each removable independently of the others, in liners in the supporting structure for the lower internals of the reactor. The core assemblies are removably supported in integral receptacles or sockets of the modular units. The liners, units, sockets and assmblies have inlet openings for entry of the fluid. The modular units are each removably mounted in the liners with fluid seals interposed between the opening in the liner and inlet module into which the fluid enters and the upper and lower portion of the liner. Each assembly is similarly mounted in a corresponding receptacle with fluid seals interposed between the openings where the fluid enters and the lower portion of the receptacle or fitting closely in these regions. As fluid flows along each core assembly a pressure drop is produced along the fluid so that the fluid which emerges from each core assembly is at a lower pressure than the fluid which enters the core assembly. However because of the seals interposed in the mountings of the units and assemblies the pressures above and below the units and assemblies are balanced and the units are held in the liners and the assemblies are held in the receptacles by their weights as they have a higher specific gravity than the fluid. The low-pressure spaces between each module and its liner and between each core assembly and its module is vented to the low-pressure regions of the vessel to assure that fluid which leaks through the seals does not accumulate and destroy the hydraulic balance.
Configurable double-sided modular jet impingement assemblies for electronics cooling
Zhou, Feng; Dede, Ercan Mehmet
2018-05-22
A modular jet impingement assembly includes an inlet tube fluidly coupled to a fluid inlet, an outlet tube fluidly coupled to a fluid outlet, and a modular manifold having a first distribution recess extending into a first side of the modular manifold, a second distribution recess extending into a second side of the modular manifold, a plurality of inlet connection tubes positioned at an inlet end of the modular manifold, and a plurality of outlet connection tubes positioned at an outlet end of the modular manifold. A first manifold insert is removably positioned within the first distribution recess, a second manifold insert is removably positioned within the second distribution recess, and a first and second heat transfer plate each removably coupled to the modular manifold. The first and second heat transfer plates each comprise an impingement surface.
The EGM2008 Global Gravitational Model
NASA Astrophysics Data System (ADS)
Pavlis, N. K.; Holmes, S. A.; Kenyon, S. C.; Factor, J. K.
2008-12-01
The development of a new Earth Gravitational Model (EGM) to degree 2160 has been completed. This model, designated EGM2008, is the product of the final re-iteration of our modelling and estimation approach. Our multi-year effort has produced several Preliminary Gravitational Models (PGM) of increasingly improved performance. One of these models (PGM2007A) was provided for evaluation to an independent Evaluation Working Group, sponsored by the International Association of Geodesy (IAG). In an effort to address certain shortcomings of PGM2007A, we have considered the feedback that we received from this Working Group. As part of this effort, EGM2008 incorporates an improved version of our 5'x5' global gravity anomaly database and has benefited from the latest GRACE based satellite-only solutions (e.g., ITG- GRACE03S). EGM2008 incorporates an improved ocean-wide set of altimetry-derived gravity anomalies that were estimated using PGM2007B (a variant of PGM2007A) and its associated Dynamic Ocean Topography (DOT) model as reference models in a "Remove-Compute-Restore" fashion. For the Least Squares Collocation estimation of our final global 5'x5' area-mean gravity anomaly database, we have used consistently PGM2007B as our reference model to degree 2160. We have developed and used a formulation that predicts area-mean gravity anomalies that are effectively band-limited to degree 2160, thereby minimizing aliasing effects during the harmonic analysis process. We have also placed special emphasis on the refinement and "calibration" of the error estimates that accompany our final combination solution EGM2008. We present the main aspects of the model's development and evaluation. This evaluation was accomplished primarily through the comparison of various model derived quantities with independent data and models (e.g., geoid undulations derived from GPS positioning and spirit levelling, astronomical deflections of the vertical, etc.). We will also present comparisons of our model-implied Dynamic Ocean Topography with other contemporary estimates (e.g., from ECCO).
Device for modular input high-speed multi-channel digitizing of electrical data
VanDeusen, A.L.; Crist, C.E.
1995-09-26
A multi-channel high-speed digitizer module converts a plurality of analog signals to digital signals (digitizing) and stores the signals in a memory device. The analog input channels are digitized simultaneously at high speed with a relatively large number of on-board memory data points per channel. The module provides an automated calibration based upon a single voltage reference source. Low signal noise at such a high density and sample rate is accomplished by ensuring the A/D converters are clocked at the same point in the noise cycle each time so that synchronous noise sampling occurs. This sampling process, in conjunction with an automated calibration, yields signal noise levels well below the noise level present on the analog reference voltages. 1 fig.
Convergent evolution of modularity in metabolic networks through different community structures
2012-01-01
Background It has been reported that the modularity of metabolic networks of bacteria is closely related to the variability of their living habitats. However, given the dependency of the modularity score on the community structure, it remains unknown whether organisms achieve certain modularity via similar or different community structures. Results In this work, we studied the relationship between similarities in modularity scores and similarities in community structures of the metabolic networks of 1021 species. Both similarities are then compared against the genetic distances. We revisited the association between modularity and variability of the microbial living environments and extended the analysis to other aspects of their life style such as temperature and oxygen requirements. We also tested both topological and biological intuition of the community structures identified and investigated the extent of their conservation with respect to the taxomony. Conclusions We find that similar modularities are realized by different community structures. We find that such convergent evolution of modularity is closely associated with the number of (distinct) enzymes in the organism’s metabolome, a consequence of different life styles of the species. We find that the order of modularity is the same as the order of the number of the enzymes under the classification based on the temperature preference but not on the oxygen requirement. Besides, inspection of modularity-based communities reveals that these communities are graph-theoretically meaningful yet not reflective of specific biological functions. From an evolutionary perspective, we find that the community structures are conserved only at the level of kingdoms. Our results call for more investigation into the interplay between evolution and modularity: how evolution shapes modularity, and how modularity affects evolution (mainly in terms of fitness and evolvability). Further, our results call for exploring new measures of modularity and network communities that better correspond to functional categorizations. PMID:22974099
Modular jet impingement assemblies with passive and active flow control for electronics cooling
Zhou, Feng; Dede, Ercan Mehmet; Joshi, Shailesh
2016-09-13
Power electronics modules having modular jet impingement assembly utilized to cool heat generating devices are disclosed. The modular jet impingement assemblies include a modular manifold having a distribution recess, one or more angled inlet connection tubes positioned at an inlet end of the modular manifold that fluidly couple the inlet tube to the distribution recess and one or more outlet connection tubes positioned at an outlet end of the modular manifold that fluidly coupling the outlet tube to the distribution recess. The modular jet impingement assemblies include a manifold insert removably positioned within the distribution recess and include one or more inlet branch channels each including an impinging slot and one or more outlet branch channels each including a collecting slot. Further a heat transfer plate coupled to the modular manifold, the heat transfer plate comprising an impingement surface including an array of fins that extend toward the manifold insert.
Modular cathode assemblies and methods of using the same for electrochemical reduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiedmeyer, Stanley G.; Barnes, Laurel A.; Williamson, Mark A.
Modular cathode assemblies are useable in electrolytic reduction systems and include a basket through which fluid electrolyte may pass and exchange charge with a material to be reduced in the basket. The basket can be divided into upper and lower sections to provide entry for the material. Example embodiment cathode assemblies may have any shape to permit modular placement at any position in reduction systems. Modular cathode assemblies include a cathode plate in the basket, to which unique and opposite electrical power may be supplied. Example embodiment modular cathode assemblies may have standardized electrical connectors. Modular cathode assemblies may bemore » supported by a top plate of an electrolytic reduction system. Electrolytic oxide reduction systems are operated by positioning modular cathode and anode assemblies at desired positions, placing a material in the basket, and charging the modular assemblies to reduce the metal oxide.« less
Modular cathode assemblies and methods of using the same for electrochemical reduction
Wiedmeyer, Stanley G; Barnes, Laurel A; Williamson, Mark A; Willit, James L
2014-12-02
Modular cathode assemblies are useable in electrolytic reduction systems and include a basket through which fluid electrolyte may pass and exchange charge with a material to be reduced in the basket. The basket can be divided into upper and lower sections to provide entry for the material. Example embodiment cathode assemblies may have any shape to permit modular placement at any position in reduction systems. Modular cathode assemblies include a cathode plate in the basket, to which unique and opposite electrical power may be supplied. Example embodiment modular cathode assemblies may have standardized electrical connectors. Modular cathode assemblies may be supported by a top plate of an electrolytic reduction system. Electrolytic oxide reduction systems are operated by positioning modular cathode and anode assemblies at desired positions, placing a material in the basket, and charging the modular assemblies to reduce the metal oxide.
Reduction of Effective Acceleration to Microgravity Levels
NASA Technical Reports Server (NTRS)
Downey, James P.
2000-01-01
Acceleration due to earth's gravity causes buoyancy driven convection and sedimentation in solutions. In addition. pressure gradients occur as a function of the height within a liquid column. Hence gravity effects both equilbria conditions and phase transitions as a result of hydrostatic pressure gradients. The affect of gravity on the rate of heat and man transfer in solutal processes can be particularly important in polymer processing due to the high sensitivity of polymeric materials to processing conditions. The term microgravity has been coined to describe an environment in which the affects of gravitational acceleration am greatly reduced. It may seem odd to talk in term of reducing the effects of gravitational acceleration since gravitational attraction is a basic property of matter. However, die presence of gravity on in situ processing or measurements can be negated by achieving conditions in which the laboratory, or more specifically the container of the experimental materials, a subjected to the same acceleration as the materials themselves. With regard to the laboratory reference frame, there is virtually no force on the experimental solutions. This is difficult to achieve but can be done. A short review of Newtonian physics provides an explanation on both how processes we affected by gravity and how microgravity conditions are achieved. The fact that fluids deform when subject to a force bid solids do not indicates that solids have a structure able to exert an opposing force that negates an externally applied force. Liquids deform when a force is applied, indicating that a liquid structure cannot completely negate an applied force. Just how easily a liquid resists deformation is related to its viscosity. Spaceflight provides an environment in which the laboratory reference frame i.e. the spacecraft and all the equipment therein an experiencing virtually identical forces. There is no solid foundation underneath such a laboratory, so the laboratory accelerates according to the force of gravity as do the experimental fluids within the lab. Hence, the magnitude of the form excited by the laboratory on the experimental solutions within are greatly reduced. When compared with a laboratory on the ground and averaged over time, the fluids in a spaceflight laboratory experience approximately a 10 (sup -6)decrease in acceleration relative to their laboratory reference frame hence the term microgravity.
ERIC Educational Resources Information Center
National Academy of Sciences - National Research Council, Washington, DC.
Publication of conference presentations include--(1) a brief review of current modular standard development, (2) the statistical status of modular practice, (3) availability of modular products, and (4) educational programs on modular coordination. Included are--(1) explanatory diagrams, (2) text of an open panel discussion, and (3) a list of…
Probing cosmic anisotropy with gravitational waves as standard sirens
NASA Astrophysics Data System (ADS)
Cai, Rong-Gen; Liu, Tong-Bo; Liu, Xue-Wen; Wang, Shao-Jiang; Yang, Tao
2018-05-01
The gravitational wave (GW) as a standard siren directly determines the luminosity distance from the gravitational waveform without reference to the specific cosmological model, of which the redshift can be obtained separately by means of the electromagnetic counterpart like GW events from binary neutron stars and massive black hole binaries (MBHBs). To see to what extent the standard siren can reproduce the presumed dipole anisotropy written in the simulated data of standard siren events from typical configurations of GW detectors, we find that (1) for the Laser Interferometer Space Antenna with different MBHB models during five-year observations, the cosmic isotropy can be ruled out at 3 σ confidence level (C.L.) and the dipole direction can be constrained roughly around 20% at 2 σ C.L., as long as the dipole amplitude is larger than 0.04, 0.06 and 0.03 for MBHB models Q3d, pop III and Q3nod with increasing constraining ability, respectively; (2) for the Einstein telescope with no less than 200 standard siren events, the cosmic isotropy can be ruled out at 3 σ C.L. if the dipole amplitude is larger than 0.06, and the dipole direction can be constrained within 20% at 3 σ C.L. if the dipole amplitude is near 0.1; (3) for the Deci-Hertz Interferometer Gravitational wave Observatory with no less than 100 standard siren events, the cosmic isotropy can be ruled out at 3 σ C.L. for dipole amplitude larger than 0.03, and the dipole direction can even be constrained within 10% at 3 σ C.L. if the dipole amplitude is larger than 0.07. Our work manifests the promising perspective of the constraint ability on the cosmic anisotropy from the standard siren approach.
NASA Astrophysics Data System (ADS)
Wang, H. B.; Zhao, C. Y.; Zhang, W.; Zhan, J. W.; Yu, S. X.
2015-09-01
The Earth gravitational filed model is a kind of important dynamic model in satellite orbit computation. In recent years, several space gravity missions have obtained great success, prompting a lot of gravitational filed models to be published. In this paper, 2 classical models (JGM3, EGM96) and 4 latest models, including EIGEN-CHAMP05S, GGM03S, GOCE02S, and EGM2008 are evaluated by being employed in the precision orbit determination (POD) and prediction, based on the laser range observation of four low earth orbit (LEO) satellites, including CHAMP, GFZ-1, GRACE-A, and SWARM-A. The residual error of observation in POD is adopted to describe the accuracy of six gravitational field models. We show the main results as follows: (1) for LEO POD, the accuracies of 4 latest models (EIGEN-CHAMP05S, GGM03S, GOCE02S, and EGM2008) are at the same level, and better than those of 2 classical models (JGM3, EGM96); (2) If taking JGM3 as reference, EGM96 model's accuracy is better in most situations, and the accuracies of the 4 latest models are improved by 12%-47% in POD and 63% in prediction, respectively. We also confirm that the model's accuracy in POD is enhanced with the increasing degree and order if they are smaller than 70, and when they exceed 70 the accuracy keeps stable, and is unrelated with the increasing degree, meaning that the model's degree and order truncated to 70 are sufficient to meet the requirement of LEO orbit computation with centimeter level precision.
BOOK REVIEW: Gravitational Waves, Volume 1: Theory and Experiments
NASA Astrophysics Data System (ADS)
Poisson, Eric
2008-10-01
A superficial introduction to gravitational waves can be found in most textbooks on general relativity, but typically, the treatment hardly does justice to a field that has grown tremendously, both in its theoretical and experimental aspects, in the course of the last twenty years. Other than the technical literature, few other sources have been available to the interested reader; exceptions include edited volumes such as [1] and [2], Weber's little book [3] which happily is still in print, and Peter Saulson's text [4] which appears, unfortunately, to be out of print. In addition to these technical references, the story of gravitational waves was famously told by a sociologist of scientific knowledge [5] (focusing mostly on the experimental aspects) and a historian of science [6] (focusing mostly on the theoretical aspects). The book Gravitational Waves, Volume 1, by Michele Maggiore, is a welcome point of departure. This is, as far as I know, the first comprehensive textbook on gravitational waves. It describes the theoretical foundations of the subject, the known (and anticipated) sources, and the principles of detection by resonant masses and laser interferometers. This book is a major accomplishment, and with the promised volume 2 on astrophysical and cosmological aspects of gravitational waves, the community of all scientists interested in this topic will be well served. Part I of the book is devoted to the theoretical aspects of gravitational waves. In chapter 1 the waves are introduced in usual relativist's fashion, in the context of an approximation to general relativity in which they are treated as a small perturbation of the Minkowski metric of flat spacetime. This is an adequate foundation to study how the waves propagate, and how they interact with freely moving masses making up a detector. The waves are presented in the usual traceless-transverse gauge, but the detection aspects are also worked out in the detector's proper rest frame; this dual discussion is helpful, as it clarifies some of the puzzling aspects of general covariance. Next the treatment becomes more sophisticated: the waves are allowed to propagate in an arbitrary background spacetime, and the energy momentum carried by the wave is identified by the second-order perturbation of the Einstein tensor. In chapter 2 the waves are given a field-theoretic foundation that is less familiar (but refreshing) to a relativist, but would appeal to a practitioner of effective field theories. In an interesting section of chapter 2, the author gives a mass to the (classical) graviton and explores the physical consequences of this proposal. In chapter 3 the author returns to the standard linearized theory and develops the multipolar expansion of the gravitational-wave field in the context of slowly-moving sources; at leading order he obtains the famous quadrupole formula. His treatment is very detailed, and it includes a complete account of symmetric-tracefree tensors and tensorial spherical harmonics. It is, however, necessarily limited to sources with negligible internal gravity. Unfortunately (and this is a familiar complaint of relativists) the author omits to warn the reader of this important limitation. In fact, the chapter opens with a statement of the virial theorem of Newtonian gravity, which may well mislead the reader to believe that the linearized theory can be applied to a system bound by gravitational forces. This misconception is confirmed when, in chapter 4, the author applies the quadrupole formula to gravitationally-bound systems such as an inspiraling compact binary, a rigidly rotating body, and a mass falling toward a black hole. This said, the presentation of these main sources of gravitational waves is otherwise irreproachable, and a wealth of useful information is presented in a clear and lucid manner. For example, the discussion of inspiraling compact binaries includes a derivation of the orbital evolution of circular and eccentric orbits driven by radiative losses, the frequency spectrum of the radiation, and the dependence of the waveforms on cosmological parameters. In chapter 5 the author tackles a challenging topic: the post-Newtonian theory of gravitational-wave generation, mostly as developed by Luc Blanchet and his collaborators. This topic is extremely demanding, and the author does a good job of describing the main ideas and summarizing the main results. The presentation is detailed, but it is descriptive rather than didactic; this is appropriate, since a systematic development of this topic would surely require an entire book (or two, or three). In chapter 6, which concludes part I of the book, the author discusses the observational confirmation of the existence of gravitational waves that came from a handful of binary pulsars. He provides a detailed derivation of the timing formula that relates each pulse's time-of-arrival to the system's orbital parameters. Measurement of these parameters produce strongly constraining tests of general relativity, and it is the accurate determination of the slowly decreasing orbital period that led to the inescapable conclusion that gravitational waves do, in fact, exist. Part II of the book is devoted to the experimental aspects of gravitational waves: how the detectors work, and how the weak signals are extracted from the noisy data streams. In chapter 7 the author provides a solid introduction to data-analysis techniques, which include the characterization of detector noise by a spectral density function, the matched filtering of signals of known form, and the statistical theory of signal detection and parameter estimation. This last topic is beautifully covered; the author introduces both frequentist and Bayesian views of probabilities, and he (correctly) favours the Bayesian approach to determine the probability distribution function of signal parameters, given the detector's output data. The theory is applied to many types of signals: short bursts, periodic waves, waves from inspiraling binaries, and stochastic backgrounds of cosmological origin. In chapter 8 the author explains the inner workings of (cylindrical and spherical) resonant-mass detectors. The presentation begins with a detailed study of the response a gravitational wave produces in an elastic body. It moves on to the exploration of a simple model for the detector's read-out system, in terms of coupled oscillators. After a survey of noise sources within a resonant bar and a discussion of the standard quantum limit and non-demolition measurements, the author describes the physics of a resonant sphere, whose normal modes of vibrations can reveal each one of the two polarization states of a gravitational wave. Interferometric detectors are the topic of chapter 9, the book's concluding chapter. The author first explains how the passage of a gravitational wave affects the optical path within a simple Michelson interferometer, and he next moves on to the more complicated (and more relevant) case of a Fabry Perot interferometer. Step by step he adds layers of complexity that eventually produce a more realistic (but still idealized) version of an interferometric detector. And after another survey of noise sources, the author describes the current status of the LIGO and VIRGO detectors. I must say that I especially appreciated the last two chapters on detector modeling. What I like most is the fact that while an understanding of gravitational waves and their sources relies mostly on general relativity and astrophysics, an understanding of detectors relies on a lot more of interesting physics. For example, elasticity theory, thermal physics, and quantum mechanics are required to describe the operations of a resonant bar, while wave and quantum optics are required to model an interferometer; the joining of gravitational-wave physics with these subjects gives rise to a very rich field of study. Chapter 9, however, contains a disappointment: except for a short paragraph at its very end, there is no coverage of LISA, the space-based interferometric detector that would be sensitive to low-frequency gravitational waves. The detection principles of LISA are substantially different from those of Earth-based interferometers, and a detailed presentation at the author's high pedagogical standard would have made a welcome addition to this fine book. For its comprehensive coverage of the theoretical and experimental aspects of gravitational waves, and for the high quality of its writing, this book is a truly remarkable achievement. I recommend it with great enthusiasm to anyone interested in this exciting topic. A particularly appealing feature of the book is the suggestions for further reading that can be found at the end of each chapter; this gateway into the technical literature will be most useful to anyone wanting to learn more. References [1] Ciufolini I, Gorini V, Moschella U and Fre P (eds) 2001 Gravitational Waves (Studies in High Energy Physics, Cosmology and Gravitation) (London: Taylor and Francis) [2] Blair D G (ed) 2005 The Detection of Gravitational Waves (Cambridge: Cambridge University Press) [3] Weber J 2004 General Relativity and Gravitational Waves (New York: Dover) [4] Saulson P R 1994 Fundamentals of Interferometric Gravitational Wave Detectors (Singapore: World Scientific) [5] Collins H 2004 Gravity's Shadow: The Search for Gravitational Waves (Chicago, IL: University Of Chicago Press) [6] Kennefick D 2007 Traveling at the Speed of Thought: Einstein and the Quest for Gravitational Waves (Princeton, NJ: Princeton University Press)
Modular Design in Treaty Verification Equipment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macarthur, Duncan Whittemore; Benz, Jacob; Tolk, Keith
2015-01-27
It is widely believed that modular design is a good thing. However, there are often few explicit arguments, or even an agreed range of definitions, to back up this belief. In this paper, we examine the potential range of design modularity, the implications of various amounts of modularity, and the advantages and disadvantages of each level of modular construction. We conclude with a comparison of the advantages and disadvantages of each type, as well as discuss many caveats that should be observed to take advantage of the positive features of modularity and minimize the effects of the negative. The tradeoffsmore » described in this paper will be evaluated during the conceptual design to determine what amount of modularity should be included.« less
NASA Astrophysics Data System (ADS)
Xu, Peiliang
2018-06-01
The numerical integration method has been routinely used by major institutions worldwide, for example, NASA Goddard Space Flight Center and German Research Center for Geosciences (GFZ), to produce global gravitational models from satellite tracking measurements of CHAMP and/or GRACE types. Such Earth's gravitational products have found widest possible multidisciplinary applications in Earth Sciences. The method is essentially implemented by solving the differential equations of the partial derivatives of the orbit of a satellite with respect to the unknown harmonic coefficients under the conditions of zero initial values. From the mathematical and statistical point of view, satellite gravimetry from satellite tracking is essentially the problem of estimating unknown parameters in the Newton's nonlinear differential equations from satellite tracking measurements. We prove that zero initial values for the partial derivatives are incorrect mathematically and not permitted physically. The numerical integration method, as currently implemented and used in mathematics and statistics, chemistry and physics, and satellite gravimetry, is groundless, mathematically and physically. Given the Newton's nonlinear governing differential equations of satellite motion with unknown equation parameters and unknown initial conditions, we develop three methods to derive new local solutions around a nominal reference orbit, which are linked to measurements to estimate the unknown corrections to approximate values of the unknown parameters and the unknown initial conditions. Bearing in mind that satellite orbits can now be tracked almost continuously at unprecedented accuracy, we propose the measurement-based perturbation theory and derive global uniformly convergent solutions to the Newton's nonlinear governing differential equations of satellite motion for the next generation of global gravitational models. Since the solutions are global uniformly convergent, theoretically speaking, they are able to extract smallest possible gravitational signals from modern and future satellite tracking measurements, leading to the production of global high-precision, high-resolution gravitational models. By directly turning the nonlinear differential equations of satellite motion into the nonlinear integral equations, and recognizing the fact that satellite orbits are measured with random errors, we further reformulate the links between satellite tracking measurements and the global uniformly convergent solutions to the Newton's governing differential equations as a condition adjustment model with unknown parameters, or equivalently, the weighted least squares estimation of unknown differential equation parameters with equality constraints, for the reconstruction of global high-precision, high-resolution gravitational models from modern (and future) satellite tracking measurements.
Gravitational Lensing: Recent Progress & Future Goals
NASA Technical Reports Server (NTRS)
Brainerd, Tereasa
2001-01-01
This award was intended to provide financial support for an international astrophysics conference on gravitational lensing which was held at Boston University from July 25 to July 30, 1999. Because of the nature of the award, no specific research was proposed, nor was any carried out. The participants at the conference presented results of their on-going research efforts, and written summaries of their presentations have been published by the Astronomical Society of the Pacific as part of their conference series. The reference to the conference proceedings book is Gravitational Lensing: Recent Progress and Future Goals, ASP Conference Series volume 237, eds. T. G. Brainerd and C. S. Kochanek (2001). The ISBN number of this book is 1-58381-074-9. The goal of the conference was to bring together both senior and junior investigators who were actively involved in all aspects of gravitational lensing research. This was the first conference in four years to address gravitational lensing from such a broad perspective (the previous such conference being IAU Symposium 173 held in Melbourne, Australia in July 1995). The conference was attended by 190 participants, who represented of order 70 different institutions and of order 15 different countries. The Scientific Organizing Committee members were Matthias Bartelmann (co-chair), Tereasa Brainerd (co-chair), Ian Browne, Richard Ellis, Nick Kaiser, Yannick Mellier, Sjur Refsdal, HansWalter Rix, Joachim Wambsganss, and Rachel Webster. The Local Organizing Committee members were Tereasa Brainerd (chair), Emilio Falco, Jacqueline Hewitt, Christopher Kochanek, and Irwin Shapiro. The oral sessions were organized around specific applications of gravitational lensing and included invited reviews, invited 'targeted talks', and contributed talks. The review speakers were Roger Blandford, Tereasa Brainerd, Gus Evrard, Nick Kaiser, Guinevere Kaufmann, Chris Kochanek, Charley Lineweaver, Gerry Luppino, Shude Mao, Paul Schechter, Peter Snhneider, amd Ed Turner. The 'targeted talk' speakers were Andy Boden, Ian Browne, Emilio Falco, Harry Ferguson, Bhuvnesh Jain, Christine Jones, Arlie Petters, Hans-Walter Rix, Penny Sackett, Prasenjit Saha, Virginia Trimble, and Joachim Wambsganss. Due to limited time, only 25% of the abstracts which were submitted for consideration as contributed talks could actually be accepted for the final program; those which were not selected as talks were presented as posters, and a special poster viewing session was held to allow participants to present their work. A copy of the complete Final Program of the conference is included in the following pages.
Lunar lander and return propulsion system trade study
NASA Technical Reports Server (NTRS)
Hurlbert, Eric A.; Moreland, Robert; Sanders, Gerald B.; Robertson, Edward A.; Amidei, David; Mulholland, John
1993-01-01
This trade study was initiated at NASA/JSC in May 1992 to develop and evaluate main propulsion system alternatives to the reference First Lunar Outpost (FLO) lander and return-stage transportation system concept. Thirteen alternative configurations were developed to explore the impacts of various combinations of return stage propellants, using either pressure or pump-fed propulsion systems and various staging options. Besides two-stage vehicle concepts, the merits of single-stage and stage-and-a-half options were also assessed in combination with high-performance liquid oxygen and liquid hydrogen propellants. Configurations using an integrated modular cryogenic engine were developed to assess potential improvements in packaging efficiency, mass performance, and system reliability compared to non-modular cryogenic designs. The selection process to evaluate the various designs was the analytic hierarchy process. The trade study showed that a pressure-fed MMH/N2O4 return stage and RL10-based lander stage is the best option for a 1999 launch. While results of this study are tailored to FLO needs, the design date, criteria, and selection methodology are applicable to the design of other crewed lunar landing and return vehicles.
Jiang, Yu; Zhang, Xiaogang; Zhang, Chao; Li, Zhixiong; Sheng, Chenxing
2017-04-01
Numerical modeling has been recognized as the dispensable tools for mechanical fault mechanism analysis. Techniques, ranging from macro to nano levels, include the finite element modeling boundary element modeling, modular dynamic modeling, nano dynamic modeling and so forth. This work firstly reviewed the progress on the fault mechanism analysis for gear transmissions from the tribological and dynamic aspects. Literature review indicates that the tribological and dynamic properties were separately investigated to explore the fault mechanism in gear transmissions. However, very limited work has been done to address the links between the tribological and dynamic properties and scarce researches have been done for coal cutting machines. For this reason, the tribo-dynamic coupled model was introduced to bridge the gap between the tribological and dynamic models in fault mechanism analysis for gear transmissions in coal cutting machines. The modular dynamic modeling and nano dynamic modeling techniques are expected to establish the links between the tribological and dynamic models. Possible future research directions using the tribo dynamic coupled model were summarized to provide potential references for researchers in the field.
Small modular reactor: First-of-a-Kind (FOAK) and Nth-of-a-Kind (NOAK) Economic Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boldon, Lauren M.; Sabharwall, Piyush
2014-08-01
Small modular reactors (SMRs) refer to any reactor design in which the electricity generated is less than 300 MWe. Often medium sized reactors with power less than 700 MWe are also grouped into this category. Internationally, the development of a variety of designs for SMRs is booming with many designs approaching maturity and even in or nearing the licensing stage. It is for this reason that a generalized yet comprehensive economic model for first of a kind (FOAK) through nth of a kind (NOAK) SMRs based upon rated power, plant configuration, and the fiscal environment was developed. In the model,more » a particular project’s feasibility is assessed with regards to market conditions and by commonly utilized capital budgeting techniques, such as the net present value (NPV), internal rate of return (IRR), Payback, and more importantly, the levelized cost of energy (LCOE) for comparison to other energy production technologies. Finally, a sensitivity analysis was performed to determine the effects of changing debt, equity, interest rate, and conditions on the LCOE.« less
GELATIO: a general framework for modular digital analysis of high-purity Ge detector signals
NASA Astrophysics Data System (ADS)
Agostini, M.; Pandola, L.; Zavarise, P.; Volynets, O.
2011-08-01
GELATIO is a new software framework for advanced data analysis and digital signal processing developed for the GERDA neutrinoless double beta decay experiment. The framework is tailored to handle the full analysis flow of signals recorded by high purity Ge detectors and photo-multipliers from the veto counters. It is designed to support a multi-channel modular and flexible analysis, widely customizable by the user either via human-readable initialization files or via a graphical interface. The framework organizes the data into a multi-level structure, from the raw data up to the condensed analysis parameters, and includes tools and utilities to handle the data stream between the different levels. GELATIO is implemented in C++. It relies upon ROOT and its extension TAM, which provides compatibility with PROOF, enabling the software to run in parallel on clusters of computers or many-core machines. It was tested on different platforms and benchmarked in several GERDA-related applications. A stable version is presently available for the GERDA Collaboration and it is used to provide the reference analysis of the experiment data.
Decentralized Adaptive Control For Robots
NASA Technical Reports Server (NTRS)
Seraji, Homayoun
1989-01-01
Precise knowledge of dynamics not required. Proposed scheme for control of multijointed robotic manipulator calls for independent control subsystem for each joint, consisting of proportional/integral/derivative feedback controller and position/velocity/acceleration feedforward controller, both with adjustable gains. Independent joint controller compensates for unpredictable effects, gravitation, and dynamic coupling between motions of joints, while forcing joints to track reference trajectories. Scheme amenable to parallel processing in distributed computing system wherein each joint controlled by relatively simple algorithm on dedicated microprocessor.
LISA technology development using the UF precision torsion pendulum
NASA Astrophysics Data System (ADS)
Apple, Stephen; Chilton, Andrew; Olatunde, Taiwo; Ciani, Giacomo; Mueller, Guido; Conklin, John
2015-04-01
LISA will directly observe low-frequency gravitational waves emitted by sources ranging from super-massive black hole mergers to compact galactic binaries. A laser interferometer will measure picometer changes in the distances between free falling test masses separated by millions of kilometers. A test mass and its associated sensing, actuation, charge control and caging subsystems are referred to as a gravitational reference sensor (GRS). The demanding acceleration noise requirement for the LISA GRS has motivated a rigorous testing campaign in Europe and a dedicated technology mission, LISA Pathfinder, scheduled for launch in the fall of 2015. At the University of Florida we are developing a nearly thermally noise limited torsion pendulum for testing GRS technology enhancements that may improve the performance and/or reduce the cost of the LISA GRS. This experimental facility is based on the design of a similar facility at the University of Trento, and consists of a vacuum enclosed torsion pendulum that suspends mock-ups of the LISA test masses, surrounded by electrode housings. Some of the technologies that will be demonstrated by this facility include a novel TM charge control scheme based on ultraviolet LEDs, an all-optical TM position and attitude sensor, and drift mode operation. This presentation will describe the design of the torsion pendulum facility, its current acceleration noise performance, and the status of the GRS technologies under development.
State-of-the-art satellite laser range modeling for geodetic and oceanographic applications
NASA Technical Reports Server (NTRS)
Klosko, Steve M.; Smith, David E.
1993-01-01
Significant improvements have been made in the modeling and accuracy of Satellite Laser Range (SLR) data since the launch of LAGEOS in 1976. Some of these include: improved models of the static geopotential, solid-Earth and ocean tides, more advanced atmospheric drag models, and the adoption of the J2000 reference system with improved nutation and precession. Site positioning using SLR systems currently yield approximately 2 cm static and 5 mm/y kinematic descriptions of the geocentric location of these sites. Incorporation of a large set of observations from advanced Satellite Laser Ranging (SLR) tracking systems have directly made major contributions to the gravitational fields and in advancing the state-of-the-art in precision orbit determination. SLR is the baseline tracking system for the altimeter bearing TOPEX/Poseidon and ERS-1 satellites and thus, will play an important role in providing the Conventional Terrestrial Reference Frame for instantaneously locating the geocentric position of the ocean surface over time, in providing an unchanging range standard for altimeter range calibration, and for improving the geoid models to separate gravitational from ocean circulation signals seen in the sea surface. Nevertheless, despite the unprecedented improvements in the accuracy of the models used to support orbit reduction of laser observations, there still remain systematic unmodeled effects which limit the full exploitation of modern SLR data.
NASA Technical Reports Server (NTRS)
Proctor, B. W.; Reysa, R. P.; Russell, D. J.
1975-01-01
Viable crew appliance concepts were identified by means of a thorough literature search. Studies were made of the food management, personal hygiene, housekeeping, and off-duty habitability functions to determine which concepts best satisfy the Space Shuttle Orbiter and Modular Space Station mission requirements. Models of selected appliance concepts not currently included in the generalized environmental-thermal control and life support systems computer program were developed and validated. Development plans of selected concepts were generated for future reference. A shuttle freezer conceptual design was developed and a test support activity was provided for regenerative environmental control life support subsystems.
Experimental Research Regarding The Motion Capacity Of A Robotic Arm
NASA Astrophysics Data System (ADS)
Dumitru, Violeta Cristina
2015-09-01
This paper refers to the development of necessary experiments which obtained dynamic parameters (force, displacement) for a modular mechanism with multiple vertebrae. This mechanism performs functions of inspection and intervention in small spaces. Mechanical structure allows functional parameters to achieve precise movements to an imposed target. Will be analyzed the dynamic of the mechanisms using simulation instruments DimamicaRobot.tst under TestPoint programming environment and the elasticity of the tension cables. It will be changes on the mechanism so that spatial movement of the robotic arm is optimal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Richard A.; Panyala, Ajay R.; Glass, Kevin A.
MerCat is a parallel, highly scalable and modular property software package for robust analysis of features in next-generation sequencing data. MerCat inputs include assembled contigs and raw sequence reads from any platform resulting in feature abundance counts tables. MerCat allows for direct analysis of data properties without reference sequence database dependency commonly used by search tools such as BLAST and/or DIAMOND for compositional analysis of whole community shotgun sequencing (e.g. metagenomes and metatranscriptomes).
Analysis of Advanced Modular Power Systems (AMPS) for Deep Space Exploration
NASA Technical Reports Server (NTRS)
Oeftering, Richard; Soeder, James F.; Beach, Ray
2014-01-01
The Advanced Modular Power Systems (AMPS) project is developing a modular approach to spacecraft power systems for exploration beyond Earth orbit. AMPS is intended to meet the need of reducing the cost of design development, test and integration and also reducing the operational logistics cost of supporting exploration missions. AMPS seeks to establish modular power building blocks with standardized electrical, mechanical, thermal and data interfaces that can be applied across multiple exploration vehicles. The presentation discusses the results of a cost analysis that compares the cost of the modular approach against a traditional non-modular approach.
Zygomalas, Apollon; Giokas, Konstantinos; Koutsouris, Dimitrios
2014-01-01
Aim. Modular mini-robots can be used in novel minimally invasive surgery techniques like natural orifice transluminal endoscopic surgery (NOTES) and laparoendoscopic single site (LESS) surgery. The control of these miniature assistants is complicated. The aim of this study is the in silico investigation of a remote controlling interface for modular miniature robots which can be used in minimally invasive surgery. Methods. The conceptual controlling system was developed, programmed, and simulated using professional robotics simulation software. Three different modes of control were programmed. The remote controlling surgical interface was virtually designed as a high scale representation of the respective modular mini-robot, therefore a modular controlling system itself. Results. With the proposed modular controlling system the user could easily identify the conformation of the modular mini-robot and adequately modify it as needed. The arrangement of each module was always known. The in silico investigation gave useful information regarding the controlling mode, the adequate speed of rearrangements, and the number of modules needed for efficient working tasks. Conclusions. The proposed conceptual model may promote the research and development of more sophisticated modular controlling systems. Modular surgical interfaces may improve the handling and the dexterity of modular miniature robots during minimally invasive procedures. PMID:25295187
Zygomalas, Apollon; Giokas, Konstantinos; Koutsouris, Dimitrios
2014-01-01
Aim. Modular mini-robots can be used in novel minimally invasive surgery techniques like natural orifice transluminal endoscopic surgery (NOTES) and laparoendoscopic single site (LESS) surgery. The control of these miniature assistants is complicated. The aim of this study is the in silico investigation of a remote controlling interface for modular miniature robots which can be used in minimally invasive surgery. Methods. The conceptual controlling system was developed, programmed, and simulated using professional robotics simulation software. Three different modes of control were programmed. The remote controlling surgical interface was virtually designed as a high scale representation of the respective modular mini-robot, therefore a modular controlling system itself. Results. With the proposed modular controlling system the user could easily identify the conformation of the modular mini-robot and adequately modify it as needed. The arrangement of each module was always known. The in silico investigation gave useful information regarding the controlling mode, the adequate speed of rearrangements, and the number of modules needed for efficient working tasks. Conclusions. The proposed conceptual model may promote the research and development of more sophisticated modular controlling systems. Modular surgical interfaces may improve the handling and the dexterity of modular miniature robots during minimally invasive procedures.
Tekewe, Alemu; Connors, Natalie K.; Middelberg, Anton P. J.
2016-01-01
Abstract Virus‐like particles (VLPs) and capsomere subunits have shown promising potential as safe and effective vaccine candidates. They can serve as platforms for the display of foreign epitopes on their surfaces in a modular architecture. Depending on the physicochemical properties of the antigenic modules, modularization may affect the expression, solubility and stability of capsomeres, and VLP assembly. In this study, three module designs of a rotavirus hydrophobic peptide (RV10) were synthesized using synthetic biology. Among the three synthetic modules, modularization of the murine polyomavirus VP1 with a single copy of RV10 flanked by long linkers and charged residues resulted in the expression of stable modular capsomeres. Further employing the approach of module titration of RV10 modules on each capsomere via Escherichia coli co‐expression of unmodified VP1 and modular VP1‐RV10 successfully translated purified modular capomeres into modular VLPs when assembled in vitro. Our results demonstrate that tailoring the physicochemical properties of modules to enhance modular capsomeres stability is achievable through synthetic biology designs. Combined with module titration strategy to avoid steric hindrance to intercapsomere interactions, this allows bioprocessing of bacterially produced in vitro assembled modular VLPs. PMID:27222486
Tekewe, Alemu; Connors, Natalie K; Middelberg, Anton P J; Lua, Linda H L
2016-08-01
Virus-like particles (VLPs) and capsomere subunits have shown promising potential as safe and effective vaccine candidates. They can serve as platforms for the display of foreign epitopes on their surfaces in a modular architecture. Depending on the physicochemical properties of the antigenic modules, modularization may affect the expression, solubility and stability of capsomeres, and VLP assembly. In this study, three module designs of a rotavirus hydrophobic peptide (RV10) were synthesized using synthetic biology. Among the three synthetic modules, modularization of the murine polyomavirus VP1 with a single copy of RV10 flanked by long linkers and charged residues resulted in the expression of stable modular capsomeres. Further employing the approach of module titration of RV10 modules on each capsomere via Escherichia coli co-expression of unmodified VP1 and modular VP1-RV10 successfully translated purified modular capomeres into modular VLPs when assembled in vitro. Our results demonstrate that tailoring the physicochemical properties of modules to enhance modular capsomeres stability is achievable through synthetic biology designs. Combined with module titration strategy to avoid steric hindrance to intercapsomere interactions, this allows bioprocessing of bacterially produced in vitro assembled modular VLPs. © 2016 The Protein Society.
Thiel, Cora S.; Hauschild, Swantje; Tauber, Svantje; Paulsen, Katrin; Raig, Christiane; Raem, Arnold; Biskup, Josefine; Gutewort, Annett; Hürlimann, Eva; Philpot, Claudia; Lier, Hartwin; Engelmann, Frank; Layer, Liliana E.
2015-01-01
Gene expression studies are indispensable for investigation and elucidation of molecular mechanisms. For the process of normalization, reference genes (“housekeeping genes”) are essential to verify gene expression analysis. Thus, it is assumed that these reference genes demonstrate similar expression levels over all experimental conditions. However, common recommendations about reference genes were established during 1 g conditions and therefore their applicability in studies with altered gravity has not been demonstrated yet. The microarray technology is frequently used to generate expression profiles under defined conditions and to determine the relative difference in expression levels between two or more different states. In our study, we searched for potential reference genes with stable expression during different gravitational conditions (microgravity, normogravity, and hypergravity) which are additionally not altered in different hardware systems. We were able to identify eight genes (ALB, B4GALT6, GAPDH, HMBS, YWHAZ, ABCA5, ABCA9, and ABCC1) which demonstrated no altered gene expression levels in all tested conditions and therefore represent good candidates for the standardization of gene expression studies in altered gravity. PMID:25654098
Thiel, Cora S; Hauschild, Swantje; Tauber, Svantje; Paulsen, Katrin; Raig, Christiane; Raem, Arnold; Biskup, Josefine; Gutewort, Annett; Hürlimann, Eva; Unverdorben, Felix; Buttron, Isabell; Lauber, Beatrice; Philpot, Claudia; Lier, Hartwin; Engelmann, Frank; Layer, Liliana E; Ullrich, Oliver
2015-01-01
Gene expression studies are indispensable for investigation and elucidation of molecular mechanisms. For the process of normalization, reference genes ("housekeeping genes") are essential to verify gene expression analysis. Thus, it is assumed that these reference genes demonstrate similar expression levels over all experimental conditions. However, common recommendations about reference genes were established during 1 g conditions and therefore their applicability in studies with altered gravity has not been demonstrated yet. The microarray technology is frequently used to generate expression profiles under defined conditions and to determine the relative difference in expression levels between two or more different states. In our study, we searched for potential reference genes with stable expression during different gravitational conditions (microgravity, normogravity, and hypergravity) which are additionally not altered in different hardware systems. We were able to identify eight genes (ALB, B4GALT6, GAPDH, HMBS, YWHAZ, ABCA5, ABCA9, and ABCC1) which demonstrated no altered gene expression levels in all tested conditions and therefore represent good candidates for the standardization of gene expression studies in altered gravity.
Modular workcells: modern methods for laboratory automation.
Felder, R A
1998-12-01
Laboratory automation is beginning to become an indispensable survival tool for laboratories facing difficult market competition. However, estimates suggest that only 8% of laboratories will be able to afford total laboratory automation systems. Therefore, automation vendors have developed alternative hardware configurations called 'modular automation', to fit the smaller laboratory. Modular automation consists of consolidated analyzers, integrated analyzers, modular workcells, and pre- and post-analytical automation. These terms will be defined in this paper. Using a modular automation model, the automated core laboratory will become a site where laboratory data is evaluated by trained professionals to provide diagnostic information to practising physicians. Modem software information management and process control tools will complement modular hardware. Proper standardization that will allow vendor-independent modular configurations will assure success of this revolutionary new technology.
eLISA Telescope In-field Pointing and Scattered Light Study
NASA Astrophysics Data System (ADS)
Livas, J.; Sankar, S.; West, G.; Seals, L.; Howard, J.; Fitzsimons, E.
2017-05-01
The orbital motion of the three spacecraft that make up the eLISA Observatory constellation causes long-arm line of sight variations of approximately ± one degree over the course of a year. The baseline solution is to package the telescope, the optical bench, and the gravitational reference sensor (GRS) into an optical assembly at each end of the measurement arm, and then to articulate the assembly. An optical phase reference is exchanged between the moving optical benches with a single mode optical fiber (“backlink” fiber). An alternative solution, referred to as in-field pointing, embeds a steering mirror into the optical design, fixing the optical benches and eliminating the backlink fiber, but requiring the additional complication of a two-stage optical design for the telescope. We examine the impact of an in-field pointing design on the scattered light performance.
Wang, Minghui; Londo, Jason P.; Acharya, Charlotte B.; Mitchell, Sharon E.; Sun, Qi; Reisch, Bruce; Cadle-Davidson, Lance
2015-01-01
Genotyping by sequencing (GBS) provides opportunities to generate high-resolution genetic maps at a low genotyping cost, but for highly heterozygous species, missing data and heterozygote undercalling complicate the creation of GBS genetic maps. To overcome these issues, we developed a publicly available, modular approach called HetMappS, which functions independently of parental genotypes and corrects for genotyping errors associated with heterozygosity. For linkage group formation, HetMappS includes both a reference-guided synteny pipeline and a reference-independent de novo pipeline. The de novo pipeline can be utilized for under-characterized or high diversity families that lack an appropriate reference. We applied both HetMappS pipelines in five half-sib F1 families involving genetically diverse Vitis spp. Starting with at least 116,466 putative SNPs per family, the HetMappS pipelines identified 10,440 to 17,267 phased pseudo-testcross (Pt) markers and generated high-confidence maps. Pt marker density exceeded crossover resolution in all cases; up to 5,560 non-redundant markers were used to generate parental maps ranging from 1,047 cM to 1,696 cM. The number of markers used was strongly correlated with family size in both de novo and synteny maps (r = 0.92 and 0.91, respectively). Comparisons between allele and tag frequencies suggested that many markers were in tandem repeats and mapped as single loci, while markers in regions of more than two repeats were removed during map curation. Both pipelines generated similar genetic maps, and genetic order was strongly correlated with the reference genome physical order in all cases. Independently created genetic maps from shared parents exhibited nearly identical results. Flower sex was mapped in three families and correctly localized to the known sex locus in all cases. The HetMappS pipeline could have wide application for genetic mapping in highly heterozygous species, and its modularity provides opportunities to adapt portions of the pipeline to other family types, genotyping technologies or applications. PMID:26244767
The Modular need for the Division Signal Battalion
2017-06-09
findings and analyzes them to expand on them. It is with these findings and subsequent analysis that the case studies shape the answer to the three...These case studies focus on the signal leadership development and how it occurred in the pre-modular force structure, during modularity, and the...the comparative case study research. The case studies focus on signal leader development in a pre-modular signal force, a modular signal force, and
NASA Technical Reports Server (NTRS)
Littell, Justin Anderson (Inventor); Street, Jon P. (Inventor)
2017-01-01
The modular fixturing system of the present invention is modular, reusable and capable of significant customization, both in terms of system radius and system height, allowing it to be arranged and rearranged in numerous unique configurations. The system includes multiple modular stanchions having stanchion shafts and stanchion feet that removably attach to apertures in a table. Angle brackets attached to the modular stanchions support shelves. These shelves in turn provide support to work pieces during fabrication processes such as welding.
A Modularized Counselor-Education Program.
ERIC Educational Resources Information Center
Miller, Thomas V.; Dimattia, Dominic J.
1978-01-01
Counselor-education programs may be enriched through the use of modularized learning experiences. This article notes several recent articles on competency-based counselor education, the concepts of simulation and modularization, and describes the process of developing a modularized master's program at the University of Bridgeport in Connecticut.…
On the classification of weakly integral modular categories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruillard, Paul; Galindo, César; Ng, Siu-Hung
In this paper we classify all modular categories of dimension 4m, where m is an odd square-free integer, and all rank 6 and rank 7 weakly integral modular categories. This completes the classification of weakly integral modular categories through rank 7. In particular, our results imply that all integral modular categories of rank at most 7 are pointed (that is, every simple object has dimension 1). All the non-integral (but weakly integral) modular categories of ranks 6 and 7 have dimension 4m, with m an odd square free integer, so their classification is an application of our main result. Themore » classification of rank 7 integral modular categories is facilitated by an analysis of the two group actions on modular categories: the Galois group of the field generated by the entries of the S-matrix and the group of invertible isomorphism classes of objects. We derive some valuable arithmetic consequences from these actions.« less
Modular interdependency in complex dynamical systems.
Watson, Richard A; Pollack, Jordan B
2005-01-01
Herbert A. Simon's characterization of modularity in dynamical systems describes subsystems as having dynamics that are approximately independent of those of other subsystems (in the short term). This fits with the general intuition that modules must, by definition, be approximately independent. In the evolution of complex systems, such modularity may enable subsystems to be modified and adapted independently of other subsystems, whereas in a nonmodular system, modifications to one part of the system may result in deleterious side effects elsewhere in the system. But this notion of modularity and its effect on evolvability is not well quantified and is rather simplistic. In particular, modularity need not imply that intermodule dependences are weak or unimportant. In dynamical systems this is acknowledged by Simon's suggestion that, in the long term, the dynamical behaviors of subsystems do interact with one another, albeit in an "aggregate" manner--but this kind of intermodule interaction is omitted in models of modularity for evolvability. In this brief discussion we seek to unify notions of modularity in dynamical systems with notions of how modularity affects evolvability. This leads to a quantifiable measure of modularity and a different understanding of its effect on evolvability.
Implications of PSR J0737-3039B for the Galactic NS-NS binary merger rate
NASA Astrophysics Data System (ADS)
Kim, Chunglee; Perera, Benetge Bhakthi Pranama; McLaughlin, Maura A.
2015-03-01
The Double Pulsar (PSR J0737-3039) is the only neutron star-neutron star (NS-NS) binary in which both NSs have been detectable as radio pulsars. The Double Pulsar has been assumed to dominate the Galactic NS-NS binary merger rate R_g among all known systems, solely based on the properties of the first-born, recycled pulsar (PSR J0737-3039A, or A) with an assumption for the beaming correction factor of 6. In this work, we carefully correct observational biases for the second-born, non-recycled pulsar (PSR J0737-0737B, or B) and estimate the contribution from the Double Pulsar on R_g using constraints available from both A and B. Observational constraints from the B pulsar favour a small beaming correction factor for A (˜2), which is consistent with a bipolar model. Considering known NS-NS binaries with the best observational constraints, including both A and B, we obtain R_g=21_{-14}^{+28} Myr-1 at 95 per cent confidence from our reference model. We expect the detection rate of gravitational waves from NS-NS inspirals for the advanced ground-based gravitational-wave detectors is to be 8^{+10}_{-5} yr-1 at 95 per cent confidence. Within several years, gravitational-wave detections relevant to NS-NS inspirals will provide us useful information to improve pulsar population models.
Mergers of black-hole binaries with aligned spins: Waveform characteristics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, Bernard J.; Department of Physics, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250; Baker, John G.
2011-10-15
We conduct a descriptive analysis of the multipolar structure of gravitational-radiation waveforms from equal-mass aligned-spin mergers, following an approach first presented in the complementary context of nonspinning black holes of varying mass ratio [J. G. Baker et al., Phys. Rev. D 78, 044046 (2008).]. We find that, as with the nonspinning mergers, the dominant waveform mode phases evolve together in lock-step through inspiral and merger, supporting the previous waveform description in terms of an adiabatically rigid rotator driving gravitational-wave emission--an implicit rotating source. We further apply the late-time merger-ringdown model for the rotational frequency introduced in [J. G. Baker etmore » al., Phys. Rev. D 78, 044046 (2008).], along with an improved amplitude model appropriate for the dominant (2, {+-}2) modes. This provides a quantitative description of the merger-ringdown waveforms, and suggests that the major features of these waveforms can be described with reference only to the intrinsic parameters associated with the state of the final black hole formed in the merger. We provide an explicit model for the merger-ringdown radiation, and demonstrate that this model agrees to fitting factors better than 95% with the original numerical waveforms for system masses above {approx}150M{sub {center_dot}}. This model may be directly applicable to gravitational-wave detection of intermediate-mass black-hole mergers.« less
Viscous and gravitational fingering in multiphase compositional and compressible flow
NASA Astrophysics Data System (ADS)
Moortgat, Joachim
2016-03-01
Viscous and gravitational fingering refer to flow instabilities in porous media that are triggered by adverse mobility or density ratios, respectively. These instabilities have been studied extensively in the past for (1) single-phase flow (e.g., contaminant transport in groundwater, first-contact-miscible displacement of oil by gas in hydrocarbon production), and (2) multi-phase immiscible and incompressible flow (e.g., water-alternating-gas (WAG) injection in oil reservoirs). Fingering in multiphase compositional and compressible flow has received much less attention, perhaps due to its high computational complexity. However, many important subsurface processes involve multiple phases that exchange species. Examples are carbon sequestration in saline aquifers and enhanced oil recovery (EOR) by gas or WAG injection below the minimum miscibility pressure. In multiphase flow, relative permeabilities affect the mobility contrast for a given viscosity ratio. Phase behavior can also change local fluid properties, which can either enhance or mitigate viscous and gravitational instabilities. This work presents a detailed study of fingering behavior in compositional multiphase flow in two and three dimensions and considers the effects of (1) Fickian diffusion, (2) mechanical dispersion, (3) flow rates, (4) domain size and geometry, (5) formation heterogeneities, (6) gravity, and (7) relative permeabilities. Results show that fingering in compositional multiphase flow is profoundly different from miscible conditions and upscaling techniques used for the latter case are unlikely to be generalizable to the former.
Diurnal, semidiurnal, and fortnightly tidal components in orthotidal proglacial rivers.
Briciu, Andrei-Emil
2018-02-22
The orthotidal rivers are a new concept referring to inland rivers influenced by gravitational tides through the groundwater tides. "Orthotidal signals" is intended to describe tidal signals found in inland streamwaters (with no oceanic input); these tidal signals were locally generated and then exported into streamwaters. Here, we show that orthotidal signals can be found in proglacial rivers due to the gravitational tides affecting the glaciers and their surrounding areas. The gravitational tides act on glacier through earth and atmospheric tides, while the subglacial water is affected in a manner similar to the groundwater tides. We used the wavelet analysis in order to find tidally affected streamwaters. T_TIDE analyses were performed for discovering the tidal constituents. Tidal components with 0.95 confidence level are as follows: O1, PI1, P1, S1, K1, PSI1, M2, T2, S2, K2, and MSf. The amplitude of the diurnal tidal constituents is strongly influenced by the daily thermal cycle. The average amplitude of the semidiurnal tidal constituents is less altered and ranges from 0.0007 to 0.0969 m. The lunisolar synodic fortnightly oscillation, found in the time series of the studied river gauges, is a useful signal for detecting orthotidal rivers when using noisier data. The knowledge of the orthotidal oscillations is useful for modeling fine resolution changes in rivers.
NASA Technical Reports Server (NTRS)
Yuan, C.
1983-01-01
Under the influence of a spiral gravitational field, there should be differences among the mean motions of different types of objects with different dispersion velocities in a spiral galaxy. The old stars with high dispersion velocity should have essentially no mean motion normal to the galactic rotation. On the other hand, young objects and interstellar gas may be moving relative to the old stars at a velocity of a few kilometer per second in both the radial (galacto-centric), and circular directions, depending on the spiral model adopted. Such a velocity is usually referred as the systematic motion or the streaming motion. The conventionally adopted local standard of rest is indeed co-moving with the young objects of the solar vicinity. Therefore, it has a net systematic motion with respect to the circular motion of an equilibrium galactic model, defined by the old stars. Previously announced in STAR as N83-24443
240 nm UV LEDs for LISA test mass charge control
NASA Astrophysics Data System (ADS)
Olatunde, Taiwo; Shelley, Ryan; Chilton, Andrew; Serra, Paul; Ciani, Giacomo; Mueller, Guido; Conklin, John
2015-05-01
Test Masses inside the LISA Gravitational Reference Sensor must maintain almost pure geodesic motion for gravitational waves to be successfully detected. LISA requires residual test mass accelerations below 3 fm/s2/√Hz at all frequencies between 0.1 and 3 mHz. One of the well-known noise sources is associated with the charges on the test masses which couple to stray electrical potentials and external electromagnetic fields. LISA Pathfinder will use Hg-discharge lamps emitting mostly around 254 nm to discharge the test masses via photoemission in its 2015/16 flight. A future LISA mission launched around 2030 will likely replace the lamps with newer UV-LEDs. Presented here is a preliminary study of the effectiveness of charge control using latest generation UV-LEDs which produce light at 240 nm with energy above the work function of pure Au. Their lower mass, better power efficiency and small size make them an ideal replacement for Hg lamps.
GDPC: Gravitation-based Density Peaks Clustering algorithm
NASA Astrophysics Data System (ADS)
Jiang, Jianhua; Hao, Dehao; Chen, Yujun; Parmar, Milan; Li, Keqin
2018-07-01
The Density Peaks Clustering algorithm, which we refer to as DPC, is a novel and efficient density-based clustering approach, and it is published in Science in 2014. The DPC has advantages of discovering clusters with varying sizes and varying densities, but has some limitations of detecting the number of clusters and identifying anomalies. We develop an enhanced algorithm with an alternative decision graph based on gravitation theory and nearby distance to identify centroids and anomalies accurately. We apply our method to some UCI and synthetic data sets. We report comparative clustering performances using F-Measure and 2-dimensional vision. We also compare our method to other clustering algorithms, such as K-Means, Affinity Propagation (AP) and DPC. We present F-Measure scores and clustering accuracies of our GDPC algorithm compared to K-Means, AP and DPC on different data sets. We show that the GDPC has the superior performance in its capability of: (1) detecting the number of clusters obviously; (2) aggregating clusters with varying sizes, varying densities efficiently; (3) identifying anomalies accurately.
Thermonuclear dynamo inside ultracentrifuge with supersonic plasma flow stabilization
NASA Astrophysics Data System (ADS)
Winterberg, F.
2016-01-01
Einstein's general theory of relativity implies the existence of virtual negative masses in the rotational reference frame of an ultracentrifuge with the negative mass density of the same order of magnitude as the positive mass density of a neutron star. In an ultracentrifuge, the repulsive gravitational field of this negative mass can simulate the attractive positive mass of a mini-neutron star, and for this reason can radially confine a dense thermonuclear plasma placed inside the centrifuge, very much as the positive mass of a star confines its plasma by its own attractive gravitational field. If the centrifuge is placed in an externally magnetic field to act as the seed field of a magnetohydrodynamic generator, the configuration resembles a magnetar driven by the release of energy through nuclear fusion, accelerating the plasma to supersonic velocities, with the magnetic field produced by the thermomagnetic Nernst effect insulating the hot plasma from the cold wall of the centrifuge. Because of the supersonic flow and the high plasma density the configuration is stable.
Invariant aspects of human locomotion in different gravitational environments.
Minetti, A E
2001-01-01
Previous literature showed that walking gait follows the same mechanical paradigm, i.e. the straight/inverted pendulum, regardless the body size, the number of legs, and the amount of gravity acceleration. The Froude number, a dimensionless parameter originally designed to normalize the same (pendulum-like) motion in differently sized subjects, proved to be useful also in the comparison, within the same subject, of walking in heterogravity. In this paper the theory of dynamic similarity is tested by comparing the predictive power of the Froude number in terms of walking speed to previously published data on walking in hypogravity simulators. It is concluded that the Froude number is a good first predictor of the optimal walking speed and of the transition speed between walking and running in different gravitational conditions. According to the Froude number a dynamically similar walking speed on another planet can be calculated as [formula: see text] where V(Earth) is the reference speed on Earth. c 2001. Elsevier Science Ltd. All rights reserved.
Gerardi, D; Allen, G; Conklin, J W; Sun, K-X; DeBra, D; Buchman, S; Gath, P; Fichter, W; Byer, R L; Johann, U
2014-01-01
Future drag-free missions for space-based experiments in gravitational physics require a Gravitational Reference Sensor with extremely demanding sensing and disturbance reduction requirements. A configuration with two cubical sensors is the current baseline for the Laser Interferometer Space Antenna (LISA) and has reached a high level of maturity. Nevertheless, several promising concepts have been proposed with potential applications beyond LISA and are currently investigated at HEPL, Stanford, and EADS Astrium, Germany. The general motivation is to exploit the possibility of achieving improved disturbance reduction, and ultimately understand how low acceleration noise can be pushed with a realistic design for future mission. In this paper, we discuss disturbance reduction requirements for LISA and beyond, describe four different payload concepts, compare expected strain sensitivities in the "low-frequency" region of the frequency spectrum, dominated by acceleration noise, and ultimately discuss advantages and disadvantages of each of those concepts in achieving disturbance reduction for space-based detectors beyond LISA.
NASA Astrophysics Data System (ADS)
Grafarend, E. W.; Ardalan, A.; Finn, G.
In terms of elliptic coordinates of Jacobi type (longitude, latitude, semi-minor axis) the horizontal derivative is computed as a linear operator acting on an ellipsoidal har- monic disturbing/incremental gravitational potential. Such disturbing potential is de- fined with respect to the Somigliana-Pizzetti Reference Potential, the potential field of a level ellipsoid, and the International Reference Ellipsoid/WGS84 or World Geode- tic Datum 2000/WGD2000. Case studies of those vertical deflections on a global as well as regional scale are presented which take advantage of SEGEN (Special Ellipsoidal Gravity Earth Normal: ellipsoidal harmonics expansion 130321 coeffi- cients: http://www.uni-stuttgart.de/gi/research/paper/coefficients/coefficients.zip) and of CENT (precise centrifugal potential)
Individual differences and time-varying features of modular brain architecture.
Liao, Xuhong; Cao, Miao; Xia, Mingrui; He, Yong
2017-05-15
Recent studies have suggested that human brain functional networks are topologically organized into functionally specialized but inter-connected modules to facilitate efficient information processing and highly flexible cognitive function. However, these studies have mainly focused on group-level network modularity analyses using "static" functional connectivity approaches. How these extraordinary modular brain structures vary across individuals and spontaneously reconfigure over time remain largely unknown. Here, we employed multiband resting-state functional MRI data (N=105) from the Human Connectome Project and a graph-based modularity analysis to systematically investigate individual variability and dynamic properties in modular brain networks. We showed that the modular structures of brain networks dramatically vary across individuals, with higher modular variability primarily in the association cortex (e.g., fronto-parietal and attention systems) and lower variability in the primary systems. Moreover, brain regions spontaneously changed their module affiliations on a temporal scale of seconds, which cannot be simply attributable to head motion and sampling error. Interestingly, the spatial pattern of intra-subject dynamic modular variability largely overlapped with that of inter-subject modular variability, both of which were highly reproducible across repeated scanning sessions. Finally, the regions with remarkable individual/temporal modular variability were closely associated with network connectors and the number of cognitive components, suggesting a potential contribution to information integration and flexible cognitive function. Collectively, our findings highlight individual modular variability and the notable dynamic characteristics in large-scale brain networks, which enhance our understanding of the neural substrates underlying individual differences in a variety of cognition and behaviors. Copyright © 2017 Elsevier Inc. All rights reserved.
Theodorou, E.G; Provatidis, C.G; Babis, G.C; Georgiou, C.S; Megas, P.D
2011-01-01
Total Hip Arthroplasty aims at fully recreating a functional hip joint. Over the past years modular implant systems have become common practice and are widely used, due to the surgical options they provide. In addition Big Femoral Heads have also been implemented in the process, providing more flexibility for the surgeon. The current study aims at investigating the effects that femoral heads of bigger diameter may impose on the mechanical behavior of the bone-implant assembly. Using data acquired by Computed Tomographies and a Coordinate Measurement Machine, a cadaveric femur and a Profemur-E modular stem were fully digitized, leading to a three dimensional finite element model in ANSYS Workbench. Strains and stresses were then calculated, focusing on areas of clinical interest, based on Gruen zones: the calcar and the corresponding below the greater trochanter area in the proximal femur, the stem tip region and a profile line along linea aspera. The performed finite elements analysis revealed that the use of large diameter heads produces significant changes in strain development within the bone volume, especially in the lateral side. The application of Frost’s law in bone remodeling, validated the hypothesis that for all diameters normal bone growth occurs. However, in the calcar area lower strain values were recorded, when comparing with the reference model featuring a 28mm femoral head. Along line aspera and for the stem tip area, higher values were recorded. Finally, stresses calculated on the modular neck revealed increased values, but without reaching the yield strength of the titanium alloy used. PMID:21792381
Theodorou, E G; Provatidis, C G; Babis, G C; Georgiou, C S; Megas, P D
2011-01-01
Total Hip Arthroplasty aims at fully recreating a functional hip joint. Over the past years modular implant systems have become common practice and are widely used, due to the surgical options they provide. In addition Big Femoral Heads have also been implemented in the process, providing more flexibility for the surgeon. The current study aims at investigating the effects that femoral heads of bigger diameter may impose on the mechanical behavior of the bone-implant assembly. Using data acquired by Computed Tomographies and a Coordinate Measurement Machine, a cadaveric femur and a Profemur-E modular stem were fully digitized, leading to a three dimensional finite element model in ANSYS Workbench. Strains and stresses were then calculated, focusing on areas of clinical interest, based on Gruen zones: the calcar and the corresponding below the greater trochanter area in the proximal femur, the stem tip region and a profile line along linea aspera. The performed finite elements analysis revealed that the use of large diameter heads produces significant changes in strain development within the bone volume, especially in the lateral side. The application of Frost's law in bone remodeling, validated the hypothesis that for all diameters normal bone growth occurs. However, in the calcar area lower strain values were recorded, when comparing with the reference model featuring a 28mm femoral head. Along line aspera and for the stem tip area, higher values were recorded. Finally, stresses calculated on the modular neck revealed increased values, but without reaching the yield strength of the titanium alloy used.
Dark Energy and Dark Matter Phenomena and the Universe with Variable Gravitational Mass
NASA Astrophysics Data System (ADS)
Gorkavyi, N.
2005-12-01
Generation of high-frequency gravitational waves near the singularity is a crucial factor for understanding the origin and dynamics of the Universe. Emission of gravitational waves increases with a decreasing radius of collapsed object much faster than a gravitational force itself. Gravitationally unstable matter of the Universe will be completely converted into gravitational radiation during the Big Crunch. According to Misner, Thorne & Wheeler (Gravitation, 1977, p.959) plane gravitational waves have not gravitational mass or spacetime is flat everywhere outside the pulse. We can propose that the gravitational mass of the Universe is vanished after converting matter into gravitational waves. This hypothesis in the framework of Einstein's theory of gravitation can solve the problem of singularity without contradiction with theorems by Penrose-Hawking; explain the acceleration of our Universe as the effect of a retarded gravitational potential (Gorkavyi, BAAS, 2003, 35, #3) and the low quadrupole in fluctuations in CMB as result of blue-shift effect in a gravitational field. Proposed solution of dark energy problem free from coincidence problems. The hypothesis keeps best parts of Big Bang theory and inflation model without any unknown physical fields or new dimensions. According to this hypothesis a relic sea of high-frequency gravitational radiation in our Universe can be very dense. Interaction of relic gravitational waves with gravitational fields of galaxies and stars can create an additional dynamical effects like pressure of relic radiation that proportional to gravitational potential GM/(Rc2). This effect can be responsible for dark matter phenomena in galaxies and the Pioneer acceleration in the solar system (Gorkavyi, BAAS, 2005, 37, #2).
Robotic hand with modular extensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salisbury, Curt Michael; Quigley, Morgan
A robotic device is described herein. The robotic device includes a frame that comprises a plurality of receiving regions that are configured to receive a respective plurality of modular robotic extensions. The modular robotic extensions are removably attachable to the frame at the respective receiving regions by way of respective mechanical fuses. Each mechanical fuse is configured to trip when a respective modular robotic extension experiences a predefined load condition, such that the respective modular robotic extension detaches from the frame when the load condition is met.
NASA Astrophysics Data System (ADS)
Barone, Fabrizio; Giordano, Gerardo
2018-02-01
We present the Extended Folded Pendulum Model (EFPM), a model developed for a quantitative description of the dynamical behavior of a folded pendulum generically oriented in space. This model, based on the Tait-Bryan angular reference system, highlights the relationship between the folded pendulum orientation in the gravitational field and its natural resonance frequency. Tis model validated by tests performed with a monolithic UNISA Folded Pendulum, highlights a new technique of implementation of folded pendulum based tiltmeters.
Effects of Air Drag and Lunar Third-Body Perturbations on Motion Near a Reference KAM Torus
2011-03-01
body m 1) mass of satellite; 2) order of associated Legendre polynomial n 1) mean motion; 2) degree of associated Legendre polynomial n3 mean motion...physical momentum pi ith physical momentum Pmn associated Legendre polynomial of order m and degree n q̇ physical coordinate derivatives vector, [q̇1...are constants specifying the shape of the gravitational field; and Pmn are associated Legendre polynomials . When m = n = 0, the geopotential function
A New Probe of the Planet-Forming Region in T Tauri Disks
2004-10-20
each object finds the presence of inner disk gaps with sizes of a few AU in each of these young (∼1 Myr) stellar systems. We propose that the...young (≤10 Myr) protoplanetary accretion disks (Beckwith et al. 2000; D’Alessio 2003 and references therein). The onset of this evolution lies in the...Gravitational inter- action between the disk and the forming planet results in the formation of a gap as the mass of the planet increases (Bryden 1
Space Biology and Aerospace Medicine, Number 5, 1977.
1977-11-10
Severity of Caloric Nystagmus (V. N. Krut’ko, et al.)..,»,..,.. 94 A Study of the Pulsed Method of Laundering (B. A, Adamovich, et al,)’ .... 100...diminished motor activity. As we know, hypo - kinesia is very important as an etiological factor in onset of a number of diseases, mainly referable to...artificial gravitation; they were 8x8x28 cm in size and we put 5 mice in each. The animals were on a mixed diet , and they were fed both during
NASA Technical Reports Server (NTRS)
Gaposchkin, E. M.
1981-01-01
The decrease in the semimajor axis of Lageos is considerably larger than expected. Gravitational effects, reference system effects, solar radiation pressure, Earth albedo pressure, neutral atmospheric drag, the Poynting Robertson Effect, and electrodynamic effects were used in explaining the observations. Quick look data provided are used to determine the Earth's polar motion and length of day. This process is routine, and provides these geophysical data every five days.
Tactile Sensory Supplementation of Gravitational References to Optimize Sensorimotor Recovery
NASA Technical Reports Server (NTRS)
Black, F. O.; Paloski, W. H.; Bloomberg, J. J.; Wood, S. J.
2007-01-01
Integration of multi-sensory inputs to detect tilts relative to gravity is critical for sensorimotor control of upright orientation. Displaying body orientation using electrotactile feedback to the tongue has been developed by Bach-y- Rita and colleagues as a sensory aid to maintain upright stance with impaired vestibular feedback. This investigation has explored the effects of Tongue Elecrotactile Feedback (TEF) for control of posture and movement as a sensorimotor countermeasure, specifically addressing the optimal location of movement sensors.
von Luhmann, Alexander; Wabnitz, Heidrun; Sander, Tilmann; Muller, Klaus-Robert
2017-06-01
For the further development of the fields of telemedicine, neurotechnology, and brain-computer interfaces, advances in hybrid multimodal signal acquisition and processing technology are invaluable. Currently, there are no commonly available hybrid devices combining bioelectrical and biooptical neurophysiological measurements [here electroencephalography (EEG) and functional near-infrared spectroscopy (NIRS)]. Our objective was to design such an instrument in a miniaturized, customizable, and wireless form. We present here the design and evaluation of a mobile, modular, multimodal biosignal acquisition architecture (M3BA) based on a high-performance analog front-end optimized for biopotential acquisition, a microcontroller, and our openNIRS technology. The designed M3BA modules are very small configurable high-precision and low-noise modules (EEG input referred noise @ 500 SPS 1.39 μV pp , NIRS noise equivalent power NEP 750 nm = 5.92 pW pp , and NEP 850 nm = 4.77 pW pp ) with full input linearity, Bluetooth, 3-D accelerometer, and low power consumption. They support flexible user-specified biopotential reference setups and wireless body area/sensor network scenarios. Performance characterization and in-vivo experiments confirmed functionality and quality of the designed architecture. Telemedicine and assistive neurotechnology scenarios will increasingly include wearable multimodal sensors in the future. The M3BA architecture can significantly facilitate future designs for research in these and other fields that rely on customized mobile hybrid biosignal modal biosignal acquisition architecture (M3BA), multimodal, near-infrared spectroscopy (NIRS), wireless body area network (WBAN), wireless body sensor network (WBSN).
Modular femoral neck fracture after primary total hip arthroplasty.
Sotereanos, Nicholas G; Sauber, Timothy J; Tupis, Todd T
2013-01-01
The use of modular femoral stems in primary total hip arthroplasty has increased considerably in recent years. These modular components offer the surgeon the ability to independently alter version, offset, and length of the femoral component of a hip arthroplasty. This increases the surgeon's ability to accurately recreate the relevant anatomy but increases the possibilities of corrosion and fracture. Multiple case reports have highlighted fractures of these modular components. We present a case of a fracture of a modular design that has had no previously reported modular neck fractures. The patient was informed that data concerning the case would be submitted, and he consented. Copyright © 2013 Elsevier Inc. All rights reserved.
Gravitational Wave Experiments - Proceedings of the First Edoardo Amaldi Conference
NASA Astrophysics Data System (ADS)
Coccia, E.; Pizzella, G.; Ronga, F.
1995-07-01
The Table of Contents for the full book PDF is as follows: * Foreword * Notes on Edoardo Amaldi's Life and Activity * PART I. INVITED LECTURES * Sources and Telescopes * Sources of Gravitational Radiation for Detectors of the 21st Century * Neutrino Telescopes * γ-Ray Bursts * Space Detectors * LISA — Laser Interferometer Space Antenna for Gravitational Wave Measurements * Search for Massive Coalescing Binaries with the Spacecraft ULYSSES * Interferometers * The LIGO Project: Progress and Prospects * The VIRGO Experiment: Status of the Art * GEO 600 — A 600-m Laser Interferometric Gravitational Wave Antenna * 300-m Laser Interferometer Gravitational Wave Detector (TAMA300) in Japan * Resonant Detectors * Search for Continuous Gravitational Wave from Pulsars with Resonant Detector * Operation of the ALLEGRO Detector at LSU * Preliminary Results of the New Run of Measurements with the Resonant Antenna EXPLORER * Operation of the Perth Cryogenic Resonant-Bar Gravitational Wave Detector * The NAUTILUS Experiment * Status of the AURIGA Gravitational Wave Antenna and Perspectives for the Gravitational Waves Search with Ultracryogenic Resonant Detectors * Ultralow Temperature Resonant-Mass Gravitational Radiation Detectors: Current Status of the Stanford Program * Electromechanical Transducers and Bandwidth of Resonant-Mass Gravitational-Wave Detectors * Fully Numerical Data Analysis for Resonant Gravitational Wave Detectors: Optimal Filter and Available Information * PART II. CONTRIBUTED PAPERS * Sources and Telescopes * The Local Supernova Production * Periodic Gravitational Signals from Galactic Pulsars * On a Possibility of Scalar Gravitational Wave Detection from the Binary Pulsars PSR 1913+16 * Kazan Gravitational Wave Detector “Dulkyn”: General Concept and Prospects of Construction * Hierarchical Approach to the Theory of Detection of Periodic Gravitational Radiation * Application of Gravitational Antennae for Fundamental Geophysical Problems * On Production of Gravitational Radiation by Particle Accelerators and by High Power Lasers * NESTOR: An Underwater Cerenkov Detector for Neutrino Astronomy * A Cosmic-Ray Veto System for the Gravitational Wave Detector NAUTLUS * Interferometers * Development of a 20m Prototype Laser Interferometric Gravitational Wave Detector at NAO * Production of Higher-Order Light Modes by High Quality Optical Components * Vibration Isolation and Suspension Systems for Laser Interferometer Gravitational Wave Detectors * Quality Factors of Stainless Steel Pendulum Wires * Reduction of Suspension Thermal Noises in Laser Free Masses Gravitational Antenna by Correlation of the Output with Additional Optical Signal * Resonant Detectors * Regeneration Effects in a Resonant Gravitational Wave Detector * A Cryogenic Sapphire Transducer with Double Frequency Pumping for Resonant Mass GW Detectors * Effect of Parametric Instability of Gravitational Wave Antenna with Microwave Cavity Transducer * Resonators of Novel Geometry for Large Mass Resonant Transducers * Measurements on the Gravitational Wave Antenna ALTAIR Equipped with a BAE Transducer * The Rome BAE Transducer: Perspectives of its Application to Ultracryogenic Gravitational Wave Antennas * Behavior of a de SQUID Tightly Coupled to a High-Q Resonant Transducer * High Q-Factor LC Resonators for Optimal Coupling * Comparison Between Different Data Analysis Procedures for Gravitational Wave Pulse Detection * Supernova 1987A Rome Maryland Gravitational Radiation Antenna Observations * Analysis of the Data Recorded by the Maryland and Rome Gravitational-Wave Detectors and the Seismic Data from Moscow and Obninsk Station during SN1987A * Multitransducer Resonant Gravitational Antennas * Local Array of High Frequency Antennas * Interaction Cross-Sections for Spherical Resonant GW Antennae * Signal-To-Noise Analysis for a Spherical Gravitational Wave Antenna Instrumented with Multiple Transducers * On the Design of Ultralow Temperature Spherical Gravitational Wave Detectors * List of Participants
Modular properties of 6d (DELL) systems
NASA Astrophysics Data System (ADS)
Aminov, G.; Mironov, A.; Morozov, A.
2017-11-01
If super-Yang-Mills theory possesses the exact conformal invariance, there is an additional modular invariance under the change of the complex bare charge [InlineMediaObject not available: see fulltext.]. The low-energy Seiberg-Witten prepotential ℱ( a), however, is not explicitly invariant, because the flat moduli also change a - → a D = ∂ℱ/∂ a. In result, the prepotential is not a modular form and depends also on the anomalous Eisenstein series E 2. This dependence is usually described by the universal MNW modular anomaly equation. We demonstrate that, in the 6 d SU( N) theory with two independent modular parameters τ and \\widehat{τ} , the modular anomaly equation changes, because the modular transform of τ is accompanied by an ( N -dependent!) shift of \\widehat{τ} and vice versa. This is a new peculiarity of double-elliptic systems, which deserves further investigation.
Towards a Formal Basis for Modular Safety Cases
NASA Technical Reports Server (NTRS)
Denney, Ewen; Pai, Ganesh
2015-01-01
Safety assurance using argument-based safety cases is an accepted best-practice in many safety-critical sectors. Goal Structuring Notation (GSN), which is widely used for presenting safety arguments graphically, provides a notion of modular arguments to support the goal of incremental certification. Despite the efforts at standardization, GSN remains an informal notation whereas the GSN standard contains appreciable ambiguity especially concerning modular extensions. This, in turn, presents challenges when developing tools and methods to intelligently manipulate modular GSN arguments. This paper develops the elements of a theory of modular safety cases, leveraging our previous work on formalizing GSN arguments. Using example argument structures we highlight some ambiguities arising through the existing guidance, present the intuition underlying the theory, clarify syntax, and address modular arguments, contracts, well-formedness and well-scopedness of modules. Based on this theory, we have a preliminary implementation of modular arguments in our toolset, AdvoCATE.
Brain modularity controls the critical behavior of spontaneous activity.
Russo, R; Herrmann, H J; de Arcangelis, L
2014-03-13
The human brain exhibits a complex structure made of scale-free highly connected modules loosely interconnected by weaker links to form a small-world network. These features appear in healthy patients whereas neurological diseases often modify this structure. An important open question concerns the role of brain modularity in sustaining the critical behaviour of spontaneous activity. Here we analyse the neuronal activity of a model, successful in reproducing on non-modular networks the scaling behaviour observed in experimental data, on a modular network implementing the main statistical features measured in human brain. We show that on a modular network, regardless the strength of the synaptic connections or the modular size and number, activity is never fully scale-free. Neuronal avalanches can invade different modules which results in an activity depression, hindering further avalanche propagation. Critical behaviour is solely recovered if inter-module connections are added, modifying the modular into a more random structure.
The OPTIS satellite-improved tests of Special and General Relativity
NASA Astrophysics Data System (ADS)
Scheithauer, Silvia; Laemmerzahl, Claus; Dittus, Hansjoerg; Schiller, Stephan; Peters, Achim
2005-06-01
The OPTIS satellite mission is an international collaboration initiated by three German University institutes aiming at improving tests regarding the foundations of Special and General Relativity. The mission idea - which has already passed the state of the initial feasibility study - is to contribute to the most challenging project of physics in this century - the search for a Theory of Quantum Gravity. This theory should resolve the incompatibilities between the quantum theory and Einstein's General Relativity. All approaches for a Quantum Gravity Theory predict small deviations from Special and General Relativity. If such deviations could be found (e.g. an anisotropy of the speed of light, violations of the universality of gravitational red shift or of the universality of free fall) the way to a new understanding of the time and space structure of the universe would be open. Therefore the goal of the OPTIS satellite mission is an accuracy improvement of tests regarding the foundations of Special and General Relativity by up to three orders of magnitude. For that purpose several experiments will be carried out on board the OPTIS satellite testing (i) the isotropy of the speed of light, (ii) the independence of the speed of light from the velocity of the laboratory system, (iii) the universality of the gravitational redshift, (iv) the absolute gravitational redshift and (v) the special relativistic time-dilation. Furthermore, orbit analyses will be done in order to measure (vi) the Lense-Thirring effect and (vii) perigee advance as well as to test (viii) the Newtonian View the MathML source gravitational potential. The benefit from bringing these experiments into space is the nearly disturbance free environment allowing precise measurements and large measurement times. The OPTIS mission will use already available key technologies like optical cavities, highly stabilised lasers, atomic clocks, frequency combs, capacitive gravitational reference sensors, drag-free control, laser tracking and laser linking systems. For most of the proposed tests the measurements are done by comparing the rates of different clocks. For the test of the isotropy of the velocity of light (Michelson-Morley experiment) the frequencies of resonators ("light clocks") pointing in different directions are compared. Concerning the constancy of the speed of light (Kennedy-Thorndike experiment) a resonator and atomic clocks under varying velocities are compared. For tests of the time dilation the rates of clocks in different states of motion and for testing the universality of the gravitational redshift clocks at different positions in the gravitational field are compared. This paper will give an overview about the OPTIS satellite mission, including the science goals, science requirements, key technologies, measurement principles and devices.
Why Go Modular? A Review of Modular A-Level Mathematics.
ERIC Educational Resources Information Center
Taverner, Sally; Wright, Martin
1997-01-01
Attitudes, academic intentions, and attainment of students gaining a grade in A-level (Advanced level) mathematics were compared for those who followed a modular course and those assessed at the end of two years of study. Overall, the final grades of those assessed modularly were half a grade higher. (JOW)
On Classification of Modular Categories by Rank: Table A.1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruillard, Paul; Ng, Siu-Hung; Rowell, Eric C.
2016-04-10
The feasibility of a classification-by-rank program for modular categories follows from the Rank-Finiteness Theorem. We develop arithmetic, representation theoretic and algebraic methods for classifying modular categories by rank. As an application, we determine all possible fusion rules for all rank=5 modular categories and describe the corresponding monoidal equivalence classes.
Unraveling the disease consequences and mechanisms of modular structure in animal social networks
Leu, Stephan T.; Cross, Paul C.; Hudson, Peter J.; Bansal, Shweta
2017-01-01
Disease risk is a potential cost of group living. Although modular organization is thought to reduce this cost in animal societies, empirical evidence toward this hypothesis has been conflicting. We analyzed empirical social networks from 43 animal species to motivate our study of the epidemiological consequences of modular structure in animal societies. From these empirical studies, we identified the features of interaction patterns associated with network modularity and developed a theoretical network model to investigate when and how subdivisions in social networks influence disease dynamics. Contrary to prior work, we found that disease risk is largely unaffected by modular structure, although social networks beyond a modular threshold experience smaller disease burden and longer disease duration. Our results illustrate that the lowering of disease burden in highly modular social networks is driven by two mechanisms of modular organization: network fragmentation and subgroup cohesion. Highly fragmented social networks with cohesive subgroups are able to structurally trap infections within a few subgroups and also cause a structural delay to the spread of disease outbreaks. Finally, we show that network models incorporating modular structure are necessary only when prior knowledge suggests that interactions within the population are highly subdivided. Otherwise, null networks based on basic knowledge about group size and local contact heterogeneity may be sufficient when data-limited estimates of epidemic consequences are necessary. Overall, our work does not support the hypothesis that modular structure universally mitigates the disease impact of group living. PMID:28373567
Unraveling the disease consequences and mechanisms of modular structure in animal social networks
Sah, Pratha; Leu, Stephan T.; Cross, Paul C.; Hudson, Peter J.; Bansal, Shweta
2017-01-01
Disease risk is a potential cost of group living. Although modular organization is thought to reduce this cost in animal societies, empirical evidence toward this hypothesis has been conflicting. We analyzed empirical social networks from 43 animal species to motivate our study of the epidemiological consequences of modular structure in animal societies. From these empirical studies, we identified the features of interaction patterns associated with network modularity and developed a theoretical network model to investigate when and how subdivisions in social networks influence disease dynamics. Contrary to prior work, we found that disease risk is largely unaffected by modular structure, although social networks beyond a modular threshold experience smaller disease burden and longer disease duration. Our results illustrate that the lowering of disease burden in highly modular social networks is driven by two mechanisms of modular organization: network fragmentation and subgroup cohesion. Highly fragmented social networks with cohesive subgroups are able to structurally trap infections within a few subgroups and also cause a structural delay to the spread of disease outbreaks. Finally, we show that network models incorporating modular structure are necessary only when prior knowledge suggests that interactions within the population are highly subdivided. Otherwise, null networks based on basic knowledge about group size and local contact heterogeneity may be sufficient when data-limited estimates of epidemic consequences are necessary. Overall, our work does not support the hypothesis that modular structure universally mitigates the disease impact of group living.
Unraveling the disease consequences and mechanisms of modular structure in animal social networks.
Sah, Pratha; Leu, Stephan T; Cross, Paul C; Hudson, Peter J; Bansal, Shweta
2017-04-18
Disease risk is a potential cost of group living. Although modular organization is thought to reduce this cost in animal societies, empirical evidence toward this hypothesis has been conflicting. We analyzed empirical social networks from 43 animal species to motivate our study of the epidemiological consequences of modular structure in animal societies. From these empirical studies, we identified the features of interaction patterns associated with network modularity and developed a theoretical network model to investigate when and how subdivisions in social networks influence disease dynamics. Contrary to prior work, we found that disease risk is largely unaffected by modular structure, although social networks beyond a modular threshold experience smaller disease burden and longer disease duration. Our results illustrate that the lowering of disease burden in highly modular social networks is driven by two mechanisms of modular organization: network fragmentation and subgroup cohesion. Highly fragmented social networks with cohesive subgroups are able to structurally trap infections within a few subgroups and also cause a structural delay to the spread of disease outbreaks. Finally, we show that network models incorporating modular structure are necessary only when prior knowledge suggests that interactions within the population are highly subdivided. Otherwise, null networks based on basic knowledge about group size and local contact heterogeneity may be sufficient when data-limited estimates of epidemic consequences are necessary. Overall, our work does not support the hypothesis that modular structure universally mitigates the disease impact of group living.
del Sol, Antonio; Araúzo-Bravo, Marcos J; Amoros, Dolors; Nussinov, Ruth
2007-01-01
Background Allosteric communications are vital for cellular signaling. Here we explore a relationship between protein architectural organization and shortcuts in signaling pathways. Results We show that protein domains consist of modules interconnected by residues that mediate signaling through the shortest pathways. These mediating residues tend to be located at the inter-modular boundaries, which are more rigid and display a larger number of long-range interactions than intra-modular regions. The inter-modular boundaries contain most of the residues centrally conserved in the protein fold, which may be crucial for information transfer between amino acids. Our approach to modular decomposition relies on a representation of protein structures as residue-interacting networks, and removal of the most central residue contacts, which are assumed to be crucial for allosteric communications. The modular decomposition of 100 multi-domain protein structures indicates that modules constitute the building blocks of domains. The analysis of 13 allosteric proteins revealed that modules characterize experimentally identified functional regions. Based on the study of an additional functionally annotated dataset of 115 proteins, we propose that high-modularity modules include functional sites and are the basic functional units. We provide examples (the Gαs subunit and P450 cytochromes) to illustrate that the modular architecture of active sites is linked to their functional specialization. Conclusion Our method decomposes protein structures into modules, allowing the study of signal transmission between functional sites. A modular configuration might be advantageous: it allows signaling proteins to expand their regulatory linkages and may elicit a broader range of control mechanisms either via modular combinations or through modulation of inter-modular linkages. PMID:17531094
Modular assembly for supporting, straining, and directing flow to a core in a nuclear reactor
Pennell, William E.
1977-01-01
A reactor core support arrangement for supporting, straining, and providing fluid flow to the core and periphery of a nuclear reactor during normal operation. A plurality of removable inlet modular units are contained within permanent liners in the lower supporting plate of the reactor vessel lower internals. During normal operation (1) each inlet modular unit directs main coolant flow to a plurality of core assemblies, the latter being removably supported in receptacles in the upper portion of the modular unit and (2) each inlet modular unit may direct bypass flow to a low pressure annular region of the reactor vessel. Each inlet modular unit may include special fluid seals interposed between mating surfaces of the inlet modular units and the core assemblies and between the inlet modular units and the liners, to minimize leakage and achieve an hydraulic balance. Utilizing the hydraulic balance, the modular units are held in the liners and the assemblies are held in the modular unit receptacles by their own respective weight. Included as part of the permanent liners below the horizontal support plate are generally hexagonal axial debris barriers. The axial debris barriers collectively form a bottom boundary of a secondary high pressure plenum, the upper boundary of which is the bottom surface of the horizontal support plate. Peripheral liners include radial debris barriers which collectively form a barrier against debris entry radially. During normal operation primary coolant inlet openings in the liner, below the axial debris barriers, pass a large amount of coolant into the inlet modular units, and secondary coolant inlet openings in the portion of the liners within the secondary plenum pass a small amount of coolant into the inlet modular units. The secondary coolant inlet openings also provide alternative coolant inlet flow paths in the unlikely event of blockage of the primary inlet openings. The primary inlet openings have characteristics which limit the entry of debris and minimize the potential for debris entering the primary inlets blocking the secondary inlets from inside the modular unit.
Titan's lower troposphere: thermal structure and dynamics
NASA Astrophysics Data System (ADS)
Charnay, B.; Lebonnois, S.
2011-12-01
A new climate model for Titan's atmosphere has been developed, using the physics of the IPSL Titan 2-dimensional climate model with the current version of the LMDZ General Circulation Model's dynamical core. The GCM covers altitudes from the surface to 500 km with the diurnal cycle and the gravitational tides included. 1. Boundary layer and thermal structure The HASI profile of potential temperature shows a layer at 300 m, an other at 800 m and a slope change at 2 km ([5],[2]). Dune spacing on Titan is consistent with a 2-3 km boundary layer ([3]). We have reproduced this profile (see figure) and interpreted the layer at 300 m as a convective boundary layer, the layer at 800 m is a residual layer corresponding to the maximum diurnal vertical extension of the PBL. We interpret the slope change at 2 km as produced by the seasonal displacement of the ITCZ. This layer traps the circulation in the first two km and is responsible of the dune spacing. Finally we interpret the fog discovered in summer polar region ([1]) has clouds produced by the diurnal cycle of the PBL (as fair weather cumulus on Earth). 2. Surface winds 2.1 Effect of gravitational and thermal tides We analysed tropospheric winds and the influence of both the thermal and the gravitational tides. The impact of gravitational tides on the circulation is extremely small. Thermal tides have a visible effect, though quite tenuous. 2.2 Effect of topography We produced topography maps derived from spherical harmonic interpolation ([6]) on the reference ellipsoid ([4]). Surface temperatures at high altitude appear higher that the ambient air. Vertical air movements produce anabatic winds developing on smooth and long slopes. This could be one of the main causes controlling the direction of surface winds and the direction of dunes. References [1] Brown et al.: Discovery of fog at the south pole of Titan, Astrophys. J. 706 (2009), pp. L110-L113 [2] Griffith et al.: Titan's Tropical Storms in an Evolving Atmosphere, Astrophys. J. 687 (2008) L41-L44. [3] Lorenz et al.: A 3 km atmospheric boundary layer on Titan indiacted by dune spacing and Huygens data, Icarus 205, 719-721 (2010) [4] Luciano Iess et al.: Gravity Field, Shape, and Moment of Inertia of Titan, Science 327, 1367(2010) [5] Tokano et al.: Titan's planetary boundary layer structure at the Huygens landing site, J. Geophys. Res vol. 111 (2006) [6] HA. Zebker et al.: Size and Shape of Saturn's Moon TitanScience 324, 921(2009)
NASA Tech Briefs, January 2004
NASA Technical Reports Server (NTRS)
2004-01-01
Topics covered include: Multisensor Instrument for Real-Time Biological Monitoring; Sensor for Monitoring Nanodevice-Fabrication Plasmas; Backed Bending Actuator; Compact Optoelectronic Compass; Micro Sun Sensor for Spacecraft; Passive IFF: Autonomous Nonintrusive Rapid Identification of Friendly Assets; Finned-Ladder Slow-Wave Circuit for a TWT; Directional Radio-Frequency Identification Tag Reader; Integrated Solar-Energy-Harvesting and -Storage Device; Event-Driven Random-Access-Windowing CCD Imaging System; Stroboscope Controller for Imaging Helicopter Rotors; Software for Checking State-charts; Program Predicts Broadband Noise from a Turbofan Engine; Protocol for a Delay-Tolerant Data-Communication Network; Software Implements a Space-Mission File-Transfer Protocol; Making Carbon-Nanotube Arrays Using Block Copolymers: Part 2; Modular Rake of Pitot Probes; Preloading To Accelerate Slow-Crack-Growth Testing; Miniature Blimps for Surveillance and Collection of Samples; Hybrid Automotive Engine Using Ethanol-Burning Miller Cycle; Fabricating Blazed Diffraction Gratings by X-Ray Lithography; Freeze-Tolerant Condensers; The StarLight Space Interferometer; Champagne Heat Pump; Controllable Sonar Lenses and Prisms Based on ERFs; Measuring Gravitation Using Polarization Spectroscopy; Serial-Turbo-Trellis-Coded Modulation with Rate-1 Inner Code; Enhanced Software for Scheduling Space-Shuttle Processing; Bayesian-Augmented Identification of Stars in a Narrow View; Spacecraft Orbits for Earth/Mars-Lander Radio Relay; and Self-Inflatable/Self-Rigidizable Reflectarray Antenna.
Geodynamo Modeling of Core-Mantle Interactions
NASA Technical Reports Server (NTRS)
Kuang, Wei-Jia; Chao, Benjamin F.; Smith, David E. (Technical Monitor)
2001-01-01
Angular momentum exchange between the Earth's mantle and core influences the Earth's rotation on time scales of decades and longer, in particular in the length of day (LOD) which have been measured with progressively increasing accuracy for the last two centuries. There are four possible coupling mechanisms for transferring the axial angular momentum across the core-mantle boundary (CMB): viscous, magnetic, topography, and gravitational torques. Here we use our scalable, modularized, fully dynamic geodynamo model for the core to assess the importance of these torques. This numerical model, as an extension of the Kuang-Bloxham model that has successfully simulated the generation of the Earth's magnetic field, is used to obtain numerical results in various physical conditions in terms of specific parameterization consistent with the dynamical processes in the fluid outer core. The results show that depending on the electrical conductivity of the lower mantle and the amplitude of the boundary topography at CMB, both magnetic and topographic couplings can contribute significantly to the angular momentum exchange. This implies that the core-mantle interactions are far more complex than has been assumed and that there is unlikely a single dominant coupling mechanism for the observed decadal LOD variation.
Space Station Furnace Facility. Volume 2: Summary of technical reports
NASA Technical Reports Server (NTRS)
1992-01-01
The Space Station Furnace Facility (SSFF) is a modular facility for materials research in the microgravity environment of the Space Station Freedom (SSF). The SSFF is designed for crystal growth and solidification research in the fields of electronic and photonic materials, metals and alloys, and glasses and ceramics, and will allow for experimental determination of the role of gravitational forces in the solidification process. The facility will provide a capability for basic scientific research and will evaluate the commercial viability of low-gravity processing of selected technologically important materials. In order to accommodate the furnace modules with the resources required to operate, SSFF developed a design that meets the needs of the wide range of furnaces that are planned for the SSFF. The system design is divided into subsystems which provide the functions of interfacing to the SSF services, conditioning and control for furnace module use, providing the controlled services to the furnace modules, and interfacing to and acquiring data from the furnace modules. The subsystems, described in detail, are as follows: Power Conditioning and Distribution Subsystem; Data Management Subsystem; Software; Gas Distribution Subsystem; Thermal Control Subsystem; and Mechanical Structures Subsystem.
How to test gravitation theories by means of gravitational-wave measurements
NASA Technical Reports Server (NTRS)
Thorne, K. S.
1974-01-01
Gravitational-wave experiments are a potentially powerful tool for testing gravitation theories. Most theories in the literature predict rather different polarization properties for gravitational waves than are predicted by general relativity; and many theories predict anomalies in the propagation speeds of gravitational waves.
Portable modular detection system
Brennan, James S [Rodeo, CA; Singh, Anup [Danville, CA; Throckmorton, Daniel J [Tracy, CA; Stamps, James F [Livermore, CA
2009-10-13
Disclosed herein are portable and modular detection devices and systems for detecting electromagnetic radiation, such as fluorescence, from an analyte which comprises at least one optical element removably attached to at least one alignment rail. Also disclosed are modular detection devices and systems having an integrated lock-in amplifier and spatial filter and assay methods using the portable and modular detection devices.
Modularity-like objective function in annotated networks
NASA Astrophysics Data System (ADS)
Xie, Jia-Rong; Wang, Bing-Hong
2017-12-01
We ascertain the modularity-like objective function whose optimization is equivalent to the maximum likelihood in annotated networks. We demonstrate that the modularity-like objective function is a linear combination of modularity and conditional entropy. In contrast with statistical inference methods, in our method, the influence of the metadata is adjustable; when its influence is strong enough, the metadata can be recovered. Conversely, when it is weak, the detection may correspond to another partition. Between the two, there is a transition. This paper provides a concept for expanding the scope of modularity methods.
Modular organization and hospital performance.
Kuntz, Ludwig; Vera, Antonio
2007-02-01
The concept of modularization represents a modern form of organization, which contains the vertical disaggregation of the firm and the use of market mechanisms within hierarchies. The objective of this paper is to examine whether the use of modular structures has a positive effect on hospital performance. The empirical section makes use of multiple regression analyses and leads to the main result that modularization does not have a positive effect on hospital performance. However, the analysis also finds out positive efficiency effects of two central ideas of modularization, namely process orientation and internal market mechanisms.
Modular analysis of biological networks.
Kaltenbach, Hans-Michael; Stelling, Jörg
2012-01-01
The analysis of complex biological networks has traditionally relied on decomposition into smaller, semi-autonomous units such as individual signaling pathways. With the increased scope of systems biology (models), rational approaches to modularization have become an important topic. With increasing acceptance of de facto modularity in biology, widely different definitions of what constitutes a module have sparked controversies. Here, we therefore review prominent classes of modular approaches based on formal network representations. Despite some promising research directions, several important theoretical challenges remain open on the way to formal, function-centered modular decompositions for dynamic biological networks.
Full characterization of modular values for finite-dimensional systems
NASA Astrophysics Data System (ADS)
Ho, Le Bin; Imoto, Nobuyuki
2016-06-01
Kedem and Vaidman obtained a relationship between the spin-operator modular value and its weak value for specific coupling strengths [14]. Here we give a general expression for the modular value in the n-dimensional Hilbert space using the weak values up to (n - 1)th order of an arbitrary observable for any coupling strength, assuming non-degenerated eigenvalues. For two-dimensional case, it shows a linear relationship between the weak value and the modular value. We also relate the modular value of the sum of observables to the weak value of their product.
Gravitational Wave Astrophysics: Opening the New Frontier
NASA Technical Reports Server (NTRS)
Centrella, Joan
2011-01-01
The gravitational wave window onto the universe is expected to open in 5 years, when ground-based detectors make the first detections in the high-frequency regime. Gravitational waves are ripples in spacetime produced by the motions of massive objects such as black holes and neutron stars. Since the universe is nearly transparent to gravitational waves, these signals carry direct information about their sources such as masses, spins, luminosity distances, and orbital parameters through dense, obscured regions across cosmic time. This article explores gravitational waves as cosmic messengers, highlighting key sources, detection methods, and the astrophysical payoffs across the gravitational wave spectrum. Keywords: Gravitational wave astrophysics; gravitational radiation; gravitational wave detectors; black holes.
On the role of sparseness in the evolution of modularity in gene regulatory networks
2018-01-01
Modularity is a widespread property in biological systems. It implies that interactions occur mainly within groups of system elements. A modular arrangement facilitates adjustment of one module without perturbing the rest of the system. Therefore, modularity of developmental mechanisms is a major factor for evolvability, the potential to produce beneficial variation from random genetic change. Understanding how modularity evolves in gene regulatory networks, that create the distinct gene activity patterns that characterize different parts of an organism, is key to developmental and evolutionary biology. One hypothesis for the evolution of modules suggests that interactions between some sets of genes become maladaptive when selection favours additional gene activity patterns. The removal of such interactions by selection would result in the formation of modules. A second hypothesis suggests that modularity evolves in response to sparseness, the scarcity of interactions within a system. Here I simulate the evolution of gene regulatory networks and analyse diverse experimentally sustained networks to study the relationship between sparseness and modularity. My results suggest that sparseness alone is neither sufficient nor necessary to explain modularity in gene regulatory networks. However, sparseness amplifies the effects of forms of selection that, like selection for additional gene activity patterns, already produce an increase in modularity. That evolution of new gene activity patterns is frequent across evolution also supports that it is a major factor in the evolution of modularity. That sparseness is widespread across gene regulatory networks indicates that it may have facilitated the evolution of modules in a wide variety of cases. PMID:29775459
On the role of sparseness in the evolution of modularity in gene regulatory networks.
Espinosa-Soto, Carlos
2018-05-01
Modularity is a widespread property in biological systems. It implies that interactions occur mainly within groups of system elements. A modular arrangement facilitates adjustment of one module without perturbing the rest of the system. Therefore, modularity of developmental mechanisms is a major factor for evolvability, the potential to produce beneficial variation from random genetic change. Understanding how modularity evolves in gene regulatory networks, that create the distinct gene activity patterns that characterize different parts of an organism, is key to developmental and evolutionary biology. One hypothesis for the evolution of modules suggests that interactions between some sets of genes become maladaptive when selection favours additional gene activity patterns. The removal of such interactions by selection would result in the formation of modules. A second hypothesis suggests that modularity evolves in response to sparseness, the scarcity of interactions within a system. Here I simulate the evolution of gene regulatory networks and analyse diverse experimentally sustained networks to study the relationship between sparseness and modularity. My results suggest that sparseness alone is neither sufficient nor necessary to explain modularity in gene regulatory networks. However, sparseness amplifies the effects of forms of selection that, like selection for additional gene activity patterns, already produce an increase in modularity. That evolution of new gene activity patterns is frequent across evolution also supports that it is a major factor in the evolution of modularity. That sparseness is widespread across gene regulatory networks indicates that it may have facilitated the evolution of modules in a wide variety of cases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lappa, Marcello, E-mail: marcello.lappa@strath.ac.uk
The relevance of non-equilibrium phenomena, nonlinear behavior, gravitational effects and fluid compressibility in a wide range of problems related to high-temperature gas-dynamics, especially in thermal, mechanical and nuclear engineering, calls for a concerted approach using the tools of the kinetic theory of gases, statistical physics, quantum mechanics, thermodynamics and mathematical modeling in synergy with advanced numerical strategies for the solution of the Navier–Stokes equations. The reason behind such a need is that in many instances of relevance in this field one witnesses a departure from canonical models and the resulting inadequacy of standard CFD approaches, especially those traditionally used tomore » deal with thermal (buoyancy) convection problems. Starting from microscopic considerations and typical concepts of molecular dynamics, passing through the Boltzmann equation and its known solutions, we show how it is possible to remove past assumptions and elaborate an algorithm capable of targeting the broadest range of applications. Moving beyond the Boussinesq approximation, the Sutherland law and the principle of energy equipartition, the resulting method allows most of the fluid properties (density, viscosity, thermal conductivity, heat capacity and diffusivity, etc.) to be derived in a rational and natural way while keeping empirical contamination to the minimum. Special attention is deserved as well to the well-known pressure issue. With the application of the socalled multiple pressure variables concept and a projection-like numerical approach, difficulties with such a term in the momentum equation are circumvented by allowing the hydrodynamic pressure to decouple from its thermodynamic counterpart. The final result is a flexible and modular framework that on the one hand is able to account for all the molecule (translational, rotational and vibrational) degrees of freedom and their effective excitation, and on the other hand can guarantee adequate interplay between molecular and macroscopic-level entities and processes. Performances are demonstrated by computing some incompressible and compressible benchmark test cases for thermal (gravitational) convection, which are then extended to the high-temperature regime taking advantage of the newly developed features.« less
Esteve-Altava, Borja; Boughner, Julia C.; Diogo, Rui; Villmoare, Brian A.; Rasskin-Gutman, Diego
2015-01-01
Modularity and complexity go hand in hand in the evolution of the skull of primates. Because analyses of these two parameters often use different approaches, we do not know yet how modularity evolves within, or as a consequence of, an also-evolving complex organization. Here we use a novel network theory-based approach (Anatomical Network Analysis) to assess how the organization of skull bones constrains the co-evolution of modularity and complexity among primates. We used the pattern of bone contacts modeled as networks to identify connectivity modules and quantify morphological complexity. We analyzed whether modularity and complexity evolved coordinately in the skull of primates. Specifically, we tested Herbert Simon’s general theory of near-decomposability, which states that modularity promotes the evolution of complexity. We found that the skulls of extant primates divide into one conserved cranial module and up to three labile facial modules, whose composition varies among primates. Despite changes in modularity, statistical analyses reject a positive feedback between modularity and complexity. Our results suggest a decoupling of complexity and modularity that translates to varying levels of constraint on the morphological evolvability of the primate skull. This study has methodological and conceptual implications for grasping the constraints that underlie the developmental and functional integration of the skull of humans and other primates. PMID:25992690
Modular Mayhem? A Case Study of the Development of the A-Level Science Curriculum in England
ERIC Educational Resources Information Center
Hayward, Geoff; McNicholl, Jane
2007-01-01
This article investigates the costs and benefits of the increased use of modular or unitized qualification designs through a case study of the GCE A-level science curriculum in England. Following a brief review of the development of modular A-levels, the various proposed advantages of modularity--short-term goals and regular feedback, flexibility…
NASA Astrophysics Data System (ADS)
Chowdhury, Md Mukul
With the increased practice of modularization and prefabrication, the construction industry gained the benefits of quality management, improved completion time, reduced site disruption and vehicular traffic, and improved overall safety and security. Whereas industrialized construction methods, such as modular and manufactured buildings, have evolved over decades, core techniques used in prefabrication plants vary only slightly from those employed in traditional site-built construction. With a focus on energy and cost efficient modular construction, this research presents the development of a simulation, measurement and optimization system for energy consumption in the manufacturing process of modular construction. The system is based on Lean Six Sigma principles and loosely coupled system operation to identify the non-value adding tasks and possible causes of low energy efficiency. The proposed system will also include visualization functions for demonstration of energy consumption in modular construction. The benefits of implementing this system include a reduction in the energy consumption in production cost, decrease of energy cost in the production of lean-modular construction, and increase profit. In addition, the visualization functions will provide detailed information about energy efficiency and operation flexibility in modular construction. A case study is presented to validate the reliability of the system.
Dowker, A; Hermelin, B; Pring, L
1996-09-01
Poems by an individual with a diagnosis of Asperger's Syndrome were analysed and compared with those of a comparison poet. Though the savant poet performed less efficiently on formal language tests supposed to tap creativity, there were few differences between the two poets in regard to the poems' content and the use of various structural devices. The poems by the savant referred more often to aspects of self-analysis, while descriptions of people not related to the self were less frequent. Both poets made use of similes and metaphors. The results are discussed in terms of different modular domains within the language system.
Modified Phasemeter for a Heterodyne Laser Interferometer
NASA Technical Reports Server (NTRS)
Loya, Frank M.
2010-01-01
Modifications have been made in the design of instruments of the type described in "Digital Averaging Phasemeter for Heterodyne Interferometry". A phasemeter of this type measures the difference between the phases of the unknown and reference heterodyne signals in a heterodyne laser interferometer. The phasemeter design lacked immunity to drift of the heterodyne frequency, was bandwidth-limited by computer bus architectures then in use, and was resolution-limited by the nature of field-programmable gate arrays (FPGAs) then available. The modifications have overcome these limitations and have afforded additional improvements in accuracy, speed, and modularity. The modifications are summarized.
SIRU development. Volume 3: Software description and program documentation
NASA Technical Reports Server (NTRS)
Oehrle, J.
1973-01-01
The development and initial evaluation of a strapdown inertial reference unit (SIRU) system are discussed. The SIRU configuration is a modular inertial subsystem with hardware and software features that achieve fault tolerant operational capabilities. The SIRU redundant hardware design is formulated about a six gyro and six accelerometer instrument module package. The six axes array provides redundant independent sensing and the symmetry enables the formulation of an optimal software redundant data processing structure with self-contained fault detection and isolation (FDI) capabilities. The basic SIRU software coding system used in the DDP-516 computer is documented.
NASA Technical Reports Server (NTRS)
Dorsey, John T.; Collins, Timothy J.; Moe, Rud V.; Doggett,. William R.
2006-01-01
A comprehensive modular assembly system model has been proposed that extends the art from modular hardware, to include in-space assembly, servicing and repair and it s critical components of infrastructure, agents and assembly operations. Benefits of modular assembly have been identified and a set of metrics defined that extends the art beyond the traditional measures of performance, with emphasis on criteria that allow life-cycle mission costs to be used as a figure of merit (and include all substantive terms that have an impact on the evaluation). The modular assembly approach was used as a basis for developing a Solar Electric Transfer Vehicle (SETV) concept and three modular assembly scenarios were developed. The modular assembly approach also allows the SETV to be entered into service much earlier than competing conventional configurations and results in a great deal of versatility in accommodating different launch vehicle payload capabilities, allowing for modules to be pre-assembled before launch or assembled on orbit, without changing the space vehicle design.
Modular Knowledge Representation and Reasoning in the Semantic Web
NASA Astrophysics Data System (ADS)
Serafini, Luciano; Homola, Martin
Construction of modular ontologies by combining different modules is becoming a necessity in ontology engineering in order to cope with the increasing complexity of the ontologies and the domains they represent. The modular ontology approach takes inspiration from software engineering, where modularization is a widely acknowledged feature. Distributed reasoning is the other side of the coin of modular ontologies: given an ontology comprising of a set of modules, it is desired to perform reasoning by combination of multiple reasoning processes performed locally on each of the modules. In the last ten years, a number of approaches for combining logics has been developed in order to formalize modular ontologies. In this chapter, we survey and compare the main formalisms for modular ontologies and distributed reasoning in the Semantic Web. We select four formalisms build on formal logical grounds of Description Logics: Distributed Description Logics, ℰ-connections, Package-based Description Logics and Integrated Distributed Description Logics. We concentrate on expressivity and distinctive modeling features of each framework. We also discuss reasoning capabilities of each framework.
NASA Astrophysics Data System (ADS)
Makhtar, Siti Noormiza; Senik, Mohd Harizal
2018-02-01
The availability of massive amount of neuronal signals are attracting widespread interest in functional connectivity analysis. Functional interactions estimated by multivariate partial coherence analysis in the frequency domain represent the connectivity strength in this study. Modularity is a network measure for the detection of community structure in network analysis. The discovery of community structure for the functional neuronal network was implemented on multi-electrode array (MEA) signals recorded from hippocampal regions in isoflurane-anaesthetized Lister-hooded rats. The analysis is expected to show modularity changes before and after local unilateral kainic acid (KA)-induced epileptiform activity. The result is presented using color-coded graphic of conditional modularity measure for 19 MEA nodes. This network is separated into four sub-regions to show the community detection within each sub-region. The results show that classification of neuronal signals into the inter- and intra-modular nodes is feasible using conditional modularity analysis. Estimation of segregation properties using conditional modularity analysis may provide further information about functional connectivity from MEA data.
A Formal Theory for Modular ERDF Ontologies
NASA Astrophysics Data System (ADS)
Analyti, Anastasia; Antoniou, Grigoris; Damásio, Carlos Viegas
The success of the Semantic Web is impossible without any form of modularity, encapsulation, and access control. In an earlier paper, we extended RDF graphs with weak and strong negation, as well as derivation rules. The ERDF #n-stable model semantics of the extended RDF framework (ERDF) is defined, extending RDF(S) semantics. In this paper, we propose a framework for modular ERDF ontologies, called modular ERDF framework, which enables collaborative reasoning over a set of ERDF ontologies, while support for hidden knowledge is also provided. In particular, the modular ERDF stable model semantics of modular ERDF ontologies is defined, extending the ERDF #n-stable model semantics. Our proposed framework supports local semantics and different points of view, local closed-world and open-world assumptions, and scoped negation-as-failure. Several complexity results are provided.
Future Concepts for Modular, Intelligent Aerospace Power Systems
NASA Technical Reports Server (NTRS)
Button, Robert M.; Soeder, James F.
2004-01-01
Nasa's resent commitment to Human and Robotic Space Exploration obviates the need for more affordable and sustainable systems and missions. Increased use of modularity and on-board intelligent technologies will enable these lofty goals. To support this new paradigm, an advanced technology program to develop modular, intelligent power management and distribution (PMAD) system technologies is presented. The many benefits to developing and including modular functionality in electrical power components and systems are shown to include lower costs and lower mass for highly reliable systems. The details of several modular technologies being developed by NASA are presented, broken down into hierarchical levels. Modularity at the device level, including the use of power electronic building blocks, is shown to provide benefits in lowering the development time and costs of new power electronic components.
Modular multiplication in GF(p) for public-key cryptography
NASA Astrophysics Data System (ADS)
Olszyna, Jakub
Modular multiplication forms the basis of modular exponentiation which is the core operation of the RSA cryptosystem. It is also present in many other cryptographic algorithms including those based on ECC and HECC. Hence, an efficient implementation of PKC relies on efficient implementation of modular multiplication. The paper presents a survey of most common algorithms for modular multiplication along with hardware architectures especially suitable for cryptographic applications in energy constrained environments. The motivation for studying low-power and areaefficient modular multiplication algorithms comes from enabling public-key security for ultra-low power devices that can perform under constrained environments like wireless sensor networks. Serial architectures for GF(p) are analyzed and presented. Finally proposed architectures are verified and compared according to the amount of power dissipated throughout the operation.
Modular space station Phase B extension preliminary performance specification. Volume 2: Project
NASA Technical Reports Server (NTRS)
1971-01-01
The four systems of the modular space station project are described, and the interfaces between this project and the shuttle project, the tracking and data relay satellite project, and an arbitrarily defined experiment project are defined. The experiment project was synthesized from internal experiments, detached research and application modules, and attached research and application modules to derive a set of interface requirements which will support multiple combinations of these elements expected during the modular space station mission. The modular space station project element defines a 6-man orbital program capable of growth to a 12-man orbital program capability. The modular space station project element specification defines the modular space station system, the premission operations support system, the mission operations support system, and the cargo module system and their interfaces.
Narrowing the Search After Gravitational-Wave Detections
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-11-01
Now that were able to detect gravitational waves, the next challenge is to spot electromagnetic signatures associated with gravitational-wave events. A team of scientists has proposed a new algorithm that might narrow the search.Artists illustrations of the stellar-merger model for short gamma-ray bursts. In the model, 1) two neutron stars inspiral, 2) they merge and produce a gamma-ray burst, 3) a small fraction of their mass is flung out and radiates as a kilonova, 4) a massive neutron star or black hole with a disk remains after the event. [NASA, ESA, and A. Feild (STScI)]Light from Neutron-Star MergersJust over a year ago, LIGO detected its first gravitational-wave signal: GW150914, produced when two black holes merged. While we didnt expect to see any sort of light-based signal from this merger, we could expect to see transient electromagnetic signatures in the case of a neutron starblack hole merger or a neutron starneutron star merger in the form of a kilonova or a short gamma-ray burst.While we havent yet detected any mergers involving neutron stars, LIGO has the sensitivity to make these detections in the local universe, and we hope to start seeing them soon! Finding the electromagnetic companions to gravitational-wave signals would be the best way to probe the evolution history of the universe and learn what happens when evolved stars collide. So how do we hunt them down?2D localization maps for LIGOs detection of GW150914 (black contours), as well as the footprints of follow-up observations (red for radio, green for optical/IR, blue for X-ray). [Abbott et al. 2016]Pinpointing a VolumeThe two LIGO detectors can already provide rough 2D localization of where the gravitational-wave signal came from, but the region predicted for GW150914 still covered 600 square degrees, which is a pretty hefty patch of sky! In light of this, the simplest follow-up strategy of tiling large survey observations of the entire predicted region is somewhat impractical and time-consuming. Could we possibly take a more targeted approach?The key, say a team of scientists led by Leo Singer (NASA Goddard SFC), is in using 3D estimates of the source location, rather than 2D sky maps: we need to produce distance estimates for the gravitational-wave source as well. Singer and collaborators have developed an algorithm that, from a gravitational-wave signal, can produce a fast full-volume estimate of the probability distribution for its sources location.Volume rendering of the 90% credible region for a simulated gravitational-wave event, superimposed over a galaxy map for the region. Green crosshairs represent the true location of the source; the most massive galaxies inside the credible region are highlighted. Searching only these galaxies could significantly reduce the observing time needed to detect an electromagnetic counterpart. [Singer et al. 2016]We can then easily cross-reference the volume predicted to contain the source against a galaxy catalog to identify the most probable host galaxies for the signal. This approach allows us to target specific galaxies for rapid observations with follow-up campaigns in the search for a counterpart.Targeted EfficiencySinger and collaborators approach would make searching for electromagnetic counterparts to gravitational-wave events a much more efficient process. One particular advantage would be in reducing the number of false positives: for a typical wide-field follow-up campaign searching 100 square degrees, hundreds of contaminatingsupernovae would be in the field. Targeting only 10 x 10 patches around 100 nearby galaxies, however, reduces the background to fewer than 10 contaminatingsupernovae.An additional benefit is that this targeted strategy opens the door of gravitational-wave follow-up to many small-field-of-view, large-aperture telescopes, instead of limiting the task to broad synoptic surveys. This permits the involvement of many more campaigns in the hunt for the important electromagnetic counterparts to gravitational waves.Note: Want to check out the teams data? Its publicly available here!CitationLeo P. Singer et al 2016 ApJL 829 L15. doi:10.3847/2041-8205/829/1/L15
Portable or Modular? There Is a Difference....
ERIC Educational Resources Information Center
Morton, Mike
2002-01-01
Describes differences between two types of school facilities: portable (prebuilt, temporary wood structure installed on site) and modular (method of construction for permanent buildings). Provides details of modular construction. (PKP)
Implications of an Absolute Simultaneity Theory for Cosmology and Universe Acceleration
Kipreos, Edward T.
2014-01-01
An alternate Lorentz transformation, Absolute Lorentz Transformation (ALT), has similar kinematics to special relativity yet maintains absolute simultaneity in the context of a preferred reference frame. In this study, it is shown that ALT is compatible with current experiments to test Lorentz invariance only if the proposed preferred reference frame is locally equivalent to the Earth-centered non-rotating inertial reference frame, with the inference that in an ALT framework, preferred reference frames are associated with centers of gravitational mass. Applying this theoretical framework to cosmological data produces a scenario of universal time contraction in the past. In this scenario, past time contraction would be associated with increased levels of blueshifted light emissions from cosmological objects when viewed from our current perspective. The observation that distant Type Ia supernovae are dimmer than predicted by linear Hubble expansion currently provides the most direct evidence for an accelerating universe. Adjusting for the effects of time contraction on a redshift–distance modulus diagram produces a linear distribution of supernovae over the full redshift spectrum that is consistent with a non-accelerating universe. PMID:25536116
Implications of an absolute simultaneity theory for cosmology and universe acceleration.
Kipreos, Edward T
2014-01-01
An alternate Lorentz transformation, Absolute Lorentz Transformation (ALT), has similar kinematics to special relativity yet maintains absolute simultaneity in the context of a preferred reference frame. In this study, it is shown that ALT is compatible with current experiments to test Lorentz invariance only if the proposed preferred reference frame is locally equivalent to the Earth-centered non-rotating inertial reference frame, with the inference that in an ALT framework, preferred reference frames are associated with centers of gravitational mass. Applying this theoretical framework to cosmological data produces a scenario of universal time contraction in the past. In this scenario, past time contraction would be associated with increased levels of blueshifted light emissions from cosmological objects when viewed from our current perspective. The observation that distant Type Ia supernovae are dimmer than predicted by linear Hubble expansion currently provides the most direct evidence for an accelerating universe. Adjusting for the effects of time contraction on a redshift-distance modulus diagram produces a linear distribution of supernovae over the full redshift spectrum that is consistent with a non-accelerating universe.
Science Goals of the Primary Atomic Reference Clock in Space (PARCS) Experiment
NASA Technical Reports Server (NTRS)
Ashby, N.
2003-01-01
The PARCS (Primary Atomic Reference Clock in Space) experiment will use a laser-cooled Cesium atomic clock operating in the microgravity environment aboard the International Space Station (ISS) to provide both advanced tests of gravitational theory and to demonstrate a new cold-atom clock technology for space. PARCS is a joint project of the National Institute of Standards and Technology (NIST), NASA's Jet Propulsion Laboratory (JPL), and the University of Colorado (CU). This paper concentrates on the scientific goals of the PARCS mission. The microgravity space environment allows laser-cooled Cs atoms to have Ramsey times in excess of those feasible on Earth, resulting in improved clock performance. Clock stabilities of 5x10(exp -14) at one second, and accuracies better than 10(exp -16) are projected.
Evaluation of gravitational gradients generated by Earth's crustal structures
NASA Astrophysics Data System (ADS)
Novák, Pavel; Tenzer, Robert; Eshagh, Mehdi; Bagherbandi, Mohammad
2013-02-01
Spectral formulas for the evaluation of gravitational gradients generated by upper Earth's mass components are presented in the manuscript. The spectral approach allows for numerical evaluation of global gravitational gradient fields that can be used to constrain gravitational gradients either synthesised from global gravitational models or directly measured by the spaceborne gradiometer on board of the GOCE satellite mission. Gravitational gradients generated by static atmospheric, topographic and continental ice masses are evaluated numerically based on available global models of Earth's topography, bathymetry and continental ice sheets. CRUST2.0 data are then applied for the numerical evaluation of gravitational gradients generated by mass density contrasts within soft and hard sediments, upper, middle and lower crust layers. Combined gravitational gradients are compared to disturbing gravitational gradients derived from a global gravitational model and an idealised Earth's model represented by the geocentric homogeneous biaxial ellipsoid GRS80. The methodology could be used for improved modelling of the Earth's inner structure.
LADEE Satellite Modeling and Simulation Development
NASA Technical Reports Server (NTRS)
Adams, Michael; Cannon, Howard; Frost, Chad
2011-01-01
As human activity on and around the Moon increases, so does the likelihood that our actions will have an impact on its atmosphere. The Lunar Atmosphere and Dust Environment Explorer (LADEE), a NASA satellite scheduled to launch in 2013, will orbit the Moon collecting composition, density, and time variability data to characterize the current state of the lunar atmosphere. LADEE will also test the concept of the "Modular Common Bus" spacecraft architecture, an effort to reduce both development time and cost by designing reusable, modular components for use in multiple missions with similar requirements. An important aspect of this design strategy is to both simulate the spacecraft and develop the flight code in Simulink, a block diagram-style programming language that allows easy algorithm visualization and performance testing. Before flight code can be tested, however, a realistic simulation of the satellite and its dynamics must be generated and validated. This includes all of the satellite control system components such as actuators used for force and torque generation and sensors used for inertial orientation reference. My primary responsibilities have included designing, integrating, and testing models for the LADEE thrusters, reaction wheels, star trackers, and rate gyroscopes.
NASA Astrophysics Data System (ADS)
Conklin, John Albert
This dissertation presents the design of a modular, fiber-optic sensor and the results obtained from testing the modular sensor. The modular fiber-optic sensor is constructed in such manner that the sensor diaphragm can be replaced with different configurations to detect numerous physical phenomena. Additionally, different fiber-optic detection systems can be attached to the sensor. Initially, the modular sensor was developed to be used by university of students to investigate realistic optical sensors and detection systems to prepare for advance studies of micro-optical mechanical systems (MOMS). The design accomplishes this by doing two things. First, the design significantly lowers the costs associated with studying optical sensors by modularizing the sensor design. Second, the sensor broadens the number of physical phenomena that students can apply optical sensing techniques to in a fiber optics sensor course. The dissertation is divided into seven chapters covering the historical development of fiber-optic sensors, a theoretical overview of fiber-optic sensors, the design, fabrication, and the testing of the modular sensor developed in the course of this work. Chapter 1 discusses, in detail, how this dissertation is organized and states the purpose of the dissertation. Chapter 2 presents an historical overview of the development of optical fibers, optical pressure sensors, and fibers, optical pressure sensors, and optical microphones. Chapter 3 reviews the theory of multi-fiber optic detection systems, optical microphones, and pressure sensors. Chapter 4 presents the design details of the modular, optical sensor. Chapter 5 delves into how the modular sensor is fabricated and how the detection systems are constructed. Chapter 6 presents the data collected from the microphone and pressure sensor configurations of the modular sensor. Finally, Chapter 7 discusses the data collected and draws conclusions about the design based on the data collected. Chapter 7 also presents future work needed to expand the functionality and utility of the modular sensor.
NASA Astrophysics Data System (ADS)
Cuesta-Lazaro, Carolina; Quera-Bofarull, Arnau; Reischke, Robert; Schäfer, Björn Malte
2018-06-01
When the gravitational lensing of the large-scale structure is calculated from a cosmological model a few assumptions enter: (i) one assumes that the photons follow unperturbed background geodesics, which is usually referred to as the Born approximation, (ii) the lenses move slowly, (iii) the source-redshift distribution is evaluated relative to the background quantities, and (iv) the lensing effect is linear in the gravitational potential. Even though these approximations are small individually they could sum up, especially since they include local effects such as the Sachs-Wolfe and peculiar motion, but also non-local ones like the Born approximation and the integrated Sachs-Wolfe effect. In this work, we will address all points mentioned and perturbatively calculate the effect on a tomographic cosmic shear power spectrum of each effect individually as well as all cross-correlations. Our findings show that each effect is at least 4-5 orders of magnitude below the leading order lensing signal. Finally, we sum up all effects to estimate the overall impact on parameter estimation by a future cosmological weak-lensing survey such as Euclid in a wcold dark matter cosmology with parametrization Ωm, σ8, ns, h, w0, and wa, using five tomographic bins. We consistently find a parameter bias of 10-5, which is therefore completely negligible for all practical purposes, confirming that other effects such as intrinsic alignments, magnification bias and uncertainties in the redshift distribution will be the dominant systematic source in future surveys.
Orbit analysis of a geostationary gravitational wave interferometer detector array
NASA Astrophysics Data System (ADS)
Tinto, Massimo; de Araujo, Jose C. N.; Kuga, Helio K.; Alves, Márcio E. S.; Aguiar, Odylio D.
2015-09-01
We analyze the trajectories of three geostationary satellites forming the geostationary gravitational wave interferometer (GEOGRAWI) [1], a space-based laser interferometer mission aiming to detect and study gravitational radiation in the (10-4-10) Hz band. The combined effects of the gravity fields of the Earth, the Sun and the Moon make the three satellites deviate from their nominally stationary, equatorial and equilateral configuration. Since changes in the satellites’s relative distances and orientations could negatively affect the precision of the laser heterodyne measurements, we have derived the time-dependence of the inter-satellite distances and velocities, the variations of the polar angles made by the constellation’s three arms with respect to a chosen reference frame and the time changes of the triangle’s enclosed angles. We find that during the time between two consecutive station-keeping maneuvers (about two weeks) the relative variations of the inter-satellite distances do not exceed a value of 0.05%, while the relative velocities between pairs of satellites remain smaller than about 0.7 m s-1. In addition, we find the angles made by the arms of the triangle with the equatorial plane to be periodic functions of time whose amplitudes grow linearly with time; the maximum variations experienced by these angles as well as by those within the triangle remain smaller than 3 arc-minutes, while the east-west angular variations of the three arms remain smaller than about 15 arc-minutes during the two-week period.
Sub-Femto-g Free Fall for Space-Based Gravitational Wave Observatories: LISA Pathfinder Results.
Armano, M; Audley, H; Auger, G; Baird, J T; Bassan, M; Binetruy, P; Born, M; Bortoluzzi, D; Brandt, N; Caleno, M; Carbone, L; Cavalleri, A; Cesarini, A; Ciani, G; Congedo, G; Cruise, A M; Danzmann, K; de Deus Silva, M; De Rosa, R; Diaz-Aguiló, M; Di Fiore, L; Diepholz, I; Dixon, G; Dolesi, R; Dunbar, N; Ferraioli, L; Ferroni, V; Fichter, W; Fitzsimons, E D; Flatscher, R; Freschi, M; García Marín, A F; García Marirrodriga, C; Gerndt, R; Gesa, L; Gibert, F; Giardini, D; Giusteri, R; Guzmán, F; Grado, A; Grimani, C; Grynagier, A; Grzymisch, J; Harrison, I; Heinzel, G; Hewitson, M; Hollington, D; Hoyland, D; Hueller, M; Inchauspé, H; Jennrich, O; Jetzer, P; Johann, U; Johlander, B; Karnesis, N; Kaune, B; Korsakova, N; Killow, C J; Lobo, J A; Lloro, I; Liu, L; López-Zaragoza, J P; Maarschalkerweerd, R; Mance, D; Martín, V; Martin-Polo, L; Martino, J; Martin-Porqueras, F; Madden, S; Mateos, I; McNamara, P W; Mendes, J; Mendes, L; Monsky, A; Nicolodi, D; Nofrarias, M; Paczkowski, S; Perreur-Lloyd, M; Petiteau, A; Pivato, P; Plagnol, E; Prat, P; Ragnit, U; Raïs, B; Ramos-Castro, J; Reiche, J; Robertson, D I; Rozemeijer, H; Rivas, F; Russano, G; Sanjuán, J; Sarra, P; Schleicher, A; Shaul, D; Slutsky, J; Sopuerta, C F; Stanga, R; Steier, F; Sumner, T; Texier, D; Thorpe, J I; Trenkel, C; Tröbs, M; Tu, H B; Vetrugno, D; Vitale, S; Wand, V; Wanner, G; Ward, H; Warren, C; Wass, P J; Wealthy, D; Weber, W J; Wissel, L; Wittchen, A; Zambotti, A; Zanoni, C; Ziegler, T; Zweifel, P
2016-06-10
We report the first results of the LISA Pathfinder in-flight experiment. The results demonstrate that two free-falling reference test masses, such as those needed for a space-based gravitational wave observatory like LISA, can be put in free fall with a relative acceleration noise with a square root of the power spectral density of 5.2±0.1 fm s^{-2}/sqrt[Hz], or (0.54±0.01)×10^{-15} g/sqrt[Hz], with g the standard gravity, for frequencies between 0.7 and 20 mHz. This value is lower than the LISA Pathfinder requirement by more than a factor 5 and within a factor 1.25 of the requirement for the LISA mission, and is compatible with Brownian noise from viscous damping due to the residual gas surrounding the test masses. Above 60 mHz the acceleration noise is dominated by interferometer displacement readout noise at a level of (34.8±0.3) fm/sqrt[Hz], about 2 orders of magnitude better than requirements. At f≤0.5 mHz we observe a low-frequency tail that stays below 12 fm s^{-2}/sqrt[Hz] down to 0.1 mHz. This performance would allow for a space-based gravitational wave observatory with a sensitivity close to what was originally foreseen for LISA.
Comparison of methods for the detection of gravitational waves from unknown neutron stars
NASA Astrophysics Data System (ADS)
Walsh, S.; Pitkin, M.; Oliver, M.; D'Antonio, S.; Dergachev, V.; Królak, A.; Astone, P.; Bejger, M.; Di Giovanni, M.; Dorosh, O.; Frasca, S.; Leaci, P.; Mastrogiovanni, S.; Miller, A.; Palomba, C.; Papa, M. A.; Piccinni, O. J.; Riles, K.; Sauter, O.; Sintes, A. M.
2016-12-01
Rapidly rotating neutron stars are promising sources of continuous gravitational wave radiation for the LIGO and Virgo interferometers. The majority of neutron stars in our galaxy have not been identified with electromagnetic observations. All-sky searches for isolated neutron stars offer the potential to detect gravitational waves from these unidentified sources. The parameter space of these blind all-sky searches, which also cover a large range of frequencies and frequency derivatives, presents a significant computational challenge. Different methods have been designed to perform these searches within acceptable computational limits. Here we describe the first benchmark in a project to compare the search methods currently available for the detection of unknown isolated neutron stars. The five methods compared here are individually referred to as the PowerFlux, sky Hough, frequency Hough, Einstein@Home, and time domain F -statistic methods. We employ a mock data challenge to compare the ability of each search method to recover signals simulated assuming a standard signal model. We find similar performance among the four quick-look search methods, while the more computationally intensive search method, Einstein@Home, achieves up to a factor of two higher sensitivity. We find that the absence of a second derivative frequency in the search parameter space does not degrade search sensitivity for signals with physically plausible second derivative frequencies. We also report on the parameter estimation accuracy of each search method, and the stability of the sensitivity in frequency and frequency derivative and in the presence of detector noise.
Spheroidal Integral Equations for Geodetic Inversion of Geopotential Gradients
NASA Astrophysics Data System (ADS)
Novák, Pavel; Šprlák, Michal
2018-03-01
The static Earth's gravitational field has traditionally been described in geodesy and geophysics by the gravitational potential (geopotential for short), a scalar function of 3-D position. Although not directly observable, geopotential functionals such as its first- and second-order gradients are routinely measured by ground, airborne and/or satellite sensors. In geodesy, these observables are often used for recovery of the static geopotential at some simple reference surface approximating the actual Earth's surface. A generalized mathematical model is represented by a surface integral equation which originates in solving Dirichlet's boundary-value problem of the potential theory defined for the harmonic geopotential, spheroidal boundary and globally distributed gradient data. The mathematical model can be used for combining various geopotential gradients without necessity of their re-sampling or prior continuation in space. The model extends the apparatus of integral equations which results from solving boundary-value problems of the potential theory to all geopotential gradients observed by current ground, airborne and satellite sensors. Differences between spherical and spheroidal formulations of integral kernel functions of Green's kind are investigated. Estimated differences reach relative values at the level of 3% which demonstrates the significance of spheroidal approximation for flattened bodies such as the Earth. The observation model can be used for combined inversion of currently available geopotential gradients while exploring their spectral and stochastic characteristics. The model would be even more relevant to gravitational field modelling of other bodies in space with more pronounced spheroidal geometry than that of the Earth.
NASA Astrophysics Data System (ADS)
Miller, Alina; Pertassek, Thomas; Steins, Andreas; Durner, Wolfgang; Göttlein, Axel; Petrik, Wolfgang; von Unold, Georg
2017-04-01
The particle-size distribution (PSD) is a key property of soils. The reference method for determining the PSD is based on gravitational sedimentation of particles in an initially homogeneous suspension. Traditional methods measure manually (i) the uplift of a floating body in the suspension at different times (Hydrometer method) or (ii) the mass of solids in extracted suspension aliquots at predefined sampling depths and times (Pipette method). Both methods lead to a disturbance of the sedimentation process and provide only discrete data of the PSD. Durner et al. (2017) recently developed a new automated method to determine particle-size distributions of soils and sediments from gravitational sedimentation (Durner, W., S.C. Iden, and G. von Unold: The integral suspension pressure method (ISP) for precise particle-size analysis by gravitational sedimentation, Water Resources Research, doi:10.1002/2016WR019830, 2017). The so-called integral suspension method (ISP) method estimates continuous PSD's from sedimentation experiments by recording the temporal evolution of the suspension pressure at a certain measurement depth in a sedimentation cylinder. It requires no manual interaction after start and thus no specialized training of the lab personnel and avoids any disturbance of the sedimentation process. The required technology to perform these experiments was developed by the UMS company, Munich and is now available as an instrument called PARIO, traded by the METER Group. In this poster, the basic functioning of PARIO is shown and key components and parameters of the technology are explained.
Sub-Femto-g Free Fall for Space-Based Gravitational Wave Observatories: LISA Pathfinder Results
NASA Technical Reports Server (NTRS)
Armano, M.; Audley, H.; Auger, G.; Baird, J. T.; Bassan, M.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Brandt, N.; Thorpe, J. I.
2016-01-01
We report the first results of the LISA Pathfinder in-flight experiment. The results demonstrate that two free-falling reference test masses, such as those needed for a space-based gravitational wave observatory like LISA, can be put in free fall with a relative acceleration noise with a square root of the power spectral density of 5.2 +/- 0.1 fm s(exp -2)/square root of Hz, or (0.54 +/- 0.01) x 10(exp -15) g/square root of Hz, with g the standard gravity, for frequencies between 0.7 and 20 mHz. This value is lower than the LISA Pathfinder requirement by more than a factor 5 and within a factor 1.25 of the requirement for the LISA mission, and is compatible with Brownian noise from viscous damping due to the residual gas surrounding the test masses. Above 60 mHz the acceleration noise is dominated by interferometer displacement readout noise at a level of (34.8 +/- 0.3) fm square root of Hz, about 2 orders of magnitude better than requirements. At f less than or equal to 0.5 mHz we observe a low-frequency tail that stays below 12 fm s(exp -2)/square root of Hz down to 0.1 mHz. This performance would allow for a space-based gravitational wave observatory with a sensitivity close to what was originally foreseen for LISA.
The Gravitational Origin of the Higgs Boson Mass
NASA Astrophysics Data System (ADS)
Winterberg, Friedwardt
2014-06-01
The Lorentzian interpretation of the special theory of relativity explains all the relativistic effects by true deformations of rods and clocks in absolute motion against a preferred reference system, and where Lorentz invariance is a dynamic symmetry with the Galilei group the more fundamental kinematic symmetry of nature. In an exactly nonrelativistic quantum field theory the particle number operator commutes with the Hamilton operator which permits to introduce negative besides positive masses as the fundamental constituents of matter. Assuming that space is densely filled with an equal number of positive and negative locally interacting Planck mass particles, with those of equal sign repelling and those of opposite sign attracting each other, all the particles except the Planck mass particles are quasiparticles of this positive-negative-mass Planck mass plasma. Very much as the Van der Waals forces is the residual short-range electromagnetic force holding condensed matter together, and the strong nuclear force the residual short range gluon force holding together nuclear matter, it is conjectured that the Higgs field is the residual short range gravitational force holding together pre-quark matter made up from large positive and negative masses of the order ±1013 GeV. This hypothesis supports a theory by Dehnen and Frommert who have shown that the Higgs field acts like a short range gravitational field, with a strength about 32 orders of magnitude larger than one would expect in the absence of the positive-negative pre-quark mass hypothesis.
Newton's absolute time and space in general relativity
NASA Astrophysics Data System (ADS)
Gautreau, Ronald
2000-04-01
I describe a reference system in a spherically symmetric gravitational field that is built around times recorded by radially moving geodesic clocks. The geodesic time coordinate t and the curvature spatial radial coordinate R result in spacetime descriptions of the motion of the geodesic clocks that are exactly identical with equations following from Newton's absolute time and space used with his inverse square law. I show how to use the resulting Newtonian/general-relativistic equations for geodesic clocks to generate exact relativistic metric forms in terms of the coordinates (R,t). Newtonian theory does not describe light. However, the motion of light can be determined from the (R,t) general-relativistic metric forms obtained from Newtonian theory by setting ds2(R,t)=0. In this sense, a theory of light can be related to absolute time and space of Newtonian gravitational theory. I illustrate the (R,t) methodology by first solving the equations that result from a Newtonian picture and then examining the exact metric forms for the general-relativistic problems of the Schwarzschild field, gravitational collapse and expansion of a zero-pressure perfect fluid, and zero-pressure big-bang cosmology. I also briefly describe other applications of the Newtonian/general-relativistic formulation to: embedding a Schwarzschild mass into cosmology; continuously following an expanding universe from radiation to matter domination; Dirac's Large Numbers hypothesis; the incompleteness of Kruskal-Szekeres spacetime; double valuedness in cosmology; and the de Sitter universe.
NASA Technical Reports Server (NTRS)
Proctor, B. W.; Reysa, R. P.; Russell, D. J.
1975-01-01
A review of crew appliance related literature was made to provide background engineering information for development of conceptual appliance systems for the shuttle orbiter and the modular space station. From this review, a file containing abstracts of 299 appliance-related documents coded according to subject was developed along with a computerized bibliography of 682 references. Trade studies were conducted using information from these references to determine the optimum concepts to satisfy the shuttle and space station mission requirements. An appliance system was devised for each vehicle which has minimum impact to the respective environmental control system with the smallest possible weight, volume, and electrical penalty. Engineering parameters for each appliance concept considered are presented along with the total thermal and electrical loads and weight and volume penalties for each of the optimized appliance systems.
Modular High Voltage Power Supply
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newell, Matthew R.
The goal of this project is to develop a modular high voltage power supply that will meet the needs of safeguards applications and provide a modular plug and play supply for use with standard electronic racks.
Hierarchical functional modularity in the resting-state human brain.
Ferrarini, Luca; Veer, Ilya M; Baerends, Evelinda; van Tol, Marie-José; Renken, Remco J; van der Wee, Nic J A; Veltman, Dirk J; Aleman, André; Zitman, Frans G; Penninx, Brenda W J H; van Buchem, Mark A; Reiber, Johan H C; Rombouts, Serge A R B; Milles, Julien
2009-07-01
Functional magnetic resonance imaging (fMRI) studies have shown that anatomically distinct brain regions are functionally connected during the resting state. Basic topological properties in the brain functional connectivity (BFC) map have highlighted the BFC's small-world topology. Modularity, a more advanced topological property, has been hypothesized to be evolutionary advantageous, contributing to adaptive aspects of anatomical and functional brain connectivity. However, current definitions of modularity for complex networks focus on nonoverlapping clusters, and are seriously limited by disregarding inclusive relationships. Therefore, BFC's modularity has been mainly qualitatively investigated. Here, we introduce a new definition of modularity, based on a recently improved clustering measurement, which overcomes limitations of previous definitions, and apply it to the study of BFC in resting state fMRI of 53 healthy subjects. Results show hierarchical functional modularity in the brain. Copyright 2009 Wiley-Liss, Inc
Directional selection can drive the evolution of modularity in complex traits
Melo, Diogo; Marroig, Gabriel
2015-01-01
Modularity is a central concept in modern biology, providing a powerful framework for the study of living organisms on many organizational levels. Two central and related questions can be posed in regard to modularity: How does modularity appear in the first place, and what forces are responsible for keeping and/or changing modular patterns? We approached these questions using a quantitative genetics simulation framework, building on previous results obtained with bivariate systems and extending them to multivariate systems. We developed an individual-based model capable of simulating many traits controlled by many loci with variable pleiotropic relations between them, expressed in populations subject to mutation, recombination, drift, and selection. We used this model to study the problem of the emergence of modularity, and hereby show that drift and stabilizing selection are inefficient at creating modular variational structures. We also demonstrate that directional selection can have marked effects on the modular structure between traits, actively promoting a restructuring of genetic variation in the selected population and potentially facilitating the response to selection. Furthermore, we give examples of complex covariation created by simple regimes of combined directional and stabilizing selection and show that stabilizing selection is important in the maintenance of established covariation patterns. Our results are in full agreement with previous results for two-trait systems and further extend them to include scenarios of greater complexity. Finally, we discuss the evolutionary consequences of modular patterns being molded by directional selection. PMID:25548154
Directional selection can drive the evolution of modularity in complex traits.
Melo, Diogo; Marroig, Gabriel
2015-01-13
Modularity is a central concept in modern biology, providing a powerful framework for the study of living organisms on many organizational levels. Two central and related questions can be posed in regard to modularity: How does modularity appear in the first place, and what forces are responsible for keeping and/or changing modular patterns? We approached these questions using a quantitative genetics simulation framework, building on previous results obtained with bivariate systems and extending them to multivariate systems. We developed an individual-based model capable of simulating many traits controlled by many loci with variable pleiotropic relations between them, expressed in populations subject to mutation, recombination, drift, and selection. We used this model to study the problem of the emergence of modularity, and hereby show that drift and stabilizing selection are inefficient at creating modular variational structures. We also demonstrate that directional selection can have marked effects on the modular structure between traits, actively promoting a restructuring of genetic variation in the selected population and potentially facilitating the response to selection. Furthermore, we give examples of complex covariation created by simple regimes of combined directional and stabilizing selection and show that stabilizing selection is important in the maintenance of established covariation patterns. Our results are in full agreement with previous results for two-trait systems and further extend them to include scenarios of greater complexity. Finally, we discuss the evolutionary consequences of modular patterns being molded by directional selection.
Rubinov, Mikail; Sporns, Olaf; Thivierge, Jean-Philippe; Breakspear, Michael
2011-06-01
Self-organized criticality refers to the spontaneous emergence of self-similar dynamics in complex systems poised between order and randomness. The presence of self-organized critical dynamics in the brain is theoretically appealing and is supported by recent neurophysiological studies. Despite this, the neurobiological determinants of these dynamics have not been previously sought. Here, we systematically examined the influence of such determinants in hierarchically modular networks of leaky integrate-and-fire neurons with spike-timing-dependent synaptic plasticity and axonal conduction delays. We characterized emergent dynamics in our networks by distributions of active neuronal ensemble modules (neuronal avalanches) and rigorously assessed these distributions for power-law scaling. We found that spike-timing-dependent synaptic plasticity enabled a rapid phase transition from random subcritical dynamics to ordered supercritical dynamics. Importantly, modular connectivity and low wiring cost broadened this transition, and enabled a regime indicative of self-organized criticality. The regime only occurred when modular connectivity, low wiring cost and synaptic plasticity were simultaneously present, and the regime was most evident when between-module connection density scaled as a power-law. The regime was robust to variations in other neurobiologically relevant parameters and favored systems with low external drive and strong internal interactions. Increases in system size and connectivity facilitated internal interactions, permitting reductions in external drive and facilitating convergence of postsynaptic-response magnitude and synaptic-plasticity learning rate parameter values towards neurobiologically realistic levels. We hence infer a novel association between self-organized critical neuronal dynamics and several neurobiologically realistic features of structural connectivity. The central role of these features in our model may reflect their importance for neuronal information processing.
Evolving BioAssay Ontology (BAO): modularization, integration and applications
2014-01-01
The lack of established standards to describe and annotate biological assays and screening outcomes in the domain of drug and chemical probe discovery is a severe limitation to utilize public and proprietary drug screening data to their maximum potential. We have created the BioAssay Ontology (BAO) project (http://bioassayontology.org) to develop common reference metadata terms and definitions required for describing relevant information of low-and high-throughput drug and probe screening assays and results. The main objectives of BAO are to enable effective integration, aggregation, retrieval, and analyses of drug screening data. Since we first released BAO on the BioPortal in 2010 we have considerably expanded and enhanced BAO and we have applied the ontology in several internal and external collaborative projects, for example the BioAssay Research Database (BARD). We describe the evolution of BAO with a design that enables modeling complex assays including profile and panel assays such as those in the Library of Integrated Network-based Cellular Signatures (LINCS). One of the critical questions in evolving BAO is the following: how can we provide a way to efficiently reuse and share among various research projects specific parts of our ontologies without violating the integrity of the ontology and without creating redundancies. This paper provides a comprehensive answer to this question with a description of a methodology for ontology modularization using a layered architecture. Our modularization approach defines several distinct BAO components and separates internal from external modules and domain-level from structural components. This approach facilitates the generation/extraction of derived ontologies (or perspectives) that can suit particular use cases or software applications. We describe the evolution of BAO related to its formal structures, engineering approaches, and content to enable modeling of complex assays and integration with other ontologies and datasets. PMID:25093074
Evolving BioAssay Ontology (BAO): modularization, integration and applications.
Abeyruwan, Saminda; Vempati, Uma D; Küçük-McGinty, Hande; Visser, Ubbo; Koleti, Amar; Mir, Ahsan; Sakurai, Kunie; Chung, Caty; Bittker, Joshua A; Clemons, Paul A; Brudz, Steve; Siripala, Anosha; Morales, Arturo J; Romacker, Martin; Twomey, David; Bureeva, Svetlana; Lemmon, Vance; Schürer, Stephan C
2014-01-01
The lack of established standards to describe and annotate biological assays and screening outcomes in the domain of drug and chemical probe discovery is a severe limitation to utilize public and proprietary drug screening data to their maximum potential. We have created the BioAssay Ontology (BAO) project (http://bioassayontology.org) to develop common reference metadata terms and definitions required for describing relevant information of low-and high-throughput drug and probe screening assays and results. The main objectives of BAO are to enable effective integration, aggregation, retrieval, and analyses of drug screening data. Since we first released BAO on the BioPortal in 2010 we have considerably expanded and enhanced BAO and we have applied the ontology in several internal and external collaborative projects, for example the BioAssay Research Database (BARD). We describe the evolution of BAO with a design that enables modeling complex assays including profile and panel assays such as those in the Library of Integrated Network-based Cellular Signatures (LINCS). One of the critical questions in evolving BAO is the following: how can we provide a way to efficiently reuse and share among various research projects specific parts of our ontologies without violating the integrity of the ontology and without creating redundancies. This paper provides a comprehensive answer to this question with a description of a methodology for ontology modularization using a layered architecture. Our modularization approach defines several distinct BAO components and separates internal from external modules and domain-level from structural components. This approach facilitates the generation/extraction of derived ontologies (or perspectives) that can suit particular use cases or software applications. We describe the evolution of BAO related to its formal structures, engineering approaches, and content to enable modeling of complex assays and integration with other ontologies and datasets.
NASA Astrophysics Data System (ADS)
Holzmann, Hubert; Massmann, Carolina
2015-04-01
A plenty of hydrological model types have been developed during the past decades. Most of them used a fixed design to describe the variable hydrological processes assuming to be representative for the whole range of spatial and temporal scales. This assumption is questionable as it is evident, that the runoff formation process is driven by dominant processes which can vary among different basins. Furthermore the model application and the interpretation of results is limited by data availability to identify the particular sub-processes, since most models were calibrated and validated only with discharge data. Therefore it can be hypothesized, that simpler model designs, focusing only on the dominant processes, can achieve comparable results with the benefit of less parameters. In the current contribution a modular model concept will be introduced, which allows the integration and neglection of hydrological sub-processes depending on the catchment characteristics and data availability. Key elements of the process modules refer to (1) storage effects (interception, soil), (2) transfer processes (routing), (3) threshold processes (percolation, saturation overland flow) and (4) split processes (rainfall excess). Based on hydro-meteorological observations in an experimental catchment in the Slovak region of the Carpathian mountains a comparison of several model realizations with different degrees of complexity will be discussed. A special focus is given on model parameter sensitivity estimated by Markov Chain Monte Carlo approach. Furthermore the identification of dominant processes by means of Sobol's method is introduced. It could be shown that a flexible model design - and even the simple concept - can reach comparable and equivalent performance than the standard model type (HBV-type). The main benefit of the modular concept is the individual adaptation of the model structure with respect to data and process availability and the option for parsimonious model design.
Modular Universal Scalable Ion-trap Quantum Computer
2016-06-02
SECURITY CLASSIFICATION OF: The main goal of the original MUSIQC proposal was to construct and demonstrate a modular and universally- expandable ion...Distribution Unlimited UU UU UU UU 02-06-2016 1-Aug-2010 31-Jan-2016 Final Report: Modular Universal Scalable Ion-trap Quantum Computer The views...P.O. Box 12211 Research Triangle Park, NC 27709-2211 Ion trap quantum computation, scalable modular architectures REPORT DOCUMENTATION PAGE 11
Adapt Design: A Methodology for Enabling Modular Design for Mission Specific SUAS
2016-08-24
ADAPT DESIGN: A METHODOLOGY FOR ENABLING MODULAR DESIGN FOR MISSION SPECIFIC SUAS Zachary C. Fisher David Locascio K. Daniel Cooksey...vehicle’s small scale. This paper considers a different approach to SUAS design aimed at addressing this issue. In this approach, a hybrid modular and...Two types of platforms have been identified: scalable platforms where variants are produced by varying scalable design variables, and modular
Lievens, Filip; Sackett, Paul R
2017-01-01
Past reviews and meta-analyses typically conceptualized and examined selection procedures as holistic entities. We draw on the product design literature to propose a modular approach as a complementary perspective to conceptualizing selection procedures. A modular approach means that a product is broken down into its key underlying components. Therefore, we start by presenting a modular framework that identifies the important measurement components of selection procedures. Next, we adopt this modular lens for reviewing the available evidence regarding each of these components in terms of affecting validity, subgroup differences, and applicant perceptions, as well as for identifying new research directions. As a complement to the historical focus on holistic selection procedures, we posit that the theoretical contributions of a modular approach include improved insight into the isolated workings of the different components underlying selection procedures and greater theoretical connectivity among different selection procedures and their literatures. We also outline how organizations can put a modular approach into operation to increase the variety in selection procedures and to enhance the flexibility in designing them. Overall, we believe that a modular perspective on selection procedures will provide the impetus for programmatic and theory-driven research on the different measurement components of selection procedures. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Space biology initiative program definition review. Trade study 4: Design modularity and commonality
NASA Technical Reports Server (NTRS)
Jackson, L. Neal; Crenshaw, John, Sr.; Davidson, William L.; Herbert, Frank J.; Bilodeau, James W.; Stoval, J. Michael; Sutton, Terry
1989-01-01
The relative cost impacts (up or down) of developing Space Biology hardware using design modularity and commonality is studied. Recommendations for how the hardware development should be accomplished to meet optimum design modularity requirements for Life Science investigation hardware will be provided. In addition, the relative cost impacts of implementing commonality of hardware for all Space Biology hardware are defined. Cost analysis and supporting recommendations for levels of modularity and commonality are presented. A mathematical or statistical cost analysis method with the capability to support development of production design modularity and commonality impacts to parametric cost analysis is provided.
NASA Astrophysics Data System (ADS)
Ferrier, K.; Mitrovica, J. X.; Perron, T.; Milne, G. A.; Wickert, A. D.
2012-12-01
Spatial patterns in static sea level are controlled by the interplay between the history of ice mass variations and the associated deformational, gravitational and rotational perturbations in the Earth's state. Over the last decade, there has been a renewed effort to extend classic treatments of ice-age sea-level change (Farrell and Clark, 1976) to incorporate effects such as shoreline migration due to the local onlap or offlap of seawater and changes in the extent of grounded, marine-based ice, as well as feedbacks between sea level and the orientation of Earth's rotation axis. To date, the impact of sediment transport - whether in the context of glacial processes, or other processes such as fluvial deposition - has not been incorporated into a gravitationally self-consistent sea-level theory. Here we briefly summarize the main elements of a new sea-level theory that includes sediment transport, and we apply this new theory to investigate crustal deformation and sea-level changes driven by sediment deposition on the Mississippi fan in the Gulf of Mexico. The calculations incorporate sediment transport from the start of the last glacial cycle through to the present and are constrained to conserve sediment and ocean mass. We compare relative sea level histories predicted with and without sediment transport at sites in and around the Gulf of Mexico, and we quantify the relative impacts of gravitational and deformational effects of sediment deposition. We also explore the extent to which sea-level changes associated with sediment transport impact the interpretation of paleo-sea-level records. Our new sea-level formulation provides an important component of a comprehensive coupling between sediment transfer and sea level on local, regional and global spatial scales, and on time scales extending from decades to tens of thousands of years. References: Farrell, W.E., and Clark, J.A., 1976. On postglacial sea level: Geophysical Journal of the Royal Astronomical Society, v. 46, p. 647-667.
Brain Modularity Mediates the Relation between Task Complexity and Performance
NASA Astrophysics Data System (ADS)
Ye, Fengdan; Yue, Qiuhai; Martin, Randi; Fischer-Baum, Simon; Ramos-Nuã+/-Ez, Aurora; Deem, Michael
Recent work in cognitive neuroscience has focused on analyzing the brain as a network, rather than a collection of independent regions. Prior studies taking this approach have found that individual differences in the degree of modularity of the brain network relate to performance on cognitive tasks. However, inconsistent results concerning the direction of this relationship have been obtained, with some tasks showing better performance as modularity increases, and other tasks showing worse performance. A recent theoretical model suggests that these inconsistencies may be explained on the grounds that high-modularity networks favor performance on simple tasks whereas low-modularity networks favor performance on complex tasks. The current study tests these predictions by relating modularity from resting-state fMRI to performance on a set of behavioral tasks. Complex and simple tasks were defined on the basis of whether they drew on executive attention. Consistent with predictions, we found a negative correlation between individuals' modularity and their performance on the complex tasks but a positive correlation with performance on the simple tasks. The results presented here provide a framework for linking measures of whole brain organization to cognitive processing.
Modularity and the spread of perturbations in complex dynamical systems
NASA Astrophysics Data System (ADS)
Kolchinsky, Artemy; Gates, Alexander J.; Rocha, Luis M.
2015-12-01
We propose a method to decompose dynamical systems based on the idea that modules constrain the spread of perturbations. We find partitions of system variables that maximize "perturbation modularity," defined as the autocovariance of coarse-grained perturbed trajectories. The measure effectively separates the fast intramodular from the slow intermodular dynamics of perturbation spreading (in this respect, it is a generalization of the "Markov stability" method of network community detection). Our approach captures variation of modular organization across different system states, time scales, and in response to different kinds of perturbations: aspects of modularity which are all relevant to real-world dynamical systems. It offers a principled alternative to detecting communities in networks of statistical dependencies between system variables (e.g., "relevance networks" or "functional networks"). Using coupled logistic maps, we demonstrate that the method uncovers hierarchical modular organization planted in a system's coupling matrix. Additionally, in homogeneously coupled map lattices, it identifies the presence of self-organized modularity that depends on the initial state, dynamical parameters, and type of perturbations. Our approach offers a powerful tool for exploring the modular organization of complex dynamical systems.
Modularity and the spread of perturbations in complex dynamical systems.
Kolchinsky, Artemy; Gates, Alexander J; Rocha, Luis M
2015-12-01
We propose a method to decompose dynamical systems based on the idea that modules constrain the spread of perturbations. We find partitions of system variables that maximize "perturbation modularity," defined as the autocovariance of coarse-grained perturbed trajectories. The measure effectively separates the fast intramodular from the slow intermodular dynamics of perturbation spreading (in this respect, it is a generalization of the "Markov stability" method of network community detection). Our approach captures variation of modular organization across different system states, time scales, and in response to different kinds of perturbations: aspects of modularity which are all relevant to real-world dynamical systems. It offers a principled alternative to detecting communities in networks of statistical dependencies between system variables (e.g., "relevance networks" or "functional networks"). Using coupled logistic maps, we demonstrate that the method uncovers hierarchical modular organization planted in a system's coupling matrix. Additionally, in homogeneously coupled map lattices, it identifies the presence of self-organized modularity that depends on the initial state, dynamical parameters, and type of perturbations. Our approach offers a powerful tool for exploring the modular organization of complex dynamical systems.
The local nanohertz gravitational-wave landscape from supermassive black hole binaries
NASA Astrophysics Data System (ADS)
Mingarelli, Chiara M. F.; Lazio, T. Joseph W.; Sesana, Alberto; Greene, Jenny E.; Ellis, Justin A.; Ma, Chung-Pei; Croft, Steve; Burke-Spolaor, Sarah; Taylor, Stephen R.
2017-12-01
Supermassive black hole binary systems form in galaxy mergers and reside in galactic nuclei with large and poorly constrained concentrations of gas and stars. These systems emit nanohertz gravitational waves that will be detectable by pulsar timing arrays. Here we estimate the properties of the local nanohertz gravitational-wave landscape that includes individual supermassive black hole binaries emitting continuous gravitational waves and the gravitational-wave background that they generate. Using the 2 Micron All-Sky Survey, together with galaxy merger rates from the Illustris simulation project, we find that there are on average 91 ± 7 continuous nanohertz gravitational-wave sources, and 7 ± 2 binaries that will never merge, within 225 Mpc. These local unresolved gravitational-wave sources can generate a departure from an isotropic gravitational-wave background at a level of about 20 per cent, and if the cosmic gravitational-wave background can be successfully isolated, gravitational waves from at least one local supermassive black hole binary could be detected in 10 years with pulsar timing arrays.
Development of an extended straightness measurement reference
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schenz, R.F.; Griffith, L.V.; Sommargren, G.E.
1988-09-06
The most accurate diamond turning machines have used physical straightness references. These references commonly are made of optical materials, such as Zerodur, and are flat enough to permit straightness measurements with an accuracy of 100--150 nm (4--6 microinches) p-v. In most cases, the flatness error is stable and can be accommodated by using a calibration table. The straightedges for the Large Optics Diamond Turning Machine (LODTM) at Lawrence Livermore National Laboratory (LLNL) are 1.1 meters in length and allow a straightness reference accuracy of 25--50 nm (1--2 microinches) p-v after calibration. Fabrication problems become insurmountable when a straightness reference formore » a length of up to 4 meters is desired. Moreover, the method of calibration by straightedge reversal does not account for gravitational sag when the sensing direction is vertical. Vertical sensing would be required in a four meter system and sag would become unacceptably large. Recent developments published in the literature suggest that the use of a laser beam for a reference may be feasible. Workers at Osaka University have reported a laser beam straightness reference that has a resolution of 3.5 nm, although tests were done only over a 200 mm length. LLNL has begun an investigation on the use of a directionally stabilized laser beam as a straightness measurement reference. The goal of the investigation is to provide a reference that is accurate to 25 nm (1 microinch) over a four meter distance. 3 refs., 2 figs.« less
NASA Astrophysics Data System (ADS)
Blottner, Dieter; Vico, Laurence; Jamon, D. Berckmansp L. Vicop Y. Liup R. Canceddap M.
Background: Environmental conditions likely affect physiology and behaviour of mice used for Life Sciences Research on Earth and in Space. Thus, mice habitats with sufficient statistical numbers should be developed for adequate life support and care and that should meet all nesces-sary ethical and scientific requirements needed to successfully perform animal experimentation in Space. Aim of study: We here analysed the effects of cage confinement on the weightbear-ing musculoskeletal system, behaviour and stress of wild-type mice (C57BL/6JRj, 30 g b.wt., total n = 24) housed for 25 days in a prototypical ground-based MSRM (modular science ref-erence module) in the frame of breadboard activities for a fully automated life support habitat called "Mice in Space" (MIS) at the Leuven University, Belgium. Results: Compared with control housing (individually ventilated cages, IVC-mice) the MIS mice revealed no significant changes in soleus muscle size and myofiber distribution (type I vs. II) and quality of bone (3-D microarchitecture and mineralisation of calvaria, spine and femur) determined by confocal and micro-computed tomography. Corticosterone metabolism measured non-invasively (faeces) monitored elevated adrenocortical activity at only start of the MIS cage confinement (day 1). Behavioural tests (i.e., grip strength, rotarod, L/D box, elevated plus-maze, open field, ag-gressiveness) performed subsequently revealed only minor changes in motor performance (MIS vs. controls). Conclusions: The MIS habitat will not, on its own, produce major effects that could confound interpretation of data induced by microgravity exposure on orbit as planned for future biosatellite programmes. Sponsors: ESA-ESTEC, Noordwijk, NL
Rayleigh-Taylor Gravity Waves and Quasiperiodic Oscillation Phenomenon in X-ray Binaries
NASA Technical Reports Server (NTRS)
Titarchuk, Lev
2002-01-01
Accretion onto compact objects in X-ray binaries (black hole, neutron star (NS), white dwarf) is characterized by non-uniform flow density profiles. Such an effect of heterogeneity in presence of gravitational forces and pressure gradients exhibits Rayleigh-Taylor gravity waves (RTGW). They should be seen as quasiperiodic wave oscillations (QPO) of the accretion flow in the transition (boundary) layer between the Keplerian disk and the central object. In this paper the author shows that the main QPO frequency, which is very close to the Keplerian frequency, is split into separate frequencies (hybrid and low branch) under the influence of the gravitational forces in the rotational frame of reference. The RTGWs must be present and the related QPOs should be detected in any system where the gravity, buoyancy and Coriolis force effects cannot be excluded (even in the Earth and solar environments). The observed low and high QPO frequencies are an intrinsic signature of the RTGW. The author elaborates the conditions for the density profile when the RTGW oscillations are stable. A comparison of the inferred QPO frequencies with QPO observations is presented. The author finds that hectohertz frequencies detected from NS binaries can be identified as the RTGW low branch frequencies. The author also predicts that an observer can see the double NS spin frequency during the NS long (super) burst events when the pressure gradients and buoyant forces are suppressed. The Coriolis force is the only force which acts in the rotational frame of reference and its presence causes perfect coherent pulsations with a frequency twice of the NS spin. The QPO observations of neutron binaries have established that the high QPO frequencies do not go beyond of the certain upper limit. The author explains this observational effect as a result of the density profile inversions. Also the author demonstrates that a particular problem of the gravity waves in the rotational frame of reference in the approximation of very small pressure gradients is reduced to the problem of the classical oscillator in the rotational frame of reference which was previously introduced and applied for the interpretation of kHZ QPO observation by Osherovich & Titarchuk.
Structure and Properties of High Symmetry Composites
1990-07-27
acceleration in the y-direction 21-30 GRAVI(3) Gravitational acceleration in the z-direction 31-40 ANVEL Angular velocity (referred to the z axis) (i... ANVEL WIE(6,913) GRAVI(1),GRAVI(2).GRAVI(3), ANVEL 71 ORMAT(//41H X-GRAVITY V-GRAVITY Z-GRAVITY ANG VEL 1 W1 FRIAT5IO) Page 17 CALL CHECK 1(NDtJFNq, ELEM...BLARG DO 30 IEVAB =1,NEVAS DO 30 I=1,3 BMATX(I, IEVAB) = BMATX(I. IEVAB)+BLARQ(I, IEVAB) RETURN END SUBROUTINE LOADS SUBROUTINE LOADS( ANVEL , COORD
Inevitable inflation in Einstein-Cartan theory with improved energy-momentum tensor with spin
NASA Technical Reports Server (NTRS)
Fennelly, A. J.; Bradas, James C.; Smalley, Larry L.
1988-01-01
Generalized, or power-law, inflation is shown to necessarily exist for a simple, anisotropic, (Bianchi Type-1) cosmology in the Einstein-Cartan gravitational theory with the Ray-Smalley improved energy momentum tensor with spin. Formal solution of the EC field equations with the fluid equations of motion explicitly shows inflation caused by the RS spin angular kinetic energy density. Shear is not effective in preventing inflation in the ECRS model. The relation between fluid vorticity, torsion, reference axis rotation, and shear ellipsoid precession shows through clearly.
Wiggles and knots in radio jets
NASA Astrophysics Data System (ADS)
Trussoni, E.; Ferrari, A.; Zaninetti, L.
Dynamical effects in binary nuclei inside parent galactic cores, gravitational interactions with companion galaxies, and Kelvin-Helmholtz instabilities in the flow propagation have been proposed as mechanism responsible for the formation of the low amplitude morphologies, wiggles and knots, observed in radio jets. Here the basic characteristics and implications of these models are discussed with reference to the limited sample of existing data. In conclusion it will be shown that present observations cannot discriminate definitely these theories; conversely, different mechanisms may be at work together in any jet at the same time.
Modularity: An Application of General Systems Theory to Military Force Development
2005-01-01
1999). Context, modularity, and the cultural constitution of development. In P. Lloyd & C. Fernyhough (Eds.), Lev Vygotsky : Critical assessments...of General Systems Theory to Military Force Development 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...Prescribed by ANSI Std Z39-18 MODULARITY: AN APPLICATION OF GENERAL SYSTEMS THEORY TO MILITARY FORCE DEVELOPMENT 279 R SEARCH MODULARITY: AN APPLICATION OF
Gone to Fiddler’s Green: Reconnaissance and Security for the Corps
2011-05-01
based reconnaissance and security organization. A U.S. corps in major combat operations must contend with an enemy’s armored advance guard or...screen, guard, and cover. Andrew D. Goldin, “ Ruminations on Modular Cavalry,” Armor Magazine, (September-October 2006): 14. 22 Goldin, “ Ruminations ...on Modular Cavalry,” 15. 23 Goldin, “ Ruminations on Modular Cavalry,” 16. 10 capabilities compared to modular force brigade combat teams in support
Local modular Hamiltonians from the quantum null energy condition
NASA Astrophysics Data System (ADS)
Koeller, Jason; Leichenauer, Stefan; Levine, Adam; Shahbazi-Moghaddam, Arvin
2018-03-01
The vacuum modular Hamiltonian K of the Rindler wedge in any relativistic quantum field theory is given by the boost generator. Here we investigate the modular Hamiltonian for more general half-spaces which are bounded by an arbitrary smooth cut of a null plane. We derive a formula for the second derivative of the modular Hamiltonian with respect to the coordinates of the cut which schematically reads K''=Tv v . This formula can be integrated twice to obtain a simple expression for the modular Hamiltonian. The result naturally generalizes the standard expression for the Rindler modular Hamiltonian to this larger class of regions. Our primary assumptions are the quantum null energy condition—an inequality between the second derivative of the von Neumann entropy of a region and the stress tensor—and its saturation in the vacuum for these regions. We discuss the validity of these assumptions in free theories and holographic theories to all orders in 1 /N .
Modularity Induced Gating and Delays in Neuronal Networks
Shein-Idelson, Mark; Cohen, Gilad; Hanein, Yael
2016-01-01
Neural networks, despite their highly interconnected nature, exhibit distinctly localized and gated activation. Modularity, a distinctive feature of neural networks, has been recently proposed as an important parameter determining the manner by which networks support activity propagation. Here we use an engineered biological model, consisting of engineered rat cortical neurons, to study the role of modular topology in gating the activity between cell populations. We show that pairs of connected modules support conditional propagation (transmitting stronger bursts with higher probability), long delays and propagation asymmetry. Moreover, large modular networks manifest diverse patterns of both local and global activation. Blocking inhibition decreased activity diversity and replaced it with highly consistent transmission patterns. By independently controlling modularity and disinhibition, experimentally and in a model, we pose that modular topology is an important parameter affecting activation localization and is instrumental for population-level gating by disinhibition. PMID:27104350
Measuring, Enabling and Comparing Modularity, Regularity and Hierarchy in Evolutionary Design
NASA Technical Reports Server (NTRS)
Hornby, Gregory S.
2005-01-01
For computer-automated design systems to scale to complex designs they must be able to produce designs that exhibit the characteristics of modularity, regularity and hierarchy - characteristics that are found both in man-made and natural designs. Here we claim that these characteristics are enabled by implementing the attributes of combination, control-flow and abstraction in the representation. To support this claim we use an evolutionary algorithm to evolve solutions to different sizes of a table design problem using five different representations, each with different combinations of modularity, regularity and hierarchy enabled and show that the best performance happens when all three of these attributes are enabled. We also define metrics for modularity, regularity and hierarchy in design encodings and demonstrate that high fitness values are achieved with high values of modularity, regularity and hierarchy and that there is a positive correlation between increases in fitness and increases in modularity. regularity and hierarchy.
NASA Astrophysics Data System (ADS)
Zheng, Sheng Ming
2012-10-01
In the natural world, people have discovered four kinds of forces: electromagnetic force, gravitation, weak force, and strong force. Although the gravitation has been discovered more than three hundred years, its mechanism of origin is unclear until today. While investigating the origin of gravitation, I do some experiments discover the moving photons produce gravitation. This discovery shows the origin of gravitation. Meanwhile I do some experiments discover the light interference fringes are produced by the gravitation: my discovery demonstrate light is a particle, but is not a wave-particle duality. Furthermore, applications of this discovery to other moving particles show a similar effect. In a word: the micro particle moving produce gravitation and electromagnetic force. Then I do quantity experiment get a general formula: Reveal the essence of gravitational mass and the essence of electric charge; reveal the origin of gravitation and the essence of matter wave. Along this way, I unify the gravitation and electromagnetic force. Namely I find a natural law that from atomic world to star world play in moving track. See website: https://www.lap-publishing.com/catalog/details/store/gb/book/978-3-8473-2658-8/mechanism-of-interaction-in-moving-matter
SWCX Emission from the Helium Focusing Cone - Preliminary Results
NASA Technical Reports Server (NTRS)
Snowden, S. L.; Kuntz, K. D.; Collier, M. R.
2008-01-01
Preliminary results from an XMM-Newton campaign to study solar wind charge exchange (SWCX) emission from the heliospheric focusing cone of interstellar helium are presented. The detections of enhanced O VII and O VIII emission from the cone are at the 2(sigma) and 4(sigma) levels. The solar wind charge exchange (SWCX) emission in the heliosphere not associated with distinct objects (e.g., comets and planets including exospheric material in and near Earth s magnetosheath) is proportional to the flux of the solar wind and the space density of neutral material. The neutral material originates in the interstellar medium (ISM) and passes through the solar system due to the relative motion of the Sun and the ISM. The flow of the neutral material through the solar system is strongly perturbed by the Sun both by gravity and by radiation pressure. Because of the relative radiative scattering cross sections and the effect of solar gravitation the density of interstellar hydrogen near the Sun is reduced while interstellar helium is gravitationally focused. This creates a helium focusing cone downstream of the Sun [e.g., 1, and references therein].
Charge-Induced Force Noise on Free-Falling Test Masses: Results from LISA Pathfinder
NASA Astrophysics Data System (ADS)
Armano, M.; Audley, H.; Auger, G.; Baird, J. T.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Brandt, N.; Bursi, A.; Caleno, M.; Cavalleri, A.; Cesarini, A.; Cruise, M.; Danzmann, K.; de Deus Silva, M.; Diepholz, I.; Dolesi, R.; Dunbar, N.; Ferraioli, L.; Ferroni, V.; Fitzsimons, E. D.; Flatscher, R.; Freschi, M.; Gallegos, J.; García Marirrodriga, C.; Gerndt, R.; Gesa, L.; Gibert, F.; Giardini, D.; Giusteri, R.; Grimani, C.; Grzymisch, J.; Harrison, I.; Heinzel, G.; Hewitson, M.; Hollington, D.; Hueller, M.; Huesler, J.; Inchauspé, H.; Jennrich, O.; Jetzer, P.; Johlander, B.; Karnesis, N.; Kaune, B.; Killow, C. J.; Korsakova, N.; Lloro, I.; Liu, L.; López-Zaragoza, J. P.; Maarschalkerweerd, R.; Madden, S.; Mance, D.; Martín, V.; Martin-Polo, L.; Martino, J.; Martin-Porqueras, F.; Mateos, I.; McNamara, P. W.; Mendes, J.; Mendes, L.; Moroni, A.; Nofrarias, M.; Paczkowski, S.; Perreur-Lloyd, M.; Petiteau, A.; Pivato, P.; Plagnol, E.; Prat, P.; Ragnit, U.; Ramos-Castro, J.; Reiche, J.; Romera Perez, J. A.; Robertson, D. I.; Rozemeijer, H.; Rivas, F.; Russano, G.; Sarra, P.; Schleicher, A.; Slutsky, J.; Sopuerta, C.; Sumner, T. J.; Texier, D.; Thorpe, J. I.; Trenkel, C.; Vetrugno, D.; Vitale, S.; Wanner, G.; Ward, H.; Wass, P. J.; Wealthy, D.; Weber, W. J.; Wittchen, A.; Zanoni, C.; Ziegler, T.; Zweifel, P.; LISA Pathfinder Collaboration
2017-04-01
We report on electrostatic measurements made on board the European Space Agency mission LISA Pathfinder. Detailed measurements of the charge-induced electrostatic forces exerted on free-falling test masses (TMs) inside the capacitive gravitational reference sensor are the first made in a relevant environment for a space-based gravitational wave detector. Employing a combination of charge control and electric-field compensation, we show that the level of charge-induced acceleration noise on a single TM can be maintained at a level close to 1.0 fm s-2 Hz-1 /2 across the 0.1-100 mHz frequency band that is crucial to an observatory such as the Laser Interferometer Space Antenna (LISA). Using dedicated measurements that detect these effects in the differential acceleration between the two test masses, we resolve the stochastic nature of the TM charge buildup due to interplanetary cosmic rays and the TM charge-to-force coupling through stray electric fields in the sensor. All our measurements are in good agreement with predictions based on a relatively simple electrostatic model of the LISA Pathfinder instrument.
On the `simple' form of the gravitational action and the self-interacting graviton
NASA Astrophysics Data System (ADS)
Tomboulis, E. T.
2017-09-01
The so-called ΓΓ-form of the gravitational Lagrangian, long known to provide its most compact expression as well as the most efficient generation of the graviton vertices, is taken as the starting point for discussing General Relativity as a theory of the self-interacting graviton. A straightforward but general method of converting to a covariant formulation by the introduction of a reference metric is given. It is used to recast the Einstein field equation as the equation of motion of a spin-2 particle interacting with the canonical energy-momentum tensor symmetrized by the standard Belinfante method applicable to any field carrying nonzero spin. This represents the graviton field equation in a form complying with the precepts of standard field theory. It is then shown how representations based on other, at face value completely unrelated definitions of energy-momentum (pseudo)tensors are all related by the addition of appropriate superpotential terms. Specifically, the superpotentials are explicitly constructed which connect to: i) the common definition consisting simply of the nonlinear part of the Einstein tensor; ii) the Landau-Lifshitz definition.
Precision GPS ephemerides and baselines
NASA Technical Reports Server (NTRS)
1992-01-01
The required knowledge of the Global Positioning System (GPS) satellite position accuracy can vary depending on a particular application. Application to relative positioning of receiver locations on the ground to infer Earth's tectonic plate motion requires the most accurate knowledge of the GPS satellite orbits. Research directed towards improving and evaluating the accuracy of GPS satellite orbits was conducted at the University of Texas Center for Space Research (CSR). Understanding and modeling the forces acting on the satellites was a major focus of the research. Other aspects of orbit determination, such as the reference frame, time system, measurement modeling, and parameterization, were also investigated. Gravitational forces were modeled by truncated versions of extant gravity fields such as, Goddard Earth Model (GEM-L2), GEM-T1, TEG-2, and third body perturbations due to the Sun and Moon. Nongravitational forces considered were the solar radiation pressure, and perturbations due to thermal venting and thermal imbalance. At the GPS satellite orbit accuracy level required for crustal dynamic applications, models for the nongravitational perturbation play a critical role, since the gravitational forces are well understood and are modeled adequately for GPS satellite orbits.
Simulation and analysis of a geopotential research mission
NASA Technical Reports Server (NTRS)
Schutz, B. E.
1987-01-01
Computer simulations were performed for a Geopotential Research Mission (GRM) to enable the study of the gravitational sensitivity of the range rate measurements between the two satellites and to provide a set of simulated measurements to assist in the evaluation of techniques developed for the determination of the gravity field. The simulations were conducted with two satellites in near circular, frozen orbits at 160 km altitudes separated by 300 km. High precision numerical integration of the polar orbits were used with a gravitational field complete to degree and order 360. The set of simulated data for a mission duration of about 32 days was generated on a Cray X-MP computer. The results presented cover the most recent simulation, S8703, and includes a summary of the numerical integration of the simulated trajectories, a summary of the requirements to compute nominal reference trajectories to meet the initial orbit determination requirements for the recovery of the geopotential, an analysis of the nature of the one way integrated Doppler measurements associated with the simulation, and a discussion of the data set to be made available.
Analogue Hawking radiation in an exactly solvable model of BEC
NASA Astrophysics Data System (ADS)
Parola, Alberto; Tettamanti, Manuele; Cacciatori, Sergio L.
2017-09-01
Hawking radiation, the spontaneous emission of thermal photons from an event horizon, is one of the most intriguing and elusive predictions of field theory in curved spacetimes. A formally analogue phenomenon occurs at the supersonic transition of a fluid: in this respect, ultracold gases stand out among the most promising systems but the theoretical modelling of this effect has always been carried out in semiclassical approximation, borrowing part of the analysis from the gravitational analogy. Here we discuss the exact solution of a one-dimensional Bose gas flowing against an obstacle, showing that spontaneous phonon emission (the analogue of Hawking radiation) is predicted without reference to the gravitational analogy. Long after the creation of the obstacle, the fluid settles into a stationary state displaying the emission of sound waves (phonons) in the upstream direction. A careful analysis shows that a precise correspondence between this phenomenon and the spontaneous emission of radiation from an event horizon requires additional conditions to be met in future experiments aimed at identifying the occurrence of the Hawking-like mechanism in Bose-Einstein condensates.
Charge-Induced Force Noise on Free-Falling Test Masses: Results from LISA Pathfinder.
Armano, M; Audley, H; Auger, G; Baird, J T; Binetruy, P; Born, M; Bortoluzzi, D; Brandt, N; Bursi, A; Caleno, M; Cavalleri, A; Cesarini, A; Cruise, M; Danzmann, K; de Deus Silva, M; Diepholz, I; Dolesi, R; Dunbar, N; Ferraioli, L; Ferroni, V; Fitzsimons, E D; Flatscher, R; Freschi, M; Gallegos, J; García Marirrodriga, C; Gerndt, R; Gesa, L; Gibert, F; Giardini, D; Giusteri, R; Grimani, C; Grzymisch, J; Harrison, I; Heinzel, G; Hewitson, M; Hollington, D; Hueller, M; Huesler, J; Inchauspé, H; Jennrich, O; Jetzer, P; Johlander, B; Karnesis, N; Kaune, B; Killow, C J; Korsakova, N; Lloro, I; Liu, L; López-Zaragoza, J P; Maarschalkerweerd, R; Madden, S; Mance, D; Martín, V; Martin-Polo, L; Martino, J; Martin-Porqueras, F; Mateos, I; McNamara, P W; Mendes, J; Mendes, L; Moroni, A; Nofrarias, M; Paczkowski, S; Perreur-Lloyd, M; Petiteau, A; Pivato, P; Plagnol, E; Prat, P; Ragnit, U; Ramos-Castro, J; Reiche, J; Romera Perez, J A; Robertson, D I; Rozemeijer, H; Rivas, F; Russano, G; Sarra, P; Schleicher, A; Slutsky, J; Sopuerta, C; Sumner, T J; Texier, D; Thorpe, J I; Trenkel, C; Vetrugno, D; Vitale, S; Wanner, G; Ward, H; Wass, P J; Wealthy, D; Weber, W J; Wittchen, A; Zanoni, C; Ziegler, T; Zweifel, P
2017-04-28
We report on electrostatic measurements made on board the European Space Agency mission LISA Pathfinder. Detailed measurements of the charge-induced electrostatic forces exerted on free-falling test masses (TMs) inside the capacitive gravitational reference sensor are the first made in a relevant environment for a space-based gravitational wave detector. Employing a combination of charge control and electric-field compensation, we show that the level of charge-induced acceleration noise on a single TM can be maintained at a level close to 1.0 fm s^{-2} Hz^{-1/2} across the 0.1-100 mHz frequency band that is crucial to an observatory such as the Laser Interferometer Space Antenna (LISA). Using dedicated measurements that detect these effects in the differential acceleration between the two test masses, we resolve the stochastic nature of the TM charge buildup due to interplanetary cosmic rays and the TM charge-to-force coupling through stray electric fields in the sensor. All our measurements are in good agreement with predictions based on a relatively simple electrostatic model of the LISA Pathfinder instrument.
Do the Constants of Nature Couple to Strong Gravitational Fields?
NASA Astrophysics Data System (ADS)
Preval, Simon P.; Barstow, Martin A.; Holberg, Jay B.; Barrow, John; Berengut, Julian; Webb, John; Dougan, Darren; Hu, Jiting
2015-06-01
Recently, white dwarf stars have found a new use in the fundamental physics community. Many prospective theories of the fundamental interactions of Nature allow traditional constants, like the fine structure constant α, to vary in some way. A study by Berengut et al. (2013) used the Fe/Ni v line measurements made by Preval et al. (2013) from the hot DA white dwarf G191-B2B, in an attempt to detect any variation in α. It was found that the Fe v lines indicated an increasing alpha, whereas the Ni v lines indicated a decreasing alpha. Possible explanations for this could be misidentification of the lines, inaccurate atomic data, or wavelength dependent distortion in the spectrum. We examine the first two cases by using a high S/N reference spectrum from the hot sdO BD+28°4211 to calibrate the Fe/Ni v atomic data. With this new data, we re-evaluate the work of Berengut et al. (2013) to derive a new constraint on the variation of alpha in a gravitational field.
Investigation of mechanical properties of cryogenically treated music wire
NASA Astrophysics Data System (ADS)
Heptonstall, A.; Waller, M.; Robertson, N. A.
2015-08-01
It has been reported that treating music wire (high carbon steel wire) by cooling to cryogenic temperatures can enhance its mechanical properties with particular reference to those properties important for musical performance. We use such wire for suspending many of the optics in Advanced LIGO, the upgrade to LIGO—the Laser Interferometric Gravitational-Wave Observatory. Two properties that particularly interest us are mechanical loss and breaking strength. A decrease in mechanical loss would directly reduce the thermal noise associated with the suspension, thus enhancing the noise performance of mirror suspensions within the detector. An increase in strength could allow thinner wire to be safely used, which would enhance the dilution factor of the suspension, again leading to lower suspension thermal noise. In this article, we describe the results of an investigation into some of the mechanical properties of music wire, comparing untreated wire with the same wire which has been cryogenically treated. For the samples we studied, we conclude that there is no significant difference in the properties of interest for application in gravitational wave detectors.
NASA Technical Reports Server (NTRS)
Ringermacher, Harry I.; Conradi, Mark S.; Cassenti, Brice
2005-01-01
Results of experiments to confirm a theory that links classical electromagnetism with the geometry of spacetime are described. The theory, based on the introduction of a Torsion tensor into Einstein s equations and following the approach of Schroedinger, predicts effects on clocks attached to charged particles, subject to intense electric fields, analogous to the effects on clocks in a gravitational field. We show that in order to interpret this theory, one must re-interpret all clock changes, both gravitational and electromagnetic, as arising from changes in potential energy and not merely potential. The clock is provided naturally by proton spins in hydrogen atoms subject to Nuclear Magnetic Resonance trials. No frequency change of clocks was observed to a resolution of 6310(exp -9). A new "Clock Principle" was postulated to explain the null result. There are two possible implications of the experiments: (a) The Clock Principle is invalid and, in fact, no metric theory incorporating electromagnetism is possible; (b) The Clock Principle is valid and it follows that a negative rest mass cannot exist.
Matter Lagrangian of particles and fluids
NASA Astrophysics Data System (ADS)
Avelino, P. P.; Sousa, L.
2018-03-01
We consider a model where particles are described as localized concentrations of energy, with fixed rest mass and structure, which are not significantly affected by their self-induced gravitational field. We show that the volume average of the on-shell matter Lagrangian Lm describing such particles, in the proper frame, is equal to the volume average of the trace T of the energy-momentum tensor in the same frame, independently of the particle's structure and constitution. Since both Lm and T are scalars, and thus independent of the reference frame, this result is also applicable to collections of moving particles and, in particular, to those which can be described by a perfect fluid. Our results are expected to be particularly relevant in the case of modified theories of gravity with nonminimal coupling to matter where the matter Lagrangian appears explicitly in the equations of motion of the gravitational and matter fields, such as f (R ,Lm) and f (R ,T ) gravity. In particular, they indicate that, in this context, f (R ,Lm) theories may be regarded as a subclass of f (R ,T ) gravity.
Thermonuclear dynamo inside ultracentrifuge with supersonic plasma flow stabilization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winterberg, F.
Einstein's general theory of relativity implies the existence of virtual negative masses in the rotational reference frame of an ultracentrifuge with the negative mass density of the same order of magnitude as the positive mass density of a neutron star. In an ultracentrifuge, the repulsive gravitational field of this negative mass can simulate the attractive positive mass of a mini-neutron star, and for this reason can radially confine a dense thermonuclear plasma placed inside the centrifuge, very much as the positive mass of a star confines its plasma by its own attractive gravitational field. If the centrifuge is placed inmore » an externally magnetic field to act as the seed field of a magnetohydrodynamic generator, the configuration resembles a magnetar driven by the release of energy through nuclear fusion, accelerating the plasma to supersonic velocities, with the magnetic field produced by the thermomagnetic Nernst effect insulating the hot plasma from the cold wall of the centrifuge. Because of the supersonic flow and the high plasma density the configuration is stable.« less
Division Artillery: Linking Strategy to Tactics
2017-05-25
operational artist, while within modularity , there is no advocate for ensuring that subordinate field artillery units are getting the manning...adaptability, and synchronization. The division artillery is the operational artist, while within modularity , there is no advocate for ensuring...30 Modularization
Modular thought in the circuit analysis
NASA Astrophysics Data System (ADS)
Wang, Feng
2018-04-01
Applied to solve the problem of modular thought, provides a whole for simplification's method, the complex problems have become of, and the study of circuit is similar to the above problems: the complex connection between components, make the whole circuit topic solution seems to be more complex, and actually components the connection between the have rules to follow, this article mainly tells the story of study on the application of the circuit modular thought. First of all, this paper introduces the definition of two-terminal network and the concept of two-terminal network equivalent conversion, then summarizes the common source resistance hybrid network modular approach, containing controlled source network modular processing method, lists the common module, typical examples analysis.
Gualdi, Giulia; Giampaolo, Salvatore M; Illuminati, Fabrizio
2011-02-04
We introduce and discuss the concept of modular entanglement. This is the entanglement that is established between the end points of modular systems composed by sets of interacting moduli of arbitrarily fixed size. We show that end-to-end modular entanglement scales in the thermodynamic limit and rapidly saturates with the number of constituent moduli. We clarify the mechanisms underlying the onset of entanglement between distant and noninteracting quantum systems and its optimization for applications to quantum repeaters and entanglement distribution and sharing.
Defense Acquisition Research Journal. Volume 23, Number 1, Issue 76, January 2016
2016-04-21
January 2016 Vol. 23 No. 1 | ISSUE 76 The Method MATTERS Article List ARJ Extra Survey of Modular Military Vehicles: Benefits and Burdens Jean M...15 years. p. 2 Survey of Modular Military Vehicles: Benefits and Burdens Jean M. Dasch and David J. Gorsich Military vehicles can be designed from a... modular standpoint to maximize cost savings and/or adapt- ability. This article surveys vehicle modularity from a historical viewpoint and considers
Modular, Hierarchical Learning By Artificial Neural Networks
NASA Technical Reports Server (NTRS)
Baldi, Pierre F.; Toomarian, Nikzad
1996-01-01
Modular and hierarchical approach to supervised learning by artificial neural networks leads to neural networks more structured than neural networks in which all neurons fully interconnected. These networks utilize general feedforward flow of information and sparse recurrent connections to achieve dynamical effects. The modular organization, sparsity of modular units and connections, and fact that learning is much more circumscribed are all attractive features for designing neural-network hardware. Learning streamlined by imitating some aspects of biological neural networks.
Gravitational radiation as a test of relativistic gravity
NASA Technical Reports Server (NTRS)
Will, Clifford M.
1989-01-01
Gravitational radiation can be used to test theories of gravitation. When the waves are ultimately detected directly, their speed and polarization properties can be measured and compared with predictions of alternative theories. The multipole nature of gravitational radiation was already tested in the binary pulsar, where observations of the decay of the orbit verify the quadrupole formula for gravitational radiation damping of general relativity and put strong constraints on dipole gravitational radiation predicted by many alternative theories.
Soffers, Rutger; Meijboom, Bert; van Zaanen, Jos; van der Feltz-Cornelis, Christina
2014-05-09
The Dutch mental healthcare sector has to decrease costs by reducing intramural capacity with one third by 2020 and treating more patients in outpatient care. This transition necessitates enabling patients to become as self-supporting as possible, by customising the residential care they receive to their needs for self-development. Theoretically, modularity might help mental healthcare institutions with this. Modularity entails the decomposition of a healthcare service in parts that can be mixed-and-matched in a variety of ways, and combined form a functional whole. It brings about easier and better configuration, increased transparency and more variety without increasing costs. this study aims to explore the applicability of the modularity concept to the residential care provided in Assisted Living Facilities (ALFs) of Dutch mental healthcare institutions. A single case study is carried out at the centre for psychosis in Etten-Leur, part of the GGz Breburg IMPACT care group. The design enables in-depth analysis of a case in a specific context. This is considered appropriate since theory concerning healthcare modularity is in an early stage of development. The present study can be considered a pilot case. Data were gathered by means of interviews, observations and documentary analysis. At the centre for psychosis, the majority of the residential care can be decomposed in modules, which can be grouped in service bundles and sub-bundles; the service customisation process is sufficiently fit to apply modular thinking; and interfaces for most of the categories are present. Hence, the prerequisites for modular residential care offerings are already largely fulfilled. For not yet fulfilled aspects of these prerequisites, remedies are available. The modularity concept seems applicable to the residential care offered by the ALF of the mental healthcare institution under study. For a successful implementation of modularity however, some steps should be taken by the ALF, such as developing a catalogue of modules and a method for the personnel to work with this catalogue in application of the modules. Whether implementation of modular residential care might facilitate the transition from intramural residential care to outpatient care should be the subject of future research.
2014-01-01
Background The Dutch mental healthcare sector has to decrease costs by reducing intramural capacity with one third by 2020 and treating more patients in outpatient care. This transition necessitates enabling patients to become as self-supporting as possible, by customising the residential care they receive to their needs for self-development. Theoretically, modularity might help mental healthcare institutions with this. Modularity entails the decomposition of a healthcare service in parts that can be mixed-and-matched in a variety of ways, and combined form a functional whole. It brings about easier and better configuration, increased transparency and more variety without increasing costs. Aim: this study aims to explore the applicability of the modularity concept to the residential care provided in Assisted Living Facilities (ALFs) of Dutch mental healthcare institutions. Methods A single case study is carried out at the centre for psychosis in Etten-Leur, part of the GGz Breburg IMPACT care group. The design enables in-depth analysis of a case in a specific context. This is considered appropriate since theory concerning healthcare modularity is in an early stage of development. The present study can be considered a pilot case. Data were gathered by means of interviews, observations and documentary analysis. Results At the centre for psychosis, the majority of the residential care can be decomposed in modules, which can be grouped in service bundles and sub-bundles; the service customisation process is sufficiently fit to apply modular thinking; and interfaces for most of the categories are present. Hence, the prerequisites for modular residential care offerings are already largely fulfilled. For not yet fulfilled aspects of these prerequisites, remedies are available. Conclusion The modularity concept seems applicable to the residential care offered by the ALF of the mental healthcare institution under study. For a successful implementation of modularity however, some steps should be taken by the ALF, such as developing a catalogue of modules and a method for the personnel to work with this catalogue in application of the modules. Whether implementation of modular residential care might facilitate the transition from intramural residential care to outpatient care should be the subject of future research. PMID:24886367
The Detection of Gravitational Waves
NASA Astrophysics Data System (ADS)
Blair, David G.
2005-10-01
Part I. An Introduction to Gravitational Waves and Methods for their Detection: 1. Gravitational waves in general relativity D. G. Blair; 2. Sources of gravitational waves D. G. Blair; 3. Gravitational wave detectors D. G. Blair; Part II. Gravitational Wave Detectors: 4. Resonant-bar detectors D. G. Blair; 5. Gravity wave dewars W. O. Hamilton; 6. Internal friction in high Q materials J. Ferreirinko; 7. Motion amplifiers and passive transducers J. P. Richard; 8. Parametric transducers P. J. Veitch; 9. Detection of continuous waves K. Tsubono; 10. Data analysis and algorithms for gravitational wave-antennas G. V. Paalottino; Part III. Laser Interferometer Antennas: 11. A Michelson interferometer using delay lines W. Winkler; 12. Fabry-Perot cavity gravity-wave detectors R. W. P. Drever; 13. The stabilisation of lasers for interferometric gravitational wave detectors J. Hough; 14. Vibration isolation for the test masses in interferometric gravitational wave detectors N. A. Robertson; 15. Advanced techniques A. Brillet; 16. Data processing, analysis and storage for interferometric antennas B. F. Schutz; 17. Gravitational wave detection at low and very low frequencies R. W. Hellings.
Modularization and Flexibilization.
ERIC Educational Resources Information Center
Van Meel, R. M.
Publications in the fields of educational science, organization theory, and project management were analyzed to identify the possibilities that modularization offers to institutions of higher professional education and to obtain background information for use in developing a method for modularization in higher professional education. It was…
A report on the gravitational redshift test for non-metric theories of gravitation
NASA Technical Reports Server (NTRS)
1980-01-01
The frequencies of two atomic hydrogen masers and of three superconducting cavity stabilized oscillators were compared as the ensemble of oscillators was moved in the Sun's gravitational field by the rotation and orbital motion of the Earth. Metric gravitation theories predict that the gravitational redshifts of the two types of oscillators are identical, and that there should be no relative frequency shift between the oscillators; nonmetric theories, in contrast, predict a frequency shift between masers and SCSOs that is proportional to the change in solar gravitational potential experienced by the oscillators. The results are consistent with metric theories of gravitation at a level of 2%.
Brain Network Modularity Predicts Exercise-Related Executive Function Gains in Older Adults
Baniqued, Pauline L.; Gallen, Courtney L.; Voss, Michelle W.; Burzynska, Agnieszka Z.; Wong, Chelsea N.; Cooke, Gillian E.; Duffy, Kristin; Fanning, Jason; Ehlers, Diane K.; Salerno, Elizabeth A.; Aguiñaga, Susan; McAuley, Edward; Kramer, Arthur F.; D'Esposito, Mark
2018-01-01
Recent work suggests that the brain can be conceptualized as a network comprised of groups of sub-networks or modules. The extent of segregation between modules can be quantified with a modularity metric, where networks with high modularity have dense connections within modules and sparser connections between modules. Previous work has shown that higher modularity predicts greater improvements after cognitive training in patients with traumatic brain injury and in healthy older and young adults. It is not known, however, whether modularity can also predict cognitive gains after a physical exercise intervention. Here, we quantified modularity in older adults (N = 128, mean age = 64.74) who underwent one of the following interventions for 6 months (NCT01472744 on ClinicalTrials.gov): (1) aerobic exercise in the form of brisk walking (Walk), (2) aerobic exercise in the form of brisk walking plus nutritional supplement (Walk+), (3) stretching, strengthening and stability (SSS), or (4) dance instruction. After the intervention, the Walk, Walk+ and SSS groups showed gains in cardiorespiratory fitness (CRF), with larger effects in both walking groups compared to the SSS and Dance groups. The Walk, Walk+ and SSS groups also improved in executive function (EF) as measured by reasoning, working memory, and task-switching tests. In the Walk, Walk+, and SSS groups that improved in EF, higher baseline modularity was positively related to EF gains, even after controlling for age, in-scanner motion and baseline EF. No relationship between modularity and EF gains was observed in the Dance group, which did not show training-related gains in CRF or EF control. These results are consistent with previous studies demonstrating that individuals with a more modular brain network organization are more responsive to cognitive training. These findings suggest that the predictive power of modularity may be generalizable across interventions aimed to enhance aspects of cognition and that, especially in low-performing individuals, global network properties can capture individual differences in neuroplasticity. PMID:29354050
NASA Astrophysics Data System (ADS)
Gribov, I. A.; Trigger, S. A.
2018-01-01
The optical-gravitational methods for distinction between photons and antiphotons (galaxies, emitting photons and antigalaxies, emitting antiphotons) in the proposed hypothesis of totally gravitationally neutral (TGN)-Universe are considered. These methods are based on the extension of the earlier proposed the gravitationally neutral Universe concept, including now gravitational neutrality of vacuum. This concept contains (i) enlarged unbroken baryon-like, charge, parity and time and full ±M gr gravitational symmetries between all massive elementary particles-antiparticles, including (ia) ordinary matter (OM)-ordinary antimatter (OAM), (ib) dark matter (DM)-dark antimatter (DAM) and (ii) the resulting gravitational repulsion between equally presented (OM+DM)-galactic and (OAM+DAM)-antigalactic clusters, what spatially isolates and preserves their mutual annihilations in the large-scale TGN-Universe. It is assumed the gravitational balance not only between positive and negative gravitational masses of elementary particles and antiparticles, but also between all massless fields of the quantum field theory (QFT), including the opposite gravitational properties of photons and antiphotons, etc, realizing the totally gravitationally neutral vacuum in the QFT. These photons and antiphotons could be distinguishable optically-gravitationally, if one can observe a massive, deviating OM-star or a deviating (OM+DM)-galaxy from our galactic group, moving fast enough on the heavenly sphere, crossing the line directed to spatially separated far-remote galactic clusters (with the visible OM-markers, emitting photons) or antigalactic cluster (with the visible OAM-markers, emitting antiphotons). The deviations and gravitational microlensing with temporarily increased or decreased brightness of their OM and OAM rays will be opposite, indicating the galaxies and antigalaxies in the Universe.
Functional modularity in lake-dwelling characin fishes of Mexico
Bautista, Amando; Herder, Fabian; Doadrio, Ignacio
2017-01-01
Modular evolution promotes evolutionary change, allowing independent variation across morphological units. Recent studies have shown that under contrasting ecological pressures, patterns of modularity could be related to divergent evolution. The main goal of the present study was to evaluate the presence of modular evolution in two sister lacustrine species, Astyanax aeneus and A. caballeroi, which are differentiated by their trophic habits. Two different datasets were analyzed: (1) skull X-rays from 73 specimens (35 A. aeneus and 38 A. caballeroi) to characterize skull variation patterns, considering both species and sex effects. For this dataset, three different modularity hypotheses were tested, previously supported in other lacustrine divergent species; (2) a complete body shape dataset was also tested for four modularity hypotheses, which included a total of 196 individuals (110 Astyanax aeneus and 86 A. caballeroi). Skull shape showed significant differences among species and sex (P < 0.001), where Astyanax caballeroi species showed an upwardly projected mandible and larger preorbital region. For the skull dataset, the modularity hypothesis ranked first included three partitioning modules. While for the complete body dataset the best ranked hypothesis included two modules (head vs the rest of the body), being significant only for A. caballeroi. PMID:28951817
Functional modularity in lake-dwelling characin fishes of Mexico.
Ornelas-García, Claudia Patricia; Bautista, Amando; Herder, Fabian; Doadrio, Ignacio
2017-01-01
Modular evolution promotes evolutionary change, allowing independent variation across morphological units. Recent studies have shown that under contrasting ecological pressures, patterns of modularity could be related to divergent evolution. The main goal of the present study was to evaluate the presence of modular evolution in two sister lacustrine species, Astyanax aeneus and A. caballeroi , which are differentiated by their trophic habits. Two different datasets were analyzed: (1) skull X-rays from 73 specimens (35 A. aeneus and 38 A. caballeroi ) to characterize skull variation patterns, considering both species and sex effects. For this dataset, three different modularity hypotheses were tested, previously supported in other lacustrine divergent species; (2) a complete body shape dataset was also tested for four modularity hypotheses, which included a total of 196 individuals (110 Astyanax aeneus and 86 A. caballeroi ). Skull shape showed significant differences among species and sex ( P < 0.001), where Astyanax caballeroi species showed an upwardly projected mandible and larger preorbital region. For the skull dataset, the modularity hypothesis ranked first included three partitioning modules. While for the complete body dataset the best ranked hypothesis included two modules (head vs the rest of the body), being significant only for A. caballeroi .
Numerical simulations of human tibia osteosynthesis using modular plates based on Nitinol staples.
Tarniţă, Daniela; Tarniţă, D N; Popa, D; Grecu, D; Tarniţă, Roxana; Niculescu, D; Cismaru, F
2010-01-01
The shape memory alloys exhibit a number of remarkable properties, which open new possibilities in engineering and more specifically in biomedical engineering. The most important alloy used in biomedical applications is NiTi. This alloy combines the characteristics of the shape memory effect and superelasticity with excellent corrosion resistance, wear characteristics, mechanical properties and a good biocompatibility. These properties make it an ideal biological engineering material, especially in orthopedic surgery and orthodontics. In this work, modular plates for the osteosynthesis of the long bones fractures are presented. The proposed modular plates are realized from identical modules, completely interchangeable, made of titanium or stainless steel having as connecting elements U-shaped staples made of Nitinol. Using computed tomography (CT) images to provide three-dimensional geometric details and SolidWorks software package, the three dimensional virtual models of the tibia bone and of the modular plates are obtained. The finite element models of the tibia bone and of the modular plate are generated. For numerical simulation, VisualNastran software is used. Finally, displacements diagram, von Misses strain diagram, for the modular plate and for the fractured tibia and modular plate ensemble are obtained.
Intrathoracic and venous pressure relationships during responses to changes in body position
NASA Technical Reports Server (NTRS)
Avasthey, P.; Wood, E. H.
1974-01-01
Simultaneous end-expiratory pressures, referred to midthoracic level, in the superior and abdominal venae cavae, pericardial space, and right and left heart, were recorded without thoracotomy in three anesthetized dogs during sudden changes from supine to vertical head-up or head-down body positions. Intrathoracic and dependent great vein pressures referred to midchest level (sixth thoracic vertebra) decreased and showed simple hydrostatic gradients in either vertical position. However, a discontinuity in the large vein hydrostatic gradient occurred just distal to the superior margin of the thorax in either body position and was resumed again above this level. It is concluded that, just as the cerebrospinal fluid and intraperitoneal pressures minimize the effects of gravitational and inertial forces on the cerebral and visceral circulations, the pericardial and pleural pressures have a similar role for the heart proper.
Gravitational Waves: Experiments
NASA Astrophysics Data System (ADS)
Cerdonio, M.
2003-01-01
These notes are intended to bring to non-specialists the message about the status of the experimental searches, both in achievements and in near and far future prospective. I try to describe the whole matter in simple words, without the use of the formalism, and rather indicate to the interested reader a selection among an enormous literature. For the actual shaping up of current research efforts, I make specific reference to most recent papers. For much nicer pictures and graphs than I could possibly squeeze in here, I heavily refere to the web sites of the experiments, which are kept updated with a resolution of weeks and are thus, in these times, the most complete and updated source of information. Because of my own involvement with "bar" detectors I will, with apologies, dedicate more attention to the subfield of so called acoustic detectors.
NASA Astrophysics Data System (ADS)
Portnov, Yuriy A.
2018-06-01
A hypothesis put forward in late 20th century and subsequently substantiated experimentally posited the existence of optical vortices (twisted light). An optical vortex is an electromagnetic wave that in addition to energy and momentum characteristic of flat waves also possesses angular momentum. In recent years optical vortices have found wide-ranging applications in a number of branches including cosmology. The main hypothesis behind this paper implies that the magnitude of gravitational redshift for an optical vortex will differ from the magnitude of gravitational redshift for flat light waves. To facilitate description of optical vortices, we have developed the mathematical device of gravitational interaction in seven-dimensional time-space that we apply to the theory of electromagnetism. The resulting equations are then used for a comparison of gravitational redshift in optical vortices with that of normal electromagnetic waves. We show that rotating bodies creating weak gravitational fields result in a magnitude of gravitational redshift in optical vortices that differs from the magnitude of gravitational redshift in flat light waves. We conclude our paper with a numerical analysis of the feasibility of detecting the discrepancy in gravitational redshift between optical vortices and flat waves in the gravitational fields of the Earth and the Sun.
NASA Technical Reports Server (NTRS)
Watters, H.; Steadman, J.
1976-01-01
A modular training approach for Spacelab payload crews is described. Representative missions are defined for training requirements analysis, training hardware, and simulations. Training times are projected for each experiment of each representative flight. A parametric analysis of the various flights defines resource requirements for a modular training facility at different flight frequencies. The modular approach is believed to be more flexible, time saving, and economical than previous single high fidelity trainer concepts. Block diagrams of training programs are shown.
A Modular Set of Mixed Reality Simulators for Blind and Guided Procedures
2016-08-01
AWARD NUMBER: W81XWH-14-1-0113 TITLE: A Modular Set of Mixed Reality Simulators for “blind” and Guided Procedures PRINCIPAL INVESTIGATOR...2015 – 07/31/2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER A Modular Set of Mixed Reality Simulators for “Blind” and Guided Procedures 5b...editor developed to facilitate creation by non-technical educators of ITs for the set of modular simulators, (c) a curriculum for self-study and self
Compositions and methods for adoptive and active immunotherapy
Fahmy, Tarek; Steenblock, Erin
2014-01-14
Modular aAPCs and methods of their manufacture and use are provided. The modular aAPCs are constructed from polymeric microparticles. The aAPCs include encapsulated cytokines and coupling agents which modularly couple functional elements including T cell receptor activators, co-stimulatory molecules and adhesion molecules to the particle. The ability of these aAPCs to release cytokines in a controlled manner, coupled with their modular nature and ease of ligand attachment, results in an ideal, tunable APC capable of stimulating and expanding primary T cells.
2009-12-10
Small Modular Reactors Rising cost estimates for large conventional nuclear power plants—widely projected to be $6 billion or more—have contributed to growing interest in proposals for smaller, modular reactors. Ranging from about 40 to 350 megawatts of electrical capacity, such reactors would be only a fraction of the size of current commercial reactors. Several modular reactors would be installed together to make up a power block with a single control room, under most concepts. Modular reactor concepts would use a variety of technologies,
Dynamical evolution of small bodies in the Solar System
NASA Astrophysics Data System (ADS)
Jacobson, Seth A.
2012-05-01
This thesis explores the dynamical evolution of small bodies in the Solar System. It focuses on the asteroid population but parts of the theory can be applied to other systems such as comets or Kuiper Belt objects. Small is a relative term that refers to bodies whose dynamics can be significantly perturbed by non-gravitational forces and tidal torques on timescales less than their lifetimes (for instance the collisional timescale in the Main Belt asteroid population or the sun impact timescale for the near-Earth asteroid population). Non-gravitational torques such as the YORP effect can result in the active endogenous evolution of asteroid systems; something that was not considered more than twenty years ago. This thesis is divided into three independent studies. The first explores the dynamics of a binary systems immediately after formation from rotational fission. The rotational fission hypothesis states that a rotationally torqued asteroid will fission when the centrifugal accelerations across the body exceed gravitational attraction. Asteroids must have very little or no tensile strength for this to occur, and are often referred to as "rubble piles.'' A more complete description of the hypothesis and the ensuing dynamics is provided there. From that study a framework of asteroid evolution is assembled. It is determined that mass ratio is the most important factor for determining the outcome of a rotational fission event. Each observed binary morphology is tied to this evolutionary schema and the relevant timescales are assessed. In the second study, the role of non-gravitational and tidal torques in binary asteroid systems is explored. Understanding the competition between tides and the YORP effect provides insight into the relative abundances of the different binary morphologies and the effect of planetary flybys. The interplay between tides and the BYORP effect creates dramatic evolutionary pathways that lead to interesting end states including stranded widely separated asynchronous binaries or tightly bound synchronous binaries, which occupy a revealing equilibrium. The first results of observations are reported that confirm the theoretically predicted equilibrium. In the final study, the binary asteroid evolutionary model is embedded in a model of the entire Main Belt asteroid population. The asteroid population evolution model includes the effects of collisions as well as the YORP-induced rotational fission. The model output is favorably compared to a number of observables. This allows inferences to be made regarding the free parameters of the model including the most likely typical binary lifetimes. These studies can be combined to create an overall picture of asteroid evolution. From only the power of sunlight, an asteroid can transform into a myriad number of different states according to a few fundamental forces.
Gravitational Thermodynamics for Interstellar Gas and Weakly Degenerate Quantum Gas
NASA Astrophysics Data System (ADS)
Zhu, Ding Yu; Shen, Jian Qi
2016-03-01
The temperature distribution of an ideal gas in gravitational fields has been identified as a longstanding problem in thermodynamics and statistical physics. According to the principle of entropy increase (i.e., the principle of maximum entropy), we apply a variational principle to the thermodynamical entropy functional of an ideal gas and establish a relationship between temperature gradient and gravitational field strength. As an illustrative example, the temperature and density distributions of an ideal gas in two simple but typical gravitational fields (i.e., a uniform gravitational field and an inverse-square gravitational field) are considered on the basis of entropic and hydrostatic equilibrium conditions. The effect of temperature inhomogeneity in gravitational fields is also addressed for a weakly degenerate quantum gas (e.g., Fermi and Bose gas). The present gravitational thermodynamics of a gas would have potential applications in quantum fluids, e.g., Bose-Einstein condensates in Earth’s gravitational field and the temperature fluctuation spectrum in cosmic microwave background radiation.
NASA Astrophysics Data System (ADS)
Sawicki, Ignacy; Saltas, Ippocratis D.; Motta, Mariele; Amendola, Luca; Kunz, Martin
2017-04-01
In many generalized models of gravity, perfect fluids in cosmology give rise to gravitational slip. Simultaneously, in very broad classes of such models, the propagation of gravitational waves is altered. We investigate the extent to which there is a one-to-one relationship between these two properties in three classes of models with one extra degree of freedom: scalar (Horndeski and beyond), vector (Einstein-aether), and tensor (bimetric). We prove that in bimetric gravity and Einstein-aether, it is impossible to dynamically hide the gravitational slip on all scales whenever the propagation of gravitational waves is modified. Horndeski models are much more flexible, but it is nonetheless only possible to hide gravitational slip dynamically when the action for perturbations is tuned to evolve in time toward a divergent kinetic term. These results provide an explicit, theoretical argument for the interpretation of future observations if they disfavored the presence of gravitational slip.
NASA Astrophysics Data System (ADS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corpuz, A.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalmus, P.; Kalogera, V.; Kamaretsos, I.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Loew, K.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, K. N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Pereira, R.; Perreca, A.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Santamaria, L.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2016-11-01
We present results from a search for gravitational-wave bursts coincident with two core-collapse supernovae observed optically in 2007 and 2011. We employ data from the Laser Interferometer Gravitational-wave Observatory (LIGO), the Virgo gravitational-wave observatory, and the GEO 600 gravitational-wave observatory. The targeted core-collapse supernovae were selected on the basis of (1) proximity (within approximately 15 Mpc), (2) tightness of observational constraints on the time of core collapse that defines the gravitational-wave search window, and (3) coincident operation of at least two interferometers at the time of core collapse. We find no plausible gravitational-wave candidates. We present the probability of detecting signals from both astrophysically well-motivated and more speculative gravitational-wave emission mechanisms as a function of distance from Earth, and discuss the implications for the detection of gravitational waves from core-collapse supernovae by the upgraded Advanced LIGO and Virgo detectors.
Gravitational Casimir-Polder effect
NASA Astrophysics Data System (ADS)
Hu, Jiawei; Yu, Hongwei
2017-04-01
The interaction due to quantum gravitational vacuum fluctuations between a gravitationally polarizable object modelled as a two-level system and a gravitational boundary is investigated. This quantum gravitational interaction is found to be position-dependent, which induces a force in close analogy to the Casimir-Polder force in the electromagnetic case. For a Dirichlet boundary, the quantum gravitational potential for the polarizable object in its ground-state is shown to behave like z-5 in the near zone, and z-6 in the far zone, where z is the distance to the boundary. For a concrete example, where a Bose-Einstein condensate is taken as a gravitationally polarizable object, the relative correction to the radius of the BEC caused by fluctuating quantum gravitational waves in vacuum is found to be of order 10-21. Although the correction is far too small to observe in comparison with its electromagnetic counterpart, it is nevertheless of the order of the gravitational strain caused by a recently detected black hole merger on the arms of the LIGO.
Truong, Cong-Doan; Kwon, Yung-Keun
2017-12-21
Biological networks consisting of molecular components and interactions are represented by a graph model. There have been some studies based on that model to analyze a relationship between structural characteristics and dynamical behaviors in signaling network. However, little attention has been paid to changes of modularity and robustness in mutant networks. In this paper, we investigated the changes of modularity and robustness by edge-removal mutations in three signaling networks. We first observed that both the modularity and robustness increased on average in the mutant network by the edge-removal mutations. However, the modularity change was negatively correlated with the robustness change. This implies that it is unlikely that both the modularity and the robustness values simultaneously increase by the edge-removal mutations. Another interesting finding is that the modularity change was positively correlated with the degree, the number of feedback loops, and the edge betweenness of the removed edges whereas the robustness change was negatively correlated with them. We note that these results were consistently observed in randomly structure networks. Additionally, we identified two groups of genes which are incident to the highly-modularity-increasing and the highly-robustness-decreasing edges with respect to the edge-removal mutations, respectively, and observed that they are likely to be central by forming a connected component of a considerably large size. The gene-ontology enrichment of each of these gene groups was significantly different from the rest of genes. Finally, we showed that the highly-robustness-decreasing edges can be promising edgetic drug-targets, which validates the usefulness of our analysis. Taken together, the analysis of changes of robustness and modularity against edge-removal mutations can be useful to unravel novel dynamical characteristics underlying in signaling networks.
pyNBS: A Python implementation for network-based stratification of tumor mutations.
Huang, Justin K; Jia, Tongqiu; Carlin, Daniel E; Ideker, Trey
2018-03-28
We present pyNBS: a modularized Python 2.7 implementation of the network-based stratification (NBS) algorithm for stratifying tumor somatic mutation profiles into molecularly and clinically relevant subtypes. In addition to release of the software, we benchmark its key parameters and provide a compact cancer reference network that increases the significance of tumor stratification using the NBS algorithm. The structure of the code exposes key steps of the algorithm to foster further collaborative development. The package, along with examples and data, can be downloaded and installed from the URL http://www.github.com/huangger/pyNBS/. jkh013@ucsd.edu.
Spatial Hyperschematia without Spatial Neglect after Insulo-Thalamic Disconnection
Saj, Arnaud; Wilcke, Juliane C.; Gschwind, Markus; Emond, Héloïse; Assal, Frédéric
2013-01-01
Different spatial representations are not stored as a single multipurpose map in the brain. Right brain-damaged patients can show a distortion, a compression of peripersonal and extrapersonal space. Here we report the case of a patient with a right insulo-thalamic disconnection without spatial neglect. The patient, compared with 10 healthy control subjects, showed a constant and reliable increase of her peripersonal and extrapersonal egocentric space representations - that we named spatial hyperschematia - yet left her allocentric space representations intact. This striking dissociation shows that our interactions with the surrounding world are represented and processed modularly in the human brain, depending on their frame of reference. PMID:24302992
The Radiation, Interplanetary Shocks, and Coronal Sources (RISCS) Toolset
NASA Technical Reports Server (NTRS)
Zank, G. P.; Spann, James F.
2014-01-01
The goal of this project is to serve the needs of space system designers and operators by developing an interplanetary radiation environment model within 10 AU:Radiation, Interplanetary Shocks, and Coronal Sources (RISCS) toolset: (1) The RISCS toolset will provide specific reference environments for space system designers and nowcasting and forecasting capabilities for space system operators; (2) We envision the RISCS toolset providing the spatial and temporal radiation environment external to the Earth's (and other planets') magnetosphere, as well as possessing the modularity to integrate separate applications (apps) that can map to specific magnetosphere locations and/or perform the subsequent radiation transport and dosimetry for a specific target.
Finding modules and hierarchy in weighted financial network using transfer entropy
NASA Astrophysics Data System (ADS)
Yook, Soon-Hyung; Chae, Huiseung; Kim, Jinho; Kim, Yup
2016-04-01
We study the modular structure of financial network based on the transfer entropy (TE). From the comparison with the obtained modular structure using the cross-correlation (CC), we find that TE and CC both provide well organized modular structure and the hierarchical relationship between each industrial group when the time scale of the measurement is less than one month. However, when the time scale of the measurement becomes larger than one month, we find that the modular structure from CC cannot correctly reflect the known industrial classification and their hierarchy. In addition the measured maximum modularity, Qmax, for TE is always larger than that for CC, which indicates that TE is a better weight measure than CC for the system with asymmetric relationship.
Automatic Modeling and Simulation of Modular Robots
NASA Astrophysics Data System (ADS)
Jiang, C.; Wei, H.; Zhang, Y.
2018-03-01
The ability of reconfiguration makes modular robots have the ability of adaptable, low-cost, self-healing and fault-tolerant. It can also be applied to a variety of mission situations. In this manuscript, a robot platform which relied on the module library was designed, based on the screw theory and module theory. Then, the configuration design method of the modular robot was proposed. And the different configurations of modular robot system have been built, including industrial mechanical arms, the mobile platform, six-legged robot and 3D exoskeleton manipulator. Finally, the simulation and verification of one system among them have been made, using the analyses of screw kinematics and polynomial planning. The results of experiments demonstrate the feasibility and superiority of this modular system.
Gravitational waves — A review on the theoretical foundations of gravitational radiation
NASA Astrophysics Data System (ADS)
Dirkes, Alain
2018-05-01
In this paper, we review the theoretical foundations of gravitational waves in the framework of Albert Einstein’s theory of general relativity. Following Einstein’s early efforts, we first derive the linearized Einstein field equations and work out the corresponding gravitational wave equation. Moreover, we present the gravitational potentials in the far away wave zone field point approximation obtained from the relaxed Einstein field equations. We close this review by taking a closer look on the radiative losses of gravitating n-body systems and present some aspects of the current interferometric gravitational waves detectors. Each section has a separate appendix contribution where further computational details are displayed. To conclude, we summarize the main results and present a brief outlook in terms of current ongoing efforts to build a spaced-based gravitational wave observatory.
Curriculum Development through YTS Modular Credit Accumulation.
ERIC Educational Resources Information Center
Further Education Unit, London (England).
This document reports the evaluation of the collaborately developed Modular Training Framework (MainFrame), a British curriculum development project, built around a commitment to a competency-based, modular credit accumulation program. The collaborators were three local education authorities (LEAs), those of Bedfordshire, Haringey, and Sheffield,…
Modular support blocks for fluid lines
NASA Technical Reports Server (NTRS)
Dimino, J. M.; Deskin, R. D.
1974-01-01
Modular line block comprises matched modular elements machined to accept fluid lines of different diameters. Modules can support different fluid-line configurations. Top and bottom surfaces are machined to accept dovetail strip used for holding modules together. End modules have holes drilled through to accept fastening screws.
Zhang, Pan; Moore, Cristopher
2014-01-01
Modularity is a popular measure of community structure. However, maximizing the modularity can lead to many competing partitions, with almost the same modularity, that are poorly correlated with each other. It can also produce illusory ‘‘communities’’ in random graphs where none exist. We address this problem by using the modularity as a Hamiltonian at finite temperature and using an efficient belief propagation algorithm to obtain the consensus of many partitions with high modularity, rather than looking for a single partition that maximizes it. We show analytically and numerically that the proposed algorithm works all of the way down to the detectability transition in networks generated by the stochastic block model. It also performs well on real-world networks, revealing large communities in some networks where previous work has claimed no communities exist. Finally we show that by applying our algorithm recursively, subdividing communities until no statistically significant subcommunities can be found, we can detect hierarchical structure in real-world networks more efficiently than previous methods. PMID:25489096
Multiple D3-Instantons and Mock Modular Forms II
NASA Astrophysics Data System (ADS)
Alexandrov, Sergei; Banerjee, Sibasish; Manschot, Jan; Pioline, Boris
2018-03-01
We analyze the modular properties of D3-brane instanton corrections to the hypermultiplet moduli space in type IIB string theory compactified on a Calabi-Yau threefold. In Part I, we found a necessary condition for the existence of an isometric action of S-duality on this moduli space: the generating function of DT invariants in the large volume attractor chamber must be a vector-valued mock modular form with specified modular properties. In this work, we prove that this condition is also sufficient at two-instanton order. This is achieved by producing a holomorphic action of {SL(2,Z)} on the twistor space which preserves the holomorphic contact structure. The key step is to cancel the anomalous modular variation of the Darboux coordinates by a local holomorphic contact transformation, which is generated by a suitable indefinite theta series. For this purpose we introduce a new family of theta series of signature (2, n - 2), find their modular completion, and conjecture sufficient conditions for their convergence, which may be of independent mathematical interest.
Domain organizations of modular extracellular matrix proteins and their evolution.
Engel, J
1996-11-01
Multidomain proteins which are composed of modular units are a rather recent invention of evolution. Domains are defined as autonomously folding regions of a protein, and many of them are similar in sequence and structure, indicating common ancestry. Their modular nature is emphasized by frequent repetitions in identical or in different proteins and by a large number of different combinations with other domains. The extracellular matrix is perhaps the largest biological system composed of modular mosaic proteins, and its astonishing complexity and diversity are based on them. A cluster of minireviews on modular proteins is being published in Matrix Biology. These deal with the evolution of modular proteins, the three-dimensional structure of domains and the ways in which these interact in a multidomain protein. They discuss structure-function relationships in calcium binding domains, collagen helices, alpha-helical coiled-coil domains and C-lectins. The present minireview is focused on some general aspects and serves as an introduction to the cluster.
A modified Friedmann equation for a system with varying gravitational mass
NASA Astrophysics Data System (ADS)
Gorkavyi, Nick; Vasilkov, Alexander
2018-05-01
The Laser Interferometer Gravitational-Wave Observatory (LIGO) detection of gravitational waves that take away 5 per cent of the total mass of two merging black holes points out on the importance of considering varying gravitational mass of a system. Using an assumption that the energy-momentum pseudo-tensor of gravitational waves is not considered as a source of gravitational field, we analyse a perturbation of the Friedmann-Robertson-Walker metric caused by the varying gravitational mass of a system. This perturbation leads to a modified Friedmann equation that contains a term similar to the `cosmological constant'. Theoretical estimates of the effective cosmological constant quantitatively corresponds to observed cosmological acceleration.